

Apps and Services with .NET 7

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Early Access Publication: Apps and Services with .NET 7

Early Access Production Reference: B18857

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK

ISBN: 978-1-80181-343-3

www.packt.com

Table of Contents
	Apps and Services with .NET 7: Build practical projects with Blazor, .NET MAUI, gRPC, GraphQL, and other enterprise technologies
	1 Introducing Apps and Services with .NET	Join our book community on Discord
	Introducing this book and its contents	A companion book to continue your learning journey
	What you will learn in this book
	My learning philosophy
	Fixing my mistakes

	Setting up your development environment	Choosing the appropriate tool and application type for learning
	Deploying cross-platform
	Downloading and installing Visual Studio 2022 for Windows
	Downloading and installing Visual Studio Code
	Understanding the solution code on GitHub

	What’s new in C# and .NET?	Understanding .NET support
	Understanding .NET Runtime and .NET SDK versions
	What’s new in C# 8 and .NET Core 3?
	What’s new in C# 9 and .NET 5?
	What’s new in C# 10 and .NET 6?
	What’s new in C# 11 and .NET 7?

	Using other project templates	Installing additional template packs

	Making good use of the GitHub repository for this book	Raising issues with the book
	Giving me feedback
	Downloading solution code from the GitHub repository

	Where to go for help	Reading Microsoft documentation
	Getting help for the dotnet tool
	Searching for answers using Google
	Subscribing to the official .NET blog
	Watching Scott Hanselman's videos

	Practicing and exploring	Exercise 1.1 – Test your knowledge
	Exercise 1.2 – Explore topics

	Summary

	2 Working with Data Using SQL Server	Join our book community on Discord
	Understanding modern databases	Using a sample relational database
	Connecting to a SQL Server database
	Installing and setting up Microsoft SQL Server
	Installing Microsoft SQL Server Developer edition for Windows
	Visual Studio Code extension for working with SQL Server
	Creating the Northwind sample database
	Setting up Azure SQL Database
	Installing Azure SQL Edge in Docker

	Managing data with low level APIs	Understanding the types in ADO.NET
	Creating a console app for working with ADO.NET
	Executing queries and working with data readers using ADO.NET
	Working with ADO.NET asynchronously
	Executing stored procedures using ADO.NET

	Managing data with EF Core	Understanding Entity Framework Core
	Scaffolding models using an existing database
	Setting up the dotnet-ef tool
	Defining EF Core models
	Using EF Core conventions to define the model
	Using EF Core annotation attributes to define the model
	Using the EF Core Fluent API to define the model
	Understanding data seeding with the Fluent API
	Defining the Northwind database model
	Querying the Northwind model

	Building a reusable entity data model	Creating a class library for entity models using SQL Server
	Creating a class library for the data context using SQL Server
	Creating a test project to check the integration of theclass libraries
	Writing unit tests for entity models
	Running unit tests using Visual Studio 2022
	Running unit tests using Visual Studio Code

	Cleaning up data resources	Removing Azure resources
	Removing Docker resources

	Practicing and exploring	Exercise 2.1 – Test your knowledge
	Exercise 2.2 – Practice benchmarking ADO.NET against EF Core
	Exercise 2.3 – Explore topics

	Summary

	3 Working with Data Using Microsoft Azure Cosmos DB	Join our book community on Discord
	Understanding NoSQL databases	Understanding Azure Cosmos DB and its APIs
	Understanding document modelling
	Understanding consistency levels
	Understanding the hierarchy of components
	Understanding throughput provisioning
	Understanding partition strategies
	Understanding data storage design
	Migrating data to Azure Cosmos DB

	Creating Azure Cosmos DB resources	Using an emulator on Windows to create Azure Cosmos DB resources
	Using the Azure portal to create Azure Cosmos DB resources
	Using a .NET app to create Azure Cosmos DB resources

	Manipulating data with Core (SQL) API	Performing CRUD operations with Cosmos SQL API
	Understanding SQL queries
	Understanding server-side programming

	Manipulating graph data with Gremlin API	Comparing relational and graph databases
	Defining a graph model using Gremlin API

	Cleaning up Azure resources
	Practicing and exploring	Exercise 3.1 – Test your knowledge
	Exercise 3.2 – Practice data modelling and partitioning
	Exercise 3.3 – Explore topics
	Exercise 3.4 – Explore NoSQL databases

	Summary

	4 Improving Performance and Scalability Using Multitasking	Join our book community on Discord
	Understanding processes, threads, and tasks
	Monitoring performance and resource usage	Evaluating the efficiency of types
	Monitoring performance and memory using diagnostics
	Measuring the efficiency of processing strings
	Monitoring performance and memory using Benchmark.NET

	Running tasks asynchronously	Running multiple actions synchronously
	Running multiple actions asynchronously using tasks
	Waiting for tasks
	Continuing with another task
	Nested and child tasks
	Wrapping tasks around other objects

	Synchronizing access to shared resources	Accessing a resource from multiple threads
	Applying a mutually exclusive lock to a conch
	Synchronizing events
	Making CPU operations atomic
	Applying other types of synchronization

	Understanding async and await	Improving responsiveness for console apps
	Working with async streams
	Improving responsiveness for GUI apps
	Improving scalability for web applications and web services
	Common types that support multitasking
	Using await in catch blocks

	Practicing and exploring	Exercise 4.1 – Test your knowledge
	Exercise 4.2 – Explore topics

	Summary

	5 Using Popular Third-Party Libraries	Join our book community on Discord
	Which third-party libraries are most popular?	What is covered in my books
	What could be covered in my books

	Working with images	Generating greyscale thumbnails
	ImageSharp packages for drawing and the web

	Logging with Serilog	Understanding Serilog sinks
	Logging to the console and a rolling file with Serilog

	Mapping between objects	Testing an AutoMapper configuration
	Performing live mappings between models

	Making fluent assertions in unit testing	Making assertions about strings
	Making assertions about collections and arrays
	Making assertions about dates and times

	Validating data	Understanding the built-in validators
	Performing custom validation
	Customizing validation messages
	Defining a model and validator
	Testing the validator
	Integrating with ASP.NET Core

	Generating PDFs
	Practicing and exploring	Exercise 5.1 – Test your knowledge
	Exercise 5.2 – Explore topics

	Summary

	6 Controlling the Roslyn Compiler, Reflection, and Expression Trees	Join our book community on Discord
	Working with reflection and attributes	Versioning of assemblies
	Reading assembly metadata
	Creating custom attributes
	Understanding compiler-generated types and members
	Making a type or member obsolete
	Doing more with reflection

	Working with expression trees	Understanding components of expression trees
	Executing the simplest expression tree

	Creating source generators	Implementing the simplest source generator
	Doing more with source generators

	Practicing and exploring	Exercise 6.1 – Test your knowledge
	Exercise 6.2 – Explore topics

	Summary

	7 Handling Dates, Times, and Internationalization	Join our book community on Discord
	Working with dates and times	Specifying date and time values
	Formatting date and time values
	Date and time calculations
	Globalization with dates and times
	Working with only a date or a time

	Working with time zones	Understanding DateTime and TimeZoneInfo
	Exploring DateTime and TimeZoneInfo

	Working with cultures	Detecting and changing the current culture
	Localizing your user interface
	Defining and loading resources
	Testing globalization and localization

	Practicing and exploring	Exercise 2.1 – Test your knowledge
	Exercise 2.2 – Explore topics
	Exercise 2.3 – Watch Jon Skeet's presentation

	Summary

	8 Protecting Your Data and Applications	Join our book community on Discord
	Understanding the vocabulary of protection	Keys and key sizes
	IVs and block sizes
	Salts
	Generating keys and IVs

	Encrypting and decrypting data	Encrypting symmetrically with AES

	Hashing data	Hashing with the commonly used SHA256

	Signing data	Signing with SHA256 and RSA

	Generating random numbers	Generating random numbers for games and similar apps
	Generating random numbers for cryptography

	Authenticating and authorizing users	Authentication and authorization mechanisms
	Implementing authentication and authorization
	Protecting application functionality
	Real-world authentication and authorization

	Practicing and exploring	Exercise 8.1 – Test your knowledge
	Exercise 8.2 – Practice protecting data with encryption and hashing
	Exercise 8.3 – Practice protecting data with decryption
	Exercise 8.4 – Explore topics
	Exercise 8.5 – Review Microsoft encryption recommendations

	Summary

	9 Building and Securing Web Services with Minimal APIs	Join our book community on Discord
	Building web services using ASP.NET Core Minimal APIs	Understanding Minimal APIs route mappings
	Understanding parameter mapping
	Understanding return values
	Documenting a Minimal APIs service
	Setting up a ASP.NET Core Web API project
	Testing web services using Visual Studio Code extensions
	Excluding paths from OpenAPI documentation

	Relaxing the same origin security policy using CORS	Configuring HTTP logging for the web service
	Creating a web page JavaScript client
	Creating a .NET client
	Understanding CORS
	Enabling CORS for specific endpoints
	Understanding other CORS policy options

	Preventing denial of service attacks using rate limiting	Rate limiting using ASP.NET Core middleware
	Rate limiting using the AspNetCoreRateLimit package
	Creating a rate limited console client

	Understanding identity services	Authenticating service clients using JWT bearer authentication

	Practicing and exploring	Exercise 9.1 – Test your knowledge
	Exercise 9.2 – Practice ???
	Exercise 9.3 – Explore topics

	Summary

	10 Exposing Data via the Web Using OData	Join our book community on Discord
	Understanding OData	Understanding the OData standard
	Understanding OData queries

	Building a web service that supports OData	Defining OData models for the EF Core models
	Testing the OData models
	Creating and testing OData controllers

	Testing OData services using Visual Studio Code extensions	Querying OData services using REST Client

	Logging OData requests
	Versioning OData controllers
	Enabling entity inserts, updates, and deletes
	Building clients for OData services	Calling services in the Northwind MVC website
	Revisiting the introductory query

	Practicing and exploring	Exercise 10.1 – Test your knowledge
	Exercise 10.2 – Explore topics

	Summary

	11 Combining Data Sources Using GraphQL	Join our book community on Discord
	Understanding GraphQL	Understanding GraphQL document format
	Understanding other GraphQL capabilities
	Understanding the ChilliCream GraphQL platform

	Building a service that supports GraphQL	Defining GraphQL schema for Hello World
	Writing and executing GraphQL queries
	Naming GraphQL queries
	Understanding field conventions

	Defining GraphQL queries for EF Core models	Adding support for EF Core
	Exploring GraphQL queries with Northwind

	Building a .NET client for a GraphQL service	Understanding GraphQL responses
	Using REST Client as a GraphQL client
	Using an ASP.NET Core MVC project as a GraphQL client
	Testing the .NET client
	Understanding Strawberry Shake

	Implementing GraphQL mutations
	Practicing and exploring	Exercise 11.1 – Test your knowledge
	Exercise 11.2 – Explore topics
	Exercise 11.3 – Practice building .NET clients

	Summary

	12 Building Efficient Services Using gRPC	Join our book community on Discord
	Understanding gRPC	How gRPC works
	Defining gRPC contracts with .proto files
	gRPC benefits
	gRPC limitations
	Types of gRPC methods
	Microsoft's gRPC packages

	Building a gRPC service and client	Building a Hello World gRPC service
	Building a Hello World gRPC client
	Testing a gRPC service and client

	Implementing gRPC for an EF Core model	Implementing the gRPC service
	Implementing the gRPC client
	Getting request and response metadata
	Adding a deadline for higher reliability

	Implementing gRPC JSON transcoding	Enabling gRPC JSON transcoding
	Testing gRPC JSON transcoding
	Comparing with gRPC-Web

	Practicing and exploring	Exercise 12.1 – Test your knowledge
	Exercise 12.2 – Explore topics

	Summary

	13 Broadcasting Realtime Communication Using SignalR	Join our book community on Discord
	Understanding SignalR	Understanding the history of real time communication on the web
	Understanding AJAX
	Understanding WebSocket
	Introducing SignalR
	Designing method signatures

	Building a live communication service using SignalR	Defining some shared models
	Enabling a server-side SignalR hub

	Building web client using the SignalR JavaScript library	Adding a chat page to the MVC website
	Testing the chat feature

	Building a .NET console app client	Creating a .NET client for SignalR
	Testing the .NET console app client

	Understanding Azure SignalR Service
	Practicing and exploring	Exercise 13.1 – Test your knowledge
	Exercise 13.2 – Explore topics

	Summary

	14 Building Serverless Services Using Azure Functions	Join our book community on Discord
	Understanding Azure Functions	Understanding Azure Functions triggers and bindings
	Understanding NCRONTAB expressions
	Understanding Azure Functions versions and languages
	Understanding Azure Functions hosting models
	Understanding Azure Functions hosting plans
	Understanding the Azure Storage requirement
	Understanding and installing Azurite
	Understanding Azure Functions authorization levels
	Understanding Azure Functions support for dependency injection
	Installing Azure Functions Core Tools

	Building an Azure Functions project	Using Visual Studio 2022
	Using Visual Studio Code
	Using the func CLI
	Reviewing the Azure Functions project
	Implementing a simple function
	Testing a simple function

	Responding to timer and resource triggers	Implementing a Timer triggered function
	Testing the Timer triggered function
	Implementing a function that works with queues and blobs
	Testing the function that works with queues and blobs

	Publishing an Azure Functions project to the cloud	Using Visual Studio 2022 to publish
	Using Visual Studio Code to publish

	Cleaning up Azure Functions resources
	Practicing and exploring	Exercise 14.1 – Test your knowledge
	Exercise 14.2 – Explore topics
	Exercise 14.3 – Reading more about Azure Functions

	Summary

	15 Building Web User Interfaces Using ASP.NET Core	Join our book community on Discord
	Setting up an ASP.NET Core MVC website	Creating an ASP.NET Core MVC website
	Exploring the default ASP.NET Core MVC website
	Understanding visitor registration
	Reviewing an MVC website project structure
	Referencing an EF Core class library and registering a data context

	Defining web user interfaces with Razor views	Understanding Razor views
	Prototyping with Bootstrap
	Understanding Razor syntax and expressions
	Understanding HTML Helper methods
	Defining a strongly-typed Razor view

	Localizing and globalizing with ASP.NET Core	Creating resource files
	Localizing Razor views with an injected view localizer
	Understanding the Accept-Language header

	Defining web user interfaces with Tag Helpers	Comparing HTML Helpers and Tag Helpers
	Exploring the Anchor Tag Helper
	Exploring the Cache Tag Helpers
	Exploring the Environment Tag Helper
	Understanding how the Image Tag Helper busts a cached file
	Exploring Forms-related Tag Helpers

	Practicing and exploring	Exercise 15.1 – Test your knowledge
	Exercise 15.2 – Practice building a web user interface
	Exercise 15.3 – Explore topics

	Summary

	16 Building Web Components Using Blazor WebAssembly	Join our book community on Discord
	Understanding Blazor	Understanding Blazor hosting models
	Understanding deployment choices for Blazor WebAssembly apps
	Understanding the browser compatibility analyzer for Blazor WebAssembly
	Understanding CSS and JavaScript isolation
	Understanding Blazor components
	Understanding Blazor routing to page components
	How to pass route parameters
	How to navigate Blazor routes to page components

	Building Blazor components	Building and testing a Blazor progress bar component
	Building and testing a Blazor dialog box component
	Building and testing a Blazor alert component

	Building a Blazor data component	Making the component a routable page component
	Getting entities into a component by building a web service
	Getting entities into a component by calling the web service

	Implementing caching using local storage	Understanding interop with JavaScript modules
	Building a local storage service

	Building Progressive Web Apps	Enabling offline support

	Practicing and exploring	Exercise 16.1 – Test your knowledge
	Exercise 16.2 – Practice building Blazor components
	Exercise 16.3 – Practice building an IndexedDB interop service
	Exercise 16.4 – Explore topics

	Summary

	17 Using Open Source Blazor Component Libraries	Join our book community on Discord
	Understanding open source Blazor component libraries
	Exploring Radzen Blazor components	Enabling Radzen dialog, notification, context menu, and tooltip components
	Using the Radzen tooltip and context menu components
	Using the Radzen notification and dialog components

	Building a web service for Northwind entities	Using the Radzen tabs, image and icon components
	Using the Radzen HTML editor component
	Using the Radzen chart component
	Using the Radzen form components

	Practicing and exploring	Exercise 17.1 – Test your knowledge
	Exercise 17.2 – Practice by exploring MudBlazor
	Exercise 17.3 – Explore topics

	Summary

	18 Building Mobile and Desktop Apps Using .NET MAUI	Join our book community on Discord
	Understanding XAML	Simplifying code using XAML
	Understanding .NET MAUI namespaces
	Understanding type converters
	Choosing common controls
	Understanding markup extensions

	Understanding .NET MAUI	Development tools for mobile first, cloud first
	Understanding .NET MAUI user interface components
	Understanding .NET MAUI handlers
	Writing platform-specific code

	Building mobile and desktop apps using .NET MAUI	Creating a virtual Android device for local app testing
	Creating a .NET MAUI solution
	Adding shell navigation and more content pages
	Implementing more content pages

	Using shared resources	Defining resources to share across an app
	Referencing shared resources
	Changing shared resources dynamically

	Using data binding	Binding to elements

	Understanding MVVM	Understanding the INotificationPropertyChanged interface
	Understanding ObservableCollection
	Creating a view model with two-way data binding
	Creating views for the customers list and customer details
	Testing the .NET MAUI app

	Consuming a web service from a mobile app	Creating a minimal API web service for customers
	Configuring the web service to allow unsecure requests
	Connecting to local web services while testing
	Configuring the iOS app to allow unsecure connections
	Configuring the Android app to allow unsecure connections
	Getting customers from the web service

	Practicing and exploring	Exercise 18.1 – Test your knowledge
	Exercise 18.2 – Explore topics

	Summary

	19 Integrating .NET MAUI Apps with Blazor and Native Platforms	Join our book community on Discord
	Building Hybrid .NET MAUI Blazor apps	Creating a .NET MAUI Blazor project
	Adding a shell and .NET MAUI pages
	Creating a minimal API web service for categories
	Configuring the .NET MAUI app to allow unsecure connections
	Implementing the Model-View-ViewModel pattern
	Getting categories from the web service

	Integrating with native platforms	Working with the system clipboard
	Picking files from local filesystem
	Creating new windows
	Getting device information
	Integrating with desktop menu bars
	Popping up a toast notification
	Integrating with geolocation and maps

	Using third-party control libraries
	Practicing and exploring	Exercise 19.1 – Test your knowledge
	Exercise 19.2 – Explore the code samples
	Exercise 19.3 – Explore topics

	Summary

 	
 Cover

 	
 Table of contents

Apps and Services with .NET 7: Build practical projects with Blazor, .NET MAUI, gRPC, GraphQL, and other enterprise technologies

Welcome to Packt Early Access. We’re giving you an exclusive preview of this book before it goes on sale. It can take many months to write a book, but our authors have cutting-edge information to share with you today. Early Access gives you an insight into the latest developments by making chapter drafts available. The chapters may be a little rough around the edges right now, but our authors will update them over time.

You can dip in and out of this book or follow along from start to finish; Early Access is designed to be flexible. We hope you enjoy getting to know more about the process of writing a Packt book.

	Chapter 1: Introducing Apps and Services with .NET

	Chapter 2: Working with Data Using SQL Server

	Chapter 3: Working with Data Using Azure Cosmos DB

	Chapter 4: Improving Performance and Scalability Using Multitasking

	Chapter 5: Implementing Popular Third Party Libraries

	Chapter 6: Working with Roslyn, Reflection and Expression Trees

	Chapter 7: Handling Dates, Times, and Internationalization

	Chapter 8: Protecting Your Data and Applications

	Chapter 9: Building and Securing Web Services with Minimal APIs

	Chapter 10: Exposing Data via the Web Using OData

	Chapter 11: Combining Data Sources Using GraphQL

	Chapter 12: Building Efficient Services Using gRPC

	Chapter 13: Broadcasting Realtime Communication Using SignalR

	Chapter 14: Building Serverless Services Using Azure Functions

	Chapter 15: Building Web User Interfaces Using ASP.NET Core

	Chapter 16: Building Web Components Using Blazor WebAssembly

	Chapter 17: Leveraging Open Source Blazor Component Libraries

	Chapter 18: Building Mobile and Desktop Apps Using .NET MAUI

	Chapter 19: Implementing .NET MAUI Mobile Features

	Chapter 20: Introducing the Survey Project Challenge

1 Introducing Apps and Services with .NET

Join our book community on Discord

https://packt.link/EarlyAccess

In this first chapter, the goals are setting up your development environment to use Visual Studio 2022 and/or Visual Studio Code, reviewing what is new with C# 8 up to C# 11 and what is new with .NET Core 3.1 up to .NET 7. Finally, we review good places to look for help.

The GitHub repository for this book has solutions using full application projects for all code tasks:

https://github.com/markjprice/apps-services-net7/

Simply press the . (dot) key or change .com to .dev in the link above to change the GitHub repository into a live code editor based on Visual Studio Code using GitHub Codespaces.

Visual Studio Code in a web browser is great to run alongside your chosen code editor as you work through the book's coding tasks. You can compare your code to the solution code and easily copy and paste parts if needed.

Throughout this book, I use the term modern .NET to refer to .NET 7 and its predecessors like .NET 5 and .NET 6 that come from .NET Core. I use the term legacy .NET to refer to .NET Framework, Mono, Xamarin, and .NET Standard. Modern .NET is a unification of those legacy platforms and standards.

This chapter covers the following topics:

	Introducing this book and its contents

	Setting up your development environment

	What’s new in C# and .NET?

	Using other project templates

	Making good use of the GitHub repository for this book

	Where to go for help

Introducing this book and its contents

This book is unusual in that it attempts to cater to two related audiences:

	Readers who have completed my book for beginners, C# 11 and .NET 7 - Modern Cross-Platform Development, and now want to take their learning further.

	Readers who already have basic skills and knowledge about C# and .NET and want to learn practical skills and knowledge to build real-world applications and services.

A companion book to continue your learning journey

This is the second of two books that continues your learning journey for .NET 7. The first book, C# 11 and .NET 7 - Modern Cross-Platform Development, takes the reader from beginner to intermediate level. This second book takes the reader from intermediate to advanced level.

The first book covers the C# language, the .NET libraries, and the fundamentals of ASP.NET Core for web development. It is designed to be read linearly because skills and knowledge from earlier chapters build up and are needed to understand later chapters.

This second book covers more specialized topics like internationalization, protecting your data and apps, monitoring and improving performance, and building services with OData, GraphQL, gRPC, SignalR, and Azure Functions, as well as building graphical user interfaces for websites, desktop, and mobile apps with Blazor and .NET MAUI, as shown in Figure 1.1:

[image: Figure 1.1: Companion books for learning C# 11 and .NET 7 and the apps and services that can be built with them]Figure 1.1: Companion books for learning C# 11 and .NET 7 and the apps and services that can be built with them

We provide you with a PDF file that has color images of the screenshots and diagrams used in this book. You can download this file from https://static.packt-cdn.com/downloads/???_ColorImages.pdf.

What you will learn in this book

After this first chapter, this book can be divided into five parts:

	Specialized libraries: Dates, times, and internationalization; protecting data with encryption, hashing, and signing; protecting apps with authentication and authorization; monitoring and improving performance with threads and tasks; reflection, expression trees, and working with the Roslyn compiler; third-party libraries for image handling, data validation rules, and so on. These chapters can be treated like a cookbook of recipes. If you are not interested in any topic, you can skip it, or you can read them in any order.

	Storing and managing data: How to store and manage data locally and in the cloud with Microsoft SQL Server and Microsoft Azure CosmosDB. Later chapters use the SQL Server database and entity models that you create at the end of Chapter 7, Working with Data Using SQL Server.

	Service technologies: How to build services with OData, GraphQL, gRPC, SignalR, Azure Functions, and how to secure Web API services.

	User interface technologies: How to build user interfaces with Blazor WebAssembly and .NET MAUI.

	A complete project: A walk-through of some services, a website, and an app that together provide a solution to allow people to take surveys and for the survey data to be analyzed.

My learning philosophy

Most people learn complex topics best by imitation and repetition rather than reading a detailed explanation of the theory; therefore, I will not overload you with detailed explanations of every step throughout this book. The idea is to get you to write some code and see it run.

You don't need to know all the nitty-gritty details immediately. That will be something that comes with time as you build your own apps and go beyond what any book can teach you.

Fixing my mistakes

In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed "a few wild blunders, and risible absurdities, from which no work of such multiplicity is free." I take sole responsibility for these and hope you appreciate the challenge of my attempt to lash the wind by writing this book about rapidly evolving technologies like C# and .NET, and the apps that you can build with them.

If you have a complaint about this book, then please contact me before writing a negative review on Amazon. Authors cannot respond to Amazon reviews so I cannot contact you to resolve the problem and help you, or listen to your feedback and try to do better in the next edition. Please email me (my address is on the GitHub repository for the book) or raise an issue at the following link: https://github.com/markjprice/apps-services-net7/issues.

Setting up your development environment

Before you start programming, you'll need a code editor for C#. Microsoft has a family of code editors and Integrated Development Environments (IDEs), which include:

	Visual Studio 2022 for Windows

	Visual Studio 2022 for Mac

	Visual Studio Code for Windows, Mac, or Linux

	Visual Studio Code for Web

	GitHub Codespaces

Third parties have created their own C# code editors, for example, JetBrains Rider.

Choosing the appropriate tool and application type for learning

What is the best tool and application type for building apps and services with C# and .NET?

I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this book, including Visual Studio Code, Visual Studio for Windows, Visual Studio for Mac, or even JetBrains Rider.

For building user interfaces, Visual Studio 2022 for either Windows or Mac is best because they provide GUI editors. Visual Studio Code does not yet have a GUI editor for .NET MAUI.

In this book, I give names of projects and general instructions that work with all tools so you can use whichever tool you prefer.

Using Visual Studio Code for cross-platform development

The most modern and lightweight code editor to choose from, and the only one from Microsoft that is cross-platform, is Visual Studio Code. It can run on all common operating systems, including Windows, macOS, and many varieties of Linux, including Red Hat Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because it has an extensive and growing set of extensions to support many languages beyond C#.

Being cross-platform and lightweight, it can be installed on all platforms that your apps will be deployed to for quick bug fixes and so on. Choosing Visual Studio Code means a developer can use a cross-platform code editor to develop cross-platform apps.

Visual Studio Code has strong support for web development, although it currently has weak support for mobile and desktop development.

Visual Studio Code is supported on ARM processors so that you can develop on Apple Silicon computers and Raspberry Pi.

Visual Studio Code is by far the most popular integrated development environment, with over 70% of professional developers selecting it in the Stack Overflow 2021 survey.

Using GitHub Codespaces for development in the cloud

GitHub Codespaces is a fully configured development environment based on Visual Studio Code that can be spun up in an environment hosted in the cloud and accessed through any web browser. It supports Git repos, extensions, and a built-in command-line interface so you can edit, run, and test from any device.

Using Visual Studio for Mac for general development

Visual Studio 2022 for Mac can create most types of applications, including console apps, websites, web services, desktop, and mobile apps.

To compile apps for Apple operating systems like iOS to run on devices like the iPhone and iPad, you must have Xcode, which only runs on macOS.

Using Visual Studio for Windows for general development

Visual Studio 2022 for Windows can create most types of applications, including console apps, websites, web services, desktop, and mobile apps.

Although you can use Visual Studio 2022 for Windows with a .NET MAUI project to write a cross-platform mobile app, you still need macOS and Xcode to compile it.

It only runs on Windows 10 version 1909 or later, or Windows Server 2016 or later, and only on 64-bit versions.

What I used

To write and test the code for this book, I used the following hardware:

	HP Spectre (Intel) laptop

	Apple Silicon Mac mini (M1) desktop

	Raspberry Pi 400 (ARM v8) desktop

And I used the following software:

	Visual Studio Code on:

	macOS on an Apple Silicon Mac mini (M1) desktop

	Windows 11 on an HP Spectre (Intel) laptop

	Ubuntu 64 on a Raspberry Pi 400

	Visual Studio 2022 for Windows on:

	Windows 11 on an HP Spectre (Intel) laptop

	Visual Studio 2022 for Mac on:

	macOS on an Apple Silicon Mac mini (M1) desktop

I hope that you have access to a variety of hardware and software too, because seeing the differences in platforms deepens your understanding of development challenges, although any one of the above combinations is enough to learn how to build practical apps and websites.

You can learn how to write code with C# and .NET using a Raspberry Pi 400 with Ubuntu Desktop 64-bit by reading an extra article that I wrote at the following link: https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md.

Deploying cross-platform

Your choice of code editor and operating system for development does not limit where your code gets deployed.

.NET 7 supports the following platforms for deployment:

	Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later, including Windows 11. Windows Server 2012 R2 SP1, or later. Nano Server version 1809, or later.

	Mac: macOS Mojave (version 10.14), or later.

	Linux: Alpine Linux 3.13, or later. CentOS 7, or later. Debian 10, or later. Fedora 32, or later. openSUSE 15, or later. Red Hat Enterprise Linux (RHEL) 7, or later. SUSE Enterprise Linux 12 SP2, or later. Ubuntu 16.04, 18.04, 20.04, or later.

	Android: API 21, or later.

	iOS: 10, or later.

Windows ARM64 support in .NET 5 and later means you can develop on, and deploy to, Windows ARM devices like Microsoft Surface Pro X. And developing on an Apple M1 Mac using Parallels and a Windows 11 ARM virtual machine is twice as fast.

Downloading and installing Visual Studio 2022 for Windows

Many professional Microsoft developers use Visual Studio 2022 for Windows in their day-to-day development work. Even if you choose to use Visual Studio Code to complete the coding tasks in this book, you might want to familiarize yourself with Visual Studio 2022 for Windows too.

If you do not have a Windows computer, then you can skip this section and continue to the next section where you will download and install Visual Studio Code on macOS or Linux.

Since October 2014, Microsoft has made a professional quality edition of Visual Studio for Windows available to students, open source contributors, and individuals for free. It is called Community Edition. Any of the editions are suitable for this book. If you have not already installed it, let's do so now:

	Download Visual Studio 2022 version 17.3 or later for Windows from the following link: https://visualstudio.microsoft.com/downloads/.

	Start the installer.

	On the Workloads tab, select the following:

	ASP.NET and web development

	.NET desktop development (because this includes Console Apps)

	On the Individual components tab, in the Code tools section, select the following:

	Git for Windows

	Click Install and wait for the installer to acquire the selected software and install it.

	When the installation is complete, click Launch.

	The first time that you run Visual Studio, you will be prompted to sign in. If you have a Microsoft account, you can use that account. If you don't, then register for a new one at the following link: https://signup.live.com/.

	The first time that you run Visual Studio, you will be prompted to configure your environment. For Development Settings, choose Visual C#. For the color theme, I chose Blue, but you can choose whatever tickles your fancy.

	If you want to customize your keyboard shortcuts, navigate to Tools | Options…, and then select the Environment | Keyboard section.

Visual Studio 2022 for Windows keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts since they are often customized. Where they are consistent across code editors and commonly used, I will try to show them. If you want to identify and customize your keyboard shortcuts, then you can, as shown at the following link: https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio.

Downloading and installing Visual Studio Code

Visual Studio Code has rapidly improved over the past couple of years and has pleasantly surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge, then there is an Insiders edition, which is a daily build of the next version.

Even if you plan to only use Visual Studio 2022 for Windows for development, I recommend that you download and install Visual Studio Code and try some of the coding tasks in this book using it, and then decide if you want to stick with using Visual Studio 2022 for the rest of the tasks.

Let's now download and install Visual Studio Code, the .NET SDK, and the C# and .NET Interactive Notebooks extensions:

	Download and install either the Stable build or the Insiders edition of Visual Studio Code from the following link: https://code.visualstudio.com/.

More Information: If you need more help installing Visual Studio Code, you can read the official setup guide at the following link: https://code.visualstudio.com/docs/setup/setup-overview.

	Download and install the .NET SDKs for versions 6.0 and 7.0 from the following link: https://www.microsoft.com/net/download.

To fully learn how to control .NET SDKs, we need multiple versions installed. .NET 6.0 and .NET 7.0 are two currently supported versions. You can safely install multiple SDKs side by side. Although .NET 6.0 is not the most recent, it does include the C# 11 compiler and it is the most recent Long Term Support (LTS) version so it has an end-of-life six months after .NET 7.0; that is another good reason to install it.

	To install the C# extension, you must first launch the Visual Studio Code application.

	In Visual Studio Code, click the Extensions icon or navigate to View | Extensions.

	C# is one of the most popular extensions available, so you should see it at the top of the list, or you can enter C# in the search box.

	Click Install and wait for supporting packages to download and install.

Installing other extensions

In later chapters of this book, you will use more Visual Studio Code extensions. If you want to install them now, all the extensions that we will use are shown in the following table:

	Extension name and identifier
	Description

	C# for Visual Studio Code (powered by OmniSharp)

ms-dotnettools.csharp

	C# editing support, including syntax highlighting, IntelliSense, Go To Definition, Find All References, debugging support for .NET, and support for csproj projects on Windows, macOS, and Linux.

	MSBuild project tools

tintoy.msbuild-project-tools

	Provides IntelliSense for MSBuild project files, including autocomplete for <PackageReference> elements.

	REST Client

humao.rest-client

	Send an HTTP request and view the response directly in Visual Studio Code.

	ilspy-vscode

icsharpcode.ilspy-vscode

	Decompile MSIL assemblies – support for modern .NET, .NET Framework, .NET Core, and .NET Standard.

	Azure Functions for Visual Studio Code

ms-azuretools.vscode-azurefunctions

	Create, debug, manage, and deploy serverless apps directly from VS Code. It has dependencies on Azure Account (ms-vscode.azure-account) and Azure Resources (ms-azuretools.vscode-azureresourcegroups) extensions.

	GitHub Repositories

github.remotehub

	Browse, search, edit, and commit to any remote GitHub repository directly from within Visual Studio Code.

	SQL Server (mssql) for Visual Studio Code

ms-mssql.mssql

	For developing Microsoft SQL Server, Azure SQL Database and SQL Data Warehouse everywhere with a rich set of functionalities.

	vscode-proto3

zxh404.vscode-proto3

	Syntax highlighting, syntax validation, code snippets, code completion, code formatting, brace matching, line and block commenting.

Understanding Visual Studio Code versions

Microsoft releases a new feature version of Visual Studio Code (almost) every month and bug fix versions more frequently. For example:

	Version 1.66, March 2022 feature release

	Version 1.66.1, March 2022 bug fix release

The version used in this book is 1.71, August 2022 feature release, but the version of Visual Studio Code is less important than the version of the C# for Visual Studio Code extension that you installed. For example, to support C# 11 features, you should install C# extension 1.25.0 or later.

While the C# extension is not required, it provides IntelliSense as you type, code navigation, and debugging features, so it's something that's very handy to install and keep updated to support the latest C# language features.

Visual Studio Code keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts used for tasks like creating a new file since they are often different on different operating systems. The situations where I will show keyboard shortcuts are when you need to repeatedly press the key, for example, while debugging. These are also more likely to be consistent across operating systems.

If you want to customize your keyboard shortcuts for Visual Studio Code, then you can, as shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

I recommend that you download a PDF of keyboard shortcuts for your operating system from the following list:

	Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

	macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

	Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Understanding the solution code on GitHub

The solution code in the GitHub repository for this book includes separate folders for Visual Studio 2022 for Windows and Visual Studio Code, as shown in the following list:

	Visual Studio 2022 solutions: https://github.com/markjprice/apps-services-net7/tree/main/vs4win

	Visual Studio Code solutions: https://github.com/markjprice/apps-services-net7/tree/main/vscode

What’s new in C# and .NET?

In 2020, .NET Core was rebranded .NET and the major version number skipped 4 to avoid confusion with .NET Framework 4.x. Microsoft plans on annual major version releases every November, rather like Apple does major version number releases of iOS every September.

The following table shows when the key versions of modern .NET were released, when future releases are planned, and when they reach end-of-life and are therefore unsupported and receive no more bug fixes and security updates:

	Version
	Released
	End-of-life

	.NET Core 3.1 (LTS)
	December 3, 2019
	December 3, 2022

	.NET 5.0 (Current)
	November 8, 2020
	May 8, 2022

	.NET 6.0 (LTS)
	November 8, 2021
	November 8, 2024

	.NET 7.0 (Current)
	November 2022
	May 2024

	.NET 8.0 (LTS)
	November 2023
	November 2026

	.NET 9.0 (Current)
	November 2024
	May 2026

	.NET 10.0 (LTS)
	November 2025
	November 2028

Understanding .NET support

.NET versions are either Long Term Support (LTS), Current, or Preview, as described in the following list:

	LTS releases are stable and require fewer updates over their lifetime. These are a good choice for applications that you do not intend to update frequently. LTS releases are supported by Microsoft for 3 years after general availability, or 1 year after the next LTS release ships, whichever is longer.

	Current releases include features that may change based on feedback. These are a good choice for applications that you are actively developing because they provide access to the latest improvements. Current releases are supported by Microsoft for 18 months after general availability, or 6 months after the next Current or LTS release ships, whichever is longer.

	Preview releases are for public testing. These are a good choice for adventurous programmers who want to live on the bleeding edge, or programming book writers who need to have early access to new language features, libraries, and app platforms. Preview releases are not supported by Microsoft but Preview or Release Candidate (RC) releases may be declared Go Live, meaning they are supported by Microsoft in production.

Current and LTS releases receive critical fixes throughout their lifetime for security and reliability. You must stay up to date with the latest patches to get support. For example, if a system is running 1.0 and 1.0.1 has been released, 1.0.1 will need to be installed to get support.

End of support or end of life means the date after which bug fixes, security updates, or technical assistance are no longer available from Microsoft.

Understanding .NET Runtime and .NET SDK versions

.NET Runtime versioning follows semantic versioning; that is, a major increment indicates breaking changes, minor increments indicate new features, and patch increments indicate bug fixes.

.NET SDK versioning does not follow semantic versioning. The major and minor version numbers are tied to the runtime version it is matched with. The patch number follows a convention that indicates the major and minor versions of the SDK. For example, patch number 100 means SDK version 1.0, patch number 101 means SDK version 1.1, and patch number 200 means SDK version 2.0. To summarize, version 7.0.213 would mean .NET 7 SDK version 2.13.

You can see an example of this in the following table:

	Change
	Runtime
	SDK

	Initial release
	7.0.0
	7.0.100

	SDK bug fix
	7.0.0
	7.0.101

	Runtime and SDK bug fix
	7.0.1
	7.0.102

	SDK new feature
	7.0.1
	7.0.200

What’s new in C# 8 and .NET Core 3?

There were many language and library features introduced with C# 8 and .NET Core 3:

	You can apply readonly to members of a struct.

	You can use ??= to assign the value only if the left-hand operand evaluates to null.

	You can use both $@"..." and @$"..." as valid interpolated verbatim strings.

	There are more ways to perform pattern matching.

	You can make local functions static.

	You can create and consume async streams, meaning iterators that implement IAsyncEnumerable<T>, not streams that derive from the abstract Stream class. You will see an example in Chapter 4, Improving Performance and Scalability Using Multitasking.

	You can use await using to work with an asynchronously disposable object that implements the System.IAsyncDisposable interface.

Let's see some others in more detail.

Default interface methods

You can provide implementations of members in an interface. This is most useful when you have defined an interface, and in a later version you want to extend it. Normally you would not be able to without breaking any clients that consume your interface, because any types that implement the interface will not provide implementations for the new members. Now you can add new members with implementations in the interface and the types will inherit the default implementations in the interface. This is also useful for interactions with APIs for Android or Swift that also support this functionality.

Switch expressions

Switch expressions are a more compact switch syntax. For example, a switch statement, as shown in the following code:

Stream? s;
...
string message;
switch (s)
{
 case FileStream writeableFile when s.CanWrite:
 message = "The stream is a file that I can write to.";
 break;
 case FileStream readOnlyFile:
 message = "The stream is a read-only file.";
 break;
 case MemoryStream ms:
 message = "The stream is a memory address.";
 break;
 default: // always evaluated last despite its current position
 message = "The stream is some other type.";
 break;
 case null:
 message = "The stream is null.";
 break;
}

Could be more succinctly expressed as a switch expression, as shown in the following code:

Stream? s;
...
string message = s switch
{
 FileStream writeableFile when s.CanWrite
 => "The stream is a file that I can write to.",
 FileStream readOnlyFile
 => "The stream is a read-only file.",
 MemoryStream ms
 => "The stream is a memory address.",
 null
 => "The stream is null.",
 _
 => "The stream is some other type."
};

Using declarations

You can simplify using blocks by removing the curly braces. For example, when working with a disposable resource like a file, as shown in the following code:

using (FileStream file = File.OpenWrite(Path.Combine(path, "file.txt")))
{
 ...
} // automatically calls Dispose if the file is not null

This could be simplified, as shown in the following code:

using (FileStream file = File.OpenWrite(Path.Combine(path, "file.txt")));
...
// automatically calls Dispose at the end of current scope if the file is not null

Nullable reference types

The use of the null value is so common, in so many languages, that many experienced programmers never question the need for its existence. But there are many scenarios where we could write better, simpler code if a variable is not allowed to have a null value.

The most significant change to the C# 8 language compiler was the introduction of checks and warnings for nullable and non-nullable reference types. "But wait!", you are probably thinking, "Reference types are already nullable!"

And you would be right, but in C# 8 and later, reference types can be configured to no longer allow the null value by setting a file- or project-level option to enable this useful new feature. Since this is a big change for C#, Microsoft decided to make the feature opt-in.

It will take multiple years for this new C# language compiler feature to make an impact since thousands of existing library packages and apps will expect the old behavior. Even Microsoft did not have time to fully implement this new feature in all the main .NET packages until .NET 6. Important libraries like Microsoft.Extensions for logging, dependency injections, and configuration were not annotated until .NET 7.

For example, in Microsoft's implementation of the System.String class, the IsNullOrEmpty method is annotated to indicate expected nullability. Since the purpose of the method is to return true only when the value parameter is either null or empty, if the method returns false, the value must not be null, so the static compiler analysis can be informed that the parameter will not be null when the method returns false, as shown in the following code:

bool IsNullOrEmpty([NotNullWhen(false)] string? value)

I am considering adding a chapter about the details of nullability to the second edition of this book in 2023. Please let me know if that should be a priority for me over other potential topics.

During the transition, you can choose between several approaches for your own projects:

	Default: For projects created using .NET 5 or earlier, no changes are needed. Non-nullable reference types are not checked. For projects created using .NET 6 or later, nullability checks are enabled by default, but this can be disabled by either deleting the <Nullable> entry in the project file or setting it to disable.

	Opt-in project, opt-out files: Enable the feature at the project level and, for any files that need to remain compatible with old behavior, opt out. This was the approach Microsoft was using internally while it updated its own packages to use this new feature.

	Opt-in files: Only enable the feature for individual files.

To enable the nullability warning check feature at the project level, add the following to your project file:

<PropertyGroup>
 ...
 <Nullable>enable</Nullable>
</PropertyGroup>

To disable the nullability warning check feature at the project level, add the following to your project file:

<PropertyGroup>
 ...
 <Nullable>disable</Nullable>
</PropertyGroup>

To disable the feature at the file level, add the following to the top of a code file:

#nullable disable

To enable the feature at the file level, add the following to the top of a code file:

#nullable enable

If you enable nullable reference types and you want a reference type to be assigned the null value, then you will have to use the same syntax as making a value type nullable, that is, adding a ? symbol after the type declaration.

Indices and ranges

Indices and ranges enable efficient access to elements and slices of elements with an array.

	Define a position using System.Index.

	Define a slice using System.Range.

Items in an array can be accessed by passing an integer into their indexer, as shown in the following code:

int index = 3;
Person p = people[index]; // fourth person in array
char letter = name[index]; // fourth letter in name

The Index value type is a more formal way of identifying a position, and supports counting from the end, as shown in the following code:

// two ways to define the same index, 3 in from the start
Index i1 = new Index(value: 3); // counts from the start
Index i2 = 3; // using implicit int conversion operator
// two ways to define the same index, 5 in from the end
Index i3 = new Index(value: 5, fromEnd: true);
Index i4 = ^5; // using the caret operator

The Range value type uses Index values to indicate the start and end of its range, using its constructor, C# syntax, or its static methods, as shown in the following code:

Range r1 = new Range(start: new Index(3), end: new Index(7));
Range r2 = new Range(start: 3, end: 7); // using implicit int conversion
Range r3 = 3..7; // using C# 8.0 or later syntax
Range r4 = Range.StartAt(3); // from index 3 to last index
Range r5 = 3..; // from index 3 to last index
Range r6 = Range.EndAt(3); // from index 0 to index 3
Range r7 = ..3; // from index 0 to index 3

What’s new in C# 9 and .NET 5?

There were many language and library features introduced with C# 9 and .NET 5:

	More pattern matching enhancements like type patterns, parenthesized patterns, use of and, or and not in patterns, relational patterns with <, >, and so on.

	Support for source code generators. They can only add code, not modify existing code.

Let's see some others in more detail.

Record types and init only setters

The biggest new language feature in C# 9 was records. Sometimes you want to treat properties like readonly fields so they can be set during instantiation but not after. The new init keyword enables this. It can be used in place of the set keyword, as shown in the following code:

namespace Packt.Shared;
public class ImmutablePerson
{
 public string? FirstName { get; init; }
 public string? LastName { get; init; }
}
ImmutablePerson jeff = new()
{
 FirstName = "Jeff", // allowed
 LastName = "Winger"
};
jeff.FirstName = "Geoff"; // compile error!

The syntax for defining a record can be greatly simplified using positional data members, as shown in the following code:

// simpler way to define a record
// auto-generates the properties, constructor, and deconstructor
public record ImmutableAnimal(string Name, string Species);

Top-level statements

Before the C# 9 compiler, a console app and its Program.cs file needed to define a class with a Main method as its entry point, as shown in the following code:

using System;
namespace HelloCS
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

With C# 9, the top-level statements feature allows the Program class to be created by the compiler, as shown in the following code:

using System;
Console.WriteLine("Hello World!");

All the boilerplate code to define a namespace, the Program class, and its Main method, is generated and wrapped around the statements you write.

Key points to remember about top-level programs include the following:

	There can be only one file like this in a project.

	Any using statements must go at the top of the file.

	You must have at least one executable statement, like Console.WriteLine, or you will get a compile error because the compiler cannot identify where the statements that need to go inside the Main method are. This is one reason why the Microsoft project template writes Hello World! to the console instead of just having a comment!

	If you declare any classes or other types, they must go at the bottom of the file.

	Although you should name the method Main if you explicitly define it, the method is named <Main>$ when created by the compiler.

Target-typed new

With C# 9, Microsoft introduced another syntax for instantiating objects known as target-typed new. When instantiating an object, you can specify the type first and then use new without repeating the type, as shown in the following code:

XmlDocument xmlDoc = new(); // target-typed new in C# 9 or later

If you have a type with a field or property that needs to be set, then the type can be inferred, as shown in the following code:

// In Program.cs
Person kim = new();
kim.BirthDate = new(1967, 12, 26); // instead of: new DateTime(1967, 12, 26)
// In a separate Person.cs file or at the bottom of Program.cs
class Person
{
 public DateTime BirthDate;
}

What’s new in C# 10 and .NET 6?

There were many language and library features introduced with C# 10 and .NET 6:

	Project templates enable nullability checks by default.

	Project templates enable implicitly globally imported namespaces by default.

	You can define value type records using record struct.

	Constant interpolated strings.

	File scoped namespace declarations.

	Lambda expressions are easier to write because the compiler can infer a delegate type from the expression.

Let's see some others in more detail.

Top-level statements and implicitly imported namespaces by default

With .NET 6 and later, Microsoft updated the project template for console apps to use top-level statements by default. It also implicitly imports common namespaces globally by default.

Traditionally, every .cs file that needs to import namespaces would have to start with using statements to import those namespaces. Namespaces like System and System.Linq are needed in almost all .cs files, so the first few lines of every .cs file often had at least a few using statements, as shown in the following code:

using System;
using System.Linq;
using System.Collections.Generic;

When creating websites and services using ASP.NET Core, there are often dozens of namespaces that each file would have to import.

C# 10 introduced a new keyword combination and .NET SDK 6 introduced a new project setting that work together to simplify importing common namespaces.

The global using keyword combination means you only need to import a namespace in one .cs file and it will be available throughout all .cs files. You could put global using statements in the Program.cs file, but I recommend creating a separate file for those statements named something like GlobalUsings.cs with the contents being all your global using statements, as shown in the following code:

global using System;
global using System.Linq;
global using System.Collections.Generic;

Any projects that target .NET 6.0 or later, and that therefore use the C# 10 or later compiler, can generate a <ProjectName>.GlobalUsings.g.cs file in the obj folder to implicitly globally import some common namespaces like System, as shown in the following code:

// <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

The specific list of implicitly imported namespaces depends on which SDK you target, as shown in the following table:

	SDK
	Implicitly imported namespaces

	
Microsoft.NET.Sdk

	
System
System.Collections.Generic
System.IO
System.Linq
System.Net.Http
System.Threading
System.Threading.Tasks

	
Microsoft.NET.Sdk.Web

	
System.Net.Http.Json
Microsoft.AspNetCore.Builder
Microsoft.AspNetCore.Hosting
Microsoft.AspNetCore.Http
Microsoft.AspNetCore.Routing
Microsoft.Extensions.Configuration
Microsoft.Extensions.DependencyInjection
Microsoft.Extensions.Hosting
Microsoft.Extensions.Logging

	
Microsoft.NET.Sdk.Worker

	
Microsoft.Extensions.Configuration
Microsoft.Extensions.DependencyInjection
Microsoft.Extensions.Hosting
Microsoft.Extensions.Logging

To control the implicit generation of this file and to control which namespaces are implicitly imported, you can create an item group in the project file, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>
 <ItemGroup>
 <Using Remove="System.Threading" />
 <Using Include="System.Numerics" />
 <Using Include="System.Console" Static="true" />
 </ItemGroup>
</Project>

Checking for null in method parameters

When defining methods with parameters, it is good practice to check for null values.

In earlier versions of C#, you would have to write if statements to check for null parameter values and then throw an ArgumentNullException for any parameter that is null, as shown in the following code:

public void Hire(Person manager, Person employee)
{
 if (manager == null)
 {
 throw new ArgumentNullException(nameof(manager));
 }
 if (employee == null)
 {
 throw new ArgumentNullException(nameof(employee));
 }
 ...
}

.NET 6 introduced a convenience method to throw an exception if an argument is null, as shown in the following code:

public void Hire(Person manager, Person employee)
{
 ArgumentNullException.ThrowIfNull(manager);
 ArgumentNullException.ThrowIfNull(employee);
 ...
}

C# 11 previews in early 2022 introduced a new !! operator that did this for you when you applied the operator as a suffix to parameter names, as shown in the following code:

public void Hire(Person manager!!, Person employee!!)
{
 ...
}

The if statement and throwing of the exception is done for you. The code is injected and executes before any statements that you write.

The .NET product team claims to have saved more than 10,000 lines of code throughout the .NET libraries by using this feature. But this syntax is controversial within the C# developer community and unfortunately there were enough complaints during the previews that Microsoft reversed their decision and removed the feature from previews. It is unlikely to return.

What’s new in C# 11 and .NET 7?

There were many language and library features introduced with C# 11 and .NET 7:

	C# 11 is available with .NET 6 SDK 6.0.200 or later.

	You can use newlines in string interpolations.

	You can use static abstract members in interfaces.

	You can define generic attributes.

Let's see some others in more detail.

Using other project templates

When you install the .NET SDK, there are many project templates included:

	At a command prompt or terminal, enter the following command:

dotnet new --list

	You will see a list of currently installed templates, including templates for Windows desktop development if you are running on Windows, as shown in Figure 1.2:

[image: Figure 1.2: A list of dotnet project templates]Figure 1.2: A list of dotnet project templates

	Note the web-related project templates, including ones for creating SPAs using Blazor, Angular, and React. But another common JavaScript SPA library is missing: Vue.

Installing additional template packs

Developers can install lots of additional template packs:

	Start a browser and navigate to https://dotnetnew.azurewebsites.net/.

	Enter vue in the textbox and note the list of available templates for Vue.js, including one published by Microsoft, as shown in Figure 1.3:

[image: Figure 1.3: A project template for Vue.js by Microsoft]Figure 1.3: A project template for Vue.js by Microsoft

	Click on ASP.NET Core with Vue.js by Microsoft, and note the instructions for installing and using this template, as shown in the following commands:

dotnet new --install "Microsoft.AspNetCore.SpaTemplates"
dotnet new vue

	Click View other templates in this package, and note that as well as a project template for Vue.js, it also has project templates for Aurelia and Knockout.js.

Making good use of the GitHub repository for this book

Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so it will continue to get closer integration with Microsoft tools.

I created a GitHub repository for this book, and I use it for the following:

	To store the solution code for the book that can be maintained after the print publication date.

	To provide extra materials that extend the book, like errata fixes, small improvements, lists of useful links, and longer articles that cannot fit in the printed book.

	To provide a place for readers to get in touch with me if they have issues with the book.

Raising issues with the book

If you get stuck following any of the instructions in this book, or if you spot a mistake in the text or the code in the solutions, please raise an issue in the GitHub repository:

	Use your favorite browser to navigate to the following link: https://github.com/markjprice/apps-services-net7/issues.

	Click New Issue.

	Enter as much detail as possible that will help me to diagnose the issue. For example:

	For a mistake in the book, the page number and section title.

	Your operating system, for example, Windows 11 64-bit, or macOS Big Sur version 11.2.3.

	Your hardware, for example, Intel, Apple Silicon, or ARM CPU.

	Your code editor, for example, Visual Studio 2022, Visual Studio Code, or something else, including the version number.

	As much of your code and configuration that you feel is relevant and necessary.

	Description of expected behavior and the behavior experienced.

	Screenshots (you can drag and drop image files into the issue box).

Writing this book is a side hustle for me. I have a full-time job, so I mostly work on the book at weekends. This means that I cannot always respond immediately to issues. But I want all my readers to be successful with my book, so if I can help you (and others) without too much trouble, then I will gladly do so.

If you have a complaint about this book, then please contact me before writing a negative review on Amazon. Authors cannot respond to Amazon reviews so I cannot contact you to resolve the problem and help you, or at least listen to your feedback and try to do better in the next edition. Please email me (my address is on the GitHub repository for the book) or raise an issue at the following link: https://github.com/markjprice/apps-services-net7/issues.

Giving me feedback

If you'd like to give me more general feedback about the book, then either email me or the GitHub repository README.md page has links to some surveys. You can provide the feedback anonymously, or if you would like a response from me, then you can supply an email address. I will only use this email address to answer your feedback.

I love to hear from my readers about what they like about my book, as well as suggestions for improvements and how they are working with C# and .NET, so don't be shy. Please get in touch!

Thank you in advance for your thoughtful and constructive feedback.

Downloading solution code from the GitHub repository

I use GitHub to store solutions to all the hands-on, step-by-step coding examples throughout chapters and the practical exercises that are featured at the end of each chapter. You will find the repository at the following link: https://github.com/markjprice/apps-services-net7.

If you just want to download all the solution files without using Git, click the green Code button and then select Download ZIP.

I recommend that you add the preceding link to your favorite bookmarks.

Where to go for help

This section is all about how to find quality information about programming on the web.

Reading Microsoft documentation

The definitive resource for getting help with Microsoft developer tools and platforms is Microsoft Docs, and you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool

At the command line, you can ask the dotnet tool for help with its commands:

	To open the official documentation in a browser window for the dotnet new command, enter the following at the command line or in the Visual Studio Code terminal:

dotnet help new

	To get help output at the command line, use the -h or --help flag, as shown in the following command:

dotnet new console -h

	You will see the following partial output:

Console App (C#)
Author: Microsoft
Description: A project for creating a command-line application that can run on .NET Core on Windows, Linux and macOS
Options:
 -f|--framework. The target framework for the project.
 net7.0 - Target net7.0
 net6.0 - Target net6.0
 net5.0 - Target net5.0
 netcoreapp3.1. - Target netcoreapp3.1
 Default: net7.0
 --langVersion Sets LangVersion in the created project file
 text – Optional
 --no-restore If specified, skips the automatic restore of the project on create.
 bool - Optional
 Default: false
 --use-program-main Whether to generate an explicit Program class and Main method instead of top-level statements.
 bool - Optional
 Default: false
To see help for other template languages (F#, VB), use --language option:
 dotnet new console -h --language F#

Searching for answers using Google

You can search Google with advanced search options to increase the likelihood of finding what you need:

	Navigate to Google.

	Search for information about garbage collection using a simple Google query and note that you will probably see a lot of ads for garbage collection services in your local area before you see the Wikipedia definition of garbage collection in computer science.

	Improve the search by restricting it to a useful site such as Stack Overflow, and by removing languages that we might not care about, such as C++, Rust, and Python, or by adding C# and .NET explicitly, as shown in the following search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog

To keep up to date with .NET, an excellent blog to subscribe to is the official .NET Blog, written by the .NET engineering teams, and you can find it at the following link: https://devblogs.microsoft.com/dotnet/.

Watching Scott Hanselman's videos

Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff they didn't teach you: http://computerstufftheydidntteachyou.com/.

I recommend it to everyone working with computers.

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring with deeper research into the topics in this chapter.

Exercise 1.1 – Test your knowledge

Use the web to answer the following questions:

	?

	?

	?

	?

	?

Exercise 1.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-1---introducing-apps-and-services-with-net

Summary

In this chapter, you:

	Set up your development environment

	Reviewed some of the new features for the C# compiler and .NET libraries in recent versions

	Learned where to look for help.

In the next chapter, you will explore dates and times and learn how to internationalize your code.

2 Working with Data Using SQL Server

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about reading and writing to SQL Server, Azure SQL Database, or Azure SQL Edge at a low level using ADO.NET libraries (Microsoft.Data.SqlClient) and by using the higher-level object-to-data store mapping technology named Entity Framework Core (EF Core).

This chapter will cover the following topics:

	Understanding modern databases

	Managing SQL Server data with low level APIs

	Managing SQL Server data with EF Core

	Building a reusable entity data model

	Cleaning up data resources

Understanding modern databases

Two of the most common places to store data are in a Relational Database Management System (RDBMS) such as Microsoft SQL Server, PostgreSQL, MySQL, and SQLite, or in a NoSQL database such as Microsoft Azure Cosmos DB, MongoDB, Redis, and Apache Cassandra.

In this chapter, we will focus on the most popular RDBMS for Windows, Microsoft SQL Server. This product is also available in a version for Linux. For cross-platform development, you can use either Azure SQL Database, which stores the data in the cloud, or Azure SQL Edge, which can run in a Docker container on Windows, macOS, or Linux.

Using a sample relational database

To learn how to manage an RDBMS using .NET, it would be useful to have a sample one so that you can practice on a database that has a medium complexity and a decent amount of sample records. Microsoft offers several sample databases, most of which are too complex for our needs, so instead we will use a database that was first created in the early 1990s known as Northwind.

Let's take a minute to look at a diagram of the Northwind database and its eight most important tables. You can use the diagram in Figure 2.1 to refer to as we write code and queries throughout this book:

[image: Figure 2.1: The Northwind database tables and relationships]Figure 2.1: The Northwind database tables and relationships

You will write code to work with the Categories and Products tables later in this chapter and other tables in later chapters. But before we do, note that:

	Each category has a unique identifier, name, description, and picture.

	Each product has a unique identifier, name, unit price, units in stock, and other fields.

	Each product is associated with a category by storing the category's unique identifier.

	The relationship between Categories and Products is one-to-many, meaning each category can have zero, one or more products.

Connecting to a SQL Server database

To connect to a SQL Server database, we need to know multiple pieces of information, as shown in the following list:

	The name of the server (and the instance if it has one). This can include the protocol, IP address and port number if connecting over a network.

	The name of the database.

	Security information, such as username and password, or if we should pass the currently logged-on user's credentials automatically using Windows authentication.

We specify this information in a connection string.

For backward compatibility, there are multiple possible keywords we can use in a SQL Server connection string for the various parameters, as shown in the following list:

	Data Source or server or addr: These keywords are the name of the server (and an optional instance). You can use a dot . to mean the local server.

	Initial Catalog or database: These keywords are the name of the database.

	Integrated Security or trusted_connection: These keywords are set to true or SSPI to pass the thread's current user credentials using Windows Authentication.

	User Id and Password: These keywords are used to authenticate with any edition of SQL Server. This is important for Azure SQL Database or Azure SQL Edge because they do not support Windows authentication. The full edition of SQL Server on Windows supports both username with password, and Windows Authentication.

	Authentication: This keyword is used to authenticate by using Azure AD identities that can enable password-less authentication. Values can be: Active Directory Integrated, Active Directory Password, Sql Password.

	Persist Security Info: If set to false, this keyword tells the connection to remove the Password from the connection string after authenticating.

	Encrypt: If set to true, this keyword tells the connections to use SSL to encrypt transmissions between client and server.

	TrustServerCertificate: Set to true if hosting locally and you get the error, "A connection was successfully established with the server, but then an error occurred during the login process. (provider: SSL Provider, error: 0 - The certificate chain was issued by an authority that is not trusted.)"

	Connection Timeout: This keyword defaults to 30 seconds.

	MultipleActiveResultSets: This keyword is set to true to enable a single connection to be used to work with multiple tables simultaneously to improve efficiency. It is used for lazy loading rows from related tables.

As described in the list above, when you write code to connect to a SQL Server database, you need to know its server name. The server name depends on the edition and version of SQL Server that you will connect to, as shown in the following table:

	SQL Server edition
	Server name \ Instance name

	LocalDB 2012
	(localdb)\v11.0

	LocalDB 2016 or later
	(localdb)\mssqllocaldb

	Express
	.\sqlexpress

	Full/Developer (default instance)
	.

	Full/Developer (named instance)
	.\apps-services-net7

	Azure SQL Edge (local Docker)
	tcp:127.0.0.1,1433

	Azure SQL Database
	tcp:[custom server name].database.windows.net,1433

Good Practice: Use a dot . as shorthand for the local computer name. Remember that server names for SQL Server can be made up of two parts: the name of the computer and the name of an SQL Server instance. You provide instance names during custom installation.

Installing and setting up Microsoft SQL Server

Microsoft offers various editions of its popular and capable SQL Server product for Windows, Linux, and Docker containers. If you have Windows, then you can use a free version that runs standalone, known as SQL Server Developer Edition. You can also use the Express edition or the free SQL Server LocalDB edition that can be installed with Microsoft Visual Studio 2022 for Windows.

If you do not have a Windows computer or if you want to use a cross-platform database system, then you can skip ahead to the topic Setting up Azure SQL Database or Installing Azure SQL Edge in Docker, but be sure to read the section Creating the Northwind sample database to learn where to find the SQL scripts that create the sample database.

Installing Microsoft SQL Server Developer edition for Windows

On Windows, if you want to use the full edition of SQL Server instead of the simplified LocalDB or Express editions, then you can download all SQL Server editions from the following link:

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

	Download the Developer edition.

	Run the installer.

	Select the Custom installation type.

	Select a folder for the installation files and then click Install.

	Wait for the 1.5 GB of installer files to download.

	In SQL Server Installation Center, click Installation, and then click New SQL Server stand-alone installation or add features to an existing installation, as shown in Figure 2.2:

[image: Figure 2.2: Installing a new instance of SQL Server]Figure 2.2: Installing a new instance of SQL Server

	Select Developer as the free edition and then click Next.

	Accept the license terms and then click Next.

	Review the Microsoft Update options, and then click Next.

	Review the install rules, fix any issues, and then click Next.

	In Feature Selection, select Database Engine Services, and then click Next.

	In Instance Configuration, select Default instance, and then click Next. If you already have a default instance configured, then you could create a named instance, perhaps called net7book.

	In Server Configuration, note the SQL Server Database Engine is configured to start automatically. Set the SQL Server Browser to start automatically, and then click Next.

	In Database Engine Configuration, on the Server Configuration tab, set Authentication Mode to Mixed, set the sa account password to a strong password, click Add Current User, and then click Next.

	In Ready to Install, review the actions that will be taken, and then click Install.

	In Complete, note the successful actions taken, and then click Close.

	In SQL Server Installation Center, in Installation, click Install SQL Server Management Tools.

	In the browser window, click to download the latest version of SSMS, as shown in Figure 2.3:

[image: Figure 2.3: Installing SQL Server Management Studio]Figure 2.3: Installing SQL Server Management Studio

	Run the installer and click Install.

	When the installer has finished, click Restart if needed or Close.

Visual Studio Code extension for working with SQL Server

There are many tools that make it easy to work with SQL Server. If you are using Visual Studio Code, then you can install the SQL Server (mssql) ms-mssql.mssql extension. If you install the extension, it adds a new view to the Primary Side Bar titled SQL Server, as shown in Figure 2.4:

[image: Figure 2.4: SQL Server (mssql) extension for Visual Studio Code]Figure 2.4: SQL Server (mssql) extension for Visual Studio Code

Creating the Northwind sample database

Now we can run a database script to create the Northwind sample database:

	If you have not previously downloaded or cloned the GitHub repository for this book, then do so now using the following link: https://github.com/markjprice/apps-services-net7/.

	In your apps-services-net7 folder, create a folder named Chapter02.

	Copy the script to create the Northwind database for SQL Server from the following path in your local Git repository: /sql-scripts/Northwind4SQLServer.sql into the Chapter02 folder.

	Start SQL Server Management Studio.

	In the Connect to Server dialog, for Server name, enter . (a dot) meaning the local computer name, and then click Connect.

If you had to create a named instance, like net7book, then enter .\net7book

	Navigate to File | Open | File....

	Browse to select the Northwind4SQLServer.sql file and then click Open.

	In the toolbar, click Execute, and note the Command(s) completed successfully message.

	In Object Explorer, expand the Northwind database, and then expand Tables.

	Right-click Products, click Select Top 1000 Rows, and note the returned results, as shown in Figure 2.5:

[image: Figure 2.5: The Products table in SQL Server Management Studio]Figure 2.5: The Products table in SQL Server Management Studio

	In the Object Explorer toolbar, click the Disconnect button.

	Exit SQL Server Management Studio.

We did not have to use SQL Server Management Studio to execute the database script. We can also use tools in Visual Studio 2022, including the SQL Server Object Explorer and Server Explorer, or cross-platform tools like the Visual Studio Code extension for SQL Server, or Azure Data Explorer that you can download and install from the following link: https://aka.ms/getazuredatastudio

Setting up Azure SQL Database

If you do not have a Windows computer, then you can create a cloud-hosted instance of SQL Server. You will need an Azure account. You can sign up at the following link: https://signup.azure.com

	Log in to your Azure account: https://portal.azure.com/

	Navigate to https://portal.azure.com/#create/hub.

	Search for Resource group and then click the Create button.

	Enter a resource group name of apps-services-net7 and select a suitable region close to you, and the click the Review + create button, as shown in Figure 2.6:

[image: Figure 2.6: Creating a resource group in the Azure portal]Figure 2.6: Creating a resource group in the Azure portal

	Review your choices and then click the Create button.

	Create another resource, search for SQL Database, and click Create.

	In the Create SQL Database page, in the Basics tab, for the Database name enter Northwind, and select the resource group that you created before.

	In the Server section, click Create New.

	Enter the following details for the SQL Database server, as shown in Figure 2.7:

	Server name: apps-services-net7-[your initials]. The server name must be globally unique because it becomes part of a URI.

	Location: A region close to you. I chose (Europe) UK South. Not all regions support all types of resource. You will see an error if the region you select does not support SQL Database server resources.

	Authentication method: Use SQL authentication.

	Server admin login: [your email or other username], for example, I entered markjprice.

	Password/Confirm password: [enter a strong password].

[image: Figure 2.7: Entering the server details for a SQL Database instance]Figure 2.7: Entering the server details for a SQL Database instance

	Click OK.

	In the Create SQL Database page, in the Compute + storage section, click Configure database.

	For Service tier, select Basic (For less demanding workloads). Note the maximum database size is 2 GB and the estimated cost is about $6.23 per month. You can delete the resources as soon as you have completed this chapter to reduce the cost further.

	Click Apply.

	In the Create SQL Database page, set Backup storage redundancy to Locally-redundant backup storage.

	Click the Next : Networking button.

	In the Network connectivity section, select Public endpoint.

	In the Firewall rules section, set Add current client IP address to Yes.

	Click the Next : Security button.

	Review the options but leave them as the defaults.

	Click the Next : Additional settings button.

	Review the options but leave them as the defaults.

	Click the Review + create button.

	Click the Create button.

	Wait for the deployment, as shown in Figure 2.8:

[image: Figure 2.8: Deployment progress for SQL Database]Figure 2.8: Deployment progress for SQL Database

	Click Go to resource.

	Note the database details, as shown in Figure 2.9:

[image: Figure 2.9: SQL Database details]Figure 2.9: SQL Database details

	Click Show database connection strings.

	Copy the ADO.NET connection string to your clipboard.

	Start Notepad or your preferred plain text editor, paste the connection string, and add carriage-returns after each semi-colon to separate each part to make them easier to work with, as shown in the following text:

Server=tcp:apps-services-net7.database.windows.net,1433;
Initial Catalog=Northwind;
Persist Security Info=False;
User ID=markjprice;
Password={your_password};
MultipleActiveResultSets=False;
Encrypt=True;
TrustServerCertificate=False;
Connection Timeout=30;

Your Server value will be different because the custom server name part, for example, apps-services-net7, is public and must be globally unique.

	Use your preferred database tool to connect to the SQL server:

	In Visual Studio 2022, view Server Explorer.

	On Windows, start SQL Server Management Studio.

	In Visual Studio Code, view the SQL Server tool. You can install the SQL Server (mssql) extension if you have not done so already: https://marketplace.visualstudio.com/items?itemName=ms-mssql.mssql

	Alternatively, you can use the cross-platform Azure Data Studio. You can install it from the following link: https://aka.ms/getazuredatastudio

	Add a data connection, and fill in the dialog box, as shown in Figure 2.10:

[image: Figure 2.10: Connecting to your Azure SQL database from Visual Studio]Figure 2.10: Connecting to your Azure SQL database from Visual Studio

In Visual Studio Server Explorer, you might also be prompted to Choose Data Source. Choose Microsoft SQL Server. You can select a check box to always use this selection.

	Right-click the data connection and choose New Query.

	Copy and paste the contents of the Northwind4AzureSQLdatabase.sql file into the query window and execute it.

You can download SQL script files from the following link: https://github.com/markjprice/apps-services-net7/tree/main/sql-scripts

	Wait to see the Command completed successfully message.

	In Server Explorer, right-click Tables and select Refresh, and note 13 tables have been created, for example, Categories, Customers, and Products. Also note that dozens of views and stored procedures have also been created.

You now have a running Azure SQL database that you can connect to from a console app.

Installing Azure SQL Edge in Docker

If you do not have a Windows computer, and you do not want to pay for Azure resources, then you can install Docker and then use a container that has Azure SQL Edge, a cross-platform minimal featured version of SQL Server that only includes the database engine.

The Docker image we will use has Azure SQL Edge based on Ubuntu 18.4. It is supported with the Docker Engine 1.8 or later on Linux, or on Docker for Mac or Windows. Azure SQL Edge requires a 64-bit processor (either x64 or ARM64), with a minimum of one processor and 1 GB RAM on the host.

	Install Docker from the following link: https://docs.docker.com/engine/install/

	Start Docker.

	At the command prompt or terminal, pull down the latest container image for Azure SQL Edge, as shown in the following command:

docker pull mcr.microsoft.com/azure-sql-edge:latest

	Note the results, as shown in the following output:

latest: Pulling from azure-sql-edge
2f94e549220a: Pull complete
830b1adc1e72: Pull complete
f6caea6b4bd2: Pull complete
ef3b33eb5a27: Pull complete
8a42011e5477: Pull complete
f173534aa1e4: Pull complete
6c1894e17f11: Pull complete
a81c43e790ea: Pull complete
c3982946560a: Pull complete
25f31208d245: Pull complete
Digest: sha256:7c203ad8b240ef3bff81ca9794f31936c9b864cc165dd187c23c5bfe06cf0340
Status: Downloaded newer image for mcr.microsoft.com/azure-sql-edge:latest
mcr.microsoft.com/azure-sql-edge:latest

	At the command prompt or terminal, run the container image for Azure SQL Edge with a strong password and name the container azuresqledge, as shown in the following command:

docker run --cap-add SYS_PTRACE -e 'ACCEPT_EULA=1' -e 'MSSQL_SA_PASSWORD=s3cret-Ninja' -p 1433:1433 --name azuresqledge -d mcr.microsoft.com/azure-sql-edge

Good Practice: The password must be at least 8 characters long and contain characters from three of the following four sets: uppercase letters, lowercase letters, digits, and symbols, otherwise the container cannot set up SQL Edge engine and will stop working.

	If your operating system firewall blocks access, then allow access.

	In Docker, confirm that the image is running, as shown in Figure 2.11:

[image: Figure 2.11: SQL Edge running in Docker Desktop]Figure 2.11: SQL Edge running in Docker Desktop

	At the command prompt or terminal, ask Docker to list all containers, both running and stopped, as shown in the following command:

docker ps -a

	Note the container is "Up" and listening externally on port 1433, which is mapped to its internal port 1433, as shown in the following output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
183f02e84b2a mcr.microsoft.com/azure-sql-edge "/opt/mssql/bin/perm…" 8 minutes ago Up 8 minutes 1401/tcp, 0.0.0.0:1433->1433/tcp azuresqledge

You can learn more about the docker ps command at the following link: https://docs.docker.com/engine/reference/commandline/ps/

	Use your preferred database tool to connect to the SQL server:

	In Visual Studio 2022, view Server Explorer.

	On Windows, start SQL Server Management Studio.

	In Visual Studio Code, view the SQL Server tool.

	Alternatively, you can use the cross-platform Azure Data Studio.

	Add a data connection, and fill in the dialog box, as shown in Figure 2.12:

[image: Figure 2.12: Connecting to your Azure SQL Edge server from Visual Studio]Figure 2.12: Connecting to your Azure SQL Edge server from Visual Studio

	Right-click the data connection and choose New Query.

	Copy and paste the contents of the Northwind4AzureSQLedge.sql file into the query window and execute it.

	Wait to see the Command completed successfully message.

	In Server Explorer, right-click Tables and select Refresh, and note 13 tables have been created, for example, Categories, Customers, and Products. Also note that dozens of views and stored procedures have also been created.

You now have a running instance of Azure SQL Edge containing the Northwind database that you can connect to from a console app.

Managing data with low level APIs

Microsoft.Data.SqlClient provides database connectivity to SQL Server for .NET applications. It is known as the Microsoft ADO.NET driver for SQL Server and Azure SQL Database.

You can find the GitHub repository for ADO.NET at the following link: https://github.com/dotnet/SqlClient

The Microsoft.Data.SqlClient package supports the following .NET platforms:

	.NET Framework 4.6.2 and later.

	.NET Core 3.1 and later.

	.NET Standard 2.0 and later.

Understanding the types in ADO.NET

ADO.NET defines abstract types that represent minimal objects for working with data like DbConnection, DbCommand, and DbDataReader. Database software manufacturers can inherit from and provide specific implementations that are optimized for and expose additional features for their database. Microsoft has done this for SQL Server. The most important types with their most used members, , are shown in the following table:

	Type
	Properties
	Methods
	Description

	SqlConnection
	ConnectionString,

State,

ServerVersion

	Open, Close,

CreateCommand,

RetrieveStatistics

	Manage the connection to the database.

	SqlCommand
	Connection,

CommandType,

CommandText,

Parameters, Transaction

	ExecuteReader,

ExecuteNonQuery,

ExecuteXmlReader,

CreateParameter

	Configure the command to execute.

	SqlParameter
	ParameterName,

Value, DbType,

SqlValue,

SqlDbType,

Direction,

IsNullable

	
	Configure a parameter for a command.

	SqlDataReader
	FieldCount,

HasRows,

IsClosed,

RecordsAffected

	Read, Close,

GetOrdinal,

GetInt32, GetString,

GetDecimal,

GetFieldValue<T>

	Process the result set from executing a query.

SqlConnection has two useful events: StateChange and InfoMessage.

All the ExecuteXxx methods will execute any command. The one you use depends on what you expect to get back:

	If the command includes at least one SELECT statement that returns a result set, then call ExecuteReader to execute the command. This method returns a DbDataReader-derived object for reading row-by-row through the result set.

	If the command does not include at least one SELECT statement, then it is more efficient to call ExecuteNonQuery. This method returns an integer for the number of rows affected.

	If the command includes at least one SELECT statement that returns XML because it uses the AS XML command, then call ExecuteXmlReader to execute the command.

Creating a console app for working with ADO.NET

First, we will create a console app project for working with ADO.NET:

	Use your preferred code editor to create a new solution/workspace named Chapter02.

	Add a console app project, as defined in the following list:

	Project template: Console App / console

	Workspace/solution file and folder: Chapter02

	Project file and folder: WorkingWithSqlClient

	In the project file, treat warnings as errors, add a package reference for the latest version of Microsoft.Data.SqlClient, and statically and globally import System.Console, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.Data.SqlClient" Version="5.0.0" />
 </ItemGroup>
 <ItemGroup>
 <Using Include="System.Console" Static="true" />
 </ItemGroup>
</Project>

	Build the project to restore the referenced package.

	Add a new class file named Program.EventHandlers.cs, and modify its contents to define methods that will act as event handlers for a database connection state change by showing the original and current state, and for when the database sends an InfoMessage, as shown in the following code:

using Microsoft.Data.SqlClient; // SqlInfoMessageEventArgs
using System.Data; // StateChangeEventArgs
partial class Program
{
 static void Connection_StateChange(object sender, StateChangeEventArgs e)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine($"State change from {e.OriginalState} to {e.CurrentState}.");
 ForegroundColor = previousColor;
 }
 static void Connection_InfoMessage(object sender, SqlInfoMessageEventArgs e)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkBlue;
 WriteLine($"Info: {e.Message}.");
 foreach(SqlError error in e.Errors)
 {
 WriteLine($" Error: {error.Message}.");
 }
 ForegroundColor = previousColor;
 }
}

	In Program.cs, delete the existing statements and add statements to connect to SQL Server locally, to or Azure SQL Database, or to SQL Edge, using either SQL authentication with a user id and password or Windows authentication without user id and password, as shown in the following code:

using Microsoft.Data.SqlClient; // SqlConnection and so on
string server =
 // "."; // SQL Server for Windows
 // @".\net7book"; // SQL Server for Windows
 // "tcp:apps-services-net7.database.windows.net,1433"; // Azure SQL Database
 "tcp:127.0.0.1,1433"; // Azure SQL Edge
// to use SQL authentication
string username = "sa"; // Azure SQL Edge
// string username = "markjprice"; // change to your username
Write("Enter your SQL Server password: ");
string? password = ReadLine();
if (string.IsNullOrWhiteSpace(password))
{
 WriteLine("Password cannot be empty or null!");
 return;
}
string connectionString =
 $"Server={server};" +
 "Initial Catalog=Northwind;" +
 // to use SQL authentication
 "Persist Security Info=False;" +
 $"User ID={username};" +
 $"Password={password};" +
 // to use Windows authentication
 // "Integrated Security=True;"
 // other options
 "MultipleActiveResultSets=True;" +
 "Encrypt=True;" +
 "TrustServerCertificate=False;" +
 "Connection Timeout=30;";
SqlConnection connection = new(connectionString);
connection.StateChange += Connection_StateChange;
connection.InfoMessage += Connection_InfoMessage;
try
{
 connection.Open();
 WriteLine($"SQL Server version: {connection.ServerVersion}");
}
catch (SqlException ex)
{
 WriteLine($"SQL exception: {ex.Message}");
 return;
}
connection.Close();

	Run the console app, enter your password, and note the result, as shown in the following output:

Enter your SQL Server password: s3cret-Ninja
State change from Closed to Open.
SQL Server version: 12.00.0041
State change from Open to Closed.

	Run the console app, enter a wrong password, and note the result, as shown in the following output:

Enter your SQL Server password: silly-ninja
SQL exception: Login failed for user 'markjprice'.

	In Program.cs, change the server name to something wrong.

	Run the console app, enter your password, and note the result, as shown in the following output:

Enter your SQL Server password: s3cret-Ninja
SQL exception: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: TCP Provider, error: 0 - No such host is known.)

When opening a SQL Server connection, the default timeout is 30 seconds for server connection problems, so be patient!

Executing queries and working with data readers using ADO.NET

Now that we have a successful connection to the SQL Server database, we can run commands and process the results using a data reader.

	In Program.cs, import the namespace for working with ADO.NET command types, as shown in the following code:

using System.Data; // CommandType

	Before the statement that closes the connection, add statements to define a command that represents the Products table, executes it, and outputs the product IDs, names, and prices using a data reader, as shown in the following code:

SqlCommand cmd = connection.CreateCommand();
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT ProductId, ProductName, UnitPrice FROM Products";
SqlDataReader r = cmd.ExecuteReader();
WriteLine("--");
WriteLine("| {0,5} | {1,-35} | {2,8} |", "Id", "Name", "Price");
WriteLine("--");
while (r.Read())
{
 WriteLine("| {0,5} | {1,-35} | {2,8:C} |",
 r.GetInt32("ProductId"),
 r.GetString("ProductName"),
 r.GetDecimal("UnitPrice"));
}
WriteLine("--");
r.Close();

	Run the console app, enter your password, and note the results, as shown in the following partial output:

--
| Id | Name | Price |
--
| 1 | Chai | £18.00 |
| 2 | Chang | £19.00 |
...
| 76 | Lakkalikööri | £18.00 |
| 77 | Original Frankfurter grüne Soße | £13.00 |
--

	In Program.cs, modify the SQL statement to define a parameter for the unit price and use it to filter the results to products that cost more than that unit price, as shown highlighted in the following code:

Write("Enter a unit price: ");
string? priceText = ReadLine();
if(!decimal.TryParse(priceText, out decimal price))
{
 WriteLine("You must enter a valid unit price.");
 return;
}
SqlCommand cmd = connection.CreateCommand();
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT ProductId, ProductName, UnitPrice FROM Products"
 + " WHERE UnitPrice > @price";
cmd.Parameters.AddWithValue("price", price);

	Run the console app, enter your password, enter a unit price like 50, and note the results, as shown in the following partial output:

Enter a unit price: 50
--
| Id | Name | Price |
--
9	Mishi Kobe Niku	£97.00
18	Carnarvon Tigers	£62.50
20	Sir Rodney's Marmalade	£81.00
29	Thüringer Rostbratwurst	£123.79
38	Côte de Blaye	£263.50
51	Manjimup Dried Apples	£53.00
59	Raclette Courdavault	£55.00
--

Working with ADO.NET asynchronously

You can improve the responsiveness of data access code by making it asynchronous. You will see more details of how asynchronous operations work in Chapter 4, Improving Performance and Scalability Using Multitasking. For now, just enter the code as instructed.

Now, let's see how to change the statements to work asynchronously:

	In Program.cs, change the statement to open the connection to make it asynchronous, as shown in the following code:

await connection.OpenAsync();

	In Program.cs, change the statement to execute the command to make it asynchronous, as shown in the following code:

SqlDataReader r = await cmd.ExecuteReaderAsync();

	In Program.cs, change the statements to read the next row and get the field values to make them asynchronous, as shown in the following code:

while (await r.ReadAsync())
{
 WriteLine("| {0,5} | {1,-35} | {2,8:C} |",
 await r.GetFieldValueAsync<int>("ProductId"),
 await r.GetFieldValueAsync<string>("ProductName"),
 await r.GetFieldValueAsync<decimal>("UnitPrice"));
}

	In Program.cs, change the statements to close the data reader and connection to make them asynchronous, as shown in the following code:

await r.CloseAsync();
await connection.CloseAsync();

	Run the console app and confirm that it has the same results as before, but it would run better in a multi-threaded system, for example, not blocking the user interface in a GUI app, and not blocking IO threads in a website.

Executing stored procedures using ADO.NET

If you need to execute the same query or other SQL statement multiple times, it is best to create a stored procedure, often with parameters, so that it can be pre-compiled and optimized. Parameters have a direction to indicate if they are inputs, outputs, or return values.

Let's see an example that uses all three types of direction:

	In your preferred database tool, connect to the Northwind database.

	Right-click Stored Procedures and select Add New Stored Procedure.

	Modify the SQL statements to define a stored procedure named GetExpensiveProducts with two parameters, an input parameter for the minimum unit price and an output parameter for the row count of matching products, as shown in the following code:

CREATE PROCEDURE [dbo].[GetExpensiveProducts]
 @price money,
 @count int OUT
AS
 SELECT @count = COUNT(*)
 FROM Products
 WHERE UnitPrice > @price
 SELECT *
 FROM Products
 WHERE UnitPrice > @price
RETURN 0

The stored procedure uses two SELECT statements. The first sets the @count output parameter to a count of the matching product rows. The second returns the matching product rows.

	Right-click in the SQL statements and select Execute.

	Right-click Stored Procedures and select Refresh.

	Expand GetExpensiveProducts, and note the input and output parameters, as shown in Visual Studio's Server Explorer in Figure 2.13:

[image: Figure 2.13: Parameters of the GetExpensiveProducts stored procedure]Figure 2.13: Parameters of the GetExpensiveProducts stored procedure

	Close the SQL query without saving changes.

	In Program.cs, comment out the statements that defined the previous SQL text query and set its one parameter. Add statements to represent the stored procedure and its parameters, and then execute it, as shown in the following code:

SqlCommand cmd = connection.CreateCommand();
/*
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT ProductId, ProductName, UnitPrice FROM Products"
 + " WHERE UnitPrice > @price";
cmd.Parameters.AddWithValue("price", price);
*/
cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = "GetExpensiveProducts";
SqlParameter p1 = new()
{
 ParameterName = "price",
 SqlDbType = SqlDbType.Money,
 SqlValue = price
};
SqlParameter p2 = new()
{
 Direction = ParameterDirection.Output,
 ParameterName = "count",
 SqlDbType = SqlDbType.Int
};
SqlParameter p3 = new()
{
 Direction= ParameterDirection.ReturnValue,
 ParameterName = "rv",
 SqlDbType = SqlDbType.Int
};
cmd.Parameters.Add(p1);
cmd.Parameters.Add(p2);
cmd.Parameters.Add(p3);

	After the statement that closes the data reader, add statements to output the output parameter and the return value, as shown highlighted in the following code:

await r.CloseAsync();
WriteLine($"Output count: {p2.Value}");
WriteLine($"Return value: {p3.Value}");
await connection.CloseAsync();

If a stored procedure returns result sets as well as parameters, then the data reader for the result sets must be closed before the parameters can be read.

	Run the console app and note the results if the price entered is 60, as shown in the following output:

Enter a unit price: 60
--
| Id | Name | Price |
--
9	Mishi Kobe Niku	£97.00
18	Carnarvon Tigers	£62.50
20	Sir Rodney's Marmalade	£81.00
29	Thüringer Rostbratwurst	£123.79
38	Côte de Blaye	£263.50
--
Output count: 5
Return value: 0
State change from Open to Closed.

Managing data with EF Core

EF Core is an object-relational mapper (ORM) that uses ADO.NET underneath when working with SQL Server. Because it is a higher-level technology, it is not as efficient as using ADO.NET directly but it can be easier.

Understanding Entity Framework Core

As well as traditional RDBMSs like SQL Server, EF Core supports modern cloud-based, nonrelational, schema-less data stores, such as Microsoft Azure Cosmos DB and MongoDB, sometimes with third-party providers.

There are two approaches to working with EF Core:

	Database First: A database already exists, so you build a model that matches its structure and features.

	Code First: No database exists, so you build a model and then use EF Core to create a database that matches its structure and features.

We will start by using EF Core with an existing database.

Scaffolding models using an existing database

Scaffolding is the process of using a tool to create classes that represent the model of an existing database using reverse engineering. A good scaffolding tool allows you to extend the automatically generated classes and then regenerate those classes without losing your extended classes.

If you know that you will never regenerate the classes using the tool, then feel free to change the code for the automatically generated classes as much as you want. The code generated by the tool is just the best approximation.

Good Practice: Do not be afraid to overrule a tool when you know better.

Setting up the dotnet-ef tool

.NET has a command-line tool named dotnet. It can be extended with capabilities useful for working with EF Core. It can perform design-time tasks like creating and applying migrations from an older model to a newer model and generating code for a model from an existing database.

The dotnet ef command-line tool is not automatically installed. You must install this package as either a global or local tool. If you have already installed an older version of the tool, then you should uninstall any existing version:

	At a command prompt or terminal, check if you have already installed dotnet-ef as a global tool, as shown in the following command:

dotnet tool list --global

	Check in the list if an older version of the tool has been installed, like the one for .NET 5.0, as shown in the following output:

Package Id Version Commands

dotnet-ef 5.0.0 dotnet-ef

	If an old version is already installed, then uninstall the tool, as shown in the following command:

dotnet tool uninstall --global dotnet-ef

	Install the latest version, as shown in the following command:

dotnet tool install --global dotnet-ef --version 7.0.0

	If necessary, follow any OS-specific instructions to add the dotnet tools directory to your PATH environment variable as described in the output of installing the dotnet-ef tool.

Defining EF Core models

EF Core uses a combination of conventions, annotation attributes, and Fluent API statements to build an entity model at runtime so that any actions performed on the classes can later be automatically translated into actions performed on the actual database. An entity class represents the structure of a table, and an instance of the class represents a row in that table.

First, we will review the three ways to define a model, with code examples, and then we will create some classes that implement those techniques.

Using EF Core conventions to define the model

The code we will write will use the following conventions:

	The name of a table is assumed to match the name of a DbSet<T> property in the DbContext class, for example, Products.

	The names of the columns are assumed to match the names of properties in the entity model class, for example, ProductId.

	The string .NET type is assumed to be a nvarchar type in the database.

	The int .NET type is assumed to be an int type in the database.

	The primary key is assumed to be a property that is named Id or ID, or when the entity model class is named Product, then the property can be named ProductId or ProductID. If this property is an integer type or the Guid type, then it is also assumed to be an IDENTITY column (a column type that automatically assigns a value when inserting).

Good Practice: There are many other conventions that you should know, and you can even define your own, but that is beyond the scope of this book. You can read about them at the following link: https://docs.microsoft.com/en-us/ef/core/modeling/

Using EF Core annotation attributes to define the model

Conventions often aren't enough to completely map the classes to the database objects. A simple way of adding more smarts to your model is to apply annotation attributes.

Some common attributes are shown in the following table:

	Attribute
	Description

	[Required]
	Ensures the value is not null.

	[StringLength(50)]
	Ensures the value is up to 50 characters in length.

	[RegularExpression(expression)]
	Ensures the value matches the specified regular expression.

	[Column(TypeName = "money", Name = "UnitPrice")]
	Specifies the column type and column name used in the table.

For example, in the database, the maximum length of a product name is 40, and the value cannot be null, as shown highlighted in the following Data Definition Language (DDL) code that defines how to create a table named Products with its columns, data types, keys, and other constraints:

CREATE TABLE Products (
 ProductId INTEGER PRIMARY KEY,
 ProductName NVARCHAR (40) NOT NULL,
 SupplierId "INT",
 CategoryId "INT",
 QuantityPerUnit NVARCHAR (20),
 UnitPrice "MONEY" CONSTRAINT DF_Products_UnitPrice DEFAULT (0),
 UnitsInStock "SMALLINT" CONSTRAINT DF_Products_UnitsInStock DEFAULT (0),
 UnitsOnOrder "SMALLINT" CONSTRAINT DF_Products_UnitsOnOrder DEFAULT (0),
 ReorderLevel "SMALLINT" CONSTRAINT DF_Products_ReorderLevel DEFAULT (0),
 Discontinued "BIT" NOT NULL
 CONSTRAINT DF_Products_Discontinued DEFAULT (0),
 CONSTRAINT FK_Products_Categories FOREIGN KEY (
 CategoryId
)
 REFERENCES Categories (CategoryId),
 CONSTRAINT FK_Products_Suppliers FOREIGN KEY (
 SupplierId
)
 REFERENCES Suppliers (SupplierId),
 CONSTRAINT CK_Products_UnitPrice CHECK (UnitPrice >= 0),
 CONSTRAINT CK_ReorderLevel CHECK (ReorderLevel >= 0),
 CONSTRAINT CK_UnitsInStock CHECK (UnitsInStock >= 0),
 CONSTRAINT CK_UnitsOnOrder CHECK (UnitsOnOrder >= 0)
);

In a Product class, we could apply attributes to specify this, as shown in the following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

When there isn't an obvious map between .NET types and database types, an attribute can be used.

For example, in the database, the column type of UnitPrice for the Products table is money. .NET does not have a money type, so it should use decimal instead, as shown in the following code:

[Column(TypeName = "money")]
public decimal? UnitPrice { get; set; }

Another example is for the Categories table, as shown in the following DDL code:

CREATE TABLE Categories (
 CategoryId INTEGER PRIMARY KEY,
 CategoryName NVARCHAR (15) NOT NULL,
 Description "NTEXT",
 Picture "IMAGE"
);

The Description column can be longer than the maximum 8,000 characters that can be stored in a nvarchar variable, so it needs to map to ntext instead, as shown in the following code:

[Column(TypeName = "ntext")]
public string? Description { get; set; }

Using the EF Core Fluent API to define the model

The last way that the model can be defined is by using the Fluent API. This API can be used instead of attributes, as well as being used in addition to them. For example, to define the ProductName property, instead of decorating the property with two attributes, an equivalent Fluent API statement could be written in the OnModelCreating method of the database context class, as shown in the following code:

modelBuilder.Entity<Product>()
 .Property(product => product.ProductName)
 .IsRequired()
 .HasMaxLength(40);

This keeps the entity model class simpler. You will see an example of this in the coding task below.

Understanding data seeding with the Fluent API

Another benefit of the Fluent API is to provide initial data to populate a database. EF Core automatically works out what insert, update, or delete operations must be executed.

For example, if we wanted to make sure that a new database has at least one row in the Product table, then we would call the HasData method, as shown in the following code:

modelBuilder.Entity<Product>()
 .HasData(new Product
 {
 ProductId = 1,
 ProductName = "Chai",
 UnitPrice = 8.99M
 });

Our model will map to an existing database that is already populated with data, so we will not need to use this technique in our code.

Defining the Northwind database model

A Northwind class will be used to represent the database. To use EF Core, the class must inherit from DbContext. This class understands how to communicate with databases and dynamically generate SQL statements to query and manipulate data.

Your DbContext-derived class should have an overridden method named OnConfiguring, which will set the database connection string.

Inside your DbContext-derived class, you must define at least one property of the DbSet<T> type. These properties represent the tables. To tell EF Core what columns each table has, the DbSet<T> properties use generics to specify a class that represents a row in the table. That entity model class has properties that represent its columns.

The DbContext-derived class can optionally have an overridden method named OnModelCreating. This is where you can write Fluent API statements as an alternative to decorating your entity classes with attributes.

	Use your preferred code editor to add a console app project, as defined in the following list:

	Project template: Console App / console

	Workspace/solution file and folder: Chapter02

	Project file and folder: WorkingWithEFCore

	In the WorkingWithEFCore project, treat warnings as errors, add package references to the EF Core data provider for SQL Server, and to globally and statically import the System.Console class, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design"
 Version="7.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="7.0.0" />
</ItemGroup>
<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

	Build the project to restore packages.

	At a command prompt or terminal in the WorkingWithEFCore folder, generate a model for all the tables in a new folder named Models, as shown in the following command:

dotnet ef dbcontext scaffold "Data Source=.;Initial Catalog=Northwind;Integrated Security=true;TrustServerCertificate=true;" Microsoft.EntityFrameworkCore.SqlServer --output-dir Models --namespace WorkingWithEFCore.Models --data-annotations --context Northwind

Note the following:

	The command action: dbcontext scaffold

	The connection string: This will be different depending on if you are connecting to a local SQL Server (with or without an instance name) or Azure SQL Database.

	The database provider: Microsoft.EntityFrameworkCore.SqlServer

	The output folder: --output-dir Models

	The namespace: --namespace WorkingWithEFCore.Models

	To use data annotations as well as the Fluent API: --data-annotations

	To rename the context from [database_name]Context: --context Northwind

If you are using Azure SQL Database or Azure SQL Edge, you will need to change the connection string appropriately.

	Note the build messages and warnings, as shown in the following output:

Build started...
Build succeeded.
To protect potentially sensitive information in your connection string, you should move it out of source code. You can avoid scaffolding the connection string by using the Name= syntax to read it from configuration - see https://go.microsoft.com/fwlink/?linkid=2131148. For more guidance on storing connection strings, see http://go.microsoft.com/fwlink/?LinkId=723263.

	Open the Models folder and note the 28 class files that were automatically generated.

	Open Category.cs and note that it represents a row in the Categories table, as shown in the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using Microsoft.EntityFrameworkCore;
namespace WorkingWithEFCore.Models
{
 [Index("CategoryName", Name = "CategoryName")]
 public partial class Category
 {
 public Category()
 {
 Products = new HashSet<Product>();
 }
 [Key]
 public int CategoryId { get; set; }
 [StringLength(15)]
 public string CategoryName { get; set; } = null!;
 [Column(TypeName = "ntext")]
 public string? Description { get; set; }
 [Column(TypeName = "image")]
 public byte[]? Picture { get; set; }
 [InverseProperty("Category")]
 public virtual ICollection<Product> Products { get; set; }
 }
}

Note the following:

	It decorates the entity class with the [Index] attribute that was introduced in EF Core 5.0. This indicates properties that should have an index. In earlier versions, only the Fluent API was supported for defining indexes. Since we are working with an existing database, this is not needed. But if we want to recreate a new empty database from our code, then this information will be used to create indexes.

	The table name in the database is Categories but the dotnet-ef tool uses the Humanizer third-party library to automatically singularize the class name to Category, which is a more natural name when creating a single entity.

	The entity class is declared using the partial keyword so that you can create a matching partial class for adding additional code. This allows you to rerun the tool and regenerate the entity class without losing that extra code.

	The CategoryId property is decorated with the [Key] attribute to indicate that it is the primary key for this entity.

	The Products property uses the [InverseProperty] attribute to define the foreign key relationship to the Category property on the Product entity class.

	Open ProductsAboveAveragePrice.cs and note it represents a row returned by a view, so it is decorated with the [Keyless] attribute.

	Open Northwind.cs and review the class, as shown in the following edited-for-space code:

using System;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;
namespace WorkingWithEFCore.Models
{
 public partial class Northwind : DbContext
 {
 public Northwind()
 {
 }
 public Northwind(DbContextOptions<Northwind> options)
 : base(options)
 {
 }
 public virtual DbSet<AlphabeticalListOfProduct>
 AlphabeticalListOfProducts { get; set; } = null!;
 public virtual DbSet<Category> Categories { get; set; } = null!;
 ...
 public virtual DbSet<Supplier> Suppliers { get; set; } = null!;
 public virtual DbSet<Territory> Territories { get; set; } = null!;
 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 if (!optionsBuilder.IsConfigured)
 {
#warning To protect potentially sensitive ...
 optionsBuilder.UseSqlServer("Data Source=.;Initial Catalog=Northwind;Integrated Security=true;TrustServerCertificate=true;");
 }
 }
 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<AlphabeticalListOfProduct>(entity =>
 {
 entity.ToView("Alphabetical list of products");
 });
 ...
 modelBuilder.Entity<Product>(entity =>
 {
 entity.Property(e => e.ReorderLevel).HasDefaultValueSql("((0))");
 entity.Property(e => e.UnitPrice).HasDefaultValueSql("((0))");
 entity.Property(e => e.UnitsInStock).HasDefaultValueSql("((0))");
 entity.Property(e => e.UnitsOnOrder).HasDefaultValueSql("((0))");
 entity.HasOne(d => d.Category)
 .WithMany(p => p.Products)
 .HasForeignKey(d => d.CategoryId)
 .HasConstraintName("FK_Products_Categories");
 entity.HasOne(d => d.Supplier)
 .WithMany(p => p.Products)
 .HasForeignKey(d => d.SupplierId)
 .HasConstraintName("FK_Products_Suppliers");
 });
 ...
 OnModelCreatingPartial(modelBuilder);
 }
 partial void OnModelCreatingPartial(ModelBuilder modelBuilder);
 }
}

Note the following:

	The Northwind data context class is partial to allow you to extend it and regenerate it in the future.

	It has two constructors: a default parameter-less one and one that allows options to be passed in. This is useful in apps where you want to specify the connection string at runtime.

	The DbSet<T> properties that represent tables are set to the null-forgiving value to prevent static compiler analysis warnings at compile time. They have no effect at runtime.

	In the OnConfiguring method, if options have not been specified in the constructor, then it defaults to using a connection string that looks for the database in a local server. It has a compiler warning to remind you that you should not hardcode security information in this connection string.

	In the OnModelCreating method, the Fluent API is used to configure the entity classes, and then a partial method named OnModelCreatingPartial is invoked. This allows you to implement that partial method in your own partial Northwind class to add your own Fluent API configuration that will not be lost if you regenerate the model classes.

	Close the automatically generated class files.

Querying the Northwind model

Now we can query the model:

	In Program.cs, delete the existing statements and add statements to create an instance of the Northwind data context class and use it to query the products table for those that cost more than a given price, as shown in the following code:

using Microsoft.EntityFrameworkCore; // ToQueryString, GetConnectionString
using WorkingWithEFCore.Models; // Northwind
string server =
 // "."; // SQL Server for Windows
 // @".\net7book"; // SQL Server for Windows
 // "tcp:apps-services-net7.database.windows.net,1433"; // Azure SQL Database
 "tcp:127.0.0.1,1433"; // Azure SQL Edge
// to use SQL authentication
string username = "sa"; // Azure SQL Edge
// string username = "markjprice"; // change to your username
Write("Enter your SQL Server password: ");
string? password = ReadLine();
if (password == null)
{
 WriteLine("Password cannot be empty or null!");
 return;
}
string connectionString =
 $"Server={server};" +
 "Initial Catalog=Northwind;" +
 // to use SQL authentication
 "Persist Security Info=False;" +
 $"User ID={username};" +
 $"Password={password};" +
 // to use Windows Authentication
 // "Integrated Security=True;"
 // other options
 "MultipleActiveResultSets=True;" +
 "Encrypt=True;" +
 "TrustServerCertificate=False;" +
 "Connection Timeout=30;";
DbContextOptionsBuilder<Northwind> builder = new();
builder.UseSqlServer(connectionString);
using (Northwind db = new(builder.Options))
{
 Write("Enter a unit price: ");
 string? priceText = ReadLine();
 if (!decimal.TryParse(priceText, out decimal price))
 {
 WriteLine("You must enter a valid unit price.");
 return;
 }
 var products = db.Products
 .Where(p => p.UnitPrice > price)
 .Select(p => new { p.ProductId, p.ProductName, p.UnitPrice });
 WriteLine("--");
 WriteLine("| {0,5} | {1,-35} | {2,8} |", "Id", "Name", "Price");
 WriteLine("--");
 foreach (var p in products)
 {
 WriteLine("| {0,5} | {1,-35} | {2,8:C} |",
 p.ProductId, p.ProductName, p.UnitPrice);
 }
 WriteLine("--");
 WriteLine(products.ToQueryString());
 WriteLine();
 WriteLine($"Provider: {db.Database.ProviderName}");
 WriteLine($"Connection: {db.Database.GetConnectionString()}");
}

	Run the console app and note the results, as shown in the following output:

Enter a unit price: 60
--
| Id | Name | Price |
--
9	Mishi Kobe Niku	£97.00
18	Carnarvon Tigers	£62.50
20	Sir Rodney's Marmalade	£81.00
29	Thüringer Rostbratwurst	£123.79
38	Côte de Blaye	£263.50
--
DECLARE @__price_0 decimal(2) = 60.0;
SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
FROM [Products] AS [p]
WHERE [p].[UnitPrice] > @__price_0
Provider: Microsoft.EntityFrameworkCore.SqlServer
Connection: Server=tcp:apps-services-net7.database.windows.net,1433;Initial Catalog=Northwind;Persist Security Info=False;User ID=markjprice;Password=s3cret-Ninja;MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;

Building a reusable entity data model

Practical applications usually need to work with data in a relational database or another data store. In this chapter, we earlier defined EF Core models in the same console app project that we used them. Now, we will define an entity data model for the Northwind database as a pair of reusable class libraries. One of the pair will define the entities like Product and Customer. The second of the pair will define the tables in the database, default configuration of how to connect to the database, and use fluent API to configure additional options for the model. The pair of class libraries will be used in many of the apps and services that you create in subsequent chapters.

Good Practice: You should create a separate class library project for your entity data models. This allows easier sharing between backend web servers and frontend desktop, mobile, and Blazor WebAssembly clients.

Creating a class library for entity models using SQL Server

You will now create the entity models using the dotnet-ef tool:

	Add a new project, as defined in the following list:

	Project template: Class Library / classlib

	Project file and folder: Northwind.Common.EntityModels.SqlServer

	Workspace/solution file and folder: Chapter02

	In the Northwind.Common.EntityModels.SqlServer project, treat warnings as errors, add package references for the SQL Server database provider and EF Core design-time support, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" Version="7.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.0">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

	Delete the Class1.cs file.

	Build the Northwind.Common.EntityModels.SqlServer project.

	Open a command prompt or terminal for the Northwind.Common.EntityModels.SqlServer folder.

	At the command line, generate entity class models for all tables, as shown in the following commands:

dotnet ef dbcontext scaffold "Data Source=.;Initial Catalog=Northwind;Integrated Security=true;TrustServerCertificate=True;" Microsoft.EntityFrameworkCore.SqlServer --namespace Packt.Shared --data-annotations

Note the following:

	The command to perform: dbcontext scaffold

	The connection string: "Data Source=.;Initial Catalog=Northwind;Integrated Security=true;TrustServerCertificate=True;"

	The database provider: Microsoft.EntityFrameworkCore.SqlServer

	The namespace for the generated classes: --namespace Packt.Shared

	To use data annotations as well as the Fluent API: --data-annotations

	Note that 28 classes were generated, from AlphabeticalListOfProduct.cs to Territory.cs.

	In Customer.cs, the dotnet-ef tool correctly identified that the CustomerId column is the primary key and it is limited to a maximum of five characters, but we also want the values to always be uppercase, so add a regular expression to validate its primary key value to only allow uppercase Western characters, as shown highlighted in the following code:

[Key]
[StringLength(5)]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

	In Customer.cs, make the CustomerId and CompanyName properties required by decorating them with the [Required] attribute.

Creating a class library for the data context using SQL Server

Next, you will move the context model that represents the database to a separate class library:

	Add a new project, as defined in the following list:

	Project template: Class Library / classlib

	Project file and folder: Northwind.Common.DataContext.SqlServer

	Workspace/solution file and folder: Chapter02

	In Visual Studio Code, select Northwind.Common.DataContext.SqlServer as the active OmniSharp project.

	In the DataContext project, treat warnings as errors, add a project reference to the EntityModels project and add a package reference to the EF Core data provider for SQL Server, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" Version="7.0.0" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include="..\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

Warning! The path to the project reference should not have a line break in your project file.

	In the Northwind.Common.DataContext.SqlServer project, delete the Class1.cs file.

	Build the Northwind.Common.DataContext.SqlServer project.

	Move the NorthwindContext.cs file from the Northwind.Common.EntityModels.SqlServer project/folder to the Northwind.Common.DataContext.SqlServer project/folder.

	In the Northwind.Common.DataContext.SqlServer project, in NorthwindContext.cs, remove the compiler warning about the connection string.

	In the Northwind.Common.DataContext.SqlServer project, add a class named NorthwindContextExtensions.cs, and modify its contents to define an extension method that adds the Northwind database context to a collection of dependency services, as shown in the following code:

using Microsoft.EntityFrameworkCore; // UseSqlServer
using Microsoft.Extensions.DependencyInjection; // IServiceCollection
namespace Packt.Shared;
public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the SqlServer database provider.
 /// </summary>
 /// <param name="services"></param>
 /// <param name="connectionString">Set to override the default.</param>
 /// <returns>An IServiceCollection that can be used to add more services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services,
 string connectionString = "Data Source=.;Initial Catalog=Northwind;" +
 "Integrated Security=true;MultipleActiveResultsets=true;Encrypt=false")
 {
 services.AddDbContext<NorthwindContext>(options =>
 {
 options.UseSqlServer(connectionString);
 options.LogTo(Console.WriteLine,
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 });
 return services;
 }
}

	Build the two class libraries and fix any compiler errors.

Good Practice: We have provided an optional argument for the AddNorthwindContext method so that we can override the SQL Server database connection string. This will allow us more flexibility, for example, to load these values from a configuration file.

Creating a test project to check the integration of theclass libraries

Since we will not be creating a client project in this chapter that uses the EF Core model, we should create a test project to make sure the database context and entity models integrate correctly:

	Use your preferred coding tool to add a new xUnit Test Project [C#] / xunit project named Northwind.Common.EntityModels.Tests to the Chapter02 workspace/solution.

	In Northwind.Common.EntityModels.Tests.csproj, modify the configuration to add an item group with a project reference to the Northwind.Common.DataContext.SqlServer project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

Warning! The path to the project reference should not have a line break in your project file.

	Build the Northwind.Common.EntityModels.Tests project.

Writing unit tests for entity models

A well-written unit test will have three parts:

	Arrange: This part will declare and instantiate variables for input and output.

	Act: This part will execute the unit that you are testing. In our case, that means calling the method that we want to test.

	Assert: This part will make one or more assertions about the output. An assertion is a belief that, if not true, indicates a failed test. For example, when adding 2 and 2, we would expect the result to be 4.

Now, we will write some unit tests for the NorthwindContext and entity model classes:

	Rename the file UnitTest1.cs to NorthwindEntityModelsTests.cs and then open it.

	In Visual Studio Code, rename the class to NorthwindEntityModelsTests. (Visual Studio prompts you to rename the class when you rename the file.)

	Modify the NorthwindEntityModelsTests class to import the Packt.Shared namespace and have three test methods for ensuring the context class can connect, ensuring the provider is SQL Server, and ensuring the first product is named Chai, as shown in the following code:

using Packt.Shared;
namespace Northwind.Common.EntityModels.Tests
{
 public class NorthwindEntityModelsTests
 {
 [Fact]
 public void CanConnectIsTrue()
 {
 using (NorthwindContext db = new()) // arrange
 {
 bool canConnect = db.Database.CanConnect(); // act
 Assert.True(canConnect); // assert
 }
 }
 [Fact]
 public void ProviderIsSqlServer()
 {
 using (NorthwindContext db = new())
 {
 string? provider = db.Database.ProviderName;
 Assert.Equal("Microsoft.EntityFrameworkCore.SqlServer", provider);
 }
 }
 [Fact]
 public void ProductId1IsChai()
 {
 using(NorthwindContext db = new())
 {
 Product product1 = db.Products.Single(p => p.ProductId == 1);
 Assert.Equal("Chai", product1.ProductName);
 }
 }
 }
}

Running unit tests using Visual Studio 2022

Now we are ready to run the unit tests and see the results:

	In Visual Studio 2022, navigate to Test | Run All Tests.

	In Test Explorer, note that the results indicate that three tests ran, and all passed.

Running unit tests using Visual Studio Code

Now we are ready to run the unit tests and see the results:

	In Visual Studio Code, in the Northwind.Common.EntityModels.Tests project's TERMINAL window, run the tests, as shown in the following command:

dotnet test

	In the output, note that the results indicate that three tests ran, and all passed.

As an optional task, can you think of other tests you could write to make sure the database context and entity models are correct?

Cleaning up data resources

When you are done with a SQL Server database, you can clean up the resources used.

Removing Azure resources

You can now remove the resources used by SQL Database to save costs:

	In Azure portal, find the resource group named apps-services-net7.

	Click Delete.

	Enter the name of the resource group.

	Click Delete.

Removing Docker resources

You could now remove the resources used by Docker but many of the other chapters in this book will need to connect to a Northwind database in SQL Server.

If you have completed all the chapters in the book, or plan to use full SQL Server or Azure SQL Database, and now want to remove all the Docker resources, then follow these steps:

	At the command prompt or terminal, stop the azuresqledge container, as shown in the following command:

docker stop azuresqledge

	At the command prompt or terminal, remove the azuresqledge container, as shown in the following command:

docker rm azuresqledge

Removing the container will delete all data inside it.

	At the command prompt or terminal, remove the azure-sql-edge image to release its disk space, as shown in the following command:

docker rmi mcr.microsoft.com/azure-sql-edge

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 2.1 – Test your knowledge

Answer the following questions:

	What type would you use for the property that represents a table, for example, the Products property of a database context?

	What type would you use for the property that represents a one-to-many relationship, for example, the Products property of a Category entity?

	What is the EF Core convention for primary keys?

	When might you use an annotation attribute in an entity class?

	Why might you choose the Fluent API in preference to annotation attributes?

	What does a transaction isolation level of Serializable mean?

	What does the DbContext.SaveChanges() method return?

	What is the difference between eager loading and explicit loading?

	How should you define an EF Core entity class to match the following table?

CREATE TABLE Employees(
 EmpId INT IDENTITY,
 FirstName NVARCHAR(40) NOT NULL,
 Salary MONEY
)

	What benefit do you get from declaring entity navigation properties as virtual?

Exercise 2.2 – Practice benchmarking ADO.NET against EF Core

In the Chapter02 solution/workspace, create a console app named Ch02Ex02_ADONETvsEFCore that uses Benchmark.NET to compare retrieving all the products from the Northwind database using ADO.NET (SqlClient) and using EF Core.

Exercise 2.3 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-2---working-with-data-using-sql-server

Summary

In this chapter, you learned:

	How to connect to an existing SQL Server database.

	How to execute a simple query and process the results using fast and low-level ADO.NET.

	How to execute a simple query and process the results using the slower but more object-oriented EF Core.

In the next chapter, you will learn how to use cloud native data storage with Azure Cosmos DB.

3 Working with Data Using Microsoft Azure Cosmos DB

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about reading and writing to Azure Cosmos DB.

This chapter will cover the following topics:

	Understanding NoSQL databases

	Creating Cosmos DB resources

	Manipulating data with Core (SQL) API

	Querying data with Core (SQL) API

	Manipulating graph data with Gremlin API

	Querying graph data with Gremlin API

Understanding NoSQL databases

Two of the most common places to store data are in a Relational Database Management System (RDBMS) such as SQL Server, PostgreSQL, MySQL, and SQLite, or in a NoSQL database such as Azure Cosmos DB, Redis, MongoDB, and Apache Cassandra.

Understanding Azure Cosmos DB and its APIs

Azure Cosmos DB is a NoSQL data store that supports multiple APIs. Its native API is SQL-based. It also supports alternative APIs like MongoDB, Casandra, and Gremlin.

Azure Cosmos DB stores data in atom-record-sequence (ARS) format. You interact with this data via an API that you choose when you create the database.

The API for MongoDB supports the MongoDB wire protocol versions 3.2, 3.6, and 4.0 which allows existing clients to work with the data as if they are interacting with an actual MongoDB database. Tools like mongodump and mongorestore can be used to move any existing data into Azure Cosmos DB.

The API for Cassandra supports the Cassandra Query Language (CQL) wire protocol version 4 which allows existing clients to work with the data as if they are interacting with an actual Cassandra database.

For a new project, sometimes known as a "green field" project, Microsoft recommends the Core (SQL) API. For existing projects that use alternative APIs, you could choose to use the appropriate API so that your clients and tools do not need to be updated while gaining the benefits of data stored in Azure Cosmos DB. This reduces migration costs.

If the relationships between data items have metadata that needs analyzing, then a graph data store like Gremlin is a good choice.

Good Practice: If you are unsure which API to choose, select Core (SQL) as the default.

In this book, we will first use its native Core (SQL) API. This allows the developer to query JSON documents using a language like SQL. Core (SQL) API uses JSON's type system and JavaScript's function system.

Later in this chapter we will use the Azure Cosmos DB graph API.

Understanding document modelling

A typical JSON document representing a product from the Northwind database when stored in Azure Cosmos DB might look like the following:

{
 "id": "1",
 "productId": "1",
 "productName": "Chai",
 "supplier": {
 "supplierId": 1,
 "companyName": "Exotic Liquids",
 "contactName": "Charlotte Cooper",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Country": "UK",
 "Phone": "(171) 555-2222"
 },
 "category": {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales",
 "image": "https://myaccount.blob.core.windows.net/categories/beverages.png"
 },
 "quantityPerUnit": "10 boxes x 20 bags",
 "unitPrice": 18.0000,
 "unitsInStock": 39,
 "unitsOnOrder": 0,
 "reorderLevel": 10,
 "discontinued": false
}

Unlike with a relational database model, it is common to embed related data. That means duplicating data, like the category and supplier information, in many products. This is good practice if the related data is bounded.

For example, for a product there will only ever be one supplier and one category, so those relationships are bounded to one. If we were modeling a category and decide to embed its related products, then that could be poor practice because having all the product details as an array would be unbounded. Instead, we might choose to only store a unique identifier for each product and reference the product details stored elsewhere.

You should also consider how frequently the related data is updated. The more frequent it needs to be updated, the more you should avoid embedding it. If related data is unbounded but infrequently updated, then embedding might still be a good choice.

Deliberately but carefully denormalizing parts of your data model means you will need to execute fewer queries and updates for common operations, reducing cost both in money and performance.

Use embedding (denormalized data) when:

	The relationships are contained, like property owned by a person, or the children of a parent.

	The relationships are one-to-one or one-to-few, i.e., the related data is bounded.

	The related data needs infrequent updates.

	The related data often or always needs to be included in query results.

Good Practice: Denormalized data models provide better read performance but worse write performance.

Imagine that you want to model an article and its comments on a popular news website. The comments are unbounded and for an engaging article would frequently be added to, especially during the hours or days after it is published while it is topical news. Or imagine an investor with stock they trade. The current price of that stock would be frequently updated.

In these scenarios, you would want to normalize the related data either wholly or partially. For example, you could choose to embed the most liked comments that will be shown at the top of the list directly under the article. Other comments could be stored separately and referenced using their primary keys. You could choose to embed stock information for long term investments that are held for many years but reference stock information for short term investments for day trading.

Use referencing (normalized data) when:

	The relationships are one-to-many or many-to-many and unbounded.

	The related data needs frequent updates.

Good Practice: Normalized data models require more queries that worsens read performance but provides better write performance.

You can read more about modeling documents in Azure Cosmos DB at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/sql/modeling-data

Understanding consistency levels

Azure Cosmos DB is distributed globally and scales elastically. It relies on replication to provide low latency and high availability all over the world. To achieve this, you must accept and choose tradeoffs.

To ease the life of a programmer, you want total consistency of data. If data is modified anywhere in the world, then any subsequent read operation should see that change. The best consistency is known as linearizability. Linearizability increases the latency of write operations and reduces availability of read operations because it must wait for replication to occur globally. A more relaxed consistency level improves latency and availability at the cost of potentially increased complexity for the programmer because data might be inconsistent.

Most NoSQL databases only offer two levels of consistency: strong and eventual. Azure Cosmos DB offers five to provide exactly the level of consistency that suits your project.

You choose the level of data consistency, and this will be guaranteed by the Service Level Agreement (SLA), as shown in the following ordered from the strongest to the weakest:

	Strong consistency guarantees linearizability across all regions globally. All other consistency levels are collectively known as "relaxed".

	Bounded staleness consistency guarantees you can read your own write within the write region, monotonic read within the region, consistent prefix, and staleness bound to a specific number of versions for which the reads lag behind the writes for a specified time interval.

	Session consistency guarantees you can read your own write within the write region, monotonic read, and consistent prefix.

	Consistent prefix consistency only guarantees the order that writes can then be read.

	Eventual consistency does not guarantee that the order of writes will match the order of reads. When writes pause, reads will eventually catch up as the replicas synchronize. It is possible for a client to read values older than the ones it read before. Probabilistic Bounded Staleness (PBS) is a measurement that shows how eventual your consistency is currently. You can monitor it in the Azure portal.

You can read more details about consistency levels at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Understanding the hierarchy of components

The hierarchy components of Azure Cosmos DB are:

	Account: You can create up to 50 accounts via the Azure portal.

	Database: You can have an unlimited number of databases per account.

	Container: You can have an unlimited number of containers per database.

	Partition: These are created and managed automatically within a container.

	Item: A stored entity in a container.

Item is a deliberately generic term and is used by Core (SQL) API to refer to a JSON document but can also be used for the other APIs. The other APIs also have their own more specific terms:

	Cassandra uses row.

	MongoDB uses document.

	Graph databases like Gremlin use vertex and edge.

Understanding throughput provisioning

Throughput is measured as request units per second (RU/s). A single request unit (RU) is about the cost of performing a GET request for a 1KB document using its unique identifier. Creating, updating, and deleting cost more RUs, for example, a query might cost 46.54 RUs, or a delete operation might cost 14.23 RUs.

Throughput must be provisioned in advance although you can scale up and down at any time in increments or decrements of 100 RU/s. You will be billed per hour.

You can discover how much a request costs in RUs by getting the RequestCharge property. You can learn more at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/sql/find-request-unit-charge

You must provision throughput to run CRUD operations (reads, writes, updates, and deletes). You must estimate throughput by calculating the number of operations you'll need to support throughout the year. For example, a commerce website might need to expect much greater throughput at Thanksgiving in US or Singles Day in China.

Most throughput settings are applied at the container level, or you can do so at the database level and have the settings shared across all containers. Throughput is distributed equally among partitions.

Once provisioned throughout is exhausted, Cosmos DB will start rate limiting access requests, and your code will have to wait and retry later. Luckily, we will use the .NET SDK for Cosmos DB that automatically reads the retry-after response header and retries after that time limit.

Using the Azure portal, you can provision between 400 RU/s and 250,000 RU/s. At the time of writing, the 400 RU/s minimum would cost about $35 per month. You would then also need to add the cost of storage depending on how many GB you want to store, for example, $5 for a few GBs.

The free tier of Cosmos DB allows up to 1000 RU/s and 25 GB of storage. You can use a calculator at the following link: https://cosmos.azure.com/capacitycalculator/

Factors that affect RUs:

	Item size: A 2KB document costs twice as much as a 1KB document.

	Indexed properties: Indexing all item properties costs more than indexing a subset of properties.

	Consistency: Strict consistency costs twice as many RUs as looser consistency.

	Query complexity: The number of predicates (where filters), the number of results, the number of custom functions, projections, the size of the data set, and so on, all increase the cost in RUs.

Understanding partition strategies

A good partition strategy allows a Cosmos DB database to grow and efficiently run queries and transactions. A good partition strategy is about choosing a suitable partition key. It is set for a container and cannot be changed.

The partition key should be chosen to evenly distribute operations across the database to avoid hot partitions, meaning a partition that handles more requests, so it is busier than other partitions.

A property that will be unique for an item and will often be used to look up an item is a good choice. For example, for US citizens, a person's social security number.

Partitions are automatically created by Cosmos DB when needed. There is no negative impact on your applications and services. Each partition can grow up to a maximum of 20 GB. Cosmos DB will automatically split partitions when needed.

A container should have a partition key that possess these attributes:

	High cardinality so that items are distributed evenly across partitions.

	Evenly distributed requests across partitions.

	Evenly distributed storage across partitions.

Understanding data storage design

With relational databases, the schemas are rigid and inflexible. For the Northwind databases products, they are all food related so the schema might not change much. But if you are building a commerce system for a company that sells everything from clothes to electronic equipment to books, then a semi-structured data store would be better.

	Clothing: sizes like S, M L, XL, brand, color.

	Shoes: sizes like 7, 8, 9, brand, color.

	Televisions: sizes like 40", 52", screen technology like OLED, LCD, brand.

	Books: number of pages, author, publisher.

Being schema-less, Azure Cosmos DB can add new types of products with different structure and properties simply by adding a new product with that structure to a container.

You can read more about data modeling with Azure Cosmos DB at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/sql/modeling-data

Migrating data to Azure Cosmos DB

The open source Azure Cosmos DB Data Migration Tool can import data into Azure Cosmos DB from many different sources, including Azure Table Storage, SQL databases, MongoDB, text files in JSON and CSV formats, HBase, and more. The tool has both a command-line version and a GUI version.

We will not use this migration tool in this book, so if you think it will be useful to you, then you can learn how to use it at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/import-data

Creating Azure Cosmos DB resources

First, we must create Cosmos DB resources. We can manually create them in the cloud using the Azure portal or programmatically create them using the Azure Cosmos DB .NET SDK.

You can also create Azure Cosmos DB resources locally using an emulator. At the time of writing, the Azure Cosmos DB Emulator only supports Windows. If you want to use Linux or macOS, then you can try to use the Linux Emulator that is currently in preview or run you could host the emulator in a Windows virtual machine.

Using an emulator on Windows to create Azure Cosmos DB resources

Let's use the Azure Cosmos DB emulator on Windows to create Azure Cosmos DB resources like a database and container:

	Download and install the latest version of Azure Cosmos DB Emulator on your local Windows computer from the following link: https://aka.ms/cosmosdb-emulator

	Make sure the Azure Cosmos DB Emulator is running.

	The Azure Cosmos DB Emulator user interface should start automatically but if not, start your favorite browser and navigate to: https://localhost:8081/_explorer/index.html

	Note the Azure Cosmos DB emulator is running, hosted at localhost on port 8081, with a Primary Key that you will need to securely connect to the service, as shown in Figure 3.1:

[image: Figure 3.1: The Azure Cosmos DB Emulator user interface on Windows]Figure 3.1: The Azure Cosmos DB Emulator user interface on Windows

The default primary key for the emulator is the same value for everyone. You can specify your own key value by starting the emulator at the command line with the /key switch. You can learn about starting the emulator at the command line at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/emulator-command-line-parameters

	In the navigation bar on the left, click Explorer.

	Click New Container, as shown in Figure 3.2:

[image: Figure 3.2: Azure Cosmos DB data explorer]Figure 3.2: Azure Cosmos DB data explorer

	Complete the following information:

	For Database id, select Create new and enter Northwind. Leave the Share throughout across containers check box selected.

	For Database throughput, select Autoscale, and leave Database max RU/s as 4000. This will use a minimum of 400 RU/s and autoscale up to 4000 RU/s when needed.

	For Container id, enter Products.

	For Partition key, enter /productId.

	Click OK.

	Expand the Northwind database, expand the Products container, and select Items, as shown in Figure 3.3:

[image: Figure 3.3: The empty items in the Products container in the Northwind database.]Figure 3.3: The empty items in the Products container in the Northwind database.

	In the toolbar, click New Item.

	Replace the contents of the editor window with a JSON document that represents a product named Chai, as shown in the following JSON:

{
 "productId": 1,
 "productName": "Chai",
 "supplier": {
 "supplierId": 1,
 "companyName": "Exotic Liquids",
 "contactName": "Charlotte Cooper",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Country": "UK",
 "Phone": "(171) 555-2222"
 },
 "category": {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales"
 },
 "quantityPerUnit": "10 boxes x 20 bags",
 "unitPrice": 18,
 "unitsInStock": 39,
 "unitsOnOrder": 0,
 "reorderLevel": 10,
 "discontinued": false
}

	Click Save, and note the extra properties that are automatically added to any item, including id, _etag, and _ts, as shown highlighted in the following JSON:

{
 "productId": 1,
 "productName": "Chai",
 "supplier": {
 "supplierId": 1,
 "companyName": "Exotic Liquids",
 "contactName": "Charlotte Cooper",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Country": "UK",
 "Phone": "(171) 555-2222"
 },
 "category": {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales"
 },
 "quantityPerUnit": "10 boxes x 20 bags",
 "unitPrice": 18,
 "unitsInStock": 39,
 "unitsOnOrder": 0,
 "reorderLevel": 10,
 "discontinued": false,
 "id": "2ad4c71d-d0e4-4ebd-a146-bcf052f8d7d6",
 "_rid": "bmAuAJ9o6I8BAAAAAAAAAA==",
 "_self": "dbs/bmAuAA==/colls/bmAuAJ9o6I8=/docs/bmAuAJ9o6I8BAAAAAAAAAA==/",
 "_etag": "\"00000000-0000-0000-8fc2-ec4d49ea01d8\"",
 "_attachments": "attachments/",
 "_ts": 1656952035
}

	Click New Item.

	Replace the contents of the editor window with a JSON document that represents a product named Chang, as shown in the following JSON:

{
 "productId": 2,
 "productName": "Chang",
 "supplier": {
 "supplierId": 1,
 "companyName": "Exotic Liquids",
 "contactName": "Charlotte Cooper",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Country": "UK",
 "Phone": "(171) 555-2222"
 },
 "category": {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales"
 },
 "quantityPerUnit": "24 - 12 oz bottles",
 "unitPrice": 19,
 "unitsInStock": 17,
 "unitsOnOrder": 40,
 "reorderLevel": 25,
 "discontinued": false
}

	Click Save.

	Click New Item.

	Replace the contents of the editor window with a JSON document that represents a product named Aniseed Syrup, as shown in the following JSON:

{
 "productId": 3,
 "productName": "Aniseed Syrup",
 "supplier": {
 "supplierId": 1,
 "companyName": "Exotic Liquids",
 "contactName": "Charlotte Cooper",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Country": "UK",
 "Phone": "(171) 555-2222"
 },
 "category": {
 "categoryId": 2,
 "categoryName": "Condiments",
 "description": "Sweet and savory sauces, relishes, spreads, and seasonings"
 },
 "quantityPerUnit": "12 - 550 ml bottles",
 "unitPrice": 10,
 "unitsInStock": 13,
 "unitsOnOrder": 70,
 "reorderLevel": 25,
 "discontinued": false
}

	Click Save.

	Click the first item in the list and note that it has been assigned additional properties like id, _self, _etag and _ts, as shown in Figure 3.4:

[image: Figure 3.4: A saved JSON document item in Azure Cosmos DB emulator]Figure 3.4: A saved JSON document item in Azure Cosmos DB emulator

	In the toolbar, click New SQL Query, and note the default query text is SELECT * FROM c.

	Modify the query text to return all products supplied by Exotic Liquids, and note that all three products are included in the array of results, as shown in Figure 3.5 and in the following query:

SELECT * FROM c WHERE c.supplier.companyName = "Exotic Liquids"

[image: Figure 3.5: A query to return all products supplied by Exotic Liquids]Figure 3.5: A query to return all products supplied by Exotic Liquids

Key words are case-insensitive so WHERE is treated the same as Where or where. Property names are case-sensitive so CompanyName is different from companyName, and will return zero results.

	Modify the query text to return all products in category 2, and note that one product is included in the array of results, as shown in the following query:

SELECT * FROM c WHERE c.category.categoryId = 2

Using the Azure portal to create Azure Cosmos DB resources

If you would prefer to only use the Azure Cosmos DB Emulator to avoid any costs, then feel free to skip this section, or just read through it without completing the steps yourself.

Now, let's use the Azure portal to create Azure Cosmos DB resources like an account, database, and container in the cloud:

	If you do not have an Azure account, then you can sign up for one for free at the following link: https://azure.microsoft.com/free/

	Navigate to the Azure portal and sign in: https://portal.azure.com/

	In the Azure portal menu, click + Create a resource.

	In the Create a resource page, search for, or click Azure Cosmos DB, as shown in Figure 3.6:

[image: Figure 3.6: Creating an Azure Cosmos DB resource in the cloud]Figure 3.6: Creating an Azure Cosmos DB resource in the cloud

	In the Core (SQL) - Recommended box, click the Create button, as shown in Figure 3.7:

[image: Figure 3.7: Selecting an API option for Azure Cosmos DB in the cloud]Figure 3.7: Selecting an API option for Azure Cosmos DB in the cloud

	On the Basics tab:

	Select your Subscription. Mine is named Pay-As-You-Go.

	Select a Resource Group or create a new one. I used the name apps-services-net7.

	Enter an Azure Cosmos DB Account Name. I used apps-services-net7.

	Select a Location. I chose (Europe) UK West as it is the closest to me.

	Leave Capacity mode set to Provisioned throughput.

	Leave Apply Free Tier Discount set to Do not apply. Only change this option if you want this account to be the only account within your subscription to be on the free tier. You might be better off saving this discount for another account that you might use for a real project rather than a temporary learning account while reading this book.

With Azure Cosmos DB free tier, you will get the first 1000 RU/s and 25 GB of storage for free in an account. You can only enable free tier on one account per subscription. Microsoft estimates this has a value of a $64/month.

	Leave the Limit total account throughput check box selected.

	Click the Next: Global Distribution button and review the options but leave them at their defaults.

	Click the Next: Networking button and review the options but leave them at their defaults.

	Click the Next: Backup Policy button and review the options but leave them at their defaults.

	Click the Next: Encryption button and review the options but leave them at their defaults.

	Click the Review + create button.

	Note the Validation Success message, review the summary, and then click the Create button, as shown in Figure 3.8:

[image: Figure 3.8: A summary of the Azure Cosmos DB account about to be created in the cloud]Figure 3.8: A summary of the Azure Cosmos DB account about to be created in the cloud

	Wait for deployment to complete, as shown in Figure 3.9. This will take a few minutes.

[image: Figure 3.9: Azure Cosmos DB account deployment complete]Figure 3.9: Azure Cosmos DB account deployment complete

	Click the Go to resource button, and note that you are directed to the Quick Start page, as shown in Figure 3.10:

[image: Figure 3.10: Azure Cosmos DB Quick Start page]Figure 3.10: Azure Cosmos DB Quick Start page

	In the navigation on the left, click Keys, and note the URI and Primary Key needed to programmatically work with this Azure Cosmos DB account, as shown in Figure 3.11:

[image: Figure 3.11: Keys to programmatically work with the Azure Cosmos DB account]Figure 3.11: Keys to programmatically work with the Azure Cosmos DB account

	In the navigation on the left, click Data Explorer, and close the video popup window.

	In the toolbar, click New Container.

	Complete the steps listed in the emulator section, Using an emulator on Windows to create Azure Cosmos DB resources, starting at step 7 going up to the end of that section.

Using a .NET app to create Azure Cosmos DB resources

Next, we will create a console app project for creating the same Azure Cosmos DB resources in either the local emulator or in the cloud depending on which URI and primary key that you choose to use:

	Use your preferred code editor to create a new solution/workspace named Chapter03.

	Add a console app project, as defined in the following list:

	Project template: Console App / console

	Workspace/solution file and folder: Chapter03

	Project file and folder: Northwind.CosmosDb.SqlApi

	In the project file, treat warnings as errors, add a package reference for Azure Cosmos, add a project reference to the Northwind data context project that you created in Chapter 2, Working with Data Using SQL Server, and import the Console class statically and globally, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.Azure.Cosmos" Version="3.26.1" />
 </ItemGroup>
 <ItemGroup>
 <ProjectReference Include="..\..\Chapter07\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
 </ItemGroup>
 <ItemGroup>
 <Using Include="System.Console" Static="true" />
 </ItemGroup>
</Project>

	Build the Northwind.CosmosDb.SqlApi project at the command line or terminal using the following command: dotnet build.

	Add a class file named Program.Helpers.cs.

	Modify its contents, as shown in the following code:

partial class Program
{
 static void SectionTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 ForegroundColor = previousColor;
 }
}

	Add a class file named Program.Methods.cs.

	Add statements to import the namespace for working with Azure Cosmos, and then define a method for the Program class that creates a Cosmos client and uses it to create a database named Northwind and a container named Products, in either the local emulator or in the cloud, as shown in the following code:

// CosmosClient, DatabaseResponse, Database, IndexingPolicy, and so on
using Microsoft.Azure.Cosmos;
using System.Net; // HttpStatusCode
partial class Program
{
 // to use Azure Cosmos DB in the local emulator
 private static string endpointUri = "https://localhost:8081/";
 private static string primaryKey = "C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==";
 /*
 // to use Azure Cosmos DB in the cloud
 private static string account = "apps-services-net7"; // use your account
 private static string endpointUri =
 $"https://{account}.documents.azure.com:443/";
 private static string primaryKey = "LGrx7H...gZw=="; // use your key
 */
 static async Task CreateCosmosResources()
 {
 SectionTitle("Creating Cosmos resources");
 try
 {
 using (CosmosClient client = new(
 accountEndpoint: endpointUri,
 authKeyOrResourceToken: primaryKey))
 {
 DatabaseResponse dbResponse = await client
 .CreateDatabaseIfNotExistsAsync(
 "Northwind", throughput: 400 /* RU/s */);
 string status = dbResponse.StatusCode switch
 {
 HttpStatusCode.OK => "exists",
 HttpStatusCode.Created => "created",
 _ => "unknown",
 };
 WriteLine("Database Id: {0}, Status: {1}.",
 arg0: dbResponse.Database.Id, arg1: status);
 IndexingPolicy indexingPolicy = new()
 {
 IndexingMode = IndexingMode.Consistent,
 Automatic = true, // items are indexed unless explicitly excluded
 IncludedPaths = { new IncludedPath { Path = "/*" } }
 };
 ContainerProperties containerProperties = new("Products",
 partitionKeyPath: "/productId")
 {
 IndexingPolicy = indexingPolicy
 };
 ContainerResponse containerResponse = await dbResponse.Database
 .CreateContainerIfNotExistsAsync(
 containerProperties, throughput: 1000 /* RU/s */);
 status = dbResponse.StatusCode switch
 {
 HttpStatusCode.OK => "exists",
 HttpStatusCode.Created => "created",
 _ => "unknown",
 };
 WriteLine("Container Id: {0}, Status: {1}.",
 arg0: containerResponse.Container.Id, arg1: status);
 Container container = containerResponse.Container;
 ContainerProperties properties = await container.ReadContainerAsync();
 WriteLine($" PartitionKeyPath: {properties.PartitionKeyPath}");
 WriteLine($" LastModified: {properties.LastModified}");
 WriteLine($" IndexingPolicy: {properties.IndexingPolicy}");
 }
 }
 catch (HttpRequestException ex)
 {
 WriteLine("Error: {0}", arg0: ex.Message);
 WriteLine("Hint: Make sure the Azure Cosmos Emulator is running.");
 }
 catch (Exception ex)
 {
 WriteLine("Error: {0} says {1}",
 arg0: ex.GetType(),
 arg1: ex.Message);
 }
 }
}

	In Program.cs, delete the existing statements, and then add a statement to call the method to create Azure Cosmos resources, as shown in the following code:

await CreateCosmosResources();

	Run the console app and note the results, as shown in the following output:

*
* Creating Cosmos resources
*
Database Id: Northwind, Status: exists.
Container Id: Products, Status: exists.
 PartitionKeyPath: /productId
 LastModified: 04/07/2022 11:11:31
 IndexingMode: Consistent

	In Azure Cosmos DB Emulator or Azure portal, use Data Explorer to delete the Northwind database. You will be prompted to enter its name to confirm deletion because this operation cannot be undone.

	Run the console app and note the results, as shown in the following output:

*
* Creating Cosmos resources
*
Database Id: Northwind, Status: created.
Container Id: Products, Status: created.
 PartitionKeyPath: /productId
 LastModified: 04/07/2022 11:11:31
 IndexingMode: Consistent

Manipulating data with Core (SQL) API

The most common API for working with data in Azure Cosmos DB is Core (SQL).

The full documentation for Core (SQL) API can be found at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/sql/

Performing CRUD operations with Cosmos SQL API

You can perform CRUD operations on JSON documents in Cosmos with SQL API by calling the following methods:

	ReadItemAsync<T>(id, partitionKey): Where T is the item type to get, id is its unique identifier, and partitionKey is its partition key value.

	ReadManyItemsAsync<T>(idsAndPartitionKeys): Where T is the item type to get, and idsAndPartitionKeys are the unique identifiers and partition key values of a read-only list of items to retrieve.

	CreateItemAsync(object): Where object is an instance of the item type to insert.

	DeleteItemAsync<T>(id, partitionKey): Where T is the item type to delete, id is its unique identifier, and partitionKey is its partition key value.

	PatchItemAsync<T>(id, partitionKey, patchOperations): Where T is the item type to update, id is its unique identifier, partitionKey is its partition key value, and patchOperations is a read-only list of property changes.

	ReplaceItemAsync<T>(object, id): Where T is the item type to replace, id is its unique identifier, and object is an instance of the item type to replace it with.

	UpsertItemAsync<T>(object, id, partitionKey): Where T is the item type to either insert or replace, id is its unique identifier, and object is an instance of the item type to insert or replace the existing item with.

Each method returns a response that has the following common properties:

	Resource: The item that was retrieved/created/deleted/updated.

	RequestCharge: A double value indicating the request charge measured in RUs.

	StatusCode: An HTTP status code value, for example, 404 when a ReadItemAsync<T> request fails to find the item.

	Headers: A dictionary of HTTP response headers.

	Diagnostics: Useful information for diagnostics.

	ActivityId: A guid value that is useful for tracking this activity through multi-tiered services.

Let's copy all the products from the Northwind database in SQL Server to Cosmos.

Since the entity classes in the EF Core for SQL Server class libraries are designed for the normalized data structure in Northwind SQL database, we will create new classes to represent items in Cosmos that have embedded related data. They will use JSON casing conventions since they represent JSON documents:

	In the Northwind.CosmosDb.SqlApi project, add a class file named CategoryCosmos.cs.

	Modify its content to define a CategoryCosmos class, as shown in the following code:

namespace Northwind.CosmosDb.Items;
public class CategoryCosmos
{
 public int categoryId { get; set; }
 public string categoryName { get; set; } = null!;
 public string? description { get; set; }
}

	In the Northwind.CosmosDb.SqlApi project, add a class file named SupplierCosmos.cs.

	Modify its content to define a SupplierCosmos class, as shown in the following code:

namespace Northwind.CosmosDb.Items;
public class SupplierCosmos
{
 public int supplierId { get; set; }
 public string companyName { get; set; } = null!;
 public string? contactName { get; set; }
 public string? contactTitle { get; set; }
 public string? address { get; set; }
 public string? city { get; set; }
 public string? region { get; set; }
 public string? postalCode { get; set; }
 public string? country { get; set; }
 public string? phone { get; set; }
 public string? fax { get; set; }
 public string? homePage { get; set; }
}

	In the Northwind.CosmosDb.SqlApi project, add a class file named ProductCosmos.cs.

	Modify its content to define a ProductCosmos class, as shown in the following code:

namespace Northwind.CosmosDb.Items;
public class ProductCosmos
{
 public string id { get; set; } = null!;
 public string productId { get; set; } = null!;
 public string productName { get; set; } = null!;
 public string? quantityPerUnit { get; set; }
 public decimal? unitPrice { get; set; }
 public short? unitsInStock { get; set; }
 public short? unitsOnOrder { get; set; }
 public short? reorderLevel { get; set; }
 public bool discontinued { get; set; }
 public CategoryCosmos? category { get; set; }
 public SupplierCosmos? supplier { get; set; }
}

Good Practice: All JSON document items in Cosmos must have an id property. To control the value, it is good practice to explicit define that property in the model.

	In Program.Methods.cs, add statements to import namespaces for the Northwind data context and entities types, the Northwind Cosmos types, and EF Core extensions, as shown in the following code:

using Packt.Shared; // NorthwindContext, Product, Category, and so on
using Northwind.CosmosDb.Items; // ProductCosmos, CategoryCosmos, and so on
using Microsoft.EntityFrameworkCore; // Include extension method

	In Program.Methods.cs, add statements to define a method to get all the products in the Northwind SQL database including their related category and supplier, and then insert them as new items in the Products container in Cosmos, as shown in the following code:

static async Task CreateProductItems()
{
 SectionTitle("Creating product items");
 double totalCharge = 0.0;
 try
 {
 using (CosmosClient client = new(
 accountEndpoint: endpointUri,
 authKeyOrResourceToken: primaryKey))
 {
 Container container = client.GetContainer(
 databaseId: "Northwind", containerId: "Products");
 using (NorthwindContext db = new())
 {
 ProductCosmos[] products = db.Products
 // get the related data for embedding
 .Include(p => p.Category)
 .Include(p => p.Supplier)
 // filter any products with null category or supplier
 // to avoid null warnings
 .Where(p => (p.Category != null) && (p.Supplier != null))
 // project the EF Core entities into Cosmos JSON types
 .Select(p => new ProductCosmos
 {
 id = p.ProductId.ToString(),
 productId = p.ProductId.ToString(),
 productName = p.ProductName,
 quantityPerUnit = p.QuantityPerUnit,
 category = new CategoryCosmos
 {
 categoryId = p.Category.CategoryId,
 categoryName = p.Category.CategoryName,
 description = p.Category.Description
 },
 supplier = new SupplierCosmos
 {
 supplierId = p.Supplier.SupplierId,
 companyName = p.Supplier.CompanyName,
 contactName = p.Supplier.ContactName,
 contactTitle = p.Supplier.ContactTitle,
 address = p.Supplier.Address,
 city = p.Supplier.City,
 country = p.Supplier.Country,
 postalCode = p.Supplier.PostalCode,
 region = p.Supplier.Region,
 phone = p.Supplier.Phone,
 fax = p.Supplier.Fax,
 homePage = p.Supplier.HomePage
 },
 unitPrice = p.UnitPrice,
 unitsInStock = p.UnitsInStock,
 reorderLevel = p.ReorderLevel,
 unitsOnOrder = p.UnitsOnOrder,
 discontinued = p.Discontinued,
 })
 .ToArray();
 foreach (ProductCosmos product in products)
 {
 try
 {
 ItemResponse<ProductCosmos> productResponse =
 await container.ReadItemAsync<ProductCosmos>(
 id: product.id, new PartitionKey(product.productId));
 WriteLine("Item with id: {0} exists. Query consumed {1} RUs.",
 productResponse.Resource.id, productResponse.RequestCharge);
 totalCharge += productResponse.RequestCharge;
 }
 catch (CosmosException ex)
 when (ex.StatusCode == HttpStatusCode.NotFound)
 {
 ItemResponse<ProductCosmos> productResponse =
 await container.CreateItemAsync(product);
 WriteLine("Created item with id: {0}. Insert consumed {1} RUs.",
 productResponse.Resource.id, productResponse.RequestCharge);
 totalCharge += productResponse.RequestCharge;
 }
 catch (Exception ex)
 {
 WriteLine("Error: {0} says {1}",
 arg0: ex.GetType(),
 arg1: ex.Message);
 }
 }
 }
 }
 }
 catch (HttpRequestException ex)
 {
 WriteLine("Error: {0}", arg0: ex.Message);
 WriteLine("Hint: Make sure the Azure Cosmos Emulator is running.");
 }
 catch (Exception ex)
 {
 WriteLine("Error: {0} says {1}",
 arg0: ex.GetType(),
 arg1: ex.Message);
 }
 WriteLine("Total requests charge: {0:N2} RUs", totalCharge);
}

	In Program.cs, comment out the call to create the Azure Cosmos resources, and then add a statement to call the method to insert all the products, as shown in the following code:

await CreateProductItems();

	Run the console app and note the results, which should be 77 product items inserted, as shown in the following partial output:

*
* Creating product items
*
Created item with id: 1. Insert consumed 14.29 RUs.
Created item with id: 2. Insert consumed 14.29 RUs.
Created item with id: 3. Insert consumed 14.29 RUs.
...
Created item with id: 76. Insert consumed 14.29 RUs.
Created item with id: 77. Insert consumed 14.48 RUs.
Total requests charge: 1,114.58 RUs

	Run the console app again and note the results, which should show that the product items already exist, as shown in the following partial output:

*
* Creating product items
*
Item with id: 1 exists. Query consumed 1 RUs.
Item with id: 2 exists. Query consumed 1 RUs.
Item with id: 3 exists. Query consumed 1 RUs.
...
Item with id: 76 exists. Query consumed 1 RUs.
Item with id: 77 exists. Query consumed 1 RUs.
Total requests charge: 77.00 RUs

	In Azure Cosmos DB Emulator or Azure portal Data Explorer, confirm that there are 77 product items in the Products container.

	In Program.Methods.cs, add statements to define a method to list all the items in the Products container in Cosmos, as shown in the following code:

static async Task ListProductItems(string sqlText = "SELECT * FROM c")
{
 SectionTitle("Listing product items");
 try
 {
 using (CosmosClient client = new(
 accountEndpoint: endpointUri,
 authKeyOrResourceToken: primaryKey))
 {
 Container container = client.GetContainer(
 databaseId: "Northwind", containerId: "Products");
 WriteLine("Running query: {0}", sqlText);
 QueryDefinition query = new(sqlText);
 using FeedIterator<ProductCosmos> resultsIterator =
 container.GetItemQueryIterator<ProductCosmos>(query);
 if (!resultsIterator.HasMoreResults)
 {
 WriteLine("No results found.");
 }
 while (resultsIterator.HasMoreResults)
 {
 FeedResponse<ProductCosmos> products =
 await resultsIterator.ReadNextAsync();
 WriteLine("Status code: {0}, Request charge: {1} RUs.",
 products.StatusCode, products.RequestCharge);
 WriteLine("{0} products found.", arg0: products.Count);
 foreach (ProductCosmos product in products)
 {
 WriteLine("id: {0}, productName: {1}, unitPrice: {2}",
 arg0: product.id, arg1: product.productName,
 arg2: product.unitPrice);
 }
 }
 }
 }
 catch (HttpRequestException ex)
 {
 WriteLine("Error: {0}", arg0: ex.Message);
 WriteLine("Hint: Make sure the Azure Cosmos Emulator is running.");
 }
 catch (Exception ex)
 {
 WriteLine("Error: {0} says {1}",
 arg0: ex.GetType(),
 arg1: ex.Message);
 }
}

	In Program.cs, comment out the call to create the product items, and then add a statement to call the method to list the product items, as shown in the following code:

await ListProductItems();

	Run the console app and note the results, which should be 77 product items, as shown in the following partial output:

*
* Listing product items
*
Running query: SELECT * FROM c
Status code: OK, Request charge: 3.93 RUs.
78 products found.
id: 1, productName: Chai, unitPrice: 18
id: 2, productName: Chang, unitPrice: 19
id: 3, productName: Aniseed Syrup, unitPrice: 10
...
id: 76, productName: Lakkalikööri, unitPrice: 18
id: 77, productName: Original Frankfurter grüne Soße, unitPrice: 13

	In Program.Methods.cs, add statements to define a method to delete all the items in the Products container in Cosmos, as shown in the following code:

static async Task DeleteProductItems()
{
 SectionTitle("Deleting product items");
 double totalCharge = 0.0;
 try
 {
 using (CosmosClient client = new(
 accountEndpoint: endpointUri,
 authKeyOrResourceToken: primaryKey))
 {
 Container container = client.GetContainer(
 databaseId: "Northwind", containerId: "Products");
 string sqlText = "SELECT * FROM c";
 WriteLine("Running query: {0}", sqlText);
 QueryDefinition query = new(sqlText);
 using FeedIterator<ProductCosmos> resultsIterator =
 container.GetItemQueryIterator<ProductCosmos>(query);
 while (resultsIterator.HasMoreResults)
 {
 FeedResponse<ProductCosmos> products =
 await resultsIterator.ReadNextAsync();
 foreach (ProductCosmos product in products)
 {
 WriteLine("Delete id: {0}, productName: {1}",
 arg0: product.id, arg1: product.productName);
 ItemResponse<ProductCosmos> response =
 await container.DeleteItemAsync<ProductCosmos>(
 id: product.id, partitionKey: new(product.id));
 WriteLine("Status code: {0}, Request charge: {1} RUs.",
 response.StatusCode, response.RequestCharge);
 totalCharge += response.RequestCharge;
 }
 }
 }
 }
 catch (HttpRequestException ex)
 {
 WriteLine("Error: {0}", arg0: ex.Message);
 WriteLine("Hint: Make sure the Azure Cosmos Emulator is running.");
 }
 catch (Exception ex)
 {
 WriteLine("Error: {0} says {1}",
 arg0: ex.GetType(),
 arg1: ex.Message);
 }
 WriteLine("Total requests charge: {0:N2} RUs", totalCharge);
}

	Run the console app and note the results, which should be 77 product items deleted, as shown in the following partial output:

*
* Deleting product items
*
Running query: SELECT * FROM c
Delete id: 1, productName: Chai
Status code: NoContent, Request charge: 14.29 RUs.
...
Delete id: 77, productName: Original Frankfurter grüne Soße
Status code: NoContent, Request charge: 14.48 RUs.
Total requests charge: 1,128.87 RUs

	In Azure Cosmos DB Emulator or Azure portal Data Explorer, confirm that the Products container is empty.

Understanding SQL queries

The following keywords are available when writing SQL queries for Azure Cosmos DB:

	SELECT to select from item properties. Supports * for all and TOP for limited the results to the first specific number of items.

	AS to define aliases.

	FROM to define the items to select from.

	WHERE to define a filter.

	LIKE to use pattern matching. % means zero, one or more characters. _ means a single character. [a-f] or [aeiou] means a single character within the defined range or set. [^aeiou] means not in the range or set.

	IN, BETWEEN are range and set filters.

	AND, OR, NOT for Boolean logic.

	ORDER BY to sort the results.

	DISTINCT to remove duplicates.

	COUNT, AVG, SUM and other aggregate functions.

To query the Products container using Core (SQL) API, you might write the following code:

SELECT p.id, p.productName, p.unitPrice FROM Items p

Let's try executing a SQL query against our product items:

	In Program.cs, modify the call to ListProductItems to pass a SQL query that filters the products to only show the products in the beverages category and only their id, name, and unit price, as shown in the following code:

//await CreateCosmosResources();
//await CreateProductItems();
await ListProductItems("SELECT p.id, p.productName, p.unitPrice FROM Items p WHERE p.category.categoryName = 'Beverages'");
//await DeleteProductItems();

	Run the console app and note the results, which should be the 12 product items in the beverages category, as shown in the following output:

*
* Listing product items
*
Running query: SELECT p.id, p.productName, p.unitPrice FROM Items p WHERE p.category.categoryName = 'Beverages'
Status code: OK, Request charge: 3.19 RUs.
12 products found.
id: 1, productName: Chai, unitPrice: 18
id: 2, productName: Chang, unitPrice: 19
id: 24, productName: Guaraná Fantástica, unitPrice: 4.5
id: 34, productName: Sasquatch Ale, unitPrice: 14
id: 35, productName: Steeleye Stout, unitPrice: 18
id: 38, productName: Côte de Blaye, unitPrice: 263.5
id: 39, productName: Chartreuse verte, unitPrice: 18
id: 43, productName: Ipoh Coffee, unitPrice: 46
id: 67, productName: Laughing Lumberjack Lager, unitPrice: 14
id: 70, productName: Outback Lager, unitPrice: 15
id: 75, productName: Rhönbräu Klosterbier, unitPrice: 7.75
id: 76, productName: Lakkalikööri, unitPrice: 18

	In Azure Cosmos DB Emulator or Azure portal Data Explorer, create a new SQL query, use the same SQL text, and execute it, as shown in Figure 3.12:

[image: Figure 3.12: Executing a SQL query in Data Explorer]Figure 3.12: Executing a SQL query in Data Explorer

	Click Query Stats, and note the request charge (3.19 RUs), the number of records (12), and the output document size (752 bytes), as shown in Figure 3.13:

[image: Figure 3.13: Query statistics in Data Explorer]Figure 3.13: Query statistics in Data Explorer

Other useful query statistics include:

	Index hit document count

	Index lookup time

	Document load time

	Query engine execution time

	Document write time

Try executing the following queries:

SELECT p.id, p.productName, p.unitPrice FROM Items p
WHERE p.unitPrice > 50
SELECT DISTINCT p.category FROM Items p
SELECT DISTINCT p.category.categoryName FROM Items p
WHERE p.discontinued = true
SELECT p.productName, p.supplier.city FROM Items p
WHERE p.supplier.country = 'Germany'
SELECT COUNT(p.id) AS HowManyProductsComeFromGermany FROM Items p
WHERE p.supplier.country = 'Germany'
SELECT AVG(p.unitPrice) AS AverageUnitPrice FROM Items p

Understanding server-side programming

Azure Cosmos DB server-side programming consists of stored procedures and user define functions (UDFs) written in JavaScript.

Stored procedures are the only way to ensure ACID (Atomicity, Consistency, Isolation, Durability) transactions that combine multiple discreet activities into a single action that can be committed or rolled back. You cannot use client-side code to implement transactions. Server-side programming also provides improved performance since the code executes where the data is stored.

UDFs can only be called from within a query, and they implement custom business logic like calculating tax.

Let's define a UDF to calculate the sales tax of products:

	In Azure Cosmos DB Emulator or Azure portal Data Explorer, create a new user defined function (UDF), as shown in Figure 3.14:

[image: Figure 3.14: Creating a new user defined function (UDF)]Figure 3.14: Creating a new user defined function (UDF)

	For the User Defined Function Id, enter salesTax.

	In the editor, enter JavaScript to define the salesTax function, as shown in the following code:

function salesTax(unitPrice){
 return unitPrice * 0.2;
}

	Create a new SQL query and enter SQL text to return the unit price and sales tax for products that cost more than 100, as shown in the following query:

SELECT p.unitPrice cost, udf.salesTax(p.unitPrice) AS tax
FROM Items p WHERE p.unitPrice > 100

	Execute the query and note the results, as shown in the following output:

[
 {
 "cost": 123.79,
 "tax": 24.758000000000003
 },
 {
 "cost": 263.5,
 "tax": 52.7
 }
]

Note that AS to alias a property is optional.

Manipulating graph data with Gremlin API

The API for working with graph data in Azure Cosmos DB is Gremlin.

The full documentation for Gremlin API can be found at the following link: https://docs.microsoft.com/en-us/azure/cosmos-db/graph/

Comparing relational and graph databases

Relational databases like SQL Server have a rigid schema. Tables like Products and Customers have columns to define the properties stored for each row. Tables can have relationships to other tables, and these are stored as part of the structure of the database. Performance of relational databases decreases with the number of relationships between tables.

Graph databases like Azure Cosmos DB (graph) and MongoDB have no schemas. Vertices (aka nodes, nouns, objects, or entities) like Products and Customers can have any number of properties of any type. Edges (relationships that connect two vertices with a source and target) between vertices are also data. This provides more flexibility, and the edges can have their own properties. A product might belong to a category. A customer might have purchased a product on a date and paid an amount that used a discount. Performance of graph databases remains the same as relationship complexity increases.

The main con of graph databases is performance of lots of transactions, or queries that touch data across the whole database.

Defining a graph model using Gremlin API

Cleaning up Azure resources

When you are done with an Azure Cosmos DB account, you can clean up the resources used. You can delete resources individually or delete the resource group to delete the entire set of resources. If you delete an Azure Cosmos DB account then all the databases and container within it are also deleted.

	In Azure portal, navigate to All Resources.

	In your apps-services-net7 resource group, click your Azure Cosmos DB account.

	Click Overview, and then in the toolbar, click Delete Account.

	In the Confirm the Account Name box, enter your account name.

	Click the Delete button.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

https://docs.microsoft.com/en-us/learn/modules/build-cosmos-db-app-with-vscode/

Exercise 3.1 – Test your knowledge

Answer the following questions:

	?

	?

	?

	?

	?

Exercise 3.2 – Practice data modelling and partitioning

Microsoft documentation has an extensive example of modelling and partitioning Azure Cosmos DB.

https://docs.microsoft.com/en-us/azure/cosmos-db/sql/how-to-model-partition-example

Exercise 3.3 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-3---working-with-data-using-azure-cosmos-db

Exercise 3.4 – Explore NoSQL databases

This chapter focused on Azure Cosmos DB. If you wish to learn more about NoSQL databases, such as MongoDB, and how to use them with EF Core, then I recommend the following links:

	Use NoSQL databases as a persistence infrastructure: https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure

	Document Database Providers for Entity Framework Core: https://github.com/BlueshiftSoftware/EntityFrameworkCore

Summary

In this chapter, you learned:

	How to store flexibly structured data in Azure Cosmos DB.

	How to use the Cosmos SQL API.

	How to use the Cosmos Gremlin graph API.

In the next chapter, you will use the Task type to improve the performance of your applications.

4 Improving Performance and Scalability Using Multitasking

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about allowing multiple actions to occur at the same time to improve performance, scalability, and user productivity for the applications that you build.

In this chapter, we will cover the following topics:

	Understanding processes, threads, and tasks

	Monitoring performance and resource usage

	Running tasks asynchronously

	Synchronizing access to shared resources

	Understanding async and await

Understanding processes, threads, and tasks

A process, with one example being each of the console applications we have created, has resources like memory and threads allocated to it.

A thread executes your code, statement by statement. By default, each process only has one thread, and this can cause problems when we need to do more than one task at the same time. Threads are also responsible for keeping track of things like the currently authenticated user and any internationalization rules that should be followed for the current language and region.

Windows and most other modern operating systems use preemptive multitasking, which simulates the parallel execution of tasks. It divides the processor time among the threads, allocating a time slice to each thread one after another. The current thread is suspended when its time slice finishes. The processor then allows another thread to run for a time slice.

When Windows switches from one thread to another, it saves the context of the thread and reloads the previously saved context of the next thread in the thread queue. This takes both time and resources to complete.

As a developer, if you have a small number of complex pieces of work and you want complete control over them, then you could create and manage individual Thread instances. If you have one main thread and multiple small pieces of work that can be executed in the background, then you can use the ThreadPool class to add delegate instances that point to those pieces of work implemented as methods to a queue, and they will be automatically allocated to threads in the thread pool.

In this chapter, we will use the Task type to manage threads at a higher abstraction level.

Threads may have to compete for and wait for access to shared resources, such as variables, files, and database objects. There are types for managing this that you will see in action later in this chapter.

Depending on the task, doubling the number of threads (workers) to perform a task does not halve the number of seconds that it will take to complete that task. In fact, it can increase the duration of the task, as shown in Figure 4.1:

[image: Figure 4.1: A tweet about tasks in the real world]Figure 4.1: A tweet about tasks in the real world

Good Practice: Never assume that more threads will improve performance! Run performance tests on a baseline code implementation without multiple threads, and then again on a code implementation with multiple threads. You should also perform performance tests in a staging environment that is as close as possible to the production environment.

Monitoring performance and resource usage

Before we can improve the performance of any code, we need to be able to monitor its speed and efficiency to record a baseline that we can then measure improvements against.

Evaluating the efficiency of types

What is the best type to use for a scenario? To answer this question, we need to carefully consider what we mean by "best," and through this, we should consider the following factors:

	Functionality: This can be decided by checking whether the type provides the features you need.

	Memory size: This can be decided by the number of bytes of memory the type takes up.

	Performance: This can be decided by how fast the type is.

	Future needs: This depends on the changes in requirements and maintainability.

There will be scenarios, such as when storing numbers, where multiple types have the same functionality, so we will need to consider memory and performance to make a choice.

If we need to store millions of numbers, then the best type to use would be the one that requires the fewest bytes of memory. But if we only need to store a few numbers, yet we need to perform lots of calculations on them, then the best type to use would be the one that runs fastest on a specific CPU.

The sizeof() function shows the number of bytes that a single instance of a type uses in memory. When we are storing many values in more complex data structures, such as arrays and lists, then we need a better way of measuring memory usage.

You can read lots of advice online and in books, but the only way to know for sure what the best type would be for your code is to compare the types yourself.

In the next section, you will learn how to write code to monitor the actual memory requirements and performance when using different types.

Today a short variable might be the best choice, but it might be an even better choice to use an int variable, even though it takes twice as much space in the memory. This is because we might need a wider range of values to be stored in the future.

As listed above, there is an important metric that developers often forget: maintenance. This is a measure of how much effort another programmer would have to put in to understand and modify your code. If you make a nonobvious choice of type without explaining that choice with a helpful comment, then it might confuse the programmer who comes along later and needs to fix a bug or add a feature.

Monitoring performance and memory using diagnostics

The System.Diagnostics namespace has lots of useful types for monitoring your code. The first useful type that we will look at is the Stopwatch type:

	Use your preferred coding tool to create a class library project, as defined in the following list:

	Project template: Class Library / classlib

	Workspace/solution file and folder: Chapter04

	Project file and folder: MonitoringLib

	Add a console app project, as defined in the following list:

	Project template: Console App / console

	Workspace/solution file and folder: Chapter04

	Project file and folder: MonitoringApp

	Use your preferred coding tool to set which project is active:

	If you are using Visual Studio 2022, set the startup project for the solution to the current selection.

	If you are using Visual Studio Code, set MonitoringApp as the active OmniSharp project.

	In the MonitoringLib project, rename the Class1.cs file to Recorder.cs.

	In the MonitoringLib project, globally and statically import the System.Console class.

	In the MonitoringApp project, globally and statically import the System.Console class and add a project reference to the MonitoringLib class library, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference
 Include="..\MonitoringLib\MonitoringLib.csproj" />
</ItemGroup>

	Build the MonitoringApp project.

Useful members of the Stopwatch and Process types

The Stopwatch type has some useful members, as shown in the following table:

	Member
	Description

	Restart method
	This resets the elapsed time to zero and then starts the timer.

	Stop method
	This stops the timer.

	Elapsed property
	This is the elapsed time stored as a TimeSpan format (for example, hours:minutes:seconds).

	ElapsedMilliseconds property
	This is the elapsed time in milliseconds stored as an Int64 value.

The Process type has some useful members, as shown in the following table:

	Member
	Description

	VirtualMemorySize64
	This displays the amount of virtual memory, in bytes, allocated for the process.

	WorkingSet64
	This displays the amount of physical memory, in bytes, allocated for the process.

Implementing a Recorder class

We will create a Recorder class that makes it easy to monitor time and memory resource usage. To implement our Recorder class, we will use the Stopwatch and Process classes:

	In Recorder.cs, change its contents to use a Stopwatch instance to record timings and the current Process instance to record memory usage, as shown in the following code:

using System.Diagnostics; // Stopwatch
using static System.Diagnostics.Process; // GetCurrentProcess()
namespace Packt.Shared;
public static class Recorder
{
 private static Stopwatch timer = new();
 private static long bytesPhysicalBefore = 0;
 private static long bytesVirtualBefore = 0;
 public static void Start()
 {
 // force some garbage collections to release memory that is
 // no longer referenced but has not been released yet
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
 // store the current physical and virtual memory use
 bytesPhysicalBefore = GetCurrentProcess().WorkingSet64;
 bytesVirtualBefore = GetCurrentProcess().VirtualMemorySize64;
 timer.Restart();
 }
 public static void Stop()
 {
 timer.Stop();
 long bytesPhysicalAfter =
 GetCurrentProcess().WorkingSet64;
 long bytesVirtualAfter =
 GetCurrentProcess().VirtualMemorySize64;
 WriteLine("{0:N0} physical bytes used.",
 bytesPhysicalAfter - bytesPhysicalBefore);
 WriteLine("{0:N0} virtual bytes used.",
 bytesVirtualAfter - bytesVirtualBefore);
 WriteLine("{0} time span elapsed.", timer.Elapsed);
 WriteLine("{0:N0} total milliseconds elapsed.",
 timer.ElapsedMilliseconds);
 }
}

The Start method of the Recorder class uses the GC type (garbage collector) to ensure that any currently allocated but not referenced memory is collected before recording the amount of used memory. This is an advanced technique that you should almost never use in application code, because the GC understands memory usage better than a programmer would and should be trusted to make decisions about when to collect unused memory itself. Our need to take control in this scenario is exceptional.

	In Program.cs, delete the existing statements and then add statements to start and stop the Recorder while generating an array of 10,000 integers, as shown in the following code:

using Packt.Shared; // Recorder
WriteLine("Processing. Please wait...");
Recorder.Start();
// simulate a process that requires some memory resources...
int[] largeArrayOfInts = Enumerable.Range(
 start: 1, count: 10_000).ToArray();
// ...and takes some time to complete
Thread.Sleep(new Random().Next(5, 10) * 1000);
Recorder.Stop();

	Run the code and view the result, as shown in the following output:

Processing. Please wait...
827,392 physical bytes used.
131,072 virtual bytes used.
00:00:06.0123934 time span elapsed.
6,012 total milliseconds elapsed.

Remember that the time elapsed is randomly between 5 and 10 seconds. Your results will vary even between multiple subsequent runs on the same machine. For example, when run on my Mac mini M1, less physical memory but more virtual memory was used, as shown in the following output:

Processing. Please wait...
294,912 physical bytes used.
10,485,760 virtual bytes used.
00:00:06.0074221 time span elapsed.
6,007 total milliseconds elapsed.

Measuring the efficiency of processing strings

Now that you've seen how the Stopwatch and Process types can be used to monitor your code, we will use them to evaluate the best way to process string variables.

	In the MonitoringApp project, add a new class file named Program.Helpers.cs.

	In Program.Helpers.cs, define a partial Program class with a method to output a section title in dark yellow color, as shown in the following code:

partial class Program
{
 static void SectionTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 ForegroundColor = previousColor;
 }
}

	In Program.cs, comment out the previous statements by wrapping them in multi-line comment characters: /* */.

	Add statements to create an array of 50,000 int variables and then concatenate them with commas as separators using a string and StringBuilder class, as shown in the following code:

int[] numbers = Enumerable.Range(
 start: 1, count: 50_000).ToArray();
SectionTitle("Using StringBuilder");
Recorder.Start();
System.Text.StringBuilder builder = new();
for (int i = 0; i < numbers.Length; i++)
{
 builder.Append(numbers[i]);
 builder.Append(", ");
}
Recorder.Stop();
WriteLine();
SectionTitle("Using string with +");
Recorder.Start();
string s = string.Empty; // i.e. ""
for (int i = 0; i < numbers.Length; i++)
{
 s += numbers[i] + ", ";
}
Recorder.Stop();

	Run the code and view the result, as shown in the following output:

*
* Using StringBuilder
*
1,150,976 physical bytes used.
0 virtual bytes used.
00:00:00.0010796 time span elapsed.
1 total milliseconds elapsed.
*
* Using string with +
*
11,849,728 physical bytes used.
1,638,400 virtual bytes used.
00:00:01.7754252 time span elapsed.
1,775 total milliseconds elapsed.

We can summarize the results as follows:

	The StringBuilder class used about 1 MB of physical memory, zero virtual memory, and took about 1 millisecond.

	The string class with the + operator used about 11 MB of physical memory, 1.5 MB of virtual memory, and took 1.7 seconds.

In this scenario, StringBuilder is more than 1,000 times faster and about 10 times more memory-efficient when concatenating text! This is because string concatenation creates a new string each time you use it because string values are immutable so they can be safely pooled for reuse. StringBuilder creates a single buffer in memory while it appends more characters.

Good Practice: Avoid using the String.Concat method or the + operator inside loops. Use StringBuilder instead.

Now that you've learned how to measure the performance and resource efficiency of your code using types built into .NET, let's learn about a NuGet package that provides more sophisticated performance measurements.

Monitoring performance and memory using Benchmark.NET

There is a popular benchmarking NuGet package for .NET that Microsoft uses in its blog posts about performance improvements, so it is good for .NET developers to know how it works and use it for their own performance testing. Let's see how we could use it to compare performance between string concatenation and StringBuilder:

	Use your preferred code editor to add a new console app to the Chapter04 solution/workspace named Benchmarking.

	In Visual Studio Code, select Benchmarking as the active OmniSharp project.

	In the Benchmarking project, add a package reference to Benchmark.NET, remembering that you can find out the latest version and use that instead of the version I used, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="BenchmarkDotNet" Version="0.13.1" />
</ItemGroup>

	Build the project to restore packages.

	Add a new class file named StringBenchmarks.cs.

	In StringBenchmarks.cs, add statements to define a class with methods for each benchmark you want to run, in this case, two methods that both combine twenty numbers comma-separated using either string concatenation or StringBuilder, as shown in the following code:

using BenchmarkDotNet.Attributes; // [Benchmark]
public class StringBenchmarks
{
 int[] numbers;
 public StringBenchmarks()
 {
 numbers = Enumerable.Range(
 start: 1, count: 20).ToArray();
 }
 [Benchmark(Baseline = true)]
 public string StringConcatenationTest()
 {
 string s = string.Empty; // e.g. ""
 for (int i = 0; i < numbers.Length; i++)
 {
 s += numbers[i] + ", ";
 }
 return s;
 }
 [Benchmark]
 public string StringBuilderTest()
 {
 System.Text.StringBuilder builder = new();
 for (int i = 0; i < numbers.Length; i++)
 {
 builder.Append(numbers[i]);
 builder.Append(", ");
 }
 return builder.ToString();
 }
}

	In Program.cs, delete the existing statements and then import the namespace for running benchmarks and add a statement to run the benchmarks class, as shown in the following code:

using BenchmarkDotNet.Running;
BenchmarkRunner.Run<StringBenchmarks>();

	Use your preferred coding tool to run the console app with its release configuration:

	In Visual Studio 2022, in the toolbar, set Solution Configurations to Release, and then navigate to Debug | Start Without Debugging.

	In Visual Studio Code, in a terminal, use the dotnet run --configuration Release command.

	Note the results, including some artifacts like report files, and the most important, a summary table that shows that string concatenation took a mean of 412.990 ns and StringBuilder took a mean of 275.082 ns, as shown in the following partial output and in Figure 4.2:

// ***** BenchmarkRunner: Finish *****
// * Export *
 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report.csv
 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report-github.md
 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report.html
// * Detailed results *
StringBenchmarks.StringConcatenationTest: DefaultJob
Runtime = .NET 7.0.0 (7.0.22.22904), X64 RyuJIT; GC = Concurrent Workstation
Mean = 412.990 ns, StdErr = 2.353 ns (0.57%), N = 46, StdDev = 15.957 ns
Min = 373.636 ns, Q1 = 413.341 ns, Median = 417.665 ns, Q3 = 420.775 ns, Max = 434.504 ns
IQR = 7.433 ns, LowerFence = 402.191 ns, UpperFence = 431.925 ns
ConfidenceInterval = [404.708 ns; 421.273 ns] (CI 99.9%), Margin = 8.282 ns (2.01% of Mean)
Skewness = -1.51, Kurtosis = 4.09, MValue = 2
-------------------- Histogram --------------------
[370.520 ns ; 382.211 ns) | @@@@@@
[382.211 ns ; 394.583 ns) | @
[394.583 ns ; 411.300 ns) | @@
[411.300 ns ; 422.990 ns) | @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
[422.990 ns ; 436.095 ns) | @@@@@

StringBenchmarks.StringBuilderTest: DefaultJob
Runtime = .NET 7.0.0 (7.0.22.22904), X64 RyuJIT; GC = Concurrent Workstation
Mean = 275.082 ns, StdErr = 0.558 ns (0.20%), N = 15, StdDev = 2.163 ns
Min = 271.059 ns, Q1 = 274.495 ns, Median = 275.403 ns, Q3 = 276.553 ns, Max = 278.030 ns
IQR = 2.058 ns, LowerFence = 271.409 ns, UpperFence = 279.639 ns
ConfidenceInterval = [272.770 ns; 277.394 ns] (CI 99.9%), Margin = 2.312 ns (0.84% of Mean)
Skewness = -0.69, Kurtosis = 2.2, MValue = 2
-------------------- Histogram --------------------
[269.908 ns ; 278.682 ns) | @@@@@@@@@@@@@@@

// * Summary *
BenchmarkDotNet=v0.13.1, OS=Windows 10.0.22000
11th Gen Intel Core i7-1165G7 2.80GHz, 1 CPU, 8 logical and 4 physical cores
.NET SDK=7.0.100
 [Host] : .NET 7.0.0 (7.0.22.22904), X64 RyuJIT
 DefaultJob : .NET 7.0.0 (7.0.22.22904), X64 RyuJIT
Method	Mean	Error	StdDev	Ratio	RatioSD
StringConcatenationTest	413.0 ns	8.28 ns	15.96 ns	1.00	0.00
StringBuilderTest	275.1 ns	2.31 ns	2.16 ns	0.69	0.04
// * Hints *
Outliers
 StringBenchmarks.StringConcatenationTest: Default -> 7 outliers were removed, 14 outliers were detected (376.78 ns..391.88 ns, 440.79 ns..506.41 ns)
 StringBenchmarks.StringBuilderTest: Default -> 2 outliers were detected (274.68 ns, 274.69 ns)
// * Legends *
 Mean : Arithmetic mean of all measurements
 Error : Half of 99.9% confidence interval
 StdDev : Standard deviation of all measurements
 Ratio : Mean of the ratio distribution ([Current]/[Baseline])
 RatioSD : Standard deviation of the ratio distribution ([Current]/[Baseline])
 1 ns : 1 Nanosecond (0.000000001 sec)
// ***** BenchmarkRunner: End *****
// ** Remained 0 benchmark(s) to run **
Run time: 00:01:13 (73.35 sec), executed benchmarks: 2
Global total time: 00:01:29 (89.71 sec), executed benchmarks: 2
// * Artifacts cleanup *

[image: Figure 4.2: Summary table that shows StringBuilder takes 69% of the time compared to string concatenation]Figure 4.2: Summary table that shows StringBuilder takes 69% of the time compared to string concatenation

The Outliers section is especially interesting because it shows that not only is string concatenation slower than StringBuilder, but it is also more inconsistent in how long it takes. Your results will vary, of course. Note there might not be a Hints and an Outliers section if there are no outliers when you run your benchmarks!

You have now seen two ways to measure performance. Now let's see how we can run tasks asynchronously to potentially improve performance.

Running tasks asynchronously

To understand how multiple tasks can be run simultaneously (at the same time), we will create a console app that needs to execute three methods.

There will be three methods that need to be executed: the first takes 3 seconds, the second takes 2 seconds, and the third takes 1 second. To simulate that work, we can use the Thread class to tell the current thread to go to sleep for a specified number of milliseconds.

Running multiple actions synchronously

Before we make the tasks run simultaneously, we will run them synchronously, that is, one after the other.

	Use your preferred code editor to add a new console app to the Chapter04 solution/workspace named WorkingWithTasks.

	In Visual Studio Code, select WorkingWithTasks as the active OmniSharp project.

	In the WorkingWithTasks project, globally and statically import the System.Console class.

	In the WorkingWithTasks project, add a new class file named Program.Helpers.cs.

	In Program.Helpers.cs, define a partial Program class with methods to output a section title, a task title, and to output information about the current thread, each in different colors to make them easier to identify in output, as shown in the following code:

partial class Program
{
 static void SectionTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 ForegroundColor = previousColor;
 }
 static void TaskTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.Green;
 WriteLine($"{title}");
 ForegroundColor = previousColor;
 }
 static void OutputThreadInfo()
 {
 Thread t = Thread.CurrentThread;
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkCyan;
 WriteLine(
 "Thread Id: {0}, Priority: {1}, Background: {2}, Name: {3}",
 t.ManagedThreadId, t.Priority, t.IsBackground, t.Name ?? "null");
 ForegroundColor = previousColor;
 }
}

	In the WorkingWithTasks project, add a new class file named Program.Methods.cs.

	In Program.Methods.cs, add three methods that simulate work, as shown in the following code:

partial class Program
{
 static void MethodA()
 {
 TaskTitle("Starting Method A...");
 OutputThreadInfo();
 Thread.Sleep(3000); // simulate three seconds of work
 TaskTitle("Finished Method A.");
 }
 static void MethodB()
 {
 TaskTitle("Starting Method B...");
 OutputThreadInfo();
 Thread.Sleep(2000); // simulate two seconds of work
 TaskTitle("Finished Method B.");
 }
 static void MethodC()
 {
 TaskTitle("Starting Method C...");
 OutputThreadInfo();
 Thread.Sleep(1000); // simulate one second of work
 TaskTitle("Finished Method C.");
 }
}

	In Program.cs, delete the existing statements and then add statements to call the helper method to output information about the thread, define and start a stopwatch, call the three simulated work methods, and then output the milliseconds elapsed, as shown in the following code:

using System.Diagnostics; // Stopwatch
OutputThreadInfo();
Stopwatch timer = Stopwatch.StartNew();
SectionTitle("Running methods synchronously on one thread.");
MethodA();
MethodB();
MethodC();
WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");

	Run the code, view the result, and note that when there is only one unnamed foreground thread doing the work, the total time required is just over 6 seconds, as shown in the following output:

Thread Id: 1, Priority: Normal, Background: False, Name: null
*
* Running methods synchronously on one thread.
*
Starting Method A...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method A.
Starting Method B...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method B.
Starting Method C...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method C.
6,028ms elapsed.

Running multiple actions asynchronously using tasks

The Thread class has been available since the first version of .NET in 2002 and can be used to create new threads and manage them, but it can be tricky to work with directly.

.NET Framework 4.0 introduced the Task class in 2010, which represents an asynchronous operation. A task is a higher-level abstraction around the operating system thread that performs the operation, and the Task enables easier creation and management. Managing multiple threads wrapped in tasks will allow our code to execute at the same time, aka asynchronously.

Each Task has a Status property and a CreationOptions property. A Task has a ContinueWith method that can be customized with the TaskContinuationOptions enum, and it can be managed with the TaskFactory class.

Starting tasks

We will look at three ways to start the methods using Task instances. There are links in the GitHub repository to articles that discuss the pros and cons. Each has a slightly different syntax, but they all define a Task and start it:

	In Program.cs, add statements to create and start three tasks, one for each method, as shown highlighted in the following code:

SectionTitle("Running methods asynchronously on multiple threads.");
timer.Restart();
Task taskA = new(MethodA);
taskA.Start();
Task taskB = Task.Factory.StartNew(MethodB);
Task taskC = Task.Run(MethodC);
WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");

	Run the code, view the result, and note that the elapsed milliseconds appear almost immediately. This is because each of the three methods is now being executed by three new background worker threads allocated from the thread pool, as shown in the following output:

*
* Running methods asynchronously on multiple threads.
*
Starting Method A...
Thread Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Starting Method C...
Thread Id: 7, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Starting Method B...
Thread Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
6ms elapsed.

It is even likely that the console app will end before one or even all of the tasks have a chance to start and write to the console!

Waiting for tasks

Sometimes, you need to wait for a task to complete before continuing. To do this, you can use the Wait method on a Task instance, or the WaitAll or WaitAny static methods on an array of tasks, as described in the following table:

	Method
	Description

	t.Wait()
	This waits for the task instance named t to complete execution.

	Task.WaitAny(Task[])
	This waits for any of the tasks in the array to complete execution.

	Task.WaitAll(Task[])
	This waits for all the tasks in the array to complete execution.

Using wait methods with tasks

Let's see how we can use these wait methods to fix the problem with our console app.

	In Program.cs, after creating the three tasks and before outputting the elapsed time, add statements to combine references to the three tasks into an array and pass them to the WaitAll method, as shown in the following code:

Task[] tasks = { taskA, taskB, taskC };
Task.WaitAll(tasks);

	Run the code and view the result, and note the original thread will pause on the call to WaitAll, waiting for all three tasks to finish before outputting the elapsed time, which is a little over 3 seconds, as shown in the following output:

Starting Method A...
Starting Method B...
Thread Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Thread Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Starting Method C...
Thread Id: 7, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Finished Method C.
Finished Method B.
Finished Method A.
3,013ms elapsed.

The three new threads execute their code simultaneously, and they can potentially start in any order. MethodC should finish first because it takes only 1 second, then MethodB, which takes 2 seconds, and finally MethodA, because it takes 3 seconds.

However, the actual CPU used has a big effect on the results. It is the CPU that allocates time slices to each process to allow them to execute their threads. You have no control over when the methods run.

Continuing with another task

If all three tasks can be performed at the same time, then waiting for all tasks to finish will be all we need to do. However, often a task is dependent on the output from another task. To handle this scenario, we need to define continuation tasks.

We will create some methods to simulate a call to a web service that returns a monetary amount, which then needs to be used to retrieve how many products cost more than that amount in a database. The result returned from the first method needs to be fed into the input of the second method. This time, instead of waiting for fixed amounts of time, we will use the Random class to wait for a random interval between 2 and 4 seconds for each method call to simulate the work.

	In Program.Methods.cs, add two methods that simulate calling a web service and a database-stored procedure, as shown in the following code:

static decimal CallWebService()
{
 TaskTitle("Starting call to web service...");
 OutputThreadInfo();
 Thread.Sleep((new Random()).Next(2000, 4000));
 TaskTitle("Finished call to web service.");
 return 89.99M;
}
static string CallStoredProcedure(decimal amount)
{
 TaskTitle("Starting call to stored procedure...");
 OutputThreadInfo();
 Thread.Sleep((new Random()).Next(2000, 4000));
 TaskTitle("Finished call to stored procedure.");
 return $"12 products cost more than {amount:C}.";
}

	In Program.cs, add statements to start a task to call the web service and then pass its return value to a task that starts the database stored procedure, as shown in the following code:

SectionTitle("Passing the result of one task as an input into another.");
timer.Restart();
Task<string> taskServiceThenSProc = Task.Factory
 .StartNew(CallWebService) // returns Task<decimal>
 .ContinueWith(previousTask => // returns Task<string>
 CallStoredProcedure(previousTask.Result));
WriteLine($"Result: {taskServiceThenSProc.Result}");
WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");

	Run the code and view the result, as shown in the following output:

Starting call to web service...
Thread Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Finished call to web service.
Starting call to stored procedure...
Thread Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Finished call to stored procedure.
Result: 12 products cost more than £89.99.
5,463ms elapsed.

You might see two different threads running the web service and stored procedure calls as in the output above (for examples, threads 4 and 6), or the same thread might be reused since it is no longer busy.

Nested and child tasks

As well as defining dependencies between tasks, you can define nested and child tasks. A nested task is a task that is created inside another task. A child task is a nested task that must finish before its parent task is allowed to finish.

Let's explore how these types of tasks work:

	In Program.Methods.cs, add two methods, one of which starts a task to run the other, as shown in the following code:

static void OuterMethod()
{
 TaskTitle("Outer method starting...");
 Task innerTask = Task.Factory.StartNew(InnerMethod);
 TaskTitle("Outer method finished.");
}
static void InnerMethod()
{
 TaskTitle("Inner method starting...");
 Thread.Sleep(2000);
 TaskTitle("Inner method finished.");
}

	In Program.cs, add statements to start a task to run the outer method and wait for it to finish before stopping, as shown in the following code:

SectionTitle("Nested and child tasks");
Task outerTask = Task.Factory.StartNew(OuterMethod);
outerTask.Wait();
WriteLine("Console app is stopping.");

	Run the code and view the result, as shown in the following output:

Outer method starting...
Inner method starting...
Outer method finished.
Console app is stopping.

Although we wait for the outer task to finish, its inner task does not have to finish as well. In fact, the outer task might finish, and the console app could end, before the inner task even starts!

	To link these nested tasks as parent and child, we must use a special option. Modify the existing code that defines the inner task to add a TaskCreationOption value of AttachedToParent, as shown highlighted in the following code:

Task innerTask = Task.Factory.StartNew(InnerMethod,
 TaskCreationOptions.AttachedToParent);

	Run the code, view the result, and note that the inner task must finish before the outer task can, as shown in the following output:

Outer method starting...
Inner method starting...
Outer method finished.
Inner method finished.
Console app is stopping.

The OuterMethod can finish before the InnerMethod, as shown by its writing to the console, but its task must wait, as shown by the console not stopping until both the outer and inner tasks finish.

Wrapping tasks around other objects

Sometimes you might have a method that you want to be asynchronous, but the result to be returned is not itself a task. You can wrap the return value in a successfully completed task, return an exception, or indicate that the task was canceled by using one of the Task static methods, shown in the following table:

	Method
	Description

	FromResult<TResult>(TResult)
	Creates a Task<TResult> object whose Result property is the non-task result and whose Status property is RanToCompletion .

	FromException<TResult>(Exception)
	Creates a Task<TResult> that's completed with a specified exception.

	FromCanceled<TResult>(CancellationToken)
	Creates a Task<TResult> that's completed due to cancellation with a specified cancellation token.

These methods are useful when you need to:

	Implement an interface that has asynchronous methods, but your implementation is synchronous. This is common for websites and services.

	Mock asynchronous implementations during unit testing.

Imagine that you have created a method to validate XML input. If we want to make the method conform to an interface that requires a Task<T> to be returned, we could use these helpful methods, as shown in the following code:

using System.Text.RegularExpressions;
namespace Packt.Shared;
public static class StringExtensions
{
 public static Task<bool> IsValidXmlTagAsync(this string input)
 {
 if (input == null)
 {
 return Task.FromException<bool>(
 new ArgumentNullException($"Missing {nameof(input)} parameter"));
 }
 if (input.Length == 0)
 {
 return Task.FromException<bool>(
 new ArgumentException($"{nameof(input)} parameter is empty."));
 }
 return Task.FromResult(Regex.IsMatch(input,
 @"^<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>)$"));
 }
}

If the method you need to implement returns a Task (equivalent to void in a synchronous method) then you can return a predefined completed Task object, as shown in the following code:

public Task DeleteCustomerAsync()
{
 // ...
 return Task.CompletedTask;
}

Synchronizing access to shared resources

When you have multiple threads executing at the same time, there is a possibility that two or more of the threads may access the same variable or another resource at the same time, and as a result, may cause a problem. For this reason, you should carefully consider how to make your code thread-safe.

The simplest mechanism for implementing thread safety is to use an object variable as a flag or traffic light to indicate when a shared resource has an exclusive lock applied.

In William Golding's Lord of the Flies, Piggy and Ralph spot a conch shell and use it to call a meeting. The boys impose a "rule of the conch" on themselves, deciding that no one can speak unless they're holding the conch.

I like to name the object variable I use for implementing thread-safe code the "conch." When a thread has the conch, no other thread should access the shared resource(s) represented by that conch. Note that I say should. Only code that respects the conch enables synchronized access. A conch is not a lock.

We will explore a couple of types that can be used to synchronize access to shared resources:

	Monitor: An object that can be used by multiple threads to check if they should access a shared resource within the same process.

	Interlocked: An object for manipulating simple numeric types at the CPU level.

Accessing a resource from multiple threads

Let's create a console app to explore sharing resources between multiple threads:

	Use your preferred code editor to add a new console app to the Chapter04 solution/workspace named SynchronizingResourceAccess.

	In Visual Studio Code, select SynchronizingResourceAccess as the active OmniSharp project.

	Globally and statically import the System.Console class.

	Add a new class file named SharedObjects.cs.

	In SharedObjects.cs, define a static class with a field to store a message that is a shared resource, as shown in the following code:

static class SharedObjects
{
 public static string? Message; // a shared resource
}

	Add a new class file named Program.Methods.cs.

	In Program.Methods.cs, define two methods that both loop five times, waiting for a random interval of up to two seconds and appending either A or B to the shared message resource, as shown in the following code:

partial class Program
{
 static void MethodA()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(Random.Shared.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
 }
 static void MethodB()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(Random.Shared.Next(2000));
 SharedObjects.Message += "B";
 Write(".");
 }
 }
}

	In Program.cs, delete the existing statements. Add statements to import the namespace for diagnostic types like Stopwatch, and statements to execute both methods on separate threads using a pair of tasks, and wait for them to complete before outputting the elapsed milliseconds, as shown in the following code:

using System.Diagnostics; // Stopwatch
WriteLine("Please wait for the tasks to complete.");
Stopwatch watch = Stopwatch.StartNew();
Task a = Task.Factory.StartNew(MethodA);
Task b = Task.Factory.StartNew(MethodB);

Task.WaitAll(new Task[] { a, b });
WriteLine();
WriteLine($"Results: {SharedObjects.Message}.");
WriteLine($"{watch.ElapsedMilliseconds:N0} elapsed milliseconds.");

	Run the code and view the result, as shown in the following output:

Please wait for the tasks to complete.
..........
Results: BABABAABBA.
5,753 elapsed milliseconds.

This shows that both threads were modifying the message concurrently. In an actual application, this could be a problem. But we can prevent concurrent access by applying a mutually exclusive lock to a conch object, as well as adding code to the two methods to voluntarily check the conch before modifying the shared resource, which we will do in the following section.

Applying a mutually exclusive lock to a conch

Now, let's use a conch to ensure that only one thread accesses the shared resource at a time.

	In SharedObjects.cs, declare and instantiate an object variable to act as a conch, as shown in the following code:

public static object Conch = new();

	In Program.Methods.cs, in both MethodA and MethodB, add a lock statement for the conch around the for statements, as shown highlighted in the following code:

lock (SharedObjects.Conch)
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(Random.Shared.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
}

Good Practice: Note that since checking the conch is voluntary, if you only use the lock statement in one of the two methods, the shared resource will continue to be accessed by both methods. Make sure that all methods that access a shared resource respect the conch.

	Run the code and view the result, as shown in the following output:

Please wait for the tasks to complete.
..........
Results: BBBBBAAAAA.
10,345 elapsed milliseconds.

Although the time elapsed was longer, only one method at a time could access the shared resource. Either MethodA or MethodB can start first. Once a method has finished its work on the shared resource, then the conch gets released, and the other method has the chance to do its work.

Understanding the lock statement

You might wonder what the lock statement does when it "locks" an object variable (hint: it does not lock the object!), as shown in the following code:

lock (SharedObjects.Conch)
{
 // work with shared resource
}

The C# compiler changes the lock statement into a try-finally statement that uses the Monitor class to enter and exit the conch object (I like to think of it as take and release the conch object), as shown in the following code:

try
{
 Monitor.Enter(SharedObjects.Conch);
 // work with shared resource
}
finally
{
 Monitor.Exit(SharedObjects.Conch);
}

When a thread calls Monitor.Enter on a reference type, it checks to see if some other thread has already taken the conch. If it has, the thread waits. If it has not, the thread takes the conch and gets on with its work on the shared resource. Once the thread has finished its work, it calls Monitor.Exit, releasing the conch. If another thread was waiting, it can now take the conch and do its work. This requires all threads to respect the conch by calling Monitor.Enter and Monitor.Exit appropriately.

Good Practice: You cannot use value types (struct type) as a conch. Monitor.Enter requires a reference type because it locks the memory address.

Avoiding deadlocks

Knowing how the lock statement is translated by the compiler to method calls on the Monitor class is also important because using the lock statement can cause a deadlock.

Deadlocks can occur when there are two or more shared resources (each with a conch to monitor which thread is currently doing work on each shared resource), and the following sequence of events happens:

	Thread X "locks" conch A and starts working on shared resource A.

	Thread Y "locks" conch B and starts working on shared resource B.

	While still working on resource A, thread X needs to also work with resource B, and so it attempts to "lock" conch B but is blocked because thread Y already has conch B.

	While still working on resource B, thread Y needs to also work with resource A, and so it attempts to "lock" conch A but is blocked because thread X already has conch A.

One way to prevent deadlocks is to specify a timeout when attempting to get a lock. To do this, you must manually use the Monitor class instead of using the lock statement.

	In Program.Methods.cs, modify your code to replace the lock statements with code that tries to enter the conch with a timeout and outputs an error and then exits the monitor, allowing other threads to enter the monitor, as shown highlighted in the following code:

try
{
 if (Monitor.TryEnter(SharedObjects.Conch, TimeSpan.FromSeconds(15)))
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(Random.Shared.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
 }
 else
 {
 WriteLine("Method A timed out when entering a monitor on conch.");
 }
}
finally
{
 Monitor.Exit(SharedObjects.Conch);
}

	Run the code and view the result, which should return the same results as before (although either A or B could grab the conch first) but is better code because it will prevent potential deadlocks.

Good Practice: Only use the lock keyword if you can write your code such that it avoids potential deadlocks. If you cannot avoid potential deadlocks, then always use the Monitor.TryEnter method instead of lock, in combination with a try-finally statement, so that you can supply a timeout and one of the threads will back out of a deadlock if it occurs. You can read more about good threading practices at the following link: https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices

Synchronizing events

.NET events are not thread-safe, so you should avoid using them in multithreaded scenarios.

After learning that .NET events are not thread-safe, some developers attempt to use exclusive locks when adding and removing event handlers or when raising an event, as shown in the following code:

// event delegate field
public event EventHandler? Shout;
// conch
private object eventConch = new();
// method
public void Poke()
{
 lock (eventConch) // bad idea
 {
 // if something is listening...
 if (Shout != null)
 {
 // ...then call the delegate to raise the event
 Shout(this, EventArgs.Empty);
 }
 }
}

Good Practice: You can read more about events and thread-safety at the following link: https://docs.microsoft.com/en-us/archive/blogs/cburrows/field-like-events-considered-harmful

But it is complicated, as explained by Stephen Cleary in the following blog post: https://blog.stephencleary.com/2009/06/threadsafe-events.html

Making CPU operations atomic

Atomic is from the Greek word atomos, which means undividable. It is important to understand which operations are atomic in multithreading because if they are not atomic, then they could be interrupted by another thread partway through their operation. Is the C# increment operator atomic, as shown in the following code?

int x = 3;
x++; // is this an atomic CPU operation?

It is not atomic! Incrementing an integer requires the following three CPU operations:

	Load a value from an instance variable into a register.

	Increment the value.

	Store the value in the instance variable.

A thread could be interrupted after executing the first two steps. A second thread could then execute all three steps. When the first thread resumes execution, it will overwrite the value in the variable, and the effect of the increment or decrement performed by the second thread will be lost!

There is a type named Interlocked that can perform atomic actions like Add, Increment, Decrement, Exchange, CompareExchange, And, Or, and Read on the following integer types:.

	System.Int32 (int), System.UInt32 (uint)

	System.Int64 (long), System.UInt64 (ulong)

Interlocked does not work on numeric types like byte, sbyte, short, ushort, and decimal.

Interlocked can perform atomic operations like Exchange and CompareExchange that swap values in memory on the following types:

	System.Single (float), System.Double (double)

	nint, nuint

	T, System.Object (object)

Let's see it in action:

	Declare another field in the SharedObjects class that will count how many operations have occurred, as shown in the following code:

public static int Counter; // another shared resource

	In Program.Methods.cs, in both methods A and B, inside the for statement and after modifying the string value, add a statement to safely increment the counter, as shown in the following code:

Interlocked.Increment(ref SharedObjects.Counter);

	In Program.cs, after outputting the elapsed time, write the current value of the counter to the console, as shown in the following code:

WriteLine($"{SharedObjects.Counter} string modifications.");

	Run the code and view the result, as shown highlighted in the following output:

Please wait for the tasks to complete.
..........
Results: BBBBBAAAAA.
13,531 elapsed milliseconds.
10 string modifications.

Observant readers will realize that the existing conch object protects all shared resources accessed within a block of code locked by the conch, and therefore it is unnecessary to use Interlocked in this specific example. But if we had not already been protecting another shared resource like Message, then using Interlocked would be necessary.

Applying other types of synchronization

Monitor and Interlocked are mutually exclusive locks that are simple and effective, but sometimes, you need more advanced options to synchronize access to shared resources, as shown in the following table:

	Type
	Description

	ReaderWriterLock , ReaderWriterLockSlim
	These allow multiple threads to be in read mode , one thread to be in write mode with exclusive ownership of the write lock, and one thread that has read access to be in upgradeable read mode , from which the thread can upgrade to write mode without having to relinquish its read access to the resource.

	Mutex
	Like Monitor , this provides exclusive access to a shared resource, except it is used for inter-process synchronization.

	Semaphore , SemaphoreSlim
	These limit the number of threads that can access a resource or pool of resources concurrently by defining slots. This is known as resource throttling rather than resource locking .

	AutoResetEvent , ManualResetEvent
	Event wait handles allow threads to synchronize activities by signaling each other and by waiting for each other's signals.

Understanding async and await

C# 5 introduced two C# keywords when working with the Task type. They are especially useful for the following:

	Implementing multitasking for a graphical user interface (GUI).

	Improving the scalability of web applications and web services.

In Chapter 18, Building Mobile and Desktop Apps Using .NET MAUI, we will see how the async and await keywords can implement multitasking for a GUI.

But for now, let's learn the theory of why these two C# keywords were introduced, and then later you will see them used in practice.

Improving responsiveness for console apps

One of the limitations with console apps is that you can only use the await keyword inside methods that are marked as async, but C# 7 and earlier do not allow the Main method to be marked as async! Luckily, a new feature introduced in C# 7.1 was support for async in Main:

	Use your preferred code editor to add a new console app to the Chapter04 solution/workspace named AsyncConsole.

	In Visual Studio Code, select AsyncConsole as the active OmniSharp project.

	In Program.cs, delete the existing statements, statically import Console, and then add statements to create an HttpClient instance, make a request for Apple's home page, and output how many bytes it has, as shown in the following code:

using static System.Console;
HttpClient client = new();
HttpResponseMessage response =
 await client.GetAsync("http://www.apple.com/");
WriteLine("Apple's home page has {0:N0} bytes.",
 response.Content.Headers.ContentLength);

	Build the project and note that it builds successfully. In .NET 5 and earlier, the project template created an explicit Program class with a non-async Main method, so you would have seen an error message, as shown in the following output:

Program.cs(14,9): error CS4033: The 'await' operator can only be used within an async method. Consider marking this method with the 'async' modifier and changing its return type to 'Task'. [/Users/markjprice/apps-services-net7/ Chapter04/AsyncConsole/AsyncConsole.csproj]

	You would have had to add the async keyword to the Main method and change its return type to Task. With .NET 6 and later, the console app project template uses the top-level program feature to automatically define the Program class with an asynchronous <Main>$ method for you.

	Run the code and view the result, which is likely to have a different number of bytes since Apple changes its home page frequently, as shown in the following output:

Apple's home page has 40,252 bytes.

Working with async streams

With .NET Core 3.0, Microsoft introduced the asynchronous processing of streams.

You can complete a tutorial about async streams at the following link: https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream

Before C# 8.0 and .NET Core 3.0, the await keyword only worked with tasks that return scalar values. Async stream support in .NET Standard 2.1 allows an async method to return one value after another asynchronously.

Let's see a simulated example that returns three random integers as an async stream.

	Use your preferred code editor to add a new console app to the Chapter04 solution/workspace named AsyncEnumerable.

	In Visual Studio Code, select AsyncEnumerable as the active OmniSharp project.

	Globally and statically import the System.Console class.

	In Program.cs, delete the existing statements and then at the bottom of Program.cs, create a method that uses the yield keyword to return a random sequence of three numbers asynchronously, as shown in the following code:

async static IAsyncEnumerable<int> GetNumbersAsync()
{
 Random r = Random.Shared;
 // simulate work
 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);
 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);
 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);
}

	Above GetNumbersAsync, add statements to enumerate the sequence of numbers, as shown in the following code:

await foreach (int number in GetNumbersAsync())
{
 WriteLine($"Number: {number}");
}

	Run the code and view the result, as shown in the following output:

Number: 509
Number: 813
Number: 307

Improving responsiveness for GUI apps

So far in this book, we have only built console apps. Life for a programmer gets more complicated when building web applications, web services, and apps with GUIs such as Windows desktop and mobile apps.

One reason for this is that for a GUI app, there is a special thread: the user interface (UI) thread.

There are two rules for working in GUIs:

	Do not perform long-running tasks on the UI thread.

	Do not access UI elements on any thread except the UI thread.

To handle these rules, programmers used to have to write complex code to ensure that long-running tasks were executed by a non-UI thread, but once complete, the results of the task were safely passed to the UI thread to present to the user. It could quickly get messy!

Luckily, with C# 5 and later, you have the use of async and await. They allow you to continue to write your code as if it is synchronous, which keeps your code clean and easy to understand, but underneath, the C# compiler creates a complex state machine and keeps track of running threads. It's kind of magical! The combination of these two keywords makes the asynchronous method run on a worker thread and, when complete, return the results on the UI thread.

Let's see an example. We will build a Windows desktop app using WPF that gets employees from the Northwind database in an SQL Server database using low-level types like SqlConnection, SqlCommand, and SqlDataReader.

The Northwind database has a medium complexity and a decent number of sample records. You used it extensively in Chapter 2, Working with Data Using SQL Server, where it was introduced and set up.

Warning! You will only be able to complete this task if you have Microsoft Windows and the Northwind database stored in Microsoft SQL Server. This is the only section in this book that is not cross-platform and modern (WPF is 17 years old!). You can use either Visual Studio 2022 or Visual Studio Code.

At this point, we are focusing on making a GUI app responsive. You will learn about XAML and building cross-platform GUI apps in Chapter 18, Building Mobile and Desktop Apps Using .NET MAUI. Since this book does not cover WPF elsewhere, I thought this task would be a good opportunity to at least see an example app built using WPF even if we do not look at it in detail.

Let's go!

	If you are using Visual Studio 2022 for Windows, add a new WPF Application [C#] project named WpfResponsive to the Chapter04 solution. If you are using Visual Studio Code, use the following command: dotnet new wpf, and make this the active OmniSharp project.

	Add a package reference for Microsoft.Data.SqlClient to the project.

	In the project file, note the output type is a Windows EXE, the target framework is .NET 7 for Windows (it will not run on other platforms like macOS and Linux), and the project uses WPF, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>net7.0-windows</TargetFramework>
 <Nullable>enable</Nullable>
 <UseWPF>true</UseWPF>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.Data.SqlClient" Version="5.0.0" />
 </ItemGroup>
</Project>

	Build the WpfResponsive project to restore packages.

	In MainWindow.xaml, in the <Grid> element, add elements to define two buttons, a text box and a list box, laid out vertically in a stack panel, as shown in the following markup:

<StackPanel>
 <Button Name="GetEmployeesSyncButton"
 Click="GetEmployeesSyncButton_Click">
 Get Employees Synchronously</Button>
 <Button Name="GetEmployeesAsyncButton"
 Click="GetEmployeesAsyncButton_Click">
 Get Employees Asynchronously</Button>
 <TextBox HorizontalAlignment="Stretch" Text="Type in here" />
 <ListBox Name="EmployeesListBox" Height="400" />
</StackPanel>

Visual Studio 2022 for Windows has good support for building WPF apps and will provide IntelliSense as you edit code and XAML markup. Visual Studio Code does not.

	In MainWindow.xaml.cs, import the System.Diagnostics and Microsoft.Data.SqlClient namespaces.

	In the MainWindow class, create two string constants for the database connection string and SQL statement, as shown in the following code:

private const string connectionString =
 "Data Source=.;" +
 "Initial Catalog=Northwind;" +
 "Integrated Security=true;" +
 "Encrypt=false;" +
 "MultipleActiveResultSets=true;";
private const string sql =
 "WAITFOR DELAY '00:00:05';" +
 "SELECT EmployeeId, FirstName, LastName FROM Employees";

	Create event handlers for clicking on the two buttons. They must use the string constants to open a connection to the Northwind database and then populate the list box with the IDs and names of all employees, as shown in the following code:

private void GetEmployeesSyncButton_Click(object sender, RoutedEventArgs e)
{
 Stopwatch timer = Stopwatch.StartNew();
 using (SqlConnection connection = new(connectionString))
 {
 try
 {
 connection.Open();
 SqlCommand command = new(sql, connection);
 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 string employee = string.Format("{0}: {1} {2}",
 reader.GetInt32(0), reader.GetString(1), reader.GetString(2));
 EmployeesListBox.Items.Add(employee);
 }
 reader.Close();
 connection.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 EmployeesListBox.Items.Add($"Sync: {timer.ElapsedMilliseconds:N0}ms");
}
private async void GetEmployeesAsyncButton_Click(
 object sender, RoutedEventArgs e)
{
 Stopwatch timer = Stopwatch.StartNew();
 using (SqlConnection connection = new(connectionString))
 {
 try
 {
 await connection.OpenAsync();
 SqlCommand command = new(sql, connection);
 SqlDataReader reader = await command.ExecuteReaderAsync();
 while (await reader.ReadAsync())
 {
 string employee = string.Format("{0}: {1} {2}",
 await reader.GetFieldValueAsync<int>(0),
 await reader.GetFieldValueAsync<string>(1),
 await reader.GetFieldValueAsync<string>(2));
 EmployeesListBox.Items.Add(employee);
 }
 await reader.CloseAsync();
 await connection.CloseAsync();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 EmployeesListBox.Items.Add($"Async: {timer.ElapsedMilliseconds:N0}ms");
}

Note the following:

	Defining an async void method is generally bad practice because it is "fire and forget". You will not be notified when it is completed and there is no way to cancel it because it does not return a Task or Task<T> that can be used to control it.

	The SQL statement uses the SQL Server command WAITFOR DELAY to simulate processing that takes five seconds. It then selects three columns from the Employees table.

	The GetEmployeesSyncButton_Click event handler uses synchronous methods to open a connection and fetch the employee rows.

	The GetEmployeesAsyncButton_Click event handler is marked as async and uses asynchronous methods with the await keyword to open a connection and fetch the employee rows.

	Both event handlers use a stopwatch to record the number of milliseconds the operation takes and add it to the list box.

	Start the WPF app without debugging.

	Click in the text box, enter some text, and note the GUI is responsive.

	Click the Get Employees Synchronously button.

	Try to click in the text box, and note the GUI is not responsive.

	Wait for at least five seconds until the list box is filled with employees.

	Click in the text box, enter some text, and note the GUI is responsive again.

	Click the Get Employees Asynchronously button.

	Click in the text box, enter some text, and note the GUI is still responsive while it performs the operation. Continue typing until the list box is filled with the employees, as shown in Figure 4.3:

[image: Figure 4.3: Loading employees into a WPF app synchronously and asynchronously]Figure 4.3: Loading employees into a WPF app synchronously and asynchronously

	Note the difference in timings for the two operations. The UI is blocked when fetching data synchronously, while the UI remains responsive when fetching data asynchronously.

	Close the WPF app.

Improving scalability for web applications and web services

The async and await keywords can also be applied on the server side when building websites, applications, and services. From the client application's point of view, nothing changes (or they might even notice a small increase in the time taken for a request to return). So, from a single client's point of view, the use of async and await to implement multitasking on the server side makes their experience worse!

On the server side, additional, cheaper worker threads are created to wait for long-running tasks to finish so that expensive I/O threads can handle other client requests instead of being blocked. This improves the overall scalability of a web application or service. More clients can be supported simultaneously.

Common types that support multitasking

There are many common types that have asynchronous methods that you can await, as shown in the following table:

	Type
	Methods

	DbContext<T>
	AddAsync , AddRangeAsync , FindAsync , and SaveChangesAsync

	DbSet<T>
	AddAsync , AddRangeAsync , ForEachAsync , SumAsync , ToListAsync ToDictionaryAsync , AverageAsync , and CountAsync

	HttpClient
	GetAsync , PostAsync , PutAsync , DeleteAsync , and SendAsync

	StreamReader
	ReadAsync , ReadLineAsync , and ReadToEndAsync

	StreamWriter
	WriteAsync , WriteLineAsync , and FlushAsync

Good Practice: Any time you see a method that ends in the suffix Async, check to see whether it returns Task or Task<T>. If it does return Task or Task<T>, then you could use it instead of the synchronous non-Async suffixed method. Remember to call it using await and decorate your method with async.

Using await in catch blocks

When async and await were first introduced in C# 5, it was only possible to use the await keyword in a try block, but not in a catch block. In C# 6 and later, it is now possible to use await in both try and catch blocks.

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 4.1 – Test your knowledge

Answer the following questions:

	What information can you find out about a process?

	How accurate is the Stopwatch class?

	By convention, what suffix should be applied to a method that returns Task or Task<T>?

	To use the await keyword inside a method, what keyword must be applied to the method declaration?

	How do you create a child task?

	Why should you avoid the lock keyword?

	When should you use the Interlocked class?

	When should you use the Mutex class instead of the Monitor class?

	What is the benefit of using async and await in a website or web service?

	Can you cancel a task? If so, how?

Exercise 4.2 – Explore topics

Use the links on the following webpage to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-4---improving-performance-and-scalability-using-multitasking

Summary

In this chapter, you learned:

	How to define and start a task.

	How to wait for one or more tasks to finish.

	How to control task completion order.

	How to synchronize access to shared resources.

	The magic behind async and await.

In the next chapter, you will learn how to use some popular third-party libraries.

5 Using Popular Third-Party Libraries

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about some popular third-party libraries for .NET that enable you to perform actions that either are not possible with the core .NET libraries or are better than the built-in functionality. These actions include manipulating images with ImageSharp; logging with Serilog, mapping objects to other objects with AutoMapper, making unit test assertions with FluentAssertions, validating data with FluentValidation, and generating PDFs with QuestPDF.

This chapter covers the following topics:

	Which third-party libraries are most popular?

	Working with images

	Logging with Serilog

	Mapping between objects

	Making fluent assertions in unit testing

	Validating data

	Generating PDFs

Which third-party libraries are most popular?

To help me to decide which third-party libraries to include in this book, I researched which are downloaded most frequently at the following link: https://www.nuget.org/stats, and, as shown in the following table, they are:

	Rank
	Package
	Downloads

	1
	newtonsoft.json
	106,664,914

	2
	serilog
	25,706,263

	3
	castle.core
	18,426,836

	4
	newtonsoft.json.bson
	18,018,770

	5
	awssdk.core
	15,655,292

	6
	swashbuckle.aspnetcore.swagger
	15,049,359

	7
	swashbuckle.aspnetcore.swaggergen
	14,984,145

	8
	moq
	13,864,846

	9
	automapper
	13,390,653

	10
	serilog.sinks.file
	13,043,367

	12
	polly
	12,612,215

	24
	serilog.sinks.console
	11,271,774

	38
	fluentvalidation
	8,906,145

	41
	fluentassertions
	8,419,263

	100
	nodatime
	2,981,780

What is covered in my books

My book, C# 11 and .NET 7 – Modern Cross-Platform Development Fundamentals, introduces processing JSON using Newtonsoft.Json and documenting web services using Swashbuckle. For now, using Castle Core to generate dynamic proxies and typed dictionaries, or deploying to and integrating with Amazon Web Services (AWS), is out-of-scope for this book.

As well as raw download numbers, questions from readers and usefulness of the library also contributed to my decision to include a library in this chapter, as summarized in the following list:

	Most popular library for manipulating images: ImageSharp.

	Most popular library for logging: Serilog.

	Most popular library for object mapping: AutoMapper.

	Most popular library for unit test assertions: FluentAssertions.

	Most popular library for data validation: FluentValidation.

	Open-source library for generating PDFs: QuestPDF.

What could be covered in my books

In future editions, I plan to add other libraries. Please let me know which would be most important for your needs. Currently, the following are most likely to be included in the next edition:

	Most popular library for handling dates and times: NodaTime. https://nodatime.org/

	Most popular library for generating dynamic proxies and typed dictionaries: Castle Core. https://github.com/castleproject/Core

	Most popular library for resilience and transient-fault-handling: Polly. https://github.com/App-vNext/Polly

	Most popular library for mocking in unit tests: Moq. https://github.com/moq/moq

Working with images

ImageSharp is a third-party cross-platform 2D graphics library. When .NET Core 1.0 was in development, there was negative feedback from the community about the missing System.Drawing namespace for working with 2D images. The ImageSharp project was started to fill that gap for modern .NET applications.

In their official documentation for System.Drawing, Microsoft says, "The System.Drawing namespace is not recommended for new development due to not being supported within a Windows or ASP.NET service, and it is not cross-platform. ImageSharp and SkiaSharp are recommended as alternatives."

SixLabors released ImageSharp 2.0 on February 7, 2022, with WebP, Tiff, and Pbm format support, more efficient and faster memory pooling and allocation, and massive performance improvements for their Jpeg and Png formats. You can read the announcement at the following link: https://sixlabors.com/posts/announcing-imagesharp-200/

Generating greyscale thumbnails

Let's see what can be achieved with ImageSharp:

	Use your preferred code editor to add a new console app named WorkingWithImages to a Chapter05 solution/workspace.

	In the WorkingWithImages project, create an images folder and download to it the nine images from the following link: https://github.com/markjprice/apps-services-net7/tree/master/images/Categories

	If you are using Visual Studio 2022, then the images folder and its files must be copied to the WorkingWithImages\bin\Debug\net7 folder:

	In Solution Explorer, select all nine images.

	In Properties, set Copy To Output Directory to Copy Always.

	Open the project file and note the <ItemGroup> entries that will copy the nine images to the correct folder, as partially shown in the following markup:

<ItemGroup>
 <None Update="images\categories.jpeg">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
 <None Update="images\category1.jpeg">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
...

	In the WorkingWithImages project, globally and statically import the System.Console class and add a package reference for SixLabors.ImageSharp, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <PackageReference Include="SixLabors.ImageSharp" Version="2.1.0" />
</ItemGroup>

	Build the WorkingWithImages project.

	In Program.cs, delete the existing statements and then import some namespaces for working with images, as shown in the following code:

using SixLabors.ImageSharp; // Image
using SixLabors.ImageSharp.Processing; // Mutate extension method

	In Program.cs, enter statements to convert all the files in the images folder into grayscale thumbnails at one-tenth size, as shown in the following code:

string imagesFolder = Path.Combine(
 Environment.CurrentDirectory, "images");
WriteLine($"I will look for images in the following folder:\n{imagesFolder}");
WriteLine();
if (!Directory.Exists(imagesFolder))
{
 WriteLine();
 WriteLine("Folder does not exist!");
 return;
}
IEnumerable<string> images =
 Directory.EnumerateFiles(imagesFolder);
foreach (string imagePath in images)
{
 if (Path.GetFileNameWithoutExtension(imagePath).EndsWith("-thumbnail"))
 {
 WriteLine($"Skipping:\n {imagePath}");
 WriteLine();
 continue; // this file has already been converted
 }
 string thumbnailPath = Path.Combine(
 Environment.CurrentDirectory, "images",
 Path.GetFileNameWithoutExtension(imagePath)
 + "-thumbnail" + Path.GetExtension(imagePath));
 using (Image image = Image.Load(imagePath))
 {
 WriteLine($"Converting:\n {imagePath}");
 WriteLine($"To:\n {thumbnailPath}");
 image.Mutate(x => x.Resize(image.Width / 10, image.Height / 10));
 image.Mutate(x => x.Grayscale());
 image.Save(thumbnailPath);
 WriteLine();
 }
}
WriteLine("Image processing complete. View the images folder.");

	Run the console app and note the images should be converted into greyscale thumbnails, as shown in the following partial output:

I will look for images in the following folder:
C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images
Converting:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\categories.jpeg
To:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\categories-thumbnail.jpeg
Converting:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\category1.jpeg
To:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\category1-thumbnail.jpeg
...
Converting:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\category8.jpeg
To:
 C:\apps-services-net7\Chapter05\WorkingWithImages\bin\Debug\net7.0\images\category8-thumbnail.jpeg
Image processing complete. View the images folder.

	In the filesystem, open the images folder and note the much-smaller-in-bytes grayscale thumbnails, as shown in Figure 5.1:

[image: Figure 5.1: Images after processing]Figure 5.1: Images after processing

ImageSharp packages for drawing and the web

ImageSharp also has NuGet packages for programmatically drawing images and working with images on the web, as shown in the following list:

	SixLabors.ImageSharp.Drawing

	SixLabors.ImageSharp.Web

More Information: Learn more details at the following link: https://docs.sixlabors.com/

Logging with Serilog

Although .NET includes logging frameworks, third-party logging providers give more power and flexibility by using structured event data. Serilog is the most popular.

Understanding Serilog sinks

All logging systems need to record the log entries somewhere. That could be to the console output, a file, or a more complex data store like a relational database or cloud data store. Serilog calls these sinks.

Serilog has hundreds of official and third-party sink packages for all the possible places you might want to record your logs. To use them, just include the appropriate package. The most popular are shown in the following list:

	serilog.sinks.file

	serilog.sinks.console

	serilog.sinks.periodicbatching

	serilog.sinks.debug

	serilog.sinks.rollingfile (deprecated; use serilog.sinks.file instead)

	serilog.sinks.applicationinsights

	serilog.sinks.mssqlserver

There are more than 390 packages currently listed on Microsoft's public NuGet feed: https://www.nuget.org/packages?q=serilog.sinks

Logging to the console and a rolling file with Serilog

Let's start:

	Use your preferred code editor to add a new console app named Serilogging to a Chapter05 solution/workspace.

	In Visual Studio 2022, set the startup project to the current selection.

	In Visual Studio Code, select Serilogging as the active OmniSharp project.

	In the Serilogging project, globally and statically import the System.Console class and add a package reference for Serilog, including sinks for console and file (which also supports rolling files), as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <PackageReference Include="Serilog" Version="2.10.0" />
 <PackageReference Include="Serilog.Sinks.Console" Version="4.0.1" />
 <PackageReference Include="Serilog.Sinks.File" Version="5.0.0" />
</ItemGroup>

	Build the Serilogging project.

	In Program.cs, delete the existing statements and then import some namespaces for working with Serilog, as shown in the following code:

using Serilog; // Log, LoggerConfiguration, RollingInterval
using Serilog.Core; // Logger

	In Program.cs, create a logger configuration that will write to the console as well as configuring a rolling interval that means a new file is created each day, and write various levels of log entries, as shown in the following code:

using Logger log = new LoggerConfiguration()
 .WriteTo.Console()
 .WriteTo.File("log.txt", rollingInterval: RollingInterval.Day)
 .CreateLogger();
Log.Logger = log;
Log.Information("The global logger has been configured.");
Log.Warning("Danger, Serilog, danger!");
Log.Error("This is an error!");
Log.Fatal("Fatal problem!");
// just before ending an application
Log.CloseAndFlush();

	Run the console app, and note the messages, as shown in the following output:

[07:09:43 INF] The global logger has been configured.
[07:09:43 WRN] Danger, Serilog, danger!
[07:09:43 ERR] This is an error!
[07:09:43 FTL] Fatal problem!

	Open the logYYYYMMDD.txt file, where YYYY is the year, MM is the month, and DD is the day, and note it contains the same messages.

More Information: Learn more details at the following link: https://serilog.net/

Mapping between objects

One of the most boring parts of being a programmer is mapping between objects. It is common to need to integrate systems or components that have conceptually similar objects but with different structures.

Models for data are different for different parts of an application. Models that represent data in storage are often called entity models. Models that represent data that must be passed between layers are often called data transfer objects (DTO). Models that represent only the data that must be presented to a user are often called view models. All these models are likely to have commonalities but different structures.

AutoMapper is a popular package for mapping objects because it has conventions that make the work as easy as possible. For example, if you have a source member called CompanyName, it will be mapped to a destination member with the name CompanyName.

AutoMapper's creator, Jimmy Bogard, has written an article about its design philosophy that is worth reading, available at the following link: https://jimmybogard.com/automappers-design-philosophy/

Let's see an example of AutoMapper in action. You will create three projects:

	A class library for the entity and view models.

	A unit test project to test the mappings.

	A console app to perform a live mapping.

We will construct an example object model that represents a customer and their shopping cart with a couple of items, and then map it to a summary view model to present to the user.

Testing an AutoMapper configuration

It is good practice to always validate your configuration for mappings before using them, so we will start by defining some models and a mapping between them, and then create a unit test for the mappings:

	Use your preferred code editor to add a new Class Library / classlib project named MappingObjects.Models to the Chapter05 solution/workspace.

	In the MappingObjects.Models project, delete the file named Class1.cs.

	In the MappingObjects.Models project, add a new class file named Customer.cs and modify its contents, as shown in the following code:

namespace Packt.Entities;
public record class Customer(
 string FirstName,
 string LastName
);

	In the MappingObjects.Models project, add a new class file named LineItem.cs and modify its contents, as shown in the following code:

namespace Packt.Entities;
public record class LineItem(
 string ProductName,
 decimal UnitPrice,
 int Quantity
);

	In the MappingObjects.Models project, add a new class file named Cart.cs and modify its contents, as shown in the following code:

namespace Packt.Entities;
public record class Cart(
 Customer Customer,
 List<LineItem> Items
);

	In the MappingObjects.Models project, add a new class file named Summary.cs and modify its contents, as shown in the following code:

namespace Packt.ViewModels;
public class Summary
{
 public string? FullName { get; set; }
 public decimal Total { get; set; }
}

For the entity models, we used records because they will be immutable. But an instance of Summary will be created and its members populated automatically by AutoMapper, so it must be a normal mutable class with public properties that can be set.

	Use your preferred code editor to add a new xUnit Test Project / xunit named MappingObjects.Tests to the Chapter05 solution/workspace.

	In the MappingObjects.Tests project, add a package reference to AutoMapper, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="AutoMapper" Version="11.0.1" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.0.0" />

	In the MappingObjects.Tests project, add a project reference to MappingObjects.Models, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include=
 "..\MappingObjects.Models\MappingObjects.Models.csproj" />
</ItemGroup>

	Build the MappingObjects.Tests project.

	In the MappingObjects.Tests project, rename UnitTest1.cs to TestAutoMapperConfig.cs.

	Modify the contents of TestAutoMapperConfig.cs to create a mapper configuration that maps the FullName of the Summary to a combination of the FirstName and LastName from Customer, and then assert that the mapping is complete, as shown in the following code:

using AutoMapper;
using Packt.Entities;
using Packt.ViewModels;
namespace MappingObjects.Tests
{
 public class TestAutoMapperConfig
 {
 [Fact]
 public void TestSummaryMapping()
 {
 MapperConfiguration config = new(cfg =>
 {
 cfg.CreateMap<Cart, Summary>()
 .ForMember(dest => dest.FullName, opt => opt.MapFrom(src =>
 string.Format("{0} {1}",
 src.Customer.FirstName, src.Customer.LastName)
));
 }
);
 config.AssertConfigurationIsValid();
 }
 }
}

	Run the test.

	In Visual Studio 2022, navigate to Test | Run All Tests.

	In Visual Studio Code, in Terminal, enter: dotnet test.

	Note the test fails because the Total member of the Summary view model is unmapped, as shown in Figure 5.2:

[image: Figure 5.2: The test fails because the Total member is unmapped]Figure 5.2: The test fails because the Total member is unmapped

	In the configuration, add a mapping for the Total member, as shown highlighted in the following code:

MapperConfiguration config = new(cfg =>
{
 cfg.CreateMap<Cart, Summary>()
 .ForMember(dest => dest.FullName, opt => opt.MapFrom(src =>
 string.Format("{0} {1}",
 src.Customer.FirstName, src.Customer.LastName)
))
 .ForMember(dest => dest.Total, opt => opt.MapFrom(
 src => src.Items.Sum(item => item.UnitPrice * item.Quantity)));
}
);

	Run the test and note that this time it passes.

Performing live mappings between models

Now that we have validated the configuration of our mapping, we can use it in a live app:

	Use your preferred code editor to add a new Console App / console project named MappingObjects to the Chapter05 solution/workspace.

	In the MappingObjects project, globally and statically import the System.Console class, add a project reference for the class library, and add a package reference for AutoMapper, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include=
 "..\MappingObjects.Models\MappingObjects.Models.csproj" />
</ItemGroup>
<ItemGroup>
 <PackageReference Include="AutoMapper" Version="11.0.1" />
</ItemGroup>

	Build the MappingObjects project.

	In Visual Studio Code, select MappingObjects as the active OmniSharp project.

	In Program.cs, delete the existing statements and then add some statements to construct an example object model that represents a customer and their shopping cart with a couple of items, and then map it to a summary view model to present to the user, as shown in the following code:

using AutoMapper; // MapperConfiguration, IMapper
using Packt.Entities; // Customer, Cart, LineItem
using Packt.ViewModels; // Summary
// create an object model from "entity" model types that
// might have come from a data store
Cart cart = new(
 Customer: new(
 FirstName: "John",
 LastName: "Smith"
),
 Items: new()
 {
 new(ProductName: "Apples", UnitPrice: 0.49M, Quantity: 10),
 new(ProductName: "Bananas", UnitPrice: 0.99M, Quantity: 4)
 }
);
WriteLine($"{cart.Customer}");
foreach (LineItem item in cart.Items)
{
 WriteLine($" {item}");
}
// configure mappings using projections
MapperConfiguration config = new(cfg =>
 {
 cfg.CreateMap<Cart, Summary>()
 .ForMember(dest => dest.FullName, opt => opt.MapFrom(src =>
 string.Format("{0} {1}", src.Customer.FirstName, src.Customer.LastName)
))
 .ForMember(dest => dest.Total, opt => opt.MapFrom(src => src.Items.Sum(item => item.UnitPrice * item.Quantity)));
 }
);
// create a mapper, perform the mapping, and output the result
IMapper mapper = config.CreateMapper();
Summary summary = mapper.Map<Cart, Summary>(cart);
WriteLine($"Summary: {summary.FullName} spent {summary.Total}.");

	Run the console app and note the successful result, as shown in the following code:

Customer { FirstName = John, LastName = Smith }
 LineItem { ProductName = Apples, UnitPrice = 0.49, Quantity = 10 }
 LineItem { ProductName = Bananas, UnitPrice = 0.99, Quantity = 4 }
Summary: John Smith spent 8.86.

Good Practice: There is a debate about when AutoMapper should be used that you can read about in an article (which has more links at the bottom) at the following link: https://www.anthonysteele.co.uk/AgainstAutoMapper.html

More Information: Learn more details at the following link: https://automapper.org/

Making fluent assertions in unit testing

FluentAssertions are a set of extension methods that make writing and reading the code in unit tests and the error messages of failing tests more similar to a natural human language like English.

It works with most unit testing frameworks, including xUnit. When you add a package reference for a test framework, FluentAssertions will automatically find the package and use it for throwing exceptions.

After importing the FluentAssertions namespace, call the Should() extension method on a variable and then one of hundreds of other extension methods to make assertions in a human-readable way. You can chain multiple assertions using the And() extension method or have separate statements each calling Should().

Making assertions about strings

Let's start by making assertions about a single string value:

	Use your preferred code editor to add a new xUnit Test Project / xunit named FluentTests to a Chapter05 solution/workspace.

	In Visual Studio Code, select FluentTests as the active OmniSharp project.

	In the FluentTests project, add a package reference to FluentAssertions, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="FluentAssertions" Version="6.6.0" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.0.0" />

	Build the FluentTests project.

	Rename UnitTest1.cs to FluentExamples.cs.

	In FluentExamples.cs, import the namespace to make the fluent assertions extension methods available and write a test method for a string value, as shown in the following code:

using FluentAssertions;
namespace FluentTests
{
 public class FluentExamples
 {
 [Fact]
 public void TestString()
 {
 string city = "London";
 string expectedCity = "London";
 city.Should().StartWith("Lo")
 .And.EndWith("on")
 .And.Contain("do")
 .And.HaveLength(6);
 city.Should().NotBeNull()
 .And.Be("London")
 .And.BeSameAs(expectedCity)
 .And.BeOfType<string>();
 city.Length.Should().Be(6);
 }
 }
}

	Run the test.

	In Visual Studio 2022, navigate to Test | Run All Tests.

	In Visual Studio Code, in Terminal, enter dotnet test.

	Note the test passes.

	In the TestString method, delete the last n in London.

	Run the test and note it fails, as shown in the following output:

Expected city "Londo" to end with "on".

	Add the n back in London.

	Run the test again to confirm the fix.

Making assertions about collections and arrays

Now let's continue by making assertions about collections and arrays:

	In FluentExamples.cs, add a test method to explore collection assertions, as shown in the following code:

[Fact]
public void TestCollections()
{
 string[] names = new[] { "Alice", "Bob", "Charlie" };
 names.Should().HaveCountLessThan(4,
 "because the maximum items should be 3 or fewer");
 names.Should().OnlyContain(name => name.Length <= 6);
}

	Run the tests and note the collections test fails, as shown in the following output:

Expected names to contain only items matching (name.Length <= 6), but {"Charlie"} do(es) not match.

	Change Charlie to Charly.

	Run the tests and note they succeed.

Making assertions about dates and times

Let's start by making assertions about date and time values:

	In FluentExamples.cs, import the namespace for adding extension methods for named months and other useful date/time-related functionality, as shown in the following code:

using FluentAssertions.Extensions; // February, March extension methods

	Add a test method to explore date/time assertions, as shown in the following code:

[Fact]
public void TestDateTimes()
{
 DateTime when = new(
 hour: 9, minute: 30, second: 0,
 day: 25, month: 3, year: 2022);
 when.Should().Be(25.March(2022).At(9, 30));
 when.Should().BeOnOrAfter(23.March(2022));
 when.Should().NotBeSameDateAs(12.February(2022));
 when.Should().HaveYear(2022);
 DateTime due = new(
 hour: 11, minute: 0, second: 0,
 day: 25, month: 3, year: 2022);
 when.Should().BeAtLeast(2.Hours()).Before(due);
}

	Run the tests and note the date/time test fails, as shown in the following output:

Expected when <2022-03-25 09:30:00> to be at least 2h before <2022-03-25 11:00:00>, but it is behind by 1h and 30m.

	For the due variable, change the hour from 11 to 13.

	Run the tests and note the date/time test succeeds.

More Information: Learn more details at the following link: https://fluentassertions.com/

Validating data

FluentValidation allows you to define strongly-typed validation rules in a human-readable way.

You create a validator for a type by inheriting from AbstractValidator<T> where T is the type that you want to validate. In the constructor, you call the RuleFor method to define one or more rules. If a rule should only run in specified scenarios, you call the When method.

Understanding the built-in validators

FluentValidation ships with lots of useful built-in validator extension methods for defining rules, as shown in the following partial list:

	Null, NotNull, Empty, NotEmpty

	Equal, NotEqual

	Length, MaxLength, MinLength

	LessThan, LessThanOrEqualTo, GreaterThan, GreaterThanOrEqualTo

	InclusiveBetween, ExclusiveBetween

	ScalePrecision

	Must (aka predicate)

	Matches (aka regular expression), EmailAddress, CreditCard

	IsInEnum, IsEnumName

Performing custom validation

The easiest way to create custom rules is to use Predicate to write a custom validation function. You can also call the Custom method to get maximum control.

Customizing validation messages

There are a few extension methods that are used to customize the validation messages output when data fails to pass the rules:

	WithName: Change the name used for a property in the message.

	WithSeverity: Change the default severity from Error to Warning or some other level.

	WithErrorCode: Assign an error code that can be output in the message.

	WithState: Add some state that can be used in the message.

	WithMessage: Customize the format of the default message.

Defining a model and validator

Let's see an example of FluentValidation in action. You will create three projects:

	A class library for a model to validate that represents an order made by a customer.

	A class library for the validator for the model.

	A console app to perform a live validation.

Let's start:

	Use your preferred code editor to add a new Class Library / classlib project named FluentValidation.Models to the Chapter05 solution/workspace.

	In the FluentValidation.Models project, delete the file named Class1.cs.

	In the FluentValidation.Models project, add a new class file named CustomerLevel.cs, and modify its contents to define an enum with three customer levels: Bronze, Silver, and Gold, as shown in the following code:

namespace FluentValidation.Models;
public enum CustomerLevel
{
 Bronze,
 Silver,
 Gold
}

	In the FluentValidation.Models project, add a new class file named Order.cs and modify its contents, as shown in the following code:

namespace FluentValidation.Models;
public class Order
{
 public long OrderId { get; set; }
 public string CustomerName { get; set; } = null!;
 public string CustomerEmail { get; set; } = null!;
 public CustomerLevel CustomerLevel { get; set; }
 public decimal Total { get; set; }
 public DateTime OrderDate { get; set; }
 public DateTime ShipDate { get; set; }
}

	Use your preferred code editor to add a new Class Library / classlib project named FluentValidation.Validators to the Chapter05 solution/workspace.

	In the FluentValidation.Validators project, add a project reference to the models project, and a package reference to the FluentValidation package, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="FluentValidation" Version="10.4.0" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include=
 "..\FluentValidation.Models\FluentValidation.Models.csproj" />
</ItemGroup>

	Build the FluentValidation.Validators project.

	In the FluentValidation.Validators project, delete the file named Class1.cs.

	In the FluentValidation.Validators project, add a new class file named OrderValidator.cs and modify its contents, as shown in the following code:

using FluentValidation.Models;
namespace FluentValidation.Validators;
public class OrderValidator : AbstractValidator<Order>
{
 public OrderValidator()
 {
 RuleFor(order => order.OrderId)
 .NotEmpty(); // not default(long)
 RuleFor(order => order.CustomerName)
 .NotNull()
 .WithName("Name");
 RuleFor(order => order.CustomerName)
 .MinimumLength(5)
 .WithSeverity(Severity.Warning);
 RuleFor(order => order.CustomerEmail)
 .NotEmpty()
 .EmailAddress();
 RuleFor(order => order.CustomerLevel)
 .IsInEnum();
 RuleFor(order => order.Total)
 .GreaterThan(0);
 RuleFor(order => order.ShipDate)
 .GreaterThan(order => order.OrderDate);
 When(order => order.CustomerLevel == CustomerLevel.Gold, () =>
 {
 RuleFor(order => order.Total).LessThan(50M);
 RuleFor(order => order.Total).GreaterThanOrEqualTo(20M);
 }).Otherwise(() =>
 {
 RuleFor(order => order.Total).LessThan(20M);
 });
 }
}

Testing the validator

Now we are ready to create a console app to test the validator on the model:

	Use your preferred code editor to add a new console app named FluentValidation.App to a Chapter05 solution/workspace.

	In Visual Studio Code, select FluentValidation.App as the active OmniSharp project.

	In the FluentValidation.App project, globally and statically import the System.Console class and add project references for FluentValidation.Validators and FluentValidation.Models, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include=
 "..\FluentValidation.Models\FluentValidation.Models.csproj" />
 <ProjectReference Include=
 "..\FluentValidation.Validators\FluentValidation.Validators.csproj" />
</ItemGroup>

	Build the FluentValidation.App project.

	In Program.cs, delete the existing statements and then add statements to create an order and validate it, as shown in the following code:

using FluentValidation.Models; // Order
using FluentValidation.Results; // ValidationResult
using FluentValidation.Validators; // OrderValidator
Order order = new()
{
 // start with an invalid order
};
OrderValidator validator = new();
ValidationResult result = validator.Validate(order);
WriteLine($"CustomerName: {order.CustomerName}");
WriteLine($"CustomerEmail: {order.CustomerEmail}");
WriteLine($"CustomerLevel: {order.CustomerLevel}");
WriteLine($"OrderId: {order.OrderId}");
WriteLine($"OrderDate: {order.OrderDate}");
WriteLine($"ShipDate: {order.ShipDate}");
WriteLine($"Total: {order.Total}");
WriteLine();
WriteLine($"IsValid: {result.IsValid}");
foreach (var item in result.Errors)
{
 WriteLine($" {item.Severity}: {item.ErrorMessage}");
}

	Run the console app and note the failed rules, as shown in the following output:

CustomerName:
CustomerEmail:
CustomerLevel: Bronze
OrderId: 0
OrderDate: 01/01/0001 00:00:00
ShipDate: 01/01/0001 00:00:00
Total: 0
IsValid: False
 Error: 'Order Id' must not be empty.
 Error: 'Name' must not be empty.
 Error: 'Customer Email' must not be empty.
 Error: 'Total' must be greater than '0'.
 Error: 'Ship Date' must be greater than '01/01/0001 00:00:00'.

The text of the error messages will be automatically localized into your operating system's native language.

	Set some property values for the order, as shown highlighted in the following code:

Order order = new()
{
 OrderId = 10001,
 CustomerName = "Abc",
 CustomerEmail = "abc&example.com",
 CustomerLevel = (CustomerLevel)4,
 OrderDate = new(2022, 12, 1),
 ShipDate = new(2022, 11, 5),
 Total = 49.99M
};

	Run the console app and note the failed rules, as shown in the following output:

CustomerName: Abc
CustomerEmail: abc&example.com
CustomerLevel: 4
OrderId: 10001
OrderDate: 01/12/2022 00:00:00
ShipDate: 05/11/2022 00:00:00
Total: 49.99
IsValid: False
 Warning: The length of 'Customer Name' must be at least 5 characters. You entered 3 characters.
 Error: 'Customer Email' is not a valid email address.
 Error: 'Customer Level' has a range of values which does not include '4'.
 Error: 'Ship Date' must be greater than '01/12/2022 00:00:00'.
 Error: 'Total' must be less than '20'.

	Modify some property values for the order, as shown highlighted in the following code:

Order order = new()
{
 OrderId = 10001,
 CustomerName = "Abcdef",
 CustomerEmail = "abc@example.com",
 CustomerLevel = CustomerLevel.Gold,
 OrderDate = new(2022, 12, 1),
 ShipDate = new(2022, 12, 5),
 Total = 49.99M
};

	Run the console app and note the order is now valid, as shown in the following output:

CustomerName: Abcdef
CustomerEmail: abc@example.com
CustomerLevel: Gold
OrderId: 10001
OrderDate: 01/12/2022 00:00:00
ShipDate: 05/12/2022 00:00:00
Total: 49.99
IsValid: True

Integrating with ASP.NET Core

For automatic validation with ASP.NET Core, FluentValidation supports .NET Core 3.1, .NET 5, and .NET 6.

More Information: Learn more details at the following link: https://cecilphillip.com/fluent-validation-rules-with-asp-net-core/

Generating PDFs

One of the most common requests I get when teaching C# and .NET is, "What open-source library is available to generate PDF files?"

There are many licensed libraries for generating PDF files, but over the years it has been difficult to find open-source ones. QuestPDF is the latest example.

Let's see an example of QuestPDF in action. You will create three projects:

	A class library for a model that represents a catalog of product categories with names and images.

	A class library for the document template.

	A console app to perform a live generation of a PDF file.

Let's start:

	Use your preferred code editor to add a new Class Library / classlib project named GeneratingPdf.Models to the Chapter05 solution/workspace.

	In the GeneratingPdf.Models project, delete the file named Class1.cs.

	In the GeneratingPdf.Models project, add a new class file named Category.cs, and modify its contents to define a class with two properties for the name and identifier of a category, as shown in the following code:

namespace GeneratingPdf.Models;
public class Category
{
 public int CategoryId { get; set; }
 public string CategoryName { get; set; } = null!;
}

Later, you will create an images folder with filenames that use the pattern categoryN.jpeg, where N is a number from 1 to 8 that matches the CategoryId values.

	In the GeneratingPdf.Models project, add a new class file named Catalog.cs, and modify its contents to define a class with a property to store the eight categories, as shown in the following code:

namespace GeneratingPdf.Models;
public class Catalog
{
 public List<Category> Categories { get; set; } = null!;
}

	Use your preferred code editor to add a new Class Library / classlib project named GeneratingPdf.Document to the Chapter05 solution/workspace.

	In the GeneratingPdf.Document project, add a package reference for QuestPDF and a project reference for the models class library, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="QuestPDF" Version="2022.4.1" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include=
 "..\GeneratingPdf.Models\GeneratingPdf.Models.csproj" />
</ItemGroup>

	Build the GeneratingPdf.Document project.

	In the GeneratingPdf.Document project, delete the file named Class1.cs.

	In the GeneratingPdf.Document project, add a new class file named CatalogDocument.cs.

	In CatalogDocument.cs, define a class that implements the IDocument interface to define a template with a header and a footer, and then output the eight categories, including name and image, as shown in the following code:

using GeneratingPdf.Models; // Catalog
using QuestPDF.Drawing; // DocumentMetadata
using QuestPDF.Fluent; // Page
using QuestPDF.Helpers; // Colors
using QuestPDF.Infrastructure; // IDocument, IDocumentContainer
namespace GeneratingPdf.Document;
public class CatalogDocument : IDocument
{
 public Catalog Model { get; }
 public CatalogDocument(Catalog model)
 {
 Model = model;
 }
 public void Compose(IDocumentContainer container)
 {
 container
 .Page(page =>
 {
 page.Margin(50 /* points */);
 page.Header()
 .Height(100).Background(Colors.Grey.Lighten1)
 .AlignCenter().Text("Catalogue")
 .Style(TextStyle.Default.FontSize(20));
 page.Content()
 .Background(Colors.Grey.Lighten3)
 .Table(table =>
 {
 table.ColumnsDefinition(columns =>
 {
 columns.ConstantColumn(100);
 columns.RelativeColumn();
 });
 foreach (var item in Model.Categories)
 {
 table.Cell().Text(item.CategoryName);
 string imagePath = Path.Combine(
 Environment.CurrentDirectory, "images",
 $"category{item.CategoryId}.jpeg");

 table.Cell().Image(imagePath);
 }
 });
 page.Footer()
 .Height(50).Background(Colors.Grey.Lighten1)
 .AlignCenter().Text(x =>
 {
 x.CurrentPageNumber();
 x.Span(" of ");
 x.TotalPages();
 });
 });
 }
 public DocumentMetadata GetMetadata() => DocumentMetadata.Default;
}

	Use your preferred code editor to add a new console app named GeneratingPdf.App to a Chapter05 solution/workspace.

	In Visual Studio Code, select GeneratingPdf.App as the active OmniSharp project.

	In the GeneratingPdf.App project, create an images folder and download to it the eight category images 1 to 8 from the following link: https://github.com/markjprice/apps-services-net7/tree/master/images/Categories

	If you are using Visual Studio 2022, then the images folder and its files must be copied to the GeneratingPdf.App\bin\Debug\net7 folder:

	In Solution Explorer, select all the images.

	In Properties, set Copy To Output Directory to Copy Always.

	Open the project file and note the <ItemGroup> entries that will copy the nine images to the correct folder, as partially shown in the following markup:

<ItemGroup>
 <None Update="images\category1.jpeg">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
...

	In the GeneratingPdf.App project, globally and statically import the System.Console class, and add a project reference for the document template class library, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include=
 "..\GeneratingPdf.Document\GeneratingPdf.Document.csproj" />
</ItemGroup>

	Build the GeneratingPdf.App project.

	In Program.cs, delete the existing statements and then add statements to create a catalog model, pass it to a catalog document, and then generate a PDF file, as shown in the following code:

using GeneratingPdf.Document; // CatalogDocument
using GeneratingPdf.Models; // Catalog, Category
using QuestPDF.Fluent; // GeneratePdf extension method
string filename = "catalog.pdf";
Catalog model = new()
{
 Categories = new()
 {
 new() { CategoryId = 1, CategoryName = "Beverages"},
 new() { CategoryId = 2, CategoryName = "Condiments"},
 new() { CategoryId = 3, CategoryName = "Confections"},
 new() { CategoryId = 4, CategoryName = "Dairy Products"},
 new() { CategoryId = 5, CategoryName = "Grains/Cereals"},
 new() { CategoryId = 6, CategoryName = "Meat/Poultry"},
 new() { CategoryId = 7, CategoryName = "Produce"},
 new() { CategoryId = 8, CategoryName = "Seafood"},
 }
};
CatalogDocument document = new(model);
document.GeneratePdf(filename);
System.Diagnostics.Process.Start("explorer.exe", filename);
WriteLine($"PDF catalog has been created: {filename}");

	Run the console app and note the PDF file generated, as shown in Figure 5.3:

[image: Figure 5.3: A PDF file generated from C# code]Figure 5.3: A PDF file generated from C# code

More Information: Learn more details at the following link: https://www.questpdf.com/

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring with deeper research into the topics in this chapter.

Exercise 5.1 – Test your knowledge

Use the web to answer the following questions:

	ImageSharp?

	FluentAssertions?

	FluentValidation?

	QuestPDF?

	AutoMapper?

Exercise 5.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-5---using-popular-third-party-libraries

Summary

In this chapter, you explored some third-party libraries that are popular with .NET developers to perform functions including:

	Manipulating images using a Microsoft-recommended third-party library named ImageSharp.

	Logging structured data with Serilog.

	Mapping between objects, for example, entity models to view models.

	Making fluent assertions in unit testing.

	Validating data in an English language-readable way.

	Generating a PDF file.

In the next chapter, we will look at advanced features of the C# compiler.

6 Controlling the Roslyn Compiler, Reflection, and Expression Trees

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about some common types that are included with .NET. These include types for reflection and attributes; working with the Roslyn compiler; creating source generators; and expression trees.

This chapter covers the following topics:

	Working with reflection and attributes

	Working with expression trees

	Creating source generators

Working with reflection and attributes

Reflection is a programming feature that allows code to understand and manipulate itself. An assembly is made up of up to four parts:

	Assembly metadata and manifest: Name, assembly, and file version, referenced assemblies, and so on.

	Type metadata: Information about the types, their members, and so on.

	IL code: Implementation of methods, properties, constructors, and so on.

	Embedded resources (optional): Images, strings, JavaScript, and so on.

The metadata comprises items of information about your code. The metadata is generated automatically from your code (for example, information about the types and members) or applied to your code using attributes.

Attributes can be applied at multiple levels: to assemblies, to types, and to their members, as shown in the following code:

// an assembly-level attribute
[assembly: AssemblyTitle("Working with reflection and attributes")]
// a type-level attribute
[Serializable]
public class Person
{
 // a member-level attribute
 [Obsolete("Deprecated: use Run instead.")]
 public void Walk()
 {
...

Attribute-based programming is used a lot in app models like ASP.NET Core to enable features like routing, security, and caching.

Versioning of assemblies

Version numbers in .NET are a combination of three numbers, with two optional additions. If you follow the rules of semantic versioning, the three numbers denote the following:

	Major: Breaking changes.

	Minor: Non-breaking changes, including new features, and often bug fixes.

	Patch: Non-breaking bug fixes.

Optionally, a version can include these:

	Prerelease: Unsupported preview releases.

	Build number: Nightly builds.

Good Practice: Follow the rules of semantic versioning, as described at the following link: http://semver.org

Reading assembly metadata

Let's explore working with attributes:

	Use your preferred code editor to add a new Console App / console project named WorkingWithReflection to a Chapter06 solution/workspace.

	In Visual Studio 2022, set the startup project to the current selection.

	In Visual Studio Code, select WorkingWithReflection as the active OmniSharp project.

	In the project file, statically and globally import the Console class, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

	In Program.cs, import the namespace for reflection, and add statements to get the console app's assembly, output its name and location, and get all assembly-level attributes and output their types, as shown in the following code:

using System.Reflection; // Assembly
WriteLine("Assembly metadata:");
Assembly? assembly = Assembly.GetEntryAssembly();
if (assembly is null)
{
 WriteLine("Failed to get entry assembly.");
 return;
}
WriteLine($" Full name: {assembly.FullName}");
WriteLine($" Location: {assembly.Location}");
WriteLine($" Entry point: {assembly.EntryPoint?.Name}");
IEnumerable<Attribute> attributes = assembly.GetCustomAttributes();
WriteLine($" Assembly-level attributes:");
foreach (Attribute a in attributes)
{
 WriteLine($" {a.GetType()}");
}

	Run the code and view the result, as shown in the following output:

Assembly metadata:
 Full name: WorkingWithReflection, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
 Location: C:\apps-services-net7\Chapter06\WorkingWithReflection\bin\Debug\net7.0\WorkingWithReflection.dll
 Entry point: <Main>$
 Assembly-level attributes:
 System.Runtime.CompilerServices.CompilationRelaxationsAttribute
 System.Runtime.CompilerServices.RuntimeCompatibilityAttribute
 System.Diagnostics.DebuggableAttribute
 System.Runtime.Versioning.TargetFrameworkAttribute
 System.Reflection.AssemblyCompanyAttribute
 System.Reflection.AssemblyConfigurationAttribute
 System.Reflection.AssemblyFileVersionAttribute
 System.Reflection.AssemblyInformationalVersionAttribute
 System.Reflection.AssemblyProductAttribute
 System.Reflection.AssemblyTitleAttribute

Note that because the full name of an assembly must uniquely identify the assembly, it is a combination of the following:

	Name, for example, WorkingWithReflection

	Version, for example, 1.0.0.0

	Culture, for example, neutral

	Public key token, although this can be null

Now that we know some of the attributes decorating the assembly, we can ask for them specifically.

	Add statements to get the AssemblyInformationalVersionAttribute and AssemblyCompanyAttribute classes and then output their values, as shown in the following code:

AssemblyInformationalVersionAttribute? version = assembly
 .GetCustomAttribute<AssemblyInformationalVersionAttribute>();
WriteLine($" Version: {version?.InformationalVersion}");
AssemblyCompanyAttribute? company = assembly
 .GetCustomAttribute<AssemblyCompanyAttribute>();
WriteLine($" Company: {company?.Company}");

	Run the code and view the result, as shown in the following output:

 Version: 1.0.0
 Company: WorkingWithReflection

Hmmm, unless you set the version, it defaults to 1.0.0, and unless you set the company, it defaults to the name of the assembly. Let's explicitly set this information. The legacy .NET Framework way to set these values was to add attributes in the C# source code file, as shown in the following code:

[assembly: AssemblyCompany("Packt Publishing")]
[assembly: AssemblyInformationalVersion("1.3.0")]

The Roslyn compiler used by .NET sets these attributes automatically, so we can't use the old way. Instead, they must be set in the project file.

	Edit the WorkingWithReflection.csproj project file to add elements for version and company, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <Version>7.0.1</Version>
 <Company>Packt Publishing</Company>
 </PropertyGroup>

	Run the code and view the result, as shown in the following partial output:

Assembly metadata:
 Full name: WorkingWithReflection, Version=7.0.1.0, Culture=neutral, PublicKeyToken=null
 ...
 Version: 7.0.1
 Company: Packt Publishing

Creating custom attributes

You can define your own attributes by inheriting from the Attribute class:

	Add a class file to your project named CoderAttribute.cs.

	In CoderAttribute.cs, define an attribute class that can decorate either classes or methods with two properties to store the name of a coder and the date they last modified some code, as shown in the following code:

namespace Packt.Shared;
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = true)]
public class CoderAttribute : Attribute
{
 public string Coder { get; set; }
 public DateTime LastModified { get; set; }
 public CoderAttribute(string coder, string lastModified)
 {
 Coder = coder;
 LastModified = DateTime.Parse(lastModified);
 }
}

	Add a class file to your project named Animal.cs.

	In Animal.cs, add a class with a method, and decorate the method with the Coder attribute with data about two coders, as shown in the following code:

namespace Packt.Shared;
public class Animal
{
 [Coder("Mark Price", "22 August 2022")]
 [Coder("Johnni Rasmussen", "13 September 2022")]
 public void Speak()
 {
 WriteLine("Woof...");
 }
}

	In Program.cs, import namespaces for working with your custom attribute, as shown in the following code:

using Packt.Shared; // CoderAttribute

	In Program.cs, add code to get the types in the current assembly, enumerate their members, read any Coder attributes on those members, and output the information, as shown in the following code:

WriteLine();
WriteLine($"* Types:");
Type[] types = assembly.GetTypes();
foreach (Type type in types)
{
 WriteLine();
 WriteLine($"Type: {type.FullName}");
 MemberInfo[] members = type.GetMembers();
 foreach (MemberInfo member in members)
 {
 WriteLine("{0}: {1} ({2})",
 member.MemberType, member.Name,
 member.DeclaringType?.Name);
 IOrderedEnumerable<CoderAttribute> coders =
 member.GetCustomAttributes<CoderAttribute>()
 .OrderByDescending(c => c.LastModified);
 foreach (CoderAttribute coder in coders)
 {
 WriteLine("-> Modified by {0} on {1}",
 coder.Coder, coder.LastModified.ToShortDateString());
 }
 }
}

	Run the code and view the result, as shown in the following partial output:

* Types:
...
Type: Packt.Shared.Animal
Method: Speak (Animal)
-> Modified by Johnni Rasmussen on 13/09/2022
-> Modified by Mark Price on 22/08/2022
Method: GetType (Object)
Method: ToString (Object)
Method: Equals (Object)
Method: GetHashCode (Object)
Constructor: .ctor (Program)
...
Type: Program+<>c
Method: GetType (Object)
Method: ToString (Object)
Method: Equals (Object)
Method: GetHashCode (Object)
Constructor: .ctor (<>c)
Field: <>9 (<>c)
Field: <>9__0_0 (<>c)

Understanding compiler-generated types and members

What is the Program+<>c type and its strangely named fields?

It is a compiler-generated display class. <> indicates compiler-generated and c indicates a display class. They are undocumented implementation details of the compiler and could change at any time. You can ignore them, so as an optional challenge, add statements to your console app to filter compiler-generated types by skipping types decorated with CompilerGeneratedAttribute.

Hint: import the namespace for working with compiler-generated code, as shown in the following code:

using System.Runtime.CompilerServices; // CompilerGeneratedAttribute

Making a type or member obsolete

Over time, you might decide to refactor your types and their members while maintaining backwards compatibility. To encourage developers who use your types to use the newer implementations, you can decorate the old types and members with the [Obsolete] attribute.

Let's see an example:

	In Animal.cs, add a new method and mark the old method as obsolete, as shown highlighted in the following code:

[Coder("Mark Price", "22 August 2022")]
[Coder("Johnni Rasmussen", "13 September 2022")]
[Obsolete($"use {nameof(SpeakBetter)} instead.")]
public void Speak()
{
 WriteLine("Woof...");
}
public void SpeakBetter()
{
 WriteLine("Wooooooooof...");
}

	In Program.cs, modify the statements to detect obsolete methods, as shown highlighted in the following code:

foreach (MemberInfo member in members)
{
 ObsoleteAttribute? obsolete =
 member.GetCustomAttribute<ObsoleteAttribute>();
 WriteLine("{0}: {1} ({2}) {3}",
 member.MemberType, member.Name,
 member.DeclaringType?.Name,
 obsolete is null ? "" : $"Obsolete! {obsolete.Message}");

	Run the code and view the result, as shown in the following output:

Type: Packt.Shared.Animal
Method: Speak (Animal) Obsolete! use SpeakBetter instead.
-> Modified by Johnni Rasmussen on 13/09/2022
-> Modified by Mark Price on 22/08/2022
Method: SpeakBetter (Animal)
Method: GetType (Object)
Method: ToString (Object)
Method: Equals (Object)
Method: GetHashCode (Object)
Constructor: .ctor (Animal)

Doing more with reflection

This is just a taster of what can be achieved with reflection. We only used reflection to read metadata from our code. Reflection can also do the following:

	Dynamically load assemblies that are not currently referenced: https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability

	Dynamically execute code: https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke

	Dynamically generate new code and assemblies: https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder

Working with expression trees

Expression Trees represent code as a structure that you can examine or execute. Expression trees are immutable so you cannot change one, but you can create a copy with the changes you want.

When you write a LINQ expression for the EF Core database provider, it is represented by an expression tree that is then translated into an SQL statement. But even the simplest C# statement can be represented as an expression tree.

Let's look at a simple example, adding two numbers:

int three = 1 + 2;

This statement would be represented as the tree in Figure 6.1:

[image: Figure 6.1: An expression tree of a simple statement adding two numbers]Figure 6.1: An expression tree of a simple statement adding two numbers

Understanding components of expression trees

The System.Linq.Expressions namespace contains types for representing the components of an expression tree. For example:

	Type
	Description

	BinaryExpression
	An expression with a binary operator.

	BlockExpression
	A block containing a sequence of expressions where variables can be defined.

	CatchBlock
	A catch statement in a try block.

	ConditionalExpression
	An expression that has a conditional operator.

	LambdaExpression
	A lambda expression.

	MemberAssignment
	Assigning to a field or property.

	MemberExpression
	Accessing a field or property.

	MethodCallExpression
	A call to a method.

	NewExpression
	A call to a constructor.

Only expression trees that represent lambda expressions can be executed.

Executing the simplest expression tree

Let's see how to construct, compile, and execute an expression tree:

	Use your preferred code editor to add a new Console App / console project named WorkingWithExpressionTrees to the Chapter06 solution/workspace.

	In the project file, statically and globally import the Console class, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

	In Program.cs, delete the existing statements and then define an expression tree and execute it, as shown in the following code:

using System.Linq.Expressions; // Expression and so on
ConstantExpression one = Expression.Constant(1, typeof(int));
ConstantExpression two = Expression.Constant(2, typeof(int));
BinaryExpression add = Expression.Add(one, two);
Expression<Func<int>> expressionTree = Expression.Lambda<Func<int>>(add);
Func<int> compiledTree = expressionTree.Compile();
WriteLine($"Result: {compiledTree()}");

	Run the console app and note the result, as shown in the following output:

Result: 3

Creating source generators

Source generators were introduced with C# 9 and .NET 5. They allow a programmer to get a compilation object that represents all the code being compiled, dynamically generate additional code files, and compile those too. Source generators are like code analyzers that can add more code to the compilation process.

A great example is the System.Text.Json source generator. The classic method for serializing JSON uses reflection at runtime to dynamically analyse an object model but this is slow. The better method uses source generators to create source code that is then compiled to give improved performance.

You can read more about the System.Text.Json source generator at the following link: https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-source-generator/

Implementing the simplest source generator

We will create a source generator that programmatically creates a code file that adds a method to the Program class, as shown in the following code:

// source-generated code
static partial class Program
{
 static partial void Message(string message)
 {
 System.Console.WriteLine($"Generator says: '{message}'");
 }
}

This method can then be called in the Program.cs file of the project that uses this source generator.

Let's see how to do this:

	Use your preferred code editor to add a new Console App / console project named GeneratingCodeApp to the Chapter06 solution/workspace.

	In the project file, statically and globally import the Console class, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

	Add a new class file name Program.Methods.cs.

	In Program.Methods.cs, define a partial Program class with a partial method with a string parameter, as shown in the following code:

partial class Program
{
 static partial void Message(string message);
}

	In Program.cs, delete the existing statements and then call the partial method, as shown in the following code:

Message("Hello from some source generator code.");

	Use your preferred code editor to add a new Class Library / classlib project named GeneratingCodeLib that targets .NET Standard 2.0 to the Chapter06 solution/workspace.

Currently, source generators must target .NET Standard 2.0.

	In the project file, set the C# language version to 10 or later (to support global using statements), statically and globally import the Console class, and add the NuGet packages Microsoft.CodeAnalysis.Analyzers and Microsoft.CodeAnalysis.CSharp, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <LangVersion>10</LangVersion>
 </PropertyGroup>

 <ItemGroup>
 <Using Include="System.Console" Static="true" />
 </ItemGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.CodeAnalysis.Analyzers"
 Version="3.3.3">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
 buildtransitive</IncludeAssets>
 </PackageReference>
 <PackageReference Include="Microsoft.CodeAnalysis.CSharp"
 Version="4.1.0" />
 </ItemGroup>
</Project>

This project does not enable null warnings because the <Nullable>enable</Nullable> element is missing. If you add it, then you will see some null warnings later.

	Build the GeneratingCodeLib project.

	Rename Class1.cs to MessageSourceGenerator.cs.

	In the GeneratingCodeLib project, in MessageSourceGenerator.cs, define a class that implements ISourceGenerator and is decorated with the [Generator] attribute, as shown in the following code:

using Microsoft.CodeAnalysis; // [Generator], GeneratorInitializationContext
 // ISourceGenerator, GeneratorExecutionContext
namespace Packt.Shared;
[Generator]
public class MessageSourceGenerator : ISourceGenerator
{
 public void Execute(GeneratorExecutionContext execContext)
 {
 IMethodSymbol mainMethod = execContext.Compilation
 .GetEntryPoint(execContext.CancellationToken);
 string sourceCode = $@"// source-generated code
static partial class {mainMethod.ContainingType.Name}
{{
 static partial void Message(string message)
 {{
 System.Console.WriteLine($""Generator says: '{{message}}'"");
 }}
}}
";
 string typeName = mainMethod.ContainingType.Name;
 execContext.AddSource($"{typeName}.Methods.g.cs", sourceCode);
 }
 public void Initialize(GeneratorInitializationContext initContext)
 {
 // this source generator does not need any initialization
 }
}

Good Practice: Include .g. or .generated. in the filename of source generated files.

	In the GeneratingCodeApp project, in the project file, add a reference to the class library project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\GeneratingCodeLib\GeneratingCodeLib.csproj"
 OutputItemType="Analyzer"
 ReferenceOutputAssembly="false" />
</ItemGroup>

Good Practice: It is sometimes necessary to restart Visual Studio 2022 to see the results of working with source generators.

	In Visual Studio 2022, build the GeneratingCodeApp project, and note the auto-generated file in Dependencies | Analyzers | GeneratingCodeLib | Packt.Shared.MessageSourceGenerator, as shown in Figure 6.2:

[image: Figure 6.2: The source generated Program.Methods.g.cs file]Figure 6.2: The source generated Program.Methods.g.cs file

Visual Studio Code does not automatically run analyzers. We must add an extra entry in the project file to enable the automatic generation of the source generator file.

	In the GeneratingCodeApp project, in the project file, in the <PropertyGroup>, add an entry to enable the generation of the code file using Visual Studio Code, as shown in the following markup:

<EmitCompilerGeneratedFiles>true</EmitCompilerGeneratedFiles>

	Build the GeneratingCodeApp project.

	In the obj/Debug/net7.0 folder, note the generated folder and its subfolder GeneratingCodeLib/Packt.Shared.MessageSourceGenerator, and the auto-generated file named Program.Methods.g.cs.

	Open the Program.Methods.g.cs file and note its contents, as shown in the following code:

// source-generated code
static partial class Program
{
 static partial void Message(string message)
 {
 System.Console.WriteLine($"Generator says: '{message}'");
 }
}

	Run the console app and note the message, as shown in the following output:

Generator says: 'Hello from some source generator code.'

You can control the path for automatically generated code files by adding a <CompilerGeneratedFilesOutputPath> element.

Doing more with source generators

Source generators are a massive topic.

To learn more, use the following links:

	Source Generators design specification: https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.md

	Source Generators samples: https://github.com/dotnet/roslyn-sdk/tree/main/samples/CSharp/SourceGenerators

	Source Generators cookbook: https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.cookbook.md

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring with deeper research into the topics in this chapter.

Exercise 6.1 – Test your knowledge

Use the web to answer the following questions:

	?

	?

Exercise 6.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-6---controlling-the-roslyn-compiler-reflection-and-expression-trees

Summary

In this chapter, you:

	Reflected on code and attributes.

	Constructed, compiled, and executed a simple expression tree.

	Built a source generator and used it in a console app project.

In the next chapter, we will learn how to work with data stored in Microsoft SQL Server.

7 Handling Dates, Times, and Internationalization

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about some common types that are included with .NET. These include types for manipulating dates and times; and implementing internationalization, which includes globalization and localization.

When writing code to handle times, it is especially important to consider time zones. Bugs are often introduced because two times are compared in different time zones without taking that into account. It is important to understand the concept of Coordinated Universal Time (UTC) and to convert time values into UTC before performing time manipulation. You should also be aware of any Daylight Saving time adjustments that might be needed.

This chapter covers the following topics:

	Working with dates and times

	Working with time zones

	Working with cultures

Working with dates and times

After numbers and text, the next most popular types of data to work with are dates and times. The two main types are as follows:

	DateTime: Represents a combined date and time value for a fixed point in time.

	TimeSpan: Represents a duration of time.

These two types are often used together. For example, if you subtract one DateTime value from another, the result is a TimeSpan. If you add a TimeSpan to a DateTime then the result is a DateTime value.

Specifying date and time values

A common way to create a date and time value is to specify individual values for the date and time components like day and hour, as described in the following table:

	Date/time parameter
	Value range

	year
	1 to 9999

	month
	1 to 12

	day
	1 to the number of days in that month

	hour
	0 to 23

	minute
	0 to 59

	second
	0 to 59

An alternative is to provide the value as a string to be parsed, but this can be misinterpreted depending on the default culture of the thread. For example, in the UK, dates are specified as day/month/year, compared to the US, where dates are specified as month/day/year.

Let's see what you might want to do with dates and times:

	Use your preferred code editor to create a new project, as defined in the following list:

	Project template: Console App / console

	Project file and folder: WorkingWithTime

	Workspace/solution file and folder: Chapter02

	In Visual Studio Code, select WorkingWithTime as the active OmniSharp project.

	In the project file, add an element to statically and globally import the System.Console class.

	Add a new class file named Program.Helpers.cs and modify its contents, as shown in the following code:

partial class Program
{
 static void SectionTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 ForegroundColor = previousColor;
 }
}

	In Program.cs, delete the existing statements and then add statements to initialize some special date/time values, as shown in the following code:

SectionTitle("Specifying date and time values");
WriteLine($"DateTime.MinValue: {DateTime.MinValue}");
WriteLine($"DateTime.MaxValue: {DateTime.MaxValue}");
WriteLine($"DateTime.UnixEpoch: {DateTime.UnixEpoch}");
WriteLine($"DateTime.Now: {DateTime.Now}");
WriteLine($"DateTime.Today: {DateTime.Today}");

	Run the code and note the results, as shown in the following output:

DateTime.MinValue: 01/01/0001 00:00:00
DateTime.MaxValue: 31/12/9999 23:59:59
DateTime.UnixEpoch: 01/01/1970 00:00:00
DateTime.Now: 23/03/2022 13:50:30
DateTime.Today: 23/03/2022 00:00:00

The date and time formats output are determined by the culture settings of your console app; for example, mine uses English (Great Britain) culture. Optionally, to see the same output as mine, add a statement to the top of your Program.cs, as shown in the following code:

Thread.CurrentThread.CurrentCulture = System.Globalization.CultureInfo.GetCultureInfo("en-GB");

Formatting date and time values

You have just seen that dates and times have default formats based on the current culture. You can take control of date and time formatting using custom format codes:

	Add statements to define Christmas Day in 2024 and display it in various ways, as shown in the following code:

DateTime xmas = new(year: 2024, month: 12, day: 25);
WriteLine($"Christmas (default format): {xmas}");
WriteLine($"Christmas (custom format): {xmas:dddd, dd MMMM yyyy}");
WriteLine($"Christmas is in month {xmas.Month} of the year.");
WriteLine($"Christmas is day {xmas.DayOfYear} of the year 2024.");
WriteLine($"Christmas {xmas.Year} is on a {xmas.DayOfWeek}.");

	Run the code and note the results, as shown in the following output:

Christmas (default format): 25/12/2024 00:00:00
Christmas (custom format): Wednesday, 25 December 2024
Christmas is in month 12 of the year.
Christmas is day 360 of the year 2024.
Christmas 2024 is on a Wednesday.

Date and time calculations

Now, let's try performing simple calculations on date and time values:

	Add statements to perform addition and subtraction with Christmas 2024, as shown in the following code:

SectionTitle("Date and time calculations");
DateTime beforeXmas = xmas.Subtract(TimeSpan.FromDays(12));
DateTime afterXmas = xmas.AddDays(12);
// :d means format as short date only without time
WriteLine($"12 days before Christmas: {beforeXmas:d}");
WriteLine($"12 days after Christmas: {afterXmas:d}");
TimeSpan untilXmas = xmas - DateTime.Now;
WriteLine($"Now: {DateTime.Now}");
WriteLine("There are {0} days and {1} hours until Christmas 2024.",
 arg0: untilXmas.Days, arg1: untilXmas.Hours);
WriteLine("There are {0:N0} hours until Christmas 2024.",
 arg0: untilXmas.TotalHours);

	Run the code and note the results, as shown in the following output:

12 days before Christmas: 13/12/2024
12 days after Christmas: 06/01/2025
Now: 23/03/2022 16:16:02
There are 1007 days and 7 hours until Christmas 2024.
There are 24,176 hours until Christmas 2024.

	Add statements to define the time on Christmas Day that your children (or dog? Or cat? Or iguana?) might wake up to open presents, and display it in various ways, as shown in the following code:

DateTime kidsWakeUp = new(
 year: 2024, month: 12, day: 25,
 hour: 6, minute: 30, second: 0);
WriteLine($"Kids wake up: {kidsWakeUp}");
WriteLine("The kids woke me up at {0}",
 arg0: kidsWakeUp.ToShortTimeString());

	Run the code and note the results, as shown in the following output:

Kids wake up: 25/12/2024 06:30:00
The kids woke me up at 06:30

Globalization with dates and times

The current culture controls how dates and times are formatted and parsed:

	At the top of Program.cs, import the namespace for working with globalization, as shown in the following code:

using System.Globalization; // CultureInfo

	Add statements to show the current culture that is used to display date and time values, and then parse United States Independence Day and display it in various ways, as shown in the following code:

SectionTitle("Globalization with dates and times");
// same as Thread.CurrentThread.CurrentCulture
WriteLine($"Current culture is: {CultureInfo.CurrentCulture.Name}");
string textDate = "4 July 2024";
DateTime independenceDay = DateTime.Parse(textDate);
WriteLine($"Text: {textDate}, DateTime: {independenceDay:d MMMM}");
textDate = "7/4/2024";
independenceDay = DateTime.Parse(textDate);
WriteLine($"Text: {textDate}, DateTime: {independenceDay:d MMMM}");
independenceDay = DateTime.Parse(textDate,
 provider: CultureInfo.GetCultureInfo("en-US"));
WriteLine($"Text: {textDate}, DateTime: {independenceDay:d MMMM}");

Good Practice: Although you can create a CultureInfo instance using its constructor, unless you need to make changes to it, you should get a read-only shared instance by calling the GetCultureInfo method.

	Run the code and note the results, as shown in the following output:

Current culture is: en-GB
Text: 4 July 2024, DateTime: 4 July
Text: 7/4/2024, DateTime: 7 April
Text: 7/4/2024, DateTime: 4 July

On my computer, the current culture is English (Great Britain). If a date is given as 4 July 2021, then it is correctly parsed regardless of whether the current culture is British or American. But if the date is given as 7/4/2024, then it is wrongly parsed as 7 April. You can override the current culture by specifying the correct culture as a provider when parsing, as shown in the third example above.

	Add statements to loop from the year 2022 to 2028, displaying if the year is a leap year and how many days there are in February, and then show if Christmas and Independence Day are during daylight saving time, as shown in the following code:

for (int year = 2022; year <= 2028; year++)
{
 Write($"{year} is a leap year: {DateTime.IsLeapYear(year)}. ");
 WriteLine("There are {0} days in February {1}.",
 arg0: DateTime.DaysInMonth(year: year, month: 2), arg1: year);
}
WriteLine("Is Christmas daylight saving time? {0}",
 arg0: xmas.IsDaylightSavingTime());
WriteLine("Is July 4th daylight saving time? {0}",
 arg0: independenceDay.IsDaylightSavingTime());

	Run the code and note the results, as shown in the following output:

2022 is a leap year: False. There are 28 days in February 2022.
2023 is a leap year: False. There are 28 days in February 2023.
2024 is a leap year: True. There are 29 days in February 2024.
2025 is a leap year: False. There are 28 days in February 2025.
2026 is a leap year: False. There are 28 days in February 2026.
2027 is a leap year: False. There are 28 days in February 2027.
2028 is a leap year: True. There are 29 days in February 2028.
Is Christmas daylight saving time? False
Is July 4th daylight saving time? True

Daylight Saving time is not used in all countries; it is also determined by hemisphere, and politics plays a role. For example, the United States is currently debating if they should make Daylight Saving time permanent. They might decide to leave the decision up to individual states. It could all get extra confusing for Americans over the next few years.

Working with only a date or a time

.NET 6 introduced some new types for working with only a date value or only a time value, named DateOnly and TimeOnly.

These are better than using a DateTime value with a zero time to store a date-only value because it is type-safe and avoids misuse. DateOnly also maps better to database column types, for example, a date column in SQL Server. TimeOnly is good for setting alarms and scheduling regular meetings or the opening hours for an organization, and it maps to a time column in SQL Server.

Let's use them to plan a party for the Queen of England for her Platinum Jubilee (70 years of service):

	Add statements to define the Queen's Platinum Jubilee party, and a time for it to start, and then combine the two values to make a calendar entry so we don't miss her party, as shown in the following code:

SectionTitle("Working with only a date or a time");
DateOnly jubilee = new(year: 2022, month: 6, day: 4);
WriteLine($"The Queen's Platinum Jubilee is on {jubilee.ToLongDateString()}.");
TimeOnly partyStarts = new(hour: 16, minute: 30);
WriteLine($"The Queen's party starts at {partyStarts}.");
DateTime calendarEntry = jubilee.ToDateTime(partyStarts);
WriteLine($"Add to your calendar: {calendarEntry}.");

	Run the code and note the results, as shown in the following output:

The Queen's Platinum Jubilee is on Saturday, 4 June 2022.
The Queen's party starts at 16:30.
Add to your calendar: 04/06/2022 16:30:00.

Working with time zones

In the code example about the Queen's Jubilee party, using a TimeOnly was not actually a good idea because the time-only value does not include information about time zone. It is only useful if you are in the correct time zone. TimeOnly is therefore a poor choice for an event. For events, we need to understand and handle time zones.

Understanding DateTime and TimeZoneInfo

The DateTime class has many useful members related to time zones, as shown in the following table:

	Member
	Description

	Now property
	A DateTime value that represents the current date and time in the local time zone.

	UtcNow property
	A DateTime value that represents the current date and time in the UTC time zone.

	Kind property
	A DateTimeKind value that represents if the DateTime value is Unspecified , Utc , or Local .

	IsDaylightSavingTime method
	A bool that indicates if the DateTime value is during Daylight Saving time.

	ToLocalTime method
	Converts a UTC DateTime value to the equivalent local time.

	ToUniversalTime method
	Converts a local DateTime value to the equivalent UTC time.

The TimeZoneInfo class has many useful members, as shown in the following table:

	Member
	Description

	Id property
	A string that uniquely identifies the time zone.

	Local property
	A TimeZoneInfo value that represents the current local time zone. Varies depending on where the code executes.

	Utc property
	A TimeZoneInfo value that represents the UTC time zone.

	StandardName property
	A string for the name of the time zone when Daylight Saving is not active.

	DaylightName property
	A string for the name of the time zone when Daylight Saving is active.

	DisplayName property
	A string for the general name of the time zone.

	BaseUtcOffset property
	A TimeSpan that represents the difference between this time zone and the UTC time zone, ignoring any potential Daylight Saving adjustments.

	SupportsDaylightSavingTime property
	A bool that indicates if this time zone has Daylight Saving adjustments.

	ConvertTime method
	Converts a DateTime value to another DateTime value in a different time zone. You can specific the source and destination time zones.

	ConvertTimeFromUtc method
	Converts a DateTime value in the UTC time zone to a DateTime value in a specified time zone.

	ConvertTimeToUtc method
	Converts a DateTime value in a specified time zone to a DateTime value in the UTC time zone.

	IsDaylightSavingTime method
	Returns a bool indicating if the DateTime value is in Daylight Saving.

	GetSystemTimeZones method
	Returns a collection of time zones registered with the operating system.

Exploring DateTime and TimeZoneInfo

Use the TimeZoneInfo class to work with time zones:

	Use your preferred code editor to add a new console app named WorkingWithTimeZones to the Chapter02 solution/workspace.

	In Visual Studio 2022, set the Startup Project to Current selection.

	In Visual Studio Code, select WorkingWithTimeZones as the active OmniSharp project.

	Statically and globally import the System.Console class.

	Add a new class file named Program.Helpers.cs.

	Modify its contents to define some helper methods to output a section title in a visually different way, output a list of all time zones in the current system, and output details about a DateTime or TimeZoneInfo object, as shown in the following code:

using System.Collections.ObjectModel; // ReadOnlyCollection<T>
partial class Program
{
 static void SectionTitle(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 ForegroundColor = previousColor;
 }
 static void OutputTimeZones()
 {
 // get the time zones registered with the OS
 ReadOnlyCollection<TimeZoneInfo> zones =
 TimeZoneInfo.GetSystemTimeZones();
 WriteLine("*");
 WriteLine($"* {zones.Count} time zones:");
 WriteLine("*");
 // order the time zones by Id instead of DisplayName
 foreach (TimeZoneInfo zone in zones.OrderBy(z => z.Id))
 {
 WriteLine($"{zone.Id}");
 }
 }
 static void OutputDateTime(DateTime dateTime, string title)
 {
 SectionTitle(title);
 WriteLine($"Value: {dateTime}");
 WriteLine($"Kind: {dateTime.Kind}");
 WriteLine($"IsDaylightSavingTime: {dateTime.IsDaylightSavingTime()}");
 WriteLine($"ToLocalTime(): {dateTime.ToLocalTime()}");
 WriteLine($"ToUniversalTime(): {dateTime.ToUniversalTime()}");
 }
 static void OutputTimeZone(TimeZoneInfo zone, string title)
 {
 SectionTitle(title);
 WriteLine($"Id: {zone.Id}");
 WriteLine("IsDaylightSavingTime(DateTime.Now): {0}",
 zone.IsDaylightSavingTime(DateTime.Now));
 WriteLine($"StandardName: {zone.StandardName}");
 WriteLine($"DaylightName: {zone.DaylightName}");
 WriteLine($"BaseUtcOffset: {zone.BaseUtcOffset}");
 }
 static string GetCurrentZoneName(TimeZoneInfo zone, DateTime when)
 {
 // time zone names change if Daylight Saving time is active
 // e.g. GMT Standard Time becomes GMT Summer Time
 return zone.IsDaylightSavingTime(when) ?
 zone.DaylightName : zone.StandardName;
 }
}

	In Program.cs, delete the existing statements. Add statements to output the current date and time in the local and UTC time zones, and then output details about the local and UTC time zones, as shown in the following code:

OutputTimeZones();
OutputDateTime(DateTime.Now, "DateTime.Now");
OutputDateTime(DateTime.UtcNow, "DateTime.UtcNow");
OutputTimeZone(TimeZoneInfo.Local, "TimeZoneInfo.Local");
OutputTimeZone(TimeZoneInfo.Utc, "TimeZoneInfo.Utc");

	Run the console app and note the results, including the times zones registered on your operating system (there are 141 on my Windows 11 laptop), and that it is currently 4:17pm on 31st May 2022 in England, meaning I am in the GMT Standard Time zone. However, because Daylight Saving time is active, it is currently known as GMT Summer Time, which is one hour ahead of UTC, as shown in the following output:

*
* 141 time zones:
*
Afghanistan Standard Time
Alaskan Standard Time
...
West Pacific Standard Time
Yakutsk Standard Time
Yukon Standard Time
*
* DateTime.Now
*
Value: 31/05/2022 16:17:03
Kind: Local
IsDaylightSavingTime: True
ToLocalTime(): 31/05/2022 16:17:03
ToUniversalTime(): 31/05/2022 15:17:03
*
* DateTime.UtcNow
*
Value: 31/05/2022 15:17:03
Kind: Utc
IsDaylightSavingTime: False
ToLocalTime(): 31/05/2022 16:17:03
ToUniversalTime(): 31/05/2022 15:17:03
*
* TimeZoneInfo.Local
*
Id: GMT Standard Time
IsDaylightSavingTime(DateTime.Now): True
StandardName: GMT Standard Time
DaylightName: GMT Summer Time
BaseUtcOffset: 00:00:00
*
* TimeZoneInfo.Utc
*
Id: UTC
IsDaylightSavingTime(DateTime.Now): False
StandardName: Coordinated Universal Time
DaylightName: Coordinated Universal Time
BaseUtcOffset: 00:00:00

The BaseUtcOffset of the GMT Standard Time zone is zero because normally Daylight Saving is not active. That is why it is prefixed Base.

	In Program.cs, add statements to prompt the user to enter a time zone (using Eastern Standard Time as a default), get that time zone, output details about it, and then compare a time entered by the user with the equivalent time in the other time zone, and catch potential exceptions, as shown in the following code:

Write("Enter a time zone or press Enter for US East Coast: ");
string zoneId = ReadLine()!;
if (string.IsNullOrEmpty(zoneId))
{
 zoneId = "Eastern Standard Time";
}
try
{
 TimeZoneInfo otherZone = TimeZoneInfo.FindSystemTimeZoneById(zoneId);
 OutputTimeZone(otherZone,
 $"TimeZoneInfo.FindSystemTimeZoneById(\"{zoneId}\")");
 SectionTitle($"What's the time in {zoneId}?");
 Write("Enter a local time or press Enter for now: ");
 string? timeText = ReadLine();
 DateTime localTime;
 if ((string.IsNullOrEmpty(timeText)) ||
 (!DateTime.TryParse(timeText, out localTime)))
 {
 localTime = DateTime.Now;
 }
 DateTime otherZoneTime = TimeZoneInfo.ConvertTime(
 dateTime: localTime, sourceTimeZone: TimeZoneInfo.Local,
 destinationTimeZone: otherZone);
 WriteLine("{0} {1} is {2} {3}.",
 localTime, GetCurrentZoneName(TimeZoneInfo.Local, localTime),
 otherZoneTime, GetCurrentZoneName(otherZone, otherZoneTime));
}
catch (TimeZoneNotFoundException)
{
 WriteLine($"The {zoneId} zone cannot be found on the local system.");
}
catch (InvalidTimeZoneException)
{
 WriteLine($"The {zoneId} zone contains invalid or missing data.");
}
catch (System.Security.SecurityException)
{
 WriteLine("The application does not have permission to read time zone information.");
}
catch (OutOfMemoryException)
{
 WriteLine($"Not enough memory is available to load information on the {zoneId} zone.");
}

	Run the console app, press Enter for US East Coast, and then enter 12:30pm for the local time, and note the results, as shown in the following output:

Enter a time zone or press Enter for US East Coast:
*
* TimeZoneInfo.FindSystemTimeZoneById("Eastern Standard Time")
*
Id: Eastern Standard Time
IsDaylightSavingTime(DateTime.Now): True
StandardName: Eastern Standard Time
DaylightName: Eastern Summer Time
BaseUtcOffset: -05:00:00
*
* What's the time in Eastern Standard Time?
*
Enter a local time or press Enter for now: 12:30pm
31/05/2022 12:30:00 GMT Summer Time is 31/05/2022 07:30:00 Eastern Summer Time.

My local time zone is GMT Standard Time so there is currently a five-hour time difference between me and the US East Coast. Your local time zone will be different.

	Run the console app, copy one of the time zones to the clipboard and paste it at the prompt, and then press Enter for the local time. Note the results, as shown in the following output:

Enter a time zone or press Enter for US East Coast: AUS Eastern Standard Time
*
* TimeZoneInfo.FindSystemTimeZoneById("AUS Eastern Standard Time")
*
Id: AUS Eastern Standard Time
IsDaylightSavingTime(DateTime.Now): False
StandardName: AUS Eastern Standard Time
DaylightName: AUS Eastern Summer Time
BaseUtcOffset: 10:00:00
*
* What's the time in AUS Eastern Standard Time?
*
Enter a local time or press Enter for now:
31/05/2022 17:00:04 GMT Summer Time is 01/06/2022 02:00:04 AUS Eastern Standard Time.

Sydney, Australia, is currently nine hours ahead, so at 5pm for me, it is 2am on the following day for them.

Working with cultures

Internationalization is the process of enabling your code to correctly run all over the world. It has two parts, globalization and localization, and both of them are about working with cultures.

Globalization is about writing your code to accommodate multiple languages and region combinations. The combination of a language and a region is known as a culture. It is important for your code to know both the language and region because, for example, the date and currency formats are different in Quebec and Paris, despite them both using the French language.

There are International Organization for Standardization (ISO) codes for all culture combinations. For example, in the code da-DK, da indicates the Danish language and DK indicates the Denmark region, and in the code fr-CA, fr indicates the French language and CA indicates the Canada region.

ISO is not an acronym. ISO is a reference to the Greek word isos (which means equal). You can see a list of ISO culture codes at the following link: https://lonewolfonline.net/list-net-culture-country-codes/

Localization is about customizing the user interface to support a language, for example, changing the label of a button to be Close (en) or Fermer (fr). Since localization is more about the language, it doesn't always need to know about the region, although ironically enough, standardization (en-US) and standardisation (en-GB) suggest otherwise.

Good Practice: I am not a professional translator of software user interfaces, so take all examples in this chapter as general guidance. My research into French user interface labeling common practice led me to the following links, but it would be best to hire a professional if you are not a native language speaker: https://french.stackexchange.com/questions/12969/translation-of-it-terms-like-close-next-search-etc and https://www.linguee.com/english-french/translation/close+button.html.

Detecting and changing the current culture

Internationalization is a huge topic on which thousand-page books have been written. In this section, you will get a brief introduction to the basics using the CultureInfo and RegionInfo types in the System.Globalization namespace.

Let's write some code:

	Use your preferred code editor to add a new console app named WorkingWithCultures to the Chapter02 solution/workspace.

	In Visual Studio Code, select WorkingWithCultures as the active OmniSharp project.

	In the project file, statically and globally import the System.Console class and globally import the System.Globalization namespace so that we can use the CultureInfo class, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
 <Using Include="System.Globalization" />
</ItemGroup>

	Add a new class file named Program.Helpers.cs, and modify its contents to add a method to the partial Program class that will output information about the cultures used for globalization and localization, as shown in the following code:

partial class Program
{
 static void OutputCultures(string title)
 {
 ConsoleColor previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkYellow;
 WriteLine("*");
 WriteLine($"* {title}");
 WriteLine("*");
 // get the cultures from the current thread
 CultureInfo globalization = CultureInfo.CurrentCulture;
 CultureInfo localization = CultureInfo.CurrentUICulture;
 WriteLine("The current globalization culture is {0}: {1}",
 globalization.Name, globalization.DisplayName);
 WriteLine("The current localization culture is {0}: {1}",
 localization.Name, localization.DisplayName);
 WriteLine("Days of the week: {0}",
 string.Join(", ", globalization.DateTimeFormat.DayNames));
 WriteLine("Months of the year: {0}",
 string.Join(", ", globalization.DateTimeFormat.MonthNames
 // some calendars have 13 months; most have 12 and the last is empty
 .TakeWhile(month => !string.IsNullOrEmpty(month))));
 WriteLine("1st day of this year: {0}",
 new DateTime(year: DateTime.Today.Year, month: 1, day: 1)
 .ToString("D", globalization));
 WriteLine("Number group separator: {0}",
 globalization.NumberFormat.NumberGroupSeparator);
 WriteLine("Number decimal separator: {0}",
 globalization.NumberFormat.NumberDecimalSeparator);
 RegionInfo region = new RegionInfo(globalization.LCID);
 WriteLine("Currency symbol: {0}", region.CurrencySymbol);
 WriteLine("Currency name: {0} ({1})",
 region.CurrencyNativeName, region.CurrencyEnglishName);
 WriteLine("IsMetric: {0}", region.IsMetric);
 WriteLine();
 ForegroundColor = previousColor;
 }
}

	In Program.cs, delete the existing statements and add statements to set the output encoding of the Console to support Unicode. Then output information about the globalization and localization cultures. Then, prompt the user to enter a new culture code and show how that affects the formatting of common values such as dates and currency, as shown in the following code:

// to enable special characters like €
OutputEncoding = System.Text.Encoding.Unicode;
OutputCultures("Current culture");
WriteLine("Example ISO culture codes:");
WriteLine(" da-DK: Danish (Denmark)");
WriteLine(" en-GB: English (United Kingdom)");
WriteLine(" en-US: English (United States)");
WriteLine(" fa-IR: Persian (Iran)");
WriteLine(" fr-CA: French (Canada)");
WriteLine(" fr-FR: French (France)");
WriteLine(" he-IL: Hebrew (Israel)");
WriteLine(" pl-PL: Polish (Poland)");
WriteLine();
Write("Enter an ISO culture code: ");
string? cultureCode = ReadLine();
if (string.IsNullOrWhiteSpace(cultureCode))
{
 cultureCode = "en-US";
}
CultureInfo ci;
try
{
 ci = CultureInfo.GetCultureInfo(cultureCode);
}
catch (CultureNotFoundException)
{
 WriteLine($"Culture code not found: {cultureCode}");
 WriteLine("Exiting the app.");
 return;
}
// change the current cultures on the thread
CultureInfo.CurrentCulture = ci;
CultureInfo.CurrentUICulture = ci;
OutputCultures("After changing the current culture");
Write("Enter your name: ");
string? name = ReadLine();
if (string.IsNullOrWhiteSpace(name))
{
 name = "Bob";
}
Write("Enter your date of birth: ");
string? dobText = ReadLine();
if (string.IsNullOrWhiteSpace(dobText))
{
 // if they do not enter a DOB then use
 // sensible defaults for their culture
 dobText = ci.Name switch
 {
 "en-US" or "fr-CA" => "1/27/1990",
 "da-DK" or "fr-FR" or "pl-PL" => "27/1/1990",
 "fa-IR" => "1990/1/27",
 _ => "1/27/1990"
 };
}
Write("Enter your salary: ");
string? salaryText = ReadLine();
if (string.IsNullOrWhiteSpace(salaryText))
{
 salaryText = "34500";
}
DateTime dob = DateTime.Parse(dobText);
int minutes = (int)DateTime.Today.Subtract(dob).TotalMinutes;
decimal salary = decimal.Parse(salaryText);
WriteLine(
 "{0} was born on a {1:dddd}. {0} is {2:N0} minutes old. {0} earns {3:C}.",
 name, dob, minutes, salary);

When you run an application, it automatically sets its thread to use the culture of the operating system. I am running my code in London, UK, so the thread is set to English (Great Britain).

The code prompts the user to enter an alternative ISO code. This allows your applications to replace the default culture at runtime.

The application then uses standard format codes to output the day of the week using format code dddd; the number of minutes with thousand separators using format code N0; and the salary with the currency symbol. These adapt automatically, based on the thread's culture.

	Run the code and enter en-US for the ISO code (or press Enter) and then enter some sample data including a date in a format valid for US English, as shown in the following output:

*
* Current culture
*
The current globalization culture is en-GB: English (United Kingdom)
The current localization culture is en-GB: English (United Kingdom)
Days of the week: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
Months of the year: January, February, March, April, May, June, July, August, September, October, November, December
1st day of this year: 01 January 2022
Number group separator: ,
Number decimal separator: .
Currency symbol: £
Currency name: British Pound (British Pound)
IsMetric: True
Example ISO culture codes:
 da-DK: Danish (Denmark)
 en-GB: English (United Kingdom)
 en-US: English (United States)
 fa-IR: Persian (Iran)
 fr-CA: French (Canada)
 fr-FR: French (France)
 he-IL: Hebrew (Israel)
 pl-PL: Polish (Poland)
Enter an ISO culture code: en-US
*
* After changing the current culture
*
The current globalization culture is en-US: English (United States)
The current localization culture is en-US: English (United States)
Days of the week: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
Months of the year: January, February, March, April, May, June, July, August, September, October, November, December
1st day of this year: Saturday, January 1, 2022
Number group separator: ,
Number decimal separator: .
Currency symbol: $
Currency name: US Dollar (US Dollar)
IsMetric: False
Enter your name: Alice
Enter your date of birth: 3/30/1967
Enter your salary: 34500
Alice was born on a Thursday. Alice is 28,938,240 minutes old. Alice earns $34,500.00

	Run the code again and try Danish in Denmark (da-DK), as shown in the following output:

Enter an ISO culture code: da-DK
*
* After changing the current culture
*
The current globalization culture is da-DK: dansk (Danmark)
The current localization culture is da-DK: dansk (Danmark)
Days of the week: søndag, mandag, tirsdag, onsdag, torsdag, fredag, lørdag
Months of the year: januar, februar, marts, april, maj, juni, juli, august, september, oktober, november, december
1st day of this year: lørdag den 1. januar 2022
Number group separator: .
Number decimal separator: ,
Currency symbol: kr.
Currency name: dansk krone (Danish Krone)
IsMetric: True
Enter your name: Mikkel
Enter your date of birth: 16/3/1980
Enter your salary: 65000
Mikkel was born on a søndag. Mikkel is 22.119.840 minutes old. Mikkel earns 65.000,00 kr.

In this example, only the date and salary are globalized into Danish. The rest of the text is hardcoded as English. Later we will translate those English text into the other languages. For now, let’s see some other differences between cultures:

	Run the code again and try Polish in Poland (pl-PL), and note the grammar rules in Polish make the day number possessive for the month name, so the month styczeń becomes stycznia, as shown in the following output:

The current globalization culture is pl-PL: polski (Polska)
...
Months of the year: styczeń, luty, marzec, kwiecień, maj, czerwiec, lipiec, sierpień, wrzesień, październik, listopad, grudzień
1st day of this year: sobota, 1 stycznia 2022
...
Enter your name: Bob
Enter your date of birth: 1972/4/16
Enter your salary: 50000
Bob was born on a niedziela. Bob is 26 398 080 minutes old. Bob earns 50 000,00 zł.

	Run the code again and try Persian in Iran (fa-IR), and note that dates in Iran must be specified as year/month/day, and that this year (2022) is the year 1400 in the Persian calendar, as shown in the following output:

The current globalization culture is fa-IR: فارسی (ایران)
The current localization culture is fa-IR: فارسی (ایران)
Days of the week: یکشنبه, دوشنبه, سهشنبه, چهارشنبه, پنجشنبه, جمعه, شنبه
Months of the year: فروردین, اردیبهشت, خرداد, تیر, مرداد, شهریور, مهر, آبان, آذر, دی, بهمن, اسفند
1st day of this year: 1400 دی 11, شنبه
Number group separator: ٬
Number decimal separator: ٫
Currency symbol: ریال
Currency name: ریال ایران (Iranian Rial)
IsMetric: True
Enter your name: Cyrus
Enter your date of birth: 1372/4/16
Enter your salary: 50000
Cyrus was born on a در. Cyrus is 15٬242٬400 minutes old. Cyrus earns 50٬000.

Although I tried to confirm with a Persian reader if this example is correct, due to factors like right-to-left languages being tricky to work with in console apps and copy/paste from a console window into a word processor, I apologize in advance to my Persian readers if this example is all messed up!

Now let's see how to translate text from one language to another so the label prompts are in the correct language for the current culture.

Localizing your user interface

A localized application is divided into two parts:

	An assembly containing code that is the same for all locales and contains resources for when no other resource file is found.

	One or more assemblies that contain the user interface resources that are different for different locales. These are known as satellite assemblies.

This model allows the initial application to be deployed with default invariant resources and, over time, additional satellite assemblies can be deployed as the resources are translated.

User interface resources include any text for messages, logs, dialog boxes, buttons, labels, or even filenames of images, videos, and so on. Resource files are XML files with the .resx extension. The filename includes a culture code. For example, PacktResources.en-GB.resx or PacktResources.da-DK.resx.

The automatic culture fallback search path for resources goes from specific culture (language and region) to neutral culture (language only) to invariant culture (supposed to be independent but basically US English). If the current thread culture is en-AU (Australian English) then it will search for the resource file in the following order:

	Australian English: PacktResources.en-AU.resx

	Neutral English: PacktResources.en.resx

	Invariant: PacktResources.resx

Defining and loading resources

To load resources from these satellite assemblies, we use some standard .NET types named IStringLocalizer<T> and IStringLocalizerFactory. Implementations of these are loaded from the .NET generic host as dependency services.

	In the WorkingWithCultures project, add package references to Microsoft extensions for working with generic hosting and localization, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Hosting"
 Version="7.0.0" />
 <PackageReference Include="Microsoft.Extensions.Localization"
 Version="7.0.0" />
</ItemGroup>

	Build the WorkingWithCultures project to restore packages.

	In the project folder, create a new folder named Resources.

	In the Resources folder, add a new XML file named PacktResources.resx, and modify the contents to contain default invariant language resources (usually equivalent to US English), as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>Enter your date of birth: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>Enter your name: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>Enter your salary: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} was born on a {1:dddd}. {0} is {2:N0} minutes old. {0} earns {3:C}.</value>
 </data>
</root>

	In the WorkingWithCultures project folder, add a new class file named PacktResources.cs that will load text resources for the user interface, as shown in the following code:

using Microsoft.Extensions.Localization; // IStringLocalizer, LocalizedString
public class PacktResources
{
 private readonly IStringLocalizer<PacktResources> localizer = null!;
 public PacktResources(IStringLocalizer<PacktResources> localizer)
 {
 this.localizer = localizer;
 }
 public string? GetEnterYourNamePrompt()
 {
 string resourceStringName = "EnterYourName";
 // 1. get the LocalizedString object
 LocalizedString localizedString = localizer[resourceStringName];
 // 2. check if the resource string was found
 if (localizedString.ResourceNotFound)
 {
 return $"Error: resource string \"{resourceStringName}\" not found."
 + $"\nSearch path: {localizedString.SearchedLocation}"
 + $"\n{localizedString}";
 }
 // 3. return the found resource string
 return localizedString;
 }
 public string? GetEnterYourDobPrompt()
 {
 // LocalizedString has an implicit cast to string
 // that falls back to the key if the resource string is not found
 return localizer["EnterYourDob"];
 }
 public string? GetEnterYourSalaryPrompt()
 {
 return localizer["EnterYourSalary"];
 }
 public string? GetPersonDetails(
 string name, DateTime dob, int minutes, decimal salary)
 {
 return localizer["PersonDetails", name, dob, minutes, salary];
 }
}

For the GetEnterYourNamePrompt method, I broke the implementation down into steps to get useful information like checking if the resource string is found and showing the search path if not. The other method implementations use a simplified fallback to the key name for the resource string if they are not found.

	In Program.cs, at the top, import the namespaces for working with hosting and dependency injection, and then configure a host that enables localization and the PacktResources service, as shown in the following code:

using Microsoft.Extensions.Hosting; // IHost, Host
// AddLocalization, AddTransient<T>
using Microsoft.Extensions.DependencyInjection;
using IHost host = Host.CreateDefaultBuilder(args)
 .ConfigureServices(services =>
 {
 services.AddLocalization(options =>
 {
 options.ResourcesPath = "Resources";
 });
 services.AddTransient<PacktResources>();
 })
 .Build();

Good Practice: By default, ResourcesPath is an empty string, meaning it looks for .resx files in the current directory. We are going to make the project tidier by putting resources into a subfolder.

	After changing the current culture, add a statement to get the PacktResources service and use it to output localized prompts for the user to enter their name, date of birth, and salary, and then output their details, as shown highlighted in the following code:

OutputCultures("After changing the current culture");
PacktResources resources =
 host.Services.GetRequiredService<PacktResources>();
Write(resources.GetEnterYourNamePrompt());
string? name = ReadLine();
if (string.IsNullOrWhiteSpace(name))
{
 name = "Bob";
}
Write(resources.GetEnterYourDobPrompt());
string? dobText = ReadLine();
if (string.IsNullOrWhiteSpace(dobText))
{
 // if they do not enter a DOB then use
 // sensible defaults for their culture
 dobText = ci.Name switch
 {
 "en-US" or "fr-CA" => "1/27/1990",
 "da-DK" or "fr-FR" or "pl-PL" => "27/1/1990",
 "fa-IR" => "1990/1/27",
 _ => "1/27/1990"
 };
}
Write(resources.GetEnterYourSalaryPrompt());
string? salaryText = ReadLine();
if (string.IsNullOrWhiteSpace(salaryText))
{
 salaryText = "34500";
}
DateTime dob = DateTime.Parse(dobText);
int minutes = (int)DateTime.Today.Subtract(dob).TotalMinutes;
decimal salary = decimal.Parse(salaryText);
WriteLine(resources.GetPersonDetails(name, dob, minutes, salary));

Testing globalization and localization

Now we can run the console app and see the resources being loaded:

	Run the console app and enter da-DK for the ISO code. Note that the prompts are in US English because we currently only have invariant culture resources.

To save time and to make sure you have the correct structure, you can copy, paste, and rename the .resx files instead of creating empty new ones.

	In the Resources folder, add a new XML file named PacktResources.da.resx, and modify the contents to contain non-region-specific Danish language resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>Indtast din fødselsdato: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>Indtast dit navn: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>Indtast din løn: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} blev født på en {1:dddd}. {0} er {2:N0} minutter gammel. {0} tjener {3:C}.</value>
 </data>
</root>

	In the Resources folder, add a new XML file named PacktResources.fr.resx, and modify the contents to contain non-region-specific French language resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>Entrez votre date de naissance: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>Entrez votre nom: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>Entrez votre salaire: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} est né un {1:dddd}. {0} a {2:N0} minutes. {0} gagne {3:C}.</value>
 </data>
</root>

	In the Resources folder, add a new XML file named PacktResources.fr-CA.resx, and modify the contents to contain French language in Canada region resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>Entrez votre date de naissance / Enter your date of birth: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>Entrez votre nom / Enter your name: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>Entrez votre salaire / Enter your salary: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} est né un {1:dddd}. {0} a {2:N0} minutes. {0} gagne {3:C}.</value>
 </data>
</root>

	In the Resources folder, add a new XML file named PacktResources.pl-PL.resx, and modify the contents to contain Polish language in Poland region resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>Wpisz swoją datę urodzenia: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>Wpisz swoje imię i nazwisko: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>Wpisz swoje wynagrodzenie: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} urodził się na {1:dddd}. {0} ma {2:N0} minut. {0} zarabia {3:C}.</value>
 </data>
</root>

	In the Resources folder, add a new XML file named PacktResources.fa-IR.resx, and modify the contents to contain Farsi language in Iranian region resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="EnterYourDob" xml:space="preserve">
 <value>تاریخ تولد خود را وارد کنید / Enter your date of birth: </value>
 </data>
 <data name="EnterYourName" xml:space="preserve">
 <value>اسمت را وارد کن / Enter your name: </value>
 </data>
 <data name="EnterYourSalary" xml:space="preserve">
 <value>حقوق خود را وارد کنید / Enter your salary: </value>
 </data>
 <data name="PersonDetails" xml:space="preserve">
 <value>{0} در {1:dddd}به دنیا آمد. {0} {2:N0} دقیقه است. {0} {3:C}.</value>
 </data>
</root>

	Run the code and enter da-DK for the ISO code. Note that the prompts are in Danish, as shown in the following output:

The current localization culture is da-DK: dansk (Danmark)
...
Indtast dit navn: Bob
Indtast din fødselsdato: 3/4/1987
Indtast din løn: 45449
Bob blev født på en fredag. Bob er 18.413.280 minutter gammel. Bob tjener 45.449,00 kr.

	Run the code and enter fr-FR for the ISO code. Note that the prompts are in French only, as shown in the following output:

The current localization culture is fr-FR: français (France)
...
Entrez votre nom: Monique
Entrez votre date de naissance: 2/12/1990
Entrez votre salaire: 45000
Monique est né un Dimanche. Monique a 16 485 120 minutes. Monique gagne 45 000,00 €.

	Run the code and enter fr-CA for the ISO code. Note that the prompts are in French and English because Canada might have a requirement to support both as official languages, as shown in the following output:

The current localization culture is fr-CA: français (Canada)
...
Entrez votre nom / Enter your name: Sophie
Entrez votre date de naissance / Enter your date of birth: 4/5/2001
Entrez votre salaire / Enter your salary: 65000
Sophie est né un jeudi. Sophie a 11 046 240 minutes. Sophie gagne 65 000,00 $ CA.

	Run the code and enter fa-IR for the ISO code. Note that the prompts are in Persian/Farsi and English, and there is the additional complication of a right-to-left language, as shown in the following output:

The current localization culture is fa-IR: فارسی (ایران)
...
اسمت را وارد کن / Enter your name: Hoshyar
تاریخ تولد خود را وارد کنید / Enter your date of birth: 1380/1/1
حقوق خود را وارد کنید / Enter your salary: 90000
Hoshyar در چهارشنبهبه دنیا آمد. Hoshyar 11٬190٬240 دقیقه است. Hoshyar ریال90٬000.

	In File Explorer, open the WorkingWithCultures project folder, and select the bin/Debug/net7.0/da folder, as shown in Figure 2.1:

[image: Figure 2.1: The satellite assembly folders for culture resources]Figure 2.1: The satellite assembly folders for culture resources

	Note the satellite assembly named WorkingWithCultures.resources.dll for the neutral Danish resources.

Any other culture resource assemblies are named the same but stored in folders that match the appropriate culture code. You can use tools like ResX Resource Manager, found at the following link: https://dotnetfoundation.org/projects/resx-resource-manager, to create many more .resx files, compile them into satellite assemblies, and then deploy them to users without needing to recompile the original console app.

Good Practice: Consider whether your application needs to be internationalized and plan for that before you start coding! Think about all the data that will need to be globalized (date formats, number formats, and sorting text behavior). Write down all the pieces of text in the user interface that will need to be localized.

Microsoft has an online tool that can help you translate text in your user interfaces at the following link: https://www.microsoft.com/en-us/Language/

[image: Figure 2.2: Microsoft user interface online text translation tool]Figure 2.2: Microsoft user interface online text translation tool

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring with deeper research into the topics in this chapter.

Exercise 2.1 – Test your knowledge

Use the web to answer the following questions:

	What is the ISO culture code for Welsh?

	What is the difference between localization, globalization, and internationalization?

Exercise 2.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-2---handling-dates-times-and-internationalization

Exercise 2.3 – Watch Jon Skeet's presentation

Jon Skeet is a world-renowned expert on internationalization. Watch him present Working with Time is Easy at the following link: https://www.youtube.com/watch?v=saeKBuPewcU

Read about NodaTime, Jon's library that provides a better date and time API for .NET: https://nodatime.org/

Summary

In this chapter, you:

	Explored dates and times.

	Learned how to handle time zones.

	Learned how to internationalize your code using globalization and localization.

In the next chapter, you will learn how to protect data and files using hashing, signing, encryption, authentication, and authorization.

8 Protecting Your Data and Applications

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about protecting your data from being viewed or manipulated by malicious users. You will learn how to protect your data using encryption, hashing, and signing. You will also learn how to properly generate random numbers for use with cryptographic operations, and how to implement basic authentication and authorization for users.

Cryptographic operations are performed by operating system implementations so that when an OS has a security vulnerability fixed, then .NET apps benefit immediately. But this means that those .NET apps can only use features that an OS supports. You can read about which features are supported by which OS at the following link:

https://docs.microsoft.com/en-us/dotnet/standard/security/cross-platform-cryptography

This chapter covers the following topics:

	Understanding the vocabulary of protection

	Encrypting and decrypting data

	Hashing data

	Signing data

	Generating random numbers

	Authenticating and authorizing users

Warning! The code in this chapter covers security primitives for basic educational purposes only. You must not use any of the code in this chapter for production libraries and apps. It is good practice to use libraries implemented by security professionals that are built using these security primitives and that have been hardened for real-world use following the latest best security practices. In Chapter 9, Building and Securing Web Services with Minimal APIs, you will learn higher level practical techniques for protecting and securing your apps and services. At the end of this chapter, you will find links to Microsoft good practices that you must follow if you do intend to implement yourself what you learn in this chapter.

Understanding the vocabulary of protection

There are many techniques to protect your data; below, we'll briefly introduce some of the most popular ones, and you will see more detailed explanations and practical implementations throughout this chapter:

	Encrypting and decrypting: This is a two-way process to convert your data from cleartext into ciphertext and back again. Cleartext is the original text that you want to protect. Ciphertext is the result of encrypting the cleartext.

	Hashing: This is a one-way process to generate a digest. Hash is the verb; digest is the noun. No matter the size of the input, the digest is of fixed length, for example, a fixed size byte array. Digests can be used to securely store passwords or to detect malicious changes or corruption of your data. Simple hashing algorithms should not be used for passwords. You should use PBKDF2, bcrypt, or scrypt because these algorithms can guarantee there cannot be two inputs that generate the same digest when used properly.

	Signing: This technique is used to ensure that data has come from a claimed source by validating a signature that has been applied to some data against someone's public key. For example, messages can be authenticated and validated by a receiver.

	Authenticating: This technique is used to identify someone by checking their credentials.

	Authorizing: This technique is used to ensure that someone has permission to perform an action or work with some data by checking the roles or groups they belong to.

Good Practice: If security is important to you (and it should be!), then hire an experienced security expert for guidance rather than relying on advice found online. It is very easy to make small mistakes and leave your applications and data vulnerable without realizing until it is too late!

Keys and key sizes

Protection algorithms often use a key. Keys are represented by byte arrays of varying size. Keys are used for various purposes, as shown in the following list:

	Encrypting and decrypting: AES, 3DES, RC2, Rijndael, RSA.

	Signing and verifying: RSA, ECDSA, DSA.

	Message authenticating and validating: HMAC.

	Key agreement, aka safe encryption key exchange: Diffie-Hellman, Elliptical Curve Diffie-Hellman.

Good Practice: Choose a bigger key size for stronger protection. This is an oversimplification because some RSA implementations support up to 16,384-bit keys that can take days to generate and would be overkill in most scenarios. A 2048-bit key should be sufficient until the year 2030, at which point you should upgrade to 3192-bit keys.

Keys for encryption and decryption can be symmetric (also known as shared or secret because the same key is used to encrypt and decrypt and therefore must be kept safe) or asymmetric (a public-private key pair where the public key is used to encrypt and only the private key can be used to decrypt).

Good Practice: Symmetric key encryption algorithms are fast and can encrypt large amounts of data using a stream. Asymmetric key encryption algorithms are slow and can only encrypt small byte arrays. The most common use of asymmetric keys is signature creation and validation.

In the real world, get the best of both worlds by using a symmetric key to encrypt your data, and an asymmetric key to share the symmetric key. This is how Secure Sockets Layer (SSL) 2.0 encryption on the internet worked in 1995. Today, what is still often called SSL is Transport Layer Security (TLS), which uses key agreement rather than RSA-encrypted session keys.

IVs and block sizes

When encrypting large amounts of data, there are likely to be repeating sequences. For example, in an English document, in the sequence of characters, the would appear frequently, and each time it might get encrypted as hQ2. A good cracker would use this knowledge to make it easier to crack the encryption, as shown in the following output:

When the wind blew hard the umbrella broke.
5:s4&hQ2aj#D f9d1d£8fh"&hQ2s0)an DF8SFd#][1

We can avoid repeating sequences by dividing data into blocks. After encrypting a block, a byte array value is generated from that block, and this value is fed into the next block to adjust the algorithm. The next block is encrypted so the output is different even for the same input as the preceding block. To encrypt the first block, we need a byte array to feed in. This is called the initialization vector (IV).

An IV:

	Should be generated randomly along with every encrypted message.

	Should be transmitted along with the encrypted message.

	Is not itself a secret.

Salts

A salt is a random byte array that is used as an additional input to a one-way hash function. If you do not use a salt when generating digests, then when many of your users register with 123456 as their password (about 8% of users still did this in 2016!), they will all have the same digest, and their accounts will be vulnerable to a rainbow table attack that uses precalculated digests.

When a user registers, the salt should be randomly generated and concatenated with their chosen password before being hashed. The generated digest (but not the original password) is stored with the salt in the database.

Then, when the user next logs in and enters their password, you look up their salt, concatenate it with the entered password, regenerate a digest, and then compare its value with the digest stored in the database. If they are the same, you know they entered the correct password.

Even salting passwords is not enough for truly secure storage. You should do a lot more work, like PBKDF2, bcrypt, or scrypt. But that work is beyond the scope of this book.

Generating keys and IVs

Keys and IVs are byte arrays. Both of the two parties that want to exchange encrypted data need the key and IV values, but byte arrays can be difficult to exchange reliably.

You can reliably generate a key or IV using a password-based key derivation function (PBKDF2). A good one is the Rfc2898DeriveBytes class, which takes a password, a salt, an iteration count, and a hash algorithm (the default is SHA-1, which is no longer recommended). It then generates keys and IVs by making calls to its GetBytes method. The iteration count is the number of times that the password is hashed during the process. The more iterations, the harder it will be to crack.

Although the Rfc2898DeriveBytes class can be used to generate the IV as well as the key, the IV should be randomly generated each time and transmitted with the encrypted message as plaintext because it does not need to be secret.

Good Practice: The salt size should be 8 bytes or larger, and the iteration count should be a value that takes about 100ms to generate a key and initialization vector (IV) for the encryption algorithm on the target machine. This value will increase over time as CPUs improve. In the example code you write below, we use 150,000, but that value will already be too low for some computers by the time you read this.

Encrypting and decrypting data

In .NET, there are multiple encryption algorithms you can choose from.

In legacy .NET Framework, some algorithms are implemented by the operating system and their names are suffixed with CryptoServiceProvider or Cng. Some algorithms are implemented in the .NET BCL and their names are suffixed with Managed.

In modern .NET, all algorithms are implemented by the operating system. If the OS algorithms are certified by the Federal Information Processing Standards (FIPS), then .NET uses FIPS-certified algorithms rather than implementing the algorithm in the .NET base class library.

Generally, you will always use an abstract class like Aes and its Create factory method to get an instance of an algorithm, so you will not need to know if you are using CryptoServiceProvider or Managed anyway.

Some algorithms use symmetric keys, and some use asymmetric keys. The main asymmetric encryption algorithm is RSA. Ron Rivest, Adi Shamir, and Leonard Adleman described the algorithm in 1977. A similar algorithm was designed in 1973 by Clifford Cocks, an English mathematician working for GCHQ, the British intelligence agency, but it was not declassified until 1997 so Rivest, Shamir, and Adleman got the credit and had their names immortalized in the RSA acronym.

Symmetric encryption algorithms use CryptoStream to encrypt or decrypt large amounts of bytes efficiently. Asymmetric algorithms can only handle small amounts of bytes, stored in a byte array instead of a stream.

The most common symmetric encryption algorithms derive from the abstract class named SymmetricAlgorithm and are shown in the following list:

	AES

	DESCryptoServiceProvider

	TripleDES

	RC2CryptoServiceProvider

	RijndaelManaged

If you need to write code to decrypt some data sent by an external system, then you will have to use whatever algorithm the external system used to encrypt the data. Or if you need to send encrypted data to a system that can only decrypt using a specific algorithm, then again you will not have a choice of algorithm.

If your code will both encrypt and decrypt, then you can choose the algorithm that best suits your requirements for strength, performance, and so on.

Good Practice: Choose the Advanced Encryption Standard (AES), which is based on the Rijndael algorithm, for symmetric encryption. Choose RSA for asymmetric encryption. Do not confuse RSA with DSA. Digital Signature Algorithm (DSA) cannot encrypt data. It can only generate and verify signatures.

Encrypting symmetrically with AES

To make it easier to reuse your protection code in multiple projects, we will create a static class named Protector in its own class library and then reference it in a console app.

Let's go!

	Use your preferred code editor to create a new console app project, as defined in the following list:

	Project template: Console App / console

	Workspace/solution file and folder: Chapter08

	Project file and folder: EncryptionApp

	Add a new Class Library / classlib named CryptographyLib to the Chapter08 solution/workspace.

	If you are using Visual Studio 2022, set the startup project for the solution to the current selection.

	If you are using Visual Studio Code, select EncryptionApp as the active OmniSharp project.

	In the CryptographyLib project, rename the Class1.cs file to Protector.cs.

	In the CryptographyLib project, globally and statically import the System.Console class.

	In the EncryptionApp project, add a project reference to the CryptographyLib library, and globally and statically import the System.Console class, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference
 Include="..\CryptographyLib\CryptographyLib.csproj" />
</ItemGroup>

	Build the EncryptionApp project and make sure there are no compile errors.

	In Protector.cs, define a static class named Protector with fields for storing a salt byte array and a large number of iterations, and methods to Encrypt and Decrypt, as shown in the following code:

using System.Diagnostics; // Stopwatch
using System.Security.Cryptography; // Aes, Rfc2898DeriveBytes, etc.
using System.Text; // Encoding
using static System.Convert; // ToBase64String, FromBase64String
namespace Packt.Shared;
public static class Protector
{
 // salt size must be at least 8 bytes, we will use 16 bytes
 private static readonly byte[] salt =
 Encoding.Unicode.GetBytes("7BANANAS");
 // Default iterations for Rfc2898DeriveBytes is 1000.
 // Iterations should be high enough to take at least 100ms to
 // generate a Key and IV on the target machine. 150,000 iterations
 // takes 139ms on my 11th Gen Intel Core i7-1165G7 @ 2.80GHz.
 private static readonly int iterations = 150_000;
 public static string Encrypt(
 string plainText, string password)
 {
 byte[] encryptedBytes;
 byte[] plainBytes = Encoding.Unicode.GetBytes(plainText);
 using (Aes aes = Aes.Create()) // abstract class factory method
 {
 // record how long it takes to generate the Key and IV
 Stopwatch timer = Stopwatch.StartNew();
 using (Rfc2898DeriveBytes pbkdf2 = new(
 password, salt, iterations, HashAlgorithmName.SHA256))
 {
 WriteLine("PBKDF2 algorithm: {0}, Iteration count: {1:N0}",
 pbkdf2.HashAlgorithm, pbkdf2.IterationCount);
 aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key
 aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV
 }
 timer.Stop();
 WriteLine("{0:N0} milliseconds to generate Key and IV.",
 arg0: timer.ElapsedMilliseconds);
 WriteLine("Encryption algorithm: {0}-{1}, {2} mode with {3} padding.",
 "AES", aes.KeySize, aes.Mode, aes.Padding);
 using (MemoryStream ms = new())
 {
 using (ICryptoTransform transformer = aes.CreateEncryptor())
 {
 using (CryptoStream cs = new(
 ms, transformer, CryptoStreamMode.Write))
 {
 cs.Write(plainBytes, 0, plainBytes.Length);
 if (!cs.HasFlushedFinalBlock)
 {
 cs.FlushFinalBlock();
 }
 }
 }
 encryptedBytes = ms.ToArray();
 }
 }
 return ToBase64String(encryptedBytes);
 }
 public static string Decrypt(
 string cipherText, string password)
 {
 byte[] plainBytes;
 byte[] cryptoBytes = FromBase64String(cipherText);
 using (Aes aes = Aes.Create())
 {
 using (Rfc2898DeriveBytes pbkdf2 = new(
 password, salt, iterations, HashAlgorithmName.SHA256))
 {
 aes.Key = pbkdf2.GetBytes(32);
 aes.IV = pbkdf2.GetBytes(16);
 }
 using (MemoryStream ms = new())
 {
 using (ICryptoTransform transformer = aes.CreateDecryptor())
 {
 using (CryptoStream cs = new(
 ms, aes.CreateDecryptor(), CryptoStreamMode.Write))
 {
 cs.Write(cryptoBytes, 0, cryptoBytes.Length);
 if (!cs.HasFlushedFinalBlock)
 {
 cs.FlushFinalBlock();
 }
 }
 }
 plainBytes = ms.ToArray();
 }
 }
 return Encoding.Unicode.GetString(plainBytes);
 }
}

Note the following points about the preceding code:

	Although the salt and iteration count can be hardcoded (but preferably stored in the message itself), the password must be passed as a parameter at runtime when calling the Encrypt and Decrypt methods.

	In .NET 7, five constructors for the Rfc2898DeriveBytes class have been deprecated, including the one that I used in previous editions of this book. The preferred constructors now require a HashAlgorithmName to be specified. We specify SHA256, which is better than the old default of SHA1.

	We use a Stopwatch to record how long it takes to generate the key and IV so that we can make sure that it is at least 100ms.

	We use a temporary MemoryStream type to store the results of encrypting and decrypting, and then call ToArray to turn the stream into a byte array.

	It is important to flush the final block if it has not already been flushed.

	We convert the encrypted byte arrays to and from a Base64 encoding to make them easier to read for humans.

Good Practice: Never hardcode a password in your source code because, even after compilation, the password can be read in the assembly by using disassembler tools.

	In the EncryptionApp project, in Program.cs, delete the existing statements and then import the namespace for the Protector class and the namespace for the CryptographicException class, as shown in the following code:

using System.Security.Cryptography; // CryptographicException
using Packt.Shared; // Protector

In a real project, you might statically import the Packt.Shared.Protector class so that you can call its methods like Encrypt without prefixing them with the class name like Protector.Encrypt. In this learning project, I want to make sure that you know where the methods are coming from.

	In Program.cs, add statements to prompt the user for a message and a password, and then encrypt and decrypt, as shown in the following code:

Write("Enter a message that you want to encrypt: ");
string? message = ReadLine();
Write("Enter a password: ");
string? password = ReadLine();
if ((password is null) || (message is null))
{
 WriteLine("Message or password cannot be null.");
 return;
}
string cipherText = Protector.Encrypt(message, password);
WriteLine($"Encrypted text: {cipherText}");
Write("Enter the password: ");
string? password2Decrypt = ReadLine();
if (password2Decrypt is null)
{
 WriteLine("Password to decrypt cannot be null.");
 return;
}
try
{
 string clearText = Protector.Decrypt(cipherText, password2Decrypt);
 WriteLine($"Decrypted text: {clearText}");
}
catch (CryptographicException)
{
 WriteLine("You entered the wrong password!");
}
catch (Exception ex)
{
 WriteLine("Non-cryptographic exception: {0}, {1}",
 arg0: ex.GetType().Name,
 arg1: ex.Message);
}

	Run the code, try entering a message and password to encrypt, and enter the same password to decrypt, and view the result, as shown in the following output:

Enter a message that you want to encrypt: Hello Bob
Enter a password: secret
PBKDF2 algorithm: SHA256, Iteration count: 150,000
139 milliseconds to generate Key and IV.
Encryption algorithm: AES-256, CBC mode with PKCS7 padding.
Encrypted text: eWt8sgL7aSt5DC9g74ONEPO7mjd55lXB/MmCZpUsFE0=
Enter the password: secret
Decrypted text: Hello Bob

If your output shows the number of milliseconds at less than 100, then adjust the number of iterations higher until it is greater than 100. Note that a different number of iterations will affect the encrypted text, so it will look different from the above output.

	Run the console app and try entering a message and password to encrypt, but this time enter the password incorrectly to decrypt, and view the result, as shown in the following output:

Enter a message that you want to encrypt: Hello Bob
Enter a password: secret
PBKDF2 algorithm: SHA256, Iteration count: 150,000
134 milliseconds to generate Key and IV.
Encryption algorithm: AES-256, CBC mode with PKCS7 padding.
Encrypted text: eWt8sgL7aSt5DC9g74ONEPO7mjd55lXB/MmCZpUsFE0=
Enter the password: 123456
You entered the wrong password!

Good Practice: To support future encryption upgrades like switching to an improved algorithm or upgrading to a larger key size, record information about what choices you made; for example, AES-256, CBC mode with PKCS#7 padding, and PBKDF2 and its hash algorithm and iteration count. This good practice is known as cryptographic agility.

Hashing data

In .NET, there are multiple hash algorithms you can choose from. Some do not use any key, some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

	Collision resistance: How rare is it to find two inputs that share the same hash?

	Preimage resistance: For a hash, how difficult would it be to find another input that shares the same hash?

Some common non-keyed hashing algorithms are shown in the following table:

	Algorithm
	Hash size
	Description

	MD5
	16 bytes
	This is commonly used because it is fast, but it is not collision resistant.

	SHA1
	20 bytes
	The use of SHA1 on the internet has been deprecated since 2011.

	SHA256, SHA384, SHA512
	32 bytes, 48 bytes, 64 bytes
	These are the Secure Hashing Algorithm 2nd generation (SHA2) algorithms with different hash sizes.

Good Practice: Avoid MD5 and SHA1 because they have known weaknesses. Choose a larger hash size to reduce the possibility of repeated hashes. The first publicly known MD5 collision happened in 2010. The first publicly known SHA1 collision happened in 2017. You can read more at the following link: https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

Hashing with the commonly used SHA256

We will now add a class to represent a user stored in memory, a file, or a database. We will use a dictionary to store multiple users in memory:

	In the CryptographyLib class library project, add a new class file named User.cs, and define a record with three properties for storing a user's name, a random salt value, and their salted and hashed password, as shown in the following code:

namespace Packt.Shared;
public record class User(string Name, string Salt,
 string SaltedHashedPassword);

	In Protector.cs, add statements to declare a dictionary to store users and define two methods, one to register a new user and one to validate their password when they subsequently log in, as shown in the following code:

private static Dictionary<string, User> Users = new();
public static User Register(
 string username, string password)
{
 // generate a random salt
 RandomNumberGenerator rng = RandomNumberGenerator.Create();
 byte[] saltBytes = new byte[16];
 rng.GetBytes(saltBytes);
 string saltText = ToBase64String(saltBytes);
 // generate the salted and hashed password
 string saltedhashedPassword = SaltAndHashPassword(password, saltText);
 User user = new(username, saltText, saltedhashedPassword);
 Users.Add(user.Name, user);
 return user;
}
// check a user's password that is stored
// in the private static dictionary Users
public static bool CheckPassword(string username, string password)
{
 if (!Users.ContainsKey(username))
 {
 return false;
 }
 User u = Users[username];
 return CheckPassword(password,
 u.Salt, u.SaltedHashedPassword);
}
// check a password using salt and hashed password
public static bool CheckPassword(string password,
 string salt, string hashedPassword)
{
 // re-generate the salted and hashed password
 string saltedhashedPassword = SaltAndHashPassword(
 password, salt);
 return (saltedhashedPassword == hashedPassword);
}
private static string SaltAndHashPassword(string password, string salt)
{
 using (SHA256 sha = SHA256.Create())
 {
 string saltedPassword = password + salt;
 return ToBase64String(sha.ComputeHash(
 Encoding.Unicode.GetBytes(saltedPassword)));
 }
}

	Use your preferred code editor to add a new console app named HashingApp to the Chapter08 solution/workspace.

	In Visual Studio Code, select HashingApp as the active OmniSharp project.

	In the HashingApp project, add a project reference to CryptographyLib, and globally and statically import the System.Console class.

	Build the HashingApp project and make sure there are no compile errors.

	In the HashingApp project, in Program.cs, delete the existing statements and then add statements to register a user and prompt to register a second user. Then, prompt to log in as one of those users and validate the password, as shown in the following code:

using Packt.Shared;
WriteLine("Registering Alice with Pa$$w0rd:");
User alice = Protector.Register("Alice", "Pa$$w0rd");
WriteLine($" Name: {alice.Name}");
WriteLine($" Salt: {alice.Salt}");
WriteLine(" Password (salted and hashed): {0}",
 arg0: alice.SaltedHashedPassword);
WriteLine();
Write("Enter a new user to register: ");
string? username = ReadLine();
if (string.IsNullOrEmpty(username))
{
 username = "Bob";
}
Write($"Enter a password for {username}: ");
string? password = ReadLine();
if (string.IsNullOrEmpty(password))
{
 password = "Pa$$w0rd";
}
WriteLine("Registering a new user:");
User newUser = Protector.Register(username, password);
WriteLine($" Name: {newUser.Name}");
WriteLine($" Salt: {newUser.Salt}");
WriteLine(" Password (salted and hashed): {0}",
 arg0: newUser.SaltedHashedPassword);
WriteLine();
bool correctPassword = false;
while (!correctPassword)
{
 Write("Enter a username to log in: ");
 string? loginUsername = ReadLine();
 if (string.IsNullOrEmpty(loginUsername))
 {
 WriteLine("Login username cannot be empty.");
 Write("Press Ctrl+C to end or press ENTER to retry.");
 ReadLine();
 continue;
 }
 Write("Enter a password to log in: ");
 string? loginPassword = ReadLine();
 if (string.IsNullOrEmpty(loginPassword))
 {
 WriteLine("Login password cannot be empty.");
 Write("Press Ctrl+C to end or press ENTER to retry.");
 ReadLine();
 continue;
 }

 correctPassword = Protector.CheckPassword(
 loginUsername, loginPassword);
 if (correctPassword)
 {
 WriteLine($"Correct! {loginUsername} has been logged in.");
 }
 else
 {
 WriteLine("Invalid username or password. Try again.");
 }
}

	Run the code, register a new user with the same password as Alice, and view the result, as shown in the following output:

Registering Alice with Pa$$w0rd:
 Name: Alice
 Salt: I1I1dzIjkd7EYDf/6jaf4w==
 Password (salted and hashed): pIoadjE4W/XaRFkqS3br3UuAuPv/3LVQ8kzj6mvcz+s=
Enter a new user to register: Bob
Enter a password for Bob: Pa$$w0rd
Registering a new user:
 Name: Bob
 Salt: 1X7ym/UjxTiuEWBC/vIHpw==
 Password (salted and hashed): DoBFtDhKeN0aaaLVdErtrZ3mpZSvpWDQ9TXDosTq0sQ=
Enter a username to log in: Alice
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob
Enter a password to log in: Pa$$w0rd
Correct! Bob has been logged in.

Even if two users register with the same password, they have randomly generated salts so that their salted and hashed passwords are different.

Signing data

To prove that some data has come from someone we trust, it can be signed. You do not sign the data itself; instead, you sign a hash of the data, because all the signature algorithms first hash the data as an implementation step. They also allow you to shortcut this step and provide the data already hashed.

We will be using the SHA256 algorithm for generating the hash, combined with the RSA algorithm for signing the hash.

We could use DSA for both hashing and signing. DSA is faster than RSA for generating a signature, but it is slower than RSA for validating a signature. Since a signature is generated once but validated many times, it is best to have faster validation than generation.

Good Practice: DSA is rarely used today. The improved equivalent is Elliptic Curve DSA (ECDSA). Although ECDSA is slower than RSA, it generates a shorter signature with the same level of security.

Signing with SHA256 and RSA

Let's explore signing data and checking the signature with a public key:

	In the Protector class, add statements to declare a field to store a public key as a string value, and two methods to generate and validate a signature, as shown in the following code:

public static string? PublicKey;
public static string GenerateSignature(string data)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 SHA256 sha = SHA256.Create();
 byte[] hashedData = sha.ComputeHash(dataBytes);
 RSA rsa = RSA.Create();
 PublicKey = rsa.ToXmlString(false); // exclude private key
 return ToBase64String(rsa.SignHash(hashedData,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1));
}
public static bool ValidateSignature(
 string data, string signature)
{
 if (PublicKey is null) return false;
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 SHA256 sha = SHA256.Create();
 byte[] hashedData = sha.ComputeHash(dataBytes);
 byte[] signatureBytes = FromBase64String(signature);
 RSA rsa = RSA.Create();
 rsa.FromXmlString(PublicKey);
 return rsa.VerifyHash(hashedData, signatureBytes,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
}

Note the following from the preceding code:

	Only the public part of the public-private key pair needs to be made available to the code that is checking the signature so that we can pass false when we call the ToXmlString method. The private part is required to sign data and must be kept secret because anyone with the private part can sign data as if they are you!

	The hash algorithm used to generate the hash from the data by calling the SignHash method must match the hash algorithm set when calling the VerifyHash method. In the preceding code, we used SHA256.

Now we can test signing some data and checking its signature.

	Use your preferred code editor to add a new console app named SigningApp to the Chapter08 solution/workspace.

	In Visual Studio Code, select SigningApp as the active OmniSharp project.

	In the SigningApp project, add a project reference to CryptographyLib, and globally and statically import the System.Console class.

	Build the SigningApp project and make sure there are no compile errors.

	In Program.cs, delete the existing statements and then import the Packt.Shared namespace. Add statements to prompt the user to enter some text, sign it, check its signature, then modify the data, and check the signature again to deliberately cause a mismatch, as shown in the following code:

using Packt.Shared;
Write("Enter some text to sign: ");
string? data = ReadLine();
if (string.IsNullOrEmpty(data))
{
 WriteLine("You must enter some text.");
 return;
}
string signature = Protector.GenerateSignature(data);
WriteLine($"Signature: {signature}");
WriteLine("Public key used to check signature:");
WriteLine(Protector.PublicKey);
if (Protector.ValidateSignature(data, signature))
{
 WriteLine("Correct! Signature is valid. Data has not been manipulated.");
}
else
{
 WriteLine("Invalid signature or the data has been manipulated.");
}
// simulate manipulated data by replacing the
// first character with an X or Y
string manipulatedData = data.Replace(data[0], 'X');
if (manipulatedData == data)
{
 manipulatedData = data.Replace(data[0], 'Y');
}
if (Protector.ValidateSignature(manipulatedData, signature))
{
 WriteLine("Correct! Signature is valid. Data has not been manipulated. ");
}
else
{
 WriteLine("Invalid signature or manipulated data: {0} " ,
 manipulatedData);
}

	Run the code and enter some text, as shown in the following output (edited for length):

Enter some text to sign: The cat sat on the mat.
Signature: BXSTdM...4Wrg==
Public key used to check signature:
<RSAKeyValue>
 <Modulus>nHtwl3...mw3w==</Modulus>
 <Exponent>AQAB</Exponent>
</RSAKeyValue>
Correct! Signature is valid. Data has not been manipulated.
Invalid signature or manipulated data: Xhe cat sat on the mat.

Generating random numbers

Sometimes you need to generate random numbers, perhaps in a game that simulates rolls of a die, or for use with cryptography in encryption or signing. There are a couple of classes that can generate random numbers in .NET.

Generating random numbers for games and similar apps

In scenarios that don't need truly random numbers, like games, you can use a shared instance of the Random class or create an instance of the Random class, as shown in the following code example:

Random r1 = Random.Shared;
Random r2 = new();

Random has a constructor with a parameter for specifying a seed value used to initialize its pseudo-random number generator, as shown in the following code:

Random r = new(Seed: 46378);

Good Practice: Shared seed values act as a secret key, so if you use the same random number generation algorithm with the same seed value in two applications, then they can generate the same "random" sequences of numbers. Sometimes this is necessary, for example, when synchronizing a GPS receiver with a satellite, or when a game needs to randomly generate the same level. But usually, you want to keep your seed secret.

Once you have a Random object, you can call its methods to generate random numbers, as shown in the following code examples:

// minValue is an inclusive lower bound i.e. 1 is a possible value
// maxValue is an exclusive upper bound i.e. 7 is not a possible value
int dieRoll = r.Next(minValue: 1, maxValue: 7); // returns 1 to 6
double randomReal = r.NextDouble(); // returns 0.0 to less than 1.0
byte[] arrayOfBytes = new byte[100];
r.NextBytes(arrayOfBytes); // 100 random bytes (values 0 to 255) in an array

The Next method takes two parameters: minValue and maxValue. But maxValue is not the maximum value that the method returns! It is an exclusive upper bound, meaning it is one more than the maximum value. In a similar way, the value returned by the NextDouble method is greater than or equal to 0.0 and less than 1.0.

Generating random numbers for cryptography

The Random class generates cryptographically weak pseudo-random numbers. This is not good enough for cryptography. If the random numbers are not truly random, then they are predictable, and then a cracker can break your protection.

For cryptographically strong pseudo-random numbers, you must use a RandomNumberGenerator-derived type, such as those created by calling the RandomNumberGenerator.Create factory method either with a named algorithm or using its default implementation.

We will now create a method to generate a truly random byte array that can be used in algorithms like encryption for key and IV values:

	In the Protector class, add statements to define a method to get a random key or IV for use in encryption, as shown in the following code:

public static byte[] GetRandomKeyOrIV(int size)
{
 RandomNumberGenerator r = RandomNumberGenerator.Create();
 byte[] data = new byte[size];
 r.GetBytes(data);
 // data is an array now filled with
 // cryptographically strong random bytes
 return data;
}

Now we can test the random bytes generated for a truly random encryption key or IV.

	Use your preferred code editor to add a new console app named RandomizingApp to the Chapter08 solution/workspace.

	In Visual Studio Code, select RandomizingApp as the active OmniSharp project.

	In the RandomizingApp project, add a project reference to CryptographyLib, and globally and statically import the System.Console class.

	Build the RandomizingApp project and make sure there are no compile errors.

	In Program.cs, delete the existing statements and then import the Packt.Shared namespace. Add statements to prompt the user to enter a size of byte array and then generate random byte values and write them to the console, as shown in the following code:

using Packt.Shared;
Write("How big do you want the key (in bytes): ");
string? size = ReadLine();
if (string.IsNullOrEmpty(size))
{
 WriteLine("You must enter a size for the key.");
 return;
}
byte[] key = Protector.GetRandomKeyOrIV(int.Parse(size));
WriteLine($"Key as byte array:");
for (int b = 0; b < key.Length; b++)
{
 Write($"{key[b]:x2} ");
 if (((b + 1) % 16) == 0) WriteLine();
}
WriteLine();

	Run the code, enter a typical size for the key, such as 256, and view the randomly generated key, as shown in the following output:

How big do you want the key (in bytes): 256
Key as byte array:
f1 57 3f 44 80 e7 93 dc 8e 55 04 6c 76 6f 51 b9
e8 84 59 e5 8d eb 08 d5 e6 59 65 20 b1 56 fa 68
...

Authenticating and authorizing users

Authentication is the process of verifying the identity of a user by validating their credentials against some authority. Credentials include a username and password combination, or a fingerprint or face scan. Once authenticated, the authority can make claims about the user, for example, what their email address is, and what groups or roles they belong to.

Authorization is the process of verifying membership of groups or roles before allowing access to resources such as application functions and data. Although authorization can be based on individual identity, it is good security practice to authorize based on group or role membership (which can be indicated via claims) even when there is only one user in the role or group. This is because that allows the user's membership to change in the future without reassigning the user's individual access rights.

For example, instead of assigning access rights to Buckingham Palace to Elizabeth Alexandra Mary Windsor (a user), you would assign access rights to the Monarch of the United Kingdom of Great Britain and Northern Ireland and other realms and territories (a role) and then add Elizabeth as the only member of that role. Then, at some point in the future, you do not need to change any access rights for the Monarch role; you just remove Elizabeth and add the next person in the line of succession. And, of course, you would implement the line of succession as a queue.

Authentication and authorization mechanisms

There are multiple authentication and authorization mechanisms to choose from. They all implement a pair of interfaces in the System.Security.Principal namespace: IIdentity and IPrincipal.

Identifying a user

IIdentity represents a user, so it has a Name property and an IsAuthenticated property to indicate if they are anonymous or if they have been successfully authenticated from their credentials, as shown in the following code:

namespace System.Security.Principal
{
 public interface IIdentity
 {
 string? AuthenticationType { get; }
 bool IsAuthenticated { get; }
 string? Name { get; }
 }
}

A common class that implements this interface is GenericIdentity, which inherits from ClaimsIdentity, as shown in the following code:

namespace System.Security.Principal
{
 public class GenericIdentity : ClaimsIdentity
 {
 public GenericIdentity(string name);
 public GenericIdentity(string name, string type);
 protected GenericIdentity(GenericIdentity identity);
 public override string AuthenticationType { get; }
 public override IEnumerable<Claim> Claims { get; }
 public override bool IsAuthenticated { get; }
 public override string Name { get; }
 public override ClaimsIdentity Clone();
 }
}

The Claim objects have a Type property that indicates if the claim is for their name, their membership of a role or group, their date of birth, and so on, as shown in the following code:

namespace System.Security.Claims
{
 public class Claim
 {
 // various constructors
 public string Type { get; }
 public ClaimsIdentity? Subject { get; }
 public IDictionary<string, string> Properties { get; }
 public string OriginalIssuer { get; }
 public string Issuer { get; }
 public string ValueType { get; }
 public string Value { get; }
 protected virtual byte[]? CustomSerializationData { get; }
 public virtual Claim Clone();
 public virtual Claim Clone(ClaimsIdentity? identity);
 public override string ToString();
 public virtual void WriteTo(BinaryWriter writer);
 protected virtual void WriteTo(BinaryWriter writer, byte[]? userData);
 }
 public static class ClaimTypes
 {
 public const string Actor = "http://schemas.xmlsoap.org/ws/2009/09/identity/claims/actor";
 public const string NameIdentifier = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier";
 public const string Name = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name";
 public const string PostalCode = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode";
 // ...many other string constants
 public const string MobilePhone = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone";
 public const string Role = "http://schemas.microsoft.com/ws/2008/06/identity/claims/role";
 public const string Webpage = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage";
 }
}

User membership

IPrincipal is used to associate an identity with the roles and groups that they are members of, so it can be used for authorization purposes, as shown in the following code:

namespace System.Security.Principal
{
 public interface IPrincipal
 {
 IIdentity? Identity { get; }
 bool IsInRole(string role);
 }
}

The current thread executing your code has a CurrentPrincipal property that can be set to any object that implements IPrincipal, and it will be checked when permission is needed to perform a secure action.

The most common class that implements this interface is GenericPrincipal, which inherits from ClaimsPrincipal, as shown in the following code:

namespace System.Security.Principal
{
 public class GenericPrincipal : ClaimsPrincipal
 {
 public GenericPrincipal(IIdentity identity, string[]? roles);
 public override IIdentity Identity { get; }
 public override bool IsInRole([NotNullWhen(true)] string? role);
 }
}

Implementing authentication and authorization

Let's explore authentication and authorization by implementing a custom authentication and authorization mechanism:

	In the CryptographyLib project, add a property to the User record to store an array of roles, as shown highlighted in the following code:

public record class User(string Name, string Salt,
 string SaltedHashedPassword, string[]? Roles);

	Modify the Register method in the Protector class to allow an array of roles to be passed as an optional parameter, as shown highlighted in the following code:

public static User Register(string username,
 string password, string[]? roles = null)

	In the Register method, add a parameter to set the array of roles in the new User object, as shown highlighted in the following code:

User user = new(username, saltText,
 saltedhashedPassword, roles);

	Import the namespace for working with user identity, as shown in the following code:

using System.Security.Principal; // GenericIdentity, GenericPrincipal

	Add statements to the Protector class to define a LogIn method to log in a user, and if the username and password are valid, then create a generic identity and principal and assign them to the current thread, indicating that the type of authentication was a custom one named PacktAuth, as shown in the following code:

public static void LogIn(string username, string password)
{
 if (CheckPassword(username, password))
 {
 GenericIdentity gi = new(
 name: username, type: "PacktAuth");
 GenericPrincipal gp = new(
 identity: gi, roles: Users[username].Roles);
 // set the principal on the current thread so that
 // it will be used for authorization by default
 Thread.CurrentPrincipal = gp;
 }
}

	Use your preferred code editor to add a new console app named SecureApp to the Chapter08 solution/workspace.

	In Visual Studio Code, select SecureApp as the active OmniSharp project.

	In the SecureApp project, add a project reference to CryptographyLib, and globally and statically import the System.Console class.

	Build the SecureApp project and make sure there are no compile errors.

	In the SecureApp project, in Program.cs, delete the existing statements and then import required namespaces for working with authentication and authorization, as shown in the following code:

using Packt.Shared; // Protector
using System.Security.Principal; // IPrincipal
using System.Security.Claims; // ClaimsPrincipal, Claim

	In Program.cs, add statements to register three users, named Alice, Bob, and Eve, in various roles, prompt the user to log in, and then output information about them, as shown in the following code:

Protector.Register("Alice", "Pa$$w0rd", roles: new[] { "Admins" });
Protector.Register("Bob", "Pa$$w0rd",
 roles: new[] { "Sales", "TeamLeads" });
// Eve is not a member of any roles
Protector.Register("Eve", "Pa$$w0rd");
// prompt user to enter username and password to login
// as one of these three users
Write($"Enter your username: ");
string? username = ReadLine()!;
Write($"Enter your password: ");
string? password = ReadLine()!;
Protector.LogIn(username, password);
if (Thread.CurrentPrincipal == null)
{
 WriteLine("Log in failed.");
 return;
}
IPrincipal p = Thread.CurrentPrincipal;
WriteLine($"IsAuthenticated: {p.Identity?.IsAuthenticated}");
WriteLine(
 $"AuthenticationType: {p.Identity?.AuthenticationType}");
WriteLine($"Name: {p.Identity?.Name}");
WriteLine($"IsInRole(\"Admins\"): {p.IsInRole("Admins")}");
WriteLine($"IsInRole(\"Sales\"): {p.IsInRole("Sales")}");
if (p is ClaimsPrincipal)
{
 WriteLine($"{p.Identity?.Name} has the following claims:");
 IEnumerable<Claim>? claims = (p as ClaimsPrincipal)?.Claims;
 if (claims is not null)
 {
 foreach (Claim claim in claims)
 {
 WriteLine($"{claim.Type}: {claim.Value}");
 }
 }
}

	Run the code, log in as Alice with Pa$$word, and view the results, as shown in the following output:

Enter your username: Alice
Enter your password: Pa$$w0rd
IsAuthenticated: True
AuthenticationType: PacktAuth
Name: Alice
IsInRole("Admins"): True
IsInRole("Sales"): False
Alice has the following claims:
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Alice
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: Admins

	Run the code, log in as Alice with secret, and view the results, as shown in the following output:

Enter your username: Alice
Enter your password: secret
Log in failed.

	Run the code, log in as Bob with Pa$$word, and view the results, as shown in the following output:

Enter your username: Bob
Enter your password: Pa$$w0rd
IsAuthenticated: True
AuthenticationType: PacktAuth
Name: Bob
IsInRole("Admins"): False
IsInRole("Sales"): True
Bob has the following claims:
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Bob
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: Sales
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: TeamLeads

Protecting application functionality

Now let's explore how we can use authorization to prevent some users from accessing some features of an application:

	At the top of Program.cs, add a statement to import the namespace for security exceptions, as shown in the following code:

using System.Security; // SecurityException

	At the bottom of Program.cs, add a method that is secured by checking for permission in the method, and throw appropriate exceptions if the user is anonymous or not a member of the Admins role, as shown in the following code:

static void SecureFeature()
{
 if (Thread.CurrentPrincipal == null)
 {
 throw new SecurityException(
 "A user must be logged in to access this feature.");
 }
 if (!Thread.CurrentPrincipal.IsInRole("Admins"))
 {
 throw new SecurityException(
 "User must be a member of Admins to access this feature.");
 }
 WriteLine("You have access to this secure feature.");
}

	Above the SecureFeature method, add statements to call the SecureFeature method in a try statement, as shown in the following code:

try
{
 SecureFeature();
}
catch (Exception ex)
{
 WriteLine($"{ex.GetType()}: {ex.Message}");
}

	Run the code, log in as Alice with Pa$$word, and view the result, as shown in the following output:

You have access to this secure feature.

	Run the code, log in as Bob with Pa$$word, and view the result, as shown in the following output:

System.Security.SecurityException: User must be a member of Admins to access this feature.

Real-world authentication and authorization

Although it is valuable to see some examples of how authentication and authorization can work, in the real world you should not build your own security systems because it is too likely that you might introduce flaws.

Instead, you should look at commercial or open-source implementations. These usually implement standards like OAuth 2.0 and OpenID Connect. A popular open source one is IdentityServer4 but it will only be maintained until November 2022. A semi-commercial option is Duende IdentityServer.

Microsoft's official position is that "Microsoft already has a team and a product in that area, Azure Active Directory, which allows 500,000 objects for free." You can read more at the following link:

https://devblogs.microsoft.com/aspnet/asp-net-core-6-and-authentication-servers/

You will learn more about web security in Chapter 9, Building and Securing Web Services with Minimal APIs.

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring the topics covered in this chapter with deeper research.

Exercise 8.1 – Test your knowledge

Answer the following questions:

	Of the encryption algorithms provided by .NET, which is the best choice for symmetric encryption?

	Of the encryption algorithms provided by .NET, which is the best choice for asymmetric encryption?

	What is a rainbow attack?

	For encryption algorithms, is it better to have a larger or smaller block size?

	What is a hash?

	What is a signature?

	What is the difference between symmetric and asymmetric encryption?

	What does RSA stand for?

	Why should passwords be salted before being stored?

	SHA1 is a hashing algorithm designed by the United States National Security Agency. Why should you never use it?

Exercise 8.2 – Practice protecting data with encryption and hashing

In the Chapter08 solution/workspace, add a console app named Ch08Ex02_EncryptData that protects sensitive data like a credit card number or password stored in an XML file, such as the following example:

<?xml version="1.0" encoding="utf-8" ?>
<customers>
 <customer>
 <name>Bob Smith</name>
 <creditcard>1234-5678-9012-3456</creditcard>
 <password>Pa$$w0rd</password>
 </customer>
 ...
</customers>

The customer's credit card number and password are currently stored in cleartext. The credit card number must be encrypted so that it can be decrypted and used later, and the password must be salted and hashed.

Good Practice: You should not store credit card numbers in your applications. This is just an example of a secret that you might want to protect. If you have to store credit card numbers, then there is a lot more you must do to be Payment Card Industry (PCI) compliant.

Exercise 8.3 – Practice protecting data with decryption

In the Chapter08 solution/workspace, add a console application named Ch08Ex03_DecryptData that opens the XML file that you protected in the preceding code and decrypts the credit card number.

Exercise 8.4 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-3---protecting-your-data-and-applications

Exercise 8.5 – Review Microsoft encryption recommendations

Use the following link to review Microsoft recommendations and best practices for using encryption. The document is based on Microsoft internal standards for their Security Development Lifecycle (SDL):

https://docs.microsoft.com/en-us/security/sdl/cryptographic-recommendations

Summary

In this chapter, you learned how to:

	Encrypt and decrypt using symmetric encryption.

	Generate a salted hash.

	Sign data and check the signature on the data.

	Generate truly random numbers.

	Use authentication and authorization to protect features of your applications.

In the next chapter, you will learn how to build web services using ASP.NET Core Minimal API and how to secure and protect them.

9 Building and Securing Web Services with Minimal APIs

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about building and securing web services using ASP.NET Core Minimal APIs. This includes implementing techniques to protect a web service from attacks as well as authentication and authorization.

This chapter will cover the following topics:

	Building web services using ASP.NET Core Minimal APIs

	Relaxing the same origin security policy using CORS

	Preventing denial of service attacks using rate limiting

	Understanding identity services

Building web services using ASP.NET Core Minimal APIs

In earlier versions of ASP.NET Core, implementing even a simple web service required a lot of boilerplate code. For example, the ASP.NET Core Web API project template in ASP.NET Core 5 implements a simple weather service using four code files (controller, model, program, and startup class files), with a total 139 lines of code:

	WeatherForecastController.cs has 39 lines of code.

	WeatherForecast.cs has 15 lines of code.

	Program.cs has 26 lines of code.

	Startup.cs has 59 lines of code.

Compare that to a minimal Hello World web service implementation using Express.js, as shown in the following code:

const express = require('express')
const app = express()
const port = 3000
app.get('/', (req, res) => {
 res.send('Hello World!')
})
app.listen(port, () => {
 console.log(`Example app listening on port ${port}`)
})

Introduced in ASP.NET Core 6, Minimal APIs reduce the code needed to implement a web service. Combined with other .NET 6 features like global implicit namespace imports and top-level programs, the amount of code needed has been significantly reduced.

The minimal Hello World web service implementation equivalent of the Express.js example using ASP.NET Core 6 or later minimal APIs is now only 5 lines of code and 6 lines of configuration, as shown in the following two statement blocks:

int port = 3000;
var app = WebApplication.Create();
app.MapGet("/", () => "Hello World!");
Console.WriteLine($"Example app listening on port {port}");
await app.RunAsync($"https://localhost:{port}/");

The platform is specified in the project file, and the implicit using statements SDK feature does some heavy lifting. It is enabled by default, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>net7.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>
</Project>

The Web API template in ASP.NET Core 7 that implements the same weather service only needs Program.cs with 46 lines of code and 6 lines of configuration. That is a two-thirds reduction compared to the old project template.

Understanding Minimal APIs route mappings

The WebApplication instance has methods that you can call to map a route to a lambda expression or statement:

	MapGet: Map a route to a GET request to retrieve an entity.

	MapPost: Map a route to a POST request to insert an entity.

	MapPut: Map a route to a PUT request to update an entity.

	MapPatch: Map a route to a PATCH request to update an entity.

	MapDelete: Map a route to a DELETE request to delete an entity.

	MapMethods: Map a route to any HTTP method or methods, for example, CONNECT or HEAD.

For example, you might want to map an HTTP GET request for the relative path api/customers to a delegate defined by a lambda expression or a function that returns a JSON document containing a list of customers, as shown in the following code:

app.MapGet("api/customers", () => GetListOfCustomersAsJson());

You might want to map an HTTP CONNECT request for the relative path api/customers to a lambda expression, as shown in the following code:

app.MapMethods("api/customers", new[] { "CONNECT" }, () => { });

Understanding parameter mapping

The delegate can have parameters defined that can be set automatically. Although most mappings can be configured without explicitly being specified, you can optionally use attributes to define where ASP.NET Core Minimal APIs should set the parameter values from:

	[FromServices]: The parameter will be set from the registered dependency services.

	[FromRoute]: The parameter will be set from a matching named route segment.

	[FromQuery]: The parameter will be set from a matching named query string parameter.

	[FromBody]: The parameter will be set from the body of the HTTP request.

For example, to update an entity in a database, you would need a database context to be retrieved from the registered dependency services, an identifier passed as a query string or route segment, and the new entity in the body of the request, as shown in the following code:

app.MapPut("api/customers/{id}", async (
 [FromServices] NorthwindContext db,
 [FromRoute] string id, // or [FromQuery] string id,
 [FromBody] Customer customer) =>
{
 Customer? existingCustomer = await db.Customers.FindAsync(id);
 ...
});

Understanding return values

A Minimal APIs service can return data in some common formats:

	Type
	Lambda

	Plain text
	() => "Hello World!"

() => Results.Text("Hello World!")

	JSON document
	() => new { FirstName = "Bob", LastName = "Jones" }

() => Results.Json(new { FirstName = "Bob", LastName = "Jones" })

	IResult with status codes
	() => Results.Ok(new { FirstName = "Bob", LastName = "Jones" })

() => Results.NoContent()

() => Results.Redirect("new/path")

() => Results.NotFound()

() => Results.BadRequest()

() => Results.Problem()

() => Results.StatusCode(405)

	File
	() => Results.File("/path/filename.ext")

Documenting a Minimal APIs service

You can call additional methods to specify what return types and status codes can be expected from an endpoint:

	Produces<T>(StatusCodes.Status200OK): When successful, this route returns a response containing a type T and status code 200.

	Produces(StatusCodes.Status404NotFound): When no match for the route is found, this route returns an empty response and status code 404.

Setting up a ASP.NET Core Web API project

First, we will create a simple ASP.NET Core Web API project that we will later protect using various techniques like rate limiting, CORS, and authentication and authorization.

The API for this web service is defined as shown in the following table:

	Method
	Path
	Request body
	Response body
	Success code

	GET
	/
	None
	Hello World!
	200

	GET
	/api/products
	None
	Array of in-stock Product objects
	200

	GET
	/api/products/outofstock
	None
	Array of out-of-stock Product objects
	200

	GET
	/api/products/discontinued
	None
	Array of discontinued Product objects
	200

	GET
	/api/products/{id}
	None
	Product object
	200

	GET
	api/products/{name}
	None
	Array of Product objects that contain the name
	200

	POST
	/api/products
	Product object (no Id value)
	Product object
	201

	PUT
	/api/products/{id}
	Product object
	None
	204

	DELETE
	/api/products/{id}
	None
	None
	204

Let's go:

	Use your preferred code editor to create a new solution/workspace named Chapter09.

	Add a Web API project, as defined in the following list:

	Project template: ASP.NET Core Web API / webapi --use-minimal-apis

	Workspace/solution file and folder: Chapter09

	Project file and folder: Northwind.WebApi.Service

	Authentication type: None

	Configure for HTTPS: Selected.

	Enable Docker: Cleared.

	Use controllers (uncheck to use minimal APIs): Cleared.

	Enable OpenAPI support: Selected.

	Do not use top-level statements: Cleared.

To create a Web API project using Minimal APIs with dotnet new, you must use either the -minimal switch or the --use-minimal-apis switch.

	Add a project reference to the Northwind database context project for SQL Server that you created in Chapter 2, Working with Data Using SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

The path cannot have a line break. If you did not complete the task to create the class libraries in Chapter 2, Working with Data Using SQL Server, then download the solution projects from the GitHub repository.

	At the command line or terminal, build the Northwind.WebApi.Service project to make sure the entity model class library projects outside the current solution are properly compiled, as shown in the following command:

dotnet build

	In the Properties folder, in launchSettings.json, modify the applicationUrl to use port 5091, as shown highlighted in the following configuration:

"profiles": {
 "Northwind.WebApi.Service": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:5091",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }

	In Program.cs, delete the statements about the weather service and replace them with statements to configure responses to all the HTTP requests documented in the API table, as shown highlighted in the following code:

using Microsoft.AspNetCore.Http.HttpResults; // Results
using Microsoft.AspNetCore.Mvc; // [FromServices]
using Microsoft.AspNetCore.OpenApi; // WithOpenApi
using Packt.Shared; // AddNorthwindContext extension method
var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();
builder.Services.AddNorthwindContext();
var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
app.UseHttpsRedirection();
app.MapGet("/", () => "Hello World!");
int pageSize = 10;
app.MapGet("api/products", (
 [FromServices] NorthwindContext db,
 [FromQuery] int? page) =>
 db.Products.Where(product =>
 (product.UnitsInStock > 0) && (!product.Discontinued))
 .Skip(((page ?? 1) - 1) * pageSize).Take(pageSize)
)
 .WithName("GetProducts")
 .WithOpenApi(operation =>
 {
 operation.Description =
 "Get products with UnitsInStock > 0 and Discontinued = false.";
 operation.Summary = "Get in-stock products that are not discontinued.";
 return operation;
 })
 .Produces<Product[]>(StatusCodes.Status200OK);
app.MapGet("api/products/outofstock", ([FromServices] NorthwindContext db) =>
 db.Products.Where(product =>
 (product.UnitsInStock == 0) && (!product.Discontinued)))
 .WithName("GetProductsOutOfStock")
 .WithOpenApi()
 .Produces<Product[]>(StatusCodes.Status200OK);
app.MapGet("api/products/discontinued", ([FromServices] NorthwindContext db) =>
 db.Products.Where(product => product.Discontinued))
 .WithName("GetProductsDiscontinued")
 .WithOpenApi()
 .Produces<Product[]>(StatusCodes.Status200OK);
app.MapGet("api/products/{id:int}",
 async Task<Results<Ok<Product>, NotFound>> (
 [FromServices] NorthwindContext db,
 [FromRoute] int id) =>
 await db.Products.FindAsync(id) is Product product ?
 TypedResults.Ok(product) : TypedResults.NotFound())
 .WithName("GetProductById")
 .WithOpenApi()
 .Produces<Product>(StatusCodes.Status200OK)
 .Produces(StatusCodes.Status404NotFound);
app.MapGet("api/products/{name}", (
 [FromServices] NorthwindContext db, [FromRoute] string name) =>
 db.Products.Where(p => p.ProductName.Contains(name)))
 .WithName("GetProductsByName")
 .WithOpenApi()
 .Produces<Product[]>(StatusCodes.Status200OK);
app.MapPost("api/products", async ([FromBody] Product product,
 [FromServices] NorthwindContext db) =>
{
 db.Products.Add(product);
 await db.SaveChangesAsync();
 return Results.Created($"api/products/{product.ProductId}", product);
}).WithOpenApi()
 .Produces<Product>(StatusCodes.Status201Created);
app.MapPut("api/products/{id:int}", async (
 [FromRoute] int id,
 [FromBody] Product product,
 [FromServices] NorthwindContext db) =>
{
 Product? foundProduct = await db.Products.FindAsync(id);
 if (foundProduct is null) return Results.NotFound();
 foundProduct.ProductName = product.ProductName;
 foundProduct.CategoryId = product.CategoryId;
 foundProduct.SupplierId = product.SupplierId;
 foundProduct.QuantityPerUnit = product.QuantityPerUnit;
 foundProduct.UnitsInStock = product.UnitsInStock;
 foundProduct.UnitsOnOrder = product.UnitsOnOrder;
 foundProduct.ReorderLevel = product.ReorderLevel;
 foundProduct.UnitPrice = product.UnitPrice;
 foundProduct.Discontinued = product.Discontinued;
 await db.SaveChangesAsync();
 return Results.NoContent();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.MapDelete("api/products/{id:int}", async (
 [FromRoute] int id,
 [FromServices] NorthwindContext db) =>
{
 if (await db.Products.FindAsync(id) is Product product)
 {
 db.Products.Remove(product);
 await db.SaveChangesAsync();
 return Results.NoContent();
 }
 return Results.NotFound();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.Run();

	Start the website project and note the Swagger documentation, as shown in Figure 9.1:

[image: Figure 9.1: Swagger documentation for the Northwind Web API service]Figure 9.1: Swagger documentation for the Northwind Web API service

	Click GET /api/products to expand that section.

	Click the Try it out button, note the optional query string parameter named page, and then click the Execute button.

	Note the response includes the first ten products that are in stock and not discontinued: 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12.

	For the page parameter, enter 3, and then click the Execute button.

	Note the response includes the third page of ten products that are in stock and are not discontinued: 25, 26, 27, 30, 32, 33, 34, 35, 36, and 37.

	Click GET /api/products to collapse that section.

	Try executing the GET /api/products/outofstock path and note it returns one product, 31 Gorgonzola Telino, that has zero units in stock and is not discontinued.

	Try executing the GET /api/products/discontinued path and note it returns eight products: 5, 9, 17, 24, 28, 29, 42, and 53, that all have their Discontinued properties set to true.

	Click GET /api/products/{id} to expand that section.

	Click Try it out, enter the required id parameter as 77, click Execute, and note the response contains the product named Original Frankfurter grüne Soße, as shown in the following JSON document:

{
 "productId": 77,
 "productName": "Original Frankfurter grüne Soße",
 "supplierId": 12,
 "categoryId": 2,
 "quantityPerUnit": "12 boxes",
 "unitPrice": 13,
 "unitsInStock": 32,
 "unitsOnOrder": 0,
 "reorderLevel": 15,
 "discontinued": false,
 "category": null,
 "supplier": null,
 "orderDetails": []
}

	Click GET /api/products/{id} to collapse that section.

	Click GET /api/products/{name} to expand that section.

	Click Try it out, enter the required name parameter as man, click Execute, and note the response contains the products named Queso Manchego La Pastora and Manjimup Dried Apples.

	Leave the web service running.

Testing web services using Visual Studio Code extensions

Using the Swagger user interface to test web services can quickly get clumsy. A better tool is the Visual Studio Code extension named REST Client:

	If you have not already installed REST Client by Huachao Mao (humao.rest-client), then install it in Visual Studio Code now.

	In your preferred code editor, start the Northwind.WebApi.Service project (if it is not already running) and leave it running.

	In Visual Studio Code, in the apps-services-net7 folder, if it does not already exist create a RestClientTests folder, and then open that folder.

	In the RestClientTests folder, create a file named webapi-get-products.http, and modify its contents to contain a request to get all products, as shown in the following code:

Get first page of 10 products that are in stock and not discontinued
GET https://localhost:5091/api/products/

	Click Send Request, and note the response is the same as what was returned by Swagger, a JSON document response containing the first ten products that are in stock and not discontinued, as shown in Figure 9.2:

[image: Figure 9.2: REST Client getting the products from the Web API service]Figure 9.2: REST Client getting the products from the Web API service

	In webapi-get-products.http, add more requests separated by ###, as shown in the following file:

Get third page of 10 products that are in stock and not discontinued
GET https://localhost:5091/api/products?page=3
Get products that are out-of-stock but not discontinued
GET https://localhost:5091/api/products/outofstock
Get products that are discontinued
GET https://localhost:5091/api/products/discontinued
Get product 77
GET https://localhost:5091/api/products/77
Get products that contain "man"
GET https://localhost:5091/api/products/man

	Note that you can execute an HTTP request by clicking Send Request above each query or by navigating to View | Command Palette and selecting the Rest Client: Send Request command or using its keyboard shortcut for your operating system.

	In the RestClientTests folder, create a file named webapi-insert-product.http, and modify its contents to contain a POST request to insert a new product, as shown in the following code:

POST https://localhost:5091/api/products/
Content-Type: application/json
{
 "productName": "Harry's Hamburgers",
 "supplierId": 7,
 "categoryId": 6,
 "quantityPerUnit": "6 per box",
 "unitPrice": 24.99,
 "unitsInStock": 0,
 "unitsOnOrder": 20,
 "reorderLevel": 10,
 "discontinued": false
}

	Click Send Request, and note the response indicates that the new product was added successfully because the status code is 201, and its location includes its product ID, as shown in Figure 9.3:

[image: Figure 9.3: REST Client inserting a new product by calling the Web API service]Figure 9.3: REST Client inserting a new product by calling the Web API service

Originally, there are 77 products in the Northwind database. The next product ID would be 78. The actual product ID assigned automatically will depend on if you have previously added any other products. In Figure 9.3, you can see that 81 was assigned. You could re-execute the SQL script to drop and then recreate the database.

	In the RestClientTests folder, create a file named webapi-update-product.http, and modify its contents to contain a PUT request to update the product with ID 81 with a different quantity per unit, unit price, and units in stock, as shown in the following code:

PUT https://localhost:5091/api/products/81
Content-Type: application/json
{
 "productName": "Harry's Hamburgers",
 "supplierId": 7,
 "categoryId": 6,
 "quantityPerUnit": "12 per box",
 "unitPrice": 44.99,
 "unitsInStock": 50,
 "unitsOnOrder": 20,
 "reorderLevel": 10,
 "discontinued": false
}

	Send the request and note you should get a 204 status code in the response, meaning a successful update.

	Confirm the product was updated by executing a GET request for the product ID.

	In the RestClientTests folder, create a file named webapi-delete-product.http, and modify its contents to contain a DELETE request for the new product, as shown in the following code:

DELETE https://localhost:5091/api/products/81

	Note the successful response, as shown in Figure 9.4:

[image: Figure 9.4: Deleting a product using the Web API service]Figure 9.4: Deleting a product using the Web API service

	Send the request again and note the response contains a 404 status code because the product has now been deleted.

	Shut down the web server.

Excluding paths from OpenAPI documentation

Sometimes you want to have a path that works but is not shown in the Swagger documentation.

	In Program.cs, for the root path that returns Hello World, exclude it from the OpenAPI documentation, as shown highlighted in the following code:

app.MapGet("/", () => "Hello World!")
 .ExcludeFromDescription();

	Start the Northwind.WebApi.Service project and note the path is now not documented.

We now have a working web service implemented using ASP.NET Core Minimal APIs. Now let's attack it! (So that we can learn how to prevent those attacks!)

Relaxing the same origin security policy using CORS

Modern web browsers support multiple tabs so users can visit multiple websites at the same time efficiently. If code executing in one tab could access resources in another tab then that could become a method of attack.

All web browsers implement a security feature called the same origin policy. This means that only requests that come from the same origin are allowed. For example, if a block of JavaScript is served from the same origin that hosts a web service or served an <iframe>, then that JavaScript can call the service and access the data in the <iframe>. If a request is made from a different origin, then the request fails.

An origin is defined by:

	Scheme aka protocol, for example, HTTP or HTTPS.

	Port (if specified).

	Host/domain/subdomain, for example, www.example.com, www.example.net, example.com.

If the origin is http://www.example.com/about-us/, then the following are NOT the same origin:

	Different scheme: https://www.example.com/about-us/

	Different host/domain: http://www.example.co.uk/about-us/

	Different subdomain: http://careers.example.com/about-us/

	Different port: http://www.example.com:8000/about-us/

It is the web browser that sets the Origin header automatically when making an HTTP request. This cannot be overridden. The same origin policy does not apply to any HTTP requests that come from a non-web browser, because in those cases the programmer could change the Origin header anyway. If you create a console app or even an ASP.NET Core project that uses .NET classes like HttpClient to make a request, the same origin policy does not apply unless you explicitly set the Origin header.

Let's see some examples of calling the web service from a web page with a different origin and from a .NET app.

Configuring HTTP logging for the web service

First, let's enable HTTP logging for the web service and configure it to show the origin of requests:

	In the Northwind.WebApi.Service project, in Program.cs, import the namespace for controlling which HTTP fields are logged, as shown in the following code:

using Microsoft.AspNetCore.HttpLogging; // HttpLoggingFields

	In Program.cs, before the call to builder.Build(), add a statement to add HTTP logging including the Origin header and all fields including the response body, as shown in the following code:

builder.Services.AddHttpLogging(options =>
{
 // if we do not explicitly add the Origin header
 // it will be redacted
 options.RequestHeaders.Add("Origin");
 // by default the response body is not included
 options.LoggingFields = HttpLoggingFields.All;
});

	In Program.cs, after the call to UseHttpsRedirection(), add a statement to use HTTP logging, as shown in the following code:

app.UseHttpLogging();

	In appsettings.Development.json, add an entry to set the level for HTTP logging to Information, as shown highlighted in the following configuration:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.AspNetCore.HttpLogging": "Information"
 }
 }
}

Creating a web page JavaScript client

Next, let's create a web page client that will attempt to use JavaScript on a different port to call the web service:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller) / mvc

	Workspace/solution file and folder: Chapter09

	Project file and folder: Northwind.WebApi.Client.Mvc

	Other Visual Studio 2022 options:

	Authentication Type: None.

	Configure for HTTPS: selected.

	Enable Docker: cleared.

	Do not use top-level statements: cleared.

	In Visual Studio 2022, set the startup project to the current selection.

	In Visual Studio Code, select Northwind.WebApi.Client.Mvc as the active OmniSharp project.

	In the Northwind.WebApi.Client.Mvc project, in the Properties folder, in launchSettings.json, change the applicationUrl to use port 5092, as shown in the following markup:

"applicationUrl": "https://localhost:5092",

	In the Views/Home folder, in Index.cshtml, replace the existing markup with the markup below that has a link to a route that has not been defined yet and to define a text box and button, and a JavaScript block that makes a call to the web service to get products that contain a partial name, as shown in the following code:

@{
 ViewData["Title"] = "Products using JavaScript";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div>
 Go to Products using .NET
 </div>
 <div>
 <input id="productName" placeholder="Enter part of a product name" />
 <input id="getProductsButton" type="button" value="Get Products" />
 </div>
 <div>
 <table id="productsTable" class="table">
 <thead>
 <tr>
 <th scope="col">Product Name</th>
 </tr>
 </thead>
 <tbody id="tableBody">
 </tbody>
 </table>
 </div>
 <script>
 var baseaddress = "https://localhost:5091/";
 function xhr_load() {
 console.log(this.responseText);
 var products = JSON.parse(this.responseText);
 var out = "";
 var i;
 for (i = 0; i < products.length; i++) {
 out += '<tr><td><a href="' + baseaddress + 'api/products/' +
 products[i].productId + '">' +
 products[i].productName + '</td></tr>';
 }
 document.getElementById("tableBody").innerHTML = out;
 }
 function getProductsButton_click() {
 xhr.open("GET", baseaddress + "api/products/" +
 document.getElementById("productName").value);
 xhr.send();
 }
 document.getElementById("getProductsButton")
 .addEventListener("click", getProductsButton_click);
 var xhr = new XMLHttpRequest();
 xhr.addEventListener("load", xhr_load);
 </script>
</div>

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Mvc project without debugging.

If you are using Visual Studio Code, then the web browser will not start automatically. Start Chrome, and then navigate to https://localhost:5092.

	In Chrome, show Developer Tools and the Console.

	In the text box, enter man, click the Get Products button, and note the error, as shown in the following output and in Figure 9.5:

Access to XMLHttpRequest at 'https://localhost:5091/api/products/man' from origin 'https://localhost:5092' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource.
GET https://localhost:5091/api/products/man net::ERR_FAILED 200

[image: Figure 9.5: CORS error in the Developer Tools console]Figure 9.5: CORS error in the Developer Tools console

	At the command prompt or terminal for the Northwind.WebApi.Service project, note the HTTP log for the request and that the Host is on a different port number to the Origin so they are not the same origin, as shown highlighted in the following output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[1]
 Request:
 Protocol: HTTP/2
 Method: GET
 Scheme: https
 PathBase:
 Path: /api/products/man
 Accept: */*
 Host: localhost:5091
 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36
 Accept-Encoding: gzip, deflate, br
 Accept-Language: en-US,en;q=0.9,sv;q=0.8
 Origin: https://localhost:5092
 Referer: [Redacted]
 sec-ch-ua: [Redacted]
 sec-ch-ua-mobile: [Redacted]
 sec-ch-ua-platform: [Redacted]
 sec-fetch-site: [Redacted]
 sec-fetch-mode: [Redacted]
 sec-fetch-dest: [Redacted]

	Also note the output shows that the web service did execute the database query and return the products in a JSON document response to the browser, as shown in the following output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
 Response:
 StatusCode: 200
 Content-Type: application/json; charset=utf-8
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[4]
 ResponseBody: [{"productId":12,"productName":"Queso Manchego La Pastora","supplierId":5,"categoryId":4,"quantityPerUnit":"10 - 500 g pkgs.","unitPrice":38.0000,"unitsInStock":86,"unitsOnOrder":0,"reorderLevel":0,"discontinued":false,"category":null,"supplier":null,"orderDetails":[]},{"productId":51,"productName":"Manjimup Dried Apples","supplierId":24,"categoryId":7,"quantityPerUnit":"50 - 300 g pkgs.","unitPrice":53.0000,"unitsInStock":20,"unitsOnOrder":0,"reorderLevel":10,"discontinued":false,"category":null,"supplier":null,"orderDetails":[]}]

It is the browser that enforces the same origin policy by refusing to reveal the HTTP response to the JavaScript.

	Close the browser(s) and shut down the web servers.

Creating a .NET client

Next, let's create a .NET client to the web service to see that the same origin policy does not apply:

	In the Northwind.WebApi.Client.Mvc project, add a reference to the entity models project so that we can use the Product class, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

	Build the Northwind.WebApi.Client.Mvc project at the command line.

	In Program.cs, import the namespace for working with HTTP headers, as shown in the following code:

using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue

	In Program.cs, before the call the builder.Build(), add statements to configure an HTTP client factory to call the web service, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.WebApi.Service",
 configureClient: options =>
 {
 options.BaseAddress = new("https://localhost:5091/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

	In the Controllers folder, in HomeController.cs, import the namespace for the entity models, as shown in the following code:

using Packt.Shared; // Product

	In HomeController.cs, add statements to store the registered HTTP client factory in a private readonly field, as shown highlighted in the following code:

private readonly ILogger<HomeController> _logger;
private readonly IHttpClientFactory clientFactory;
public HomeController(ILogger<HomeController> logger,
 IHttpClientFactory httpClientFactory)
{
 _logger = logger;
 clientFactory = httpClientFactory;
}

	In HomeController.cs, add an asynchronous action method named Products that will use the HTTP factory to request products whose name contains a value entered as an optional name parameter in a custom MVC route, as shown in the following code:

[Route("home/products/{name?}")]
public async Task<IActionResult> Products(string? name)
{
 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.WebApi.Service");
 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: $"api/products/{name}");
 HttpResponseMessage response = await client.SendAsync(request);
 IEnumerable<Product>? model = await response.Content
 .ReadFromJsonAsync<IEnumerable<Product>>();
 ViewData["baseaddress"] = client.BaseAddress;
 return View(model);
}

With ASP.NET Core MVC, a default route is configured for {controller}/{action}/{id}. Rather than have to define an extra route to pass part of a product name, we are using the id parameter.

	In the Views/Home folder, add a new view file named Products.cshtml.

	In Products.cshtml, modify its contents to output a table of products that match part of a product name entered in a text box, as shown in the following markup:

@using Packt.Shared
@model IEnumerable<Product>?
@{
 ViewData["Title"] = "Products using .NET";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div>
 Go to Products using JavaScript
 </div>
 <form action="/home/products">
 <input name="name" placeholder="Enter part of a product name" />
 <input type="submit" value="Get Products" />
 </form>
 <div>
 <table class="table">
 <thead>
 <tr>
 <th scope="col">Product Name</th>
 </tr>
 </thead>
 <tbody>
 @if (Model is not null)
 {
 @foreach (Product p in Model)
 {
 <tr><td><a href="@(ViewData["baseaddress"])api/products/
@p.ProductId">@p.ProductName</td></tr>
 }
 }
 </tbody>
 </table>
 </div>
</div>

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Mvc project without debugging.

	On the home page, click the link to go to Products using .NET, and note the first ten products are shown in the table.

	In the text box, enter man, click Get Products, and note that two products are shown in the table, as shown in Figure 9.6:

[image: Figure 9.6: Getting two products from a web service using .NET]Figure 9.6: Getting two products from a web service using .NET

It is the .NET HTTP client that is calling the web service, so the same origin policy does not apply. If you were to check the logs at the command line or terminal as you did before, you would see the ports are different but it does not matter.

	Click one of the product names to make a direct request to the web service for an individual product and note the response, as shown in the following document:

{"productId":12,"productName":"Queso Manchego La Pastora","supplierId":5,"categoryId":4,"quantityPerUnit":"10 - 500 g pkgs.","unitPrice":38.0000,"unitsInStock":86,"unitsOnOrder":0,"reorderLevel":0,"discontinued":false,"category":null,"supplier":null,"orderDetails":[]}

	Close the browser and shut down the web servers.

Understanding CORS

Cross Origin Resource Sharing (CORS) is a HTTP-header based feature that disables the same origin security policy in specific scenarios. The HTTP headers indicate which additional origins are allowed.

Let's enable CORS in the web service so that it can send extra headers to indicate to the browser that it is allowed to access resources from a different origin.

	In the Northwind.WebApi.Service project, in Program.cs, after creating the builder, add statements to define a named CORS policy that allows the MVC project as an origin, as shown in the following code:

string northwindMvc = "Northwind.Mvc.Policy";
builder.Services.AddCors(options =>
{
 options.AddPolicy(name: northwindMvc,
 policy =>
 {
 policy.WithOrigins("https://localhost:5092");
 });
});

	In Program.cs, after the call to UseHttpLogging, add a statement to use the CORS policy, as shown in the following code:

app.UseCors(policyName: northwindMvc);

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Mvc project without debugging.

	Show Developer Tools and its Console.

	On the home page, in the text box, enter man, click Get Products, and note that the console shows the JSON document returned from the web service and the table is filled with the two products, as shown in Figure 9.7:

[image: Figure 9.7: A successful cross origin request to the web service using JavaScript]Figure 9.7: A successful cross origin request to the web service using JavaScript

	Close the browser and shut down the web servers.

Enabling CORS for specific endpoints

In the previous example, we enabled the same CORS policy for the whole web service. You might need finer control at the endpoint level:

	In the Northwind.WebApi.Service project, in Program.cs, change the call to UseCors to not specific the policy name, as shown in the following code:

// app.UseCors(policyName: northwindMvc);
// without a named policy the middleware is added but not active
app.UseCors();

	At the end of the call to MapGet that gets a product using a product ID, add a call to RequiresCors, as shown highlighted in the following code:

app.MapGet("api/products/{id:int}",
 async Task<Results<Ok<Product>, NotFound>> (
 [FromServices] NorthwindContext db,
 [FromRoute] int id) =>
 await db.Products.FindAsync(id) is Product product ?
 TypedResults.Ok(product) : TypedResults.NotFound())
 .WithName("GetProductById")
 .WithOpenApi()
 .Produces<Product[]>(StatusCodes.Status200OK)
 .Produces(StatusCodes.Status404NotFound)
 .RequireCors(policyName: northwindMvc);

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Mvc project without debugging.

	Show Developer Tools and its Console.

	On the home page, in the text box, enter cha, click Get Products, and note the console shows a CORS error because we enabled CORS for the wrong endpoint!

	Close the browser and shut down the web servers.

	At the end of the call to MapGet that gets products that contain part of a product name, add a call to RequiresCors, as shown highlighted in the following code:

app.MapGet("api/products/{name}", (
 [FromServices] NorthwindContext db,
 [FromRoute] string name) =>
 db.Products.Where(p => p.ProductName.Contains(name)))
 .WithName("GetProductByName")
 .WithOpenApi()
 .Produces<Product[]>(StatusCodes.Status200OK)
 .RequireCors(policyName: northwindMvc);

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Mvc project without debugging.

	Show Developer Tools and its Console.

	On the home page, in the text box, enter cha, click Get Products, and note that the console shows the JSON document returned from the web service and the table is filled with three products.

	Close the browser and shut down the web servers.

Understanding other CORS policy options

You can control the:

	Allowed origins, for example, https://*.example.com/.

	Allowed HTTP methods, for example, GET, POST, DELETE, and so on.

	Allowed HTTP request headers, for example, Content-Type, Content-Language, x-custom-header, and so on.

	Exposed HTTP response headers, meaning which headers to include unredacted in a response because by default response headers are redacted, for example, x-custom-header.

You can learn more about options for CORS policies at the following link: https://docs.microsoft.com/en-us/aspnet/core/security/cors#cors-policy-options

Preventing denial of service attacks using rate limiting

A denial of service (DoS) attack is a malicious attempt to disrupt a web service by overwhelming it with requests. If the request all came from the same place, it would be relatively easy to cut them off as soon as the attack is detected. These attacks are often implemented as distributed DoS (DDoS) attacks from many locations so you cannot separate attackers from genuine clients.

Genuine clients should only make a few requests. How many is reasonable will depend on your service. One way to prevent DDoS attacks would be to limit how many requests are allowed from any client per minute. This technique is not just useful to prevent attacks. Even genuine clients might accidentally make too many requests, or for a commercial web service you might want to charge different amounts for different rates, like when controlling a subscription.

When a client makes request over a set rate limit, the client should receive either 429 Too Many Requests or 503 Service Unavailable responses.

Rate limiting using ASP.NET Core middleware

ASP.NET Core 7 introduces built-in rate limiting middleware:

	In the Northwind.WebApi.Service project, add a reference to the Microsoft.AspNetCore.RateLimiting package, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OpenApi" Version="7.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.RateLimiting"
 Version="7.0.0" />
 <PackageReference Include="Swashbuckle.AspNetCore" Version="6.2.3" />
</ItemGroup>

	Build the Northwind.WebApi.Service project.

	In Program.cs, import the namespaces for working with rate limiting, as shown in the following code:

using Microsoft.AspNetCore.RateLimiting; // UseRateLimiter, RateLimiterOptions
using System.Threading.RateLimiting; // PartitionedRateLimiter

	At the bottom of Program.cs, before running the host, add statements to control rate limiting, as shown in the following code:

// rate limiting middleware
app.UseRateLimiter(new RateLimiterOptions
{
 Limiter = PartitionedRateLimiter.Create<HttpContext, string>(resource =>
 {
 return RateLimitPartition.CreateConcurrencyLimiter("OneLimiter",
 _ => new ConcurrencyLimiterOptions(
 permitLimit: 1, QueueProcessingOrder.NewestFirst,
 queueLimit: 1));
 })
});

Rate limiting using the AspNetCoreRateLimit package

AspNetCoreRateLimit, a third-party package, provides more flexible rate limiting middleware based on IP address or client ID:

	In the Northwind.WebApi.Service project, add a reference to the AspNetCoreRateLimit package, as shown in the following markup:

<PackageReference Include="AspNetCoreRateLimit" Version="4.0.2" />

	In appsettings.Development.json, add configuration for default rate limit options and client-specific policies, as shown highlighted in the following configuration:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.AspNetCore.HttpLogging": "Information"
 }
 },
 "ClientRateLimiting": {
 "EnableEndpointRateLimiting": false,
 "StackBlockedRequests": false,
 "ClientIdHeader": "X-Client-Id",
 "HttpStatusCode": 429,
 "EndpointWhitelist": ["get:/api/license", "*:/api/status"],
 "ClientWhitelist": ["dev-id-1", "dev-id-2"],
 "GeneralRules": [
 {
 "Endpoint": "*",
 "Period": "10s",
 "Limit": 2
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 100
 }
]
 },
 "ClientRateLimitPolicies": {
 "ClientRules": [
 {
 "ClientId": "console-client-abc123",
 "Rules": [
 {
 "Endpoint": "*",
 "Period": "10s",
 "Limit": 5
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 250
 }
]
 }
]
 }
}

Note:

	EnableEndpointRateLimiting is false, meaning all endpoints will share the same rules.

	If a client needs to identify itself, it can set a header named X-Client-Id to a unique string value.

	If a rate limit is reached for a client, the service will start returning 429 status code responses to that client.

	Two endpoints will be excluded from the rate limits: one for getting a license and one for checking the status of the service. We will not actually implement these features.

	Two client IDs named dev-id-1 and dev-id-2 will be excluded from the rate limits. These could be special client accounts for internal developers.

	Two general (default) rules are configured: the first sets a rate limit of 2 requests every 10 seconds, and the second sets a rate limit of 100 requests every 12 hours.

	Two client-specific rules are configured: for the client ID named console-client-abc123, it is allowed to make up to 5 requests every 10 seconds, and up to 250 requests every 12 hours.

	Build the Northwind.WebApi.Service project.

	In Program.cs, import the namespace for working with rate limiting options, as shown in the following code:

using AspNetCoreRateLimit; // ClientRateLimitOptions, ClientRateLimitPolicies

	In Program.cs, after creating the builder, add statements to load rate limiting configuration from app settings and set rate limiting options, as shown in the following code:

// AspNetCoreRateLimit rate limiting middleware
// needed to store rate limit counters and rules
builder.Services.AddMemoryCache();
builder.Services.AddInMemoryRateLimiting();
// load default rate limit options from appsettings.json
builder.Services.Configure<ClientRateLimitOptions>(
 builder.Configuration.GetSection("ClientRateLimiting"));
// load client-specific policies from appsettings.json
builder.Services.Configure<ClientRateLimitPolicies>(
 builder.Configuration.GetSection("ClientRateLimitPolicies"));
// register configuration
builder.Services.AddSingleton
 <IRateLimitConfiguration, RateLimitConfiguration>();

	In Program.cs, in the call to configure HTTP logging, add a statement to allow two rate limiting headers to not be redacted, as shown highlighted in the following code:

builder.Services.AddHttpLogging(options =>
{
 // if we do not explicitly add the Origin header
 // it will be redacted
 options.RequestHeaders.Add("Origin");
 // if we do not explicitly add the rate limiting headers
 // they will be redacted
 options.RequestHeaders.Add("X-Client-Id");
 options.ResponseHeaders.Add("Retry-After");
 // by default the response body is not included
 options.LoggingFields = HttpLoggingFields.All;
});

	In Program.cs, after building the app object, add statements to seed the client policy store, as shown in the following code:

using (IServiceScope scope = app.Services.CreateScope())
{
 IClientPolicyStore clientPolicyStore = scope.ServiceProvider
 .GetRequiredService<IClientPolicyStore>();
 await clientPolicyStore.SeedAsync();
}

	In Program.cs, after calling UseHttpLogging, add a call to use client rate limiting, as shown in the following code:

app.UseClientRateLimiting();

Creating a rate limited console client

Now we can create a console app that will be a client to the web service:

	Use your preferred code editor to add a new console app to the Chapter09 solution/workspace named Northwind.WebApi.Client.Console.

	In Visual Studio Code, select Northwind.WebApi.Client.Console as the active OmniSharp project.

	In the Northwind.WebApi.Client.Console project, globally and statically import the System.Console class, and add a reference to the entity models project, as shown in the following markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

	In Program.cs, delete the existing statements. Add statements to prompt the user for a client name to identify it, and then create an HTTP client to make a request to get the first page of products from the web service once per second until the user presses Ctrl + C to stop the console app, as shown in the following code:

using Packt.Shared; // Product
using System.Net.Http.Json; // ReadFromJsonAsync<T>
Write("Enter a client name: ");
string? clientName = ReadLine();
if (string.IsNullOrEmpty(clientName))
{
 clientName = $"console-client-{Guid.NewGuid()}";
}
WriteLine($"X-Client-Id will be: {clientName}");
HttpClient client = new();
client.BaseAddress = new("https://localhost:5091");
client.DefaultRequestHeaders.Accept.Clear();
client.DefaultRequestHeaders.Accept.Add(new("application/json"));
// specify rate limiting client id
client.DefaultRequestHeaders.Add("X-Client-Id", clientName);
ConsoleColor previousColor;
while (true)
{
 previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkGreen;
 Write("{0:hh:mm:ss}: ", DateTime.UtcNow);
 ForegroundColor = previousColor;
 int waitFor = 1; // seconds
 try
 {
 HttpResponseMessage response = await client.GetAsync("api/products");
 if (response.IsSuccessStatusCode)
 {
 Product[]? products = await response.Content.ReadFromJsonAsync<Product[]>();
 if (products != null)
 {
 foreach (Product product in products)
 {
 Write(product.ProductName);
 Write(", ");
 }
 WriteLine();
 }
 }
 else
 {
 previousColor = ForegroundColor;
 ForegroundColor = ConsoleColor.DarkRed;
 WriteLine($"{(int)response.StatusCode}: {await response.Content.ReadAsStringAsync()}");
 ForegroundColor = previousColor;
 }
 }
 catch (Exception ex)
 {
 WriteLine(ex.Message);
 }
 await Task.Delay(TimeSpan.FromSeconds(waitFor));
}

	Start the Northwind.WebApi.Service project without debugging.

	Start the Northwind.WebApi.Client.Console project without debugging.

	In the console app, press Enter to generate a GUID-based client ID.

	Start the Northwind.WebApi.Client.Console project without debugging again so we have two clients.

	In the console app, press Enter to generate a GUID-based client ID.

	Note that each client can make two requests before it starts to receive 429 status codes, as shown in the following output:

Enter a client name:
X-Client-Id will be: console-client-d54c61ba-66bb-4e39-9c1a-7af6e2bf647e
07:32:18: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:32:20: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:32:21: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:22: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:23: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:24: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:25: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:26: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:27: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:28: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:32:29: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:32:30: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:31: 429: API calls quota exceeded! maximum admitted 2 per 10s.
07:32:32: 429: API calls quota exceeded! maximum admitted 2 per 10s.

	Stop the two console apps.

	In the command line for the web service, note the HTTP logs that show each request from the console client with its client ID sent as a header named X-Client-Id, and the request being blocked because that client has exceeded its quota, and a response that contains a header named Retry-After containing the number of seconds the client should wait before retrying, as shown highlighted in the following output:

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[1]
 Request:
 Protocol: HTTP/1.1
 Method: GET
 Scheme: https
 PathBase:
 Path: /api/products
 Accept: application/json
 Host: localhost:5091
 X-Client-Id: console-client-d54c61ba-66bb-4e39-9c1a-7af6e2bf647e
info: AspNetCoreRateLimit.ClientRateLimitMiddleware[0]
 Request get:/api/products from ClientId console-client-d54c61ba-66bb-4e39-9c1a-7af6e2bf647e has been blocked, quota 2/10s exceeded by 3. Blocked by rule *, TraceIdentifier 0HMIKGNJQEK5P:0000000E. MonitorMode: False
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
 Response:
 StatusCode: 429
 Content-Type: text/plain
 Retry-After: 6
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[4]
 ResponseBody: API calls quota exceeded! maximum admitted 2 per 10s.

	In the Northwind.WebApi.Client.Console project, in Program.cs, add statements to read the Retry-After header to get the number of seconds to wait for, as shown highlighted in the following code:

previousColor = ForegroundColor;
ForegroundColor = ConsoleColor.DarkRed;
WriteLine($"{(int)response.StatusCode}: {await response.Content.ReadAsStringAsync()}");

string retryAfter = response.Headers
 .GetValues("Retry-After").ToArray()[0];
if (int.TryParse(retryAfter, out waitFor))
{
 WriteLine($"Retry after {waitFor} seconds.");
}
ForegroundColor = previousColor;

	Start the Northwind.WebApi.Client.Console project without debugging.

	In the console app, press Enter to generate a GUID-based client ID.

	Note the console app will now sensibly wait for the suggested number of seconds before making its next call to the service, as shown in the following output:

Enter a client name:
X-Client-Id will be: console-client-add7613f-51a9-4c4a-8ec7-0244203d2e19
07:45:01: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:45:02: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:45:03: 429: API calls quota exceeded! maximum admitted 2 per 10s.
Retry after 8 seconds.
07:45:11: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:45:12: Chai, Chang, Aniseed Syrup, Chef Anton's Cajun Seasoning, Grandma's Boysenberry Spread, Uncle Bob's Organic Dried Pears, Northwoods Cranberry Sauce, Ikura, Queso Cabrales, Queso Manchego La Pastora,
07:45:13: 429: API calls quota exceeded! maximum admitted 2 per 10s.
Retry after 8 seconds.

	Start the Northwind.WebApi.Client.Console project without debugging.

	In the console app, enter the name dev-id-1, and note that the rate limit does not apply to this console app client.

	Start the Northwind.WebApi.Client.Console project without debugging.

	In the console app, enter the name console-client-abc123, and note that the rate limit is different for this console app client ID, as shown in the following output:

info: AspNetCoreRateLimit.ClientRateLimitMiddleware[0]
 Request get:/api/products from ClientId console-client-abc123 has been blocked, quota 2/10s exceeded by 1. Blocked by rule *, TraceIdentifier 0HMIKGS1TPSHJ:00000006. MonitorMode: False

Understanding identity services

Identity services are used to authenticate and authorize users. It is important for these services to implement open standards so that you can integrate disparate systems. Common standards include OpenID Connect and OAuth 2.0.

A popular free open-source implementation of these identity standards is IdentityServer4. It enables developers to integrate token-based authentication, single-sign-on, and API access control in websites, services, and applications.

Microsoft has no plans to officially support IdentityServer because "creating and sustaining an authentication server is a full-time endeavor, and Microsoft already has a team and a product in that area, Azure Active Directory, which allows 500,000 objects for free."

You can read the documentation for IdentityServer at the following link: https://identityserver4.readthedocs.io/

Authenticating service clients using JWT bearer authentication

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 9.1 – Test your knowledge

Answer the following questions:

	?

	Does enabling CORS increase security for a web service?

	?

	?

	?

Exercise 9.2 – Practice ???

In the Chapter09 solution/workspace, create a console application named Ch09Ex02_??? that ???

Exercise 9.3 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-9---building-and-securing-web-services-using-minimal-apis

Summary

In this chapter, you learned how to secure services using authentication and ???.

In the next chapter, you will learn how to expose data using OData.

10 Exposing Data via the Web Using OData

Join our book community on Discord

https://packt.link/EarlyAccess

In this chapter, you will be introduced to OData, a standard that makes it easy to expose data via the Web to make it accessible to any client that can make an HTTP request.

This chapter will cover the following topics:

	Understanding OData

	Building a web service that supports OData

	Testing OData services using Visual Studio Code extensions

	Logging OData requests

	Versioning OData controllers

	Enabling entity inserts, updates, and deletes

	Building clients for OData services

Understanding OData

One of the most common uses of a web service is to expose a database to clients that do not understand how to work directly with the native database. Another common use is to provide a simplified or abstracted API that exposes an authenticated interface to a subset of the data to control access.

In Chapter 2, Working with Data Using SQL Server, you learned how to create an EF Core model to expose an SQL Server database to any .NET project. But what about non-.NET projects? I know it's crazy to imagine, but not every developer uses .NET!

Luckily, all development platforms support HTTP, so all development platforms can call web services, and ASP.NET Core has a package for making that easy and powerful using a standard named OData.

Understanding the OData standard

OData (Open Data Protocol) is an ISO/IEC approved, OASIS standard that defines a set of best practices for building and consuming RESTful APIs. Microsoft created it in 2007 and released versions 1.0, 2.0 and 3.0 under their Microsoft Open Specification Promise. Version 4.0 was then standardized at OASIS and released in 2014. OData is based on HTTP and has multiple endpoints to support multiple versions and entity sets.

ASP.NET Core OData implements OData version 4.0.

Understanding OData queries

Unlike traditional Web APIs where the service defines all the methods and what gets returned, OData uses URL query strings to define its queries. This enables the client to have more control over what is returned and minimizes round trips. Of course, the OData service controls the scope of those queries, but within that scope the client has complete control.

For example, when querying the Northwind database that we created in Chapter 2 for SQL Server, a client might only need two fields of data, ProductName and Cost, and the related Supplier object, and only for products where the ProductName contains the word burger and the cost is less than 4.95, with the results sorted by country and then cost. The client would construct their query as a URL query string using standard named parameters, as shown in the following request:

GET https://example.com/v1/products?$filter=contains(ProductName, 'burger') and UnitPrice lt 4.95&$orderby=Shipper/Country,UnitPrice&$select=ProductName,UnitPrice&$expand=Supplier

Building a web service that supports OData

There is no dotnet new project template for ASP.NET Core OData, but it uses controller classes, so we will use the ASP.NET Core Web API project template and then add package references to add the OData capabilities:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Web API / webapi

	Workspace/solution file and folder: Chapter10

	Project file and folder: Northwind.OData.Service

	Other Visual Studio options: Authentication Type: None, Configure for HTTPS: Selected, Enable Docker: Cleared, Use controllers (uncheck to use minimal APIs): Checked, Enable OpenAPI support: Selected, Do not use top-level statements: Cleared.

	In Visual Studio Code, select Northwind.OData.Service as the active OmniSharp project.

	Configure the project to treat warnings as errors and add a package reference for ASP.NET Core OData alongside the existing package references for OpenApi and Swashbuckle, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OData"
 Version="8.0.10" />
 <PackageReference Include="Microsoft.AspNetCore.OpenApi"
 Version="7.0.0" />
 <PackageReference Include="Swashbuckle.AspNetCore"
 Version="6.2.3" />
 </ItemGroup>
</Project>

Good Practice: The version numbers of the NuGet packages above are likely to increase after the book is published. As a general guide, you will want to use the latest package version.

Although it is the most popular downloaded package for OData, do not reference Microsoft.Data.OData because it only supports versions 1 to 3 and it is not being maintained. The other popular packages for OData are Microsoft.OData.Core and Microsoft.OData.Edm, which are both dependencies of the package you just referenced so they will be included in your project automatically.

	Add a project reference to the Northwind database context project for SQL Server that you created in Chapter 2, Working with Data Using SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

If you did not complete the task to create the class libraries in Chapter 2, Working with Data Using SQL Server, then download the solution projects from the GitHub repository.

	At the command line or terminal, build the Northwind.OData.Service project to make sure the two projects outside the current solution are properly compiled, as shown in the following command:

dotnet build

If you are using Visual Studio 2022, if you try to build the OData project using the Build menu then you will get the following error: error NU1105: Unable to find project information for 'C:\apps-services-net7\Chapter02\Northwind.Common.DataContext.SqlServer\Northwind.Common.DataContext.SqlServer.csproj'. If you are using Visual Studio, this may be because the project is unloaded or not part of the current solution so run a restore from the command-line.

	In the Northwind.OData.Service folder, delete WeatherForecast.cs.

	In the Controllers folder, delete WeatherForecastController.cs.

Defining OData models for the EF Core models

The first task is to define what we want to expose as OData models in the web service. You have complete control, so if you have an existing EF Core model like we do for Northwind, you do not have to expose all of it.

You do not even have to use EF Core models. The data source can be anything. In this book we will only look at using it with EF Core because that is the most common use for .NET developers.

Let's define two OData models: one to expose the Northwind product catalog, i.e. the categories and products tables; and one to expose the customers, their orders, and related tables:

	Add a new class file named Program.Methods.cs.

	In Program.Methods.cs, import some namespaces for working with OData and our entity models, and then add a method to define and return an OData model for the Northwind catalog that will only expose the entity sets, i.e. tables for Categories, Products, and Suppliers, as shown in the following code:

using Microsoft.OData.Edm; // IEdmModel
using Microsoft.OData.ModelBuilder; // ODataConventionModelBuilder
using Packt.Shared; // NorthwindContext and entity models
partial class Program
{
 static IEdmModel GetEdmModelForCatalog()
 {
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Category>("Categories");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Supplier>("Suppliers");
 return builder.GetEdmModel();
 }
}

	Add a method to define an OData model for the Northwind customer orders, and note that the same entity set can appear in multiple OData models like Products does, as shown in the following code:

static IEdmModel GetEdmModelForOrderSystem()
{
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Customer>("Customers");
 builder.EntitySet<Order>("Orders");
 builder.EntitySet<Employee>("Employees");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Shipper>("Shippers");
 return builder.GetEdmModel();
}

	In Program.cs, import the namespace for working with OData and the namespace for the database context registration extension method, as shown in the following code:

using Microsoft.AspNetCore.OData; // AddOData extension method
using Packt.Shared; // AddNorthwindContext extension method

	In the services configuration section, before the call to AddControllers, add a statement to register the Northwind database context, as shown in the following code:

builder.Services.AddNorthwindContext();

	In the services configuration section, after the call to AddControllers, chain a call to the AddOData extension method to define two OData models and enable features like projection, filtering, and sorting, as shown highlighted in the following code:

builder.Services.AddControllers()
 .AddOData(options => options
 // register OData models
 .AddRouteComponents(routePrefix: "catalog",
 model: GetEdmModelForCatalog())
 .AddRouteComponents(routePrefix: "ordersystem",
 model: GetEdmModelForOrderSystem())
 // enable query options
 .Select() // enable $select for projection
 .Expand() // enable $expand to navigate to related entities
 .Filter() // enable $filter
 .OrderBy() // enable $orderby
 .SetMaxTop(100) // enable $top
 .Count() // enable $count
);

	In the Properties folder, open launchSettings.json.

	In the Northwind.OData.Service profile, modify the applicationUrl to use port 5101 for HTTPS, as shown in the following markup:

"applicationUrl": "https://localhost:5101",

Testing the OData models

Now we can check that the OData models have been defined correctly:

	Start the Northwind.OData.Service project.

	Start Chrome if it does not start automatically.

	Navigate to https://localhost:5101/swagger and note the Northwind.OData.Service v1 service is documented, as shown in Figure 10.1:

[image: Figure 10.1: Swagger documentation for the Northwind.OData.Service project]Figure 10.1: Swagger documentation for the Northwind.OData.Service project

	In the Metadata section, click GET /catalog, click Try it out, click Execute, and note the response body that shows the names and URLs of the three entity sets in the catalog OData model, as shown in the following output:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata",
 "value": [
 {
 "name": "Categories",
 "kind": "EntitySet",
 "url": "Categories"
 },
 {
 "name": "Products",
 "kind": "EntitySet",
 "url": "Products"
 },
 {
 "name": "Suppliers",
 "kind": "EntitySet",
 "url": "Suppliers"
 }
]
}

	Click GET /catalog to collapse that section.

	Click GET /catalog/$metadata, click Try it out, click Execute, and note the model describes the entities like Category in detail with properties and keys, including navigation properties for the products in each category, as shown in Figure 10.2:

[image: Figure 10.2: OData model metadata for the Northwind catalog]Figure 10.2: OData model metadata for the Northwind catalog

	Click GET /catalog/$metadata to collapse that section.

	Close Chrome and shut down the web server.

Creating and testing OData controllers

Next, we must create OData controllers, one for each type of entity, to retrieve data:

	In the Controllers folder, add an empty controller class file named CategoriesController.cs.

	Modify its contents to inherit from ODataController, get an instance of the Northwind database context using constructor parameter injection, and define two Get methods to retrieve all categories or one category using a unique key, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // IActionResult
using Microsoft.AspNetCore.OData.Query; // [EnableQuery]
using Microsoft.AspNetCore.OData.Routing.Controllers; // ODataController
using Packt.Shared; // NorthwindContext
namespace Northwind.OData.Service.Controllers;
public class CategoriesController : ODataController
{
 protected readonly NorthwindContext db;
 public CategoriesController(NorthwindContext db)
 {
 this.db = db;
 }
 [EnableQuery]
 public IActionResult Get()
 {
 return Ok(db.Categories);
 }
 [EnableQuery]
 public IActionResult Get(int key)
 {
 return Ok(db.Categories.Where(
 category => category.CategoryId == key));
 }
}

	Repeat the above step for Products and Suppliers.

I will leave it as an optional task for the reader to do the same for the other entities to enable the order system OData model if you choose. Note the CustomerId is a string instead of an int.

	Start the Northwind.OData.Service web service.

	Start Chrome, navigate to https://localhost:5101/swagger, and note the Categories, Products, and Suppliers entity sets are now documented because you created OData controllers for them, as shown in Figure 10.3:

[image: Figure 10.3: Categories entity set is now documented]Figure 10.3: Categories entity set is now documented

	Click GET /catalog/Categories, click Try it out, click Execute, and note the response body that shows a JSON document containing all categories in the entity set, as partially shown in the following output:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Categories",
 "value": [
 {
 "CategoryId": 1,
 "CategoryName": "Beverages",
 "Description": "Soft drinks, coffees, teas, beers, and ales",
 "Picture": "FRwvAAIAAAANAA4AFAAhAP////9CaX..."
 },
 {
 "CategoryId": 2,
 "CategoryName": "Condiments",
 "Description": "Sweet and savory sauces, relishes, spreads, and seasonings",
 "Picture": "FRwvAAIAAAANAA4AFAAhAP////9CaX..."
 },
 ...
]
}

	At the command prompt or terminal, note the output from logging the SQL command that was executed, as shown in the following output:

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
 Entity Framework Core 7.0.0 initialized 'NorthwindContext' using provider 'Microsoft.EntityFrameworkCore.SqlServer:7.0.0' with options: None
dbug: 22/05/2022 15:07:15.131 RelationalEventId.CommandExecuting[20100] (Microsoft.EntityFrameworkCore.Database.Command)
 Executing DbCommand [Parameters=[], CommandType='Text', CommandTimeout='30']
 SELECT [c].[CategoryId], [c].[CategoryName], [c].[Description], [c].[Picture]
 FROM [Categories] AS [c]

We are noting the SQL statement now so that you can see that all columns and all rows are requested by the OData service when it receives a GET request to the catalog/categories path. Later we will use EF Core logs again to see how OData queries are automatically translated into efficient SQL queries. OData services do not have to return all columns and rows from the database to the service and then performing filtering inside the service.

	Close Chrome and shut down the web server.

Testing OData services using Visual Studio Code extensions

Using the Swagger user interface to test OData controllers can quickly get clumsy. A better tool is the Visual Studio Code extension named REST Client:

	If you have not already installed REST Client by Huachao Mao (humao.rest-client), then install it in Visual Studio Code now.

If you have only been using Visual Studio 2022 up to this point, you must install Visual Studio Code now even if you only use it to run this useful REST Client extension.

	In your preferred code editor, start the Northwind.OData.Service project web service and leave it running.

	In Visual Studio Code, in the apps-services-net7 folder, if it does not already exist create a RestClientTests folder, and then open the folder.

	In the RestClientTests folder, create a file named odata-catalog.http, and modify its contents to contain a request to get all categories, as shown in the following code:

GET https://localhost:5101/catalog/categories/ HTTP/1.1

Good Practice: Specifying the HTTP version at the end of the request is optional because REST Client will default to using 1.1. To avoid clutter, I will not specify it in future requests. The GET verb is also optional because REST Client will default to making a GET request.

	Click Send Request, and note the response is the same as what was returned by Swagger, a JSON document containing all categories, as shown in Figure 10.4:

[image: Figure 10.4: REST Client getting the categories from the OData service]Figure 10.4: REST Client getting the categories from the OData service

	In odata-catalog.http, add more requests separated by ###, as shown in the following table:

	Request
	Response

	https://localhost:5101/catalog/categories(3)
	{

 "@odata.context":"https://localhost:5101/catalog/$metadata#Categories/$entity",

 "CategoryId": 3,

 "CategoryName": "Confections",

 "Description": "Desserts, candies, and sweet breads",

 "Picture": "FRwvAA..."

}

	https://localhost:5101/catalog/categories/3
	Same as above.

	https://localhost:5101/catalog/categories/$count
	8

	https://localhost:5101/catalog/products
	JSON document containing all products.

	https://localhost:5101/catalog/products/$count
	77

	https://localhost:5101/catalog/products(2)
	{

 "@odata.context": "https://localhost:5101/catalog/$metadata#Products/$entity",

 "ProductId": 2,

 "ProductName": "Chang",

 "SupplierId": 1,

 "CategoryId": 1,

 "QuantityPerUnit": "24 - 12 oz bottles",

 "UnitPrice": 19.0000,

 "UnitsInStock": 17,

 "UnitsOnOrder": 40,

 "ReorderLevel": 25,

 "Discontinued": false

}

	https://localhost:5101/catalog/suppliers
	JSON document containing all suppliers.

	https://localhost:5101/catalog/suppliers/$count
	29

	Note that you can execute an HTTP request by clicking Send Request above each query, or by navigating to View | Command Palette and selecting the Rest Client: Send Request command or using its keyboard shortcut for your operating system, as shown in Figure 10.5:

[image: Figure 10.5: Queries in REST Client]Figure 10.5: Queries in REST Client

Querying OData services using REST Client

To execute arbitrary queries against an OData model, we earlier enabled selecting, filtering, and ordering.

For the official documentation of OData URL conventions and standard queries, see the following link: http://docs.oasis-open.org/odata/odata/v4.01/odata-v4.01-part2-url-conventions.html#_Toc31360954

Understanding OData standard query options

One of the benefits of OData is that it defines standard query options, as shown in the following table:

	Option
	Description
	Example

	$select
	Selects properties for each entity.
	$select=CategoryId,CategoryName

	$expand
	Selects related entities via navigation properties.
	$expand=Products

	$filter
	The expression is evaluated for each resource, and only entities where the expression is true are included in the response.
	$filter=startswith(ProductName,'ch') or (UnitPrice gt 50)

	$orderby
	Sorts the entities by the properties listed in ascending (default) or descending order.
	$orderby=UnitPrice desc,ProductName

	$skip

$top

	Skips the specified number of items. Takes the specified number of items.
	$skip=40&$top=10

For performance reasons, batching with $skip and $top is disabled by default.

Understanding OData operators

OData has operators for use with the $filter option, as shown in the following table:

	Operator
	Description

	eq
	Equals.

	ne
	Not equals.

	lt
	Less than.

	gt
	Greater than.

	le
	Less than or equal to.

	ge
	Greater than or equal to.

	and
	And.

	or
	Or.

	not
	Not.

	add
	Arithmetic add for numbers and date/time values.

	sub
	Arithmetic subtract for numbers and date/time values.

	mul
	Arithmetic multiply for numbers.

	div
	Arithmetic division for numbers.

	mod
	Arithmetic modulus division for numbers.

Understanding OData functions

OData has functions for use with the $filter option, as shown in the following table:

	Operator
	Description

	startswith(stringToSearch, string)
	Text values that start with the specified value.

	endswith(stringToSearch, string)
	Text values that end with the specified value.

	concat(string1, string2)
	Concatenate two text values.

	contains(stringToSearch, string)
	Text values that contain the specified value.

	indexof(stringToSearch, string)
	Returns the position of a text value.

	length(string)
	Returns the length of a text value.

	substring(string, index, length)
	Extracts a substring from a text value.

	tolower(string)
	Converts to lower case.

	toupper(string)
	Converts to upper case.

	trim(string)
	Trims whitespace before and after text value.

	now
	The current date and time.

	day(datetime) , month(datetime) , year(datetime)
	Extracts date components.

	hour(datetime) , minute(datetime) , second(datetime)
	Extracts time components.

Exploring OData queries

Let's experiment with some OData queries:

	In the RestClientTests folder, create a file named odata-catalog-queries.http, and modify its contents to contain a request to get all categories, as shown in the following code:

GET https://localhost:5101/catalog/categories/
 ?$select=CategoryId,CategoryName

Good Practice: Put the query string part on a new line to make the queries easier to read, as shown in the previous example.

	Click Send Request and note that the response is a JSON document containing all categories, but only the ID and name properties.

	Separated by ###, add and send a request to get products with names that start with Ch, like Chai and Chef Anton's Gumbo Mix, or have a unit price of more than 50, like Mishi Kobe Niku or Sir Rodney's Marmalade, as shown in the following request:

GET https://localhost:5101/catalog/products/
 ?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)

	Add and send a request to get products sorted with most expensive at the top, and then sorted within a price by product name, and only include the ID, name, and price properties, as shown in the following request:

GET https://localhost:5101/catalog/products/
 ?$orderby=UnitPrice desc,ProductName
 &$select=ProductId,ProductName,UnitPrice

	Add and send a request to get a specific product, and only include the ID, name, and price properties, as shown in the following request:

GET https://localhost:5101/catalog/products(77)/
 &$select=ProductId,ProductName,UnitPrice

	Add and send a request to get categories and their related products, as shown in the following request:

GET https://localhost:5101/catalog/categories/
 ?$select=CategoryId,CategoryName
 &$expand=Products

	Add and send a request to get a specific category and its related products, as shown in the following request:

GET https://localhost:5101/catalog/categories(8)/
 ?$select=CategoryId,CategoryName
 &$expand=Products

	Shut down the web server.

Logging OData requests

How does OData querying work? Let's find out by using the logging in the Northwind database context to see the actual SQL statements that are executed:

	Start the Northwind.OData.Service web service.

	Start Chrome and navigate to https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,UnitPrice

	In Chrome, note the result, as shown in the following output:

{"@odata.context":"https://localhost:5101/catalog/$metadata#Products(ProductId,ProductName,UnitPrice)","value":[{"ProductId":1,"ProductName":"Chai","UnitPrice":18.0000},{"ProductId":2,"ProductName":"Chang","UnitPrice":19.0000},{"ProductId":4,"ProductName":"Chef Anton's Cajun Seasoning","UnitPrice":22.0000},{"ProductId":5,"ProductName":"Chef Anton's Gumbo Mix","UnitPrice":21.3500},{"ProductId":9,"ProductName":"Mishi Kobe Niku","UnitPrice":97.0000},{"ProductId":18,"ProductName":"Carnarvon Tigers","UnitPrice":62.5000},{"ProductId":20,"ProductName":"Sir Rodney's Marmalade","UnitPrice":81.0000},{"ProductId":29,"ProductName":"Th\u00fcringer Rostbratwurst","UnitPrice":123.7900},{"ProductId":38,"ProductName":"C\u00f4te de Blaye","UnitPrice":263.5000},{"ProductId":39,"ProductName":"Chartreuse verte","UnitPrice":18.0000},{"ProductId":48,"ProductName":"Chocolade","UnitPrice":12.7500},{"ProductId":51,"ProductName":"Manjimup Dried Apples","UnitPrice":53.0000},{"ProductId":59,"ProductName":"Raclette Courdavault","UnitPrice":55.0000}]}

	At the command prompt or terminal, note the logged SQL statement that was executed, as shown in the following output:

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (57ms) [Parameters=[@__TypedProperty_0='?' (Size = 4000), @__TypedProperty_0_1='?' (Size = 40), @__TypedProperty_1='?' (Precision = 2) (DbType = Decimal)], CommandType='Text', CommandTimeout='30']
 SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
 FROM [Products] AS [p]
 WHERE @__TypedProperty_0 = N'' OR LEFT([p].[ProductName], LEN(@__TypedProperty_0_1)) = @__TypedProperty_0 OR [p].[UnitPrice] > @__TypedProperty_1

It might look like the Get action method on the ProductsController returns the entire Products table, but it returns an IQueryable<Products> object. In other words, it returns a LINQ query, not yet the results. We decorated the Get action method with the [EnableQuery] attribute. This enables OData to extend the LINQ query with filters, projections, sorting, and so on, and only then does it execute the query, serialize the results, and return them to the client. This makes OData services as flexible and efficient as possible when it translates from its query language to LINQ and then into SQL statements.

	Close the browser and shut down the web server.

Versioning OData controllers

It is good practice to plan for future versions of your OData models that might have different schemas and behavior.

To maintain backward compatibility, you can use OData URL prefixes to specify a version number:

	In the Northwind.OData.Service project, in Program.cs, in the services configuration section, after adding the two OData models for catalog and orders, add a third OData model that has a version number and uses the same GetEdmModelForCatalog method, as shown highlighted in the following code:

.AddRouteComponents(routePrefix: "catalog",
 model: GetEdmModelForCatalog())
.AddRouteComponents(routePrefix: "orders",
 model: GetEdmModelForOrderSystem())
.AddRouteComponents(routePrefix: "catalog/v{version}",
 model: GetEdmModelForCatalog())

	In ProductsController.cs, modify the Get methods to add a string parameter named version that defaults to "1", and use it to change the behavior of the methods if version 2 is specified in a request, as shown highlighted in the following code:

[EnableQuery]
public IActionResult Get(string version = "1")
{
 Console.WriteLine($"*** ProductsController version {version}.");
 return Ok(db.Products);
}
[EnableQuery]
public IActionResult Get(int key, string version = "1")
{
 Console.WriteLine($"*** ProductsController version {version}.");
 IQueryable<Product> products = db.Products.Where(
 product => product.ProductId == key);
 Product? P = products.FirstOrDefault();
 if ((products is null) || (p is null))
 {
 return NotFound($"Product with id {key} not found.");
 }
 if (version == "2")
 {
 p.ProductName += " version 2.0";
 }
 return Ok(p);
}

	In your preferred code editor, start the Northwind.OData.Service project web service.

	In Visual Studio Code, in odata-catalog-queries.http, add a request to get the product with ID 50 using the v2 OData model, as shown in the following code:

GET https://localhost:5101/catalog/v2/products(50)

	Click Send Request, and note the response is the product with its name appended with version 2.0, as shown highlighted in the following output:

{
 "@odata.context": "https://localhost:5101/v2/$metadata#Products/$entity",
 "ProductId": 50,
 "ProductName": "Valkoinen suklaa version 2.0",
 "SupplierId": 23,
 "CategoryId": 3,
 "QuantityPerUnit": "12 - 100 g bars",
 "UnitPrice": 16.2500,
 "UnitsInStock": 65,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

	At the command prompt or terminal, note version 2 is used, as shown in the following output:

*** ProductsController version 2.

	In odata-catalog-queries.http, add a request to get the product with ID 50 using the default (v1) OData model, as shown in the following code:

GET https://localhost:5101/catalog/products(50)

	Click Send Request, and note the response is the product with its name unmodified.

	At the command prompt or terminal, note version 1 is used, as shown in the following output:

*** ProductsController version 1.

	Shut down the web server.

Enabling entity inserts, updates, and deletes

Although the most common use for OData is to provide a Web API that supports custom queries, you might also want to support CRUD operations like inserts. Let's see how to do that:

	In ProductsController.cs, add an action method to respond to POST requests, as shown in the following code:

public IActionResult Post([FromBody] Product product)
{
 db.Products.Add(product);
 db.SaveChanges();
 return Created(product);
}

	Set a break point on the open brace of the method.

	Start the OData web service with debugging.

	In Visual Studio Code, in the RestClientTests folder, create a new file named odata-catalog-insert-product.http, as shown in the following HTTP request:

POST https://localhost:5101/catalog/products
Content-Type: application/json
Content-Length: 234
{
 "ProductName": "Impossible Burger",
 "SupplierId": 7,
 "CategoryId": 6,
 "QuantityPerUnit": "Pack of 4",
 "UnitPrice": 40.25,
 "UnitsInStock": 50,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

	Click Send Request.

	In your code editor, note the breakpoint is hit, and you can use the debugging tools to see the product parameter successfully deserialized from the body of the HTTP POST request, as shown in Figure 10.6:

[image: Figure 10.6: Debugging the OData POST request method handler]Figure 10.6: Debugging the OData POST request method handler

	Allow the code to continue executing.

	In Visual Studio Code, note the successful response, as shown in the following markup:

HTTP/1.1 201 Created
Connection: close
Content-Type: application/json; odata.metadata=minimal; odata.streaming=true
Date: Sun, 22 May 2022 15:13:11 GMT
Server: Kestrel
Location: https://localhost:5101/catalog/Products(78)
Transfer-Encoding: chunked
OData-Version: 4.0
{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Products/$entity",
 "ProductId": 78,
 "ProductName": "Impossible Burger",
 "SupplierId": 7,
 "CategoryId": 6,
 "QuantityPerUnit": "Pack of 4",
 "UnitPrice": 40.25,
 "UnitsInStock": 50,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

	Optionally, implement two more methods to enable updates using an HTTP PUT request and deletes using an HTTP DELETE request.

Building clients for OData services

Finally, let's see how a .NET client might call the OData web service. Let's review how clients interact with an OData service.

If we want to query the OData service for products that start with the letters Cha, then we would need to send a GET request with a relative URL path similar to the following:

catalog/products/?$filter=startswith(ProductName, 'Cha')&$select=ProductId,ProductName,UnitPrice

OData returns data in a JSON document with a property named value that contains the resulting products as an array, as shown in the following JSON document:

{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Products",
 "value": [
 {
 "ProductId": 1,
 "ProductName": "Chai",
 "SupplierId": 1,
 "CategoryId": 1,
 "QuantityPerUnit": "10 boxes x 20 bags",
 "UnitPrice": 18,
 "UnitsInStock": 39,
 "UnitsOnOrder": 0,
 "ReorderLevel": 10,
 "Discontinued": false
 },

We will create an ASP.NET Core website project to act as a client, and a model class to make it easy to deserialize the HTTP response:

	Use your preferred code editor to add an MVC website project, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller) [C#] / mvc

	Project file and folder: Northwind.OData.Client.Mvc

	Workspace/solution file and folder: Chapter10

	Additional information - Authentication type: None

	For Visual Studio, leave all other options as their defaults.

	If you are using Visual Studio 2022, set the startup project to the current selection.

	If you are using Visual Studio Code, select Northwind.OData.Client.Mvc as the active OmniSharp project.

	Add a project reference to the Northwind.Common.EntityModels.SqlServer project in the Chapter02 folder, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

	Build the Northwind.OData.Client.Mvc project.

	In the Properties folder, open launchSettings.json.

	In the Northwind.OData.Client.Mvc profile, modify the applicationUrl to use port 5102 for HTTPS, as shown in the following markup:

"applicationUrl": "https://localhost:5102",

	In the Northwind.OData.Client.Mvc project, in the Models folder, add a new class file named ODataProducts.cs, as shown in the following code:

using Packt.Shared; // Product
namespace Northwind.OData.Client.Mvc.Models;
public class ODataProducts
{
 public Product[]? Value { get; set; }
}

	In Program.cs, add a statement to import the namespace for setting media types in an HTTP header, as shown in the following code:

using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue

	In Program.cs, after the call to AddControllersWithViews, add statements to register an HTTP client for the OData service that will request JSON for the response data format, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.OData.Service",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5101/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

Calling services in the Northwind MVC website

Next, we will call the service on the home page:

	In the Controllers folder, in HomeController.cs, declare a field to store the registered HTTP client factory service, as shown in the following code:

protected readonly IHttpClientFactory clientFactory;

	In the class constructor, add statements to pass and store the registered HTTP client factory service, as shown highlighted in the following code:

public HomeController(ILogger<HomeController> logger,
 IHttpClientFactory clientFactory)
{
 _logger = logger;
 this.clientFactory = clientFactory;
}

	Make the Index method asynchronous, and then add statements that call the OData service to get products that start with Cha and store the result in the ViewData dictionary, as shown highlighted in the following code:

public async Task<IActionResult> Index(string startsWith = "Cha")
{
 try
 {
 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.OData.Service");
 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri:
 "catalog/products/?$filter=startswith(ProductName, " +
 $"'{startsWith}')&$select=ProductId,ProductName,UnitPrice");
 HttpResponseMessage response = await client.SendAsync(request);
 ViewData["startsWith"] = startsWith;
 ViewData["products"] = (await response.Content
 .ReadFromJsonAsync<ODataProducts>())?.Value;
 }
 catch (Exception ex)
 {
 _logger.LogWarning($"Northwind.OData.Service exception: {ex.Message}");
 }
 return View();
}

	In Views/Home, in Index.cshtml, delete its existing markup and then add markup to render the products with a form for the visitor to enter the start of a product name, as shown in the following markup:

@using Packt.Shared
@{
 ViewData["Title"] = "Home Page";
 Product[]? products = ViewData["products"] as Product[];
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 @if (products is not null)
 {
 <h2>Products that start with '@ViewData["startsWith"]' using OData</h2>
 <p>
 @if (products.Length == 0)
 {
 No products found.
 }
 else
 {
 @foreach (Product p in products)
 {

 @p.ProductId
 @p.ProductName
 @(p.UnitPrice is null ? "" : p.UnitPrice.Value.ToString("c"))

 }
 }
 </p>
 }
 <form method="get">
 Product name starts with:
 <input name="startsWith" value="@ViewData["startsWith"]" />
 Press ENTER to search.
 </form>
</div>

	Start the Northwind.OData.Service project without debugging.

	Start the Northwind.OData.Client.Mvc project without debugging.

	Start Chrome and navigate to: https://localhost:5102/.

	Note that three products are returned from the OData service, as shown in Figure 10.7:

[image: Figure 10.7: Three product names starting with Cha returned from the OData service]Figure 10.7: Three product names starting with Cha returned from the OData service

	At the command line or terminal for the OData service, note the SQL command used, as shown in the following output:

info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (28ms) [Parameters=[@__TypedProperty_0='?' (Size = 4000), @__TypedProperty_0_1='?' (Size = 40)], CommandType='Text', CommandTimeout='30']
 SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
 FROM [Products] AS [p]
 WHERE @__TypedProperty_0 = N'' OR LEFT([p].[ProductName], LEN(@__TypedProperty_0_1)) = @__TypedProperty_0

	At the command line or terminal for the MVC website, note the HTTP request made and its response, as shown in the following output:

info: System.Net.Http.HttpClient.Northwind.OData.Service.LogicalHandler[100]
 Start processing HTTP request GET https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Cha')&$select=ProductId,ProductName,UnitPrice
info: System.Net.Http.HttpClient.Northwind.OData.Service.ClientHandler[100]
 Sending HTTP request GET https://localhost:5101/catalog/products/?$filter=startswith(ProductName,'Cha')&$select=ProductId,ProductName,UnitPrice
info: System.Net.Http.HttpClient.Northwind.OData.Service.ClientHandler[101]
 Received HTTP response headers after 998.5241ms - 200
info: System.Net.Http.HttpClient.Northwind.OData.Service.LogicalHandler[101]
 End processing HTTP request after 1004.9182ms - 200

	Type b in the text box, press Enter, and note the results only include the one product that starts with the letter b, Boston Crab Meat.

	Type d in the text box, press Enter, and note the error message saying that no products were found.

	Close Chrome and shut down both the web servers.

Revisiting the introductory query

At the start of this chapter I introduced an example of a query you could run against an OData service. Let's see if it works with our service:

	In Visual Studio Code, in the RestClientTests folder, create a new file named odata-final-query.http, as shown in the following HTTP request:

GET https://localhost:5101/catalog/products
 ?$filter=contains(ProductName, 'ch') and UnitPrice lt 44.95
 &$orderby=Supplier/Country,UnitPrice
 &$select=ProductName,UnitPrice
 &$expand=Supplier

	Click Send Request and note the response contains products and their suppliers, sorted by country first and then within each country, sorted by unit price, as shown in the following partial output:

HTTP/1.1 200 OK
Connection: close
Content-Type: application/json; odata.metadata=minimal; odata.streaming=true
Date: Thu, 21 Jul 2022 20:34:34 GMT
Server: Kestrel
Transfer-Encoding: chunked
OData-Version: 4.0
{
 "@odata.context": "https://localhost:5101/catalog/$metadata#Products(ProductName,UnitPrice,Supplier())",
 "value": [
 ...
 {
 "ProductName": "Chartreuse verte",
 "UnitPrice": 18.0000,
 "Supplier": {
 ...
 "Country": "France",
 ...
 }
 },
 ...
 {
 "ProductName": "Gnocchi di nonna Alice",
 "UnitPrice": 38.0000,
 "Supplier": {
 ...
 "Country": "Italy",
 ...
 }
 },
 {
 "ProductName": "Chocolade",
 "UnitPrice": 12.7500,
 "Supplier": {
 ...
 "Country": "Netherlands",
 ...
 }
 },
 ...
 {
 "ProductName": "Chai",
 "UnitPrice": 18.0000,
 "Supplier": {
 ...
 "Country": "UK",
 ...
 }
 },
 {
 "ProductName": "Chang",
 "UnitPrice": 19.0000,
 "Supplier": {
 ...
 "Country": "UK",
 ...
 }
 },
 ...
]
}

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 10.1 – Test your knowledge

Answer the following questions:

	What transport protocol does an OData service use?

	Why is an OData service more flexible than a traditional ASP.NET Core Web API service?

	What must you do to an action method in an OData controller to enable query strings to customize what it returns?

	What URL path would return customers in Germany who have made more than one order?

	How do you get related entities?

Exercise 10.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-10---exposing-data-via-the-web-using-odata

Summary

In this chapter, you learned:

	The concepts around OData services.

	How to build one using ASP.NET Core and a Microsoft NuGet package.

	How to query an OData service.

	How to perform data modifications.

	How to build an OData client.

In the next chapter, you will learn about GraphQL, another standard that enables client control over the data returned from a service.

11 Combining Data Sources Using GraphQL

Join our book community on Discord

https://packt.link/EarlyAccess

In this chapter, you will be introduced to GraphQL, a service technology that provides a more modern approach to combining data from various sources and then providing a standard way to query that data.

This chapter will cover the following topics:

	Understanding GraphQL

	Building a service that supports GraphQL

	Defining GraphQL queries for EF Core models

	Building a .NET client for a GraphQL service

	Implementing GraphQL mutations

Understanding GraphQL

As you saw in Chapter 10, Exposing Data via the Web Using OData, OData is a possible choice for combining data from different stores and exposing it via a common protocol like HTTP. OData also has a built-in query language for the client to control what data they want returned. But OData has a rather old-fashioned approach and is tied to the HTTP standard, for example, using query strings in an HTTP request.

If you would prefer to use a more modern and flexible technology for combining and exposing your data as a service, then a good alternative is GraphQL.

Like OData, GraphQL is a standard for describing your data and then querying it that gives the client control over exactly what they need. It was developed internally by Facebook in 2012 before being open sourced in 2015, and is now managed by the GraphQL Foundation.

Two of the key benefits of GraphQL over OData are:

	GraphQL does not require HTTP because it is transport-agnostic, so you could use alternative transport protocols like WebSockets or TCP.

	GraphQL has a single endpoint, usually simply: /graphql

Understanding GraphQL document format

GraphQL uses its own document format for its queries, that are a bit like JSON, but GraphQL queries do not require commas between field names, as shown in the following query:

{
 product (productId: 23) {
 productId
 productName
 cost
 supplier {
 companyName
 country
 }
 }
}

The official media type for GraphQL query documents is application/graphql.

Understanding other GraphQL capabilities

As well as queries, other standard GraphQL features are mutations and subscriptions:

	Mutations enable creating, updating, and deleting resources.

	Subscriptions enable a client to get notified when resources change. They work best with additional communication technologies like WebSockets.

Understanding the ChilliCream GraphQL platform

ChilliCream is a company that has created a platform to work with GraphQL:

	Hot Chocolate enables you to create GraphQL services for .NET.

	Strawberry Shake enables you to create GraphQL clients for .NET.

	Banana Cake Pop enables you to run queries and explore a GraphQL endpoint using a Monaco-based GraphQL IDE.

	Green Donut enables better performance when loading data.

Unlike some other packages that can be used to add support for GraphQL, ChilliCream packages are designed to be as easy to implement as possible, using conventions and simple POCO classes instead of complex types and special schemas.

As ChilliCream says on their home page, "We at ChilliCream build the ultimate GraphQL platform. Most of our code is open-source and will forever remain open-source."

The GitHub repository for Hot Chocolate is at the following link: https://github.com/ChilliCream/hotchocolate

Building a service that supports GraphQL

There is no dotnet new project template for GraphQL so we will use the ASP.NET Core Empty project template. Even though GraphQL does not have to be hosted in a web server because it is not tied to HTTP, to get started it is a sensible choice. We will then add a package reference for GraphQL support:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Empty / web

	Workspace/solution file and folder: Chapter11

	Project file and folder: Northwind.GraphQL

	Other Visual Studio 2022 options:

	Authentication Type: None.

	Configure for HTTPS: Selected.

	Enable Docker: Cleared.

	Enable OpenAPI support: Cleared.

	In Visual Studio Code, select Northwind.GraphQL as the active OmniSharp project.

	Add a package reference for Hot Chocolate hosted in ASP.NET Core, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="HotChocolate.AspNetCore" Version="13.0.0" />
</ItemGroup>

	In the Properties folder, in launchSettings.json, add a launchUrl setting and modify the existing applicationUrl setting so that the browser will navigate to the GraphQL endpoint automatically at startup, as shown highlighted in the following markup:

"profiles": {
 "Northwind.GraphQL": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,
 "launchUrl": "graphql",
 "applicationUrl": "https://localhost:5005",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

	Build the Northwind.GraphQL project at the command line or terminal using dotnet build.

When you reference a project outside of the current solution you must build the project at least once at the command line or terminal before you can use the Visual Studio 2022 Build menu to compile it.

Defining GraphQL schema for Hello World

The first task is to define what we want to expose as GraphQL models in the web service.

Let's define a GraphQL query for the most basic Hello World example that will return a simple greeting when a request for a greeting is made:

	In the Northwind.GraphQL project/folder, add a class file named Query.cs.

	Modify the class to have a method named GetGreeting that returns the plain text "Hello, World!", as shown in the following code:

namespace Northwind.GraphQL;
public class Query
{
 public string GetGreeting() => "Hello, World!";
}

	In Program.cs, import the namespace where we defined the Query class, as shown in the following code:

using Northwind.GraphQL; // Query

	In the section for configuring services, after the call to CreateBuilder, add a statement to add the GraphQL server-side support and add the query type to the collection of registered services, as shown in the following code:

builder.Services
 .AddGraphQLServer()
 .AddQueryType<Query>();

	In the section for configuring the HTTP pipeline, before the call to Run, add a statement to map GraphQL as an endpoint, as shown highlighted in the following code:

app.MapGraphQL();

	Start the Northwind.GraphQL project.

	If you are using Visual Studio 2022, then note the browser starts automatically.

	If you are using Visual Studio Code, then start Chrome and navigate to https://localhost:5005/graphql

	Note the BananaCakePop user interface, as shown in Figure 11.1:

[image: Figure 11.1: BananaCakePop home page]Figure 11.1: BananaCakePop home page

	Click the Browse schema button.

	In Connection Settings, confirm that the Schema Endpoint is correct, and then click Apply, as shown in Figure 11.2:

[image: Figure 11.2: Reviewing BananaCakePop connection settings]Figure 11.2: Reviewing BananaCakePop connection settings

	In the Schema Reference, note the special Query object is the entry point for all other queries and it has a field named greeting that returns a string value.

	Click the Schema Definition tab, scroll down to the bottom, and note there is only one type defined, the special Query object with its greeting field that is a string value, as shown in the following code:

type Query {
 greeting: String!
}

The exclamation mark indicates the string value will not be null.

Writing and executing GraphQL queries

Now we know the schema, we can write and run a query:

	In Banana Cake Pop, click the Operations tab.

	In the left-hand side, type an open curly brace {, and note a close curly brace } is written for you.

	Type the letter g and note the autocomplete shows it recognizes the greeting field, as shown in Figure 11.3:

[image: Figure 11.3: Autocomplete for the greeting field]Figure 11.3: Autocomplete for the greeting field

	Press Enter to accept the autocomplete suggestion.

	Click the Run button and note the response, as shown in Figure 17.4 and the following output:

{
 "data": {
 "greeting": "Hello, World!"
 }
}

[image: Figure 11.4: Using the GraphQL playground to execute a greet query]Figure 11.4: Using the GraphQL playground to execute a greet query

	Close Chrome and shut down the web server.

Naming GraphQL queries

The query that we wrote was unnamed. We could also have created it as a named query, as shown in the following code:

query QueryNameGoesHere {
 greeting
}

Named queries allow clients to identify queries and responses for telemetry purposes, for example, when hosting in Microsoft Azure cloud services and monitoring using Application Insights.

Understanding field conventions

The method we created in the Query class was named GetGreeting but when querying it we used greeting. The Get prefix on method names that represent fields in GraphQL is optional. Let's see some more examples:

	In Query.cs, add two more methods without the Get prefix, as shown highlighted in the following code:

namespace Northwind.GraphQL;
public class Query
{
 public string GetGreeting() => "Hello, World!";
 public string Farewell() => "Ciao! Ciao!";
 public int RollTheDie() => Random.Shared.Next(1, 7);
}

	Start the Northwind.GraphQL project.

	In Banana Cake Pop, note the popup message saying it has updated the schema.

	Click the Schema Definition tab, and note the updated schema, as shown in the following code:

type Query {
 greeting: String!
 farewell: String!
 rollTheDie: Int!
}

C# methods use TitleCase. GraphQL fields use camelCase.

	Click the Operations tab, and modify the query to specify a name and to request the rollTheDie field, as shown in the following code:

query getNumber {
 rollTheDie
}

	Either click the Run button again or click Execute above the query multiple times. Note that the responses contain a random number between 1 and 6, and a history of requests and responses is stored for the current browser session, as shown in Figure 11.5:

[image: Figure 11.5: Executing a named query and the history of requests and responses]Figure 11.5: Executing a named query and the history of requests and responses

	Close Chrome and shut down the web server.

Defining GraphQL queries for EF Core models

Now that we have a basic GraphQL service operating successfully, let's extend it to enable querying the Northwind database.

Adding support for EF Core

We must add another Hot Chocolate package to allow easy dependency service integration of our EF Core database context with GraphQL query classes:

	Add a package reference for Hot Chocolate integration with EF Core and a project reference to the Northwind database context project, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="HotChocolate.AspNetCore" Version="13.0.0" />
 <PackageReference Include="HotChocolate.Data.EntityFramework"
 Version="13.0.0" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include="..\..\Chapter07\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

The path to the project must not have a line break. All Hot Chocolate packages must have the same version number.

	In Program.cs, import the namespace for working with our EF Core model for the Northwind database, as shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

	Add a statement after the CreateBuilder method to register the Northwind database context class, and add a statement after adding the GraphQL server support to register the NorthwindContent class for dependency injection, as shown highlighted in the following code:

builder.Services.AddNorthwindContext();
builder.Services
 .AddGraphQLServer()
 .RegisterDbContext<NorthwindContext>()
 .AddQueryType<Query>();

	In Query.cs, add statements to define an object graph type that has three types of query to return a list of categories, a single category, and products for a category, as shown highlighted in the following code:

using Microsoft.EntityFrameworkCore; // Include extension method
using Packt.Shared; // NorthwindContext
namespace Northwind.GraphQL;
public class Query
{
 public string GetGreeting() => "Hello, World!";
 public string Farewell() => "Ciao! Ciao!";
 public int RollTheDie() => Random.Shared.Next(1, 7);
 public IQueryable<Category> GetCategories(NorthwindContext db) =>
 db.Categories.Include(c => c.Products);
 public Category? GetCategory(NorthwindContext db, int categoryId)
 {
 Category category = db.Categories.Find(categoryId);
 if (category == null) return null;
 db.Entry(category).Collection(c => c.Products).Load();
 return category;
 }
 public IQueryable<Product> GetProducts(NorthwindContext db) =>
 db.Products.Include(p => p.Category);
 public IQueryable<Product> GetProductsInCategory(
 NorthwindContext db, int categoryId) =>
 db.Products.Where(p => p.CategoryId == categoryId);
}

Exploring GraphQL queries with Northwind

Now we can test writing GraphQL queries for the categories and products in the Northwind database:

	Start the Northwind.GraphQL service project.

	In Banana Cake Pop, click the Schema Definition tab, and note the query and type definitions for Category, as partially shown in Figure 11.6:

[image: Figure 11.6: Schema for querying the Northwind categories and products using GraphQL]Figure 11.6: Schema for querying the Northwind categories and products using GraphQL

	Note the full definitions in the following code:

type Query {
 greeting: String!
 farewell: String!
 rollTheDie: Int!
 categories: [Category!]!
 category(categoryId: Int!): Category
 products: [Product!]!
 productsInCategory(categoryId: Int!): [Product!]!
}
type Category {
 categoryId: Int!
 categoryName: String!
 description: String
 picture: [Byte!]
 products: [Product!]!
}
type Product {
 productId: Int!
 productName: String!
 supplierId: Int
 categoryId: Int
 quantityPerUnit: String
 unitPrice: Decimal
 unitsInStock: Short
 unitsOnOrder: Short
 reorderLevel: Short
 discontinued: Boolean!
 category: Category
 supplier: Supplier
 orderDetails: [OrderDetail!]!
}

	Click the Operations tab, and write a named query to request the ID, name, and description fields for all categories, as shown in following markup:

query AllCategories {
 categories {
 categoryId
 categoryName
 description
 }
}

	Click Execute or the Run button, and note the response, as shown in Figure 11.7 and the following partial output:

{
 "data": {
 "categories": [
 {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales"
 },
 {
 "categoryId": 2,
 "categoryName": "Condiments",
 "description": "Sweet and savory sauces, relishes, spreads, and seasonings"
 },
 ...

[image: Figure 11.7: Getting all categories]Figure 11.7: Getting all categories

	Click the + to open a new tab, and write a query to request the category with ID 2, including the ID, name, and price of its products, as shown in the following markup:

query Condiments {
 category (categoryId: 2) {
 categoryId
 categoryName
 products {
 productId
 productName
 unitPrice
 }
 }
}

Make sure that the I in categoryId is uppercase.

	Click Execute or the Run button, and note the response, as shown in the following partial output:

{
 "data": {
 "category": {
 "categoryId": 2,
 "categoryName": "Condiments",
 "products": [
 {
 "productId": 3,
 "productName": "Aniseed Syrup",
 "unitPrice": 10
 },
 {
 "productId": 4,
 "productName": "Chef Anton's Cajun Seasoning",
 "unitPrice": 22
 },
 ...

	Click the + tab to open a new tab, and write a query to request the ID, name, and units in stock of the products in category with ID 1, as shown in the following markup:

query BeverageProducts {
 productsInCategory (categoryId: 1) {
 productId
 productName
 unitsInStock
 }
}

	Click Execute or the Run button, and note the response, as shown in the following partial output:

{
 "data": {
 "productsInCategory": [
 {
 "productId": 1,
 "productName": "Chai",
 "unitsInStock": 39
 },
 {
 "productId": 2,
 "productName": "Chang",
 "unitsInStock": 17
 },
 ...

	Click the + tab to open a new tab, and write a query to request the ID, name, and units in stock of products along with their category names, as shown in the following markup:

query productsWithCategoryNames {
 products {
 productId
 productName
 category {
 categoryName
 }
 unitsInStock
 }
}

	Click Execute or the Run button, and note the response, as shown in the following partial output:

{
 "data": {
 "products": [
 {
 "productId": 1,
 "productName": "Chai",
 "category": {
 "categoryName": "Beverages"
 },
 "unitsInStock": 39
 },
 {
 "productId": 2,
 "productName": "Chang",
 "category": {
 "categoryName": "Beverages"
 },
 "unitsInStock": 17
 },
 ...

	Click the + tab to open a new tab, and write a query to request the ID and name for a category specific by a category ID including the ID and name of its products using a variable, as shown in the following markup:

query categoryAndItsProducts($id: Int!){
 category(categoryId: $id) {
 categoryId
 categoryName
 products {
 productId
 productName
 }
 }
}

	In the Variables section, define a value for the variable, as shown in the following code and in Figure 11.8:

{
 "id": 1
}

[image: Figure 11.8: Executing a GraphQL query with a variable]Figure 11.8: Executing a GraphQL query with a variable

	Click Execute or the Run button, and note the response, as shown in the following partial output:

{
 "data": {
 "category": {
 "categoryId": 1,
 "categoryName": "Beverages",
 "products": [
 {
 "productId": 1,
 "productName": "Chai"
 },
 {
 "productId": 2,
 "productName": "Chang"
 },
 ...
]
 }
 }
}

	Close Chrome and shut down the web server.

Building a .NET client for a GraphQL service

Now that we have explored some queries with the Banana Cake Pop tool, let's see how a client could call the GraphQL service. Although the Banana Cake Pop tool is convenient, it runs in the same domain as the service, so some issues might not become apparent until we create a separate client.

Most GraphQL services process GET and POST requests in either the application/graphql or application/json media formats. An application/graphql request would only contain a query document. The benefit of using application/json is that as well as the query document, you can specify operations when you have more than one, and define and set variables, as shown in the following code:

{
 "query": "...",
 "operationName": "...",
 "variables": { "variable1": "value1", ... }
}

We will use the application/json media format.

Understanding GraphQL responses

A GraphQL service should return a JSON document containing the expected data object and maybe some errors in an array, with the following structure:

{
 "data": { ... },
 "errors": [...]
}

The errors array should only be in the document if there are errors.

Using REST Client as a GraphQL client

Before we write code as a client to the GraphQL service, it would be good to test it with the Visual Studio Code extension named REST Client so that if our .NET client app does not work, we know the problem is in our client code rather than the service:

	If you have not already installed REST Client by Huachao Mao (humao.rest-client), then install it in Visual Studio Code now.

	In your preferred code editor, start the Northwind.GraphQL project web service and leave it running.

	In Visual Studio Code, in the RestClientTests folder, create a file named graphql-seafood-products.http, and modify its contents to contain a request to get products in the seafood category, as shown in the following code:

POST https://localhost:5005/graphql
Content-Type: application/json
Content-Length: 90
{
 "query" : "{productsInCategory(categoryId:8){productId productName unitsInStock}}"
}

	Above the POST, click Send Request, and note the response, as shown in Figure 11.9:

[image: Figure 11.9: Requesting seafood products using REST Client]Figure 11.9: Requesting seafood products using REST Client

	In the RestClientTests folder, create a file named graphql-all-categories.http, and modify its contents to contain a request to get the ID, name, and description of all categories, as shown in the following code:

POST https://localhost:5005/graphql
Content-Type: application/json
Content-Length: 69
{
 "query" : "{categories{categoryId categoryName description}}"
}

	Above the POST, click Send Request, and note the response contains the eight categories in a data property.

	In the query document, change categoryId to id and the Content-Length to 61.

	Send the request and note the response contains an errors array, as shown in the following response:

HTTP/1.1 400 Bad Request
Connection: close
Content-Type: application/json; charset=utf-8
Date: Mon, 30 May 2022 06:07:55 GMT
Server: Kestrel
Transfer-Encoding: chunked
{
 "errors": [
 {
 "message": "The field \u0060id\u0060 does not exist on the type \u0060Category\u0060.",
 "locations": [
 {
 "line": 1,
 "column": 13
 }
],
 "path": [
 "categories"
],
 "extensions": {
 "type": "Category",
 "field": "id",
 "responseName": "id",
 "specifiedBy": "http://spec.graphql.org/October2021/#sec-Field-Selections-on-Objects-Interfaces-and-Unions-Types"
 }
 }
]
}

	In the RestClientTests folder, create a file named graphql-category-products.http, and modify its contents to contain a request to get the ID, name, and description of all categories, as shown in the following code:

POST https://localhost:5005/graphql
Content-Type: application/json
Content-Length: 168
{
 "query": "query categoryAndItsProducts($id: Int!){category(categoryId: $id){categoryId categoryName products{productId productName}}}",
 "variables": {"id":1}
}

	Above the POST, click Send Request, and note the response contains category 1, Beverages, with its products in a data property.

	Change the id to 4, send the request, and note the response contains category 4, Dairy Products, with its products in a data property.

	Close the files, the RestClientTests folder, and Visual Studio Code.

Using an ASP.NET Core MVC project as a GraphQL client

We will create a model class to make it easy to deserialize the response:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller) / mvc

	Workspace/solution file and folder: Chapter11

	Project file and folder: Northwind.Mvc.GraphQLClient

	Other Visual Studio 2022 options:

	Authentication Type: None.

	Configure for HTTPS: Selected.

	Enable Docker: Cleared.

	Do not use top-level statements: Cleared.

	In Visual Studio 2022, set the startup project to the current selection.

	In Visual Studio Code, select Northwind.Mvc.GraphQLClient as the active OmniSharp project.

	In the Northwind.Mvc.GraphQLClient project, add a project reference to the Northwind entity models project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter07\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

The path to the project must not have a line break.

	In the Northwind.Mvc.GraphQLClient project, in the Models folder, add a new class file named ResponseErrors.cs, as shown in the following code:

namespace Northwind.Mvc.GraphQLClient.Models;
public class ResponseErrors
{
 public Error[]? Errors { get; set; }
}
public class Error
{
 public string Message { get; set; } = null!;
 public Location[] Locations { get; set; } = null!;
 public string[] Path { get; set; } = null!;
}
public class Location
{
 public int Line { get; set; }
 public int Column { get; set; }
}

	In the Models folder, add a new class file named ResponseProducts.cs, as shown in the following code:

using Packt.Shared; // Product
namespace Northwind.Mvc.GraphQLClient.Models;
public class ResponseProducts
{
 public class DataProducts
 {
 public Product[]? ProductsInCategory { get; set; }
 }
 public DataProducts? Data { get; set; }
}

	In the Models folder, add a new class file named ResponseCategories.cs, as shown in the following code:

using Packt.Shared; // Category
namespace Northwind.Mvc.GraphQLClient.Models;
public class ResponseCategories
{
 public class DataCategories
 {
 public Category[]? Categories { get; set; }
 }
 public DataCategories? Data { get; set; }
}

	In the Models folder, add a new class file named IndexViewModel.cs, that will have properties to store all the data that we might want to show in the view, as shown in the following code:

using Packt.Shared; // Product
using System.Net; // HttpStatusCode
namespace Northwind.Mvc.GraphQLClient.Models;
public class IndexViewModel
{
 public HttpStatusCode Code { get; set; }
 public string? RawResponseBody { get; set; }
 public Product[]? Products { get; set; }
 public Category[]? Categories { get; set; }
 public Error[]? Errors { get; set; }
}

	In Program.cs, import the namespace for setting HTTP headers, as shown in the following code:

using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue

	In Program.cs, after the CreateBuilder method call, add statements to register an HTTP client for the GraphQL service, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.GraphQL",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5005/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

	In the Controllers folder, in HomeController.cs, import the namespace for working with text encodings and for our Northwind entity models, as shown in the following code:

using System.Text; // Encoding

	Define a field to store the registered HTTP client factory, and set it in the constructor, as shown in the following code:

protected readonly IHttpClientFactory clientFactory;
public HomeController(ILogger<HomeController> logger,
 IHttpClientFactory clientFactory)
{
 _logger = logger;
 this.clientFactory = clientFactory;
}

	In the Index action method, modify the method to be asynchronous. Then, add statements to call the GraphQL service, and note the HTTP request is a POST, the media type is for application/json that contains a GraphQL query, and the query requests all products in a given category passed as a parameter named id, as shown in the following code:

public async Task<IActionResult> Index(string id = "1")
{
 IndexViewModel model = new();
 try
 {
 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.GraphQL");
 // first, try a simple GET request to service root
 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: "/");
 HttpResponseMessage response = await client.SendAsync(request);
 if (!response.IsSuccessStatusCode)
 {
 model.Code = response.StatusCode;
 model.Errors = new[] { new Error { Message =
 "Service is not successfully responding to GET requests." } };
 return View(model);
 }
 // next, make a request to the GraphQL endpoint
 request = new(
 method: HttpMethod.Post, requestUri: "graphql");
 request.Content = new StringContent(content: $$$"""
 {
 "query": "{productsInCategory(categoryId:{{{id}}}){productId productName unitsInStock}}"
 }
 """,
 encoding: Encoding.UTF8,
 mediaType: "application/json");
 response = await client.SendAsync(request);
 model.Code = response.StatusCode;
 model.RawResponseBody = await response.Content.ReadAsStringAsync();
 if (response.IsSuccessStatusCode)
 {
 model.Products = (await response.Content
 .ReadFromJsonAsync<ResponseProducts>())?.Data?.ProductsInCategory;
 }
 else
 {
 model.Errors = (await response.Content
 .ReadFromJsonAsync<ResponseErrors>())?.Errors;
 }
 }
 catch (Exception ex)
 {
 _logger.LogWarning(
 $"Northwind.GraphQL service exception: {ex.Message}");
 model.Errors = new[] { new Error { Message = ex.Message } };
 }
 return View(model);
}

Good Practice: To set the content of our request, we use the C# 11 raw interpolated string literal syntax of three dollar signs and three double-quotes. This allows us to embed the id variable using three curly braces that do not get confused with the two curly braces after unitsInStock that end the query itself.

	In the Views/Home folder, in Index.cshtml, delete its existing markup and then add markup to render the Seafood products, as shown in the following markup:

@using Packt.Shared
@model IndexViewModel
@{
 ViewData["Title"] = "Products from GraphQL service";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div class="card card-body">
 <form>
 Enter a category id
 <input name="id" value="1" />
 <input type="submit" />
 </form>
 </div>
 @if (Model.Errors is not null)
 {
 <div class="alert alert-danger" role="alert">
 <table class="table table-striped">
 <thead>
 <tr>
 <td>Message</td>
 <td>Path</td>
 <td>Locations</td>
 </tr>
 </thead>
 <tbody>
 @foreach (Error error in Model.Errors)
 {
 <tr>
 <td>@error.Message</td>
 <td>
 @if (error.Path is not null)
 {
 @foreach (string path in error.Path)
 {
 @path
 }
 }
 </td>
 <td>
 @if (error.Locations is not null)
 {
 @foreach (Location location in error.Locations)
 {

 @location.Line, @location.Column

 }
 }
 </td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 }
 @if (Model.Categories is not null)
 {
 <div>
 <p class="alert alert-success" role="alert">
 There are @Model.Categories.Count() products.</p>
 <p>
 @foreach (Category category in Model.Categories)
 {

 @category.CategoryId
 @category.CategoryName

 }
 </p>
 </div>
 }
 @if (Model.Products is not null)
 {
 <div>
 <p class="alert alert-success" role="alert">
 There are @Model.Products.Count() products.</p>
 <p>
 @foreach (Product p in Model.Products)
 {

 @p.ProductId
 @p.ProductName
 -
 @(p.UnitsInStock is null ? "0" : p.UnitsInStock.Value) in stock

 }
 </p>
 </div>
 }
 <p>
 <a class="btn btn-primary" data-bs-toggle="collapse"
 href="#collapseExample" role="button"
 aria-expanded="false" aria-controls="collapseExample">
 Show/Hide Details

 </p>
 <div class="collapse" id="collapseExample">
 <div class="card card-body">
 Status code @((int)Model.Code): @Model.Code
 <hr />
 @Model.RawResponseBody
 </div>
 </div>
</div>

Testing the .NET client

Now we can test our .NET client:

	Start the Northwind.GraphQL project without debugging.

	Start the Northwind.Mvc.GraphQLClient project.

	Note that products are successfully retrieved using GraphQL, as shown in Figure 11.10:

[image: Figure 11.10: Products in the Beverages category from the GraphQL service]Figure 11.10: Products in the Beverages category from the GraphQL service

	Enter another category ID that exists, for example, 4.

	Enter a category ID that is out of range, for example, 13, and note there are 0 products returned.

	Close Chrome and shut down the web server for the Northwind.Mvc.GraphQLClient project.

	In HomeController.cs, modify the query to make a deliberate mistake, like changing productid to productid.

	Start the Northwind.Mvc.GraphQLClient project.

	Click the Show/Hide Details button and note the error message and response details, as shown in Figure 11.11:

[image: Figure 11.11: Showing error details]Figure 11.11: Showing error details

	Close Chrome and shut down both the web servers.

Understanding Strawberry Shake

Instead of using ordinary HTTP clients, ChilliCream has a GraphQL client library to more easily build .NET clients to GraphQL services. You can learn more about it at the following link:

https://chillicream.com/docs/strawberryshake

Implementing GraphQL mutations

Most services need to modify data as well as query it. GraphQL calls these mutations. A mutation has three parts:

	Mutations define the change that will be made, and they should be named as verbs, for example, addProduct.

	Inputs are the inputs for a mutation, and they should have the same name as their mutation with a suffix of Input, for example, AddProductInput.

	Payloads are the returned documents for a mutation, and they should have the same name as their mutation with a suffix of Payload, for example, AddProductPayload.

Let's define mutations for adding, updating, and deleting products:

	In the Northwind.GraphQL project/folder, add a class file named Mutation.cs.

	In the class file, define a record and two classes to represent the three types needed to perform an addProduct mutation, as shown in the following code:

using Packt.Shared; // Product
namespace Northwind.GraphQL;
public record AddProductInput(
 string ProductName,
 int? SupplierId,
 int? CategoryId,
 string QuantityPerUnit,
 decimal? UnitPrice,
 short? UnitsInStock,
 short? UnitsOnOrder,
 short? ReorderLevel,
 bool Discontinued);
public class AddProductPayload
{
 public AddProductPayload(Product product)
 {
 Product = product;
 }
 public Product Product { get; }
}
public class Mutation
{
 public async Task<AddProductPayload> AddProductAsync(
 AddProductInput input, NorthwindContext db)
 {
 Product product = new()
 {
 ProductName = input.ProductName,
 SupplierId = input.SupplierId,
 CategoryId = input.CategoryId,
 QuantityPerUnit = input.QuantityPerUnit,
 UnitPrice = input.UnitPrice,
 UnitsInStock = input.UnitsInStock,
 UnitsOnOrder = input.UnitsOnOrder,
 ReorderLevel = input.ReorderLevel,
 Discontinued = input.Discontinued
 };
 db.Products.Add(product);
 int affectedRows = await db.SaveChangesAsync();
 return new AddProductPayload(product);
 }
}

	In Program.cs, add a call to the AddMutationType<T> method to register your Mutation class, as shown highlighted in the following code:

builder.Services
 .AddGraphQLServer()
 .RegisterDbContext<NorthwindContext>()
 .AddQueryType<Query>()
 .AddMutationType<Mutation>();

	Start the Northwind.GraphQL service project.

	In Banana Cake Pop, click the Schema Definition tab, and note the mutation type, as partially shown in Figure 11.12:

[image: Figure 11.12: Schema for mutating a product using GraphQL]Figure 11.12: Schema for mutating a product using GraphQL

	Note the full schema definitions for the addProduct mutation and related types in the following code:

type Mutation {
 addProduct(input: AddProductInput!): AddProductPayload!
}
type Product {
 productId: Int!
 productName: String!
 supplierId: Int
 categoryId: Int
 quantityPerUnit: String
 unitPrice: Decimal
 unitsInStock: Short
 unitsOnOrder: Short
 reorderLevel: Short
 discontinued: Boolean!
 category: Category
 supplier: Supplier
 orderDetails: [OrderDetail!]!
}
...
type AddProductPayload {
 product: Product!
}
input AddProductInput {
 productName: String!
 supplierId: Int
 categoryId: Int
 quantityPerUnit: String!
 unitPrice: Decimal
 unitsInStock: Short
 unitsOnOrder: Short
 reorderLevel: Short
 discontinued: Boolean!
}

	Click the Operations tab and, if necessary, create a new blank document, and then enter a mutation to add a new product named Tasty Burgers, as shown in the following code:

mutation AddProduct {
 addProduct(
 input: {
 productName: "Tasty Burgers"
 supplierId: 1
 categoryId: 2
 quantityPerUnit: "6 per box"
 unitPrice: 40
 unitsInStock: 0
 unitsOnOrder: 0
 reorderLevel: 0
 discontinued: false
 }
)
 {
 product {
 productId
 productName
 }
 }
}

	Click Execute or the Run button, and note the new product is successfully added and assigned the next sequential number by the SQL Server database, as shown in the following output and in Figure 11.13:

{
 "data": {
 "addProduct": {
 "product": {
 "productId": 79,
 "productName": "Tasty Burgers"
 }
 }
 }
}

[image: Figure 11.13: Adding a new product using a GraphQL mutation]Figure 11.13: Adding a new product using a GraphQL mutation

	Close the browser and shut down the web server.

Practicing and exploring

Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter's topics with deeper research.

Exercise 11.1 – Test your knowledge

Answer the following questions:

	What transport protocol does a GraphQL service use?

	What media type does GraphQL use for its queries?

	How can you parameterize GraphQL queries?

	?

	How might you insert a new product into the Northwind database?

Exercise 11.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-11---combining-data-sources-using-graphql

Exercise 11.3 – Practice building .NET clients

In HomeController.cs, add an action method named Categories and implement it to query the categories field with a variable for the id. On the page, allow the visitor to submit an id and see the category information and a list of its products.

Summary

In this chapter, you learned about some of the concepts of GraphQL, how to build a Query class with fields that represent entities that can be queried, how to use the Banana Cake Pop tool to explore a GraphQL service schema, how to use the REST Client extension to POST to a GraphQL service, how to create a .NET client for a GraphQL service, and finally, how to implement GraphQL mutations.

In the next chapter, you will learn about the gRPC service technology that can be used to implement very efficient microservices.

12 Building Efficient Services Using gRPC

Join our book community on Discord

https://packt.link/EarlyAccess

In this chapter, you will be introduced to gRPC which enables a developer to build highly efficient services across most platforms. But web browsers do not fully support HTTP/2 which is a required by gRPC. This makes gRPC most useful for implementing intermediate tier-to-tier services and microservices because they must perform a lot of communication between multiple services to achieve a complete task. Improving the efficiency of that communication is vital to success for the scalability and performance of microservices.

This chapter will cover the following topics:

	Understanding gRPC

	Building a gRPC service and client

	Implementing gRPC for an EF Core model

	Implementing gRPC JSON transcoding

Understanding gRPC

gRPC is a modern open source high-performance Remote Procedure Call (RPC) framework that can run in any environment. An RPC is when one computer calls a procedure in another process or on another computer over a network as if it were calling a local procedure. It is an example of a client-server architecture.

You can learn more about the RPCs at the following link: https://en.wikipedia.org/wiki/Remote_procedure_call

How gRPC works

A gRPC service developer defines a service interface with methods that can be called remotely including their parameters and return types. The service implements this interface and runs a gRPC server to handle client calls.

On the client, a strongly typed gRPC client provides the same methods as on the server.

Defining gRPC contracts with .proto files

gRPC uses contract-first API development that supports language-agnostic implementations. You write the contracts using .proto files that have their own language syntax and then use tools to convert them into various languages like C#. The .proto files are used by both the server and client to exchange messages in the correct format.

gRPC benefits

gRPC minimizes network usage by using Protobuf binary serialization that is not human readable unlike JSON or XML used by web services.

gRPC requires HTTP/2 that provides significant performance benefits over earlier versions like binary framing and compression, and multiplexing of HTTP/2 calls over a single connection.

gRPC limitations

The main limitation of gRPC is that it cannot be used in web browsers because no browser provides the level of control required to support a gRPC client. For example, browsers do not allow a caller to require that HTTP/2 be used.

There is an early-stage initiative called gRPC-Web that adds an extra proxy layer and the proxy forwards requests to the gRPC server.

Types of gRPC methods

gRPC has four types of method:

	Unary methods have structured request and response messages. A unary method completes when the response message is returned.

	Streaming methods have the stream keyword prefix for either an input parameter, an output parameter, or both:

	Server streaming methods receive a request message from the client and return a stream. Multiple messages can be returned over the stream. A server streaming call ends when the server-side method returns but the server-side method could run until it receives a cancellation token from the client. No other messages can be sent by the client once streaming has started.

	Client streaming methods only receive a stream from the client without any message. The server-side method processes the stream until they are ready to return a response message. Once the server-side method returns its message, the client streaming call is done.

	Bi-directional streaming methods only receive a stream from the client without any message and only returns data via a second stream. The call is done when the server-side method returns. Once a bi-directional streaming method is called, the client and service can send messages to each other at any time.

In this book, we will only look at the details of unary methods. If you would like the next edition to cover streaming methods, please let me know.

Microsoft's gRPC packages

Microsoft has invested in building a set of packages for .NET to work with gRPC and since May 2021, it is Microsoft's recommended implementation of gRPC for .NET.

Microsoft's gRPC for .NET includes:

	Grpc.AspNetCore for hosting a gRPC service in ASP.NET Core.

	Grpc.Net.Client for adding gRPC client support to any .NET project by building on HttpClient.

	Grpc.Net.ClientFactory for adding gRPC client support to any .NET code base by building on HttpClientFactory.

You can learn more at the following link: https://github.com/grpc/grpc-dotnet

Building a gRPC service and client

Let's see an example service and client for sending and receiving simple messages.

Building a Hello World gRPC service

We will start by building the gRPC service using one of the project templates provided as standard:

	Use your preferred code editor to create a new project, as defined in the following list:

	Project template: ASP.NET Core gRPC Service / grpc

	Workspace/solution file and folder: Chapter12

	Project file and folder: Northwind.Grpc.Service

For working with .proto files in Visual Studio Code, you can install the extension vscode-proto3 (zxh404.vscode-proto3).

	In the Protos folder, in greet.proto, note that it defines a service named Greeter with a method named SayHello that exchanges messages named HelloRequest and HelloReply, as shown in the following code:

syntax = "proto3";
option csharp_namespace = "Northwind.Grpc.Service";
package greet;
// The greeting service definition.
service Greeter {
 // Sends a greeting
 rpc SayHello (HelloRequest) returns (HelloReply);
}
// The request message containing the user's name.
message HelloRequest {
 string name = 1;
}
// The response message containing the greetings.
message HelloReply {
 string message = 1;
}

	In Northwind.Grpc.Service.csproj, note the .proto file is registered for use on the server-side and the package reference for implementing a gRPC service hosted in ASP.NET Core, as shown in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>
<ItemGroup>
 <PackageReference Include="Grpc.AspNetCore" Version="2.43.0" />
</ItemGroup>

	In the Services folder, in GreeterService.cs, note that it inherits from a class named GreeterBase and it asynchronously implements the Greeter service contract by having a SayHello method that accepts a HelloRequest input parameter and returns a HelloReply, as shown in the following code:

using Grpc.Core;
using Northwind.Grpc.Service
namespace Northwind.Grpc.Service.Services
{
 public class GreeterService : Greeter.GreeterBase
 {
 private readonly ILogger<GreeterService> _logger;
 public GreeterService(ILogger<GreeterService> logger)
 {
 _logger = logger;
 }
 public override Task<HelloReply> SayHello(
 HelloRequest request, ServerCallContext context)
 {
 return Task.FromResult(new HelloReply
 {
 Message = "Hello " + request.Name
 });
 }
 }
}

	If you are using Visual Studio 2022, in Solution Explorer, click Show All Files.

	In the obj\Debug\net7.0\Protos folder, note the two class files named Greet.cs and GreetGrpc.cs that are automatically generated from the greet.proto file, as shown in Figure 12.1:

[image: Figure 12.1: The autogenerated class files from a .proto file for a gRPC service]Figure 12.1: The autogenerated class files from a .proto file for a gRPC service

	In GreetGrpc.cs, note the Greeter.GreeterBase class that the GreeterService class inherited from. You do not need to understand how this base class is implemented but you should know it is what handles all the details of gRPC's efficient communication.

	If you are using Visual Studio 2022, in Solution Explorer, expand Dependencies, expand Packages, expand Grpc.AspNetCore, and note that it has dependencies on Google's Google.Protobuf package, and Microsoft's Grpc.AspNetCore.Server.ClientFactory and Grpc.Tools packages, as shown in Figure 12.2:

[image: Figure 12.2: Grpc.AspNetCore package references the Grpc.Tools and Google.Protobuf packages]Figure 12.2: Grpc.AspNetCore package references the Grpc.Tools and Google.Protobuf packages

The Grpc.Tools package generates the C# class files from the registered .proto files, and those class files use types defined in Google's package to implement the serialization to Protobuf serialization format. The Grpc.AspNetCore.Server.ClientFactory package includes both server-side and client-side support for gRPC in a .NET project.

	In Program.cs, in the section that configures services, note the call to add gRPC to the services collection, as shown in the following code:

builder.Services.AddGrpc();

	In Program.cs, in the section for configuring the HTTP pipeline, note the call to map the Greeter service, as shown in the following code:

app.MapGrpcService<GreeterService>();

	In the Properties folder, open launchSettings.json and modify the applicationUrl setting to use port 5031, as shown highlighted in the following markup:

{
 "profiles": {
 "Northwind.Grpc.Service": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": false,
 "applicationUrl": "https://localhost:5031",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

	Build the Northwind.Grpc.Service project.

Building a Hello World gRPC client

We will add an ASP.NET Core MVC website project and then add the gRPC client packages to enable it to call the gRPC service:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller) / mvc

	Workspace/solution file and folder: Chapter12

	Project file and folder: Northwind.Grpc.Client.Mvc

	If you are using Visual Studio 2022, set the startup project to the current selection.

	In the Northwind.Grpc.Client.Mvc project, add package references for Microsoft's gRPC client factory and tools, and Google's .NET library for Protocol Buffers, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Grpc.Net.ClientFactory" Version="2.46.0" />
 <PackageReference Include="Grpc.Tools" Version="2.46.3">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles;
 analyzers; buildtransitive</IncludeAssets>
 </PackageReference>
 <PackageReference Include="Google.Protobuf" Version="3.21.1" />
</ItemGroup>

Good Practice: The Grpc.Net.ClientFactory package references the Grpc.Net.Client package that implements client-side support for gRPC in a .NET project, but it does not reference other packages like Grpc.Tools or Google.Protobuf. We must reference those packages explicitly. The Grpc.Tools package is only used during development, so it is marked as PrivateAssets=all to ensure that the tools are not published with the production website.

	In the Properties folder, open launchSettings.json and modify the applicationUrl setting to use port 5032, as shown highlighted in the following markup:

{
 "profiles": {
 "Northwind.Grpc.Client.Mvc": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": false,
 "applicationUrl": "https://localhost:5032",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

	Copy the Protos folder from the Northwind.Grpc.Service project/folder to the Northwind.Grpc.Client.Mvc project/folder.

In Visual Studio 2022, you can drag and drop to copy. In Visual Studio Code, drag and drop while holding Ctrl or Cmd key.

	In the Northwind.Grpc.Client.Mvc project, in the Protos folder, in greet.proto, modify the namespace to match the namespace for the current project so that the automatically generated classes will be in the same namespace, as shown in the following code:

option csharp_namespace = "Northwind.Gprc.Client.Mvc";

	In the Northwind.Gprc.Client.Mvc project file, add or modify the item group that registers the .proto file to indicate that it is being used on the client-side, as shown highlighted in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

Visual Studio 2022 will have created the item group for you but it will set the GrpcServices to Server by default so you must manually change that to Client.

	Build the Northwind.Grpc.Client.Mvc project to ensure that the automatically generated classes are created.

	In the obj\Debug\net7.0\Protos folder, in GreetGrpc.cs, note the Greeter.GreeterClient class, as partially shown in the following code:

public static partial class Greeter
{
 ...
 public partial class GreeterClient : grpc::ClientBase<GreeterClient>
 {

	In Program.cs, import the namespace for Greeter.GreeterClient, as shown in the following code:

using Northwind.Grpc.Client.Mvc; // Greeter.GreeterClient

	In Program.cs, in the section of configuring services, and a statement to add the GreeterClient as a named GRPC client that will be listening on port 5031, as shown in the following code:

builder.Services.AddGrpcClient<Greeter.GreeterClient>("Greeter",
 options =>
 {
 options.Address = new Uri("https://localhost:5031");
 });

	In the Controllers folder, in HomeController.cs, import the namespaces to work with gRPC channels and the gRPC client factory, as shown in the following code:

using Grpc.Net.Client; // GrpcChannel
using Grpc.Net.ClientFactory; // GrpcClientFactory

	In the controller class, declare a field to store a greeter client instance and set it by using the client factory in the constructor, as shown highlighted in the following code:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 protected readonly Greeter.GreeterClient greeterClient;
 public HomeController(ILogger<HomeController> logger,
 GrpcClientFactory factory)
 {
 _logger = logger;
 greeterClient = factory.CreateClient<Greeter.GreeterClient>("Greeter");
 }

	In the Index action method, make the method asynchronous, and then add statements to use the gRPC client to call the SayHelloAsync method, passing a HelloRequest object and storing the HttpReply response in ViewData, while catching any exceptions, as shown highlighted in the following code:

public async Task<IActionResult> Index(string name = "Henrietta")
{
 try
 {
 HelloReply reply = await greeterClient.SayHelloAsync(
 new HelloRequest { Name = name });
 ViewData["greeting"] = "Greeting from gRPC service: " + reply.Message;
 }
 catch (Exception ex)
 {
 _logger.LogWarning($"Northwind.Grpc.Service is not responding.");
 ViewData["exception"] = ex.Message;
 }
 return View();
}

	In Views/Home, in Index.cshtml, after the Welcome heading, remove the existing <p> element and then add code to render a form for the visitor to enter their name, and then if they submit and the gRPC service responds, to output the greeting, as shown in the following markup:

<div class="alert alert-secondary">
 <form>
 <input name="name" placeholder="Enter your name" />
 <input type="submit" />
 </form>
</div>
@if (ViewData["greeting"] is not null)
{
 <p class="alert alert-primary">@ViewData["greeting"]</p>
}
@if (ViewData["exception"] is not null)
{
 <p class="alert alert-danger">@ViewData["exception"]</p>
}

If you clean a gRPC project, then you will lose the automatically generated types and see compile errors. To recreate them, simply make any change to a .proto file or close and reopen the project/solution.

Testing a gRPC service and client

Now we can start the gRPC service and see if the MVC website can call it successfully:

	Start the Northwind.Grpc.Service project without debugging.

	Start the Northwind.Grpc.Client.Mvc project.

	If necessary, start a browser and navigate to the home page: https://localhost:5032/.

	Note the greeting on the home page, as shown in Figure 12.3:

[image: Figure 12.3 Home page after calling the gRPC service to get a greeting]Figure 12.3 Home page after calling the gRPC service to get a greeting

	View the command prompt or terminal for the ASP.NET Core MVC project and note the info messages that indicate an HTTP/2 POST was processed by the greet.Greeter/SayHello endpoint in about 41ms, as shown in the following output:

info: System.Net.Http.HttpClient.Greeter.LogicalHandler[100]
 Start processing HTTP request POST https://localhost:5031/greet.Greeter/SayHello
info: System.Net.Http.HttpClient.Greeter.ClientHandler[100]
 Sending HTTP request POST https://localhost:5031/greet.Greeter/SayHello
info: System.Net.Http.HttpClient.Greeter.ClientHandler[101]
 Received HTTP response headers after 60.5352ms - 200
info: System.Net.Http.HttpClient.Greeter.LogicalHandler[101]
 End processing HTTP request after 69.1623ms - 200

	Close Chrome and shut down the web servers.

Implementing gRPC for an EF Core model

Now we will add a service for working with the Northwind database to the gRPC project.

Implementing the gRPC service

We will reference the EF Core model that you created in Chapter 7, Working with Data Using SQL Server:

	In the Northwind.Grpc.Service project, add a project reference to the Northwind database context project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter07\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

Include path must not have a line break.

	At the command line or terminal, build the Northwind.Grpc.Service project.

	In the Northwind.Grpc.Service project, in the Protos folder, add a new file (the item template is named Protocol Buffer File in Visual Studio 2022) named shipper.proto, as shown in the following code:

syntax = "proto3";
option csharp_namespace = "Northwind.Grpc.Service";
package shipper;
service Shipper {
 rpc GetShipper (ShipperRequest) returns (ShipperReply);
}
message ShipperRequest {
 int32 shipperId = 1;
}
message ShipperReply {
 int32 shipperId = 1;
 string companyName = 2;
 string phone = 3;
}

	Open the project file and add an entry to include the shipper.proto file, as shown highlighted in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
 <Protobuf Include="Protos\shipper.proto" GrpcServices="Server" />
</ItemGroup>

	Build the Northwind.Grpc.Service project.

	In the Services folder, add a new class file named ShipperService.cs, and modify its contents to define a shipper service that uses the Northwind database context to return shippers, as shown in the following code:

using Grpc.Core; // ServerCallContext
using Packt.Shared; // NorthwindContext
using ShipperEntity = Packt.Shared.Shipper;
namespace Northwind.Grpc.Service.Services;
public class ShipperService : Shipper.ShipperBase
{
 protected readonly ILogger<ShipperService> _logger;
 protected readonly NorthwindContext db;
 public ShipperService(ILogger<ShipperService> logger,
 NorthwindContext db)
 {
 _logger = logger;
 this.db = db;
 }
 public override async Task<ShipperReply> GetShipper(
 ShipperRequest request, ServerCallContext context)
 {
 return ToShipperReply(
 await db.Shippers.FindAsync(request.ShipperId));
 }
 private ShipperReply ToShipperReply(ShipperEntity? shipper)
 {
 return new ShipperReply
 {
 ShipperId = shipper?.ShipperId ?? 0,
 CompanyName = shipper?.CompanyName ?? string.Empty,
 Phone = shipper?.Phone ?? string.Empty
 };
 }
}

	In Program.cs, import the namespace for the Northwind database context, as shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

	In the section that configures services, add a call to register the Northwind database context, as shown in the following code:

builder.Services.AddNorthwindContext();

	In the section that configures the HTTP pipeline, after the call to register GreeterService, add a statement to register ShipperService, as shown in the following code:

app.MapGrpcService<ShipperService>();

Implementing the gRPC client

Now we can add client capabilities to the Northwind MVC website:

	Copy the shipper.proto file from the Protos folder in the Northwind.Grpc.Service project to the Protos folder in the Northwind.Grpc.Client.Mvc project.

	In the Northwind.Grpc.Client.Mvc project, in shipper.proto, modify the namespace to match the namespace for the current project so that the automatically generated classes will be in the same namespace, as shown in the following code:

option csharp_namespace = "Northwind.Grpc.Client.Mvc";

	In the Northwind.Grpc.Client.Mvc project file, modify the entry to register the .proto file as being used on the client-side, as shown highlighted in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
 <Protobuf Include="Protos\shipper.proto" GrpcServices="Client" />
</ItemGroup>

	In the Northwind.Grpc.Client.Mvc project file, in Program.cs, add a statement to register the ShipperClient class to connect to the gRPC service listening on port 5031, as shown in the following code:

builder.Services.AddGrpcClient<Shipper.ShipperClient>("Shipper",
 options =>
 {
 options.Address = new Uri("https://localhost:5031");
 });

	In the Controllers folder, in HomeController.cs, declare a field to store a greeter client instance and set it by using the client factory in the constructor, as shown highlighted in the following code:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 protected readonly Greeter.GreeterClient greeterClient;
 protected readonly Shipper.ShipperClient shipperClient;
 public HomeController(ILogger<HomeController> logger,
 GrpcClientFactory factory)
 {
 _logger = logger;
 greeterClient = factory.CreateClient<Greeter.GreeterClient>("Greeter");
 shipperClient = factory.CreateClient<Shipper.ShipperClient>("Shipper");
 }

	In HomeController.cs, in the Index action method, add a parameter named id and statements to call the Shipper gRPC service to get a shipper with the matching ShipperId, as shown highlighted in the following code:

public async Task<IActionResult> Index(
 string name = "Henrietta", int id = 1)
{
 try
 {
 HelloReply reply = await greeterClient.SayHelloAsync(
 new HelloRequest { Name = name });
 ViewData["greeting"] = "Greeting from gRPC service: " + reply.Message;
 ShipperReply shipperReply = await shipperClient.GetShipperAsync(
 new ShipperRequest { ShipperId = id });
 ViewData["shipper"] = "Shipper from gRPC service: " +
 $"ID: {shipperReply.ShipperId}, Name: {shipperReply.CompanyName},"
 + $" Phone: {shipperReply.Phone}.";
 }
 catch (Exception ex)
 {
 _logger.LogWarning($"Northwind.Grpc.Service is not responding.");
 ViewData["exception"] = ex.Message;
 }
 return View();
}

	In Views/Home, in Index.cshtml, add code to render a form for the visitor to enter a shipper id, and render the shipper details after the greeting, as shown highlighted in the following markup:

@{
 ViewData["Title"] = "Home Page";
}
<div class="text-center">
 <h1 class="display-4">Welcome</h1>
 <div class="alert alert-secondary">
 <form>
 <input name="name" placeholder="Enter your name" />
 <input type="submit" />
 </form>
 <form>
 <input name="id" placeholder="Enter a shipper id" />
 <input type="submit" />
 </form>
 </div>
 @if (ViewData["greeting"] is not null)
 {
 <p class="alert alert-primary">@ViewData["greeting"]</p>
 }
 @if (ViewData["shipper"] is not null)
 {
 <p class="alert alert-primary">@ViewData["shipper"]</p>
 }
 @if (ViewData["exception"] is not null)
 {
 <p class="alert alert-danger">@ViewData["exception"]</p>
 }
</div>

	Start the Northwind.Grpc.Service project without debugging.

	Start the Northwind.Grpc.Client.Mvc project.

	If necessary, start a browser and navigate to the home page: https://localhost:5032/.

	Note the shipper information on the services page, as shown in Figure 12.4:

[image: Figure 12.4 Home page after calling the gRPC service to get a shipper]Figure 12.4 Home page after calling the gRPC service to get a shipper

	Close Chrome and shut down the web servers.

Getting request and response metadata

Formally defined request and response messages as part of a contract are not the only mechanism to pass data between client and service. You can also use metadata sent as headers and trailers. Both are simple dictionaries that are passed along with the messages.

Let's see how you can get metadata about a gRPC call:

	In HomeController.cs, import the namespace to use the AsyncUnaryCall<T> class, as shown in the following code:

using Grpc.Core; // AsyncUnaryCall<T>

	In the Index method, comment out the statement that makes the call to the gRPC shipper service, and add statements that get the underlying AsyncUnaryCall<T> object, then use it to get the headers, output them to the log, and then get the response, as shown highlighted in the following code:

// ShipperReply shipperReply = await shipperClient.GetShipperAsync(
// new ShipperRequest { ShipperId = id });
AsyncUnaryCall<ShipperReply> shipperCall = shipperClient.GetShipperAsync(
 new ShipperRequest { ShipperId = id });
Metadata metadata = await shipperCall.ResponseHeadersAsync;
foreach (Metadata.Entry entry in metadata)
{
 // not really critical, just doing this to make it easier to see
 _logger.LogCritical($"Key: {entry.Key}, Value: {entry.Value}");
}
ShipperReply shipperReply = await shipperCall.ResponseAsync;
ViewData["shipper"] = "Shipper from gRPC service: " +
 $"ID: {shipperReply.ShipperId}, Name: {shipperReply.CompanyName},"
 + $" Phone: {shipperReply.Phone}.";

	Start the Northwind.Grpc.Service project without debugging.

	Start the Northwind.Grpc.Client.Mvc project.

	If necessary, start a browser and navigate to the home page: https://localhost:5032/.

	Note the client successfully POSTing to the gRPC Greeter and Shipper services and the red critical messages outputting the two entries in the gRPC metadata for the call to GetShipper, with keys of date and server, as shown in Figure 12.5:

[image: Figure 12.5: Logging metadata from a gRPC call]Figure 12.5: Logging metadata from a gRPC call

	Close Chrome and shut down the web servers.

The trailers equivalent of the ResponseHeadersAsync property is the GetTrailers method. It has a return value of Metadata that contains the dictionary of trailers. Trailers are accessiable at the end of a call.

Adding a deadline for higher reliability

Setting a deadline for a gRPC call is recommended practice because it controls the upper limit on how long a gRPC call can run for. It prevents gRPC services from potentially consuming too much server resources.

The deadline information is sent to the service, so the service has an opportunity to give up its work once the deadline has passed instead of continuing forever. Even if the server completes its work within the deadline, the client may give up before the response arrives at the client due to the overhead of communication.

Let's see an example:

	In the Northwind.Grpc.Service project, in the Services folder, in ShipperService.cs, in the GetShipper method, add a statement to pause for 5 seconds, as shown highlighted in the following code:

public override async Task<ShipperReply> GetShipper(
 ShipperRequest request, ServerCallContext context)
{
 _logger.LogCritical(
 "This request has a deadline of {0:T}. It is now {1:T}.",
 context.Deadline, DateTime.UtcNow);
 await Task.Delay(TimeSpan.FromSeconds(5));
 return ToShipperReply(
 await db.Shippers.FindAsync(request.ShipperId));
}

	In HomeController.cs, in the Index method, set a deadline of 3 seconds when calling the GetShipperAsync method, as shown highlighted in the following code:

AsyncUnaryCall<ShipperReply> shipperCall = shipperClient.GetShipperAsync(
 new ShipperRequest { ShipperId = id },
 deadline: DateTime.UtcNow.AddSeconds(3)); // must be a UTC DateTime

	In HomeController.cs, in the Index method, before the existing catch block, add a catch block for an RpcException when its status code matches the code for deadline exceeded, as shown highlighted in the following code:

catch (RpcException rpcex) when (ex.StatusCode ==
 global::Grpc.Core.StatusCode.DeadlineExceeded)
{
 _logger.LogWarning("Northwind.Grpc.Service deadline exceeded.");
 ViewData["exception"] = rpcex.Message;
}
catch (Exception ex)
{
 _logger.LogWarning($"Northwind.Grpc.Service is not responding.");
 ViewData["exception"] = ex.Message;
}

	Start the Northwind.Grpc.Service project without debugging.

	Start the Northwind.Grpc.Client.Mvc project.

	If necessary, start a browser and navigate to the home page: https://localhost:5032/.

	At the command prompt or terminal for the gRPC service, note the request has a three second deadline, as shown in the following output:

crit: Northwind.Grpc.Service.Services.ShipperService[0]
 This request has a deadline of 14:56:30. It is now 14:56:27.

	In the browser, note that after three seconds the home page throws a deadline exceeded exception, as shown in Figure 12.6:

[image: Figure 12.6: A deadline has passed]Figure 12.6: A deadline has passed

	At the command prompt or terminal for the ASP.NET Core MVC client, note the logs that show a request is made to the GetShipper method on the gRPC service but the deadline is exceeded, as shown in the following output:

info: System.Net.Http.HttpClient.Shipper.LogicalHandler[100]
 Start processing HTTP request POST https://localhost:5031/shipper.Shipper/GetShipper
info: System.Net.Http.HttpClient.Shipper.ClientHandler[100]
 Sending HTTP request POST https://localhost:5031/shipper.Shipper/GetShipper
warn: Grpc.Net.Client.Internal.GrpcCall[7]
 gRPC call deadline exceeded.
warn: Northwind.Grpc.Client.Mvc.Controllers.HomeController[0]
 Northwind.Grpc.Service deadline exceeded.
info: Grpc.Net.Client.Internal.GrpcCall[3]
 Call failed with gRPC error status. Status code: 'DeadlineExceeded', Message: ''.

	Close Chrome and shut down the web servers.

Good Practice: The default is no deadline. Always set a deadline in the client call. In your service implementation, get the deadline and use it to automatically abandon the work if it is exceeded. Pass the cancellation token to any asynchronous calls so that work completes quickly on the server and frees up resources.

Implementing gRPC JSON transcoding

JSON is the most popular format for services that return data to a browser or mobile device. It would be great if we could create a gRPC service and magically make it callable via non-HTTP/2 using JSON.

Microsoft has a new technology named gRPC JSON transcoding which is an ASP.NET Core extension that creates HTTP endpoints with JSON for gRPC services.

Enabling gRPC JSON transcoding

Let's see how to enable it in our gRPC service:

	In the Northwind.Grpc.Service project, add a package reference for gRPC JSON transcoding, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Grpc.AspNetCore" Version="2.43.0" />
 <PackageReference Include="Microsoft.AspNetCore.Grpc.JsonTranscoding"
 Version="7.0.0" />
</ItemGroup>

	In Program.cs, add a call to add JSON transcoding after the call to add gRPC, as shown highlighted in the following code:

builder.Services.AddGrpc().AddJsonTranscoding();

	In the Northwind.Grpc.Service project/folder, add a folder named google.

	In the google folder, add a folder named api.

	In the api folder, add two .proto files named http.proto and annotations.proto.

	Copy and paste the raw contents for the two files from the files found at the following link: https://github.com/dotnet/aspnetcore/tree/main/src/Grpc/JsonTranscoding/test/testassets/Sandbox/google/api

	In the Protos folder, in greet.proto, import the annotations .proto file, and use it to add an option to make a HTTP request to the SayHello method, as shown highlighted in the following code:

syntax = "proto3";
import "google/api/annotations.proto";
option csharp_namespace = "Northwind.Grpc.Service";
package greet;
// The greeting service definition.
service Greeter {
 // Sends a greeting
 rpc SayHello (HelloRequest) returns (HelloReply) {
 option (google.api.http) = {
 get: "/v1/greeter/{name}"
 };
}
// The request message containing the user's name.
message HelloRequest {
 string name = 1;
}
// The response message containing the greetings.
message HelloReply {
 string message = 1;
}

	In the Protos folder, in shipper.proto, import the annotations .proto file, and use it to add an option to make a HTTP request to the GetShipper method, as shown in the following code:

syntax = "proto3";
import "google/api/annotations.proto";
option csharp_namespace = "Northwind.Grpc.Service";
package shipper;
service Shipper {
 rpc GetShipper (ShipperRequest) returns (ShipperReply) {
 option (google.api.http) = {
 get: "/v1/shipper/{shipperId}"
 };
}
message ShipperRequest {
 int32 shipperId = 1;
}
message ShipperReply {
 int32 shipperId = 1;
 string companyName = 2;
 string phone = 3;
}

Testing gRPC JSON transcoding

Now we can start the gRPC service and call it directly from any browser:

	Start the Northwind.Grpc.Service project.

	Start Chrome, show the developer tools, and click the Network tab to start recording network traffic.

	Navigate to a URL to makes a GET request that will call the SayHello method: https://localhost:5031/v1/greeter/Bob, and note the JSON response returned by the gRPC service, as shown in Figure 12.7:

[image: Figure 12.7: Making an HTTP 1.1 GET request to a gRPC service and receiving a response in JSON]Figure 12.7: Making an HTTP 1.1 GET request to a gRPC service and receiving a response in JSON

	Navigate to a URL to makes a GET request to call the GetShipper method: https://localhost:5031/v1/shipper/2, and note the JSON response returned by the gRPC service, as shown in Figure 12.8:

[image: Figure 12.8: Making an HTTP 1.1 GET request to a gRPC service and receiving a response in JSON]Figure 12.8: Making an HTTP 1.1 GET request to a gRPC service and receiving a response in JSON

	Close the browser and shut down the web server.

Comparing with gRPC-Web

gRPC-Web is an alternative to gRPC JSON transcoding to allow gRPC services to be called from a browser. gRPC-Web achieves this by executing a gRPC-Web client inside the browser. This has the advantage that the communications between browser and gRPC service use Protobuf and therefore get all the performance and scalability benefits of true gRPC communication.

As you have seen, gRPC JSON transcoding allows browsers to call gRPC services as if they were HTTP APIs with JSON. The browser needs to know nothing about gRPC. The gRPC service is responsible for converting those HTTP API calls into calls to the actual gRPC service implementation.

To simplify and summarize:

	gRPC JSON transcoding happens on the server-side.

	gRPC-Web happens on the client-side.

Good Practice: Add gRPC JSON transcoding support to all your gRPC services hosted in ASP.NET Core. This provides the best of both worlds. Clients that cannot use gRPC natively can call the Web API. Clients that can use gRPC natively can call it directly.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 12.1 – Test your knowledge

Answer the following questions:

	What are three benefits of gRPC that make it a good choice for implementing services?

	How are contracts defined in gRPC?

	Which of the following .NET types require extensions to be imported: int, double, DateTime?

	Why should you set a deadline when calling a gRPC method?

	What are the benefits of enabling gRPC JSON transcoding to a gRPC service hosted in ASP.NET Core?

Exercise 12.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-12---building-efficient-services-using-grpc

Summary

In this chapter, you:

	Learned some concepts about gRPC services, how they work, and their benefits.

	Implemented a simple gRPC service.

	Implemented a gRPC service that uses an EF Core model.

	Learned how to set deadlines and read metadata sent as headers and trailers.

	Extended a gRPC service with support for being called as an HTTP service with JSON to support clients that cannot work with gRPC natively.

In the next chapter, you will learn about SignalR, a technology for performing real-time communication between client and server.

13 Broadcasting Realtime Communication Using SignalR

Join our book community on Discord

https://packt.link/EarlyAccess

In this chapter, you will be introduced to SignalR, a technology that enables a developer to create a service that can have multiple clients and broadcast messages to all of them or a subset of them live in real time. The canonical example is a group chat app. Other examples include notification systems and dashboards that need instantly up-to-date information like stock prices.

This chapter will cover the following topics:

	Understanding SignalR

	Building a live communication service using SignalR

	Building web client using the SignalR JavaScript library

	Building a .NET console app client

	Understanding Azure SignalR Service

Understanding SignalR

The web is great for building general-purpose websites and services, but it was not designed for specialized scenarios that require a web page to be instantaneously updated with new information as it becomes available.

Understanding the history of real time communication on the web

To understand the benefits of SignalR, it helps to know the history of HTTP and how organizations worked to make it better for real time communication between clients and servers.

In the early days of the Web in the 1990s, browsers had to make a full-page HTTP GET request to the web server to get fresh information to show to the visitor.

In late 1999, Microsoft released Internet Explorer 5.0 with a component named XMLHttpRequest that could make asynchronous HTTP calls in the background. This alongside dynamic HTML (DHTML) allowed parts of the web page to be updated with fresh data smoothly.

The benefits of this technique were obvious and soon all browsers added the same component.

Understanding AJAX

Google took maximum advantage of this capability to build clever web applications such as Google Maps and Gmail. A few years later, the technique became popularly known as Asynchronous JavaScript and XML (AJAX).

AJAX still uses HTTP to communicate, however, and that has limitations:

	First, HTTP is a request-response communication protocol, meaning that the server cannot push data to the client. It must wait for the client to make a request.

	Second, HTTP request and response messages have headers with lots of potentially unnecessary overhead.

	Third, HTTP typically requires a new underlying TCP connection to be created on each request.

Understanding WebSocket

WebSocket is full duplex, meaning that either the client or server can initiate communicating new data. WebSocket uses the same TCP connection for the lifecycle of the connection. It is also more efficient in the message sizes that it sends because they are minimally framed with 2 bytes.

WebSocket works over HTTP ports 80 and 443 so it is compatible with the HTTP protocol and the WebSocket handshake uses the HTTP Upgrade header to switch from the HTTP protocol to the WebSocket protocol.

Modern web apps are expected to deliver up-to-date information. Live chat is the canonical example, but there are lots of potential applications, from stock prices to games.

Whenever you need the server to push updates to the web page, you need a web-compatible, real-time communication technology. WebSocket could be used but it is not supported by all clients.

Introducing SignalR

ASP.NET Core SignalR is an open source library that simplifies adding real-time web functionality to apps by being an abstraction over multiple underlying communication technologies, which allows you to add real-time communication capabilities using C# code.

The developer does not need to understand or implement the underlying technology used, and SignalR will automatically switch between underlying technologies depending on what the visitor's web browser supports. For example, SignalR will use WebSocket when it's available, and gracefully falls back on other technologies such as AJAX long polling when it isn't, while your application code stays the same.

SignalR is an API for server-to-client remote procedure calls (RPCs). The RPCs call JavaScript functions on clients from server-side .NET code. SignalR has hubs to define the pipeline and handles the message dispatching automatically using two built-in hub protocols: JSON and a binary one based on MessagePack.

On the server-side, SignalR runs everywhere that ASP.NET Core runs: Windows, macOS, or Linux servers. SignalR supports the following client platforms:

	JavaScript clients for current browsers including Chrome, Firefox, Safari, Edge, and Internet Explorer 11.

	.NET clients including Blazor, .NET MAUI, and Xamarin for Android and iOS mobile apps.

	Java 8 and later.

Designing method signatures

In Chapter 12, Building Efficient Services Using gRPC, you learned that gRPC methods can only have a single message parameter. This limitation is to enforce a good practice.

When designing the method signatures for a SignalR service, it is good practice to define methods with a single message parameter rather than multiple simple type parameters. Unlike gRPC, this good practice is not enforced by the technology with SignalR, so you will have to be disciplined.

For example, define a type with multiple properties to use as the single message parameter instead of passing multiple string values, as shown in the following code:

// bad practice
public void SendMessage(string to, string body)
// better practice
public class Message
{
 public string To { get; set; }
 public string Body { get; set; }
}
public void SendMessage(Message message)

The reason for this good practice is that it allows future changes like adding a message title. For the bad practice example, a third string parameter named title would need to be added and existing clients would get errors because they are not sending the extra string value. But using the good practice example it will not break the method signature so existing clients can continue to call it as before the change. In the server-side, the extra title property will just have a null value that can be checked for and perhaps set to a default value.

Building a live communication service using SignalR

The SignalR server library is included in ASP.NET Core. But the JavaScript client library is not automatically included in the project. We will use the Library Manager CLI to get the client library from unpkg, a content delivery network (CDN) that can deliver anything found in Node.js package manager.

Let's add a SignalR server-side hub and client-side JavaScript to an ASP.NET Core MVC project to implement a chat feature to allows visitors to send messages to:

	Everyone currently using the website.

	Dynamically defined groups.

	A single specified user.

Good Practice: In a production solution it would be better to host the SignalR hub in a separate web project so that it can be hosted and scaled independently from the rest of the website. Live communication can often put excessive load on a website.

Defining some shared models

First, we will define two shared models that can be used on both the server-side and client-side .NET projects that will work with our chat service:

	Use your preferred code editor to create a new project, as defined in the following list:

	Project template: Class Library / classlib

	Workspace/solution file and folder: Chapter13

	Project file and folder: Northwind.Common

	In the Northwind.Common project, rename the Class1.cs file to UserModel.cs.

	Modify its contents to define a model for registering a user's name, unique connection Id and the groups that they belong to, as shown in the following code:

namespace Northwind.Chat.Models;
public class UserModel
{
 public string Name { get; set; } = null!;
 public string ConnectionId { get; set; } = null!;
 public string? Groups { get; set; } // comma-separated list
}

	In the Northwind.Common project, add a class file named MessageModel.cs, and modify its contents to define a message model with properties for who the message is sent to and who the message was sent from, and the message body, as shown in the following code:

namespace Northwind.Chat.Models;
public class MessageModel
{
 public string From { get; set; } = null!;
 public string To { get; set; } = null!;
 public string? Body { get; set; }
}

Enabling a server-side SignalR hub

Next, we will enable a SignalR hub on the server-side in an ASP.NET Core MVC project:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller / mvc

	Workspace/solution file and folder: Chapter13

	Project file and folder: Northwind.SignalR.Service.Client.Mvc

	In the Northwind.SignalR.Service.Client.Mvc project, add a project reference to the Northwind.Common project.

	In the Properties folder, in launchSettings.json, modify the applicationUrl to use port 5131, as shown highlighted in the following configuration:

"profiles": {
 "Northwind.SignalR.Service.Client.Mvc": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5131",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }

	In the Northwind.SignalR.Service.Client.Mvc project, add a Hubs folder.

	In the Hubs folder, add a class file named ChatHub.cs, and modify its contents to inherit from the Hub class and implement two methods that can be called by a client, as shown in the following code:

using Microsoft.AspNetCore.SignalR; // Hub
using Northwind.Chat.Models; // UserModel, MessageModel
namespace Northwind.SignalR.Service.Hubs;
public class ChatHub : Hub
{
 // a new instance of ChatHub is created to process each method so
 // we must store user names, connection ids, and groups in a static field
 private static Dictionary<string, UserModel> Users = new();
 public async Task Register(UserModel newUser)
 {
 UserModel user;
 string action = "registered as a new user";
 // try to get a stored user with a match on new user
 if (Users.ContainsKey(newUser.Name))
 {
 user = Users[newUser.Name];
 // remove any existing group registrations
 if (user.Groups is not null)
 {
 foreach (string group in user.Groups.Split(','))
 {
 await Groups.RemoveFromGroupAsync(user.ConnectionId, group);
 }
 }
 user.Groups = newUser.Groups;
 // connection id might have changed if the browser
 // refreshed so update it
 user.ConnectionId = Context.ConnectionId;
 action = "updated your registered user";
 }
 else
 {
 if (string.IsNullOrEmpty(newUser.Name))
 {
 // assign a GUID for name is they are anonymous
 newUser.Name = Guid.NewGuid().ToString();
 }
 newUser.ConnectionId = Context.ConnectionId;
 Users.Add(key: newUser.Name, value: newUser);
 user = newUser;
 }
 if (user.Groups is not null)
 {
 // a user does not have to belong to any groups
 // but if they do, register them with the Hub
 foreach (string group in user.Groups.Split(','))
 {
 await Groups.AddToGroupAsync(user.ConnectionId, group);
 }
 }
 // send a message to the registering user informing of success
 MessageModel message = new()
 {
 From = "SignalR Hub", To = user.Name,
 Body = string.Format(
 "You have successfully {0} with connection id {1}.",
 arg0: action, arg1: user.ConnectionId)
 };
 IClientProxy proxy = Clients.Client(user.ConnectionId);
 await proxy.SendAsync("ReceiveMessage", message);
 }
 public async Task SendMessage(MessageModel message)
 {
 IClientProxy proxy;
 if (string.IsNullOrEmpty(message.To))
 {
 message.To = "Everyone";
 proxy = Clients.All;
 await proxy.SendAsync("ReceiveMessage", message);
 return;
 }
 // if To has a value, then split it into a list of user and group names
 string[] userAndGroupList = message.To.Split(',');
 // each item could be a user or group
 foreach (string userOrGroup in userAndGroupList)
 {
 // if the item is in Users then send the message to that user
 // by looking up their connection id in the dictionary
 if (Users.ContainsKey(userOrGroup))
 {
 message.To = $"User: {Users[userOrGroup].Name}";
 proxy = Clients.Client(Users[userOrGroup].ConnectionId);
 }
 else // assume the item is a group name to send the message to
 {
 message.To = $"Group: {userOrGroup}";
 proxy = Clients.Group(userOrGroup);
 }
 await proxy.SendAsync("ReceiveMessage", message);
 }
 }
}

Note the following:

	ChatHub has a private field to store a list of registered users. It is a dictionary with their name as a unique key.

	ChatHub has two methods that a client can call: Register and SendMessage.

	Register has a single parameter of type UserModel. The user's name, connection Id, and groups are stored in the static dictionary so that the user's name can be used to lookup the connection Id later and send messages directly to that one user. After registering a new user or updating the registration of an existing user, a message is sent back to the client informing them of success.

	SendMessage has a single parameter of type MessageModel. The method branches based on the value of the To property. If To does not have a value, it calls the All method to get a proxy that will communicate with every client. If To has a value, the string is split using comma-separator into an array. Each item in the array is checked to see if it matches a user in Users. If it matches, it calls the Client method to get a proxy that will communicate just with that one client. If it does not match, the item might be a group, so it calls the Group method to get a proxy that will communicate with just the members of that group. Finally, it sends the message asynchronously using the proxy.

	In Program.cs, import the namespace for your SignalR hub, as shown in the following code:

using Northwind.SignalR.Service.Hubs; // ChatHub

	In the section that configures services, add a statement to add support for SignalR to the services collection, as shown in the following code:

builder.Services.AddSignalR();

	In the section that configures the HTTP pipeline, before the call to map controller routes, add a statement to map the relative URL path /chat to your SignalR hub, as shown in the following code:

app.MapHub<ChatHub>("/chat");

Building web client using the SignalR JavaScript library

Next, we will add the SignalR client-side JavaScript library so that we can use it on a web page:

	Open a command prompt or terminal for the Northwind.SignalR.Service.Client.Mvc project/folder.

	Install the Library Manager CLI tool, as shown in the following command:

dotnet tool install -g Microsoft.Web.LibraryManager.Cli

This tool might already be installed globally. To update it to the latest version, repeat the command but replace install with update, as shown in the following output:

PS C:\apps-services-net7\Chapter13\Northwind.SignalR.Service.Client.Mvc> dotnet tool install -g Microsoft.Web.LibraryManager.Cli
Tool 'microsoft.web.librarymanager.cli' is already installed.
PS C:\apps-services-net7\Chapter13\Northwind.SignalR.Service.Client.Mvc> dotnet tool update -g Microsoft.Web.LibraryManager.Cli
Tool 'microsoft.web.librarymanager.cli' was successfully updated from version '2.1.113' to version '2.1.161'.

	Enter a command to add the signalr.js and signalr.min.js libraries to the project from the unpkg source, as shown in the following command:

libman install @microsoft/signalr@latest -p unpkg -d wwwroot/js/signalr --files dist/browser/signalr.js --files dist/browser/signalr.min.js

	Note the success message, as shown in the following output:

Downloading file https://unpkg.com/@microsoft/signalr@latest/dist/browser/signalr.js...
Downloading file https://unpkg.com/@microsoft/signalr@latest/dist/browser/signalr.min.js...
wwwroot/js/signalr/dist/browser/signalr.js written to disk
wwwroot/js/signalr/dist/browser/signalr.min.js written to disk
Installed library "@microsoft/signalr@latest" to "wwwroot/js/signalr"

Visual Studio 2022 also has a GUI for adding client-side JavaScript libraries. To use it, right-click a web project and then navigate to Add | Client Side Libraries.

Adding a chat page to the MVC website

Next, we will add chat functionality to the home page:

	In Views/Home, in Index.cshtml, modify its contents, as shown in the following markup:

@using Northwind.Chat.Models
@{
 ViewData["Title"] = "SignalR Chat";
}
<div class="container">
 <h1>@ViewData["Title"]</h1>
 <hr />
 <div class="row">
 <div class="col">
 <h2>Register User</h2>
 <div class="mb-3">
 <label for="myName" class="form-label">My name</label>
 <input type="text" class="form-control" id="myName" value="Alice" required />
 </div>
 <div class="mb-3">
 <label for="myGroups" class="form-label">My groups</label>
 <input type="text" class="form-control" id="myGroups" value="Sales,IT" />
 </div>
 <div class="mb-3">
 <input type="button" class="form-control" id="registerButton" value="Register User" />
 </div>
 </div>
 <div class="col">
 <h2>Send Message</h2>
 <div class="mb-3">
 <label for="from" class="form-label">From</label>
 <input type="text" class="form-control" id="from" value="Alice" readonly />
 </div>
 <div class="mb-3">
 <label for="to" class="form-label">To</label>
 <input type="text" class="form-control" id="to" />
 </div>
 <div class="mb-3">
 <label for="body" class="form-label">Body</label>
 <input type="text" class="form-control" id="body" />
 </div>
 <div class="mb-3">
 <input type="button" class="form-control" id="sendButton" value="Send Message" />
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col">
 <hr />
 <h2>Messages received</h2>
 <ul id="messages">
 </div>
 </div>
</div>
<script src="~/js/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Note the following:

	There are three sections on the page: Register, Message, and Messages received.

	Register section has two inputs for the visitor's name and a comma-separated list of the groups that they want to be a member of, and a button to click to register.

	Message section has three inputs for the name of the user that the message is from, the names of users and groups that the message will be sent to, the body of the message, and a button to click to send the message.

	Messages received section has an bullet list element that will be dynamically populated with a list item when a message is received.

	Two script elements for the SignalR JavaScript client-side library and the JavaScript implementation of the chat client.

	In wwwroot/js, add a new JavaScript file named chat.js, and modify its contents, as shown in the following code:

"use strict";
var connection = new signalR.HubConnectionBuilder()
 .withUrl("/chat").build();
document.getElementById("registerButton").disabled = true;
document.getElementById("sendButton").disabled = true;
document.getElementById("myName").addEventListener("input",
 function () {
 document.getElementById("from").value =
 document.getElementById("myName").value;
 }
);
connection.start().then(function () {
 document.getElementById("registerButton").disabled = false;
 document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
 return console.error(err.toString());
});
connection.on("ReceiveMessage", function (received) {
 var li = document.createElement("li");
 document.getElementById("messages").appendChild(li);
 // note the use of backtick ` to enable a formatted string
 li.textContent =
 `To ${received.to}, From ${received.from}: ${received.body}`;
});
document.getElementById("registerButton").addEventListener("click",
 function (event) {
 var registermodel = {
 name: document.getElementById("myName").value,
 groups: document.getElementById("myGroups").value
 };
 connection.invoke("Register", registermodel).catch(function (err) {
 return console.error(err.toString());
 });
 event.preventDefault();
 });
document.getElementById("sendButton").addEventListener("click",
 function (event) {
 var messagemodel = {
 from: document.getElementById("from").value,
 to: document.getElementById("to").value,
 body: document.getElementById("body").value
 };
 connection.invoke("SendMessage", messagemodel).catch(function (err) {
 return console.error(err.toString());
 });
 event.preventDefault();
});

Note the following:

	The script creates a SignalR hub connection builder specifying the relative URL path to the chat hub on the server /chat.

	The script disables the Register and Send buttons until the connection is successfully established to the server-side hub.

	When the connection gets a ReceiveMessage call from the server-side hub, it adds a list item element to the messages bullet list. The content of the list item contains details of the message like from, to, and body. Note that JavaScript uses camelCasing for the two models that we defined in C# that uses TitleCase.

	An input event handler is added to the My name text box to keep it synchronized with the From text box.

	A click event handler is added to the Register button that creates a register model with the user's name and their groups and then invokes the Register method on the server-side.

	A click event handler is added to the Send button that creates a message model with the from, to, and body, and then invokes the SendMessage method on the server-side.

Testing the chat feature

Now we are ready to try sending chat messages between multiple website visitors:

	Start the Northwind.SignalR.Service.Client.Mvc project website.

	Start Chrome and navigate to https://localhost:5131/.

	Enter Alice for the name, Sales,IT for the groups, click Register User, and note the response back from the SignalR Hub, as shown in Figure 13.1:

[image: Figure 13.1: Registering a new user in chat]Figure 13.1: Registering a new user in chat

	Open a new Chrome window or start another browser like Firefox or Edge.

	Navigate to https://localhost:5131/.

	Enter Bob for the name, Sales for the groups, and then click Register User.

	Open a new Chrome window or start another browser like Firefox or Edge.

	Navigate to https://localhost:5131/.

	Enter Charlie for the name, IT for the groups, and then click Register User.

	Arrange the browser windows so that you can see all three simultaneously.

A great tool for arranging windows is PowerToys and its FancyZones feature. Learn more at the following link: https://docs.microsoft.com/en-us/windows/powertoys/

	In Alice's browser, in To, enter Sales, in Body, enter Sell more!, and then click Send Message.

	Note that Alice and Bob receive the message, as shown in Figure 13.2:

[image: Figure 13.2: Alice sends a message to the Sales group]Figure 13.2: Alice sends a message to the Sales group

	In Bob's browser, in To, enter IT, in Body, enter Fix more bugs!, and then click Send Message.

	Note that Alice and Charlie receive the message, as partially shown in Figure 13.3:

[image: Figure 13.3: Bob sends a message to the IT group]Figure 13.3: Bob sends a message to the IT group

	In Alice's browser, in To, enter Bob, in Body, enter Bonjour Bob!, and then click Send Message.

	Note that only Bob receives the message.

	In Charlie's browser, in To, leave it empty, in Body, enter Everybody dance now!, and then click Send Message.

	Note that everyone receives the message, as shown in Figure 13.4:

[image: Figure 13.4: Charlie sends a message to everyone]Figure 13.4: Charlie sends a message to everyone

	In Charlie's browser, in To, enter HR,Alice, in Body, enter Is anyone in HR listening?, and the click Send Message.

	Note that Alice receives the message sent directly to her, but since the HR group does not exist, no one receives the message sent to that group, as shown in Figure 13.5:

[image: Figure 13.5: Charlie sends a message to Alice and a group that does not exist]Figure 13.5: Charlie sends a message to Alice and a group that does not exist

	Close the browsers and shut down the web server.

Building a .NET console app client

You have just seen a .NET service hosting SignalR and a JavaScript client to it.

Creating a .NET client for SignalR

Now, let's create a .NET client for SignalR. We will use a console app although any .NET project type would need the same package reference and implementation code:

	Use your preferred code editor to add a new project, as defined in the following list:

	Project template: Console Application / console

	Workspace/solution file and folder: Chapter13

	Project file and folder: Northwind.SignalR.Client.Console

	Add a package reference for ASP.NET Core SignalR client, a project reference for Northwind.Common, and globally and statically import the System.Console class, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.SignalR.Client"
 Version="7.0.0" />
</ItemGroup>
<ItemGroup>
 <ProjectReference
 Include="..\Northwind.Common\Northwind.Common.csproj" />
</ItemGroup>
<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

	In Program.cs, delete the existing statements, import namespaces for working with SignalR as a client and the chat models, and then add statements to create a hub connection, prompt the user to enter a username and groups to register with, and finally listen for received messages, as shown in the following code:

using Microsoft.AspNetCore.SignalR.Client; // HubConnection
using Northwind.Chat.Models; // UserModel, MessageModel
Write("Enter a username (required): ");
string? username = ReadLine();
if (string.IsNullOrEmpty(username))
{
 WriteLine("You must enter a username to register with chat!");
 return;
}
Write("Enter your groups (optional): ");
string? groups = ReadLine();
HubConnection hubConnection = new HubConnectionBuilder()
 .WithUrl("https://localhost:5131/chat")
 .Build();
hubConnection.On<MessageModel>("ReceiveMessage", message =>
{
 WriteLine($"To {message.To}, From {message.From}: {message.Body}");
});
await hubConnection.StartAsync();
WriteLine("Successfully started.");
UserModel registration = new()
{
 Name = username,
 Groups = groups
};
await hubConnection.InvokeAsync("Register", registration);
WriteLine("Successfully registered.");
WriteLine("Listening... (press ENTER to stop.)");
ReadLine();

Testing the .NET console app client

Let's start the SignalR service and call it from the console app:

	Start the Northwind.SignalR.Service.Client.Mvc project website without debugging.

	Start Chrome and navigate to https://localhost:5131/.

	Enter Alice for the name, Sales,IT for the groups, and then click Register User.

	Start the Northwind.SignalR.Client.Console project.

	Enter your name and the groups Sales,Admins.

	Arrange the browser and console app windows so that you can see both simultaneously.

	In Alice's browser, in To, enter Sales, in Body, enter Go team!, click Send Message, and note that Alice and you receive the message, as shown in Figure 13.6:

[image: Figure 13.6: Alice sends messages to different types of recipient]Figure 13.6: Alice sends messages to different types of recipient

	In the console app, press Enter to stop it.

	Close Chrome and shut down the web server.

Understanding Azure SignalR Service

Earlier I mentioned that it would be good practice to separate the SignalR service hosting project from the web project that uses the JavaScript library to act as a client. This is because a SignalR service potentially needs to handle lots of simultaneous client requests and respond quickly to them all.

Once you separate the SignalR hosting, you can take advantage of Azure SignalR Service. This offers global reach, a world-class data center and network, and it scales to millions of connections while meeting SLAs like providing compliance and high security.

You can learn more about Azure SignalR Service at the following link:

https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 13.1 – Test your knowledge

Answer the following questions:

	What transports does SignalR use, and which is the default?

	What is a good practice for RPC method signature design?

	What tool can you use to download the SignalR JavaScript library?

	What happens if you send a SignalR message to client with a connection id that does not exist?

	What are the benefits of separating a SignalR service from other ASP.NET Core components?

Exercise 13.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-13---broadcasting-realtime-communication-using-signalr

Summary

In this chapter, you learned how to implement chat functionality using SignalR.

In the next chapter, you will learn about Azure Functions that integrates nicely with Azure SignalR Service.

14 Building Serverless Services Using Azure Functions

Join our book community on Discord

https://packt.link/EarlyAccess

In this chapter, you will be introduced to Azure Functions that can be configured to only require server-side resources while they execute. They execute when they are triggered by an activity like a message sent to a queue, a file uploaded to storage, or at a regularly scheduled interval.

This chapter will cover the following topics:

	Understanding Azure Functions

	Building an Azure Functions project

	Building functions that respond to resource triggers

	Publishing an Azure Functions project to the cloud

	Cleaning up Azure Functions resources

Understanding Azure Functions

Azure Functions is an event-driven serverless compute platform. You can build and debug locally and later deploy to Microsoft Azure cloud. Azure Functions can be implemented in many languages, not just C# and .NET. It has extensions for Visual Studio 2022 and Visual Studio Code and a command line tool.

But first, you might be wondering, "How is it possible to have a service without a server?"

Serverless does not literally mean there is no server. What serverless means is a service without a permanently running server, and usually that means not running for most of the time or running with low resources and scaling up dynamically when needed. This can save a lot of cost.

For example, organizations often have business functions that only need to run once per hour, once per month, or on an ad hoc basis. Perhaps the organization prints checks (cheques in England) to pay its employees at the end of the month. Those checks might need the salary amounts converted to words to print on the check. A function to convert numbers to words could be implemented as a serverless service. For a content management system, editors might upload new images, and those images might need to be processed in various ways, like generating thumbnails and other optimizations. This work can be added to a queue or an Azure Function triggered when the file is uploaded to BLOB storage.

Azure Functions can be much more than just a single function. They support complex, stateful, workflows and event-driven solutions using Durable Functions.

I do not cover Durable Functions in this book so if you are interested then you can learn more about them at the following link: https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp

Azure Functions has a programming model based on triggers and bindings that enable your serverless service to respond to events and connect to other services like data stores.

Understanding Azure Functions triggers and bindings

Triggers and bindings are key concepts for Azure Functions.

Triggers are what cause a function to execute. Each function must have one and only one trigger. The most common triggers are shown in the following list:

	HTTP: this trigger responds to an incoming HTTP request, typically a GET or POST.

	SignalR: this trigger responds to messages sent from the Azure SignalR Service.

	Cosmos DB: this trigger uses the Cosmos DB Change Feed to listen for inserts and updates.

	Timer: this trigger responds to a scheduled time occurring. It does not retry if a function fails. The function is not called again until the next time on the schedule.

	Queue: this trigger responds to a message arriving in a queue ready for processing.

	Blob storage: this trigger responds to a new or updated binary large object (BLOB).

	Event Grid: this trigger responds when a predefined event occurs.

Bindings allow functions to have inputs and outputs. Each function can have zero, one, or more bindings. Some common bindings, as shown in the following list:

	Blob storage: read or write to any file stored as a BLOB.

	Cosmos DB: read or write documents to a cloud-scale data store.

	SignalR: receive or make remote method calls.

	Queue: write a message to a queue or read a message from a queue.

	SendGrid: send an email message.

	Twilio: send an SMS message.

	IoT hub: write to an Internet-connected device.

You can see the full list of supported triggers and bindings at the following link: https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp#supported-bindings

Triggers and bindings are configured differently for different languages. For C# and Java, you decorate methods and parameters with attributes. For the other languages, you configure a file named function.json.

Understanding NCRONTAB expressions

The Timer trigger uses NCRONTAB expressions to define the frequency of the timer. The default time zone is Coordinated Universal Time (UTC) but this can be overridden.

If you are hosting in an App Service Plan then you can alternatively use a TimeSpan but I recommend learning NCRONTAB expressions for flexibility.

An NCRONTAB expression consists of five (if seconds are not given) or six parts:

* * * * * *
- - - - - -
| | | | | |
| | | | | +--- day of week (0 - 6) (Sunday=0)
| | | | +----- month (1 - 12)
| | | +------- day of month (1 - 31)
| | +--------- hour (0 - 23)
| +----------- min (0 - 59)
+------------- sec (0 - 59)

A star * in the value field above means all legal values as in parentheses for that column. You can specify ranges using a hyphen.

The following table shows some examples:

	Expression
	Description

	0 5 * * * *
	Once every hour of the day at minute 5 of each hour.

	0 0,15,30,45 * * * *
	Four times an hour – at minutes 0, 15, 30, and 45 during every hour.

	*/2 * * * * *
	Every 30 seconds aka every half minute.

	0,30 * * * * *
	At 0 and 30 seconds every minute.

	0 30 9-16 * * *
	Eight times a day – at hours 9:30am, 10:30am, and so on up to 4:30pm.

	0 */5 * * * *
	12 times an hour – at second 0 of every 5th minute of every hour.

	0 0 */4 * * *
	6 times a day – at minute 0 of every 4th hour of every day.

	0 30 9 * * *
	9:30 AM every day.

	0 30 9 * * 1-5
	9:30 AM every workday.

	0 30 9 * * Mon-Fri
	9:30 AM every workday.

	0 30 9 * Jan Mon
	9:30 AM every Monday in January.

The NCRONTAB library is only for parsing expressions. It is not itself a scheduler. You can learn more about it in the GitHub repository at the following link: https://github.com/atifaziz/NCrontab

Understanding Azure Functions versions and languages

Azure Functions currently support four versions of the runtime host and multiple languages, as shown in the following table:

	Language
	v1
	v2
	v3
	v4

	C#, F#
	.NET Framework 4.8
	.NET Core 2.1
	.NET Core 3.1, .NET 5.0 2
	.NET 7.0 2 , .NET 6.0 3 , .NET Framework 4.8 4

	JavaScript 1
	Node 6
	Node 8, 10
	Node 10, 12, 14
	Node 14, 16

	Java
	-
	Java 8
	Java 8, 11
	Java 8, 11

	PowerShell
	-
	PowerShell Core 6
	PowerShell 7, Core 6
	PowerShell 7

	Python
	-
	Python 3.6, 3.7
	Python 3.6, 3.7, 3.8, 3.9
	Python 3.7, 3.8, 3.9

1 Azure Functions supports the TypeScript language via transpiling (transforming/compiling) to JavaScript.

2 .NET 5.0 and .NET 7.0 are only supported in the isolated hosting model because they are Current releases.

3 .NET 6.0 supports both isolated and in-process hosting models because it is a Long Term Support release. When .NET 8.0 LTS releases in November 2023 it will also support both hosting models. By then there might be an Azure Functions v5.

4 Support for .NET Framework 4.8 with v4 is in preview.

Good Practice: Microsoft recommends using v4 for functions in all languages. v1 and v2 are in maintenance mode and should be avoided.

In this book, we will only look at implementing Azure Functions v4 and only using C# and .NET 6.0 so that we can use the in-process hosting model and get Long Term Support.

Understanding Azure Functions hosting models

Azure Functions have two hosting models, in-process and isolated, as described in the following list:

	In-process: your function is implemented in a class library that runs in the same process as the host. Your functions are required to run on the same version of .NET as the Azure Functions runtime and be LTS releases. The latest LTS release is .NET 6.

	Isolated: your function is implemented in a console app that runs in its own process. Your function can therefore execute on Current releases like .NET 7.0 that are not supported by the Azure Functions runtime that only allows LTS releases in-process.

Azure Functions only natively support one LTS version of .NET per version. For example, for Azure Functions v3, your function must use .NET Core 3.1 to use the in-process hosting model. For Azure Functions v4, your function must use .NET 6.0 to use the in-process hosting model. If you create an isolated function, then you can choose any .NET version.

Good Practice: For the best performance and scalability, use the in-process hosting model.

Understanding Azure Functions hosting plans

After testing locally, you must deploy your Azure Functions project to an Azure hosting plan. There are three Azure Functions plans to choose from, as described in the following list:

	Consumption: In this plan, host instances are dynamically added and removed based on activity. This plan is the closest to serverless. It scales automatically during periods of high load. The cost is only for compute resources when your functions are running. You can configure a timeout for function execution times to ensure your functions do not run forever.

	Premium: This plan supports elastic scaling up and down, perpetually warm instances to avoid cold starts, unlimited execution duration, multicore instance sizes up to four cores, potentially more predictable costs, and high-density app allocation for multiple Azure Functions projects. The cost is based on the number of core seconds and memory allocated across instances. At least one instance must be allocated at all times so there will always be a minimum monthly cost per active plan even if it never executes that month.

	Dedicated: Executes in the cloud-equivalent of a server farm. Hosting is provided by an Azure App Service plan that controls the allocated server resources. Azure App Service plans include Basic, Standard, Premium, and Isolated. This plan can be an especially good choice if you already have an App Service plan used for other projects like ASP.NET Core MVC websites, gRPC, OData, and GraphQL services, and so on. The cost is only for the App Service plan. You can host as many Azure Functions and other web apps in it as you like.

Warning! Premium and Dedicated plans both run on Azure App Service plans. You must carefully select the correct App Service plan that works with your Azure Functions hosting plan. For example, for Premium, you should choose an Elastic Premium plan like EP1. If you choose an App Service plan like P1V1 then you are choosing a dedicated plan that will not elastically scale!

You can read more about your choices at the following link: https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Understanding the Azure Storage requirement

Azure Functions requires an Azure Storage account for storing information for some bindings and triggers. These storage services can also be used by your code for its implementation:

	Azure Files: Stores and runs your function app code in a Consumption or Premium plan.

	Azure Blob storage: Stores state for bindings and function keys.

	Azure Queue storage: Used for failure and retry handling by some triggers.

	Azure Table storage: Task hubs in Durable Functions use Blob, Queue, and Table storage.

Understanding and installing Azurite

Azurite is an open source local environment for testing Azure Functions with its related Blob, Queue, and Table storage. Azurite is cross-platform on Windows, Linux, and macOS. Azurite supersedes the older Azure Storage Emulator.

To install Azurite:

	For Visual Studio 2022, Azurite is included.

	For Visual Studio Code, search for and install the Azurite extension.

	For installation at the command line, you must have Node.js version 8.0 or later installed and then you can enter the following command: npm install -g azurite

Once you have locally tested an Azure Function, you can switch to an Azure Storage account in the cloud.

You can learn more about Azurite at the following link: https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite

Understanding Azure Functions authorization levels

Azure Functions have three authorization levels that control if an API key is required:

	Anonymous: no API key is required.

	Function: a function-level key is required.

	Admin: the master key is required.

API keys are available through the Azure portal.

Understanding Azure Functions support for dependency injection

Dependency injection in Azure Functions is built on the standard .NET dependency injection features but there are implementation differences depending on your chosen host model.

To register dependency services, create a class that inherits from the FunctionsStartup class and override its Configure method. Add the [FunctionsStartup] assembly attribute to specify the class name registered for startup. Add services to the IFunctionsHostBuilder instance passed to the method.

Normally, the class that implements an Azure Functions function would be static with a static method. Use of constructor injection means that you must use instance classes for injected services and for your function class implementation.

Installing Azure Functions Core Tools

Azure Functions Core Tools provides the core runtime and templates for creating functions, which enable local development on Windows, macOS, and Linux using any code editor.

Azure Functions Core Tools are included in the Azure development workload of Visual Studio 2022 so you might already have them installed.

You can install the latest version of Azure Functions Core Tools from the following link:

https://www.npmjs.com/package/azure-functions-core-tools

The page above has instructions for installing using MSI and winget on Windows, Homebrew on Mac, npm on any operating system, and common Linux distributions.

Building an Azure Functions project

Now, we can create an Azure Functions project. Although they can be created in the cloud using the Azure portal, developers will have a better experience creating and running them locally first. You can then deploy to the cloud once you have tested your function on your own computer.

Each code editor has a slightly different experience to get started with an Azure Functions project so let's have a look at each in turn, starting with Visual Studio 2022.

Using Visual Studio 2022

If you prefer to use Visual Studio 2022, here are the steps to create an Azure Functions project:

	In Visual Studio 2022, create a new project, as defined in the following list:

	Project template: Azure Functions

	Workspace/solution file and folder: Chapter14

	Project file and folder: Northwind.AzureFuncs.Service

	In Visual Studio 2022, choose options as shown in the following list and in Figure 14.1:

	Functions worker: .NET 6.

	Function: Http trigger.

	Select Use Azurite for runtime storage account (AzureWebJobsStorage).

	Clear Enable Docker.

	Authorization level: Anonymous.

[image: Figure 14.1: Choosing options for your Azure Function project in Visual Studio 2022]Figure 14.1: Choosing options for your Azure Function project in Visual Studio 2022

	Click Create.

Using Visual Studio Code

If you prefer to use Visual Studio Code, here are the steps to create an Azure Functions project:

	In Visual Studio Code, navigate to Extensions and search for Azure Functions (ms-azuretools.vscode-azurefunctions). It has dependencies on two other extensions: Azure Account (ms-vscode.azure-account) and Azure Resources (ms-azuretools.vscode-azureresourcegroups), so those will be installed too.

	Create a Chapter14 folder and save a workspace as Chapter14.code-workspace in it.

If you followed the instructions for Visual Studio 2022, then you will already have a Chapter14 folder. Create one named Chapter14-vscode instead so that you can compare both ways if you like.

	Create a subfolder named Northwind.AzureFunctions.Service and add it to the Chapter14 workspace.

	Close the Chapter14 workspace because the next few steps only work outside a workspace.

	In Visual Studio Code, open the Northwind.AzureFunctions.Service folder.

	Navigate to View | Command Palette, and type azure f, as shown in Figure 14.2:

[image: Figure 14.2: Using Visual Studio Code's Command Palette to select an Azure Functions command]Figure 14.2: Using Visual Studio Code's Command Palette to select an Azure Functions command

	In the list of Azure Functions command, click Azure Functions: Create New Project…, and then select the Northwind.AzureFunctions.Service folder, as shown in Figure 14.3:

[image: Figure 14.3: Selecting the folder for your Azure Functions project]Figure 14.3: Selecting the folder for your Azure Functions project

	At the prompts, select the following:

	Select a language: C#

	Select a .NET runtime: .NET 6, as shown in Figure 14.4:

[image: Figure 14.4: Selecting the target .NET runtime for your Azure Functions project]Figure 14.4: Selecting the target .NET runtime for your Azure Functions project

	Select a template for your project's first function: HTTP trigger.

[image: Figure 14.5: Selecting a trigger for the Azure Functions first function]Figure 14.5: Selecting a trigger for the Azure Functions first function

	Provide a function name: NumbersToWordsFunction.

	Provide a namespace: Northwind.AzureFunctions.Service.

	Select the authorization level: Anonymous.

	In the Visual Studio Code File menu, close the folder.

	Open the Chapter14 workspace.

	Navigate to Terminal | New Terminal.

	At the command prompt, build the project, as shown in the following command

dotnet build

Using the func CLI

If you prefer to use the command-line and some other code editor, here are the steps to create and start an Azure Functions project:

	Create a Chapter14 folder with a subfolder named Northwind.AzureFunctions.Service.

If you followed the instructions for Visual Studio 2022, then you will already have a Chapter14 folder. Create one named Chapter14-cli instead so that you can compare both ways if you like.

	In command prompt or terminal, in the Northwind.AzureFunctions.Service folder, create a new Azure Functions project using C#, as shown in the following command:

func init --csharp

	In command prompt or terminal, in the Northwind.AzureFunctions.Service folder, create a new Azure Functions function using HTTP trigger that can be called anonymously, as shown in the following command:

func new --name NumbersToWordsFunction --template "HTTP trigger" --authlevel "anonymous"

	Optionally, you can start the function locally, as shown in the following command:

func start

Reviewing the Azure Functions project

Before we write a function, let's review what makes an Azure Functions project:

	Open the project file, and note the Azure Functions version and the package references needed to implement an Azure Function that responds to HTTP requests, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <AzureFunctionsVersion>v4</AzureFunctionsVersion>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Sdk.Functions"
 Version="3.0.13" />
 </ItemGroup>
 <ItemGroup>
 <None Update="host.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Update="local.settings.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 <CopyToPublishDirectory>Never</CopyToPublishDirectory>
 </None>
 </ItemGroup>
</Project>

	In host.json, note that logging to Application Insights is enabled but excludes Request types, as shown in the following markup:

{
 "version": "2.0",
 "logging": {
 "applicationInsights": {
 "samplingSettings": {
 "isEnabled": true,
 "excludedTypes": "Request"
 }
 }
 }
}

Application Insights is Azure's monitoring and logging service. We will not be using it in this chapter.

	In local.settings.json, note that during local development your project will use local development storage and an in-process hosting model, as shown in the following markup:

{
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "UseDevelopmentStorage=true",
 "FUNCTIONS_WORKER_RUNTIME": "dotnet"
 }
}

FUNCTIONS_WORKER_RUNTIME is the language being used by your project. dotnet means a .NET class library. dotnet-isolated would mean a .NET console app. Other values include java, node, powershell and python.

Implementing a simple function

We will write a function to convert numbers into words.

Our implementation is borrowed from Convert A Number into Words by Richard Carr, published at the following link: http://www.blackwasp.co.uk/numbertowords.aspx

Let's implement the function to convert numbers into words:

	Add a new class file named NumbersToWords.cs.

	To save typing almost 200 lines of code, copy the code for this class from the following link: https://github.com/markjprice/apps-services-net7/blob/main/vs4win/Chapter14/Northwind.AzureFunctions.Service/NumbersToWords.cs

	If you are using Visual Studio 2022, in the Northwind.AzureFunctions.Service project, right-click Function1.cs and rename it to NumbersToWordsFunction.cs.

	In NumbersToWordsFunction.cs, modify the contents to implement an Azure Function to convert an amount as a number into words, as shown in the following code:

// IActionResult, OkObjectResult, BadRequestObjectResult
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs; // [FunctionName], [HttpTrigger]
using Microsoft.Azure.WebJobs.Extensions.Http; // AuthorizationLevel
using Microsoft.AspNetCore.Http; // HttpRequest
using Microsoft.Extensions.Logging; // ILogger
using System.Numerics; // BigInteger
using Packt.Shared; // ToWords extension method
using System.Threading.Tasks; // Task<T>
namespace Northwind.AzureFunctions.Service;
public static class NumbersToWordsFunction
{
 [FunctionName(nameof(NumbersToWordsFunction))]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous,
 "get", "post", Route = null)] HttpRequest req,
 ILogger log)
 {
 log.LogInformation($"C# HTTP trigger function processed a request.");
 string amount = req.Query["amount"];
 if (BigInteger.TryParse(amount, out BigInteger number))
 {
 return await Task.FromResult(new OkObjectResult(number.ToWords()));
 }
 else
 {
 return new BadRequestObjectResult($"Failed to parse: {amount}");
 }
 }
}

Testing a simple function

Now we can test the function in our local development environment:

	Start the Northwind.AzureFunctions.Service project.

	If you are using Visual Studio Code, you will need to navigate to the Run and Debug pane, make sure that Attach to .NET Functions is selected, and then click the Run button.

	On Windows, if you see a Windows Security Alert from Windows Defender Firewall, then click Allow access.

	Note that Azure Functions Core Tools hosts your function, by default on port 7071, as shown in the following output and in Figure 14.6:

Azure Functions Core Tools
Core Tools Version: 4.0.4544 Commit hash: 44e84987044afc45f0390191bd5d70680a1c544e (64-bit)
Function Runtime Version: 4.3.2.18186
[2022-06-03T11:27:13.041Z] Found C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\Northwind.AzureFunctions.Service.csproj. Using for user secrets file configuration.
Functions:
 NumbersToWordsFunction: [GET,POST] http://localhost:7071/api/NumbersToWordsFunction
For detailed output, run func with --verbose flag.
[2022-06-03T11:27:21.937Z] Host lock lease acquired by instance ID '00000000000000000000000011150C3D'.

[image: Figure 14.6: Azure Functions Core Tools hosting a function]Figure 14.6: Azure Functions Core Tools hosting a function

	Select the URL for your function and copy it to the clipboard.

	Start Chrome.

	Paste the URL into the address box, append the query string: ?amount=123456, and note the successful response, as shown in Figure 14.7:

[image: Figure 14.7: A successful call to the Azure Function running locally]Figure 14.7: A successful call to the Azure Function running locally

	In the command prompt or terminal, note the function was called successfully, as shown in the following output:

[2022-06-03T11:32:51.574Z] Executing 'NumbersToWordsFunction' (Reason='This function was programmatically called via the host APIs.', Id=234d3122-ff3d-4896-94b3-db3c8b5013d8)
[2022-06-03T11:32:51.603Z] C# HTTP trigger function processed a request.
[2022-06-03T11:32:51.629Z] Executed 'NumbersToWordsFunction' (Succeeded, Id=234d3122-ff3d-4896-94b3-db3c8b5013d8, Duration=96ms)

	Try calling the function without an amount in the query string, or a non-integer value for the amount, and note the function returns a 400 status code indicating a bad request, as shown in Figure 14.8:

[image: Figure 14.8: A bad request to the Azure Function running locally]Figure 14.8: A bad request to the Azure Function running locally

	Close Chrome and shut down the web server (or in Visual Studio Code stop debugging).

Responding to timer and resource triggers

Now that you have seen an Azure Functions function that responds to an HTTP request, let's build some that respond to other types of triggers.

Support for HTTP and timer triggers is built in. Support for other bindings are implemented as extension packages.

Implementing a Timer triggered function

First, we will make a function that runs every hour and requests a page from Amazon.com for the sixth edition of my book, C# 10 and .NET 6 – Modern Cross-Platform Development, so that I can keep track of its Best Sellers Rank in the United States.

The function will need to make HTTP GET requests so we should inject the HTTP client factory. To do that we will need to add some extra package references and create a special startup class:

	In the Northwind.AzureFuncs.Service project, add package references for working with Azure Functions extensions, HTTP extensions, and update the version of the Microsoft.NET.Sdk.Functions package reference to the latest, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.Azure.Functions.Extensions"
 Version="1.1.0" />
 <PackageReference Include="Microsoft.Extensions.Http" Version="6.0.0" />
 <PackageReference Include="Microsoft.NET.Sdk.Functions"
 Version="4.1.1" />
</ItemGroup>

	In the Northwind.AzureFuncs.Service project, add a class file named AzureFunctionsStartup.cs.

	Modify its contents, as shown in the following code:

// [FunctionsStartup], FunctionsStartup, IFunctionsHostBuilder
using Microsoft.Azure.Functions.Extensions.DependencyInjection;
// AddHttpClient extension method
using Microsoft.Extensions.DependencyInjection;
// MediaTypeWithQualityHeaderValue
using System.Net.Http.Headers;
[assembly: FunctionsStartup(typeof(
 Northwind.AzureFunctions.Service.AzureFunctionsStartup))]
namespace Northwind.AzureFunctions.Service;
public class AzureFunctionsStartup : FunctionsStartup
{
 public override void Configure(IFunctionsHostBuilder builder)
 {
 builder.Services.AddHttpClient(name: "Amazon",
 configureClient: options =>
 {
 options.BaseAddress = new System.Uri("https://www.amazon.com");
 // pretend to be Chrome in US English
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("text/html"));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/xhtml+xml"));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/xml", 0.9));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("image/avif"));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("image/webp"));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("image/apng"));
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("*/*", 0.8));

 options.DefaultRequestHeaders.AcceptLanguage.Add(
 new StringWithQualityHeaderValue("en-US"));
 options.DefaultRequestHeaders.AcceptLanguage.Add(
 new StringWithQualityHeaderValue("en-GB",0.9));
 options.DefaultRequestHeaders.AcceptLanguage.Add(
 new StringWithQualityHeaderValue("en",0.8));
 options.DefaultRequestHeaders.UserAgent.Add(
 new(productName: "Chrome", productVersion: "102.0.0.0"));
 });
 }
}

	Add a class file named ScrapeAmazonFunction.cs.

	Modify its contents, as shown in the following code:

using Microsoft.Azure.WebJobs; // [FunctionName], [TimerTrigger]
using Microsoft.Extensions.Logging; // ILogger
using System.IO; // Stream, StreamReader
using System.IO.Compression; // GZipStream, CompressionMode
using System.Net.Http; // IHttpClientFactory, HttpClient
using System.Threading.Tasks; // Task<T>
namespace Northwind.AzureFunctions.Service;
public class ScrapeAmazonFunction
{
 private const string relativePath =
 "10-NET-Cross-Platform-Development-websites/dp/1801077363/";
 private readonly IHttpClientFactory clientFactory;
 public ScrapeAmazonFunction(IHttpClientFactory clientFactory)
 {
 this.clientFactory = clientFactory;
 }
 [FunctionName(nameof(ScrapeAmazonFunction))]
 public async Task Run(// every hour
 [TimerTrigger("0 0 * * * *")] TimerInfo timer,
 ILogger log)
 {
 log.LogInformation("C# Timer trigger function executed at {0}.",
 System.DateTime.UtcNow);
 log.LogInformation(
 "C# Timer trigger function next three occurrences at: " +
 $"{timer.FormatNextOccurrences(3, System.DateTime.UtcNow)}.");
 HttpClient client = clientFactory.CreateClient("Amazon");
 HttpResponseMessage response = await client.GetAsync(relativePath);
 log.LogInformation($"Request: GET {client.BaseAddress}{relativePath}");
 if (response.IsSuccessStatusCode)
 {
 log.LogInformation($"Successful HTTP request.");
 // read the content from a GZIP stream into a string
 Stream stream = await response.Content.ReadAsStreamAsync();
 GZipStream gzipStream = new(stream, CompressionMode.Decompress);
 StreamReader reader = new(gzipStream);
 string page = reader.ReadToEnd();
 // extract the Best Sellers Rank
 int posBsr = page.IndexOf("Best Sellers Rank");
 string bsrSection = page.Substring(posBsr, 45);
 // bsrSection will be something like:
 // "Best Sellers Rank: #22,258 in Books ("
 // get the position of the # and the following space
 int posHash = bsrSection.IndexOf("#") + 1;
 int posSpaceAfterHash = bsrSection.IndexOf(" ", posHash);
 // get the BSR number as text
 string bsr = bsrSection.Substring(
 posHash, posSpaceAfterHash - posHash);
 bsr = bsr.Replace(",", null); // remove commas
 // parse the text into a number
 if (int.TryParse(bsr, out int bestSellersRank))
 {
 log.LogInformation($"Best Sellers Rank #{bestSellersRank:N0}.");
 }
 else
 {
 log.LogError($"Failed to extract BSR number from: {bsrSection}.");
 }
 }
 else
 {
 log.LogError($"Bad HTTP request.");
 }
 }
}

Testing the Timer triggered function

Information about a function can be retrieved by making an HTTP GET request in the following format:

http://locahost:7071/admin/functions/<functionname>

Now we can test the Timer function in our local development environment:

	Start the Northwind.AzureFunctions.Service project.

	If you are using Visual Studio Code, you will need to navigate to the Run and Debug pane, make sure that Attach to .NET Functions is selected, and then click the Run button.

	Note there are now two functions, as shown in the following partial output:

Functions:
 NumbersToWordsFunction: [GET,POST] http://localhost:7071/api/NumbersToWordsFunction
 ScrapeAmazonFunction: timerTrigger

	Start Visual Studio Code.

	Open the RestClientTests folder.

	Add a new file named azurefunctions-scrapeamazon.http.

	Modify its contents, as shown in the following code:

Get information about the NumbersToWordsFunction function
GET http://localhost:7071/admin/functions/NumbersToWordsFunction
Get information about the ScrapeAmazonFunction function
GET http://localhost:7071/admin/functions/ScrapeAmazonFunction

	Send the first request and note that a JSON document is returned with information about the NumbersToWordsFunction function, as shown in the following response:

HTTP/1.1 200 OK
Content-Length: 918
Connection: close
Content-Type: application/json; charset=utf-8
Date: Sat, 04 Jun 2022 13:32:11 GMT
Server: Kestrel
{
 "name": "NumbersToWordsFunction",
 "script_root_path_href": "http://localhost:7071/admin/vfs/NumbersToWordsFunction/",
 "script_href": "http://localhost:7071/admin/vfs/bin/Northwind.AzureFunctions.Service.dll",
 "config_href": "http://localhost:7071/admin/vfs/NumbersToWordsFunction/function.json",
 "test_data_href": null,
 "href": "http://localhost:7071/admin/functions/NumbersToWordsFunction",
 "invoke_url_template": "http://localhost:7071/api/numberstowordsfunction",
 "language": "DotNetAssembly",
 "config": {
 "generatedBy": "Microsoft.NET.Sdk.Functions.Generator-4.1.1",
 "configurationSource": "attributes",
 "bindings": [
 {
 "type": "httpTrigger",
 "methods": [
 "get",
 "post"
],
 "authLevel": "anonymous",
 "name": "req"
 }
],
 "disabled": false,
 "scriptFile": "../bin/Northwind.AzureFunctions.Service.dll",
 "entryPoint": "Northwind.AzureFunctions.Service.NumbersToWordsFunction.Run"
 },
 "files": null,
 "test_data": null,
 "isDisabled": false,
 "isDirect": true,
 "isProxy": false
}

	Send the second request and note that a JSON document is returned with information about the ScrapeAmazonFunction function. The most interesting for this function are the type and schedule, as shown in the following partial response:

"bindings": [
 {
 "type": "timerTrigger",
 "schedule": "0 0 * * * *",
 "useMonitor": true,
 "runOnStartup": false,
 "name": "timer"
 }
],

	Add a third request that will trigger the timer function manually without having to wait for the hour mark by POSTing an empty JSON document to its admin endpoint, as shown in the following code:

Make a manual request to the Timer function
POST http://localhost:7071/admin/functions/ScrapeAmazonFunction
Content-Type: application/json
{}

	Send the third request and note that it was successfully accepted, as shown in the following response:

HTTP/1.1 202 Accepted
Content-Length: 0
Connection: close
Date: Sat, 04 Jun 2022 13:42:57 GMT
Server: Kestrel

	Remove the {} in the body of the request, send it again, and note an empty JSON document is required, as shown in the following response:

HTTP/1.1 400 Bad Request
Content-Length: 0
Connection: close
Date: Sat, 04 Jun 2022 14:03:42 GMT
Server: Kestrel

	Add the empty JSON document back.

	At the command line or terminal, note the function was triggered by our call, it output the time it was triggered (1:42pm) and the times of its next three occurrences in its normal schedule (2pm, 3pm, and 4pm, all in the UTC time zone) if I were to leave the service running, as shown in the following output:

[2022-06-04T13:42:58.471Z] Executing 'ScrapeAmazonFunction' (Reason='This function was programmatically called via the host APIs.', Id=2b2bc297-1870-4ee7-a289-beb0910c54db)
[2022-06-04T13:42:58.473Z] C# Timer trigger function executed at 06/04/2022 13:42:58.
[2022-06-04T13:42:58.474Z] C# Timer trigger function next three occurrences at: 06/04/2022 14:00:00Z (06/04/2022 14:00:00Z)
[2022-06-04T13:42:58.475Z] 06/04/2022 15:00:00Z (06/04/2022 15:00:00Z)
[2022-06-04T13:42:58.476Z] 06/04/2022 16:00:00Z (06/04/2022 16:00:00Z)
[2022-06-04T13:42:58.478Z] .
[2022-06-04T13:43:00.133Z] Request: GET https://www.amazon.com/10-NET-Cross-Platform-Development-websites/dp/1801077363/
[2022-06-04T13:43:00.137Z] Successful HTTP request.
[2022-06-04T13:43:00.185Z] Best Sellers Rank #22,258.
[2022-06-04T13:43:00.187Z] Executed 'ScrapeAmazonFunction' (Succeeded, Id=2b2bc297-1870-4ee7-a289-beb0910c54db, Duration=1726ms)

	Optionally, wait until the hour mark and note the next occurrence triggers, as shown in the following output:

[2022-06-04T14:00:00.005Z] Executing 'ScrapeAmazonFunction' (Reason='Timer fired at 2022-06-04T15:00:00.0043305+01:00', Id=2d3d3233-5a51-4e20-b9e6-2462b0058593)
[2022-06-04T14:00:00.008Z] C# Timer trigger function executed at 06/04/2022 14:00:00.
[2022-06-04T14:00:00.011Z] C# Timer trigger function next three occurrences at: 06/04/2022 15:00:00Z (06/04/2022 15:00:00Z)
[2022-06-04T14:00:00.013Z] 06/04/2022 16:00:00Z (06/04/2022 16:00:00Z)
[2022-06-04T14:00:00.014Z] 06/04/2022 17:00:00Z (06/04/2022 17:00:00Z)
[2022-06-04T14:00:00.016Z] .
[2022-06-04T14:00:01.835Z] Request: GET https://www.amazon.com/10-NET-Cross-Platform-Development-websites/dp/1801077363/
[2022-06-04T14:00:01.836Z] Successful HTTP request.
[2022-06-04T14:00:01.868Z] Best Sellers Rank #22,258.
[2022-06-04T14:00:01.872Z] Executed 'ScrapeAmazonFunction' (Succeeded, Id=2d3d3233-5a51-4e20-b9e6-2462b0058593, Duration=1867ms)

	If I were to stop the service running, wait for more than an hour, and then start the service, it would immediately run the function because it is past due, as shown highlighted in the following output:

[2022-06-04T16:19:31.367Z] Executing 'ScrapeAmazonFunction' (Reason='Timer fired at 2022-06-04T17:19:31.3297218+01:00', Id=8adb3675-d677-4a7b-9a77-e0fb1c3e0fee)
[2022-06-04T16:19:31.369Z] Trigger Details: UnscheduledInvocationReason: IsPastDue, OriginalSchedule: 2022-06-04T16:00:00.0000000+01:00
[2022-06-04T16:19:31.383Z] C# Timer trigger function executed at 06/04/2022 16:19:31.
[2022-06-04T16:19:31.384Z] C# Timer trigger function next three occurrences at: 06/04/2022 17:00:00Z (06/04/2022 17:00:00Z)
[2022-06-04T16:19:31.385Z] 06/04/2022 18:00:00Z (06/04/2022 18:00:00Z)
[2022-06-04T16:19:31.386Z] 06/04/2022 19:00:00Z (06/04/2022 19:00:00Z)
[2022-06-04T16:19:31.387Z] .
[2022-06-04T16:19:33.694Z] Request: GET https://www.amazon.com/10-NET-Cross-Platform-Development-websites/dp/1801077363/
[2022-06-04T16:19:33.698Z] Successful HTTP request.
[2022-06-04T16:19:33.720Z] Best Sellers Rank #24,412.
[2022-06-04T16:19:33.732Z] Executed 'ScrapeAmazonFunction' (Succeeded, Id=8adb3675-d677-4a7b-9a77-e0fb1c3e0fee, Duration=2394ms)

	Stop the service.

Implementing a function that works with queues and blobs

The HTTP triggered function responded directly to the GET request with plain text. We will now extend that function to bind to Queues storage and add a message to a queue to indicate that an image needs to be generated and uploaded to Blobs storage. This can then be printed as a check.

When running the service locally, we want to generate the image of the check blob in the local filesystem to make it easier to ensure it is working correctly. We will set a custom environment variable only in local settings to detect that condition.

We need a font that looks like handwriting. Google has a useful website where you can search for, preview, and download fonts. The one we will use is Caveat, as shown at the following link:

https://fonts.google.com/specimen/Caveat?category=Handwriting&preview.text=one%20hundred%20and%20twenty%20three%20thousand,%20four%20hundred%20and%20fifty%20six&preview.text_type=custom#standard-styles

Let's go:

	Download the font at the link above, extract the ZIP file, and copy the files into a folder named fonts, as shown in Figure 14.9:

[image: Figure 14.9: The fonts folder with the Caveat font files.]Figure 14.9: The fonts folder with the Caveat font files.

	Select the Caveat-Regular.ttf font file.

	In Properties, set Copy to Output Directory to Copy always, as shown in Figure 14.9.

	In the Northwind.AzureFuncs.Service project, add package references for working with Azure Storage extensions and drawing with ImageSharp, as shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.Azure.Functions.Extensions"
 Version="1.1.0" />
 <PackageReference Include="Microsoft.Azure.WebJobs.Extensions.Storage"
 Version="5.0.1" />
 <PackageReference Include="SixLabors.ImageSharp" Version="2.1.2" />
 <PackageReference Include="SixLabors.ImageSharp.Drawing"
 Version="1.0.0-beta14" />
 <PackageReference Include="Microsoft.Extensions.Http" Version="6.0.0" />
 <PackageReference Include="Microsoft.NET.Sdk.Functions"
 Version="4.1.1" />
</ItemGroup>

The Microsoft.Azure.WebJobs.Extensions.Storage package references the packages for Blobs and Queues storage. If you also need Tables storage, then add a reference to Microsoft.Azure.WebJobs.Extensions.Tables.

	In the Northwind.AzureFuncs.Service project, in NumbersToWordsFunction.cs, decorate the class to specify the name of the storage account, as shown highlighted in the following code:

[StorageAccount("AzureWebJobsStorage")]
public static class NumbersToWordsFunction
{

	In NumbersToWordsFunction.cs, add a statement to register the function with an output binding for queue storage so that it can write to a named queue, as shown highlighted in the following code:

public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous,
 "get", "post", Route = null)] HttpRequest req,
 [Queue("checksQueue")] ICollector<string> collector,
 ILogger log)
{

	In NumbersToWordsFunction.cs, modify the statements that run when the amount is successfully parsed to add the words to the queue as well as return it as an HTTP response, as shown highlighted in the following code:

if (BigInteger.TryParse(amount, out BigInteger number))
{
 string words = number.ToWords();
 collector.Add(words);
 return await Task.FromResult(new OkObjectResult(words));
}
else
{
 return new BadRequestObjectResult($"Failed to parse: {amount}");
}

	In local.settings.json, add an environment variable named IS_LOCAL with a value of true, as shown highlighted in the following configuration:

{
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "UseDevelopmentStorage=true",
 "FUNCTIONS_WORKER_RUNTIME": "dotnet",
 "IS_LOCAL": true
 }
}

	Add a class file named CheckGeneratorFunction.cs.

	Modify its contents, as shown in the following code:

using Azure.Storage.Blobs; // BlobContainerClient
using Azure.Storage.Blobs.Models; // BlobContainerInfo
using Azure.Storage.Queues.Models; // QueueMessage
using Microsoft.Azure.WebJobs; // [FunctionName], [QueueTrigger]
using Microsoft.Extensions.Logging; // ILogger
using SixLabors.Fonts; // Font
using SixLabors.ImageSharp; // Image
using SixLabors.ImageSharp.Drawing; // IPath
using SixLabors.ImageSharp.Drawing.Processing; // IBrush, IPen
using SixLabors.ImageSharp.PixelFormats; // PixelColorBlendingMode
using SixLabors.ImageSharp.Processing; // Mutate extension method
using System.IO; // Stream, FileAccess
using System.Threading.Tasks; // Task<T>
namespace Northwind.AzureFunctions.Service;
[StorageAccount("AzureWebJobsStorage")]
public static class CheckGeneratorFunction
{
 [FunctionName(nameof(CheckGeneratorFunction))]
 public static async Task Run(
 [QueueTrigger("checksQueue")] QueueMessage message,
 [Blob("checks-blob-container")] BlobContainerClient blobContainerClient,
 ILogger log)
 {
 // write some information about the message to the log
 log.LogInformation("C# Queue trigger function executed.");
 log.LogInformation($"MessageId: {message.MessageId}.");
 log.LogInformation($"InsertedOn: {message.InsertedOn}.");
 log.LogInformation($"ExpiresOn: {message.ExpiresOn}.");
 log.LogInformation($"Body: {message.Body}.");
 // create a new blank image with a white background
 using (Image<Rgba32> image = new(width: 1200, height: 600,
 backgroundColor: new Rgba32(r: 255, g: 255, b: 255, a: 0)))
 {
 // load the font file and create a large font
 FontCollection collection = new();
 FontFamily family = collection.Add(
 @"fonts\Caveat\static\Caveat-Regular.ttf");
 Font font = family.CreateFont(72);
 string amount = message.Body.ToString();
 DrawingOptions options = new()
 {
 GraphicsOptions = new()
 {
 ColorBlendingMode = PixelColorBlendingMode.Multiply
 }
 };
 // define some pens and brushes
 IPen blackPen = Pens.Solid(Color.Black, 2);
 IPen blackThickPen = Pens.Solid(Color.Black, 8);
 IPen greenPen = Pens.Solid(Color.Green, 3);
 IBrush redBrush = Brushes.Solid(Color.Red);
 IBrush blueBrush = Brushes.Solid(Color.Blue);
 // define some paths and draw them
 IPath border = new RectangularPolygon(
 x: 50, y: 50, width: 1100, height: 500);
 image.Mutate(x => x.Draw(options, blackPen, border));
 IPath star = new Star(x: 150.0f, y: 150.0f,
 prongs: 5, innerRadii: 20.0f, outerRadii: 30.0f);
 image.Mutate(x => x.Fill(options, redBrush, star)
 .Draw(options, greenPen, star));
 IPath line1 = new Polygon(new LinearLineSegment(
 new PointF(x: 100, y: 275), new PointF(x: 1050, y: 275)));

 image.Mutate(x => x.Draw(options, blackPen, line1));
 IPath line2 = new Polygon(new LinearLineSegment(
 new PointF(x: 100, y: 365), new PointF(x: 1050, y: 365)));
 image.Mutate(x => x.Draw(options, blackPen, line2));
 TextOptions textOptions = new(font)
 {
 Origin = new PointF(100, 200),
 WrappingLength = 1000,
 HorizontalAlignment = HorizontalAlignment.Left
 };
 image.Mutate(x => x.DrawText(
 textOptions, amount, blueBrush, blackPen));
 string blobName = $"{System.DateTime.UtcNow:yyyy-MM-dd-hh-mm-ss}.png";
 log.LogInformation($"Blob name: {blobName}.");
 try
 {
 if (System.Environment.GetEnvironmentVariable("IS_LOCAL") == "true")
 {
 // create blob in the local filesystem
 string folder = $@"{System.Environment.CurrentDirectory}\blobs";
 if (!Directory.Exists(folder))
 {
 Directory.CreateDirectory(folder);
 }
 log.LogInformation($"Blobs folder: {folder}");
 string blobPath = $@"{folder}\{blobName}";
 await image.SaveAsPngAsync(blobPath);
 }
 // create blob in Blob storage via a memory stream
 Stream stream = new MemoryStream();
 await image.SaveAsPngAsync(stream);
 stream.Seek(0, SeekOrigin.Begin);
 BlobContentInfo info = await blobContainerClient.UploadBlobAsync(
 blobName, stream);
 log.LogInformation(
 $"Blob sequence number: {info.BlobSequenceNumber}.");
 }
 catch (System.Exception ex)
 {
 log.LogError(ex.Message);
 }
 }
 }
}

Note the following:

	Decorating the class with [StorageAccount("AzureWebJobsStorage")] tells the function how to connect to Azure storage, either locally or once deployed to the cloud.

	The [QueueTrigger("checksQueue")] QueueMessage message parameter means the function is triggered by a message being added to the checksQueue and the message is automatically passed to the parameter named message.

	The [Blob("checks-blob-container")] BlobContainerClient blobContainerClient parameter means we can access the checks-blob-container container via the blobContainerClient parameter.

	We use ImageSharp to create a 1200x600 image of a check.

	We use the current UTC date and time to name the blob to avoid duplicates. In a real implementation you would need something more robust like GUIDs.

	If the IS_LOCAL environment variable is set to true, then we save the image as a PNG to the local filesystem in a blobs subfolder.

	We save the image as a PNG to a memory stream that is then uploaded to the blob container.

Testing the function that works with queues and blobs

Now we can test the function that works with queues and blobs in our local development environment:

	Start the Northwind.AzureFunctions.Service project.

	If you are using Visual Studio Code, you will need to navigate to the Run and Debug pane, make sure that Attach to .NET Functions is selected, and then click the Run button.

	Note there are now three functions, as shown in the following partial output:

Functions:
 NumbersToWordsFunction: [GET,POST] http://localhost:7071/api/NumbersToWordsFunction
 CheckGeneratorFunction: queueTrigger
 ScrapeAmazonFunction: timerTrigger

	Start Visual Studio Code.

	Open the RestClientTests folder.

	Add a new file named azurefunctions-numberstowords.http.

	Modify its contents, as shown in the following code:

Trigger the NumbersToWordsFunction function
GET http://localhost:7071/api/NumbersToWordsFunction?amount=123456

	Send the request and note that a JSON document is returned with information about the NumbersToWordsFunction function, as shown in the following response and in Figure 14.10:

HTTP/1.1 200 OK
Connection: close
Content-Type: text/plain; charset=utf-8
Date: Sun, 05 Jun 2022 07:04:05 GMT
Server: Kestrel
Transfer-Encoding: chunked
one hundred and twenty three thousand, four hundred and fifty six

[image: Figure 14.10: Triggering the HTTP endpoint for the NumbersToWordsFunction]Figure 14.10: Triggering the HTTP endpoint for the NumbersToWordsFunction

	At the command line or terminal, note the function call was successful and a message was sent to the queue that then triggered the CheckGeneratorFunction, as shown in the following output:

[2022-06-05T07:04:06.353Z] Executing 'NumbersToWordsFunction' (Reason='This function was programmatically called via the host APIs.', Id=9eec6b0b-79e2-4b2a-82cb-bdc521bfbb18)
[2022-06-05T07:04:06.356Z] C# HTTP trigger function processed a request.
[2022-06-05T07:04:06.400Z] Executed 'NumbersToWordsFunction' (Succeeded, Id=9eec6b0b-79e2-4b2a-82cb-bdc521bfbb18, Duration=73ms)
[2022-06-05T07:04:07.306Z] Executing 'CheckGeneratorFunction' (Reason='New queue message detected on 'checksqueue'.', Id=900b14d8-e103-4b95-b09b-62a9d2e7eeb6)
[2022-06-05T07:04:07.308Z] Trigger Details: MessageId: 526fed97-741d-4d73-a488-37f77ec7283d, DequeueCount: 1, InsertedOn: 2022-06-05T07:04:06.000+00:00
[2022-06-05T07:04:07.317Z] C# Queue trigger function executed.
[2022-06-05T07:04:07.319Z] MessageId: 526fed97-741d-4d73-a488-37f77ec7283d.
[2022-06-05T07:04:07.322Z] InsertedOn: 05/06/2022 07:04:06 +00:00.
[2022-06-05T07:04:07.324Z] ExpiresOn: 12/06/2022 07:04:06 +00:00.
[2022-06-05T07:04:07.324Z] Body: one hundred and twenty three thousand, four hundred and fifty six.
[2022-06-05T07:04:09.734Z] Blob name: 2022-06-05-07-04-09.png.
[2022-06-05T07:04:09.736Z] Blobs folder: C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\bin\Debug\net6.0\blobs

	In the filesystem, note the image created locally in the blobs folder, as shown in Figure 14.11:

[image: Figure 14.11: The check image generated in the blobs folder]Figure 14.11: The check image generated in the blobs folder

	Note the check image, as shown in Figure 14.12:

[image: Figure 14.12: The check image opened in Paint]Figure 14.12: The check image opened in Paint

	In Visual Studio Code, in the Azure pane, note the Blob created in Azurite.

Publishing an Azure Functions project to the cloud

Now, let's create a function app and related resources in an Azure subscription, then deploy your functions to the cloud and run it there.

If you do not already have an Azure account, then you can sign up for a free one at the following link: https://azure.microsoft.com/en-us/free/

Using Visual Studio 2022 to publish

Visual Studio 2022 has a GUI to publish to Azure:

	In Solution Explorer, right-click the Northwind.AzureFunctions.Service project and select Publish.

	Select Azure and then click Next, as shown in Figure 14.13:

[image: Figure 14.13: Publishing to Azure]Figure 14.13: Publishing to Azure

	Select Azure Function App (Windows) and click Next.

	Sign in and enter your Azure credentials.

	Select your subscription.

	In the Function Instance section, click the + button that has a tooltip that says Create a new Azure Function…

	Complete the dialog box, as shown in Figure 14.14:

	Name: This must be globally unique. It suggested NorthwindAzureFunctionsService20220605082816 based on the project name and the current date and time.

	Subscription name: Your subscription. I have a subscription named Pay-As-You-Go.

	Resource group: Select or create a new resource group to make it easier to delete everything later. I chose apps-services-net7.

	Plan Type: Consumption (pay for only what you use).

	Location: a data center nearest to you. I chose UK South.

	Azure Storage: create a new account named northwindazurefunctions (or something else that is globally unique—try appending your initials) in a data center nearest to you and choose Standard – Locally Redundant Storage for the account type.

[image: Figure 14.14: Creating a new Azure Function App]Figure 14.14: Creating a new Azure Function App

	Click Create. This process can take a minute or more.

	In the Publish dialog, click Finish and then click Close.

	In the Publish window, click the Publish button, as shown in Figure 14.15:

[image: Figure 14.15: An Azure Functions App ready to publish]Figure 14.15: An Azure Functions App ready to publish

	Review the output window, as shown in the following publishing output:

Build started...
1>------ Build started: Project: Northwind.AzureFunctions.Service, Configuration: Release Any CPU ------
1>C:\Program Files\dotnet\sdk\7.0.100-preview.4.22252.9\Sdks\Microsoft.NET.Sdk\targets\Microsoft.NET.RuntimeIdentifierInference.targets(216,5): message NETSDK1057: You are using a preview version of .NET. See: https://aka.ms/dotnet-support-policy
1>Northwind.AzureFunctions.Service -> C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\bin\Release\net6.0\Northwind.AzureFunctions.Service.dll
2>------ Publish started: Project: Northwind.AzureFunctions.Service, Configuration: Release Any CPU ------
2>You are using a preview version of .NET. See: https://aka.ms/dotnet-support-policy
2>Northwind.AzureFunctions.Service -> C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\bin\Release\net6.0\Northwind.AzureFunctions.Service.dll
2>Northwind.AzureFunctions.Service -> C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\obj\Release\net6.0\PubTmp\Out\
2>Publishing C:\apps-services-net7\Chapter14\Northwind.AzureFunctions.Service\obj\Release\net6.0\PubTmp\Northwind.AzureFunctions.Service - 20220605083801718.zip to https://northwindazurefunctionsservice20220605082816.scm.azurewebsites.net/api/zipdeploy...
2>Zip Deployment succeeded.
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========
========== Publish: 1 succeeded, 0 failed, 0 skipped ==========
Waiting for function app to be ready...
Function app is ready

[image: Figure 14.16: Output window showing a successful deployment to Azure cloud]Figure 14.16: Output window showing a successful deployment to Azure cloud

	Click Open site and note your Azure Functions v4 host site is ready, as shown in Figure 14.17:

[image: Figure 14.17: An Azure Functions project deployed and ready for action]Figure 14.17: An Azure Functions project deployed and ready for action

	Test the function in your browser by appending to the address box, as shown in the following relative URL and in Figure 14.18: /api/NumbersToWordsFunction?amount=987654321

[image: Figure 14.18: Calling the Azure Functions function in the cloud]Figure 14.18: Calling the Azure Functions function in the cloud

Using Visual Studio Code to publish

You can learn how to publish using Visual Studio Code at the following link:

https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-vs-code?tabs=csharp#sign-in-to-azure

Cleaning up Azure Functions resources

You can use the following steps to delete the function app and its related resources to avoid incurring further costs.

	In your browser, navigate to https://portal.azure.com/.

	In Azure portal, in your function app Overview blade, select the Resource Group.

	Confirm that it contains only resources that you want to delete, for example, there should be a Storage account, a Function App, and an App Service plan, as shown in Figure 14.19:

[image: Figure 14.19: A resource group with only Azure Functions related resources]Figure 14.19: A resource group with only Azure Functions related resources

	If you are sure you want to delete all the resources in the group, then click Delete resource group and accept any other confirmations. Alternatively, you can delete each resource individually.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 14.1 – Test your knowledge

Answer the following questions:

	What is the difference between the in-process and isolated hosting models for Azure Functions?

	What attribute do you use to cause a function to trigger when a message arrives in a queue?

	What attribute do you use to make a queue available to send messages to?

	What schedule does the following NCRONTAB expression define?

0 0 */6 * 6 6

	How can you configure a dependency service for use in a function?

Exercise 14.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-14---building-serverless-services-using-azure-functions

Exercise 14.3 – Reading more about Azure Functions

If you want to learn more about Azure Functions from another Packt book, then the following one is available.

Mastering Azure Serverless Computing: A practical guide to building and deploying enterprise-grade serverless applications using Azure Functions by Lorenzo Barbieri and Massimo Bonanni.

	Amazon: https://www.amazon.com/Mastering-Azure-Serverless-Computing-enterprise-grade-dp-1789951224/dp/1789951224/

	Packt: https://www.packtpub.com/product/cloud_and_networking/9781789951226

Summary

In this chapter, you learned:

	Some of the concepts about Azure Functions.

	How to build serverless services using Azure Functions.

	How to respond to HTTP, timer, and queue triggers.

	How to bind to queues and blobs storage.

	How to deploy an Azure Functions project to the cloud.

In the next chapter, you will review how to build websites using ASP.NET Core MVC.

15 Building Web User Interfaces Using ASP.NET Core

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about building web user interfaces with ASP.NET Core. You will learn about ASP.NET Core MVC views, Razor syntax, HTML Helpers and Tag Helpers, internationalizing your website, and how to use Bootstrap for quick user interface prototyping.

This chapter will cover the following topics:

	Setting up an ASP.NET Core MVC website

	Defining web user interfaces with Razor views

	Localizing and globalizing with ASP.NET Core

	Defining web user interfaces with Tag Helpers

Setting up an ASP.NET Core MVC website

The Model-View-Controller (MVC) design pattern allows a clean separation between technical concerns, as shown in the following list:

	Models: Classes that represent the data entities and view models used on the website.

	Views: Razor files, that is, .cshtml files, that render data in view models into HTML web pages. Blazor uses the .razor file extension, but do not confuse them with Razor files!

	Controllers: Classes that execute code when an HTTP request arrives at the web server. The controller methods usually create a view model that may contain entity models and passes it to a view to generate an HTTP response to send back to the web browser or other client.

Creating an ASP.NET Core MVC website

You will use a project template to create an ASP.NET Core MVC website project that has a local database for authenticating and authorizing users. Visual Studio 2022 defaults to using SQL Server LocalDB for the accounts database. Visual Studio Code (or more accurately the dotnet CLI tool) uses SQLite by default and you can specify a switch to use SQL Server LocalDB instead.

Let's see it in action:

	Use your preferred code editor to create an ASP.NET Core MVC website project with authentication accounts stored in a database, as defined in the following list:

	Project template: ASP.NET Core Web App (Model-View-Controller) [C#] / mvc

	Project file and folder: Northwind.Mvc

	Workspace/solution file and folder: Chapter15

	Additional information - Authentication type: Individual Accounts / --auth Individual

	For Visual Studio 2022, leave all other options as their defaults.

	For Visual Studio Code, select Northwind.Mvc as the active OmniSharp project.

	Build the Northwind.Mvc project.

	If you created the MVC project using Visual Studio 2022, then the database for authentication and authorization will be stored in SQL Server LocalDB. But the database does not yet exist. At a command prompt or terminal, in the Northwind.Mvc folder, enter the command to run database migrations so that the database used to store credentials for authentication is created, as shown in the following command:

dotnet ef database update

If you created the MVC project using dotnet new, then the database for authentication and authorization will be stored in SQLite and the file has already been created named app.db.

	In the root folder for the MVC website project, in the appsettings.json file, note the connection string for the authentication database named DefaultConnection, as shown in the following configuration:

	Using SQL Server LocalDB:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-Northwind.Mvc-...;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

	Using SQLite:

{
 "ConnectionStrings": {
 "DefaultConnection": "DataSource=app.db;Cache=Shared"
 },

Exploring the default ASP.NET Core MVC website

Let's review the behavior of the default ASP.NET Core MVC website project template:

	In the Northwind.Mvc project, expand the Properties folder, open the launchSettings.json file, and note the random port numbers (yours will be different) configured for the Kestrel-hosted project for http and https, as shown highlighted in the following settings:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:11227",
 "sslPort": 44315
 }
 },
 "profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "http://localhost:5047",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:7047;http://localhost:5047",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

	For the https profile, for its applicationUrl setting, change the port numbers to 5151 for https and 5152 for http, as shown in the following setting:

"applicationUrl": "https://localhost:5151;http://localhost:5152",

	Save the changes to the launchSettings.json file.

	Select the https profile as the Startup Project, and Google Chrome as the Web Browser, as shown in Figure 15.1:

[image: Figure 15.1: Select the https profile to start the Northwind MVC project]Figure 15.1: Select the https profile to start the Northwind MVC project

	Start the Northind.Mvc website project without debugging.

	Start Chrome and open Developer Tools.

	Navigate to http://localhost:5151/ and note the following, as shown in Figure 15.2:

	The top navigation menu with links to Home, Privacy, Register, and Login. If the viewport width is 575 pixels or less, then the navigation collapses into a hamburger menu.

	The title of the website, Northwind.Mvc, shown in the header and footer.

[image: Figure 15.2: The ASP.NET Core MVC project template website home page]Figure 15.2: The ASP.NET Core MVC project template website home page

Understanding visitor registration

By default, passwords must have at least one non-alphanumeric character, they must have at least one digit (0-9), and they must have at least one uppercase letter (A-Z). I use Pa$$w0rd in scenarios like this when I am just exploring.

The MVC project template follows best practice for double-opt-in (DOI), meaning that after filling in an email and password to register, an email is sent to the email address, and the visitor must click a link in that email to confirm that they want to register.

We have not yet configured an email provider to send that email, so we must simulate that step:

	Close the Developer Tools pane.

	In the top navigation menu, click Register.

	Enter an email and password, and then click the Register button. (I used test@example.com and Pa$$w0rd.)

	Click the link with the text Click here to confirm your account and note that you are redirected to a Confirm email web page that you could customize.

	In the top navigation menu, click Login, enter your email and password (note that there is an optional checkbox to remember you, and there are links if the visitor has forgotten their password or they want to register as a new visitor), and then click the Log in button.

	Click your email address in the top navigation menu. This will navigate to an account management page. Note that you can set a phone number, change your email address, change your password, enable two-factor authentication (if you add an authenticator app), and download and delete your personal data. This last feature is good for compliance with legal regulations like the European GDPR.

	Close Chrome and press Ctrl + C to shut down the web server.

Reviewing an MVC website project structure

In your code editor, in Visual Studio Solution Explorer (toggle on Show All Files) or in Visual Studio Code EXPLORER, review the structure of an MVC website project, as shown in Figure 15.3:

[image: Figure 15.3: The default folder structure of an ASP.NET Core MVC project]Figure 15.3: The default folder structure of an ASP.NET Core MVC project

We will look in more detail at some of these parts later, but for now, note the following:

	Areas: This folder contains nested folders and a file needed to integrate your website project with ASP.NET Core Identity, which is used for authentication.

	bin, obj: These folders contain temporary files needed during the build process and the compiled assemblies for the project.

	Controllers: This folder contains C# classes that have methods (known as actions) that fetch a model and pass it to a view, for example, HomeController.cs.

	Data: This folder contains Entity Framework Core migration classes used by the ASP.NET Core Identity system to provide data storage for authentication and authorization, for example, ApplicationDbContext.cs.

	Models: This folder contains C# classes that represent all the data gathered together by a controller and passed to a view, for example, ErrorViewModel.cs.

	Properties: This folder contains a configuration file for Kestrel (or IIS or IIS Express on Windows) for launching the website during development named launchSettings.json. This file is only used on the local development machine and is not deployed to your production website.

	Views: This folder contains the .cshtml Razor files that combine HTML and C# code to dynamically generate HTML responses. The _ViewStart file sets the default layout and _ViewImports imports common namespaces used in all views like Tag Helpers:

	Home: This subfolder contains Razor files for the home and privacy pages.

	Shared: This subfolder contains Razor files for the shared layout, an error page, and two partial views for logging in and validation scripts.

	wwwroot: This folder contains static content used by the website, such as CSS for styling, libraries of JavaScript, JavaScript for this website project, and a favicon.ico file. You also put images and other static file resources like PDF documents in here. The project template includes Bootstrap and jQuery libraries.

	app.db: This is the SQLite database that stores registered visitors. (If you used SQL Server LocalDB, then it will not be needed.)

	appsettings.json and appsettings.Development.json: These files contain settings that your website can load at runtime, for example, the database connection string for the ASP.NET Core Identity system and logging levels.

	Northwind.Mvc.csproj: This file contains project settings like the use of the Web .NET SDK, an entry for SQLite to ensure that the app.db file is copied to the website's output folder, and a list of NuGet packages that your project requires like EF Core for your chosen database provider, including:

	Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

	Microsoft.AspNetCore.Identity.EntityFrameworkCore

	Microsoft.AspNetCore.Identity.UI

	Microsoft.EntityFrameworkCore.Sqlite or Microsoft.EntityFrameworkCore.SqlServer

	Microsoft.EntityFrameworkCore.Tools

	Program.cs: This file defines a hidden Program class that contains the <Main>$ entry point. It builds a pipeline for processing incoming HTTP requests and hosts the website using default options like configuring the Kestrel web server and loading appsettings. It adds and configures services that your website needs, for example, ASP.NET Core Identity for authentication, SQLite or SQL Server for identity data storage, and so on, and routes for your application.

Referencing an EF Core class library and registering a data context

We will reference the EF Core model that you created in Chapter 2, Managing Relational Data Using SQL Server:

	In the Northwind.Mvc project, add an element to <PropertyGroup> to treat warnings as errors, as shown in the following markup:

<TreatWarningsAsErrors>true</TreatWarningsAsErrors>

	In the Northwind.Mvc project, add a project reference to the Northwind database context project, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

Include path must not have a line break.

	At the command line or terminal, build the Northwind.Mvc project.

Defining web user interfaces with Razor views

Let's see how we can build the user interface of a web page in a modern ASP.NET Core MVC website.

Understanding Razor views

In MVC, the V stands for view. The responsibility of a view is to transform a model into HTML or other formats.

There are multiple view engines that could be used to do this. The default view engine is called Razor, and it uses the @ symbol to indicate server-side code execution.

Let's review the home page view and how it uses a shared layout:

	In the Views/Home folder, open the Index.cshtml file and note the block of C# code wrapped in @{ }. This will execute first and can be used to store data that needs to be passed into a shared layout file like the title of the web page, as shown in the following code:

@{
 ViewData["Title"] = "Home Page";
}

	Note the static HTML content in the <div> element that uses Bootstrap classes like text-center and display-4 for styling.

	In the Views folder, open the _ViewImports.cshtml file and note that it imports some namespaces and then adds the ASP.NET Core Tag Helpers, as shown in the following code:

@using Northwind.Mvc
@using Northwind.Mvc.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

	In the Views folder, open the _ViewStart.cshtml file. It gets executed when the View method is called in a controller class. It is used to set defaults that apply to all views. For example, note that it sets the Layout property of all views to a shared layout file, as shown in the following markup:

@{
 Layout = "_Layout";
}

	In the Shared folder, open the _Layout.cshtml file.

	Note that the title is being read from the ViewData dictionary that was set earlier in the Index.cshtml view, as shown in the following markup:

<title>@ViewData["Title"] – Northwind.Mvc</title>

	Note the rendering of links to support Bootstrap and a site stylesheet, where ~ means the wwwroot folder, as shown in the following markup:

<link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" asp-append-version="true" />
<link rel="stylesheet" href="~/Northwind.Mvc.styles.css"
 asp-append-version="true" />

	Note the rendering of a navigation bar in the header, as shown in the following markup:

<body>
 <header>
 <nav class="navbar ...">

	Note the rendering of a collapsible <div> containing a partial view for logging in and hyperlinks to allow users to navigate between pages using ASP.NET Core Tag Helpers with attributes like asp-controller and asp-action, as shown in the following markup:

<div class=
 "navbar-collapse collapse d-sm-inline-flex justify-content-between">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark"
 asp-area="" asp-controller="Home"
 asp-action="Privacy">Privacy

 <partial name="_LoginPartial" />
</div>

The <a> elements use Tag Helper attributes named asp-controller and asp-action to specify the controller name and action name that will execute when the link is clicked on. If you want to navigate to a feature in a Razor Class Library, then you use asp-area to specify the feature name.

	Note the rendering of the body inside the <main> element, as shown in the following markup:

<div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
</div>

The RenderBody method injects the contents of a specific Razor view for a page like the Index.cshtml file at that point in the shared layout.

	Note the rendering of <script> elements at the bottom of the page so that it does not slow down the display of the page and that you can add your own script blocks into an optional defined section named scripts, as shown in the following markup:

<script src="~/lib/jquery/dist/jquery.min.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js">
</script>
<script src="~/js/site.js" asp-append-version="true"></script>
@await RenderSectionAsync("Scripts", required: false)

Prototyping with Bootstrap

Bootstrap is the world's most popular framework for building responsive, mobile-first websites. It combines CSS stylesheets with JavaScript libraries to implement its functionality. It is a good choice for prototyping a website user interface although before going public you might want to hire a web designer to build a custom Bootstrap theme or replace it with a completely custom set of CSS stylesheets to give your website a distinct brand.

Bootstrap can be divided into four parts: Layout, Content, Components, and Utilities. You can use only the parts you need.

Understanding breakpoints and containers

The first thing to understand about Bootstrap are its predefined breakpoints:

	X-Small (no inline suffix): <576px.

	Small (sm): >=576px.

	Medium (md): >=768px.

	Large (lg): >=992px.

	Extra large (xl): >=1200px.

	Extra extra large (xxl): >=1400px.

Containers are the foundation of the Bootstrap grid layout system. Imagine you have a <div> element that uses the Bootstrap container class, as shown in the following markup:

<div class="container">
 Some content.
</div>

As you can see in the table below, when the width of the browser is less than 576 pixels wide, the <div> will stretch to fill 100% of the available width. When width of the browser is greater than or equal to 576 pixels, the width of the <div> becomes fixed at 540 pixels wide, until the width of browser is greater than or equal to 768 pixels, at which point the width of the <div> becomes fixed at 720 pixels wide. This repeats as the width of the browser increases, at each breakpoint the fixed width of the <div> snaps to a larger value.

	
	X-Small

<576px

	Small

>=576px

	Medium

>=768
	Large

>=992px

	Extra large

>=1200px

	XXL

>=1400px

	.container
	100%
	540px
	720px
	960px
	1140px
	1320px

	.container-sm
	100%
	540px
	720px
	960px
	1140px
	1320px

	.container-md
	100%
	100%
	720px
	960px
	1140px
	1320px

	.container-lg
	100%
	100%
	100%
	960px
	1140px
	1320px

	.container-xl
	100%
	100%
	100%
	100%
	1140px
	1320px

	.container-xxl
	100%
	100%
	100%
	100%
	100%
	1320px

	.container-fluid
	100%
	100%
	100%
	100%
	100%
	100%

Imagine that you now have a <div> element that uses the container-lg class, as shown in the following markup:

<div class="container-lg">
 Some content.
</div>

As you can see in the table above, when the width of the browser is less than 992 pixels wide, the <div> will always take up 100% of the available browser width. At 992 pixels and above, the <div> width snaps to the breakpoints 960px, 1140px, and 1320px.

If you use the class container-fluid, the <div> always takes up 100% of the available width.

Understanding rows and columns

A Bootstrap container can be divided into rows and columns, for example, one row with two columns, as shown in the following markup:

<div class="container">
 <div class="row">
 <div class="col">
 Column
 </div>
 <div class="col">
 Column
 </div>
 <div class="col">
 Column
 </div>
 </div>
</div>

If you use the col class, then each column will have equal width. But each row is also divided into 12 virtual columns. If you specify a number suffix between 1 and 12 then that column will use that number of twelfths and the others will divide the rest equally. For example, you could say the left column should use 2 twelfths, and right column should use 4 twelfths, and the middle column uses the rest, as shown in the following markup:

<div class="container">
 <div class="row">
 <div class="col-2">
 Column
 </div>
 <div class="col">
 Column
 </div>
 <div class="col-4">
 Column
 </div>
 </div>
</div>

The grid system is powerful but can get complicated quickly. To learn more, you can visit the following link: https://getbootstrap.com/docs/5.0/layout/grid/

Understanding color themes

Bootstrap has eight built-in color themes in addition to the default (black on white), as shown in the following list and Figure 15.4:

	primary: Bright blue theme. For example, white text on a bright blue background, or bright blue text and outline on a white background.

	secondary: Gray theme. For example, white text on a gray background, or grey text and outline on a white background.

	success: Green theme. For example, white text on a dark green background, or dark green text and outline on a white background.

	danger: Red theme. For example, white text on a red background, or red text and outline on a white background.

	warning: Yellow theme. For example, white text on a yellow background, or yellow text and outline on a white background.

	info: Light blue theme. For example, white text on a light blue background, or light blue text and outline on a white background.

	light: Light gray theme. For example, black text on a light gray background, or light grey text and outline on a white background.

	dark: Dark gray theme. For example, white text on a dark gray background, or dark grey text and outline on a white background.

[image: Figure 15.4: Bootstrap color themes]Figure 15.4: Bootstrap color themes

Understanding tables

Bootstrap styles for tables are not automatically applied. You must opt-in by applying the table class. You can then apply additional style classes.

	table: Required to enable table styling.

	table-primary, table-warning, and so on: Alternative enabling of table styling with color theme.

	table-sm: To use a half the padding so the table is more compact.

	table-striped: Add zebra-striping to any table row within the <tbody>.

	table-hover: Enable a hover state to change highlights as the mouse moves over table rows within a <tbody>.

	table-bordered: Add a border on all sides of the table and its cells.

Let's see an example, as shown in the following markup:

<table class="table table-striped table-hover table-bordered">
 <thead>
 <tr>
 <th>
 ...
 </thead>
 <tbody>
 <tr>
 <td>
 ...
 </tbody>
</table>

Cells in <thead> align to the bottom by default. Cells in <tbody> align to the top by default. Override these defaults and control other alignment by using the following classes:

	align-top: Align the contents of the row or cell to the top.

	vertical-align-middle: Align the contents of the row or cell to the middle vertically.

	align-bottom: Align the contents of the row or cell to the bottom.

	align-left: Align the contents of the row or cell to the left.

	align-middle: Align the contents of the row or cell to the middle horizontally.

	align-right: Align the contents of the row or cell to the right.

Understanding buttons and links

Bootstrap has button styles that can be applied to actual <button> and <input type="button"> elements as well as hyperlinks, as shown in the following markup:

<button class="btn btn-primary" type="button">Click Me</button>
<input class="btn btn-primary" type="button" value="Click Me">
Click Me

All three elements above would look like a bright blue button with the label Click Me.

If you do not want the text in the button label to wrap, add the text-nowrap class.

Use btn-outline-primary (or any of the other color themes) to have more subtle styling that uses the color for the outline and text with a white background until the mouse hovers over the button.

You can adjust the size of the button by adding btn-sm to make it smaller or btn-lg to make it larger.

Understanding badges

Badges are used to show small pieces of information, like the number of unread messages.

<button type="button" class="btn btn-primary">
 Messages 4
</button>

You can reposition the badge:

<button type="button" class="btn btn-primary position-relative">
 Messages
 <span class="position-absolute top-0 start-100 translate-middle
 badge rounded-pill bg-danger">
 12 unread messages

</button>

You can use a more rounded corner to turn a badge into a pill, as shown in the following markup and in Figure 15.5:

Primary
Secondary
Success
Danger
Warning
Info
Light
Dark

[image: Figure 15.5: Pill badges using Bootstrap]Figure 15.5: Pill badges using Bootstrap

Understanding alerts

You will often need to show messages to website visitors. Alerts must use one of the eight color themes. Any links within the alert element should use alert-link class. The contents can be plain text or use additional elements like headings, as shown in the following markup:

<div class="alert alert-success" role="alert">
 <h4 class="alert-heading">Order was accepted.</h4>
 <p>To view the order, click here.</p>
</div>

For more examples of alerts, for example, adding icons inside the alert, see the official documentation at the following link: https://getbootstrap.com/docs/5.0/components/alerts/#icons

Good practice for Bootstrap

Bootstrap is like Marmite. Some developers love it; some hate it.

Good reasons to use Bootstrap include:

	It saves time.

	It is customizable.

	It is open source.

	It is well documented officially and has lots of answers about it on sites like StackOverflow.

But implementing Bootstrap without care has the following negatives:

	Your website will look generic.

	It is heavy compared to a hand-crafted solution.

Good Practice: As well as defining your own styles, base your styles on a common library, such as Bootstrap, that implements responsive design. But if you are building a website that needs a distinct identity or brand, make sure you use its theming support. Do not just accept the defaults.

Understanding Razor syntax and expressions

Before we customize the home page view, let's review an example Razor file that has an initial Razor code block that instantiates an order with price and quantity and then outputs information about the order on the web page, as shown in the following markup:

@{
 Order order = new()
 {
 OrderId = 123,
 Product = "Sushi",
 Price = 8.49M,
 Quantity = 3
 };
}
<div>Your order for @order.Quantity of @order.Product has a total cost of $@ order.Price * @order.Quantity</div>

The preceding Razor file would result in the following incorrect output:

Your order for 3 of Sushi has a total cost of $8.49 * 3

Although Razor markup can include the value of any single property using the @object.property syntax, you should wrap expressions in parentheses, as shown in the following markup:

<div>Your order for @order.Quantity of @order.Product has a total cost of $@ (order.Price * order.Quantity)</div>

The preceding Razor expression results in the following correct output:

Your order for 3 of Sushi has a total cost of $25.47

Understanding HTML Helper methods

While creating a view for ASP.NET Core MVC, you can use the Html object and its methods to generate markup.

Some useful methods include the following:

	ActionLink: Use this to generate an anchor <a> element that contains a URL path to the specified controller and action. For example, Html.ActionLink(linkText: "Binding", actionName: "ModelBinding", controllerName: "Home") would generate Binding.

	AntiForgeryToken: Use this inside a <form> to insert a <hidden> element containing an anti-forgery token that will be validated when the form is submitted.

	Display and DisplayFor: Use this to generate HTML markup for the expression relative to the current model using a display template. There are built-in display templates for .NET types and custom templates can be created in the DisplayTemplates folder. The folder name is case-sensitive on case-sensitive filesystems.

	DisplayForModel: Use this to generate HTML markup for an entire model instead of a single expression.

	Editor and EditorFor: Use this to generate HTML markup for the expression relative to the current model using an editor template. There are built-in editor templates for .NET types that use <label> and <input> elements, and custom templates can be created in the EditorTemplates folder. The folder name is case-sensitive on case-sensitive filesystems.

	EditorForModel: Use this to generate HTML markup for an entire model instead of a single expression.

	Encode: Use this to safely encode an object or string into HTML. For example, the string value "<script>" would be encoded as "<script>". This is not normally necessary since the Razor @ symbol encodes string values by default.

	Raw: Use this to render a string value without encoding as HTML.

	PartialAsync and RenderPartialAsync: Use these to generate HTML markup for a partial view. You can optionally pass a model and view data.

Defining a strongly-typed Razor view

To improve the IntelliSense when writing a view, you can define what type the view can expect using an @model directive at the top. Let's modify the home page to display a table of orders from the Northwind database:

	In Program.cs, import the namespace to use the AddNorthwindContext extension method, as shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

	Add a statement in the section to add services to the container that registers NorthwindContext as a service, as shown in the following code:

builder.Services.AddNorthwindContext();

	In the Controllers folder, in HomeController.cs, import the namespace for the Northwind entity models and EF Core features, as shown in the following code:

using Packt.Shared; // Northwind entity models
using Microsoft.EntityFrameworkCore; // Include extension method

	In the controller class, define a field to store the Northwind data context and set it in the constructor, as shown highlighted in the following code:

private readonly NorthwindContext db;
public HomeController(ILogger<HomeController> logger, NorthwindContext db)
{
 _logger = logger;
 this.db = db;
}

	In the Index action method, add statements to create a view model containing all the orders and their related order details, as shown in the following code:

public IActionResult Index()
{
 IEnumerable<Order> model = db.Orders
 .Include(order => order.Customer)
 .Include(order => order.OrderDetails)
 .OrderByDescending(order => order.OrderDetails
 .Sum(detail => detail.Quantity * detail.UnitPrice))
 .AsEnumerable();
 return View(model);
}

	In the Views folder, in _ViewImports.cshtml, add a statement to import the EF Core entity models for all Razor views and pages, as shown in the following code:

@using Packt.Shared @* Northwind entity models *@

	In the Views\Home folder, in Index.cshtml, at the top of the file, add a statement to set the model type to use a collection of orders, as shown in the following code:

@model IEnumerable<Order>

Now, whenever we type Model in this view, your code editor will know the correct type for the model and will provide IntelliSense for it.

While entering code in a view, remember the following:

	Declare the type for the model, use @model (with a lowercase m).

	Interact with the instance of the model, use @Model (with an uppercase M).

	In Index.cshtml, in the initial Razor code block, add a statement to render the orders as rows in a table, as shown in the following markup:

@model IEnumerable<Order>
@{
 ViewData["Title"] = "Orders";
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Order ID</th>
 <th>Order Date</th>
 <th>Company Name</th>
 <th>Country</th>
 <th>Item Count</th>
 <th>Order Total</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Order order in Model)
 {
 <tr>
 <td>@order.OrderId</td>
 <td>@order.OrderDate?.ToString("D")</td>
 <td>@order.Customer?.CompanyName</td>
 <td>@order.Customer?.Country</td>
 <td>@order.OrderDetails.Count()</td>
 <td>@order.OrderDetails.Sum(detail => detail.Quantity * detail.UnitPrice).ToString("C")</td>
 </tr>
 }
 </tbody>
 </table>
</div>

Let's see the result of our customized home page:

	Start the Northwind.Mvc website project.

	Note the home page now shows a table of orders with the highest value order sorted first, as shown in Figure 15.6:

[image: Figure 15.6: The updated Northwind MVC website home page]Figure 15.6: The updated Northwind MVC website home page

I am running my web server on my local laptop and its operating system, Windows 11, is configured to use United Kingdom culture for date, time, and currency values. Next, we will see how to localize the web page for the preferred culture of the visitor.

	Close Chrome and shut down the web server.

Localizing and globalizing with ASP.NET Core

In Chapter 7, Handling Dates, Times, and Internationalization, you learned about working with dates, times, time zones, and how to globalize and localize a .NET codebase.

In this section, we will look specifically at how to localize a website that uses ASP.NET Core.

As well as localizing string values using IStringLocalizer, you can localize HTML values using IHtmlLocalizer but this should be used with care. Usually, HTML markup should be the same for all locales. For views, you can use IViewLocalizer.

Let's create some resource files to localize the web user interface into American English, British English, and French, and then globalize the data like dates and currency values:

	In the Northwind.Mvc project, add a new folder named Resources. This is the default name for the folder that localizer services look in for *.resx resource files.

	In Resources, add a new folder named Views.

	In Views, add a new folder named Home.

Creating resource files

How you can create resource files (*.rex) depends on your code editor.

If you are using Visual Studio 2022

You can use a special project item type and editor:

	In Home, add a file type of Resources File named Index.en-US.resx.

	Use the editor to define names and values, as shown in Figure 15.7:

[image: Figure 15.7: Using the Resources File editor to define the localized labels]Figure 15.7: Using the Resources File editor to define the localized labels

	Close the editor.

	Copy and paste the file and rename it as Index.en-GB.resx.

	In Index.en-GB.resx, modify USA to UK. This is so we can see a difference.

	Close the editor.

	Copy and paste the file and rename it as Index.fr-FR.resx.

	In Index.fr-FR.resx, modify the value column to use French. (See the instructions for Visual Studio Code for the translations.

If you are using Visual Studio Code

You will have to edit the file without a special editor:

	In Home, add a new file named Index.en-US.resx.

	Modify the contents to contain American English language resources, as shown in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="Company Name" xml:space="preserve">
 <value>Company Name</value>
 </data>
 <data name="Country" xml:space="preserve">
 <value>Country</value>
 </data>
 <data name="Item Count" xml:space="preserve">
 <value>Item Count</value>
 </data>
 <data name="Order Date" xml:space="preserve">
 <value>Order Date</value>
 </data>
 <data name="Order ID" xml:space="preserve">
 <value>Order ID</value>
 </data>
 <data name="Order Total" xml:space="preserve">
 <value>Order Total</value>
 </data>
 <data name="Orders" xml:space="preserve">
 <value>Orders (USA)</value>
 </data>
</root>

	Copy and paste the file and rename it as Index.en-GB.resx.

	In Index.en-GB.resx, modify USA to UK. This is so we can see a difference.

	Copy and paste the file and rename it as Index.fr-FR.resx.

	In Index.fr-FR.resx, modify the value column to use French.

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="Company Name" xml:space="preserve">
 <value>Nom de l'entreprise</value>
 </data>
 <data name="Country" xml:space="preserve">
 <value>Pays</value>
 </data>
 <data name="Item Count" xml:space="preserve">
 <value>Nombre d'éléments</value>
 </data>
 <data name="Order Date" xml:space="preserve">
 <value>Date de commande</value>
 </data>
 <data name="Order ID" xml:space="preserve">
 <value>Numéro de commande</value>
 </data>
 <data name="Order Total" xml:space="preserve">
 <value>Total de la commande</value>
 </data>
 <data name="Orders" xml:space="preserve">
 <value>Commandes (France)</value>
 </data>
</root>

	Copy and paste the file and rename it as Index.fr.resx.

	In Index.fr.resx, modify the last value to be Commandes (Neutral French).

Localizing Razor views with an injected view localizer

Now we can continue for both code editors:

	In the Views/Home folder, in Index.cshtml, import the namespace for working with localization, inject the IViewLocalizer service and make changes to use the labels in the view model, as shown highlighted in the following markup:

@using Microsoft.AspNetCore.Mvc.Localization
@model IEnumerable<Order>
@inject IViewLocalizer Localizer
@{
 ViewData["Title"] = Localizer["Orders"];
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Localizer["Order ID"]</th>
 <th>@Localizer["Order Date"]</th>
 <th>@Localizer["Company Name"]</th>
 <th>@Localizer["Country"]</th>
 <th>@Localizer["Item Count"]</th>
 <th>@Localizer["Order Total"]</th>
 </tr>
 </thead>

Good Practice: The key values like "Order ID" are used to look up the localized values. If a value is missing, then it returns the key value as a default. It is good practice to therefore use key values that also work as a good fallback which is why I used US English proper titles as the key values above.

	In Program.cs, before the call to AddControllersWithViews, add a statement to add localization and set the path to find resource files to the Resources folder, and after the call to AddControllersWithViews append a call to add view localization, as shown highlighted in the following code:

builder.Services.AddLocalization(
 options => options.ResourcesPath = "Resources");
builder.Services.AddControllersWithViews().AddViewLocalization();

	In Program.cs, after the call to Build the app object, add statements to declare three cultures that we will support, US English, British English, neutral French, and French in France, and then create a new localization options object and add those cultures as supported for both localization of user interfaces (UICultures) and for globalization of data values like dates and currency (Cultures), as shown in the following code:

string[] cultures = new[] { "en-US", "en-GB", "fr", "fr-FR" };
RequestLocalizationOptions localizationOptions = new();
// cultures[0] will be "en-US"
localizationOptions.SetDefaultCulture(cultures[0])
 .AddSupportedCultures(cultures) // globalization of data formats
 .AddSupportedUICultures(cultures); // localization of UI
app.UseRequestLocalization(localizationOptions);

Request localization means that the browser can request what culture it prefers by adding a query string parameter (for example, ?culture=en-US&ui-culture=en-US), or sending a cookie (for example, c=en-US|uic=en-US), or setting an HTTP header (for example, Accept-Language: en-US,en;q=0.9,fr-FR;q=0.8,fr;q=0.7,en-GB;q=0.6). Calling the UseRequestLocalization method tells ASP.NET Core to look for these requests and to change the current thread processing that request to use the appropriate culture to format data and load resource values.

	Start the Northwind.Mvc website project.

	In Chrome, navigate to Settings.

	In the Search settings box, type lang, and note you will find the Languages section, as shown in Figure 15.8:

[image: Figure 15.8: Searching Chrome Settings for the Language section]Figure 15.8: Searching Chrome Settings for the Language section

	Click Add languages, search for french, select both French - francais and French (France) – francais (France), and then click Add, as shown in Figure 15.9:

[image: Figure 15.9: Adding neutral French and French in France languages to Chrome]Figure 15.9: Adding neutral French and French in France languages to Chrome

	Add British English and US English.

	In the dots menu to the right of French (France), click Move to the top, and confirm that it is at the top of your list of languages.

	Close the Settings tab.

	Hold down Ctrl and click the Refresh button, and note the home page now uses localized labels and French formats for dates and currency, as shown in Figure 15.10:

[image: Figure 15.10: The Orders table localized and globalized into French]Figure 15.10: The Orders table localized and globalized into French

	Repeat the above steps for the other languages, for example, US English.

	View Developer Tools, and note the request headers have been set with US English first, as shown in Figure 15.11:

[image: Figure 15.11: The Orders table localized and globalized into US English due to the Accept-Language header]Figure 15.11: The Orders table localized and globalized into US English due to the Accept-Language header

Understanding the Accept-Language header

You might wonder how the Accept-Language header works.

Accept-Language: en-US,en;q=0.9,fr-FR;q=0.8,fr;q=0.7,en-GB;q=0.6

The Accept-Language header uses commas as separators between culture codes. Each culture code can be neutral (just a language) or specific (language and region), and each can have a quality value between 0.0 and 1.0 (default). The values should therefore be read as follows:

	en-US: English language in United States ranked highest at 1.0.

	en;q=0.9: English language anywhere in the world ranked at 0.9.

	fr-FR;q=0.8: English language in France ranked at 0.8.

	fr;q=0.7: French language anywhere in the world ranked at 0.7.

	en-GB;q=0.6: English language in United Kingdom ranked lowest at 0.6.

Defining web user interfaces with Tag Helpers

Tag Helpers make it easier to make static HTML elements dynamic. The markup is cleaner and easier to read, edit, and maintain than if you use HTML Helpers.

However, Tag Helpers do not replace HTML Helpers because there are some things that can only be achieved with HTML Helpers like rendering output that contains multiple nested tags and Tag Helpers cannot be used in Razor components. So, you must learn HTML Helpers and treat Tag Helpers as an optional choice that is better in some scenarios.

Tag Helpers are especially useful for Front End (FE) developers who primarily work with HTML, CSS, and JavaScript because the FE developer does not have to learn C# syntax. Tag Helpers just use what look like normal HTML attributes on elements. The attribute names and values can also be selected from IntelliSense if your code editor supports that and both Visual Studio 2022 and Visual Studio Code do.

Comparing HTML Helpers and Tag Helpers

For example, to render a linkable hyperlink to a controller action, you could use an HTML Helper method, as shown in the following markup:

@Html.ActionLink("View our privacy policy.", "Privacy", "Index")

To make it clearer how it works you could use named parameters:

@Html.ActionLink(linkText: "View our privacy policy.",
 action: "Privacy", controller: "Index")

But using a Tag Helper would be even clearer and cleaner for someone how works a lot with HTML:

<a asp-action="Privacy" asp-controller="Home">View our privacy policy.

All three examples above generate the following rendered HTML element:

View our privacy policy.

In the next few sections, we will review some of the more common Tag Helpers:

	Anchor Tag Helper

	Cache Tag Helper

	Environment Tag Helper

	Image Tag Helper

	Forms-related Tag Helpers

Exploring the Anchor Tag Helper

Let's see some examples of the Anchor Tag Helper. First, we will create three clickable hyperlinks styled as buttons to view the home page with all orders, the orders for a single customer, and the orders in a single country. This will allow us to see the basics of creating links to controllers and actions as well as passing parameters using a route parameter and arbitrary query string parameters:

	In the Views folder, in _ViewImports.cshtml, note it adds the ASP.NET Core Tag Helpers, as shown highlighted in the following code:

@using Northwind.Mvc
@using Northwind.Mvc.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

	In the Views/Home folder, in Privacy.cshtml, add markup to define a paragraph with clickable hyperlinks styled as buttons using the <a> tag, as shown in the following markup:

<p>
 <a asp-controller="Home" asp-action="Index"
 class="btn btn-primary" role="button">Orders
 <a asp-controller="Home"
 class="btn btn-outline-primary" role="button">This Page
 <a asp-controller="Home" asp-action="Index" asp-route-id="ALFKI"
 class="btn btn-outline-primary" role="button">
 Orders for Alfreds Futterkiste
 <a asp-controller="Home" asp-action="Index" asp-route-country="Brazil"
 class="btn btn-outline-primary" role="button">Orders in Brazil
</p>

If you set a controller name without an action name, then it defaults to the current action, in this case, Privacy. The asp-route-{parametername} attribute can use any arbitrary parameter name. In the code example above, we use id and country. id will map to the route parameter with the same name. country is not a route parameter so it will be passed as a query string.

	In the Controllers folder, in HomeController.cs, modify the Index action method to define two optional parameters to pass a customer id and the name of a country, and then modify the LINQ query to use them to filter the orders if they are set, as shown highlighted in the following code:

public IActionResult Index(string? id = null, string? country = null)
{
 IEnumerable<Order> model = db.Orders
 .Include(order => order.Customer)
 .Include(order => order.OrderDetails);
 if (id != null)
 {
 model = model.Where(order => order.Customer?.CustomerId == id);
 }
 if (country != null)
 {
 model = model.Where(order => order.Customer?.Country == country);
 }
 model = model
 .OrderByDescending(order => order.OrderDetails
 .Sum(detail => detail.Quantity * detail.UnitPrice))
 .AsEnumerable();
 return View(model);
}

	Start the Northwind.Mvc website project.

	View Developer Tools and click Elements.

	On the home page, click Privacy to navigate to that page, and note the buttons, including their raw HTML that show the href attribute paths that were generated by the Anchor Tag Helper, as shown in Figure 15.12:

[image: Figure 15.12: Three hyperlinks styled as buttons generated by Anchor Tag Helper]Figure 15.12: Three hyperlinks styled as buttons generated by Anchor Tag Helper

	Click each button and then come back to this page to make sure they work correctly.

	Shut down the web server and close the browser.

	In the Views/Home folder, in Index.cshtml, at the end of the table of orders, add an anchor tag to indicate the end of the orders table, as shown highlighted in the following markup:

 </table>

</div>

	In the Views/Home folder, in Privacy.cshtml, After the existing anchor tags, add another one to pass the dictionary of shippers to the current page, as shown in the following markup:

<a asp-controller="Home" asp-action="Index" asp-fragment="endOfTable"
 class="btn btn-outline-primary">Orders (end of table)

	In the Views/Home folder, in Privacy.cshtml, modify the second anchor tag to explicit set the protocol to use https, as shown highlighted in the following markup:

<a asp-controller="Home" asp-protocol="https"
 class="btn btn-outline-primary">This Page

	In the Controllers folder, in HomeController.cs, add an action method named Shipper and give it a parameter to receive a shipper entity passed as a query string and then pass it to the view, as shown in the following code:

public IActionResult Shipper(Shipper shipper)
{
 return View(shipper);
}

	In the Views/Home folder, add an empty Razor view named Shipper.cshtml.

	Modify the contents, as shown in the following markup:

@model Shipper
@{
 ViewData["Title"] = "Shippers";
}
<h1>@ViewData["Title"]</h1>
<div>
 <div class="mb-3">
 <label for="shipperIdInput" class="form-label">Shipper Id</label>
 <input type="number" class="form-control" id="shipperIdInput"
 value="@Model.ShipperId">
 </div>
 <div class="mb-3">
 <label for="companyNameInput" class="form-label">Company Name</label>
 <input class="form-control" id="companyNameInput"
 value="@Model.CompanyName">
 </div>
 <div class="mb-3">
 <label for="phoneInput" class="form-label">Phone</label>
 <input class="form-control" id="phoneInput" value="@Model.Phone">
 </div>
</div>

	In the Views/Home folder, in Privacy.cshtml, at the top of the file, add code and markup to inject the Northwind database context and then use it to define a Razor function to create a dictionary with string values for both the key and value populated from the shippers table, as shown highlighted in the following code:

@inject NorthwindContext db
@{
 ViewData["Title"] = "Privacy Policy";
}
@functions {
 public async Task<IDictionary<string, string>> GetShipperData()
 {
 // first the first shipper
 Shipper? shipper = await db.Shippers.FindAsync(1);
 Dictionary<string, string> keyValuePairs = new();
 if (shipper != null)
 {
 keyValuePairs = new()
 {
 { "ShipperId", shipper.ShipperId.ToString() },
 { "CompanyName", shipper.CompanyName },
 { "Phone", shipper.Phone ?? string.Empty }
 };
 }
 return keyValuePairs;
 }
}

	After the existing anchor tags, add another one to pass the dictionary to the current page, as shown in the following markup:

<a asp-controller="Home" asp-action="Shipper"
 asp-all-route-data="await GetShipperData()"
 class="btn btn-outline-primary">Shipper

Passing a complex object as a query string like this quickly hits the limit of about 1000 characters for a URL. To send larger objects, you should use POST instead of GET by using a <form> element instead of an anchor tag <a>.

	Start the Northwind.Mvc website project.

	View Developer Tools and click Elements.

	On the home page, click Privacy to navigate to that page, and note the buttons, including their raw HTML that show the href attribute paths that were generated by the Anchor Tag Helper, as shown in Figure 15.13:

[image: Figure 15.13: Using a fragment and passing a complex object using query string parameters]Figure 15.13: Using a fragment and passing a complex object using query string parameters

A side benefit of specifying the protocol is that the generated URL must include the protocol, domain, and any port number, as well as the relative path, so it is a convenient way to get a static URL instead of the default relative path URL.

	Click the Orders (end of table) button and note the browser navigates to the home page and then jumps to the end of the orders table.

	Go back to the Privacy page, click the Shipper button, and note the shipper details, as shown in Figure 15.14:

[image: Figure 15.14: A shipper passed using query string parameters]Figure 15.14: A shipper passed using query string parameters

	Close the browser and shut down the web server.

Exploring the Cache Tag Helpers

The Cache and Distributed Cache Tag Helpers improve the performance of your web pages by caching their content using the in-memory or the registered distributed cache ASP.NET Core cache providers respectively.

In-memory cache is best for single web server or a web server farm with session affinity enabled, meaning that subsequent requests from the same browser are served by the same web server.

Distributed cache is best for a web server farm or in a cloud provider like Azure. You can register providers for SQL Server, Redis, or NCache, or create your own custom provider.

In this book, we will only look at in-memory caching, so if you want to learn more about distributed caching then you can use the following link: https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed

Attributes that can be applied to the Cache Tag Helper include:

	enabled: Default value is true. This exits so that you can include the <cache> element in the markup but decide at runtime if it should be enabled or not.

	expires-after: A TimeSpan value to expire after. The default is 00:20:00 meaning 20 minutes.

	expires-on: A DateTimeOffset value to expire at. No default.

	expires-sliding: A TimeSpan value to expire after if the value has not been accessed during that time. This is useful when storing database entities that cost a lot to create and have varied popularity. The popular entities will stay cached if they continue to be accessed. Less popular entities will drop out. No default.

	vary-by-{type}: These attributes allow multiple different cached versions based on differences in an HTTP header value, a user, a route, cookie, or query string value, or a custom value.

Let's see an example of the Cache Tag Helper:

	In the Views/Home folder, in Index.cshtml, immediately after the heading and before the table, add <div> elements to define a Bootstrap row with two columns that show the current UTC date and time twice, once live and then once cached, as shown in the following markup:

<div class="row">
 <div class="col">
 <h2>Live</h2>
 <p class="alert alert-info">
 UTC: @DateTime.UtcNow.ToLongDateString() at
 @DateTime.UtcNow.ToLongTimeString()
 </p>
 </div>
 <div class="col">
 <h2>Cached</h2>
 <p class="alert alert-secondary">
 <cache>
 UTC: @DateTime.UtcNow.ToLongDateString() at
 @DateTime.UtcNow.ToLongTimeString()
 </cache>
 </p>
 </div>
</div>

	Start the Northwind.Mvc website project.

	Refresh the home page several times over several seconds and note the left-hand time is always refreshed to show the live time, and the right-hand time is cached (for 20 minutes by default), as shown in Figure 15.15:

[image: Figure 15.15: Live and cached UTC times]Figure 15.15: Live and cached UTC times

	Close the browser and shut down the web server.

	In the Views/Home folder, in Index.cshtml, modify the <cache> element to expire after 10 seconds, as shown highlighted in the following markup:

<cache expires-after="@TimeSpan.FromSeconds(10)">

	Start the Northwind.Mvc website project.

	Refresh the home page several times over several seconds and note the left-hand time is always refreshed to show the live time, and the right-hand time is cached for 10 seconds before it then refreshes.

	Close the browser and shut down the web server.

Exploring the Environment Tag Helper

The Environment Tag Helper renders its content only if the current environment matches one of the values in a comma-separated list of names. This is useful if you want to render some content like instructions to a tester when hosted in a staging environment or content like customer-specific information that developers and testers do not need to see while hosted in the production environment.

As well as a names attribute to set the comma-separated list of environments, you can also use include (works the same as names) and exclude (renders for all environments except the ones in the list).

Let's see an example:

	In the Views/Home folder, in Privacy.cshtml, inject the dependency service for the web host environment, as shown in the following code:

@inject IWebHostEnvironment webhost

	After the heading, add two <environment> elements, the first to show output only for developers and testers, and the second to show output only for product visitors, as shown in the following markup:

<environment names="Development,Staging">
 <div class="alert alert-warning">
 <h2>Attention developers and testers</h2>
 <p>
 This is a warning that only developers and testers will see.
 Current environment:
 @webhost.EnvironmentName
 </p>
 </div>
</environment>
<environment names="Production">
 <div class="alert alert-info">
 <h2>Welcome, visitor!</h2>
 <p>
 This is information that only a visitor to the production website
 will see. Current environment:
 @webhost.EnvironmentName
 </p>
 </div>
</environment>

	Start the Northwind.Mvc website project.

	Navigate to the Privacy page, and note the message for developers and testers, as shown in Figure 15.16:

[image: Figure 15.16: The Privacy page in Development environment]Figure 15.16: The Privacy page in Development environment

	Close the browser and shut down the web server.

	In the Properties folder, in launchSettings.json, for the https profile, change the environment setting to Production, as shown highlighted in the following JSON:

"https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5151;http://localhost:5152",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Production"
 }
},

	Start the Northwind.Mvc website project.

	Navigate to the Privacy page, and note the message for public visitors, as shown in Figure 15.17:

[image: Figure 15.18: The Privacy page in Production environment]Figure 15.18: The Privacy page in Production environment

	Close the browser and shut down the web server.

	In the Properties folder, in launchSettings.json, for the https profile, change the environment setting back to Development.

Understanding how the Image Tag Helper busts a cached file

When asp-append-version is specified with a true value in any element like or <script> along with a src attribute, the Image Tag Helper is invoked (this helper is poorly named because it does not only affect images!).

It works by automatically appending a query string value named v that is generated from a SHA256 hash of the referenced source file, as shown in the following example generated output:

<script src="~/js/site.js? v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM"></script>

If even a single byte within the site.js file changes, then its hash value will be different, and therefore if a browser or CDN is caching the script file, then it will bust the cached copy and replace it with the new version.

The src attribute must be set to a static file stored on the local web server, usually in the wwwroot folder but you can configure additional locations. Remote references are not supported.

Exploring Forms-related Tag Helpers

The Form Tag Helper generates the <form> elements action attribute for a MVC controller action or named route. Like the Anchor Tag Helper, you can pass parameters using the asp-route-<parametername> attribute. It also generates a hidden verification token to prevent cross-site request forgery. You must apply the [ValidateAntiForgeryToken] attribute to the HTTP POST action method to properly use this feature.

The Label and Input Tag Helpers bind labels and inputs to properties on a model. They can then generate the id, name, and for attributes automatically, as well as add validation attributes and messages.

Let's see an example of a form for entering shipper information:

	In the Views/Home folder, in Shipper.cshtml, duplicate the existing markup that outputs shipper details, wrap it in a <form> element that uses the Form Tag Helper, and modify the <label> and <input> elements to use the Label and Input Tag Helpers, as shown highlighted in the following markup:

@model Shipper
@{
 ViewData["Title"] = "Shippers";
}
<h1>@ViewData["Title"]</h1>
<h2>Without Form Tag Helper</h2>
<div>
 <div class="mb-3">
 <label for="shipperIdInput" class="form-label">Shipper Id</label>
 <input type="number" class="form-control" id="shipperIdInput"
 value="@Model.ShipperId">
 </div>
 <div class="mb-3">
 <label for="companyNameInput" class="form-label">Company Name</label>
 <input class="form-control" id="companyNameInput"
 value="@Model.CompanyName">
 </div>
 <div class="mb-3">
 <label for="phoneInput" class="form-label">Phone</label>
 <input class="form-control" id="phoneInput" value="@Model.Phone">
 </div>
</div>
<h2>With Form Tag Helper</h2>
<form asp-controller="Home" asp-action="ProcessShipper"
 class="form-horizontal" role="form">
 <div>
 <div class="mb-3">
 <label asp-for="ShipperId" class="form-label" />
 <input asp-for="ShipperId" class="form-control">
 </div>
 <div class="mb-3">
 <label asp-for="CompanyName" class="form-label" />
 <input asp-for="CompanyName" class="form-control">
 </div>
 <div class="mb-3">
 <label asp-for="Phone" class="form-label" />
 <input asp-for="Phone" class="form-control">
 </div>
 <div class="mb-3">
 <input type="submit" class="form-control">
 </div>
 </div>
</form>

	In the Controllers folder, in HomeController.cs, add an action method named ProcessShipper and give it a parameter to receive a shipper entity passed as a query string and then pass it to the view, as shown in the following code:

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult ProcessShipper(Shipper shipper)
{
 return Json(shipper);
}

	Start the Northwind.Mvc website project.

	Navigate to the Privacy page, and then click the Shipper button.

	In the Shipper page, right-click, select View page source, and note the different HTML output for the form generated by the Form, Input, and Label Tag Helpers, including a hidden element named __RequestVerificationToken, as shown in the following markup and in Figure 15.18:

<h2>With Form Tag Helper</h2>
<form class="form-horizontal" role="form" action="/Home/ProcessShipper" method="post">
 <div>
 <div class="mb-3">
 <label class="form-label" for="ShipperId" />
 <input class="form-control" type="number" data-val="true" data-val-required="The ShipperId field is required." id="ShipperId" name="ShipperId" value="1">
 </div>
 <div class="mb-3">
 <label class="form-label" for="CompanyName" />
 <input class="form-control" type="text" data-val="true" data-val-length="The field CompanyName must be a string with a maximum length of 40." data-val-length-max="40" data-val-required="The CompanyName field is required." id="CompanyName" maxlength="40" name="CompanyName" value="Speedy Express">
 </div>
 <div class="mb-3">
 <label class="form-label" for="Phone" />
 <input class="form-control" type="text" data-val="true" data-val-length="The field Phone must be a string with a maximum length of 24." data-val-length-max="24" id="Phone" maxlength="24" name="Phone" value="(503) 555-9831">
 </div>
 <div class="mb-3">
 <input type="submit" class="form-control">
 </div>
 </div>
<input name="__RequestVerificationToken" type="hidden" value="CfDJ8NTt08jabvBCqd1P4J-HCq3X9CDrTPjBphdDdVmG6UT0GFBJk1w7F1OLmNT-jEGjlGIjfV3kmNUaofOAxlGgiZJwbAR73g-QgFw8oFV_0vjlo45t9dL9E1l1hZzjLXtj8B7ysDkCYcm8W9zS0T7V3R0" /></form>

[image: Figure 15.18: A web form generated by the Form, Input, and Label Tag Helpers]Figure 15.18: A web form generated by the Form, Input, and Label Tag Helpers

	In the form, change the shipper ID and company name, noting the validation attributes prevent a company name longer than 40 characters and only numbers are allowed for the shipper ID, as shown in Figure 15.19:

[image: Figure 15.19: A web form for a shipper]Figure 15.19: A web form for a shipper

	Click the Submit button, and note the JSON document returned, as shown in Figure 15.20:

[image: Figure 15.20: A processed shipper]Figure 15.20: A processed shipper

	Close the browser and shut down the web server.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 15.1 – Test your knowledge

Answer the following questions:

	?

	?

	?

	?

	?

Exercise 15.2 – Practice building a web user interface

???

Exercise 15.3 – Explore topics

Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-15---building-web-user-interfaces-using-aspnet-core

Summary

In this chapter, you learned how to build user interfaces using ASP.NET Core MVC. You learned about:

	ASP.NET Core Razor views and Razor syntax

	Some common Bootstrap styles

	Localizing and globalizing an ASP.NET Core website

	HTML Helpers and Tag Helpers

In the next chapter, you will learn how to build web user interface components using Blazor WebAssembly.

16 Building Web Components Using Blazor WebAssembly

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about building web components using Blazor WebAssembly. These can be rich and interactive user interfaces built using HTML and CSS to provide cross-platform browser support.

There are many advantages to using .NET for client-side web development. You can write 99% of your code using C# instead of JavaScript and interop with JavaScript modules for the other 1%.

You can share business logic between server and client because Blazor implements .NET Standard, and you can use the extensive .NET libraries, both from Microsoft and third-parties.

This chapter will cover the following topics:

	Understanding Blazor

	Building Blazor components

	Building a Blazor data component

	Implementing caching using local storage

	Building Progressive Web Apps

Understanding Blazor

Blazor is Microsoft's framework for web component development built on .NET.

Understanding Blazor hosting models

Blazor has multiple hosting models to choose from:

	Blazor WebAssembly: The code executes in the web browser like other single page application (SPA) frameworks, for example, React and Angular. Your .NET assemblies and the .NET runtime are downloaded to the browser and cached for future use. The nature of Blazor WebAssembly provides some key benefits including the ability to run the app offline when not connected to the network, to host the app on a static website or serve it from a Content Delivery Network (CDN), and to offload processing to the client which increases scalability.

	Blazor Server: The code executes on the web server and user interface updates are sent to the browser using SignalR. The nature of Blazor Server provides some key benefits including complete .NET API support, direct access to all server-side resources like databases, fast initial load time, and your code is protected because it never leaves the server.

	Blazor Hybrid: The code executes in a local web view hosted in a native client app. The app can be built using .NET MAUI if the app needs to be cross-platform; or using Windows Presentation Foundation or Windows Forms if you are only targeting Windows. The main benefit of Blazor Hybrid compared to the other two hosting models is access to native client capabilities that can provide a better user experience.

Blazor WebAssembly and Blazor Server support the latest version of all four major web browsers, Chrome, Firefox, Edge, and Safari, on mobile and desktop platforms. Blazor Hybrid supports the latest web view components on the three major platforms, Chrome on Android, Safari on iOS and macOS, and Edge WebView2 on Windows.

More Information: The official Blazor documentation has a useful table to help you choose between the hosting models. You can find it at the following link: https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models#which-blazor-hosting-model-should-i-choose

Understanding deployment choices for Blazor WebAssembly apps

There are two main ways to deploy a Blazor WebAssembly app:

	You can create and deploy just a Blazor WebAssembly app client project by placing its published files in any static hosting web server. For example, Azure Static Web Apps is a potential choice of host for Blazor WebAssembly app. You can read more at the following link: https://docs.microsoft.com/en-us/azure/static-web-apps/overview

	You can deploy a Blazor WebAssembly app server project, which references the client app and perhaps hosts services called by the Blazor WebAssembly app as well as the app itself. The Blazor WebAssembly app is placed in the server website wwwroot folder along with any other static assets.

More Information: You can read more about these choices at the following link: https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly

Understanding the browser compatibility analyzer for Blazor WebAssembly

With .NET 6 and later, Microsoft has unified the .NET library for all workloads. However, although in theory, this means that a Blazor WebAssembly app has full access to all .NET APIs, in practice, it runs inside a browser sandbox so there are limitations. If you call an unsupported API, this will throw a PlatformNotSupportedException.

To be forewarned about unsupported APIs, you can add a platform compatibility analyzer that will warn you when your code uses APIs that are not supported by browsers.

Blazor WebAssembly App and Razor Class Library project templates automatically enable browser compatibility checks.

To manually activate browser compatibility checks, for example, in a Class Library project, add an entry to the project file, as shown in the following markup:

<ItemGroup>
 <SupportedPlatform Include="browser" />
</ItemGroup>

Microsoft decorates unsupported APIs, as shown in the following code:

[UnsupportedOSPlatform("browser")]
public void DoSomethingOutsideTheBrowserSandbox()
{
 ...
}

Good Practice: If you create libraries that should not be used in Blazor WebAssembly apps, then you should decorate your APIs in the same way.

Understanding CSS and JavaScript isolation

Blazor components often need to provide their own CSS to apply styling or JavaScript for activities that cannot be performed purely in C#, like access to browser APIs. To ensure this does not conflict with site-level CSS and JavaScript, Blazor supports CSS and JavaScript isolation. If you have a component named Index.razor, simply create a CSS file named Index.razor.css. The styles defined within this file will override any other styles in the project.

Understanding Blazor components

Blazor is all about components. Components are a part of a web app like a button, a grid, a form for gathering input from the visitor, or even a whole page. Components can be reused and nested to build more complex components.

A Blazor component usually consists of a Razor file with the file extension .razor. Just like Razor views in ASP.NET Core MVC or Razor Pages, Razor files used by Blazor components easily mix HTML and C# code. As well as the HTML elements that make up the user interface parts, and the CSS used to style them, the Razor file also has a code block to implement event handling, properties, and other statements to provide the functionality of the component.

For example, a Blazor component named ProgressBar.razor could implement a progress bar using Bootstrap. It might define parameters for minimum, maximum, and the current value of the progress bar, and have Boolean parameters to enable animation style and show the current value as text, as shown in the following markup:

<div class="progress">
 <div class="progress-bar progress-bar-striped bg-info
 @(IsAnimated ? " progress-bar-animated" : "")"
 role="progressbar" aria-label="@LabelText" style="width: @Value%"
 aria-valuenow="@Value" aria-valuemin="@Minimum" aria-valuemax="@Maximum">
 @(ShowValue ? Value + "%" : "")
 </div>
</div>
@code {
 [Parameter]
 public int Value { get; set; } = 0;
 [Parameter]
 public int Minimum { get; set; } = 0;
 [Parameter]
 public int Maximum { get; set; } = 100;
 [Parameter]
 public bool IsAnimated { get; set; } = false;
 [Parameter]
 public bool ShowValue { get; set; } = false;
 [Parameter]
 public string? LabelText { get; set; } = "Progress bar";
}

To embed an instance of the component on a page you use the component name as if it were an HTML element and set its parameters using HTML attributes, as shown in the following markup:

<ProgressBar Value="25" IsAnimated="true" ShowValue="true"
 LabelText="Progress of database deletion" />

Understanding Blazor routing to page components

The Router component in the App.razor file enables routing to components, as shown in the following markup:

<Router AppAssembly="@typeof(App).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)" />
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <PageTitle>Not found</PageTitle>
 <LayoutView Layout="@typeof(MainLayout)">
 <p role="alert">Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

The Router component scans the assembly specifically in its AppAssembly parameter for components decorated with the [Route] attribute and registers their URL paths.

If a route match is found, then the context of the request is stored in a variable named routeData and passed to the matching Razor file. A default layout is set to use a file named MainLayout.cshtml. In the Razor file, the focus is set to the first <h1> element. If the Razor file contains a form then you might want to set the first form input element like a text box to have the focus.

If a route match is not found, then the Razor markup specified in the <LayoutView> is rendered with the shared layout and its page title set to Not found.

For example, in a typical ASP.NET Core MVC project, an MVC controller could be decorated with the [Route] attribute, as shown in the following code:

[Route("customers")]
public class CustomersController
{

An HTTP GET request to the relative path /customers would be matched to the route.

To create an equivalent routable page component, add the @page directive to the top of a component's .razor file, as shown in the following markup:

@page "customers"

A page component can have multiple @page directives to register multiple routes.

At runtime, the page component is merged with any specific layout that you have specified, just like an MVC view or Razor Page would be. By default, Blazor project templates define a file named MainLayout.razor as the layout for page components.

Good Practice: By convention, put routable page Blazor components in the Pages folder and non-page components in a Components folder.

How to pass route parameters

Blazor routes can include case-insensitive named parameters, and your code can most easily access the passed values by binding the parameter to a property in the code block using the [Parameter] attribute, as shown in the following markup:

@page "/employees/{country}"
<div>Country parameter as the value: @Country</div>
@code {
 [Parameter]
 public string Country { get; set; }
}

The recommended way to handle a parameter that should have a default value when it is missing is to suffix the parameter with ? and use the null coalescing operator in the OnParametersSet method, as shown in the following markup:

@page "/employees/{country?}"
<div>Country parameter as the value: @Country</div>
@code {
 [Parameter]
 public string Country { get; set; }
 protected override void OnParametersSet()
 {
 // if the automatically set property is null
 // set its value to USA
 Country = Country ?? "USA";
 }
}

Understanding setting parameters from query string

You can also set component properties using parameters from a query string, as shown in the following code:

[Parameter]
[SupplyParameterFromQuery(Name = "country")]
public string? Country { get; set; }

Understanding route constraints for parameters

Route constraints validate that the data type is correct for a passed parameter.

	Constraint Example
	Description

	{isanimated:bool}
	The IsAnimated property must be set to a valid Boolean value, for example, TRUE or true .

	{hiredate:datetime}
	The HireDate property must be a valid date/time value.

	{price:decimal}
	The UnitPrice property must be a valid decimal value.

	{shipweight:double}
	The ShipWeight property must be a valid double value.

	{shipwidth:float}
	The ShipWidth property must be a valid float value.

	{orderid:guid}
	The OrderId property must be a valid Guid value.

	{categoryid:int}
	The CategoryId property must be a valid int value.

	{nanoseconds:long}
	The Nanoseconds property must be a valid long value.

Good Practice: Route constraints assume invariant culture so your URLs must not be localized. For example, always use invariant culture formats to pass date and time parameter values.

Understanding base component classes

The OnParametersSet method is defined by the base class that components inherit from by default named ComponentBase, as shown in the following code:

using Microsoft.AspNetCore.Components;
public abstract class ComponentBase : IComponent, IHandleAfterRender, IHandleEvent
{
 // members not shown
}

ComponentBase has some useful methods that you can call and override, as shown in the following table:

	Method(s)
	Description

	InvokeAsync
	Call this method to execute a function on the associated renderer's synchronization context.

	OnAfterRender,

OnAfterRenderAsync

	Override these methods to invoke code after each time the component has been rendered.

	OnInitialized,

OnInitializedAsync

	Override these methods to invoke code after the component has received its initial parameters from its parent in the render tree.

	OnParametersSet,

OnParametersSetAsync

	Override these methods to invoke code after the component has received parameters and the values have been assigned to properties.

	ShouldRender
	Override this method to indicate if the component should render.

	StateHasChanged
	Call this method to cause the component to re-render.

Blazor components can have shared layouts in a similar way to MVC views and Razor Pages. You would create a .razor component file and make it explicitly inherit from LayoutComponentBase, as shown in the following markup:

@inherits LayoutComponentBase
<div>
 ...
 @Body
 ...
</div>

The base class has a property named Body that you can render in the markup at the correct place within the layout.

You can set a default layout for components in the App.razor file and its Router component. To explicitly set a layout for a component, use the @layout directive, as shown in the following markup:

@page "/employees"
@layout AlternativeLayout
<div>
 ...
</div>

How to navigate Blazor routes to page components

Microsoft provides a dependency service named NavigationManager that understands Blazor routing and the NavLink component. The NavigateTo method is used to go to the specified URL.

In HTML, you use the <a> element to define navigation links, as shown in the following markup:

Employees

In Blazor, use the <NavLink> component, as shown in the following markup:

<NavLink href="/employees">Employees</NavLink>

The NavLink component is better than an anchor element because it automatically sets its class to active if its href is a match on the current location URL. If your CSS uses a different class name, then you can set the class name in the NavLink.ActiveClass property.

By default, in the matching algorithm, the href is a path prefix, so if NavLink has an href of /customers, as shown in the preceding code example, then it would match all the following paths and set them all to have the active class style:

/employees
/employees/USA
/employees/UK/London

To ensure that the matching algorithm only performs matches on all the paths, set the Match parameter to NavLinkMatch.All, as shown in the following code:

<NavLink href="/employees" Match="NavLinkMatch.All">Employees</NavLink>

If you set other attributes such as target, they are passed through to the underlying <a> element that is generated.

Building Blazor components

With ASP.NET Core 7, Blazor introduces new project templates for starting from empty. They provide the minimum to run without any example components like the old Counter component or the FetchData component that calls a weather service.

First, we will create a Blazor WebAssembly project that we will then add components to:

	Use your preferred code editor to create a new solution/workspace named Chapter16.

	Add a console app project, as defined in the following list:

	Project template: Blazor WebAssembly App Empty / blazorwasm-empty

	Workspace/solution file and folder: Chapter16

	Project file and folder: Northwind.BlazorWasm

	Configure for HTTPS: selected.

	ASP.NET Core Hosted: selected or use the --hosted switch.

	Progressive Web App: selected or use the --pwa switch.

	Note that three projects have been created named Northwind.BlazorWasm.Client, Northwind.BlazorWasm.Server, and Northwind.BlazorWasm.Shared. The Client project is the Blazor WebAssembly project, and it could be deployed on its own. The Server project is currently hosting the client app. We will also add a service to this project for the client to call. The Shared project is where you can put classes that will be used in both projects. It is referenced but not currently needed.

	Use your preferred coding tool to set which project is active:

	If you are using Visual Studio 2022, set the startup project for the solution to the Northwind.BlazorWasm.Server project.

	If you are using Visual Studio Code, set Northwind.BlazorWasm.Server as the active OmniSharp project.

	In the Northwind.BlazorWasm.Server project, in Program.cs, note the statements enable a fairly standard ASP.NET Core HTTP pipeline, for example, enabling Razor Pages and MVC controllers and views, with some additions specifically to host a Blazor WebAssembly client app.

	In Program.cs, note that when running in the development environment, Web Assembly debugging tools are enabled, as shown highlighted in the following code:

if (app.Environment.IsDevelopment())
{
 app.UseWebAssemblyDebugging();
}

	In Program.cs, note the server project is configured to respond to requests for the Blazor WebAssembly framework files so they can be download to a browser from the root of the website, as shown in the following code:

app.UseBlazorFrameworkFiles();

	In Program.cs, note that if there are no matches for Razor Pages or MVC routes, then the website serves a static file named index.html, as shown in the following code:

app.MapFallbackToFile("index.html");

The Server project does not have an index.html file. This file will be provided by the Client project.

	In the Northwind.BlazorWasm.Server project, expand the Properties folder, open the launchSettings.json file, and note the random port numbers (yours will be different) configured for the Kestrel-hosted project for http and https, as shown highlighted in the following settings:

{
 "profiles": {
 "http": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "dotnetRunMessages": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/ws-proxy?browser={browserInspectUri}",
 "applicationUrl": "http://localhost:5170"
 },
 "https": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "dotnetRunMessages": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/ws-proxy?browser={browserInspectUri}",
 "applicationUrl": "https://localhost:7170;http://localhost:5170"
 },
 "IIS Express": {

	For the https profile, for its applicationUrl setting, change the port numbers to 5161 for https and 5162 for http, as shown in the following setting:

"applicationUrl": "https://localhost:5161;http://localhost:5162",

	For the http profile, for its applicationUrl setting, change the port number to 5162 for http, as shown in the following setting:

"applicationUrl": "http://localhost:5162",

	Save the changes to the launchSettings.json file.

	In the Northwind.BlazorWasm.Client project, expand the wwwroot folder, and then open the index.html file.

	In index.html, note the <link> elements to reference a stylesheet and manifest, as shown in the following markup:

<link href="css/app.css" rel="stylesheet" />
<link href="manifest.json" rel="manifest" />

	In index.html, note the <div> elements that show by default while loading the Blazor WebAssembly runtime and when errors occur, as shown in the following markup:

<div id="app">Loading...</div>
<div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 🗙
</div>

	In index.html, note the <script> elements to enable Blazor WebAssembly and a service worker for this web page, as shown in the following markup:

<script src="_framework/blazor.webassembly.js"></script>
<script>navigator.serviceWorker.register('service-worker.js');</script>

	In index.html, add markup to use the latest version of Bootstrap including a <meta> element in the <head> to set the viewport and <script> elements at the bottom of the <body> to add support for advanced features provided by Popper.js, as shown highlighted in the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <base href="/" />
 <link href="css/app.css" rel="stylesheet" />
 <link href="manifest.json" rel="manifest" />
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
</head>
<body>
 <div id="app">Loading...</div>
 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 🗙
 </div>
 <script src="_framework/blazor.webassembly.js"></script>
 <script>navigator.serviceWorker.register('service-worker.js');</script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/js/bootstrap.bundle.min.js" integrity="sha384-A3rJD856KowSb7dwlZdYEkO39Gagi7vIsF0jrRAoQmDKKtQBHUuLZ9AsSv4jD4Xa" crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.11.5/dist/umd/popper.min.js" integrity="sha384-Xe+8cL9oJa6tN/veChSP7q+mnSPaj5Bcu9mPX5F5xIGE0DVittaqT5lorf0EI7Vk" crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/js/bootstrap.min.js" integrity="sha384-ODmDIVzN+pFdexxHEHFBQH3/9/vQ9uori45z4JjnFsRydbmQbmL5t1tQ0culUzyK" crossorigin="anonymous"></script>
</body>
</html>

	In MainLayout.razor, add markup to use Bootstrap grid classes to create a navigation area in a left column and render the body of the Blazor WebAssembly client app in the remaining space, as shown highlighted in the following markup:

@inherits LayoutComponentBase
<main>
 <div class="container">
 <div class="row">
 <div class="col-md-auto">
 <div class="alert alert-secondary">
 Navigation (coming soon)
 </div>
 </div>
 <div class="col">@Body</div>
 </div>
 </div>
</main>

	In the Pages folder, in Index.razor, note the @page directive that configures a route for the root path to go to this page, and then change the heading, as shown highlighted in the following markup:

@page "/"
<h1>Hello, Blazor!</h1>

	Start the Northind.BlazorWasm.Server website project without debugging.

	If you are using Visual Studio 2022, then in Solution Explorer, select the Northind.BlazorWasm.Server project to make it active. In the Visual Studio 2022 toolbar, select the https profile as the Startup Project, and Google Chrome as the Web Browser.

	At the command prompt or terminal, note the ports used by the Server project website, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5161
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5162
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\apps-services-net7\Northwind.BlazorWasm\Northwind.BlazorWasm\Server

	In Chrome, note the Server project hosts the Client app project, and the <h1> element has the focus, as shown in Figure 16.1:

[image: Figure 16.1: A simple page implemented as a Blazor WebAssembly component]Figure 16.1: A simple page implemented as a Blazor WebAssembly component

	Close the browser and shut down the web server.

Building and testing a Blazor progress bar component

In this section, we will build a component to provide a progress bar. It will use Bootstrap classes to set a stripped light blue color with options to animate the bar and show the current value of the progress as a percentage.

	In the Northwind.BlazorWasm.Server project, add a new folder named Components.

	In the Components folder, add a new file named ProgressBar.razor. In Visual Studio, the project item template is named Razor Component.

Good Practice: Component filenames must start with an uppercase letter, or you will have compile errors!

	In ProgressBar.razor, add statements to render <div> elements that use Bootstrap classes to define a progress bar with bindable parameters to set various properties, as shown in the following markup:

<div class="progress">
 <div class="progress-bar progress-bar-striped bg-info
 @(IsAnimated ? " progress-bar-animated" : "")"
 role="progressbar" aria-label="@LabelText"
 style="width: @Value%" aria-valuenow="@Value"
 aria-valuemin="@Minimum" aria-valuemax="@Maximum">
 @(ShowValue ? Value + "%" : "")
 </div>
</div>
@code {
 [Parameter]
 public int Value { get; set; } = 0;
 [Parameter]
 public int Minimum { get; set; } = 0;
 [Parameter]
 public int Maximum { get; set; } = 100;
 [Parameter]
 public bool IsAnimated { get; set; } = false;
 [Parameter]
 public bool ShowValue { get; set; } = false;
 [Parameter]
 public string? LabelText { get; set; } = "Progress bar";
}

	In _Imports.razor, add a statement to import the files in the Components folder for use in all Razor files, as shown in the following code:

@using Northwind.BlazorWasm.Client.Components

The _Imports.razor file only applies to .razor files. If you use code-behind .cs files to implement component code, then they must have namespaces imported separately or use global usings to implicitly import the namespace.

	In the Pages folder, in Index.razor, add statements to define a Bootstrap row with two equal columns, and add a <ProgressBar> component set to 25%, as shown highlighted in the following markup:

@page "/"
<h1>Hello, Blazor!</h1>
<div class="row">
 <div class="col">
 <div class="alert alert-info">
 <h4>Progress of database deletion</h4>
 <ProgressBar Value="25" IsAnimated="true" ShowValue="true"
 LabelText="Progress of database deletion" />
 </div>
 </div>
 <div class="col">
 More components coming soon.
 </div>
</div>

	In App.razor, comment out the <FocusOnNavigate> element so that the <h1> is not selected, as shown in the following markup:

@*<FocusOnNavigate RouteData="@routeData" Selector="h1" />*@

A benefit of setting a focus on navigate selector is that it ensures page navigations will be announced when using a screen reader, but it can look visually unappealing.

	Start the Northind.BlazorWasm.Server website project without debugging.

	Note the progress bar that shows the progress of the (simulated!) database deletion, as shown in Figure 16.2:

[image: Figure 16.2:]Figure 16.2:

	Close the browser and shut down the web server.

Building and testing a Blazor dialog box component

In this section, we will build a component to provide a popup dialog box for interaction with the website visitor. It will use Bootstrap classes to define a button that when clicked, shows a dialog box with two buttons with configurable labels.

The component will also define to event callbacks that can be handled by the parent to customize what code executes when the two buttons are clicked.

	In the Northwind.BlazorWasm.Server project, in the Components folder, add a new file named DialogBox.razor. In Visual Studio, the project item template is named Razor Component.

	In DialogBox.razor, add statements to render <div> elements that use Bootstrap classes to define a button and model dialog box with bindable parameters to set various properties, as shown in the following markup:

<!-- Button to show the dialog box. -->
<button type="button" class="btn btn-primary"
 data-bs-toggle="modal" data-bs-target="#dialogBox">
 @DialogTitle
</button>
<!-- Dialog box to popup. -->
<div class="modal fade" id="dialogBox"
 data-bs-backdrop="static" data-bs-keyboard="false" tabindex="-1"
 aria-labelledby="dialogBoxLabel" aria-hidden="true">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <h5 class="modal-title" id="dialogBoxLabel">@DialogTitle</h5>
 <button type="button" class="btn-close"
 data-bs-dismiss="modal" aria-label="Close"></button>
 </div>
 <div class="modal-body">
 @ChildContent
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-primary"
 @onclick="OnClickPrimary">
 @PrimaryButtonText
 </button>
 <button type="button" class="btn btn-secondary"
 data-bs-dismiss="modal" @onclick="OnClickSecondary">
 @SecondaryButtonText
 </button>
 </div>
 </div>
 </div>
</div>
@code {
 [Parameter]
 public string? DialogTitle { get; set; }
 // ChildContent is a special name that is set automatically by any
 // markup content within the component begin and end elements.
 [Parameter]
 public RenderFragment? ChildContent { get; set; }
 [Parameter]
 public string? PrimaryButtonText { get; set; } = "OK";
 [Parameter]
 public EventCallback<MouseEventArgs> OnClickPrimary { get; set; }
 [Parameter]
 public string? SecondaryButtonText { get; set; } = "Cancel";
 [Parameter]
 public EventCallback<MouseEventArgs> OnClickSecondary { get; set; }
}

Note the two buttons have default text values of OK and Cancel and they both have event callback parameters that will have information about the mouse pointer passed as event arguments.

	In the Pages folder, in Index.razor, in the second column, remove the temporary "coming soon" message and then add statements to add a <DiaglogBox> component that sets the two button labels to Yes and No, as shown in the following markup:

<DialogBox DialogTitle="Delete Database"
 PrimaryButtonText="Yes" OnClickPrimary="Yes_Click"
 SecondaryButtonText="No" OnClickSecondary="No_Click">
 Are you sure you want to delete the entire database? Really?
</DialogBox>

Any content between the <DialogBox> and </DialogBox> elements is automatically set as the ChildContent property.

	In Index.razor, at the bottom of the file, add a Razor code block to define event handlers for the two click events that output which button was clicked and the current position of the mouse pointer, as shown in the following code:

@code {
 private void Yes_Click(MouseEventArgs e)
 {
 Console.WriteLine("User clicked 'Primary' button at ({0}, {1}).",
 arg0: e.ClientX, arg1: e.ClientY);
 }
 private void No_Click(MouseEventArgs e)
 {
 Console.WriteLine("User clicked 'Secondary' button at ({0}, {1}).",
 arg0: e.ClientX, arg1: e.ClientY);
 }
}

	Start the Northind.BlazorWasm.Server website project without debugging.

	Click the Delete Database button and note the model dialog box that pops up, as shown in Figure 16.3:

[image: Figure 16.3: A popup model dialog box built using Blazor WebAssembly]Figure 16.3: A popup model dialog box built using Blazor WebAssembly

	Show Developer Tools and its Console.

	In the Delete Database dialog box, click the Yes button and No button a few times (clicking the No button or the x button will close the dialog so click the Delete Database button again to reshow the dialog box), and note the messages written to the console, as shown in Figure 16.4:

[image: Figure 16.4: The dialog box component writing to the browser console]Figure 16.4: The dialog box component writing to the browser console

	Close the browser and shut down the web server.

You can read more about the supported event arguments at the following link: https://docs.microsoft.com/en-us/aspnet/core/blazor/components/event-handling#event-arguments

Building and testing a Blazor alert component

In this section, we will build a component to provide alerts for showing messages to the website visitor. It will use Bootstrap classes to define a colorful area for the message that can be dismissed. The message, title, icon, and color theme can be configured.

	In the Northwind.BlazorWasm.Shared project, in the SharedClass.cs file, add statements to define some static classes with string constant values for common Bootstrap color themes and icons, as shown in the following code:

namespace Packt.Shared;
public static class BootstrapColors
{
 public const string Primary = "primary";
 public const string Secondary = "secondary";
 public const string Danger = "danger";
 public const string Warning = "warning";
 public const string Success = "success";
 public const string Info = "info";
}
public static class BootstrapIcons
{
 public const string Alarm = "bi-alarm";
 public const string AlarmFill = "bi-alarm-fill";
 public const string Archive = "bi-archive";
 public const string ArchiveFill = "bi-archive-fill";
 public const string ArrowRepeat = "bi-arrow-repeat";
 public const string Bag = "bi-bag";
 public const string BagFill = "bi-bag-fill";
 public const string Bell = "bi-bell";
 public const string BellFill = "bi-bell-fill";
 public const string XCircle = "bi-x-circle";
 public const string XSquare = "bi-x-square";
 public const string XOctagon = "bi-x-octagon";
 public const string CheckSquare = "bi-check-square";
 public const string CheckCircle = "bi-check-circle";
 public const string Info = "bi-info";
 public const string InfoLarge = "bi-info-lg";
 public const string InfoCircle = "bi-info-circle";
 public const string InfoCircleFill = "bi-info-circle-fill";
 public const string InfoSquare = "bi-info-square";
 public const string InfoSquareFill = "bi-info-square-fill";
 public const string Exclamation = "bi-exclamation";
 public const string ExclamationLarge = "bi-exclamation-lg";
 public const string ExclamationCircle = "bi-exclamation-circle";
 public const string ExclamationCircleFill = "bi-exclamation-circle-fill";
 public const string ExclamationSquare = "bi-exclamation-square";
 public const string ExclamationSquareFill = "bi-exclamation-square-fill";
 public const string ExclamationTriangle = "bi-exclamation-triangle";
 public const string ExclamationTriangleFill = "bi-exclamation-triangle-fill";
}

The complete list is searchable at the following link: https://icons.getbootstrap.com/

	In the Northwind.BlazorWasm.Client project, in the wwwroot folder, in index.cshtml, add a <link> element to the <head> to reference Bootstrap Icons, as shown in the following markup:

<link href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.9.1/font/bootstrap-icons.css" rel="stylesheet">

	In the Northwind.BlazorWasm.Client project, in the Components folder, add a new file named Alert.razor. In Visual Studio, the project item template is named Razor Component.

	In Alert.razor, add statements to render <div> elements that use Bootstrap classes to define a <div> with bindable parameters to set various properties, as shown in the following markup:

<div class="alert alert-@ColorTheme d-flex align-items-center
 @(IsDismissable ? " alert-dismissible fade show" : "")" role="alert">
 <div>
 <h4 class="alert-heading"><i class="@Icon"></i> @Title</h4>
 @Message
 @if (IsDismissable)
 {
 <button type="button" class="btn-close"
 data-bs-dismiss="alert" aria-label="Close"></button>
 }
 </div>
</div>
@code {
 [Parameter]
 public bool IsDismissable { get; set; } = true;
 [Parameter]
 public string ColorTheme { get; set; } = BootstrapColors.Primary;
 [Parameter]
 public string Icon { get; set; } = BootstrapIcons.InfoCircle;
 [Parameter]
 public string? Title { get; set; }
 [Parameter]
 public string? Message { get; set; }
}

	In the Pages folder, in Index.razor, add a new Bootstrap container row and column with an Alert element, as shown in the following markup:

<div class="row">
 <div class="col">
 <Alert IsDismissable="true"
 Icon="@(BootstrapIcons.ExclamationTriangleFill)"
 ColorTheme="@(BootstrapColors.Warning)"
 Title="Warning"
 Message="Deleting the database cannot be undone." />
 </div>
</div>

	Start the Northind.BlazorWasm.Server website project without debugging.

	On the home page, note the warning alert, as shown in Figure 16.5:

[image: Figure 16.5: The dialog box component writing to the browser console]Figure 16.5: The dialog box component writing to the browser console

	Click the close button to dismiss the warning.

	Close the browser and shut down the web server.

Building a Blazor data component

In this section, we will build a component to list, create, and edit employees in the Northwind database.

We will build it over several steps:

	Make a Blazor component that renders the name of an employee set as a parameter.

	Make it work as a routable page as well as a component.

	Implement the functionality to perform CRUD operations on employees in a database.

	Build and call a Minimal API web service.

We will add the new component to the existing Blazor WebAssembly client project:

	In the Northwind.BlazorWasm.Client project, in the Pages folder, add a new file named Employees.razor. In Visual Studio, the project item template is named Razor Component.

	Add statements to output a heading for the Employees component and define a code block that defines a property to store the name of a department, as shown highlighted in the following markup:

<h3>Employees @(string.IsNullOrWhiteSpace(Country)
 ? "Worldwide" : "in " + Country)</h3>
@code {
 [Parameter]
 public string? Country { get; set; }
}

	In the Pages folder, in Index.razor, add statements to the bottom of the markup, before the @code block, to instantiate the Employees component twice, once setting USA as the Country parameter, and once without setting the department, as shown in the following markup:

<div class="row">
 <div class="col">
 <Employees Country="USA" />
 <Employees />
 </div>
</div>

	Start the Northwind.BlazorWasm.Server project without debugging.

	Start Chrome and navigate to https://localhost:5161/ and note the Employees components, as shown in Figure 16.6:

[image: Figure 16.6: The Employees component without any parameters set and with the Country parameter set to USA]Figure 16.6: The Employees component without any parameters set and with the Country parameter set to USA

	Close the browser and shut down the web server.

Making the component a routable page component

It is simple to turn this component into a routable page component with a route parameter for the country:

	In the Pages folder, in the Index.razor component, remove the two <Employee> elements because we will now use them as pages.

	In the Pages folder, in the Employees.razor component, add a statement at the top of the file to register /employees as its route with an optional country route parameter, as shown in the following markup:

@page "/employees/{country?}"

	In the Components folder, add a new Razor component named NavMenu.razor.

	In MainLayout.razor, replace the temporary text message with a NavMenu element, as shown in the following markup:

<NavMenu />

	In NavMenu.razor, add list item elements for the home page and for our routable page component to show employees worldwide and in USA or UK that use an icon of people, as shown in the following markup:

<nav class="nav nav-pills flex-column">
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="/" Match="NavLinkMatch.All">
 Home
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="employees" Match="NavLinkMatch.All">
 Employees Worldwide
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="employees/USA">
 Employees in USA
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="employees/UK">
 Employees in UK
 </NavLink>
 </div>
</nav>

	Start the Northwind.BlazorWasm.Server project without debugging.

	Start Chrome and navigate to https://localhost:5161/.

	In the left navigation menu, click Employees in USA, and note that the country name is correctly passed to the page component and that the component uses the same shared layout as the other page components, like Index.razor. Also note the URL: https://localhost:5161/employees/USA

	Close Chrome and shut down the web server.

Getting entities into a component by building a web service

Now that you have seen the minimum implementation of an entity component, we can add the functionality to fetch entities. In this case, we will use the Northwind database context to fetch employees from the database and expose it as a Minimal API web service:

	In Northwind.BlazorWasm.Server.csproj, add a reference to the Northwind database context project for SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

Warning! Unlike previous projects, relative path references for shared projects like the entity models and the database are three levels up, for example, "..\..\..", because we have additional depths of folders for Server, Client, and Shared.

	Build the Northwind.BlazorWasm.Server project at the command line or terminal.

	In Program.cs, import namespaces for working with Minimal API attributes, registering the Northwind database context extension method, and serializing JSON, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // [FromServices]
using Packt.Shared; // AddNorthwindContext extension method
using System.Text.Json.Serialization; // ReferenceHandler
using System.Text.Json; // JsonSerializerOptions

	In Program.cs, after the call to CreateBuilder, add a statement to configure the registered dependency service for JSON options and set its reference handler to preserve references so that the reference between an employee and their manager does not cause a runtime exception due to circular references, as shown in the following code:

builder.Services.Configure<JsonOptions>(options =>
{
 options.JsonSerializerOptions.ReferenceHandler = ReferenceHandler.Preserve;
});

	In Program.cs, before the call to Build, add a statement to register the Northwind database context in the dependency services collection, as shown in the following code:

builder.Services.AddNorthwindContext();

	In Program.cs, before the call to the MapRazorPages method, add statements to define some endpoints to GET and POST employees, as shown in the following code:

// Create an options object to pass with Results.Json
JsonSerializerOptions jsonOptions = new()
{
 // Employee entity has circular reference to itself so
 // we must control how references are handled.
 ReferenceHandler = ReferenceHandler.Preserve
};
app.MapGet("api/employees", (
 [FromServices] NorthwindContext db) =>
 Results.Json(db.Employees, jsonOptions))
 .WithName("GetEmployees")
 .Produces<Employee[]>(StatusCodes.Status200OK);
app.MapGet("api/employees/{country}", (
 [FromServices] NorthwindContext db,
 [FromRoute] string country) =>
 Results.Json(db.Employees.Where(employee =>
 employee.Country == country), jsonOptions))
 .WithName("GetEmployeesByCountry")
 .Produces<Employee[]>(StatusCodes.Status200OK);
app.MapPost("api/employees", async ([FromBody] Employee employee,
 [FromServices] NorthwindContext db) =>
 {
 db.Employees.Add(employee);
 await db.SaveChangesAsync();
 return Results.Created($"api/employees/{employee.EmployeeId}", employee);
 })
 .Produces<Employee>(StatusCodes.Status201Created);

Getting entities into a component by calling the web service

Now we can add the functionality to the entity component to call the web service:

	In Northwind.BlazorWasm.Client.csproj, add a reference to the latest preview or release version of the QuickGrid package, as shown in the following markup:

<PackageReference Include="Microsoft.AspNetCore.Components.QuickGrid"
 Version="0.1.0-alpha.22351.1" />

QuickGrid is an experimental open source basic grid Blazor component. You can learn more about it at the following link: https://aspnet.github.io/quickgridsamples/

	In Northwind.BlazorWasm.Client.csproj, add a reference to the Northwind entities project for SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\..\Chapter02\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

	Build the Northwind.BlazorWasm.Client project at the command line or terminal.

	In the project folder, in _Imports.razor, import the namespaces for working with QuickGrid, serializing JSON, and the Northwind entities so that Blazor components that we build do not need to import the namespaces individually, as shown in the following markup:

@using Microsoft.AspNetCore.Components.QuickGrid
@using Packt.Shared
@using System.Text.Json
@using System.Text.Json.Serialization

	In the Pages folder, in Employees.razor, add statements to inject the HTTP client factory and then use it to output a grid of either all employees or employees in the specific country, as shown in the following code:

@page "/employees/{country?}"
@inject IHttpClientFactory httpClientFactory
<h3>
 Employees @(string.IsNullOrWhiteSpace(Country) ? "Worldwide" : "in " + Country)
</h3>
<QuickGrid Items="@employees">
 <PropertyColumn Property="@(emp => emp.EmployeeId)" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.FirstName)" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.LastName)" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.City)" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.Country)" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.BirthDate)"
 Format="yyyy-MM-dd" Sortable="true" />
 <PropertyColumn Property="@(emp => emp.HireDate)"
 Format="yyyy-MM-dd" Sortable="true" />
</QuickGrid>
@code {
 [Parameter]
 public string? Country { get; set; }
 // QuickGrid works best if it binds to an IQueryable<T> sequence
 private IQueryable<Employee>? employees;
 protected override async Task OnParametersSetAsync()
 {
 Employee[]? employeesArray = null;
 // Employee entity has circular reference to itself so
 // we must control how references are handled.
 JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorWasm.ServerAPI");
 string path = "api/employees";
 try
 {
 employeesArray = (await client.GetFromJsonAsync<Employee[]?>(
 path, jsonOptions));
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 if (employeesArray is not null)
 {
 employees = employeesArray.AsQueryable();
 if (!string.IsNullOrWhiteSpace(Country))
 {
 employees = employees.Where(emp => emp.Country == Country);
 }
 }
 }
}

	Start the Northwind.Blazor.Wasm.Server project without debugging.

	Start Chrome and navigate to https://localhost:5161/.

	In the left navigation menu, click Employees in USA, and note that the grid of employees loads from the web service and renders in the web page, as shown in Figure 16.7:

[image: Figure 16.7: The grid of employees in USA]Figure 16.7: The grid of employees in USA

	Click the grid column headings to reorder the grid of employees.

	In the left navigation menu, click Employees Worldwide, and note that the grid of employees is unfiltered by country and sorted by birthdate, as shown in Figure 16.8:

[image: Figure 16.8: Grid of worldwide employees sorted by birth date.]Figure 16.8: Grid of worldwide employees sorted by birth date.

	In the left navigation menu, click Employees in UK, and note that the grid of employees is filtered to only show employees in the UK.

	Close Chrome and shut down the web server.

Implementing caching using local storage

At the moment, while viewing an Employees page component, the QuickGrid can sort the employees without making a call to the web service. But the Employees component must call the web service every time we navigate between pages because the component's data is stored in memory and its lifetime matches its page.

All modern browsers support two types of storage: local and session. Session storage is restricted to the current browser tab and current session. As soon as the tab closes, the storage is removed. Local storage is available across multiple tabs and sessions, but it is limited to the current domain like example.com so, for example, google.com cannot access it. Both are dictionaries that use string values for both the key and value so we will need to parse types stored in it.

Blazor cannot directly access browser resources like storage. We must create JavaScript code to interoperate between .NET and the browser. Rather than add the JavaScript to the index.html page, modern browsers allow you to dynamically load JavaScript files as modules and then call their functions. To make it easier for Blazor developers to work with, it is common to create and register a dependency service to interop with JavaScript modules.

Understanding interop with JavaScript modules

Blazor defines an interface named IJSRuntime that enables interop with JavaScript. It can dynamically load a JavaScript module file using its InvokeAsync<IJSObjectReference> method. You must pass an instruction to import and the relative path to the JavaScript file, as shown in the following code:

await _jsRuntime.InvokeAsync<IJSObjectReference>(
 "import", "/js/MyJavaScriptModule.js")

The JavaScript file must use the export JavaScript keyword to make its functions available, as shown in the following code:

export function showAlert(message) {
 window.alert(message);
}

Interop with JavaScript happens asynchronously so we must use lazy references to any JavaScript modules that we attempt to load and wait for them to be ready before calling them.

A Blazor dependency service that we define and register should implement the IAsyncDisposable interface and implement its DisposeAsync to release any resources like references to JavaScript modules.

To call the functions, the IJSObjectReference interface that wraps the JavaScript module provides methods like InvokeAsync<T> and InvokeVoidAsync. The first parameter of these is the name of the function that you want to call. The rest of the parameters match the parameters of the JavaScript function.

Building a local storage service

Let's extend the Employees component so that it uses local storage to cache the employees for a configurable number of minutes before then recalling the web service to refresh the data. This will also help us to enable offline capabilities for our components if we want to in the future.

	In the Northwind.BlazorWasm.Client project, in the wwwroot folder, create a new folder named js.

	In the js folder, create a new JavaScript file named localStorageInterop.js.

	Modify the contents of the file to define some functions for working with local storage, as shown in the following code:

export function get(key) {
 return window.localStorage.getItem(key);
}
export function set(key, value) {
 window.localStorage.setItem(key, value);
}
export function clear() {
 window.localStorage.clear();
}
export function remove(key) {
 window.localStorage.removeItem(key);
}

You can learn more about the methods of the window.localStorage object at the following link: https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

	In the Northwind.BlazorWasm.Client project, create a new folder named Services.

	In the Services folder, create a new C# class file named LocalStorageService.cs.

	Modify the contents of the file to define a service that has IJSRuntime as a dependency service passed using constructor parameter injection, and a lazy reference to the loaded JavaScript module, with some asynchronous methods for working with local storage, as shown in the following code:

using Microsoft.JSInterop;
namespace Northwind.BlazorWasm.Client.Services;
public class LocalStorageService : IAsyncDisposable
{
 private readonly IJSRuntime jsRuntime;
 private Lazy<IJSObjectReference> jsModule = new();
 public LocalStorageService(IJSRuntime jsRuntime)
 {
 this.jsRuntime = jsRuntime;
 }
 private async Task WaitForReference()
 {
 if (!jsModule.IsValueCreated)
 {
 jsModule = new(await jsRuntime.InvokeAsync<IJSObjectReference>(
 "import", "/js/LocalStorageInterop.js"));
 }
 }
 public async ValueTask DisposeAsync()
 {
 if (jsModule.IsValueCreated)
 {
 await jsModule.Value.DisposeAsync();
 }
 }
 public async Task<string> GetValueAsync(string key)
 {
 await WaitForReference();
 var result = await jsModule.Value.InvokeAsync<string>("get", key);
 return result;
 }
 public async Task SetValueAsync(string key, string value)
 {
 await WaitForReference();
 await jsModule.Value.InvokeVoidAsync("set", key, value);
 }
 public async Task ClearAsync()
 {
 await WaitForReference();
 await jsModule.Value.InvokeVoidAsync("clear");
 }
 public async Task RemoveAsync(string key)
 {
 await WaitForReference();
 await jsModule.Value.InvokeVoidAsync("remove", key);
 }
}

	In Program.cs, import the namespace for your Blazor app services including the local storage service, as shown in the following code:

using Northwind.BlazorWasm.Client.Services; // LocalStorageService

	In Program.cs, before the call to build and run the Blazor app, add a statement to register the local storage service as a scoped service, as shown in the following code:

builder.Services.AddScoped<LocalStorageService>();

	In the Pages folder, in Employees.razor, inject the local storage service, as shown in the following code:

@inject LocalStorageService localStorage

	In Employees.razor, in the @code block, add statements to define a duration to cache for and then use the local storage service to store the JSON returned from the service and use it if the duration has not expired instead of calling the web service again, as shown in the following code:

@code {
 private const string keyTS = "employeesLastGet";
 private const string keyData = "employeesArray";
 [Parameter]
 public TimeSpan CacheDuration { get; set; } = TimeSpan.FromMinutes(10);
 [Parameter]
 public string? Country { get; set; }
 // QuickGrid works best if it binds to an IQueryable<T> sequence
 private IQueryable<Employee>? employees;
 protected override async Task OnParametersSetAsync()
 {
 string employeesJson = "{}";
 Employee[]? employeesArray = null;
 // Employee entity has circular reference to itself so
 // we must control how references are handled.
 JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 string lastGetText = await localStorage.GetValueAsync(keyTS);
 bool isDate = DateTime.TryParse(lastGetText, out DateTime lastGet);
 if ((isDate) && (lastGet.Add(CacheDuration) >= DateTime.UtcNow))
 {
 employeesJson = await localStorage.GetValueAsync(keyData);
 }
 else
 {
 // refresh the employees from the web service
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorWasm.ServerAPI");
 string path = "api/employees";
 try
 {
 employeesJson = await client.GetStringAsync(path);
 await localStorage.SetValueAsync(keyData, employeesJson);
 await localStorage.SetValueAsync(keyTS, DateTime.UtcNow.ToString());
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 }
 try
 {
 employeesArray = JsonSerializer.Deserialize<Employee[]?>(
 employeesJson, jsonOptions);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 if (employeesArray is not null)
 {
 employees = employeesArray.AsQueryable();
 if (!string.IsNullOrWhiteSpace(Country))
 {
 employees = employees.Where(emp => emp.Country == Country);
 }
 }
 }
}

	Start the Northwind.Blazor.Wasm.Server project without debugging.

	Start Chrome and navigate to https://localhost:5161/.

	Show Developer Tools and the Network tab.

	In the left navigation menu, click Employees in USA, and note that the grid of employees loads from the web service and renders in the web page, and a request was made to download the JavaScript module for interop with local storage, as shown in Figure 16.9:

[image: Figure 16.9: Using JavaScript interop to work with the browser's local storage]Figure 16.9: Using JavaScript interop to work with the browser's local storage

	At the command prompt or terminal, note the web service has queried the Northwind database, as shown in the following output:

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]
 Entity Framework Core 7.0.0 initialized 'NorthwindContext' using provider 'Microsoft.EntityFrameworkCore.SqlServer:7.0.0' with options: None
dbug: 08/08/2022 15:54:58.616 RelationalEventId.CommandExecuting[20100] (Microsoft.EntityFrameworkCore.Database.Command)
 Executing DbCommand [Parameters=[], CommandType='Text', CommandTimeout='30']
 SELECT [e].[EmployeeId], [e].[Address], [e].[BirthDate], [e].[City], [e].[Country], [e].[Extension], [e].[FirstName], [e].[HireDate], [e].[HomePhone], [e].[LastName], [e].[Notes], [e].[Photo], [e].[PhotoPath], [e].[PostalCode], [e].[Region], [e].[ReportsTo], [e].[Title], [e].[TitleOfCourtesy]
 FROM [Employees] AS [e]
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
 Executed DbCommand (68ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
 SELECT [e].[EmployeeId], [e].[Address], [e].[BirthDate], [e].[City], [e].[Country], [e].[Extension], [e].[FirstName], [e].[HireDate], [e].[HomePhone], [e].[LastName], [e].[Notes], [e].[Photo], [e].[PhotoPath], [e].[PostalCode], [e].[Region], [e].[ReportsTo], [e].[Title], [e].[TitleOfCourtesy]
 FROM [Employees] AS [e]

	In Developer Tools, click the Application tab, in the Storage section, expand Local Storage, click https://localhost:5161, and note all employees were downloaded and cached as a JSON document, and the timestamp is 2:54:59 PM UTC, as shown in Figure 16.10:

[image: Figure 16.10: The last request to the web service was at 2:54:59 PM UTC]Figure 16.10: The last request to the web service was at 2:54:59 PM UTC

	In the left navigation menu, click Employees in UK, and note that the grid of employees loads from local storage and renders in the web page.

	At the command prompt or terminal, note the web service was not called so it did not need to query the database.

	Close the browser.

	Restart Chrome and navigate to https://localhost:5161.

	In the left navigation menu, click Employees Worldwide, and note that the grid of employees loads from local storage and renders in the grid on the web page.

	At the command prompt or terminal, note the web service was not called so it did not need to query the database.

	In Developer Tools, click the Application tab, in the Storage section, expand Local Storage, click https://localhost:5161, and note the time that the employees was last refreshed.

	Wait until that time plus ten minutes is in the past, click any of the items in the navigation menu, and note the web service is called and so it needs to execute a command to the Northwind database, as shown in Figure 16.11:

[image: Figure 16.11: More than ten minutes have passed so the local storage has been updated]Figure 16.11: More than ten minutes have passed so the local storage has been updated

	Close the browser and shut down the web server.

Building Progressive Web Apps

Progressive Web Apps are SPAs that work like desktop apps. They can run in their own window instead of in a browser window, and then be started from the desktop or home screen on a mobile device. They automatically update in the background. They are named progressive because they can first be used as a website, perhaps only once or rarely, and then be installed if the user finds they use it more frequently and want some of the benefits of a more integrated experience that works offline. When we created the projects for this chapter, we chose the PWA option so the Northwind.BlazorWasm.Client project already has PWA support:

	In the Northwind.BlazorWasm.Client project, in the wwwroot folder, open the manifest.json file, as shown in the following code:

{
 "name": "Northwind.BlazorWasm",
 "short_name": "Northwind.BlazorWasm",
 "start_url": "./",
 "display": "standalone",
 "background_color": "#ffffff",
 "theme_color": "#03173d",
 "prefer_related_applications": false,
 "icons": [
 {
 "src": "icon-512.png",
 "type": "image/png",
 "sizes": "512x512"
 }
]
}

You can learn more about the manifest.json file at the following link: https://developer.mozilla.org/en-US/docs/Web/Manifest

	Change the name to Northwind Blazor PWA and the short_name to Northwind PWA. The name is used for window titles and the short name might be used to label the icon on the desktop or phone home screen.

Enabling offline support

Offline support is only enabled once a PWA app is published. This is because if it were enabled during development, it would interfere too much with the development process due to caching and so on.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 16.1 – Test your knowledge

Answer the following questions:

	?

	?

Exercise 16.2 – Practice building Blazor components

Create a Blazor component named Carousel that wraps the Bootstrap classes for working with carousels as a component and then use it to show the eight categories in the Northwind database including images.

You can learn about the Bootstrap carousel at the following link: https://getbootstrap.com/docs/5.2/components/carousel/

Exercise 16.3 – Practice building an IndexedDB interop service

Browser local and session storage are okay for storing small amounts of data but if you need a more robust and capable storage in the browser then you can use the IndexedDB API.

Create a Blazor service named IndexedDbService with a JavaScript module for interop with the IndexedDB API and then use it to cache the employees.

You can learn more about the methods of the window.localStorage object at the following link: https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Exercise 16.4 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-16---building-web-components-using-blazor-webassembly

Summary

In this chapter, you learned:

	About some important concepts about Blazor WebAssembly like hosting models, components, routing, and how to pass parameters.

	How to build Blazor components with settable parameters, child content, and custom events.

	How to build Blazor component that fetch data from a web service.

	How to interop with JavaScript to interact with browser features like local storage.

	How to enable offline support for Progressive Web Apps.

In the next chapter, you will learn how to use some common Blazor open source components.

17 Using Open Source Blazor Component Libraries

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about exploring open source Blazor component libraries. We will look at Radzen Blazor in detail because it is free forever and many of the other component libraries work in the same way. For example, they all include:

	A NuGet package to install.

	Themes, stylesheets, and JavaScript libraries to register, that often work like or integrate with Bootstrap.

	Namespaces to import, usually in _Imports.razor, so the components are available in your Razor files.

	Services that must be registered as scoped dependency services and matching components that must be instantiated in shared layouts before you can use features like notifications and dialog boxes.

Once you have learned how one component library does this, the others are very similar.

This chapter will cover the following topics:

	Understanding open source Blazor libraries

	Exploring Radzen Blazor components

	Building a web service for Northwind entities

Understanding open source Blazor component libraries

In Chapter 16, Building Web Components Using Blazor WebAssembly, you learned the key concepts about Blazor components and the practicalities of how to build them. Most of the time, you do not need to build your own components for common scenarios because there are plenty of Blazor component libraries, as shown in the following alphabetical list:

	Ant Design Blazor: https://antblazor.com/.

	Blazored libraries and components: https://github.com/Blazored.

	Blazorise: https://blazorise.com/.

	BlazorStrap: https://blazorstrap.io/.

	DevExpress Blazor Components: https://www.devexpress.com/blazor/.

	MatBlazor: https://www.matblazor.com/.

	MudBlazor: https://mudblazor.com/.

	PanoramicData.Blazor: https://panoramicdata.github.io/PanoramicData.Blazor/.

	Radzen Blazor: https://blazor.radzen.com/.

	SyncFusion Blazor UI Components: https://blazor.syncfusion.com/.

	Telerik UI for Blazor: https://www.telerik.com/blazor-ui.

In this chapter, we will look at some of the components from the free open source library named Radzen Blazor. You can then choose to investigate some of the others and if you feel it is worth paying for their commercial licenses.

Exploring Radzen Blazor components

First, we will create a Blazor WebAssembly project that we will then explore some of the Radzen Blazor components with:

	Use your preferred code editor to create a new solution/workspace named Chapter16.

	Add a console app project, as defined in the following list:

	Project template: Blazor WebAssembly App Empty / blazorwasm-empty

	Workspace/solution file and folder: Chapter17

	Project file and folder: Northwind.BlazorLibraries

	Configure for HTTPS: selected.

	ASP.NET Core Hosted: selected or use the --hosted switch.

	Progressive Web App: selected or use the --pwa switch.

	Note that three projects have been created named Northwind.BlazorLibraries.Client, Northwind.BlazorLibraries.Server, and Northwind.BlazorLibraries.Shared.

	Use your preferred coding tool to set the Server project to be active:

	If you are using Visual Studio 2022, make sure that the startup project for the solution is set to the Northwind.BlazorLibraries.Server project.

	If you are using Visual Studio Code, set Northwind.BlazorLibraries.Server as the active OmniSharp project.

	In the Northwind.BlazorLibraries.Server project, expand the Properties folder, and open the launchSettings.json file.

	For the https profile, for its applicationUrl setting, change the port numbers to 5161 for https and 5162 for http, as shown in the following setting:

"applicationUrl": "https://localhost:5171;http://localhost:5172",

	For the http profile, for its applicationUrl setting, change the port number to 5162 for http, as shown in the following setting:

"applicationUrl": "http://localhost:5172",

	Save the changes to the launchSettings.json file.

	In the Northwind.BlazorLibraries.Client project, treat warnings as errors and add a reference to the Radzen Blazor package, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">
 <PropertyGroup>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <ServiceWorkerAssetsManifest>service-worker-assets.js</ServiceWorkerAssetsManifest>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly"
 Version="7.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly.DevServer"
 Version="7.0.0" PrivateAssets="all" />
 <PackageReference Include="Microsoft.Extensions.Http"
 Version="7.0.0" />
 <PackageReference Include="Radzen.Blazor" Version="3.20.2" />
 </ItemGroup>
 <ItemGroup>
 <ProjectReference Include="..\Shared\Northwind.BlazorLibraries.Shared.csproj" />
 </ItemGroup>
 <ItemGroup>
 <ServiceWorker Include="wwwroot\service-worker.js" PublishedContent="wwwroot\service-worker.published.js" />
 </ItemGroup>
</Project>

	In the Northwind.BlazorLibraries.Client project, in the _Imports.cshtml file, add a statement to import the Radzen Blazor namespace, as shown in the following code:

@using Radzen
@using Radzen.Blazor

	In the Northwind.BlazorLibraries.Client project, in the wwwroot folder, open the index.html file.

	In index.html, add markup in the <head> to set a blank favicon, use the latest version of Bootstrap including a <meta> element in the <head> to set the viewport, and to link to the default Radzen Blazor theme CSS file, and at the bottom of the <body> add <script> elements to add support for advanced features provided by Popper.js and Radzen Blazor, as shown highlighted in the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <base href="/" />
 <link href="css/app.css" rel="stylesheet" />
 <link href="manifest.json" rel="manifest" />
 <link rel="icon" href="data:;base64,iVBORw0KGgo=">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
 <link rel="stylesheet" href="_content/Radzen.Blazor/css/default.css">
</head>
<body>
 <div id="app">Loading...</div>
 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 🗙
 </div>
 <script src="_framework/blazor.webassembly.js"></script>
 <script>navigator.serviceWorker.register('service-worker.js');</script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/js/bootstrap.bundle.min.js" integrity="sha384-A3rJD856KowSb7dwlZdYEkO39Gagi7vIsF0jrRAoQmDKKtQBHUuLZ9AsSv4jD4Xa" crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.11.5/dist/umd/popper.min.js" integrity="sha384-Xe+8cL9oJa6tN/veChSP7q+mnSPaj5Bcu9mPX5F5xIGE0DVittaqT5lorf0EI7Vk" crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0/dist/js/bootstrap.min.js" integrity="sha384-ODmDIVzN+pFdexxHEHFBQH3/9/vQ9uori45z4JjnFsRydbmQbmL5t1tQ0culUzyK" crossorigin="anonymous"></script>
 <script src="_content/Radzen.Blazor/Radzen.Blazor.js"></script>
</body>
</html>

Some Radzen Blazor themes require Bootstrap. If you want to avoid Bootstrap, then you can reference the _content/Radzen.Blazor/css/default-base.css file instead, but you then can only use the base default theme without advanced layouts.

Enabling Radzen dialog, notification, context menu, and tooltip components

Let's enable some components that have related services that must be configured in the services collection and referenced in the main layout:

	In Program.cs, import the namespace for working with Radzen services, as shown in the following code:

using Radzen; // DialogService, NotificationService, and so on

	In Program.cs, before the call to run the Blazor WebAssembly app, add statements to enable dialog, notification, context menu, and tooltip components, as shown in the following code:

builder.Services.AddScoped<DialogService>();
builder.Services.AddScoped<NotificationService>();
builder.Services.AddScoped<TooltipService>();
builder.Services.AddScoped<ContextMenuService>();

	In MainLayout.razor, add statements to embed dialog, notification, context menu, and tooltip components, and add markup to use Bootstrap grid classes to create a navigation area in a left column and render the body of the Blazor WebAssembly client app in the remaining space, as shown highlighted in the following markup:

@inherits LayoutComponentBase
<RadzenDialog />
<RadzenNotification />
<RadzenContextMenu />
<RadzenTooltip />
<main>
 <div class="container">
 <div class="row">
 <div class="col-md-auto">
 <div class="alert alert-secondary">
 Navigation (coming soon)
 </div>
 </div>
 <div class="col">@Body</div>
 </div>
 </div>
</main>

	In App.razor, comment out the <FocusOnNavigate> element so that the <h1> is not selected, as shown in the following markup:

@*<FocusOnNavigate RouteData="@routeData" Selector="h1" />*@

Using the Radzen tooltip and context menu components

Let's use the context menu component to show a menu of shipping company items:

	In the Pages folder, in Index.razor, add statements to show a tooltip for the heading, show a context menu with shippers as items when the visitor right-clicks the heading, and then show what they clicked in the browser console, as shown in the following code:

@page "/"
@inject TooltipService tooltipService
@inject ContextMenuService contextMenuService
<h1 @ref="h1Element"
 @onmouseover="@(args => ShowTooltip(h1Element ,
 new TooltipOptions { Duration = 5000 }))"
 @oncontextmenu=@(args => ShowContextMenuWithItems(args))
 @oncontextmenu:preventDefault="true">
 Hello, Radzen Blazor!
</h1>
@code {
 ElementReference h1Element;
 void ShowTooltip(ElementReference elementReference,
 TooltipOptions? options = null)
 {
 tooltipService.Open(elementReference,
 "Right-click this heading to see shipping companies.",
 options);
 }
 void ShowContextMenuWithItems(MouseEventArgs args)
 {
 ContextMenuItem[] menuItems =
 {
 new() { Value = 1, Text = "Speedy Express" },
 new() { Value = 2, Text = "United Package" },
 new() { Value = 3, Text = "Federal Shipping" },
 };
 contextMenuService.Open(args, menuItems, OnMenuItemClick);
 }
 void OnMenuItemClick(MenuItemEventArgs args)
 {
 Console.WriteLine(
 $"Menu item clicked, Value={args.Value}, Text={args.Text}");
 contextMenuService.Close();
 }
}

	Start the Northwind.BlazorLibraries.Server project without debugging.

	If you are using Visual Studio 2022, then in the Visual Studio 2022 toolbar, select the https profile as the Startup Project, and Google Chrome as the Web Browser.

	In Chrome, show Developer Tools and its Console.

	On the home page, right-click the heading and note the menu items are the shipping companies, as shown in Figure 17.1:

[image: Figure 17.1: A context menu with shipping companies]Figure 17.1: A context menu with shipping companies

	Select a shipping company and note the output in the browser console, as shown in Figure 17.2:

[image: Figure 17.2: The browser console showing the visitor clicked some items in the context menu]Figure 17.2: The browser console showing the visitor clicked some items in the context menu

	Close the browser and shut down the web server.

Using the Radzen notification and dialog components

Let's use the notification and dialog components to show which shipping company the visitor selected:

	In the Pages folder, in Index.razor, add statements to inject the notification and dialog services, as shown in the following code:

@inject NotificationService notificationService
@inject DialogService dialogService

	In Index.razor, in the OnMenuItemClick method, comment out the statement that writes the message to the browser console, and then after closing the context menu, add statements to either popup a dialog or popup a notification to show what the visitor clicked in the context menu, depending on if they hold down the Ctrl key when they click, as shown in the following code:

async void OnMenuItemClick(MenuItemEventArgs args)
{
 //Console.WriteLine(
 // $"Menu item clicked, Value={args.Value}, Text={args.Text}");
 contextMenuService.Close();
 if (args.CtrlKey) // show dialog box
 {
 bool? clickedYes = await dialogService.Confirm(
 message: $"Visitor selected: {args.Text}",
 title: $"Value={args.Value}",
 new ConfirmOptions() { OkButtonText = "Yes", CancelButtonText = "No" });
 string title = string.Format("You clicked \"{0}\"",
 (clickedYes.GetValueOrDefault(true) ? "Yes" : "No"));
 DialogOptions options = new()
 {
 CloseDialogOnOverlayClick = true,
 CloseDialogOnEsc = true
 };
 dialogService.Open(title, ds =>
 @<div>
 <div class="row">
 <div class="col-md-12">
 @title
 </div>
 </div>
 </div>
 , options);
 }
 else // show notication
 {
 NotificationMessage message = new()
 {
 // 1=Info/Speedy Express
 // 2=Success/United Package
 // 3=Warning/Federal Shipping
 Severity = (NotificationSeverity)args.Value,
 Summary = $"Value={args.Value}",
 Detail = $"Visitor selected: {args.Text}",
 Duration = 4000 // milliseconds
 };
 notificationService.Notify(message);
 }
}

	Start the Northwind.BlazorLibraries.Server project without debugging.

	On the home page, right-click the heading, click United Package, and note the notification that pops up for five seconds, as shown in Figure 17.3:

[image: Figure 17.3: A notification message with the success color scheme and icon]Figure 17.3: A notification message with the success color scheme and icon

	Right-click the heading, hold down the Ctrl key and click United Package, and note the dialog box that pops up, as shown in Figure 17.4:

[image: Figure 17.4: A confirmation dialog box with Yes and No button choices]Figure 17.4: A confirmation dialog box with Yes and No button choices

	Click Yes, and note the dialog box appears with custom content, as shown in Figure 17.5:

[image: Figure 17.5: A dialog box with custom content and a close button]Figure 17.5: A dialog box with custom content and a close button

	Either click the close button or click outside the dialog box to close it.

	Select the other shipping company menu items and note the difference color scheme and icons.

	Close the browser and shut down the web server.

Building a web service for Northwind entities

Now that you have seen the minimum implementation of an entity component, we can add the functionality to fetch entities. In this case, we will use the Northwind database context to fetch employees from the database and expose it as a Minimal API web service:

	In Northwind.BlazorLibraries.Server.csproj, add a reference to the Northwind database context project for SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

Warning! Unlike previous projects, relative path references for shared projects like the entity models and the database are three levels up, for example, "..\..\..", because we have additional depths of folders for Server, Client, and Shared.

	Build the Northwind.BlazorLibraries.Server project at the command line or terminal.

	In the Northwind.BlazorLibraries.Server project, in Program.cs, import namespaces for working with Minimal API attributes, registering the Northwind database context extension method, and serializing JSON, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // [FromServices]
using Packt.Shared; // AddNorthwindContext extension method
using System.Text.Json.Serialization; // ReferenceHandler
using System.Text.Json; // JsonSerializerOptions

	In Program.cs, after the call to CreateBuilder, add a statement to configure the registered dependency service for JSON options and set its reference handler to preserve references so that the reference between an employee and their manager does not cause a runtime exception due to circular references, as shown in the following code:

builder.Services.Configure<JsonOptions>(options =>
{
 options.JsonSerializerOptions.ReferenceHandler = ReferenceHandler.Preserve;
});

	In Program.cs, before the call to Build, add a statement to register the Northwind database context in the dependency services collection, as shown in the following code:

builder.Services.AddNorthwindContext();

	In Program.cs, before the call to the MapRazorPages method, add statements to define some endpoints to GET categories and orders, as shown in the following code:

// Create an options object to pass with Results.Json
JsonSerializerOptions jsonOptions = new()
{
 // Employee entity has circular reference to itself so
 // we must control how references are handled.
 ReferenceHandler = ReferenceHandler.Preserve
};
app.MapGet("api/categories", (
 [FromServices] NorthwindContext db) =>
 Results.Json(
 db.Categories.Include(c => c.Products),
 jsonOptions))
 .WithName("GetCategories")
 .Produces<Category[]>(StatusCodes.Status200OK);
app.MapGet("api/orders/", (
 [FromServices] NorthwindContext db) =>
 Results.Json(
 db.Orders.Include(o => o.OrderDetails),
 jsonOptions))
 .WithName("GetOrders")
 .Produces<Order[]>(StatusCodes.Status200OK);

Using the Radzen tabs, image and icon components

Let's use the tabs component to show the categories and their products from the Northwind database.

There are eight categories in the Northwind database. If we use the category names for the tabs, then they will be too wide. Instead, we will choose an icon for each category that will be shown in the tab.

Radzen has an icon component that uses Google Material Icons, as shown in the following markup:

<RadzenIcon Icon="facebook" />
<RadzenIcon Icon="accessibility" />
<RadzenIcon Icon="accessibility" IconStyle="IconStyle.Primary">

Some other components, like the <RadzenTabsItem> component, have an Icon property that can be set to the same keywords.

You can search for appropriate icons at the following link: https://fonts.google.com/icons?selected=Material+Icons

Microsoft have open sourced their Fluent Emoji, a collection of familiar, friendly, and modern emoji. We will use some of them to add a brighter, more colorful image icon for each category.

You can review and download the collection of Fluent Emoji at the following link: https://github.com/microsoft/fluentui-emoji

Each category has a Picture property that is a byte array containing a low-quality JPEG image created in Microsoft Access. That product added an Object Linking and Embedding (OLE) header of 78 bytes to embedded images. Those 78 bytes are not a part of the image and need to be removed. We will create a helper extension method for byte arrays that uses a Span<byte> to efficiently remove those extra bytes and then encode the JPEG image as a Base64 string for use as the src attribute for an element on a web page.

Let's go!

	In Northwind.BlazorLibrary.Shared.csproj, in the SharedClass.cs file, add statements to define an extension method, as shown in the following code:

namespace Packt.Shared;
public static class NorthwindExtensionMethods
{
 public static string ConvertToBase64Jpeg(this byte[] picture)
 {
 int offset = 78; // to remove the OLE header
 Span<byte> data = picture.AsSpan(offset, picture.Length - offset);
 return string.Format("data:image/jpg;base64,{0}",
 Convert.ToBase64String(data));
 }
}

	In Northwind.BlazorLibrary.Client.csproj, add a reference to the Northwind entities project for SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\..\Chapter02\Northwind.Common.EntityModels
.SqlServer\Northwind.Common.EntityModels.SqlServer.csproj" />
</ItemGroup>

	Build the Northwind.BlazorLibrary.Client project at the command line or terminal.

	In the project folder, in _Imports.razor, import the namespaces for serializing JSON, and the Northwind entities so that Blazor components that we build do not need to import the namespaces individually, as shown in the following markup:

@using Packt.Shared
@using System.Text.Json
@using System.Text.Json.Serialization

	In MainLayout.cshtml, remove the temporary coming soon text and add statements to define navigation links to the home page and a categories page component, as shown in the following markup:

<nav class="nav nav-pills flex-column">
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="/" Match="NavLinkMatch.All">
 Home
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="categories" Match="NavLinkMatch.All">
 Categories
 </NavLink>
 </div>
</nav>

	In the Northwind.BlazorLibraries.Client project, in the Pages folder, add a new Razor Component named Categories.razor.

	In Categories.razor, add statements to define a tab for each category and a list of products on each tab, as shown in the following code:

@page "/categories"
@inject IHttpClientFactory httpClientFactory
<h3>Categories</h3>
<RadzenTabs>
 <Tabs>
 @if (categories is null)
 {
 <RadzenTabsItem Text="None">
 <h3>No category found.</h3>
 <div class="alert alert-info">
 No products found for this category.
 </div>
 </RadzenTabsItem>
 }
 else
 {
 @foreach (Category category in categories)
 {
 <RadzenTabsItem Icon="@ConvertToIcon(category.CategoryName)">
 <h3>
 <RadzenImage Path="@ConvertToEmoji(category.CategoryName)"
 Style="height:48px;width:48px;" />
 @category.CategoryName
 <RadzenBadge BadgeStyle="BadgeStyle.Warning" IsPill="true"
 Text="@category.Products.Count().ToString()" />
 </h3>
 <div class="alert alert-info">
 @foreach (Product product in category.Products)
 {
 <RadzenBadge BadgeStyle="BadgeStyle.Info"
 Text="@product.ProductName" />
 }
 </div>
 @if (category.Picture is not null)
 {
 <div>
 <img class="rounded float-start"
 src="@category.Picture.ConvertToBase64Jpeg()" />
 </div>
 }
 </RadzenTabsItem>
 }
 }
 </Tabs>
</RadzenTabs>
@code {
 private IQueryable<Category>? categories;
 private string ConvertToIcon(string categoryName)
 {
 return categoryName switch
 {
 "Beverages" => "coffee", // Google Material Icons
 "Condiments" => "liquor",
 "Confections" => "cake",
 "Dairy Products" => "water_drop",
 "Grains/Cereals" => "breakfast_dining",
 "Meat/Poultry" => "kebab_dining",
 "Produce" => "restaurant",
 "Seafood" => "set_meal",
 _ => "device_unknown"
 };
 }
 private string ConvertToEmoji(string categoryName)
 {
 return categoryName switch
 {
 "Beverages" => "assets/Hot beverage/3D/hot_beverage_3d.png",
 "Condiments" => "assets/Honey pot/3D/honey_pot_3d.png",
 "Confections" => "assets/Lollipop/3D/lollipop_3d.png",
 "Dairy Products" => "assets/Cheese wedge/3D/cheese_wedge_3d.png",
 "Grains/Cereals" => "assets/Bread/3D/bread_3d.png",
 "Meat/Poultry" => "assets/Cut of meat/3D/cut_of_meat_3d.png",
 "Produce" => "assets/Leafy green/3D/leafy_green_3d.png",
 "Seafood" => "assets/Lobster/3D/lobster_3d.png",
 _ => "assets/Pot of food/3D/pot_of_food_3d.png"
 };
 }
 protected override async Task OnParametersSetAsync()
 {
 Category[]? categoriesArray = null;
 // Web API service uses "Preserve" so
 // we must control how references are handled.
 JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorLibraries.ServerAPI");
 string path = "api/categories";
 try
 {
 categoriesArray = (await client.GetFromJsonAsync<Category[]?>(
 path, jsonOptions));
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 if (categoriesArray is not null)
 {
 categories = categoriesArray.AsQueryable();
 }
 }
}

	Start the Northwind.BlazorLibraries.Server project without debugging.

	On the home page, in the left navigation, click Categories, and note the tabs for the eight Northwind categories, as shown in Figure 17.6:

[image: Figure 17.6: The Grains/Cereals tab selected to show its products and image from the database]Figure 17.6: The Grains/Cereals tab selected to show its products and image from the database

	Close the browser and shut down the web server.

Using the Radzen HTML editor component

Now we will use the Radzen HTML editor component to provide an editing experience:

	In the Pages folder, add a new file named HtmlEditor.razor.

	In HtmlEditor.razor, add statements to define an instance of the Radzen HTML editor component and bind it to s string property that contains some simple HTML, as shown in the following code:

@page "/htmleditor"
<RadzenHtmlEditor @bind-Value=@HtmlValue />
@code {
 [Parameter]
 public string HtmlValue { get; set; } =
 "<h1>Hello, Radzen Blazor!</h1><p></p>";
}

	In MainLayout.cshtml, add statements to define a navigation link to the HTML editor page component, as shown in the following markup:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="htmleditor">
 HTML Editor
 </NavLink>
</div>

	Start the Northwind.BlazorLibraries.Server project without debugging.

	On the home page, in the left navigation, click Categories, and note the tabs for the eight Northwind categories, as shown in Figure 17.7:

[image: Figure 17.7: The HTML editor component in action]Figure 17.7: The HTML editor component in action

	Close the browser and shut down the web server.

You can learn more about customizing the HTML editor component at the following link: https://blazor.radzen.com/docs/guides/components/htmleditor.html

Using the Radzen chart component

Now we will use the Radzen chart component to visualize some numeric data about orders in the Northwind database:

	In the Pages folder, add a new file named OrdersBarChart.razor.

	In OrdersBarChart.razor, add statements to inject the HTTP client factory and then use it to output a bar chart of revenue grouped by country, as shown in the following code:

@page "/orders-bar-chart"
@using System.Globalization
@inject IHttpClientFactory httpClientFactory
<RadzenCheckBox @bind-Value="@showDataLabels"
 Name="dataLabels"></RadzenCheckBox>
<RadzenLabel Text="Show Data Labels" For="dataLabels"
 Style="margin-left: 8px; vertical-align: middle;" />
<RadzenChart>
 <RadzenBarSeries Data="@revenue" CategoryProperty="Country"
 LineType="LineType.Dashed" ValueProperty="Revenue">
 <TooltipTemplate Context="data">
 <div>
 Revenue for @data.Country:
 @data.Revenue
 </div>
 </TooltipTemplate>
 </RadzenBarSeries>
 <RadzenValueAxis Formatter="@FormatAsUSD">
 <RadzenGridLines Visible="true" />
 <RadzenAxisTitle Text="Revenue in USD" />
 </RadzenValueAxis>
 <RadzenSeriesDataLabels Visible="@showDataLabels" />
 <RadzenBarOptions Radius="5" />
 <RadzenLegend Visible="false" />
</RadzenChart>
@code {
 bool showDataLabels = false;
 class DataItem
 {
 public string? Country { get; set; }
 public decimal Revenue { get; set; }
 }
 private string FormatAsUSD(object value)
 {
 return ((double)value).ToString("C0",
 CultureInfo.GetCultureInfo("en-US"));
 }
 private DataItem[]? revenue;
 protected override async Task OnParametersSetAsync()
 {
 Order[]? ordersArray = null;
 // Web API service uses "Preserve" so
 // we must control how references are handled.
 JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorLibraries.ServerAPI");
 string path = "api/orders";
 try
 {
 ordersArray = (await client.GetFromJsonAsync<Order[]?>(
 path, jsonOptions));
 revenue = ordersArray?
 .GroupBy(order => order.ShipCountry)
 .Select(group => new DataItem
 {
 Country = group.Key,
 Revenue = group.Sum(order => order.OrderDetails.Sum(
 detail => detail.UnitPrice * detail.Quantity))
 })
 .OrderByDescending(dataitem => dataitem.Revenue)
 .ToArray();
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 }
}

	In the Pages folder, add a new file named CategoriesPieChart.razor.

	In CategoriesPieChart.razor, add statements to inject the HTTP client factory and then use it to output a pie chart of the number of products in each category, as shown in the following code:

@page "/categories-pie-chart"
@inject IHttpClientFactory httpClientFactory
<RadzenCheckBox @bind-Value="@showDataLabels" Name="dataLabels">
</RadzenCheckBox>
<RadzenLabel Text="Show Data Labels" For="dataLabels"
 Style="margin-left: 8px; vertical-align: middle;" />
<RadzenChart>
 <RadzenPieSeries Data="@categoryProducts" Title="Product Count"
 CategoryProperty="Category" ValueProperty="ProductCount">
 <RadzenSeriesDataLabels Visible="@showDataLabels" />
 </RadzenPieSeries>
</RadzenChart>
@code {
 bool showDataLabels = false;
 class DataItem
 {
 public string? Category { get; set; }
 public decimal ProductCount { get; set; }
 }
 private DataItem[]? categoryProducts;
 protected override async Task OnParametersSetAsync()
 {
 Category[]? categoriesArray = null;
 // Web API service uses "Preserve" so
 // we must control how references are handled.
 JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorLibraries.ServerAPI");
 string path = "api/categories";
 try
 {
 categoriesArray = (await client.GetFromJsonAsync<Category[]?>(
 path, jsonOptions));
 categoryProducts = categoriesArray?
 .Select(category => new DataItem
 {
 Category = category.CategoryName,
 ProductCount = category.Products.Count()
 })
 .OrderByDescending(dataitem => dataitem.ProductCount)
 .ToArray();
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 }
}

	In MainLayout.cshtml, add statements to define navigation links to the orders bar chart and categories pie chart page components, as shown in the following markup:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="orders-bar-chart">
 Orders Bar Chart
 </NavLink>
</div>
<div class="nav-item px-3">
 <NavLink class="nav-link" href="categories-pie-chart">
 Categories Pie Chart
 </NavLink>
</div>

	Start the Northwind.BlazorLibraries.Server project without debugging.

	Start Chrome and navigate to https://localhost:5171/.

	In the left navigation menu, click Orders Bar Chart, select the Show Data Labels check box, hover over one of the bars, and note tooltip shows details of the total revenue for that country, as shown for the UK in Figure 17.8:

[image: Figure 17.8: A bar chart of order revenue per country]Figure 17.8: A bar chart of order revenue per country

	In the left navigation menu, click Categories Pie Chart, and note that the chart is ordered by the category that has the highest number of products, Condiments, as shown in Figure 17.9:

[image: Figure 17.9: A pie chart of the number of products per category]Figure 17.9: A pie chart of the number of products per category

	Select Show Data Labels and hover over a pie segment to see a tooltip.

	Close Chrome and shut down the web server.

Using the Radzen form components

Now we will use the Radzen form components to enable viewing and editing of employees in the Northwind database:

	In the Northwind.BlazorLibraries.Server project, in Program.cs, before the call to the MapRazorPages method, add statements to define some endpoints to GET and PUT employees and related data like a list of cities and countries, as shown in the following code:

app.MapGet("api/employees/", (
 [FromServices] NorthwindContext db) =>
 Results.Json(db.Employees, jsonOptions))
 .WithName("GetEmployees")
 .Produces<Employee[]>(StatusCodes.Status200OK);
app.MapGet("api/countries/", (
 [FromServices] NorthwindContext db) =>
 Results.Json(db.Employees.Select(emp => emp.Country).Distinct()))
 .WithName("GetCountries")
 .Produces<string[]>(StatusCodes.Status200OK);
app.MapGet("api/cities/", (
 [FromServices] NorthwindContext db) =>
 Results.Json(db.Employees.Select(emp => emp.City).Distinct()))
 .WithName("GetCities")
 .Produces<string[]>(StatusCodes.Status200OK);
app.MapPut("api/employees/{id:int}", async (
 [FromRoute] int id,
 [FromBody] Employee employee,
 [FromServices] NorthwindContext db) =>
 {
 Employee? foundEmployee = await db.Employees.FindAsync(id);
 if (foundEmployee is null) return Results.NotFound();
 foundEmployee.FirstName = employee.FirstName;
 foundEmployee.LastName = employee.LastName;
 foundEmployee.BirthDate = employee.BirthDate;
 foundEmployee.HireDate = employee.HireDate;
 foundEmployee.Address = employee.Address;
 foundEmployee.City = employee.City;
 foundEmployee.Country = employee.Country;
 foundEmployee.Region = employee.Region;
 foundEmployee.PostalCode = employee.PostalCode;
 foundEmployee.ReportsTo = employee.ReportsTo;
 foundEmployee.Title = employee.Title;
 foundEmployee.TitleOfCourtesy = employee.TitleOfCourtesy;
 foundEmployee.Notes = employee.Notes;
 int affected = await db.SaveChangesAsync();
 return Results.Json(affected);
 })
 .Produces(StatusCodes.Status200OK)
 .Produces(StatusCodes.Status404NotFound);

	In the Pages folder, add a new file named Employees.razor.

	In Employees.razor, add statements to inject the HTTP client factory and then use it to output a form to select and then edit employees, as shown in the following code:

This is a long section of code because employees have more than 20 properties and each must be data bound to a control to edit it. You might prefer to copy it from the GitHub repository and then review it line-by-line rather than enter it yourself. I have highlighted the most interesting blocks of code.

@page "/employees"
@using System.Net
@inject IHttpClientFactory httpClientFactory
@inject NotificationService notificationService
<h3>Employees</h3>
<RadzenCard>
 <RadzenListBox AllowFiltering="true" TValue="int"
 FilterCaseSensitivity="FilterCaseSensitivity.CaseInsensitive"
 Data=@employees
 TextProperty="FirstName"
 ValueProperty="EmployeeId"
 Change=@(args => OnChange(args, "ListBox with filtering"))
 Style="height:150px" Class="w-100" />
</RadzenCard>
<hr />
@if (employee != null)
{
 <RadzenTemplateForm Data="@employee"
 Submit="@((Employee employee) => { Submit(employee); })">
 <div class="row">
 <div class="col-md-6">
 <RadzenFieldset Text="Employee Details">
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Employee ID" />
 </div>
 <div class="col-md-8">
 <RadzenNumeric style="width: 100%;" Name="EmployeeId"
 @bind-Value="employee.EmployeeId" ReadOnly="true" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Title" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="Title"
 @bind-Value="employee.Title" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Title of Courtesy" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="TitleOfCourtesy"
 @bind-Value="employee.TitleOfCourtesy" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="First Name" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="FirstName"
 @bind-Value="employee.FirstName" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Last Name" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="LastName"
 @bind-Value="employee.LastName" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Birth Date" />
 </div>
 <div class="col-md-8">
 <RadzenDatePicker style="width: 100%;" Name="BirthDate"
 @bind-Value="employee.BirthDate" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Hire Date" />
 </div>
 <div class="col-md-8">
 <RadzenDatePicker style="width: 100%;" Name="HireDate"
 @bind-Value="employee.HireDate" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <RadzenTextArea style="width: 100%;" Name="Notes"
 @bind-Value="employee.Notes" Rows="6" />
 </div>
 </div>
 </RadzenFieldset>
 </div>
 <div class="col-md-6">
 <RadzenFieldset Text="Home Address">
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Country" />
 </div>
 <div class="col-md-8">
 <RadzenDropDown TValue="string" @bind-Value="employee.Country"
 Placeholder="USA" Data="@countries" style="width: 100%;"
 Name="Country">
 </RadzenDropDown>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="City" />
 </div>
 <div class="col-md-8">
 <RadzenDropDown TValue="string" @bind-Value="employee.City"
 Data="@cities" style="width: 100%;" Name="City">
 </RadzenDropDown>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Region" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="Region"
 @bind-Value="employee.Region" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Postal Code" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="PostalCode"
 @bind-Value="employee.PostalCode" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Building/Street" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="Address"
 @bind-Value="employee.Address" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Home Phone" />
 </div>
 <div class="col-md-8">
 <RadzenTextBox style="width: 100%;" Name="HomePhone"
 @bind-Value="employee.HomePhone" />
 </div>
 </div>
 <div class="row">
 <div class="col-md-4 align-items-center d-flex">
 <RadzenLabel Text="Picture" />
 </div>
 <div class="col-md-8">
 @if (employee.Photo is not null)
 {
 <div>
 <img class="rounded float-start"
 src="@employee.Photo.ConvertToBase64Jpeg()" />
 </div>
 }
 </div>
 </div>
 </RadzenFieldset>
 </div>
 </div>
 <div class="row justify-content-center">
 <div class="col-md-12 d-flex align-items-end justify-content-center"
 style="margin-top: 16px;">
 <RadzenButton ButtonType="ButtonType.Submit" Icon="save"
 Text="Save Changes" />
 </div>
 </div>
 </RadzenTemplateForm>
}
@code {
 private IQueryable<Employee>? employees;
 private string[]? countries;
 private string[]? cities;
 private Employee? employee = null;
 // Web API service uses "Preserve" so
 // we must control how references are handled.
 private JsonSerializerOptions jsonOptions = new()
 {
 ReferenceHandler = ReferenceHandler.Preserve
 };
 protected override async Task OnParametersSetAsync()
 {
 Employee[]? employeesArray = null;
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorLibraries.ServerAPI");
 string path = "api/employees";
 try
 {
 employeesArray = (await client.GetFromJsonAsync<Employee[]?>(
 path, jsonOptions));
 employees = employeesArray?.AsQueryable();
 countries = (await client.GetFromJsonAsync<string[]?>(
 "api/countries"));
 cities = (await client.GetFromJsonAsync<string[]?>(
 "api/cities"));
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 }
 void OnChange(object value, string name)
 {
 string? str = value is IEnumerable<object> ?
 string.Join(", ", (IEnumerable<object>)value) :
 value.ToString();
 Console.WriteLine($"{name} value changed to {str}");
 if (str != null)
 {
 employee = employees?.FirstOrDefault(employee =>
 employee.EmployeeId == int.Parse(str));
 }
 }
 private async void Submit(Employee employee)
 {
 HttpClient client = httpClientFactory.CreateClient(
 "Northwind.BlazorLibraries.ServerAPI");
 string path = $"api/employees/{employee.EmployeeId}";
 try
 {
 HttpResponseMessage response = await client
 .PutAsJsonAsync<Employee>(path, employee);
 NotificationMessage message = new()
 {
 Severity = response.StatusCode == HttpStatusCode.OK ?
 NotificationSeverity.Success : NotificationSeverity.Error,
 Summary = $"{response.StatusCode}",
 Detail = $"Employees affected: {await response.Content.ReadAsStringAsync()}",
 Duration = 5000 // milliseconds
 };
 notificationService.Notify(message);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}: {ex.Message}");
 }
 }
}

	In MainLayout.cshtml, add statements to define navigation links to the employees page components, as shown in the following markup:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="employees">
 Employees
 </NavLink>
</div>

	Start the Northwind.BlazorLibraries.Server project without debugging.

	Start Chrome and navigate to https://localhost:5171/.

	In the left navigation menu, click Employees, enter ne in the search box and note the list is filtered to only show the four employees with ne in their first name, Janet and Anne, as shown in Figure 17.10:

[image: Figure 17.10: Filtering employees by first name]Figure 17.10: Filtering employees by first name

	Click Janet, and note that all her details are shown in a form below the list box, as shown in Figure 17.11:

[image: Figure 17.11: Details for the employee named Janet]Figure 17.11: Details for the employee named Janet

	Change some of the details for Janet and note that while the Blazor app is open, those changes remain in memory. But if you were to close the browser tab or window, those changes would be lost.

	Click the Save Changes button and note the notification message to inform you that the changes were successfully saved to the database, as shown in Figure 17.12:

[image: Figure 17.12: A successful update to an employee in the database]Figure 17.12: A successful update to an employee in the database

	Close Chrome and shut down the web server.

	Start the Northwind.BlazorLibraries.Server project without debugging.

	Start Chrome and navigate to https://localhost:5171/.

	In the left navigation menu, click Employees, search for Janet, and confirm that her details were saved correctly.

	Close Chrome and shut down the web server.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 17.1 – Test your knowledge

Answer the following questions:

	?

	?

Exercise 17.2 – Practice by exploring MudBlazor

Create a new solution and set of projects to explore the MudBlazor component library. You can follow the instructions to get started with it at the following link: https://mudblazor.com/getting-started/installation#manual-install.

It has similar components so you should try completing all the tasks in this chapter using it instead of Radzen Blazor to see the subtle differences and all the similarities.

Exercise 17.3 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-9---securing-web-services

Summary

In this chapter, you learned how to secure services using authentication and ???.

In the next chapter, you will learn how to expose data using OData.

18 Building Mobile and Desktop Apps Using .NET MAUI

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about learning how to make graphical user interface (GUI) apps by building a cross-platform mobile and desktop app for iOS and Android, macOS Catalyst and Windows using .NET MAUI (Multi-platform App User Interface).

You will see how eXtensible Application Markup Language (XAML) makes it easy to define the user interface for a graphical app.

Cross-platform GUI development cannot be learned in a single chapter, but like web development, it is so important that I want to introduce you to some of what is possible. Think of this chapter as an introduction that will give you a taste to inspire you, and then you can learn more from a book dedicated to mobile or desktop development.

The app will allow the listing and management of customers in the Northwind database. The mobile app that you create will call an ASP.NET Core Minimal API web service.

Either a Windows computer with Visual Studio 2022 for Windows version 17.3 or later, or a macOS computer with Visual Studio 2022 for Mac version 17.4 can be used to create a .NET MAUI project. But you will need a computer with Windows to compile WinUI 3 apps and you will need a computer with macOS and Xcode to compile for macOS Catalyst and iOS.

Although you can create a .NET MAUI project at the command line and then edit it using Visual Studio Code, there is no official tooling to help you yet.

In this chapter, we will cover the following topics:

	Understanding XAML

	Understanding .NET MAUI

	Building mobile and desktop apps using .NET MAUI

	Using shared resources

	Using data binding

	Understanding MVVM

	Consuming a web service from a .NET MAUI app

Understanding XAML

Let's start by looking at the markup language used by .NET MAUI.

In 2006, Microsoft released Windows Presentation Foundation (WPF), which was the first technology to use XAML (eXtensible Application Markup Language). Silverlight, for web and mobile apps, quickly followed, but it is no longer supported by Microsoft. WPF is still used today to create Windows desktop applications; for example, Visual Studio for Windows is partially built using WPF.

XAML can be used to build parts of the following apps:

	.NET MAUI apps for mobile and desktop devices, including Android, iOS, Windows, and macOS. It is an evolution of a technology named Xamarin.Forms.

	WinUI 3 apps for Windows 10 and 11.

	Universal Windows Platform (UWP) apps for Windows 10 and 11, Xbox, Mixed Reality and Meta Quest VR headsets.

	WPF apps for Windows desktop, including Windows 7 and later.

	Avalonia and Uno Platform apps using cross-platform third party technologies.

Simplifying code using XAML

XAML simplifies C# code, especially when building a user interface.

Imagine that you need two or more pink buttons laid out horizontally to create a toolbar that execute a method for their implementation when clicked.

In C#, you might write the following code:

HorizontalStackPanel toolbar = new();
Button newButton = new();
newButton.Content = "New";
newButton.Background = new SolidColorBrush(Colors.Pink);
newButton.Clicked += NewButton_Clicked;
toolbar.Children.Add(newButton);
Button openButton = new();
openButton.Content = "Open";
openButton.Background = new SolidColorBrush(Colors.Pink);
openButton.Clicked += OpenButton_Clicked;
toolbar.Children.Add(openButton);

In XAML, this could be simplified to the following lines of code. When this XAML is processed, the equivalent properties are set, and methods are called to achieve the same goal as the preceding C# code:

<HorizontalStackPanel x:Name="toolbar">
 <Button x:Name="newButton" Background="Pink"
 Clicked="NewButton_Clicked">New</Button>
 <Button x:Name="openButton" Background="Pink"
 Clicked="OpenButton_Clicked">Open</Button>
</StackPanel>

You can think of XAML is an alternative and easier way of declaring and instantiating .NET types, especially when defining a user interface and the resources that it uses.

XAML allows resources like brushes, styles, and themes to be declared at different levels like a UI element, a page, or globally for the application to enable resource sharing.

XAML allows data binding between UI elements or between UI elements and objects and collections.

If you choose to use XAML to define your user interface and related resources at compile time, then the code-behind file must call the InitializeComponent method in the page constructor, as shown highlighted in the following code:

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent(); // process XAML
 }
 private void NewButton_Clicked(object sender, EventArgs e)
 {
 ...
 }
 private void OpenButton_Clicked(object sender, EventArgs e)
 {
 ...
 }
}

Calling the InitializeComponent method tells the page to read its XAML, create the controls defined in it, and set their properties and event handlers.

Understanding .NET MAUI namespaces

.NET MAUI has several important namespaces where its types are defined:

	Namespace
	Description

	Microsoft.Maui
	Utility types like FlowDirection , IButton , IImage , and Thickness .

	Microsoft.Maui.Controls
	Common controls, pages, and related types like Application , Brush , Button , CheckBox , ContentPage , Image , and VerticalStackPanel .

	Microsoft.Maui.Graphics
	Types for graphics like Color , Font , ImageFormat , PathBuilder , Point and Size .

To import a namespace using XAML, in the root element you add xmlns attributes. One namespace is imported as the default, and others must be named using a prefix.

For example, .NET MAUI types are imported by default, so the element names do not need a prefix, general XAML syntax is imported using the x prefix for doing common things like naming a control or the class name that the XAML will be compiled as, and your project types are often imported using the local prefix, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:MyMauiApp.Controls"
 x:Class="MyMauiApp.MainPage"
 ...>
 <Button x:Name="NewFileButton" ...>New File</Button>
 <local:CustomerList x:Name="CustomerList" ... />
 ...
</ContentPage>

In the example above, the project is named MyMauiApp and its controls like the CustomerList control are defined in a namespace named MyMauiApp.Controls. This namespace has been registered with the prefix local, so when an instance of the CustomerList control is needed, it is declared using <local:CustomerList>.

You can import as many namespaces with different prefixes as you need.

Understanding type converters

Type converters convert XAML attribute values that must be set as string values into other types. For example, the following button has its background property set to the string value Pink:

<Button x:Name="newButton" Background="Pink" ...

This is converted into a SolidColorBrush instance using a type converter, as shown in the following equivalent code:

newButton.Background = new SolidColorBrush(Colors.Pink);

There are many type converters provided by .NET MAUI and you can create and register your own. These are especially useful for custom data visualizations.

Choosing common controls

There are lots of predefined controls that you can choose from for common user interface scenarios. Almost all dialects of XAML support these controls:

	Controls
	Description

	Button , ImageButton , Menu , Toolbar
	Executing actions

	CheckBox , RadioButton
	Choosing options

	Calendar , DatePicker
	Choosing dates

	ComboBox , ListBox , ListView , TreeView
	Choosing items from lists and hierarchical trees

	Canvas , DockPanel , Grid , HorizontalStackPanel , StackPanel , VerticalStackPanel , WrapPanel
	Layout containers that affect their children in different ways

	Label , TextBlock
	Displaying read-only text

	RichTextBox , TextBox
	Editing text

	Image , MediaElement
	Embedding images, videos, and audio files

	DataGrid
	Viewing and editing data as quickly and easily as possible

	Scrollbar , Slider , StatusBar
	Miscellaneous user interface elements

Good Practice: Avoid StackPanel and setting its Orientation attribute to Horizontal or Vertical. The new HorizontalStackPanel and VerticalStackPanel controls are more optimized for layout performance.

.NET MAUI defines its controls in the Microsoft.Maui.Controls namespace. It has some specialized controls too:

	Application: Represents a cross-platform graphical application. It sets the root page, manages windows, themes, resources, and provides app-level events like PageAppearing, ModalPushing, and RequestedThemeChanged. It also has methods that you can override to hook into app events like OnStart, OnSleep, OnResume, and CleanUp.

	Shell: A Page control that provides user interface features that most applications require, like flyout or tab bar navigation, navigation tracking and management, and navigation events.

Most .NET MAUI controls derive from View. One of the most important characteristics of a View-derived type is that they can be nested. This allows you to build complex custom user interfaces.

Understanding markup extensions

To support some advanced features, XAML uses markup extensions. Some of the most important enable element and data binding and the reuse of resources, as shown in the following list:

	{Binding} links an element to a value from another element or a data source.

	{OnPlatform} sets properties to different values depending on the current platform.

	{StaticResource} and {DynamicResource} link an element to a shared resource.

	{ThemeResource} links an element to a shared resource defined in a theme.

.NET MAUI provides the OnPlatform markup extension to allow you to set different markup depending on the platform. For example, iPhone X and later introduced the notch that takes up extra space at the top of the phone display. We could add extra padding to an app that applies to all devices, but it would be better if we could add that extra padding only to iOS, as shown in the following markup:

<VerticalStackLayout>
 <VerticalStackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS" Value="30,60,30,30" />
 <On Platform="Android" Value="30" />
 <On Platform="WinUI" Value="30" />
 </OnPlatform>
 </VerticalStackLayout.Padding>

There is a simplified syntax too, as shown in the following markup:

<VerticalStackLayout Padding"{OnPlatform iOS='30,60,30,30', Default='30'}">

Understanding .NET MAUI

To create a mobile app that only needs to run on iPhones, you might choose to build it with either the Objective-C or Swift language and the UIKit libraries using the Xcode development tool.

To create a mobile app that only needs to run on Android phones, you might choose to build it with either the Java or Kotlin language and the Android SDK libraries using the Android Studio development tool.

But what if you need to create a mobile app that can run on iPhones and Android phones? And what if you only want to create that mobile app once using a programming language and development platform that you are already familiar with? And what if you realized that with a bit more coding effort to adapt the user interface to desktop size devices, you could target macOS and Windows desktop too?

.NET MAUI enables developers to build cross-platform mobile apps for Apple iOS (iPhone), iPadOS, macOS using Catalyst, Windows using WinUI 3, and Google Android using C# and .NET, which are then compiled to native APIs and executed on native phone and desktop platforms.

Business logic layer code can be written once and shared between all platforms. User interface interactions and APIs are different on various mobile and desktop platforms, so the user interface layer is sometimes custom for each platform.

Like WPF and UWP apps, .NET MAUI uses XAML to define the user interface once for all platforms using abstractions of platform-specific user interface components. Applications built with .NET MAUI draw the user interface using native platform widgets, so the app's look-and-feel fits naturally with the target mobile platform.

A user experience built using .NET MAUI will not perfectly fit a specific platform in the same way that one custom built with native tools for that platform would, but for mobile and desktop apps that will not have millions of users, it is good enough. And with some effort, you can build beautiful apps, as illustrated by Microsoft challenge that you can read about at the following link:

https://devblogs.microsoft.com/dotnet/announcing-dotnet-maui-beautiful-ui-challenge/

Development tools for mobile first, cloud first

Mobile apps are often supported by services in the cloud.

Satya Nadella, CEO of Microsoft, famously said the following:

To me, when we say mobile first, it's not the mobility of the device, it's actually the mobility of the individual experience. [...] The only way you are going to be able to orchestrate the mobility of these applications and data is through the cloud.

As you have seen earlier in this book, to create an ASP.NET Core Web API service to support a mobile app, we can use Visual Studio Code. To create .NET MAUI apps, developers can use either Visual Studio 2022 for Windows or Visual Studio 2022 for Mac.

When installing Visual Studio 2022 version 17.3 or later, you must select the .NET Multi-platform App UI development workload that is in the Desktop & Mobile section, as shown in Figure 18.1:

[image: Figure 18.1: Selecting the .NET MAUI workload for Visual Studio 2022]Figure 18.1: Selecting the .NET MAUI workload for Visual Studio 2022

Using Windows to create iOS and macOS apps

If you want to use Visual Studio 2022 for Windows to create an iOS mobile app or a macOS Catalyst desktop app, then you can connect over a network to a Mac build host. Instructions can be found at the following link:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/ installation/windows/connecting-to-mac/

Understanding .NET MAUI user interface components

.NET MAUI includes some common controls for building user interfaces. They can be divided into four categories:

	Pages: represent cross-platform application screens, for example, Shell, ContentPage, NavigationPage, FlyoutPage, and TabbedPage.

	Layouts: represent the structure of a combination of other user interface components, for example, Grid, StackLayout, and FlexLayout.

	Views: represent a single user interface component, for example, CarouselView, CollectionView, Label, Entry, Editor, and Button.

	Cells: represent a single item in a list or table view, for example, TextCell, ImageCell, SwitchCell, and EntryCell.

Understanding the ContentPage control

The ContentPage control is for simple user interfaces. It has a ToolbarItems property that shows actions the user can perform in a platform-native way. Each ToolbarItem can have an icon and text:

<ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Activated="Add_Activated"
 Order="Primary" Priority="0" />
 ...
</ContentPage.ToolbarItems>

Understanding the Shell control

The Shell control is designed to simplify app development by providing standardized navigation and search capabilities. In your project, you would create a class that inherits from the Shell control class. Your derived class defines components like a TabBar, which contains Tab items, FlyoutItem instances, and ShellContent, which contain the ContentPage instances for each page. A TabBar should be used when there only up to about four or five pages to navigate between. FlyoutItem navigation should be used when there are more items because they can be presented as a vertical scrollable list. You can use both, with the TabBar showing a subset of items. The Shell will keep them synchronized.

Flyout navigation is when a list of items flies out (or slides) from the left side of a mobile device's screen or desktop app’s main window. The user invokes it by tapping on a "hamburger" icon with three horizontal lines stacked on top of each other. When the user taps a flyout item, its page is instantiated when needed, as the user navigates around the user interface.

The top bar automatically shows a Back button when needed to allow the user to navigate back to a previous page.

Understanding the ListView control

The ListView control is used for long lists of data-bound values of the same type. It can have headers and footers and its list items can be grouped.

It has cells to contain each list item. There are two built-in cell types: text and image. Developers can define custom cell types.

Cells can have context actions that appear when the cell is swiped on iPhone or long pressed on Android. A context action that is destructive can be shown in red, as shown in the following markup:

<TextCell Text="{Binding CompanyName}" Detail="{Binding Location}">
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete" IsDestructive="True" />
 </TextCell.ContextActions>
</TextCell>

Understanding the Entry and Editor controls

The Entry and Editor controls are used for editing text values and are often data-bound to an entity model property, as shown in the following markup:

<Editor Text="{Binding CompanyName, Mode=TwoWay}" />

Use Entry for a single line of text. Use Editor for multiple lines of text.

Understanding .NET MAUI handlers

In .NET MAUI, XAML controls are defined in the Microsoft.Maui.Controls namespace. Components called handlers map these common controls to native controls on each platform. On iOS, a handler will map a .NET MAUI Button to an iOS-native UIButton defined by UIKit. On macOS, Button is mapped to NSButton defined by AppKit. On Android, Button is mapped to an Android-native AppCompatButton.

Handlers have a NativeView property that exposes the underlying native control. This allows you to work with platform-specific features like properties, methods, and events. and customize all instances of a native control.

Writing platform-specific code

If you need to write code statements that only execute for a specific platform like Android, then you can use compiler directives.

For example, by default, Entry controls on Android show an underline character. If you want to hide the underline, you could write some Android-specific code to get the handler for the Entry control and then use its NativeView property to access the underlying native control, and then set the property that controls that feature to false, as shown in the following code:

#if __ANDROID__
 Handlers.EntryHandler.EntryMapper[nameof(IEntry.BackgroundColor)] = (h, v) =>
 {
 (h.NativeView as global::Android.Views.Entry).UnderlineVisible = false;
 };
#endif

Predefined compiler constants include the following:

	__ANDROID__

	__IOS__

	WINDOWS

The compiler #if statement syntax is slightly different from the C# if statement syntax, as shown in the following code:

#if __IOS__
 // iOS-specific statements
#elif __ANDROID__
 // Android-specific statements
#elif WINDOWS
 // Windows-specific statements
#endif

Building mobile and desktop apps using .NET MAUI

We will build a mobile and desktop app for managing customers in Northwind.

Good Practice: If you have a Mac and you have never run Xcode on it, then run it now until you see the Start window. This will ensure that all its required components are installed and registered. If you do not do this, then you might get errors with your projects later in Visual Studio 2022 for Mac.

Creating a virtual Android device for local app testing

To target Android, you must install at least one Android SDK. A default installation of Visual Studio 2022 with the mobile development workload already includes one Android SDK, but it is often an older version to support as many Android devices as possible.

To use the latest features of .NET MAUI, you must install a more recent Android SDK.

	In Windows, start Visual Studio 2022. If you see the Start window, then click Continue without code.

	Navigate to Tools | Android | Android Device Manager. If you are prompted by User Account Control to allow this app to make changes to your device, click Yes.

	In the Android Device Manager, click the + New button the create a new device.

	In the New Device dialog, make the following choices:

	Base Device: Pixel 4a

	Processor: x86

	OS: Android 11.0 – API 30

	Click Create.

	Accept any license agreements.

	Wait for any required downloads.

	In the Android Device Manager, in the list of devices, in the row for the device that you just created, click Start, as shown in Figure 18.2:

[image: Figure 18.2: Android Device Manager]Figure 18.2: Android Device Manager

	When the Android device has finished starting, click the browser and test that it has access to the network by navigating to https://www.bbc.co.uk/news.

	Close the emulator.

	Close Android Device Manager.

	Restart Visual Studio 2022 to ensure that it is aware of the new emulator.

Creating a .NET MAUI solution

We will now create a project for a cross-platform mobile and desktop app:

	In Visual Studio for Windows, add a new project, as defined in the following list:

	Project template: .NET MAUI App / maui. You can select C# for the language and MAUI for the project type to show only the appropriate project templates, as shown in Figure 18.3.

	Workspace/solution file and folder: Chapter18

	Project file and folder: Northwind.Maui.Client

[image: Figure 18.3: Applying filters to show only the three .NET MAUI project templates]Figure 18.3: Applying filters to show only the three .NET MAUI project templates

	If you see a Windows Security Alert that Windows Defender Firewall has blocked some features of Broker on all public and private networks, then select Private networks and clear Public networks, and then click the Allow access button.

	Open the project file, and note the elements target iOS, Android, Mac Catalyst and to enable Windows targeting, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFrameworks>net6.0-ios;net6.0-android;net6.0-maccatalyst</TargetFrameworks>
 <TargetFrameworks Condition="$([MSBuild]::IsOSPlatform('windows')) and '$(MSBuildRuntimeType)' == 'Full'">$(TargetFrameworks);net6.0-windows10.0.19041.0</TargetFrameworks>
 <!-- Uncomment to also build the tizen app. You will need to install tizen by following this: https://github.com/Samsung/Tizen.NET -->
 <!-- <TargetFrameworks>$(TargetFrameworks);net6.0-tizen</TargetFrameworks> -->
 <OutputType>Exe</OutputType>
 <RootNamespace>Northwind.Maui.Client</RootNamespace>
 <UseMaui>true</UseMaui>
 <SingleProject>true</SingleProject>

	To the right of the Run button in the toolbar, set the Framework to net6.0-android, and select the Pixel 4a - API 30 (Android 11.0 - API 30) emulator image that you previously created, as shown in Figure 18.4:

[image: Figure 18.4: Selecting Android as the target for startup]Figure 18.4: Selecting Android as the target for startup

	Click the Run button in the toolbar and wait for device emulator to start the Android operating system and launch your mobile app.

	In the .NET MAUI app, click the Click me button to increment the counter three times, as shown in Figure 18.5:

[image: Figure 18.5: Incrementing the counter in the .NET MAUI app on Android]Figure 18.5: Incrementing the counter in the .NET MAUI app on Android

	Close the Android device emulator.

	To the right of the Run button in the toolbar, set the Framework to net6.0-windows, and then select Windows Machine.

	Make sure that the Debug configuration is selected and then click the green triangle start button labelled Windows Machine.

	After a few moments, note that the Windows app displays with the same Click me button and counter functionality, as shown in Figure 18.6:

[image: Figure 18.6: Incrementing the counter in the .NET MAUI app on Windows]Figure 18.6: Incrementing the counter in the .NET MAUI app on Windows

	Close the Windows app.

Good Practice: You should test run your .NET MAUI app on all the potential devices that it will need to run on. In this chapter, even if I do not explicitly tell you to do so, I recommend that you try the app by running it on your emulated Android device and on Windows after each task to add a new feature. That way you will have at least see how it looks on a mobile device with a primarily tall and thin portrait size, and on a desktop device with a larger landscape size.

Adding shell navigation and more content pages

Now, let's review the existing structure of the .NET MAUI app and then add some new pages and navigation to the project:

	In the Northwind.Maui.Client project, in MauiProgram.cs, note the builder object calls UseMauiApp and specifies App as its generic type, as shown highlighted in the following code:

namespace Northwind.Maui.Client;
public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureFonts(fonts =>
 {
 fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular");
 fonts.AddFont("OpenSans-Semibold.ttf", "OpenSansSemibold");
 });
 return builder.Build();
 }
}

	In Solution Explorer, expand App.xaml, open App.xaml.cs, and note the MainPage property of the App is set to an instance of AppShell, as shown highlighted in the following code:

namespace Northwind.Maui.Client;
public partial class App : Application
{
 public App()
 {
 InitializeComponent();
 MainPage = new AppShell();
 }
}

	In AppShell.xaml, note the shell disables flyout mode and only has a single content page named MainPage, as shown highlighted in the following code:

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 x:Class="Northwind.Maui.Client.AppShell"
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Northwind.Maui.Client"
 Shell.FlyoutBehavior="Disabled">
 <ShellContent
 Title="Home"
 ContentTemplate="{DataTemplate local:MainPage}"
 Route="MainPage" />
</Shell>

A shell with only one content page does not show any navigation. You must have at least two shell content items.

	In the Resources folder, in the Images folder, add images for some icons that we will use for flyout items in the navigation we are about to add.

You can download the images from the GitHub repository at the following link: https://github.com/markjprice/apps-services-net7/tree/main/vs4win/Chapter18/Northwind.Maui.Client/Resources/Images

	In the project file, make sure the images are referenced as MauiImage elements, as shown highlighted in the following markup:

<ItemGroup>
 <!-- App Icon -->
 <MauiIcon Include="Resources\AppIcon\appicon.svg"
 ForegroundFile="Resources\AppIcon\appiconfg.svg"
 Color="#512BD4" />
 <!-- Splash Screen -->
 <MauiSplashScreen Include="Resources\Splash\splash.svg"
 Color="#512BD4" BaseSize="128,128" />
 <!-- Images -->
 <MauiImage Include="Resources\Images*" />
 <MauiImage Update="Resources\Images\dotnet_bot.svg" BaseSize="168,208" />
 <MauiImage Include="Resources\Images\card_index_3d.png" />
 <MauiImage Include="Resources\Images\cityscape_3d.png" />
 <MauiImage Include="Resources\Images\delivery_truck_3d.png" />
 <MauiImage Include="Resources\Images\gear_3d.png" />
 <MauiImage Include="Resources\Images\euro_banknote_3d.png" />
 <MauiImage Include="Resources\Images\file_cabinet_3d.png" />
 <MauiImage Include="Resources\Images\identification_card_3d.png" />
 <MauiImage Include=
 "Resources\Images\magnifying_glass_tilted_left_3d.png" />
 <MauiImage Include="Resources\Images\wind_face_3d.png" />
 <!-- Custom Fonts -->
 <MauiFont Include="Resources\Fonts*" />
 <!-- Raw Assets (also remove the "Resources\Raw" prefix) -->
 <MauiAsset Include="Resources\Raw**"
 LogicalName="%(RecursiveDir)%(Filename)%(Extension)" />
</ItemGroup>

	In AppShell.xaml, enable flyout mode, set the background to a pale blue color, add an icon for the MainPage content, add a flyout header, and then add some flyout items with more shell content, as shown highlighted in the following markup:

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 x:Class="Northwind.Maui.Client.AppShell"
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Northwind.Maui.Client"
 FlyoutBackgroundColor="AliceBlue"
 Shell.FlyoutBehavior="Flyout">
 <Shell.FlyoutHeader>
 <HorizontalStackLayout Spacing="10" HorizontalOptions="Start">
 <Image Source="wind_face_3d.png"
 WidthRequest="80" HeightRequest="80" />
 <Label Text="Northwind" FontFamily="OpenSansSemibold"
 FontSize="32" VerticalOptions="Center" />
 </HorizontalStackLayout>
 </Shell.FlyoutHeader>
 <ShellContent
 Title="Home"
 Icon="file_cabinet_3d.png"
 ContentTemplate="{DataTemplate local:MainPage}"
 Route="MainPage" />
 <ShellContent Title="Categories"
 Icon="delivery_truck_3d.png"
 ContentTemplate="{DataTemplate local:CategoriesPage}"
 Route="Categories" />
 <ShellContent Title="Products"
 Icon="cityscape_3d.png"
 ContentTemplate="{DataTemplate local:ProductsPage}"
 Route="Products" />
 <ShellContent Title="Customers"
 Icon="card_index_3d.png"
 ContentTemplate="{DataTemplate local:CustomersPage}"
 Route="Customers" />
 <ShellContent Title="Employees"
 Icon="identification_card_3d.png"
 ContentTemplate="{DataTemplate local:EmployeesPage}"
 Route="Employees" />
 <ShellContent Title="Settings"
 Icon="gear_3d.png"
 ContentTemplate="{DataTemplate local:SettingsPage}"
 Route="Settings" />

</Shell>

	Right-click the Northwind.Maui.Client project folder, choose Add | New Item..., select .NET MAUI in the template types tree, select .NET MAUI ContentPage (XAML), enter the name SettingsPage, and click Add, as shown in Figure 18.7:

[image: Figure 18.7: Adding a new XAML Content Page item]Figure 18.7: Adding a new XAML Content Page item

	Repeat the previous step to add content pages named:

	CategoriesPage

	CustomersPage

	EmployeesPage

	ProductsPage

	In Solution Explorer, double-click on the CategoriesPage.xaml file to open it for editing. Note that Visual Studio 2022 does not yet have a graphical design view for XAML.

	Navigate to View | Toolbox or press Ctrl + W, X. Note that the toolbox has sections for Controls, Layouts, Cells, and General, as shown in Figure 18.8:

[image: Figure 18.8: The toolbox showing .NET MAUI layout controls]Figure 18.8: The toolbox showing .NET MAUI layout controls

	At the top of the toolbox is a search box. Enter the letter b, and then note that the list of controls is filtered to show controls like Button, ProgressBar, and AbsoluteLayout.

	Drag and drop the Button control from the toolbox into the XAML markup after the existing <Label> control, and change its Text property to Hello!, as shown in the following markup:

<Button Text="Hello!" />

	Set the startup to Windows Machine and then start the Northwind.Maui.Client project with debugging and note that the Visual Studio status bar shows us that XAML Hot Reload is connected.

	In the top-left corner of the app, click the flyout menu (the "hamburger" icon), and note the header and the images used for the icons in the flyout items, as shown in Figure 18.9:

[image: Figure 18.9: A flyout with image icons]Figure 18.9: A flyout with image icons

	In the flyout menu, click Categories, and note the text on the button says Hello! and that it stretches across the width of the app window.

	Leave the app running, and then in Visual Studio, change the Text property to Click Me, add an attribute to set the WidthRequest property to 100, and note that the XAML Hot Reload feature automatically reflects the changes in the XAML Live Preview window and in the app itself, as shown in Figure 18.10:

[image: Figure 18.10: XAML Hot Reload automatically updating changes in the XAML in the live app]Figure 18.10: XAML Hot Reload automatically updating changes in the XAML in the live app

	Close the app.

	Modify the Button element to give it a name of ClickMeButton and a new event handler for its Clicked event, as shown in Figure 18.11:

[image: Figure 18.11: Adding an event handler to a control]Figure 18.11: Adding an event handler to a control

	Right-click the event handler name and select Go To Definition or press F12.

	Add a statement to the event handler method that sets the content of the button to the current time, as shown highlighted in the following code:

private void ClickMeButton_Click(object sender, EventArgs e)
{
 ClickMeButton.Text = DateTime.Now.ToString("hh:mm:ss");
}

	Start the Northwind.Maui.Client project with debugging.

	Navigate to Categories, click the button, and note its text label changes to the current time.

	Close the app.

Implementing more content pages

Now, let's implement some of the new pages:

	In Employees.xaml, add markup to define the user interface for a simple calculator, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.EmployeesPage"
 Title="Employees">

 <VerticalStackLayout>
 <Grid Background="DarkGray" Margin="10"
 Padding="5" x:Name="gridCalculator"
 ColumnDefinitions="Auto,Auto,Auto,Auto"
 RowDefinitions="Auto,Auto,Auto,Auto">
 <Button Grid.Row="0" Grid.Column="0" Text="X" />
 <Button Grid.Row="0" Grid.Column="1" Text="/" />
 <Button Grid.Row="0" Grid.Column="2" Text="+" />
 <Button Grid.Row="0" Grid.Column="3" Text="-" />
 <Button Grid.Row="1" Grid.Column="0" Text="7" />
 <Button Grid.Row="1" Grid.Column="1" Text="8" />
 <Button Grid.Row="1" Grid.Column="2" Text="9" />
 <Button Grid.Row="1" Grid.Column="3" Text="0" />
 <Button Grid.Row="2" Grid.Column="0" Text="4" />
 <Button Grid.Row="2" Grid.Column="1" Text="5" />
 <Button Grid.Row="2" Grid.Column="2" Text="6" />
 <Button Grid.Row="2" Grid.Column="3" Text="." />
 <Button Grid.Row="3" Grid.Column="0" Text="1" />
 <Button Grid.Row="3" Grid.Column="1" Text="2" />
 <Button Grid.Row="3" Grid.Column="2" Text="3" />
 <Button Grid.Row="3" Grid.Column="3" Text="=" />
 </Grid>
 <Label x:Name="Output" FontSize="24"
 VerticalOptions="Center"
 HorizontalOptions="Start" />
 </VerticalStackLayout>
</ContentPage>

	Add an event handler for the page's Loaded event, as shown in the following markup:

Loaded="ContentPage_Loaded">

	In Employees.xaml.cs, add statements to resize each button in the grid and hook up and event handler for the Clicked event, as shown in the following code:

private void ContentPage_Loaded(object sender, EventArgs e)
{
 foreach (Button button in gridCalculator.Children.OfType<Button>())
 {
 button.FontSize = 24;
 button.WidthRequest = 54;
 button.HeightRequest = 54;
 button.Clicked += Button_Clicked;
 }
}

	In the Button_Clicked method, add statements to handle the clicked button, as shown in the following code:

private void Button_Clicked(object sender, EventArgs e)
{
 string operationChars = "+-/X=";
 Button button = (Button)sender;
 if (operationChars.Contains(button.Text))
 {
 Output.Text = string.Empty;
 }
 else
 {
 Output.Text += button.Text;
 }
}

This is not a proper implementation for a calculator because the operations have not been implemented. It just simulates one for now.

	Start the Northwind.Maui.Client project with debugging. Try it with both Windows Machine and your emulated Android device.

	Navigate to Employees, click some of the buttons, and note the label updates to show what is clicked, as shown on a Windows Machine in Figure 18.12:

[image: Figure 18.12: A simulated calculator on Windows]Figure 18.12: A simulated calculator on Windows

	Close the app.

Using shared resources

When building graphical user interfaces, you will often want to use a resource, such as a brush to paint the background of controls or an instance of a class to perform custom conversions. Resources can be defined at the following levels and shared with everything at that level or lower:

	Application

	Page

	Control

Defining resources to share across an app

A good place to define shared resources is at the app level, so let's see how to do that.

	In the Resources folder, in the Styles folder, add a new .NET MAUI Resource Dictionary (XAML) project item named Northwind.xaml.

	Add markup inside the existing ResourceDictionary element to define a linear gradient brush with a key of rainbow, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ResourceDictionary xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.Resources.Styles.Northwind">
 <LinearGradientBrush x:Key="rainbow">
 <GradientStop Color="Red" Offset="0" />
 <GradientStop Color="Orange" Offset="0.1" />
 <GradientStop Color="Yellow" Offset="0.3" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.7" />
 <GradientStop Color="Indigo" Offset="0.9" />
 <GradientStop Color="Violet" Offset="1" />
 </LinearGradientBrush>
</ResourceDictionary>

	In App.xaml, add an entry to the merged resource dictionaries to reference the resource file in the Styles folder named Northwind.xaml, as shown highlighted in the following markup:

<?xml version = "1.0" encoding = "UTF-8" ?>
<Application xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Northwind.Maui.Client"
 x:Class="Northwind.Maui.Client.App">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Resources/Styles/Colors.xaml" />
 <ResourceDictionary Source="Resources/Styles/Styles.xaml" />
 <ResourceDictionary Source="Resources/Styles/Northwind.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Referencing shared resources

Now we can reference the shared resource:

	In CategoriesPage.xaml, modify the ContentPage to set its background to the brush resource with the key of rainbow, as shown highlighted in the following markup:

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.CategoriesPage"
 Background="{StaticResource rainbow}"
 Title="Categories">

StaticResource means the resource is read once when the app first starts. If the resource changes after that, any elements that reference it will not be updated.

	Start the Northwind.Maui.Client project with debugging. Try it with both Windows Machine and your emulated Android device.

	Navigate to Categories and note the background of the page is a rainbow.

	Close the app.

Changing shared resources dynamically

Now we can implement a settings page to allow the user to change some colors used in the user interface at runtime:

	In Northwind.xaml, add markup inside the ResourceDictionary element to define a pair of color resources that will be used for the text and background colors of labels and buttons, as shown in the following markup:

<Style TargetType="Entry">
 <Setter Property="TextColor" Value="{DynamicResource PrimaryTextColor}" />
 <Setter Property="FontFamily" Value="OpenSansRegular" />
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="WidthRequest" Value="300" />
</Style>
<Color x:Key="TextColor">Black</Color>
<Color x:Key="BackgroundColor">Silver</Color>

	In MainPage.xaml, set the TextColor property of the labels, and both the TextColor and BackgroundColor properties of the button to use the appropriate resource dynamically, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Northwind.Maui.Client"
 x:Class="Northwind.Maui.Client.MainPage">
 <ScrollView>
 <VerticalStackLayout Spacing="25" Padding="30,0"
 VerticalOptions="Center">
 <Image Source="dotnet_bot.png" SemanticProperties.Description=
 "Cute dot net bot waving hi to you!"
 HeightRequest="200" HorizontalOptions="Center" />
 <Label TextColor="{DynamicResource TextColor}"
 Text="Hello, World!"
 SemanticProperties.HeadingLevel="Level1"
 FontSize="32" HorizontalOptions="Center" />
 <Label TextColor="{DynamicResource TextColor}"
 Text="Welcome to .NET Multi-platform App UI"
 SemanticProperties.HeadingLevel="Level2"
 SemanticProperties.Description="Welcome to dot net Multi platform App U I"
 FontSize="18"
 HorizontalOptions="Center" />
 <Button TextColor="{DynamicResource TextColor}"
 BackgroundColor="{DynamicResource BackgroundColor}"
 x:Name="CounterBtn" Text="Click me"
 SemanticProperties.Hint="Counts the number of times you click"
 Clicked="OnCounterClicked" HorizontalOptions="Center" />
 </VerticalStackLayout>
 </ScrollView>
</ContentPage>

	In SettingsPage.xaml, add content to define a form for changing the two colors, and note the button is also dynamically bound to the color resources so the user will see the affect immediately, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.SettingsPage"
 xmlns:local="clr-namespace:Northwind.Maui.Client"
 Loaded="ContentPage_Loaded"
 Title="Settings">

 <VerticalStackLayout Padding="10">
 <Label Text="Text Color" />
 <Entry x:Name="TextColorEntry"
 TextChanged="TextColorEntry_TextChanged" />
 <Label Text="Background Color" />
 <Entry x:Name="BackgroundColorEntry"
 TextChanged="BackgroundColorEntry_TextChanged" />
 <Button x:Name="ApplyButton" Text="Apply"
 TextColor="{DynamicResource TextColor}"
 BackgroundColor="{DynamicResource BackgroundColor}"
 Clicked="ApplyButton_Clicked" IsEnabled="false" />
 </VerticalStackLayout>

</ContentPage>

	In SettingsPage.xaml.cs, add statements to handle the events for changing the two colors, as shown in the following code:

using System.Reflection;
namespace Northwind.Maui.Client;
public partial class SettingsPage : ContentPage
{
 public SettingsPage()
 {
 InitializeComponent();
 }
 private const string textColorKey = "TextColor";
 private const string backgroundColorKey = "BackgroundColor";
 private async void ApplyButton_Clicked(object sender, EventArgs e)
 {
 try
 {
 App.Current.Resources[textColorKey] =
 Color.Parse(TextColorEntry.Text);
 App.Current.Resources[backgroundColorKey] =
 Color.Parse(BackgroundColorEntry.Text);
 }
 catch (Exception ex)
 {
 await DisplayAlert(title: "Exception",
 message: ex.Message, cancel: "OK");
 }
 }
 private async void ContentPage_Loaded(object sender, EventArgs e)
 {
 try
 {
 object color;
 if (App.Current.Resources.TryGetValue(textColorKey, out color))
 {
 TextColorEntry.Text = GetNameFromColor(color as Color);
 }
 if (App.Current.Resources.TryGetValue(backgroundColorKey, out color))
 {
 BackgroundColorEntry.Text = GetNameFromColor(color as Color);
 }
 }
 catch (Exception ex)
 {
 await DisplayAlert(title: "Exception",
 message: ex.Message, cancel: "OK");
 }
 }
 private string GetNameFromColor(Color color)
 {
 Type colorsType = typeof(Colors);
 FieldInfo info = colorsType.GetFields().Where(
 field => field.GetValue(field) == color).SingleOrDefault();
 return info?.Name;
 }
 private void TextColorEntry_TextChanged(
 object sender, TextChangedEventArgs e)
 {
 if (!ApplyButton.IsEnabled) ApplyButton.IsEnabled = true;
 }
 private void BackgroundColorEntry_TextChanged(
 object sender, TextChangedEventArgs e)
 {
 if (!ApplyButton.IsEnabled) ApplyButton.IsEnabled = true;
 }
}

	Start the Northwind.Maui.Client project with debugging. Try it with both Windows Machine and your emulated Android device.

	Note the color of the text in the labels on the home page are black and the button background is silver.

	Navigate to Settings and note that the color resource names are loaded into the two Entry controls so the user can change them, and the Apply button is currently disabled, as shown on a Windows Machine in Figure 18.13:

[image: Figure 18.13: A Settings page for changing text and background colors on Windows]Figure 18.13: A Settings page for changing text and background colors on Windows

	Change the text color Black to Navy, change the background color Silver to Pink, click the Apply button, and note the button changes its colors.

	Navigate to the Home page and note the labels and button colors have changed here too.

	Return to the Settings page and change the text color to Green and the background color to LightYellow.

	Navigate to the Home page and note the labels and button colors have changed again, as shown in Figure 18.14:

[image: Figure 18.14: Text and background colors of the Home page button have changed on Windows]Figure 18.14: Text and background colors of the Home page button have changed on Windows

	Close the app.

Good Practice: A resource can be an instance of any object. To share it within an application, define it in the App.xaml file and give it a unique key. To set an element's property with a resource once when the app first starts, use {StaticResource key}. To set an element's property with a resource whenever the resource value changes during the lifetime of the app, use {DynamicResource key}. To load a resource using code, use the TryGetValue method of the Resources property. If you treat the Resources property as a dictionary and use array-style syntax, like Resources[key], it will only fine resources defined directly in the dictionary, not in any merged dictionaries.

Resources can be defined and stored inside any element of XAML, not just at the app level. For example, if a resource is only needed on MainPage, then it can be defined there. You can also dynamically load XAML files at runtime.

More Information: You can read more about .NET MAUI resource dictionaries at the following link: https://docs.microsoft.com/en-us/dotnet/maui/fundamentals/resource-dictionaries. In particular, note the section about resource lookup behavior.

Using data binding

When building graphical user interfaces, you will often want to bind a property of one control to another, or to some data.

Binding to elements

The simplest type of binding is between two elements. One element acts as a source for a value and the other elements acts as the target.

	In CategoriesPage.xaml, under the existing button in the vertical stack layout, add a label for instructions, another label to show the current degrees rotation, a slider for selecting a rotation, and a rainbow square to rotate, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.CategoriesPage"
 Background="{StaticResource rainbow}"
 Title="Categories">

 <VerticalStackLayout>

 <Button Text="Click Me" WidthRequest="100"
 x:Name="ClickMeButton"
 Clicked="ClickMeButton_Clicked" />

 <Label Margin="10">
 Use the slider to rotate the square:
 </Label>
 <Label BindingContext="{x:Reference Name=sliderRotation}"
 Text="{Binding Path=Value, StringFormat='{0:N0} degrees'}"
 FontSize="30" HorizontalTextAlignment="Center" />
 <Slider Value="0" Minimum="0" Maximum="180"
 x:Name="sliderRotation" Margin="10,0" />

 <Rectangle HeightRequest="200" WidthRequest="200"
 Fill="{StaticResource rainbow}"
 BindingContext="{x:Reference Name=sliderRotation}"
 Rotation="{Binding Path=Value}" />
 </VerticalStackLayout>

</ContentPage>

	Note that the text of the label and the angle of the rotation of the rectangle are both bound to the slider's value using a binding context and the {Binding} markup extension.

	Start the Northwind.Maui.Client project with debugging. Try it with both Windows Machine and your emulated Android device.

	Navigate to the Categories page.

	Click and pull the slider to change the rotation of the rainbow square, as shown in Figure 18.15:

[image: Figure 18.15: A slider data bound to a label and the rotation of a rectangle on Windows]Figure 18.15: A slider data bound to a label and the rotation of a rectangle on Windows

	Close the app.

Understanding MVVM

Model-View-ViewModel (MVVM) is a design pattern like MVC. The letters in the acronym stand for:

	Model: an entity class that represents a data object in a store like a relational database.

	View: a way to represent data in a graphical user interface including fields to show and edit data fields and buttons and other elements to interact with the data.

	ViewModel: a class that represents the data fields, actions, and events that can then be bound to elements like text boxes and buttons in a view.

In MVC, models passed to a view are readonly because they are only passed one-way into the view. That is why immutable records are good for MVC models. But ViewModels are different. They need to support two-way interactions and if the original data changes during the lifetime of the object, the view needs to dynamically update.

Understanding the INotificationPropertyChanged interface

The INotifyPropertyChanged interface enables a model class to support two-way data binding. It works by forcing the class to have an event named PropertyChanged, with a parameter of type PropertyChangedEventArgs, as shown in the following code:

namespace System.ComponentModel
{
 public class PropertyChangedEventArgs : EventArgs
 {
 public PropertyChangedEventArgs(string? propertyName);
 public virtual string? PropertyName { get; }
 }
 public delegate void PropertyChangedEventHandler(
 object? sender, PropertyChangedEventArgs e);
 public interface INotifyPropertyChanged
 {
 event PropertyChangedEventHandler PropertyChanged;
 }
}

Inside each property in the class, when setting a new value, you must raise the event (if it is not null) with an instance of PropertyChangedEventArgs containing the name of the property as a string value, as shown in the following code:

private string companyName;
public string CompanyName
{
 get => companyName;
 set
 {
 companyName = value; // store the new value being set
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(CompanyName)));
 }
}

When a user interface control is data-bound to the property, it will automatically update to show the new value when it changes.

To simplify the implementation, we can use a compiler feature to get the name of the property by decorating a string parameter with the [CallerMemberName] attribute, as shown in the following code:

private void NotifyPropertyChanged(
 [CallerMemberName] string propertyName = "")
{
 // if an event handler has been set then invoke
 // the delegate and pass the name of the property
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
}
public string CompanyName
{
 get => companyName;
 set
 {
 companyName = value; // store the new value being set
 NotifyPropertyChanged(); // caller member name is "CompanyName"
 }
}

You can reference the .NET Community Toolkit NuGet package to make implementing MVVM easier. You can read more about it at the following link: https://devblogs.microsoft.com/dotnet/announcing-the-dotnet-community-toolkit-800/

Understanding ObservableCollection

Related to INotifyPropertyChanged is the INotifyCollectionChanged interface that is implemented by the ObservableCollection<T> class. This gives notifications when items get added, removed, or when the collection is refreshed. When bound to controls like ListView or TreeView, the user interface will update dynamically to reflect changes.

Creating a view model with two-way data binding

We need to create a view model that will allow us to show and modify a customer entity so the class should implement two-way data binding:

	In the Northwind.Maui.Client project folder, create two classes, one named CustomerDetailViewModel.cs to show the details of a single customer and one named CustomersListViewModel.cs to show a list of customers.

	In CustomerDetailViewModel.cs, modify the statements to define a class that implements the INotifyPropertyChanged interface and has six properties, as shown in the following code:

using System.ComponentModel; // INotifyPropertyChanged
using System.Runtime.CompilerServices; // [CallerMemberName]
namespace Northwind.Maui.Client;
public class CustomerDetailViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 private string customerId;
 private string companyName;
 private string contactName;
 private string city;
 private string country;
 private string phone;
 // this attribute sets the propertyName parameter
 // using the context in which this method is called
 private void NotifyPropertyChanged(
 [CallerMemberName] string propertyName = "")
 {
 // if an event handler has been set then invoke
 // the delegate and pass the name of the property
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 public string CustomerId
 {
 get => customerId;
 set
 {
 customerId = value;
 NotifyPropertyChanged();
 }
 }
 public string CompanyName
 {
 get => companyName;
 set
 {
 companyName = value;
 NotifyPropertyChanged();
 }
 }
 public string ContactName
 {
 get => contactName;
 set
 {
 contactName = value;
 NotifyPropertyChanged();
 }
 }
 public string City
 {
 get => city;
 set
 {
 city = value;
 NotifyPropertyChanged();
 NotifyPropertyChanged(nameof(Location));
 }
 }
 public string Country
 {
 get => country;
 set
 {
 country = value;
 NotifyPropertyChanged();
 NotifyPropertyChanged(nameof(Location));
 }
 }
 public string Phone
 {
 get => phone;
 set
 {
 phone = value;
 NotifyPropertyChanged();
 }
 }
 public string Location
 {
 get => $"{City}, {Country}";
 }
}

Note the following:

	The class implements INotifyPropertyChanged, so a two-way bound control like Editor will update the property and vice versa. There is a PropertyChanged event that is raised whenever one of the properties is modified using a NotifyPropertyChanged private method to simplify the implementation.

	In addition to properties for storing values retrieved from the HTTP service, the class defines a read-only Location property. This will be bound to a summary list of customers to show the location of each one. Whenever the City or Country property changes, we also need to notify that the Location has changed, or any views bound to Location would not update correctly.

	In CustomersListViewModel.cs, modify the statements to define a class that inherits from ObservableCollection<T> and has a method to populate sample data, as shown in the following code:

using System.Collections.ObjectModel; // ObservableCollection<T>
namespace Northwind.Maui.Client;
public class CustomersListViewModel :
 ObservableCollection<CustomerDetailViewModel>
{
 // for testing before calling web service
 public void AddSampleData(bool clearList = true)
 {
 if (clearList) Clear();
 Add(new CustomerDetailViewModel
 {
 CustomerId = "ALFKI",
 CompanyName = "Alfreds Futterkiste",
 ContactName = "Maria Anders",
 City = "Berlin",
 Country = "Germany",
 Phone = "030-0074321"
 });
 Add(new CustomerDetailViewModel
 {
 CustomerId = "FRANK",
 CompanyName = "Frankenversand",
 ContactName = "Peter Franken",
 City = "München",
 Country = "Germany",
 Phone = "089-0877310"
 });
 Add(new CustomerDetailViewModel
 {
 CustomerId = "SEVES",
 CompanyName = "Seven Seas Imports",
 ContactName = "Hari Kumar",
 City = "London",
 Country = "UK",
 Phone = "(171) 555-1717"
 });
 }
}

Note the following:

	After loading from the service, which will be implemented later in this chapter, the customers are cached locally using ObservableCollection<T>. This supports notifications to any bound user interface components, such as ListView so that the user interface can redraw itself when the underlying data adds or removes items from the collection.

	For testing purposes, when the HTTP service is not available, there is a static method to populate three sample customers.

Creating views for the customers list and customer details

You will now add a view to show a list of customers and a view to show the details for a customer:

	In the Resources folder, in the Styles folder, in Northwind.xaml, add a style to apply the same background color and font family to Entry controls as are being applied to Label controls, as shown in the following markup:

<Style TargetType="Entry">
 <Setter Property="TextColor" Value="{DynamicResource PrimaryTextColor}" />
 <Setter Property="FontFamily" Value="OpenSansRegular" />
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="WidthRequest" Value="300" />
</Style>

	In CustomersPage.xaml, modify its contents, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.CustomersPage"
 Title="Customers">
 <VerticalStackLayout Spacing="15" Padding="20">
 <HorizontalStackLayout Spacing="10">
 <Label Text="Customers" FontSize="Title" />
 <Button Text="Add" Clicked="Add_Clicked" HorizontalOptions="End" />
 </HorizontalStackLayout>
 <ListView ItemsSource="{Binding .}"
 VerticalOptions="Start"
 HorizontalOptions="Start"
 IsPullToRefreshEnabled="True"
 ItemTapped="Customer_Tapped"
 Refreshing="Customers_Refreshing">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}"
 TextColor="{DynamicResource PrimaryTextColor}"
 DetailColor="{DynamicResource PrimaryTextColor}" >
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete"
 IsDestructive="True" />
 </TextCell.ContextActions>
 </TextCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </VerticalStackLayout>
</ContentPage>

Note the following:

	ListView has its IsPullToRefreshEnabled set to true.

	Event handlers have been written for the following events:

	Customer_Tapped: A customer being tapped to show their details.

	Customers_Refreshing: The list being pulled down to refresh its items.

	Customer_Phoned: A cell being swiped left on iPhone or long pressed on Android and then tapping Phone.

	Customer_Deleted: A cell being swiped left on iPhone or long pressed on Android and then tapping Delete.

	Add_Clicked: The Add button being clicked.

	A data template defines how to display each customer: larger text for the company name and smaller text for the location underneath.

	An Add button is in the list view header so that users can navigate to a detail view to add a new customer.

	In CustomersPage.xaml.cs, modify the contents, as shown in the following code:

namespace Northwind.Maui.Client;
public partial class CustomersPage : ContentPage
{
 public CustomersPage()
 {
 InitializeComponent();
 CustomersListViewModel viewModel = new();
 viewModel.AddSampleData();
 BindingContext = viewModel;
 }
 async void Customer_Tapped(object sender, ItemTappedEventArgs e)
 {
 if (e.Item is not CustomerDetailViewModel c) return;
 // navigate to the detail view and show the tapped customer
 await Navigation.PushAsync(new CustomerDetailPage(
 BindingContext as CustomersListViewModel, c));
 }
 async void Customers_Refreshing(object sender, EventArgs e)
 {
 if (sender is not ListView listView) return;
 listView.IsRefreshing = true;
 // simulate a refresh
 await Task.Delay(1500);
 listView.IsRefreshing = false;
 }
 void Customer_Deleted(object sender, EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 if (menuItem.BindingContext is not CustomerDetailViewModel c) return;
 (BindingContext as CustomersListViewModel).Remove(c);
 }
 async void Customer_Phoned(object sender, EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 if (menuItem.BindingContext is not CustomerDetailViewModel c) return;
 if (await DisplayAlert("Dial a Number",
 "Would you like to call " + c.Phone + "?",
 "Yes", "No"))
 {
 try
 {
 if (PhoneDialer.IsSupported)
 {
 PhoneDialer.Open(c.Phone);
 }
 }
 catch (Exception ex)
 {
 await DisplayAlert(title: "Failed",
 message: string.Format(
 "Failed to dial {0} due to: {1}", c.Phone, ex.Message),
 cancel: "OK");
 }
 }
 }
 async void Add_Clicked(object sender, EventArgs e)
 {
 await Navigation.PushAsync(new CustomerDetailPage(
 BindingContext as CustomersListViewModel));
 }
}

Note the following:

	BindingContext is set to an instance of CustomersViewModel that is populated with sample data in the constructor of the page.

	When a customer in the list view is tapped, the user is taken to a details view (which you will implement in the next step).

	When the list view is pulled down, it triggers a simulated refresh that takes 1.5 seconds.

	When a customer is deleted in the list view, they are removed from the bound customers view model.

	When a customer in the list view is swiped, and the Phone button is tapped, a dialog prompts the user as to whether they want to dial the number, and if so, the platform- native implementation will be retrieved using the dependency resolver and then used to dial the number.

	When the Add button is tapped, the user is taken to the customer detail page to enter details for a new customer.

	Right-click the Northwind.Maui.Client project folder, choose Add | New Item..., select .NET MAUI in the template types tree, select .NET MAUI ContentPage (XAML), enter the name CustomerDetailPage, and click Add.

	In CustomerDetailPage.xaml, modify its contents, as shown in the following markup, and note the following:

	Title of the content page has been set to Edit.

	A customer Grid with two columns and six rows is used for the layout.

	Entry views are two-way data bound to properties of the CustomerViewModel class.

	InsertButton has an event handler to execute code to add a new customer.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Client.CustomerDetailPage"
 Title="Edit">
 <StackLayout VerticalOptions="Fill" HorizontalOptions="Fill">
 <Grid ColumnDefinitions="Auto,Auto"
 RowDefinitions="Auto,Auto,Auto,Auto,Auto,Auto">
 <Label Text="Customer Id" VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding CustomerId, Mode=TwoWay}" Grid.Column="1"
 MaxLength="5" TextTransform="Uppercase" />
 <Label Text="Company Name" Grid.Row="1"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding CompanyName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1" />
 <Label Text="Contact Name" Grid.Row="2"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding ContactName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="2" />
 <Label Text="City" Grid.Row="3"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding City, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="3" />
 <Label Text="Country" Grid.Row="4"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Country, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="4" />
 <Label Text="Phone" Grid.Row="5"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Phone, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="5" />
 </Grid>
 <Button x:Name="InsertButton" Text="Insert Customer"
 Clicked="InsertButton_Clicked" />
 </StackLayout>
</ContentPage>

	In CustomerDetailPage.xaml.cs, modify its contents, as shown in the following code:

namespace Northwind.Maui.Client;
public partial class CustomerDetailPage : ContentPage
{
 private CustomersListViewModel customers;
 public CustomerDetailPage(CustomersListViewModel customers)
 {
 InitializeComponent();
 this.customers = customers;
 BindingContext = new CustomerDetailViewModel();
 Title = "Add Customer";
 }
 public CustomerDetailPage(CustomersListViewModel customers,
 CustomerDetailViewModel customer)
 {
 InitializeComponent();
 this.customers = customers;
 BindingContext = customer;
 InsertButton.IsVisible = false;
 }
 async void InsertButton_Clicked(object sender, EventArgs e)
 {
 customers.Add((CustomerDetailViewModel)BindingContext);
 await Navigation.PopAsync(animated: true);
 }
}

Note the following:

	The default constructor sets the binding context to a new customer instance and the view title is changed to Add Customer.

	The constructor with a customer parameter sets the binding context to that instance and hides the Insert button because it is not needed when editing an existing customer due to two-way data binding.

	When the Insert button is tapped, the new customer is added to the customers view model and the navigation is moved back to the previous view asynchronously.

	In the Platforms folder, in the Android folder, open the AndroidManifest.xml file, and add entries to enable phone dialing, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:allowBackup="true" android:icon="@mipmap/appicon" android:roundIcon="@mipmap/appicon_round" android:supportsRtl="true"></application>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <queries>
 <intent>
 <action android:name="android.intent.action.DIAL" />
 <data android:scheme="tel"/>
 </intent>
 </queries>
</manifest>

Testing the .NET MAUI app

We will now test the app using the Android device emulator so that we can see the phone caller functionality:

	In Visual Studio 2022, to the right of the Run button in the toolbar, set the target Framework to net6.0-android and select the Android emulator.

	Start the project with debugging. The project will build, and then after a few moments, the Android device emulator will appear with your running .NET MAUI app.

	Navigate to Customers, as shown in Figure 18.16:

[image: Figure 18.16: The Android device emulator running the Northwind .NET MAUI app and showing Customers]Figure 18.16: The Android device emulator running the Northwind .NET MAUI app and showing Customers

	Click Seven Seas Imports and modify Company Name to Seven Oceans Imports, as shown in the following screenshot of the customer detail page in Figure 18.17:

[image: Figure 18.17: Editing a company name on the customer detail page]Figure 18.17: Editing a company name on the customer detail page

	Click the back button to return to the list of customers and note that the company name has been updated due to the two-way data binding.

	Click Add, and then fill in the fields for a new customer.

By default, in the Android device emulator, the virtual keyboard is shown when typing on a physical keyboard. To hide the virtual keyboard, click the keyboard icon to the right of the square Android soft button, and then toggle Show virtual keyboard.

	On the customer detail page, click Insert Customer and after being returned to the list of customers, note that the new customer has been added to the bottom of the list.

	Click and hold on one of the customers to reveal two action buttons, Phone and Delete, as shown in Figure 18.18:

[image: Figure 18.18: Extra commands for a selected customer]Figure 18.18: Extra commands for a selected customer

	Click Phone and note the pop-up prompt to the user to dial the number of that customer with Yes and No buttons, as shown in Figure 18.19:

[image: Figure 18.19: Prompting to dial a phone number]Figure 18.19: Prompting to dial a phone number

	Click Yes.

	Note the app switches to the device's native phone dialer, as shown in Figure 18.20:

[image: Figure 18.20: The native device phone dialer]Figure 18.20: The native device phone dialer

	In the emulator, click the back button (the back-pointing triangle) three times to return to the app.

	Click and hold on one of the customers to reveal two action buttons, Phone and Delete, and then click on Delete, and note that the customer is removed.

	Click, hold, and drag the list down and then release, and note the animation effect for refreshing the list, but remember that this feature is simulated, so the list does not change.

	Close the Android device emulator.

We will now make the app call a web service to get the list of customers.

Consuming a web service from a mobile app

Apple's App Transport Security (ATS) forces developers to use good practice, including secure connections between an app and a web service. ATS is enabled by default and your mobile apps will throw an exception if they do not connect securely. Since Android 9, Google has had a similar policy.

If you need to call a web service that is secured with a self-signed certificate like our Northwind.Maui.WebApi.Service project is, it is possible but complicated. For simplicity, we will allow unsecure connections to the web service and disable the security checks in the mobile app.

Creating a minimal API web service for customers

We will create a web service for working with customers in the Northwind database:

	In the Chapter18 solution, add a web service project, as defined in the following list:

	Project template: ASP.NET Core Web API / webapi --use-minimal-apis

	Workspace/solution file and folder: Chapter18

	Project file and folder: Northwind.Maui.WebApi.Service

	Authentication type: None

	Configure for HTTPS: Selected.

	Enable Docker: Cleared.

	Use controllers (uncheck to use minimal APIs): Cleared.

	Enable OpenAPI support: Selected.

	Do not use top-level statements: Cleared.

	Add a project reference to the Northwind database context project for SQL Server that you created in Chapter 2, Managing Relational Data Using SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

The path cannot have a line break. If you did not complete the task to create the class libraries in Chapter 2, Managing Relational Data Using SQL Server, then download the solution projects from the GitHub repository.

	At the command line or terminal, build the Northwind.Maui.WebApi.Service project to make sure the entity model class library projects outside the current solution are properly compiled, as shown in the following command:

dotnet build

	In the Properties folder, in launchSettings.json, modify the applicationUrl to use port 5181 for https and port 5182 for http, as shown highlighted in the following configuration:

"profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "http://localhost:5182",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:5181;http://localhost:5182",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

	In Program.cs, delete the statements about the weather service and replace them with statements to configure responses to all the HTTP requests documented in the API table, as shown highlighted in the following code:

using Microsoft.AspNetCore.Http.HttpResults; // Results
using Microsoft.AspNetCore.Mvc; // [FromServices]
using Microsoft.AspNetCore.OpenApi;
using Packt.Shared; // AddNorthwindContext extension method
var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();
builder.Services.AddNorthwindContext();
var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
app.UseHttpsRedirection();
app.MapGet("api/customers", (
 [FromServices] NorthwindContext db) => db.Customers)
 .WithName("GetCustomers")
 .Produces<Customer[]>(StatusCodes.Status200OK);
app.MapPost("api/customers", async (
 [FromBody] Customer customer,
 [FromServices] NorthwindContext db) =>
{
 db.Customers.Add(customer);
 await db.SaveChangesAsync();
 return Results.Created($"api/customers/{customer.CustomerId}", customer);
}).WithOpenApi()
 .Produces<Customer>(StatusCodes.Status201Created);
app.MapPut("api/customers/{id}", async (
 [FromRoute] string id,
 [FromBody] Customer customer,
 [FromServices] NorthwindContext db) =>
{
 Customer? foundCustomer = await db.Customers.FindAsync(id);
 if (foundCustomer is null) return Results.NotFound();
 foundCustomer.CompanyName = customer.CompanyName;
 foundCustomer.ContactName = customer.ContactName;
 foundCustomer.ContactTitle = customer.ContactTitle;
 foundCustomer.Address = customer.Address;
 foundCustomer.City = customer.City;
 foundCustomer.Region = customer.Region;
 foundCustomer.PostalCode = customer.PostalCode;
 foundCustomer.Country = customer.Country;
 foundCustomer.Phone = customer.Phone;
 foundCustomer.Fax = customer.Fax;
 await db.SaveChangesAsync();
 return Results.NoContent();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.MapDelete("api/customers/{id}", async (
 [FromRoute] string id,
 [FromServices] NorthwindContext db) =>
{
 if (await db.Customers.FindAsync(id) is Customer customer)
 {
 db.Customers.Remove(customer);
 await db.SaveChangesAsync();
 return Results.NoContent();
 }
 return Results.NotFound();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.Run();

	Start the web service project and note the Swagger documentation, as shown in Figure 18.21:

[image: Figure 18.21: Swagger documentation for the Northwind Web API service]Figure 18.21: Swagger documentation for the Northwind Web API service

	Click GET /api/customers to expand that section.

	Click the Try it out button, click the Execute button, and note that customer records are returned.

	Close the browser and shut down the web server.

Configuring the web service to allow unsecure requests

Next, we will enable the web service to handle unsecure connections:

	In the Northwind.Maui.WebApi.Service project, in Program.cs, in the section that configures the HTTP pipeline, comment out the HTTPS redirection, as shown in the following code:

// app.UseHttpsRedirection();

	Start the Northwind.Maui.WebApi.Service project without debugging.

	Start Chrome and test that the web service is returning customers as JSON by navigating to the following URL: http://localhost:5182/api/customers/.

	Close Chrome but leave the web service running.

Connecting to local web services while testing

When testing a .NET MAUI app on the Windows Machine, it has normal access to the local network including any web services you are hosting on localhost. The iOS emulator also has normal access to the local network. So, both Windows and iOS targeted .NET MAUI apps can connect directly to a web service hosted at an endpoint like http://localhost:5182/api/customer.

But when testing a .NET MAUI app on an emulated Android device, it is separated from your local network by a virtual router. To connect to a web service hosted on localhost, you must use a special IP address 10.0.2.2 that the virtual router maps to 127.0.0.1 aka localhost. So, Android targeted .NET MAUI apps can connect to a web service hosted at an endpoint like http://localhost:5182/api/customer by using http://10.0.2.2:5182/api/customer.

Configuring the iOS app to allow unsecure connections

To allow unsecure connections to web services in an iOS app, we have a couple of choices:

	Set NSAppTransportSecurity to NSAllowsArbitraryLoads. This allows clear text in all scenarios.

	Set NSAppTransportSecurity to NSAllowsLocalNetworking. This allows clear text only in local scenarios.

Now you will configure the Northwind.Maui.Customers project to disable ATS to allow unsecure HTTP requests to the web service:

	In the Northwind.Maui.Client project, in the Platforms/iOS folder, open the Info.plist file by right-clicking and open it with the XML (Text) Editor.

	At the bottom of the dictionary, add a new key named NSAppTransportSecurity that is a dictionary, and in it, add a key named NSAllowsArbitraryLoads that has a value of true, as shown highlighted in the following partial markup:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>LSRequiresIPhoneOS</key>
 <true/>
 ...
 <key>NSAppTransportSecurity</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</dict>
</plist>

	Save and close Info.plist.

Warning! If you run a .NET MAUI app using the iOS simulator on Windows, the app is actually running on the connected Mac even though it visually appears on Windows. It therefore cannot connect to local web services. It would have to connect remotely to the web service or you could run the web service on the Mac.

Configuring the Android app to allow unsecure connections

In a similar way to Apple and ATS, with Android 9 (API level 28) cleartext (that is, non-HTTPS) support is disabled by default.

Now you will configure the project to enable cleartext to allow unsecure HTTP requests to the web service:

	In the Platforms/Android folder, in the Resources folder, add a new folder named xml.

	In the xml folder, add a new XML file named network_security_config.xml, and add entries to enable cleartext when connecting over the virtual router's special IP address that maps out to localhost, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<network-security-config>
 <domain-config cleartextTrafficPermitted="true">
 <domain includeSubdomains="true">10.0.2.2</domain>
 </domain-config>
</network-security-config>

	In the Android folder, in AndroidManifest.xml, add an attribute to the <application> element to reference the new XML file, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:allowBackup="true"
 android:icon="@mipmap/appicon"
 android:networkSecurityConfig="@xml/network_security_config"
 android:roundIcon="@mipmap/appicon_round"
 android:supportsRtl="true">
 </application>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <queries>
 <intent>
 <action android:name="android.intent.action.DIAL" />
 <data android:scheme="tel"/>
 </intent>
 </queries>
</manifest>

	Save all the changes.

Getting customers from the web service

Now, we can modify the customers list page to get its list of customers from the web service instead of using sample data:

	In the Northwind.Maui.Client project, in CustomersPage.xaml, add a label to show information about the web service endpoint and a label to show any error message, as shown in the following markup:

 <VerticalStackLayout Spacing="15" Padding="20">
 <HorizontalStackLayout Spacing="10">
 <Label Text="Customers" FontSize="Title" />
 <Button Text="Add" Clicked="Add_Clicked" HorizontalOptions="End" />
 </HorizontalStackLayout>
 <Label x:Name="InfoLabel" />
 <Label x:Name="ErrorLabel" IsVisible="false" />
 <ListView ItemsSource="{Binding .}"

	In CustomersPage.xaml.cs, import the following additional namespaces:

using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue
using System.Net.Http.Json; // ReadFromJsonAsync<T>

	Modify the CustomersPage constructor to load the list of customers using the service proxy and only call the AddSampleData method if an exception occurs, as shown in the following code:

public CustomersPage()
{
 InitializeComponent();
 CustomersListViewModel viewModel = new();
 try
 {
 HttpClient client = new()
 {
 BaseAddress = new Uri(DeviceInfo.Platform == DevicePlatform.Android ?
 "http://10.0.2.2:5182" : "http://localhost:5182")
 };
 InfoLabel.Text = $"BaseAddress: {client.BaseAddress}";
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));
 HttpResponseMessage response = client
 .GetAsync("api/customers").Result;
 response.EnsureSuccessStatusCode();

 IEnumerable<CustomerDetailViewModel> customersFromService =
 response.Content.ReadFromJsonAsync
 <IEnumerable<CustomerDetailViewModel>>().Result;
 foreach (CustomerDetailViewModel c in customersFromService
 .OrderBy(customer => customer.CompanyName))
 {
 viewModel.Add(c);
 }
 InfoLabel.Text += $"\n{viewModel.Count} customers loaded.";
 }
 catch (Exception ex)
 {
 ErrorLabel.Text = ex.Message + "\nUsing sample data instead.";
 ErrorLabel.IsVisible = true;
 viewModel.AddSampleData();
 }
 BindingContext = viewModel;
}

	Navigate to Build | Clean Northwind.Maui.Client because changes to Info.plist and AndroidManifest.xml like allowing unsecure connections sometimes require a clean build.

	Navigate to Build | Build Northwind.Maui.Client.

	If you did not previously leave the web service running, then start the Northwind.Maui.WebApi.Service project, note the endpoints it is listening on, as shown highlighted in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5181
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5182
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\apps-services-net7\Chapter18\Northwind.Maui.WebApi.Service

	Run the Northwind.Maui.Client project and note that 91 customers are loaded from the web service, as shown in Figure 18.22:

[image: Figure 18.22: Loading customers from a web service into the Northwind .NET MAUI app]Figure 18.22: Loading customers from a web service into the Northwind .NET MAUI app

	Close the app.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with more in-depth research.

Exercise 18.1 – Test your knowledge

Answer the following questions:

	What are the four categories of .NET MAUI user interface components, and what do they represent?

	List four types of cell.

	How can you enable a user to perform an action on a cell in a list view?

	When would you use an Entry instead of an Editor?

	What is the effect of setting IsDestructive to true for a menu item in a cell's context actions?

	When would you call the methods PushAsync and PopAsync in a .NET MAUI app?

	What is the difference between Margin and Padding for an element like a Button?

	How are event handlers attached to an object using XAML?

	What do XAML styles do?

	Where can you define resources?

Exercise 18.2 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-18---building-mobile-and-desktop-apps-using-net-maui

Summary

In this chapter, you learned how to build a cross-platform mobile and desktop app using .NET MAUI that consumed data from a web service.

In the next chapter, you will learn how to integrate a .NET MAUI app with native mobile features.

19 Integrating .NET MAUI Apps with Blazor and Native Platforms

Join our book community on Discord

https://packt.link/EarlyAccess

This chapter is about integrating .NET MAUI apps with Blazor components and native platform features to build hybrid apps that make the most of the operating system they run on.

In Chapter 16, Building Web Components Using Blazor WebAssembly you saw how easy it is to create component using web user interface technologies including HTML and CSS and common user interface style libraries like Bootstrap.

In Chapter 17, Leveraging Open Source Blazor Component Libraries, you saw that there are many free open-source libraries for Blazor with great components like charts and data grids.

In Chapter 18, Building Mobile and Desktop Apps Using .NET MAUI, you saw that .NET MAUI enables you to build cross-platform apps that work using native controls on each device and its operating system.

In this chapter, you will see how to get the best of all those worlds by building .NET MAUI apps that host Blazor components and retain the ability to closely integrate with native features and look-and-feel.

By the end of this chapter, you will be able to make sensible decision what technology to use for an app. From purely native using .NET MAUI with the user interface defined using XAML, to purely web using Blazor with the user interface defined using HTML and CSS, as shown in Figure 19.1:

[image: Figure 19.1: A spectrum of choices for app development]Figure 19.1: A spectrum of choices for app development

This chapter will cover the following topics:

	Building Hybrid .NET MAUI Blazor apps

	Integrating with native platforms

	Using third-party control libraries

Building Hybrid .NET MAUI Blazor apps

In Chapter 18, Building Mobile and Desktop Apps Using .NET MAUI, you learned how to build .NET MAUI apps with native controls. By native, I mean the controls provided by the operating system. So, when Apple updates the iOS look-and-feel, your apps will update too because .NET MAUI uses those native controls:

	Windows: Windows App SDK, WinUI 3.

	macOS: Catalyst, UIKit, AppKit.

	iOS: UIKit, ARKit, AVKit, CarPlay, and so on.

	Android: android.widget, AndroidX libraries.

In this section, you will learn how to build a hybrid app that combines the best of .NET MAUI app capabilities with the best of Blazor web components. This means you are not limited to building a user interface using .NET MAUI controls that use native OS capabilities. You can also leverage all the great component libraries for Blazor and simpler web user interfaces. But you still get all the benefits of close native integrations with platform features like geolocation, sensors, access to the local filesystem, notifications and so on.

Creating a .NET MAUI Blazor project

We will now create a project for a cross-platform mobile and desktop app that can have Blazor components embedded in it. We will use the project template that enables mixing .NET MAUI controls and Blazor components in the same project.

Let's go!

	In Visual Studio 2022 for Windows, add a new project, as defined in the following list:

	Project template: .NET MAUI Blazor App / maui-blazor. In Visual Studio 2022 for Windows, you can select C# for the language and MAUI for the project type to show only the appropriate project templates.

	Workspace/solution file and folder: Chapter19

	Project file and folder: Northwind.Maui.Blazor.Client

	If you see a Windows Security Alert that Windows Defender Firewall has blocked some features of Broker on all public and private networks, then select Private networks and clear Public networks, and then click the Allow access button.

	In the Resources folder, in the Images folder, add images for some icons that we will use for tab items in the navigation we are about to add.

You can download the images from the GitHub repository at the following link: https://github.com/markjprice/apps-services-net7/tree/main/vs4win/Chapter19/Northwind.Maui.Blazor.Client/Resources/Images

	In the project file, make sure the images are referenced as MauiImage elements, as shown highlighted in the following markup:

<ItemGroup>
 <!-- App Icon -->
 <MauiIcon Include="Resources\AppIcon\appicon.svg"
 ForegroundFile="Resources\AppIcon\appiconfg.svg"
 Color="#512BD4" />
 <!-- Splash Screen -->
 <MauiSplashScreen Include="Resources\Splash\splash.svg"
 Color="#512BD4" BaseSize="128,128" />
 <!-- Images -->
 <MauiImage Include="Resources\Images*" />
 <MauiImage Update="Resources\Images\dotnet_bot.svg" BaseSize="168,208" />
 <MauiImage Include="Resources\Images\card_index_high_contrast.svg" />
 <MauiImage Include="Resources\Images\cityscape_high_contrast.svg" />
 <MauiImage Include="Resources\Images\delivery_truck_high_contrast.svg" />
 <MauiImage Include="Resources\Images\euro_banknote_high_contrast.svg" />
 <MauiImage Include="Resources\Images\file_cabinet_high_contrast.svg" />
 <MauiImage Include="Resources\Images\gear_high_contrast.svg" />
 <MauiImage Include="Resources\Images\heart_suit_high_contrast.svg" />
 <MauiImage Include=
 "Resources\Images\identification_card_high_contrast.svg" />
 <MauiImage Include=
 "Resources\Images\magnifying_glass_tilted_left_high_contrast.svg" />
 <MauiImage Include="Resources\Images\wastebasket_high_contrast.svg" />
 <MauiImage Include="Resources\Images\wind_face_high_contrast.svg" />
 <!-- Custom Fonts -->
 <MauiFont Include="Resources\Fonts*" />
 <!-- Raw Assets (also remove the "Resources\Raw" prefix) -->
 <MauiAsset Include="Resources\Raw**"
 LogicalName="%(RecursiveDir)%(Filename)%(Extension)" />
</ItemGroup>

	In the Northwind.Maui.Blazor.Client project, in MauiProgram.cs, note the extra statements compared to the equivalent project template for just .NET MAUI that enables embedding Blazor components by adding support for web view, as shown highlighted in the following code:

using Microsoft.AspNetCore.Components.WebView.Maui;
using Northwind.Maui.Blazor.Client.Data;
namespace Northwind.Maui.Blazor.Client;
public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureFonts(fonts =>
 {
 fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular");
 });
 builder.Services.AddMauiBlazorWebView();
#if DEBUG
 builder.Services.AddBlazorWebViewDeveloperTools();
#endif
 builder.Services.AddSingleton<WeatherForecastService>();
 return builder.Build();
 }
}

Adding a shell and .NET MAUI pages

By default, the .NET MAUI Blazor project template assumes Blazor will be used for the user interface, so immediately after creating the project, we will add a shell, four page views, and configure a tab bar for navigation between those pages.

We will add a Views folder to keep the .NET MAUI pages separate from the Razor files used by Blazor that are stored in the Pages folder by default. We will also create subfolders for each .NET MAUI page with all the files needed for that page, including models and view models. The .NET MAUI page views will be assigned to the project Views namespace to make them easier to reference in the shell.

Let's go:

	In the Northwind.Maui.Blazor.Client project, add a new folder named Views.

	In the Views folder, create new subfolders named: Categories, Employees, Home, and Orders.

	In the Views/Categories folder, add a new .NET MAUI ContentPage (XAML) project item named CategoriesPage.xaml.

	In CategoriesPage.xaml, modify the x:Class attribute so that the class that is automatically generated from the XAML will be in the Views namespace rather than the subfolder Views.Categories namespace, as shown highlighted in the following markup:

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Blazor.Client.Views.CategoriesPage"
 ...

	In CategoriesPage.xaml.cs, modify the namespace, as shown in the following markup:

namespace Northwind.Maui.Blazor.Client.Views;

	In the Views/Categories folder, add a new .NET MAUI ContentPage (XAML) project item named CategoryPage.xaml, and repeat the namespace changes to the markup and code-behind files. This page view will be used to show a single category for editing purposes.

	In the Views/Employees folder, add a new .NET MAUI ContentPage (XAML) project item named EmployeesPage.xaml, and repeat the namespace changes to the markup and code-behind files.

	In the Views/Orders folder, add a new .NET MAUI ContentPage (XAML) project item named OrdersPage.xaml, and repeat the namespace changes to the markup and code-behind files.

	Move the MainPage.xaml file from the project folder to the Views/Home folder, and repeat the namespace changes to the markup and code-behind files.

	In the project folder, add a new .NET MAUI ContentPage (XAML) project item named AppShell.xaml.

	In AppShell.xaml, delete the existing <VerticalStackLayout> element, change the root element to <Shell> and change the title, import the project Views namespace using the views prefix, and then add a <TabBar> element with some <Tab> items and shell content for the main, categories, employees, and orders pages, as shown highlighted in the following markup:

<?xml version="1.0" encoding="UTF-8" ?>
<Shell xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Blazor.Client.AppShell"
 xmlns:views="clr-namespace:Northwind.Maui.Blazor.Client.Views"
 Title="Northwind .NET MAUI + Blazor App">
 <TabBar>
 <Tab Title="Home" Icon="wind_face_high_contrast.svg" >
 <ShellContent Route="Home"
 ContentTemplate="{DataTemplate local:MainPage}" />
 </Tab>
 <Tab Title="Categories" Icon="delivery_truck_high_contrast.svg">
 <ShellContent Route="Categories"
 ContentTemplate="{DataTemplate local:CategoriesPage}" />
 </Tab>
 <Tab Title="Employees" Icon="cityscape_high_contrast.svg">
 <ShellContent Route="Employees"
 ContentTemplate="{DataTemplate local:EmployeesPage}" />
 </Tab>
 <Tab Title="Orders" Icon="card_index_high_contrast.svg">
 <ShellContent Route="Orders"
 ContentTemplate="{DataTemplate local:OrdersPage}" />
 </Tab>
 </TabBar>

</Shell>

	In AppShell.xaml.cs, change the class to inherit from, from ContentPage to Shell, as shown highlighted in the following code:

public partial class AppShell : Shell

	In Solution Explorer, expand App.xaml, open App.xaml.cs, and note the MainPage property of the App is set to an instance of MainPage, as shown highlighted in the following code:

namespace Northwind.Maui.Blazor.Client;
public partial class App : Application
{
 public App()
 {
 InitializeComponent();
 MainPage = new MainPage();
 }
}

	In App.xaml.cs, change the main page property to an instance of the AppShell class, as shown in the following code:

MainPage = new AppShell();

	To the right of the Run button in the toolbar, set the Framework to net6.0-android, and select the Pixel 4a - API 30 (Android 11.0 - API 30) emulator image.

	Click the Run button in the toolbar and wait for device emulator to start the Android operating system and launch your mobile app.

	In the .NET MAUI + Blazor app, note the title bar labelled Home at the top and the tab bar at the bottom that has four labelled icons is provided by .NET MAUI native controls, and the Home page titled Northwind.Maui.Blazor.Client with its hamburger menu has a web user interface provided by Blazor, as shown in Figure 19.2:

[image: Figure 19.2: The Northwind .NET MAUI + Blazor app with a main page UI built with Blazor on Android]Figure 19.2: The Northwind .NET MAUI + Blazor app with a main page UI built with Blazor on Android

	In the Blazor hamburger menu, click Counter.

	In the Counter page, click the Click me button to increment the counter three times.

	Close the Android device emulator.

	In Visual Studio 2022, to the right of the Run button in the toolbar, set the Framework to net6.0-windows, and then select Windows Machine.

	Make sure that the Debug configuration is selected and then click the green triangle start button labelled Windows Machine.

	After a few moments, note that the Windows app appears, with the tab bar at the top of the window, as shown in Figure 19.3:

[image: Figure 19.3: The Northwind .NET MAUI + Blazor app with a main page UI built with Blazor on Windows]Figure 19.3: The Northwind .NET MAUI + Blazor app with a main page UI built with Blazor on Windows

	Navigate to the Counter page.

	In the Counter page, click the Click me button to increment the counter three times.

	Close the Windows app.

You could now replace the Counter or Fetch data Razor components with any of your own Blazor components that you learned how to build in Chapter 16, Building Web Components Using Blazor WebAssembly, or any open source components that you learned how to use in Chapter 17, Using Open Source Blazor Component Libraries.

Creating a minimal API web service for categories

We will create a web service for working with categories and products in the Northwind database:

	In the Chapter19 solution, add a web service project, as defined in the following list:

	Project template: ASP.NET Core Web API / webapi --use-minimal-apis

	Workspace/solution file and folder: Chapter19

	Project file and folder: Northwind.Maui.WebApi.Service

	Authentication type: None

	Configure for HTTPS: Selected.

	Enable Docker: Cleared.

	Use controllers (uncheck to use minimal APIs): Cleared.

	Enable OpenAPI support: Selected.

	Do not use top-level statements: Cleared.

	Add a project reference to the Northwind database context project for SQL Server that you created in Chapter 2, Managing Relational Data Using SQL Server, as shown in the following markup:

<ItemGroup>
 <ProjectReference Include="..\..\Chapter02\Northwind.Common.DataContext
.SqlServer\Northwind.Common.DataContext.SqlServer.csproj" />
</ItemGroup>

The path cannot have a line break. If you did not complete the task to create the class libraries in Chapter 2, Managing Relational Data Using SQL Server, then download the solution projects from the GitHub repository.

	At the command line or terminal, build the Northwind.Maui.WebApi.Service project to make sure the entity model class library projects outside the current solution are properly compiled, as shown in the following command:

dotnet build

	In the Properties folder, in launchSettings.json, modify the applicationUrl to use port 5191 for https and port 5192 for http, as shown highlighted in the following configuration:

"profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "http://localhost:5192",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:5191;http://localhost:5192",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

	In Program.cs, delete the statements about the weather service and replace them with statements to disable HTTPS redirection while developing and to configure minimal API endpoints for data operations on categories, as shown highlighted in the following code:

using Microsoft.AspNetCore.Http.HttpResults; // Results
using Microsoft.AspNetCore.Mvc; // [FromServices]
using Microsoft.AspNetCore.OpenApi;
using Packt.Shared; // AddNorthwindContext extension method
var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();
builder.Services.AddNorthwindContext();
var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
else
{
 app.UseHttpsRedirection();
}
app.MapGet("api/categories", (
 [FromServices] NorthwindContext db) => db.Categories)
 .WithName("GetCategories")
 .Produces<Category[]>(StatusCodes.Status200OK);
app.MapGet("api/categories/{id:int}", (
 [FromRoute] int id,
 [FromServices] NorthwindContext db) =>
 db.Categories.Where(category => category.CategoryId == id))
 .WithName("GetCategory")
 .Produces<Category[]>(StatusCodes.Status200OK);
app.MapPost("api/categories", async (
 [FromBody] Category category,
 [FromServices] NorthwindContext db) =>
{
 db.Categories.Add(category);
 await db.SaveChangesAsync();
 return Results.Created($"api/categories/{category.CategoryId}", category);
}).WithOpenApi()
 .Produces<Category>(StatusCodes.Status201Created);
app.MapPut("api/categories/{id:int}", async (
 [FromRoute] int id,
 [FromBody] Category category,
 [FromServices] NorthwindContext db) =>
{
 Category? foundCategory = await db.Categories.FindAsync(id);
 if (foundCategory is null) return Results.NotFound();
 foundCategory.CategoryName = category.CategoryName;
 foundCategory.Description = category.Description;
 foundCategory.Picture = category.Picture;
 await db.SaveChangesAsync();
 return Results.NoContent();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.MapDelete("api/categories/{id:int}", async (
 [FromRoute] int id,
 [FromServices] NorthwindContext db) =>
{
 if (await db.Categories.FindAsync(id) is Category category)
 {
 db.Categories.Remove(category);
 await db.SaveChangesAsync();
 return Results.NoContent();
 }
 return Results.NotFound();
}).WithOpenApi()
 .Produces(StatusCodes.Status404NotFound)
 .Produces(StatusCodes.Status204NoContent);
app.Run();

	Start the web service project and note the Swagger documentation.

	Click GET /api/categories to expand that section.

	Click the Try it out button, click the Execute button, and note that category entities are returned.

	Close the browser and shut down the web server.

Configuring the .NET MAUI app to allow unsecure connections

Now you will configure the Northwind.Maui.Blazor.Client project to allow unsecure HTTP requests to the web service:

	In the Northwind.Maui.Blazor.Client project, in the Platforms/iOS folder, open the Info.plist file by right-clicking and open it with the XML (Text) Editor.

	At the bottom of the dictionary, add a new key named NSAppTransportSecurity that is a dictionary, and in it, add a key named NSAllowsArbitraryLoads that has a value of true, as shown highlighted in the following partial markup:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>LSRequiresIPhoneOS</key>
 <true/>
 ...
 <key>NSAppTransportSecurity</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</dict>
</plist>

	Save and close Info.plist.

	In the Platforms/Android folder, in the Resources folder, add a new folder named xml.

	In the xml folder, add a new XML file named network_security_config.xml, and add entries to enable cleartext when connecting over the virtual router's special IP address that maps out to localhost, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<network-security-config>
 <domain-config cleartextTrafficPermitted="true">
 <domain includeSubdomains="true">10.0.2.2</domain>
 </domain-config>
</network-security-config>

	In the Android folder, in AndroidManifest.xml, add an attribute to the <application> element to reference the new XML file, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:allowBackup="true"
 android:icon="@mipmap/appicon"
 android:networkSecurityConfig="@xml/network_security_config"
 android:roundIcon="@mipmap/appicon_round"
 android:supportsRtl="true">
 </application>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

	Save all the changes.

Implementing the Model-View-ViewModel pattern

The Model-View-ViewModel (MVVM) pattern separates an application's business and presentation logic from its user interface markup. This makes the app easier to test, maintain, and add or modify features over time.

There are three parts of MVVM:

	Model: An entity model class like Category or Product.

	View Model: A class that represents the business logic, like validation rules, and presentation logic, like properties for all data values that might need to appear in a view like a category name or a unit price of a product, commands for actions that need to be taken like creating a new product or saving a change to a category, and events like the data has changed, without any specific user interface.

	View: A markup file that represents a user interface that can be bound to a view model. You could have different views for different scenarios, like desktop or mobile, where for desktop the data might be bound to a horizontally oriented carousel view and show a picture of each category that the user swipes left and right through, but for mobile the data might be bound to a simple vertical list view with just text that the user scrolls up and down through.

MVVM can be a pain to implement because it requires a lot of boilerplate code. For example, the properties in the view model must implement the INotifyPropertyChanged and raise the PropertyChanged event so that the view gets notified when it needs to update.

You can learn about the MVVM design pattern and how to implement it for .NET MAUI apps at the following link: https://docs.microsoft.com/en-us/dotnet/architecture/maui/mvvm

The MVVM Toolkit has source generators to do that work for you. For example, just inheriting from the ObservableObject class, defining a private field named using camel casing and decorated with the [ObservableProperty] attribute, and the source generators will do the rest, as shown in the following code:

// ObservableObject, [ObservableProperty]
using CommunityToolkit.Mvvm.ComponentModel;
partial class Category : ObservableObject
{
 [ObservableProperty]
 private string? categoryName;
 // Other members.
}

If a class already needs to inherit from another class and so it cannot inherit from ObservableObject, then you can decorate the class with a special attribute, as shown in the following code:

// [INotifyPropertyChanged], [ObservableProperty]
using CommunityToolkit.Mvvm.ComponentModel;
[INotifyPropertyChanged]
partial class Category : SomeOtherClass
{
 [ObservableProperty]
 private string? categoryName;
 // Other members.
}

Good Practice: To create an observable class, it is best to inherit from ObservableObject. If you cannot then decorate with [INotifyPropertyChanged] but this will be less efficient because code must be duplicated.

You can learn about the MVVM Toolkit at the following link: https://docs.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/

Now, lets' define a model and a view model for working with categories:

	In the project file, add package references for the .NET MAUI Community Toolkit and for the MVVM Community Toolkit, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="CommunityToolkit.Maui" Version="1.2.0" />
 <PackageReference Include="CommunityToolkit.Mvvm" Version="8.0.0" />
</ItemGroup>

	Build the project to restore packages.

	In Program.cs, add a call to an extension method to enable the .NET MAUI Community Toolkit, as shown highlighted in the following code:

var builder = MauiApp.CreateBuilder();
builder
 .UseMauiApp<App>()
 .UseMauiCommunityToolkit()
 .ConfigureFonts(fonts =>

	In the Views/Categories folder, add a new class named Category.cs, and modify it to use the MVVM Community Toolkit to implement an observable category model that matches the Category entity models defined in the SQL Server EF Core models but with an extra property to generate a path to a picture of each category as an alternative to the bytes stored in the database, as shown in the following code:

// ObservableObject, [ObservableProperty]
using CommunityToolkit.Mvvm.ComponentModel;
namespace Northwind.Maui.Blazor.Client.Views.Categories;
internal partial class Category : ObservableObject
{
 // The field names must be camelCase because the source generated
 // public property names will be TitleCase.
 [ObservableProperty]
 [NotifyPropertyChangedFor(nameof(PicturePath))]
 private int categoryId;
 [ObservableProperty]
 private string categoryName;
 [ObservableProperty]
 private string description;
 [ObservableProperty]
 private byte[] picture;
 [ObservableProperty]
 private string picturePath;
}

The PicturePath property will use the pattern categoryX_small.jpeg where X is the category ID. Therefore, if the category ID changes we must inform any data bindings that anything bound to the PicturePath will also need to be updated.

	In the Views/Categories folder, add a new class named CategoriesViewModel.cs, and modify it to inherit from ObservableCollection<T>, have some commands, and get the categories from the web service, as shown in the following code:

using CommunityToolkit.Mvvm.Input; // [RelayCommand]
using System.Collections.ObjectModel; // ObservableCollection<T>
using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue
using System.Net.Http.Json; // ReadFromJsonAsync<T>
namespace Northwind.Maui.Blazor.Client.Views.Categories;
internal partial class CategoriesViewModel : ObservableCollection<Category>
{
 public string EmptyMessage { get; set; } = string.Empty;
 public string InfoMessage { get; set; } = string.Empty;
 public string ErrorMessage { get; set; } = string.Empty;
 public bool ErrorMessageVisible { get; set; }
 public CategoriesViewModel()
 {
 try
 {
 HttpClient client = new()
 {
 BaseAddress = new Uri(DeviceInfo.Platform == DevicePlatform.Android ?
 "http://10.0.2.2:5192" : "http://localhost:5192")
 };
 InfoMessage = $"BaseAddress: {client.BaseAddress}. ";
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));
 HttpResponseMessage response = client
 .GetAsync("api/categories").Result;
 response.EnsureSuccessStatusCode();
 IEnumerable<Category> categories =
 response.Content.ReadFromJsonAsync
 <IEnumerable<Category>>().Result;
 foreach (Category category in categories)
 {
 int offset = 78; // to remove the OLE header
 category.Picture = category.Picture.AsSpan(
 offset, category.Picture.Length - offset).ToArray();
 category.PicturePath = $"category{category.CategoryId}_small.jpeg";
 Add(category);
 }
 InfoMessage += $"{Count} categories loaded.";
 }
 catch (Exception ex)
 {
 ErrorMessage = ex.Message;
 ErrorMessageVisible = true;
 }
 }
 [RelayCommand]
 private void AddCategoryToFavorites()
 {
 Console.WriteLine("Add category to favorites");
 }
 [RelayCommand]
 private void DeleteCategory()
 {
 Console.WriteLine("Delete category");
 }
}

Getting categories from the web service

Now, we can modify the categories page to show the categories in a carousel:

	In App.xaml, modify the resources for the PageBackgroundColor and PrimaryTextColor, as shown highlighted in the following markup:

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Northwind.Maui.Blazor.Client"
 x:Class="Northwind.Maui.Blazor.Client.App">
 <Application.Resources>
 <ResourceDictionary>
 <Color x:Key="PageBackgroundColor">LightGray</Color>
 <Color x:Key="PrimaryTextColor">SlateGray</Color>
 ...
 </ResourceDictionary>
 </Application.Resources>
</Application>

	In CategoriesPage.xaml, delete the existing markup, and then create an instance of the categories view model for the binding context of the content page, add a label to show information about the web service endpoint, a label to show any error message, and a carousel with indicator, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Blazor.Client.Views.CategoriesPage"
 xmlns:local="clr-namespace:Northwind.Maui.Blazor.Client"
 xmlns:categories=
 "clr-namespace:Northwind.Maui.Blazor.Client.Views.Categories"
 xmlns:toolkit=
 "http://schemas.microsoft.com/dotnet/2022/maui/toolkit"
 Title="Categories"
 BackgroundColor="{StaticResource PageBackgroundColor}">
 <ContentPage.BindingContext>
 <categories:CategoriesViewModel />
 </ContentPage.BindingContext>
 <VerticalStackLayout>
 <HorizontalStackLayout Spacing="20" Padding="20">
 <Label Text="{Binding InfoMessage}" />
 <Label Text="{Binding ErrorMessage}"
 IsVisible="{Binding ErrorMessageVisible}" />
 </HorizontalStackLayout>
 <CarouselView x:Name="carouselView"
 ItemsSource="{Binding .}"
 IndicatorView="indicatorView"
 PeekAreaInsets="10"
 Loop="False">
 <CarouselView.EmptyView>
 <ContentView>
 <VerticalStackLayout HorizontalOptions="Center"
 VerticalOptions="Center">
 <Label Text="No results matched your filter."
 Margin="10,25,10,10"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 <Label Text="{Binding EmptyMessage}"
 FontAttributes="Italic"
 FontSize="12"
 HorizontalOptions="Fill"
 HorizontalTextAlignment="Center" />
 </VerticalStackLayout>
 </ContentView>
 </CarouselView.EmptyView>
 <CarouselView.ItemTemplate>
 <DataTemplate>
 <VerticalStackLayout>
 <Frame HasShadow="True"
 BorderColor="{StaticResource PrimaryTextColor}"
 CornerRadius="10"
 Margin="20"
 HeightRequest="450"
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <VerticalStackLayout>
 <Label Text="{Binding CategoryName}"
 FontAttributes="Bold"
 FontSize="18"
 HorizontalOptions="Center"
 VerticalOptions="Center" />
 <Image Source="{Binding PicturePath}"
 Aspect="AspectFill"
 HeightRequest="250"
 WidthRequest="375"
 HorizontalOptions="Center" />
 <Label Text="{Binding Description}"
 FontAttributes="Italic"
 HorizontalOptions="Center"
 MaxLines="5"
 LineBreakMode="TailTruncation" />
 </VerticalStackLayout>
 </Frame>
 </VerticalStackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
 </CarouselView>
 <Frame BackgroundColor="{StaticResource PrimaryTextColor}"
 CornerRadius="5" HorizontalOptions="Center">
 <IndicatorView x:Name="indicatorView"
 IndicatorColor="{StaticResource PageBackgroundColor}"
 SelectedIndicatorColor="DeepSkyBlue"
 HorizontalOptions="Center" />
 </Frame>
 </VerticalStackLayout>
</ContentPage>

	Start the Northwind.Maui.WebApi.Service project, and note the endpoints it is listening on, as shown highlighted in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5191
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5192
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\apps-services-net7\Chapter19\Northwind.Maui.WebApi.Service

	Run the Northwind.Maui.Blazor.Client project using the Android emulator and note that eight categories are loaded from the web service and displayed in the carousel, with indicator lights at the bottom of the page view, as shown in Figure 19.4:

[image: Figure 19.4: Categories in the carousel on Android]Figure 19.4: Categories in the carousel on Android

	Note that the user can swipe left and right to flip between categories or click the dots in the indicator view to quickly jump to the matching category.

	Close the Android emulator.

	Run the Northwind.Maui.Blazor.Client project using the Windows Machine and note that eight categories are loaded from the web service and displayed in the carousel, with indicator lights at the bottom of the page view, as shown in Figure 19.5:

[image: Figure 19.5: Categories in the carousel on Windows]Figure 19.5: Categories in the carousel on Windows

	Note that the user can use the horizontal scrollbar at the bottom to scroll between categories or click the dots in the indicator view to quickly jump to the matching category.

	Close the Windows app.

Integrating with native platforms

.NET MAUI provides cross-platform APIs for native device features. Examples include:

	Working with the system clipboard.

	Picking files and media from the local filesystem.

	Storing data securely in a local dictionary.

	Getting information about the device like the operating system version.

	Reading sensors like an accelerometer or compass.

	Checking network connectivity.

	Using native user interface interactions like menu systems and toast notifications.

Let's look at example code for some of these native platform integrations.

Working with the system clipboard

You often need to integrate with the clipboard on the local device. For example, a user might have a description of a category in another app like a word processor or notes app. While editing a category they might want to copy and paste the description from that other app. The clipboard integration only works with text.

Let's enable integration with the clipboard:

	In the Views/Employees folder, in EmployeesPage.xaml, replace the existing label element with a frame, an entry, and a pair of buttons to copy and paste to and from the box whatever text is currently in the clipboard, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Blazor.Client.Views.EmployeesPage"
 Title="Employees">
 <VerticalStackLayout Spacing="10">
 <Frame BorderColor="{StaticResource PrimaryTextColor}"
 Margin="5" Padding="5">
 <VerticalStackLayout Spacing="10">
 <Label Text="Clipboard Examples"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 <Entry x:Name="NotesTextBox"
 HorizontalOptions="Fill" />
 <HorizontalStackLayout Spacing="10">
 <Button Text="Copy to Clipboard"
 x:Name="CopyToClipboardButton"
 Clicked="CopyToClipboardButton_Clicked"
 HorizontalOptions="Center" />
 <Button Text="Paste from Clipboard"
 x:Name="PasteFromClipboardButton"
 Clicked="PasteFromClipboardButton_Clicked"
 HorizontalOptions="Center" />
 </HorizontalStackLayout>
 </VerticalStackLayout>
 </Frame>
 </VerticalStackLayout>

</ContentPage>

	In EmployeesPage.xaml.cs, add statements to the event handlers, as shown highlighted in the following code:

namespace Northwind.Maui.Blazor.Client.Views;
public partial class EmployeesPage : ContentPage
{
 public EmployeesPage()
 {
 InitializeComponent();
 }
 private async void CopyToClipboardButton_Clicked(object sender, EventArgs e)
 {
 await Clipboard.Default.SetTextAsync(NotesTextBox.Text);
 }
 private async void PasteFromClipboardButton_Clicked(
 object sender, EventArgs e)
 {
 if (Clipboard.HasText)
 {
 NotesTextBox.Text = await Clipboard.Default.GetTextAsync();
 }
 }
}

	Start the project in the Android emulator.

	Navigate to the Employees page.

	Enter some text into the entry box, for example, Hello, Clipboard!.

	Click the Copy to Clipboard button.

	Start Notepad on Windows. (The Android emulator integrates automatically with the Windows clipboard.)

	Paste and note the text is whatever you typed into the entry box.

	Type some new text into Notepad, for example, Hello, .NET MAUI app!, and then select it and copy it to the clipboard.

	In the app, click the Paste from Clipboard button and note that the correct text appears in the entry box, as shown in Figure 19.6:

[image: Figure 19.6: Pasting from the system clipboard on Android]Figure 19.6: Pasting from the system clipboard on Android

	Close the Android emulator.

	Repeat this test of the app on Windows Machine and note it has the same functionality.

Picking files from local filesystem

You often need to allow the app user to access the local filesystem on their device to select a file. For example, a photo that they have taken.

To access the media and file picker functionality in a .NET MAUI app, platform-specific configuration is required.

Enabling media and file picking on Windows

In the Platforms/Windows folder, in Package.appxmanifest, add entries to the <Capabilities> section, as shown highlighted in the following markup:

<Capabilities>
 <rescap:Capability Name="runFullTrust" />
 <DeviceCapability Name="microphone"/>
 <DeviceCapability Name="webcam"/>
</Capabilities>

Enabling media and file picking on Android

In the Platforms/Android folder, in AndroidManifest.xml, add entries in the manifest node, as shown in the following markup:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.CAMERA" />

For Android 11 with API 30 or later, you must also add entries in, as shown in the following markup:

<queries>
 <intent>
 <action android:name="android.media.action.IMAGE_CAPTURE" />
 </intent>
</queries>

Enabling media and file picking on iOS

In the Platforms/iOS folder, in the Info.plist file, add keys and values to the root <dict> element, as shown in the following markup:

<key>NSCameraUsageDescription</key>
<string>This app needs access to the camera to take photos.</string>
<key>NSMicrophoneUsageDescription</key>
<string>This app needs access to microphone for taking videos.</string>
<key>NSPhotoLibraryAddUsageDescription</key>
<string>This app needs access to the photo gallery for picking photos and videos.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>This app needs access to photos gallery for picking photos and videos.</string>

Integrating with media and file picker

Let's enable the user to select a new image for a category:

	In the Views/Employees folder, in EmployeesPage.xaml, add another frame, a label, an image, and a pair of buttons to pick a text file or an image file and show them in the label or image control, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage ...
 Title="Employees">
 <VerticalStackLayout Spacing="10">
 ...

 <Frame BorderColor="{StaticResource PrimaryTextColor}"
 Margin="5" Padding="5">
 <VerticalStackLayout Spacing="10">
 <Label Text="Picker Examples"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 <HorizontalStackLayout Spacing="10">
 <Button Text="Pick Text File"
 x:Name="PickTextFileButton"
 Clicked="PickTextFileButton_Clicked"
 HorizontalOptions="Center" />
 <Button Text="Pick Image"
 x:Name="PickImageButton"
 Clicked="PickImageButton_Clicked"
 HorizontalOptions="Center" />
 <Button Text="Take a Photo"
 x:Name="TakePhotoButton"
 Clicked="TakePhotoButton_Clicked"
 HorizontalOptions="Center" />
 </HorizontalStackLayout>
 <Label x:Name="FilePathLabel"
 HorizontalOptions="Fill" />
 <Label x:Name="FileContentsLabel"
 HorizontalOptions="Fill" />
 <Image x:Name="FileImage"
 HeightRequest="375"
 WidthRequest="250"/>
 </VerticalStackLayout>
 </Frame>
 </VerticalStackLayout>

</ContentPage>

	In EmployeesPage.xaml.cs, add statements to the event handlers, as shown in the following partial code:

namespace Northwind.Maui.Blazor.Client.Views;
public partial class EmployeesPage : ContentPage
{
 ...
 private async void PickTextFileButton_Clicked(object sender, EventArgs e)
 {
 try
 {
 FilePickerFileType textFileTypes = new(
 new Dictionary<DevicePlatform, IEnumerable<string>>
 {
 { DevicePlatform.iOS, new[] { "public.plain-text" } },
 { DevicePlatform.Android, new[] { "text/plain" } },
 { DevicePlatform.WinUI, new[] { ".txt" } },
 { DevicePlatform.Tizen, new[] { "*/*" } },
 { DevicePlatform.macOS, new[] { "txt" } }
 });
 PickOptions options = new()
 {
 PickerTitle = "Pick a text file",
 FileTypes = textFileTypes
 };
 FileResult result = await FilePicker.Default.PickAsync(options);
 if (result != null)
 {
 using var stream = await result.OpenReadAsync();
 FileContentsLabel.Text = new StreamReader(stream).ReadToEnd();
 }
 FilePathLabel.Text = result.FullPath;
 }
 catch (Exception ex)
 {
 await DisplayAlert(title: "Exception",
 message: ex.Message, cancel: "OK");
 }
 }
 private async void PickImageButton_Clicked(object sender, EventArgs e)
 {
 FileResult photo = await MediaPicker.Default.PickPhotoAsync();
 if (photo != null)
 {
 using Stream sourceStream = await photo.OpenReadAsync();
 FileImage.Source = ImageSource.FromStream(() => sourceStream);
 FilePathLabel.Text = photo.FullPath;
 }
 else
 {
 await DisplayAlert(title: "Exception",
 message: "Photo was null.", cancel: "OK");
 }
 }
 private async void TakePhotoButton_Clicked(object sender, EventArgs e)
 {
 if (MediaPicker.Default.IsCaptureSupported)
 {
 FileResult photo = await MediaPicker.Default.CapturePhotoAsync();
 if (photo != null)
 {
 // save the file into local storage
 string localFilePath = Path.Combine(
 FileSystem.CacheDirectory, photo.FileName);
 using Stream sourceStream = await photo.OpenReadAsync();
 using FileStream localFileStream = File.OpenWrite(localFilePath);
 await sourceStream.CopyToAsync(localFileStream);
 FileImage.Source = ImageSource.FromStream(() => sourceStream);
 FilePathLabel.Text = localFilePath;
 }
 else
 {
 await DisplayAlert(title: "Exception",
 message: "Photo was null.", cancel: "OK");
 }
 }
 else
 {
 await DisplayAlert(title: "Sorry",
 message: "Image capture is not supported on this device.",
 cancel: "OK");
 }
 }
}

	Start the project in the Android emulator.

	In the .NET MAUI app, navigate to the Employees page.

	In the emulator, start the Chrome browser.

	Navigate to https://raw.githubusercontent.com/markjprice/apps-services-net7/main/sample.txt.

	Download the sample.txt file.

	Switch back to the .NET MAUI app.

	Tap Pick Text File.

	Select the sample.txt file, and note the local path to the file and its contents are displayed in the two labels, as shown in Figure 19.7:

[image: Figure 19.7: Showing the file path and contents for a picked text file]Figure 19.7: Showing the file path and contents for a picked text file

	Switch to the Chrome browser.

	Navigate to https://github.com/markjprice/apps-services-net7/blob/main/images/Categories-small/categories-small.jpeg.

	Download the small image of categories, as shown in Figure 19.8:

[image: Figure 19.8: Downloading an image of categories in the Android emulator]Figure 19.8: Downloading an image of categories in the Android emulator

	Tap Pick Image and select the small picture of categories, as shown in Figure 19.9:
Figure 19.9:

	Close the app.

Creating new windows

The defining characteristic of the Windows operating system is... windows! The old Xamarin.Forms technology did not support creating windows because mobile device operating systems do not support windows. But .NET MAUI targets desktop operating systems so .NET MAUI adds the capability of creating a new window.

Let's go!

	In the Views\Orders folder, in OrdersPage.xaml, add a frame with a button, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Blazor.Client.Views.OrdersPage"
 Title="Orders">
 <VerticalStackLayout Spacing="10">
 <Frame BorderColor="{StaticResource PrimaryTextColor}"
 Margin="5" Padding="5">
 <VerticalStackLayout Spacing="10">
 <Label Text="Windowing"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 <Button Text="New Window" x:Name="NewWindowButton"
 Clicked="NewWindowButton_Clicked"
 HorizontalOptions="Center" />
 </VerticalStackLayout>
 </Frame>
 </VerticalStackLayout>
</ContentPage>

	In OrdersPage.xaml.cs, add a handler for the button event that creates a new window with a starting page that is new instance of AppShell and opens it, as shown highlighted in the following code:

namespace Northwind.Maui.Blazor.Client.Views;
public partial class OrdersPage : ContentPage
{
 public OrdersPage()
 {
 InitializeComponent();
 }
 private void NewWindowButton_Clicked(object sender, EventArgs e)
 {
 Window window = new() { Page = new AppShell() };
 Application.Current.OpenWindow(window);
 }
}

	Start the app on Windows Machine.

	Navigate to the Orders page, click the New Window button, and note a new window appears, as shown in Figure 19.10:

[image: Figure 19.10: Multiple windows in a Windows app]Figure 19.10: Multiple windows in a Windows app

	Close the new window and then close the Windows app.

Getting device information

You often need to get information about the device that the app is running on, including about network connectivity and sensor readings.

Enabling device information on Android

To get information about the battery on Windows or iOS you do not need to ask for permission. But on Android you must request permission, as shown in the following markup:

<uses-permission android:name="android.permission.BATTERY_STATS" />

Adding device information to the app

Let's show some useful information about the device:

	In the Views/Orders folder, add a new class named DeviceInfoViewModel.cs, and define some properties to bind to, as shown in the following code:

namespace Northwind.Maui.Blazor.Client.Views.Orders;
internal class DeviceInfoViewModel
{
 public string DisplayPixelWidth
 {
 get
 {
 return $"{DeviceDisplay.Current.MainDisplayInfo.Width} pixel width";
 }
 }
 public string DisplayDensity
 {
 get
 {
 return $"{DeviceDisplay.Current.MainDisplayInfo.Density} pixel density";
 }
 }
 public string DisplayOrientation
 {
 get
 {
 return $"Orientation is {DeviceDisplay.Current.MainDisplayInfo.Orientation}";
 }
 }
 public string DisplayRotation
 {
 get
 {
 return $"Rotation is {DeviceDisplay.Current.MainDisplayInfo.Rotation}";
 }
 }
 public string DisplayRefreshRate
 {
 get
 {
 return $"{DeviceDisplay.Current.MainDisplayInfo.RefreshRate} Hz refresh rate";
 }
 }
 public string DeviceModel
 {
 get
 {
 return DeviceInfo.Current.Model;
 }
 }
 public string DeviceType
 {
 get
 {
 return $"{DeviceInfo.Current.DeviceType} {DeviceInfo.Current.Idiom} device";
 }
 }
 public string DeviceVersion
 {
 get
 {
 return DeviceInfo.Current.VersionString;
 }
 }
 public string DevicePlatform
 {
 get
 {
 return $"Platform is {DeviceInfo.Current.Platform}";
 }
 }
}

	In OrdersPage.xaml, instantiate the class to bind to, as shown highlighted in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:orders=
 "clr-namespace:Northwind.Maui.Blazor.Client.Views.Orders"
 x:Class="Northwind.Maui.Blazor.Client.Views.OrdersPage"
 Title="Orders">
 <ContentPage.BindingContext>
 <orders:DeviceInfoViewModel />
 </ContentPage.BindingContext>

	In OrdersPage.xaml, add markup to define a frame for showing device information, as shown in the following markup:

<Frame BorderColor="{StaticResource PrimaryTextColor}"
 Margin="5" Padding="5">
 <VerticalStackLayout Spacing="10">
 <Label Text="Device Information"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 <HorizontalStackLayout Spacing="20">
 <Label Text="Listen to battery events"
 VerticalOptions="Center" />
 <Switch Toggled="BatterySwitch_Toggled"
 x:Name="BatterySwitch"
 VerticalOptions="Center"/>
 </HorizontalStackLayout>
 <Label x:Name="BatteryStateLabel" />
 <Label x:Name="BatteryLevelLabel" />
 <Label Text="{Binding DeviceModel}" />
 <Label Text="{Binding DeviceType}" />
 <Label Text="{Binding DevicePlatform}" />
 <Label Text="{Binding DeviceVersion}" />
 <Label Text="{Binding DisplayOrientation}" />
 <Label Text="{Binding DisplayRotation}" />
 <Label Text="{Binding DisplayDensity}" />
 <Label Text="{Binding DisplayPixelWidth}" />
 <Label Text="{Binding DisplayRefreshRate}" />
 </VerticalStackLayout>
</Frame>

	Start the app on Windows Machine.

	Navigate to the Orders page, switch on listening for battery events, unplug your laptop battery and note the battery information and other device information, as shown in Figure 19.11:

[image: Figure 19.11: Showing battery and device information on Windows 11]Figure 19.11: Showing battery and device information on Windows 11

	Close the Windows app.

	Start the app on the Android emulator.

	Navigate to the Orders page, switch on listening for battery events, unplug your laptop battery and note the battery information and other device information, as shown in Figure 19.12:

[image: Figure 19.12: Showing battery and device information on an emulated Android device]Figure 19.12: Showing battery and device information on an emulated Android device

	Close the app.

Integrating with desktop menu bars

For desktop operating systems, users will expect menu bars to access functionality.

Let's add a small menu bar to the app for use on Windows:

	In OrdersViewModel.cs, import the namespaces for working with MVVM observable objects and defining relay commands, as shown in the following code:

using CommunityToolkit.Mvvm.ComponentModel; // ObservableObject
using CommunityToolkit.Mvvm.Input; // [RelayCommand]

	In OrdersViewModel.cs, make the class a partial observable object, as shown highlighted in the following code:

internal partial class DeviceInfoViewModel : ObservableObject

	In OrdersViewModel.cs, add statements to define a command to navigate between pages, as shown in the following code:

[RelayCommand]
private async Task NavigateTo(string pageName)
{
 await Shell.Current.GoToAsync($"//{pageName}");
}

	In OrdersPage.xaml, add markup to define a menu bar, as shown in the following markup:

<ContentPage.MenuBarItems>
 <MenuBarItem Text="File">
 <MenuFlyoutItem Text="Exit" />
 </MenuBarItem>
 <MenuBarItem Text="View">
 <MenuFlyoutItem Text="Home"
 Command="{Binding NavigateToCommand}"
 CommandParameter="home" />
 <MenuFlyoutItem Text="Categories"
 Command="{Binding NavigateToCommand}"
 CommandParameter="categories" />
 <MenuFlyoutItem Text="Employees"
 Command="{Binding NavigateToCommand}"
 CommandParameter="employees" />
 <MenuFlyoutItem Text="Orders"
 Command="{Binding NavigateToCommand}"
 CommandParameter="orders" />
 <MenuFlyoutItem Text="Refresh" />
 </MenuBarItem>
</ContentPage.MenuBarItems>

	Start the app on Windows Machine.

	Navigate to the Orders page, and note the menu bar, as shown in Figure 19.13:

[image: Figure 19.13: On a desktop OS the app has a menu bar]Figure 19.13: On a desktop OS the app has a menu bar

	Close the Windows app.

Popping up a toast notification

The .NET MAUI Community Toolkit makes some tasks for integrating with the native platform easier. For example, if you want to show a popup toast notification.

Let's get the app to show a toast notification on the native platform:

	In OrdersViewModel.cs, import the namespace for working with alerts, as shown in the following code:

using CommunityToolkit.Maui.Alerts; // Toast, ToastDuration

	In OrdersViewModel.cs, add a relay command to show some toast, as shown in the following code:

[RelayCommand]
private async Task PopupToast()
{
 CancellationTokenSource cts = new();
 IToast toast = Toast.Make(message: "This toast pops up.",
 duration: ToastDuration.Short, textSize: 18);
 await toast.Show(cts.Token);
}

	In OrdersPage.xaml, at the bottom of the menu bar, add a new menu, as shown in the following markup:

<MenuBarItem Text="Notify">
 <MenuFlyoutItem Text="Popup Toast"
 Command="{Binding PopupToastCommand}" />
</MenuBarItem>

	Start the app on Windows Machine.

	Navigate to the Orders page, in the Notify menu, click Popup Toast, and note the toast appears, as shown in Figure 19.14:
Figure 19.14: Toast pops up on Windows

	Close the Windows app.

Integrating with geolocation and maps

Using third-party control libraries

There are not as many free or open-source third-party libraries for .NET MAUI as there are for Blazor. This is probably because creating Blazor components is easier. You only need to concern yourself with supporting one user interface target, the web. When building a .NET MAUI control library, you would want to implement each control for native iOS, Android, Windows, and macOS, and hopefully Linux in the future. That is a lot of tricky work.

The only major component library software manufacturer that gives away a control library for .NET MAUI for free is DevExpress and its library only support the two mobile platforms, iOS and Android. It is also not open source.

You can learn more about the DevExpress library at the following link: https://www.devexpress.com/maui/

Other .NET MAUI component library software manufacturers charge licence fees for their libraries, for example, Progress Telerik ($999 for a single developer license with priority support) and Syncfusion ($2495 for a single developer license for the first year, $900 for second year). Both have free trials.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

Exercise 19.1 – Test your knowledge

Answer the following questions:

	?

	?

Exercise 19.2 – Explore the code samples

Review the official .NET MAUI code samples at the following link:

https://docs.microsoft.com/en-us/samples/browse/?expanded=dotnet&products=dotnet-maui

Exercise 19.3 – Explore topics

Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/apps-services-net7/blob/main/book-links.md#chapter-19---integrating-net-maui-apps-with-blazor-and-native-platforms

Summary

In this chapter, you learned:

	How to create a hybrid .NET MAUI and Blazor app.

	How to use the MVVM Community Toolkit to implement the Model-View-View Model pattern with bindable properties and commands.

	How to use the carousel view with current position indicators.

	How to integrate with platform features like the clipboard, picking files, getting device information.

	How to use desktop features like menu bars and new windows.

	How to use the .NET MAUI Community Toolkit to add notifications.

In the next chapter, you will learn about the survey project challenge.

OEBPS/Images/file102.png

OEBPS/Images/file101.png

OEBPS/Images/file100.png

OEBPS/Images/file106.png

OEBPS/Images/file105.png

OEBPS/Images/file104.png

OEBPS/Images/file103.png

OEBPS/Images/file30.png

OEBPS/Images/file31.png

OEBPS/Images/file32.png

OEBPS/Images/file120.png

OEBPS/Images/file124.png

OEBPS/Images/file37.png

OEBPS/Images/file123.png

OEBPS/Images/file38.png

OEBPS/Images/file39.png

OEBPS/Images/file122.png

OEBPS/Images/file121.png

OEBPS/Images/file33.png

OEBPS/Images/file128.png

OEBPS/Images/file127.png

OEBPS/Images/file34.png

OEBPS/Images/file35.png

OEBPS/Images/file126.png

OEBPS/Images/file125.png

OEBPS/Images/file36.png

OEBPS/Images/file119.png

OEBPS/Images/file118.png

OEBPS/Images/file40.png

OEBPS/Images/file41.png

OEBPS/Images/file42.png

OEBPS/Images/file43.png

OEBPS/Images/file113.png

OEBPS/Images/file48.png

OEBPS/Images/file49.png

OEBPS/Images/file112.png

OEBPS/Images/file111.png

OEBPS/Images/file110.png

OEBPS/Images/file44.png

OEBPS/Images/file117.png

OEBPS/Images/file116.png

OEBPS/Images/file45.png

OEBPS/Images/file115.png

OEBPS/Images/file46.png

OEBPS/Images/file114.png

OEBPS/Images/file47.png

OEBPS/Images/file109.png

OEBPS/Images/file108.png

OEBPS/Images/file107.png

OEBPS/Images/file10.png

OEBPS/Images/file142.png

OEBPS/Images/file141.png

OEBPS/Images/file140.png

OEBPS/Images/file146.png

OEBPS/Images/file15.png

OEBPS/Images/file145.png

OEBPS/Images/file16.png

OEBPS/Images/file144.png

OEBPS/Images/file17.png

OEBPS/Images/file143.png

OEBPS/Images/file18.png

OEBPS/Images/file11.png

OEBPS/Images/file149.png

OEBPS/Images/file12.png

OEBPS/Images/file13.png

OEBPS/Images/file148.png

OEBPS/Images/file14.png

OEBPS/Images/file147.png

OEBPS/Images/file20.png

OEBPS/Images/file21.png

OEBPS/Images/file131.png

OEBPS/Images/file130.png

OEBPS/Images/file135.png

OEBPS/Images/file26.png

OEBPS/Images/file27.png

OEBPS/Images/file134.png

OEBPS/Images/file28.png

OEBPS/Images/file133.png

OEBPS/Images/file132.png

OEBPS/Images/file29.png

OEBPS/Images/file139.png

OEBPS/Images/file22.png

OEBPS/Images/file23.png

OEBPS/Images/file138.png

OEBPS/Images/file137.png

OEBPS/Images/file24.png

OEBPS/Images/file25.png

OEBPS/Images/file136.png

OEBPS/Images/file129.png

OEBPS/Images/file19.png

OEBPS/Images/file160.png

OEBPS/Images/file73.png

OEBPS/Images/file74.png

OEBPS/Images/file75.png

OEBPS/Images/file76.png

OEBPS/Images/file164.png

OEBPS/Images/file163.png

OEBPS/Images/file70.png

OEBPS/Images/file162.png

OEBPS/Images/file71.png

OEBPS/Images/file161.png

OEBPS/Images/file72.png

OEBPS/Images/file168.png

OEBPS/Images/file167.png

OEBPS/Images/file166.png

OEBPS/Images/file165.png

OEBPS/Images/file77.png

OEBPS/Images/file78.png

OEBPS/Images/file79.png

OEBPS/Images/file169.png

OEBPS/Images/file84.png

OEBPS/Images/file85.png

OEBPS/Images/file86.png

OEBPS/Images/file87.png

OEBPS/Images/file80.png

OEBPS/Images/file153.png

OEBPS/Images/file152.png

OEBPS/Images/file81.png

OEBPS/Images/file82.png

OEBPS/Images/file151.png

OEBPS/Images/file150.png

OEBPS/Images/file83.png

OEBPS/Images/file157.png

OEBPS/Images/file156.png

OEBPS/Images/file155.png

OEBPS/Images/file154.png

OEBPS/Images/file88.png

OEBPS/Images/file89.png

OEBPS/Images/file159.png

OEBPS/Images/file158.png

OEBPS/Images/file51.png

OEBPS/Images/file182.png

OEBPS/Images/file181.png

OEBPS/Images/file52.png

OEBPS/Images/file180.png

OEBPS/Images/file53.png

OEBPS/Images/file54.png

OEBPS/Images/file186.png

OEBPS/Images/file185.png

OEBPS/Images/file184.png

OEBPS/Images/file50.png

OEBPS/Images/file183.png

OEBPS/Images/file59.png

OEBPS/Images/file189.png

OEBPS/Images/file188.png

OEBPS/Images/file187.png

OEBPS/Images/file55.png

OEBPS/Images/file56.png

OEBPS/Images/file57.png

OEBPS/Images/file58.png

OEBPS/Images/file171.png

OEBPS/Images/file62.png

OEBPS/Images/file170.png

OEBPS/Images/file63.png

OEBPS/Images/file64.png

OEBPS/Images/file65.png

OEBPS/Images/file175.png

OEBPS/Images/file174.png

OEBPS/Images/file60.png

OEBPS/Images/file173.png

OEBPS/Images/file61.png

OEBPS/Images/file172.png

OEBPS/Images/file179.png

OEBPS/Images/file178.png

OEBPS/Images/file177.png

OEBPS/Images/file176.png

OEBPS/Images/cover.png

OEBPS/Images/file66.png

OEBPS/Images/file67.png

OEBPS/Images/file68.png

OEBPS/Images/file69.png

OEBPS/Images/file193.png

OEBPS/Images/file192.png

OEBPS/Images/file191.png

OEBPS/Images/file190.png

OEBPS/Images/file195.png

OEBPS/Images/file194.png

OEBPS/Images/file8.png

OEBPS/Images/file9.png

OEBPS/Images/file6.png

OEBPS/Images/file95.png

OEBPS/Images/file96.png

OEBPS/Images/file7.png

OEBPS/Images/file97.png

OEBPS/Images/file4.png

OEBPS/Images/file5.png

OEBPS/Images/file98.png

OEBPS/Images/file91.png

OEBPS/Images/file2.png

OEBPS/Images/file3.png

OEBPS/Images/file92.png

OEBPS/Images/file93.png

OEBPS/Images/file0.png

OEBPS/Images/file94.png

OEBPS/Images/file1.png

OEBPS/Images/file99.png

OEBPS/Images/file90.png

