

ASP.NET Core in Action, Third Edition MEAP
V13

1. Copyright_2023_Manning_Publications
2. welcome
3. 1_Getting_started_with_ASP.NET_Core
4. Part_1_Getting_started_with_minimal_APIs
5. 2_Understanding_ASP.NET_Core
6. 3_Your_first_application
7. 4_Handling_requests_with_the_middleware_pipeline
8. 5_Creating_a_JSON_API_with_minimal_APIs
9. 6_Mapping_URLs_to_endpoints_using_routing

10. 7_Model_binding_and_validation_in_minimal_APIs
11. Part_2_Building_complete_applications
12. 8_An_introduction_to_dependency_injection
13. 9_Registering_services_with_dependency_injection
14. 10_Configuring_an_ASP.NET_Core_application
15. 11_Documenting_APIs_with_OpenAPI
16. 12_Saving_data_with_Entity_Framework_Core
17. Part_3_Generating_HTML_with_Razor_Pages_and_MVC
18. 13_Creating_a_website_with_Razor_Pages
19. 14_Mapping_URLs_to_Razor_Pages_using_routing
20. 15_Generating_responses_with_page_handlers_in_Razor_Pages
21. 16_Binding_and_validating_requests_with_Razor_Pages
22. 17_Rendering_HTML_using_Razor_views
23. 18_Building_forms_with_Tag_Helpers
24. 19_Creating_a_website_with_MVC_controllers
25. 20_Creating_an_HTTP_API_using_web_API_controllers
26. 21_The_MVC_and_Razor_Pages_filter_pipeline
27. 22_Creating_custom_MVC_and_Razor_Page_filters
28. 23_Authentication:_Adding_users_to_your_application_with_Identity
29. 25_Authentication_and_authorization_for_APIs
30. 26_Monitoring_and_troubleshooting_errors_with_logging
31. 27_Publishing_and_deploying_your_application
32. 28_Adding_HTTPS_to_an_application

MEAP Edition Manning Early Access Program ASP.NET Core in Action,
Third Edition Version 13

Copyright 2023 Manning Publications
©Manning Publications Co. We welcome reader comments about anything in
the manuscript - other than typos and other simple mistakes. These will be
cleaned up during production of the book by copyeditors and proofreaders.
https://livebook.manning.com/#!/book/asp-net-core-in-action-third-
edition/discussion

For more information on this and other Manning titles go to

manning.com

welcome
Thanks for purchasing the MEAP for ASP.NET Core in Action, Third
Edition. This book has been written to take a moderately experienced C#
developer, without web development experience, to being a well-round
ASP.NET Core developer, ready to build your first web applications.

The genesis of ASP.NET Core goes back several years, but I first really
started paying attention shortly before the release of ASP.NET Core RC2. As
an ASP.NET developer for many years, the new direction and approach to
development Microsoft were embracing was a breath of fresh air. No longer
are Visual Studio and Windows mandated. You are now free to build and run
cross-platform .NET applications on any OS, with any IDE, and using the
tools that you choose.

Along with that, the entire framework is open-source, and developed with
many contributions from the community. It was this aspect that drew me in
initially. The ability to wade through the framework code and see how
features were implemented was such a revelation (compared to the dubious
documentation of old) that I was hooked!

ASP.NET Core has grown massively since its release in 2016—.NET 6,
released in 2021, was the fastest adopted version of .NET ever, and .NET 7,
due to be released in November 2022, will no doubt be the same. ASP.NET
Core in Action is my attempt to get you started and productive with the
upcoming .NET 7 as soon as possible. The first part of the book focuses on
minimal APIs, the simplified approach to building HTTP APIs introduced in
.NET 6. You’ll learn how to build simple APIs using routing and how to
build a middleware pipeline for your ASP.NET Core apps.

In part 2, we look at some of the core features of a typical ASP.NET Core
application. You’ll learn how to handle configuration for your apps, pulling
configuration from multiple sources, and how dependency injection helps
build loosely coupled apps. In part 3 you’ll learn how the concepts you
learned in parts 1 and 2 apply to other application types, when building a

completely different type of ASP.NET Core application: server-rendered
HTML pages using Razor Pages and MVC controllers.

In part 4 you will build on all this core knowledge, looking at more advanced
requirements and how to add extra features to your application. You will
learn how to secure your application behind a login screen, how to avoid
security holes, how to deploy your application to production. In the last part
of the book, you will look in depth at further bending the framework to your
will by creating custom components and building background services.

This book already covers a lot of ground, so I won’t be covering some parts
of ASP.NET Core such as Blazor, gRPC, or SignalR. The book is written
using the latest .NET 7 previews, and will be updated to support the final
.NET 7 release before final publication. Your feedback is essential to creating
the best book possible, so please be sure to post any comments, questions of
suggests you have about the book in the Author Online forum. I appreciate
knowing where to make improvements to ensure you can get the most out of
it!

Dr Andrew Lock

In this book

Copyright 2023 Manning Publications welcome brief contents 1 Getting
started with ASP.NET Core Part 1 Getting started with minimal APIs 2
Understanding ASP.NET Core 3 Your first application 4 Handling requests
with the middleware pipeline 5 Creating a JSON API with minimal APIs 6
Mapping URLs to endpoints using routing 7 Model binding and validation in
minimal APIs Part 2 Building complete applications 8 An introduction to
dependency injection 9 Registering services with dependency injection 10
Configuring an ASP.NET Core application 11 Documenting APIs with
OpenAPI 12 Saving data with Entity Framework Core Part 3 Generating
HTML with Razor Pages and MVC 13 Creating a website with Razor Pages
14 Mapping URLs to Razor Pages using routing 15 Generating responses
with page handlers in Razor Pages 16 Binding and validating requests with
Razor Pages 17 Rendering HTML using Razor views 18 Building forms with
Tag Helpers 19 Creating a website with MVC controllers 20 Creating an
HTTP API using web API controllers 21 The MVC and Razor Pages filter

pipeline 22 Creating custom MVC and Razor Page filters 23 Authentication:
Adding users to your application with Identity 25 Authentication and
authorization for APIs 26 Monitoring and troubleshooting errors with logging
27 Publishing and deploying your application 28 Adding HTTPS to an
application

1 Getting started with ASP.NET
Core
This chapter covers

What is ASP.NET Core?
Things you can build with ASP.NET Core
How ASP.NET Core works

Choosing to learn and develop with a new framework is a big investment, so
it’s important to establish early on whether it’s right for you. In this chapter, I
provide some background on ASP.NET Core: what it is, how it works, and
why you should consider it for building your web applications.

By the end of this chapter, you should have a good overview of the benefits
of ASP.NET Core, the role of .NET 7, and the basic mechanics of how
ASP.NET Core works. So without further ado, let’s dive in!

1.1 What is ASP.NET Core?

ASP.NET Core is a cross-platform, open-source application framework that
you can use to build dynamic web applications quickly. You can use
ASP.NET Core to build server-rendered web applications, backend server
applications, HTTP APIs that can be consumed by mobile applications, and
much more. ASP.NET Core runs on .NET 7, which is the latest version of
.NET Core—a high-performance, cross-platform, open-source runtime.

ASP.NET Core provides structure, helper functions, and a framework for
building applications, which saves you from having to write a lot of this code
yourself. Then the ASP.NET Core framework code calls in to your handlers,
which in turn call methods in your application’s business logic, as shown in
figure 1.1. This business logic is the core of your application. You can
interact with other services here, such as databases or remote APIs, but your

business logic typically doesn’t depend directly on ASP.NET Core.

Figure 1.1 A typical ASP.NET Core application consists of several layers. The ASP.NET Core
framework code handles requests from a client, dealing with the complex networking code. Then
the framework calls in to handlers (Razor Pages and Web API controllers, for example) that you
write using primitives provided by the framework. Finally, these handlers call in to your
application’s domain logic—typically, C# classes and objects without any dependencies that are
specific to ASP.NET Core.

1.2 What types of applications can you build?

ASP.NET Core provides a generalized web framework that you can use to
build a wide variety of applications. ASP.NET Core includes APIs that

support many paradigms:

Minimal APIs—Simple HTTP APIs that can be consumed by mobile
applications or browser-based single-page applications.
Web APIs—An alternative approach to building HTTP APIs that adds
more structure and features than minimal APIs.
gRPC APIs—Used to build efficient binary APIs for server-to-server
communication using the gRPC protocol.
Razor Pages—Used to build page-based server-rendered applications.
MVC controllers—Similar to Razor Pages. Model-View-Controller
(MVC) controller applications are for server-based applications but
without the page-based paradigm.
Blazor WebAssembly—A browser-based single-page application
framework that uses the WebAssembly standard, similar to JavaScript
frameworks such as Angular, React, and Vue.
Blazor Server—Used to build stateful applications, rendered on the
server, that send UI events and page updates over WebSockets to
provide the feel of a client-side single-page application but with the ease
of development of a server-rendered application.

All these paradigms are based on the same building blocks of ASP.NET
Core, such as the configuration and logging libraries, and then place extra
functionality on top. The best paradigm for your application depends on
multiple factors, including your API requirements, the details of existing
applications you need to interact with, the details of your customers’
browsers and operating environment, and scalability and uptime
requirements. You don’t need to choose only one of these paradigms;
ASP.NET Core can combine multiple paradigms within a single application.

1.3 Choosing ASP.NET Core

I hope that now you have a general grasp of what ASP.NET Core is and the
type of applications you can build with it. But one question remains: should
you use it? Microsoft recommends that all new .NET web development use
ASP.NET Core, but switching to or learning a new web stack is a big ask for
any developer or company.

If you’re new to .NET development and are considering ASP.NET Core,
welcome! Microsoft is pushing ASP.NET Core as an attractive option for
web development beginners, but taking .NET cross-platform means that it’s
competing with many other frameworks on their own turf. ASP.NET Core
has many selling points compared with other cross-platform web
frameworks:

It’s a modern, high-performance, open-source web framework.
It uses familiar design patterns and paradigms.
C# is a great language (but you can use VB.NET or F# if you prefer).
You can build and run on any platform.

ASP.NET Core is a reimagining of the ASP.NET framework, built with
modern software design principles on top of the new .NET Core platform.
Although it’s new in one sense, .NET (previously called .NET Core) has had
widespread production use since 2016 and has drawn significantly from the
mature, stable, and reliable .NET Framework, which has been used for more
than two decades. You can rest easy knowing that by choosing ASP.NET
Core and .NET 7, you’re getting a dependable platform as well as a full-
featured web framework.

One major selling point of ASP.NET Core and .NET 7 is the ability to
develop and run on any platform. Whether you’re using a Mac, Windows, or
Linux computer, you can run the same ASP.NET Core apps and develop
across multiple environments. A wide range of distributions is supported for
Linux users: RHEL, Ubuntu, Debian, CentOS, Fedora, and openSUSE, to
name a few. ASP.NET Core even runs on the tiny Alpine distribution, for
truly compact deployments to containers, so you can be confident that your
operating system of choice will be a viable option.

If you’re already a .NET developer, the choice of whether to invest in
ASP.NET Core for new applications was largely a question of timing. Early
versions of .NET Core lacked some features that made it hard to adopt, but
that problem no longer exists in the latest versions of .NET. Now Microsoft
explicitly advises that all new .NET applications should use .NET 7 (or
newer).

Microsoft has pledged to provide bug and security fixes for the older

ASP.NET framework, but it won’t provide any more feature updates. .NET
Framework isn’t being removed, so your old applications will continue to
work, but you shouldn’t use it for new development.

The main benefits of ASP.NET Core over the previous ASP.NET framework
are

Cross-platform development and deployment
Focus on performance as a feature
A simplified hosting model
Regular releases with a shorter release cycle
Open-source
Modular features
More application paradigm options
The option to package .NET with an app when publishing for standalone
deployments

As an existing .NET developer who’s moving to ASP.NET Core, your ability
to build and deploy cross-platform opens the door to a whole new avenue of
applications, such as taking advantage of cheaper Linux virtual machine
hosting in the cloud, using Docker containers for repeatable continuous
integration, or writing .NET code on your Mac without needing to run a
Windows virtual machine. ASP.NET Core, in combination with .NET 7,
makes all this possible.

That’s not to say that your experience deploying ASP.NET applications to
Windows and Internet Information Services (IIS) is wasted. On the contrary,
ASP.NET Core uses many of the same concepts as the previous ASP.NET
framework, and you can still run your ASP.NET Core applications in IIS, so
moving to ASP.NET Core doesn’t mean starting from scratch.

1.4 How does ASP.NET Core work?

I’ve covered the basics of what ASP.NET Core is, what you can use it for,
and why you should consider using it. In this section, you’ll see how an
application built with ASP.NET Core works, from a user request for a URL
to the display of a page in the browser. To get there, first you’ll see how an

HTTP request works for any web server; then you’ll see how ASP.NET Core
extends the process to create dynamic web pages.

1.4.1 How does an HTTP web request work?

As you know now, ASP.NET Core is a framework for building web
applications that serve data from a server. One of the most common scenarios
for web developers is building a web app that you can view in a web browser.
Figure 1.2 shows the high-level process you can expect from any web server.

Figure 1.2 Requesting a web page. The user starts by requesting a web page, which causes an
HTTP request to be sent to the server. The server interprets the request, generates the necessary
HTML, and sends it back in an HTTP response. Then the browser can display the web page.

The process begins when a user navigates to a website or types a URL in
their browser. The URL or web address consists of a hostname and a path to
some resource on the web app. Navigating to the address in the browser
sends a request from the user’s computer to the server on which the web app
is hosted, using the HTTP protocol.

Definition

The hostname of a website uniquely identifies its location on the internet by
mapping via the Domain Name Service (DNS) to an IP address. Examples
include microsoft.com, www.google.co.uk, and facebook.com.

A brief primer on HTTP

Hypertext Transfer Protocol (HTTP) is the application-level protocol that
powers the web. It’s a stateless request-response protocol whereby a client
machine sends a request to a server, which sends a response in turn.

Every HTTP request consists of a verb indicating the type of the request and
a path indicating the resource to interact with. A request typically also
includes headers, which are key-value pairs, and in some cases a body, such
as the contents of a form, when sending data to the server.

An HTTP response contains a status code, indicating whether the request was
successful, and optionally headers and a body.

For a more detailed look at the HTTP protocol itself, as well as more
examples, see section 1.3 (“A quick introduction to HTTP”) of Go Web
Programming, by Sau Sheong Chang (Manning, 2016), at
http://mng.bz/x4mB. You can also read the raw RFC specification at
https://www.rfc-editor.org/rfc/rfc9110.txt if dense text is your thing!

The request passes through the internet, potentially to the other side of the
world, until it finally makes its way to the server associated with the given
hostname, on which the web app is running. The request is potentially
received and rebroadcast at multiple routers along the way, but only when it
reaches the server associated with the hostname is the request processed.

When the server receives the request, it processes that request and generates
an HTTP response. Depending on the request, this response could be a web
page, an image, a JavaScript file, a simple acknowledgment, or practically
any other file. For this example, I’ll assume that the user has reached the
home page of a web app, so the server responds with some HTML. The
HTML is added to the HTTP response, which is sent back across the internet
to the browser that made the request.

As soon as the user’s browser begins receiving the HTTP response, it can
start displaying content on the screen, but the HTML page may also reference
other pages and links on the server. To display the complete web page instead
of a static, colorless, raw HTML file, the browser must repeat the request
process, fetching every referenced file. HTML, images, Cascading Style
Sheets (CSS) for styling, and JavaScript files for extra behavior are all
fetched using exactly the same HTTP request process.

Pretty much all interactions that take place on the internet are a facade over
this basic process. A basic web page may require only a few simple requests
to render fully, whereas a large modern web page may take hundreds. At this
writing, the Amazon.com home page (https://www.amazon.com) makes 410
requests, including requests for 4 CSS files, 12 JavaScript files, and 299
image files!

Now that you have a feel for the process, let’s see how ASP.NET Core
dynamically generates the response on the server.

1.4.2 How does ASP.NET Core process a request?

When you build a web application with ASP.NET Core, browsers will still be
using the same HTTP protocol as before to communicate with your
application. ASP.NET Core itself encompasses everything that takes place on
the server to handle a request, including verifying that the request is valid,
handling login details, and generating HTML.

As with the generic web page example, the request process starts when a
user’s browser sends an HTTP request to the server, as shown in figure 1.3.

Figure 1.3 How an ASP.NET Core application processes a request. A request is received by the

ASP.NET Core application, which runs a self-hosted web server. The web server processes the
request and passes it to the body of the application, which generates a response and returns it to
the web server. The web server sends this response to the browser.

The request is received from the network by your ASP.NET Core application.
Every ASP.NET Core application has a built-in web server—Kestrel, by
default—that is responsible for receiving raw requests and constructing an
internal representation of the data, an HttpContext object, which the rest of
the application can use.

Your application can use the details stored in HttpContext to generate an
appropriate response to the request, which may be to generate some HTML,

to return an “access denied” message, or to send an email, all depending on
your application’s requirements.

When the application finishes processing the request, it returns the response
to the web server. The ASP.NET Core web server converts the representation
to a raw HTTP response and sends it to the network, which forwards it to the
user’s browser.

To the user, this process appears to be the same as for the generic HTTP
request shown in figure 1.2: the user sent an HTTP request and received an
HTTP response. All the differences are server-side, within your application.

You’ve seen how requests and responses find their way to and from an
ASP.NET Core application, but I haven’t yet touched on how the response is
generated. Throughout this book, we’ll look at the components that make up
a typical ASP.NET Core application and how they fit together. A lot goes
into generating a response in ASP.NET Core, typically within a fraction of a
second, but over the course of the book we’ll step through an application
slowly, covering each of the components in detail.

1.5 What you’ll learn in this book

This book takes you on an in-depth tour of the ASP.NET Core framework.
To benefit from the book, you should be familiar with C# or a similar object-
oriented language. Basic familiarity with web concepts such as HTML and
JavaScript will also be beneficial. You’ll learn the following:

How to create page-based applications with Razor Pages
Key ASP.NET Core concepts such as model-binding, validation, and
routing
How to generate HTML for web pages by using Razor syntax and Tag
Helpers
How to use features such as dependency injection, configuration, and
logging as your applications grow more complex
How to protect your application by using security best practices

Throughout the book we’ll use a variety of examples to learn and explore

concepts. The examples are generally small and self-contained so that we can
focus on a single feature at a time.

I’ll be using Visual Studio for most of the examples in this book, but you’ll
be able to follow along using your favorite editor or integrated development
environment (IDE). Appendix A includes details on setting up your editor or
IDE and installing the .NET 7 software development kit (SDK). Even though
the examples in this book show Windows tools, everything you see can be
achieved equally well on the Linux or Mac platform.

Tip

You can install .NET 7 from https://dotnet.microsoft.com/download.
Appendix A contains further details on configuring your development
environment to work with ASP.NET Core and .NET 7.

In chapter 2, we’ll look in greater depth at the types of applications you can
create with ASP.NET Core. We’ll also explore its advantages over the older
ASP.NET and .NET Framework platforms.

1.6 Summary

ASP.NET Core is a cross-platform, open-source, high-performance web
framework.
ASP.NET Core runs on .NET, previously called .NET Core.
You can use Razor Pages or MVC controllers to build server-rendered,
page-based web applications.
You can use minimal APIs or web APIs to build RESTful or HTTP
APIs.
You can use gRPC to build highly efficient server-to-server RPC
applications.
You can use Blazor WebAssembly to build client-side applications that
run in the browser and Blazor Server to build stateful, server-rendered
applications that send UI updates via a WebSocket connection.
Microsoft recommends ASP.NET Core and .NET 7 or later for all new
web development over the legacy ASP.NET and .NET Framework
platforms.

Fetching a web page involves sending an HTTP request and receiving an
HTTP response.
ASP.NET Core allows you to build responses to a given request
dynamically.
An ASP.NET Core application contains a web server, which serves as
the entry point for a request.

Part 1 Getting started with minimal
APIs
Web applications are everywhere these days, from social media web apps and
news sites to the apps on your phone. Behind the scenes, there is almost
always a server running a web application or an HTTP API. Web applications
are expected to be infinitely scalable, deployed to the cloud, and highly
performant. Getting started can be overwhelming at the best of times, and
doing so with such high expectations can be even more of a challenge.

The good news for you as readers is that ASP.NET Core was designed to
meet those requirements. Whether you need a simple website, a complex e-
commerce web app, or a distributed web of microservices, you can use your
knowledge of ASP.NET Core to build lean web apps that fit your needs.
ASP.NET Core lets you build and run web apps on Windows, Linux, or
macOS. It’s highly modular, so you only use the components you need,
keeping your app as compact and performant as possible.

In part 1 you’ll go from a standing start all the way to building your first API
applications. Chapter 2 gives a high-level overview of ASP.NET Core, which
you’ll find especially useful if you’re new to web development in general.
You’ll get your first glimpse of a full ASP.NET Core application in chapter
3, and we’ll look at each component of the app in turn and see how they work
together to generate a response.

Chapter 4 looks in detail at the middleware pipeline, which defines how
incoming web requests are processed and how a response is generated. We’ll
look at several standard pieces of middleware and see how they can be
combined to create your application’s pipeline.

In chapters 5 through 7 we’ll focus on building ASP.NET Core apps with
minimal API endpoints, which are the new simplified approach to building
JSON APIs in ASP.NET Core apps. In chapter 5 you’ll learn how to create
endpoints that generate JSON, how to use filters to extract common behavior,

and how to use route groups to organize your APIs. In chapter 6 you’ll learn
about routing, the process of mapping URLs to endpoints, and in chapter 7
you’ll learn about model binding and

There’s a lot of content in part 1, but by the end you’ll be well on your way to
building simple APIs with ASP.NET Core. Inevitably, I’ll gloss over some of
the more complex configuration aspects of the framework, but you should get
a good understanding of minimal APIs and how you can use them to build
simple APIs. In later parts of this book learn how to configure your
application and add extra features, such as user profiles and database
interaction. We’ll also look at how to build other types of application, such as
server-rendered web apps with Razor Pages.

2 Understanding ASP.NET Core
This chapter covers

Why ASP.NET Core was created
The many application paradigms of ASP.NET Core
Approaches to migrating an existing application to ASP.NET Core

In this chapter, I provide some background on ASP.NET Core: why web
frameworks are useful, why ASP.NET Core was created, and how to choose
when to use ASP.NET Core. If you’re new to .NET development, this
chapter will help you understand the .NET landscape. If you’re already a
.NET developer, I provide guidance on whether now is the right time to
consider moving your focus to .NET Core and .NET 7, as well as on the
advantages ASP.NET Core can offer over previous versions of ASP.NET.

2.1 Using a web framework

If you’re new to web development, it can be daunting to move into an area
with so many buzzwords and a plethora of ever-changing products. You may
be wondering whether all those products are necessary. How hard can it be to
return a file from a server?

Well, it’s perfectly possible to build a static web application without the use
of a web framework, but its capabilities will be limited. As soon as you want
to provide any kind of security or dynamism, you’ll likely run into
difficulties, and the original simplicity that enticed you will fade before your
eyes.

Just as desktop or mobile development frameworks can help you build native
applications, ASP.NET Core makes writing web applications faster, easier,
and more secure than trying to build everything from scratch. It contains
libraries for common things like

Creating dynamically changing web pages

Letting users log in to your web app
Letting users use their Facebook accounts to log in to your web app
Providing a common structure for building maintainable applications
Reading configuration files
Serving image files
Logging requests made to your web app

The key to any modern web application is the ability to generate dynamic
web pages. A dynamic web page may display different data depending on the
current logged-in user, or it could display content submitted by users.
Without a dynamic framework, it wouldn’t be possible to log in to websites
or to display any sort of personalized data on a page. In short, websites like
Amazon, eBay, and Stack Overflow (shown in figure 2.1) wouldn’t be
possible. Web frameworks for creating dynamic web pages are almost as old
as the web itself, and Microsoft has created several over the years, so why
create a new one?

Figure 2.1 The Stack Overflow website (https://stackoverflow.com) is built with ASP.NET and
has almost entirely dynamic content.

2.2 Why ASP.NET Core was created

Microsoft’s development of ASP.NET Core was motivated by the desire to
create a web framework with five main goals:

To be run and developed cross-platform
To have a modular architecture for easier maintenance
To be developed completely as open-source software
To adhere to web standards
To be applicable to current trends in web development, such as client-
side applications and deployment to cloud environments

To achieve all these goals, Microsoft needed a platform that could provide
underlying libraries for creating basic objects such as lists and dictionaries,
and for performing tasks such as simple file operations. Up to this point,
ASP.NET development had always been focused—and dependent—on the
Windows-only .NET Framework. For ASP.NET Core, Microsoft created a
lightweight platform that runs on Windows, Linux, and macOS called .NET
Core (subsequently .NET), as shown in figure 2.2.

Figure 2.2 The relationships among ASP.NET Core, ASP.NET, .NET Core/.NET 5+, and .NET
Framework. ASP.NET Core runs on .NET Core and .NET 5+, so it can run cross-platform.
Conversely, ASP.NET runs on .NET Framework only, so it’s tied to the Windows OS.

Definition

.NET 5 was the next version of .NET Core after 3.1, followed by .NET 6 and

.NET 7. It represents a unification of .NET Core and other .NET platforms in
a single runtime and framework. It was considered to be the future of .NET,
which is why Microsoft chose to drop the “Core” from its name. For
consistency with Microsoft’s language, I use the term .NET 5+ to refer to
.NET 5, .NET 6, and .NET 7, and the term .NET Core to refer to previous
versions.

.NET Core (and its successor, .NET 5+) employs many of the same APIs as

.NET Framework but is more modular. It implements a different set of
features from those in .NET Framework, with the goal of providing a simpler

programming model and modern APIs. It’s a separate platform rather than a
fork of .NET Framework, though it uses similar code for many of its APIs.

Note

If you’d like to learn more about the .NET ecosystem, you can read two posts
on my blog: “Understanding the .NET ecosystem: The evolution of .NET into
.NET 7” (http://mng.bz/Ao0W) and “Understanding the .NET ecosystem:
The introduction of .NET Standard” (http://mng.bz/ZqPZ).

The benefits and limitations of ASP.NET

ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web
framework, released in June 2016. Previous versions of ASP.NET had many
incremental updates, focusing on high developer productivity and prioritizing
backward compatibility. ASP.NET Core bucks that trend by making
significant architectural changes that rethink the way the web framework is
designed and built.

ASP.NET Core owes a lot to its ASP.NET heritage, and many features have
been carried forward from before, but ASP.NET Core is a new framework.
The whole technology stack has been rewritten, including both the web
framework and the underlying platform.

At the heart of the changes is the philosophy that ASP.NET should be able to
hold its head high when measured against other modern frameworks, but
existing .NET developers should continue to have a sense of familiarity.

To understand why Microsoft decided to build a new framework, it’s
important to understand the benefits and limitations of the legacy ASP.NET
web framework.

The first version of ASP.NET was released in 2002 as part of .NET
Framework 1.0. The ASP.NET Web Forms paradigm that it introduced
differed significantly from the conventional scripting environments of classic
ASP and PHP. ASP.NET Web Forms allowed developers to create web
applications rapidly by using a graphical designer and a simple event model
that mirrored desktop application-building techniques.

The ASP.NET framework allowed developers to create new applications
quickly, but over time the web development ecosystem changed. It became
apparent that ASP.NET Web Forms suffered from many problems, especially
in building larger applications. In particular, a lack of testability, a complex
stateful model, and limited influence on the generated HTML (making client-
side development difficult) led developers to evaluate other options.

In response, Microsoft released the first version of ASP.NET MVC in 2009,
based on the Model-View-Controller (MVC) pattern, a common web pattern
used in frameworks such as Ruby on Rails, Django, and Java Spring. This
framework allowed developers to separate UI elements from application
logic, made testing easier, and provided tighter control of the HTML-
generation process.

ASP.NET MVC has been through four more iterations since its first release,
but all these iterations were built on the same underlying framework provided
by the System.Web.dll file. This library is part of .NET Framework, so it
comes preinstalled with all versions of Windows. It contains all the core code
that ASP.NET uses when you build a web application.

This dependency brings both advantages and disadvantages. On one hand, the
ASP.NET framework is a reliable, battle-tested platform that’s fine for
building web applications in Windows. It provides a wide range of features
that have been in production for many years, and it’s well known by virtually
all Windows web developers.

On the other hand, this reliance is limiting. Changes to the underlying
System.Web.dll file are far-reaching and, consequently, slow to roll out,
which limits the extent to which ASP.NET is free to evolve and results in
release cycles happening only every few years. There’s also an explicit
coupling with the Windows web host, Internet Information Services (IIS),
which precludes its use on non-Windows platforms.

More recently, Microsoft declared .NET Framework to be “done.” It won’t be
removed or replaced, but it also won’t receive any new features.
Consequently, ASP.NET based on System.Web.dll won’t receive new
features or updates either.

In recent years, many web developers have started looking at cross-platform
web frameworks that can run on Windows as well as Linux and macOS.
Microsoft felt the time had come to create a framework that was no longer
tied to its Windows legacy; thus, ASP.NET Core was born.

With .NET 7, it’s possible to build console applications that run cross-
platform. Microsoft created ASP.NET Core to be an additional layer on top
of console applications so that converting to a web application involves
adding and composing libraries, as shown in figure 2.3.

Figure 2.3 The ASP.NET Core application model. The .NET 7 platform provides a base console
application model for running command-line apps. Adding a web server library converts this
model to an ASP.NET Core web app. You can add other features, such as configuration and
logging, using various libraries.

When you add an ASP.NET Core web server to your .NET 7 app, your
console application can run as a web application. ASP.NET Core contains a
huge number of APIs, but you’ll rarely need all the features available to you.
Some of the features are built in and will appear in virtually every application
you create, such as the ones for reading configuration files or performing

logging. Other features are provided by separate libraries and built on top of
these base capabilities to provide application-specific functionality, such as
third-party logins via Facebook or Google.

Most of the libraries and APIs you’ll use in ASP.NET Core are available on
GitHub, in the Microsoft .NET organization repositories at
https://github.com/dotnet/aspnetcore. You can find the core APIs there,
including the authentication and logging APIs, as well as many peripheral
libraries, such as the third-party authentication libraries.

All ASP.NET Core applications follow a similar design for basic
configuration, but in general the framework is flexible, leaving you free to
create your own code conventions. These common APIs, the extension
libraries that build on them, and the design conventions they promote are
covered by the somewhat-nebulous term ASP.NET Core.

2.3 Understanding the many paradigms of
ASP.NET Core

In chapter 1 you learned that ASP.NET Core provides a generalized web
framework that can be used to build a wide variety of applications. As you
may recall from section 1.2, the paradigms are

Minimal APIs—Simple HTTP APIs that can be consumed by mobile
applications or browser-based single-page applications (SPAs)
Web APIs—An alternative approach for building HTTP APIs that adds
more structure and features than minimal APIs
gRPC APIs—Used to build efficient binary APIs for server-to-server
communication using the gRPC protocol
Razor Pages—Used to build page-based server-rendered applications
MVC controllers—Similar to Razor Pages; used for server-based
applications but without the page-based paradigm
Blazor WebAssembly—A browser-based SPA framework using the
WebAssembly standard, similar to JavaScript frameworks such as
Angular, React, and Vue
Blazor Server—Used to build stateful applications, rendered on the
server, that send UI events and page updates over WebSockets to

provide the feel of a client-side SPA but with the ease of development of
a server-rendered application

All these paradigms use the core functionality of ASP.NET Core and layer
the additional functionality on top. Each paradigm is suited to a different
style of web application or API, so some may fit better than others,
depending on what sort of application you’re building.

Traditional page-based, server-side-rendered web applications are the bread
and butter of ASP.NET development, both in the previous version of
ASP.NET and now in ASP.NET Core. The Razor Pages and MVC controller
paradigms provide two slightly different styles for building these types of
applications but have many of the same concepts, as you’ll see in part 2.
These paradigms can be useful for building rich, dynamic websites, whether
they’re e-commerce sites, content management systems (CMSes), or large n-
tier applications. Both the open-source CMS Orchard Core[1] (figure 2.4) and
cloudscribe[2] CMS project, for example, are built with ASP.NET Core.

Figure 2.4 The California School Information Services website (https://csis.fcmat.org) is built
with Orchard Core and ASP.NET Core.

In addition to server-rendered applications, ASP.NET core is ideally suited to
building a REST or HTTP API server. Whether you’re building a mobile app,
a JavaScript SPA using Angular, React, Vue, or some other client-side

framework, it’s easy to create an ASP.NET Core application to act as the
server-side API by using both the minimal API and web API paradigms built
into ASP.NET Core. You’ll learn about minimal APIs in part 1 and about
web APIs in chapter 20.

Definition

REST stands for representational state transfer. RESTful applications
typically use lightweight and stateless HTTP calls to read, post
(create/update), and delete data.

ASP.NET Core isn’t restricted to creating RESTful services. It’s easy to
create a web service or remote procedure call (RPC)-style service for your
application, using gRPC for example, as shown in figure 2.5. In the simplest
case, your application might expose only a single endpoint! ASP.NET Core is
perfectly designed for building simple services, thanks to its cross-platform
support and lightweight design.

Definition

gRPC is a modern open-source, high-performance RPC framework. You can
read more at https://grpc.io.

Figure 2.5 ASP.NET Core can act as the server-side application for a variety of clients: it can
serve HTML pages for traditional web applications, act as a REST API for client-side SPA
applications, or act as an ad hoc RPC service for client applications.

As well as server-rendered web apps, APIs, and gRPC endpoints, ASP.NET
Core includes the Blazor framework, which can be used to build two very
different styles of application. Blazor WebAssembly (WASM) apps run
directly in your browser, in the same way as traditional JavaScript SPA
frameworks such as Angular and React. Your .NET code is compiled to
WebAssembly (https://webassembly.org) or executes on a .NET runtime
compiled for WASM, and the browser downloads and runs it as it would a
JavaScript app. This way you can build highly interactive client-side
applications while using C# and all the .NET APIs and libraries you already
know.

By contrast, Blazor Server applications run on the server. Each mouse click
or keyboard event is sent to the server via WebSockets. Then the server
calculates the changes that should be made to the UI and sends the required
changes back to the client, which updates the page in the browser. The result
is a “stateful” application that runs server-side but can be used to build highly
interactive SPAs. The main downside of Blazor Server is that it requires a
constant internet connection.

Note

In this book I focus on building traditional page-based, server-side-rendered
web applications and RESTful web APIs. I also show how to create
background worker services in chapter 34. For more information on Blazor, I
recommend Blazor in Action, by Chris Sainty (Manning, 2022).

With the ability to call on all these paradigms, you can use ASP.NET Core to
build a wide variety of applications, but it’s still worth considering whether
ASP.NET Core is right for your specific application. That decision will likely
be affected by both your experience with .NET and the application you want
to build.

2.4 When to choose ASP.NET Core

In this section I’ll describe some of the points to consider when deciding
whether to use ASP.NET Core and .NET 7 instead of legacy .NET

Framework ASP.NET. In most cases the decision will be to use ASP.NET
Core, but you should consider some important caveats.

When choosing a platform, you should consider multiple factors, not all of
which are technical. One such factor is the level of support you can expect to
receive from its creators. For some organizations, limited support can be one
of the main obstacles to adopting open-source software. Luckily, Microsoft
has pledged to provide full support for Long Term Support (LTS) versions of
.NET and ASP.NET Core for at least three years from the time of their
release. And as all development takes place in the open, sometimes you can
get answers to your questions from the general community as well as from
Microsoft directly.

Note

You can view Microsoft’s official support policy at http://mng.bz/RxXP.

When deciding whether to use ASP.NET Core, you have two primary
dimensions to consider: whether you’re already a .NET developer and
whether you’re creating a new application or looking to convert an existing
one.

2.4.1 If you’re new to .NET development

If you’re new to .NET development, you’re joining at a great time! Many of
the growing pains associated with a new framework have been worked out,
and the result is a stable, high-performance, cross-platform application
framework.

The primary language of .NET development, and of ASP.NET Core in
particular, is C#. This language has a huge following, for good reason! As an
object-oriented C-based language, it provides a sense of familiarity to those
who are used to C, Java, and many other languages. In addition, it has many
powerful features, such as Language Integrated Query (LINQ), closures, and
asynchronous programming constructs. The C# language is also designed in
the open on GitHub, as is Microsoft’s C# compiler, code-named Roslyn
(https://github.com/dotnet/roslyn).

NOTE

I use C# throughout this book and will highlight some of the newer features it
provides, but I won’t be teaching the language from scratch. If you want to
learn C#, I recommend C# in Depth, 4th ed., by Jon Skeet (Manning, 2019),
and Code Like a Pro in C#, by Jort Rodenburg (Manning, 2021).

One big advantage of ASP.NET Core and .NET 7 over .NET Framework is
that they enable you to develop and run on any platform. With .NET 7 you
can build and run the same application on Mac, Windows, and Linux, and
even deploy to the cloud using tiny container deployments.

Built with containers in mind

Traditionally, web applications were deployed directly to a server or, more
recently, to a virtual machine. Virtual machines allow operating systems to be
installed in a layer of virtual hardware, abstracting away the underlying
hardware. This approach has several advantages over direct installation, such
as easy maintenance, deployment, and recovery. Unfortunately, virtual
machines are also heavy, in terms of both file size and resource use.

This is where containers come in. Containers are far more lightweight and
don’t have the overhead of virtual machines. They’re built in a series of
layers and don’t require you to boot a new operating system when starting a
new one, so they’re quick to start and great for quick provisioning.
Containers (Docker in particular) are quickly becoming the go-to platform for
building large, scalable systems.

Containers have never been a particularly attractive option for ASP.NET
applications, but with ASP.NET Core, .NET 7, and Docker for Windows, all
that is changing. A lightweight ASP.NET Core application running on the
cross-platform .NET 7 framework is perfect for thin container deployments.
You can learn more about your deployment options in chapter 27.

In addition to running on each platform, one of the selling points of .NET is
your ability to write and compile only once. Your application is compiled to
Intermediate Language (IL) code, which is a platform-independent format. If
a target system has the .NET 7 runtime installed, you can run compiled IL

from any platform. You can develop on a Mac or a Windows machine, for
example, and deploy exactly the same files to your production Linux
machines. This compile-once, run-anywhere promise has finally been
realized with ASP.NET Core and .NET 7.

Tip

You can go one step further and package the .NET runtime with your app in a
so-called self-contained deployment (SCD). This way, you can deploy cross-
platform, and the target machine doesn’t even need .NET installed. With
SCDs, the generated deployment files are customized for the target machine,
so you’re no longer deploying the same files everywhere in this case.

Many of the web frameworks available today use similar well-established
design patterns, and ASP.NET Core is no different. Ruby on Rails, for
example, is known for its use of the MVC pattern; Node.js is known for the
way it processes requests using small discrete modules (called a pipeline);
and dependency injection is available in a wide variety of frameworks. If
these techniques are familiar to you, you should find it easy to transfer them
to ASP.NET Core; if they’re new to you, you can look forward to using
industry best practices!

Note

Design patterns are solutions to common software design problems. You’ll
encounter a pipeline in chapter 4, dependency injection in chapters 8 and 9,
and MVC in chapter 19.

Whether you’re new to web development generally or only to .NET,
ASP.NET Core provides a rich set of features with which you can build
applications but doesn’t overwhelm you with concepts, as the legacy
ASP.NET framework did. On the other hand, if you’re familiar with .NET,
it’s worth considering whether now is the time to take a look at ASP.NET
Core.

2.4.2 If you’re a .NET Framework developer creating a new
application

If you’re already a .NET Framework developer, you’ve likely been aware of
.NET Core and ASP.NET Core, but perhaps you were wary about jumping in
too soon or didn’t want to hit the inevitable “version 1” problems. The good
news is that ASP.NET Core and .NET are now mature, stable platforms, and
it’s absolutely time to consider using .NET 7 for your new apps.

As a .NET developer, if you aren’t using any Windows-specific constructs
such as the Registry, the ability to build and deploy cross-platform opens the
possibility for cheaper Linux hosting in the cloud, or for developing natively
in macOS without the need for a virtual machine.

.NET Core and .NET 7 are inherently cross-platform, but you can still use
platform-specific features if you need to. Windows-specific features such as
the Registry and Directory Services, for example, can be enabled with a
Compatibility Pack that makes these APIs available in .NET 5+. They’re
available only when running .NET 5+ in Windows, not Linux or macOS, so
you need to take care that such applications run only in a Windows
environment or account for the potential missing APIs.

Tip

The Windows Compatibility Pack is designed to help port code from .NET
Framework to .NET Core/.NET 5+. See http://mng.bz/2DeX.

The hosting model for the previous ASP.NET framework was a relatively
complex one, relying on Windows IIS to provide the web-server hosting. In a
cross-platform environment, this kind of symbiotic relationship isn’t possible,
so an alternative hosting model has been adopted—one that separates web
applications from the underlying host. This opportunity has led to the
development of Kestrel, a fast, cross-platform HTTP server on which
ASP.NET Core can run.

Instead of the previous design, whereby IIS calls into specific points of your
application, ASP.NET Core applications are console applications that self-
host a web server and handle requests directly, as shown in figure 2.6. This
hosting model is conceptually much simpler and allows you to test and debug
your applications from the command line, though it doesn’t necessarily
remove the need to run IIS (or the equivalent) in production.

ASP.NET Core and reverse proxies

You can expose ASP.NET Core applications directly to the internet so that
Kestrel receives requests directly from the network. That approach is fully
supported. It’s more common, however, to use a reverse proxy between the
raw network and your application. In Windows, the reverse-proxy server
typically is IIS; in Linux or macOS, it might be NGINX, HAProxy, or
Apache. There’s even an ASP.NET Core-based reverse proxy library called
YARP (https://microsoft.github.io/reverse-proxy) that you can use to build
your own reverse proxy.

A reverse proxy is software responsible for receiving requests and forwarding
them to the appropriate web server. The reverse proxy is exposed directly to
the internet, whereas the underlying web server is exposed only to the proxy.
This setup has several benefits, primarily security and performance for the
web servers.

You may think that having a reverse proxy and a web server is somewhat
redundant. Why not have one or the other? Well, one benefit is the
decoupling of your application from the underlying operating system. The
same ASP.NET Core web server, Kestrel, can be cross-platform and used
behind a variety of proxies without putting any constraints on a particular
implementation. Alternatively, if you wrote a new ASP.NET Core web
server, you could use it in place of Kestrel without needing to change
anything else about your application.

Another benefit of a reverse proxy is that it can be hardened against potential
threats from the public internet. Reverse proxies are often responsible for
additional aspects, such as restarting a process that has crashed. Kestrel can
remain a simple HTTP server, not having to worry about these extra features,
when it’s used behind a reverse proxy. You can think of this approach as
being a simple separation of concerns: Kestrel is concerned with generating
HTTP responses, whereas the reverse proxy is concerned with handling the
connection to the internet.

Figure 2.6 The difference between hosting models in ASP.NET (top) and ASP.NET Core
(bottom). In the previous version of ASP.NET, IIS is tightly coupled with the application. The
hosting model in ASP.NET Core is simpler; IIS hands off the request to a self-hosted web server
in the ASP.NET Core application and receives the response but has no deeper knowledge of the

application.

Note

By default, when running in Windows, ASP.NET Core runs inside IIS, as
shown in figure 2.6, which can provide better performance than the reverse-
proxy version. This is primarily a deployment detail and doesn’t change the
way you build ASP.NET Core applications.

Changing the hosting model to use a built-in HTTP web server has created
another opportunity. Performance has been something of a sore point for

ASP.NET applications in the past. It’s certainly possible to build high-
performing applications—Stack Overflow (https://stackoverflow.com) is a
testament to that fact—but the web framework itself isn’t designed with
performance as a priority, so it can end up being an obstacle.

To make the product competitive cross-platform, the ASP.NET team focused
on making the Kestrel HTTP server as fast as possible. TechEmpower
(https://www.techempower.com/benchmarks) has been running benchmarks
on a wide range of web frameworks from various languages for several years
now. In round 20 of the plain-text benchmarks, TechEmpower announced
that ASP.NET Core with Kestrel was among the 10 fastest of more than 400
frameworks tested![3]

Web servers: Naming things is hard

One difficult aspect of programming for the web is the confusing array of
often-conflicting terminology. If you’ve used IIS, for example, you may have
described it as a web server or possibly a web host. Conversely, if you’ve
ever built an application with Node.js, you may have also referred to that
application as a web server. Or you may have called the physical machine on
which your application runs a web server. Similarly, you may have built an
application for the internet and called it a website or a web application,
probably somewhat arbitrarily based on the level of dynamism it displayed.

In this book, when I say web server in the context of ASP.NET Core, I’m
referring to the HTTP server that runs as part of your ASP.NET Core
application. By default, this server is the Kestrel web server, but that’s not a
requirement. It’s possible to write a replacement web server for Kestrel if you
so desire.

The web server is responsible for receiving HTTP requests and generating
responses. In previous version of ASP.NET, IIS took this role, but in
ASP.NET Core, Kestrel is the web server.

I’ll use the term web application in this book to describe ASP.NET Core
applications, regardless of whether they contain only static content or are
dynamic. Either way, these applications are accessed via the web, so that
name seems to be the most appropriate.

Many of the performance improvements made to Kestrel came not from the
ASP.NET team members themselves, but from contributors to the open-
source project on GitHub (https://github.com/dotnet/aspnetcore). Developing
in the open means that you typically see fixes and features make their way to
production faster than you would for the previous version of ASP.NET,
which was dependent on .NET Framework and Windows and, as such, had
long release cycles.

By contrast, .NET 5+ and hence ASP.NET Core are designed to be released
in small increments. Major versions will be released on a predictable
cadence, with a new version every year and a new LTS version released
every two years (http://mng.bz/1qrg). In addition, bug fixes and minor
updates can be released as and when they’re needed. Additional functionality
is provided in NuGet packages independent of the underlying .NET 5+
platform.

Note

NuGet is a package manager for .NET that enables you to import libraries
into your projects. It’s equivalent to Ruby Gems, npm for JavaScript, or
Maven for Java.

To enable this approach to releases, ASP.NET Core is highly modular, with
as little coupling to other features as possible. This modularity lends itself to
a pay-for-play approach to dependencies, where you start with a bare-bones
application and add only the libraries you require, as opposed to the kitchen-
sink approach of previous ASP.NET applications. Even MVC is an optional
package! But don’t worry—this approach doesn’t mean that ASP.NET Core
is lacking in features, only that you need to opt into them. Some of the key
infrastructure improvements include

Middleware pipeline for defining your application’s behavior
Built-in support for dependency injection
Combined UI (MVC) and API (web API) infrastructure
Highly extensible configuration system
Standardized, extensible logging system
Uses asynchronous programming by default for built-in scalability on
cloud platforms

Each of these features was possible in the previous version of ASP.NET but
required a fair amount of additional work to set up. With ASP.NET Core,
they’re all there, ready and waiting to be connected.

Microsoft fully supports ASP.NET Core, so if you want to build a new
system, there’s no significant reason not to use it. The largest obstacle you’re
likely to come across is wanting to use programming models that are no
longer supported in ASP.NET Core, such as Web Forms or WCF Server, as
I’ll discuss in the next section.

I hope that this section whetted your appetite to use ASP.NET Core for
building new applications. But if you’re an existing ASP.NET developer
considering whether to convert an existing ASP.NET application to
ASP.NET Core, that’s another question entirely.

2.4.3 Converting an existing ASP.NET application to ASP.NET
Core

By contrast with new applications, an existing application presumably
already provides value, so there should always be a tangible benefit to
performing what may amount to a significant rewrite in converting from
ASP.NET to ASP.NET Core. The advantages of adopting ASP.NET Core are
much the same as those for new applications: cross-platform deployment,
modular features, and a focus on performance. Whether the benefits are
sufficient will depend largely on the particulars of your application, but some
characteristics make conversion more difficult:

Your application uses ASP.NET Web Forms.
Your application is built with WCF.
Your application is large, with many advanced MVC features.

If you have an ASP.NET Web Forms application, attempting to convert it
directly to ASP.NET Core isn’t advisable. Web Forms is inextricably tied to
System.Web.dll and IIS, so it will likely never be available in ASP.NET
Core. Converting an application to ASP.NET Core effectively involves
rewriting the application from scratch, not only shifting frameworks, but also
potentially shifting design paradigms.

All is not lost, however. Blazor server provides a stateful, component-based
application that’s similar to the Web Forms application model. You may be
able to gradually migrate your Web Forms application page by page to an
ASP.NET Core Blazor server application.[4] Alternatively, you could slowly
introduce web API concepts into your Web Forms application, reducing the
reliance on legacy Web Forms constructs such as ViewState, with the goal of
ultimately moving to an ASP.NET Core web API application.

Windows Communication Foundation (WCF) is only partially supported in
ASP.NET Core. It’s possible to build client-side WCF services using the
libraries provided by ASP.NET Core (https://github.com/dotnet/wcf) and to
build server-side WCF services by using the Microsoft-supported
community-driven project CoreWCF.[5] These libraries don’t support all the
APIs available in .NET Framework WCF (distributed transactions and some
message security formats, for example), so if you absolutely need those APIs,
it may be best to avoid ASP.NET Core for now.

Tip

If you like WCF’s contract-based RPC-style of programming but don’t have
a hard requirement for WCF itself, consider using gRPC instead. gRPC is a
modern RPC framework with many concepts that are similar to WCF, and
it’s supported by ASP.NET Core out of the box (http://mng.bz/wv9Q).

If your existing application is complex and makes extensive use of the
previous MVC or web API extensibility points or message handlers, porting
your application to ASP.NET Core may be more difficult. ASP.NET Core is
built with many features similar to the previous version of ASP.NET MVC,
but the underlying architecture is different. Several of the previous features
don’t have direct replacements, so they’ll require rethinking.

The larger the application is, the greater the difficulty you’re likely to have
converting your application to ASP.NET Core. Microsoft itself suggests that
porting an application from ASP.NET MVC to ASP.NET Core is at least as
big a rewrite as porting from ASP.NET Web Forms to ASP.NET MVC. If
that suggestion doesn’t scare you, nothing will!

If an application is rarely used, isn’t part of your core business, or won’t need
significant development in the near term, I suggest that you don’t try to
convert it to ASP.NET Core. Microsoft will support .NET Framework for the
foreseeable future (Windows itself depends on it!), and the payoff in
converting these fringe applications is unlikely to be worth the effort.

So when should you port an application to ASP.NET Core? As I’ve already
mentioned, the best opportunity to get started is on small new greenfield
projects instead of existing applications. That said, if the existing application
in question is small or will need significant future development, porting may
be a good option.

It’s always best to work in small iterations if possible when porting an
application, rather than attempt to convert the entire application at the same
time. Luckily, Microsoft provides tools for that purpose. A set of
System.Web adapters, a .NET-based reverse proxy called YARP (Yet
Another Reverse Proxy; http://mng.bz/qr92), and tooling built into Visual
Studio can help you implement the strangler fig pattern (http://mng.bz/rW6J).
This tooling allows you to migrate your application one page/API at a time,
reducing the risk associated with porting an ASP.NET application to
ASP.NET Core.

In this chapter, we walked through some of the historical context of
ASP.NET Core, as well as some of the advantages of adopting it. In chapter
3, you’ll create your first application from a template and run it. We’ll walk
through each of the main components that make up your application and see
how they work together to render a web page.

2.5 Summary

Web frameworks provide a way to build dynamic web applications
easily.
ASP.NET Core is a web framework built with modern software
architecture practices and modularization as its focus.
ASP.NET Core runs on the cross-platform .NET 7 platform. You can
access Windows-specific features such as the Windows Registry by
using the Windows Compatibility Pack.

.NET 5, .NET 6, and .NET 7 are the next versions of .NET Core after

.NET Core 3.1.
ASP.NET Core is best used for new greenfield projects.
Legacy technologies such as WCF Server and Web Forms can’t be used
directly with ASP.NET Core, but they have analogues and supporting
libraries that can help with porting ASP.NET applications to ASP.NET
Core.
You can convert an existing ASP.NET application to ASP.NET Core
gradually by using the strangler fig pattern, using tooling and libraries
provided by Microsoft.
ASP.NET Core apps are often protected from the internet by a reverse-
proxy server, which forwards requests to the application.

[1]Orchard Core (https://orchardcore.net). Source code at
https://github.com/OrchardCMS/OrchardCore.

[2]The cloudscribe project (https://www.cloudscribe.com). Source code at
https://github.com/cloudscribe.

[3] As always in web development, technology is in a constant state of flux, so
these benchmarks will evolve over time. Although ASP.NET Core may not
maintain its top-10 slot, you can be sure that performance is one of the key
focal points of the ASP.NET Core team.

[4] There is a community-driven effort to create Blazor versions of common
WebForms components (http://mng.bz/PzPP). Also see an e-book for Blazor
for Web Forms developers at http://mng.bz/JgDv.

[5] You can find the CoreWCF libraries at
https://github.com/corewcf/corewcf and details on upgrading a WCF service
to .NET 5+ at http://mng.bz/mVg2.

3 Your first application
This chapter covers

Creating your first ASP.NET Core web application
Running your application
Understanding the components of your application

In the previous chapters, I gave you an overview of how ASP.NET Core
applications work and when you should use them. Now you should set up a
development environment to use for building applications.

Tip

See appendix A for guidance on installing the .NET 7 software development
kit (SDK) and choosing an editor/integrated development environment (IDE)
for building ASP.NET Core apps.

In this chapter, you’ll dive right in by creating your first web app. You’ll get
to kick the tires and poke around a little to get a feel for how it works. In later
chapters, I’ll show you how to go about customizing and building your own
applications.

As you work through this chapter, you should begin to get a grasp of the
various components that make up an ASP.NET Core application, as well as
an understanding of the general application-building process. Most
applications you create will start from a similar template, so it’s a good idea
to get familiar with the setup as soon as possible.

Definition

A template provides the basic code required to build an application. You can
use a template as the starting point for building your own apps.

I’ll start by showing you how to create a basic ASP.NET Core application

using one of the Visual Studio templates. If you’re using other tooling, such
as the .NET command-line interface (CLI), you’ll have similar templates
available. I use Visual Studio 2022 and ASP.NET Core 7 with .NET 7 in this
chapter, but I also provide tips for working with the .NET CLI.

Tip

You can view the application code for this chapter in the GitHub repository
for the book at http://mng.bz/5wj1.

After you’ve created your application, I’ll show you how to restore all the
necessary dependencies, compile your application, and run it to see the
output. The application will be simple, containing the bare bones of an
ASP.NET Core application that responds with "Hello World!"

Having run your application, your next step is understanding what’s going
on! We’ll take a journey through the ASP.NET Core application, looking at
each file in the template in turn. You’ll get a feel for how an ASP.NET Core
application is laid out and see what the C# code for the smallest possible app
looks like.

As a final twist, you’ll see how to extend your application to handle requests
for static files, as well as how to create a simple API that returns data in
standard JavaScript Object Notation (JSON) format.

At this stage, don’t worry if you find parts of the project confusing or
complicated; you’ll be exploring each section in detail as you move through
the book. By the end of the chapter, you should have a basic understanding of
how ASP.NET Core applications are put together, from when your
application is first run to when a response is generated. Before we begin,
though, we’ll review how ASP.NET Core applications handle requests.

3.1 A brief overview of an ASP.NET Core
application

In chapter 1, I described how a browser makes an HTTP request to a server
and receives a response, which it uses to render HTML on the page.

ASP.NET Core allows you to generate that HTML dynamically depending on
the particulars of the request, so that (for example) you can display different
data depending on the current logged-in user.

Suppose that you want to create a web app to display information about your
company. You could create a simple ASP.NET Core app to achieve this goal;
later, you could add dynamic features to your app. Figure 3.1 shows how the
application would handle a request for a page in your application.

Figure 3.1 An overview of an ASP.NET Core application. The ASP.NET Core application
receives an incoming HTTP request from the browser. Every request passes to the middleware
pipeline, which potentially modifies it and then passes it to the endpoint middleware at the end of
the pipeline to generate a response. The response passes back through the middleware to the
server and finally out to the browser.

Much of this diagram should be familiar to you from figure 1.3 in chapter 1;
the request and response and the ASP.NET Core web server are still there.
But you’ll notice that I’ve added a reverse proxy to show a common

deployment pattern for ASP.NET Core applications. I’ve also expanded the
ASP.NET Core application itself to show the middleware pipeline and the
endpoint middleware—the main custom part of your app that goes into
generating the response from a request.

The first port of call after the reverse proxy forwards a request is the
ASP.NET Core web server, which is the default cross-platform Kestrel
server. Kestrel takes the raw incoming network request and uses it to generate
an HttpContext object that the rest of the application can use.

The HttpContext object

The HttpContext constructed by the ASP.NET Core web server is used by
the application as a sort of storage box for a single request. Anything that’s
specific to this particular request and the subsequent response can be
associated with it and stored in it, such as properties of the request, request-
specific services, data that’s been loaded, or errors that have occurred. The
web server fills the initial HttpContext with details of the original HTTP
request and other configuration details and then passes it on to the rest of the
application.

Note

Kestrel isn’t the only HTTP server available in ASP.NET Core, but it’s the
most performant and is cross-platform. I’ll refer only to Kestrel throughout
the book. A different web server, IIS HTTP Server, is used when running in-
process in Internet Information Services (IIS). The main alternative,
HTTP.sys, runs only in Windows and can’t be used with IIS.[1]

Kestrel is responsible for receiving the request data and constructing a C#
representation of the request, but it doesn’t attempt to generate a response
directly. For that task, Kestrel hands the HttpContext to the middleware
pipeline in every ASP.NET Core application. This pipeline is a series of
components that process the incoming request to perform common operations
such as logging, handling exceptions, and serving static files.

Note

You’ll learn about the middleware pipeline in detail in chapter 4.

At the end of the middleware pipeline is the endpoint middleware, which is
responsible for calling the code that generates the final response. In most
applications that code will be a Model-View-Controller (MVC), Razor Pages,
or minimal API endpoint.

Most ASP.NET Core applications follow this basic architecture, and the
example in this chapter is no different. First, you’ll see how to create and run
your application; then you’ll look at how the code corresponds to the outline
in figure 3.1. Without further ado, let’s create an application!

3.2 Creating your first ASP.NET Core application

In this section you’re going to create a minimal API application that returns
"Hello World!" when you call the HTTP API. This application is about the
simplest ASP.NET Core application you can create, but it demonstrates many
of the fundamental concepts of building and running applications with .NET.

You can start building applications with ASP.NET Core in many ways,
depending on the tools and operating system you’re using. Each set of tools
has slightly different templates, but the templates have many similarities. The
example used throughout this chapter is based on a Visual Studio 2022
template, but you can easily follow along with templates from the .NET CLI
or Visual Studio for Mac.

Note

As a reminder, I use Visual Studio 2022 and ASP.NET Core with .NET 7
throughout the book.

Getting an application up and running locally typically involves four basic
steps, which we’ll work through in this chapter:

1. Generate—Create the base application from a template to get started.
2. Restore—Restore all the packages and dependencies to the local project

folder using NuGet.

3. Build—Compile the application, and generate all the necessary artifacts.
4. Run—Run the compiled application.

Visual Studio and the .NET CLI include many ASP.NET Core templates for
building different types of applications, such as

Minimal API applications—HTTP API applications that return data in
JSON format, which can be consumed by single-page applications
(SPAs) and mobile apps. They’re typically used in conjunction with
client-side applications such as Angular and React.js or mobile
applications.
Razor Pages web applications—Razor Pages applications generate
HTML on the server and are designed to be viewed by users in a web
browser directly.
MVC applications—MVC applications are similar to Razor Pages apps
in that they generate HTML on the server and are designed to be viewed
by users directly in a web browser. They use traditional MVC
controllers instead of Razor Pages.
Web API applications—Web API applications are similar to minimal
API apps, in that they are typically consumed by SPAs and mobile apps.
Web API apps provide additional functionality compared to minimal
APIs, at the expense of some performance and convenience.

We’ll look at each of these application types in this book, but in part 1 we
focus on minimal APIs, so in section 3.2.1 we start by looking at the simplest
ASP.NET Core app you can create.

3.2.1 Using a template to get started

In this section you’ll use a template to create your first ASP.NET Core
minimal API application. Using a template can get you up and running with
an application quickly, automatically configuring many of the fundamental
pieces. Both Visual Studio and the .NET CLI come with standard templates
for building web applications, console applications, and class libraries.

Tip

In .NET, a project is a unit of deployment, which will be compiled into a .dll
file or an executable, for example. Each separate app is a separate project.
Multiple projects can be built and developed at the same time in a solution.

To create your first web application, open Visual Studio, and perform the
following steps:

1. Choose Create a New Project from the splash screen, or choose File >
New > Project from the main Visual Studio screen.

2. From the list of templates, choose ASP.NET Core Empty; select the C#
language template, as shown in figure 3.2; and then choose Next.

Figure 3.2 The Create a New Project dialog box. Select the C# ASP.NET Core Empty template in
the list on the right side. When you next create a new project, you can choose a template from the
Recent Project Templates list on the left side.

3. On the next screen, enter a project name, location, and solution name,
and choose Create, as shown in figure 3.3. You might use

WebApplication1 as both the project and solution name, for example.

Figure 3.3 The Configure Your New Project dialog box. To create a new .NET 7 application,
select ASP.NET Core Empty from the template screen. On the following screen, enter a project
name, location, and solution name, and click Create.

4. On the following screen (figure 3.4), do the following:
a. Select .NET 7.0. If this option isn’t available, ensure that you have

.NET 7 installed. See appendix A for details on configuring your
environment.

b. Ensure that Configure for HTTPS is checked.
c. Ensure that Enable Docker is not checked.
d. Ensure that Do not use top-level statements is not checked. (I

explain top-level statements in section 3.6.)

e. Choose Create.

Figure 3.4 The Additional Information dialog box follows the Configure Your New Project dialog
box and lets you customize the template that will generate your application. For this starter
project, you’ll create an empty .NET 7 application that uses top-level statements.

5. Wait for Visual Studio to generate the application from the template.
When Visual Studio finishes, an introductory page about ASP.NET Core
appears; you should see that Visual Studio has created and added some
files to your project, as shown in figure 3.5.

Figure 3.5 Visual Studio after creating a new ASP.NET Core application from a template. The
Solution Explorer shows your newly created project. The introductory page has helpful links for
learning about ASP.NET Core.

If you’re not using Visual Studio, you can create a similar template by using
the .NET CLI. Create a folder to hold your new project. Open a PowerShell
or cmd prompt in the folder (Windows) or a terminal session (Linux or
macOS), and run the commands in the following listing.

Listing 3.1 Creating a new minimal API application with the .NET CLI

dotnet new sln -n WebApplication1 #A

dotnet new web -o WebApplication1 #B

dotnet sln add WebApplication1 #C

Note

Visual Studio uses the concept of a solution to work with multiple projects.
The example solution consists of a single project, which is listed in the .sln
file. If you use a CLI template to create your project, you won’t have a .sln
file unless you generate it explicitly by using additional .NET CLI templates
(listing 3.1).

Whether you use Visual Studio or the .NET CLI, now you have the basic
files required to build and run your first ASP.NET Core application.

3.2.2 Building the application

At this point, you have most of the files necessary to run your application, but
you’ve got two steps left. First, you need to ensure all the dependencies used
by your project are downloaded to your machine, and second, you need to
compile your application so that it can be run.

The first step isn’t strictly necessary, as both Visual Studio and the .NET CLI
automatically restore packages when they create your project, but it’s good to
know what’s going on. In earlier versions of the .NET CLI, before 2.0, you
needed to restore packages manually by using dotnet restore.

You can compile your application by choosing Build > Build Solution,
pressing the shortcut Ctrl-Shift-B, or running dotnet build from the
command line. If you build from Visual Studio, the output window shows the
progress of the build, and assuming that everything is hunky-dory, Visual
Studio compiles your application, ready for running. You can also run the
dotnet build console commands from the Package Manager Console in
Visual Studio.

Tip

Visual Studio and the .NET CLI tools build your application automatically
when you run it if they detect that a file has changed, so you generally won’t
need to perform this step explicitly yourself.

NuGet packages and the .NET CLI

One of the foundational components of .NET 7 cross-platform development
is the .NET CLI, which provides several basic commands for creating,
building, and running .NET 7 applications. Visual Studio effectively calls
these commands automatically, but you can also invoke them directly from
the command line if you’re using a different editor. The most common
commands used during development are

· dotnet restore

· dotnet build

· dotnet run

Each of these commands should be run inside your project folder and will act
on that project alone. Except where explicitly noted, this is the case for all
.NET CLI commands.

Most ASP.NET Core applications have dependencies on various external
libraries, which are managed through the NuGet package manager. These
dependencies are listed in the project, but the files of the libraries themselves
aren’t included. Before you can build and run your application, you need to
ensure that there are local copies of each dependency on your machine. The
first command, dotnet restore, ensures that your application’s NuGet
dependencies are downloaded and the files are referenced correctly by your
project.

ASP.NET Core projects list their dependencies in the project’s .csproj file, an
XML file that lists each dependency as a PackageReference node. When you
run dotnet restore, it uses this file to establish which NuGet packages to
download. Any dependencies listed are available for use in your application.

The restore process typically happens implicitly when you build or run your
application, as shown in the following figure, but it can be useful sometimes
to run it explicitly, such as in continuous-integration build pipelines.

The dotnet build command runs dotnet restore implicitly. Similarly, dotnet run runs dotnet
build and dotnet restore. If you don’t want to run the previous steps automatically, you can use
the --no-restore and --no-build flags, as in dotnet build --no-restore.

You can compile your application by using dotnet build, which checks for
any errors in your application and, if it finds no problems, produces output
binaries that can be run with dotnet run.

Each command contains switches that can modify its behavior. To see the full
list of available commands, run

dotnet --help

To see the options available for a particular command, such as new, run

dotnet new --help

3.3 Running the web application

You’re ready to run your first application, and you have several ways to go
about it. In Visual Studio, you can click the green arrow on the toolbar next
to WebApplication1 or press the F5 shortcut. Visual Studio will
automatically open a web browser window for you with the appropriate URL,
and after a second or two, you should see the basic "Hello World!"
response, as shown in figure 3.6.

Alternatively, instead of using Visual Studio, you can run the application
from the command line with the .NET CLI tools by using dotnet run. Then
you can open the URL in a web browser manually, using the address
provided on the command line. Depending on whether you created your
application with Visual Studio, you may see an http:// or https:// URL.

Figure 3.6 The output of your new ASP.NET Core application. The template chooses a random
port to use for your application’s URL, which will be opened in the browser automatically when
you run from Visual Studio.

Tip

The first time you run the application from Visual Studio, you may be
prompted to install the development certificate. Doing so ensures that your
browser doesn’t display warnings about an invalid certificate.[2] See chapter
28 for more about HTTPS certificates.

This basic application has a single endpoint that returns the plain-text
response when you request the path /, as you saw in figure 3.6. There isn’t
anything more you can do with this simple app, so let’s look at some code!

3.4 Understanding the project layout

When you’re new to a framework, creating an application from a template
can be a mixed blessing. On one hand, you can get an application up and
running quickly, with little input required on your part. Conversely, the
number of files can be overwhelming, leaving you scratching your head
working out where to start. The basic web application template doesn’t
contain a huge number of files and folders, as shown in figure 3.7, but I’ll run
through the major ones to get you oriented.

Figure 3.7 Solution Explorer and folder on disk for a new ASP.NET Core application. Solution
Explorer also displays the Connected Services and Dependencies nodes, which list NuGet and
other dependencies, though the folders themselves don’t exist on disk.

The first thing to notice is that the main project, WebApplication1, is nested
in a top-level directory with the name of the solution, which is also
WebApplication1 in this case. Within this top-level folder you’ll also find the
solution (.sln) file used by Visual Studio, though this is hidden in Visual
Studio’s Solution Explorer view.

Inside the solution folder you’ll find your project folder, which contains the
most important file in your project: WebApplication1.csproj. This file
describes how to build your project and lists any additional NuGet packages
that it requires. Visual Studio doesn’t show the .csproj file explicitly, but you
can edit it if you double-click the project name in Solution Explorer or right-
click and choose Properties from the contextual menu. We’ll take a closer
look at this project file in the next section.

Your project folder contains a subfolder called Properties, which contains a
single file: launchSettings.json. This file controls how Visual Studio will run

and debug the application. Visual Studio shows the file as a special node in
Solution Explorer, out of alphabetical order, near the top of your project.
You’ve got two more special nodes in the project, Dependencies and
Connected Services, but they don’t have corresponding folders on disk.
Instead, they show a collection of all the dependencies, such as NuGet
packages, and remote services that the project relies on.

In the root of your project folder, you’ll find two JSON files: appsettings.json
and appsettings.Development.json. These files provide configuration settings
that are used at runtime to control the behavior of your app.

Finally, Visual Studio shows one C# file in the project folder: Program.cs. In
section 3.6 you’ll see how this file configures and runs your application.

3.5 The .csproj project file: Declaring your
dependencies

The .csproj file is the project file for .NET applications and contains the
details required for the .NET tooling to build your project. It defines the type
of project being built (web app, console app, or library), which platform the
project targets (.NET Core 3.1, .NET 7 and so on), and which NuGet
packages the project depends on.

The project file has been a mainstay of .NET applications, but in ASP.NET
Core it has had a facelift to make it easier to read and edit. These changes
include

No GUIDs—Previously, globally unique identifiers (GUIDs) were used
for many things, but now they’re rarely used in the project file.
Implicit file includes—Previously, every file in the project had to be
listed in the .csproj file to be included in the build. Now files are
compiled automatically.
No paths to NuGet package .dll files—Previously, you had to include the
path to the .dll files contained in NuGet packages in the .csproj, as well
as list the dependencies in a packages.config file. Now you can
reference the NuGet package directly in your .csproj, and you don’t need
to specify the path on disk.

All these changes combine to make the project file far more compact than
you’ll be used to from previous .NET projects. The following listing shows
the entire .csproj file for your sample app.

Listing 3.2 The .csproj project file, showing SDK, target framework, and references

<Project Sdk="Microsoft.NET.Sdk.Web"> #A

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework> #B

 <Nullable>enable</Nullable> #C

 <ImplicitUsings>enable</ImplicitUsings> #D

 </PropertyGroup>

</Project>

For simple applications, you probably won’t need to change the project file
much. The Sdk attribute on the Project element includes default settings that
describe how to build your project, whereas the TargetFramework element
describes the framework your application will run on. For .NET 6.0 projects,
this element will have the net6.0 value; if you’re running on .NET 7, this
will be net7.0. You can also enable and disable various features of the
compiler, such as the C# 8 feature nullable reference types or the C# 10
feature implicit using statements.[3]

Tip

With the new csproj style, Visual Studio users can double-click a project in
Solution Explorer to edit the .csproj file without having to close the project
first.

The most common changes you’ll make to the project file are to add more
NuGet packages by using the PackageReference element. By default, your
app doesn’t reference any NuGet packages at all.

Using NuGet libraries in your project

Even though all apps are unique in some way, they also have common
requirements. Most apps need to access a database, for example, or
manipulate JSON- or XML-formatted data. Rather than having to reinvent
that code in every project, you should use existing reusable libraries.

NuGet is the library package manager for .NET, where libraries are packaged
in NuGet packages and published to https://www.nuget.org. You can use
these packages in your project by referencing the unique package name in
your .csproj file, making the package’s namespace and classes available in
your code files. You can publish (and host) NuGet packages to repositories
other than nuget.org; see https://learn.microsoft.com/en-us/nuget for details.

You can add a NuGet reference to your project by running dotnet add
package <packagename> from inside the project folder. This command
updates your project file with a <PackageReference> node and restores the
NuGet package for your project. To install the popular Newtonsoft.Json
library, for example, you would run

dotnet add package Newtonsoft.Json

This command adds a reference to the latest version of the library to your
project file, as shown next, and makes the Newtonsoft.Json namespace
available in your source-code files:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework>

 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

<ItemGroup>

 <PackageReference Include="NewtonSoft.Json" Version="13.0.1" />

 </ItemGroup>

</Project>

If you’re using Visual Studio, you can manage packages with the NuGet
Package Manager by right-clicking the solution name or a project and
choosing Manage NuGet Packages from the contextual menu.

As a point of interest, there’s no officially agreed-on pronunciation for
NuGet. Feel free to use the popular “noo-get” or “nugget” style, or if you’re
feeling especially posh, try “noo-jay”!

The simplified project file format is much easier to edit by hand than
previous versions, which is great if you’re developing cross-platform. But if

you’re using Visual Studio, don’t feel that you have to take this route. You
can still use the GUI to add project references, exclude files, manage NuGet
packages, and so on. Visual Studio will update the project file itself, as it
always has.

Tip

For further details on the changes to the csproj format, see the documentation
at http://mng.bz/vnzJ.

The project file defines everything Visual Studio and the .NET CLI need to
build your app—everything, that is, except the code! In the next section we’ll
look at the file that defines your whole ASP.NET Core application: the
Program.cs file.

3.6 Program.cs file: Defining your application

All ASP.NET Core applications start life as a .NET Console application. As
of .NET 6, that typically means a program written with top-level statements,
in which the startup code for your application is written directly in a file
instead of inside a static void Main function.

Top-level statements

Before C# 9, every .NET program had to include a static void Main
function (it could also return int, Task, or Task<int>), typically declared in a
class called Program. This function, which must exist, defines the entry point
for your program. This code runs when you start your application, as in this
example:

using System;

namespace MyApp

{

 public class Program

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

With top-level statements you can write the body of this method directly in
the file, and the compiler generates the Main method for you. When combined
with C# 10 features such as implicit using statements, this dramatically
simplifies the entry-point code of your app to

Console.WriteLine("Hello World!");

When you use the explicit Main function you can access the command-line
arguments provided when the app was run using the args parameter. With
top-level statements the args variable is also available as a string[], even
though it’s not declared explicitly. You could echo each argument provided
by using

foreach(string arg in args)

{

 Console.WriteLine(arg);

}

In .NET 7 all the default templates use top-level statements, and I use them
throughout this book. Most of the templates include an option to use the
explicit Main function if you prefer (using the --use-program-main option if
you’re using the CLI). For more information on top-level statements and their
limitations, see http://mng.bz/4DZa. If you decide to switch approaches later,
you can always add or remove the Main function manually as required.

In .NET 7 ASP.NET Core applications the top-level statements build and run
a WebApplication instance, as shown in the following listing, which shows
the default Program.cs file. The WebApplication is the core of your
ASP.NET Core application, containing the application configuration and the
Kestrel server that listens for requests and sends responses.

Listing 3.3 The default Program.cs file that configures and runs a WebApplication

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); #A

WebApplication app = builder.Build(); #B

app.MapGet("/", () => "Hello World!"); #C

app.Run(); #D

These four lines contain all the initialization code you need to create a web
server and start listening for requests. It uses a WebApplicationBuilder,
created by the call to CreateBuilder, to define how the WebApplication is
configured, before instantiating the WebApplication with a call to Build().

Note

You’ll find this pattern of using a builder object to configure a complex
object repeated throughout the ASP.NET Core framework. This technique is
useful for allowing users to configure an object, delaying its creation until all
configuration has finished. It’s also one of the patterns described in the
“Gang of Four” book Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (Addison-Wesley, 1994).

In this simple application we don’t make any changes to
WebApplicationBuilder before calling Build(), but
WebApplicationBuilder configures a lot of things by default, including

Configuration—Your app loads values from JSON files and
environment variables that you can use to control the app’s runtime
behavior, such as loading connection strings for a database. You’ll learn
more about the configuration system in chapter 10.
Logging—ASP.NET Core includes an extensible logging system for
observability and debugging. I cover the logging system in detail in
chapter 26.
Services—Any classes that your application depends on for providing
functionality—both those used by the framework and those specific to
your application—must be registered so that they can be instantiated
correctly at runtime. The WebApplicationBuilder configures the
minimal set of services needed for an ASP.NET Core app. Chapters 8
and 9 look at service configuration in detail.
Hosting—ASP.NET Core uses the Kestrel web server by default to
handle requests.

After configuring the WebApplicationBuilder you call Build() to create a

WebApplication instance. The WebApplication instance is where you define
how your application handles and responds to requests, using two building
blocks:

Middleware—These small components execute in sequence when the
application receives an HTTP request. They can perform a whole host of
functions, such as logging, identifying the current user for a request,
serving static files, and handling errors. We’ll look in detail at the
middleware pipeline in chapter 4.
Endpoints—Endpoints define how the response should be generated for
a specific request to a URL in your app.

For the application in listing 3.3, we didn’t add any middleware, but we
defined a single endpoint using a call to MapGet:

app.MapGet("/", () => "Hello World!");

You use the MapGet function to define how to handle a request that uses the
GET HTTP verb. There are other Map* functions for other HTTP verbs, such
as MapPost.

Definition

Every HTTP request includes a verb that indicates the type of the request.
When you’re browsing a website, the default verb is GET, which fetches a
resource from the server so you can view it. The second-most-common verb
is POST, which is used to send data to the server, such as when you’re
completing a form.

The first argument passed to MapGet defines which URL path to respond to,
and the second argument defines how to generate the response as a delegate
that returns a string. In this simple case, the arguments say “When a request
is made to the path / using the GET HTTP verb, respond with the plain-text
value Hello World!”.

Definition

A path is the remainder of the request URL after the domain has been

removed. For a request to www.microsoft.com/account/manage, the path is
/account/manage.

While you’re configuring the WebApplication and WebApplicationBuilder
the application isn’t handling HTTP requests. Only after the call to Run()
does the HTTP server start listening for requests. At this point, your
application is fully operational and can respond to its first request from a
remote browser.

Note

The WebApplication and WebApplicationBuilder classes were introduced
in .NET 6. The initialization code in previous versions of ASP.NET Core was
more verbose but gave you more control of your application’s behavior.
Configuration was typically split between two classes—Program and Startup
—and used different configuration types—IHostBuilder and IHost, which
have fewer defaults than WebApplication. In chapter 30 I describe some of
these differences in more detail and show how to configure your application
by using the generic IHost instead of WebApplication.

So far in this chapter, we’ve looked at the simplest ASP.NET core application
you can build: a Hello World minimal API application. For the remainder of
this chapter, we’re going to build on this app to introduce some fundamental
concepts of ASP.NET Core.

3.7 Adding functionality to your application

The application setup you’ve seen so far in Program.cs consists of only four
lines of code but still shows the overall structure of a typical ASP.NET Core
app entry point, which typically consists of six steps:

1. Create a WebApplicationBuilder instance.
2. Register the required services and configuration with the

WebApplicationBuilder.
3. Call Build() on the builder instance to create a WebApplication

instance.
4. Add middleware to the WebApplication to create a pipeline.

5. Map the endpoints in your application.
6. Call Run() on the WebApplication to start the server and handle

requests.

The basic minimal API app shown previously in listing 3.3 was simple
enough that it didn’t need steps 2 and 4, but otherwise it followed this
sequence in its Program.cs file. The following listing extends the default
application to add more functionality, and in doing so it uses all six steps.

Listing 3.4 The Program.cs file for a more complex example minimal API

using Microsoft.AspNetCore.HttpLogging;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpLogging(opts => #A

 opts.LoggingFields = HttpLoggingFields.RequestProperties); #A

builder.Logging.AddFilter(#B

 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information); #B

WebApplication app = builder.Build();

if (app.Environment.IsDevelopment()) #C

{

 app.UseHttpLogging(); #D

}

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock")); #E

app.Run();

public record Person(string FirstName, string LastName); #F

The application in listing 3.4 configures two new features:

When running in the Development environment, details about each
request are logged using the HttpLoggingMiddleware.[4]

Creates a new endpoint at /person that creates an instance of the C#
record called Person and serializes it in the response as JSON.

When you run the application and send requests via a web browser, you see

details about the request displayed in the console, as shown in figure 3.8. If
you call the /person endpoint you’ll see the JSON representation of the
Person record you created in the endpoint.

Note

You can view the application only on the same computer that’s running it at
the moment; your application isn’t exposed to the internet yet. You’ll learn
how to publish and deploy your application in chapter 27.

Figure 3.8 Calling the /person endpoint returns a JSON-serialized version of the Person record
instance. Details about each request are logged to the console by the HttpLoggingMiddleware.

Configuring services, logging, middleware, and endpoints is fundamental to
building ASP.NET Core applications, so the rest of section 3.7 walks you
through each of these concepts to give you a taste of how they’re used. I
won’t explain them in detail (we have the rest of the book for that!), but you
should keep in mind how they follow on from each other and how they
contribute to the application’s configuration as a whole.

3.7.1 Adding and configuring services

ASP.NET Core uses small modular components for each distinct feature.
This approach allows individual features to evolve separately, with only a

loose coupling to others, and it’s generally considered to be good design
practice. The downside to this approach is that it places the burden on the
consumer of a feature to instantiate it correctly. Within your application,
these modular components are exposed as one or more services that are used
by the application.

Definition

Within the context of ASP.Net Core, service refers to any class that provides
functionality to an application. Services could be classes exposed by a library
or code you’ve written for your application.

In an e-commerce app, for example, you might have a TaxCalculator that
calculates the tax due on a particular product, taking into account the user’s
location in the world. Or you might have a ShippingCostService that
calculates the cost of shipping to a user’s location. A third service,
OrderTotalCalculator, might use both of these services to work out the
total price the user must pay for an order. Each service provides a small piece
of independent functionality, but you can combine them to create a complete
application. This design methodology scenario is known as the single-
responsibility principle.

Definition

The single-responsibility principle (SRP) states that every class should be
responsible for only a single piece of functionality; it should need to change
only if that required functionality changes. SRP is one of the five main design
principles promoted by Robert C. Martin in Agile Software Development,
Principles, Patterns, and Practices (Pearson, 2013).

OrderTotalCalculator needs access to an instance of ShippingCostService
and TaxCalculator. A naive approach to this problem is to use the new
keyword and create an instance of a service whenever you need it.
Unfortunately, this approach tightly couples your code to the specific
implementation you’re using and can undo all the good you achieved by
modularizing the features in the first place. In some cases, it may break the
SRP by making you perform initialization code in addition to using the

service you created.

One solution to this problem is to make it somebody else’s problem. When
writing a service, you can declare your dependencies and let another class fill
those dependencies for you. Then your service can focus on the functionality
for which it was designed instead of trying to work out how to build its
dependencies.

This technique is called dependency injection or the Inversion of Control
(IoC) principle, a well-recognized design pattern that is used extensively.
Typically, you’ll register the dependencies of your application into a
container, which you can use to create any service. You can use the container
to create both your own custom application services and the framework
services used by ASP.NET Core. You must register each service with the
container before using it in your application.

Note

I describe the dependency inversion principle and the IoC container used in
ASP.NET Core in detail in chapter 8.

In an ASP.NET Core application, this registration is performed by using the
Services property of WebApplicationBuilder. Whenever you use a new
ASP.NET Core feature in your application, you need to come back to
Program.cs and add the necessary services. This task isn’t always as arduous
as it sounds, typically requiring only a line or two of code to configure your
applications.

In listing 3.4 we configured an optional service for the HTTP logging
middleware by using the line

builder.Services.AddHttpLogging(opts =>

 opts.LoggingFields = HttpLoggingFields.RequestProperties);

Calling AddHttpLogging() adds the necessary services for the HTTP logging
middleware to the IoC container and customizes the options used by the
middleware for what to display. AddHttpLogging isn’t exposed directly on
the Services property; it’s an extension method that provides a convenient

way to encapsulate all the code required to set up HTTP logging. This pattern
of encapsulating setup behind extension methods is common in ASP.NET
Core.

As well as registering framework-related services, the Services property is
where you’d register any custom services you have in your application, such
as the example TaxCalculator discussed previously. The Services property
is an IServiceCollection, which is a list of every known service that your
application will need to use. By adding a new service to it, you ensure that
whenever a class declares a dependency on your service, the IoC container
will know how to provide it.

As well as configuring services, WebApplicationBuilder is where you
customize other cross-cutting concerns, such as logging. In listing 3.4, I
showed how you can add a logging filter to ensure that the logs generated by
the HttpLoggingMiddleware are written to the console:

builder.Logging.AddFilter(

 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information);

This line ensures that logs of severity Information or greater created in the
Microsoft.AspNetCore.HttpLogging namespace will be included in the log
output.

Note

I show configuring log filters in code here for convenience, but this isn’t the
idiomatic approach for configuring filters in ASP.NET Core. Typically, you
control which levels are shown by adding values to appsettings.json instead,
as shown in the source code accompanying this chapter. You’ll learn more
about logging and log filtering in chapter 26.

After you call Build() on the WebApplicationBuilder instance, you can’t
register any more services or change your logging configuration; the services
defined for the WebApplication instance are set in stone. The next step is
defining how your application responds to HTTP requests.

3.7.2 Defining how requests are handled with middleware and

endpoints

After registering your services with the IoC container on
WebApplicationBuilder and doing any further customization, you create a
WebApplication instance. You can do three main things with the
WebApplication instance:

Add middleware to the pipeline.
Map endpoints that generate a response for a request.
Run the application by calling Run().

As I described previously, middleware consists of small components that
execute in sequence when the application receives an HTTP request. They
can perform a host of functions, such as logging, identifying the current user
for a request, serving static files, and handling errors. Middleware is typically
added to WebApplication by calling Use* extension methods. In listing 3.4, I
showed an example of adding the HttpLoggingMiddleware to the middleware
pipeline conditionally by calling UseHttpLogging():

if (app.Environment.IsDevelopment())

{

 app.UseHttpLogging();

}

We added only a single piece of middleware to the pipeline in this example,
but when you’re adding multiple pieces of middleware, the order of the Use*
calls is important: the order in which they’re added to the builder is the order
in which they’ll execute in the final pipeline. Middleware can use only
objects created by previous middleware in the pipeline; it can’t access objects
created by later middleware.

Warning

It’s important to consider the order of middleware when adding it to the
pipeline, as middleware can use only objects created earlier in the pipeline.

You should also note that listing 3.4 uses the WebApplication.Environment
property (an instance of IWebHostEnvironment) to provide different behavior
when you’re in a development environment. The HttpLoggingMiddleware is

added to the pipeline only when you’re running in development; when you’re
running in production (or, rather, when EnvironmentName is not set to
"Development"), the HttpLoggingMiddleware will not be added.

Note

You’ll learn about hosting environments and how to change the current
environment in chapter 10.

The WebApplicationBuilder builds an IWebHostEnvironment object and
sets it on the Environment property. IWebHostEnvironment exposes several
environment-related properties, such as

ContentRootPath—Location of the working directory for the app,
typically the folder in which the application is running
WebRootPath—Location of the wwwroot folder that contains static files
EnvironmentName—Whether the current environment is a development
or production environment

IWebHostEnvironment is already set by the time the WebApplication
instance is created. EnvironmentName is typically set externally by using an
environment variable when your application starts.

Listing 3.4 added only a single piece of middleware to the pipeline, but
WebApplication automatically adds more middleware, including two of the
most important and substantial pieces of middleware in the pipeline: the
routing middleware and the endpoint middleware. The routing middleware is
added automatically to the start of the pipeline, before any of the additional
middleware added in Program.cs (so before the HttpLoggingMiddleware).
The endpoint middleware is added to the end of the pipeline, after all the
other middleware added in Program.cs.

NOTE

WebApplication adds several more pieces of middleware to the pipeline by
default. It automatically adds error-handling middleware when you’re
running in the development environment, for example. I discuss some of this
autoadded middleware in detail in chapter 4.

Together, this pair of middleware is responsible for interpreting the request to
determine which endpoint to invoke, for reading parameters from the request,
and for generating the final response. For each request, the routing
middleware uses the request’s URL to determine which endpoint to invoke.
Then the rest of the middleware pipeline executes until the request reaches
the endpoint middleware, at which point the endpoint middleware executes
the endpoint to generate the final response.

The routing and endpoint middleware work in tandem, using the set of
endpoints defined for your application. In listing 3.4 we defined two
endpoints:

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock"));

You’ve already seen the default "Hello World!" endpoint. When you send a
GET request to /, the routing middleware selects the "Hello World!"
endpoint. The request continues down the middleware pipeline until it
reaches the endpoint middleware, which executes the lambda and returns the
string value in the response body.

The other endpoint defines a lambda to run for GET requests to the /person
path, but it returns a C# record instead of a string. When you return a C#
object from a minimal API endpoint, the object is serialized to JSON
automatically and returned in the response body, as you saw in figure 3.8. In
chapter 6 you’ll learn how to customize this response, as well as return other
types of responses.

And there you have it. You’ve finished the tour of your first ASP.NET Core
application! Before we move on, let’s take one last look at how our
application handles a request. Figure 3.9 shows a request to the /person path
being handled by the sample application. You’ve seen everything here
already, so the process of handling a request should be familiar. The figure
shows how the request passes through the middleware pipeline before being
handled by the endpoint middleware. The endpoint executes the lambda
method and generates the JSON response, which passes back through the
middleware to the ASP.NET Core web server before being sent to the user’s
browser.

Figure 3.9 An overview of a request to the /person URL for the extended ASP.NET Core minimal
API application. The routing middleware routes the request to the correct lambda method. The
endpoint generates a JSON response by executing the method and passes the response back
through the middleware pipeline to the browser.

The trip has been pretty intense, but now you have a good overview of how
an entire application is configured and how it handles a request by using
minimal APIs. In chapter 4, you’ll take a closer look at the middleware
pipeline that exists in all ASP.NET Core applications. You’ll learn how it’s
composed, how you can use it to add functionality to your application, and
how you can use it to create simple HTTP services.

3.8 Summary

The .csproj file contains the details of how to build your project,
including which NuGet packages it depends on. Visual Studio and the
.NET CLI use this file to build your application.
Restoring the NuGet packages for an ASP.NET Core application
downloads all your project’s dependencies so that it can be built and run.
Program.cs is where you define the code that runs when your app starts.
You can create a WebApplicationBuilder by using
WebApplication.CreateBuilder() and call methods on the builder to
create your application.
All services, both framework and custom application services, must be
registered with the WebApplicationBuilder by means of the Services
property, to be accessed later in your application.
After your services are configured you call Build() on the
WebApplicationBuilder instance to create a WebApplication instance.
You use WebApplication to configure your app’s middleware pipeline,
to register the endpoints, and to start the server listening for requests.
Middleware defines how your application responds to requests. The
order in which middleware is registered defines the final order of the
middleware pipeline for the application.
The WebApplication instance automatically adds RoutingMiddleware
to the start of the middleware pipeline and EndpointMiddleware as the
last middleware in the pipeline.
Endpoints define how a response should be generated for a given request
and are typically tied to a request’s path. With minimal APIs, a simple
function is used to generate a response.
You can start the web server and begin accepting HTTP requests by
calling Run on the WebApplication instance.

[1] If you want to learn more about Kestrel, IIS HTTP Server, and HTTP.sys,
this documentation describes the differences among them:
http://mng.bz/6DgD.

[2] You can install the development certificate in Windows and macOS. For
instructions on trusting the certificate on Linux, see your distribution’s
instructions. Not all browsers (Mozilla Firefox, for example) use the
certificate store, so follow your browser’s guidelines for trusting the
certificate. If you still have difficulties, see the troubleshooting tips at
http://mng.bz/o1pr.

[3] You can read about the new C# features included in .NET 7 and C# 11 at
http://mng.bz/nWMg.

[4] You can read in more detail about HTTP logging in the documentation at
http://mng.bz/QPmw.

4 Handling requests with the
middleware pipeline
This chapter covers

Understanding middleware
Serving static files using middleware
Adding functionality using middleware
Combining middleware to form a pipeline
Handling exceptions and errors with middleware

In chapter 3 you had a whistle-stop tour of a complete ASP.NET Core
application to see how the components come together to create a web
application. In this chapter, we’ll focus on one small subsection: the
middleware pipeline.

In ASP.NET Core, middleware consists of C# classes or functions that handle
an HTTP request or response. Middleware is chained together, with the
output of one acting as the input to the next to form a pipeline.

The middleware pipeline is one of the most important parts of configuration
for defining how your application behaves and how it responds to requests.
Understanding how to build and compose middleware is key to adding
functionality to your applications.

In this chapter you’ll learn what middleware is and how to use it to create a
pipeline. You’ll see how you can chain multiple middleware components
together, with each component adding a discrete piece of functionality. The
examples in this chapter are limited to using existing middleware
components, showing how to arrange them in the correct way for your
application. In chapter 31 you’ll learn how to build your own middleware
components and incorporate them into the pipeline.

We’ll begin by looking at the concept of middleware, all the things you can

achieve with it, and how a middleware component often maps to a cross-
cutting concern. These functions of an application cut across multiple
different layers. Logging, error handling, and security are classic cross-
cutting concerns that are required by many parts of your application. Because
all requests pass through the middleware pipeline, it’s the preferred location
to configure and handle this functionality.

In section 4.2 I’ll explain how you can compose individual middleware
components into a pipeline. You’ll start out small, with a web app that
displays only a holding page. From there, you’ll learn how to build a simple
static-file server that returns requested files from a folder on disk.

Next, you’ll move on to a more complex pipeline containing multiple
middleware. In this example you’ll explore the importance of ordering in the
middleware pipeline, and you’ll see how requests are handled when your
pipeline contains multiple middleware.

In section 4.3 you’ll learn how you can use middleware to deal with an
important aspect of any application: error handling. Errors are a fact of life
for all applications, so it’s important that you account for them when building
your app.

You can handle errors in a few ways. Errors are among the classic cross-
cutting concerns, and middleware is well placed to provide the required
functionality. In section 4.3 I’ll show how you can handle exceptions with
middleware provided by Microsoft. In particular, you’ll learn about two
different components:

DeveloperExceptionPageMiddleware—Provides quick error feedback
when building an application
ExceptionHandlerMiddleware—Provides a generic error page in
production so that you don’t leak any sensitive details

You won’t see how to build your own middleware in this chapter; instead,
you’ll see that you can go a long way by using the components provided as
part of ASP.NET Core. When you understand the middleware pipeline and its
behavior, you’ll find it much easier to understand when and why custom
middleware is required. With that in mind, let’s dive in!

4.1 Defining middleware

The word middleware is used in a variety of contexts in software
development and IT, but it’s not a particularly descriptive word.

In ASP.NET Core, middleware is C# classes[1] that can handle an HTTP
request or response. Middleware can

Handle an incoming HTTP request by generating an HTTP response
Process an incoming HTTP request, modify it, and pass it on to another
piece of middleware
Process an outgoing HTTP response, modify it, and pass it on to another
piece of middleware or to the ASP.NET Core web server

You can use middleware in a multitude of ways in your own applications. A
piece of logging middleware, for example, might note when a request arrived
and then pass it on to another piece of middleware. Meanwhile, a static-file
middleware component might spot an incoming request for an image with a
specific name, load the image from disk, and send it back to the user without
passing it on.

The most important piece of middleware in most ASP.NET Core applications
is the EndpointMiddleware class. This class normally generates all your
HTML and JavaScript Object Notation (JSON) responses, and is the focus of
most of this book. Like image-resizing middleware, it typically receives a
request, generates a response, and then sends it back to the user (figure 4.1).

Figure 4.1 Example of a middleware pipeline. Each middleware component handles the request
and passes it on to the next middleware component in the pipeline. After a middleware
component generates a response, it passes the response back through the pipeline. When it
reaches the ASP.NET Core web server, the response is sent to the user’s browser.

Definition

This arrangement—whereby a piece of middleware can call another piece of
middleware, which in turn can call another, and so on—is referred to as a
pipeline. You can think of each piece of middleware as being like a section of
pipe; when you connect all the sections, a request flows through one piece
and into the next.

One of the most common use cases for middleware is for the cross-cutting
concerns of your application. These aspects of your application need to occur
for every request, regardless of the specific path in the request or the resource
requested, including

Logging each request
Adding standard security headers to the response
Associating a request with the relevant user

Setting the language for the current request

In each of these examples, the middleware receives a request, modifies it, and
then passes the request on to the next piece of middleware in the pipeline.
Subsequent middleware could use the details added by the earlier middleware
to handle the request in some way. In figure 4.2, for example, the
authentication middleware associates the request with a user. Then the
authorization middleware uses this detail to verify whether the user has
permission to make that specific request to the application.

Figure 4.2 Example of a middleware component modifying a request for use later in the pipeline.
Middleware can also short-circuit the pipeline, returning a response before the request reaches
later middleware.

If the user has permission, the authorization middleware passes the request on
to the endpoint middleware to allow it to generate a response. If the user
doesn’t have permission, the authorization middleware can short-circuit the
pipeline, generating a response directly; it returns the response to the
previous middleware, and the endpoint middleware never sees the request.
This scenario is an example of the chain-of-responsibility design pattern.

Definition

When a middleware component short-circuits the pipeline and returns a

response, it’s called terminal middleware.

A key point to glean from this example is that the pipeline is bidirectional.
The request passes through the pipeline in one direction until a piece of
middleware generates a response, at which point the response passes back
through the pipeline, passing through each piece of middleware a second
time, in reverse order, until it gets back to the first piece of middleware.
Finally, the first/last piece of middleware passes the response back to the
ASP.NET Core web server.

The HttpContext object

I mentioned the HttpContext in chapter 3, and it’s sitting behind the scenes
here too. The ASP.NET Core web server constructs an HttpContext for each
request, which the ASP.NET Core application uses as a sort of storage box
for a single request. Anything that’s specific to this particular request and the
subsequent response can be associated with and stored in it. Examples are
properties of the request, request-specific services, data that’s been loaded, or
errors that have occurred. The web server fills the initial HttpContext with
details of the original HTTP request and other configuration details, and then
passes it on to the middleware pipeline and the rest of the application.

All middleware has access to the HttpContext for a request. It can use this
object to determine whether the request contains any user credentials, to
identify which page the request is attempting to access, and to fetch any
posted data, for example. Then it can use these details to determine how to
handle the request.

When the application finishes processing the request, it updates the
HttpContext with an appropriate response and returns it through the
middleware pipeline to the web server. Then the ASP.NET Core web server
converts the representation to a raw HTTP response and sends it back to the
reverse proxy, which forwards it to the user’s browser.

As you saw in chapter 3, you define the middleware pipeline in code as part
of your initial application configuration in Program.cs. You can tailor the
middleware pipeline specifically to your needs; simple apps may need only a
short pipeline, whereas large apps with a variety of features may use much

more middleware. Middleware is the fundamental source of behavior in your
application. Ultimately, the middleware pipeline is responsible for
responding to any HTTP requests it receives.

Requests are passed to the middleware pipeline as HttpContext objects. As
you saw in chapter 3, the ASP.NET Core web server builds an HttpContext
object from an incoming request, which passes up and down the middleware
pipeline. When you’re using existing middleware to build a pipeline, this
detail is one that you’ll rarely have to deal with. But as you’ll see in the final
section of this chapter, its presence behind the scenes provides a route to
exerting extra control over your middleware pipeline.

You can also think of your middleware pipeline as being a series of
concentric components, similar to a traditional matryoshka (Russian) doll, as
shown in figure 4.3. A request progresses through the pipeline by heading
deeper into the stack of middleware until a response is returned. Then the
response returns through the middleware, passing through the components in
reverse order from the request.

Figure 4.3 You can also think of middleware as being a series of nested components; a request is
sent deeper into the middleware, and the response resurfaces from it. Each middleware
component can execute logic before passing the response on to the next middleware component
and can execute logic after the response has been created, on the way back out of the stack.

Middleware vs. HTTP modules and HTTP handlers

In the previous version of ASP.NET, the concept of a middleware pipeline
isn’t used. Instead, you have HTTP modules and HTTP handlers.

An HTTP handler is a process that runs in response to a request and
generates the response. The ASP.NET page handler, for example, runs in
response to requests for .aspx pages. Alternatively, you could write a custom
handler that returns resized images when an image is requested.

HTTP modules handle the cross-cutting concerns of applications, such as
security, logging, and session management. They run in response to the life-
cycle events that a request progresses through when it’s received by the
server. Examples of events include BeginRequest, AcquireRequestState,
and PostAcquireRequestState.

This approach works, but sometimes it’s tricky to reason about which
modules will run at which points. Implementing a module requires relatively
detailed understanding of the state of the request at each individual life-cycle
event.

The middleware pipeline makes understanding your application far simpler.
The pipeline is defined completely in code, specifying which components
should run and in which order. Behind the scenes, the middleware pipeline in
ASP.NET Core is simply a chain of method calls, with each middleware
function calling the next in the pipeline.

That’s pretty much all there is to the concept of middleware. In the next
section, I’ll discuss ways you can combine middleware components to create
an application and how to use middleware to separate the concerns of your
application.

4.2 Combining middleware in a pipeline

Generally speaking, each middleware component has a single primary
concern; it handles only one aspect of a request. Logging middleware deals
only with logging the request, authentication middleware is concerned only
with identifying the current user, and static-file middleware is concerned only
with returning static files.

Each of these concerns is highly focused, which makes the components
themselves small and easy to reason about. This approach also gives your app
added flexibility. Adding static-file middleware, for example, doesn’t mean
you’re forced to have image-resizing behavior or authentication; each of
these features is an additional piece of middleware.

To build a complete application, you compose multiple middleware
components into a pipeline, as shown in section 4.1. Each middleware
component has access to the original request, as well as any changes made to
the HttpContext by middleware earlier in the pipeline. When a response has
been generated, each middleware component can inspect and/or modify the
response as it passes back through the pipeline before it’s sent to the user.
This feature allows you to build complex application behaviors from small,
focused components.

In the rest of this section, you’ll see how to create a middleware pipeline by
combining various middleware components. Using standard middleware
components, you’ll learn to create a holding page and to serve static files

from a folder on disk. Finally, you’ll take a look at a more complex pipeline
such as you’d get in a minimal API application with multiple middleware,
routing, and endpoints.

4.2.1 Simple pipeline scenario 1: A holding page

For your first app in this chapter and your first middleware pipeline, you’ll
learn how to create an app consisting of a holding page. Adding a holding
page can be useful occasionally when you’re setting up your application to
ensure that it’s processing requests without errors.

Tip

Remember that you can view the application code for this book in the GitHub
repository at http://mng.bz/Y1qN.

In previous chapters, I mentioned that the ASP.NET Core framework is
composed of many small individual libraries. You typically add a piece of
middleware by referencing a package in your application’s .csproj project file
and configuring the middleware in Program.cs. Microsoft ships many
standard middleware components with ASP.NET Core for you to choose
among; you can also use third-party components from NuGet and GitHub, or
you can build your own custom middleware. You can find the list of built-in
middleware at http://mng.bz/Gyxq.

Note

I discuss building custom middleware in chapter 31.

In this section, you’ll see how to create one of the simplest middleware
pipelines, consisting only of WelcomePageMiddleware.
WelcomePageMiddleware is designed to provide a sample HTML page
quickly when you’re first developing an application, as you can see in figure
4.4. You wouldn’t use it in a production app, as you can’t customize the
output, but it’s a single, self-contained middleware component you can use to
ensure that your application is running correctly.

Figure 4.4 The Welcome-page middleware response. Every request to the application, at any

path, will return the same Welcome-page response.

Tip

WelcomePageMiddleware is included as part of the base ASP.NET Core
framework, so you don’t need to add a reference to any additional NuGet
packages.

Even though this application is simple, the same process you’ve seen before
occurs when the application receives an HTTP request, as shown in figure
4.5.

Figure 4.5 WelcomePageMiddleware handles a request. The request passes from the reverse proxy

to the ASP.NET Core web server and finally to the middleware pipeline, which generates an
HTML response.

The request passes to the ASP.NET Core web server, which builds a
representation of the request and passes it to the middleware pipeline. As it’s
the first (only!) middleware in the pipeline, WelcomePageMiddleware receives

the request and must decide how to handle it. The middleware responds by
generating an HTML response, no matter what request it receives. This
response passes back to the ASP.NET Core web server, which forwards it to
the reverse proxy and then to the user to display in their browser.

As with all ASP.NET Core applications, you define the middleware pipeline
in Program.cs by calling Use* methods on the WebApplication instance. To
create your first middleware pipeline, which consists of a single middleware
component, you need a single method call. The application doesn’t need any
extra configuration or services, so your whole application consists of the four
lines in the following listing.

Listing 4.1 Program.cs for a Welcome-page middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); #A

WebApplication app = builder.Build(); #A

app.UseWelcomePage(); #B

app.Run(); #C

You build up the middleware pipeline in ASP.NET Core by calling methods
on WebApplication (which implements IApplicationBuilder).
WebApplication doesn’t define methods like UseWelcomePage itself; instead,
these are extension methods.

Using extension methods allows you to add functionality to the
WebApplication class, while keeping the implementation isolated from it.
Under the hood, the methods typically call another extension method to add
the middleware to the pipeline. Behind the scenes, for example, the
UseWelcomePage method adds the WelcomePageMiddleware to the pipeline by
calling

UseMiddleware<WelcomePageMiddleware>();

This convention of creating an extension method for each piece of
middleware and starting the method name with Use is designed to improve
discoverability when you add middleware to your application.[2] ASP.NET
Core includes a lot of middleware as part of the core framework, so you can

use IntelliSense in Visual Studio and other integrated development
environments (IDEs) to view all the middleware that’s available, as shown in
figure 4.6.

Figure 4.6 IntelliSense makes it easy to view all the available middleware to add to your
middleware pipeline.

Calling the UseWelcomePage method adds the WelcomePageMiddleware as the
next middleware in the pipeline. Although you’re using only a single
middleware component here, it’s important to remember that the order in
which you make calls to IApplicationBuilder in Configure defines the
order in which the middleware will run in the pipeline.

Warning

When you’re adding middleware to the pipeline, always take care to consider
the order in which it will run. A component can access only data created by
middleware that comes before it in the pipeline.

This application is the most basic kind, returning the same response no matter
which URL you navigate to, but it shows how easy it is to define your
application behavior with middleware. Next, we’ll make things a little more

interesting by returning different responses when you make requests to
different paths.

4.2.2 Simple pipeline scenario 2: Handling static files

In this section, I’ll show you how to create one of the simplest middleware
pipelines you can use for a full application: a static-file application. Most web
applications, including those with dynamic content, serve some pages by
using static files. Images, JavaScript, and CSS stylesheets are normally saved
to disk during development and are served up when requested from the
special wwwroot folder of your project, normally as part of a full HTML
page request.

Definition

By default, the wwwroot folder is the only folder in your application that
ASP.NET Core will serve files from. It doesn’t serve files from other folders
for security reasons. The wwwroot folder in an ASP.NET Core project is
typically deployed as is to production, including all the files and folders it
contains.

You can use StaticFileMiddleware to serve static files from the wwwroot
folder when requested, as shown in figure 4.7. In this example, an image
called moon.jpg exists in the wwwroot folder. When you request the file
using the /moon.jpg path, it’s loaded and returned as the response to the
request.

Figure 4.7 Serving a static image file using the static-file middleware

If the user requests a file that doesn’t exist in the wwwroot folder, such as
missing.jpg, the static-file middleware won’t serve a file. Instead, a 404
HTTP error code response will be sent to the user’s browser, which displays
its default “File Not Found” page, as shown in figure 4.8.

Figure 4.8 Returning a 404 to the browser when a file doesn’t exist. The requested file didn’t exist
in the wwwroot folder, so the ASP.NET Core application returned a 404 response. Then the
browser (Microsoft Edge, in this case) show the user a default “File Not Found” error pager

Note

How this page looks depends on your browser. In some browsers, you may
see a blank page.

Building the middleware pipeline for this simple static-file application is
easy. The pipeline consists of a single piece of middleware,
StaticFileMiddleware, as you can see in the following listing. You don’t
need any services, so configuring the middleware pipeline with
UseStaticFiles is all that’s required.

Listing 4.2 Program.cs for a static-file middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseStaticFiles(); #A

app.Run();

Tip

Remember that you can view the application code for this book in the GitHub
repository at http://mng.bz/Y1qN.

When the application receives a request, the ASP.NET Core web server
handles it and passes it to the middleware pipeline. StaticFileMiddleware
receives the request and determines whether it can handle it. If the requested
file exists, the middleware handles the request and returns the file as the
response, as shown in figure 4.9.

Figure 4.9 StaticFileMiddleware handles a request for a file. The middleware checks the
wwwroot folder to see if whether requested moon.jpg file exists. The file exists, so the middleware
retrieves it and returns it as the response to the web server and, ultimately, to the browser.

If the file doesn’t exist, the request effectively passes through the static-file

middleware unchanged. But wait—you added only one piece of middleware,
right? Surely you can’t pass the request through to the next middleware
component if there isn’t another one.

ASP.NET Core automatically adds a dummy piece of middleware to the end
of the pipeline. This middleware always returns a 404 response if it’s called.

Tip

If no middleware generates a response for a request, the pipeline
automatically returns a simple 404 error response to the browser.

HTTP response status codes

Every HTTP response contains a status code and, optionally, a reason phrase
describing the status code. Status codes are fundamental to the HTTP
protocol and are a standardized way of indicating common results. A 200
response, for example, means that the request was successfully answered,
whereas a 404 response indicates that the resource requested couldn’t be
found. You can see the full list of standardized status codes at
https://www.rfc-editor.org/rfc/rfc9110#name-status-codes.

Status codes are always three digits long and are grouped in five classes,
based on the first digit:

· 1xx—Information. This code is not often used; it provides a general
acknowledgment.

· 2xx—Success. The request was successfully handled and processed.

· 3xx—Redirection. The browser must follow the provided link to allow the
user to log in, for example.

· 4xx—Client error. A problem occurred with the request. The request sent
invalid data, for example, or the user isn’t authorized to perform the request.

· 5xx—Server error. A problem on the server caused the request to fail.

These status codes typically drive the behavior of a user’s browser. The
browser will handle a 301 response automatically, for example, by
redirecting to the provided new link and making a second request, all without
the user’s interaction.

Error codes are in the 4xx and 5xx classes. Common codes include a 404
response when a file couldn’t be found, a 400 error when a client sends
invalid data (such as an invalid email address), and a 500 error when an error
occurs on the server. HTTP responses for error codes may include a response
body, which is content to display when the client receives the response.

This basic ASP.NET Core application makes it easy to see the behavior of
the ASP.NET Core middleware pipeline and the static-file middleware in
particular, but it’s unlikely that your applications will be this simple. It’s
more likely that static files will form one part of your middleware pipeline. In
the next section you’ll see how to combine multiple middleware components
as we look at a simple minimal API application.

4.2.3 Simple pipeline scenario 3: A minimal API application

By this point, you should have a decent grasp of the middleware pipeline,
insofar as you understand that it defines your application’s behavior. In this
section you’ll see how to combine several standard middleware components
to form a pipeline. As before, you do this in Program.cs by adding
middleware to the WebApplication object.

You’ll begin by creating a basic middleware pipeline that you’d find in a
typical ASP.NET Core minimal APIs template and then extend it by adding
middleware. Figure 4.10 shows the output you see when you navigate to the
home page of the application—identical to the sample application in chapter
3.

Figure 4.10 A simple minimal API application. The application uses only four pieces of
middleware: routing middleware to choose the endpoint to run, endpoint middleware to generate
the response from a Razor Page, static-file middleware to serve image files, and exception-
handler middleware to capture any errors.

Creating this application requires only four pieces of middleware: routing
middleware to choose a minimal API endpoint to execute, endpoint
middleware to generate the response, static-file middleware to serve any
image files from the wwwroot folder, and exception-handler middleware to
handle any errors that might occur. Even though this example is still a Hello
World! example, this architecture is much closer to a realistic example. The
following listing shows an example of such an application.

Listing 4.3 A basic middleware pipeline for a minimal APIs application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseDeveloperExceptionPage(); #A

app.UseStaticFiles(); #B

app.UseRouting(); #C

app.MapGet("/", () => "Hello World!"); #D

app.Run();

The addition of middleware to WebApplication to form the pipeline should
be familiar to you now, but several points are worth noting in this example:

Middleware is added with Use*() methods.
MapGet defines an endpoint, not middleware. It defines the endpoints
that the routing and endpoint middleware can use.
WebApplication automatically adds some middleware to the pipeline,
such as the EndpointMiddleware.
The order of the Use*() method calls is important and defines the order
of the middleware pipeline.

First, all the methods for adding middleware start with Use. As I mentioned
earlier, this is thanks to the convention of using extension methods to extend
the functionality of WebApplication; prefixing the methods with Use should
make them easier to discover.

Second, it’s important to understand that the MapGet method does not add
middleware to the pipeline; it defines an endpoint in your application. These
endpoints are used by the routing and endpoint middleware. You’ll learn
more about endpoints and routing in chapter 5.

Tip

You can define the endpoints for your app by using MapGet() anywhere in
Program.cs before the call to app.Run(), but the calls are typically placed
after the middleware pipeline definition.

In chapter 3, I mentioned that WebApplication automatically adds
middleware to your app. You can see this process in action in listing 4.3
automatically adding the EndpointMiddleware to the end of the middleware
pipeline. WebApplication also automatically adds the developer exception
page middleware to the start of the middleware pipeline when you’re running
in development. As a result, you can omit the call to
UseDeveloperExceptionPage() from listing 4.3, and your middleware
pipeline will be essentially the same.

WebApplication and autoadded middleware

WebApplication and WebApplicationBuilder were introduced in .NET 6 to
try to reduce the amount of boilerplate code required for a Hello World!
ASP.NET Core application. As part of this initiative, Microsoft chose to have
WebApplication automatically add various middleware to the pipeline. This
decision alleviates some of the common getting-started pain points of
middleware ordering by ensuring that, for example, UseRouting() is always
called before UseAuthorization().

Everything has trade-offs, of course, and for WebApplication the trade-off is
that it’s harder to understand exactly what’s in your middleware pipeline
without having deep knowledge of the framework code itself.

Luckily, you don’t need to worry about the middleware that WebApplication
adds for the most part. If you’re new to ASP.NET Core, generally you can
accept that WebApplication will add the middleware only when it’s
necessary and safe to do so.

Nevertheless, in some cases it may pay to know exactly what’s in your
pipeline, especially if you’re familiar with ASP.NET Core. In .NET 7,
WebApplication automatically adds some or all of the following middleware
to the start of the middleware pipeline:

· HostFilteringMiddleware—This middleware is security-related. You can
read more about why it’s useful and how to configure it at
http://mng.bz/zXxa.

· ForwardedHeadersMiddleware—This middleware controls how forwarded
headers are handled. You can read more about it in chapter 27.

· DeveloperExceptionPageMiddleware—As already discussed, this
middleware is added when you run in a development environment.

· RoutingMiddleware—If you add any endpoints to your application,
UseRouting() runs before you add any custom middleware to your
application.

· AuthenticationMiddleware—If you configure authentication, this
middleware authenticates a user for the request. Chapter 23 discusses
authentication in detail.

· AuthorizationMiddleware—The authorization middleware runs after
authentication and determines whether a user is permitted to execute an
endpoint. If the user doesn’t have permission, the request is short-circuited. I
discuss authorization in detail in chapter 24.

· EndpointMiddleware—This middleware pairs with the
RoutingMiddleware to execute an endpoint. Unlike the other middleware
described here, the EndpointMiddleware is added to the end of the
middleware pipeline, after any other middleware you configure in
Program.cs.

Depending on your Program.cs configuration, WebApplication may not add
all this middleware. Also, if you don’t want some of this automatic
middleware to be at the start of your middleware pipeline, generally you can
override the location. In listing 4.3, for example, we override the automatic
RoutingMiddleware location by calling UseRouting() explicitly, ensuring
that routing occurs exactly where we need it.

Another important point about listing 4.3 is that the order in which you add
the middleware to the WebApplication object is the order in which the
middleware is added to the pipeline. The order of the calls in listing 4.3
creates a pipeline similar to that shown in figure 4.11.

Figure 4.11 The middleware pipeline for the example application in listing 4.3. The order in
which you add the middleware to WebApplication defines the order of the middleware in the
pipeline.

The ASP.NET Core web server passes the incoming request to the developer
exception page middleware first. This exception-handler middleware ignores

the request initially; its purpose is to catch any exceptions thrown by later
middleware in the pipeline, as you’ll see in section 4.3. It’s important for this
middleware to be placed early in the pipeline so that it can catch errors
produced by later middleware.

The developer exception page middleware passes the request on to the static-
file middleware. The static-file handler generates a response if the request
corresponds to a file; otherwise, it passes the request on to the routing
middleware. The routing middleware selects a minimal API endpoint based
on the endpoints defined and the request URL, and the endpoint middleware
executes the selected minimal API endpoint. If no endpoint can handle the
requested URL, the automatic dummy middleware returns a 404 response.

In chapter 3, I mentioned that WebApplication adds the RoutingMiddleware
to the start of the middleware pipeline automatically. So you may be
wondering why I explicitly added it to the pipeline in listing 4.3 using
UseRouting().

The answer, again, is related to the order of the middleware. Adding an
explicit call to UseRouting() tells WebApplication not to add the
RoutingMiddleware automatically before the middleware defined in
Program.cs. This allows us to “move” the RoutingMiddleware to be placed
after the StaticFileMiddleware. Although this step isn’t strictly necessary
in this case, it’s good practice. The StaticFileMiddleware doesn’t use
routing, so it’s preferable to let this middleware check whether the incoming
request is for a static file; if so, it can short-circuit the pipeline and avoid the
unnecessary call to the RoutingMiddleware.

Note

In versions 1.x and 2.x of ASP.NET Core, the routing and endpoint
middleware were combined in a single Model-View-Controller (MVC)
middleware component. Splitting the responsibilities for routing from
execution makes it possible to insert middleware between the routing and
endpoint middleware. I discuss routing further in chapters 6 and 14.

The impact of ordering is most obvious when you have two pieces of
middleware that are listening for the same path. The endpoint middleware in

the example pipeline currently responds to a request to the home page of the
application (with the / path) by returning the string "Hello World!", as
shown in figure 4.10. Figure 4.12 shows what happens if you reintroduce a
piece of middleware that you saw previously, WelcomePageMiddleware, and
configure it to respond to the / path as well.

Figure 4.12 The Welcome-page middleware response. The Welcome-page middleware comes
before the endpoint middleware, so a request to the home page returns the Welcome-page
middleware instead of the minimal API response.

As you saw in section 4.2.1, WelcomePageMiddleware is designed to return a
fixed HTML response, so you wouldn’t use it in a production app, but it
illustrates the point nicely. In the following listing, it’s added to the start of

the middleware pipeline and configured to respond only to the "/" path.

Listing 4.4 Adding WelcomePageMiddleware to the pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseWelcomePage("/"); #A

app.UseDeveloperExceptionPage();

app.UseStaticFiles();

app.UseRouting(); #B

app.MapGet("/", () => "Hello World!"); #B

app.Run();

Even though you know that the endpoint middleware can also handle the "/"
path, WelcomePageMiddleware is earlier in the pipeline, so it returns a
response when it receives the request to "/", short-circuiting the pipeline, as
shown in figure 4.13. None of the other middleware in the pipeline runs for
the request, so none has an opportunity to generate a response.

Figure 4.13 Overview of the application handling a request to the "/" path. The Welcome-page
middleware is first in the middleware pipeline, so it receives the request before any other
middleware. It generates an HTML response, short-circuiting the pipeline. No other middleware
runs for the request.

As WebApplication automatically adds EndpointMiddleware to the end of
the middleware pipeline, the WelcomePageMiddleware will always be ahead
of it, so it always generates a response before the endpoint can execute in this
example.

Tip

You should always consider the order of middleware when adding it to
WebApplication. Middleware added earlier in the pipeline will run (and
potentially return a response) before middleware added later.

All the examples shown so far try to handle an incoming request and generate
a response, but it’s important to remember that the middleware pipeline is
bidirectional. Each middleware component gets an opportunity to handle both
the incoming request and the outgoing response. The order of middleware is
most important for those components that create or modify the outgoing
response.

In listing 4.3, I included DeveloperExceptionPageMiddleware at the start of
the application’s middleware pipeline, but it didn’t seem to do anything.
Error-handling middleware characteristically ignores the incoming request as
it arrives in the pipeline; instead, it inspects the outgoing response, modifying
it only when an error has occurred. In the next section, I discuss the types of
error-handling middleware that are available to use with your application and
when to use them.

4.3 Handling errors using middleware

Errors are a fact of life when you’re developing applications. Even if you
write perfect code, as soon as you release and deploy your application, users
will find a way to break it, by accident or intentionally! The important thing
is that your application handles these errors gracefully, providing a suitable
response to the user and not causing your whole application to fail.

The design philosophy for ASP.NET Core is that every feature is opt-in. So
because error handling is a feature, you need to enable it explicitly in your

application. Many types of errors could occur in your application, and you
have many ways to handle them, but in this section I focus on a single type of
error: exceptions.

Exceptions typically occur whenever you find an unexpected circumstance. A
typical (and highly frustrating) exception you’ll no doubt have experienced
before is NullReferenceException, which is thrown when you attempt to
access a variable that hasn’t been initialized.[3] If an exception occurs in a
middleware component, it propagates up the pipeline, as shown in figure
4.14. If the pipeline doesn’t handle the exception, the web server returns a
500 status code to the user.

Figure 4.14 An exception in the endpoint middleware propagates through the pipeline. If the
exception isn’t caught by middleware earlier in the pipeline, a 500 “Server error” status code is
sent to the user’s browser.

In some situations, an error won’t cause an exception. Instead, middleware
might generate an error status code. One such case occurs when a requested
path isn’t handled. In that situation, the pipeline returns a 404 error.

For APIs, which typically are consumed by apps (as opposed to end users),
that result probably is fine. But for apps that typically generate HTML, such
as Razor Pages apps, returning a 404 typically results in a generic, unfriendly
page being shown to the user, as you saw in figure 4.8. Although this

behavior is correct, it doesn’t provide a great experience for users of these
types of applications.

Error-handling middleware attempts to address these problems by modifying
the response before the app returns it to the user. Typically, error-handling
middleware returns either details on the error that occurred or a generic but
friendly HTML page to the user. You’ll learn how to handle this use case in
chapter 13 when you learn about generating responses with Razor Pages.

The remainder of this section looks at the two main types of exception-
handling middleware that’s available for use in your application. Both are
available as part of the base ASP.NET Core framework, so you don’t need to
reference any additional NuGet packages to use them.

4.3.1 Viewing exceptions in development:
DeveloperExceptionPage

When you’re developing an application, you typically want access to as much
information as possible when an error occurs somewhere in your app. For
that reason, Microsoft provides DeveloperExceptionPageMiddleware, which
you can add to your middleware pipeline by using

app.UseDeveloperExceptionPage();

Note

As shown previously, WebApplication automatically adds this middleware to
your middleware pipeline when you’re running in the Development
environment, so you don’t need to add it explicitly. You’ll learn more about
environments in chapter 10.

When an exception is thrown and propagates up the pipeline to this
middleware, it’s captured. Then the middleware generates a friendly HTML
page, which it returns with a 500 status code, as shown in figure 4.15. This
page contains a variety of details about the request and the exception,
including the exception stack trace; the source code at the line the exception
occurred; and details on the request, such as any cookies or headers that were
sent.

Figure 4.15 The developer exception page shows details about the exception when it occurs
during the process of a request. The location in the code that caused the exception, the source
code line itself, and the stack trace are all shown by default. You can also click the Query,
Cookies, Headers, and Routing buttons to reveal further details about the request that caused the
exception.

Having these details available when an error occurs is invaluable for
debugging a problem, but they also represent a security risk if used
incorrectly. You should never return more details about your application to
users than absolutely necessary, so you should use DeveloperExceptionPage
only when developing your application. The clue is in the name!

Warning

Never use the developer exception page when running in production. Doing

so is a security risk, as it could publicly reveal details about your
application’s code, making you an easy target for attackers. WebApplication
uses the correct behavior by default and adds the middleware only when
running in development.

If the developer exception page isn’t appropriate for production use, what
should you use instead? Luckily, you can use another type of general-purpose
error-handling middleware in production: ExceptionHandlerMiddleware.

4.3.2 Handling exceptions in production:
ExceptionHandlerMiddleware

The developer exception page is handy when you’re developing your
applications, but you shouldn’t use it in production, as it can leak information
about your app to potential attackers. You still want to catch errors, though;
otherwise, users will see unfriendly error pages or blank pages, depending on
the browser they’re using.

You can solve this problem by using ExceptionHandlerMiddleware. If an
error occurs in your application, the user will see a custom error response
that’s consistent with the rest of the application but provides only necessary
details about the error. For a minimal API application, that response could be
JSON or plain text, as shown in figure 4.16.

Figure 4.16 Using the ExceptionHandlerMiddleware, you can return a generic error message when
an exception occurs, ensuring that you don’t leak any sensitive details about your application in
production.

For Razor Pages apps, you can create a custom error response, such as the
one shown in figure 4.17. You maintain the look and feel of the application
by using the same header, displaying the currently logged-in user, and
displaying an appropriate message to the user instead of full details on the
exception.

Figure 4.17 A custom error page created by ExceptionHandlerMiddleware. The custom error page
can have the same look and feel as the rest of the application by reusing elements such as the
header and footer. More important, you can easily control the error details displayed to users.

Given the differing requirements for error handlers in development and
production, most ASP.NET Core apps add their error-handler middleware
conditionally, based on the hosting environment. WebApplication
automatically adds the developer exception page when running in the
development hosting environment, so you typically add
ExceptionHandlerMiddleware when you’re not in the development
environment, as shown in the following listing.

Listing 4.5 Adding exception-handler middleware when in production

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build(); #A

if (!app.Environment.IsDevelopment()) #B

{

 app.UseExceptionHandler("/error"); #C

}

// additional middleware configuration

app.MapGet("/error", () => "Sorry, an error occurred"); #D

As well as demonstrating how to add ExceptionHandlerMiddleware to your
middleware pipeline, this listing shows that it’s perfectly acceptable to
configure different middleware pipelines depending on the environment
when the application starts. You could also vary your pipeline based on other
values, such as settings loaded from configuration.

Note

You’ll see how to use configuration values to customize the middleware
pipeline in chapter 10.

When adding ExceptionHandlerMiddleware to your application, you
typically provide a path to the custom error page that will be displayed to the
user. In the example in listing 4.5, you used an error handling path of
"/error":

app.UseExceptionHandler("/error");

ExceptionHandlerMiddleware invokes this path after it captures an
exception to generate the final response. The ability to generate a response
dynamically is a key feature of ExceptionHandlerMiddleware; it allows you
to reexecute a middleware pipeline to generate the response sent to the user.

Figure 4.18 shows what happens when ExceptionHandlerMiddleware
handles an exception. It shows the flow of events when the minimal API
endpoint for the "/" path generates an exception. The final response returns
an error status code but also provides an error string, using the "/error"

endpoint.

Figure 4.18 ExceptionHandlerMiddleware handling an exception to generate a JSON response. A
request to the / path generates an exception, which is handled by the middleware. The pipeline is
reexecuted, using the /error path to generate the JSON response.

The sequence of events when an unhandled exception occurs somewhere in
the middleware pipeline (or in an endpoint) after
ExceptionHandlerMiddleware is as follows:

1. A piece of middleware throws an exception.
2. ExceptionHandlerMiddleware catches the exception.
3. Any partial response that has been defined is cleared.
4. The ExceptionHandlerMiddleware overwrites the request path with the

provided error-handling path.
5. The middleware sends the request back down the pipeline, as though the

original request had been for the error-handling path.
6. The middleware pipeline generates a new response as normal.
7. When the response gets back to ExceptionHandlerMiddleware, it

modifies the status code to a 500 error and continues to pass the
response up the pipeline to the web server.

One of the main advantages of reexecuting the pipeline for Razor Page apps
is the ability to have your error messages integrated into your normal site
layout, as shown in figure 4.17. It’s certainly possible to return a fixed
response when an error occurs without reexecuting the pipeline, but you
wouldn’t be able to have a menu bar with dynamically generated links or
display the current user’s name in the menu, for example. By reexecuting the
pipeline, you ensure that all the dynamic areas of your application are
integrated correctly, as though the page were a standard page of your site.

Note

You don’t need to do anything other than add ExceptionHandlerMiddleware
to your application and configure a valid error-handling path to enable
reexecuting the pipeline, as shown in figure 4.18. The middleware will catch
the exception and reexecute the pipeline for you. Subsequent middleware will
treat the reexecution as a new request, but previous middleware in the
pipeline won’t be aware that anything unusual happened.

Reexecuting the middleware pipeline is a great way to keep consistency in
your web application for error pages, but you should be aware of some
gotchas. First, middleware can modify a response generated farther down the

pipeline only if the response hasn’t yet been sent to the client. This situation
can be a problem if, for example, an error occurs while ASP.NET Core is
sending a static file to a client. In that case, ASP.NET Core may start
streaming bytes to the client immediately for performance reasons. In that
case, the error-handling middleware won’t be able to run, as it can’t reset the
response. Generally speaking, you can’t do much about this problem, but it’s
something to be aware of.

A more common problem occurs when the error-handling path throws an
error during the reexecution of the pipeline. Imagine that there’s a bug in the
code that generates the menu at the top of the page in a Razor Pages app:

1. When the user reaches your home page, the code for generating the
menu bar throws an exception.

2. The exception propagates up the middleware pipeline.
3. When reached, ExceptionHandlerMiddleware captures it, and the pipe

is reexecuted, using the error-handling path.
4. When the error page executes, it attempts to generate the menu bar for

your app, which again throws an exception.
5. The exception propagates up the middleware pipeline.
6. ExceptionHandlerMiddleware has already tried to intercept a request,

so it lets the error propagate all the way to the top of the middleware
pipeline.

7. The web server returns a raw 500 error, as though there were no error-
handling middleware at all.

Thanks to this problem, it’s often good practice to make your error-handling
pages as simple as possible to reduce the possibility that errors will occur.

Warning

If your error-handling path generates an error, the user will see a generic
browser error. It’s often better to use a static error page that always works
than a dynamic page that risks throwing more errors. You can see an
alternative approach using a custom error handling function in this post:
http://mng.bz/0Kmx.

Another consideration when building minimal API applications is that you

generally don’t want to return HTML. Returning an HTML page to an
application that’s expecting JSON could easily break it. Instead, the HTTP
500 status code and a JSON body describing the error are more useful to a
consuming application. Luckily, ASP.NET Core allows you to do exactly this
when you create minimal APIs and web API controllers.

Note

I discuss how to add this functionality with minimal APIs in chapter 5 and
with web APIs in chapter 20.

That brings us to the end of middleware in ASP.NET Core for now. You’ve
seen how to use and compose middleware to form a pipeline, as well as how
to handle exceptions in your application. This information will get you a long
way when you start building your first ASP.NET Core applications. Later,
you’ll learn how to build your own custom middleware, as well as how to
perform complex operations on the middleware pipeline, such as forking it in
response to specific requests. In chapter 5, you’ll look in depth at minimal
APIs and at how they can be used to build JSON APIs.

4.4 Summary

Middleware has a similar role to HTTP modules and handlers in
ASP.NET but is easier to reason about.
Middleware is composed in a pipeline, with the output of one
middleware passing to the input of the next.
The middleware pipeline is two-way: requests pass through each
middleware on the way in, and responses pass back through in reverse
order on the way out.
Middleware can short-circuit the pipeline by handling a request and
returning a response, or it can pass the request on to the next middleware
in the pipeline.
Middleware can modify a request by adding data to or changing the
HttpContext object.
If an earlier middleware short-circuits the pipeline, not all middleware
will execute for all requests.
If a request isn’t handled, the middleware pipeline returns a 404 status

code.
The order in which middleware is added to WebApplication defines the
order in which middleware will execute in the pipeline.
The middleware pipeline can be reexecuted as long as a response’s
headers haven’t been sent.
When it’s added to a middleware pipeline, StaticFileMiddleware
serves any requested files found in the wwwroot folder of your
application.
DeveloperExceptionPageMiddleware provides a lot of information
about errors during development, but it should never be used in
production.
ExceptionHandlerMiddleware lets you provide user-friendly custom
error-handling messages when an exception occurs in the pipeline. It’s
safe for use in production, as it doesn’t expose sensitive details about
your application.
Microsoft provides some common middleware, and many third-party
options are available on NuGet and GitHub.

[1] Technically, middleware needs to be a function, as you’ll see in chapter
31, but it’s common to implement middleware as a C# class with a single
method.

[2] The downside to this approach is that it can hide exactly which
middleware is being added to the pipeline. When the answer isn’t clear, I
typically search for the source code of the extension method directly in
GitHub (https://github.com/aspnet/aspnetcore).

[3] C# 8.0 introduced non-nullable reference types, which provide a way to
handle null values more clearly, with the promise of finally ridding .NET of
NullReferenceExceptions! The ASP.NET Core framework libraries in
.NET 7 have fully embraced nullable reference types. See the documentation
to learn more: http://mng.bz/7V0g.

5 Creating a JSON API with
minimal APIs
This chapter covers

Creating a minimal API application to return JSON to clients
Generating responses with IResult
Using filters to perform common actions like validation
Organizing your APIs with route groups

So far in this book you’ve seen several examples of minimal API applications
that return simple Hello World! responses. These examples are great for
getting started, but you can also use minimal APIs to build full-featured
HTTP API applications. In this chapter you’ll learn about HTTP APIs, see
how they differ from a server-rendered application, and find out when to use
them.

Section 5.2 starts by expanding on the minimal API applications you’ve
already seen. You’ll explore some basic routing concepts and show how
values can be extracted from the URL automatically. Then you’ll learn how
to handle additional HTTP verbs such as POST and PUT, and explore various
ways to define your APIs.

In section 5.3 you’ll learn about the different return types you can use with
minimal APIs. You’ll see how to use the Results and TypedResults helper
classes to easily create HTTP responses that use status codes like 201
Created and 404 Not Found. You’ll also learn how to follow web standards
for describing your errors by using the built-in support for Problem Details.

Section 5.4 introduces one of the big features added to minimal APIs in .NET
7: filters. You can use filters to build a mini pipeline (similar to the
middleware pipeline from chapter 4) for each of your endpoints. Like
middleware, filters are great for extracting common code from your endpoint
handlers, making your handlers easier to read.

You’ll learn about the other big .NET 7 feature for minimal APIs in section
5.5: route groups. You can use route groups to reduce the duplication in your
minimal APIs, extracting common routing prefixes and filters, making your
APIs easier to read, and reducing boilerplate. In conjunction with filters,
route groups address many of the common complaints raised against minimal
APIs when they were released in .NET 6.

One great aspect of ASP.NET Core is the variety of applications you can
create with it. The ability to easily build a generalized HTTP API presents the
possibility of using ASP.NET Core in a greater range of situations than can
be achieved with traditional web apps alone. But should you build an HTTP
API, and if so, why? In the first section of this chapter, I’ll go over some of
the reasons why you may—or may not—want to create a web API.

5.1 What is an HTTP API, and when should you use
one?

Traditional web applications handle requests by returning HTML, which is
displayed to the user in a web browser. You can easily build applications like
that by using Razor Pages to generate HTML with Razor templates, as you’ll
learn in part 2 of this book. This approach is common and well understood,
but the modern application developer has other possibilities to consider
(figure 5.1), as you first saw in chapter 2.

Figure 5.1 Modern developers have to consider several consumers of their applications. As well as
traditional users with web browsers, these users could be single-page applications, mobile
applications, or other apps.

Client-side single-page applications (SPAs) have become popular in recent
years with the development of frameworks such as Angular, React, and Vue.
These frameworks typically use JavaScript running in a web browser to
generate the HTML that users see and interact with. The server sends this
initial JavaScript to the browser when the user first reaches the app. The
user’s browser loads the JavaScript and initializes the SPA before loading
any application data from the server.

Note

Blazor WebAssembly is an exciting new SPA framework. Blazor lets you
write an SPA that runs in the browser like other SPAs, but it uses C# and
Razor templates instead of JavaScript by using the new web standard,
WebAssembly. I don’t cover Blazor in this book, so to find out more, I
recommend Blazor in Action, by Chris Sainty (Manning, 2022).

Once the SPA is loaded in the browser, communication with a server still
occurs over HTTP, but instead of sending HTML directly to the browser in
response to requests, the server-side application sends data—normally, in the
ubiquitous JavaScript Object Notation (JSON) format—to the client-side
application. Then the SPA parses the data and generates the appropriate
HTML to show to a user, as shown in figure 5.2. The server-side application
endpoint that the client communicates with is sometimes called an HTTP
API, a JSON API, or a REST API, depending on the specifics of the API’s
design.

Figure 5.2 A sample client-side SPA using Blazor WebAssembly. The initial requests load the
SPA files into the browser, and subsequent requests fetch data from a web API, formatted as
JSON.

Definition

An HTTP API exposes multiple URLs via HTTP that can be used to access or
change data on a server. It typically returns data using the JSON format.
HTTP APIs are sometimes called web APIs, but as web API refers to a
specific technology in ASP.NET Core, in this book I use HTTP API to refer
to the generic concept.

These days, mobile applications are common and, from the server
application’s point of view, similar to client-side SPAs. A mobile application
typically communicates with a server application by using an HTTP API,
receiving data in JSON format, just like an SPA. Then it modifies the
application’s UI depending on the data it receives.

One final use case for an HTTP API is where your application is designed to

be partially or solely consumed by other backend services. Imagine that
you’ve built a web application to send emails. By creating an HTTP API, you
can allow other application developers to use your email service by sending
you an email address and a message. Virtually all languages and platforms
have access to an HTTP library they could use to access your service from
code.

That’s all there is to an HTTP API: it exposes endpoints (URLs) that client
applications can send requests to and retrieve data from. These endpoints are
used to power the behavior of the client apps, as well as to provide all the
data the client apps need to display the correct interface to a user.

Note

You have even more options when it comes to creating APIs in ASP.NET
Core. You can create remote procedure call APIs using gRPC, for example,
or provide an alternative style of HTTP API using the GraphQL standard. I
don’t cover those technologies in this book, but you can read about gRPC at
https://docs.microsoft.com/aspnet/core/grpc and find out about GraphQL in
Building Web APIs with ASP.NET Core, by Valerio De Sanctis (Manning,
2023).

Whether you need or want to create an HTTP API for your ASP.NET Core
application depends on the type of application you want to build. Perhaps
you’re familiar with client-side frameworks, or maybe you need to develop a
mobile application, or you already have an SPA build pipeline configured. In
each case, you’ll most likely want to add HTTP APIs for the client apps to
access your application.

One selling point for using an HTTP API is that it can serve as a generalized
backend for all your client applications. You could start by building a client-
side application that uses an HTTP API. Later, you could add a mobile app
that uses the same HTTP API, making little or no modification to your
ASP.NET Core code.

If you’re new to web development, HTTP APIs can also be easier to
understand initially, as they typically return only JSON. Part 1 of this book
focuses on minimal APIs so that you can focus on the mechanics of

ASP.NET Core without needing to write HTML or CSS.

In part 3, you’ll learn how to use Razor Pages to create server-rendered
applications instead of minimal APIs. Server-rendered applications can be
highly productive. They’re generally recommended when you have no need
to call your application from outside a web browser or when you don’t want
or need to make the effort of configuring a client-side application.

Note

Although there’s been an industry shift toward client-side frameworks,
server-side rendering using Razor is still relevant. Which approach you
choose depends largely on your preference for building HTML applications
in the traditional manner versus using JavaScript (or Blazor!) on the client.

Having said that, whether to use HTTP APIs in your application isn’t
something you necessarily have to worry about ahead of time. You can
always add them to an ASP.NET Core app later in development, as the need
arises.

SPAs with ASP.NET Core

The cross-platform, lightweight design of ASP.NET Core means that it lends
itself well to acting as a backend for your SPA framework of choice. Given
the focus of this book and the broad scope of SPAs in general, I won’t be
looking at Angular, React, or other SPAs here. Instead, I suggest checking
out the resources appropriate to your chosen SPA. Books are available from
Manning for all the common client-side JavaScript frameworks, as well as
Blazor:

· React in Action, by Mark Tielens Thomas (Manning, 2018)

· Angular in Action, by Jeremy Wilken (Manning, 2018)

· Vue.js in Action, by Erik Hanchett with Benjamin Listwon (Manning,
2018)

· Blazor in Action, by Chris Sainty (Manning, 2022)

After you’ve established that you need an HTTP API for your application,
creating one is easy, as it’s the default application type in ASP.NET Core! In
the next section we look at various ways you can create minimal API
endpoints and ways to handle multiple HTTP verbs.

5.2 Defining minimal API endpoints

Chapters 3 and 4 gave you an introduction to basic minimal API endpoints.
In this section, we’ll build on those basic apps to show how you can handle
multiple HTTP verbs and explore various ways to write your endpoint
handlers.

5.2.1 Extracting values from the URL with routing

You’ve seen several minimal API applications in this book, but so far, all the
examples have used fixed paths to define the APIs, as in this example:

app.MapGet("/", () => "Hello World!");

app.MapGet("/person", () => new Person("Andrew", "Lock");

These two APIs correspond to the paths / and /person, respectively. This
basic functionality is useful, but typically you need some of your APIs to be
more dynamic. It’s unlikely, for example, that the /person API would be
useful in practice, as it always returns the same Person object. What might be
more useful is an API to which you can provide the user’s first name, and the
API returns all the users with that name.

You can achieve this goal by using parameterized routes for your API
definitions. You can create a parameter in a minimal API route using the
expression {someValue}, where someValue is any name you choose. The
value will be extracted from the request URL’s path and can be used in the
lambda function endpoint.

Note

I introduce only the basics of extracting values from routes in this chapter.
You’ll learn a lot more about routing in chapter 6, including why we use

routing and how it fits into the ASP.NET Core pipeline, as well as the syntax
you can use.

If you create an API using the route template /person/{name}, for example,
and send a request to the path /person/Andrew, the name parameter will have
the value "Andrew". You can use this feature to build more useful APIs, such
as the one shown in the following listing.

Listing 5.1 A minimal API that uses a value from the URL

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var people = new List<Person> #A

{ #A

 new("Tom", "Hanks"), #A

 new("Denzel", "Washington"), #A

 new("Leondardo", "DiCaprio"), #A

 new("Al", "Pacino"), #A

 new("Morgan", "Freeman"), #A

}; #A

app.MapGet("/person/{name}", (string name) => #B

 people.Where(p => p.FirstName.StartsWith(name))); #C

app.Run();

If you send a request to /person/Al for the app defined in listing 5.1, the
name parameter will have the value "Al", and the API will return the
following JSON:

[{"firstName":"Al","lastName":"Pacino"}]

Note

By default, minimal APIs serialize C# objects to JSON. You’ll see how to
return other types of results in section 5.3.

The ASP.NET Core routing system is quite powerful, and we’ll explore it in
more detail in chapter 6. But with this simple capability, you can already
build more complex applications.

5.2.2 Mapping verbs to endpoints

So far in this book we’ve defined all our minimal API endpoints by using the
MapGet() function. This function matches requests that use the GET HTTP
verb. GET is the most-used verb; it’s what a browser uses when you enter a
URL in the address bar of your browser or follow a link on a web page.

You should use GET only to get data from the server, however. You should
never use it to send data or to change data on the server. Instead, you should
use an HTTP verb such as POST or DELETE. You generally can’t use these
verbs by navigating web pages in the browser, but they’re easy to send from a
client-side SPA or mobile app.

Tip

If you’re new to web programming or are looking for a refresher, Mozilla
Developer Network (MDN), maker of the Firefox web browser, has a good
introduction to HTTP at http://mng.bz/KeMK.

In theory, each of the HTTP verbs has a well-defined purpose, but in practice,
you may see apps that only ever use POST and GET. This is often fine for
server-rendered applications like Razor Pages, as it’s typically simpler, but if
you’re creating an API, I recommend that you use the HTTP verbs with the
appropriate semantics wherever possible.

You can define endpoints for other verbs with minimal APIs by using the
appropriate Map* functions. To map a POST endpoint, for example, you’d use
MapPost(). Table 5.1 shows the minimal API Map* methods available, the
corresponding HTTP verbs, and the typical semantic expectations of each
verb on the types of operations that the API performs.

Table 5.1 The minimal API map endpoints and the corresponding HTML verbs

Method HTTP verb Expected operation

MapGet(path, handler) GET Fetch data only; no
modification of state.
May be safe to cache.

MapPost(path, handler) POST
Create a new
resource.

MapPut(path, handler) PUT
Create or replace an
existing resource.

MapDelete(path, handler) DELETE
Delete the given
resource.

MapPatch(path, handler) PATCH
Modify the given
resource.

MapMethods(path, methods, handler)

Multiple
verbs Multiple operations

Map(path, handler) All verbs Multiple operations

MapFallback(handler) All verbs Useful for SPA
fallback routes

RESTful applications (as described in chapter 2) typically stick close to these
verb uses where possible, but some of the actual implementations can differ,
and people can easily get caught up in pedantry. Generally, if you stick to the
expected operations described in table 5.1, you’ll create a more

understandable interface for consumers of the API.

Note

You may notice that if you use the MapMethods() and Map() methods listed
in table 5.1, your API probably doesn’t correspond to the expected operations
of the HTTP verbs it supports, so I avoid these methods where possible.
MapFallback() doesn’t have a path and is called only if no other endpoint
matches. Fallback routes can be useful when you have a SPA that uses client-
side routing. See http://mng.bz/9DMl for a description of the problem and an
alternative solution.

As I mentioned at the start of section 5.2.2, testing APIs that use verbs other
than GET is tricky in the browser. You need to use a tool that allows sending
arbitrary requests such as Postman (https://www.postman.com) or the HTTP
Client plugin in JetBrains Rider. In chapter 11 you’ll learn how to use a tool
called Swagger UI to visualize and test your APIs.

Tip

The HTTP client plugin in JetBrains Rider makes it easy to craft HTTP
requests from inside your API, and even discovers all the endpoints in your
application automatically, making them easier to test. You can read more
about it at
https://www.jetbrains.com/help/rider/Http_client_in__product__code_editor.html

As a final note before we move on, it’s worth mentioning the behavior you
get when you call a method with the wrong HTTP verb. If you define an API
like the one in listing 5.1

app.MapGet("/person/{name}", (string name) =>

 people.Where(p => p.FirstName.StartsWith(name)));

and call it by using a POST request to /person/Al instead of a GET request, the
handler won’t run, and the response you get will have status code 405 Method
Not Allowed.

Tip

You should never see this response when you’re calling the API correctly, so
if you receive a 405 response, make sure to check that you’re using the right
HTTP verb and the right path. Often when I see a 405, I’ve used the correct
verb but made a typo in the URL!

In all the examples in this book so far, you provide a lambda function as the
handler for an endpoint. But in section 5.2.3, you’ll see that there are many
ways to define the handler.

5.2.3 Defining route handlers with functions

For basic examples, using a lambda function as the handler for an endpoint is
often the simplest approach, but you can take many approaches, as shown in
listing 5.2. This listing also demonstrates creating a simple CRUD (Create,
Read, Update, Delete) API using different HTTP verbs, as discussed in
section 5.2.1.

Listing 5.2 Creating route handlers for a simple CRUD API

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/fruit", () => Fruit.All); #A

var getFruit = (string id) => Fruit.All[id]; #B

app.MapGet("/fruit/{id}", getFruit); #B

app.MapPost("/fruit/{id}", Handlers.AddFruit); #C

Handlers handlers = new(); #D

app.MapPut("/fruit/{id}", handlers.ReplaceFruit); #D

app.MapDelete("/fruit/{id}", DeleteFruit); #E

app.Run();

void DeleteFruit(string id) #E

{

 Fruit.All.Remove(id);

}

record Fruit(string Name, int Stock)

{

 public static readonly Dictionary<string, Fruit> All = new();

};

class Handlers

{

 public void ReplaceFruit(string id, Fruit fruit) #D

 {

 Fruit.All[id] = fruit;

 }

 public static void AddFruit(string id, Fruit fruit) #C

 {

 Fruit.All.Add(id, fruit);

 }

}

Listing 5.2 demonstrates the various ways you can pass handlers to an
endpoint by simulating a simple API for interacting with a collection of Fruit
items:

A lambda expression, as in the MapGet("/fruit") endpoint
A Func<T, TResult> variable, as in the MapGet("/fruit/{id}")
endpoint
A static method, as in the MapPost endpoint
A method on an instance variable, as in the MapPut endpoint
A local function, as in the MapDelete endpoint

All these approaches are functionally identical, so you can use whichever
pattern works best for you.

Each Fruit record in listing 5.2 has a Name and a Stock level and is stored in
a dictionary with an id. You call the API by using different HTTP verbs to
perform the CRUD operations against the dictionary.

Warning

This API is simple. It isn’t thread-safe, doesn’t validate user input, and
doesn’t handle edge cases. We’ll remedy some of those deficiencies in
section 5.3.

The handlers for the POST and PUT endpoints in listing 5.2 accept both an id
parameter and a Fruit parameter, showing another important feature of
minimal APIs. Complex types—that is, types that can’t be extracted from the
URL by means of route parameters—are created by deserializing the JSON
body of a request.

Note

By contrast with APIs built using ASP.NET and ASP.NET Core web API
controllers (which we cover in chapter 20), minimal APIs can bind only to
JSON bodies and always use the System.Text.Json library for JSON
deserialization.

Figure 5.3 shows an example of a POST request sent with Postman. Postman
sends the request body as JSON, which the minimal API automatically
deserializes into a Fruit instance before calling the endpoint handler. You
can bind only a single object in your endpoint handler to the request body in
this way. I cover model binding in detail in chapter 7.

Figure 5.3 Sending a POST request with Postman. The minimal API automatically deserializes the
JSON in the request body to a Fruit instance before calling the endpoint handler.

Minimal APIs leave you free to organize your endpoints any way you choose.
That flexibility is often cited as a reason to not use them, due to the fear that
developers will keep all the functionality in a single file, as in most examples
(such as listing 5.2). In practice, you’ll likely want to extract your endpoints
to separate files so as to modularize them and make them easier to
understand. Embrace that urge; that’s the way they were intended to be used!

Now you have a simple API, but if you try it out, you’ll quickly run into
scenarios in which your API seems to break. In section 5.3 you learn how to
handle some of these scenarios by returning status codes.

5.3 Generating responses with IResult

You’ve seen the basics of minimal APIs, but so far, we’ve looked only at the
happy path, where you can handle the request successfully and return a
response. In this section we look at how to handle bad requests and other
errors by returning different status codes from your API.

The API in listing 5.2 works well as long as you perform only operations that
are valid for the current state of the application. If you send a GET request to
/fruit, for example, you’ll always get a 200 success response, but if you
send a GET request to /fruit/f1 before you create a Fruit with the id f1,
you’ll get an exception and a 500 Internal Server Error response, as
shown in figure 5.4.

Figure 5.4 If you try to retrieve a fruit by using a nonexistent id for the simplistic API in listing
5.2, the endpoint throws an exception. This exception is handled by the
DeveloperExceptionPageMiddleware but provides a poor experience.

Throwing an exception whenever a user requests an id that doesn’t exist
clearly makes for a poor experience all round. A better approach is to return a
status code indicating the problem, such as 404 Not Found or 400 Bad

Request. The most declarative way to do this with minimal APIs is to return
an IResult instance.

All the endpoint handlers you’ve seen so far in this book have returned void,
a string, or a plain old CLR object (POCO) such as Person or Fruit. There
is one other type of object you can return from an endpoint: an IResult
implementation. In summary, the endpoint middleware handles each return
type as follows:

void or Task—The endpoint returns a 200 response with no body.
string or Task<string>—The endpoint returns a 200 response with the
string serialized to the body as text/plain.
IResult or Task<IResult>—The endpoint executes the
IResult.ExecuteAsync method. Depending on the implementation, this
type can customize the response, returning any status code.
T or Task<T>—All other types (such as POCO objects) are serialized to
JSON and returned in the body of a 200 response as application/json.

The IResult implementations provide much of the flexibility in minimal
APIs, as you’ll see in section 5.3.1.

5.3.1 Returning status codes with Results and TypedResults

A well-designed API uses status codes to indicate to a client what went
wrong when a request failed, as well as potentially provide more descriptive
codes when a request is successful. You should anticipate common problems
that may occur when clients call your API and return appropriate status codes
to indicate the causes to users.

ASP.NET Core exposes the simple static helper types Results and
TypedResults in the namespace Microsoft.AspNetCore.Http. You can use
these helpers to create a response with common status codes, optionally
including a JSON body. Each of the methods on Results and TypedResults
returns an implementation of IResult, which the endpoint middleware
executes to generate the final response.

Note

Results and TypedResults perform the same function, as helpers for
generating common status codes. The only difference is that the Results
methods return an IResult, whereas TypedResults return a concrete generic
type, such as Ok<T>. There’s no difference in terms of functionality, but the
generic types are easier to use in unit tests and in OpenAPI documentation, as
you’ll see in chapters 36 and 11. TypedResults were added in .NET 7.

The following listing shows an updated version of listing 5.2, in which we
address some of the deficiencies in the API and use Results and
TypedResults to return different status codes to clients.

Listing 5.3 Using Results and TypedResults in a minimal API

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>(); #A

app.MapGet("/fruit", () => _fruit);

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit) #B

 ? TypedResults.Ok(fruit) #C

 : Results.NotFound()); #D

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit) #E

 ? TypedResults.Created($"/fruit/{id}", fruit) #F

 : Results.BadRequest(new #G

 { id = "A fruit with this id already exists" })); #G

app.MapPut("/fruit/{id}", (string id, Fruit fruit) =>

{

 _fruit[id] = fruit;

 return Results.NoContent(); #H

});

app.MapDelete("/fruit/{id}", (string id) =>

{

 _fruit.TryRemove(id, out _); #I

 return Results.NoContent(); #I

});

app.Run();

record Fruit(string Name, int stock);

Listing 5.3 demonstrates several status codes, some of which you may not be
familiar with:

200 OK—The standard successful response. It often includes content in
the body of the response but doesn’t have to.
201 Created—Often returned when you successfully created an entity
on the server. The Created result in listing 5.3 also includes a Location
header to describe the URL where the entity can be found, as well as the
JSON entity itself in the body of the response.
204 No Content—Similar to a 200 response but without any content in
the response body.
400 Bad Request—Indicates that the request was invalid in some way;
often used to indicate data validation failures
404 Not Found—Indicates that the requested entity could not be found

These status codes more accurately describe your API and can make an API
easier to use. That said, if you use only 200 OK responses for all your
successful responses, few people will mind or think less of you! You can see
a summary of all the possible status codes and their expected uses at
http://mng.bz/jP4x.

Note

The 404 status code in particular causes endless debate in online forums.
Should it be only used if the request didn’t match an endpoint? Is it OK to use
404 to indicate a missing entity (as in the previous example)? There are
endless proponents in both camps, so take your pick!

Results and TypedResults include methods for all the common status code
results you could need, but if you don’t want to use them for some reason,
you can always set the status code yourself directly on the HttpResponse, as
in listing 5.4. In fact, the listing shows how to define the entire response
manually, including the status code, the content type, and the response body.

You won’t need to take this manual approach often, but it can be useful in
some situations.

Listing 5.4 Writing the response manually using HttpResponse

using System.Net.Mime

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/teapot", (HttpResponse response) => #A

{

 response.StatusCode = 418; #B

 response.ContentType = MediaTypeNames.Text.Plain; #C

 return response.WriteAsync("I'm a teapot!"); #D

});

app.Run();

HttpResponse represents the response that will be sent to the client and is one
of the special types that minimal APIs know to inject into your endpoint
handlers (instead of trying to create it by deserializing from the request
body). You’ll learn about the other types you can use in your endpoint
handlers in chapter 7.

5.3.2 Returning useful errors with Problem Details

In the MapPost endpoint of listing 5.3, we checked to see whether an entity
with the given id already existed. If it did, we returned a 400 response with a
description of the error. The problem with this approach is that the client—
typically, a mobile app or SPA—must know how to read and parse that
response. If each of your APIs has a different format for errors, that
arrangement can make for a confusing API. Luckily, a web standard called
Problem Details describes a consistent format to use.

Definition

Problem Details is a web specification (https://www.rfc-
editor.org/rfc/rfc7807.html) for providing machine-readable errors for HTTP
APIs. It defines the required and optional fields that should be in the JSON
body for errors.

ASP.NET Core includes two helper methods for generating Problem Details
responses from minimal APIs: Results.Problem() and
Results.ValidationProblem() (plus their TypedResults counterparts).
Both of these methods return Problem Details JSON. The only difference is
that Problem() defaults to a 500 status code, whereas ValidationProblem()
defaults to a 400 status and requires you to pass in a Dictionary of validation
errors, as shown in the following listing.

Listing 5.5 Returning Problem Details using Results.Problem

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit", () => _fruit);

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404)); #A

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]> #B

 { #B

 {"id", new[] {"A fruit with this id already exists"}} #B

 })); #B

The ProblemHttpResult returned by these methods takes care of including
the correct title and description based on the status code, and generates the
appropriate JSON, as shown in figure 5.5. You can override the default title
and description by passing additional arguments to the Problem() and
ValidationProblem() methods.

Figure 5.5 You can return a Problem Details response by using the Problem and
ValidationProblem methods. The ValidationProblem response shown here includes a description
of the error, along with the validation errors in a standard format. This example shows the
response when you try to create a fruit with an id that has already been used.

Deciding on an error format is an important step whenever you create an API,
and as Problem Details is already a web standard, it should be your go-to
approach, especially for validation errors. Next, you’ll learn how to ensure
that all your error responses are Problem Details.

5.3.3 Converting all your responses to Problem Details

In section 5.3.2 you saw how to use the Results.Problem() and
Results.ValidationProblem() methods in your minimal API endpoints to
return Problem Details JSON. The only catch is that your minimal API
endpoints aren’t the only thing that could generate errors. In this section
you’ll learn how to make sure that all your errors return Problem Details

JSON, keeping the error responses consistent across your application.

A minimal API application could generate an error response in several ways:

Returning an error status code from an endpoint handler
Throwing an exception in an endpoint handler, which is caught by the
ExceptionHandlerMiddleware or the
DeveloperExceptionPageMiddleware and converted to an error
response.
The middleware pipeline returning a 404 response because a request
isn’t handled by an endpoint
A middleware component in the pipeline throwing an exception
A middleware component returning an error response because a request
requires authentication, and no credentials were provided

There are essentially two classes of errors, which are handled differently:
exceptions and error status code responses. To create a consistent API for
consumers, we need to make sure that both error types return Problem Details
JSON in the response.

Converting exceptions to Problem Details

In chapter 4 you learned how to handle exceptions with the
ExceptionHandlerMiddleware. You saw that the middleware catches any
exceptions from later middleware and generates an error response by
executing an error-handling path. You could add the middleware to your
pipeline with an error-handling path of "/error":

app.UseExceptionHandler("/error");

ExceptionHandlerMiddleware invokes this path after it captures an
exception to generate the final response. The trouble with this approach for
minimal APIs is that you need a dedicated error endpoint, the sole purpose of
which is to generate a Problem Details response.

Luckily, in .NET 7, you can configure the ExceptionHandlerMiddleware
(and DeveloperExceptionPageMiddleware) to convert an exception to a
Problem Details response automatically. In .NET 7, you can add the new

IProblemDetailsService to your app by calling AddProblemDetails() on
WebApplicationBuilder.Services. When the
ExceptionHandlerMiddleware is configured without an error-handling path,
it automatically uses the IProblemDetailsService to generate the response,
as shown in figure 5.6.

Warning

Calling AddProblemDetails() registers the IProblemDetailsService
service in the dependency injection container so that other services and
middleware can use it. If you configure ExceptionHandlerMiddleware
without an error-handling path but forget to call AddProblemDetails(),
you’ll get an exception when your app starts. You’ll learn more about
dependency injection in chapters 8 and 9.

Figure 5.6. The ExceptionHandlerMiddleware catches exceptions that occur later in the
middleware pipeline. If the middleware isn’t configured to reexecute the pipeline, it generates a
Problem Details response by using the IProblemDetailsService.

Listing 5.6 shows how to configure Problem Details generation in your
exception handlers. Add the required IProblemDetailsService service to
your app, and call UseExceptionHandler() without providing an error-
handling path, and the middleware will generate a Problem Details response
automatically when it catches an exception.

Listing 5.6 Configuring ExceptionHandlerMiddleware to use Problem Details

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddProblemDetails(); #A

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler(); #B

}

app.MapGet("/", void () => throw new Exception()); #C

app.Run();

As discussed in chapter 4, WebApplication automatically adds the
DeveloperExceptionPageMiddleware to your app in the development
environment. This middleware similarly supports returning Problem Details
when two conditions are satisfied:

You’ve registered an IProblemDetailsService with the app (by calling
AddProblemDetails() in Program.cs)
The request indicates that it doesn’t support HTML. If the client
supports HTML, middleware uses the HTML developer exception page
from chapter 4 instead.

The ExceptionHandlerMiddleware and
DeveloperExceptionPageMiddleware take care of converting all your
exceptions to Problem Details responses, but you still need to think about
nonexception errors, such as the automatic 404 response generated when a
request doesn’t match any endpoints.

Converting error status codes to Problem Details

Returning error status codes is the common way to communicate errors to a
client with minimal APIs. To ensure a consistent API for consumers, you
should return a Problem Details response whenever you return an error.
Unfortunately, as already mentioned, you don’t control all the places where
an error code may be created. The middleware pipeline automatically returns
a 404 response when an unmatched request reaches the end of the pipeline,
for example.

Instead of generating a Problem Details response in your endpoint handlers,

you can add middleware to convert responses to Problem Details
automatically by using the StatusCodePagesMiddleware, as shown in figure
5.7. Any response that reaches the middleware with an error status code and
doesn’t already have a body has a Problem Details body added by the
middleware. The middleware converts all error responses automatically,
regardless of whether they were generated by an endpoint or from other
middleware.

Figure 5.7 The StatusCodePagesMiddleware intercepts responses with an error status code that
have no response body and adds a Problem Details response body.

Note

You can also use the StatusCodePagesMiddleware to reexecute the
middleware pipeline with an error handling path, as you can with the
ExceptionHandlerMiddleware (chapter 4). This technique is most useful for
Razor Pages applications when you want to have a different error page for
specific status codes, as you’ll see in chapter 15.

Add the StatusCodePagesMiddleware to your app by using the
UseStatusCodePages() extension method, as shown in listing 5.7. Ensure
that you also add the IProblemDetailsService to your app by using
AddProblemDetails().

Listing 5.7 Using StatusCodePagesMiddleware to return Problem Details

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddProblemDetails(); #A

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler();

}

app.UseStatusCodePages(); #B

app.MapGet("/", () => Results.NotFound()); #C

app.Run();

The StatusCodePagesMiddleware, coupled with exception-handling
middleware, ensures that your API returns a Problem Details response for all
error responses.

Tip

You can also customize how the Problem Details response is generated by
passing parameters to the AddProblemDetails() method or by implementing
your own IProblemDetailsService.

So far in section 5.3, I’ve described returning objects as JSON, returning
strings as text, and returning custom status codes and Problem Details by
using Results. Sometimes, however, you need to return something bigger,
such as a file or a binary. Luckily, you can use the convenient Results class
for that task too.

5.3.4 Returning other data types

The methods on Results and TypedResults are convenient ways of returning
common responses, so it’s only natural that they include helpers for other
common scenarios, such as returning a file or binary data:

Results.File()—Pass in the path of the file to return, and ASP.NET
Core takes care of streaming it to the client.
Results.Byte()—For returning binary data, you can pass this method a
byte[] to return.
Results.Stream()—You can send data to the client asynchronously by
using a Stream.

In each of these cases, you can provide a content type for the data, and a
filename to be used by the client. Browsers offer to save binary data files
using the suggested filename. The File and Byte methods even support range
requests by specifying enableRangeProcessing as true.

Definition

Clients can create range requests using the Range header to request a specific
range of bytes from the server instead of the whole file, reducing the
bandwidth required for a request. When range requests are enabled for
Results.File() or Results.Byte(), ASP.NET Core automatically handles
generating an appropriate response. You can read more about range requests
at http://mng.bz/Wzd0.

If the built-in Results helpers don’t provide the functionality you need, you
can always fall back to creating a response manually, as in listing 5.4. If you
find yourself creating the same manual response several times, you could
consider creating a custom IResult type to encapsulate this logic. I show

how to create a custom IResult that returns XML and registers it as an
extension in this blog post: http://mng.bz/8rNP.

5.4 Running common code with endpoint filters

In section 5.3 you learned how to use Results to return different responses
when the request isn’t valid. We’ll look at validation in more detail in chapter
7, but in this section, you’ll learn how to use filters to extract common code
that executes before (or after) an endpoint executes.

Let’s start by adding some extra validation to the fruit API from listing 5.5.
The following listing adds an additional check to the MapGet endpoint to
ensure that the provided id isn’t empty and that it starts with the letter f.

Listing 5.8 Adding basic validation to minimal API endpoints

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

{

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f')) #A

 {

 return Results.ValidationProblem(new Dictionary<string, string[]>

 {

 {"id", new[] {"Invalid format. Id must start with 'f'"}}

 });

 }

 return _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404);

});

app.Run()

Even though this check is basic, it starts to clutter our endpoint handler,
making it harder to read what the endpoint is doing. One improvement would
be to move the validation code to a helper function. But you’re still inevitably

going to clutter your endpoint handlers with calls to methods that are
tangential to the main function of your endpoint.

Note

Chapter 7 discusses additional validation patterns in detail.

It’s common to perform various cross-cutting activities for every endpoint.
I’ve already mentioned validation; other cross-cutting activities include
logging, authorization, and auditing. ASP.NET Core has built-in support for
some of these features, such as authorization (chapter 24), but you’re likely to
have some common code that doesn’t fit into the specific pigeonholes of
validation or authorization.

Luckily, ASP.NET Core includes a feature in minimal APIs for running these
tangential concerns: endpoint filters. You can specify a filter for an endpoint
by calling AddEndpointFilter()on the result of a call to MapGet (or similar)
and passing in a function to execute. You can even add multiple calls to
AddEndpointFilter(), which builds up an endpoint filter pipeline, analogous
to the middleware pipeline. Figure 5.8 shows that the pipeline is functionally
identical to the middleware pipeline in figure 4.3.

Figure 5.8. The endpoint filter pipeline. Filters execute code and then call next(context) to
invoke the next filter in the pipeline. If there are no more filters in the pipeline, the endpoint
handler is invoked. After the handler has executed, the filters may run further code.

Each endpoint filter has two parameters: a context parameter, which
provides details about the selected endpoint handler, and the next parameter,
which represents the filter pipeline. When you invoke the methodlike next
parameter by calling next(context), you invoke the remainder of the filter
pipeline. If there are no more filters in the pipeline, you invoke the endpoint
handler, as shown in figure 5.8.

Listing 5.9 shows how to run the same validation logic you saw in listing 5.8
in an endpoint filter. The filter function accesses the endpoint method
arguments by using the context.GetArgument<T>() function, passing in a
position; 0 is the first argument of your endpoint handler, 1 is the second
argument, and so on. If the argument isn’t valid, the filter function returns an
IResult object response. If the argument is valid, the filter calls await
next(context) instead, executing the endpoint handler.

Listing 5.9 Using AddEndpointFilter to extract common code

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter(ValidationHelper.ValidateId); #A

app.Run();

class ValidationHelper

{

 internal static async ValueTask<object?> ValidateId(#B

 EndpointFilterInvocationContext context, #C

 EndpointFilterDelegate next) #D

 {

 var id = context.GetArgument<string>(0); #E

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f'))

 {

 return Results.ValidationProblem(

 new Dictionary<string, string[]>

 {

 {"id", new[]{"Invalid format. Id must start with 'f'"}}

 });

 }

 return await next(context); #F

 }

 }

Note

The EndpointFilterDelegate is a named delegate type. It’s effectively a
Func<EndpointFilterInvocationContext, ValueTask<object?>>.

There are many parallels between the middleware pipeline and the filter
endpoint pipeline, and we’ll explore them in section 5.4.1.

5.4.1 Adding multiple filters to an endpoint

The middleware pipeline is typically the best place for handling cross-cutting
concerns such as logging, authentication, and authorization, as these
functions apply to all requests. Nevertheless, it can be common to have
additional cross-cutting concerns that are endpoint-specific, as we’ve already
discussed. If you need many endpoint-specific operations, you might consider

using multiple endpoint filters.

As you saw in figure 5.8, adding multiple filters to an endpoint builds up a
pipeline. Like the middleware pipeline, the endpoint filter pipeline can
execute code both before and after the rest of the pipeline executes. Similarly,
the filter pipeline can short-circuit in the same way as the middleware
pipeline by returning a result and not calling next.

Note

You’ve already seen an example of a short circuit in the filter pipeline. In
listing 5.9 we short-circuit the pipeline if the id is invalid by returning a
Problem Details object instead of calling next(context).

As with middleware, the order in which you add filters to the endpoint filter
pipeline is important. The filters you add first are called first in the pipeline,
and filters you add last are called last. On the return journey through the
pipeline, after the endpoint handler is invoked, the filters are called in reverse
order, as with the middleware pipeline. As an example, consider the
following listing, which adds an extra filter to the endpoint shown in listing
5.9.

Listing 5.10 Adding multiple filters to the endpoint filter pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter(ValidationHelper.ValidateId) #A

 .AddEndpointFilter(async (context, next) => #B

 {

 app.Logger.LogInformation("Executing filter..."); #C

 object? result = await next(context); #D

 app.Logger.LogInformation($"Handler result: {result}"); #E

 return result; #F

 });

app.Run();

The extra filter is implemented as a lambda function and simply writes a log
message when it executes. Then it runs the rest of the filter pipeline (which
contains only the endpoint handler in this example) and logs the result
returned by the pipeline. Chapter 26 covers logging in detail. For this
example, we’ll look at the logs written to the console.

Figure 5.9 shows the log messages written when we send two requests to the
API in listing 5.10. The first request is for an entry that exists, so it returns a
200 OK result. The second request uses an invalid id format, so the first filter
rejects it. Figure 5.9 shows that neither the second filter nor the endpoint
handler runs in this case; the filter pipeline has been short-circuited.

Figure 5.9 Sending two requests to the API from listing 5.10. The first request is valid, so both
filters execute. An invalid id is provided in the second request, so the first filter short-circuits the
requests, and the second filter doesn’t execute.

By adding calls to AddEndpointFilter, you can create arbitrarily large

endpoint filter pipelines, but the fact that you can doesn’t mean you should.
Moving code to filters can reduce clutter in your endpoints, but it makes the
flow of your application harder to understand. I suggest that you avoid using
filters unless you find duplicated code in multiple endpoints, and then favor a
filter over a simple method call only if it significantly simplifies the code
required.

5.4.2 Filters or middleware: Which should you choose?

The endpoint filter pipeline is similar to the middleware pipeline in many
ways, but you should consider several subtle differences when deciding
which approach to use. The similarities include three main parallels:

Requests pass through a middleware component on the way in, and
responses pass through again on the way out. Similarly, endpoint filters
can run code before calling the next filter in the pipeline and can run
code after the response is generated, as shown in figure 5.8.
Middleware can short-circuit a request by returning a response instead
of passing it on to later middleware. Filters can also short-circuit the
filter pipeline by returning a response.
Middleware is often used for cross-cutting application concerns, such as
logging, performance profiling, and exception handling. Filters also lend
themselves to cross-cutting concerns.

By contrast, there are three main differences between middleware and filters:

Middleware can run for all requests; filters will run only for requests
that reach the EndpointMiddleware and execute the associated endpoint.
Filters have access to additional details about the endpoint that will
execute, such as the return value of the endpoint, such as an IResult.
Middleware in general won’t see these intermediate steps, so it sees only
the generated response.
Filters can easily be restricted to a subset of requests, such as a single
endpoint or a group of endpoints. Middleware generally applies to all
requests (though you can achieve something similar with custom
middleware components).

That’s all well and good, but how should we interpret these differences?
When should we choose one over the other?

I like to think of middleware versus filters as a question of specificity.
Middleware is the more general concept, operating on lower-level primitives
such as HttpContext, so it has wider reach. If the functionality you need has
no endpoint-specific requirements, you should use a middleware component.
Exception handling is a great example; exceptions could happen anywhere in
your application, and you need to handle them, so using exception-handling
middleware makes sense.

On the other hand, if you do need access to endpoint details, or if you want to
behave differently for some requests, you should consider using a filter.
Validation is a good example. Not all requests need the same validation.
Requests for static files, for example, don’t need parameter validation, the
way requests to an API endpoint do. Applying validation to the endpoints via
filters makes sense in this case.

Tip

Where possible, consider using middleware for cross-cutting concerns. Use
filters when you need different behavior for different endpoints or where the
functionality relies on endpoint concepts such as IResult objects.

So far, the filters we’ve looked at have been specific to a single endpoint. In
section 5.4.3 we look at creating generic filters that you can apply to multiple
endpoints.

5.4.3 Generalizing your endpoint filters

One common problem with filters is that they end up closely tied to the
implementation of your endpoint handlers. Listing 5.9, for example, assumes
that the id parameter is the first parameter in the method. In this section
you’ll learn how to create generalized versions of filters that work with
multiple endpoint handlers.

The fruit API we’ve been working with in this chapter contains several
endpoint handlers that take multiple parameters. The MapPost handler, for

example, takes a string id parameter and a Fruit fruit parameter:

app.MapPost("/fruit/{id}", (string id, Fruit fruit) => { /* */ });

In this example, the id parameter is listed first, but there’s no requirement for
that to be the case. The parameters to the handler could be reversed, and the
endpoint would be functionally identical:

app.MapPost("/fruit/{id}", (Fruit fruit, string id) => { /* */ });

Unfortunately, with this order, the ValidateId filter described in listing 5.9
won’t work. The ValidateId filter assumes that the first parameter to the
handler is id, which isn’t the case in our revised MapPost implementation.

ASP.NET Core provides a solution that uses a factory pattern for filters. You
can register a filter factory by using the AddEndpointFilterFactory()
method. A filter factory is a method that returns a filter function. ASP.NET
Core executes the filter factory when it’s building your app and incorporates
the returned filter into the filter pipeline for the app, as shown in figure 5.10.
You can use the same filter-factory function to emit a different filter for each
endpoint, with each filter tailored to the endpoint’s parameters.

Figure 5.10 A filter factory is a generalized way to add endpoint filters. The factory reads details
about the endpoint, such as its method signature, and builds a filter function. This function is
incorporated into the final filter pipeline for the endpoint. The build step means that a single
filter factory can create filters for multiple endpoints with different method signatures.

Listing 5.11 shows an example of the factory pattern in practice. The filter
factory is applied to multiple endpoints. For each endpoint, the factory first
checks for a parameter called id; if it doesn’t exist, the factory returns next
and doesn’t add a filter to the pipeline. If the id parameter exists, the factory
returns a filter function, which is virtually identical to the filter function in
listing 5.9; the main difference is that this filter handles a variable location of
the id parameter.

Listing 5.11 Using a filter factory to create an endpoint filter

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilterFactory(ValidationHelper.ValidateIdFactory); #A

app.MapPost("/fruit/{id}", (Fruit fruit, string id) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }))

 .AddEndpointFilterFactory(ValidationHelper.ValidateIdFactory); #A

app.Run();

class ValidationHelper

{

 internal static EndpointFilterDelegate ValidateIdFactory(

 EndpointFilterFactoryContext context, #B

 EndpointFilterDelegate next)

 {

 ParameterInfo[] parameters = #C

 context.MethodInfo.GetParameters(); #C

 int? idPosition = null; #D

 for (int i = 0; i < parameters.Length; i++) #D

 { #D

 if (parameters[i].Name == "id" && #D

 parameters[i].ParameterType == typeof(string)) #D

 { #D

 idPosition = i; #D

 break; #D

 } #D

 } #D

 if (!idPosition.HasValue) #E

 { #E

 return next; #E

 } #E

 return async (invocationContext) => #F

 {

 var id = invocationContext #G

 .GetArgument<string>(idPosition.Value); #G

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f')) #G

 { #G

 return Results.ValidationProblem(#G

 new Dictionary<string, string[]> #G

 {{ "id", new[] { "Id must start with 'f'" }}}); #G

 } #G

 return await next(invocationContext); #H

 };

 }

}

The code in listing 5.11 is more complex than anything else we’ve seen so
far, as it has an extra layer of abstraction. The endpoint middleware passes an
EndpointFilterFactoryContext object to the factory function, which
contains extra details about the endpoint in comparison to the context passed
to a normal filter function. Specifically, it includes a MethodInfo property
and an EndpointMetadata property.

Note

You’ll learn about endpoint metadata in chapter 6.

The MethodInfo property can be used to control how the filter is created
based on the definition of the endpoint handler. Listing 5.11 shows how you
can loop through the parameters to check for the details you need—a string
id parameter, in this case—and customize the filter function you return.

If you find all these method signatures to be confusing, I don’t blame you.
Remembering the difference between an EndpointFilterFactoryContext
and EndpointFilterInvocationContext and then trying to satisfy the
compiler with your lambda methods can be annoying. Sometimes, you yearn
for a good ol’ interface to implement. Let’s do that now.

5.4.4 Implementing the IEndpointFilter interface

Creating a lambda method for AddEndpointFilter() that satisfies the
compiler can be a frustrating experience, depending on the level of support
your integrated development environment (IDE) provides. In this section

you’ll learn how to sidestep the issue by defining a class that implements
IEndpointFilter instead.

You can implement IEndpointFilter by defining a class with an
InvokeAsync() that has the same signature as the lambda defined in listing
5.9. The advantage of using IEndpointFilter is that you get IntelliSense and
autocompletion for the method signature. The following listing shows how to
implement an IEndpointFilter class that’s equivalent to listing 5.9.

Listing 5.12 Implementing IEndpointFilter

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .AddEndpointFilter<IdValidationFilter>(); #A

app.Run();

class IdValidationFilter : IEndpointFilter #B

{

 public async ValueTask<object?> InvokeAsync(#C

 EndpointFilterInvocationContext context, #C

 EndpointFilterDelegate next) #C

 {

 var id = context.GetArgument<string>(0);

 if (string.IsNullOrEmpty(id) || !id.StartsWith('f'))

 {

 return Results.ValidationProblem(

 new Dictionary<string, string[]>

 {

 {"id", new[]{"Invalid format. Id must start with 'f'"}}

 });

 }

 return await next(context);

 }

}

Implementing IEndpointFilter is a good option when your filters become

more complex, but note that there’s no equivalent interface for the filter-
factory pattern shown in section 5.4.3. If you want to generalize your filters
with a filter factory, you’ll have to stick to the lambda (or helper-method)
approach shown in listing 5.11.

5.5 Organizing your APIs with route groups

One criticism levied against minimal APIs in .NET 6 was that they were
necessarily quite verbose, required a lot of duplicated code, and often led to
large endpoint handler methods. .NET 7 introduced two new mechanisms to
address these critiques:

Filters—Introduced in section 5.4, filters help separate validation checks
and cross-cutting functions such as logging from the important logic in
your endpoint handler functions.
Route groups—Described in this section, route groups help reduce
duplication by applying filters and routing to multiple handlers at the
same time.

When designing APIs, it’s important to maintain consistency in the routes
you use for your endpoints, which often means duplicating part of the route
pattern across multiple APIs. As an example, all the endpoints in the fruit
API described throughout this chapter (such as in listing 5.3) start with the
route prefix /fruit:

MapGet("/fruit", () => {/* */})

MapGet("/fruit/{id}", (string id) => {/* */})

MapPost("/fruit/{id}", (Fruit fruit, string id) => {/* */})

MapPut("/fruit/{id}", (Fruit fruit, string id) => {/* */})

MapDelete("/fruit/{id}", (string id) => {/* */})

Additionally, the last four endpoints need to validate the id parameter. This
validation can be extracted to a helper method and applied as a filter, but you
still need to remember to apply the filter when you add a new endpoint.

All this duplication can be removed by using route groups. You can use route
groups to extract common path segments or filters to a single location,

reducing the duplication in your endpoint definitions. You create a route
group by calling MapGroup("/fruit") on the WebApplication instance,
providing a route prefix for the group ("/fruit", in this case), and
MapGroup() returns a RouteGroupBuilder.

When you have a RouteGroupBuilder, you can call the same Map* extension
methods on RouteGroupBuilder as you do on WebApplication. The only
difference is that all the endpoints you define on the group will have the
prefix "/fruit" applied to each endpoint you define, as shown in figure 5.11.
Similarly, you can call AddEndpointFilter() on a route group, and all the
endpoints on the group will also use the filter.

Figure 5.11 Using route groups to simplify the definition of endpoints. You can create a route
group by calling MapGroup() and providing a prefix. Any endpoints created on the route group
inherit the route template prefix, as well as any filters added to the group.

You can even create nested groups by calling MapGroup() on a group. The
prefixes are applied to your endpoints in order, so the first MapGroup() call
defines the prefix used at the start of the route.
app.MapGroup("/fruit").MapGroup("/citrus"), for example, would have
the prefix "/fruit/citrus".

Tip

If you don’t want to add a prefix but still want to use the route group for
applying filters, you can pass the prefix "/" to MapGroup().

Listing 5.13 shows an example of rewriting the fruit API to use route
groups. It creates a top-level fruitApi, which applies the "/fruit" prefix,

and creates a nested route group called fruitApiWithValidation for the
endpoints that require a filter. You can find the complete example comparing
the versions with and without route groups in the source code for this chapter.

Listing 5.13 Reducing duplication with route groups

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

RouteGroupBuilder fruitApi = app.MapGroup("/fruit"); #A

fruitApi.MapGet("/", () => _fruit); #B

RouteGroupBuilder fruitApiWithValidation = fruitApi.MapGroup("/") #C

 .AddEndpointFilter(ValidationHelper.ValidateIdFactory); #D

fruitApiWithValidation.MapGet("/{id}", (string id) => #E

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404));

fruitApiWithValidation.MapPost("/{id}", (Fruit fruit, string id) => #E

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }));

fruitApiWithValidation.MapPut("/{id}", (string id, Fruit fruit) => #E

{

 _fruit[id] = fruit;

 return Results.NoContent();

});

fruitApiWithValidation.MapDelete("/fruit/{id}", (string id) => #E

{

 _fruit.TryRemove(id, out _);

 return Results.NoContent();

});

app.Run();

In .NET 6, minimal APIs were a bit too verbose to be generally
recommended, but with the addition of route groups and filters, minimal APIs
have come into their own. In chapter 6 you’ll learn more about routing and
route template syntax, as well as how to generate links to other endpoints.

5.6 Summary

HTTP verbs define the semantic expectation for a request. GET is used to
fetch data, POST creates a resource, PUT creates or replaces a resource,
and DELETE removes a resource. Following these conventions will make
your API easier to consume.
Each HTTP response includes a status code. Common codes include 200
OK, 201 Created, 400 Bad Request, and 404 Not Found. It’s important
to use the correct status code, as clients use these status codes to infer
the behavior of your API.
An HTTP API exposes methods or endpoints that you can use to access
or change data on a server using the HTTP protocol. An HTTP API is
typically called by mobile or client-side web applications.
You define minimal API endpoints by calling Map* functions on the
WebApplication instance, passing in a route pattern to match and a
handler function. The handler functions runs in response to matching
requests.
There are different extension methods for each HTTP verb. MapGet
handles GET requests, for example, and MapPost maps POST requests.
You use these extension methods to define how your app handles a
given route and HTTP verb.
You can define your endpoint handlers as lambda expressions, Func<T,
TResult> and Action<T> variables, local functions, instance methods, or
static methods. The best approach depends on how complex your
handler is, as well as personal preference.
Returning void from your endpoint handler generates a 200 response
with no body by default. Returning a string generates a text/plain
response. Returning an IResult instance can generate any response.
Any other object returned from your endpoint handler is serialized to
JSON. This convention helps keep your endpoint handlers succinct.
You can customize the response by injecting an HttpResponse object
into your endpoint handler and then setting the status code and response

body. This approach can be useful if you have complex requirements for
an endpoint.
The Results and TypedResults helpers contain static methods for
generating common responses, such as a 404 Not Found response using
Results.NotFound(). These helpers simplifying returning common
status codes.
You can return a standard Problem Details object by using
Results.Problem() and Results.ValiationProblem(). Problem()
generates a 500 response by default (which can be changed), and
ValidationProblem() generates a 400 response, with a list of validation
errors. These methods make returning Problem Details objects more
concise than generating the response manually.
You can use helper methods to generate other common result types on
Results, such as File() for returning a file from disk, Bytes() for
returning arbitrary binary data, and Stream() for returning an arbitrary
stream.
You can extract common or tangential code from your endpoint handlers
by using endpoint filters, which can keep your endpoint handlers easy to
read.
Add a filter to an endpoint by calling AddEndpointFilter() and
providing the lambda function to run (or use a static/instance method).
You can also implement IEndpointFilter and call
AddEndpointFilter<T>(), where T is the name of your implementing
class.
You can generalize your filter functions by creating a factory, using the
overload of AddEndpointFilter() that takes an
EndpointFilterFactoryContext. You can use this approach to support
endpoint handlers with various method signatures.
You can reduce duplication in your endpoint routes and filter
configuration by using route groups. Call MapGroup() on
WebApplication, and provide a prefix. All endpoints created on the
returned RouteGroupBuilder will use the prefix in their route templates.
You can also call AddEndpointFilter() on route groups. Any endpoints
defined on the group will also have the filter, as though you defined
them on the endpoint directly, removing the need to duplicate the call on
each endpoint.

6 Mapping URLs to endpoints using
routing
This chapter covers

Mapping URLs to endpoint handlers
Using constraints and default values to match URLs
Generating URLs from route parameters

In chapter 5 you learned how to define minimal APIs, how to return
responses, and how to work with filters and route groups. One crucial aspect
of minimal APIs that we touched on only lightly is how ASP.NET Core
selects a specific endpoint from all the handlers defined, based on the
incoming request URL. This process, called routing, is the focus of this
chapter.

This chapter begins by identifying the need for routing and why it’s useful.
You’ll learn about the endpoint routing system introduced in ASP.NET Core
3.0 and why it was introduced, and explore the flexibility routing can bring to
the URLs you expose.

The bulk of this chapter focuses on the route template syntax and how it can
be used with minimal APIs. You’ll learn about features such as optional
parameters, default parameters, and constraints, as well as how to extract
values from the URL automatically. Although we’re focusing on minimal
APIs in this chapter, the same routing system is used with Razor Pages and
Model-View-Controller (MVC), as you’ll see in chapter 14.

In section 6.4 I describe how to use the routing system to generate URLs,
which you can use to create links and redirect requests for your application.
One benefit of using a routing system is that it decouples your handlers from
the underlying URLs they’re associated with. You can use URL generation to
avoid littering your code with hardcoded URLs like /product/view/3.
Instead, you can generate the URLs at runtime, based on the routing system.

This approach makes changing the URL for a given endpoint easier: instead
of your having to hunt down every place where you used the endpoint’s
URL, the URLs are updated for you automatically, with no other changes
required.

By the end of this chapter, you should have a much clearer understanding of
how an ASP.NET Core application works. You can think of routing as being
the glue that ties the middleware pipeline to endpoints. With middleware,
endpoints, and routing under your belt, you’ll be writing web apps in no time!

6.1 What is routing?

Routing is the process of mapping an incoming request to a method that will
handle it. You can use routing to control the URLs you expose in your
application. You can also use routing to enable powerful features such as
mapping multiple URLs to the same handler and automatically extracting
data from a request’s URL.

In chapter 4 you saw that an ASP.NET Core application contains a
middleware pipeline, which defines the behavior of your application.
Middleware is well suited to handling both cross-cutting concerns, such as
logging and error handling, and narrowly focused requests, such as requests
for images and CSS files.

To handle more complex application logic, you’ll typically use the
EndpointMiddleware at the end of your middleware pipeline. This
middleware can handle an appropriate request by invoking a method known
as a handler and using the result to generate a response. Previous chapters
described using minimal API endpoint handlers, but there are other types of
handlers, such as MVC Action methods and Razor Pages, as you’ll learn in
part 2 of this book.

One aspect that I’ve glossed over so far is how the EndpointMiddleware
selects which handler executes when you receive a request. What makes a
request appropriate for a given handler? The process of mapping a request to
a handler is routing.

Definition

Routing in ASP.NET Core is the process of selecting a specific handler for an
incoming HTTP request. In minimal APIs, the handler is the endpoint handler
associated with a route. In Razor Pages, the handler is a page handler method
defined in a Razor Page. In MVC, the handler is an action method in a
controller.

In chapters 3 to 5, you saw several simple applications built with minimal
APIs. In chapter 5, you learned the basics of routing for minimal APIs, but
it’s worth exploring why routing is useful as well as how to use it. Even a
simple URL path such as /person uses routing to determine which handler
should be executed, as shown in figure 6.1.

Figure 6.1 The router compares the request URL with a list of configured route templates to
determine which handler to execute.

On the face of it, that seems pretty simple. You may wonder why I need a
whole chapter to explain that obvious mapping. The simplicity of the
mapping in this case belies how powerful routing can be. If this approach,
using a direct comparison with static strings, were the only one available,
you’d be severely limited in the applications you could feasibly build.

Consider an e-commerce application that sells multiple products. Each
product needs to have its own URL, so if you were using a purely static
routing system, you’d have only two options:

Use a different handler for every product in your product range. That
approach would be unfeasible for almost any realistically sized product
range.
Use a single handler, and use the query string to differentiate among
products. This approach is much more practical, but you’d end up with
somewhat-ugly URLs, such as "/product?name=big-widget" or
"/product?id=12".

Definition

The query string is part of a URL containing additional data that doesn’t fit in
the path. It isn’t used by the routing infrastructure to identify which handler
to execute, but ASP.NET Core can extract values from the query string
automatically in a process called model binding, as you’ll see in chapter 7.
The query string in the preceding example is id=12.

With routing, you can have a single endpoint handler that can handle multiple
URLs without having to resort to ugly query strings. From the point of the
view of the endpoint handler, the query string and routing approaches are
similar; the handler returns the results for the correct product dynamically as
appropriate. The difference is that with routing, you can completely
customize the URLs, as shown in figure 6.2. This feature gives you much
more flexibility and can be important in real-life applications for search
engine optimization (SEO).

Note

With the flexibility of routing, you can encode the hierarchy of your site

properly in your URLs, as described in Google’s SEO starter guide at
http://mng.bz/EQ2J.

Figure 6.2 If you use static URL-based mapping, you need a different handler for every product
in your product range. With a query string, you can use a single handler, and the query string
contains the data. With routing, multiple URLs map to a single handler, and a dynamic
parameter captures the difference in the URL.

As well as enabling dynamic URLs, routing fundamentally decouples the
URLs in your application from the definition of your handlers.

File-system based routing

In one alternative to routing, the location of a handler on disk dictates the
URL you use to invoke it. The downside of this approach is that if you want
to change an exposed URL, you also need to change the location of the
handler on disk.

This file-based approach may sound like a strange choice, but it has many
advantages for some apps, primarily in terms of simplicity. As you’ll see in
part 2, Razor Pages is partially file-based but also uses routing to get the best
of both worlds!

With routing it’s easy to modify your exposed URLs without changing any
filenames or locations. You can also use routing to create friendlier URLs for
users, which can improve discovery and “hackability.” All of the following
routes could point to the same handler:

/rates/view/1

/rates/view/USD

/rates/current-exchange-rate/USD

/current-exchange-rate-for-USD

This level of customization isn’t often necessary, but it’s quite useful to have
the capability to customize your app’s URLs when you need it. In the next
section we’ll look at how routing works in practice in ASP.NET Core.

6.2 Endpoint routing in ASP.NET Core

In this section I describe how endpoint routing works in ASP.NET Core,
specifically with respect to minimal APIs and the middleware pipeline. In
chapter 14 you’ll learn how routing is used with Razor Pages and the
ASP.NET Core MVC framework.

Routing has been part of ASP.NET Core since its inception, but it has been
through some big changes. In ASP.NET Core 2.0 and 2.1, routing was
restricted to Razor Pages and the ASP.NET Core MVC framework. There
was no dedicated routing middleware in the middleware pipeline; routing
happened only within Razor Pages or MVC components.

Unfortunately, restricting routing to the MVC and Razor Pages infrastructure
made some things a bit messy. Some cross-cutting concerns, such as
authorization, were restricted to the MVC infrastructure and were hard to use
from other middleware in your application. That restriction caused inevitable
duplication, which wasn’t ideal.

ASP.NET Core 3.0 introduced a new routing system: endpoint routing.
Endpoint routing makes the routing system a more fundamental feature of
ASP.NET Core and no longer ties it to the MVC infrastructure. Now Razor
Pages, MVC, and other middleware can all use the same routing system.
.NET 7 continues to use the same endpoint routing system, which is integral
to the minimal API functionality that was introduced in .NET 6.

Endpoint routing is fundamental to all but the simplest ASP.NET Core apps.
It’s implemented with two pieces of middleware, which you’ve already seen:

EndpointRoutingMiddleware—This middleware chooses which
registered endpoints execute for a given request at runtime. To make it
easier to distinguish between the two types of middleware, I’ll be
referring to this middleware as the RoutingMiddleware throughout this
book.
EndpointMiddleware—This middleware is typically placed at the end of
your middleware pipeline. The middleware executes the endpoint
selected by the RoutingMiddleware at runtime.

You register the endpoints in your application by calling Map* functions on an
IEndpointRouteBuilder instance. In .NET 7 apps, this instance typically is a
WebApplication instance but doesn’t have to be, as you’ll see in chapter 30.

Definition

An endpoint in ASP.NET Core is a handler that returns a response. Each

endpoint is associated with a URL pattern. Depending on the type of
application you’re building, minimal API handlers, Razor Page handlers, or
MVC controller action methods typically make up the bulk of the endpoints
in an application. You can also use simple middleware as an endpoint or a
health-check endpoint, for example.

WebApplication implements IEndpointRouteBuilder, so you can register
endpoints on it directly. Listing 6.1 shows how you’d register several
endpoints:

A minimal API handler using MapGet(), as you’ve seen in previous
chapters.
A health-check endpoint using MapHealthChecks(). You can read more
about health checks at http://mng.bz/N2YD.
All Razor Pages endpoints in the application using MapRazorPages().
You’ll learn more about routing with Razor Pages in chapter 14.

Listing 6.1 Registering multiple endpoints with WebApplication

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHealthChecks(); #A

builder.Services.AddRazorPages(); #A

WebApplication app = builder.Build();

app.MapGet("/test", () => "Hello world!"); #B

app.MapHealthChecks("/healthz"); #C

app.MapRazorPages(); #D

app.Run();

Each endpoint is associated with a route template that defines which URLs
the endpoint should match. You can see two route templates, "/healthz" and
"/test", in listing 6.1.

Definition

A route template is a URL pattern that is used to match against request
URLs, which are strings of fixed values, such as "/test" in the previous

listing. They can also contain placeholders for variables, as you’ll see in
section 6.3.

The WebApplication stores the registered routes and endpoints in a
dictionary that’s shared by the RoutingMiddleware and the
EndpointMiddleware.

Tip

By default, WebApplication automatically adds the RoutingMiddleware to
the start of the middleware and EndpointMiddleware to the end of the
middleware pipeline, though you can override the location in the pipeline by
calling UseRouting() or UseEndpoints(). See section 4.2.3 for more details
about automatically added middleware.

At runtime, the RoutingMiddleware compares an incoming request with the
routes registered in the dictionary. If the RoutingMiddleware finds a
matching endpoint, it makes a note of which endpoint was selected and
attaches that to the request’s HttpContext object. Then it calls the next
middleware in the pipeline. When the request reaches the
EndpointMiddleware, the middleware checks to see which endpoint was
selected and executes the endpoint (and any associated endpoint filters), as
shown in figure 6.3.

Figure 6.3 Endpoint routing uses a two-step process. The RoutingMiddleware selects which
endpoint to execute, and the EndpointMiddleware executes it. If the request URL doesn’t match a
route template, the endpoint middleware won’t generate a response.

If the request URL doesn’t match a route template, the RoutingMiddleware
doesn’t select an endpoint, but the request still continues down the
middleware pipeline. As no endpoint is selected, the EndpointMiddleware
silently ignores the request and passes it to the next middleware in the
pipeline. The EndpointMiddleware is typically the final middleware in the
pipeline, so the “next” middleware is normally the dummy middleware that
always returns a 404 Not Found response, as you saw in chapter 4.

Tip

If the request URL doesn’t match a route template, no endpoint is selected or
executed. The whole middleware pipeline is still executed, but typically a 404
response is returned when the request reaches the dummy 404 middleware.

The advantage of having two separate pieces of middleware to handle this
process may not be obvious at first blush. Figure 6.3 hinted at the main
benefit: all middleware placed after the RoutingMiddleware can see which
endpoint is going to be executed before it is.

Note

Only middleware placed after the RoutingMiddleware can detect which
endpoint is going to be executed.

Figure 6.4 shows a more realistic middleware pipeline in which middleware
is placed both before the RoutingMiddleware and between the
RoutingMiddleware and the EndpointMiddleware.

Figure 6.4 Middleware placed before the routing middleware doesn’t know which endpoint the
routing middleware will select. Middleware placed between the routing middleware and the
endpoint middleware can see the selected endpoint.

The StaticFileMiddleware in figure 6.4 is placed before the
RoutingMiddleware, so it executes before an endpoint is selected.
Conversely, the AuthorizationMiddleware is placed after the
RoutingMiddleware, so it can tell which minimal API endpoint will be
executed eventually. In addition, it can access certain metadata about the
endpoint, such as its name and the permissions required to access it.

Tip

The AuthorizationMiddleware needs to know which endpoint will be
executed, so it must be placed after the RoutingMiddleware and before the
EndpointMiddleware in your middleware pipeline. I discuss authorization in
more detail in chapter 24.

It’s important to remember the different roles of the two types of routing
middleware when building your application. If you have a piece of
middleware that needs to know which endpoint (if any) a given request will
execute, you need to make sure to place it after the RoutingMiddleware and
before the EndpointMiddleware.

Tip

If you want to place middleware before the RoutingMiddleware, such as the
StaticFileMiddleware in figure 6.4, you need to override the automatic
middleware added by WebApplication by calling UseRouting() at the
appropriate point in your middleware pipeline. See listing 4.3 in chapter 4 for
an example.

I’ve covered how the RoutingMiddleware and EndpointMiddleware interact
to provide routing capabilities in ASP.NET Core, but we’ve looked at only
simple route templates so far. In the next section we’ll look at some of the
many features available with route templates.

6.3 Exploring the route template syntax

So far in this book we’ve looked at simple route templates consisting of fixed
values, such as /person and /test, as well as using a basic route parameter
such as /fruit/{id}. In this section we explore the full range of features
available in route templates, such as default values, optional segments, and
constraints.

6.3.1 Working with parameters and literal segments

Route templates have a rich, flexible syntax. Figure 6.5, however, shows a
simple example, similar to ones you’ve already seen.

Figure 6.5 A simple route template showing a literal segment and two required route parameters

The routing middleware parses a route template by splitting it into segments.
A segment is typically separated by the / character, but it can be any valid
character.

Definition

Segments that use a character other than / are called complex segments. I
generally recommend that you avoid them and stick to using / as a separator.
Complex segments have some peculiarities that make them hard to use, so be
sure to check the documentation at http://mng.bz/D4RE before you use them.

Each segment is either

A literal value such as product in figure 6.5
A route parameter such as {category} and {name} in figure 6.5

The request URL must match literal values exactly (ignoring case). If you
need to match a particular URL exactly, you can use a template consisting
only of literals.

Tip

Literal segments in ASP.NET Core aren’t case-sensitive.

Imagine that you have a minimal API in your application defined using

app.MapGet("/About/Contact", () => {/* */})

This route template, “/About/Contact", consists only of literal values, so it
matches only the exact URL (ignoring case). None of the following URLs
would match this route template:

/about

/about-us/contact

/about/contact/email

/about/contact-us

Route parameters are sections of a URL that may vary but are still a match
for the template. You define them by giving them a name and placing them in
braces, such as {category} or {name}. When used in this way, the parameters
are required, so the request URL must have a segment that they correspond
to, but the value can vary.

The ability to use route parameters gives you great flexibility. The simple
route template "/{category}/{name}" could be used to match all the
product-page URLs in an e-commerce application:

/bags/rucksack-a—Where category=bags and name=rucksack-a
/shoes/black-size9—Where category=shoes and name=black-size9

But note that this template would not map the following URLs:

/socks/—No name parameter specified
/trousers/mens/formal—Extra URL segment, formal, not found in
route template

When a route template defines a route parameter and the route matches a
URL, the value associated with the parameter is captured and stored in a
dictionary of values associated with the request. These route values typically
drive other behavior in the endpoint and can be injected into the handlers (as
you saw briefly in chapter 5) in a process called model binding.

Definition

Route values are the values extracted from a URL based on a given route
template. Each route parameter in a template has an associated route value,
and the values are stored as a string pair in a dictionary. They can be used
during model binding, as you’ll see in chapter 7.

Literal segments and route parameters are the two cornerstones of ASP.NET
Core route templates. With these two concepts, it’s possible to build all
manner of URLs for your application. In the remainder of section 6.3 we’ll
look at additional features that let you have optional URL segments, provide
default values when a segment isn’t specified, and place additional
constraints on the values that are valid for a given route parameter.

6.3.2 Using optional and default values

In section 6.3.1 you saw a simple route template with a literal segment and
two required routing parameters. Figure 6.6 shows a more complex route that
uses several additional features.

Figure 6.6 A more complex route template showing literal segments, named route parameters,
optional parameters, and default values.

The literal product segment and the required {category} parameter are the
same as those in in figure 6.6. The {name} parameter looks similar, but it has
a default value specified for it by =all. If the URL doesn’t contain a segment

corresponding to the {name} parameter, the router will use the all value
instead.

The final segment of figure 6.6, {id?}, defines an optional route parameter
called id. This segment of the URL is optional. If this segment is present, the
router captures the value for the {id} parameter; if the segment isn’t there,
the router doesn’t create a route value for id.

You can specify any number of route parameters in your templates, and these
values will be available to you for model binding. The complex route
template shown in figure 6.6 allows you to match a greater variety of URLs
by making {name} and {id} optional and by providing a default for {name}.
Table 6.1 shows some of the URLs that this template would match and the
corresponding route values that the router would set.

Table 6.1 URLs that would match the template of figure 6.7 and their corresponding route values

URL Route values

/product/shoes/formal/3 category=shoes, name=formal, id=3

/product/shoes/formal category=shoes, name=formal

/product/shoes category=shoes, name=all

/product/bags/satchels category=bags, name=satchels

/product/phones category=phones, name=all

/product/computers/laptops/ABC-123 category=computers, name=laptops, id=ABC-123

Note that there’s no way to specify a value for the optional {id} parameter

without also specifying the {category} and {name} parameters. You can put
an optional parameter (that doesn’t have a default) only at the end of a route
template.

Using default values allows you to have multiple ways to call the same URL,
which may be desirable in some cases. Given the route template in figure 6.6,
the following two URLs are equivalent:

/product/shoes

/product/shoes/all

Both URLs will execute the same endpoint handler, with the same route
values of category=shoes and name=all. Using default values allows you to
use shorter, more memorable URLs in your application for common URLs
but still gives you the flexibility to match a variety of routes in a single
template.

6.3.3 Adding additional constraints to route parameters

By defining whether a route parameter is required or optional and whether it
has a default value, you can match a broad range of URLs with terse template
syntax. Unfortunately, in some cases this approach ends up being a little too
broad. Routing only matches URL segments to route parameters; it doesn’t
know anything about the data you’re expecting those route parameters to
contain. If you consider a template similar to the one in figure 6.6,
"/{category}/{name=all}/{id?}", all of the following URLs would match:

/shoes/sneakers/test

/shoes/sneakers/123

/Account/ChangePassword

/ShoppingCart/Checkout/Start

/1/2/3

These URLs are perfectly valid given the template’s syntax, but some might
cause problems for your application. These URLs have two or three
segments, so the router happily assigns route values and matches the template
when you might not want it to! These are the route values assigned:

/shoes/sneakers/test has route values category=shoes,
name=sneakers, and id=test.
/shoes/sneakers/123 has route values category=shoes,
name=sneakers, and id=123.
/Account/ChangePassword has route values category=Account, and
name=ChangePassword.
/Cart/Checkout/Start has route values category=Cart,
name=Checkout, and id=Start.
/1/2/3 has route values category=1, name=2, and id=3.

Typically, the router passes route values to handlers through model binding,
which you saw briefly in chapter 5 (and which chapter 7 discusses in detail).
A minimal API endpoint defined as

app.MapGet("/fruit/{id}", (int id) => "Hello world!");

would obtain the id argument from the id route value. If the id route
parameter ends up assigned a noninteger value from the URL, you’ll get an
exception when it’s bound to the integer id parameter.

To avoid this problem, it’s possible to add more constraints to a route
template that must be satisfied for a URL to be considered a match. You can
define constraints in a route template for a given route parameter by using :
(colon). {id:int}, for example, would add the IntRouteConstraint to the
id parameter. For a given URL to be considered a match, the value assigned
to the id route value must be convertible to an integer.

You can apply a large number of route constraints to route templates to
ensure that route values are convertible to appropriate types. You can also
check more advanced constraints, such as that an integer value has a
particular minimum value, that a string value has a maximum length, and that
a value matches a given regular expression. Table 6.2 describes some of the
available constraints. You can find a more complete list online in Microsoft’s
documentation at http://mng.bz/BmRJ.

Table 6.2 A few route constraints and their behavior when applied

Constraint Example Match examples

int {qty:int} 123, -123, 0

Guid {id:guid} d071b70c-a812-4b54-87d2-7769528e2814

decimal {cost:decimal} 29.99, 52, -1.01

min(value) {age:min(18)} 18, 20

length(value) {name:length(6)} ndrew,123456

optional int {qty:int?} 123, -123, 0, null

optional int max(value) {qty:int:max(10)?} 3, -123, 0, null

Tip

As you can see from table 6.2, you can also combine multiple constraints by
separating the constraints with colons.

Using constraints allows you to narrow down the URLs that a given route
template will match. When the routing middleware matches a URL to a route
template, it interrogates the constraints to check that they’re all valid. If they
aren’t valid, the route template isn’t considered a match, and the endpoint
won’t be executed.

Warning

Don’t use route constraints to validate general input, such as to check that an
email address is valid. Doing so will result in 404 “Page not found” errors,
which will be confusing for the user. You should also be aware that all these
built-in constraints assume invariant culture, which may prove to be
problematic if your application uses URLs localized for other languages.

Constraints are best used sparingly, but they can be useful when you have
strict requirements on the URLs used by the application, as they can allow
you to work around some otherwise-tricky combinations. You can even
create custom constraints, as described in the documentation at
http://mng.bz/d14Q.

Constraints and overlapping routes

If you have a well-designed set of URLs for your application, you’ll probably
find that you don’t need to use route constraints. Route constraints are most
useful when you have overlapping route templates.

Suppose that you have an endpoint with the route template
"/{number}/{name}" and another with the template "/{product}/{id}".
When a request with the URL /shoes/123 arrives, which template is chosen?
Both match, so the routing middleware panics and throws an exception—not
ideal.

Using constraints can fix this problem. If you update the first template to
"/{number:int}/{name}", the integer constraint means that the URL is no
longer a match, and the routing middleware can choose correctly. Note,
however, that the URL /123/shoes still matches both route templates, so
you’re not out of the woods.

Generally, you should avoid overlapping route templates like these, as
they’re often confusing and more trouble than they’re worth. If your route
templates are well defined so that each URL maps to a single template,
ASP.NET Core routing will work without any difficulties. Sticking to the
built-in conventions as far as possible is the best way to stay on the happy
path!

We’re coming to the end of our look at route templates, but before we move
on, there’s one more type of parameter to think about: the catch-all
parameter.

6.3.4 Matching arbitrary URLs with the catch-all parameter

You’ve seen how route templates take URL segments and attempt to match
them to parameters or literal strings. These segments normally split around
the slash character, /, so the route parameters themselves won’t contain a
slash. What do you do if you need them to contain a slash or don’t know how
many segments you’re going to have?

Imagine that you’re building a currency-converter application that shows the
exchange rate from one currency to one or more other currencies. You’re told
that the URLs for this page should contain all the currencies as separate
segments. Here are some examples:

/USD/convert/GBP—Show USD with exchange rate to GBP.
/USD/convert/GBP/EUR—Show USD with exchange rates to GBP and

EUR.
/USD/convert/GBP/EUR/CAD—Show USD with exchange rates for GBP,
EUR, and CAD.

If you want to support showing any number of currencies, as these URLs do,
you need a way to capture everything after the convert segment. You could
achieve this goal by using a catch-all parameter in the route template, as
shown in figure 6.7.

Figure 6.7 You can use catch-all parameters to match the remainder of a URL. Catch-all
parameters may include the / character or may be an empty string.

You can declare catch-all parameters by using either one or two asterisks
inside the parameter definition, as in {*others} and {**others}. These
parameters match the remaining unmatched portion of a URL, including any
slashes or other characters that aren’t part of earlier parameters. They can
also match an empty string. For the USD/convert/GBP/EUR URL, the value of
the route value others would be the single string "GBP/EUR".

Tip

Catch-all parameters are greedy and will capture the whole unmatched
portion of a URL. Where possible, to avoid confusion, avoid defining route
templates with catch-all parameters that overlap other route templates.

The one- and two-asterisk versions of the catch-all parameter behave
identically when routing an incoming request to an endpoint. The difference
occurs only when you’re generating URLs (which we’ll cover in the next
section): the one-asterisk version URL encodes forward slashes, and the two-
asterisk version doesn’t. Typically, the round-trip behavior of the two-
asterisk version is what you want.

Note

For examples and a comparison between the one and two-asterisk catch-all
versions, see the documentation at http://mng.bz/rWyX.

You read that last paragraph correctly: mapping URLs to endpoints is only
half of the responsibilities of the routing system in ASP.NET Core. It’s also
used to generate URLs so that you can reference your endpoints easily from
other parts of your application.

6.4 Generating URLs from route parameters

In this section we’ll look at the other half of routing: generating URLs.
You’ll learn how to generate URLs as a string you can use in your code and
how to send redirect URLs automatically as a response from your endpoints.

One of the benefits and byproducts of using the routing infrastructure in
ASP.NET Core is that your URLs can be somewhat fluid. You can change
route templates however you like in your application—by renaming /cart to
/basket, for example—and won’t get any compilation errors.

Endpoints aren’t isolated, of course; inevitably, you’ll want to include a link
to one endpoint in another. Trying to manage these links within your app
manually would be a recipe for heartache, broken links, and 404 errors. If
your URLs were hardcoded, you’d have to remember to do a find-and-
replace operation with every rename!

Luckily, you can use the routing infrastructure to generate appropriate URLs
dynamically at runtime instead, freeing you from the burden. Conceptually,
this process is almost the exact reverse of the process of mapping a URL to

an endpoint, as shown in figure 6.8. In the routing case, the routing
middleware takes a URL, matches it to a route template, and splits it into
route values. In the URL generation case, the generator takes in the route
values and combines them with a route template to build a URL.

Figure 6.8 A comparison between routing and URL generation. Routing takes in a URL and
generates route values, but URL generation uses route values to generate a URL.

You can use the LinkGenerator class to generate URLs for your minimal
APIs. You can use it in any part of your application, so you can use it in
middleware and any other services too. LinkGenerator has various methods
for generating URLs, such as GetPathByPage and GetPathByAction, which
are used specifically for routing to Razor Pages and MVC actions, so we’ll
look at those in chapter 14. We’re interested in the methods related to named
routes.

6.4.1 Generating URLs for a minimal API endpoint with
LinkGenerator

You’ll need to generate URLs in various places in your application, and one
common location is your minimal API endpoints. The following listing
shows how you could generate a link to one endpoint from another by
annotating the target endpoint with a name and using the LinkGenerator
class.

Listing 6.2 Generating a URL LinkGenerator and a named endpoint

app.MapGet("/product/{name}", (string name) => $"The product is {name}") #A

 .WithName("product"); #B

app.MapGet("/links", (LinkGenerator links) => #C

{

 string link = links.GetPathByName("product", #D

 new { name = "big-widget"}); #D

 return $"View the product at {link}"; #E

});

The WithName() method adds metadata to your endpoints so that they can be
referenced by other parts of your application. In this case, we’re adding a
name to the endpoint so we can refer to it later. You’ll learn more about
metadata in chapter 11.

Note

Endpoint names are case-sensitive (unlike the route templates themselves)
and must be globally unique. Duplicate names cause exceptions at runtime.

The LinkGenerator is a service available anywhere in ASP.NET Core. You
can access it from your endpoints by including it as a parameter in the
handler.

Note

You can reference the LinkGenerator in your handler because it’s registered
with the dependency injection container automatically. You’ll learn about
dependency injection in chapters 8 and 9.

The GetPathByName() method takes the name of a route and, optionally,
route data. The route data is packaged as key-value pairs into a single C#
anonymous object. If you need to pass more than one route value, you can
add more properties to the anonymous object. Then the helper will generate a
path based on the referenced endpoint’s route template.

Listing 6.2 shows how to generate a path. But you can also generate a
complete URL by using the GetUriByName() method and providing values
for the host and scheme, as in this example:

links.GetUriByName("product", new { Name = "super-fancy-widget"},

 "https", new HostString("localhost"));

Also, some methods available on LinkGenerator take an HttpContext.
These methods are often easier to use in an endpoint handler, as they extract
ambient values such as the scheme and hostname from the incoming request
and reuse them for URL generation.

Warning

Be careful when using the GetUriByName method. It’s possible to expose
vulnerabilities in your app if you use unvalidated host values. For more
information on host filtering and why it’s important, see this post:
http://mng.bz/V1d5.

In listing 6.2, as well as providing the route name, I passed in an anonymous
object to GetPathByName:

string link = links.GetPathByName("product", new { name = "big-widget"});

This object provides additional route values when generating the URL, in this
case setting the name parameter to "big-widget":

If a selected route explicitly includes the defined route value in its definition,
such as in the "/product/{name}" route template, the route value will be
used in the URL path, resulting in /product/big-widget. If a route doesn’t
contain the route value explicitly, as in the "/product" template, the route
value is appended to the query string as additional data. as in /product?
name=big-widget.

6.4.2 Generating URLs with IResults

Generating URLs that link to other endpoints is common when you’re
creating a REST API, for example. But you don’t always need to display
URLs. Sometimes, you want to redirect a user to a URL automatically. In that
situation you can use Results.RedirectToRoute() to handle the URL
generation instead.

Note

Redirects are more common with server-rendered applications such as Razor
Pages, but they’re perfectly valid for API applications too.

Listing 6.3 shows how you can return a response from an endpoint that
automatically redirects a user to a different named endpoint. The
RedirectToRoute() method takes the name of the endpoint and any required
route parameters, and generates a URL in a similar way to LinkGenerator.
The minimal API framework automatically sends the generated URL as the
response, so you never see the URL in your code. Then the user’s browser
reads the URL from the response and automatically redirects to the new page.

Listing 6.3 Generating a redirect URL using Results.RedirectToRoute()

app.MapGet("/test", () => "Hello world!")

 .WithName("hello"); #A

app.MapGet("/redirect-me",

 () => Results.RedirectToRoute("hello")) #B

By default, RedirectToRoute() generates a 302 Found response and includes
the generated URL in the Location response header. You can control the
status code used by setting the optional parameters preserveMethod and
permanent as follows:

permanent=false, preserveMethod=false—302 Found

permanent=true, preserveMethod=false—301 Moved Permanently

permanent=false, preserveMethod=true—307 Temporary Redirect

permanent=true, preserveMethod=true—308 Permanent Redirect

Note

Each of the redirect status codes has a slightly different semantic meaning,
though in practice, many sites simply use 302. Be careful with the permanent
move status codes; they’ll cause browsers to never call the original URL,
always favoring the redirect location. For a good explanation of these codes
(and the useful 303 See Other status code), see the Mozilla documentation at
http://mng.bz/x4GB.

As well as redirecting to a specific endpoint, you can redirect to an arbitrary
URL by using the Results.Redirect() method. This method works in the
same way as RedirectToRoute() but takes a URL instead of a route name
and can be useful for redirecting to external URLs.

Whether you’re generating URLs by using LinkGenerator or
RedirectToRoute(), you need to be careful in these route generation
methods. Make sure to provide the correct endpoint name and any necessary
route parameters. If you get something wrong—if you have a typo in your
endpoint name or forget to include a required route parameter, for example—
the URL generated will be null. Sometimes it’s worth checking the
generated URL for null explicitly to make sure that there are no problems.

6.4.3 Controlling your generated URLs with RouteOptions

Your endpoint routes are the public surface of your APIs, so you may well
have opinions on how they should look. By default, LinkGenerator does its
best to generate routes the same way you define them; if you define an

endpoint with the route template /MyRoute, LinkGenerator generates the
path /MyRoute. But what if that path isn’t what you want? What if you’d
rather have LinkGenerator produce prettier paths, such as /myroute or
/myroute/? In this section you’ll learn how to configure URL generation
both globally and on a case-by-case basis.

Note

Whether to add a trailing slash to your URLs is largely a question of taste,
but the choice has some implications in terms of both usability and search
results. I typically choose to add trailing slashes for Razor Pages applications
but not for APIs. For details, see http://mng.bz/Ao1W.

When ASP.NET Core matches an incoming URL against your route
templates by using routing, it uses a case-insensitive comparison, as you saw
in chapter 5. So if you have a route template /MyRoute, requests to /myroute,
/MYROUTE, and even /myROUTE match. But when generating URLs,
LinkGenerator needs to choose a single version to use. By default, it uses the
same casing that you defined in your route templates. So if you write

app.MapGet("/MyRoute", () => "Hello world!").WithName("route1");

LinkGenerator.GetPathByName("route1") returns /MyRoute.

Although that’s a good default, you’d probably prefer that all the links
generated by your app be consistent. I like all my links to be lowercase,
regardless of whether I accidentally failed to make my route template
lowercase.

You can control the route generation rules by using RouteOptions. You
configure the RouteOptions for your app using the Configure<T> extension
method on WebApplicationBuilder.Services, which updates the
RouteOptions instance for the app using the configuration system.

Note

You’ll learn all about the configuration system and the Configure<T> method
in chapter 10.

RouteOptions contains several configuration options, as shown in listing 6.4.
These settings control whether the URLs your app generates are forced to be
lowercase, whether the query string should also be lowercase, and whether a
trailing slash (/) should be appended to the final URLs. In the listing, I set the
URL to be lowercased, for the trailing slash to be added, and for the query
string to remain unchanged.

Note

In listing 6.4 the whole path is lowercased, including any route parameter
segments such as {name}. Only the query string retains its original casing.

Listing 6.4 Configuring link generation using RouteOptions

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<RouteOptions>(o => #A

{

 o.LowercaseUrls = true; #A

 o.AppendTrailingSlash = true; #A

 o.LowercaseQueryStrings = false; #B

});

WebApplication app = builder.Build();

app.MapGet("/HealthCheck", () => Results.Ok()).WithName("healthcheck");

app.MapGet("/{name}", (string name) => name).WithName("product");

app.MapGet("/", (LinkGenerator links) =>

new []

{

 links.GetPathByName("healthcheck"), #C

 links.GetPathByName("product", #D

 new { Name = "Big-Widget", Q = "Test"}) #D

});

app.Run();

Whatever default options you choose, you should try to use them throughout
your whole app, but in some cases that may not be possible. You might have
a legacy API that you need to emulate, for example, and can’t use lowercase
URLs. In these cases, you can override the defaults by passing an optional
LinkOptions parameter to LinkGenerator methods. The values you set in

LinkOptions override the default values set in RouteOptions. Generating a
link for the app in listing 6.4 by using

links.GetPathByName("healthcheck",

 options: new LinkOptions

 {

 LowercaseUrls = false,

 AppendTrailingSlash = false,

 });

would return the value /HealthCheck. Without the LinkOptions parameter,
GetPathByName would return /healthcheck/.

Congratulations—you’ve made it all the way through this detailed discussion
of routing! Routing is one of those topics that people often get stuck on when
they come to building an application, which can be frustrating. We’ll revisit
routing when we look at Razor Pages in chapter 14 and web API controllers
in chapter 20, but rest assured that this chapter has covered all the tricky
details!

In chapter 7 we’ll dive into model binding. You’ll see how the route values
generated during routing are bound to your endpoint handler parameters and,
perhaps more important, how to validate the values you’re provided.

6.5 Summary

Routing is the process of mapping an incoming request URL to an
endpoint that executes to generate a response. Routing provides
flexibility to your API implementations, enabling you to map multiple
URLs to a single endpoint, for example.
ASP.NET Core uses two pieces of middleware for routing. The
EndpointRoutingMiddleware and the EndpointMiddleware.
WebApplication adds both pieces of middleware to your pipeline by
default, so typically, you \don’t add them to your application manually.
The EndpointRoutingMiddleware selects which endpoint should be
executed by using routing to match the request URL. The
EndpointMiddleware executes the endpoint. Having two separate
middleware components means that middleware placed between them

can react based on the endpoint that will execute when it reaches the end
of the pipeline.
Route templates define the structure of known URLs in your application.
They’re strings with placeholders for variables that can contain optional
values and map to endpoint handlers. You should think about your
routes carefully, as they’re the public surface of your application.
Route parameters are variable values extracted from a request’s URL.
You can use route parameters to map multiple URLs to the same
endpoint and to extract the variable value from the URL automatically.
Route parameters can be optional and can use default values when a
value is missing. You should use optional and default parameters
sparingly, as they can make your APIs harder to understand, but they
can be useful in some cases. Optional parameters must be the last
segment of a route.
Route parameters can have constraints that restrict the possible values
allowed. If a route parameter doesn’t match its constraints, the route
isn’t considered to be a match. This approach can help you disambiguate
between two similar routes, but you shouldn’t use constraints for
validation.
Use a catch-all parameter to capture the remainder of a URL into a route
value. Unlike standard route parameters, catch-all parameters can
include slashes (/) in the captured values.
You can use the routing infrastructure to generate URLs for your
application. This approach ensures that all your links remain correct if
you change your endpoint’s route templates.
The LinkGenerator can be used to generate URLs from minimal API
endpoints. Provide the name of the endpoint to link to and any required
route values to generate an appropriate URL.
You can use the RedirectToRoute method to generate URLs while also
generating a redirect response. This approach is useful when you don’t
need to reference the URL in code.
By default, URLs are generated using the same casing as the route
template and any supplied route parameters. Instead, you can force
lowercase URLs, lowercase query strings, and trailing slashes by
customizing RouteOptions, calling
builder.Services.Configure<RouteOptions>().

You can change the settings for a single URL generation by passing a

LinkOptions object to the LinkGenerator methods. These methods can
be useful when you need to differ from the defaults for a single
endpoint, such as when you’re trying to match an existing legacy route.

7 Model binding and validation in
minimal APIs
This chapter covers

Using request values to create binding models
Customizing the model-binding process
Validating user input using DataAnnotations attributes

In chapter 6 I showed you how to define a route with parameters—perhaps
for the unique ID for a product API. But say a client sends a request to the
product API. What then? How do you access the values provided in the
request and read the JavaScript Object Notation (JSON) in the request body?

For most of this chapter, in sections 7.1-7.9, we’ll look at model binding and
how it simplifies reading data from a request in minimal APIs. You’ll see
how to take the data posted in the request body or in the URL and bind it to
C# objects, which are then passed to your endpoint handler methods as
arguments. When your handler executes, it can use these values to do
something useful—return a product’s details or change a product’s name, for
example.

When your code is executing in an endpoint handler method, you might be
forgiven for thinking that you can happily use the binding model without any
further thought. Hold on, though. Where did that data come from? From a
user—and you know users can’t be trusted! Section 7.10 focuses on how to
make sure that the user-provided values are valid and make sense for your
app.

Model binding is the process of taking the user’s raw HTTP request and
making it available to your code by populating plain old CLR objects
(POCOs), providing the input to your endpoint handlers. We start by looking
at which values in the request are available for binding and where model
binding fits in your running app.

7.1 Extracting values from a request with model
binding

In chapters 5 and 6 you learned that route parameters can be extracted from
the request’s path and used to execute minimal API handlers. In this section
we look in more detail at the process of extracting route parameters and the
concept of model binding.

By now, you should be familiar with how ASP.NET Core handles a request
by executing an endpoint handler. You’ve also already seen several handlers,
similar to

app.MapPost("/square/{num}", (int num) => num * num);

Endpoint handlers are normal C# methods, so the ASP.NET Core framework
needs to be able to call them in the usual way. When handlers accept
parameters as part of their method signature, such as num in the preceding
example, the framework needs a way to generate those objects. Where do
they come from, exactly, and how are they created?

I’ve already hinted that in most cases, these values come from the request
itself. But the HTTP request that the server receives is a series of strings.
How does ASP.NET Core turn that into a .NET object? This is where model
binding comes in.

Definition

Model binding extracts values from a request and uses them to create .NET
objects. These objects are passed as method parameters to the endpoint
handler being executed.

The model binder is responsible for looking through the request that comes in
and finding values to use. Then it creates objects of the appropriate type and
assigns these values to your model in a process called binding.

Note

Model binding in minimal APIs (and in Razor Pages and Model-View-
Controller [MVC]) is a one-way population of objects from the request, not
the two-way data binding that desktop or mobile development sometimes
uses.

ASP.NET Core automatically creates the arguments that are passed to your
handler by using the request’s properties, such as the request URL, any
headers sent in the HTTP request, any data explicitly POSTed in the request
body, and so on.

Model binding happens before the filter pipeline and your endpoint handler
execute, in the EndpointMiddleware, as shown in figure 7.1. The
RoutingMiddleware is responsible for matching an incoming request to an
endpoint and for extracting the route parameter values, but all the values at
that point are strings. It’s only in the EndpointMiddleware that the string
values are converted to the real argument types (such as int) needed to
execute the endpoint handler.

Figure 7.1 The RoutingMiddleware matches the incoming request to an endpoint and extracts the
route parameters as strings. When the EndpointMiddleware executes the endpoint, the minimal
API infrastructure uses model binding to create the arguments required to execute the endpoint
handler, converting the string route values to real argument types such as int.

For every parameter in your minimal API endpoint handler, ASP.NET core
must decide how to create the corresponding arguments. Minimal APIs can
use six different binding sources to create the handler arguments:

Route values—These values are obtained from URL segments or
through default values after matching a route, as you saw in chapter 5.
Query string values—These values are passed at the end of the URL, not
used during routing.
Header values—Header values are provided in the HTTP request.
Body JSON—A single parameter may be bound to the JSON body of a
request.

Dependency injected services—Services available through dependency
injection can be used as endpoint handler arguments. We look at
dependency injection in chapters 8 and 9.
Custom binding—ASP.NET Core exposes methods for you to customize
how a type is bound by providing access to the HttpRequest object.

Warning

Unlike MVC controllers and Razor Pages, minimal APIs do not
automatically bind to the body of requests sent as forms, using the
application/x-www-form-urlencoded mime type. Minimal APIs will bind
only to a JSON request body. If you need to work with form data in a
minimal API endpoint, you can access it on HttpRequest.Form, but you
won’t benefit from automatic binding.

We’ll look at the exact algorithm ASP.NET Core uses to choose which
binding source to use in section 7.8, but we’ll start by looking at how
ASP.NET Core binds simple types such as int and double.

7.2 Binding simple types to a request

When you’re building minimal API handlers, you’ll often want to extract a
simple value from the request. If you’re loading a list of products in a
category, for example, you’ll likely need the category’s ID, and in the
calculator example at the start of section 7.1, you’ll need the number to
square.

When you create an endpoint handler that contains simple types such as int,
string, and double, ASP.NET Core automatically tries to bind the value to a
route parameter, or a query string value:

If the name of the handler parameter matches the name of a route
parameter in the route template, ASP.NET Core binds to the associated
route value.
If the name of the handler parameter doesn’t match any parameters in
the route template, ASP.NET Core tries to bind to a query string value.

If you make a request to /products/123, for example, this will match the
following endpoint:

app.MapGet("/products/{id}", (int id) => $"Received {id}");

ASP.NET Core binds the id handler argument to the {id} route parameter, so
the handler function is called with id=123. Conversely, if you make a request
to /products?id=456, this will match the following endpoint instead:

app.MapGet("/products", (int id) => $"Received {id}");

In this case, there’s no id parameter in the route template, so ASP.NET Core
binds to the query string instead, and the handler function is called with
id=456.

In addition to this “automatic” inference, you can force ASP.NET Core to
bind from a specific source by adding attributes to the parameters.
[FromRoute] explicitly binds to route parameters, [FromQuery] to the query
string, and [FromHeader] to header values, as shown in figure 7.2.

Figure 7.2 Model binding an HTTP get request to an endpoint. The [FromRoute], [FromQuery],
and [FromHeader] attributes force the endpoint parameters to bind to specific parts of the
request. Only the [FromHeader] attribute is required in this case; the route parameter and query
string would be inferred automatically.

The [From*] attributes override ASP.NET Core’s default logic and forces the
parameters to load from a specific binding source. Listing 7.1 demonstrates
three possible [From*] attributes:

[FromQuery]—As you’ve already seen, this attribute forces a parameter
to bind to the query string.
[FromRoute]—This attribute forces the parameter to bind a route
parameter value. Note that if a parameter of the required name doesn’t
exist in the route template, you’ll get an exception at runtime.
[FromHeader]—This attribute binds a parameter to a header value in the
request.

Listing 7.1 Binding simple values using [From] attributes

using Microsoft.AspNetCore.Mvc; #A

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/products/{id}/paged",

 ([FromRoute] int id, #B

 [FromQuery] int page, #C

 [FromHeader(Name = "PageSize")] int pageSize) #D

 => $"Received id {id}, page {page}, pageSize {pageSize}");

app.Run();

Later, you’ll see other attributes, such as [FromBody] and [FromServices],
but the preceding three attributes are the only [From*] attributes that operate
on simple types such as int and double. prefer to avoid using [FromQuery]
and [FromRoute] wherever possible and rely on the default binding
conventions instead, as I find that they clutter the method signatures, and it’s
generally obvious whether a simple type is going to bind to the query string
or a route value.

Tip

ASP.NET Core binds to route parameters and query string values based on
convention, but the only way to bind to a header value is with the
[FromHeader] attribute.

You may be wondering what would happen if you try to bind a type to an
incompatible value. What if you try to bind an int to the string value "two",
for example? In that case ASP.NET Core throws a
BadHttpRequestException and returns a 400 Bad Request response.

Note

When the minimal API infrastructure fails to bind a handler parameter due to
an incompatible format, it throws a BadHttpRequestException and returns a
400 Bad Request response.

I’ve mentioned several times in this section that you can bind route values,
query string values, and headers to simple types, but what is a simple type? A
simple type is defined as any type that contains either of the following
TryParse methods, where T is the implementing type:

public static bool TryParse(string value, out T result);

public static bool TryParse(

 string value, IFormatProvider provider, out T result);

Types such as int and bool contain one (or both) these methods. But it’s also
worth noting that you can create your own types that implement one of these
methods, and they’ll be treated as simple types, capable of binding from route
values, query string values, and headers.

Figure 7.3 shows an example of implementing a simple strongly-typed ID[1]

that’s treated as a simple type thanks to the TryParse method it exposes.
When you send a request to /product/p123, ASP.NET Core sees that the
ProductId type used in the endpoint handler contains a TryParse method and
that the name of the id parameter has a matching route parameter name. It
creates the id argument by calling ProductId.TryParse() and passes in the
route value, p123.

Figure 7.3 The routing middleware matches the incoming URL to the endpoint. The endpoint
middleware attempts to bind the route parameter id to the endpoint parameter. The endpoint
parameter type ProductId implements TryParse. If parsing is successful, the parsed parameter is
used to call the endpoint handler. If parsing fails, the endpoint middleware returns a 400 Bad
Request response.

Listing 7.2 shows how you could implement the TryParse method for
ProductId. This method creates a ProductId from strings that consist of an
integer prefixed with 'p' (p123 or p456, for example). If the input string
matches the required format, it creates a ProductId instance and returns
true. If the format is invalid, it returns false, binding fails, and a 400 Bad
Request is returned.

Listing 7.2 Implementing TryParse in a custom type to allow parsing from route values

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/product/{id}", (ProductId id) => $"Received {id}"); #A

app.Run();

readonly record struct ProductId(int Id) #B

{

 public static bool TryParse(string? s, out ProductId result) #C

 {

 if(s is not null #D

 && s.StartsWith('p') #D

 && int.TryParse(#E

 s.AsSpan().Slice(1), #F

 out int id)) #G

 {

 result = new ProductId(id); #H

 return true; #H

 }

 result = default; #I

 return false; #I

 }

}

Using modern C# and .NET features

Listing 7.2 included some C# and .NET features that you may not have seen
before, depending on your background:

· Pattern matching for null values—s is not null. Pattern matching
features have been introduced gradually into C# since C# 7. The is not
null pattern, introduced in C# 9, has some minor advantages over the
common != null expression. You can read all about pattern matching at

http://mng.bz/gBxl.

· Records and struct records—readonly record struct. Records are
syntactical sugar over normal class and struct declarations, which make
declaring new types more succinct and provide convenience methods for
working with immutable types. Record structs were introduced in C# 10. You
can read more at http://mng.bz/5wWz.

· Span<T> for performance—s.AsSpan(). Span<T> and ReadOnlySpan<T>
were introduced in .NET Core 2.1 and are particularly useful for reducing
allocations when working with string values. You can read more about them
at http://mng.bz/6DNy.

· ValueTask<T>—It’s not shown in listing 7.2, but many of the APIs in
ASP.NET Core use ValueTask instead of the more common Task for APIs
that normally complete asynchronously but may complete asynchronously.
You can read about why they were introduced and when to use them at
http://mng.bz/o1GM.

Don’t worry if you’re not familiar with these constructs. C# is a fast-moving
language, so keeping up can be tricky, but there’s generally no reason you
need to use the new features. Nevertheless, it’s useful to be able to recognize
them sot hat you can read and understand code that uses them.

If you’re keen to embrace new features, you might consider implementing the
IParsable interface when you implement TryParse. This interface uses the
static abstract interfaces feature, which was introduced in C# 11, and
requires implementing both a TryParse and Parse method. You can read
more about the IParsable interface in the announcement post at
http://mng.bz/nW2K.

Now we’ve looked extensively at binding simple types to route values, query
strings, and headers. In section 7.3 we’ll learn about binding to the body of a
request by deserializing JSON to complex types.

7.3 Binding complex types to the JSON body

Model binding in minimal APIs relies on certain conventions to simplify the
code you need to write. One such convention, which you’ve already seen, is
about binding to route parameters and query string values. Another important
convention is that minimal API endpoints assume that requests will be sent
using JSON.

Minimal APIs can bind the body of a request to a single complex type in your
endpoint handler by deserializing the request from JSON. That means that if
you have an endpoint such as the one in the following listing, ASP.NET Core
will automatically deserialize the request for you from JSON, creating the
Product argument.

Listing 7.3 Automatically deserializing a JSON request from the body

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/product", (Product product) => $"Received {product}"); #A

app.Run();

record Product(int Id, string Name, int Stock); #B

If you send a POST request to /product for the app in listing 7.3, you need to
provide valid JSON in the request body, such as

{ "id": 1, "Name": "Shoes", "Stock": 12 }

ASP.NET Core uses the built-in System.Text.Json library to deserialize the
JSON into a Product instance and uses it as the product argument in the
handler.

Configuring JSON binding with System.Text.Json

The System.Text.Json library, introduced in .NET Core 3.0, provides a high-
performance, low-allocation JSON serialization library. It was designed to be
something of a successor to the ubiquitous Newtonsoft.Json library, but it
trades flexibility for performance.

Minimal APIs use System.Text.Json for both JSON deserialization (when

binding to a request’s body) and serialization (when writing results, as you
saw in chapter 6). Unlike for MVC and Razor Pages, you can’t replace the
JSON serialization library used by minimal APIs, so there’s no way to use
Newtonsoft.Json instead. But you can customize some of the library’s
serialization behavior for your minimal APIs.

You can set System.Text.Json, for example, to relax some of its strictness to
allow trailing commas in the JSON and control how property names are
serialized with code like the following example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.ConfigureRouteHandlerJsonOptions(o => {

 o.SerializerOptions.AllowTrailingCommas = true;

 o.SerializerOptions.PropertyNamingPolicy = JsonNamingPolicy.CamelCase;

 o.SerializerOptions.PropertyNameCaseInsensitive = true;

});

Typically, the automatic binding for JSON requests is convenient, as most
APIs these days are built around JSON requests and responses. The built-in
binding uses the most performant approach and eliminates a lot of boilerplate
that you’d otherwise need to write yourself. Nevertheless, bear several things
in mind when you’re binding to the request body:

You can bind only a single handler parameter to the JSON body. If more
than one complex parameter is eligible to bind to the body, you’ll get an
exception at runtime when the app receives its first request.
If the request body isn’t JSON, the endpoint handler won’t run, and the
EndpointMiddleware will return a 415 Unsupported Media Type
response.
If you try to bind to the body for an HTTP verb that usually doesn’t send
a body (GET, HEAD, OPTIONS, DELETE, TRACE, and CONNECT), you’ll get an
exception at runtime. If you change the endpoint in listing 7.3 to MapGet
instead of MapPost, for example, you’ll get an exception on your first
request, as shown in figure 7.4.
If you’re sure that you want to bind the body of these requests, you can
override the preceding behavior by applying the [FromBody] attribute to
the handler parameter. I strongly advise against this approach, though:
sending a body with GET requests is unusual, could confuse the
consumers of your API, and is discouraged in the HTTP specification

(https://www.rfc-editor.org/rfc/rfc9110#name-get).
It’s uncommon to see, but you can also apply [FromBody] to a simple
type parameter to force it to bind to the request body instead of to the
route/query string. As for complex types, the body is deserialized from
JSON into your parameter.

Figure 7.4 If you try to bind the body to a parameter for a GET request, you’ll get an exception
when your app receives its first request.

We’ve discussed binding of both simple types and complex types.
Unfortunately, now it’s time to admit to a gray area: arrays, which can be
simple types or complex types.

7.4 Arrays: Simple types or complex types?

It’s a little-known fact that entries in the query string of a URL don’t have to
be unique. The following URL is valid, for example, even though it includes
a duplicate id parameter:

/products?id=123&id=456

So how do you access these query string values with minimal APIs? If you
create an endpoint like

app.MapGet("/products", (int id) => $"Received {id}");

a request to /products?id=123 would bind the id parameter to the query
string, as you’d expect. But a request that includes two id values in the query
string, such as /products?id=123&id=456, will cause a runtime error, as
shown in figure 7.5. ASP.NET Core returns a 400 Bad Request response
without the handler’s or filter pipeline’s running at all.

Figure 7.5 Attempting to bind a handler with a signature such as (int id) to a query string that
contains ?id=123&id=456 causes an exception at runtime and a 400 Bad Request response.

If you want to handle query strings like this one, so that users can optionally
pass multiple possible values for a parameter, you need to use arrays. The
following listing shows an example of an endpoint that accepts multiple id
values from the query string and binds them to an array.

Listing 7.4 Binding multiple values for a parameter in a query string to an array

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/products/search",

 (int[] id) => $"Received {id.Length} ids"); #A

app.Run();

If you’re anything like me, the fact that the int[] handler parameter in listing
7.4 is called id and not ids will really bug you. Unfortunately, you have to
use id here so that the parameter binds correctly to a query string like ?
id=123&id=456. If you renamed it ids, the query string would need to be ?
ids=123&ids=456.

Luckily, you have another option. You can control the name of the target that
a handler parameter binds to by using the [FromQuery] and [FromRoute]
attributes, similar to the way you use [FromHeader]. For this example, you
can have the best of both words by renaming the handler parameter ids and
adding the [FromQuery] attribute:

app.MapGet("/products/search",

 ([FromQuery(Name = "id")] int[] ids) => $"Received {ids.Length} ids");

Now you can sleep easy. The handler parameter has a better name, but it still
binds to the query string ?id=123&id=456 correctly.

Tip

You can bind array parameters to multiple header values in the same way that
you do for as query string values, using the [FromHeader] attribute.

The example in listing 7.4 binds an int[], but you can bind an array of any
simple type, including custom types with a TryParse method (listing 7.2), as
well as string[] and StringValues.

Note

StringValues is a helper type in the Microsoft.Extensions.Primitives
namespace that represents zero, one, or many strings in an efficient way.

So where is that gray area I mentioned? Well, arrays work as I’ve described

only if

You’re using an HTTP verb that typically doesn’t include a request
body, such as GET, HEAD, or DELETE.
The array is an array of simple types (or string[] or StringValues).

If either of these statements is not true, ASP.NET Core will attempt to bind
the array to the JSON body of the request instead. For POST requests (or other
verbs that typically have a request body), this process works without
problems: the JSON body is deserialized to the parameter array. For GET
requests (and other verbs without a body), it causes the same unhandled
exception you saw in figure 7.4 when a body binding is detected in one of
these verbs.

Note

As before, when binding body parameters, you can work around this situation
for GET requests by adding an explicit [FromBody] to the handler parameter,
but you shouldn’t!

We’ve covered binding both simple types and complex types, from the URL
and the body, and we’ve even looked at some cases in which a mismatch
between what you expect and what you receive causes errors. But what if a
value you expect isn’t there? In section 7.5 we look at how you can choose
what happens.

7.5 Making parameters optional with nullables

We’ve described lots of ways to bind parameters to minimal API endpoints.
If you’ve been experimenting with the code samples and sending requests,
you may have noticed that if the endpoint can’t bind a parameter at runtime,
you get an error and a 400 Bad Request response. If you have an endpoint
that binds a parameter to the query string, such as

app.MapGet("/products", (int id) => $"Received {id}");

but you send a request without a query string or with the wrong name in the
query string, such as a request to /products?p=3, the EndpointMiddleware

throws an exception, as shown in figure 7.6. The id parameter is required, so
if it can’t bind, you’ll get an error message and a 400 Bad Request response,
and the endpoint handler won’t run.

Figure 7.6 If a parameter can’t be bound because a value is missing, the EndpointMiddleware
throws an exception and returns a 400 Bad Request response. The endpoint handler doesn’t run.

All parameters are required regardless of which binding source they use,
whether that’s from a route value, a query string value, a header, or the
request body. But what if you want a handler parameter to be optional? If you
have an endpoint like this one,

app.MapGet("/stock/{id?}", (int id) => $"Received {id}");

given that the route parameter is marked optional, requests to both
/stock/123 and /stock will invoke the handler. But in the latter case,
there’ll be no id route value, and you’ll get an error like the one shown in
figure 7.6.

The way around this problem is to mark the handler parameter as optional by

making it nullable. Just as ? signifies optional in route templates, it signifies
optional in the handler parameters. You can update the handler to use int?
instead of int, as shown in the following listing, and the endpoint will handle
both /stock/123 and /stock without errors.

Listing 7.5 Using optional parameters in endpoint handlers

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/stock/{id?}", (int? id) => $"Received {id}"); #A

app.MapGet("/stock2", (int? id) => $"Received {id}"); #B

app.MapPost("/stock", (Product? product) => $"Received {product}"); #C

app.Run();

If no corresponding route value or query string contains the required value
and the handler parameter is optional, the EndpointHandler uses null as the
argument when invoking the endpoint handler. Similarly, for complex types
that bind to the request body, if the request doesn’t contain anything in the
body and the parameter is optional, the handler will have a null argument.

Warning

If the request body contains the literal JSON value null and the handler
parameter is marked optional, the handler argument will also be null. If the
parameter isn’t marked optional, you get the same error as though the request
didn’t have a body.

It’s worth noting that you mark complex types binding to the request body as
optional by using a nullable reference type (NRT) annotation: ?. NRTs,
introduced in C# 8, are an attempt to reduce the scourge of null-reference
exceptions in C#, colloquially known as “the billion-dollar mistake.” See
http://mng.bz/vneM.

ASP.NET Core in .NET 7 is built with the assumption that NRTs are enabled
for your project (and they’re enabled by default in all the templates), so it’s
worth using them wherever you can. If you choose to disable NRTs

explicitly, you may find that some of your types are unexpectedly marked
optional, which can lead to some hard-to-debug errors.

Tip

Keep NRTs enabled for your minimal API endpoints wherever possible. If
you can’t use them for your whole project, consider enabling them selectively
in Program.cs (or wherever you add your endpoints) by adding #nullable
enable to the top of the file.

The good news is that ASP.NET Core includes several analyzers built into
the compiler to catch configuration problems like the ones described in this
section. If you have an optional route parameter but forget to mark the
corresponding handler parameter as optional, for example, integrated
development environments (IDEs) such as Visual Studio will show a hint, as
shown in figure 7.7, and you’ll get a build warning. You can read more about
the built-in analyzers at http://mng.bz/4DMV.

Figure 7.7 Visual Studio and other IDEs use analyzers to detect potential problems with
mismatched optionality.

Making your handler parameters optional is one of the approaches you can
take, whether they’re bound to route parameters, headers, or the query string.
Alternatively, you can provide a default value for the parameter as part of the
method signature. You can’t provide default values for parameters in lambda
functions in C#, so the following listing shows how to use a local function
instead.

Listing 7.6 Using default values for parameters in endpoint handlers

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/stock", StockWithDefaultValue); #A

app.Run();

string StockWithDefaultValue(int id = 0) => $"Received {id}"; #B

We’ve thoroughly covered the differences between simple types and complex
types and how they bind. In section 7.6 we look at some special types that
don’t follow these rules.

7.6 Binding services and special types

In this section you’ll learn how to use some of the special types that you can
bind to in your endpoint handlers. By special, I mean types that ASP.NET
Core is hardcoded to understand or that aren’t created from the details of the
request, by contrast with the binding you’ve seen so far. The section looks at
three types of parameters:

Well-known types—that is, hard-coded types that ASP.NET Core
knows about, such as HttpContext and HttpRequest
IFormCollection and IFormFile for working with form data
Application services registered in WebApplicationBuilder.Services

We start by looking at the well-known types you can bind to.

7.6.1 Injecting well-known types

Throughout this book you’ve seen examples of several well-known types that
you can inject into your endpoint handlers, the most notable one being
HttpContext. The remaining well-known types provide shortcuts for
accessing various properties of the HttpContext object.

Note

As described in chapter 3, HttpContext acts as a storage box for everything
related to a single a request. It contains access to all the low-level details

about the request and the response, plus any application services and features
you might need.

You can use a well-known type in your endpoint handler by including a
parameter of the appropriate type. To access the HttpContext in your
handler, for example, you could use

app.MapGet("/", (HttpContext context) => "Hello world!");

You can use the following well-known types in your minimal API endpoint
handlers:

HttpContext—This type contains all the details on both the request and
the response. You can access everything you need from here, but often,
an easier way to access the common properties is to use one of the other
well-known types.
HttpRequest—Equivalent to the property HttpContext.Request, this
type contains all the details about the request only.
HttpResponse—Equivalent to the property HttpContext.Response, this
type contains all the details about the response only.
CancellationToken—Equivalent to the property
HttpContext.RequestAborted, this token is canceled if the client aborts
the request. It’s useful if you need to cancel a long-running task, as
described in my post at http://mng.bz/QP2j.
ClaimsPrincipal—Equivalent to the property HttpContext.User, this
type contains authentication information about the user. You’ll learn
more about authentication in chapter 23.
Stream—Equivalent to the property HttpRequest.Body, this parameter
is a reference to the Stream object of the request. This parameter can be
useful for scenarios in which you need to process large amounts of data
from a request efficiently, without holding it all in memory at the same
time.
PipeReader—Equivalent to the property HttpContext.BodyReader,
PipeReader provides a higher-level API compared with Stream, but it’s
useful in similar scenarios. You can read more about PipeReader and the
System.IO.Pipelines namespace at http://mng.bz/XNY6.

You can access each of the latter well-known types by navigating via an

injected HttpContext object if you prefer. But injecting the exact object you
need generally makes for code that’s easier to read.

7.6.2 Injecting services

I’ve mentioned several times in this book that you need to configure various
core services to work with ASP.NET Core. Many services are registered
automatically, but often, you must add more to use extra features, such as
when you called AddHttpLogging() in chapter 3 to add request logging to
your pipeline.

Note

Adding services to your application involves registering them with a
dependency injection (DI) container. You’ll learn all about DI and registering
services in chapters 8 and 9.

You can automatically use any registered service in your endpoint handlers,
and ASP.NET Core will inject an instance of the service from the DI
container. You saw an example in chapter 6 when you used the
LinkGenerator service in an endpoint handler. LinkGenerator is one of the
core services registered by WebApplicationBuilder, so it’s always available,
as shown in the following listing.

Listing 7.7 Using the LinkGenerator service in an endpoint handler

app.MapGet("/links", (LinkGenerator links) => #A

{

 string link = links.GetPathByName("products");

 return $"View the product at {link}";

});

Minimal APIs can automatically detect when a service is available in the DI
container, but if you want to be explicit, you can also decorate your
parameters with the [FromServices] attribute:

app.MapGet("/links", ([FromServices] LinkGenerator links) =>

[FromServices] may be necessary in some rare cases if you’re using a

custom DI container that doesn’t support the APIs used by minimal APIs. But
generally, I find that I can keep endpoints readable by avoiding the [From*]
attributes wherever possible and relying on minimal APIs to do the right
thing automatically.

7.6.3 Binding file uploads with IFormFile and
IFormFileCollection

A common feature of many websites is the ability to upload files. This
activity could be relatively infrequent, such as a user’s uploading a profile
picture to their Stack Overflow profile, or it may be integral to the
application, such as uploading photos to Facebook.

Letting users upload files to your application

Uploading files to websites is a common activity, but you should consider
carefully whether your application needs that ability. Whenever users can
upload files, the situation is fraught with danger.

You should be careful to treat the incoming files as potentially malicious.
Don’t trust the filename provided, take care of large files being uploaded, and
don’t allow the files to be executed on your server.

Files also raise questions about where the data should be stored: in a
database, in the filesystem, or in some other storage? None of these questions
has a straightforward answer, and you should think hard about the
implications of choosing one over the other. Better, don’t let users upload
files if you don’t have to!

ASP.NET Core supports uploading files by exposing the IFormFile
interface. You can use this interface in your endpoint handlers, and it will be
populated with the details of the file upload:

app.MapGet("/upload", (IFormFile file) => {});

You can also use an IFormFileCollection if you need to accept multiple
files:

app.MapGet("/upload", (IFormFileCollection files) =>

{

 foreach (IFormFile file in files)

 {

 }

});

The IFormFile object exposes several properties and utility methods for
reading the contents of the uploaded file, some of which are shown here:

public interface IFormFile

{

 string ContentType { get; }

 long Length { get; }

 string FileName { get; }

 Stream OpenReadStream();

}

As you can see, this interface exposes a FileName property, which returns the
filename that the file was uploaded with. But you know not to trust users,
right? You should never use the filename directly in your code; users can use
it to attack your website and access files that they shouldn’t. Always generate
a new name for the file before you save it anywhere.

Warning

There are lots of potential threats to consider when accepting file uploads
from users. For more information, see http://mng.bz/yQ9q.

The IFormFile approach is fine if users are going to be uploading only small
files. When your method accepts an IFormFile instance, the whole content of
the file is buffered in memory and on disk before you receive it. Then you
can use the OpenReadStream method to read the data out.

If users post large files to your website, you may start to run out of space in
memory or on disk as ASP.NET Core buffers each of the files. In that case,
you may need to stream the files directly to avoid saving all the data at the
same time. Unfortunately, unlike the model-binding approach, streaming
large files can be complex and error-prone, so it’s outside the scope of this
book. For details, see Microsoft’s documentation at http://mng.bz/MBgn.

Tip

Don’t use the IFormFile interface to handle large file uploads, as you may
see performance problem. Be aware that you can’t rely on users not to upload
large files, so avoid file uploads when you can!

For the vast majority of minimal API endpoints, the default configuration of
model binding for simple and complex types works perfectly well. But you
may find some situations in which you need to take a bit more control.

7.7 Custom binding with BindAsync

The model binding you get out of the box with minimal APIs covers most of
the common situations that you’ll run into when building HTTP APIs, but
there are always a few edge cases in which you can’t use it.

You’ve already seen that you can inject HttpContext into your endpoint
handlers, so you have direct access to the request details in your handler, but
often, you still want to encapsulate the logic for extracting the data you need.
You can get the best of both worlds in minimal APIs by implementing
BindAsync in your endpoint handler parameter types and taking advantage of
completely custom model binding. To add custom binding for a parameter
type, you must implement one of the following two static BindAsync
methods in your type T:

public static ValueTask<T?> BindAsync(HttpContext context);

public static ValueTask<T?> BindAsync(HttpContext context, ParameterInfo parameter);

Both methods accept an HttpContext, so you can extract anything you need
from the request. But the latter case also provides reflection details about the
parameter you’re binding. In most cases the simpler signature should be
sufficient, but you never know!

Listing 7.8 shows an example of using BindAsync to bind a record to the
request body by using a custom format. The implementation shown in the
listing assumes that the body contains two double values, with a line break
between them, and if so, it successfully parses the SizeDetails object. If
there are any problems along the way, it returns null.

Listing 7.8 Using BindAsync for custom model binding

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/sizes", (SizeDetails size) => $"Received {size}"); #A

app.Run();

public record SizeDetails(double height, double width) #B

{

 public static async ValueTask<SizeDetails?> BindAsync(#B

 HttpContext context) #B

 {

 using var sr = new StreamReader(context.Request.Body); #C

 string? line1 = await sr.ReadLineAsync(context.RequestAborted); #D

 if (line1 is null) { return null; } #E

 string? line2 = await sr.ReadLineAsync(context.RequestAborted); #D

 if (line2 is null) { return null; } #E

 return double.TryParse(line1, out double height) #F

 && double.TryParse(line2, out double width) #F

 ? new SizeDetails(height, width) #G

 : null; #H

 }

}

In listing 7.8 we return null if parsing fails. The endpoint shown will cause
the EndpointMiddleware to throw a BadHttpRequestException and return a
400 error, because the size parameter in the endpoint is required (not marked
optional). You could have thrown an exception, but it wouldn’t have been
caught by the EndpointMiddleware and would have resulted in a 500
response.

7.8 Choosing a binding source

Phew! We’ve finally covered all the ways you can bind a request to
parameters in minimal APIs. In many cases, things should work as you
expect. Simple types such as int and string bind to route values and query
string values by default, and complex types bind to the request body. But it
can get confusing when you add attributes, BindAsync, and TryParse to the

mix!

When the minimal API infrastructure tries to bind a parameter, it checks all
the following binding sources in order. The first binding source that matches
is the one it uses:

1. If the parameter defines an explicit binding source using attributes such
as [FromRoute], [FromQuery], or [FromBody], the parameter binds to
that part of the request.

2. If the parameter is a well-known type such as HttpContext,
HttpRequest, Stream, or IFormFile, the parameter is bound to the
corresponding value.

3. If the parameter type has a BindAsync() method, use that method for
binding.

4. If the parameter is a string or has an appropriate TryParse() method
(so is a simple type):

a. If the name of the parameter matches a route parameter name, bind
to the route value.

b. Otherwise, bind to the query string.
5. If the parameter is an array of simple types, a string[] or

StringValues, the request is a GET or similar HTTP verb that normally
doesn’t have a request body, bind to the query string.

6. If the parameter is a known service type from the dependency injection
container, bind by injecting the service from the container.

7. Finally, bind to the body by deserializing from JSON.

The minimal API infrastructure follows this sequence for every parameter in
a handler and stops at the first matching binding source.

Warning

If binding fails for the entry, and the parameter isn’t optional, the request fails
with a 400 Bad Request response. The minimal API doesn’t try another
binding source after one source fails.

Remembering this sequence of binding sources is one of the hardest things
about minimal APIs to get your head around. If you’re struggling to work out
why a request isn’t working as you expect, be sure to come back and check

this sequence. I once had a parameter that wasn’t binding to a route
parameter, despite its having a TryParse method. When I checked the
sequence, I realized that it also had a BindAsync method that was taking
precedence!

7.9 Simplifying handlers with AsParameters

Before we move on, we’ll take a quick look at a .NET 7 feature for minimal
APIs that can simplify some endpoint handlers: the [AsParameters]
attribute. Consider the following GET endpoint, which binds to a route value,
a header value, and some query values:

app.MapGet("/category/{id}", (int id, int page, [FromHeader(Name = "sort")] bool? sortAsc, [FromQuery(Name = "q")] string search) => { });

I think you’ll agree that the handler parameters for this method are somewhat
hard to read. The parameters define the expected shape of the request, which
isn’t ideal. The [AsParameters] attribute lets you wrap all these arguments
into a single class or struct, simplifying the method signature and making
everything more readable.

Listing 7.9 shows an example of converting this endpoint to use
[AsParameters] by replacing it with a record struct. You could also use a
class, record, or struct, and you can use properties instead of constructor
parameters if you prefer. See the documentation for all the permutations
available at http://mng.bz/a1KB.

Listing 7.9 Using [AsParameters] to simplify endpoint handler parameters

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/category/{id}",

 ([AsParameters] SearchModel model) => $"Received {model}"); #A

app.Run();

record struct SearchModel(

 int id, #B

 int page, #B

 [FromHeader(Name = "sort")] bool? sortAsc, #B

 [FromQuery(Name = "q")] string search); #B

The same attributes and rules apply for binding an [AsParameters] type’s
constructor parameters and binding endpoint handler parameters, so you can
use [From*] attributes, inject services and well-known types, and read from
the body. This approach can make your endpoints more readable if you find
that they’re getting a bit unwieldy.

Tip

In chapter 16 you’ll learn about model binding in MVC and Razor Pages.
You’ll be pleased to know that in those cases, the [AsParameters] approach
works out of the box without the need for an extra attribute.

That brings us to the end of this section on model binding. If all went well,
your endpoint handler’s arguments are created, and the handler is ready to
execute its logic. It’s time to handle the request, right? Nothing to worry
about.

Not so fast! How do you know that the data you received was valid? How do
you know that you haven’t been sent malicious data attempting a SQL
injection attack or a phone number full of letters? The binder is relatively
blindly assigning values sent in a request, which you’re happily going to plug
into your own methods. What stops nefarious little Jimmy from sending
malicious values to your application? Except for basic safeguards, nothing is
stopping him, which is why it’s important that you always validate the input
coming in. ASP.NET Core provides a way to do this in a declarative manner
out of the box, which is the focus of section 7.10.

7.10 Handling user input with model validation

In this section, I discuss the following topics:

What validation is and why you need it
How to use DataAnnotations attributes to describe the data you expect
How to validate your endpoint handler parameters

Validation in general is a big topic, one that you’ll need to consider in every

app you build. Minimal APIs don’t include validation by default, instead
opting to provide nonprescriptive hooks via the filters you learned about in
chapter 5. This design gives you multiple options for adding validation to
your app; be sure that you do add some!

7.10.1 The need for validation

Data can come from many sources in your web application. You could load
data from files, read it from a database, or accept values that are sent in a
request. Although you may be inclined to trust that the data already on your
server is valid (though this assumption is sometimes dangerous!), you
definitely shouldn’t trust the data sent as part of a request.

Tip

You can read more about the goals of validation, implementation approaches,
and potential attacks at http://mng.bz/gBxE.

You should validate your endpoint handler parameters before you use them to
do anything that touches your domain, anything that touches your
infrastructure, or anything that could leak information to an attacker. Note
that this warning is intentionally vague, as there’s no defined point in
minimal APIs where validation should occur. I advise that you do it as soon
as possible in the minimal API filter pipeline.

Always validate data provided by users before you use it in your methods.
You have no idea what the browser may have sent you. The classic example
of little Bobby Tables (https://xkcd.com/327) highlights the need to always
validate data sent by a user.

Validation isn’t used only to check for security threats, though. It’s also
needed to check for nonmalicious errors:

Data should be formatted correctly. Email fields have a valid email
format, for example.
Numbers may need to be in a particular range. You can’t buy -1 copies
of this book!
Some values may be required, but others are optional. Name may be

required for a profile, but phone number is optional.
Values must conform to your business requirements. You can’t convert a
currency to itself; it needs to be converted to a different currency.

As mentioned earlier, the minimal API framework doesn’t include anything
specific to help you with these requirements, but you can use filters to
implement validation, as you’ll see in section 7.10.3. .NET 7 also includes a
set of attributes that you can use to simplify your validation code
significantly.

7.10.2 Using DataAnnotations attributes for validation

Validation attributes—more precisely, DataAnnotations attributes—allow
you to specify the rules that your parameters should conform to. They
provide metadata about a parameter type by describing the sort of data the
binding model should contain, as opposed to the data itself.

You can apply DataAnnotations attributes directly to your parameter types
to indicate the type of data that’s acceptable. This approach allows you to
check that required fields have been provided, that numbers are in the correct
range, and that email fields are valid email addresses, for example.

Consider the checkout page for a currency-converter application. You need to
collect details about the user—their name, email, and (optionally) phone
number—so you create an API to capture these details. The following listing
shows the outline of that API, which takes a UserModel parameter. The
UserModel type is decorated with validation attributes that represent the
validation rules for the model.

Listing 7.10 Adding DataAnnotations to a type to provide metadata

using System.ComponentModel.DataAnnotations; #A

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/users", (UserModel user) => user.ToString()); #B

app.Run();

public record UserModel

{

 [Required] #C

 [StringLength(100)] #D

 [Display(Name = "Your name")] #E

 public string FirstName { get; set; }

 [Required]

 [StringLength(100)]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress] #F

 public string Email { get; set; }

 [Phone] #G

 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

Suddenly, your parameter type, which was sparse on details, contains a
wealth of information. You’ve specified that the FirstName property should
always be provided; that it should have a maximum length of 100 characters;
and that when it’s referred to (in error messages, for example), it should be
called "Your name" instead of "FirstName".

The great thing about these attributes is that they clearly declare the expected
state of an instance of the type. By looking at these attributes, you know what
the properties will contain, or at least should contain. Then you can then write
code after model binding to confirm that the bound parameter is valid, as
you’ll see in section 7.10.3.

You’ve got a plethora of attributes to choose among when you apply
DataAnnotations to your types. I’ve listed some of the common ones here,
but you can find more in the System.ComponentModel.DataAnnotations
namespace. For a more complete list, I recommend using IntelliSense in your
IDE or checking the documentation at http://mng.bz/e1Mv.

[CreditCard]—Validates that a property has a valid credit card format
[EmailAddress]—Validates that a property has a valid email address

format
[StringLength(max)]—Validates that a string has at most max number
of characters
[MinLength(min)]—Validates that a collection has at least the min
number of items
[Phone]—Validates that a property has a valid phone number format
[Range(min, max)]—Validates that a property has a value between min
and max
[RegularExpression(regex)]—Validates that a property conforms to
the regex regular expression pattern
[Url]—Validates that a property has a valid URL format
[Required]—Indicates that the property must not be null
[Compare]—Allows you to confirm that two properties have the same
value (such as Email and ConfirmEmail)

Warning

The [EmailAddress] and [Phone] attributes validate only that the format of
the value is potentially correct. They don’t validate that the email address or
phone number exists. For an example of how to do more rigorous phone
number validation, see this post on the Twilio blog: http://mng.bz/xmZe.

The DataAnnotations attributes aren’t new; they’ve been part of the .NET
Framework since version 3.5, and their use in ASP.NET Core is almost the
same as in the previous version of ASP.NET. They’re also used for purposes
other than validation. Entity Framework Core (among others) uses
DataAnnotations to define the types of columns and rules to use when
creating database tables from C# classes. You can read more about Entity
Framework Core in chapter 12 and in Entity Framework Core in Action, 2nd
ed., by Jon P. Smith (Manning, 2021).

If the DataAnnotation attributes provided out of the box don’t cover
everything you need, it’s possible to write custom attributes by deriving from
the base ValidationAttribute. You’ll see how to create a custom validation
attribute in chapter 32.

One common limitation with DataAnnotation attributes is that it’s hard to
validate properties that depend on the values of other properties. Maybe the

UserModel type from listing 7.10 requires you to provide either an email
address or a phone number but not both, which is hard to achieve with
attributes. In this type of situation, you can implement IValidatableObject
in your models instead of, or in addition to, using attributes. In listing 7.11, a
validation rule is added to UserModel whether the email or phone number is
provided. If it isn’t, Validate() returns a ValidationResult describing the
problem.

Listing 7.11 Implementing IValidatableObject

using System.ComponentModel.DataAnnotations;

public record CreateUserModel : IValidatableObject #A

{

 [EmailAddress] #B

 public string Email { get; set; }

 [Phone] #B

 public string PhoneNumber { get; set; }

 public IEnumerable<ValidationResult> Validate(#C

 ValidationContext validationContext) #C

 {

 if(string.IsNullOrEmpty(Email) #D

 && string.IsNullOrEmpty(PhoneNumber)) #D

 {

 yield return new ValidationResult(#E

 "You must provide an Email or a PhoneNumber", #E

 New[] { nameof(Email), nameof(PhoneNumber) }); #E

 }

 }

}

IValidatableObject helps cover some of the cases that attributes alone can’t
handle, but it’s not always the best option. The Validate function doesn’t
give easy access to your app’s services, and the function executes only if all
the DataAnnotation attribute conditions are met.

Tip

DataAnnotations are good for input validation of properties in isolation but
not so good for validating complex business rules. You’ll most likely need to

perform this validation outside the DataAnnotations framework.

Alternatively, if you’re not a fan of the DataAnnotation attribute-based-plus-
IValidatableObject approach, you could use the popular FluentValidation
library (https://github.com/JeremySkinner/FluentValidation) in your minimal
APIs instead. Minimal APIs are completely flexible, so you can use
whichever approach you prefer.

DataAnnotations attributes provide the basic metadata for validation, but no
part of listing 7.10 or listing 7.11 uses the validation attributes you added.
You still need to add code to read the parameter type’s metadata, check
whether the data is valid, and return an error response if it’s invalid.
ASP.NET Core doesn’t include a dedicated validation API for that task in
minimal APIs, but you can easily add it with a small NuGet package.

7.10.3 Adding a validation filter to your minimal APIs

Microsoft decided not to include any dedicated validation APIs in minimal
APIs. By contrast, validation is a built-in core feature of Razor Pages and
MVC. Microsoft’s reasoning was that the company wanted to provide
flexibility and choice for users to add validation in the way that works best
for them, but didn’t want to affect performance for those who didn’t want to
use their implementation.

Consequently, validation in minimal APIs typically relies on the filter
pipeline. As a classic cross-cutting concern, validation is a good fit for a
filter. The only downside is that typically, you need to write your own filter
rather than use an existing API. The positive side is that validation gives you
complete flexibility, including the ability to use an alternative validation
library (such as FluentValidation) if you prefer.

Luckily, Damian Edwards, a project manager architect on the ASP.NET Core
team at Microsoft, has a NuGet package called MinimalApis.Extensions that
provides the filter for you. Using a simple validation system that hooks into
the DataAnnotations on your models, this NuGet package provides an
extension method called WithParameterValidation() that you can add to
your endpoints. To add the package, search for MinimalApis.Extensions from

the NuGet Package Manager in your IDE (be sure to include prerelease
versions), or run the following, using the .NET command-line interface:

dotnet add package MinimalApis.Extensions

After you’ve added the package, you can add validation to any of your
endpoints by adding a filter using WithParameterValidation(), as shown in
listing 7.12. After the UserModel is bound to the JSON body of the request,
the validation filter executes as part of the filter pipeline. If the user
parameter is valid, execution passes to the endpoint handler. If the parameter
is invalid, a 400 Bad Request Problem Details response is returned
containing a description of the errors, as shown in figure 7.8.

Listing 7.12 Adding validation to minimal APIs using MinimalApis.Extensions

using System.ComponentModel.DataAnnotations;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/users", (UserModel user) => user.ToString())

 .WithParameterValidation(); #A

app.Run();

public record UserModel #B

{

 [Required]

 [StringLength(100)]

 [Display(Name = "Your name")]

 public string Name { get; set; }

 [Required]

 [EmailAddress]

 public string Email { get; set; }

}

Figure 7.8 If the data sent in the request body is not valid, the validation filter automatically
returns a 400 Bad Request response, containing the validation errors, and the endpoint handler
doesn’t execute.

Listing 7.12 shows how you can validate a complex type, but in some cases,
you may want to validate simple types. You may want to validate that the id
value in the following handler should be between 1 and 100:

app.MapGet("/user/{id}", (int id) => $"Received {id}")

 .WithParameterValidation();

Unfortunately, that’s not easy to do with DataAnnotations attributes. The
validation filter will check the int type, see that it’s not a type that has any
DataAnnotations on its properties, and won’t validate it.

Warning

Adding attributes to the handler, as in ([Range(1, 100)] int id), doesn’t
work. The attributes here are added to the parameter, not to properties of the

int type, so the validator won’t find them.

There are several ways around this problem, but the simplest is to use the
[AsParameters] attribute you saw in section 7.9 and apply annotations to the
model. The following listing shows how.

Listing 7.13 Adding validation to minimal APIs using MinimalApis.Extensions

using System.ComponentModel.DataAnnotations;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapPost("/user/{id}",

 ([AsParameters] GetUserModel model) => $"Received {model.Id}") #A

 .WithParameterValidation(); #B

app.Run();

struct GetUserModel

{

 [Range(1, 10)] #C

 Public int Id { get; set; } #C

}

That concludes this look at model binding in minimal APIs. You saw how the
ASP.NET Core framework uses model binding to simplify the process of
extracting values from a request and turning them into normal .NET objects
you can work with quickly. The many ways to bind may be making your
head spin, but normally, you can stick to the basics and fall back to the more
complex types as and when you need them.

Although the discussion is short, the most important aspect of this chapter is
its focus on validation—a common concern for all web applications. Whether
you choose to use DataAnnotations or a different validation approach, you
must make sure to validate any data you receive in all your endpoints.

In chapter 8 we leave minimal APIs behind to look at dependency injection in
ASP.NET Core and see how it helps create loosely coupled applications.
You’ll learn how to register the ASP.NET Core framework services with a
container, add your own services, and manage service lifetimes.

7.11 Summary

Model binding is the process of creating the arguments for endpoint
handlers from the details of an HTTP request. Model binding takes care
of extracting and parsing the strings in the request so that you don’t have
to.
Simple values such as int, string, and double can bind to route values,
query string values, and headers. These values are common and easy to
extract from the request without any manual parsing.
If a simple value fails to bind because the value in the request is
incompatible with the handler parameter, a BadHttpRequestException
is thrown, and a 400 Bad Request response is returned.
You can turn a custom type into a simple type by adding a TryParse
method with the signature bool TryParse(string value, out T
result). If you return false from this method, minimal APIs will
return a 400 Bad Request response.
Complex types bind to the request body by default by deserializing from
JSON. Minimal APIs can bind only to JSON bodies; you can’t use
model binding to access form values.
By default, you can’t bind the body of GET requests, which goes against
the expectations for GET requests. Doing so will cause an exception at
runtime.
Arrays of simple types bind by default to query string values for GET
requests and to the request body for POST requests. This difference can
cause confusion, so always consider whether an array is the best option.
All the parameters of a handler must bind correctly. If a parameter tries
to bind to a missing value, you’ll get a BadHttpRequestException and a
400 Bad Request response.
You can use well-known types such as HttpContext and any services
from the dependency injection container in your endpoint handlers.
Minimal APIs check whether each complex type in your handler is
registered as a service in the DI container; if not, they treat it as a
complex type to bind to the request body instead.
You can read files sent in the request by using the IFormFile and
IFormFileCollection interfaces in your endpoint handlers. Take care
accepting file uploads with these interfaces, as they can open your
application to attacks from users.

You can completely customize how a type binds by using custom
binding. Create a static function with the signature public static
ValueTask<T?> BindAsync(HttpContext context), and return the
bound property. This approach can be useful for handling complex
scenarios, such as arbitrary JSON uploads.
You can override the default binding source for a parameter by applying
[From*] attributes to your handler parameters, such as [FromHeader],
[FromQuery], [FromBody], and [FromServices]. These parameters take
precedence over convention-based assumptions.
You can encapsulate an endpoint handler’s parameters by creating a
type containing all the parameters as properties or a constructor
argument and decorate the parameter with the [AsParameters] attribute.
This approach can help you simplify your endpoint’s method signature.
Validation is necessary to check for security threats. Check that data is
formatted correctly, confirm that it conforms to expected values and
verify that it meets your business rules.
Minimal APIs don’t have built-in validation APIs, so you typically
apply validation via a minimal API filter. This approach provides
flexibility ,as you can implement validation in the way that suits you
best, though it typically means that you need to use a third-party
package.
The MinimalApis.Extensions NuGet package provides a validation filter
that uses DataAnnotations attributes to declaratively define the
expected values. You can add the filter with the extension method
WithParameterValidation().
To add custom validation of simple types with MinimalApis.Extensions,
you must create a containing type and use the [AsParameters] attribute.

[1] I have a series discussing strongly-typed IDs and their benefits on my blog
at http://mng.bz/a1Kz.

Part 2 Building complete
applications
We covered a lot of ground in part 1. You saw how an ASP.NET Core
application is composed of middleware, and we focused heavily on minimal
API endpoints. You saw how to use them to build JSON APIs, how to extract
common code using filters and route groups, and how to validate your input
data.

In part 2 we’ll dive deeper into the framework and look at a variety of
components that you’ll inevitably need when you want to build more
complex apps. By the end of this part, you’ll be able to build dynamic
applications that can be deployed to multiple environments, each with a
different configuration, saving data to a database.

ASP.NET Core uses dependency injection (DI) throughout its libraries, so
it’s important that you understand how this design pattern works. In chapter 8
I introduce DI and discuss why it is used. In chapter 9 you’ll learn how to
configure the services in your applications to use DI.

Chapter 10 looks at the ASP.NET Core configuration system, which lets you
pass configuration values to your app from a range of sources—JSON files,
environment variables, and many more. You’ll learn how to configure your
app to use different values depending on the environment in which it is
running, and how to bind strongly typed objects to your configuration to help
reduce runtime errors.

In chapter 11 you’ll learn how to document your minimal APIs applications
using the OpenAPI specification. Adding an OpenAPI document to your
application makes it easier for others to interact with your app, but it has
other benefits too. You’ll learn how to use Swagger UI to easily test your app
from the browser, and code generation to automatically generate strongly-
typed libraries for interacting with your API.

Most web applications require some sort of data storage, so in chapter 12 I’ll
introduce Entity Framework Core (EF Core). This is a cross-platform library
that makes it easier to connect your app to a database. EF Core is worthy of a
book in and of itself, so I’ll only provide a brief introduction and point you to
John Smith’s excellent book Entity Framework Core in Action, second
edition (Manning, 2021). I’ll show you how to create a database and how to
insert, update, and query simple data.

8 An introduction to dependency
injection
This chapter covers

Understanding the benefits of dependency injection
Seeing how ASP.NET Core uses dependency injection
Retrieving services from the DI container

In part 1 of this book you saw the bare bones of how to build applications
with ASP.NET Core. You learned how to compose middleware to create your
application and how to create minimal API endpoints to handle HTTP
requests. This part gave you the tools to start building simple API
applications.

In this chapter you’ll see how to use dependency injection (DI)—a design
pattern that helps you develop loosely coupled code—in your ASP.NET Core
applications. ASP.NET Core uses the pattern extensively, both internally in
the framework and in the applications you build, so you’ll need to use it in all
but the most trivial applications.

You may have heard of DI and possibly even used it in your own
applications. If so, this chapter shouldn’t hold many surprises for you. If you
haven’t used DI, never fear; I’ll make sure you’re up to speed by the time the
chapter is done!

This chapter introduces DI in general, the principles it drives, and why you
should care about it. You’ll see how ASP.NET Core has embraced DI
throughout its implementation and why you should do the same when writing
your own applications. Finally, you’ll learn how to retrieve services from DI
in your app.

When you finish this chapter, you’ll have a solid understanding of the DI
concept. In chapter 9 you’ll see how to apply DI to your own classes. You’ll

learn how to configure your app so that the ASP.NET Core framework can
create your classes for you, removing the pain of having to create new objects
in your code manually. You’ll learn how to control how long your objects are
used and some of the pitfalls to be aware of when you write your own
applications. In chapter 31 we’ll look at some advanced ways to use DI,
including how to wire up a third-party DI container.

For now, though, let’s get back to basics. What is DI, and why should you
care about it?

8.1 Understanding the benefits of dependency
injection

This section aims to give you a basic understanding of what DI is and why
you should care about it. The topic itself extends far beyond the reach of this
single chapter. If you want a deeper background, I highly recommend
checking out Martin Fowler’s articles online. This article from 2004, for
example, is a classic: http://mng.bz/pPJ8.

Tip

For a more directly applicable read with many examples in C#, I recommend
picking up Dependency Injection Principles, Practices, and Patterns, by
Steven van Deursen and Mark Seemann (Manning, 2019).

The ASP.NET Core framework has been designed from the ground up to be
modular and to adhere to good software engineering practices. As with
anything in software, what is considered to be best practice varies over time,
but for object-oriented programming, the SOLID principles have held up
well.

Definition

SOLID is a mnemonic for “single responsibility principle, open-closed,
Liskov substitution, interface segregation, and dependency inversion.” This
course by Steve Smith introduces the principles using C#:
http://mng.bz/Ox1R.

On that basis, ASP.NET Core has DI (sometimes called dependency
inversion or inversion of control [IoC]) baked into the heart of the
framework. Regardless of whether you want to use DI within your own
application code, the framework libraries themselves depend on it as a
concept.

Note

Although related, dependency injection and dependency inversion are two
different things. I cover both in a general sense in this chapter, but for a good
explanation of the differences, see this post by Derick Bailey, titled
“Dependency Injection Is NOT the Same As the Dependency Inversion
Principle”: http://mng.bz/5jvB.

When you started programming, chances are that you didn’t use a DI
framework immediately. That’s not surprising or even a bad thing; DI adds a
certain amount of extra wiring that’s often not warranted in simple
applications or when you’re getting started. But when things start to get more
complex, DI comes into its own as a great tool to help keep that complexity
under control.

Let’s consider a simple example, written without any sort of DI. Suppose that
a user has registered on your web app, and you want to send them an email.
This listing shows how you might approach this task initially, using a
minimal API endpoint handler.

Listing 8.1 Sending an email without DI when there are no dependencies

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); #A

app.Run();

string RegisterUser(string username) #B

{

 var emailSender = new EmailSender(); #C

 emailSender.SendEmail(username); #D

 return $"Email sent to {username}!";

}

In this example, the RegisterUser handler executes when a new user
registers on your app, creating a new instance of an EmailSender class and
calling SendEmail() to send the email. The EmailSender class is the class
that actually sends the email. For the purposes of this example, you can
imagine that it looks something like this:

public class EmailSender

{

 public void SendEmail(string username)

 {

 Console.WriteLine($"Email sent to {username}!");

 }

}

Console.WriteLine stands in here for the real process of sending the email.

Note

Although I’m using sending email as a simple example, in practice you may
want to move this code out of your handler method. This type of
asynchronous task is well suited to using message queues and a background
process. For more details, see http://mng.bz/Y1AB.

If the EmailSender class is as simple as the previous example and has no
dependencies, you may not see any need to adopt a different approach to
creating objects. And to an extent, you’d be right. But what if you later
update your implementation of EmailSender so that some of the email-
sending logic is implemented by a different class?

Currently, EmailSender would need to do many things to send an email. It
would need to

Create an email message.
Configure the settings of the email server.
Send the email to the email server.

Doing all that in one class would go against the single-responsibility principle
(SRP), so you’d likely end up with EmailSender depending on other services.

Figure 8.1 shows how this web of dependencies might look. RegisterUser
wants to send an email using EmailSender, but to do so, it also needs to
create the MessageFactory, NetworkClient, and EmailServerSettings
objects that EmailSender depends on.

Figure 8.1 Dependency diagram without dependency injection. RegisterUser indirectly depends
on all the other classes, so it must create them all.

Each class has several dependencies, so the “root” caller—in this case, the
RegisterUser handler—needs to know how to create every class it depends
on, as well as every class its dependencies depend on. This is sometimes

called the dependency graph.

Definition

The dependency graph is the set of objects that must be created to create a
specific requested “root” object.

EmailSender depends on the MessageFactory and NetworkClient objects, so
they’re provided via the constructor, as shown in the following listing.

Listing 8.2 A service with multiple dependencies

public class EmailSender

{

 private readonly NetworkClient _client; #A

 private readonly MessageFactory _factory; #A

 public EmailSender(MessageFactory factory, NetworkClient client) #B

 { #B

 _factory = factory; #B

 _client = client; #B

 } #B

 public void SendEmail(string username)

 {

 var email = _factory.Create(username); #C

 _client.SendEmail(email); #C

 Console.WriteLine($"Email sent to {username}!");

 }

}

On top of that, the NetworkClient class that EmailSender depends on also
has a dependency on an EmailServerSettings object:

public class NetworkClient

{

 private readonly EmailServerSettings _settings;

 public NetworkClient(EmailServerSettings settings)

 {

 _settings = settings;

 }

}

This example might feel a little contrived, but it’s common to find this sort of
chain of dependencies. In fact, if you don’t have it in your code, it’s probably

a sign that your classes are too big and aren’t following the SRP.

So how does this affect the code in RegisterUser? The following listing
shows how you now have to send an email if you stick to newing up objects
in the handler.

Listing 8.3 Sending email without DI when you create dependencies manually

string RegisterUser(string username)

{

 var emailSender = new EmailSender(#A

 new MessageFactory(), #B

 new NetworkClient(#C

 new EmailServerSettings #D

 (#D

 Host: "smtp.server.com", #D

 Port: 25 #D

)) #D

);

 emailSender.SendEmail(username); #E

 return $"Email sent to {username}!";

}

This code is turning into something gnarly. Improving the design of
EmailSender to separate out the responsibilities has made calling it from
RegisterUser a real chore. This code has several problems:

Not obeying the SRP—Now our code is responsible for both creating an
EmailSender object and using it to send an email.
Considerable ceremony—Ceremony refers to code that you have to
write but that isn’t adding value directly. Of the 11 lines of code in the
RegisterUser method, only the last two are doing anything useful,
which makes it harder to read and harder to understand the intent of the
methods.
Tied to the implementation—If you decide to refactor EmailSender and
add another dependency, you’d need to update every place it’s used.
Likewise, if any dependencies are refactored, you would need to update
this code too.
Hard to reuse instance—In the example code we created new instances
of all the objects. But what if creating a new NetworkClient is
computationally expensive and we’d like to reuse instances? We’d have

to add extra code to handle that task, further increasing the amount of
boilerplate code.

RegisterUser has an implicit dependency on the EmailSender class, as it
creates the object manually itself. The only way to know that RegisterUser
uses EmailSender is to look at its source code. By contrast, EmailSender has
explicit dependencies on NetworkClient and MessageFactory, which must
be provided in the constructor. Similarly, NetworkClient has an explicit
dependency on the EmailServerSettings class.

Tip

Generally speaking, any dependencies in your code should be explicit, not
implicit. Implicit dependencies are hard to reason about and difficult to test,
so you should avoid them wherever you can. DI is useful for guiding you
along this path.

DI aims to solve the problem of building a dependency graph by inverting the
chain of dependencies. Instead of the RegisterUser handler creating its
dependencies manually, deep inside the implementation details of the code,
an already-created instance of EmailSender is passed as an argument to the
RegisterUser method.

Now, obviously something needs to create the object, so the code to do that
has to live somewhere. The service responsible for providing the instance is
called a DI container or an IoC container, as shown in figure 8.2.

Figure 8.2 Dependency diagram using DI . RegisterUser indirectly depends on all the other
classes but doesn’t need to know how to create them. The RegisterUser handler declares that it
requires EmailSender, and the container provides it.

Definition

The DI container or IoC container is responsible for creating instances of

services. It knows how to construct an instance of a service by creating all its
dependencies and passing them to the constructor. I’ll refer to it as a DI
container throughout this book.

The term DI is often used interchangeably with IoC. But DI is a specific
version of the more general principle of IoC. In the context of ASP.NET
Core,

Without IoC, you’d write the code to listen for requests, check which
handler to invoke, and then invoke it. With IoC, the control flow is the
other way around. You register your handlers with the framework, but
it’s up to the framework to invoke your handler. Your handler is still
responsible for creating its dependencies.
DI takes IoC one step further. As well as invoking your handler, with
DI, the framework creates all your handler’s dependencies.

So when you use dependency injection, your RegisterUser handler is no
longer responsible for controlling how to create an EmailSender instance.
Instead, the framework provides an EmailSender to the handler directly.

Note

Many DI containers are available for .NET, including Autofac, Lamar, Unity,
Ninject, and Simple Injector, and the list goes on! In chapter 31 you’ll see
how to replace the default ASP.NET Core container with one of these
alternatives.

The advantage of adopting this pattern becomes apparent when you see how
much it simplifies using dependencies. Listing 8.4 shows how the
RegisterUser handler would look if you used DI to create EmailSender
instead of creating it manually. All the new noise has gone, and you can focus
purely on what the endpoint handler is doing: calling EmailSender and
returning a string message.

Listing 8.4 Sending an email using DI to inject dependencies

string RegisterUser(string username, EmailSender emailSender) #A

{

 emailSender.SendEmail(username); #B

 return $"Email sent to {username}!"; #B

}

One advantage of a DI container is that it has a single responsibility: creating
objects or services. The minimal API infrastructure asks the DI container for
an instance of a service, and the container takes care of figuring out how to
create the dependency graph, based on how you configure it.

Note

It’s common to refer to services when talking about DI containers, which is
slightly unfortunate, as services is one of the most overloaded terms in
software engineering! In this context, a service refers to any class or interface
that the DI container creates when required.

The beauty of this approach is that by using explicit dependencies, you never
have to write the mess of code you saw in listing 8.3. The DI container can
inspect your service’s constructor and work out how to write much of the
code itself. DI containers are always configurable, so if you want to describe
how to create an instance of a service manually, you can, but by default you
shouldn’t need to.

Tip

ASP.NET Core supports constructor injection and injection into endpoint
handler methods out of the box. Technically, you can inject dependencies
into a service in other ways, such as by using property injection, but these
techniques aren’t supported by the built-in DI container.

I hope that this example made the advantages of using DI in your code
apparent, but in many ways these benefits are secondary to the main benefit
of using DI. In particular, DI helps keep your code loosely coupled by coding
to interfaces.

8.2 Creating loosely coupled code

Coupling is an important concept in object-oriented programming, referring

to how a given class depends on other classes to perform its function.
Loosely coupled code doesn’t need to know a lot of details about a particular
component to use it.

The initial example of RegisterUser and EmailSender was an example of
tight coupling; you were creating the EmailSender object directly and needed
to know exactly how to wire it up. On top of that, the code was difficult to
test. Any attempts to test RegisterUser would result in an email’s being sent.
If you were testing the controller with a suite of unit tests, that approach
would be a surefire way to get your email server blacklisted for spam!

Taking EmailSender as a parameter and removing the responsibility of
creating the object helps reduce the coupling in the system. If the
EmailSender implementation changes so that it has another dependency, you
no longer have to update RegisterUser at the same time.

One problem that remains is that RegisterUser is still tied to an
implementation rather than an abstraction. Coding to abstractions (often
interfaces) is a common design pattern that helps further reduce the coupling
of a system, as you’re not tied to a single implementation. This pattern is
particularly useful for making classes testable, as you can create stub or mock
implementations of your dependencies for testing purposes, as shown in
figure 8.3.

Figure 8.3 By coding to interfaces instead of an explicit implementation, you can use different
IEmailSender implementations in different scenarios, such as a MockEmailSender in unit tests.

Tip

You can choose among many mocking frameworks. I’m most familiar with
Moq, but NSubstitute and FakeItEasy are also popular options.

As an example, you might create an IEmailSender interface, which
EmailSender would implement:

public interface IEmailSender

{

 public void SendEmail(string username);

}

Then RegisterUser could depend on this interface instead of the specific
EmailSender implementation, as shown in the following listing, allowing you
to use a different implementation during unit tests, such as a
DummyEmailSender.

Listing 8.5 Using interfaces with dependency injection

string RegisterUser(string username, IEmailSender emailSender) #A

{

 emailSender.SendEmail(username); #B

 return $"Email sent to {username}!";

}

The key point here is that the consuming code, RegisterUser, doesn’t care
how the dependency is implemented—only that it implements the
IEmailSender interface and exposes a SendEmail method. Now the
application code is independent of the implementation.

I hope that the principles behind DI seem to be sound. Having loosely
coupled code makes it easy to change or swap out implementations. But this
still leaves a question: how does the application know to use EmailSender in
production instead of DummyEmailSender? The process of telling your DI
container “When you need IEmailSender, use EmailSender” is called
registration.

Definition

You register services with a DI container so that it knows which
implementation to use for each requested service. This registration typically
takes the form “For interface X, use implementation Y.”

Exactly how you register your interfaces and types with a DI container can
vary depending on the specific DI container implementation, but the
principles are generally the same. ASP.NET Core includes a simple DI
container out of the box, so let’s look at how it’s used during a typical
request.

8.3 Using dependency injection in ASP.NET Core

ASP.NET Core was designed from the outset to be modular and composable,
with an almost plugin-style architecture, which is generally complemented by
DI. Consequently, ASP.NET Core includes a simple DI container that all the
framework libraries use to register themselves and their dependencies.

This container is used, for example, to register the minimal API infrastructure
—the formatters, the Kestrel web server, and so on. It’s a basic container, so
it exposes only a few methods for registering services, but you have the
option to replace it with a third-party DI container that gives you extra
capabilities, such as autoregistration and setter injection. The DI container is
built into the ASP.NET Core hosting model, as shown in figure 8.4.

Figure 8.4 The ASP.NET Core hosting model uses the DI container to fulfill dependencies when
creating minimal API endpoint handlers.

The hosting model pulls dependencies from the DI container when they’re
needed. If the framework determines that it must invoke RegisterHandler
due to the incoming URL/route, the RequestDelegateFactory responsible
for creating minimal APIs asks the DI container for an IEmailSender
implementation.

Note

RequestDelegateFactory is part of the minimal API framework that’s
responsible for invoking your minimal API handlers. You won’t use or
interact with it directly, but it’s behind the scenes interacting with the DI
container. I have a detailed series exploring this type on my blog at
http://mng.bz/Gy6v. But be warned: this post goes into far more detail than
most developers will ever need (or want)!

The DI container needs to know what to create when asked for
IEmailSender, so you must have registered an implementation, such as
EmailSender, with the container. When an implementation is registered, the
DI container can inject it anywhere, which means that you can inject
framework-related services (such as LinkGenerator from chapter 6) into
your own custom services. It also means that you can register alternative
versions of framework services and have the framework automatically use
those versions in place of the defaults.

Other ASP.NET Core infrastructure, such as the Model-View-Controller
(MVC) and Razor Pages frameworks (which you learn about in part 3), uses
dependency injection in a similar way to minimal APIs. These frameworks
use the DI container to create the dependencies required by their own
handlers, such as for a Razor Page (figure 8.5).

Figure 8.5 The ASP.NET Core hosting model uses the DI container to fulfill dependencies when
creating Razor Pages.

The flexibility to choose exactly how and which components you combine in
your applications is one of the selling points of DI. In section 8.4 you’ll learn
how to configure DI in your own ASP.NET Core application, using the
default, built-in container.

8.4 Adding ASP.NET Core framework services to
the container

Before ASP.NET Core, using DI was optional. By contrast, to build all but
the most trivial ASP.NET Core apps, some degree of DI is required. As I’ve
mentioned, the underlying framework depends on it, so features such as
Razor Pages and authentication require you to configure the required
services. In this section you’ll see how to register these framework services
with the built-in container. In chapter 9 you’ll learn how to register your own
services with the DI container.

ASP.NET Core uses DI to configure both its internal components, such as the
Kestrel web server, and extra features, such as Razor Pages. To use these
components at runtime, the DI container needs to know about all the classes
it will need. You register these services with the Services property on the
WebApplicationBuilder instance in Program.cs.

Note

The Services property of WebApplicationBuilder is of type
IServiceCollection. This is where you register the collection of services
that the DI container knows about.

If you’re thinking “Wait—I have to configure all the internal components
myself?”, don’t panic. Most of the core services are registered automatically
by WebApplicationBuilder, and you don’t need to do anything else. To use
other features, such as Razor Pages or authentication, you do need to register
the components explicitly with the container in your app, but that’s not as
hard as it sounds. All the common libraries you use expose handy extension
methods to take care of the nitty-gritty details. These extension methods
configure everything you need in one fell swoop instead of leaving you to
wire everything up manually.

The Razor Pages framework exposes the AddRazorPages() extension
method, for example, which adds all the necessary framework services to
your app. Invoke the extension method on the Services property of
WebApplicationBuilder in Program.cs, as shown in the following listing.

Listing 8.6 Registering the Razor Pages services with the DI container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); #A

WebApplication app = builder.Build();

app.MapRazorPages(); #B

app.Run();

It’s as simple as that. Under the hood, this call is registering multiple
components with the DI container, using the same APIs you’ll see in chapter
9 for registering your own services.

Note

Don’t worry about the Razor Pages aspect of this code; you’ll learn how
Razor Pages work in part 3. The important point of listing 8.6 is to show how
to register and enable various features in ASP.NET Core.

Most nontrivial libraries that you add to your application will have services
that you need to add to the DI container. By convention, each library that has
necessary services should expose an Add*() extension method that you can
call on WebApplicationBuilder.Services.

There’s no way of knowing exactly which libraries will require you to add
services to the container; it’s generally a case of checking the documentation
for any libraries you use. If you forget to add them, you may find that the
functionality doesn’t work, or you might get a handy exception in your logs,
like the one shown in figure 8.6. Keep an eye out for these exceptions, and be
sure to register any services you need.

Figure 8.6 If you fail to call AddRazorPages(), you’ll get an exception when your app tries to start.

It’s also worth noting that some of the Add*() extension methods allow you
to specify additional options when you call them, often by way of a lambda
expression. You can think of these options as configuring the installation of a
service into your application. The AddRazorPages method, for example,
provides a wealth of options for fine-tuning its behavior if you want to get
your hands dirty, as shown by the IntelliSense snippet in figure 8.7.

Figure 8.7 Configuring services when adding them to the service collection. The AddRazorPages()
function allows you to configure a wealth of the internals of the framework.

It’s all very well registering services with the DI container, but the important
question is how to use the container to get an instance of a registered service.
In section 8.5 we look at two possible ways to access these services and
discuss when you should choose one over the other.

8.5 Using services from the DI container

In a minimal API application, you have two main ways to access services
from the DI container:

Inject services into an endpoint handler.
Access the DI container directly in Program.cs.

The first approach—injecting services into an endpoint handler—is the most
common way to access the root of a dependency graph. You should use this
approach in almost all cases in your minimal API applications. You can inject
a service into an endpoint handler by adding it as a parameter to your
endpoint handler method, as you saw in chapters 6 and 7 when you injected a
LinkGenerator instance into your handler.

Listing 8.7 Injecting the LinkGenerator service in an endpoint handler

app.MapGet("/links", (LinkGenerator links) => #A

{

 string link = links.GetPathByName("products");

 return $"View the product at {link}";

});

The minimal API infrastructure sees that you need an instance of the
LinkGenerator, which is a service registered in the container, and asks the
DI container to provide an instance of the service. The DI container either
creates a new instance of LinkGenerator (or reuses an existing one) and
returns it to the minimal API infrastructure. Then the LinkGenerator is
passed as an argument to invoke the endpoint handler.

Note

Whether the DI container creates a new instance or reuses an existing

instance depends on the lifetime used to register the service. You’ll learn
about lifetimes in chapter 9.

As already mentioned, the DI container creates an entire dependency graph.
The LinkGenerator implementation registered with the DI container declares
the dependencies it requires by having parameters in its constructor, just as
the EmailSender type from section 8.1 declared its dependencies. When the
DI container creates the LinkGenerator, it first creates all the service’s
dependencies and uses them to create the final LinkGenerator instance.

Injecting services into your handlers is the canonical DI approach for
minimal API endpoint handlers, but sometimes you need to access a service
outside the context of a request. You may have lots of reasons to do this, but
some of the most common relate to working with a database or logging. You
may want to run some code when your app is starting to update a database’s
schema before the app starts handling requests, for example. If you need to
access services in Program.cs outside the context of a request, you can
retrieve services from the DI container directly by using the
WebApplication.Services property, which exposes the container as an
IServiceProvider.

Note

You register services with the IServiceCollection exposed on
WebApplicationBuilder.Services. You request services with the
IServiceProvider exposed on WebApplication.Services.

The IServiceProvider acts as a service locator, so you can request services
from it directly by using GetService() and GetRequiredService():

GetService<T>()—Returns the requested service T if it is available in
the DI container; otherwise, returns null
GetRequiredService<T>()—Returns the requested service T if it is
available in the DI container; otherwise, throws an
InvalidOperationException

I generally favor GetRequiredService over GetService, as it immediately
tells you whether you have a configuration problem with your DI container

by throwing an exception, and you don’t have to handle nulls.

You can use either of these methods in Program.cs to retrieve a service from
DI. The following listing shows how to retrieve a LinkGenerator from the DI
container, but you can access any service registered in the DI container here.

Listing 8.8 Retrieving a service from the DI container using WebApplication.Services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello World!");

LinkGenerator links = #A

 app.Services.GetRequiredService<LinkGenerator>(); #A

app.Run(); #B

This approach, in which you call the DI container directly to ask for a class,
is called the service locator pattern. Generally speaking, you should try to
avoid this pattern in your code; include your dependencies as constructor or
endpoint handler arguments directly, and let the DI container provide them
for you. This pattern is the only way to access DI services in the main loop of
your application in Program.cs, however, so don’t worry about using it here.
Still, you should absolutely avoid accessing WebApplication.Services from
inside your endpoint handlers or other types whenever possible.

Note

You can read about the service locator antipattern in Dependency Injection
Principles, Practices, and Patterns, by Steven van Deursen and Mark
Seemann (Manning, 2019).

In this chapter we covered some of the reasons to use DI in your applications,
how to enable optional ASP.NET Core features by adding services to the DI
container, and how to access services from the DI container by using
injection into your endpoint handlers. In chapter 9 you’ll learn about service
lifetimes and how to register your own services with the DI container.

8.6 Summary

DI is baked into the ASP.NET Core framework. You need to ensure that
your application adds all the framework’s dependencies for optional
features in Program.cs; otherwise, you’ll get exceptions at runtime when
the DI container can’t find the required services.
The dependency graph is the set of objects that must be created to create
a specific requested root object. The DI container creates all these
dependencies for you.
You should aim to use explicit dependencies instead of implicit
dependencies in most cases. ASP.NET Core uses constructor arguments
and endpoint handler arguments to declare explicit dependencies.
When discussing DI, the term service is used to describe any class or
interface registered with the container.
You register services with the DI container so that the container knows
which implementation to use for each requested service. This
registration typically takes the form “For interface X, use
implementation Y.”
You must register services with the container by calling Add* extension
methods on the IServiceCollection exposed as
WebApplicationBuilder.Services in Program.cs. If you forget to
register a service that’s used by the framework or in your own code,
you’ll get an InvalidOperationException at runtime.
You can retrieve services from the DI container in your endpoint
handlers by adding a parameter of the required type.
You can retrieve services from the DI container in Program.cs via the
service locator pattern by calling GetService<T>() or
GetRequiredService<T>() on the IServiceProvider exposed as
WebApplication.Services. Service location is generally considered to
be an antipattern; generally, you shouldn’t use it inside your handler
methods, but it’s fine to use it directly inside Program.cs.
GetService<T>() returns null if the requested service isn’t registered
with the DI container. By contrast, GetRequiredService<T>() throws
an InvalidOperationException.

9 Registering services with
dependency injection
This chapter covers

Configuring your services to work with dependency injection
Choosing the correct lifetime for your services

In chapter 8 you learned about dependency injection (DI) in general, why it’s
useful as a pattern for developing loosely coupled code, and its central place
in ASP.NET Core. In this chapter you’ll build on that knowledge to apply DI
to your own classes.

You’ll start by learning how to configure your app so that the ASP.NET Core
framework can create your classes for you, removing the pain of having to
create new objects manually in your code. We look at the various patterns
you can use to register your services and some of the limitations of the built-
in DI container.

Next, you’ll learn how to handle multiple implementations of a service.
You’ll learn how to inject multiple versions of a service, how to override a
default service registration, and how to register a service conditionally if you
don’t know whether it’s already registered.

In section 9.4 we look at how you can control how long your objects are used
—that is, their lifetime. We explore the differences among the three lifetime
options and some of the pitfalls to be aware of when you come to write your
own applications. Finally, in section 9.5 you’ll learn why lifetimes are
important when resolving services outside the context of an HTTP request.

We’ll start by revisiting the EmailSender service from chapter 8 to see how
you could register the dependency graph in your DI container.

9.1 Registering custom services with the DI

container

In this section you’ll learn how to register your own services with the DI
container. We’ll explore the difference between a service and an
implementation, and learn how to register the EmailSender hierarchy
introduced in chapter 8.

In chapter 8 I described a system for sending emails when a new user
registers in your application. Initially, the minimal API endpoint handler
RegisterUser created an instance of EmailSender manually, using code
similar to the following listing (which you saw in chapter 8).

Listing 9.1 Creating an EmailSender instance without dependency injection

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); #A

app.Run();

string RegisterUser(string username)

{

 IEmailSender emailSender = new EmailSender(#B

 new MessageFactory(), #C

 new NetworkClient(#D

 new EmailServerSettings #E

 (#E

 Host: "smtp.server.com", #E

 Port: 25 #E

)) #E

);

 emailSender.SendEmail(username); #F

 return $"Email sent to {username}!";

}

We subsequently refactored this code to inject an instance of IEmailSender
into the handler instead, as shown in listing 9.2. The IEmailSender interface
decouples the endpoint handler from the EmailSender implementation,
making it easier to change the implementation of EmailSender (or replace it)
without having to rewrite RegisterUser.

Listing 9.2 Using IEmailSender with dependency injection in an endpoint handler

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser); #A

app.Run();

string RegisterUser(string username, IEmailSender emailSender) #B

{

 emailSender.SendEmail(username); #C

 return $"Email sent to {username}!";

}

The final step in making the refactoring work is configuring your services
with the DI container. This configuration lets the DI container know what to
use when it needs to fulfill the IEmailSender dependency. If you don’t
register your services, you’ll get an exception at runtime, like the one in
figure 9.1. This exception describes a model-binding problem; the minimal
API infrastructure tries to bind the emailSender parameter to the request
body because IEmailSender isn’t a known service in the DI container.

Figure 9.1 If you don’t register all your required dependencies with the DI container, you’ll get
an exception at runtime, telling you which service wasn’t registered.

To configure the application completely, you need to register an
IEmailSender implementation and all its dependencies with the DI container,
as shown in figure 9.2.

Figure 9.2 Configuring the DI container in your application involves telling it what type to use
when a given service is requested, such as “Use EmailSender when IEmailSender is required.”

Configuring DI consists of making a series of statements about the services in
your app, such as the following:

When a service requires IEmailSender, use an instance of EmailSender.
When a service requires NetworkClient, use an instance of
NetworkClient.
When a service requires MessageFactory, use an instance of
MessageFactory.

Note

You’ll also need to register the EmailServerSettings object with the DI
container. We’ll do that slightly differently in section 9.2.

These statements are made by calling various Add* methods on the
IServiceCollection exposed as the WebApplicationBuilder.Services
property. Each Add* method provides three pieces of information to the DI
container:

Service type—TService. This class or interface will be requested as a
dependency. It’s often an interface, such as IEmailSender, but
sometimes a concrete type, such as NetworkClient or MessageFactory.
Implementation type—TService or TImplementation. The container
should create this class to fulfill the dependency. It must be a concrete
type, such as EmailSender. It may be the same as the service type, as for
NetworkClient and MessageFactory.
Lifetime—transient, singleton, or scoped. The lifetime defines how long
an instance of the service should be used by the DI container. I discuss
lifetimes in detail in section 9.4.

Definition

A concrete type is a type that can be created, such as a standard class or
struct. It contrasts with a type such as an interface or an abstract class,
which can’t be created directly.

Listing 9.3 shows how you can configure EmailSender and its dependencies
in your application by using three methods: AddScoped<TService>,
AddSingleton<TService>, and AddScoped<TService, TImplementation>.
This code tells the DI container how to create each of the TService instances
when they’re required and which lifetime to use.

Listing 9.3 Registering services with the DI container

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>(); #A

builder.Services.AddScoped<NetworkClient>(); #B

builder.Services.AddSingleton<MessageFactory>(); #C

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

string RegisterUser(string username, IEmailSender emailSender)

{

 emailSender.SendEmail(username);

 return $"Email sent to {username}!";

}

That’s all there is to DI! It may seem a little bit like magic, but you’re simply
giving the container instructions for making all the parts. You give it a recipe
for cooking the chili, shred the lettuce, and grate the cheese, so when you ask
for a burrito, it can put all the parts together and hand you your meal!

Note

Under the hood, the built-in ASP.NET Core DI container uses optimized
reflection to create dependencies, but different DI containers may use other
approaches. The Add* APIs are the only way to register dependencies with
the built-in container; there’s no support for using external configuration files
to configure the container, for example.

The service type and implementation type are the same for NetworkClient
and MessageFactory, so there’s no need to specify the same type twice in the
AddScoped method—hence, the slightly simpler signature.

Note

The EmailSender instance is registered only as an IEmailSender, so you
can’t resolve it by requesting the specific EmailSender implementation; you
must use the IEmailSender interface.

These generic methods aren’t the only ways to register services with the
container. You can also provide objects directly or by using lambdas, as
you’ll see in section 9.2.

9.2 Registering services using objects and lambdas

As I mentioned in section 9.1, I didn’t quite register all the services required
by EmailSender. In the previous examples, NetworkClient depends on
EmailServerSettings, which you’ll also need to register with the DI
container for your project to run without exceptions.

I avoided registering this object in the preceding example because you have

to take a slightly different approach. The preceding Add* methods use
generics to specify the Type of the class to register, but they don’t give any
indication of how to construct an instance of that type. Instead, the container
makes several assumptions that you have to adhere to:

The class must be a concrete type.
The class must have only a single relevant constructor that the container
can use.
For a constructor to be valid, all constructor arguments must be
registered with the container or must be arguments with a default value.

Note

These limitations apply to the simple built-in DI container. If you choose to
use a third-party container in your app, it may have a different set of
limitations.

The EmailServerSettings record doesn’t meet these requirements, as it
requires you to provide a Host and Port in the constructor, which are a
string and int, respectively, without default values:

public record EmailServerSettings(string Host, int Port);

You can’t register these primitive types in the container. It would be weird to
say “For every string constructor argument, in any type, use the
"smtp.server.com" value.”

Instead, you can create an instance of the EmailServerSettings object
yourself and provide that to the container, as shown in the following listing.
The container uses the preconstructed object whenever an instance of the
EmailServerSettings object is required.

Listing 9.4 Providing an object instance when registering services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>();

builder.Services.AddScoped<NetworkClient>();

builder.Services.AddSingleton<MessageFactory>();

builder.Services.AddSingleton(

 new EmailServerSettings #A

 (#A

 Host: "smtp.server.com", #A

 Port: 25 #A

)); #A

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

This code works fine if you want to have only a single instance of
EmailServerSettings in your application; the same object will be shared
everywhere. But what if you want to create a new object each time one is
requested?

Note

When the same object is used whenever it’s requested, it’s known as a
singleton. If you create an object and pass it to the container, it’s always
registered as a singleton. You can also register any class using the
AddSingleton<T>() method, and the container will use only one instance
throughout your application. I discuss singletons and other lifetimes in detail
in section 9.4. The lifetime is how long the DI container should use a given
object to fulfill a service’s dependencies.

Instead of providing a single instance that the container will always use, you
can provide a function that the container invokes when it needs an instance of
the type, as shown in figure 9.3.

Figure 9.3 You can register a function with the DI container that will be invoked whenever a new
instance of a service is required.

Note

Figure 9.3 is an example of the factory pattern, in which you define how a
type is created. Note that the factory functions must be synchronous; you
can’t create types asynchronously by (for example) using async.

The easiest way to register a service using the factory pattern is with a
lambda function (an anonymous delegate), in which the container creates a
new EmailServerSettings object whenever it’s needed, as shown in the
following listing.

Listing 9.5 Using a lambda factory function to register a dependency

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IEmailSender, EmailSender>();

builder.Services.AddScoped<NetworkClient>();

builder.Services.AddSingleton<MessageFactory>();

builder.Services.AddScoped(#A

 provider => #B

 new EmailServerSettings #C

 (#C

 Host: "smtp.server.com", #C

 Port: 25 #C

)); #C

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

In this example, I changed the lifetime of the created EmailServerSettings
object to scoped instead of singleton and provided a factory lambda function
that returns a new EmailServerSettings object. Every time the container
requires a new EmailServerSettings, it executes the function and uses the
new object it returns.

When you use a lambda to register your services, you’re given an
IServiceProvider instance at runtime, called provider in listing 9.5. This
instance is the public API of the DI container itself, which exposes the
GetService<T>() and GetRequiredService<T>() extension methods you
saw in chapter 8. If you need to obtain dependencies to create an instance of
your service, you can reach into the container at runtime in this way, but you
should avoid doing so if possible.

Tip

Avoid calling GetService<T>() and GetRequiredService<T>() in your
factory functions if possible. Instead, favor constructor injection; it’s more
performant and simpler to reason about.

Open generics and dependency injection

As already mentioned, you couldn’t use the generic registration methods with
EmailServerSettings because it uses primitive dependencies (in this case,
string and int) in its constructor. Neither can you use the generic
registration methods to register open generics.

Open generics are types that contain a generic type parameter, such as
Repository <T>. You normally use this sort of type to define a base behavior
that you can use with multiple generic types. In the Repository<T> example,
you might inject IRepository<Customer> into your services, which should
inject an instance of DbRepository<Customer>, for example.

To register these types, you must use a different overload of the Add*
methods, as in this example:

builder.Services.AddScoped(typeof(IRespository<>), typeof(DbRepository<>));

This code ensures that whenever a service constructor requires
IRespository<T>, the container injects an instance of DbRepository<T>.

At this point, all your dependencies are registered. But your Program.cs is
starting to look a little messy, isn’t it? The choice is entirely down to personal
preference, but I like to group my services into logical collections and create
extension methods for them, as in listing 9.6. This approach creates an
equivalent to the framework’s AddRazorPages() extension method—a nice,
simple registration API. As you add more features to your app, I think you’ll
appreciate it too.

Listing 9.6 Creating an extension method to tidy up adding multiple services

public static class EmailSenderServiceCollectionExtensions

{

 public static IServiceCollection AddEmailSender(

 this IServiceCollection services) #A

 {

 services.AddScoped<IEmailSender, EmailSender>(); #B

 services.AddSingleton<NetworkClient>(); #B

 services.AddScoped<MessageFactory>(); #B

 services.AddSingleton(#B

 new EmailServerSettings #B

 (#B

 host: "smtp.server.com", #B

 port: 25 #B

)); #B

 return services; #C

 }

}

With the preceding extension method created, the following listing shows
that your startup code is much easier to grok!

Listing 9.7 Using an extension method to register your services

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEmailSender(); #A

WebApplication app = builder.Build();

app.MapGet("/register/{username}", RegisterUser);

app.Run();

So far, you’ve seen how to register the simple DI cases in which you have a
single implementation of a service. In some scenarios, you may have multiple
implementations of an interface. In section 9.3 you’ll see how to register
these with the container to match your requirements.

9.3 Registering a service in the container multiple
times

One advantage of coding to interfaces is that you can create multiple
implementations of a service. Suppose that you want to create a more
generalized version of IEmailSender so that you can send messages via Short
Message Service (SMS) or Facebook, as well as by email. You create the
interface for it as follows,

public interface IMessageSender

{

 public void SendMessage(string message);

}

as well as several implementations: EmailSender, SmsSender, and
FacebookSender. But how do you register these implementations in the
container? And how can you inject these implementations into your
RegisterUser handler? The answers vary slightly, depending on whether you
want to use all the implementations in your consumer or only one.

9.3.1 Injecting multiple implementations of an interface

Suppose that you want to send a message using each of the IMessageSender
implementations whenever a new user registers so that they get an email, an
SMS text, and a Facebook message, as shown in figure 9.4.

Figure 9.4 When a user registers with your application, they call the RegisterUser handler. This
handler sends them an email, an SMS text, and a Facebook message using the IMessageSender
classes.

The easiest way to achieve this goal is to register all the service
implementations in your DI container and have it inject one of each type into
the RegisterUser endpoint handler. Then RegisterUser can use a simple
foreach loop to call SendMessage() on each implementation, as shown in
figure 9.5.

Fisting 9.5 You can register multiple implementations of a service with the DI container, such as
IEmailSender in this example. You can retrieve an instance of each of these implementations by
requiring IEnumerable<IMessageSender> in the RegisterUser handler.

You register multiple implementations of the same service with a DI
container in exactly the same way as for single implementations, using the
Add* extension methods as in this example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IMessageSender, EmailSender>();

builder.Services.AddScoped<IMessageSender, SmsSender>();

builder.Services.AddScoped<IMessageSender, FacebookSender>();

Then you can inject IEnumerable<IMessageSender> into RegisterUser, as
shown in listing 9.8. The container injects an array of IMessageSender
containing one of each of the implementations you have registered, in the
same order as you registered them. Then you can use a standard foreach loop
and call SendMessage on each implementation.

Listing 9.8 Injecting multiple implementations of a service into an endpoint

string RegisterUser(

 string username,

 IEnumerable<IMessageSender> senders) #A

{

 foreach(var sender in senders) #B

 { #B

 Sender.SendMessage($”Hello {username}!”); #B

 } #B

 return $"Welcome message sent to {username}";

}

Warning

You must use IEnumerable<T> as the handler parameter type to inject all the
registered types of a service, T. Even though this parameter will be injected as
a T[] array, you can’t use T[] or ICollection<T> as your constructor
argument. Doing so will cause an InvalidOperationException, similar to
that in figure 9.1.

It’s simple enough to inject all the registered implementations of a service,
but what if you need only one? How does the container know which one to
use?

9.3.2 Injecting a single implementation when multiple services
are registered

Suppose that you’ve already registered all the IMessageSender
implementations. What happens if you have a service that requires only one
of them? Consider this example:

public class SingleMessageSender

{

 private readonly IMessageSender _messageSender;

 public SingleMessageSender(IMessageSender messageSender)

 {

 _messageSender = messageSender;

 }

}

Of the three implementations available, the container needs to pick a single
IMessageSender to inject into this service. It does this by using the last
registered implementation: FacebookSender from the previous example.

Note

The DI container will use the last registered implementation of a service
when resolving a single instance of the service.

This feature can be particularly useful for replacing built-in DI registrations
with your own services. If you have a custom implementation of a service
that you know is registered within a library’s Add* extension method, you can
override that registration by registering your own implementation afterward.
The DI container will use your implementation whenever a single instance of
the service is requested.

The main disadvantage of this approach is that you still end up with multiple
implementations registered; you can inject an IEnumerable<T> as before.
Sometimes you want to register a service conditionally so that you always
have only a single registered implementation.

9.3.3 Conditionally registering services using TryAdd

Sometimes you want to add an implementation of a service only if one hasn’t
already been added. This approach is particularly useful for library authors;
they can create a default implementation of an interface and register it only if
the user hasn’t already registered their own implementation.

You can find several extension methods for conditional registration in the
Microsoft.Extensions.DependencyInjection.Extensions namespace,
such as TryAddScoped. This method checks whether a service has been
registered with the container before calling AddScoped on the
implementation. Listing 9.9 shows how you can add SmsSender conditionally
if there are no existing IMessageSender implementations. As you initially
register EmailSender, the container ignores the SmsSender registration, so it
isn’t available in your app.

Listing 9.9 Conditionally adding a service using TryAddScoped

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IMessageSender, EmailSender>(); #A

builder.Services.TryAddScoped<IMessageSender, SmsSender>(); #B

Code like this doesn’t often make a lot of sense at the application level, but it
can be useful if you’re building libraries for use in multiple apps. The
ASP.NET Core framework, for example, uses TryAdd* in many places, which
lets you easily register alternative implementations of internal components in
your own application if you want.

You can also replace a previously registered implementation by using the
Replace() extension method. Unfortunately, the API for this method isn’t as
friendly as the TryAdd methods. To replace a previously registered
IMessageSender with SmsSender, you’d use

builder.Services.Replace(new ServiceDescriptor(

 typeof(IMessageSender), typeof(SmsSender), ServiceLifetime.Scoped

));

Tip

When using Replace, you must provide the same lifetime that was used to
register the service that’s being replaced.

We’ve pretty much covered registering dependencies but touched only
vaguely on one important aspect: lifetimes. Understanding lifetimes is crucial
in working with DI containers, so it’s important to pay close attention to them
when registering your services with the container.

9.4 Understanding lifetimes: When are services
created?

Whenever the DI container is asked for a particular registered service, such as
an instance of IMessageSender, it can do either of two things to fulfill the
request:

Create and return a new instance of the service

Return an existing instance of the service

The lifetime of a service controls the behavior of the DI container with
respect to these two options. You define the lifetime of a service during DI
service registration. The lifetime dictates when a DI container reuses an
existing instance of the service to fulfill service dependencies and when it
creates a new one.

Definition

The lifetime of a service is how long an instance of a service should live in a
container before the container creates a new instance.

It’s important to get your head around the implications for the different
lifetimes used in ASP.NET Core, so this section looks at each lifetime option
and when you should use it. In particular, you’ll see how the lifetime affects
how often the DI container creates new objects. In section 9.4.4 I’ll show you
an antipattern of lifetimes to watch out for, in which a short-lifetime
dependency is captured by a long-lifetime dependency. This antipattern can
cause some hard-to-debug issues, so it’s important to bear in mind when
configuring your app.

In ASP.NET Core, you can specify one of three lifetimes when registering a
service with the built-in container:

Transient—Every time a service is requested, a new instance is created.
Potentially, you can have different instances of the same class within the
same dependency graph.
Scoped—Within a scope, all requests for a service give you the same
object. For different scopes, you get different objects. In ASP.NET
Core, each web request gets its own scope.
Singleton—You always get the same instance of the service, regardless
of scope.

Note

These concepts align well with most other DI containers, but the terminology
may differ. If you’re familiar with a third-party DI container, be sure you

understand how the lifetime concepts align with the built-in ASP.NET Core
DI container.

To illustrate the behavior of each lifetime, I use a simple example in this
section. Suppose that you have DataContext, which has a connection to a
database, as shown in listing 9.10. It has a single property, RowCount, which
represents the number of rows in the Users table of a database. For the
purposes of this example, we emulate calling the database by setting the
number of rows randomly when the DataContext object is created, so you
always get the same value every time you call RowCount on a given
DataContext instance. Different instances of DataContext return different
RowCount values.

Listing 9.10 DataContext generating a random RowCount on creation

class DataContext

{

 public int RowCount { get; } #A

 = Random.Shared.Next(1, 1_000_000_000); #B

}

You also have a Repository class that has a dependency on the
DataContext, as shown in the next listing. It also exposes a RowCount
property, but this property delegates the call to its instance of DataContext.
Whatever value DataContext was created with, the Repository displays the
same value.

Listing 9.11 Repository service that depends on an instance of DataContext

public class Repository

{

 private readonly DataContext _dataContext; #A

 public Repository(DataContext dataContext) #A

 { #A

 _dataContext = dataContext; #A

 } #A

 public int RowCount => _dataContext.RowCount; #B

}

Finally, you have your endpoint handler, RowCounts, which takes a
dependency on both Repository and on DataContext directly. When the

minimal API infrastructure creates the arguments needed to call RowCounts,
the DI container injects an instance of DataContext and an instance of
Repository. To create Repository, it must create a second instance of
DataContext. Over the course of two requests, four instances of DataContext
will be required, as shown in figure 9.6.

Figure 9.6 The DI container uses two instances of DataContext for each request. Depending on the
lifetime with which the DataContext type is registered, the container might create one, two, or
four instances of DataContext.

The RowCounts handler retrieves the value of RowCount returned from both

Repository and DataContext and then returns them as a string, similar to the
code in listing 9.12. The sample code associated with this book also records
and displays the values from previous requests so you can easily track how
the values change with each request.

Listing 9.12 The RowCounts handler depends on DataContext and Repository

static string RowCounts(#A

 DataContext db, #A

 Repository repository) #A

{

 int dbCount = db.RowCount; #B

 int repositoryCount = repository.RowCount; #B

 return: $"DataContext: {dbCount}, Repository: {repositoryCount}"; #C

}

The purpose of this example is to explore the relationships among the four
DataContext instances, depending on the lifetimes you use to register the
services with the container. I’m generating a random number in DataContext
as a way of uniquely identifying a DataContext instance, but you can think
of this example as being a point-in-time snapshot of, say, the number of users
logged on to your site or the amount of stock in a warehouse.

I’ll start with the shortest-lived lifetime (transient), move on to the common
scoped lifetime, and then take a look at singletons. Finally, I’ll show an
important trap you should be on the lookout for when registering services in
your own apps.

9.4.1 Transient: Everyone is unique

In the ASP.NET Core DI container, transient services are always created new
whenever they’re needed to fulfill a dependency. You can register your
services using the AddTransient extension methods:

builder.Services.AddTransient<DataContext>();

builder.Services.AddTransient<Repository>();

When you register services this way, every time a dependency is required, the
container creates a new one. This behavior of the container for transient

services applies both between requests and within requests; the DataContext
injected into the Repository will be a different instance from the one injected
into the RowCounts handler.

Note

Transient dependencies can result in different instances of the same type
within a single dependency graph.

Figure 9.7 shows the results you get from calling the API repeatedly when
you use the transient lifetime for both services. You can see that every value
is different, both within a request and between requests. Note that figure 9.7
was generated using the source code for this chapter, which is based on the
listings in this chapter, but also displays the results from previous requests to
make the behavior easier to observe.

Figure 9.7 When registered using the transient lifetime, all DataContext objects are different, as
you see by the fact that all the values are different within and between requests.

Transient lifetimes can result in the creation of a lot of objects, so they make
the most sense for lightweight services with little or no state. Using the
transient lifetime is equivalent to calling new every time you need a new
object, so bear that in mind when using it. You probably won’t use the
transient lifetime often; the majority of your services will probably be scoped
instead.

9.4.2 Scoped: Let’s stick together

The scoped lifetime states that a single instance of an object will be used
within a given scope, but a different instance will be used between different
scopes. In ASP.NET Core, a scope maps to a request, so within a single
request, the container will use the same object to fulfill all dependencies.

In the row-count example, within a single request (a single scope) the same
DataContext is used throughout the dependency graph. The DataContext

injected into the Repository is the same instance as the one injected into the
RowCounts handler.

In the next request, you’re in a different scope, so the container creates a new
instance of DataContext, as shown in figure 9.8. A different instance means a
different RowCount for each request, as you can see. As before, figure 9.8 also
shows the counts for previous requests.

Figure 9.8 Scoped dependencies use the same instance of DataContext within a single request but
a new instance for a separate request. Consequently, the RowCounts are identical within a request.

You can register dependencies as scoped by using the AddScoped extension
methods. In this example, I registered DataContext as scoped and left
Repository as transient, but you’d get the same results in this case if both
were scoped:

builder.Services.AddScoped<DataContext>();

Due to the nature of web requests, you’ll often find services registered as
scoped dependencies in ASP.NET Core. Database contexts and
authentication services are common examples of services that should be
scoped to a request—anything that you want to share across your services
within a single request but that needs to change between requests.

Generally speaking, you’ll find a lot of services registered using the scoped
lifetime—especially anything that uses a database, anything that’s dependent
on details of the HTTP request, or anything that uses a scoped service. But
some services don’t need to change between requests, such as a service that
calculates the area of a circle or returns the current time in different time
zones. For these services, a singleton lifetime might be more appropriate.

9.4.3 Singleton: There can be only one

The singleton is a pattern that came before DI; the DI container provides a
robust and easy-to-use implementation of it. The singleton is conceptually
simple: an instance of the service is created when it’s first needed (or during
registration, as in section 9.2), and that’s it. You’ll always get the same
instance injected into your services.

The singleton pattern is particularly useful for objects that are expensive to
create, contain data that must be shared across requests, or don’t hold state.
The latter two points are important: any service registered as a singleton
should be thread-safe.

Warning

Singleton services must be thread-safe in a web application, as they’ll
typically be used by multiple threads during concurrent requests.

Let’s consider what using singletons means for the row-count example. We
can update the registration of DataContext to be a singleton:

builder.Services.AddSingleton<DataContext>();

Then we can call the RowCounts handler and observe the results in figure 9.9.
We can see that every instance has returned the same value, indicating that

the same instance of DataContext is used in every request, both when
injected directly into the endpoint handler and when referenced transitively
by Repository.

Figure 9.9 Any service registered as a singleton always returns the same instance. Consequently,
all the calls to the RowCounts handler return the same value, both within a request and between
requests.

Singletons are convenient for objects that need to be shared or that are
immutable and expensive to create. A caching service should be a singleton,
as all requests need to share the service. It must be thread-safe, though.
Similarly, you might register a settings object loaded from a remote server as
a singleton if you load the settings once at startup and reuse them through the
lifetime of your app.

On the face of it, choosing a lifetime for a service may not seem to be too
tricky. But an important gotcha can come back to bite you in subtle ways, as

you’ll see in section 9.4.4.

9.4.4 Keeping an eye out for captive dependencies

Suppose that you’re configuring the lifetime for the DataContext and
Repository examples. You think about the suggestions I’ve provided and
decide on the following lifetimes:

DataContext—Scoped, as it should be shared for a single request
Repository—Singleton, as it has no state of its own and is thread-safe,
so why not?

Warning

This lifetime configuration is to explore a bug. Don’t use it in your code; if
you do, you’ll experience a similar problem!

Unfortunately, you’ve created a captive dependency because you’re injecting
a scoped object, DataContext, into a singleton, Repository. As it’s a
singleton, the same Repository instance is used throughout the lifetime of
the app, so the DataContext that was injected into it will also hang around,
even though a new one should be used with every request. Figure 9.10 shows
this scenario, in which a new instance of DataContext is created for each
scope but the instance inside Repository hangs around for the lifetime of the
app.

Listing 9.10 DataContext is registered as a scoped dependency, but Repository is a singleton.
Even though you expect a new DataContext for every request, Repository captures the injected
DataContext and causes it to be reused for the lifetime of the app.

Captive dependencies can cause subtle bugs that are hard to root out, so you
should always keep an eye out for them. These captive dependencies are
relatively easy to introduce, so always think carefully when registering a
singleton service.

Warning

A service should use only dependencies that have a lifetime longer than or
equal to the service’s lifetime. A service registered as a singleton can safely

use only singleton dependencies. A service registered as scoped can safely
use scoped or singleton dependencies. A transient service can use
dependencies with any lifetime.

At this point, I should mention one glimmer of hope in this cautionary tale:
ASP.NET Core automatically checks for these kinds of captive dependencies
and throws an exception on application startup if it detects them, or on first
use of a captive dependency, as shown in figure 9.11.

Figure 9.11 When ValidateScopes is enabled, the DI container throws an exception when it
creates a service with a captive dependency. By default, this check is enabled only for
development environments.

This scope validation check has a performance effect, so by default it’s
enabled only when your app is running in a development environment, but it
should help you catch most problems of this kind. You can enable or disable
this check regardless of environment by configuring the ValidateScopes
option on your WebApplicationBuilder in Program.cs by using the Host
property, as shown in the following listing.

Listing 9.13 Setting the ValidateScopes property to always validate scopes

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); #A

builder.Host.UseDefaultServiceProvider(o => #B

{

 o.ValidateScopes = true; #C

 o.ValidateOnBuild = true; #D

});

Listing 9.13 shows another setting you can enable, ValidateOnBuild, which
goes one step further. When the setting is enabled, the DI container checks on
application startup that it has dependencies registered for every service it
needs to build. If it doesn’t, it throws an exception and shuts down the app, as
shown in figure 9.12, letting you know about the misconfiguration. This
setting also has a performance effect, so it’s enabled only in development
environments by default, but it’s useful for pointing out any missed service
registrations.

Warning

Unfortunately, the container can’t catch everything. For a list of caveats and
exceptions, see this post from my blog: http://mng.bz/QmwG.

Figure 9.12 When ValidateOnBuild is enabled, the DI container checks on app startup that it can
create all the registered services. If it finds a service it can’t create, it throws an exception. By
default, this check is enabled only for development environments.

We’ve almost covered everything about dependency injection now, and
there’s only one more thing to consider: how to resolve scoped services on
app startup in Program.cs.

9.5 Resolving scoped services outside a request

In chapter 8, I said that there are two main ways to resolve services from the
DI container for minimal API applications:

Injecting services into an endpoint handler
Accessing the DI container directly in Program.cs

You’ve seen the first of those approaches several times now in this chapter.
In chapter 8 you saw that you can access services in Program.cs by calling
GetRequiredService<T>() on WebApplication.Services:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

var settings = app.Services.GetRequiredService<EmailServerSettings>();

It’s important, however, that you resolve only singleton services this way.
The IServiceProvider exposed as WebApplication.Services is the root DI
container for your app. Services resolved this way live for the lifetime of
your app, which is fine for singleton services but typically isn’t the behavior
you want for scoped or transient services.

Warning

Don’t resolve scoped or transient services directly from
WebApplication.Services. This approach can lead to leaking of memory, as
the objects are kept alive till the app exits and aren’t garbage-collected.

Instead, you should only resolve scoped and transient services from an active
scope. A new scope is created automatically for every HTTP request, but
when you’re resolving services from the DI container directly in Program.cs
(or anywhere else that’s outside the context of an HTTP request), you need to
create (and dispose of) a scope manually.

You can create a new scope by calling CreateScope() or
CreateAsyncScope() on IServiceProvider, which returns a disposable
IServiceScope object, as shown in figure 9.13. IServiceScope also exposes
an IServiceProvider property, but any services resolved from this provider
are disposed of automatically when you dispose the IServiceScope, ensuring
that all the resources held by the scoped and transient services are released
correctly.

Figure 9.13 To resolve scoped or transient services manually, you must create an IServiceScope
object by calling CreateScope() on WebApplication.Services. Any scoped or transient services
resolved from the DI container exposed as IServiceScope.ServiceProvider are disposed of
automatically when you dispose of the IServiceScope object.

The following listing shows how you can resolve a scoped service in
Program.cs using the pattern in figure 9.13. This pattern ensures that the
scoped DataContext object is disposed of correctly before the call to
app.Run().

Listing 9.14 Resolving a scoped service using IServiceScope in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<DataContext>(); #A

WebApplication app = builder.Build();

await using (var scope = app.Services.CreateAsyncScope()) #B

{

 var dbContext = #C

 scope.ServiceProvider.GetRequiredService<DataContext>(); #C

 Console.WriteLine($"Retrieved scope: {dbContext.RowCount}");

} #D

app.Run();

This example uses the async form CreateAsyncScope() instead of
CreateScope(), which you generally should favor whenever possible.
CreateAsyncScope was introduced in .NET 6 to fix an edge case related to
IAsyncDisposable (introduced in .NET Core 3.0). You can read more about
this scenario on my blog at http://mng.bz/zXGB.

With that, you’ve reached the end of this introduction to DI in ASP.NET
Core. Now you know how to register your own services with the DI
container, and ideally, you have a good understanding of the three service
lifetimes used in .NET. DI appears everywhere in .NET, so it’s important to
try to get your head around it.

In chapter 10 we’ll look at the ASP.NET Core configuration model. You’ll
see how to load settings from a file at runtime, store sensitive settings safely,
and make your application behave differently depending on which machine
it’s running on. We’ll even use a bit of DI; it gets everywhere in ASP.NET
Core!

9.6 Summary

When registering your services, you describe three things: the service
type, the implementation type, and the lifetime. The service type defines
which class or interface will be requested as a dependency. The
implementation type is the class the container should create to fulfill the
dependency. The lifetime is how long an instance of the service should
be used for.
You can register a service by using generic methods if the class is

concrete and all its constructor arguments are registered with the
container or have default values.
You can provide an instance of a service during registration, which will
register that instance as a singleton. This approach can be useful when
you already have an instance of the service available.
You can provide a lambda factory function that describes how to create
an instance of a service with any lifetime you choose. You can take this
approach when your services depend on other services that are
accessible only when your application is running.
Avoid calling GetService() or GetRequiredService() in your factory
functions if possible. Instead, favor constructor injection; it’s more
performant and simpler to reason about.
You can register multiple implementations for a service. Then you can
inject IEnumerable<T> to get access to all the implementations at
runtime.
If you inject a single instance of a multiple-registered service, the
container injects the last implementation registered.
You can use the TryAdd* extension methods to ensure that an
implementation is registered only if no other implementation of the
service has been registered. This approach can be useful for library
authors to add default services while still allowing consumers to
override the registered services.
You define the lifetime of a service during DI service registration to
dictate when a DI container will reuse an existing instance of the service
to fulfill service dependencies and when it will create a new one.
A transient lifetime means that every time a service is requested, a new
instance is created.
A scoped lifetime means that within a scope, all requests for a service
will give you the same object. For different scopes, you’ll get different
objects. In ASP.NET Core, each web request gets its own scope.
You’ll always get the same instance of a singleton service, regardless of
scope.
A service should use only dependencies with a lifetime longer than or
equal to the lifetime of the service. By default, ASP.NET Core performs
scope validation to check for errors like this one and throws an
exception when it finds them, but this feature is enabled only in
development environments, as it has a performance cost.

To access scoped services in Program.cs, you must first create an
IServiceScope object by calling CreateScope() or
CreateAsyncScope() on WebApplication.Services. You can resolve
services from the IServiceScope.ServiceProvider property. When
you dispose IServiceScope, any scoped or transient services resolved
from the scope are also disposed.

10 Configuring an ASP.NET Core
application
This chapter covers

Loading settings from multiple configuration providers
Storing sensitive settings safely
Using strongly typed settings objects
Using different settings in different hosting environments

In part 1 of this book, you learned the basics of getting an ASP.NET Core
app up and running, and how to use minimal API endpoints to create an
HTTP API. When you start building real applications, you’ll quickly find that
you want to tweak various settings at deploy time without necessarily having
to recompile your application. This chapter looks at how you can achieve this
task in ASP.NET Core by using configuration.

I know. Configuration sounds boring, right? But I have to confess that the
configuration model is one of my favorite parts of ASP.NET Core; it’s so
easy to use and so much more elegant than some approaches in old versions
of .NET Framework. In section 10.2 you’ll learn how to load values from a
plethora of sources—JavaScript Object Notation (JSON) files, environment
variables, and command-line arguments—and combine them into a unified
configuration object.

On top of that, ASP.NET Core makes it easy to bind this configuration to
strongly typed options objects—simple plain old CLR object (POCO) classes
that are populated from the configuration object, which you can inject into
your services, as you’ll see in section 10.3. Binding to strongly typed options
objects lets you nicely encapsulate settings for different features in your app.

In the final section of this chapter, you’ll learn about the ASP.NET Core
hosting environments. You often want your app to run differently in different
situations, such as running it on your developer machine compared with

deploying it to a production server. These situations are known as
environments. When the app knows the environment in which it’s running, it
can load a different configuration and vary its behavior accordingly.

Before we get to that topic, let’s cover the basics. What is configuration, why
do we need it, and how does ASP.NET Core handle these requirements?

10.1 Introducing the ASP.NET Core configuration
model

In this section I provide a brief description of configuration and what you can
use it for in ASP.NET Core applications. Configuration is the set of external
parameters provided to an application that controls the application’s behavior
in some way. It typically consists of a mixture of settings and secrets that the
application loads at runtime.

Definition

A setting is any value that changes the behavior of your application. A secret
is a special type of setting that contains sensitive data, such as a password, an
API key for a third-party service, or a connection string.

The obvious things to consider before we get started are why we need app
configuration and what sort of things we need to configure. Normally, you
move anything that you can consider to be a setting or a secret out of your
application code. That way, you can change these values at deploy time
easily without having to recompile your application.

You might have an application that shows the locations of your bricks-and-
mortar stores. You could have a setting for the connection string to the
database in which you store the details on the stores, but also settings such as
the default location to display on a map, the default zoom level to use, and
the API key for accessing the Google Maps API (figure 10.1). Storing these
settings and secrets outside your compiled code is good practice, as it makes
it easy to tweak them without having to recompile your code.

Figure 10.1 You can store the default map location, zoom level, and mapping API Key in

configuration and load them at runtime. It’s important to keep secrets such as API keys in
configuration out of your code.

There’s also a security aspect: you don’t want to hardcode secret values such
as API keys or passwords into your code, where they could be committed to
source control and made publicly available. Even values embedded in your
compiled application can be extracted, so it’s best to externalize them
whenever possible.

Virtually every web framework provides a mechanism for loading
configuration, and the old .NET Framework version of ASP.NET was no
different. It used the <appsettings> element in a web.config file to store
key-value configuration pairs. At runtime you’d use the static (*wince*)
ConfigurationManager to load the value for a given key from the file. You
could do more advanced things using custom configuration sections, but
doing more advanced things using custom configuration sections was painful
and so was rarely used, in my experience.

ASP.NET Core gives you a totally revamped experience. At the most basic
level, you’re still specifying key-value pairs as strings, but instead of getting
those values from a single file, now you can load them from multiple sources.
You can load values from files, but now they can be in any format you like:
JSON, XML, YAML, and so on. Further, you can load values from
environment variables, from command-line arguments, from a database, or
from a remote service. Or you can create your own custom configuration
provider.

Definition

ASP.NET Core uses configuration providers to load key-value pairs from a
variety of sources. Applications can use multiple configuration providers.

The ASP.NET Core configuration model also has the concept of overriding
settings. Each configuration provider can define its own settings, or it can
overwrite settings from a previous provider. You’ll see this incredibly useful
feature in action in section 10.2.

ASP.NET Core makes it simple to bind these key-value pairs, which are
defined as strings, to POCO-setting classes that you define in your code.
This model of strongly typed configuration, described in section 10.3, makes

it easy to group settings logically around a given feature and lends itself well
to unit testing.

Before we get to strongly typed settings, we’ll look at how you load the
settings and secrets for your app, whether they’re stored in JSON files,
environment variables, or command-line arguments.

10.2 Building a configuration object for your app

In this section we’ll get into the meat of the configuration system. You’ll
learn how to load settings from multiple sources, how they’re stored
internally in ASP.NET Core, and how settings can override other values to
produce layers of configuration. You’ll also learn how to store secrets
securely while ensuring that they’re still available when you run your app.

ASP.NET Core’s configuration model has been essentially the same since
.NET Core 1.0, but in .NET 6, ASP.NET Core introduced the
ConfigurationManager class. ConfigurationManager simplifies common
patterns for working with configuration by implementing both of the two
main configuration-related interfaces: IConfigurationBuilder and
IConfigurationRoot.

Note

IConfigurationBuilder describes how to construct the final configuration
representation for your app, and IConfigurationRoot holds the
configuration values themselves.

You describe your configuration by adding IConfigurationProviders to the
ConfigurationManager. Configuration providers describe how to load the
key-value pairs from a particular source, such as a JSON file or environment
variables (figure 10.2). When you add a provider, the ConfigurationManager
queries it and adds all the values returned to the IConfigurationRoot
implementation.

Figure 10.2 Using ConfigurationManager to populate IConfiguration. Configuration providers
are added to the ConfigurationManager with extension methods. The manager queries the
provider and adds all the returned values to the IConfigurationRoot, which implements

IConfiguration.

Note

Adding a provider to the ConfigurationManager adds the configuration
values to the IConfigurationRoot instance, which implements
IConfiguration. You’ll generally work with the IConfiguration interface
in your code.

ASP.NET Core ships with configuration providers for loading data from
common locations:

JSON files
Extensible Markup Language (XML) files
Environment variables
Command-line arguments
Initialization (INI) files

If these providers don’t fit your requirements, you can find a host of
alternatives on GitHub and NuGet, and it’s not difficult to create your own
custom provider. You could use the official Microsoft Azure Key Vault
provider NuGet package or the YAML file provider I wrote.

Note

The Azure Key Vault provider is available on NuGet at http://mng.bz/0KrN,
and you can find my YAML provider on GitHub at http://mng.bz/Yqdj.

In many cases, the default providers are sufficient. In particular, most
templates start with an appsettings.json file, which contains a variety of
settings depending on the template you choose. The following listing shows
the default file generated by the ASP.NET Core 7.0 Empty template without
authentication.

Listing 10.1 Default appsettings.json file created by an ASP.NET Core Empty template

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft.AspNetCore": "Warning"

 }

 },

 "AllowedHosts": "*"

}

As you can see, this file contains mostly settings to control logging, but you
can add extra configuration for your app here too.

Warning

Don’t store sensitive values—such as passwords, API keys, and connection
strings—in this file. You’ll see how to store these values securely in section
10.2.3.

Adding your own configuration values involves adding a key-value pair to
the JSON. It’s a good idea to namespace your settings by creating a base
object for related settings, as in the MapSettings object shown in the
following listing.

Listing 10.2 Adding configuration values to an appsettings.json file

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "MapSettings": { #A

 "DefaultZoomLevel": 9, #B

 "DefaultLocation": { #C

 "latitude": 50.500, #C

 "longitude": -4.000 #C

 }

 }

}

I’ve nested the new configuration inside the MapSettings parent key to create
a section that will be useful later for binding values to a POCO object. I also
nested the latitude and longitude keys under the DefaultLocation key.
You can create any structure of values you like; the configuration provider
will read them fine. Also, you can store the values as any data type—

numbers, in this case—but be aware that the provider will read and store
them internally as strings.

Tip

The configuration keys are not case-sensitive in your app, so bear that fact in
mind when loading from providers in which the keys are case-sensitive. If
you have a YAML file with keys name and NAME, for example, only one will
appear in the final IConfiguration.

Now that you have a configuration file, it’s time for your app to load it into
the ConfigurationManager.

10.2.1 Adding a configuration provider in Program.cs

As you’ve seen throughout this book, ASP.NET Core (from .NET 6 onward)
uses the WebApplicationBuilder class to bootstrap your application. As part
of the bootstrap process, WebApplicationBuilder creates a
ConfigurationManager instance and exposes it as the property
Configuration.

Tip

You can access the ConfigurationManager directly on
WebApplicationBuilder.Configuration and
WebApplication.Configuration. Both properties reference the same
ConfigurationManager instance.

WebApplicationBuilder adds several default configuration providers to the
ConfigurationManager, which we’ll look at in more detail throughout this
chapter:

JSON file provider—Loads settings from an optional JSON file called
appsettings.json. It also loads settings from an optional environment-
specific JSON file called appsettings.ENVIRONMENT.json. I show how
to use environment-specific files in section 10.4.
User Secrets—Loads secrets that are stored safely during development.

Environment variables—Loads environment variables as configuration
variables, which are great for storing secrets in production.
Command-line arguments—Uses values passed as arguments when you
run your app.

The ConfigurationManager is configured with all these sources
automatically, but you can easily add more providers. You can also start from
scratch and clear the default providers as shown in the following listing,
which completely customizes where configuration is loaded from.

Listing 10.3 Loading appsettings.json by clearing the configuration sources

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear(); #A

builder.Configuration.AddJsonFile("appsettings.json", optional: true); #B

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable()); #C

app.Run();

This example added a single JSON configuration provider by calling the
AddJsonFile() extension method and providing a filename. It also set the
value of optional to true, telling the configuration provider to skip files that
it can’t find at runtime instead of throwing FileNotFoundException. When
the provider is added, the ConfigurationManager requests all the available
values from the provider and adds them to the IConfiguration
implementation.

ConfigurationBuilder vs. ConfigurationManager

Before .NET 6 and the introduction of ConfigurationManager, configuration
in ASP.NET Core was implemented with ConfigurationBuilder. You’d add
configuration providers to the builder type the same way you do with
ConfigurationManager, but the configuration values weren’t loaded until
you called Build(), which created the final IConfigurationRoot object.

By contrast, in .NET 6 and .NET 7 ConfigurationManager acts as both the
builder and the final IConfigurationRoot. When you add a new
configuration provider, the configuration values are added to the
IConfigurationRoot immediately, without the need to call Build() first.

The ConfigurationBuilder approach using the builder pattern is cleaner in
some ways, as it has a clearer separation of concerns, but the common use
patterns for configuration mean that the new ConfigurationManager
approach is often easier to use.

If you prefer, you can still use the builder pattern by accessing
WebApplicationBuilder.Host.ConfigureAppConfiguration. You can read
about some of these patterns and the differences between the two approaches
on my blog at http://mng.bz/Ke4j.

You can access the IConfiguration object directly in Program.cs, as in
listing 10.3, but the ConfigurationManager is also registered as
IConfiguration in the dependency injection (DI) container, so you can inject
it into your classes and endpoint handlers. You could rewrite the endpoint
handler in listing 10.3 as the following, and the IConfiguration object
would be injected into the handler using DI:

app.MapGet("/", (IConfiguration config) => config.AsEnumerable());

Note

The ConfigurationManager implements IConfigurationRoot, which also
implements IConfiguration. The ConfigurationManager is registered in the
DI container as an IConfiguration, not an IConfigurationRoot.

You’ve seen how to add values to the ConfigurationManager by using
providers such as the JSON file provider. and listing 10.3 showed an example
of iterating over every configuration value, but normally you want to retrieve
a specific configuration value.

IConfiguration stores configuration as a set of key-value string pairs. You
can access any value by its key, using standard dictionary syntax. You could
use

var zoomLevel = builder.Configuration["MapSettings:DefaultZoomLevel"];

to retrieve the configured zoom level for your application (using the settings
shown in listing 10.2). Note that I used a colon (:) to designate a separate
section. Similarly, to retrieve the latitude key, you could use

var lat = builder.Configuration["MapSettings:DefaultLocation:Latitude"];

Note

If the requested configuration key doesn’t exist, you get a null value.

You can also grab a whole section of the configuration by using the
GetSection(section) method, which returns an IConfigurationSection,
which also implements IConfiguration. This method grabs a chunk of the
configuration and resets the namespace. Another way to get the latitude key
is

var lat = builder.Configuration

 .GetSection("MapSettings")["DefaultLocation:Latitude"];

Accessing setting values this way is useful in Program.cs when you’re
defining your application. When you’re setting up your application to connect
to a database, for example, you’ll often load a connection string from the
IConfiguration object. You’ll see a concrete example in chapter 12, which
looks at Entity Framework Core.

If you need to access the configuration object in places other than
Program.cs, you can use DI to inject it as a dependency into your service’s
constructor. But accessing configuration by using string keys this way isn’t
particularly convenient; you should try to use strongly typed configuration
instead, as you’ll see in section 10.3.

So far, this process probably feels a bit too convoluted and run-of-the-mill to
load settings from a JSON file, and I’ll grant you that it is. Where the
ASP.NET Core configuration system shines is when you have multiple
providers.

10.2.2 Using multiple providers to override configuration

values

You’ve seen how to add a configuration provider to the
ConfigurationManager and retrieve the configuration values, but so far,
you’ve configured only a single provider. When you add providers, it’s
important to consider the order in which you add them, as that defines the
order in which the configuration values will be added to the underlying
dictionary. Configuration values from later providers overwrite values with
the same key from earlier providers.

Note

This sentence bears repeating: the order in which you add configuration
providers to ConfigurationManager is important. Later configuration
providers can overwrite the values of earlier providers.

Think of the configuration providers as adding layers of configuration values
to a stack, where each layer may overlap some or all of the layers below, as
shown in figure 10.3. If the new provider contains any keys that are already
known to the ConfigurationManager, they overwrite the old values to create
the final set of configuration values stored in IConfiguration.

Tip

Instead of thinking in layers, you can think of the ConfigurationManager as
a simple dictionary. When you add a provider, you’re setting some key-value
pairs. When you add a second provider, the provider can add new keys or
overwrite the value of existing keys.

Figure 10.3 Each configuration provider adds a layer of values to ConfigurationBuilder. Calling
Build() collapses that configuration. Later providers overwrite configuration values with the
same keys from earlier providers.

Update your code to load configuration from three different configuration
providers—two JSON providers and an environment variable provider—by
adding them to ConfigurationManager as shown in the following listing.

Listing 10.4 Loading from multiple providers in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear();

builder.Configuration #A

 .AddJsonFile("sharedSsettings.json", optional: true); #A

builder.Configuration.AddJsonFile("appsettings.json", optional: true);

builder.Configuration.AddEnvironmentVariables(); #B

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable());

app.Run();

This layered design can be useful for several things. Fundamentally, it allows

you to aggregate configuration values from multiple sources into a single,
cohesive object. To cement this design in place, consider the configuration
values in figure 10.4.

Figure 10.4 The final IConfiguration includes the values from each of the providers. Both
appsettings.json and the environment variables include the MyAppConnString key. As the
environment variables are added later, that configuration value is used.

Most of the settings in each provider are unique and are added to the final
IConfiguration. But the "MyAppConnString" key appears both in
appsettings.json and as an environment variable. Because the environment
variable provider is added after the JSON providers, the environment variable
configuration value is used in IConfiguration.

The ability to collate configuration from multiple providers is handy on its
own, but this design is especially useful for handling sensitive configuration
values, such as connection strings and passwords. Section 10.2.3 shows how
to deal with this problem, both locally on your development machine and on
production servers.

10.2.3 Storing configuration secrets safely

As soon as you build a nontrivial app, you’ll find that you need to store some
sort of sensitive data as a setting somewhere. This data could be a password,
a connection string, or an API key for a remote service, for example.

Storing these values in appsettings.json is generally a bad idea, as you should
never commit secrets to source control; the number of secret API keys people
have committed to GitHub is scary! Instead, it’s much better to store these
values outside your project folder, where they won’t get committed
accidentally.

You can do this in a few ways, but the easiest and most common approaches
are to use environment variables for secrets on your production server and
User Secrets locally. Neither approach is truly secure, in that neither stores
values in an encrypted format. If your machine is compromised, attackers
will be able to read the stored values because they’re stored in plain text.
These approaches are intended mainly to help you avoid committing secrets
to source control.

Tip

Azure Key Vault is a secure alternative, in that it stores the values encrypted
in Azure, but you still need to use User Secrets and environment variables to
store the Azure Key Vault connection details. See the documentation for

instructions on using Azure Key Vault in your apps http://mng.bz/BR7v.
Another popular option is Vault by Hashicorp (www.vaultproject.io), which
can be run on-premises or in the cloud.

Whichever approach you use to store your application secrets, make sure that
you aren’t storing them in source control. Even private repositories may not
stay private forever, so it’s best to err on the side of caution.

Storing secrets in environment variables in production

You can add the environment variable configuration provider by using the
AddEnvironmentVariables extension method, as you saw in listing 10.4.
This method adds all the environment variables on your machine as key-
value pairs to ConfigurationManager.

Note

The WebApplicationBuilder adds the environment variable provider to the
ConfigurationManager by default.

You can create the same hierarchical sections in environment variables that
you typically see in JSON files by using a colon (:) or a double underscore
(__) to demarcate a section, as in MapSettings:MaxNumberOfPoints or
MapSettings__MaxNumberOfPoints.

Tip

Some environments, such as Linux, don’t allow the colon in environment
variables. You must use the double-underscore approach in these
environments instead. A double underscore in an environment variable is
converted to a colon when it’s imported into the IConfiguration object. You
should always use the colon when retrieving values from an IConfiguration
in your app.

The environment-variable approach is particularly useful when you’re
publishing your app to a self-contained environment, such as a dedicated
server, Azure, or a Docker container. You can set environment variables on

your production machine or on your Docker container, and the provider reads
them at runtime, overriding the defaults specified in your appsettings.json
files.

Tip

For instructions on setting environment variables for your operating system,
see Microsoft’s “Use multiple environments in ASP.NET Core”
documentation at http://mng.bz/d4OD.

For a development machine, environment variables are less useful, as all your
apps would use the same values. If you set the ConnectionStrings__
DefaultConnection environment variable, for example, that variable would
be added to every app you run locally, which sounds like more of a hassle
than a benefit!

Tip

To avoid collisions, you can add only environment variables that have a
given prefix, such as AddEnvironmentVariables("SomePrefix"). The prefix
is removed from the key before it’s added to the ConfigurationManager, so
the variable SomePrefix_MyValue is added to configuration as MyValue.

For development scenarios, you can use the User Secrets Manager, which
effectively adds per-app environment variables, so you can have different
settings for each app but store them in a different location from the app itself.

Storing secrets with the User Secrets Manager in development

The idea behind User Secrets is to simplify storing per-app secrets outside
your app’s project tree. This approach is similar to environment variables, but
you use a unique key for each app to keep the secrets segregated.

Warning

The secrets aren’t encrypted, so don’t consider them to be secure.
Nevertheless, it’s an improvement on storing them in your project folder.

Setting up User Secrets takes a bit more effort than using environment
variables, as you need to configure a tool to read and write them, add the
User Secrets configuration provider, and define a unique key for your
application. To add User Secrets to your app, follow these steps:

1. WebApplicationBuilder adds the User Secrets provider by default. The
.NET SDK includes a global tool for working with secrets from the
command line.

2. If you’re using Visual Studio, right-click your project and choose
Manage User Secrets from the contextual menu. This command opens
an editor for a secrets.json file in which you can store your key-value
pairs as though it were an appsettings.json file, as shown in figure 10.5.

Figure 10.5 Choose Manage User Secrets to open an editor for the User Secrets app. You can use
this file to store secrets when developing your app locally. These secrets are stored outside your
project folder, so they won’t be committed to source control accidentally.

3. Add a unique identifier to your .csproj file. Visual Studio does this
automatically when you choose Manage User Secrets, but if you’re
using the command line, you’ll need to add it yourself. Typically, you’d
use a unique ID, such as a globally unique identifier (GUID):

<PropertyGroup>

 <UserSecretsId>96eb2a39-1ef9-4d8e-8b20-8e8bd14038aa</UserSecretsId>

</PropertyGroup>

You can also generate the UserSecretsId property with a random value
using the .NET command-line interface (CLI) by running the following
command from your project folder:

dotnet user-secrets init

4. Add User Secrets by using the command line

dotnet user-secrets set "MapSettings:GoogleMapsApiKey" F5RJT9GFHKR7

or edit the secret.json file directly by using your favorite editor. The
exact location of this file depends on your operating system and may
vary. Check the documentation for details at http://mng.bz/ryAg.

Note

The Secret Manager tool is included in the .NET CLI, but you can also use
the CLI to install additional .NET tools. You can find more about .NET tools
in general in Microsoft’s “How to manage .NET tools” documentation:
http://mng.bz/VdmX.

Phew! That’s a lot of setup, and if you’re adding providers to
ConfigurationManager manually, you’re not done yet! You need to update
your app to load the User Secrets at runtime by using the AddUserSecrets
extension method:

if (builder.Environment.IsDevelopment())

{

 builder.Configuration.AddUserSecrets<Program>();

}

Note

You should use the User Secrets provider only in development, not in
production, so in the preceding snippet you add the provider conditionally to
ConfigurationManager. In production you should use environment variables
or Azure Key Vault, as discussed earlier. All this is configured correctly by
default when you use the default WebApplicationBuilder.

The AddUserSecrets method has several overloads, but the simplest is a
generic method that you can call by passing your application’s Program class
as a generic argument, as shown in the preceding example. The User Secrets
provider needs to read the UserSecretsId property that you (or Visual
Studio) added to the .csproj file. The Program class acts as a simple marker to
indicate which assembly contains this property.

Note

If you’re interested, the .NET software development kit (SDK) uses the
UserSecretsId property in your .csproj file to generate an assembly-level
UserSecretsIdAttribute. Then the provider reads this attribute at runtime
to determine the UserSecretsId of the app and generates the path to the
secrets.json file.

And there you have it—safe storage of your secrets outside your project
folder during development. This cautious approach may seem like overkill,
but if you have anything you consider to be remotely sensitive that you need
to load into configuration, I strongly urge you to use environment variables or
User Secrets.

It’s almost time to leave configuration providers behind, but before we do,
I’d like to show you the ASP.NET Core configuration system’s party trick:
reloading files on the fly.

10.2.4 Reloading configuration values when they change

Besides security, not having to recompile your application every time you
want to tweak a value is one of the advantages of using configuration and
settings. In the previous version of ASP.NET, changing a setting by editing
web.config would cause your app to restart. This feature beat having to
recompile, but waiting for the app to start up before it could serve requests
was a bit of a drag.

In ASP.NET Core, you finally get the ability to edit a file and have the
configuration of your application update automatically, without your having
to recompile or restart. An often-cited scenario in which you might find this

ability useful is when you’re trying to debug an app you have in production.
You typically configure logging to one of several levels:

Error
Warning
Information
Debug

Each of these settings is more verbose than the last, but it also provides more
context. By default, you might configure your app to log only warning and
error-level logs in production so that you don’t generate too many
superfluous log entries. Conversely, if you’re trying to debug a problem, you
want as much information as possible, so you may want to use the debug log
level.

Being able to change configuration at runtime means that you can easily
switch on extra logs when you encounter a problem and switch them back
afterward by editing your appsettings.json file.

Note

Reloading is generally available only for file-based configuration providers,
such as the JSON provider, as opposed to the environment variable provider,
for example.

You can enable the reloading of configuration files when you add any of the
file-based providers to your ConfigurationManager. The Add*File extension
methods include an overload with a reloadOnChange parameter. If this
parameter is set to true, the app monitors the filesystem for changes to the
file and triggers a complete rebuild of the IConfiguration, if needs be. The
following listing shows how to add configuration reloading to the
appsettings.json file added manually to the ConfigurationManager.

Listing 10.5 Reloading appsettings.json when the file changes

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: true,

 reloadOnChange: true); #A

WebApplication app = builder.Build();

app.MapGet("/", () => app.Configuration.AsEnumerable());

app.Run();

Throughout section 10.2, you’ve seen how to customize the
ConfigurationManager providers by clearing the default sources and adding
your own, but in most cases, that won’t be necessary. As described in section
10.2.1, the default providers added by WebApplicationBuilder are normally
good enough unless you want to add a new provider, such as Azure Key
Vault. As a bonus, WebApplicationBuilder configures the appsettings.json
with reloadOnChange:true by default. It’s worth sticking with the defaults
initially and clear the sources and start again only if you really need to.

Warning

Adding a file configuration source using reloadOnChange:true isn’t entirely
free, as ASP.NET Core sets up a file watcher in the background. Normally,
this situation isn’t problematic, but if you set up a configuration watching
thousands of files, you could run into difficulties!

In listing 10.5, any changes you make to the file will be mirrored in the
IConfiguration. But as I said at the start of this chapter, IConfiguration
isn’t the preferred way to pass settings around in your application. Instead, as
you’ll see in section 10.3, you should favor strongly typed objects.

10.3 Using strongly typed settings with the options
pattern

In this section you’ll learn about strongly typed configuration and the options
pattern, the preferred way of accessing configuration in ASP.NET Core. By
using strongly typed configuration, you can avoid problems with typos when
accessing configuration. It also makes classes easier to test, as you can use

simple POCO objects for configuration instead of relying on the
IConfiguration abstraction.

Most of the examples I’ve shown so far have been about how to get values
into IConfiguration, as opposed to how to use them. You’ve seen that you
can access a key by using the builder.Configuration["key"] dictionary
syntax, but using string keys this way feels messy and prone to typos, and
the value retrieved is always a string, so you often need to convert it to
another type. Instead, ASP.NET Core promotes the use of strongly typed
settings—POCO objects that you define and create and that represent a small
collection of settings, scoped to a single feature in your app.

The following listing shows both the settings for your store locator
component and display settings to customize the home page of the app.
They’re separated into two different objects with "MapSettings" and
"AppDisplaySettings" keys, corresponding to the different areas of the app
that they affect.

Listing 10.6 Separating settings into different objects in appsettings.json

{

 "MapSettings": { #A

 "DefaultZoomLevel": 6, #A

 "DefaultLocation": { #A

 "latitude": 50.500, #A

 "longitude": -4.000 #A

 }

 },

 "AppDisplaySettings": { #B

 "Title": "Acme Store Locator", #B

 "ShowCopyright": true #B

 }

}

The simplest approach to exposing the home-page settings in an endpoint
handler is to inject IConfiguration into the endpoint handler and access the
values by using the dictionary syntax:

app.MapGet("/display-settings", (Iconfiguration config) =>

{

 string title = config["AppDisplaySettings:Title"];

 bool showCopyright = bool.Parse(

 config["AppDisplaySettings:ShowCopyright"]);

 return new { title, showCopyright };

});

But you don’t want to do this; there are too many strings for my liking! And
that bool.Parse? Yuck! Instead, you can use custom strongly typed objects,
with all the type safety and IntelliSense goodness that brings, as shown in the
following listing.

Listing 10.7 Injecting strongly typed options into a handler using IOptions<T>

app.MapGet("/display-settings",

 (IOptions<AppDisplaySettings> options) => #A

{

 AppDisplaySettings settings = options.Value; #B

 string title = settings.Title; #C

 bool showCopyright = settings.ShowCopyright; #D

 return new { title, showCopyright };

});

The ASP.NET Core configuration system includes a binder, which can take a
collection of configuration values and bind them to a strongly typed object,
called an options class. This binding is similar to the concept of JSON
deserialization for creating types from chapter 6 and the model binding used
by Model-View-Controller (MVC) and Razor Pages, which you’ll learn
about in part 3.

Section 10.3.1 shows how to set up the binding of configuration values to a
POCO options class, and section 10.3.2 shows how to make sure that it
reloads when the underlying configuration values change. We’ll look at the
different sorts of objects you can bind in section 10.3.3.

10.3.1 Introducing the IOptions interface

ASP.NET Core introduced strongly typed settings as a way of letting
configuration code adhere to the single-responsibility principle (SRP) and to
allow the injection of configuration classes as explicit dependencies. Such

settings also make testing easier; instead of having to create an instance of
IConfiguration to test a service, you can create an instance of the POCO
options class.

The AppDisplaySettings class shown in the previous example could be
simple, exposing only the values related to the home page:

public class AppDisplaySettings

{

 public string Title { get; set; }

 public bool ShowCopyright { get; set; }

}

Your options classes need to be nonabstract and have a public parameterless
constructor to be eligible for binding. The binder sets any public properties
that match configuration values, as you’ll see in section 10.3.3.

Tip

You’re not restricted to built-in types such as string and bool; you can use
nested complex types too. The options system binds sections to complex
properties. See the associated source code for examples.

To help facilitate the binding of configuration values to your custom POCO
options classes, ASP.NET Core introduces the IOptions<T> interface, a
simple interface with a single property, Value, that contains your configured
POCO options class at runtime. Options classes are configured as services in
Program.cs , as shown in the following listing.

Listing 10.8 Configuring the options classes using Configure<T> in Startup.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<MapSettings>(

 builder.Configuration.GetSection("MapSettings"));

builder.Services.Configure<AppDisplaySettings>(

 builder.Configuration.GetSection("AppDisplaySettings"));

Tip

You don’t have to use the same name for both the section and class, as I do in
listing 10.8; it’s simply a convention I like to follow. With this convention,
you can also use the nameof() operator to further reduce the chance of typos,
such as by calling GetSection(nameof(MapSettings)).

Each call to Configure<T> sets up the following series of actions internally:

1. Creates an instance of ConfigureOptions<T>, which indicates that
IOptions<T> should be configured based on configuration.
If Configure<T> is called multiple times, multiple
ConfigureOptions<T> objects will be used, all of which can be applied
to create the final object in much the same way that IConfiguration is
built from multiple layers.

2. Each ConfigureOptions<T> instance binds a section of IConfiguration
to an instance of the T POCO class, setting any public properties on the
options class based on the keys in the provided ConfigurationSection.
Remember that the section name ("MapSettings" in listing 10.8) can
have any value; it doesn’t have to match the name of your options class.

3. The IOptions<T> interface is registered in the DI container as a
singleton, with the final bound POCO object in the Value property.

This last step lets you inject your options classes into handlers and services
by injecting IOptions<T>, as you saw in listing 10.7, giving you
encapsulated, strongly typed access to your configuration values. No more
magic strings. Woo-hoo!

Warning

If you forget to call Configure<T> and inject IOptions<T> into your services,
you won’t see any errors, but the T options class won’t be bound to anything
and will have only default values in its properties.

The binding of the T options class to ConfigurationSection happens when
you first request IOptions<T>. The object is registered in the DI container as
a singleton, so it’s bound only once.

This setup has one catch: you can’t use the reloadOnChange parameter I
described in section 10.2.4 to reload your strongly typed options classes when

using IOptions<T>. IConfiguration will still be reloaded if you edit your
appsettings.json files, but it won’t propagate to your options class.

If that fact seems like a step backward or even a deal-breaker, don’t worry.
IOptions<T> has a cousin, IOptionsSnapshot<T>, for such an occasion.

10.3.2 Reloading strongly typed options with IOptionsSnapshot

In section 10.3.1, you used IOptions<T> to provide strongly typed access to
configuration. Using IOptions<T> to provide strongly typed access to
configuration provided a nice encapsulation of the settings for a particular
service, but with a specific drawback: the options class never changes, even if
you modify the underlying configuration file from which it was loaded, such
as appsettings.json.

This situation isn’t always a problem (you generally shouldn’t be modifying
files on live production servers anyway), but if you need this functionality,
you can use the IOptionsSnapshot<T> interface. Conceptually,
IOptionsSnaphot<T> is identical to IOptions<T> in that it’s a strongly typed
representation of a section of configuration. The difference is when and how
often the POCO options objects are created when they’re used:

IOptions<T>—The instance is created once, when first needed. It
always contains the configuration from when the object instance was
first created.
IOptionsSnapshot<T>—A new instance is created, when needed, if the
underlying configuration has changed since the last instance was
created.

Warning

IOptionsSnapshot<T> is registered as a scoped service, so you can’t inject it
into singleton services; if you do, you’ll have a captive dependency, as
discussed in chapter 9. If you need a singleton version of
IOptionsSnapshot<T>, you can use a similar interface, IOptionsMonitor<T>.
See this blog post for details: http://mng.bz/9Da7.

IOptionsSnaphot<T> is set up for your options classes automatically at the

same time as IOptions<T>, so you can use it in your services in exactly the
same way. The following listing shows how you could update your display-
settings API so that you always get the latest configuration values in your
strongly typed AppDisplaySettings options class.

Listing 10.9 Injecting reloadable options using IOptionsSnapshot<T>

app.MapGet("/display-settings",

 (IOptionsSnapshot<AppDisplaySettings> options) => #A

{

 AppDisplaySettings settings = options.Value; #B

 return new

 {

 title = settings.Title, #C

 showCopyright = settings.ShowCopyright, #C

 };

});

As IOptionsSnapshot<AppDisplaySettings> is registered as a scoped
service, it’s re-created at every request. If you edit the settings file and cause
IConfiguration to reload, IOptionsSnapshot<AppDisplaySettings> shows
the new values on the next request. A new AppDisplaySettings object is
created with the new configuration values and is used for all future DI—until
you edit the file again, of course!

Reloading your settings automatically is as simple as that: update your code
to use IOptionsSnapshot<T> instead of IOptions<T> wherever you need it.
But be aware that this change isn’t free. You’re rebinding and reconfiguring
your options object with every request, which may have performance
implications. In practice, reloading settings isn’t common in production, so
you may decide that the developer convenience isn’t worth the performance
impact.

An important consideration in using the options pattern is the design of your
POCO options classes themselves. These classes typically are simple
collections of properties, but there are a few things to bear in mind so that
you don’t get stuck debugging why the binding seemingly hasn’t worked.

10.3.3 Designing your options classes for automatic binding

I’ve already touched on some of the requirements for POCO classes to work
with the IOptions<T> binder, but there are a few rules to remember. The first
key point is that the binder creates instances of your options classes by using
reflection, so your POCO options classes need to

Be nonabstract
Have a default (public parameterless) constructor

If your classes satisfy these two points, the binder will loop through all the
properties on your class and bind any that it can. In the broadest sense, the
binder can bind any property that

Is public
Has a getter (the binder won’t write set-only properties)
Has a setter or, for complex types, a non-null value
Isn’t an indexer

Listing 10.10 shows two extensive options class with a host of different types
of properties. All the properties on BindableOptions are valid to bind, and
all the properties on UnbindableOptions are not.

Listing 10.10 An options class containing binding and nonbinding properties

public class BindableOptions

{

 public string String { get; set; } #A

 public int Integer { get; set; } #A

 public SubClass Object { get; set; } #A

 public SubClass ReadOnly { get; } = new SubClass(); #A

 public Dictionary<string, SubClass> Dictionary { get; set; } #B

 public List<SubClass> List { get; set; } #B

 public IDictionary<string, SubClass> IDictionary { get; set; } #B

 public IEnumerable<SubClass> IEnumerable { get; set; } #B

 public ICollection<SubClass> ReadOnlyCollection { get; } #B

 = new List<SubClass>(); #B

 public class SubClass

 {

 public string Value { get; set; }

 }

}

public class UnbindableOptions

{

 internal string NotPublic { get; set; } #C

 public SubClass SetOnly { set => _setOnly = value; } #C

 public SubClass NullReadOnly { get; } = null; #C

 public SubClass NullPrivateSetter { get; private set; } = null; #C

 public SubClass this[int i] { #C

 get => _indexerList[i]; #C

 set => _indexerList[i] = value; #C

 }

 public List<SubClass> NullList { get; } #D

 public Dictionary<int, SubClass> IntegerKeys { get; set; } #D

 public IEnumerable<SubClass> ReadOnlyEnumerable { get; } #D

 = new List<SubClass>(); #D

 public SubClass _setOnly = null; #E

 private readonly List<SubClass> _indexerList #E

 = new List<SubClass>(); #E

 public class SubClass

 {

 public string Value { get; set; }

 }

}

As shown in the listing, the binder generally supports collections—both
implementations and interfaces. If the collection property is already
initialized, the binder uses the initialized value; otherwise, the binder may be
able to create the collection instance automatically. If your property
implements any of the following interfaces, the binder creates a List<> of the
appropriate type as the backing object:

IReadOnlyList<>

IReadOnlyCollection<>

ICollection<>

IEnumerable<>

Warning

You can’t bind to an IEnumerable<> property that has already been
initialized, as this interface doesn’t expose an Add function, and the binder
won’t replace the backing value. You can bind to an IEnumerable<> if you
leave its initial value null.

Similarly, the binder creates a Dictionary<,> as the backing field for
properties with dictionary interfaces as long as they use string keys:

IDictionary<string,>

IReadOnlyDictionary<string,>

Warning

You can’t bind dictionaries with non-string keys, such as int. For examples
of binding collection types, see the associated source code for this book.

Clearly, there are quite a few nuances here, but if you stick to the simple
cases from the preceding example, you’ll be fine. Be sure to check for typos
in your JSON files! You could also consider using explicit options validation,
as described in this post: http://mng.bz/jPjr.

Tip

The options pattern is most commonly used to bind POCO classes to
configuration, but you can also configure your strongly typed settings classes
in code by providing a lambda to the Configure function;, as in
services.Configure<TestOptions>(opt => opt.Value = true).

The Options pattern is used throughout ASP.NET Core, but not everyone is a
fan. In section 10.3.4 you’ll see how to use strongly typed settings and the
configuration binder without the Options pattern.

10.3.4 Binding strongly typed settings without the IOptions
interface

The IOptions interface is canonical in ASP.NET Core; it’s used by the core
ASP.NET Core libraries and has various convenience functions for binding
strongly typed settings, as you’ve already seen. In many cases, however, the
IOptions interface doesn’t give many benefits for consumers of the strongly
typed settings objects. Services must take a dependency on the IOptions
interface but then immediately extract the real object by calling
IOptions<T>.Value. This situation can be especially annoying if you’re

building a reusable library that isn’t inherently tied to ASP.NET Core, as you
must expose the IOptions<T> interface in all your public APIs.

Luckily, the configuration binder that maps IConfiguration objects to
strongly typed settings objects isn’t inherently tied to IOptions. Listing 10.11
shows how you can bind a strongly typed settings object to a configuration
section manually, register it with the DI container, and inject the
MapSettings object directly into a handler or service without the additional
ceremony required to use IOptions<MapSettings>.

Listing 10.11 Configuring strongly typed settings without IOptions in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

var settings = new MapSettings (); #A

builder.Configuration.GetSection("MapSettings").Bind(settings); #B

builder.Services.AddSingleton(settings); #C

WebApplication app = builder.Build();

app.MapGet("/", (MapSettings mapSettings) => mapSettings); #D

app.Run();

Alternatively, you can register the IOptions type in the DI container but then
use a lambda to additionally register MapSettings as a singleton so it can be
directly injected, as shown in listing 10.12.

Listing 10.12 Configuring strongly typed settings for direct injection

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<MapSettings>(#A

 builder.Configuration.GetSection("MapSettings")); #A

builder.Services.AddSingleton(provider => #B

 provider.GetRequiredService<IOptions<MapSettings>>().Value); #B

WebApplication app = builder.Build();

app.MapGet("/", (MapSettings mapSettings) => mapSettings); #C

app.Run();

If you use either of these approaches, you won’t benefit from the ability to
reload strongly typed settings without further work or from some of the more
advanced uses of IOptions, but in most cases, that’s not a big problem. I’m a
fan of these approaches generally, but as always, consider what you’re losing
before adopting them wholeheartedly.

Tip

In chapter 31 I show one such advanced scenario in which you configure an
IOptions object using services in your DI container. For other scenarios, see
Microsoft’s “Options pattern in ASP.NET Core” documentation at
http://mng.bz/DR7y, or see the various IOptions posts on my blog, such as
this one: http://mng.bz/l1Aj.

That brings us to the end of this section on strongly typed settings. In section
10.4 we’ll look at how you can change your settings dynamically at runtime,
based on the environment in which your app is running.

10.4 Configuring an application for multiple
environments

In this section you’ll learn about hosting environments in ASP.NET Core.
You’ll learn how to set and determine which environment an application is
running in and how to change which configuration values are used, based on
the environment. Using environments lets you switch easily among different
sets of configuration values in production compared with development, for
example.

Any application that makes it to production will likely have to run in multiple
environments. If you’re building an application with database access, for
example, you’ll probably have a small database running on your machine that
you use for development. In production, you’ll have a completely different
database running on a server somewhere else.

Another common requirement is to have different amounts of logging
depending on where your app is running. In development, it’s great to
generate lots of logs, which help with debugging, but when you get to

production, too many logs can be overwhelming. You’ll want to log
warnings, errors, and maybe information-level logs, but definitely not debug-
level logs!

To handle these requirements, you need to make sure that your app loads
different configuration values depending on the environment it’s running in:
load the production database connection string when in production, and so
on. You need to consider three aspects:

How your app identifies the environment it’s running in
How you load different configuration values based on the current
environment
How to change the environment for a particular machine

This section tackles these aspects in turn so that you can easily tell your
development machine apart from your production servers and act
accordingly.

10.4.1 Identifying the hosting environment

When you create a WebApplicationBuilder instance in Program.cs, it
automatically sets up the hosting environment for your application. By
default, WebApplicationBuilder uses, perhaps unsurprisingly, an
environment variable to identify the current environment. The
WebApplicationBuilder looks for a magic environment variable called
ASPNETCORE_ENVIRONMENT, uses it to create an IHostEnvironment object,
and exposes it as WebApplicationBuilder.Environment.

Note

You can use either the DOTNET_ENVIRONMENT or ASPNETCORE_ENVIRONMENT
environment variable. The ASPNETCORE_ value overrides the DOTNET_ value if
both are set. I use the ASPNETCORE_ version throughout this book.

The IHostEnvironment interface exposes several useful properties about the
running context of your app. The ContentRootPath property, for example,
tells the application in which directory it can find any configuration files,
such as appsettings.json. This folder is typically the one in which the

application is running.

TIP

 ContentRootPath is not where you store static files that the browser can
access directly; that’s the WebRootPath, typically wwwroot. WebRootPath is
also exposed on the Environment property via the IWebHostEnvironment
interface.

The IHostEnvironment.EnvironmentName property is what interests us in
this section. It’s set to the value of the ASPNETCORE_ENVIRONMENT
environment variable, so it can be any value, but you should stick to three
commonly used values in most cases:

"Development"

"Staging"

"Production"

ASP.NET Core includes several helper methods for working with these three
values, so you’ll have an easier time if you stick to them. In particular,
whenever you’re testing whether your app is running in a particular
environment, you should use one of the following extension methods:

IHostEnvironment.IsDevelopment()

IHostEnvironment.IsStaging()

IHostEnvironment.IsProduction()

IHostEnvironment.IsEnvironment(string environmentName)

All these methods make sure that they do case-insensitive checks of the
environment variable, so you won’t get any wonky errors at runtime if you
don’t capitalize the environment variable value.

Tip

Where possible, use the IHostEnvironment extension methods instead of
direct string comparison with EnvironmentName, as the methods provide
case-insensitive matching.

IHostEnvironment doesn’t do anything other than expose the details of your
current environment, but you can use it in various ways. In chapter 4 you saw
that WebApplication adds the DeveloperExceptionMiddleware to your
middleware pipeline only in the development environment. Now you know
where WebApplication was getting its information about the environment:
IHostEnvironment.

You can use a similar approach to customize which configuration values you
load at runtime by loading different files when running in development
versus production. This approach is common; it’s included out of the box in
most ASP.NET Core templates and by default when you use the default
ConfigurationManager included with WebApplicationBuilder.

10.4.2 Loading environment-specific configuration files

The EnvironmentName value is determined early in the process of
bootstrapping your application, before the default ConfigurationManager is
fully populated by WebApplicationBuilder. As a result, you can
dynamically change which configuration providers are added to the builder
and, hence, which configuration values are loaded when the IConfiguration
is built.

A common pattern is to have an optional, environment-specific appsettings
.ENVIRONMENT.json file that’s loaded after the default appsettings.json
file. The following listing shows how you could achieve this task if you’re
customizing the ConfigurationMaanger in Program.cs, but it’s also
effectively what WebApplicationBuilder does by default.

Listing 10.13 Adding environment-specific appsettings.json files

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

IHostEnvironment env = builder.Environment; #A

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: false) #B

 .AddJsonFile(#C

 $”appsettings.{env.EnvironmentName}.json”, #C

 Optional: true); #C

WebApplication app = builder.Build();

app.MapGet("/", () =>"Hello world!");

app.Run();

With this pattern, a global appsettings.json file contains settings applicable to
most environments. Additional optional JSON files called
appsettings.Development.json, appsettings.Staging.json, and
appsettings.Production.json are subsequently added to
ConfigurationManager, depending on the current EnvironmentName.

Any settings in these files will overwrite values from the global
appsettings.json if they have the same key, as you’ve seen previously. Using
environment-specific settings files lets you do things like set the logging to
be verbose only in the development environment and switch to more selective
logs in production.

Another common pattern is to add or remove configuration providers
depending on the environment. You might use the User Secrets provider
when developing locally, for example, but Azure Key Vault in production.
Listing 10.14 shows how you can use IHostEnvironment to include the User
Secrets provider conditionally only in development. Again,
WebApplicationBuilder uses this pattern by default.

Listing 10.14 Conditionally including the User Secrets configuration provider

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

IHostEnvironment env = builder.Environment;

builder.Configuration.Sources.Clear();

builder.Configuration

 .AddJsonFile(

 "appsettings.json",

 optional: false)

 .AddJsonFile(

 $"appsettings.{env}.json",

 Optional: true);

if(env.IsDevelopment()) #A

{

 builder.Configuration.AddUserSecrets<Program>(); #B

}

WebApplication app = builder.Build();

app.MapGet("/", () =>"Hello world!");

app.Run();

As already mentioned, it’s also common to customize your application’s
middleware pipeline based on the environment. In chapter 4 you learned that
WebApplication adds the DeveloperExceptionPageMiddleware
conditionally when developing locally. The following listing shows how you
can use IHostEnvironment to control your pipeline in this way so that when
you’re in staging or production, your app uses ExceptionHandlerMiddleware
instead.

Listing 10.15 Using the hosting environment to customize your middleware pipeline

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.AddProblemDetails(); #A

WebApplication app = builder.Build();

if (!builder.Environment.IsDevelopment()) #B

{ #B

 app.UseExceptionHandler(); #B

} #B

app.MapGet("/", () =>"Hello world!");

app.Run();

Note

In listing 10.15 you added the Problem Details services to the DI container so
that the ExceptionHandlerMiddleware can generate a Problem Details

response automatically. As you’re adding the extra middleware only in
Staging and Production, you could add the services conditionally to the DI
container too instead of always adding them as we did here.

You can inject IHostEnvironment anywhere in your app, but I advise against
using it in your own services outside Program.cs. It’s far better to use the
configuration providers to customize strongly typed settings based on the
current hosting environment and inject these settings into your application
instead.

As useful as it is, setting IHostEnvironment with an environment variable
can be a little cumbersome if you want to switch back and forth among
different environments during testing. Personally, I’m always forgetting how
to set environment variables on the various operating systems I use. The final
skill I’d like to teach you is how to set the hosting environment when you’re
developing locally.

10.4.3 Setting the hosting environment

In this section I show you a couple of ways to set the hosting environment
when you’re developing. These techniques make it easy to test a specific
app’s behavior in different environments without having to change the
environment for all the apps on your machine.

If your ASP.NET Core application can’t find an ASPNETCORE_ENVIRONMENT
environment variable when it starts up, it defaults to a production
environment, as shown in figure 10.6. So when you deploy to production,
you’ll be using the correct environment by default.

Figure 10.6 By default, ASP.NET Core applications run in the production hosting environment.
You can override this default by setting the ASPNETCORE_ENVIRONMENT variable.

Tip

By default, the current hosting environment is logged to the console at
startup, which can be useful for checking that the environment variable has
been picked up correctly.

Another option is to use a launchSettings.json file to control the environment.
All the default ASP.NET Core applications include this file in the Properties
folder. LaunchSettings.json defines profiles for running your application.

Tip

You can use profiles to run your application with different environment
variables. You can also use profiles to emulate running on Windows behind
Internet Information Services (IIS) by using the IIS Express profile. I rarely
use this profile, even in Windows, and always choose the http or https
profile.

Listing 10.16 shows a typical launchSettings.json file that defines three
profiles: http, https, and IIS Express. The first two profiles are equivalent
to using dotnet run to run the project. The http profile listens only for
http:// requests, whereas https listens for both http:// and https://. The
IIS Express profile can be used only in Windows and uses IIS Express to
run your application.

Listing 10.16 A typical launchSettings.json file defining three profiles

{

 "iisSettings": { #A

 "windowsAuthentication": false, #A

 "anonymousAuthentication": true, #A

 "iisExpress": { #A

 "applicationUrl": "http://localhost:53846", #A

 "sslPort": 44399 #A

 }

 },

 "profiles": {

 "http": { #B

 "commandName": "Project", #C

 "dotnetRunMessages": true, #D

 "launchBrowser": true, #E

 "applicationUrl": "http://localhost:5063", #F

 "environmentVariables": { #G

 "ASPNETCORE_ENVIRONMENT": "Development" #G

 } #G

 },

 "https": { #H

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "applicationUrl": "https://localhost:7202;http://localhost:5063", #I

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "IIS Express": { #J

 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": { #K

 "ASPNETCORE_ENVIRONMENT": "Development" #K

 } #K

 }

 }

}

The advantage of using the launchSettings.json file locally is that it allows
you to set local environment variables for a project. In listing 10.16 the
environment is set to the development environment, for example. Setting
environment variables with launchSettings.json means you can use different
environment variables for each project and even for each profile, and store

them in source control.

You can choose a profile to use in Visual Studio by choosing it from the
drop-down menu next to the Debug button on the toolbar, as shown in figure
10.7. You can choose a profile to run from the command line by using
dotnet run --launch-profile <Profile Name>. If you don’t specify a
profile, the first profile listed in launchSettings.json is used. If you don’t want
to use any profile, you must explicitly ignore the launchSettings.json file by
using dotnet run --no-launch-profile.

Figure 10.7 You can select the profile to use from Visual Studio by choosing it from the Debug
drop-down menu. Visual Studio defaults to using the https profile.

If you’re using Visual Studio, you can edit the launchSettings.json file
visually: double-click the Properties node, choose the Debug tab, and choose
Open debug launch profiles UI. You can see in figure 10.8 that the
ASPNETCORE_ENVIRONMENT is set to Development; any changes made on this
tab are mirrored in launchSettings.json.

Figure 10.8 You can use Visual Studio to edit the launchSettings.json file, if you prefer. Changes
will be mirrored between the launchSettings.json file and the Properties dialog box.

The launchSettings.json file is intended for local development only; by
default, the file isn’t deployed to production servers. Although you can
deploy and use the file in production, doing so generally isn’t worth the
hassle. Environment variables are a better fit.

One final trick I’ve used to set the environment in production is to use
command-line arguments. You could set the environment to staging like this:

dotnet run --no-launch-profile --environment Staging

Note that you also have to pass --no-launch-profile if there’s a
launchSettings.json file; otherwise, the values in the file take precedence.

That brings us to the end of this chapter on configuration. Configuration isn’t
glamorous, but it’s an essential part of all apps. The ASP.NET Core
configuration provider model handles a wide range of scenarios, letting you

store settings and secrets in a variety of locations.

Simple settings can be stored in appsettings.json, where they’re easy to tweak
and modify during development, and they can be overwritten by using
environment-specific JSON files. Meanwhile, your secrets and sensitive
settings can be stored outside the project file in the User Secrets manager or
as environment variables. This approach gives you both flexibility and safety
—as long as you don’t go writing your secrets to appsettings.json!

In chapter 11 we take a look at the OpenAPI specification and how you can
use it for documenting your APIs, testing your endpoints, and generating
strongly typed clients.

10.5 Summary

Anything that could be considered to be a setting or a secret is normally
stored as a configuration value. Externalizing these values means that
you can change them without recompiling your app.
ASP.NET Core uses configuration providers to load key-value pairs
from a variety of sources. Applications can use many configuration
providers.
You can add configuration providers to an instance of
ConfigurationManager by using extension methods such as
AddJsonFile().
The order in which you add providers to ConfigurationManager is
important; subsequent providers replace the values of the same settings
defined in earlier providers while preserving unique settings.
ASP.NET Core includes built-in providers for JSON files, XML files,
environment files, and command-line arguments, among others. NuGet
packages exist for many other providers, such as YAML files and Azure
Key Vault.
ConfigurationManager implements IConfiguration as well as
IConfigurationBuilder, so you can retrieve configuration values from
it directly.
Configuration keys aren’t case-sensitive, so you must take care not to
lose values when loading settings from case-sensitive sources such as
YAML.

You can retrieve settings from IConfiguration directly by using the
indexer syntax, such as Configuration["MySettings:Value"]. This
technique is often useful for accessing configuration values in
Program.cs.
WebApplicationBuilder automatically configures a
ConfigurationManager with JSON, environment variables, command-
line arguments, and User Secret providers. This combination provides
in-repository storage in JSON files, secret storage in both development
and production, and the ability to override settings easily at runtime.
In production, store secrets in environment variables to reduce the
chance of incorrectly exposing the secrets in your code repository. These
secrets can be loaded after your file-based settings in the configuration
builder.
On development machines, the User Secrets Manager is a more
convenient tool than using environment variables. It stores secrets in
your operating system’s user profile, outside the project folder, reducing
the risk of accidentally exposing secrets in your code repository.
Be aware that neither environment variables nor the User Secrets
Manager tool encrypts secrets. They merely store them in locations that
are less likely to be made public, as they’re outside your project folder.
File-based providers such as the JSON provider can reload configuration
values automatically when the file changes, allowing you to update
configuration values in real time without restarting your app.
Use strongly typed POCO options classes to access configuration in
your app. Using strongly typed options reduces coupling in your app and
ensures that classes are dependent only on the configuration values they
use.
Use the Configure<T>() extension method in ConfigureServices to
bind your POCO options objects to ConfigurationSection.
Alternatively, you can configure IOptions<T> objects in code instead of
using configuration values by passing a lambda to the Configure()
method.
You can inject the IOptions<T> interface into your services by using DI.
You can access the strongly typed options object on the Value property.
IOptions<T> values are registered in DI as singletons, so they remain
the same even if the underlying configuration changes.
If you want to reload your POCO options objects when your

configuration changes, use the IOptionsSnapshot<T> interface instead.
These instances are registered in DI with a scoped lifetime, so they’re
re-created for every request. Using the IOptionsSnapshot<T> interface
has performance implications due to binding to the options object
repeatedly, so use it only when that effect is acceptable.
Applications running in different environments, such as development
versus production , often require different configuration values.
ASP.NET Core determines the current hosting environment by using the
ASPNETCORE_ENVIRONMENT environment variable. If this variable isn’t
set, the environment is assumed to be production.
You can set the hosting environment locally by using the
launchSettings.json file, which allows you to scope environment
variables to a specific project.
The current hosting environment is exposed as an IHostEnvironment
interface. You can check for specific environments by using
IsDevelopment(), IsStaging(), and IsProduction(). Then you can
use the IHostEnvironment object to load files specific to the current
environment, such as appsettings.Production.json.

11 Documenting APIs with
OpenAPI
This chapter covers

Understanding OpenAPI and seeing why it’s useful
Adding an OpenAPI description to your app
Improving your OpenAPI descriptions by adding metadata to endpoints
Generating a C# client from your OpenAPI description

In this chapter I introduce the OpenAPI specification for describing RESTful
APIs, demonstrate how to use OpenAPI to describe a minimal API
application, and discuss some of the reasons you might want to do so.

In section 11.1 you’ll learn about the OpenAPI specification itself and where
it fits in to an ASP.NET Core application. You’ll learn about the libraries you
can use to enable OpenAPI documentation generation in your app and how to
expose the document using middleware.

Once you have an OpenAPI document, you’ll see how to do something useful
with it in section 11.2, where we add Swagger UI to your app. Swagger UI
uses your app’s OpenAPI document to generate a UI for testing and
inspecting the endpoints in your app, which can be especially useful for local
testing.

After seeing your app described in Swagger UI, it’s time to head back to the
code in section 11.3. OpenAPI and Swagger UI need rich metadata about
your endpoints to provide the best functionality, so we look at some of the
basic metadata you can add to your endpoints.

In section 11.4 you’ll learn about one of the best tooling features that comes
from creating an OpenAPI description of your app: automatically generated
clients. Using a third-party library called NSwag, you’ll learn how to
automatically generate C# code and classes for interacting with your API

based on the OpenAPI description you added in the previous sections. You’ll
learn how to generate your client, customize the generated code, and rebuild
the client when your app’s OpenAPI description changes.

Finally, in section 11.5, you’ll learn more ways to add metadata to your
endpoints to give the best experience for your generated clients. You’ll learn
how to add summaries and descriptions to your endpoints by using method
calls and attributes and by extracting the XML documentation comments
from your C# code.

Before we consider those advanced scenarios, we’ll look at the OpenAPI
specification, what it is, and how you can add an OpenAPI document to your
app.

11.1 Adding an OpenAPI description to your app

OpenAPI (previously called Swagger) is a language-agnostic specification for
describing RESTful APIs. At its core, OpenAPI describes the schema of a
JavaScript Object Notation (JSON) document which in turn describes the
URLs available in your application, how to invoke them, and the data types
they return. In this section you’ll learn how to generate an OpenAPI
document for your minimal API application.

Providing an OpenAPI document for your application makes it possible to
add various types of automation for your app. You can do the following
things, for example:

Explore your app using Swagger UI (section 11.2).
Generate strongly-typed clients for interacting with your app (section
11.4).
Automatically integrate into third-party services such as Azure API
Management

Note

If you’re familiar with SOAP from the old ASP.NET days, you can think of
OpenAPI as being the HTTP/REST equivalent of Web Service Description

Language (WSDL). Just as a .wsdl file described your XML SOAP services,
so the OpenAPI document describes your REST API.

ASP.NET Core includes some support for OpenAPI documents out of the
box, but to take advantage of them you’ll need to use a third-party library.
The two best-known libraries to use are called NSwag and Swashbuckle. In
this chapter I use Swashbuckle to add an OpenAPI document to an ASP.NET
Core app. You can read how to use NSwag instead at http://mng.bz/6Dmy.

Note

NSwag and Swashbuckle provide similar functionality for generating
OpenAPI documents, though you’ll find slight differences in how to use them
and in the features they support. NSwag also supports client generation, as
you’ll see in section 11.4.

Add the Swashbuckle.AspNetCore NuGet package to your project by using
the NuGet Package Manager in Visual Studio, or use the .NET CLI by
running

dotnet add package Swashbuckle.AspNetCore

from your project’s folder. Swashbuckle uses ASP.NET Core metadata
services to retrieve information about all the endpoints in your application
and to generate an OpenAPI document. Then this document is served by
middleware provided by Swashbuckle, as shown in figure 11.1. Swashbuckle
also includes middleware for visualizing your OpenAPI document, as you’ll
see in section 11.2.

Figure 11.1 Swashbuckle uses ASP.NET Core metadata services to retrieve information about the
endpoints in your application and builds an OpenAPI document. The OpenAPI middleware
serves this document when requested. Swashbuckle also includes optional middleware for
visualizing the OpenAPI document using Swagger UI.

After installing Swashbuckle, configure your application to generate an
OpenAPI document as shown in listing 11.1. This listing shows a reduced
version of the fruit API from chapter 5, with only the GET and POST methods
included for simplicity. The OpenAPI-related additions are in bold.

Note

Swashbuckle uses the old Swagger nomenclature rather than OpenAPI in its
method names. You should think of OpenAPI as the name of the
specification and Swagger as the name of the tooling related to OpenAPI, as
described in this post: http://mng.bz/o18M.

Listing 11.1 Adding OpenAPI support to a minimal API app using Swashbuckle

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer(); #A

builder.Services.AddSwaggerGen(); #B

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.UseSwagger(); #C

app.UseSwaggerUI(); #D

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404));

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }));

app.Run();

record Fruit(string Name, int Stock);

With the changes in this listing, your application exposes an OpenAPI
description of its endpoints. If you run the app and navigate to
/swagger/v1/swagger.json, you’ll find a large JSON file, similar to the one
shown in figure 11.2. This file is the OpenAPI Document description of your
application.

Figure 11.2 The OpenAPI Document for the app described in listing 11.1, generated with NSwag.

The OpenAPI document includes a general description of your app, such as a
title and version, as well as specific details about each of the endpoints. In
figure 11.2, for example, the /fruit/{id} endpoint describes the fact that it
needs a GET verb and takes an id parameter in the path.

You can change some of the document values, such as the title, by adding
configuration to the AddSwaggerGen() method. You can set the title of the
app to "Fruitify" and add a description for the document:

builder.Services.AddSwaggerGen(x =>

 x.SwaggerDoc("v1", new OpenApiInfo()

 {

 Title = "Fruitify",

 Description = "An API for interacting with fruit stock",

 Version = "1.0"

 }));

You can also change settings such as the path used to expose the document
and various minutia about how Swashbuckle generates the final JSON. See
the documentation for details: http://mng.bz/OxQR.

All that is clever, but if you’re shrugging and asking “So what?”, where
OpenAPI really shines is the hooks it provides for other tooling. And you’ve
already added one such piece of tooling to your app: Swagger UI.

11.2 Testing your APIs with Swagger UI

In this section you’ll learn about Swagger UI
(https://swagger.io/tools/swagger-ui), an open-source web UI that makes it
easy to visualize and test your OpenAPI apps. In some ways you can think of
Swagger UI as being a light version of Postman, which I used in previous
chapters to interact with minimal API applications. Swagger UI provides an
easy way to view all the endpoints in your application and send requests to
them. Postman provides many extra features, such as creating collections and
sharing them with your team, but if all you’re trying to do is test your
application locally, Swagger UI is a great option.

You can add Swagger UI to your ASP.NET Core application using
Swashbuckle by calling

app.UseSwaggerUI()

to add the Swagger UI middleware, as you saw in listing 11.1. The Swagger
UI middleware automatically integrates with the OpenAPI document
middleware and exposes the Swagger UI web UI in your app at the path
/swagger by default. Navigate to /swagger in your app, and you see a page
like the one in figure 11.3.

Figure 11.3 The Swagger UI endpoint for the app. With this UI you can view all the endpoints in
your app, the schema of objects that are sent and returned, and even test the APIs by providing
parameters and sending requests.

Swagger UI lists all the endpoints described in the OpenAPI document, the
schema of objects that are sent to and received from each API, and all the
possible responses that each endpoint can return. You can even test an API
from the UI by choosing Try it out, entering a value for the parameter, and
choosing Execute. Swagger UI shows the command executed, the response
headers, and the response body (figure 11.4).

Figure 11.4 You can send requests using the Swagger UI by choosing an API, entering the
required parameters, and choosing Execute. Swagger UI shows the response received.

Swagger UI is a useful tool for exploring your APIs and can replace a tool
like Postman in some cases. But the examples we’ve shown so far reveal a
problem with our API: the responses described for the GET endpoint in figure

11.3 mentioned a 200 response, but our execution in figure 11.4 reveals that it
can also return a 404. To solve that documentation issue, we need to add extra
metadata to our APIs.

11.3 Adding metadata to your minimal APIs

Metadata is information about an API that doesn’t change the execution of
the API itself. You used metadata in chapter 5 when you added names to your
endpoints, using WithName(), so that you could reference them by using
LinkGenerator. The name doesn’t change anything about how the endpoint
executes, but it provides information for other features to hook into.

Currently, you can add three broad categories of metadata to minimal API
endpoints:

Routing metadata—As you’ve already seen, the WithName() methods
adds a globally unique name to an endpoint that’s used for URL
generation.
Metadata for other middleware—Several pieces of middleware can be
customized on a per-request basis by adding metadata to an endpoint.
When the middleware runs, it checks the selected endpoint’s metadata
and acts accordingly. Examples include authorization, hostname
filtering, and output caching.
OpenAPI metadata—OpenAPI document generation is driven by the
metadata exposed by endpoints, which in turn controls the UI exposed
by Swagger UI.

We look at how to add authorization metadata to your endpoints in chapter
25, so for now we’ll focus on improving the OpenAPI description of your
app using metadata. You can provide a lot of details to document your APIs,
some of which Swashbuckle uses during OpenAPI generation and some of
which it doesn’t. The following listing shows how to add a tag for each API
and how to explicitly describe the responses that are returned, using
Produces().

Listing 11.2 Adding OpenAPI metadata to improve endpoint documentation

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.UseSwagger();

app.UseSwaggerUI();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithTags("fruit") #A

 .Produces<Fruit>() #B

 .ProducesProblem(404); #C

app.MapPost("/fruit/{id}", (string id, Fruit fruit) =>

 _fruit.TryAdd(id, fruit)

 ? TypedResults.Created($"/fruit/{id}", fruit)

 : Results.ValidationProblem(new Dictionary<string, string[]>

 {

 { "id", new[] { "A fruit with this id already exists" } }

 }))

 .WithTags("fruit") #A

 .Produces<Fruit>(201) #D

 .ProducesValidationProblem(); #E

app.Run();

record Fruit(string Name, int stock);

With these changes, Swagger UI shows the correct responses for each
endpoint, as shown in figure 11.5. It also groups the endpoints under the tag
"fruit" instead of the default tag inferred from the project name when no
tags are provided.

Figure 11.5 Swagger UI groups the endpoints in your application based on the Tag metadata
attached to them. The UI uses the metadata added by calling Produces() to document the
expected return types and status codes for each endpoint.

If adding all this extra metadata feels like a bit of a chore, don’t worry.
Adding the extra OpenAPI metadata is optional, necessary only if you plan to
expose your OpenAPI document for others to consume. If all you want is an
easy way to test your minimal APIs, you can go a long way without many of
these extra method calls.

Tip

Remember that you can also use route groups (described in chapter 5) to
apply metadata to multiple APIs at the same time.

One of the strongest arguments for making your OpenAPI descriptions as
rich as possible is that it makes the tooling around your API easier to use.
Swagger UI is one example. But an arguably even more useful tool lets you
automatically generate C# clients for interacting with your APIs.

11.4 Generating strongly typed clients with NSwag

In this section you’ll learn how to use your OpenAPI description to
automatically generate a client class that you can use to call your API from
another C# project. You’ll create a console application, use a .NET tool to
generate a C# client for interacting with your API, and finally customize the
generated types. The generated code includes automatic serialization and
deserialization of request types, and makes interacting with your API from
another C# project much easier than the alternative method of crafting HTTP
requests manually.

Note

Generating a strongly typed client is optional. It makes it easier to consume
your APIs from C#, but if you don’t need this functionality, you can still test
your APIs by using Postman or another HTTP client.

You could use any of several tools to automatically generate a C# client from
an OpenAPI description, such as OpenAPI Generator (http://mng.bz/Y1wB),
but in this chapter I use NSwag. You may remember from section 11.1 that
NSwag can be used instead of Swashbuckle to generate an OpenAPI
description for your API. But unlike Swashbuckle, NSwag also contains a
client generator. NSwag is also the default library used by both Visual Studio
and the Microsoft .NET OpenAPI global tool to generate C# client code.

Code generation based on an OpenAPI description works via the process

shown in figure 11.6. First, Visual Studio or the .NET tool downloads the
OpenAPI description JSON file so that it’s available locally. The code
generation tool reads the OpenAPI description, identifies all the endpoints
and schemas described by the document, and generates a C# client class that
you can use to call the API described in the document. The code generation
tool hooks into the build process so that any time the local OpenAPI
description file changes, the code generator runs to regenerate the client.

Figure 11.6 Visual Studio or a .NET tool downloads the OpenAPI description locally and installs
the code-generation tool from NuGet. When your project builds, the generation tool reads the
OpenAPI description and generates a C# class for interacting with the API.

You can generate clients by using Visual Studio, as shown in section 11.4.1,
or a .NET tool, as shown in section 11.4.2. Both approaches produce the
same result, so your choice is a matter of personal preference.

11.4.1 Generating a client using Visual Studio

In this section I show how to generate a client by using Visual Studio’s built-
in support. For this section I assume that you have a simple .NET 7 console
app that needs to interact with your minimal API app.

Note

In the sample code for this chapter, both applications are in the same solution
for simplicity, but they don’t need to be. You don’t even need the source
code for the API; as long as you have the OpenAPI description of an API,
you can generate a client for it.

To generate the client, follow these steps:

1. Ensure that the API application is running and that the OpenAPI
description JSON file is accessible. Note the URL at which the JSON
file is exposed. If you’re following along with the source code for the
book, run the OpenApiExample project.

2. In the client project, right-click the project file and then choose from the
contextual menu, as shown in figure 11.7. This command opens the Add
Service Reference dialog box.

Figure 11.7 Adding a service reference using Visual Studio. Right-click the project that will call
the API, and choose Add > Service Reference.

3. In the Add Service Reference dialog box, select OpenAPI and then
choose Next. On the Add New OpenAPI Service Reference page, enter
the URL where the OpenAPI document is located. Enter a namespace
for the generated code and a name for the generated client class, as
shown in figure 11.8, and then choose Finish.
The Service Reference Configuration Progress screen shows the changes
Visual Studio makes to your application, such as installing various
NuGet packages and downloading the OpenAPI document.

Tip

If you’re running the sample code with Visual Studio, you can find the
OpenAPI document at https://localhost:7186/swagger/v1/swagger.json. This
location is also displayed in the Swagger UI.

Figure 11.8 Adding an OpenAPI service reference using Visual Studio. Add the link to the
OpenAPI document, the code generation parameters, and click Finish. Visual Studio downloads
the OpenAPI document and saves it to the project to use for code generation.

After performing these steps, look at the csproj file of your console app.
You’ll see that several NuGet package references were added, as well as a
new <OpenApiReference> element, as shown in listing 11.3.

Listing 11.3 Adding a service reference for OpenAPI client generation with Visual Studio

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <OpenApiReference #A

 Include="OpenAPIs\swagger.json"

 CodeGenerator="NSwagCSharp"

 Namespace="Fruit"

 ClassName="FruitClient">

 <SourceUri>https://localhost:7186/swagger/v1/swagger.json</SourceUri>

 </OpenApiReference>

 </ItemGroup>

 <ItemGroup>

 <PackageReference #B

 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="3.0.0">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.0.5">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

</Project>

Theoretically, this code should be everything you need to generate the client.
Unfortunately, Visual Studio adds some out-of-date packages that you’ll need
to update before your project will build, as follows:

1. Update NSwag.ApiDescription.Client to the latest version (currently,
13.18.2). This package does the code generation based on the OpenAPI
description.

2. Update Microsoft.Extensions.ApiDescription.Client to the latest version

(7.0.0 at the time of the .NET 7 release). This package is referenced
transitively by NSwag.ApiDescription.Client anyway, so you don’t have
to reference it directly, but doing so ensures that you have the latest
version of the package.

NOTE

By default, the generated client uses Newtonsoft.Json to serializes the
requests and responses. In section 11.4.4 you’ll see how to replace it with the
built-in System.Text.Json.

After you make these changes, your project should look similar to the
following listing.

Listing 11.4 Updating package versions for OpenAPI generation

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <OpenApiReference

 Include="OpenAPIs\swagger.json"

 CodeGenerator="NSwagCSharp"

 Namespace="Fruit"

 ClassName="FruitClient">

 <SourceUri>https://localhost:7186/swagger/v1/swagger.json</SourceUri>

 </OpenApiReference>

 </ItemGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="7.0.0"> #A

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.18.2"> #B

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

</Project>

With the packages updated, you can build your project and generate the
FruitClient. In section 11.4.3 you’ll see how to use this client to call your
API, but first we’ll look at how to generate the client with a .NET global tool
if you’re not using Visual Studio.

11.4.2 Generating a client using the .NET Global tool

In this section you’ll learn how to generate a client from an OpenAPI
definition by using a .NET global tool instead of Visual Studio. The result is
essentially the same, so if you’ve followed the steps in section 11.4.1 in
Visual Studio, you can skip this section.

Note

You don’t have to use Visual Studio or a .NET tool. Ultimately ,you need a
csproj file that looks like listing 11.4 and an OpenAPI definition JSON file in
your project, so if you’re happy editing the project file and downloading the
definition manually, you can take that approach. Visual Studio and the .NET
tool simplify and automate some of these steps.

As in section 11.4.1, the instructions in 11.4.2 assume that you have a
console app that needs to call your API, that the API is accessible, and that it
has an OpenAPI description. To generate a client by using NSwag, follow
these steps:

1. Ensure that the API application is running and that the OpenAPI
description JSON file is accessible. Note the URL at which the JSON
file is exposed. In the source code associated with the book, run the
OpenApiExample project.

2. Install the .NET OpenAPI tool (http://mng.bz/GyOv) globally by
running

dotnet tool install -g Microsoft.dotnet-openapi

3. From the project folder of your console app, add an OpenAPI reference
by using the following command, substituting the path to the OpenAPI
document and the location to download the JSON file to:

dotnet openapi add url http://localhost:5062/swagger/v1/swagger.json --output-file OpenAPIs\fruit.json

Tip

If you’re running the sample code by using dotnet run, you can find the
OpenAPI document at the preceding URL. This location is also displayed in
the Swagger UI.

4. Update the packages added to your project by running the following
commands from the project folder:

dotnet add package NSwag.ApiDescription.Client

dotnet add package Microsoft.Extensions.ApiDescription.Client

dotnet add package Newtonsoft.Json

After you run all these steps, your OpenAPI description file should have been
downloaded to OpenAPIs\fruit.json, and your project file should look similar
to the following listing (elements added by the tool highlighted in bold).

Listing 11.5 Adding an OpenAPI reference using the .NET OpenAPI tool

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net7.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.Extensions.ApiDescription.Client"

 Version="7.0.0">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 <PackageReference Include="Newtonsoft.Json" Version="13.0.1" />

 <PackageReference Include="NSwag.ApiDescription.Client"

 Version="13.18.2">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 <OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json" />

 </ItemGroup>

</Project>

Other than minor ordering differences, the main difference between the
Visual Studio approach and the .NET tool approach is that Visual Studio lets
you specify the class name and namespace for your new client, whereas the
.NET Tool uses the default values. For consistency, add the ClassName and
Namespace attributes to the <OpenApiReference> element added by the tool:

<OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json"

 Namespace="Fruit"

 ClassName="FruitClient" />

In section 11.4.4 you’ll learn how to customize the generated code further,
but before we get to that topic, let’s look at the generated FruitClient and
how to use it.

11.4.3 Using a generated client to call your API

So far, you’ve been taking my word for it that a client is magically generated
for your application, so in this section you get to try it out. The
NSwag.ApiDescription.Client package added to your project works with the
Microsoft.Extensions.ApiDescription.Client package to read the OpenAPI
description file in your project. From this description it can work out what

APIs you have and what types you need to serialize to and from. Finally, it
outputs a C# class with the class name and namespace you specified in the
OpenApiReference element.

Note

The generated file is typically saved to your project’s obj folder. After
building your project, you can find the fruitClient.cs file in this folder.
Alternatively, use Visual Studio’s Go To Definition (F12) functionality on an
instance of FruitClient to navigate to the code in your integrated
development environment (IDE).

To use the FruitClient to call your API, you must create an instance of it,
passing in the base address of your API and an HttpClient instance. Then
you can send HTTP requests to the discovered endpoints. A client generated
from the OpenAPI description of the simple minimal API in listing 11.2, for
example, would have methods called FruitPOSTAsync() and
FruitGETASync(), corresponding to the two exposed methods, as shown in
listing 11.6.

Listing 11.6 Calling the API from listing 11.2 using a generated client

using Fruit; #A

var client = new FruitClient(#B

 "https://localhost:7186", #C

 new HttpClient()); #D

Fruit.Fruit created = await client.FruitPOSTAsync("123", #E

 new Fruit.Fruit { Name = "Banana", Stock = 100 }); #F

Console.WriteLine($"Created {created.Name}");

Fruit.Fruit fetched = await client.FruitGETAsync("123"); #G

Console.WriteLine($"Fetched {fetched.Name}");

This code is simultaneously impressive and somewhat horrible:

It’s impressive that you’re able to generate all the boilerplate code for
interacting with the API. You don’t have to do any string interpolation
to calculate the path. You don’t have to serialize the request body or

deserialize the response. You don’t have to check for error status codes.
The generated code takes care of all those tasks.
Those FruitPOSTAsync and FruitGETAsync methods have really ugly
names!

Luckily, you can fix the ugly method names: improve your API’s OpenAPI
definition by adding WithName() to every API. The name you provide for
your endpoint is used as the OperationID in the OpenAPI description; then
NSwag uses it to generate the client methods. This scenario is a prime
example of adding more metadata to your OpenAPI, making the tooling
better for your consumers.

As well as improve your OpenAPI description, you can customize the code
generation directly, as you’ll see in the next section.

11.4.4 Customizing the generated code

In this section you’ll learn about some of the customization options available
with the NSwag generator and why you might want to use them. I look at
three customization options in this section:

Using System.Text.Json instead of Newtonsoft.Json for JSON
serialization
Generating an interface for the generated client implementation
Not requiring an explicit BaseAddress parameter in the constructor

By default, NSwag uses Newtonsoft.Json to serialize requests and deserialize
responses. Newtonsoft.Json is a popular, battle-hardened JSON library, but
.NET 7 has a built-in JSON library, System.Text.Json, that ASP.NET Core
uses by default for JSON serialization. Instead of using two JSON libraries,
you may want to replace the serialization used in your client to use
System.Text.Json.

When NSwag generates a client, it marks the class as partial, which means
that you can define your own partial class FruitClient (for example)
and add any methods that you think are useful to the client. The generated
client also provides partial methods that act as hooks just before a request is
sent or received.

Definition

Partial methods in C# (http://mng.bz/zXEB) are void-returning methods that
don’t have an implementation. You can define the implementation of the
method in a separate partial class file. If you don’t define the implementation,
the method is removed at compile time, so you use partial methods as highly
performant event handlers.

Extending your generated clients is useful, but during testing it’s common to
also want to substitute your generated client by using interfaces. Interfaces let
you substitute fake or mock versions of a service so that your tests aren’t
calling the API for real, as you learned in chapter 8. NSwag can help with
this process by automatically generating an IFruitClient interface that the
FruitClient implements.

Finally, providing a base address where the API is hosted makes sense on the
face of it. But as we discussed in chapter 9, primitive constructor arguments
such as string and int don’t play well with dependency injection. Given
that HttpClient contains a BaseAddress property, you can configure NSwag
to not require that the base address be passed as a constructor argument and
instead set it on the HttpClient type directly. This approach helps in
dependency injection (DI) scenarios, as you’ll when we discuss
IHttpClientFactory in chapter 33.

These three seemingly unrelated options are all configured in NSwag in the
same way: by adding an Options element to the <OpenApiReference>
element in your project file. The options are provided as command-line
switches and must be provided on one line, without line breaks. The switches
for the three settings described are

/UseBaseUrl:false—When false, NSwag removes the baseUrl
parameter from the generated client’s constructor and instead relies on
HttpClient to have the correct base address. It defaults to true.
/GenerateClientInterfaces:true—When true, NSwag generates an
interface for the client, containing all the endpoints. The generated client
implements this interface. It defaults to false.
/JsonLibrary:SystemTextJson—This switch specifies the JSON
serialization library to use. It defaults to using Newtonsoft.Json.

Tip

A vast number of configuration options is available for NSwag. I find that the
best documentation is available in the NSwag .NET tool. You can install the
tool by using dotnet tool install -g NSwag.ConsoleCore, and you can
view the available options by running nswag help openapi2csclient.

You can set all three of these options by adding an <Options> element to the
<OpenApiReference> element, as shown in the following listing. Make sure
that you open and close both elements correctly so the XML stays valid; it’s
an easy mistake to make when editing by hand!

Listing 11.7 Customizing NSwag generator options

<OpenApiReference Include="OpenAPIs\fruit.json"

 SourceUrl="http://localhost:5062/swagger/v1/swagger.json"

 Namespace="Fruit"

 ClassName="FruitClient" >

 <Options>/UseBaseUrl:false /GenerateClientInterfaces:true

[CA]/JsonLibrary:SystemTextJson</Options> #A

</OpenApiReference> #B

You’d be forgiven for thinking that after making these changes, NSwag
would update the generated code next time you build. Unfortunately, it’s not
necessarily that simple. NSwag watches for changes to the OpenAPI
description JSON file saved in your project and will regenerate the code any
time the file changes, but it won’t necessarily update when you change
options in your csproj file. Even worse, doing a clean or rebuild similarly has
no effect. If you find yourself in this situation, it’s best to delete the obj folder
for your project to ensure that everything regenerates correctly.

Tip

Another option is to make a tiny change in the OpenAPI document so that
NSwag updates the generated code when you build your project. Then you
can revert the OpenAPI document change.

After you’ve persuaded NSwag to regenerate the client, you should update
your code to use the new features. You can remove the Newtonsoft.Json

reference from your csproj file and update your Program.cs as shown in the
following listing.

Listing 11.8 Using the updated NSwag client

using Fruit;

IFruitClient client = new FruitClient(#A

 new HttpClient() { BaseAddress = #B

 new Uri("https://localhost:7186") }); #B

Fruit.Fruit created = await client.FruitPOSTAsync("123",

 new Fruit.Fruit { Name = "Banana", Stock = 100 });

Console.WriteLine($"Created {created.Name}");

Fruit.Fruit fetched = await client.FruitGETAsync("123");

Console.WriteLine($"Fetched {fetched.Name}");

If you updated the operation IDs for your API endpoints using WithName(),
you may be a little surprised to see that you still have the ugly
FruitPOSTAsync and FruitGETAsync methods, even though you regenerated
the client. That’s because the OpenAPI description saved to your project is
downloaded only once, when you initially add it. Let’s look at how to update
the local OpenAPI document to reflect the changes to your remote API.

11.4.5 Refreshing the OpenAPI description

In this section you’ll learn how to update the OpenAPI description document
saved to your project that’s used for generation. This document doesn’t
update automatically, so the client generated by NSwag may not reflect the
latest OpenAPI description for your API.

Whether you used Visual Studio (as in section 11.4.1) or the .NET OpenAPI
tool (as in section 11.4.2), the OpenAPI description saved as a JSON file to
your project is a point-in-time snapshot of the API. If you add more metadata
to your API, you need to download the OpenAPI description to your project
again.

Tip

My preferred approach is low-tech: I simply navigate to the OpenAPI
description in the browser, copy the JSON contents, and paste it into the
JSON file in my project.

If you don’t want to update the OpenAPI description manually, you can use
Visual Studio or the .NET OpenAPI tool to refresh the saved document for
you.

Warning

If you originally used Visual Studio, you can’t refresh the document by using
the OpenAPI tool and vice versa. The reason is that Visual Studio uses the
SourceUri attribute on the OpenApiReference element and the .NET tool
uses the SourceUrl attribute. And yes, that situation is arbitrary and
annoying!

To update your OpenAPI description by using Visual Studio, follow these
steps:

1. Ensure that your API is running and that the OpenAPI description
document is available.

2. Navigate to the connected services page for your project by choosing
Project > Connected Services > Manage Connected Services.

3. Select the overflow button next to your OpenAPI reference and choose
Refresh, as shown in figure 11.9. Then choose Yes in the dialog box to
update your OpenAPI document.

Figure 11.9 Updating the OpenAPI description for an API. Choose Refresh to download the
OpenAPI description again and save it to your project. Then NSwag will generate an updated
client on the next build.

To update your OpenAPI description by using the .NET OpenAPI tool,
follow these steps:

1. Ensure that your API is running and that the OpenAPI description
document is available.

2. From your project folder, run the following command, using the same
URL you used to add the OpenAPI description originally:

dotnet openapi refresh http://localhost:5062/swagger/v1/swagger.json

After updating your OpenAPI description by using either Visual Studio or the
.NET tool, build your application to trigger NSwag to regenerate your client.
Any changes you made to your OpenAPI description (such as adding
operation IDs) will be reflected in the generated code.

I think that client generation is the killer app for OpenAPI descriptions, but it
works best when you use metadata to add extensive documentation to your
APIs. In section 11.5 you’ll learn how to go one step further by adding
summaries and descriptions to your endpoints.

11.5 Adding descriptions and summaries to your
endpoints

In this section you’ll learn how to add extra descriptions and summaries to
your OpenAPI description document. Tools such as Swagger UI and NSwag
use these extra descriptions and summaries to provide a better developer
experience working with your API. You’ll also learn about alternative ways
to add metadata to your minimal API endpoints.

11.5.1 Using fluent methods to add descriptions

Whilst working with your minimal API endpoints and calling methods such
as WithName() and WithTags(), you may have noticed the methods
WithSummary() and WithDescription(). These methods add metadata to
your endpoint in exactly the same way as the other With* methods, but
unfortunately, they don’t update your OpenAPI description without some
extra changes.

To make use of the summary and description metadata, you must add an
extra NuGet package, Microsoft.AspNetCore.OpenApi, and call
WithOpenApi() on your endpoint. This method ensures that the summary and
description metadata are added correctly to the OpenAPI description when
Swashbuckle generates the document. Add this package via the NuGet
package manager or the .NET CLI by calling

dotnet add package Microsoft.AspNetCore.OpenApi

from the project folder. Then update your endpoints to add summaries and/or
descriptions, making sure to call WithOpenApi(), as shown in the following
listing.

Listing 11.9 Adding summaries and descriptions to endpoints using WithOpenApi()

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}", (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithName("GetFruit")

 .WithTags("fruit")

 .Produces<Fruit>()

 .ProducesProblem(404)

 .WithSummary("Fetches a fruit") #A

 .WithDescription("Fetches a fruit by id, or returns 404" + #B

 " if no fruit with the ID exists") #B

 .WithOpenApi(); #C

app.Run();

record Fruit(string Name, int Stock);

With these changes, Swagger UI reflects the extra metadata, as shown in
figure 11.10. NSwag also uses the summary as a documentation comment
when it generates the endpoints on the client. You can see in figure 11.10,
however, that one piece of documentation is missing: a description of the
parameter id.

Figure 11.10 The summary and description metadata displayed in the Swagger UI. Note that no
description is displayed for the id parameter.

Unfortunately, you don’t have a particularly elegant way to add
documentation for your parameters. The suggested approach is to use an
overload of the WithOpenApi() method, which takes a lambda method where
you can add a description for the parameter:

.WithOpenApi(o =>

{

 o.Parameters[0].Description = "The id of the fruit to fetch";

 o.Summary = "Fetches a fruit";

 return o;

});

This example shows that you can use the WithOpenApi() method to set any
of the OpenAPI metadata for the endpoint, so you can use this single method
to set (for example) the summary and tags instead of using the dedicated
WithSummary() or WithTags() method.

Adding all this metadata undoubtedly documents your API in more detail and

makes your generated code easier to understand. But if you’re anything like
me, the sheer number of methods you have to call makes it hard to see where
your endpoint ends and the metadata begins! In section 11.5.2 we’ll look at
an alternative approach that involves using attributes.

11.5.2 Using attributes to add metadata

I’m a fan of fluent interfaces in many cases, as I feel that they make code
easier to understand. But the endpoint metadata extensions, such as those
shown in listing 11.9, go to extremes. It’s hard to understand what the
endpoint is doing with all the noise from the metadata methods! Ever since
version 1.0, C# has had a canonical way to add metadata to code—attributes
—and you can replace your endpoint extension methods with dedicated
attributes if you prefer.

Almost all the extension methods that you add to your endpoint have an
equivalent attribute you can use instead. These attributes should be applied
directly to the handler method (the lambda function, if that’s what you’re
using). Listing 11.10 shows the equivalent of listing 11.9, using attributes
instead of fluent methods where possible. The WithOpenApi() method is the
only call that can’t be replaced; it must be included so that Swashbuckle
reads the OpenAPI metadata correctly.

Listing 11.10 Using attributes to describe your API

using System.Collections.Concurrent;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

app.MapGet("/fruit/{id}",

 [EndpointName("GetFruit")] #A

 [EndpointSummary("Fetches a fruit")] #A

 [EndpointDescription("Fetches a fruit by id, or returns 404" + #A

 " if no fruit with the ID exists")] #A

 [ProducesResponseType(typeof(Fruit), 200)] #A

 [ProducesResponseType(typeof(HttpValidationProblemDetails), 404, #A

 "application/problem+json")] #A

 [Tags("fruit")] #A

 (string id) =>

 _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404))

 .WithOpenApi(o =>

 {

 o.Parameters[0].Description = "The id of the fruit to fetch";

 return o;

 });

app.Run();

record Fruit(string Name, int Stock);

Whether you think listing 11.10 is better than listing 11.9 is largely a matter
of taste, but the reality is that neither is particularly elegant. In both cases the
metadata significantly obscures the intent of the API, so it’s important to
consider which metadata is worth adding and which is unnecessary noise.
That balance may shift depending on who your audience is (internal or
external customers), how mature your API is, and how much you can extract
to helper functions.

11.5.3 Using XML documentation comments to add metadata

One understandable complaint about both the attribute and method
approaches for attaching OpenAPI metadata is that the summary and
parameter descriptions are divorced from the endpoint handler to which they
apply. In this section you’ll see how an alternative approach that uses
Extensible Markup Language (XML) documentation comments.

Every C# developer user will be used to the handy descriptions about
methods and parameters you get in your IDE from IntelliSense. You can add
these descriptions to your own methods by using XML documentation
comments, for example:

/// <summary>

/// Adds one to the provided value and returns it

/// </summary>

/// <param name="value">The value to increment</param>

public int Increment(int value) => value + 1;

In your IDE—whether that’s Visual Studio, JetBrains Rider, or Visual Studio
Code—this description appears when you try to invoke the method. Wouldn’t
it be nice to use the same syntax to define the summary and parameter
descriptions for our OpenAPI endpoints? Well, the good news is that we can!

Warning

The use of XML documentation comments is only partially supported in
.NET 7. These comments work only when you have static or instance method
endpoint handlers, not lambda methods or local functions. You can find the
issue tracking full support for XML comments at
https://github.com/dotnet/aspnetcore/issues/39927.

Swashbuckle can use the XML comments you add to your endpoint handlers
as the descriptions for your OpenAPI description. When enabled, the .NET
software development kit (SDK) generates an XML file containing all your
documentation comments. Swashbuckle can read this file on startup and use
it to generate the OpenAPI descriptions, as shown in figure 11.11.

Figure 11.11 You can configure a .NET application to export documentation comments to a
dedicated XML file when it builds. Swashbuckle reads this documentation file at runtime,
combining it with the attribute and fluent method metadata for an endpoint to generate the final
OpenAPI description.

To enable XML documentation comment extraction for your OpenAPI
description document you must do three things:

1. Enable documentation generation for your project. Add the
<GenerateDocumentationFile> inside a <PropertyGroup> in your
csproj file, and set it to true:

<PropertyGroup>

 <GenerateDocumentationFile>true</GenerateDocumentationFile>

</PropertyGroup>

2. Configure Swashbuckle to read the generated XML document in
SwaggerGen():

builder.Services.AddSwaggerGen(opts =>

{

 var file = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";

 opts.IncludeXmlComments(Path.Combine(AppContext.BaseDirectory, file));

});

3. Use a static or instance method handler and add the XML comments, as
shown in the following listing.

Listing 11.11 Adding documentation comments to an endpoint handler

using Microsoft.AspNetCore.Mvc;

using System.Collections.Concurrent;

using System.Reflection;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(opts => #A

{

 var file = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";

 opts.IncludeXmlComments(Path.Combine(AppContext.BaseDirectory, file));

});

WebApplication app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

var _fruit = new ConcurrentDictionary<string, Fruit>();

var handler = new FruitHandler(fruit); #B

app.MapGet("/fruit/{id}", handler.GetFruit) #B

 .WithName("GetFruit"); #C

app.Run();

record Fruit(string Name, int Stock);

internal class FruitHandler

{

 private readonly ConcurrentDictionary<string, Fruit> _fruit;

 public FruitHandler(ConcurrentDictionary<string, Fruit> fruit)

 {

 _fruit = fruit;

 }

 /// <summary> #D

 /// Fetches a fruit by id, or returns 404 if it does not exist #D

 /// </summary> #D

 /// <param name="id" >The ID of the fruit to fetch</param> #D

 /// <response code="200">Returns the fruit if it exists</response> #D

 /// <response code="404">If the fruit doesn't exist</response> #D

 [ProducesResponseType(typeof(Fruit), 200)] #E

 [ProducesResponseType(typeof(HttpValidationProblemDetails), #E

 404, "application/problem+json")] #E

 [Tags("fruit")] #E

 public IResult GetFruit(string id)

 => _fruit.TryGetValue(id, out var fruit)

 ? TypedResults.Ok(fruit)

 : Results.Problem(statusCode: 404);

}

I like the XML comment approach, as it feels much more natural for C# and
the comments are often deemphasized in IDEs, reducing visual clutter. You’ll
still need to use attributes and/or fluent methods to fully describe your
endpoints for OpenAPI, but every little bit helps!

As I’ve mentioned several times, how far you go with your OpenAPI
description is up to you and how much value you get from it. If you want to
use OpenAPI only for local testing with Swagger UI, it doesn’t make sense to
clutter your code with lots of extra metadata. In fact, in those cases it would
be best to add the swagger services and middleware conditionally only when
you’re in development, as in this example:

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

if(builder.Environment.IsDevelopment())

{

 builder.Services.AddEndpointsApiExplorer();

 builder.Services.AddSwaggerGen();

}

WebApplication app = builder.Build();

if(app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.Run();

On the other hand, if you’re generating C# clients for calling your API or
exposing your API for public consumption, the more metadata you add, the
better! It’s also worth noting that you can add OpenAPI descriptions for all
the endpoints in your application, not only your minimal API endpoints.
When you create web API controllers in chapter 20, you can include them =
too.

11.6 Knowing the limitations of OpenAPI

In this chapter I’ve described the benefits of OpenAPI, both for simple testing
with Swagger UI and for code generation. But like most things in software,
it’s not all sweetness and light. OpenAPI and Swagger have limitations that
you may run into, particularly as your APIs increase in complexity. In this
section I describe some of the challenges to watch out for.

11.6.1 Not all APIs can be described by OpenAPI

The OpenAPI specification is meant to describe your API so that any client
knows how to call it. Unfortunately, OpenAPI can’t describe all APIs, which
isn’t an accident. The OpenAPI specification says “Not all services can be
described by OpenAPI—this specification is not intended to cover every
possible style of REST APIs.” So,= the important question is which APIs
can’t it describe?

One classic example is an API that follows the REST design known as
Hypertext As the Engine of Application State (HATEOAS). In this design,
each request to an API endpoint includes a list of links describing the actions
you can take and the paths to use for each action, enabling clients to discover
which actions are available for a given resource. The server can add or
remove links dynamically, depending on the state of the resource and which
user is making the request.

Tip

Martin Fowler has a great description of the REST maturity models, in which
HATEOAS is the highest level of maturity, at http://mng.bz/0K1N.

HATEOAS generally introduces more complexity than is worthwhile for
small projects, but it’s a great way to decouple your client-side applications
from your server APIs so that they can evolve separately. This approach can
be invaluable when you have large or independent teams. The problem for
OpenAPI is that it wasn’t designed for these kinds of dynamic APIs.
OpenAPI wants to know up front what the responses are for each of your
endpoints, which isn’t information that you can give it if you’re following
HATEOAS.

In a different scenario, you may have multiple backend APIs, each with its
own OpenAPI specification. You expose a single, unified API gateway app,
with which all your clients interact. Unfortunately, even though each backend
API has an OpenAPI specification, there’s no easy way to combine the APIs
into a single unified document that you can expose in your API gateway and
which clients can use for testing and code generation.

Another common problem centers on securing your APIs with authentication
and authorization. The OpenAPI specification contains a section about
describing your authentication requirements, and Swagger UI supports them.
Where things fall down is if you’re using any extensions to the common
authentication protocols or advanced features. Although some of these
workflows are possible, in some cases Swagger UI simply may not support
your workflow, rendering Swagger UI unusable.

11.6.2 Generated code is opinionated

At the end of section 11.4 I said that code generation is the killer feature for
Open API documents, and in many cases it is. That statement, however,
assumes that you like the generated code. If the tooling you use—whether
that’s NSwag or some other code generator—doesn’t generate the code you
want, you may find yourself spending a lot of effort customizing and
tweaking the output. At some point and for some APIs, it may be simpler and
easier to write your own client!

Note

A classic complaint (with which I sympathize) is the use of exceptions for

process flow whenever an error or unexpected status code is returned. Not all
errors are exceptional, throwing exceptions is relatively expensive
computationally, and it often means that every call made with a client needs
custom exception handling. This design sometimes makes code generation
seem more like a burden than a benefit.

Another, subtler issue arises when you use code generation with two separate
but related OpenAPI documents, such as a products API and a cart API. If
you use the techniques in this chapter to generate the clients and then try to
follow this simple sequence, you’ll run into trouble:

1. Retrieve a Product instance from the products API by using
ProductsClient.Get()

2. Send the retrieved Product to the cart API by using
CartClient.Add(Product)

Unfortunately, the generated Product type retrieved from the products API is
a different type from the generated Product type that the CartClient
requires, so this code won’t compile. Even if the type has the same properties
and is serialized to the same JSON when it’s sent to the client, C# considers
the objects to be different types and won’t let them swap places. You must
copy the values manually from the first Product instance to a new instance.
These complaints are mostly small niggles and paper cuts, but they can add
up when you run into them often.

11.6.3 Tooling often lags the specification

Another factor to consider is the many groups that are involved in generating
an OpenAPI document and generating a client:

The Open API specification is a community-driven project written by
the OpenAPI Initiative group.
Microsoft provides the tooling built into ASP.NET Core for supplying
the metadata about your API endpoints.
Swashbuckle is an open-source project that uses the ASP.NET Core
metadata to generate an OpenAPI-compatible document.
NSwag is an open-source project that takes an OpenAPI-compatible

document and generates clients (and has many other features!).
Swagger UI is an open-source project for interacting with APIs based on
the OpenAPI document.

Some of these projects have direct dependencies on others (everything
depends on the OpenAPI specification, for example), but they may evolve at
difference paces. If Swashbuckle doesn’t support some new feature of the
OpenAPI specification, it won’t appear in your documents, and NSwag won’t
be able to use it.

Most of the tools provide ways to override the behavior to work around these
rough edges, but the reality is that if you’re using newer or less popular
features, you may have more difficulty persuading all the tools in your tool
chain to play together nicely.

Overall, the important thing to remember is that OpenAPI documents may
work well if you have simple requirements or want to use Swagger UI only
for testing. In these cases, there’s little investment required to add OpenAPI
support, and it can improve your workflow, so you might find it worthwhile
to try.

If you have more complex requirements, are creating an API that OpenAPI
can’t easily describe or aren’t a fan of the code generation, it may not be
worth your time to invest heavily in OpenAPI for your documents.

Tip

If you’re a fan of code generation but prefer more of a remote procedure call
(RPC) style of programming, it’s worthwhile to look at gRPC. Code
generation for gRPC is robust, supported across multiple languages, and has
great support in .NET. You can read more in the documentation at
https://learn.microsoft.com/aspnet/core/grpc.

In chapter 12 we’ll take a brief look at the new object-relational mapper that
fits well with ASP.NET Core: Entity Framework Core. You’ll get only a taste
of it in this book, but you’ll learn how to load and save data, build a database
from your code, and migrate the database as your code evolves.

11.7 Summary

OpenAPI is a specification for describing HTTP APIs in a machine-
readable format, as a JSON document. You can use this document to
drive other tooling, such as code generators or API testers.
You can add OpenAPI document generation to an ASP.NET Core app
by using the NSwag or Swashbuckle NuGet package. These packages
work with ASP.NET Core services to read metadata about all the
endpoints in your application to build an OpenAPI document.
The Swashbuckle Swagger middleware exposes the OpenAPI Document
for your application at the path /swagger/v1/swagger.json by default.
Exposing the document in this way makes it easy for other tools to
understand the endpoints in your application.
You can explore and test your API by using Swagger UI. The
Swashbuckle Swagger UI middleware exposes the UI at the path
/swagger by default. You can use Swagger UI to explore your API, send
test requests to your endpoints, and check how well your API is
documented.
You can customize the OpenAPI description of your endpoints by
adding metadata. You can provide tags, for example, by calling
WithTags() on an endpoint and specify that an endpoint returns a type T
with a 201 status code using Produces<T>(201). Adding metadata
improves your API OpenAPI description, which in turn improves
tooling such as Swagger UI.
You can use NSwag to generate a C# client from an OpenAPI
description. This approach takes care of using the correct paths to call
the API, substituting parameters in the path, and serializing and
deserializing requests to the API, removing much of the boilerplate
associated with interacting with an API.
You can add code generation to your project by using Visual Studio or
the .NET API tool or by making manual changes to your project. Visual
Studio and the .NET tool automate downloading the OpenAPI
description to your local project and adding the necessary NuGet
packages. You should update the NuGet packages to the latest versions
to ensure that you have the latest bug or security fixes.
NSwag automatically generates a C# method name on the main client
class for each endpoint in the OpenAPI description. If the endpoint’s

OperationID is missing, NSwag generates a name, which may not be
optimal. You can specify the OperationID to use for an endpoint in your
OpenAPI description by calling WithName() on the endpoint.
You can customize the client NSwag generates by adding an <Options>
element inside the <OpenApiReference> in your .csproj file. These
options are specified as command-line switches such as
/JsonLibrary:SystemTextJson. You can change many things about the
generated code with these switches, such as the serialization library to
use and whether to generate an interface for the client.
If the OpenAPI description for a remote API changes, you need to
download the document to your project again for the generated client to
reflect these changes. If you originally added the OpenAPI reference by
using Visual Studio, you should use Visual Studio to refresh the
document, and the same applies to the .NET API tool. NSwag
automatically updates the generated code when the downloaded
OpenAPI document changes.
You can add an OpenAPI summary and description to an endpoint by
installing the Microsoft.AspNetCore.OpenApi package, calling
WithOpenApi() on the endpoint, and adding calls to WithSummary() or
WithDescription(). This metadata is shown in Swagger UI, and
NSwag uses the summary to generate documentation comments in the
C# client.
You can use attributes instead of fluent methods to add OpenAPI
metadata if you prefer. This approach sometimes helps improve
readability of your endpoints. You must still call WithOpenApi() on the
endpoint to read the metadata attributes.
You can use XML documentation comments to document your
OpenAPIs to reduce the clutter of extra method calls and attributes. To
use this approach, you must enable documentation generation for the
project, configure Swashbuckle to read the XML documentation file on
startup, and use static or instance handler methods instead of lambda
methods.
Not all APIs can be described by the OpenAPI specification. Some
styles, such as HATEOAS, are naturally dynamic and don’t lend
themselves to the static design of OpenAPI. You may also have
difficulty with complex authentication requirements, as well as
combining OpenAPI documents. In these cases, you may find that

OpenAPI brings little value to your application.

12 Saving data with Entity
Framework Core
This chapter covers

Understanding what Entity Framework Core is and why you should use
it
Adding Entity Framework Core to an ASP.NET Core application
Building a data model and using it to create a database
Querying, creating, and updating data with Entity Framework Core

Most applications that you’ll build with ASP.NET Core require storing and
loading some kind of data. Even the examples so far in this book have
assumed that you have some sort of data store—storing exchange rates, user
shopping carts, or the locations of physical stores. I’ve glossed over this topic
for the most part, but typically you’ll store this data in a database.

Working with databases can be a rather cumbersome process. You have to
manage connections to the database, translate data from your application to a
format the database can understand, and handle a plethora of other subtle
problems. You can manage this complexity in a variety of ways, but I’m
going to focus on using a library built for modern .NET: Entity Framework
Core (EF Core). EF Core is a library that lets you quickly and easily build
database access code for your ASP.NET Core applications. It’s modeled on
the popular Entity Framework 6.x library, but it has significant changes that
make it stand alone in its own right as more than an upgrade.

The aim of this chapter is to provide a quick overview of EF Core and show
how you can use it in your applications to query and save to a database
quickly. You’ll learn enough to connect your app to a database and manage
schema changes to the database, but I won’t be going into great depth on any
topics.

Note

For an in-depth look at EF Core, I recommend Entity Framework Core in
Action, 2nd ed., by Jon P. Smith (Manning, 2021). Alternatively, you can
read about EF Core on the Microsoft documentation website at
https://docs.microsoft.com/ef/core.

Section 12.1 introduces EF Core and explains why you may want to use it in
your applications. You’ll learn how the design of EF Core helps you iterate
quickly on your database structure and reduce the friction of interacting with
a database.

In section 12.2 you’ll learn how to add EF Core to an ASP.NET Core app and
configure it by using the ASP.NET Core configuration system. You’ll see
how to build a model for your app that represents the data you’ll store in the
database and how to hook it into the ASP.NET Core DI container.

Note

For this chapter I use SQLite, a small, fast, cross-platform database engine,
but none of the code shown in this chapter is specific to SQLite. The code
sample for the book also includes a version using SQL Server Express’s
LocalDB feature. This version is installed as part of Visual Studio 2022
(when you choose the ASP.NET and Web Development workload), and it
provides a lightweight SQL Server engine. You can read more about
LocalDB at http://mng.bz/5jEa.

No matter how carefully you design your original data model, the time will
come when you need to change it. In section 12.3 I show how you can easily
update your model and apply these changes to the database itself, using EF
Core for all the heavy lifting.

When you have EF Core configured and a database created, section 12.4
shows how to use it in your application code. You’ll see how to create, read,
update, and delete (CRUD) records, and you’ll learn about some of the
patterns to use when designing your data access.

In section 12.5 I highlight a few of the problems you’ll want to take into
consideration when using EF Core in a production app. A single chapter on
EF Core can offer only a brief introduction to all the related concepts, so if

you choose to use EF Core in your own applications—especially if you’re
using such a data access library for the first time—I strongly recommend
reading more after you have the basics from this chapter.

Before we get into any code, let’s look at what EF Core is, what problems it
solves, and when you may want to use it.

12.1 Introducing Entity Framework Core

Database access code is ubiquitous across web applications. Whether you’re
building an e-commerce app, a blog, or the Next Big Thing™, chances are
that you’ll need to interact with a database.

Unfortunately, interacting with databases from app code is often a messy
affair, and you can take many approaches. A task as simple as reading data
from a database, for example, requires handling network connections, writing
SQL statements, and handling variable result data. The .NET ecosystem has a
whole array of libraries you can use for this task, ranging from the low-level
ADO.NET libraries to higher-level abstractions such as EF Core.

In this section, I describe what EF Core is and the problem it’s designed to
solve. I cover the motivation for using an abstraction such as EF Core and
how it helps bridge the gap between your app code and your database. As
part of that discussion, I present some of the tradeoffs you’ll make by using
EF Core in your apps, which should help you decide whether it’s right for
your purposes. Finally, we’ll take a look at an example EF Core mapping,
from app code to database, to get a feel for EF Core’s main concepts.

12.1.1 What is EF Core?

EF Core is a library that provides an object-oriented way to access databases.
It acts as an object-relational mapper (ORM), communicating with the
database for you and mapping database responses to .NET classes and
objects, as shown in figure 12.1.

Figure 12.1 EF Core maps .NET classes and objects to database concepts such as tables and rows.

Definition

With an object-relational mapper (ORM), you can manipulate a database
with object-oriented concepts such as classes and objects by mapping them to
database concepts such as tables and columns.

EF Core is based on but distinct from the existing Entity Framework libraries
(currently up to version 6.x). It was built as part of the .NET Core push to
work cross-platform, but with additional goals in mind. In particular, the EF
Core team wanted to make a highly performant library that could be used
with a wide range of databases.

There are many types of databases, but probably the most commonly used
family is relational databases, accessed via Structured Query Language
(SQL). This is the bread and butter of EF Core; it can map Microsoft SQL
Server, SQLite, MySQL, Postgres, and many other relational databases. It
even has a cool in-memory feature you can use when testing to create a
temporary database. EF Core uses a provider model, so support for other
relational databases can be plugged in later as they become available.

Note

As of .NET Core 3.0, EF Core also works with nonrelational, NoSQL, or
document databases like Cosmos DB too. I’m going to consider mapping
only to relational databases in this book, however, as that’s the most common
requirement in my experience. Historically, most data access, especially in
the .NET ecosystem, has used relational databases, so it generally remains the
most popular approach.

That discussion covers what EF Core is but doesn’t dig into why you’d want
to use it. Why not access the database directly by using the traditional
ADO.NET libraries? Most of the arguments for using EF Core can be applied
to ORMs in general, so what are the advantages of an ORM?

12.1.2 Why use an object-relational mapper?

One of the biggest advantages of an ORM is the speed with which it allows
you to develop an application. You can stay in the familiar territory of object-
oriented .NET, often without needing to manipulate a database directly or
write custom SQL.

Suppose that you have an e-commerce site, and you want to load the details
of a product from the database. Using low-level database access code, you’d

have to open a connection to the database; write the necessary SQL with the
correct table and column names; read the data over the connection; create a
plain old CLR object (POCO) to hold the data; and set the properties on the
object, converting the data to the correct format manually as you go. Sounds
painful, right?

An ORM such as EF Core takes care of most of this work for you. It handles
the connection to the database, generates the SQL, and maps data back to
your POCO objects. All you need to provide is a LINQ query describing the
data you want to retrieve.

ORMs serve as high-level abstractions over databases, so they can
significantly reduce the amount of plumbing code you need to write to
interact with a database. At the most basic level, they take care of mapping
SQL statements to objects, and vice versa, but most ORMs take this process a
step further and provide additional features.

ORMs like EF Core keep track of which properties have changed on any
objects they retrieve from the database, which lets you load an object from
the database by mapping it from a database table, modify it in .NET code,
and then ask the ORM to update the associated record in the database. The
ORM works out which properties have changed and issues update statements
for the appropriate columns, saving you a bunch of work.

As is so often the case in software development, using an ORM has its
drawbacks. One of the biggest advantages of ORMs is also their Achilles’
heel: they hide the database from you. Sometimes this high level of
abstraction can lead to problematic database query patterns in your apps. A
classic example is the N+1 problem, in which what should be a single
database request turns into separate requests for every single row in a
database table.

Another commonly cited drawback is performance. ORMs are abstractions
over several concepts, so they inherently do more work than if you were to
handcraft every piece of data access in your app. Most ORMs, EF Core
included, trade some degree of performance for ease of development.

That said, if you’re aware of the pitfalls of ORMs, you can often drastically

simplify the code required to interact with a database. As with anything, if the
abstraction works for you, use it; otherwise, don’t. If you have only minimal
database access requirements or need the best performance you can get, an
ORM such as EF Core may not be the right fit.

An alternative is to get the best of both worlds: use an ORM for the quick
development of the bulk of your application, and fall back to lower-level
APIs such as ADO.NET for those few areas that prove to be bottlenecks.
That way, you can get good-enough performance with EF Core, trading
performance for development time, and optimize only those areas that need
it.

Note

These days, the performance aspect is one of the weaker arguments against
ORMs. EF Core uses many database tricks and crafts clean SQL queries, so
unless you’re a database expert, you may find that it outperforms even your
handcrafted ADO.NET queries!

Even if you decide to use an ORM in your app, many ORMs are available for
.NET, of which EF Core is one. Whether EF Core is right for you depends on
the features you need and the tradeoffs you’re willing to make to get them.
Section 12.1.3 compares EF Core with Microsoft’s other offering, Entity
Framework, but you could consider many other alternatives, such as Dapper
and NHibernate, each of which has its own set of tradeoffs.

12.1.3 When should you choose EF Core?

Microsoft designed EF Core as a reimagining of the mature Entity
Framework 6.x (EF 6.x) ORM, which it released in 2008. With many years of
development behind it, EF 6.x was a stable and feature-rich ORM, but it’s no
longer under active development.

EF Core, released in 2016, is a comparatively new project. The APIs of EF
Core are designed to be close to those of EF 6.x—though they aren’t identical
—but the core components have been completely rewritten. You should
consider EF Core to be distinct from EF 6.x; upgrading directly from EF 6.x

to EF Core is nontrivial.

Although Microsoft supports both EF Core and EF 6.x, EF 6.x isn’t
recommended for new .NET applications. There’s little reason to start a new
application with EF 6.x these days, but the exact tradeoffs will depend largely
on your specific app. If you decide to choose EF 6.x instead of EF Core,
make sure that you understand what you’re sacrificing. Also make sure that
you keep an eye on the guidance and feature comparison from the EF team at
http://mng.bz/GxgA.

If you decide to use an ORM for your app, EF Core is a great contender. It’s
also supported out of the box by various other subsystems of ASP.NET Core.
In chapter 23 you’ll see how to use EF Core with the ASP.NET Core Identity
authentication system for managing users in your apps.

Before I get into the nitty-gritty of using EF Core in your app, I’ll describe
the application we’re going to be using as the case study for this chapter. I’ll
go over the application and database details and discuss how to use EF Core
to communicate between the two.

12.1.4 Mapping a database to your application code

EF Core focuses on the communication between an application and a
database, so to show it off, you need an application. This chapter uses the
example of a simple cooking app API that lists recipes and lets you retrieve a
recipe’s ingredients, as shown in figure 12.2. Users can list all recipes, add
new ones, edit recipes, and delete old ones.

Figure 12.2 The recipe app provides an API for managing recipes. You can view, update, and
delete recipes, as well as create new ones.

This API is obviously a simple one, but it contains all the database
interactions you need with its two entities: Recipe and Ingredient.

Definition

An entity is a .NET class that’s mapped by EF Core to the database. These
are classes you define, typically as POCO classes, that can be saved and
loaded by mapping to database tables using EF Core.

When you interact with EF Core, you’ll be using primarily POCO entities
and a database context that inherits from the DbContext EF Core class. The
entity classes are the object-oriented representations of the tables in your
database; they represent the data you want to store in the database. You use
the DbContext in your application both to configure EF Core and access the
database at runtime.

Note

You can potentially have multiple DbContexts in your application and even
configure them to integrate with different databases.

When your application first uses EF Core, EF Core creates an internal
representation of the database based on the DbSet<T> properties on your
application’s DbContext and the entity classes themselves, as shown in figure
12.3.

Figure 12.3 EF Core creates an internal model of your application’s data model by exploring the
types in your code. It adds all the types referenced in the DbSet<> properties on your app’s
DbContext and any linked types.

For the recipe app, EF Core builds a model of the Recipe class because it’s
exposed on the AppDbContext as a DbSet<Recipe>. Furthermore, EF Core
loops through all the properties of Recipe, looking for types it doesn’t know
about, and adds them to its internal model. In the app, the Ingredients
collection on Recipe exposes the Ingredient entity as an
ICollection<Ingredient>, so EF Core models the entity appropriately.

EF Core maps each entity to a table in the database, but it also maps the
relationships between the entities. Each recipe can have many ingredients, but
each ingredient (which has a name, quantity, and unit) belongs to one recipe,
so this is a many-to-one relationship. EF Core uses that knowledge to
correctly model the equivalent many-to-one database structure.

Note

Two different recipes, such as fish pie and lemon chicken, may use an
ingredient that has both the same name and quantity, such as the juice of one
lemon, but they’re fundamentally two different instances. If you update the
lemon chicken recipe to use two lemons, you wouldn’t want this change to
automatically update the fish pie to use two lemons too!

EF Core uses the internal model it builds when interacting with the database
to ensure that it builds the correct SQL to create, read, update, and delete
entities.

Right—it’s about time for some code! In section 12.2, you’ll start building
the recipe app. You’ll see how to add EF Core to an ASP.NET Core
application, configure a database provider, and design your application’s data
model.

12.2 Adding EF Core to an application

In this section we focus on getting EF Core installed and configured in your
ASP.NET Core recipe API app. You’ll learn how to install the required
NuGet packages and build the data model for your application. As we’re
talking about EF Core in this chapter, I’m not going to go into how to create
the application in general. I created a simple minimal API app as the basis—

nothing fancy.

Tip

The sample code for this chapter shows the state of the application at three
points in this chapter: at the end of section 12.2, at the end of section 12.3,
and at the end of the chapter. It also includes examples using both LocalDB
and SQLite providers.

Interaction with EF Core in the example app occurs in a service layer that
encapsulates all the data access outside your minimal API endpoint handlers,
as shown in figure 12.4. This design keeps your concerns separated and
makes your services testable.

Figure 12.4 Handling a request by loading data from a database using EF Core. Interaction with
EF Core is restricted to RecipeService; the endpoint doesn’t access EF Core directly.

Adding EF Core to an application is a multistep process:

1. Choose a database provider, such as Postgres, SQLite, or MS SQL
Server.

2. Install the EF Core NuGet packages.
3. Design your app’s DbContext and entities that make up your data model.
4. Register your app’s DbContext with the ASP.NET Core DI container.
5. Use EF Core to generate a migration describing your data model.

6. Apply the migration to the database to update the database’s schema.

This process may seem a little daunting already, but I’ll walk through steps
1–4 in sections 12.2.1–12.2.3 and steps 5–6 in section 12.3, so it won’t take
long. Given the space constraints of this chapter, I stick to the default
conventions of EF Core in the code I show you. EF Core is far more
customizable than it may initially appear to be, but I encourage you to stick to
the defaults wherever possible, which will make your life easier in the long
run.

The first step in setting up EF Core is deciding which database you’d like to
interact with. It’s likely that a client or your company’s policy will dictate
this decision, but giving some thought to it is still worthwhile.

12.2.1 Choosing a database provider and installing EF Core

EF Core supports a range of databases by using a provider model. The
modular nature of EF Core means that you can use the same high-level API
to program against different underlying databases; EF Core knows how to
generate the necessary implementation-specific code and SQL statements.

You’ll probably have a database in mind when you start your application, and
you’ll be pleased to know that EF Core has most of the popular ones covered.
Adding support for a given database involves adding the correct NuGet
package to your .csproj file, such as the following:

PostgreSQL—Npgsql.EntityFrameworkCore.PostgreSQL
Microsoft SQL Server—Microsoft.EntityFrameworkCore.SqlServer
MySQL—MySql.Data.EntityFrameworkCore
SQLite—Microsoft.EntityFrameworkCore.SQLite

Some of the database provider packages are maintained by Microsoft, some
are maintained by the open-source community, and some (such as the Oracle
provider) require a paid license, so be sure to check your requirements. You
can find a list of providers at https://docs.microsoft.com/ef/core/providers.

You install a database provider in your application in the same way as any
other library: by adding a NuGet package to your project’s .csproj file and

running dotnet restore from the command line (or letting Visual Studio
automatically restore for you).

EF Core is inherently modular, so you’ll need to install multiple packages.
I’m using the SQLite database provider, so I’ll be using the SQLite packages:

Microsoft.EntityFrameworkCore.SQLite—This package is the main
database provider package for using EF Core at runtime. It also contains
a reference to the main EF Core NuGet package.
Microsoft.EntityFrameworkCore.Design—This package contains shared
build-time components for EF Core, required for building the EF Core
data model for your app.

Tip

You’ll also want to install tooling to help create and update your database. I
show how to install these tools in section 12.3.1.

Listing 12.1 shows the recipe app’s .csproj file after adding the EF Core
packages. Remember, you add NuGet packages as PackageReference
elements.

Listing 12.1 Installing EF Core in an ASP.NET Core application

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net7.0</TargetFramework> #A

 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference #B

 Include="Microsoft.EntityFrameworkCore.SQLite" #B

 Version="7.0.0" /> #B

 <PackageReference #C

 Include="Microsoft.EntityFrameworkCore.Design" #C

 Version="7.0.0" > #C

 <IncludeAssets>runtime; build; native; contentfiles; #D

 Analyzers; buildtransitive</IncludeAssets> #D

 <PrivateAssets>all</PrivateAssets> #D

 </PackageReference>

 </ItemGroup>

With these packages installed and restored, you have everything you need to
start building the data model for your application. In section 12.2.2 we’ll
create the entity classes and the DbContext for your recipe app.

12.2.2 Building a data model

In section 12.1.4 I showed an overview of how EF Core builds up its internal
model of your database from the DbContext and entity models. Apart from
this discovery mechanism, EF Core is flexible in letting you define your
entities the way you want to, as POCO classes.

Some ORMs require your entities to inherit from a specific base class or
require you to decorate your models with attributes that describe how to map
them. EF Core heavily favors a convention over configuration approach, as
you can see in listing 12.2, which shows the Recipe and Ingredient entity
classes for your app.

Tip

The required keyword, used on several properties in listing 12.2, was
introduced in C# 11. It’s used here to prevent warnings about uninitialized
non-nullable values. You can read more about how EF Core interacts with
non-nullable types in the documentation at http://mng.bz/Keoj.

Listing 12.2 Defining the EF Core entity classes

public class Recipe

{

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public TimeSpan TimeToCook { get; set; }

 public bool IsDeleted { get; set; }

 public required string Method { get; set; }

 public required ICollection<Ingredient> Ingredients { get; set; } #A

}

public class Ingredient

{

 public int IngredientId { get; set; }

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public decimal Quantity { get; set; }

 public required string Unit { get; set; }

}

These classes conform to certain default conventions that EF Core uses to
build up a picture of the database it’s mapping. The Recipe class, for
example, has a RecipeId property, and the Ingredient class has an
IngredientId property. EF Core identifies this pattern of an Id suffix as
indicating the primary key of the table.

Definition

The primary key of a table is a value that uniquely identifies the row among
all the others in the table. It’s often an int or a Guid.

Another convention visible here is the RecipeId property on the Ingredient
class. EF Core interprets this property to be a foreign key pointing to the
Recipe class. When considered with ICollection<Ingredient> on the
Recipe class, this property represents a many-to-one relationship, in which
each recipe has many ingredients but each ingredient belongs to a single
recipe (figure 12.5).

Figure 12.5 Many-to-one relationships in code are translated to foreign key relationships between
tables.

Definition

A foreign key on a table points to the primary key of a different table,
forming a link between the two rows.

Many other conventions are at play here, such as the names EF Core will
assume for the database tables and columns or the database column types it
will use for each property, but I’m not going to discuss them here. The EF
Core documentation contains details about all these conventions, as well as
how to customize them for your application; see
https://docs.microsoft.com/ef/core/modeling.

Tip

You can also use DataAnnotations attributes to decorate your entity classes,
controlling things like column naming and string length. EF Core will use
these attributes to override the default conventions.

As well as defining the entities, you define the DbContext for your
application. The DbContext is the heart of EF Core in your application, used
for all your database calls. Create a custom DbContext, in this case called
AppDbContext, and derive from the DbContext base class, as shown in listing
12.3. This class exposes the DbSet<Recipe> so that EF Core can discover and
map the Recipe entity. You can expose multiple instances of DbSet<> in this
way for each of the top-level entities in your application.

Listing 12.3 Defining the application DbContext

public class AppDbContext : DbContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options) #A

 : base(options) { } #A

 public DbSet<Recipe> Recipes { get; set; } #B

}

The AppDbContext for your app is simple, containing a list of your root
entities, but you can do a lot more with it in a more complex application. If
you wanted to, you could customize how EF Core maps entities to the
database, but for this app you’re going to use the defaults.

Note

You didn’t list Ingredient on AppDbContext, but EF Core models it
correctly as it’s exposed on the Recipe. You can still access the Ingredient
objects in the database, but you must navigate via the Recipe entity’s
Ingredients property to do so, as you’ll see in section 12.4.

For this simple example, your data model consists of these three classes:
AppDbContext, Recipe, and Ingredient. The two entities are mapped to
tables and their columns to properties, and you use the AppDbContext to
access them.

Note

This code-first approach is typical, but if you have an existing database, you
can automatically generate the EF entities and DbContext instead. (You can
find more information in Microsoft’s “reverse engineering” article at

http://mng.bz/mgd4.)

The data model is complete, but you’re not quite ready to use it: your
ASP.NET Core app doesn’t know how to create your AppDbContext, and
your AppDbContext needs a connection string so that it can talk to the
database. In section 12.2.3 we tackle both of these problems, and we finish
setting up EF Core in your ASP.NET Core app.

12.2.3 Registering a data context

As with any other service in ASP.Net Core, you should register your
AppDbContext with the dependency injection (DI) container. When
registering your context, you also configure the database provider and set the
connection string so that EF Core knows how to talk with the database.

You register the AppDbContext with the WebApplicationBuilder in
Program.cs. EF Core provides a generic AddDbContext<T> extension method
for this purpose; the method takes a configuration function for a
DbContextOptionsBuilder instance. This builder can set a host of internal
properties of EF Core and lets you replace all the internal services of EF Core
if you want.

The configuration for your app is, again, nice and simple, as you can see in
the following listing. You set the database provider with the UseSqlite
extension method, made available by the
Microsoft.EntityFrameworkCore.SQLite package, and pass it a connection
string.

Listing 12.4 Registering a DbContext with the DI container

using Microsoft.EntityFrameworkCore;

WebApplicationBuillder builder = WebApplication.CreateBuilder(args);

var connString = builder.Configuration #A

 .GetConnectionString("DefaultConnection"); #A

Builder.Services.AddDbContext<AppDbContext>(#B

 options => options.UseSqlite(connString)); #C

WebApplication app = builder.Build();

app.Run();

Note

If you’re using a different database provider, such as a provider for SQL
Server, you need to call the appropriate Use* method on the options object
when registering your AppDbContext.

The connection string is a typical secret, as I discussed in chapter 10, so
loading it from configuration makes sense. At runtime the correct
configuration string for your current environment is used, so you can use
different databases when developing locally and in production.

Tip

You can configure your AppDbContext’s connection string in other ways,
such as with the OnConfiguring method, but I recommend the method shown
here for ASP.NET Core websites.

Now you have a DbContext, named AppDbContext, registered as a scoped
service with the DI container (typical for database-related services), and a
data model corresponding to your database. Codewise, you’re ready to start
using EF Core, but the one thing you don’t have is a database! In section 12.3
you’ll see how you can easily use the .NET CLI to ensure that your database
stays up to date with your EF Core data model.

12.3 Managing changes with migrations

In this section you’ll learn how to generate SQL statements to keep your
database’s schema in sync with your application’s data model, using
migrations. You’ll learn how to create an initial migration and use it to create
the database. Then you’ll update your data model, create a second migration,
and use it to update the database schema.

Managing schema changes for databases, such as when you need to add a
new table or a new column, is notoriously difficult. Your application code is
explicitly tied to a particular version of a database, and you need to make sure
that the two are always in sync.

Definition

Schema refers to how the data is organized in a database, including the tables,
columns, and relationships among them.

When you deploy an app, normally you can delete the old code/executable
and replace it with the new code. Job done. If you need to roll back a change,
delete that new code, and deploy an old version of the app.

The difficulty with databases is that they contain data, so blowing it away and
creating a new database with every deployment isn’t possible. A common
best practice is to version a database’s schema explicitly along with your
application’s code. You can do this in many ways, but typically you need to
store the SQL script that takes the database from the previous schema to the
new schema. Then you can use a library such as DbUp
(https://github.com/DbUp/DbUp) or FluentMigrator
(https://github.com/fluentmigrator/fluentmigrator) to keep track of which
scripts have been applied and ensure that your database schema is up to date.
Alternatively, you can use external tools to manage this task.

EF Core provides its own version of schema management called migrations.
Migrations provide a way to manage changes to a database schema when
your EF Core data model changes.

Definition

A migration is a C# code file in your application that defines how the data
model changed—which columns were added, new entities, and so on.
Migrations provide a record over time of how your database schema evolved
as part of your application, so the schema is always in sync with your app’s
data model.

You can use command-line tools to create a new database from the
migrations or to update an existing database by applying new migrations to it.
You can even roll back a migration, which updates a database to a previous
schema.

Warning

Applying migrations modifies the database, so you must always be aware of
data loss. If you remove a table from the database using a migration and then
roll back the migration, the table will be re-created, but the data it previously
contained will be gone forever!

In this section, you’ll see how to create your first migration and use it to
create a database. Then you’ll update your data model, create a second
migration, and use it to update the database schema.

12.3.1 Creating your first migration

Before you can create migrations, you need to install the necessary tooling.
You have two primary ways to do this:

Package manager console—You can use PowerShell cmdlets inside
Visual Studio’s Package Manager Console (PMC). You can install them
directly from the PMC or by adding the
Microsoft.EntityFrameworkCore.Tools package to your project.
.NET tool—You can use cross-platform, command-line tooling that
extends the .NET software development kit (SDK). You can install the
EF Core .NET tool globally for your machine by running dotnet tool
install --global dotnet-ef.

In this book I use the cross-platform .NET tools, but if you’re familiar with
EF 6.x or prefer to use the Visual Studio PMC, there are equivalent
commands for the steps you’re going to take (http://mng.bz/9DK7). You can
check that the .NET tool installed correctly by running dotnet ef, which
should produce a help screen like the one shown in figure 12.6.

Figure 12.6 Running the dotnet ef command to check that the .NET EF Core tools are installed
correctly

Tip

If you get the No executable found matching command ‘dotnet-ef’
message when running the preceding command, make sure that you installed
the global tool by using dotnet tool install --global dotnet-ef. In
general, you need to run the dotnet ef tools from the project folder in which
you registered your AppDbContext—not from the solution-folder level.

With the tools installed and your database context configured, you can create
your first migration by running the following command from inside your web
project folder and providing a name for the migration (in this case,
InitialSchema):

dotnet ef migrations add InitialSchema

This command creates three files in the Migrations folder in your project:

Migration file—This file, with the Timestamp_MigrationName.cs
format, describes the actions to take on the database, such as creating a

table or adding a column. Note that the commands generated here are
database-provider-specific, based on the database provider configured in
your project.
Migration designer.cs file—This file describes EF Core’s internal model
of your data model at the point in time when the migration was
generated.
AppDbContextModelSnapshot.cs—This file describes EF Core’s current
internal model. This file is updated when you add another migration, so
it should always be the same as the current (latest) migration. EF Core
can use AppDbContextModelSnapshot.cs to determine a database’s
previous state when creating a new migration without interacting with
the database directly.

These three files encapsulate the migration process, but adding a migration
doesn’t update anything in the database itself. For that task, you must run a
different command to apply the migration to the database.

Tip

You can, and should, look inside the migration file EF Core generates to
check what it will do to your database before running the following
commands. Better safe than sorry!

You can apply migrations in any of four ways:

Using the .NET tool
Using the Visual Studio PowerShell cmdlets
In code, by obtaining an instance of your AppDbContext from the DI
container and calling context.Database.Migrate()
By generating a migration bundle application (see http://mng.bz/jPyr)

Which method is best for you depends on how you designed your application,
how you’ll update your production database, and what your personal
preference is. I’ll use the .NET tool for now, but I discuss some of these
considerations in section 12.5. You can apply migrations to a database by
running

dotnet ef database update

from the project folder of your application. I won’t go into the details on how
this command works, but it performs four steps:

1. Builds your application
2. Loads the services configured in your app’s Program.cs, including

AppDbContext

3. Checks whether the database in the AppDbContext connection string
exists and if not, creates it

4. Updates the database by applying any unapplied migrations

If everything is configured correctly, as in section 12.2, running this
command sets you up with a shiny new database like the one shown in figure
12.7.

Figure 12.7 Applying migrations to a database creates the database if it doesn’t exist and updates
the database to match EF Core’s internal data model. The list of applied migrations is stored in
the __EFMigrationsHistory table.

Note

If you get an error message saying No project was found when running
these commands, check that you’re running them in your application’s

project folder, not the top-level solution folder.

When you apply the migrations to the database, EF Core creates the
necessary tables in the database and adds the appropriate columns and keys.
You may have also noticed the __EFMigrationsHistory table, which EF Core
uses to store the names of migrations that it’s applied to the database. Next
time you run dotnet ef database update, EF Core can compare this table
with the list of migrations in your app and apply only the new ones to your
database.

In section 12.3.2 we’ll look at how migrations make it easy to change your
data model and update the database schema without having to re-create the
database from scratch.

12.3.2 Adding a second migration

Most applications inevitably evolve due to increased scope or simple
maintenance. Adding properties to your entities, adding new entities , and
removing obsolete classes are all likely.

EF Core migrations make this evolution simple. Suppose that you decide to
highlight vegetarian and vegan dishes in your recipe app by exposing
IsVegetarian and IsVegan properties on the Recipe entity (listing 12.5).
Change your entities to your desired state, generate a migration, and apply it
to the database, as shown in figure 12.8.

Figure 12.8 Creating a second migration and applying it to the database using the command-line
tools.

Listing 12.5 Adding properties to the Recipe entity

public class Recipe

{

 public int RecipeId { get; set; }

 public required string Name { get; set; }

 public TimeSpan TimeToCook { get; set; }

 public bool IsDeleted { get; set; }

 public required string Method { get; set; }

 public bool IsVegetarian { get; set; }

 public bool IsVegan { get; set; }

 public required ICollection<Ingredient> Ingredients { get; set; }

}

As shown in figure 12.8, after changing your entities, you need to update EF
Core’s internal representation of your data model. You perform this update
exactly the same way that you did for the first migration, by calling dotnet
ef migrations add and providing a name for the migration:

dotnet ef migrations add ExtraRecipeFields

This command creates a second migration in your project by adding the
migration file and its .designer.cs snapshot file; it also updates
AppDbContextModelSnapshot.cs (figure 12.9).

Figure 12.9 Adding a second migration adds a new migration file and a migration Designer.cs
file. It also updates AppDbContextModelSnapshot to match the new migration’s Designer.cs file.

As before, this command creates the migration’s files but doesn’t modify the
database. You can apply the migration and update the database by running

dotnet ef database update

This command compares the migrations in your application with the
__EFMigrationsHistory table in your database to see which migrations are
outstanding; then it runs them. EF Core runs the

20220825201452_ExtraRecipeFields migration, adding the IsVegetarian
and IsVegan fields to the database, as shown in figure 12.10.

Figure 12.10 Applying the ExtraRecipeFields migration to the database adds the IsVegetarian
and IsVegan fields to the Recipes table.

Using migrations is a great way to ensure that your database is versioned
along with your app code in source control. You can easily check out your
app’s source code for a historical point in time and re-create the database
schema your application used at that point.

Migrations are easy to use when you’re working alone or deploying to a
single web server, but even in these cases, you have important things to
consider when deciding how to manage your databases. For apps with
multiple web servers using a shared database or for containerized
applications, you have even more things to think about.

This book is about ASP.NET Core, not EF Core, so I don’t want to dwell on
database management much. But section 12.5 points out some of the things
you need to bear in mind when using migrations in production.

In section 12.4 we’ll get back to the meaty stuff: defining our business logic
and performing CRUD operations on the database.

12.4 Querying data from and saving data to the
database

Let’s review where you are in creating the recipe application:

You created a simple data model consisting of recipes and ingredients.
You generated migrations for the data model to update EF Core’s
internal model of your entities.
You applied the migrations to the database so that its schema matches
EF Core’s model.

In this section you’ll build the business logic for your application by creating
a RecipeService. This service handles querying the database for recipes,
creating new recipes, and modifying existing ones. As this app has a simple
domain, I’ll be using RecipeService to handle all the requirements, but in
your own apps you may have multiple services that cooperate to provide the
business logic.

Note

For simple apps, you may be tempted to move this logic into your endpoint
handlers or Razor Pages. This approach may be fine for tiny apps, but I
encourage you to resist the urge generally; extracting your business logic to
other services decouples the HTTP-centric nature of your handlers from the
underlying business logic, whichoften makes your business logic easier to
test and more reusable.

Our database doesn’t have any data in it yet, so we’d better start by creating a
recipe.

12.4.1 Creating a record

In this section you’re going to build functionality to let users create a recipe

by using the API. Clients send all the details of the recipe in the body of a
POST request to an endpoint in your app. The endpoint uses model binding
and validation attributes to confirm that the request is valid, as you learned in
chapter 7.

If the request is valid, the endpoint handler calls RecipeService to create the
new Recipe object in the database. As EF Core is the topic of this chapter,
I’m going to focus on this service alone, but you can always check out the
source code for this book if you want to see how everything fits together in a
minimal API application.

The business logic for creating a recipe in this application is simple: there is
no logic! Copy the properties from the command binding model provided in
the endpoint handler to a Recipe entity and its Ingredients, add the Recipe
object to AppDbContext, and save it in the database, as shown in figure 12.11.

Figure 12.11 Calling the POST endpoint and creating a new entity. A Recipe is created from the
CreateRecipeCommand model and is added to the DbContext. EF Core generates the SQL to add a
new row to the Recipes table in the database.

Warning

Many simple, equivalent sample applications using EF or EF Core allow you
to bind directly to the Recipe entity as the model in your endpoint.
Unfortunately, this approach exposes a security vulnerability known as
overposting, which is bad practice. If you want to avoid the boilerplate

mapping code in your applications, consider using a library such as
AutoMapper (http://automapper.org). For more details on overposting, see
my blog post on the subject at http://mng.bz/d48O.

Creating an entity in EF Core involves adding a new row to the mapped table.
For your application, whenever you create a new Recipe, you also add the
linked Ingredient entities. EF Core takes care of linking all these entities
correctly by creating the correct RecipeId for each Ingredient in the
database.

All interactions with EF Core and the database start with an instance of
AppDbContext, which typically is DI-injected via the constructor. Creating a
new entity requires three steps:

1. Create the and Ingredient entities.
2. Add the entities to EF Core’s list of tracked entities using

_context.Add(entity).
3. Execute the SQL INSERT statements against the database, adding the

necessary rows to the Recipe and Ingredient tables, by calling
_context.SaveChangesAsync().

Tip

There are sync and async versions of most of the EF Core commands that
involve interacting with the database, such as SaveChanges() and
SaveChangesAsync(). In general, the async versions will allow your app to
handle more concurrent connections, so I tend to favor them whenever I can
use them.

Listing 12.6 shows these three steps in practice. The bulk of the code in this
example involves copying properties from CreateRecipeCommand to the
Recipe entity. The interaction with the AppDbContext consists of only two
methods: Add() and SaveChangesAsync().

Listing 12.6 Creating a Recipe entity in the database in RecipeService

readonly AppDbContext _context; #A

public async Task<int> CreateRecipe(CreateRecipeCommand cmd) #B

{

 var recipe = new Recipe #C

 { #C

 Name = cmd.Name, #C

 TimeToCook = new TimeSpan(#C

 cmd.TimeToCookHrs, cmd.TimeToCookMins, 0), #C

 Method = cmd.Method, #C

 IsVegetarian = cmd.IsVegetarian, #C

 IsVegan = cmd.IsVegan, #C

 Ingredients = cmd.Ingredients.Select(i => #C

 new Ingredient #D

 { #D

 Name = i.Name, #D

 Quantity = i.Quantity, #D

 Unit = i.Unit, #D

 }).ToList() #D

 };

 _context.Add(recipe); #E

 await _context.SaveChangesAsync(); #F

 return recipe.RecipeId; #G

}

If a problem occurs when EF Core tries to interact with your database—you
haven’t run the migrations to update the database schema, for example—this
code throws an exception. I haven’t shown it here, but it’s important to
handle these exceptions in your application so you don’t present an ugly error
message to user when things go wrong.

Assuming that all goes well, EF Core updates all the autogenerated IDs of
your entities (RecipeId on Recipe, and both RecipeId and IngredientId on
Ingredient). Return the recipe ID to the endpoint handler so the handler can
use it—to return the ID in the API response, for example.

Tip

The DbContext type is an implementation of both the unit-of-work and
repository patterns, so you generally don’t need to implement these patterns
manually in your apps. You can read more about these patterns at
https://martinfowler.com/eaaCatalog.

And there you have it. You’ve created your first entity with EF Core. In
section 12.4.2 we’ll look at loading these entities from the database so you

can fetch them all in a list.

12.4.2 Loading a list of records

Now that you can create recipes, you need to write the code to view them.
Luckily, loading data is simple in EF Core, relying heavily on LINQ methods
to control the fields you need. For your app, you’ll create a method on
RecipeService that returns a summary view of a recipe, consisting of
RecipeId, Name, and TimeToCook as a RecipeSummaryViewModel, as shown in
figure 12.12.

Figure 12.12 Calling the GET list endpoint and querying the database to retrieve a list of
RecipeSummaryViewModels. EF Core generates the SQL to retrieve the necessary fields from the
database and maps them to view model objects.

Note

Creating a view model is technically a UI concern rather than a business-
logic concern. I’m returning a view model directly from RecipeService here
mostly to hammer home the fact that you shouldn’t be using EF Core entities
directly in your endpoint’s public API. Alternatively, you might return the
Recipe entity directly from the RecipeService and then build and return the
RecipeSummaryViewModel inside your endpoint handler code.

The GetRecipes method in RecipeService is conceptually simple and
follows a common pattern for querying an EF Core database, as shown in
figure 12.13. EF Core uses a fluent chain of LINQ commands to define the
query to return on the database. The DbSet<Recipe> property on
AppDataContext is an IQueryable, so you can use all the usual Select() and
Where() clauses that you would with other IQueryable providers. EF Core
converts these LINQ methods into a SQL statement to query the database
when you call an execute function such as ToListAsync(), ToArrayAsync(),
or SingleAsync(), or their non-async brethren.

You can also use the Select() extension method to map to objects other than
your entities as part of the SQL query. You can use this technique to query
the database efficiently by fetching only the columns you need.

Figure 12.13 The three parts of an EF Core database query

Listing 12.7 shows the code to fetch a list of RecipeSummaryViewModels,
following the same basic pattern as figure 12.12. It uses a Where LINQ
expression to filter out recipes marked as deleted and a Select clause to map
to the view models. The ToListAsync() command instructs EF Core to
generate the SQL query, execute it on the database, and build
RecipeSummaryViewModels from the data returned.

Listing 12.7 Loading a list of items using EF Core in RecipeService

public async Task<ICollection<RecipeSummaryViewModel>> GetRecipes()

{

 return await _context.Recipes #A

 .Where(r => !r.IsDeleted)

 .Select(r => new RecipeSummaryViewModel #B

 { #B

 Id = r.RecipeId, #B

 Name = r.Name, #B

 TimeToCook = $"{r.TimeToCook.TotalMinutes}mins" #B

 })

 .ToListAsync(); #C

}

Notice that in the Select method you convert the TimeToCook property from
a TimeSpan to a string by using string interpolation:

TimeToCook = $"{r.TimeToCook.TotalMinutes}mins"

I said before that EF Core converts the series of LINQ expressions to SQL,
but that statement is a half-truth: EF Core can’t or doesn’t know how to
convert some expressions to SQL. In those cases, such as this example, EF
Core finds the fields from the DB that it needs to run the expression on the
client side, selects them from the database, and then runs the expression in
C#. This approach lets you combine the power and performance of database-
side evaluation without compromising the functionality of C#.

Warning

Client-side evaluation is both powerful and useful but has the potential to
cause problems. In general, recent versions of EF Core throw an exception if
a query requires dangerous client-side evaluation, ensuring (for example) that
you can’t accidentally return all records to the client before filtering. For
more examples, including ways to avoid these problems, see the
documentation at http://mng.bz/zxP6.

At this point, you have a list of records displaying a summary of the recipe’s
data, so the obvious next step is loading the detail for a single record.

12.4.3 Loading a single record

For most intents and purposes, loading a single record is the same as loading
a list of records. Both approaches have the same common structure you saw
in figure 12.13, but when you’re loading a single record, you typically use a
Where clause that restricts the data to a single entity.

Listing 12.8 shows the code to fetch a recipe by ID, following the same basic
pattern as before (figure 12.12). It uses a Where() LINQ expression to restrict

the query to a single recipe, where RecipeId == id, and a Select clause to
map to RecipeDetailViewModel. The SingleOrDefaultAsync() clause
causes EF Core to generate the SQL query, execute it on the database, and
build the view model.

Note

SingleOrDefaultAsync()throws an exception if the previous Where clause
returns more than one record.

Listing 12.8 Loading a single item using EF Core in RecipeService

public async Task<RecipeDetailViewModel> GetRecipeDetail(int id) #A

{

 return await _context.Recipes #B

 .Where(x => x.RecipeId == id) #C

 .Select(x => new RecipeDetailViewModel #D

 { #D

 Id = x.RecipeId, #D

 Name = x.Name, #D

 Method = x.Method, #D

 Ingredients = x.Ingredients #E

 .Select(item => new RecipeDetailViewModel.Item #E

 { #E

 Name = item.Name, #E

 Quantity = $"{item.Quantity} {item.Unit}" #E

 }) #E

 })

 .SingleOrDefaultAsync(); #F

}

Notice that as well as mapping the Recipe to a RecipeDetailViewModel, you
map the related Ingredients for a Recipe, as though you’re working with the
objects directly in memory. One advantage of using an ORM is that you can
easily map child objects and let EF Core decide how best to build the
underlying queries to fetch the data.

Note

EF Core logs all the SQL statements it runs as LogLevel.Information events
by default, so you can easily see what queries are running against the

database.

Your app is definitely shaping up. You can create new recipes, view them all
in a list, and drill down to view individual recipes with their ingredients and
method. Soon, though, someone’s going to introduce a typo and want to
change their data, so you’ll have to implement the U in CRUD: update.

12.4.4 Updating a model with changes

Updating entities when they’ve changed generally is the hardest part of
CRUD operations, as there are so many variables. Figure 12.14 shows an
overview of this process as it applies to your recipe app.

Figure 12.14 Updating an entity involves three steps: read the entity using EF Core, update the
properties of the entity, and call SaveChangesAsync() on the DbContext to generate the SQL to
update the correct rows in the database.

I’m not going to handle the relationship aspect in this book because that
problem generally is complex, and how you tackle it depends on the specifics
of your data model. Instead, I’ll focus on updating properties on the Recipe
entity itself.

Note

For a detailed discussion of handling relationship updates in EF Core, see
Entity Framework Core in Action, 2nd ed., by Jon P. Smith (Manning, 2021;

http://mng.bz/w9D2).

For web applications, when you update an entity you typically follow the
steps outlined in figure 12.14:

1. Read the entity from the database.
2. Modify the entity’s properties.
3. Save the changes to the database.

You’ll encapsulate these three steps in a method on RecipeService called
UpdateRecipe. This method takes an UpdateRecipeCommand parameter and
contains the code to change the Recipe entity.

Note

As with the Create command, you don’t modify the entities directly in the
minimal API endpoint handler, ensuring that you keep the UI/API concern
separate from the business logic.

Listing 12.9 shows the RecipeService.UpdateRecipe method, which
updates the Recipe entity. It performs the three steps we defined previously
to read, modify, and save the entity. I’ve extracted the code to update the
recipe with the new values to a helper method for clarity.

Listing 12.9 Updating an existing entity with EF Core in RecipeService

public async Task UpdateRecipe(UpdateRecipeCommand cmd)

{

 var recipe = await _context.Recipes.FindAsync(cmd.Id); #A

 if(recipe is null) { #B

 throw new Exception("Unable to find the recipe"); #B

 } #B

 UpdateRecipe(recipe, cmd); #C

 await _context.SaveChangesAsync(); #D

}

static void UpdateRecipe(Recipe recipe, UpdateRecipeCommand cmd) #E

{ #E

 recipe.Name = cmd.Name; #E

 recipe.TimeToCook = #E

 new TimeSpan(cmd.TimeToCookHrs, cmd.TimeToCookMins, 0); #E

 recipe.Method = cmd.Method; #E

 recipe.IsVegetarian = cmd.IsVegetarian; #E

 recipe.IsVegan = cmd.IsVegan; #E

} #E

In this example I read the Recipe entity using the FindAsync(id) method
exposed by DbSet. This simple helper method loads an entity by its ID—in
this case, RecipeId. I could have written a similar query with LINQ:

_context.Recipes.Where(r=>r.RecipeId == cmd.Id).FirstOrDefault();

Using FindAsync() or Find() is a little more declarative and concise,
however.

Tip

Find is a bit more complicated. Find first checks to see whether the entity is
already being tracked in EF Core’s DbContext. If so (because the entity was
previously loaded in this request), the entity is returned immediately without
calling the database. Using Find can obviously be faster if the entity is
tracked, but it can be slower if you know that the entity isn’t being tracked
yet.

You may wonder how EF Core knows which columns to update when you
call SaveChangesAsync(). The simplest approach would be to update every
column. If the field hasn’t changed, it doesn’t matter if you write the same
value again. But EF Core is cleverer than that.

EF Core internally tracks the state of any entities it loads from the database
and creates a snapshot of all the entity’s property values so that it can track
which ones have changed. When you call SaveChanges(), EF Core compares
the state of any tracked entities (in this case, the Recipe entity) with the
tracking snapshot. Any properties that have been changed are included in the
UPDATE statement sent to the database, and unchanged properties are ignored.

Note

EF Core provides other mechanisms to track changes, as well as options to
disable change tracking. See the documentation or chapter 3 of Jon P.

Smith’s Entity Framework Core in Action, 2nd ed., (Manning, 2021;
http://mng.bz/q9PJ) for details. You can view which details the DbContext is
tracking by accessing DbContext.ChangeTracer.DebugView, as described in
the documentation at http://mng.bz/8rlz.

With the ability to update recipes, you’re almost done with your recipe app.
“But wait!” I hear you cry. “we haven’t handled the D in CRUD: delete!”
That’s true, but in reality, I’ve found only a few occasions to delete data.
Let’s consider the requirements for deleting a recipe from the application:

You need to provide an API that deletes a recipe.
After a recipe is deleted, it must not appear in the recipe list and can’t be
retrieved.

You could achieve these requirements by deleting the recipe from the
database, but the problem with data is that when it’s gone, it’s gone! What if
a user accidentally deletes a record? Also, deleting a row from a relational
database typically has implications on other entities. You can’t delete a row
from the Recipe table in your application, for example, without also deleting
all the Ingredient rows that reference it, thanks to the foreign-key constraint
on Ingredient.RecipeId.

EF Core can easily handle these true deletion scenarios for you with the
DbContext .Remove(entity) command, but often what you mean when you
find a need to delete data is to archive it or hide it from the UI. A common
approach to handling this scenario is to include some sort of “Is this entity
deleted?” flag on your entity, such as the IsDeleted flag I included on the
Recipe entity:

public bool IsDeleted { get; set; }

If you take this approach, deleting data suddenly becomes simpler, as it’s
nothing more than an update to the entity—no more problems of lost data and
no more referential-integrity problems.

Note

The main exception I’ve found to this pattern is when you’re storing your

users’ personally identifying information. In these cases, you may be duty-
bound (and potentially legally bound) to scrub their information from your
database on request.

With this approach, you can create a delete method on RecipeService that
updates the IsDeleted flag, as shown in listing 12.10. In addition, make sure
that you have Where() clauses in all the other methods in your
RecipeService to ensure you can’t return a deleted Recipe, as you saw in
listing 12.9 for the GetRecipes() method.

Listing 12.10 Marking entities as deleted in EF Core

public async Task DeleteRecipe(int recipeId)

{

 var recipe = await _context.Recipes.FindAsync(recipeId); #A

 if(recipe is null) { #B

 throw new Exception("Unable to find the recipe"); #B

 } #B

 recipe.IsDeleted = true; #C

 await _context.SaveChangesAsync(); #D

}

This approach satisfies the requirements—it removes the recipe from
exposure by the API—but it simplifies several things. This soft-delete
approach won’t work for all scenarios, but I’ve found it to be a common
pattern in projects I’ve worked on.

Tip

EF Core has a handy feature called global query filters. These filters allow\
you to specify a Where clause at the model level. You could ensure, for
example, that EF Core never loads Recipes for which IsDeleted is true.
This feature is also useful for segregating data in a multitenant environment.
See the documentation for details: http://mng.bz/EQxd.

We’re almost at the end of this chapter on EF Core. We’ve covered the basics
of adding EF Core to your project and using it to simplify data access, but
you’ll likely need to learn more about EF Core as your apps become more
complex. In the final section of this chapter, I’d like to pinpoint a few things
you need to take into consideration before using EF Core in your own

applications so that you’ll be familiar with some of the problems you’ll face
as your apps grow.

12.5 Using EF Core in production applications

This book is about ASP.NET Core, not EF Core, so I didn’t want to spend
too much time exploring EF Core. This chapter should’ve given you enough
information to get up and running, but you definitely need to learn more
before you even think about putting EF Core into production. As I’ve said
several times, I recommend reading Entity Framework Core in Action, 2nd
ed., by Jon P. Smith (Manning, 2021), or exploring the EF Core
documentation site at https://docs.microsoft.com/ef/core.

The following topics aren’t essential for getting started with EF Core, but
you’ll quickly run up against them if you build a production-ready app. This
section isn’t a prescriptive guide to tackling each of these items, but more a
set of things to consider before you dive into production:

Scaffolding of columns—EF Core uses conservative values for things
like string columns by allowing strings of large or unlimited length. In
practice, you may want to restrict these and other data types to sensible
values.
Validation—You can decorate your entities with DataAnnotations
validation attributes, but EF Core won’t validate the values
automatically before saving to the database. This behavior differs from
EF 6.x behavior, in which validation was automatic.
Handling concurrency—EF Core provides a few ways to handle
concurrency, which occurs when multiple users attempt to update an
entity at the same time. One partial solution is to use Timestamp
columns on your entities.
Handling errors—Databases and networks are inherently flaky, so
you’ll always have to account for transient errors. EF Core includes
various features to maintain connection resiliency by retrying on
network failures.
Synchronous vs. asynchronous—EF Core provides both synchronous
and asynchronous commands for interacting with the database. Often,
async is better for web apps, but this argument has nuances that make it

impossible to recommend one approach over the other in all situations.

EF Core is a great tool for being productive in writing data-access code, but
some aspects of working with a database are unavoidably awkward. Database
management is one of the thorniest problems to tackle. Most web
applications use some sort of database, so the following problems are likely
to affect ASP.NET Core developers at some point:

Automatic migrations—If you deploy your app to production
automatically as part of some sort of DevOps pipeline, you’ll inevitably
need some way to apply migrations to a database automatically. You can
tackle this situation in several ways, such as scripting the .NET tool,
applying migrations in your app’s startup code, using EF Core bundles,
or using a custom tool. Each approach has its pros and cons.
Multiple web hosts—One specific consideration is whether you have
multiple web servers hosting your app, all pointing to the same database.
If so, applying migrations in your app’s startup code becomes harder, as
you must ensure that only one app can migrate the database at a time.
Making backward-compatible schema changes—A corollary of the
multiple-web-host approach is that you’ll often be in a situation in which
your app accesses a database that has a newer schema than the app
thinks. Normally, you should endeavor to make schema changes
backward-compatible wherever possible.
Storing migrations in a different assembly—In this chapter I included all
my logic in a single project, but in larger apps, data access is often in a
different project from the web app. For apps with this structure, you
must use slightly different commands when using .NET CLI or
PowerShell cmdlets.
Seeding data—When you first create a database, you often want it to
have some initial seed data, such as a default user. EF 6.x had a
mechanism for seeding data built in, whereas EF Core requires you to
seed your database explicitly yourself.

How you choose to handle each of these problems depends on the
infrastructure and the deployment approach you take with your app. None is
particularly fun to tackle, but all are unfortunate necessities. Take heart,
though; all these problems can be solved one way or another!

That brings us to the end of this chapter on EF Core and part 2 of the book. In
part 3 we move away from minimal APIs to look at building server-rendered
page-based applications with Razor Pages.

12.6 Summary

EF Core is an ORM that lets you interact with a database by
manipulating standard POCO classes called entities in your application,
reducing the amount of SQL and database knowledge you need to be
productive.
EF Core maps entity classes to tables, properties on the entity to
columns in the tables, and instances of entity objects to rows in these
tables. Even if you use EF Core to avoid working with a database
directly, you need to keep this mapping in mind.
EF Core uses a database-provider model that lets you change the
underlying database without changing any of your object manipulation
code. EF Core has database providers for Microsoft SQL Server,
SQLite, PostgreSQL, MySQL, and many others.
EF Core is cross-platform and has good performance for an ORM, but it
has a different feature set from EF 6.x. Nevertheless, EF Core is
recommended for all new applications after EF 6.x.
EF Core stores an internal representation of the entities in your
application and how they map to the database, based on the DbSet<T>
properties on your application’s DbContext. EF Core builds a model
based on the entity classes themselves and any other entities they
reference.
You add EF Core to your app by adding a NuGet database provider
package. You should also install the design packages for EF Core, which
works in conjunction with the .NET tools to generate and apply
migrations to a database.
EF Core includes many conventions for how entities are defined, such as
primary keys and foreign keys. You can customize how entities are
defined declaratively, by using DataAnnotations, or by using a fluent
API.
Your application uses a DbContext to interact with EF Core and the
database. You register it with a DI container using AddDbContext<T>,
defining the database provider and providing a connection string. This

approach makes your DbContext available in the DI container
throughout your app.
EF Core uses migrations to track changes to your entity definitions.
They’re used to ensure that your entity definitions, EF Core’s internal
model, and the database schema match.
After changing an entity, you can create a migration using either the
.NET tool or Visual Studio PowerShell cmdlets. To create a new
migration with the .NET command-line interface, run dotnet ef
migrations add NAME in your project folder, where NAME is the name you
want to give the migration. This command compares your current
DbContext snapshot with the previous version and generates the
necessary SQL statements to update your database.
You can apply the migration to the database by using dotnet ef
database update. This command creates the database if it doesn’t
already exist and applies any outstanding migrations.
EF Core doesn’t interact with the database when it creates migrations—
only when you update the database explicitly—so you can still create
migrations when you’re offline.
You can add entities to an EF Core database by creating a new entity, e,
calling _context.Add(e) on an instance of your application’s data
context, _context, and calling _context.SaveChangesAsync(). This
technique generates the necessary SQL INSERT statements to add the
new rows to the database.
You can load records from a database by using the DbSet<T> properties
on your app’s DbContext. These properties expose the IQueryable
interface so you can use LINQ statements to filter and transform the data
in the database before it’s returned.
Updating an entity consists of three steps: reading the entity from the
database, modifying the entity, and saving the changes to the database.
EF Core keeps track of which properties have changed so that it can
optimize the SQL it generates.
You can delete entities in EF Core by using the Remove method, but you
should consider carefully whether you need this function. Often. a soft
delete using an IsDeleted flag on entities is safer and easier to
implement.
This chapter covers only a subset of the problems you must consider
when using EF Core in your applications. Before using it in a production

app, you should consider (among other things) the data types generated
for fields, validation, handling concurrency, the seeding of initial data,
handling migrations on a running application, and handling migrations
in a web-farm scenario.

Part 3 Generating HTML with
Razor Pages and MVC
In parts 1 and 2 we looked in detail at how to create JSON API applications
using minimal APIs. You learned how to configure your app from multiple
sources, how to use dependency injection to reduce coupling in your app, and
how to document your APIs with OpenAPI.

API apps are everywhere these days. Mobile apps use them; clients-side
Single Page Applications (SPAs) like Angular, React, or Blazor use them;
even other apps use them for server-to-server communication. But in many
cases, you don’t need separate server-side and client-side apps. Instead, you
could create a server-rendered app.

With server-rendering, your application generates the HTML on the server
and the browser displays this directly in the browser; no extra client-side
framework required. You can still add dynamic client-side behavior using
JavaScript, but fundamentally each page in your app is a standalone request
and response, which gives a simpler developer experience.

In part 3, you’ll learn about the Razor Pages and MVC frameworks used by
ASP.NET Core to create server-rendered apps. In chapters 13 through 16
we’ll examine the behavior of the Razor Pages framework itself, routing, and
model binding. In chapters 17 and 18 we’ll look at how you can build the UI
for your application using the Razor syntax and Tag Helpers, so that users
can navigate and interact with your app.

In chapter 19 you’ll learn how to use the MVC framework directly, instead of
Razor Pages. You’ll learn how to use MVC controllers to build server-
rendered apps and when to choose MVC controllers instead of Razor Pages.
In chapter 20 you’ll learn to how to use MVC controllers to build API
applications, as an alternative to minimal APIs. Finally, in chapters 21 and 22
you’ll learn how to refactor your apps to extract common code out of your
Razor Pages and API controllers using filters.

13 Creating a website with Razor
Pages
This chapter covers

Getting started with Razor Pages
Introducing Razor Pages and the Model-View-Controller (MVC) design
pattern
Using Razor Pages in ASP.NET Core

So far in this book you’ve built one type of ASP.NET Core application:
minimal API apps that return JavaScript Object Notation (JSON). In this
chapter you’ll learn how to build server-rendered, page-based applications
using Razor Pages. Most ASP.NET Core apps fall into one of three
categories:

An API designed for consumption by another machine or in code—Web
apps often serve as an API to backend server processes, to a mobile app,
or to a client framework for building single-page applications (SPAs). In
this case your application serves data in machine-readable formats such
as JSON or Extensible Markup Language (XML) instead of the human-
focused HTML output.
An HTML web application designed for direct use by users—If the
application is consumed directly by users, as in a traditional web
application, Razor Pages is responsible for generating the web pages that
the user interacts with. It handles requests for URLs, receives data
posted via forms, and generates the HTML that enables users to view
and navigate your app.
Both an HTML web application and an API—It’s also possible to have
applications that serve both needs, which can let you cater to a wider
range of clients while sharing logic in your application.

In this chapter you’ll learn how ASP.NET Core uses Razor Pages to handle
the second of these options: creating server-side rendered HTML pages.

We’ll get started quickly, using a template to create a simple Razor Pages
application and comparing the features of a Razor Pages app with the
minimal API apps you’ve seen so far. In section 13.2 we look at a more
complex example of a Razor Page.

Next, we take a step back in section 13.3 to look at the MVC design pattern. I
discuss some of the benefits of using this pattern, and you’ll learn why it’s
been adopted by so many web frameworks as a model for building
maintainable applications.

In section 13.4 you’ll learn how the MVC design pattern applies to ASP.NET
Core. The MVC pattern is a broad concept that can be applied in a variety of
situations, but the use case in ASP.NET Core is specifically as a UI
abstraction. You’ll see how Razor Pages implements the MVC design pattern
and builds on top of the ASP.NET Core MVC framework.

In this chapter I’ll try to prepare you for each of the upcoming topics, but you
may find that some of the behavior feels a bit like magic at this stage. Try not
to become too concerned about exactly how all the Razor Pages pieces tie
together yet; focus on the specific concepts being addressed and how they tie
into concepts you’ve already met. We’ll start by creating a Razor Pages app
to explore.

13.1 Your first Razor Pages application

In this section you’ll get started with Razor Pages by creating a new
application from a template. After you’ve created the app and had a look
around, we’ll look at some of the similarities and differences compared with
a minimal API application. You’ll learn about the extra middleware added in
the default template, look at how HTML is generated by Razor Pages, and
take a look at the Razor Page equivalent of minimal API endpoint handlers:
page handlers.

13.1.1 Using the Web Application template

Using a template is a quick way to get an application running, so we’ll take
that approach using the ASP.NET Core Web App template. To create a Razor

Pages application in Visual Studio, perform the following steps:

1. Choose Create a New Project from the splash screen or choose File >
New > Project from the main Visual Studio screen.

2. From the list of templates, choose ASP.NET Core Web App, ensuring
you select the C# language template.

3. On the next screen, enter a project name, location, and solution name,
and click Next. You might use WebApplication1 as both the project and
solution name, for example.

4. On the following screen (figure 13.1), do the following:
Select .NET 7.0. If this option isn’t available, ensure that you have
.NET 7 installed. See appendix A for details on configuring your
environment.
Ensure that Configure for HTTPS is checked.
Ensure that Enable Docker is unchecked.
Ensure that Do not use top-level statements is unchecked.
Choose Create.

Figure 13.1 The additional information screen. This screen follows the Configure Your New
Project dialog box and lets you customize the template that generates your application.

If you’re not using Visual Studio, you can create a similar template using the
.NET command-line interface (CLI). Create a folder to hold your new
project. Open a PowerShell or cmd prompt in the folder (on Windows) or a
terminal session (on Linux or macOS), and run the commands in the
following listing.

Listing 13.1 Creating a new Razor Page application with the .NET CLI

dotnet new sln -n WebApplication1 #A

dotnet new razor -o WebApplication1 #B

dotnet sln add WebApplication1 #C

Whether you use Visual Studio or the .NET CLI, now you can build and run
your application. Press F5 to run your app using Visual Studio, or use dotnet
run in the project folder. This command opens the appropriate URL in a web
browser and displays the basic Welcome page, shown in figure 13.2.

Figure 13.2 The output of your new Razor Pages application. The template chooses a random
port to use for your application’s URL, which is opened automatically in the browser when you
run the app.

By default, this page shows a simple Welcome banner and a link to the
official Microsoft documentation for ASP.NET Core. At the top of the page
are two links: Home and Privacy. The Home link is the page you’re currently
on. Clicking Privacy takes you to a new page, shown in figure 13.3. As you’ll
see in section 13.1.3, you can use Razor Pages in your application to define
these two pages and build the HTML they display.

Figure 13.3 The Privacy page of your application. You can navigate between the two pages of the
application using the Home and Privacy links in the application’s header. The app generates the
content of the pages using Razor Pages.

At this point, you should notice a couple of things:

The header containing the links and the application title,
WebApplication1, is the same on both pages.
The title of the page, as shown in the tab of the browser, changes to
match the current page. You’ll see how to achieve these features in
chapter 17, when we discuss the rendering of HTML using Razor
templates.

There isn’t any more to the user experience of the application at this stage.
Click around a little, and when you’re happy with the behavior of the
application, return to your editor, and look at the files included in the
template.

This Razor Pages app has much the same structure as the minimal API

applications you’ve created throughout this book, as shown in figure 13.4.
The overall structure is identical apart from two extra folders you haven’t
seen before:

Pages folder—This folder contains the Razor Pages files that define the
various pages in your web app, including the Home and Privacy pages
you’ve already seen.
wwwroot folder—This folder is special in that it’s the only folder in
your application that browsers are allowed to access directly when
browsing your web app. You can store your Cascading Style Sheets
(CSS), JavaScript, images, or static HTML files here, and the static file
middleware will serve them to browsers when requested. The template
creates subfolders inside wwwroot, but you don’t have to use them; you
can structure your static files however you want inside wwwroot.

Figure 13.4 Comparing the project structure of a minimal API app with a Razor Pages app. The
Razor Pages app contains all the same files and folders, as well as the Pages folder for the Razor
Page definitions and the wwwroot file for static files that are served directly to the browser.

Aside from these extra files, the only other difference between a Razor Pages
app and a minimal API app is the Program.cs file. In section 13.1.2 you’ll see
that the Razor Pages app uses the same basic structure in Program.cs but adds
the extra services and middleware used in a typical Razor Pages app.

13.1.2 Adding and configuring services

One of the nice things about working with ASP.NET Core applications is that
the setup code is quite similar even for completely different application
models. No matter whether you’re creating a Razor Pages application or
using minimal APIs, your Program.cs contains the same six steps:

1. Create a WebApplicationBuilder instance.
2. Register the required services with the WebApplicationBuilder.
3. Call Build on the builder instance to create a WebApplication instance.
4. Add middleware to the WebApplication to create a pipeline.
5. Map the endpoints in your application.
6. Call Run() on the WebApplication to start the server and handle

requests.

The following listing shows the Program.cs file for the Razor Pages app. This
file uses a lot more middleware than you’ve seen previously, but the overall
structure should be familiar.

Listing 13.2 The Program.cs file for a Razor Pages app

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); #A

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment()) #B

{ #B

 app.UseExceptionHandler("/Error"); #B

 app.UseHsts()

} #B

app.UseHttpsRedirection(); #C

app.UseStaticFiles(); #C

app.UseRouting(); #C

app.UseAuthorization(); #C

app.MapRazorPages(); #D

app.Run();

In chapter 4 you learned about middleware and the importance of ordering
when adding middleware to the pipeline. This example adds six pieces of
middleware to the pipeline, two of which are added only when not running in
development:

ExceptionHandlerMiddleware—You learned about this middleware in
chapters 4 and 5. This middleware catches exceptions thrown by
middleware later in the pipeline and generates a friendly error page.
HstsMiddleware—This middleware sets security headers in your
response, in line with industry best practices. See chapter 28 for details
about it and other security-related middleware.
HttpsRedirectionMiddleware—This middleware ensures that your
application responds only to secure (HTTPS) requests and is an industry
best practice. We’ll look at HTTPS in chapter 28.
StaticFileMiddleware—As you saw in chapter 4, this middleware
serves requests for static files (such as .css and .js files) from the
wwwroot folder in your app.
RoutingMiddleware—The routing middleware is responsible for
selecting the endpoint for an incoming request. WebApplication adds it
by default, but as discussed in chapter 4, adding it explicitly ensures that
it runs after the StaticFileMiddleware.
AuthorizationMiddleware—This middleware controls whether an
endpoint is allowed to run based on the user making the request, but
requires you also to configure authentication for your application. You’ll
learn more about authentication in chapter 23 and authorization in
chapter 24.

In addition to the middleware added explicitly, WebApplication
automatically adds some extra middleware (as discussed in chapter 4), such
as the EndpointMiddleware, which is automatically added to the end of the
middleware pipeline. As with minimal APIs, the RoutingMiddleware selects
which endpoint handler to execute, and the EndpointMiddleware executes
the handler to generate a response.

Together, this pair of middleware is responsible for interpreting the request to
determine which Razor Page to invoke, for reading parameters from the
request, and for generating the final HTML. Little configuration is required;
you need only add the middleware to the pipeline and specify that you want
to use Razor Page endpoints by calling MapRazorPages. For each request, the
routing middleware uses the request’s URL to determine which Razor Page
to invoke. Then the endpoint middleware executes the Razor Page to generate
the HTML response.

When the application is configured, it can start handling requests. But how
does it handle them? In section 13.1.3 you’ll get a glimpse at Razor Pages
and how they generate HTML.

13.1.3 Generating HTML with Razor Pages

When an ASP.NET Core application receives a request, it progresses through
the middleware pipeline until a middleware component handles it. Normally,
the routing middleware matches a request URL’s path to a configured route,
which defines which Razor Page to invoke, and the endpoint middleware
invokes it.

Razor Pages are stored in .cshtml files (a portmanteau of .cs and .html) within
the Pages folder of your project. In general, the routing middleware maps
request URL paths to a single Razor Page by looking in the Pages folder of
your project for a Razor Page with the same path. If you look back at figure
13.3, for example, you see that the Privacy page of your app corresponds to
the path /Privacy in the browser’s address bar. If you look inside the Pages
folder of your project, you’ll find the Privacy.cshtml file, shown in the
following listing.

Listing 13.3 The Privacy.cshtml Razor Page

@page #A

@model PrivacyModel #B

@{

 ViewData["Title"] = "Privacy Policy"; #C

}

<h1>@ViewData["Title"]</h1> #D

<p>Use this page to detail your site's privacy policy.</p> #E

Razor Pages use a templating syntax called Razor that combines static HTML
with dynamic C# code and HTML generation. The @page directive on the
first line of the Razor Page is the most important. This directive must always
be placed on the first line of the file, as it tells ASP.NET Core that the .cshtml
file is a Razor Page. Without it, you won’t be able to view your page
correctly.

The next line of the Razor Page defines which PageModel in your project the
Razor Page is associated with:

@model PrivacyModel

In this case the PageModel is called PrivacyModel, and it follows the standard
convention for naming Razor Page models. You can find this class in the
Privacy.cshtml.cs file in the Pages folder of your project, as shown in figure
13.5. Visual Studio nests these files underneath the Razor Page .cshtml files
in Solution Explorer. We’ll look at the page model in section 13.1.4.

Figure 13.5 By convention, page models for Razor Pages are placed in a file with the same name
as the Razor Page, with a .cs suffix appended. Visual Studio nests these files below the Razor
Page in Solution Explorer.

In addition to the @page and @model directives, static HTML is always valid
in a Razor Page and will be rendered as is in the response:

<p>Use this page to detail your site’s privacy policy.</p>

You can also write ordinary C# code in Razor templates by using this
construct:

@{ /* C# code here */ }

Any code between the curly braces will be executed but won’t be written to
the response. In the listing, you’re setting the title of the page by writing a
key to the ViewData dictionary, but you aren’t writing anything to the
response at this point:

@{

 ViewData["Title"] = "Privacy Policy";

}

Another feature shown in this template is that you can dynamically write C#
variables and expressions to the HTML stream using the @ symbol. This
ability to combine dynamic and static markup is what gives Razor Pages their
power. In the example, you’re fetching the "Title" value from the ViewData
dictionary and writing the values to the response inside an <h1> tag:

<h1>@ViewData["Title"]</h1>

At this point, you might be a little confused by the template in listing 13.3
when it’s compared with the output shown in figure 13.3. The title and the
static HTML content appear in both the listing and figure, but some parts of
the final web page don’t appear in the template. How can that be?

Razor Pages have the concept of layouts, which are base templates that define
the common elements of your application, such as headers and footers. The
HTML of the layout combines with the Razor Page template to produce the
final HTML that’s sent to the browser. Layouts prevent you from having to
duplicate code for the header and footer in every page, and mean that if you
need to tweak something, you’ll need to do it in only one place.

Note

I cover Razor templates, including layouts, in detail in chapter 17. You can
find layouts in the Pages/Shared folder of your project.

As you’ve already seen, you can include C# code in your Razor Pages by
using curly braces @{ }, but generally speaking, you’ll want to limit the code
in your .cshtml file to presentational concerns only. Complex logic, code to
access services such as a database, and data manipulation should be handled
in the PageModel instead.

13.1.4 Handling request logic with page models and handlers

As you’ve already seen, the @page directive in a .cshtml file marks the page
as a Razor Page, but most Razor Pages also have an associated page model.

By convention, this page model is placed in a file commonly known as a
code-behind file that has a .cs extension, as you saw in figure 13.5. Page
models should derive from the PageModel base class, and they typically
contain one or more methods called page handlers that define how to handle
requests to the Razor Page.

Definition

A page handler is the Razor Pages equivalent of a minimal API endpoint
handler; it’s a method that runs in response to a request. Razor Page models
must be derived from the PageModel class. They can contain multiple page
handlers, though typically they contain only one or two.

The following listing shows the page model for the Privacy.cshtml Razor
Page, located in the file Privacy.cshtml.cs.

Listing 13.4 The PrivacyModel in Privacy.cshtml.cs: A Razor Page page model

public class PrivacyModel: PageModel #A

{

 private readonly ILogger<PrivacyModel> _logger; #B

 public PrivacyModel(ILogger<PrivacyModel> logger) #B

 { #B

 _logger = logger; #B

 } #B

 public void OnGet() #C

 {

 }

}

This page model is extremely simple, but it demonstrates a couple of
important points:

Page handlers are driven by convention.
Page models can use dependency injection (DI) to interact with other
services.

Page handlers are typically named by convention, based on the HTTP verb
they respond to. They return either void, indicating that the Razor Page’s

template should be rendered, or an IActionResult that contains other
instructions for generating the response, such as redirecting the user to a
different page.

The PrivacyModel contains a single handler, OnGet, which indicates that it
should run in response to GET requests for the page. As the method returns
void, executing the handler executes the associated Razor template for the
page to generate the HTML.

Note

Razor Pages are focused on building page-based apps, so you typically want
to return HTML rather than JSON or XML. You can also use an
IActionResult to return any sort of data, to redirect users to a new page, or
to send an error. You’ll learn more about IActionResults in chapter 15.

DI is used to inject an ILogger<PrivacyModel> instance into the constructor
of the page model the same way you would inject a service into a minimal
API endpoint handler. The service is unused in this example, but you’ll learn
all about ILogger in chapter 26.

Clearly, the PrivacyModel page model doesn’t do much in this case, and you
may be wondering why it’s worth having. If all page models do is tell the
Razor Page to generate HTML, why do we need them at all?

The key thing to remember here is that now you have a framework for
performing arbitrarily complex functions in response to a request. You could
easily update the handler method to load data from the database, send an
email, add a product to a basket, or create an invoice—all in response to a
simple HTTP request. This extensibility is where a lot of the power in Razor
Pages (and the MVC pattern in general) lies.

The other important point is that you’ve separated the execution of these
methods from the generation of the HTML. If the logic changes, and you
need to add behavior to a page handler, you don’t need to touch the HTML
generation code, so you’re less likely to introduce bugs. Conversely, if you
need to change the UI slightly (change the color of the title, for example),
your handler method logic is safe.

And there you have it—a complete ASP.NET Core Razor Pages application!
Before we move on, let’s take one last look at how your application handles a
request. Figure 13.6 shows a request to the /Privacy path being handled by
the sample application. You’ve seen everything here already, so the process
of handling a request should be familiar. The figure shows how the request
passes through the middleware pipeline before being handled by the endpoint
middleware. The Privacy.cshtml Razor Page executes the OnGet handler and
generates the HTML response, which passes back through the middleware to
the ASP.NET Core web server before being sent to the user’s browser.

Figure 13.6 An overview of a request to the /Privacy URL for the sample ASP.NET Razor Pages
application. The routing middleware routes the request to the OnGet handler of the
Privacy.cshtml.cs Razor Page. The Razor Page generates an HTML response by executing the
Razor template in Privacy.cshtml and passes the response back through the middleware pipeline
to the browser.

We’ve reached the end of this section working through the template, so you
have a good overview of how an entire Razor Pages application is configured
and how it handles a request using Razor Pages. In section 13.2 we take the
basic Razor Pages in the default template a bit further, looking at a more
complex example.

13.2 Exploring a typical Razor Page

The Razor Pages programming model was introduced in ASP.NET Core 2.0
as a way to build server-side rendered page-based websites. It builds on top
of the ASP.NET Core infrastructure to provide a streamlined experience,
using conventions where possible to reduce the amount of boilerplate code
and configuration required. In this section we’ll look at a more complex page
model to better understand the overall design of Razor Pages.

In listing 13.4 you saw a simple Razor Page that didn’t contain any logic;
instead, it only rendered the associated Razor view. This pattern may be
common if you’re building a content-heavy marketing website, for example,
but more commonly your Razor Pages will contain some logic, load data
from a database, or use forms to allow users to submit information.

To give you more of a flavor of how typical Razor Pages work, in this section
we look briefly at a slightly more complex Razor Page. This page is taken
from a to-do list application and is used to display all the to-do items for a
given category. We’re not focusing on the HTML generation at this point, so
the following listing shows only the PageModel code-behind file for the
Razor Page.

Listing 13.5 A Razor Page for viewing all to-do items in a given category

public class CategoryModel : PageModel

{

 private readonly ToDoService _service; #A

 public CategoryModel(ToDoService service) #A

 {

 _service = service;

 }

 public ActionResult OnGet(string category) #B

 {

 Items = _service.GetItemsForCategory(category); #C

 return Page(); #D

 }

 public List<ToDoListModel> Items { get; set; } #E

}

This example is still relatively simple, but it demonstrates a variety of
features compared with the basic example from listing 13.4:

The page handler, OnGet, accepts a method parameter, category. This
parameter is automatically populated using values from the incoming
request via model binding, similar to the way binding works with
minimal APIs. I discuss Razor Pages model binding in detail in chapter
16.
The handler doesn’t interact with the database directly. Instead, it uses
the category value provided to interact with the ToDoService, which is
injected as a constructor argument using DI.
The handler returns Page() at the end of the method to indicate that the
associated Razor view should be rendered. The return statement is
optional in this case; by convention, if the page handler is a void
method, the Razor view will still be rendered, behaving as though you
called return Page() at the end of the method.
The Razor View has access to the CategoryModel instance, so it can
access the Items property that’s set by the handler. It uses these items to
build the HTML that is ultimately sent to the user.

The pattern of interactions in the Razor Page of listing 13.5 shows a common
pattern. The page handler is the central controller for the Razor Page. It
receives an input from the user (the category method parameter); calls out to
the “brains” of the application (the ToDoService); and passes data (by
exposing the Items property) to the Razor view, which generates the HTML
response. If you squint, this pattern looks like the MVC design pattern.

Depending on your background in software development, you may have
come across the MVC pattern in some form. In web development, MVC is a
common paradigm, used in frameworks such as Django, Rails, and Spring

MVC. But as it’s such a broad concept, you can find MVC in everything
from mobile apps to rich-client desktop applications. I hope that indicates the
benefits of the pattern when it’s used correctly! In section 13.3 we’ll look at
the MVC pattern in general and how ASP.NET Core uses it.

13.3 Understanding the MVC design pattern

The MVC design pattern is a common pattern for designing apps that have
UIs. The MVC pattern has many interpretations, each of which focuses on a
slightly different aspect of the pattern. The original MVC design pattern was
specified with rich-client graphical user interface (GUI) apps in mind, rather
than web applications, so it uses terminology and paradigms associated with
a GUI environment. Fundamentally, though, the pattern aims to separate the
management and manipulation of data from its visual representation.

Before I dive too far into the design pattern itself, let’s consider a typical
Razor Pages request. Imagine that a user requests the Razor Page from listing
13.5 that displays a to-do list category. Figure 13.7 shows how a Razor Page
handles different aspects of a request, all of which combine to generate the
final response.

Figure 13.7 Requesting a to-do list page for a Razor Pages application. A different component
handles each aspect of the request.

In general, three components make up the MVC design pattern:

Model—The data that needs to be displayed—the global state of the
application. It’s accessed via the ToDoService in listing 13.5.
View—The template that displays the data provided by the model.
Controller—Updates the model and provides the data for display to the
view. This role is taken by the page handler in Razor Pages—the OnGet
method in listing 13.5.

Each component of the MVC design pattern is responsible for a single aspect
of the overall system, which, when combined, generates a UI. The to-do list
example considers MVC in terms of a web application using Razor Pages,
but a generalized request could be equivalent to the click of a button in a
desktop GUI application.

In general, the order of events when an application responds to a user
interaction or request is as follows:

1. The controller (the Razor Page handler) receives the request.
2. Depending on the request, the controller either fetches the requested data

from the application model using injected services or updates the data
that makes up the model.

3. The controller selects a view to display and passes a representation of
the model (the view model) to it.

4. The view uses the data contained in the model to generate the UI.

When we describe MVC in this format, the controller (the Razor Page
handler) serves as the entry point for the interaction. The user communicates
with the controller to instigate an interaction. In web applications, this
interaction takes the form of an HTTP request, so when a request to a URL is
received, the controller handles it.

Depending on the nature of the request, the controller may take a variety of
actions, but the key point is that the actions are undertaken using the
application model. The model here contains all the business logic for the
application, so it’s able to provide requested data or perform actions.

Note

In this description of MVC, the model is considered to be a complex beast,
containing all the logic for how to perform an action, as well as any internal
state. The Razor Page PageModel class is not the model we’re talking about!
Unfortunately, as in all software development, naming things is hard.

Consider a request to view a product page for an e-commerce application.
The controller would receive the request and know how to contact some
product service that’s part of the application model. This service might fetch
the details of the requested product from a database and return them to the
controller.

Alternatively, imagine that a controller receives a request to add a product to
the user’s shopping cart. The controller would receive the request and most
likely would invoke a method on the model to request that the product be
added. Then the model would update its internal representation of the user’s
cart, by adding (for example) a new row to a database table holding the user’s
data.

Tip

You can think of each Razor Page handler as being a mini controller focused
on a single page. Every web request is another independent call to a
controller that orchestrates the response. Although there are many controllers,
all the handlers interact with the same application model.

After the model has been updated, the controller needs to decide what
response to generate. One of the advantages of using the MVC design pattern
is that the model representing the application’s data is decoupled from the
final representation of that data, called the view. The controller is responsible
for deciding whether the response should generate an HTML view, whether it
should send the user to a new page, or whether it should return an error page.

One of the advantages of the model’s being independent of the view is that it
improves testability. UI code is classically hard to test, as it’s dependent on
the environment; anyone who has written UI tests simulating a user clicking
buttons and typing in forms knows that it’s typically fragile. By keeping the

model independent of the view, you can ensure that the model stays easily
testable, without any dependencies on UI constructs. As the model often
contains your application’s business logic, this is clearly a good thing!

The view can use the data passed to it by the controller to generate the
appropriate HTML response. The view is responsible only for generating the
final representation of the data; it’s not involved in any of the business logic.

This is all there is to the MVC design pattern in relation to web applications.
Much of the confusion related to MVC seems to stem from slightly different
uses of the term for slightly different frameworks and types of applications.
In section 13.4 I’ll show how the ASP.NET Core framework uses the MVC
pattern with Razor Pages, along with more examples of the pattern in action.

13.4 Applying the MVC design pattern to Razor
Pages

In section 13.3 I discussed the MVC pattern as it’s typically used in web
applications; Razor Pages use this pattern. But ASP.NET Core also includes a
framework called ASP.NET Core MVC. This framework (unsurprisingly)
closely mirrors the MVC design pattern, using controllers containing action
methods in place of Razor Pages and page handlers. Razor Pages builds
directly on top of the underlying ASP.NET Core MVC framework, using the
MVC framework under the hood for their behavior.

If you prefer, you can avoid Razor Pages and work with the MVC framework
directly in ASP.NET Core. This option was the only one in early versions of
ASP.NET Core and the previous version of ASP.NET.

Tip

I look in greater depth at choosing between Razor Pages and the MVC
framework in chapter 19.

In this section we look in greater depth at how the MVC design pattern
applies to Razor Pages in ASP.NET Core. This section will also help clarify
the role of various features of Razor Pages.

Do Razor Pages use MVC or MVVM?

Occasionally, I’ve seen people describe Razor Pages as using the Model-
View-View Model (MVVM) design pattern rather than the MVC design
pattern. don’t agree, but it’s worth being aware of the differences.

MVVM is a UI pattern that is often used in mobile apps, desktop apps, and
some client-side frameworks. It differs from MVC in that there is a
bidirectional interaction between the view and the view model. The view
model tells the view what to display, but the view can also trigger changes
directly on the view model. It’s often used with two-way data binding where
a view model is bound to a view.

Some people consider the Razor Pages PageModel to be filling this role, but
I’m not convinced. Razor Pages definitely seems based on the MVC pattern
to me (it’s based on the ASP.NET Core MVC framework after all!), and it
doesn’t have the same two-way binding that I would expect with MVVM.

As you’ve seen in previous chapters, ASP.NET Core implements Razor Page
endpoints using a combination of RoutingMiddleware and
EndpointMiddleware, as shown in figure 13.8. When a request has been
processed by earlier middleware (and assuming that none has handled the
request and short-circuited the pipeline), the routing middleware selects
which Razor Page handler should be executed, and the endpoint middleware
executes the page handler.

Figure 13.8 The middleware pipeline for a typical ASP.NET Core application. The request is
processed by middleware in sequence. If the request reaches the routing middleware, the
middleware selects an endpoint, such as a Razor Page, to execute. The endpoint middleware
executes the selected endpoint.

As you’ve seen in earlier chapters, middleware often handles cross-cutting
concerns or narrowly defined requests, such as requests for files. For
requirements that fall outside these functions or that have many external
dependencies, a more robust framework is required. Razor Pages (and/or
ASP.NET Core MVC) can provide this framework, allowing interaction with
your application’s core business logic and the generation of a UI. It handles
everything from mapping the request to an appropriate page handler (or
controller action method) to generating the HTML response.

In the traditional description of the MVC design pattern, there’s only a single
type of model, which holds all the non-UI data and behavior. The controller
updates this model as appropriate and then passes it to the view, which uses it
to generate a UI.

One of the problems when discussing MVC is the vague and ambiguous
terms that it uses, such as controller and model. Model in particular is such an
overloaded term that it’s often difficult to be sure exactly what it refers to; is
it an object, a collection of objects, or an abstract concept? Even ASP.NET
Core uses the word model to describe several related but different
components, as you’ll see later in this chapter.

13.4.1 Directing a request to a Razor Page and building a
binding model

The first step when your app receives a request is routing the request to an
appropriate Razor Page handler in the routing middleware. Let’s think again
about the category to-do list page in listing 13.5. On that page, you’re
displaying a list of items that have a given category label. If you’re looking at
the list of items with a category of Simple, you’d make a request to the
/category/Simple path.

Routing maps a request URL, /category/Simple, against the route patterns
registered with your application. You’ve seen how this process works for
minimal APIs, and it’s the same for Razor Pages; each route template
corresponds to a Razor Page endpoint. You’ll learn more about routing with
Razor Pages in chapter 14.

Tip

I’m using the term Razor Page to refer to the combination of the Razor view
and the PageModel that includes the page handler. Note that that PageModel
class is not the model we’re referring to when describing the MVC pattern. It
fulfills other roles, as you’ll see later in this section.

When a page handler is selected in the routing middleware, the request
continues down the middleware pipeline until it reaches the endpoint
middleware, where the Razor Page executes.

First, the binding model (if applicable) is generated. This model is built from
the incoming request, based on the properties of the PageModel marked for
binding and the method parameters required by the page handler, as shown in
figure 13.9. A binding model is normally one or more standard C# objects
and works similarly to the way it works in minimal APIs, as you saw in
chapter 6. We’ll look at Razor Page binding models in detail in chapter 16.

Figure 13.9 Routing a request to a Razor Page and building a binding model. A request to the
/category/Simple URL results in the execution of the CategoryModel.OnGet page handler, passing
in a populated binding model, category.

Definition

A binding model is one or more objects that act as a container for the data
provided in a request—data that’s required by a page handler.

In this case, the binding model is a simple string, category, that’s bound to
the "Simple" value. This value is provided in the request URL’s path. A
more complex binding model could have been used, with multiple properties
populated with values from the route template, the query string, and the
request body.

Note

The binding model for Razor Pages is conceptually equivalent to all the
parameters you pass in to a minimal API endpoint that are populated from the
request.

The binding model in this case corresponds to the method parameter of the
OnGet page handler. An instance of the Razor Page is created using its
constructor, and the binding model is passed to the page handler when it
executes, so it can be used to decide how to respond. For this example, the
page handler uses it to decide which to-do items to display on the page.

13.4.2 Executing a handler using the application model

The role of the page handler as the controller in the MVC pattern is to
coordinate the generation of a response to the request it’s handling. That
means it should perform only a limited number of actions. In particular, it
should

Validate that the data contained in the binding model is valid for the
request.
Invoke the appropriate actions on the application model using services.
Select an appropriate response to generate based on the response from
the application model.

Figure 13.10 shows the page handler invoking an appropriate method on the

application model. Here, you can see that the application model is a
somewhat-abstract concept that encapsulates the remaining non-UI parts of
your application. It contains the domain model, several services, and the
database interaction.

Figure 13.10 When executed, an action invokes the appropriate methods in the application model.

Definition

The domain model encapsulates complex business logic in a series of classes
that don’t depend on any infrastructure and are easy to test.

The page handler typically calls into a single point in the application model.
In our example of viewing a to-do list category, the application model might
use a variety of services to check whether the current user is allowed to view
certain items, to search for items in the given category, to load the details
from the database, or to load a picture associated with an item from a file.
Assuming that the request is valid, the application model returns the required
details to the page handler. Then it’s up to the page handler to choose a
response to generate.

13.4.3 Building HTML using the view model

When the page handler has called out to the application model that contains
the application business logic, it’s time to generate a response. A view model
captures the details necessary for the view to generate a response.

Definition

A view model in the MVC pattern is all the data required by the view to
render a UI. It’s typically some transformation of the data contained in the
application model, plus extra information required to render the page, such as
the page’s title.

The term view model is used extensively in ASP.NET Core MVC, where it
typically refers to a single object that is passed to the Razor view to render.
With Razor Pages, however, the Razor view can access the Razor Page’s
page model class directly. Therefore, the Razor Page PageModel typically
acts as the view model in Razor Pages, with the data required by the Razor
view exposed via properties, as you saw in listing 13.5.

Note

Razor Pages use the PageModel class itself as the view model for the Razor
view by exposing the required data as properties.

The Razor view uses the data exposed in the page model to generate the final
HTML response. Finally, this data is sent back through the middleware
pipeline and out to the user’s browser, as shown in figure 13.11.

Figure 13.11 The page handler builds a view model by setting properties on the PageModel. It’s
the view that generates the response.

It’s important to note that although the page handler selects whether to
execute the view and the data to use, it doesn’t control what HTML is
generated. The view itself decides what the content of the response will be.

13.4.4 Putting it all together: A complete Razor Page request

Now that you’ve seen the steps that go into handling a request in ASP.NET
Core using Razor Pages, let’s put them together from request to response.
Figure 13.12 shows how the steps combine to handle the request to display
the list of to-do items for the Simple category. The traditional MVC pattern is
still visible in Razor Pages, made up of the page handler (controller), the
view, and the application model.

Figure 13.12 A complete Razor Pages request for the list of to-dos in the Simple category

By now, you may be thinking this whole process seems rather convoluted. So
many steps to display some HTML! Why not allow the application model to
create the view directly, rather than have to go on a dance back and forth with
the page handler method? The key benefit throughout this process is the
separation of concerns:

The view is responsible only for taking some data and generating
HTML.
The application model is responsible only for executing the required
business logic.
The page handler (controller) is responsible only for validating the
incoming request and selecting which response is required, based on the
output of the application model.

By having clearly defined boundaries, it’s easier to update and test each of
the components without depending on any of the others. If your UI logic
changes, you won’t necessarily have to modify any of your business logic
classes, so you’re less likely to introduce errors in unexpected places.

The dangers of tight coupling

It’s generally a good idea to reduce coupling between logically separate parts
of your application as much as possible. This makes it easier to update your
application without causing adverse effects or requiring modifications in
seemingly unrelated areas. Applying the MVC pattern is one way to help
with this goal.

As an example of when coupling rears its head, I remember a case a few
years ago when I was working on a small web app. In our haste, we hadn’t
decoupled our business logic from our HTML generation code properly, but
initially there were no obvious problems. The code worked, so we shipped it!

A few months later, someone new started working on the app and
immediately “helped” by renaming an innocuous spelling error in a class in
the business layer. Unfortunately, the names of those classes had been used to
generate our HTML code, so renaming the class caused the whole website to
break in users’ browsers! Suffice it to say that we made a concerted effort to

apply the MVC pattern thereafter and ensure that we had a proper separation
of concerns.

The examples shown in this chapter demonstrate the bulk of the Razor Pages
functionality. It has additional features, such as the filter pipeline, which I
cover in chapters 21 and 22, and I discuss binding models in greater depth in
chapter 16, but the overall behavior of the system is the same.

Similarly, in chapter 19 I look at MVC controllers and explain why I don’t
recommend them over Razor Pages for server-rendered applications. By
contrast, in chapter 20 I discuss how you can use the MVC design pattern
when you’re generating machine-readable responses using Web API
controllers. The process is for all intents and purposes identical to the MVC
pattern you’ve already seen.

I hope that by this point, you’re sold on Razor Pages and their overall design
using the MVC pattern. The page handler methods on a Razor Page are
invoked in response to a request and select the type of response to generate
by returning an IActionResult.

An aspect I’ve touched on only vaguely is how the RoutingMiddleware
decides which Razor Page and handler to invoke for a given request. You
don’t want to have a Razor Page for every URL in an app. It would be
difficult to have, for example, a different page per product in an e-shop; every
product would need its own Razor Page! In chapter 14 you’ll see how to
define routes for your Razor Pages, how to add constraints to your routes, and
how they deconstruct URLs to match a single handler.

13.5 Summary

Razor Pages are located in the Pages folder of a project and by default
are named according to the URL path they handle. Privacy.cshtml, for
example, handles the path /Privacy. This convention makes it easy to
quickly add new pages.
Razor Pages must contain the @page directive as the first line of the
.cshtml file. Without this directive, ASP.NET Core won’t recognize it as
a Razor Page, and it won’t appear as an endpoint in your app.

Page models derive from the PageModel base class and contain page
handlers. Page handlers are methods named using conventions that
indicate the HTTP verb they handle. OnGet, for example, handles the
GET verb. Page handlers are equivalent to minimal API endpoint
handlers; they run in response to a given request.
Razor templates can contain standalone C#, standalone HTML, and
dynamic HTML generated from C# values. By combining all three, you
can build highly dynamic applications.
The MVC design pattern allows for a separation of concerns between
the business logic of your application, the data that’s passed around, and
the display of data in a response. This reduces coupling between the
different layers of your application.
Razor Pages should inherit from the PageModel base class and contain
page handlers. The routing middleware selects a page handler based on
the incoming request’s URL, the HTTP verb, and the request’s query
string.
Page handlers generally should delegate to services to handle the
business logic required by a request instead of performing the changes
themselves. This ensures a clean separation of concerns that aids testing
and improves application structure.

14 Mapping URLs to Razor Pages
using routing
This chapter covers

Routing requests to Razor Pages
Customizing Razor Page route templates
Generating URLs for Razor Pages

In chapter 13 you learned about the Model-View-Controller (MVC) design
pattern and how ASP.NET Core uses it to generate the UI for an application
using Razor Pages. Razor Pages contain page handlers that act as mini
controllers for a request. The page handler calls the application model to
retrieve or save data. Then the handler passes data from the application model
to the Razor view, which generates an HTML response.

Although not part of the MVC design pattern per se, one crucial part of Razor
Pages is selecting which Razor Page to invoke in response to a given request.
Razor Pages use the same routing system as minimal APIs (introduced in
chapter 6); this chapter focuses on how routing works with Razor Pages.

I start this chapter with a brief reminder about how routing works in
ASP.NET Core. I’ll touch on the two pieces of middleware that are crucial to
endpoint routing in .NET 7 and the approach Razor Pages uses of mixing
conventions with explicit route templates.

In section 14.3 we look at the default routing behavior of Razor Pages, and in
section 14.4 you’ll learn how to customize the behavior by adding or
changing route templates. Razor Pages have access to the same route
template features that you learned about in chapter 6, and in section 14.4
you’ll learn how to them.

In section 14.5 I describe how to use the routing system to generate URLs for
Razor Pages. Razor Pages provide some helper methods to simplify URL

generation compared with minimal APIs, so I compare the two approaches
and discuss the benefits of each.

Finally, in section 14.6 I describe how to customize the conventions Razor
Pages uses, giving you complete control of the URLs in your application.
You’ll see how to change the built-in conventions, such as using lowercase
for your URLs, as well as how to write your own convention and apply it
globally to your application.

By the end of this chapter you should have a much clearer understanding of
how an ASP.NET Core application works. You can think of routing as the
glue that ties the middleware pipeline to Razor Pages and the MVC
framework. With middleware, Razor Pages, and routing under your belt,
you’ll be writing web apps in no time!

14.1 Routing in ASP.NET Core

In chapter 6 we looked in detail at routing and some of the benefits it brings,
such as the ability to have multiple URLs pointing to the same endpoint and
extracting segments from the URL. You also learned how it’s implemented in
ASP.NET Core apps, using two pieces of middleware:

EndpointMiddleware—You use this middleware to register the
endpoints in the routing system when you start your application. The
middleware executes one of the endpoints at runtime.
RoutingMiddleware—This middleware chooses which of the endpoints
registered by the EndpointMiddleware should execute for a given
request at runtime.

The EndpointMiddleware is where you register all the endpoints in your app,
including minimal APIs, Razor Pages, and MVC controllers. It’s easy to
register all the Razor Pages in your application using the MapRazorPages()
extension method, as shown in the following listing.

Listing 14.1 Registering Razor Pages in Startup.Configure

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages(); #A

var app = builder.Build();

app.UseStaticFiles();

app.UseRouting(); #B

app.UseAuthorization();

app.MapRazorPages(); #C

app.Run();

Each endpoint, whether it’s a Razor Page or a minimal API, has an associated
route template that defines which URLs the endpoint should match. The
EndpointMiddleware stores these route templates and endpoints in a
dictionary, which it shares with the RoutingMiddleware. At runtime the
RoutingMiddleware compares the incoming request with the routes in the
dictionary and selects the matching endpoint. When the request reaches the
EndpointMiddleware, the middleware checks to see which endpoint was
selected and executes it, as shown in figure 14.1.

Figure 14.1 Endpoint routing uses a two-step process. The RoutingMiddleware selects which
endpoint to execute, and the EndpointMiddleware executes it. If the request URL doesn’t match a
route template, the endpoint middleware will not generate a response.

As discussed in chapter 6, the advantage of having two separate pieces of
middleware to handle this process is that any middleware placed after the
RoutingMiddleware can see which endpoint is going to be executed before it
is. You’ll see this benefit in action when we look at authorization in chapter
24.

Routing in ASP.NET Core uses the same infrastructure and middleware
whether you’re building minimal APIs, Razor Pages, or MVC controllers, but
there are some differences in how you define the mapping between your

route templates and your handlers in each case. In section 14.2 you’ll learn
the different approaches each paradigm takes.

14.2 Convention-based routing vs. explicit routing

Routing is a key part of ASP.NET Core, as it maps the incoming request’s
URL to a specific endpoint to execute. You have two ways to define these
URL-endpoint mappings in your application:

Using global, convention-based routing
Using explicit routing, where each endpoint is mapped with a single
route template

Which approach you use typically depends on whether you’re using minimal
APIs, Razor Pages, or MVC controllers and whether you’re building an API
or a website (using HTML). These days I lean heavily toward explicit
routing, as you’ll see.

Convention-based routing is defined globally for your application. You can
use convention-based routes to map endpoints (MVC controller actions
specifically) to URLs, but those MVC controllers must adhere strictly to the
conventions you define. Traditionally, applications using MVC controllers to
generate HTML tend to use this approach to routing. The downside of this
approach is that customizing URLs for a subset of controllers and actions is
tricky.

Alternatively, you can use explicit routing to tie a given URL to a specific
endpoint. You’ve seen this approach with minimal APIs, where each
endpoint is directly associated with a route template. You can also use
explicit routing with MVC controllers by placing [Route] attributes on the
action methods themselves, hence explicit-routing is also often called
attribute-routing.

Explicit routing provides more flexibility than convention-based based
routing, as you can explicitly define the route template for every action
method. Explicit routing is generally more verbose than the convention-based
approach, as it requires applying attributes to every action method in your

application. Despite this, the extra flexibility can be useful, especially when
building APIs.

Somewhat confusingly, Razor Pages use conventions to generate explicit
routes! In many ways this combination gives you the best of both worlds: the
predictability and terseness of convention-based routing with the easy
customization of explicit routing. There are tradeoffs to each of the
approaches, as shown in table 14.1.

Table 14.1 The advantages and disadvantages of the routing styles available in ASP.NET Core

Routing
style Typical use Advantages Disadvantages

Convention-
based routes

HTML-
generating
MVC
controllers

Terse definition in one
location in your
application.

Forces a consistent
layout of MVC
controllers.

Routes are defined in a
different place from
your controllers.

Overriding the route
conventions can be
tricky and error-prone.

Adds an extra layer of
indirection when
routing a request.

Explicit
routes

Minimal
API
endpoints

Web API
MVC

Gives complete control
of route templates for
every endpoint.

Routes are defined next
to the endpoint they

Verbose compared with
convention-based
routing.

Can be easy to
overcustomize route
templates.

Route templates may be

controllers execute. scattered throughout
your application rather
than defined in one
location.

Convention-
based
generation
of explicit
routes

Razor
Pages

Encourages consistent
set of exposed URLs.

Terse when you stick to
the conventions.

Easily override the route
template for a single
page.

Customize conventions
globally to change
exposed URLs.

Possible to
overcustomize route
templates.

You must calculate
what the route template
for a page is, rather than
its being explicitly
defined in your app.

So which approach should you use? I believe that convention-based routing is
not worth the effort in 99 percent of cases and that you should stick to
explicit routing. If you’re following my advice to use Razor Pages for server-
rendered applications, you’re already using explicit routing under the covers.
Also, if you’re creating APIs using minimal APIs or MVC controllers,
explicit routing is the best option and the recommended approach.

The only scenario where convention-based routing is used traditionally is if
you’re using MVC controllers to generate HTML. But if you’re following my
advice from chapter 13, you’ll be using Razor Pages for HTML-generating
applications and falling back to MVC controllers only when necessary, as I
discuss in more detail in chapter 19. For consistency, I would often stick with
explicit routing with attributes in that scenario too.

Note

For the reasons above, this book focuses on explicit/attribute routing. For

details on convention-based routing, see Microsoft’s “Routing to controller
actions in ASP.NET Core” documentation at http://mng.bz/ZP0O.

You learned about routing and route templates in chapter 6 in the context of
minimal APIs. The good news is that exactly the same patterns and features
are available with Razor Pages. The main difference with minimal APIs is
that Razor Pages use conventions to generate the route template for a page,
though you can easily change the template on a page-by-page basis. In
section 14.3 we look at the default conventions and how routing maps a
request’s URL to a Razor Page in detail.

14.3 Routing requests to Razor Pages

As I mentioned in section 14.2, Razor Pages use explicit routing by creating
route templates based on conventions. ASP.NET Core creates a route
template for every Razor Page in your app during app startup, when you call
MapRazorPages() in Program.cs:

app.endpoints.MapRazorPages();

For every Razor Page in your application, the framework uses the path of the
Razor Page file relative to the Razor Pages root directory (Pages/), excluding
the file extension (.cshtml). If you have a Razor Page located at the path
Pages/Products/View.cshtml, the framework creates a route template with
the value "Products/View", as shown in figure 14.2.

Figure 14.2 By default, route templates are generated for Razor Pages based on the path of the
file relative to the root directory, Pages.

Requests to the URL /products/view match the route template
"Products/View", which in turn corresponds to the View.cshtml Razor Page
in the Pages/Products folder. The RoutingMiddleware selects the
View.cshtml Razor Page as the endpoint for the request, and the
EndpointMiddleware executes the page’s handler when the request reaches it
in the middleware pipeline.

Note

Remember that routing is not case-sensitive, so the request URL will match
even if it has a different URL casing from the route template.

In chapter 13 you learned that Razor Page handlers are the methods that are
invoked on a Razor Page, such as OnGet. When we say “a Razor Page is
executed,” we really mean “an instance of the Razor Page’s PageModel is

created, and a page handler on the model is invoked.” Razor Pages can have
multiple page handlers, so once the RoutingMiddleware selects a Razor Page,
the EndpointMiddleware still needs to choose which handler to execute.
You’ll learn how the framework selects which page handler to invoke in
chapter 15.

By default, each Razor Page creates a single route template based on its file
path. The exception to this rule is for Razor Pages that are called
Index.cshtml. Index.cshtml pages create two route templates, one ending with
"Index" and the other without this suffix. If you have a Razor Page at the
path Pages/ToDo/Index.cshtml, you have two route templates that point to
the same page:

"ToDo"

"ToDo/Index"

When either of these routes is matched, the same Index.cshtml Razor Page is
selected. If your application is running at the URL https://example.org, you
can view the page by executing https://example.org/ToDo or
https://example.org/ToDo/Index.

Warning

You must watch out for overlapping routes when using Index.cshtml pages.
For example, if you add the Pages/ToDo/Index.cshtml page in the above
example you must not add a Pages/ToDo.cshtml page, as you’ll get an
exception at runtime when you navigate to /todo, as you’ll see in section
14.6.

As a final example, consider the Razor Pages created by default when you
create a Razor Pages application by using Visual Studio or running dotnet
new razor using the .NET command-line interface (CLI), as we did in
chapter 13. The standard template includes three Razor Pages in the Pages
directory:

Pages/Error.cshtml

Pages/Index.cshtml

Pages/Privacy.cshtml

That creates a collection of four routes for the application, defined by the
following templates:

"" maps to Index.cshtml.
"Index" maps to Index.cshtml.
"Error" maps to Error.cshtml.
"Privacy" maps to Privacy.cshtml.

At this point, Razor Page routing probably feels laughably trivial, but this is
the basics that you get for free with the default Razor Pages conventions,
which are often sufficient for a large portion of any website. At some point,
though, you’ll find you need something more dynamic, such as using route
parameters to include an ID in the URL. This is where the ability to
customize your Razor Page route templates becomes useful.

14.4 Customizing Razor Page route templates

The route templates for a Razor Page are based on the file path by default, but
you’re also able to customize the final template for each page or even replace
it. In this section I show how to customize the route templates for individual
pages so you can customize your application’s URLs and map multiple URLs
to a single Razor Page.

You may remember from chapter 6 that route templates consist of both literal
segments and route parameters, as shown in figure 14.3. By default, Razor
Pages have URLs consisting of a series of literal segments, such as
"ToDo/Index".

Figure 14.3 A simple route template showing a literal segment and two required route
parameters

Literal segments and route parameters are the two cornerstones of ASP.NET
Core route templates, but how can you customize a Razor Page to use one of
these patterns? In section 14.4.1 you’ll see how to add a segment to the end
of a Razor Page’s route template, and in section 14.4.2 you’ll see how to
replace the route template completely.

14.4.1 Adding a segment to a Razor Page route template

To customize the Razor Page route template, you update the @page directive
at the top of the Razor Page’s .cshtml file. This directive must be the first
thing in the Razor Page file for the page to be registered correctly.

To add an extra segment to a Razor Page’s route template, add a space
followed by the extra route template segment, after the @page statement. To
add "Extra" to a Razor Page’s route template, for example, use

@page "Extra"

This appends the provided route template to the default template generated
for the Razor Page. The default route template for the Razor Page at
Pages/Privacy.html, for example, is "Privacy". With the preceding
directive, the new route template for the page would be "Privacy/Extra".

The most common reason for customizing a Razor Page’s route template like
this is to add a route parameter. You could have a single Razor Page for
displaying the products in an e-commerce site at the path
Pages/Products.cshtml and use a route parameter in the @page directive

@page "{category}/{name}"

This would give a final route template of Products/{category}/{name},
which would match all the following URLs:

/products/bags/white-rucksack

/products/shoes/black-size9

/Products/phones/iPhoneX

Note

You can use the same routing features you learned about in chapter 6 with
Razor Pages, including optional parameters, default parameters, and
constraints.

It’s common to add route segments to the Razor Page template like this, but
what if that’s not enough? Maybe you don’t want to have the /products
segment at the start of the preceding URLs, or you want to use a completely
custom URL for a page. Luckily, that’s just as easy to achieve.

14.4.2 Replacing a Razor Page route template completely

You’ll be most productive working with Razor Pages if you can stick to the
default routing conventions where possible, adding extra segments for route
parameters where necessary. But sometimes you need more control. That’s
often the case for important pages in your application, such as the checkout
page for an e-commerce application or even product pages, as you saw in the
previous section.

To specify a custom route for a Razor Page, prefix the route with / in the
@page directive. To remove the "product/" prefix from the route templates
in section 14.4.1, use this directive:

@page "/{category}/{name}"

Note that this directive includes the "/" at the start of the route, indicating
that this is a custom route template, instead of an addition. The route template
for this page will be "{category}/{name}" no matter which Razor Page it is
applied to.

Similarly, you can create a static custom template for a page by starting the
template with a "/" and using only literal segments:

@page "/checkout"

Wherever you place your checkout Razor Page within the Pages folder, using
this directive ensures that it always has the route template "checkout", so it
always matches the request URL /checkout.

Tip

You can also think of custom route templates that start with “/” as absolute
route templates, whereas other route templates are relative to their location in
the file hierarchy.

It’s important to note that when you customize the route template for a Razor
Page, both when appending to the default and when replacing it with a
custom route, the default template is no longer valid. If you use the
"checkout" route template above on a Razor Page located at
Pages/Payment.cshtml, you can access it only by using the URL /checkout;
the URL /Payment is no longer valid and won’t execute the Razor Page.

Tip

Customizing the route template for a Razor Page using the @page directive
replaces the default route template for the page. In section 14.6 I show how
you can add extra routes while preserving the default route template.

In this section you learned how to customize the route template for a Razor
Page. For the most part, routing to Razor Pages works like minimal APIs, the
main difference being that the route templates are created using conventions.
When it comes to the other half of routing—generating URLs—Razor Pages
and minimal APIs are also similar, but Razor Pages gives you some nice
helpers.

14.5 Generating URLs for Razor Pages

In this section you’ll learn how to generate URLs for your Razor Pages using
the IUrlHelper that’s part of the Razor Pages PageModel type. You’ll also
learn to use the LinkGenerator service you saw in chapter 6 for generating
URLs with minimal APIs.

One of the benefits of using convention-based routing in Razor Pages is that
your URLs can be somewhat fluid. If you rename a Razor Page, the URL
associated with that page also changes. Renaming the Pages/Cart.cshtml
page to Pages/Basket/View.cshtml, for example, causes the URL you use to
access the page to change from /Cart to /Basket/View.

To track these changes (and to avoid broken links), you can use the routing
infrastructure to generate the URLs that you output in your Razor Page
HTML and that you include in your HTTP responses. In chapter 6 you saw
how to generate URLs for your minimal API endpoints, and in this section,
you’ll see how to do the same for your Razor Pages. I also describe how to
generate URLs for MVC controllers, as the mechanism is virtually identical
to that used by Razor Pages.

14.5.1 Generating URLs for a Razor Page

You’ll need to generate URLs in various places in your application, and one
common location is in your Razor Pages and MVC controllers. The following
listing shows how you could generate a link to the
Pages/Currency/View.cshtml Razor Page, using the Url helper from the
PageModel base class.

Listing 14.2 Generating a URL using IUrlHelper and the Razor Page name

public class IndexModel : PageModel #A

{

 public void OnGet()

 {

 var url = Url.Page("Currency/View", new { code = "USD" }); #B

 }

}

The Url property is an instance of IUrlHelper that allows you to easily
generate URLs for your application by referencing other Razor Pages by their

file path.

Note

IUrlHelper is a wrapper around the LinkGenerator class you learned about
in chapter 6. IUrlHelper adds some shortcuts for generating URLs based on
the current request.

IUrlHelper exposes a Page() method to which you pass the name of the
Razor Page and any additional route data as an anonymous object. Then the
helper generates a URL based on the referenced page’s route template.

Tip

You can provide the relative file path to the Razor Page, as shown in listing
14.2. Alternatively, you can provide the absolute file path (relative to the
Pages folder) by starting the path with a "/", such as "/Currency/View".

IUrlHelper has several different overloads of the Page() method. Some of
these methods allow you to specify a specific page handler, others let you
generate an absolute URL instead of a relative URL, and some let you pass in
additional route values.

In listing 14.2, as well as providing the file path I passed in an anonymous
object, new { code = "USD" }. This object provides additional route values
when generating the URL, in this case setting the code parameter to "USD", as
you did when generating URLs for minimal APIs with LinkGenerator in
chapter 6. As before, the code value is used in the URL directly if it
corresponds to a route parameter. Otherwise, it’s appended as additional data
in the query string.

Generating URLs based on the page you want to execute is convenient, and
it’s the usual approach taken in most cases. If you’re using MVC controllers
for your APIs, the process is much the same as for Razor Pages, though the
methods are slightly different.

14.5.2 Generating URLs for an MVC controller

Generating URLs for MVC controllers is similar to Razor Pages. The main
difference is that you use the Action method on the IUrlHelper, and you
provide an MVC controller name and action name instead of a page path.

Note

I’ve covered MVC controllers only in passing, as I generally don’t
recommend them over Razor Pages or minimal APIs, so don’t worry too
much about them. We’ll come back to MVC controllers in chapters 19 and
20; the main reason for mentioning them here is to point out how similar
MVC controllers are to Razor Pages.

The following listing shows an MVC controller generating a link from one
action method to another, using the Url helper from the Controller base
class.

Listing 14.3 Generating a URL using IUrlHelper and the action name

public class CurrencyController : Controller #A

{

 [HttpGet("currency/index")] #B

 public IActionResult Index()

 {

 var url = Url.Action("View", "Currency", #C

 new { code = "USD" }); #C

 return Content($"The URL is {url}"); #D

 }

 [HttpGet("currency/view/{code}")]

 public IActionResult View(string code) #E

 {

 /* method implementation*/

 }

}

You can call the Action and Page methods on IUrlHelper from both Razor
Pages and MVC controllers, so you can generate links back and forth
between them if you need to. The important question is, what is the
destination of the URL? If the URL you need refers to a Razor Page, use the
Page() method. If the destination is an MVC action, use the Action()
method.

Tip

Instead of using strings for the name of the action method, use the C# 6
nameof operator to make the value refactor-safe, such as nameof(View).

If you’re routing to an action in the same controller, you can use a different
overload of Action() that omits the controller name when generating the
URL. The IUrlHelper uses ambient values from the current request and
overrides them with any specific values you provide.

Definition

Ambient values are the route values for the current request. They include
Controller and Action when called from an MVC controller and Page when
called from a Razor Page. Ambient values can also include additional route
values that were set when the action or Razor Page was initially located using
routing. See Microsoft’s “Routing in ASP.NET Core” documentation for
further details: http://mng.bz/OxoE.

IUrlHelper can make it simpler to generate URLs by reusing ambient values
from the current request, though it also adds a layer of complexity, as the
same method arguments can give a different generated URL depending on
the page the method is called from.

If you need to generate URLs from parts of your application outside the
Razor Page or MVC infrastructure, you won’t be able to use the IUrlHelper
helper. Instead, you can use the LinkGenerator class.

14.5.3 Generating URLs with LinkGenerator

In chapter 6 I described how to generate links to minimal API endpoints
using the LinkGenerator class. By contrast with IUrlHelper,
LinkGenerator requires that you always provide sufficient arguments to
uniquely define the URL to generate. This makes it more verbose but also
more consistent and has the advantage that it can be used anywhere in your
application. This differs from IUrlHelper, which should be used only inside
the context of a request.

If you’re writing your Razor Pages and MVC controllers following the advice
from chapter 13, you should be trying to keep your Razor Pages relatively
simple. That requires you to execute your application’s business and domain
logic in separate classes and services.

For the most part, the URLs your application uses shouldn’t be part of your
domain logic. That makes it easier for your application to evolve over time or
even to change completely. You may want to create a mobile application that
reuses the business logic from an ASP.NET Core app, for example. In that
case, using URLs in the business logic wouldn’t make sense, as they
wouldn’t be correct when the logic is called from the mobile app!

Tip

Where possible, try to keep knowledge of the frontend application design out
of your business logic. This pattern is known generally as the Dependency
Inversion principle.

Unfortunately, sometimes that separation is not possible, or it makes things
significantly more complicated. One example might be when you’re creating
emails in a background service; it’s likely you’ll need to include a link to
your application in the email. The LinkGenerator class lets you generate that
URL so that it updates automatically if the routes in your application change.

As you saw in chapter 6, the LinkGenerator class is available everywhere in
your application, so you can use it inside middleware, minimal API
endpoints, or any other services. You can use it from Razor Pages and MVC
too, if you want, though the IUrlHelper is often more convenient and hides
some details of using the LinkGenerator.

You’ve already seen how to generate links to minimal API endpoints with
LinkGenerator using methods like GetPathByName() and GetUriByName().
LinkGenerator has various analogous methods for generating URLs for
Razor Pages and MVC actions, such as GetPathByPage(),
GetPathByAction(), and GetUriByPage(), as shown in the following listing.

Listing 14.4 Generating URLs using the LinkGeneratorClass

public class CurrencyModel : PageModel

{

 private readonly LinkGenerator _link; #A

 public CurrencyModel(LinkGenerator linkGenerator) #A

 { #A

 _link = linkGenerator; #A

 } #A

 public void OnGet ()

 {

 var url1 = Url.Page("Currency/View", new { id = 5 }); #B

 var url3 = _link.GetPathByPage(#C

 HttpContext, #C

 "/Currency/View", #C

 values: new { id = 5 }); #C

 var url2 = _link.GetPathByPage(#D

 "/Currency/View", #D

 values: new { id = 5 }); #D

 var url4 = _link.GetUriByPage(#E

 page: "/Currency/View", #E

 handler: null, #E

 values: new { id = 5 }, #E

 scheme: "https", #E

 host: new HostString("example.com")); #E

 }

}

Warning

As always, you need to be careful when generating URLs, whether you’re
using IUrlHelper or LinkGenerator. If you get anything wrong—use the
wrong path or don’t provide a required route parameter—the URL generated
will be null.

At this point we’ve covered mapping request URLs to Razor Pages and
generating URLs, but most of the URLs we’ve used have been kind of ugly.
If seeing capital letters in your URLs bothers you, the next section is for you.
In section 14.6 we customize the conventions your application uses to
calculate route templates.

14.6 Customizing conventions with Razor Pages

Razor Pages is built on a series of conventions that are designed to reduce the
amount of boilerplate code you need to write. In this section you’ll see some
of the ways you can customize those conventions. By customizing the
conventions Razor Pages uses in your application, you get full control of your
application’s URLs without having to customize every Razor Page’s route
template manually.

By default, ASP.NET Core generates URLs that match the filenames of your
Razor Pages very closely. The Razor Page located at the path
Pages/Products/ProductDetails.cshtml, for example, corresponds to the route
template Products/ProductDetails.

These days, it’s not common to see capital letters in URLs. Similarly, words
in URLs are usually separated using kebab-case rather than PascalCase
—product-details instead of ProductDetails. Finally, it’s also common to
ensure that your URLs always end with a slash, for example—/product-

details/ instead of /product-details. Razor Pages gives you complete
control of the conventions your application uses to generate route templates,
but these are some of the common changes I often make.

You saw how to make some of these changes in chapter 6, by customizing
the RouteOptions for your application. You can make your URLs lowercase
and ensure that they already have a trailing slash as shown in the following
listing.

Listing 14.5 Configuring routing conventions using RouteOptions in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.Configure<RouteOptions>(o => #A

{

 o.LowercaseUrls = true; #A

 o.LowercaseQueryStrings = true; #A

 o.AppendTrailingSlash = true; #A

});

WebApplication app = builder.Build();

app.MapRazorPages();

app.Run();

To use kebab-case for your application, annoyingly you must create a custom
parameter transformer. This is a somewhat advanced topic, but it’s relatively
simple to implement in this case. The following listing shows how you can
create a parameter transformer that uses a regular expression to replace
PascalCase values in a generated URL with kebab-case.

Listing 14.6 Creating a kebab-case parameter transformer

public class KebabCaseParameterTransformer #A

 : IOutboundParameterTransformer #A

{

 public string TransformOutbound(object? value)

 {

 if (value is null) return null; #B

 return Regex.Replace(value.ToString(), #C

 "([a-z])([A-Z])", "$1-$2").ToLower(); #C

 }

}

Source generators in .NET 7

One of the exciting features introduced in C# 9 was source generators. Source
generators are a compiler feature that let you inspect code as it’s compiled
and generate new C# files on the fly, which are included in the compilation.
Source generators have the potential to dramatically reduce the boilerplate
required for some features and to improve performance by relying on
compile-time analysis instead of runtime reflection.

.NET 6 introduced several source generator implementations, such as a high-
performance logging API, which I discuss in this post: http://mng.bz/Y1GA.
Even the Razor compiler used to compile .cshtml files was rewritten to use
source generators!

In .NET 7, many new source generators were added. One such generator is
the regular-expression generator, which can improve performance of your
Regex instances, such as the one in listing 14.6. In fact, if you’re using an
IDE like Visual Studio, you should see a code fix suggesting that you use the

new pattern. After you apply the code fix, listing 14.6 should look like the
following instead, which is functionally identical but will likely be faster:

partial class KebabCaseParameterTransformer : IOutboundParameterTransformer

{

 public string? TransformOutbound(object? value)

 {

 if (value is null) return null;

 return MyRegex().Replace(value.ToString(), "$1-$2").ToLower();

 }

 [GeneratedRegex("([a-z])([A-Z])")]

 private static partial Regex MyRegex();

}

If you’d like to know more about how this source generator works and how it
can improve performance, see this post at http://mng.bz/GyEO. If you’d like
to learn more about source generators or even write your own, see my series
on the process at http://mng.bz/zX4Q.

You can register the parameter transformer in your application with the
AddRazorPagesOptions() extension method in Program.cs. This method is
chained after the AddRazorPages() method and can be used to customize the
conventions used by Razor Pages. The following listing shows how to
register the kebab-case transformer. It also shows how to add an extra page
route convention for a given Razor Page.

Listing 14.7 Registering a parameter transformer using RazorPagesOptions

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages()

 .AddRazorPagesOptions(opts => #A

 {

 opts.Conventions.Add(#B

 new PageRouteTransformerConvention(#B

 new KebabCaseParameterTransformer())); #B

 opts.Conventions.AddPageRoute(#C

 "/Search/Products/StartSearch", "/search-products"); #C

 });

WebApplication app = builder.Build();

app.MapRazorPages();

app.Run();

The AddPageRoute() convention adds an alternative way to execute a single
Razor Page. Unlike when you customize the route template for a Razor Page
using the @page directive, using AddPageRoute() adds an extra route template
to the page instead of replacing the default. That means there are two route
templates that can access the page.

Tip

Even the name of the Pages root folder is a convention that you can
customize! You can customize it by setting the RootDirectory property
inside the AddRazorPageOptions() configuration lambda.

If you want even more control of your Razor Pages route templates, you can
implement a custom convention by implementing the
IPageRouteModelConvention interface and registering it as a custom
convention. IPageRouteModelConvention is one of three powerful Razor
Pages interfaces which let you customize how your Razor Pages app works:

IPageRouteModelConvention—Used to customize the route templates
for all the Razor Pages in your app.
IPageApplicationModelConvention—Used to customize how the
Razor Page is processed, such as to add filters to your Razor Page
automatically. You’ll learn about filters in Razor Pages in chapters 21
and 22.
IPageHandlerModelConvention—Used to customize how page handlers
are discovered and selected.

These interfaces are powerful, as they give you access to all the internals of
your Razor Page conventions and configuration. You can use the
IPageRouteModelConvention, for example, to rewrite all the route templates
for your Razor Pages or to add routes automatically. This is particularly
useful if you need to localize an application so that you can use URLs in
multiple languages, all of which map to the same Razor Page.

Listing 14.8 shows a simple example of an IPageRouteModelConvention that
adds a fixed prefix, "page", to all the routes in your application. If you have a
Razor Page at Pages/Privacy.cshtml, with a default route template of
"Privacy", after adding the following convention it would also have the
route template "page/Privacy”.

Listing 14.8 Creating a custom IPageRouteModelConvention

public class PrefixingPageRouteModelConvention

 : IpageRouteModelConvention #A

{

 public void Apply(PageRouteModel model) #B

 {

 var selectors = model.Selectors

 .Select(selector => new SelectorModel #C

 { #C

 AttributeRouteModel = new AttributeRouteModel #C

 { #C

 Template = AttributeRouteModel.CombineTemplates(#C

 "page", #C

 selector.AttributeRouteModel!.Template), #C

 } #C

 }) #C

 .ToList();

 foreach(var newSelector in selectors) #D

 {

 model.Selectors.Add(newSelector);

 }

 }

}

You can add the convention to your application inside the call to
AddRazorPagesOptions(). The following applies the contention to all pages:

builder.Services.AddRazorPages().AddRazorPagesOptions(opts =>

{

 opts.Conventions.Add(new PrefixingPageRouteModelConvention());

});

There are many ways you can customize the conventions in your Razor Page
applications, but a lot of the time that’s not necessary. If you do find you
need to customize all the pages in your application in some way, Microsoft’s

“Razor Pages route and app conventions in ASP.NET Core” documentation
contains further details on everything that’s available: http://mng.bz/A0BK.

Conventions are a key feature of Razor Pages, and you should lean on them
whenever you can. Although you can override the route templates for
individual Razor Pages manually, as you’ve seen in previous sections, I
advise against it where possible. In particular,

Avoid replacing the route template with an absolute path in a page’s
@page directive.
Avoid adding literal segments to the @page directive. Rely on the file
hierarchy instead.
Avoid adding additional route templates to a Razor Page with the
AddPageRoute() convention. Having multiple URLs to access a page
can often be confusing.
Do add route parameters to the @page directive to make your routes
dynamic, as in @page “{name}".
Do consider using global conventions when you want to change the
route templates for all your Razor Pages, such as using kebab-case, as
you saw earlier.

In a nutshell, these rules say “Stick to the conventions.” The danger, if you
don’t, is that you may accidentally create two Razor Pages that have
overlapping route templates. Unfortunately, if you end up in that situation,
you won’t get an error at compile time. Instead, you’ll get an exception at
runtime when your application receives a request that matches multiple route
templates, as shown in figure 14.4.

Figure 14.4 If multiple Razor Pages are registered with overlapping route templates, you’ll get an
exception at runtime when the router can’t work out which one to select.

We’ve covered pretty much everything about routing to Razor Pages now.
For the most part, routing to Razor Pages works like minimal APIs, the main

difference being that the route templates are created using conventions. When
it comes to the other half of routing—generating URLs—Razor Pages and
minimal APIs are also similar, but Razor Pages gives you some nice helpers.

Congratulations—you’ve made it all the way through this detailed discussion
on Razor Page routing! I hope you weren’t too fazed by the differences from
minimal API routing. We’ll revisit routing again when I describe how to
create Web APIs in chapter 20, but rest assured that we’ve already covered
all the tricky details in this chapter!

Routing controls how incoming requests are bound to your Razor Page, but
we haven’t seen where page handlers come into it. In chapter 15 you’ll learn
all about page handlers—how they’re selected, how they generate responses,
and how to handle error responses gracefully.

14.7 Summary

Routing is the process of mapping an incoming request URL to an
endpoint that will execute to generate a response. Each Razor Page is an
endpoint, and a single page handler executes for each request.
You can define the mapping between URLs and endpoint in your
application using either convention-based routing or explicit routing.
Minimal APIs use explicit routing, where each endpoint has a
corresponding route template. MVC controllers often use conventional
routing in which a single pattern matches multiple controllers but may
also use explicit/attribute routing. Razor Pages lies in between; it uses
conventions to generate explicit route templates for each page.
By default, each Razor Page has a single route template that matches its
path inside the Pages folder, so the Razor Page
Pages/Products/View.cshtml has route template Products/View. These
file-based defaults make it easy to visualize the URLs your application
exposes.
Index.cshtml Razor Pages have two route templates, one with an /Index
suffix and one without. Pages/Products/Index.cshtml, for example, has
two route templates: Products/Index and Products. This is in keeping
with the common behavior of index.html files in traditional HTML
applications.

You can add segments to a Razor Page’s template by appending it to the
@page directive, as in @page "{id}". Any extra segments are appended
to the Razor Page’s default route template. You can include both literal
and route template segments, which can be used to make your Razor
Pages dynamic. You can replace the route template for a Razor Page by
starting the template with a "/", as in @page "/contact".
You can use IUrlHelper to generate URLs as a string based on an
action name or Razor Page. IUrlHelper can be used only in the context
of a request and uses ambient routing values from the current request.
This makes it easier to generate links for Razor Pages in the same folder
as the currently executing request but also adds inconsistency, as the
same method call generates different URLs depending on where it’s
called.
The LinkGenerator can be used to generate URLs from other services
in your application, where you don’t have access to an HttpContext
object. The LinkGenerator methods are more verbose than the
equivalents on IUrlHelper, but they are unambiguous as they don’t use
ambient values from the current request.
You can control the routing conventions used by ASP.NET Core by
configuring the RouteOptions object, such as to force all URLs to be
lowercase or to always append a trailing slash.
You can add extra routing conventions for Razor Pages by calling
AddRazorPagesOptions() after AddRazorPages() in Program.cs. These
conventions can control how route parameters are displayed and can add
extra route templates for specific Razor Pages.

15 Generating responses with page
handlers in Razor Pages
This chapter covers

Selecting which page handler in a Razor Page to invoke for a request
Returning an IActionResult from a page handler
Handling status code errors with StatusCodePagesMiddleware

In chapter 14 you learned how the routing system selects a Razor Page to
execute based on its associated route template and the request URL, but each
Razor Page can have multiple page handlers. In this chapter you’ll learn all
about page handlers, their responsibilities, and how a single Razor Page
selects which handler to execute for a request.

In section 15.3 we look at some of the ways of retrieving values from an
HTTP request in a page handler. Much like minimal APIs, page handlers can
accept method arguments that are bound to values in the HTTP request, but
Razor Pages can also bind the request to properties on the PageModel.

In section 15.4 you’ll learn how to return IActionResult objects from page
handlers. Then you look at some of the common IActionResult types that
you’ll return from page handlers for generating HTML and redirect
responses.

Finally, in section 15.5 you’ll learn how to use the
StatusCodePagesMiddleware to improve the error status code responses in
your middleware pipeline. This middleware intercepts error responses such as
basic 404 responses and reexecutes the middleware pipeline to generate a
pretty HTML response for the error. This gives users a much nicer experience
when they encounter an error browsing your Razor Pages app.

We’ll start by taking a quick look at the responsibilities of a page handler
before we move on to see how the Razor Page infrastructure selects which

page handler to execute.

15.1 Razor Pages and page handlers

In chapter 13 I described the Model-View-Controller (MVC) design pattern
and showed how it relates to ASP.NET Core. In this design pattern, the
“controller” receives a request and is the entry point for UI generation. For
Razor Pages, the entry point is the page handler that resides in a Razor Page’s
PageModel. A page handler is a method that runs in response to a request.

The responsibility of a page handler is generally threefold:

Confirm that the incoming request is valid.
Invoke the appropriate business logic corresponding to the incoming
request.
Choose the appropriate kind of response to return.

A page handler doesn’t need to perform all these actions, but at the very least
it must choose the kind of response to return. Page handlers typically return
one of three things:

A PageResult object—This causes the associated Razor view to
generate an HTML response.
Nothing (the handler returns void or Task)—This is the same as the
previous case, causing the Razor view to generate an HTML response.
A RedirectToPageResult—This indicates that the user should be
redirected to a different page in your application.

These are the most common results for Razor Pages, but I describe some
additional options in section 15.4.

It’s important to realize that a page handler doesn’t generate a response
directly; it selects the type of response and prepares the data for it. For
example, returning a PageResult doesn’t generate any HTML at that point; it
merely indicates that a view should be rendered. This is in keeping with the
MVC design pattern in which it’s the view that generates the response, not
the controller.

Tip

The page handler is responsible for choosing what sort of response to send;
the view engine in the MVC framework uses the result to generate the
response.

It’s also worth bearing in mind that page handlers generally shouldn’t be
performing business logic directly. Instead, they should call appropriate
services in the application model to handle requests. If a page handler
receives a request to add a product to a user’s cart, it shouldn’t manipulate the
database or recalculate cart totals directly, for example. Instead, it should
make a call to another class to handle the details. This approach of separating
concerns ensures that your code stays testable and maintainable as it grows.

15.2 Selecting a page handler to invoke

In chapter 14 I said routing is about mapping URLs to an endpoint, which for
Razor Pages means a page handler. But I’ve mentioned several times that
Razor Pages can contain multiple page handlers. In this section you’ll learn
how the EndpointMiddleware selects which page handler to invoke when it
executes a Razor Page.

As you saw in chapter 14, the path of a Razor Page on disk controls the
default route template for a Razor Page. For example, the Razor Page at the
path Pages/Products/Search.cshtml has a default route template of
Products/Search. When a request is received with the URL
/products/search, the RoutingMiddleware selects this Razor Page, and the
request passes through the middleware pipeline to the EndpointMiddleware.
At this point, the EndpointMiddleware must choose which page handler to
execute, as shown in figure 15.1.

Figure 15.1 The routing middleware selects the Razor Page to execute based on the incoming
request URL. Then the endpoint middleware selects the endpoint to execute based on the HTTP
verb of the request and the presence (or lack) of a handler route value.

Consider the Razor Page SearchModel shown in listing 15.1. This Razor Page
has three handlers: OnGet, OnPostAsync, and OnPostCustomSearch. The
bodies of the handler methods aren’t shown, as we’re interested only in how
the EndpointMiddleware chooses which handler to invoke.

Listing 15.1 Razor Page with multiple page handlers

public class SearchModel : PageModel

{

 public void OnGet() #A

 {

 // Handler implementation

 }

 public Task OnPostAsync() #B

 {

 // Handler implementation

 }

 public void OnPostCustomSearch() #C

 {

 // Handler implementation

 }

}

Razor Pages can contain any number of page handlers, but only one runs in
response to a given request. When the EndpointMiddleware executes a
selected Razor Page, it selects a page handler to invoke based on two
variables:

The HTTP verb used in the request (such as GET, POST, or DELETE)
The value of the handler route value

The handler route value typically comes from a query string value in the
request URL, such as /Search?handler=CustomSearch. If you don’t like the
look of query strings (I don’t!), you can include the {handler} route
parameter in your Razor Page’s route template. For the Search page model in
listing 15.2, you could update the page’s directive to

@page "{handler?}"

This would give a complete route template something like
"Search/{handler?}", which would match URLs such as /Search and
/Search/CustomSearch.

The EndpointMiddleware uses the handler route value and the HTTP verb
together with a standard naming convention to identify which page handler to
execute, as shown in figure 15.2. The handler parameter is optional and is
typically provided as part of the request’s query string or as a route
parameter, as described earlier. The async suffix is also optional and is often
used when the handler uses asynchronous programming constructs such as
Task or async/await.

Note

The async suffix naming convention is suggested by Microsoft, though it is
unpopular with some developers. NServiceBus provides a reasoned argument
against it here (along with Microsoft’s advice): http://mng.bz/e59P.

Figure 15.2 Razor Page handlers are matched to a request based on the HTTP verb and the
optional handler parameter.

Based on this convention, we can now identify what type of request each
page handler in listing 15.1 corresponds to:

OnGet—Invoked for GET requests that don’t specify a handler value
OnPostAsync—Invoked for POST requests that don’t specify a handler
value; returns a Task, so it uses the Async suffix, which is ignored for
routing purposes
OnPostCustomSearch—Invoked for POST requests that specify a
handler value of "CustomSearch"

The Razor Page in listing 15.1 specifies three handlers, so it can handle only
three verb-handler pairs. But what happens if you get a request that doesn’t
match these, such as a request using the DELETE verb, a GET request with a
nonblank handler value, or a POST request with an unrecognized handler
value?

For all these cases, the EndpointMiddleware executes an implicit page
handler instead. Implicit page handlers contain no logic; they simply render
the Razor view. For example, if you sent a DELETE request to the Razor Page
in listing 15.1, the EndpointMiddleware would execute an implicit handler.
The implicit page handler is equivalent to the following handler code:

public void OnDelete() { }

Definition

If a page handler does not match a request’s HTTP verb and handler value, an
implicit page handler is executed that renders the associated Razor view.
Implicit page handlers take part in model binding and use page filters but
execute no logic.

There’s one exception to the implicit page handler rule: if a request uses the
HEAD verb, and there is no corresponding OnHead handler, the
EndpointMiddleware executes the OnGet handler instead (if it exists).

Note

HEAD requests are typically sent automatically by the browser and don’t return
a response body. They’re often used for security purposes, as you’ll see in
chapter 28.

Now that you know how a page handler is selected, you can think about how
it’s executed.

15.3 Accepting parameters to page handlers

In chapter 7 you learned about the intricacies of model binding in minimal
API endpoint handlers. Like minimal APIs, Razor Page page handlers can
use model binding to easily extract values from the request. You’ll learn the
details of Razor Page model binding in chapter 16; in this section you’ll learn
about the basic mechanics of Razor Page model binding and the basic options
available.

When working with Razor Pages, you’ll often want to extract values from an
incoming request. If the request is for a search page, the request might
contain the search term and the page number in the query string. If the
request is POSTing a form to your application, such as a user logging in with
their username and password, those values may be encoded in the request
body. In other cases, there will be no values, such as when a user requests the
home page for your application.

Definition

The process of extracting values from a request and converting them to .NET
types is called model binding. I discuss model binding for Razor Pages in
detail in chapter 16.

ASP.NET Core can bind two different targets in Razor Pages:

Method arguments—If a page handler has method parameters, the
arguments are bound and created from values in the request.
Properties marked with a [BindProperty] attribute—Any properties on
the PageModel marked with this attribute are bound to the request. By
default, this attribute does nothing for GET requests.

Model-bound values can be simple types, such as strings and integers, or they
can be complex types, as shown in the following listing. If any of the values
provided in the request are not bound to a property or page handler argument,
the additional values will go unused.

Listing 15.2 Example Razor Page handlers

public class SearchModel : PageModel

{

 private readonly SearchService _searchService; #A

 public SearchModel(SearchService searchService) #A

 { #A

 _searchService = searchService; #A

 } #A

 [BindProperty] #B

 public BindingModel Input { get; set; } #B

 public List<Product> Results { get; set; } #C

 public void OnGet() #D

 { #D

 } #D

 public IActionResult OnPost(int max) #E

 {

 if (ModelState.IsValid) #F

 { #F

 Results = _searchService.Search(Input.SearchTerm, max); #F

 return Page(); #F

 } #F

 return RedirectToPage("./Index"); #F

 }

}

In this example, the OnGet handler doesn’t require any parameters, and the
method is simple: it returns void, which means the associated Razor view
will be rendered. It could also have returned a PageResult; the effect would
have been the same. Note that this handler is for HTTP GET requests, so the
Input property decorated with [BindProperty] is not bound.

Tip

To bind properties for GET requests too, use the SupportsGet property of the
attribute, as in [BindProperty(SupportsGet = true)].

The OnPost handler, conversely, accepts a parameter max as an argument. In
this case it’s a simple type, int, but it could also be a complex object.
Additionally, as this handler corresponds to an HTTP POST request, the Input
property is also model-bound to the request.

Note

Unlike most .NET classes, you can’t use method overloading to have
multiple page handlers on a Razor Page with the same name.

When a page handler uses model-bound properties or parameters, it should
always check that the provided model is valid using ModelState.IsValid.
The ModelState property is exposed as a property on the base PageModel
class and can be used to check that all the bound properties and parameters
are valid. You’ll see how the process works in chapter 16 when you learn
about validation.

Once a page handler establishes that the arguments provided to a page
handler method are valid, it can execute the appropriate business logic and
handle the request. In the case of the OnPost handler, this involves calling the
injected SearchService and setting the result on the Results property.
Finally, the handler returns a PageResult by calling the helper method on the

PageModel base class:

return Page();

If the model isn’t valid, as indicated by ModelState.IsValid, you don’t have
any results to display! In this example, the action returns a
RedirectToPageResult using the RedirectToPage() helper method. When
executed, this result sends a 302 Redirect response to the user, which will
cause their browser to navigate to the Index Razor Page.

Note that the OnGet method returns void in the method signature, whereas the
OnPost method returns an IActionResult. This is required in the OnPost
method to allow the C# to compile (as the Page() and RedirectToPage()
helper methods return different types), but it doesn’t change the final
behavior of the methods. You could easily have called Page() in the OnGet
method and returned an IActionResult, and the behavior would be identical.

Tip

If you’re returning more than one type of result from a page handler, you’ll
need to ensure that your method returns an IActionResult.

In listing 15.2 I used Page() and RedirectToPage() methods to generate the
return value. IActionResult instances can be created and returned using the
normal new syntax of C#:

return new PageResult()

However, the Razor Pages PageModel base class also provides several helper
methods for generating responses, which are thin wrappers around the new
syntax. It’s common to use the Page() method to generate an appropriate
PageResult, the RedirectToPage() method to generate a
RedirectToPageResult, or the NotFound() method to generate a
NotFoundResult.

Tip

Most IActionResult implementations have a helper method on the base

PageModel class. They’re typically named Type, and the result generated is
called TypeResult. For example, the StatusCode() method returns a
StatusCodeResult instance.

In the next section we’ll look in more depth at some of the common
IActionResult types.

15.4 Returning IActionResult responses

In the previous section, I emphasized that page handlers decide what type of
response to return, but they don’t generate the response themselves. It’s the
IActionResult returned by a page handler that, when executed by the Razor
Pages infrastructure using the view engine, generates the response.

Warning

Note that the interface type is IActionResult not IResult. IResult is used
in minimal APIs and should generally be avoided in Razor Pages (and MVC
controllers). In .NET 7, IResult types returned from Razor Pages or MVC
controllers execute as expected, but they don’t have all the same features as
IActionResult, so you should favor IActionResult in Razor Pages.

IActionResults are a key part of the MVC design pattern. They separate the
decision of what sort of response to send from the generation of the response.
This allows you to test your action method logic to confirm that the right sort
of response is sent for a given input. You can then separately test that a given
IActionResult generates the expected HTML, for example.

ASP.NET Core has many types of IActionResult, such as

PageResult—Generates an HTML view for the associated page in
Razor Pages and returns a 200 HTTP response.
ViewResult—Generates an HTML view for a given Razor view when
using MVC controllers and returns a 200 HTTP response.
PartialViewResult—Renders part of an HTML page using a given
Razor view and returns a 200 HTTP result; typically used with MVC
controllers and AJAX requests.

RedirectToPageResult—Sends a 302 HTTP redirect response to
automatically send a user to another page.
RedirectResult—Sends a 302 HTTP redirect response to automatically
send a user to a specified URL (doesn’t have to be a Razor Page).
FileResult—Returns a file as the response. This is a base class with
several derived types:

FileContentResult—Returns a byte[] as a file response to the
browser
FileStreamResult—Returns the contents of a Stream as a file
response to the browser
PhysicalFileResult—Returns the contents of a file on disk as a
file response to the browser

ContentResult—Returns a provided string as the response.
StatusCodeResult—Sends a raw HTTP status code as the response,
optionally with associated response body content.
NotFoundResult—Sends a raw 404 HTTP status code as the response.

Each of these, when executed by Razor Pages, generates a response to send
back through the middleware pipeline and out to the user.

Tip

When you’re using Razor Pages, you generally won’t use some of these
action results, such as ContentResult and StatusCodeResult. It’s good to be
aware of them, though, as you will likely use them if you are building Web
APIs with MVC controllers, as you’ll see in chapter 20.

In sections 15.4.1–15.4.3 I give a brief description of the most common
IActionResult types that you’ll use with Razor Pages.

15.4.1 PageResult and RedirectToPageResult

When you’re building a traditional web application with Razor Pages, usually
you’ll be using PageResult, which generates an HTML response from the
Razor Page’s associated Razor view. We’ll look at how this happens in detail
in chapter 17.

You’ll also commonly use the various redirect-based results to send the user
to a new web page. For example, when you place an order on an e-commerce
website, you typically navigate through multiple pages, as shown in figure
15.3. The web application sends HTTP redirects whenever it needs you to
move to a different page, such as when a user submits a form. Your browser
automatically follows the redirect requests, creating a seamless flow through
the checkout process.

Figure 15.3 A typical POST, REDIRECT, GET flow through a website. A user sends their shopping
basket to a checkout page, which validates its contents and redirects to a payment page without
the user’s having to change the URL manually.

In this flow, whenever you return HTML you use a PageResult; when you
redirect to a new page, you use a RedirectToPageResult.

Tip

Razor Pages are generally designed to be stateless, so if you want to persist
data between multiple pages, you need to place it in a database or similar
store. If you want to store data for a single request, you may be able to use
TempData, which stores small amounts of data in cookies for a single request.
See the documentation for details: http://mng.bz/XdXp.

15.4.2 NotFoundResult and StatusCodeResult

As well as sending HTML and redirect responses, you’ll occasionally need to
send specific HTTP status codes. If you request a page for viewing a product
on an e-commerce application, and that product doesn’t exist, a 404 HTTP
status code is returned to the browser, and you’ll typically see a “Not found”
web page. Razor Pages can achieve this behavior by returning a
NotFoundResult, which returns a raw 404 HTTP status code. You could
achieve a similar result using StatusCodeResult and setting the status code
returned explicitly to 404.

Note that NotFoundResult doesn’t generate any HTML; it only generates a
raw 404 status code and returns it through the middleware pipeline. This
generally isn’t a great user experience, as the browser typically displays a
default page, such as that shown in figure 15.4.

Figure 15.4 If you return a raw 404 status code without any HTML, the browser will render a
generic default page instead. The message is of limited utility to users and may leave many of
them confused or thinking that your web application is broken.

Returning raw status codes is fine when you’re building an API, but for a
Razor Pages application, this is rarely good enough. In section 15.5 you’ll
learn how you can intercept this raw 404 status code after it’s been generated
and provide a user-friendly HTML response for it instead.

15.5 Handler status codes with
StatusCodePagesMiddleware

In chapter 4 we discussed error handling middleware, which is designed to
catch exceptions generated anywhere in your middleware pipeline, catch
them, and generate a user-friendly response. In this section you’ll learn about
an analogous piece of middleware that intercepts error HTTP status codes:

StatusCodePagesMiddleware.

Your Razor Pages application can return a wide range of HTTP status codes
that indicate some sort of error state. You’ve seen previously that a 500
“server error” is sent when an exception occurs and isn’t handled and that a
404 “file not found” error is sent when you return a NotFoundResult from a
page handler. 404 errors are particularly common, often occurring when a
user enters an invalid URL.

Tip

404 errors are often used to indicate that a specific requested object was not
found. For example, a request for the details of a product with an ID of 23
might return a 404 if no such product exists. They’re also generated
automatically if no endpoint in your application matches the request URL.

Returning “raw” status codes without additional content is generally OK if
you’re building a minimal API or web API application. But as mentioned
before, for apps consumed directly by users such as Razor Pages apps, this
can result in a poor user experience. If you don’t handle these status codes,
users will see a generic error page, as you saw in figure 15.4, which may
leave many confused users thinking your application is broken. A better
approach is to handle these error codes and return an error page that’s in
keeping with the rest of your application or at least doesn’t make your
application look broken.

Microsoft provides StatusCodePagesMiddleware for handling this use case.
As with all error handling middleware, you should add it early in your
middleware pipeline, as it will handle only errors generated by later
middleware components.

You can use the middleware several ways in your application. The simplest
approach is to add the middleware to your pipeline without any additional
configuration, using

app.UseStatusCodePages();

With this method, the middleware intercepts any response that has an HTTP

status code that starts with 4xx or 5xx and has no response body. For the
simplest case, where you don’t provide any additional configuration, the
middleware adds a plain-text response body, indicating the type and name of
the response, as shown in figure 15.5. This is arguably worse than the default
message at this point, but it is a starting point for providing a more consistent
experience to users.

Figure 15.5 Status code error page for a 404 error. You generally won’t use this version of the
middleware in production, as it doesn’t provide a great user experience, but it demonstrates that
the error codes are being intercepted correctly.

A more typical approach to using StatusCodePagesMiddleware in
production is to reexecute the pipeline when an error is captured, using a
similar technique to the ExceptionHandlerMiddleware. This allows you to
have dynamic error pages that fit with the rest of your application. To use this
technique, replace the call to UseStatusCodePages with the following
extension method:

app.UseStatusCodePagesWithReExecute("/{0}");

This extension method configures StatusCodePagesMiddleware to reexecute
the pipeline whenever a 4xx or 5xx response code is found, using the
provided error handling path. This is similar to the way
ExceptionHandlerMiddleware reexecutes the pipeline, as shown in figure
15.6.

Figure 15.6 StatusCodePagesMiddleware reexecuting the pipeline to generate an HTML body for
a 404 response. A request to the / path returns a 404 response, which is handled by the status
code middleware. The pipeline is reexecuted using the /404 path to generate the HTML response.

Note that the error handling path "/{0}" contains a format string token, {0}.
When the path is reexecuted, the middleware replaces this token with the
status code number. For example, a 404 error would reexecute the /404 path.
The handler for the path (typically a Razor Page, but it can be any endpoint)
has access to the status code and can optionally tailor the response, depending
on the status code. You can choose any error handling path as long as your
application knows how to handle it.

With this approach in place, you can create different error pages for different
error codes, such as the 404-specific error page shown in figure 15.7. This
technique ensures that your error pages are consistent with the rest of your
application, including any dynamically generated content, while also
allowing you to tailor the message for common errors.

Figure 15.7 An error status code page for a missing file. When an error code is detected (in this
case, a 404 error), the middleware pipeline is reexecuted to generate the response. This allows
dynamic portions of your web page to remain consistent on error pages.

Warning

As I mentioned in chapter 4, if your error handling path generates an error,
the user will see a generic browser error. To mitigate this, it’s often better to
use a static error page that will always work rather than a dynamic page that
risks throwing more errors.

The UseStatusCodePagesWithReExecute() method is great for returning a
friendly error page when something goes wrong in a request, but there’s a
second way to use the StatusCodePagesMiddleware. Instead of reexecuting
the pipeline to generate the error response, you can redirect the browser to the
error page instead, by calling

app.UseStatusCodePagesWithRedirects("/{0}");

As for the reexecute version, this method takes a format string that defines
the URL to generate the response. However, whereas the reexecute version
generates the error response for the original request, the redirect version
returns a 302 response initially, directing the browser to send a second
request, this time for the error URL, as shown in figure 15.8. This second
request generates the error page response, returning it with a 200 status code.

Figure 15.8 StatusCodePagesMiddleware returning redirects to generate error pages. A request to
the / path returns a 404 response, which is intercepted by the status code middleware and
converted to a 302 response. The browser makes a second request using the /404 path to generate
the HTML response.

Whether you use the reexecute or redirect method, the browser ultimately
receives essentially the same HTML. However, there are some important
differences:

With the reexecute approach, the original status code (such as a 404) is
preserved. The browser sees the error page HTML as the response to the
original request. If the user refreshes the page, the browser makes a
second request for the original path.
With the redirect approach, the original status code is lost. The browser
treats the redirect and second request as two separate requests and
doesn’t “know” about the error. If the user refreshes the page, the
browser makes a request for the same error path; it doesn’t resend the
original request.

In most cases, I find the reexecute approach to be more useful, as it preserves
the original error and typically has the behavior that users expect. There may
be some cases where the redirect approach is useful, however, such as when
an entirely different application generates the error page.

Tip

Favor using UseStatusCodePagesWithReExecute over the redirect approach
when the same app is generating the error page HTML for your app.

You can use StatusCodePagesMiddleware in combination with other
exception handling middleware by adding both to the pipeline.
StatusCodePagesMiddleware modifies the response only if no response body
has been written. So if another component, such as
ExceptionHandlerMiddleware, returns a message body along with an error
code, it won’t be modified.

Note

StatusCodePagesMiddleware has additional overloads that let you execute
custom middleware when an error occurs instead of reexecuting the
middleware pipeline. You can read about this approach at
http://mng.bz/0K66.

Error handling is essential when developing any web application; errors
happen, and you need to handle them gracefully. The
StatusCodePagesMiddleware is practically a must-have for any production
Razor Pages app.

In chapter 16 we’ll dive into model binding. You’ll see how the route values
generated during routing are bound to your page handler parameters, and
perhaps more important, how to validate the values you’re provided.

15.6 Summary

A Razor Page page handler is the method in the Razor Page PageModel
class that is executed when a Razor Page handles a request.
Page handlers should ensure that the incoming request is valid, call in to
the appropriate domain services to handle the request, and then choose
the kind of response to return. They typically don’t generate the
response directly; instead, they describe how to generate the response.
Page handlers should generally delegate to services to handle the
business logic required by a request instead of performing the changes
themselves. This ensures a clean separation of concerns that aids testing
and improves application structure.
When a Razor Page is executed, a single page handler is invoked based
on the HTTP verb of the request and the value of the handler route
value. If no page handler is found, an “implicit” handler is used instead,
simply rendering the content of the Razor Page.
Page handlers can have parameters whose values are taken from
properties of the incoming request in a process called model binding.
Properties decorated with [BindProperty] can also be bound to the
request. These are the canonical ways of reading values from the HTTP
request inside your Razor Page.
By default, properties decorated with [BindProperty] are not bound for
GET requests. To enable binding, use [BindProperty(SupportsGet =
true)].
Page handlers can return a PageResult or void to generate an HTML
response. The Razor Page infrastructure uses the associated Razor view
to generate the HTML and returns a 200 OK response.
You can send users to a different Razor Page using a

RedirectToPageResult. It’s common to send users to a new page as
part of the POST-REDIRECT-GET flow for handling user input via forms
The PageModel base class exposes many helper methods for creating an
IActionResult, such as Page() which creates a PageResult, and
RedirectToPage() which creates a RedirectToPageResult. These
methods are simple wrappers around calling new on the corresponding
IActionResult type.
StatusCodePagesMiddleware lets you provide user-friendly custom
error handling messages when the pipeline returns a raw error response
status code. This is important for providing a consistent user experience
when status code errors are returned, such as 404 errors when a URL is
not matched to an endpoint.

16 Binding and validating requests
with Razor Pages
This chapter covers

Using request values to create binding models
Customizing the model-binding process
Validating user input using DataAnnotations attributes

In chapter 7 we looked at the process of model binding and validation in
minimal APIs. In this chapter we look at the Razor Pages equivalent:
extracting values from a request using model binding and validating user
input.

In the first half of this chapter, we look at using binding models to retrieve
those parameters from the request so that you can use them in your Razor
Pages by creating C# objects. These objects are passed to your Razor Page
handlers as method parameters or are set as properties on your Razor Page
PageModel.

Once your code is executing in a page handler method, you can’t simply use
the binding model without any further thought. Any time you’re using data
provided by a user, you need to validate it! The second half of the chapter
focuses on how to validate your binding models with Razor Pages.

We covered model binding and validation for minimal APIs in chapter 7, and
conceptually, binding and validation are the same for Razor Pages. However,
the details and mechanics of both binding and validation are quite different
for Razor Pages.

The binding models populated by the Razor Pages infrastructure are passed to
page handlers when they execute. Once the page handler has run, you’re all
set up to use the output models in ASP.NET Core’s implementation of
Model-View-Controller (MVC): the view models and API models. These are

used to generate a response to the user’s request. We’ll cover them in
chapters 19 and 20.

Before we go any further, let’s recap the MVC design pattern and how
binding models fit into ASP.NET Core.

16.1 Understanding the models in Razor Pages and
MVC

In this section I describe how binding models fit into the MVC design pattern
we covered in chapter 13. I describe the difference between binding models
and the other “model” concepts in the MVC pattern and how they’re each
used in ASP.NET Core.

MVC is all about the separation of concerns. The premise is that isolating
each aspect of your application to focus on a single responsibility reduces the
interdependencies in your system. This separation makes it easier to make
changes without affecting other parts of your application.

The classic MVC design pattern has three independent components:

Model—The data to display and the methods for updating this data
View—Displays a representation of data that makes up the model
Controller—Calls methods on the model and selects a view

In this representation, there’s only one model, the application model, which
represents all the business logic for the application as well as how to update
and modify its internal state. ASP.NET Core has multiple models, which
takes the single-responsibility principle (SRP) one step further than some
views of MVC.

In chapter 13 we looked at an example of a to-do list application that can
show all the to-do items for a given category and username. With this
application, you make a request to a URL that’s routed using
todo/listcategory/{category}/{username}. This returns a response
showing all the relevant to-do items, as shown in figure 16.1.

Figure 16.1 A basic to-do list application that displays to-do list items. A user can filter the list of
items by changing the category and username parameters in the URL.

The application uses the same MVC constructs you’ve already seen, such as
routing to a Razor Page handler, as well as various models. Figure 16.2
shows how a request to this application maps to the MVC design pattern and
how it generates the final response, including additional details around the
model binding and validation of the request.

Figure 16.2 The MVC pattern in ASP.NET Core handling a request to view a subset of items in a
to-do list Razor Pages application

ASP.NET Core Razor Pages uses several models, most of which are plain old
CLR objects (POCOs), and the application model, which is more of a concept
around a collection of services. Each of the models in ASP.NET Core is
responsible for handling a different aspect of the overall request:

Binding model—The binding model is all the information that’s
provided by the user when making a request, as well as additional
contextual data. This includes things like route parameters parsed from
the URL, the query string, and form or JavaScript Object Notation
(JSON) data in the request body. The binding model itself is one or
more POCO objects that you define. Binding models in Razor Pages are
typically defined by creating a public property on the page’s PageModel
and decorating it with the [BindProperty] attribute. They can also be
passed to a page handler as parameters.
For this example, the binding model would include the name of the
category, open, and the username, Andrew. The Razor Pages
infrastructure inspects the binding model before the page handler
executes to check whether the provided values are valid, though the
page handler executes even if they’re not, as you’ll see when we discuss
validation in section 16.3.
Application model—The application model isn’t really an ASP.NET
Core model at all. It’s typically a whole group of different services and
classes and is more of a concept—anything needed to perform some sort
of business action in your application. It may include the domain model
(which represents the thing your app is trying to describe) and database
models (which represent the data stored in a database), as well as any
other, additional services.
In the to-do list application, the application model would contain the
complete list of to-do items, probably stored in a database, and would
know how to find only those to-do items in the open category assigned
to Andrew.
Page model—The PageModel of a Razor Page serves two main
functions: it acts as the controller for the application by exposing page
handler methods, and it acts as the view model for a Razor view. All the
data required for the view to generate a response is exposed on the
PageModel, such as the list of to-dos in the open category assigned to

Andrew.
The PageModel base class that you derive your Razor Pages from
contains various helper properties and methods. One of these, the
ModelState property, contains the result of the model validation as a
series of key-value pairs. You’ll learn more about validation and the
ModelState property in section 16.3.

These models make up the bulk of any Razor Pages application, handling the
input, business logic, and output of each page handler. Imagine you have an
e-commerce application that allows users to search for clothes by sending
requests to the /search/{query} URL, where {query} holds their search
term:

Binding model—This would take the {query} route parameter from the
URL and any values posted in the request body (maybe a sort order, or
the number of items to show), and bind them to a C# class, which
typically acts as a throwaway data transport class. This would be set as a
property on the PageModel when the page handler is invoked.
Application model—This is the services and classes that perform the
logic. When invoked by the page handler, this model would load all the
clothes that match the query, applying the necessary sorting and filters,
and return the results to the controller.
Page model—The values provided by the application model would be
set as properties on the Razor Page’s PageModel, along with other
metadata, such as the total number of items available or whether the user
can currently check out. The Razor view would use this data to render
the Razor view to HTML.

The important point about all these models is that their responsibilities are
well defined and distinct. Keeping them separate and avoiding reuse helps
ensure that your application stays agile and easy to update.

The obvious exception to this separation is the PageModel, as it is where the
binding models and page handlers are defined, and it also holds the data
required for rendering the view. Some people may consider the apparent lack
of separation to be sacrilege, but it’s not generally a problem. The lines of
demarcation are pretty apparent. So long as you don’t try to, for example,
invoke a page handler from inside a Razor view, you shouldn’t run into any

problems!

Now that you’ve been properly introduced to the various models in ASP.NET
Core, it’s time to focus on how to use them. This chapter looks at the binding
models that are built from incoming requests—how are they created, and
where do the values come from?

16.2 From request to model: Making the request
useful

In this section you will learn

How ASP.NET Core creates binding models from a request
How to bind simple types, like int and string, as well as complex
classes
How to choose which parts of a request are used in the binding model

By now, you should be familiar with how ASP.NET Core handles a request
by executing a page handler on a Razor Page. Page handlers are normal C#
methods, so the ASP.NET Core framework needs to be able to call them in
the usual way. The process of extracting values from the request and creating
C# objects from them is called model binding.

Any publicly settable properties on your Razor Page’s PageModel (in the
.cshtml.cs file for your Razor Page), that are decorated with the
[BindProperty] attribute are created from the incoming request using model
binding, as shown in listing 16.1. Similarly, if your page handler method has
any parameters, these are also created using model binding.

Warning

Properties decorated with [BindProperty] must have a public setter;
otherwise, binding will silently fail.

Listing 16.1 Model binding requests to properties in a Razor Page

public class IndexModel: PageModel

{

 [BindProperty] #A

 public string Category { get; set; } #A

 [BindProperty(SupportsGet = true)] #B

 public string Username { get; set; } #B

 public void OnGet()

 {

 }

 public void OnPost(ProductModel model) #C

 {

 }

}

As described in chapter 15 and shown in the preceding listing, PageModel
properties are not model-bound for GET requests, even if you add the
[BindProperty] attribute. For security reasons, only requests using verbs
like POST and PUT are bound. If you do want to bind GET requests, you can set
the SupportsGet property on the [BindProperty] attribute to opt in to model
binding.

Which part is the binding model?

Listing 16.1 shows a Razor Page that uses multiple binding models: the
Category property, the Username property, and the ProductModel property
(in the OnPost handler) are all model-bound.

Using multiple models in this way is fine, but I prefer to use an approach that
keeps all the model binding in a single, nested class, which I often call
InputModel. With this approach, the Razor Page in listing 16.1 could be
written as follows:

public class IndexModel: PageModel

{

 [BindProperty]

 public InputModel Input { get; set; }

 public void OnGet()

 {

 }

 public class InputModel

 {

 public string Category { get; set; }

 public string Username { get; set; }

 public ProductModel Model { get; set; }

 }

}

This approach has some organizational benefits that you’ll learn more about
in section 16.4.

ASP.NET Core automatically populates your binding models for you using
properties of the request, such as the request URL, any headers sent in the
HTTP request, any data explicitly POSTed in the request body, and so on.

Note

In this chapter I describe how to bind your models to an incoming request,
but I don’t show how Razor Pages uses your binding models to help generate
that request using HTML forms. In chapter 17 you’ll learn about Razor
syntax, which renders HTML, and in chapter 18 you’ll learn about Razor Tag
Helpers, which generate form fields based on your binding model.

By default, ASP.NET Core uses three different binding sources when
creating your binding models in Razor Pages. It looks through each of these
in order and takes the first value it finds (if any) that matches the name of the
binding model:

Form values—Sent in the body of an HTTP request when a form is sent
to the server using a POST
Route values—Obtained from URL segments or through default values
after matching a route, as you saw in chapter 14
Query string values—Passed at the end of the URL, not used during
routing

Warning

Even though conceptually similar, the Razor Page binding process works
quite differently from the approach used by minimal APIs.

The model binding process for Razor Pages is shown in figure 16.3. The
model binder checks each binding source to see whether it contains a value
that could be set on the model. Alternatively, the model can choose the
specific source the value should come from, as you’ll see in section 16.2.3.
Once each property is bound, the model is validated and is set as a property
on the PageModel or passed as a parameter to the page handler. You’ll learn
about the validation process in the second half of this chapter.

Figure 16.3 Model binding involves mapping values from binding sources, which correspond to
different parts of a request.

Note

In Razor Pages, different properties of a complex model can be model-bound
to different sources. This differs from minimal APIs, where the whole object
would be bound from a single source, and “partial” binding is not possible.
Razor Pages also bind to form bodies by default, while minimal APIs cannot.
These differences are partly for historical reasons and partly because minimal
APIs opts for performance over convenience in this respect.

PageModel properties or page handler parameters?

There are three ways to use model binding in Razor Pages:

· Decorate properties on your PageModel with the [BindProperty] attribute.

· Add parameters to your page handler method.

· Decorate the whole PageModel with [BindProperties].

Which of these approaches should you choose?

This answer to this question is largely a matter of taste. Setting properties on
the PageModel and marking them with [BindProperty] is the approach
you’ll see most often in examples. If you use this approach, you’ll be able to
access the binding model when the view is rendered, as you’ll see in chapters
17 and 18.

The second approach, adding parameters to page handler methods, provides
more separation between the different MVC stages, because you won’t be
able to access the parameters outside the page handler. On the downside, if
you do need to display those values in the Razor view, you’ll have to copy
the parameters across manually to properties that can be accessed in the view.

I avoid the final approach, decorating the PageModel itself with
[BindProperties]. With this approach, every property on your PageModel
takes part in model binding. I don’t like the indirection this gives and the risk
of accidentally binding properties I didn’t want to be model-bound.

The approach I choose tends to depend on the specific Razor Page I’m
building. If I’m creating a form, I will favor the [BindProperty] approach,
as I typically need access to the request values inside the Razor view. For
simple pages, where the binding model is a product ID, for example, I tend to
favor the page handler parameter approach for its simplicity, especially if the
handler is for a GET request. I give some more specific advice on my
approach in section 16.4.

Figure 16.4 shows an example of a request creating the ProductModel
method argument using model binding for the example shown at the start of
this section:

public void OnPost(ProductModel product)

Figure 16.4 Using model binding to create an instance of a model that’s used to execute a Razor
Page

The Id property has been bound from a URL route parameter, but the Name
and SellPrice properties have been bound from the request body. The big
advantage of using model binding is that you don’t have to write the code to
parse requests and map the data yourself. This sort of code is typically
repetitive and error-prone, so using the built-in conventional approach lets
you focus on the important aspects of your application: the business
requirements.

Tip

Model binding is great for reducing repetitive code. Take advantage of it
whenever possible, and you’ll rarely find yourself having to access the
Request object directly.

If you need to, the capabilities are there to let you completely customize the
way model binding works, but it’s relatively rare that you’ll find yourself
needing to dig too deep into this. For the majority of cases, it works as is, as
you’ll see in the remainder of this section.

16.2.1 Binding simple types

We’ll start our journey into model binding by considering a simple Razor
Page handler. The next listing shows a simple Razor Page that takes one
number as a method parameter and squares it by multiplying the number by
itself.

Listing 16.2 A Razor Page accepting a simple parameter

public class CalculateSquareModel : PageModel

{

 public void OnGet(int number) #A

 {

 Square = number * number; #B

 }

 public int Square { get; set; } #C

}

In chapters 6 and 14, you learned about routing and how it selects a Razor
Page to execute. You can update the route template for the Razor Page to be
"CalculateSquare/{number}" by adding a {number} segment to the Razor
Page’s @page directive in the .cshtml file:

@page "{number}"

When a client requests the URL /CalculateSquare/5, the Razor Page
framework uses routing to parse it for route parameters. This produces the
route value pair

number=5

The Razor Page’s OnGet page handler contains a single parameter—an
integer called number—which is your binding model. When ASP.NET Core
executes this page handler method, it will spot the expected parameter, flick
through the route values associated with the request, and find the number=5
pair. Then it can bind the number parameter to this route value and execute
the method. The page handler method itself doesn’t care where this value
came from; it goes along its merry way, calculating the square of the value
and setting it on the Square property.

The key thing to appreciate is that you didn’t have to write any extra code to
try to extract the number from the URL when the method executed. All you
needed to do was create a method parameter (or public property) with the
right name and let model binding do its magic.

Route values aren’t the only values the Razor Pages model binder can use to
create your binding models. As you saw previously, the framework will look
through three default binding sources to find a match for your binding
models:

Form values
Route values
Query string values

Each of these binding sources store values as name-value pairs. If none of the
binding sources contains the required value, the binding model is set to a
new, default instance of the type instead. The exact value the binding model

will have in this case depends on the type of the variable:

For value types, the value will be default(T). For an int parameter this
would be 0, and for a bool it would be false.
For reference types, the type is created using the default (parameterless)
constructor. For custom types like ProductModel, that will create a new
object. For nullable types like int? or bool?, the value will be null.
For string types, the value will be null.

Warning

It’s important to consider the behavior of your page handler when model
binding fails to bind your method parameters. If none of the binding sources
contains the value, the value passed to the method could be null or could
unexpectedly have a default value (for value types).

Listing 16.2 showed how to bind a single method parameter. Let’s take the
next logical step and look at how you’d bind multiple method parameters.

Let’s say you’re building a currency converter application. As the first step
you need to create a method in which the user provides a value in one
currency, and you must convert it to another. You first create a Razor Page
called Convert.cshtml and then customize the route template for the page
using the @page directive to use an absolute path containing two route values:

@page "/{currencyIn}/{currencyOut}"

Then you create a page handler that accepts the three values you need, as
shown in the following listing.

Listing 16.3 A Razor Page handler accepting multiple binding parameters

public class ConvertModel : PageModel

{

 public void OnGet(

 string currencyIn,

 string currencyOut,

 int qty

)

 {

 /* method implementation */

 }

}

As you can see, there are three different parameters to bind. The question is,
where will the values come from and what will they be set to? The answer is,
it depends! Table 16.1 shows a whole variety of possibilities. All these
examples use the same route template and page handler, but depending on the
data sent, different values will be bound. The actual values might differ from
what you expect, as the available binding sources offer conflicting values!

Table 16.1 Binding request data to page handler parameters from multiple binding sources

URL (route values) HTTP body data (form values) Parameter values bound

/GBP/USD currencyIn=GBP currencyOut=USD qty=0

/GBP/USD?currencyIn=CAD QTY=50 currencyIn=GBP currencyOut=USD qty=50

/GBP/USD?qty=100 qty=50 currencyIn=GBP currencyOut=USD qty=50

/GBP/USD?qty=100 currencyIn=CAD& currencyOut=EUR&qty=50 currencyIn=CAD currencyOut=EUR qty=50

For each example, be sure you understand why the bound values have the
values that they do. In the first example, the qty value isn’t found in the form
data, in the route values, or in the query string, so it has the default value of 0.
In each of the other examples, the request contains one or more duplicated
values; in these cases, it’s important to bear in mind the order in which the
model binder consults the binding sources. By default, form values will take
precedence over other binding sources, including route values!

Note

The default model binder isn’t case-sensitive, so a binding value of QTY=50
will happily bind to the qty parameter.

Although this may seem a little overwhelming, it’s relatively unusual to be
binding from all these different sources at once. It’s more common to have
your values all come from the request body as form values, maybe with an ID
from URL route values. This scenario serves as more of a cautionary tale
about the knots you can twist yourself into if you’re not sure how things work
under the hood.

In these examples, you happily bound the qty integer property to incoming
values, but as I mentioned earlier, the values stored in binding sources are all
strings. What types can you convert a string to?

The model binder will convert pretty much any primitive .NET type such as
int, float, decimal (and string obviously), any custom type that has a
TryParse method (like minimal APIs, as you saw in chapter 7) plus anything
that has a TypeConverter.

Note

TypeConverters can be found in the
System.ComponentModel.TypeConverter package. You can read more about
them in Microsoft’s “Type conversion in .NET” documentation:
http://mng.bz/A0GK.

There are a few other special cases that can be converted from a string, such
as Type, but thinking of it as built-in types only will get you a long way there!

16.2.2 Binding complex types

If it seems like only being able to bind simple built-in types is a bit limiting,
you’re right! Luckily, that’s not the case for the model binder. Although it
can only convert strings directly to those simple types, it’s also able to bind
complex types by traversing any properties your binding models expose,
binding each of those properties to strings instead.

If this doesn’t make you happy straight off the bat, let’s look at how you’d

have to build your page handlers if simple types were your only option.
Imagine a user of your currency converter application has reached a checkout
page and is going to exchange some currency. Great! All you need now is to
collect their name, email address, and phone number. Unfortunately, your
page handler method would have to look something like this:

public IActionResult OnPost(string firstName, string lastName, string phoneNumber, string email)

Yuck! Four parameters might not seem that bad right now, but what happens
when the requirements change and you need to collect other details? The
method signature will keep growing. The model binder will bind the values
quite happily, but it’s not exactly clean code. Using the [BindProperty]
approach doesn’t really help either; you still have to clutter your PageModel
with lots of properties and attributes!

Simplifying method parameters by binding to complex objects

A common pattern for any C# code when you have many method parameters
is to extract a class that encapsulates the data the method requires. If extra
parameters need to be added, you can add a new property to this class. This
class becomes your binding model, and it might look something like the
following listing.

Listing 16.4 A binding model for capturing a user’s details

public class UserBindingModel

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

}

Note

In this book I primarily use class instead of record for my binding models,
but you can use record if you prefer. I find the terseness that the record
positional syntax provides is lost if you want to add attributes to properties,
such as to add validation attributes, as you’ll see in section 16.3. You can see

the required syntax for positional property attributes in the documentation at
http://mng.bz/Kex0.

With this model, you can update your page handler’s method signature to

public IActionResult OnPost(UserBindingModel user)

Alternatively, using the [BindProperty] approach, create a property on the
PageModel:

[BindProperty]

public UserBindingModel User { get; set; }

Now you can simplify the page handler signature even further:

public IActionResult OnPost()

Functionally, the model binder treats this new complex type a little
differently. Rather than look for parameters with a value that matches the
parameter name (user, or User for the property), the model binder creates a
new instance of the model using new UserBindingModel().

Note

You don’t have to use custom classes for your methods; it depends on your
requirements. If your page handler needs only a single integer, it makes more
sense to bind to the simple parameter.

Next, the model binder loops through all the properties your binding model
has, such as FirstName and LastName in listing 16.4. For each of these
properties, it consults the collection of binding sources and attempts to find a
name-value pair that matches. If it finds one, it sets the value on the property
and moves on to the next.

Tip

Although the name of the model isn’t necessary in this example, the model
binder will also look for properties prefixed with the name of the property,
such as user.FirstName and user.LastName for a property called User. You

can use this approach when you have multiple complex parameters to a page
handler or multiple complex [BindProperty] properties. In general, for
simplicity, you should avoid this situation if possible. As for all model
binding, the casing of the prefix does not matter.

Once all the properties that can be bound on the binding model are set, the
model is passed to the page handler (or the [BindProperty] property is set),
and the handler is executed as usual. The behavior from this point on is
identical to when you have lots of individual parameters—you’ll end up with
the same values set on your binding model—but the code is cleaner and
easier to work with.

Tip

For a class to be model-bound, it must have a default public constructor. You
can bind only properties that are public and settable.

With this technique you can bind complex hierarchical models whose
properties are themselves complex models. As long as each property exposes
a type that can be model-bound, the binder can traverse it with ease.

Binding collections and dictionaries

As well as binding to ordinary custom classes and primitives, you can bind to
collections, lists, and dictionaries. Imagine you had a page in which a user
selected all the currencies they were interested in; you’d display the rates for
all those selected, as shown in figure 16.5.

Figure 16.5 The select list in the currency converter application sends a list of selected currencies
to the application. Model binding binds the selected currencies and customizes the view for the
user to show the equivalent cost in the selected currencies.

To achieve this, you could create a page handler that accepts a List<string>
type, such as

public void OnPost(List<string> currencies);

You could then POST data to this method by providing values in several
different formats:

currencies[index]—Where currencies is the name of the parameter
to bind and index is the index of the item to bind, such as
currencies[0]= GBP¤cies[1]=USD.
[index]—If you’re binding to a single list (as in this example), you can
omit the name of the parameter, such as [0]=GBP&[1]=USD.
currencies—Alternatively, you can omit the index and send
currencies as the key for every value, such as
currencies=GBP¤cies=USD.

The key values can come from route values and query values, but it’s far
more common to POST them in a form. Dictionaries can use similar binding,
where the dictionary key replaces the index both when the parameter is
named and when it’s omitted.

Tip

In the previous example I showed a collection using the built-in string type,
but you can also bind collections of complex type, such as a
List<UserBindingModel>.

If this all seems a bit confusing, don’t feel too alarmed. If you’re building a
traditional web application and using Razor views to generate HTML, the
framework will take care of generating the correct names for you. As you’ll
see in chapter 18, the Razor view ensures that any form data you POST is
generated in the correct format.

Binding file uploads with IFormFile

Razor Pages supports users uploading files by exposing the IFormFile and
IFormFileCollection interfaces. You can use these interfaces as your
binding model, either as a method parameter to your page handler or using
the [BindProperty] approach, and they will be populated with the details of
the file upload:

public void OnPost(IFormFile file);

If you need to accept multiple files, you can use IFormFileCollection,
IEnumerable<IFormFile>, or List<IFormFile>:

public void OnPost(IEnumerable<IFormFile> file);

You already learned how to use IFormFile in chapter 7 when you looked at
minimal API binding. The process is the same for Razor Pages. I’ll reiterate
one point here: if you don’t need users to upload files, great! There are so
many potential threats to consider when handling files—from malicious
attacks, to accidental denial-of-service vulnerabilities—that I avoid them
whenever possible.

For the vast majority of Razor Pages, the default configuration of model
binding for simple and complex types works perfectly well, but you may find
some situations where you need to take a bit more control. Luckily, that’s
perfectly possible, and you can completely override the process if necessary
by replacing the ModelBinders used in the guts of the framework.

However, it’s rare to need that level of customization. I’ve found it’s more
common to want to specify which binding source to use for a page’s binding
instead.

16.2.3 Choosing a binding source

As you’ve already seen, by default the ASP.NET Core model binder attempts
to bind your binding models from three binding sources: form data, route
data, and the query string.

Occasionally, you may find it necessary to specifically declare which binding
source to bind to. In other cases, these three sources won’t be sufficient at all.
The most common scenarios are when you want to bind a method parameter
to a request header value or when the body of a request contains JSON-
formatted data that you want to bind to a parameter. In these cases, you can
decorate your binding models with attributes that say where to bind from, as
shown in the following listing.

Listing 16.5 Choosing a binding source for model binding

public class PhotosModel: PageModel

{

 public void OnPost(

 [FromHeader] string userId, #A

 [FromBody] List<Photo> photos) #B

 {

 /* method implementation */

 }

}

In this example, a page handler updates a collection of photos with a user ID.
There are method parameters for the ID of the user to be tagged in the photos,
userId, and a list of Photo objects to tag, photos.

Rather than binding these method parameters using the standard binding
sources, I’ve added attributes to each parameter, indicating the binding source
to use. The [FromHeader] attribute has been applied to the userId parameter.
This tells the model binder to bind the value to an HTTP request header value
called userId.

We’re also binding a list of photos to the body of the HTTP request by using
the [FromBody] attribute. This tells the binder to read JSON from the body of
the request and bind it to the List<Photo> method parameter.

Warning

Developers coming from .NET Framework and the legacy version of
ASP.NET should take note that the [FromBody] attribute is explicitly required
when binding to JSON requests in Razor Pages. This differs from the legacy
ASP.NET behavior, in which no attribute was required.

You aren’t limited to binding JSON data from the request body. You can use
other formats too, depending on which InputFormatters you configure the
framework to use. By default, only a JSON input formatter is configured.
You’ll see how to add an XML formatter in chapter 20, when I discuss web
APIs.

Tip

Automatic binding of multiple formats from the request body is one of the

features specific to Razor Pages and MVC controllers, which is missing from
minimal APIs.

You can use a few different attributes to override the defaults and to specify a
binding source for each binding model (or each property on the binding
model). These are the same attributes you used in chapter 7 with minimal
APIs:

[FromHeader]—Bind to a header value.
[FromQuery]—Bind to a query string value.
[FromRoute]—Bind to route parameters.
[FromForm]—Bind to form data posted in the body of the request. This
attribute is not available in minimal APIs.
[FromBody]—Bind to the request’s body content.

You can apply each of these to any number of handler method parameters or
properties, as you saw in listing 16.5, with the exception of the [FromBody]
attribute. Only one value may be decorated with the [FromBody] attribute.
Also, as form data is sent in the body of a request, the [FromBody] and
[FromForm] attributes are effectively mutually exclusive.

Tip

Only one parameter may use the [FromBody] attribute. This attribute
consumes the incoming request as HTTP request bodies can be safely read
only once.

As well as these attributes for specifying binding sources, there are a few
attributes for customizing the binding process even further:

[BindNever]—The model binder will skip this parameter completely.
You can use this attribute to prevent mass assignment, as discussed in
these two posts on my blog: http://mng.bz/QvfG and
http://mng.bz/Vd90.
[BindRequired]—If the parameter was not provided or was empty, the
binder will add a validation error.
[FromServices]—This is used to indicate the parameter should be
provided using dependency injection (DI). This attribute isn’t required

in most cases, as .NET 7 is smart enough to know that a parameter is a
service registered in DI, but you can be explicit if you prefer.

In addition, you have the [ModelBinder] attribute, which puts you into “God
mode” with respect to model binding. With this attribute, you can specify the
exact binding source, override the name of the parameter to bind to, and
specify the type of binding to perform. It’ll be rare that you need this one, but
when you do, at least it’s there!

By combining all these attributes, you should find you’re able to configure
the model binder to bind to pretty much any request data your page handler
wants to use. In general, though, you’ll probably find you rarely need to use
them; the defaults should work well for you in most cases.

That brings us to the end of this section on model binding. At the end of the
model binding process, your page handler should have access to a populated
binding model, and it’s ready to execute its logic. But before you use that
user input for anything, you must always validate your data, which is the
focus of the second half of this chapter. Razor Pages automatically does
validation for you out-of-the-box, but you have to actually check the results.

16.3 Validating binding models

In this section I discuss how validation works in Razor Pages. You already
learned how important it is to validate user input in chapter 7, as well as how
you can use DataAnnotation attributes to declaratively describe your
validation requirements of a model. In this section you’ll learn how to reuse
this knowledge to validate your Razor Page binding models. The good news
is that validation is built into the Razor Pages framework.

16.3.1 Validation in Razor Pages

In chapter 7 you learned that validation is an essential part of any web
application. Nevertheless, minimal APIs don’t have any direct support for
validation in the framework; you have to layer it on top using filters and
additional packages.

In Razor Pages, validation is built in. Validation occurs automatically after
model binding but before the page handler executes, as you saw in figure
16.2. Figure 16.6 shows a more compact view of where model validation fits
in this process, demonstrating how a request to a checkout page that requests
a user’s personal details is bound and validated.

Figure 16.6 Validation occurs after model binding but before the page handler executes. The page
handler executes whether or not validation is successful.

As discussed in chapter 7, validation isn’t only about protecting against
security threats, it’s also about ensuring that

Data is formatted correctly. (Email fields have a valid email format.)
Numbers are in a particular range. (You can’t buy -1 copies of a
product.)
Required values are provided while others are optional. (Name may be

required, but phone number is optional.)
Values conform to your business requirements. (You can’t convert a
currency to itself, it needs to be converted to a different currency.)

It might seem like some of these can be dealt with easily enough in the
browser. For example, if a user is selecting a currency to convert to, don’t let
them pick the same currency; and we’ve all seen the “please enter a valid
email address” messages.

Unfortunately, although this client-side validation is useful for users, as it
gives them instant feedback, you can never rely on it, as it will always be
possible to bypass these browser protections. It’s always necessary to validate
the data as it arrives at your web application using server-side validation.

Warning

Always validate user input on the server side of your application.

If that feels a little redundant, like you’ll be duplicating logic and code
between your client and server applications, I’m afraid you’re right. It’s one
of the unfortunate aspects of web development; the duplication is a necessary
evil. Fortunately, ASP.NET Core provides several features to try to reduce
this burden.

Tip

Blazor, the new C# single-page application (SPA) framework, promises to
solve some of these problems. For details, see http://mng.bz/9D51 and Blazor
in Action, by Chris Sainty (Manning, 2021).

If you had to write this validation code fresh for every app, it would be
tedious and likely error-prone. Luckily, you can use DataAnnotations
attributes to declaratively describe the validation requirements for your
binding models. The following listing, first shown in chapter 7, shows how
you can decorate a binding model with various validation attributes. This
expands on the example you saw earlier in listing 16.4.

Listing 16.6 Adding DataAnnotations to a binding model to provide metadata

public class UserBindingModel

{

 [Required] #A

 [StringLength(100)] #B

 [Display(Name = "Your name")] #C

 public string FirstName { get; set; }

 [Required]

 [StringLength(100)]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress] #D

 public string Email { get; set; }

 [Phone] #E

 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

For validation requirements that don’t lend themselves to attributes, such as
when the validity of one property depends on the value of another, you can
implement IValidatableObject, as described in chapter 7. Alternatively,
you can use a different validation framework, such as FluentValidation, as
you’ll see in chapter 32.

Whichever validation approach you use, it’s important to remember that these
techniques don’t protect your application by themselves. The Razor Pages
framework automatically executes the validation code after model binding,
but it doesn’t do anything different if validation fails! In the next section
we’ll look at how to check the validation result on the server and handle the
case where validation has failed.

16.3.2 Validating on the server for safety

Validation of the binding model occurs before the page handler executes, but
note that the handler always executes, whether the validation failed or
succeeded. It’s the responsibility of the page handler to check the result of the
validation.

Note

Validation happens automatically, but handling validation failures is the
responsibility of the page handler.

The Razor Pages framework stores the output of the validation attempt in a
property on the PageModel called ModelState. This property is a
ModelStateDictionary object, which contains a list of all the validation
errors that occurred after model binding, as well as some utility properties for
working with it.

As an example, listing 16.7 shows the OnPost page handler for the
Checkout.cshtml Razor Page. The Input property is marked for binding and
uses the UserBindingModel type shown previously in listing 16.6. This page
handler doesn’t do anything with the data currently, but the pattern of
checking ModelState early in the method is the key takeaway here.

Listing 16.7 Checking model state to view the validation result

public class CheckoutModel : PageModel #A

{

 [BindProperty] #B

 public UserBindingModel Input { get; set; } #B

 public IActionResult OnPost() #C

 {

 if (!ModelState.IsValid) #D

 {

 return Page(); #E

 }

 /* Save to the database, update user, return success */ #F

 return RedirectToPage("Success");

 }

}

If the ModelState property indicates that an error occurred, the method
immediately calls the Page() helper method. This returns a PageResult that
ultimately generates HTML to return to the user, as you saw in chapter 15.
The view uses the (invalid) values provided in the Input property to
repopulate the form when it’s displayed, as shown in figure 16.7. Also,
helpful messages for the user are added automatically, using the validation

errors in the ModelState property.

Figure 16.7 When validation fails, you can redisplay the form to display ModelState validation
errors to the user. Note that the Your Name field has no associated validation errors, unlike the
other fields.

Note

The error messages displayed on the form are the default values for each
validation attribute. You can customize the message by setting the
ErrorMessage property on any of the validation attributes. For example, you
could customize a [Required] attribute using
[Required(ErrorMessage="Required")].

If the request is successful, the page handler returns a
RedirectToPageResult (using the RedirectToPage() helper method) that
redirects the user to the Success.cshtml Razor Page. This pattern of returning
a redirect response after a successful POST is called the POST-REDIRECT-
GET pattern.

POST-REDIRECT-GET

The POST-REDIRECT-GET design pattern is a web development pattern
that prevents users from accidentally submitting the same form multiple
times. Users typically submit a form using the standard browser POST
mechanism, sending data to the server. This is the normal way by which you
might take a payment, for example.

If a server takes the naive approach and responds with a 200 OK response and
some HTML to display, the user will still be on the same URL. If the user
refreshes their browser, they will be making an additional POST to the server,
potentially making another payment! Browsers have some mechanisms to
prevent this, such as in the following figure, but the user experience isn’t
desirable.

Refreshing a browser window after a POST causes a warning message to be shown to the user

The POST-REDIRECT-GET pattern says that in response to a successful
POST, you should return a REDIRECT response to a new URL, which will be
followed by the browser making a GET to the new URL. If the user refreshes

their browser now, they’ll be refreshing the final GET call to the new URL. No
additional POST is made, so no additional payments or side effects should
occur.

This pattern is easy to achieve in ASP.NET Core applications using the
pattern shown in listing 16.7. By returning a RedirectToPageResult after a
successful POST, your application will be safe if the user refreshes the page in
their browser.

You might be wondering why ASP.NET Core doesn’t handle invalid requests
for you automatically; if validation has failed, and you have the result, why
does the page handler get executed at all? Isn’t there a risk that you might
forget to check the validation result?

This is true, and in some cases the best thing to do is to make the generation
of the validation check and response automatic. In fact, this is exactly the
approach we will use for web APIs using MVC controllers with the
[ApiController] attribute when we cover them in chapter 20.

For Razor Pages apps, however, you typically still want to generate an
HTML response, even when validation failed. This allows the user to see the
problem and potentially correct it. This is much harder to make automatic.

For example, you might find you need to load additional data before you can
redisplay the Razor Page, such as loading a list of available currencies. That
becomes simpler and more explicit with the ModelState.IsValid pattern.
Trying to do that automatically would likely end up with you fighting against
edge cases and workarounds.

Also, by including the IsValid check explicitly in your page handlers, it’s
easier to control what happens when additional validation checks fail. For
example, if the user tries to update a product, the DataAnnotation validation
won’t know whether a product with the requested ID exists, only whether the
ID has the correct format. By moving the validation to the handler method,
you can treat data and business rule validation failures in the same way.

Tip

You can also add extra validation errors to the collection, such as business
rule validation errors that come from a different system. You can add errors
to ModelState by calling AddModelError(), which will be displayed to users
on the form alongside the DataAnnotation attribute errors.

I hope I’ve hammered home how important it is to validate user input in
ASP.NET Core, but just in case: VALIDATE! There, we’re good. Having
said that, performing validation only on the server can leave users with a
slightly poor experience. How many times have you filled out a form online,
submitted it, gone to get a snack, and come back to find out you mistyped
something and have to redo it? Wouldn’t it be nicer to have that feedback
immediately?

16.3.3 Validating on the client for user experience

You can add client-side validation to your application in a few different
ways. HTML5 has several built-in validation behaviors that many browsers
use. If you display an email address field on a page and use the “email”
HTML input type, the browser automatically stops you from submitting an
invalid format, as shown in figure 16.8. Your application doesn’t control this
validation; it’s built into modern HTML5 browsers.

Note

HTML5 constraint validation support varies by browser. For details on the
available constraints, see the Mozilla documentation (http://mng.bz/daX3)
and https://caniuse.com/#feat=constraint-validation.

Figure 16.8 By default, modern browsers automatically validate fields of the email type before a
form is submitted.

The alternative approach to HTML validation is to perform client-side
validation by running JavaScript on the page and checking the values the user
entered before submitting the form. This is the most common approach used
in Razor Pages.

I’ll go into detail on how to generate the client-side validation helpers in
chapter 18, where you’ll see the DataAnnotation attributes come to the fore
once again. By decorating a view model with these attributes, you provide the
necessary metadata to the Razor engine for it to generate the appropriate
validation HTML.

With this approach, the user sees any errors with their form immediately,
even before the request is sent to the server, as shown in figure 16.9. This
gives a much shorter feedback cycle, providing a better user experience.

Figure 16.9 With client-side validation, clicking Submit triggers validation to be shown in the
browser before the request is sent to the server. As shown in the right pane, no request is sent.

If you’re building an SPA, the onus is on the client-side framework to
validate the data on the client side before posting it to the API. The API must
still validate the data when it arrives at the server, but the client-side
framework is responsible for providing the smooth user experience.

When you use Razor Pages to generate your HTML, you get much of this
validation code for free. Razor Pages automatically configures client-side
validation for most of the built-in attributes without requiring additional
work, as you’ll see in chapter 18. Unfortunately, if you’ve used custom
ValidationAttributes, these will run only on the server by default; you
need to do some additional wiring up of the attribute to make it work on the
client side too. Despite this, custom validation attributes can be useful for
handling common validation scenarios in your application, as you’ll see in
chapter 31.

The model binding framework in ASP.NET Core gives you a lot of options
on how to organize your Razor Pages: page handler parameters or PageModel
properties; one binding model or multiple; options for where to define your
binding model classes. In the next section I give some advice on how I like to
organize my Razor Pages.

16.4 Organizing your binding models in Razor
Pages

In this section I give some general advice on how I like to configure the
binding models in my Razor Pages. If you follow the patterns in this section,
your Razor Pages will follow a consistent layout, making it easier for others
to understand how each Razor Page in your app works.

Note

This advice is just personal preference, so feel free to adapt it if there are
aspects you don’t agree with. The important thing is to understand why I
make each suggestion, and to take that on board. Where appropriate, I deviate
from these guidelines too!

Model binding in ASP.NET Core has a lot of equivalent approaches to take,
so there is no “correct” way to do it. Listing 16.8 shows an example of how I
would design a simple Razor Page. This Razor Page displays a form for a
product with a given ID and allows you to edit the details using a POST
request. It’s a much longer sample than we’ve looked at so far, but I highlight
the important points.

Listing 16.8 Designing an edit product Razor Page

public class EditProductModel : PageModel

{

 private readonly ProductService _productService; #A

 public EditProductModel(ProductService productService) #A

 { #A

 _productService = productService; #A

 } #A

 [BindProperty] #B

 public InputModel Input { get; set; } #B

 public IActionResult OnGet(int id) #C

 {

 var product = _productService.GetProduct(id); #D

 Input = new InputModel #E

 { #E

 Name = product.ProductName, #E

 Price = product.SellPrice, #E

 }; #E

 return Page(); #E

 }

 public IActionResult OnPost(int id) #F

 {

 if (!ModelState.IsValid) #G

 { #G

 return Page(); #G

 } #G

 _productService.UpdateProduct(id, Input.Name, Input.Price); #H

 return RedirectToPage("Index"); #I

 }

 public class InputModel #J

 { #J

 [Required] #J

 public string Name { get; set; } #J

 [Range(0, int.MaxValue)] #J

 public decimal Price { get; set; } #J

 } #J

}

This page shows the PageModel for a typical “edit form.” These are common
in many line-of-business applications, among others, and it’s a scenario that
Razor Pages works well for. You’ll see how to create the HTML side of
forms in chapter 18.

Note

The purpose of this example is to highlight the model-binding approach. The
code is overly simplistic from a logic point of view. For example, it doesn’t
check that the product with the provided ID exists or include any error
handling.

This form shows several patterns related to model binding that I try to adhere
to when building Razor Pages:

Bind only a single property with [BindProperty]. I favor having a
single property decorated with [BindProperty] for model binding in
general. When more than one value needs to be bound, I create a
separate class, InputModel, to hold the values, and I decorate that single
property with [BindProperty]. Decorating a single property like this
makes it harder to forget to add the attribute, and it means all your Razor
Pages use the same pattern.
Define your binding model as a nested class. I define the InputModel as
a nested class inside my Razor Page. The binding model is normally
highly specific to that single page, so doing this keeps everything you’re
working on together. Additionally, I normally use that exact class name,
InputModel, for all my pages. Again, this adds consistency to your
Razor Pages.
Don’t use [BindProperties]. In addition to the [BindProperty]

attribute, there is a [BindProperties] attribute (note the different
spelling) that can be applied to the Razor Page PageModel directly. This
will cause all properties in your model to be model-bound, which can
leave you open to overposting attacks if you’re not careful. I suggest you
don’t use the [BindProperties] attribute and stick to binding a single
property with [BindProperty] instead.
Accept route parameters in the page handler. For simple route
parameters, such as the id passed into the OnGet and OnPost handlers in
listing 16.8, I add parameters to the page handler method itself. This
avoids the clunky SupportsGet=true syntax for GET requests.
Always validate before using data. I said it before, so I’ll say it again:
validate user input!

That concludes this look at model binding in Razor Pages. You saw how the
ASP.NET Core framework uses model binding to simplify the process of
extracting values from a request and turning them into normal .NET objects
you can work with quickly. The most important aspect of this chapter is the
focus on validation. This is a common concern for all web applications, and
the use of DataAnnotations can make it easy to add validation to your
models.

In the next chapter we’ll continue our journey through Razor Pages by
looking at how to create views. In particular, you’ll learn how to generate
HTML in response to a request using the Razor templating engine.

16.5 Summary

Razor Pages uses three distinct models, each responsible for a different
aspect of a request. The binding model encapsulates data sent as part of
a request. The application model represents the state of the application.
The PageModel is the backing class for the Razor Page, and it exposes
the data used by the Razor view to generate a response.
Model binding extracts values from a request and uses them to create
.NET objects the page handler can use when they execute. Any
properties on the PageModel marked with the [BindProperty] attribute
and method parameters of the page handlers will take part in model
binding.

By default, there are three binding sources for Razor Pages: POSTed form
values, route values, and the query string. The binder will interrogate
these sources in order when trying to bind your binding models.
When binding values to models, the names of the parameters and
properties aren’t case-sensitive.
You can bind to simple types or to the properties of complex types.
Simple types must be convertible from strings to be bound
automatically, such as numbers, dates, Boolean values, and custom types
with a TryParse method.
To bind complex types, the types must have a default constructor and
public, settable properties. The Razor Pages model binder binds each
property of a complex type using values from the binding sources.
You can bind collections and dictionaries using the [index]=value and
[key] =value syntax, respectively.
You can customize the binding source for a binding model using
[From*] attributes applied to the method, such as [FromHeader] and
[FromBody]. These can be used to bind to nondefault binding sources,
such as headers or JSON body content. The [FromBody] attribute is
always required when binding to a JSON body.
Validation is necessary to check for security threats. Check that data is
formatted correctly and confirm that it conforms to expected values and
that it meets your business rules.
Validation in Razor Pages occurs automatically after model binding, but
you must manually check the result of the validation and act accordingly
in your page handler by interrogating the ModelState.IsValid property.
Client-side validation provides a better user experience than server-side
validation alone, but you should always use server-side validation.
Client-side validation typically uses JavaScript and attributes applied to
your HTML elements to validate form values.

17 Rendering HTML using Razor
views
This chapter covers

Creating Razor views to display HTML to a user
Using C# and the Razor markup syntax to generate HTML dynamically
Reusing common code with layouts and partial views

It’s easy to get confused between the terms involved in Razor Pages
—PageModel, page handlers, Razor views—especially as some of the terms
describe concrete features, and others describe patterns and concepts. We’ve
touched on all these terms in detail in previous chapters, but it’s important to
get them straight in your mind:

Razor Pages—Razor Pages generally refers to the page-based paradigm
that combines routing, model binding, and HTML generation using
Razor views.
Razor Page—A single Razor Page represents a single page or endpoint.
It typically consists of two files: a .cshtml file containing the Razor view
and a .cshtml.cs file containing the page’s PageModel.
PageModel—The PageModel for a Razor Page is where most of the
action happens. It’s where you define the binding models for a page,
which extracts data from the incoming request. It’s also where you
define the page’s page handlers.
Page handler—Each Razor Page typically handles a single route, but it
can handle multiple HTTP verbs such as GET and POST. Each page
handler typically handles a single HTTP verb.
Razor view—Razor views (also called Razor templates) are used to
generate HTML. They are typically used in the final stage of a Razor
Page to generate the HTML response to send back to the user.

In the previous four chapters, I covered a whole cross section of Razor Pages,
including the Model-View-Controller (MVC) design pattern, the Razor Page

PageModel, page handlers, routing, and binding models. This chapter covers
the last part of the MVC pattern: using a view to generate the HTML that’s
delivered to the user’s browser.

In ASP.NET Core, views are normally created using the Razor markup
syntax (sometimes described as a templating language), which uses a mixture
of HTML and C# to generate the final HTML. This chapter covers some of
the features of Razor and how to use it to build the view templates for your
application. Generally speaking, users will have two sorts of interactions with
your app: they’ll read data that your app displays, and they’ll send data or
commands back to it. The Razor language contains several constructs that
make it simple to build both types of applications.

When displaying data, you can use the Razor language to easily combine
static HTML with values from your PageModel. Razor can use C# as a
control mechanism, so adding conditional elements and loops is simple—
something you couldn’t achieve with HTML alone.

The normal approach to sending data to web applications is with HTML
forms. Virtually every dynamic app you build will use forms; some
applications will be pretty much nothing but forms! ASP.NET Core and the
Razor templating language include Tag Helpers that make generating HTML
forms easy.

NOTE

You’ll get a brief glimpse of Tag Helpers in section 17.1, but I explore them
in detail in chapter 18.

In this chapter we’ll be focusing primarily on displaying data and generating
HTML using Razor rather than creating forms. You’ll see how to render
values from your PageModel to the HTML, and how to use C# to control the
generated output. Finally, you’ll learn how to extract the common elements
of your views into subviews called layouts and partial views, and how to
compose them to create the final HTML page.

17.1 Views: Rendering the user interface

In this section I provide a quick introduction to rendering HTML using Razor
views. We’ll recap the MVC design pattern used by Razor Pages and where
the view fits in. Then I’ll show how Razor syntax allows you to mix C# and
HTML to generate dynamic UIs.

As you know from earlier chapters on the MVC design pattern, it’s the job of
the Razor Page’s page handler to choose what to return to the client. For
example, if you’re developing a to-do list application, imagine a request to
view a particular to-do item, as shown in figure 17.1.

Figure 17.1 Handling a request for a to-do list item using ASP.NET Core Razor Pages. The page
handler builds the data required by the view and exposes it as properties on the PageModel. The
view generates HTML based only on the data provided; it doesn’t need to know where that data
comes from.

A typical request follows the steps shown in figure 17.1:

The middleware pipeline receives the request, and the routing
middleware determines the endpoint to invoke—in this case, the View
Razor Page in the ToDo folder.
The model binder (part of the Razor Pages framework) uses the request
to build the binding models for the page, as you saw in chapter 16. The
binding models are set as properties on the Razor Page or are passed to
the page handler method as arguments when the handler is executed.
The page handler checks that you passed a valid id for the to-do item
and marks the ModelState as valid if so.
If the request is valid, the page handler calls out to the various services
that make up the application model. This might load the details about the
to-do from a database or from the filesystem, returning them to the
handler. As part of this process, either the application model or the page
handler itself generates values to pass to the view and sets them as
properties on the Razor Page PageModel.
Once the page handler has executed, the PageModel should contain all
the data required to render a view. In this example, it contains details
about the to-do itself, but it might also contain other data, such as how
many to-dos you have left, whether you have any to-dos scheduled for
today, your username, and so on—anything that controls how to
generate the end UI for the request.
The Razor view template uses the PageModel to generate the final
response and returns it to the user via the middleware pipeline.

A common thread throughout this discussion of MVC is the separation of
concerns MVC brings, and it’s no different when it comes to your views. It
would be easy enough to generate the HTML directly in your application
model or in your controller actions, but instead you delegate that
responsibility to a single component: the view.

But even more than that, you separate the data required to build the view
from the process of building it by using properties on the PageModel. These
properties should contain all the dynamic data the view needs to generate the
final output.

Tip

Views shouldn’t call methods on the PageModel. The view should generally
only be accessing data that has already been collected and exposed as
properties.

Razor Page handlers indicate that the Razor view should be rendered by
returning a PageResult (or by returning void), as you saw in chapter 15. The
Razor Pages infrastructure executes the Razor view associated with a given
Razor Page to generate the final response. The use of C# in the Razor
template means you can dynamically generate the final HTML sent to the
browser. This allows you to, for example, display the name of the current
user in the page, hide links the current user doesn’t have access to, or render a
button for every item in a list.

Imagine your boss asks you to add a page to your application that displays a
list of the application’s users. You should also be able to view a user from the
page or create a new one, as shown in figure 17.2.

Figure 17.2 The use of C# in Razor lets you easily generate dynamic HTML that varies at
runtime. In this example, using a foreach loop inside the Razor view dramatically reduces the
duplication in the HTML that you would otherwise have to write.

With Razor templates, generating this sort of dynamic content is simple.
Listing 17.1 shows a template that could be used to generate the interface in
figure 17.2. It combines standard HTML with C# statements and uses Tag
Helpers to generate the form elements.

Listing 17.1 A Razor template to list users and a form for adding a new user

@page

@model IndexViewModel

<div class="row"> #A

<div class="col-md-6"> #A

<form method="post">

 <div class="form-group">

 <label asp-for="NewUser"></label> #B

 <input class="form-control" asp-for="NewUser" /> #B

 #B

 </div>

 <div class="form-group">

 <button type="submit"

 class="btn btn-success">Add</button>

 </div>

</form>

</div>

</div>

<h4>Number of users: @Model.ExistingUsers.Count</h4> #C

<div class="row">

<div class="col-md-6">

<ul class="list-group">

@foreach (var user in Model.ExistingUsers) #D

{

<li class="list-group-item d-flex justify-content-between">

 @user

 <a class="btn btn-info"

 asp-page="ViewUser" #E

 asp-route-userName="@user">View #E

}

</div>

</div>

This example demonstrates a variety of Razor features. There’s a mixture of
HTML that’s written unmodified to the response output, and there are various

C# constructs used to generate HTML dynamically. In addition, you can see
several Tag Helpers. These look like normal HTML attributes that start with
asp-, but they’re part of the Razor language. They can customize the HTML
element they’re attached to, changing how it’s rendered. They make building
HTML forms much simpler than they would be otherwise. Don’t worry if this
template is a bit overwhelming at the moment; we’ll break it all down as you
progress through this chapter and the next.

Razor Pages are compiled when you build your application. Behind the
scenes, they become another C# class in your application. It’s also possible to
enable runtime compilation of your Razor Pages. This allows you to modify
your Razor Pages while your app is running without having to explicitly stop
and rebuild. This can be handy when developing locally, but it’s best avoided
when you deploy to production. You can read how to enable this at
http://mng.bz/jP2P.

Note

As with most things in ASP.NET Core, it’s possible to swap out the Razor
templating engine and replace it with your own server-side rendering engine.
You can’t replace Razor with a client-side framework like Angular or React.
If you want to take this approach, you’d use minimal APIs or web API
controllers instead and a separate client-side framework.

In the next section we’ll look in more detail at how Razor views fit into the
Razor Pages framework and how you can pass data from your Razor Page
handlers to the Razor view to help build the HTML response.

17.2 Creating Razor views

In this section we’ll look at how Razor views fit into the Razor Pages
framework. You’ll learn how to pass data from your page handlers to your
Razor views and how you can use that data to generate dynamic HTML.

With ASP.NET Core, whenever you need to display an HTML response to
the user, you should use a view to generate it. Although it’s possible to
directly generate a string from your page handlers, which will be rendered

as HTML in the browser, this approach doesn’t adhere to the MVC
separation of concerns and will quickly leave you tearing your hair out.

Note

Some middleware, such as the WelcomePageMiddleware you saw in chapter
4, may generate HTML responses without using a view, which can make
sense in some situations. But your Razor Page and MVC controllers should
always generate HTML using views.

Instead, by relying on Razor views to generate the response, you get access to
a wide variety of features, as well as editor tooling to help. This section
serves as a gentle introduction to Razor views, the things you can do with
them, and the various ways you can pass data to them.

17.2.1 Razor views and code-behind

In this book you’ve already seen that Razor Pages typically consist of two
files:

The .cshtml file, commonly called the Razor view
The .cshtml.cs file, commonly called the code-behind, which contains
the PageModel

The Razor view contains the @page directive, which makes it a Razor Page,
as you’ve seen previously. Without this directive, the Razor Pages framework
will not route requests to the page, and the file is ignored for most purposes.

Definition

A directive is a statement in a Razor file that changes the way the template is
parsed or compiled. Another common directive is the @using newNamespace
directive, which makes objects in the newNamespace namespace available.

The code-behind .cshtml.cs file contains the PageModel for an associated
Razor Page. It contains the page handlers that respond to requests, and it is
where the Razor Page typically interacts with other parts of your application.

Even though the .cshtml and .cshtml.cs files have the same name, such as
ToDoItem.cshtml and ToDoItem.cshtml.cs, it’s not the filename that’s
linking them. But if it’s not by filename, how does the Razor Pages
framework know which PageModel is associated with a given Razor Page
view file?

At the top of each Razor Page, after the @page directive, is the @model
directive with a Type, indicating which PageModel is associated with the
Razor view. The following directives indicate that the ToDoItemModel is the
PageModel associated with the Razor Page:

@page

@model ToDoItemModel

Once a request is routed to a Razor Page, as covered in chapter 14, the
framework looks for the @model directive to decide which PageModel to use.
Based on the PageModel selected, it then binds to any properties in the
PageModel marked with the [BindProperty] attribute (as we covered in
chapter 16) and executes the appropriate page handler (based on the request’s
HTTP verb, as described in chapter 15).

Note

Technically, the PageModel and @model directive are optional. If you don’t
specify a PageModel, the framework executes an implicit page handler, as
you saw in chapter 15, and renders the view directly. It’s also possible to
combine the .cshtml and .cshtml.cs files into a single .cshtml file. You can
read more about this approach in Razor Pages in Action, by Mark Brind
(Manning, 2022).

In addition to the @page and @model directives, the Razor view file contains
the Razor template that is executed to generate the HTML response.

17.2.2 Introducing Razor templates

Razor view templates contain a mixture of HTML and C# code interspersed
with one another. The HTML markup lets you easily describe exactly what
should be sent to the browser, whereas the C# code can be used to

dynamically change what is rendered. The following listing shows an
example of Razor rendering a list of strings representing to-do items.

Listing 17.2 Razor template for rendering a list of strings

@page

@{ #A

 var tasks = new List<string> #A

 { "Buy milk", "Buy eggs", "Buy bread" }; #A

} #A

<h1>Tasks to complete</h1> #B

@for(var i=0; i< tasks.Count; i++) #C

{ #C

 var task = tasks[i]; #C

 @i - @task #C

} #C

The pure HTML sections in this template are in the angle brackets. The Razor
engine copies this HTML directly to the output, unchanged, as though you
were writing a normal HTML file.

Note

The ability of Razor syntax to know when you are switching between HTML
and C# can be both uncanny and infuriating at times. I discuss how to control
this transition in section 17.3.

As well as HTML, you can see several C# statements in there. The advantage
of being able to, for example, use a for loop rather than having to explicitly
write out each element should be self-evident. I’ll dive a little deeper
into more of the C# features of Razor in the next section. When rendered, the
template in listing 17.2 produces the following HTML.

Listing 17.3 HTML output produced by rendering a Razor template

<h1>Tasks to complete</h1> #A

 #A

 0 - Buy milk #B

 1 - Buy eggs #B

 2 - Buy bread #B

 #C

As you can see, the final output of a Razor template after it’s rendered is
simple HTML. There’s nothing complicated left, only straight HTML
markup that can be sent to the browser and rendered. Figure 17.3 shows how
a browser would render it.

Figure 17.3 Razor templates can be used to generate the HTML dynamically at runtime from C#
objects. In this case, a for loop is used to create repetitive HTML elements.

In this example, I hardcoded the list values for simplicity; no dynamic data
was provided. This is often the case on simple Razor Pages, like those you
might have on your home page; you need to display an almost static page.
For the rest of your application, it will be far more common to have some sort
of data you need to display, typically exposed as properties on your

PageModel.

17.2.3 Passing data to views

In ASP.NET Core, you have several ways of passing data from a page
handler in a Razor Page to its view. Which approach is best depends on the
data you’re trying to pass through, but in general you should use the
mechanisms in the following order:

PageModel properties—You should generally expose any data that needs
to be displayed as properties on your PageModel. Any data that is
specific to the associated Razor view should be exposed this way. The
PageModel object is available in the view when it’s rendered, as you’ll
see shortly.
ViewData—This is a dictionary of objects with string keys that can be
used to pass arbitrary data from the page handler to the view. In
addition, it allows you to pass data to layout files, as you’ll see in
section 17.4. Layout files are the main reason for using ViewData instead
of setting properties on the PageModel.
TempData—TempData is a dictionary of objects with string keys,
similar to ViewData, that is stored until it’s read in a different request.
This is commonly used to temporarily persist data when using the
POST-REDIRECT-GET pattern. By default TempData stores the data in
an encrypted cookie, but other storage options are available, as
described in the documentation at http://mng.bz/Wzx1.
HttpContext—Technically, the HttpContext object is available in both
the page handler and Razor view, so you could use it to transfer data
between them. But don’t—there’s no need for it with the other methods
available to you.
@inject services—You can use dependency injection (DI) to make
services available in your views, though this should normally be used
sparingly. Using the directive @inject Service myService injects a
variable called myService of type Service from the DI container, which
you can use in your Razor view.

Far and away the best approach for passing data from a page handler to a
view is to use properties on the PageModel. There’s nothing special about the

properties themselves; you can store anything there to hold the data you
require.

Note

Many frameworks have the concept of a data context for binding UI
components. The PageModel is a similar concept, in that it contains values to
display in the UI, but the binding is one-directional; the PageModel provides
values to the UI, and once the UI is built and sent as a response, the
PageModel is destroyed.

As I described in section 17.2.1, the @model directive at the top of your Razor
view describes which Type of PageModel is associated with a given Razor
Page. The PageModel associated with a Razor Page contains one or more
page handlers and exposes data as properties for use in the Razor view, as
shown in the following listing.

Listing 17.4 Exposing data as properties on a PageModel

public class ToDoItemModel : PageModel #A

{

 public List<string> Tasks { get; set; } #B

 public string Title { get; set; } #B

 public void OnGet(int id)

 {

 Title = "Tasks for today"; #C

 Tasks = new List<string> #C

 { #C

 "Get fuel", #C

 "Check oil", #C

 "Check tyre pressure" #C

 }; #C

 }

}

You can access the PageModel instance itself from the Razor view using the
Model property. For example, to display the Title property of the
ToDoItemModel in the Razor view, you’d use <h1>@Model.Title</h1>. This
would render the string provided in the ToDoItemModel.Title property,
producing the <h1>Tasks for today</h1> HTML.

Tip

Note that the @model directive should be at the top of your view, immediately
after the @page directive, and it has a lowercase m. The Model property can be
accessed anywhere in the view and has an uppercase M.

In most cases, using public properties on your PageModel is the way to go;
it’s the standard mechanism for passing data between the page handler and
the view. But in some circumstances, properties on your PageModel might not
be the best fit. This is often the case when you want to pass data between
view layouts. You’ll see how this works in section 17.4.

A common example is the title of the page. You need to provide a title for
every page in your application, so you could create a base class with a Title
property and make every PageModel inherit from it. But that’s cumbersome,
so a common approach for this situation is to use the ViewData collection to
pass data around.

In fact, the standard Razor Page templates use this approach by default, by
setting values on the ViewData dictionary from within the view itself:

@{

 ViewData["Title"] = "Home Page";

}

<h2>@ViewData["Title"].</h2>

This template sets the value of the "Title" key in the ViewData dictionary to
"Home Page" and then fetches the key to render in the template. This set and
immediate fetch might seem superfluous, but as the ViewData dictionary is
shared throughout the request, it makes the title of the page available in
layouts, as you’ll see later. When rendered, the preceding template would
produce the following output:

<h2>Home Page.</h2>

You can also set values in the ViewData dictionary from your page handlers
in two different ways, as shown in the following listing.

Listing 17.5 Setting ViewData values using an attribute

public class IndexModel: PageModel

{

 [ViewData] #A

 public string Title { get; set; }

 public void OnGet()

 {

 Title = "Home Page"; #B

 ViewData["Subtitle"] = "Welcome"; #C

 }

}

You can display the values in the template in the same way as before:

<h1>@ViewData["Title"]</h3>

<h2>@ViewData["Subtitle"]</h3>

Tip

I don’t find the [ViewData] attribute especially useful, but it’s another feature
to look out for. Instead, I create a set of global, static constants for any
ViewData keys, and I reference those instead of typing "Title" repeatedly.
You’ll get IntelliSense for the values, they’re refactor-safe, and you’ll avoid
hard-to-spot typos.

As I mentioned previously, there are mechanisms besides PageModel
properties and ViewData that you can use to pass data around, but these two
are the only ones I use personally, as you can do everything you need with
them. As a reminder, always use PageModel properties where possible, as you
benefit from strong typing and IntelliSense. Only fall back to ViewData for
values that need to be accessed outside of your Razor view.

You’ve had a small taste of the power available to you in Razor templates,
but in the next section we’ll dive a little deeper into some of the available C#
capabilities.

17.3 Creating dynamic web pages with Razor

You might be glad to know that pretty much anything you can do in C# is
possible in Razor syntax. Under the covers, the .cshtml files are compiled

into normal C# code (with string for the raw HTML sections), so whatever
weird and wonderful behavior you need can be created!

Having said that, just because you can do something doesn’t mean you
should. You’ll find it much easier to work with, and maintain, your files if
you keep them as simple as possible. This is true of pretty much all
programming, but I find it to be especially so with Razor templates.

This section covers some of the more common C# constructs you can use. If
you find you need to achieve something a bit more exotic, refer to the Razor
syntax documentation at http://mng.bz/8rMw.

17.3.1 Using C# in Razor templates

One of the most common requirements when working with Razor templates
is to render a value you’ve calculated in C# to the HTML. For example, you
might want to print the current year to use with a copyright statement in your
HTML, to give this result:

<p>Copyright 2022 ©</p>

Or you might want to print the result of a calculation:

<p>The sum of 1 and 2 is <i>3</i><p>

You can do this in two ways, depending on the exact C# code you need to
execute. If the code is a single statement, you can use the @ symbol to
indicate you want to write the result to the HTML output, as shown in figure
17.4. You’ve already seen this used to write out values from the PageModel
or from ViewData.

Figure 17.4 Writing the result of a C# expression to HTML. The @ symbol indicates where the C#
code begins, and the expression ends at the end of the statement, in this case at the space.

If the C# you want to execute is something that needs a space, you need to
use parentheses to demarcate the C#, as shown in figure 17.5.

Figure 17.5 When a C# expression contains whitespace, you must wrap it in parentheses using
@() so the Razor engine knows where the C# stops and HTML begins.

These two approaches, in which C# is evaluated and written directly to the
HTML output, are called Razor expressions.

Tip

If you want to write a literal @ character rather than a C# expression, use a
second @ character: @@.

Sometimes you’ll want to execute some C#, but you don’t need to output the
values. We used this technique when we were setting values in ViewData:

@{

 ViewData["Title"] = "Home Page";

}

This example demonstrates a Razor code block, which is normal C# code,
identified by the @{} structure. Nothing is written to the HTML output here;
it’s all compiled as though you’d written it in any other normal C# file.

Tip

When you execute code within code blocks, it must be valid C#, so you need
to add semicolons. Conversely, when you’re writing values directly to the
response using Razor expressions, you don’t need them. If your output
HTML breaks unexpectedly, keep an eye out for missing or rogue extra
semicolons.

Razor expressions are one of the most common ways of writing data from
your PageModel to the HTML output. You’ll see the other approach, using
Tag Helpers, in the next chapter. Razor’s capabilities extend far further than
this, however, as you’ll see in section 17.3.2, where you’ll learn how to
include traditional C# structures in your templates.

17.3.2 Adding loops and conditionals to Razor templates

One of the biggest advantages of using Razor templates over static HTML is
the ability to generate the output dynamically. Being able to write values
from your PageModel to the HTML using Razor expressions is a key part of
that, but another common use is loops and conditionals. With these, you can
hide sections of the UI, or produce HTML for every item in a list, for
example.

Loops and conditionals include constructs such as if and for loops. Using
them in Razor templates is almost identical to C#, but you need to prefix their
usage with the @ symbol. In case you’re not getting the hang of Razor yet,
when in doubt, throw in another @!

One of the big advantages of Razor in the context of ASP.NET Core is that it
uses languages you’re already familiar with: C# and HTML. There’s no need
to learn a whole new set of primitives for some other templating language:
it’s the same if, foreach, and while constructs you already know. And when
you don’t need them, you’re writing raw HTML, so you can see exactly what
the user is getting in their browser.

In listing 17.6, I’ve applied a few of these techniques in a template to display
a to-do item. The PageModel has a bool IsComplete property, as well as a
List<string> property called Tasks, which contains any outstanding tasks.

Listing 17.6 Razor template for rendering a ToDoItemViewModel

@page

@model ToDoItemModel #A

<div>

 @if (Model.IsComplete)

 { #B

 Well done, you’re all done! #B

 } #B

 else

 {

 The following tasks remain:

 @foreach (var task in Model.Tasks) #C

 {

 @task #D

 }

 }

</div>

This code definitely lives up to the promise of mixing C# and HTML! There
are traditional C# control structures, such as if and foreach, that you’d
expect in any normal C# program, interspersed with the HTML markup that
you want to send to the browser. As you can see, the @ symbol is used to

indicate when you’re starting a control statement, but you generally let the
Razor template infer when you’re switching back and forth between HTML
and C#.

The template shows how to generate dynamic HTML at runtime, depending
on the exact data provided. If the model has outstanding Tasks, the HTML
generates a list item for each task, producing output something like that
shown in figure 17.6.

Figure 17.6 The Razor template generates a item for each remaining task, depending on the
data passed to the view at runtime. You can use an if block to render completely different
HTML depending on the values in your model.

IntelliSense and tooling support

The mixture of C# and HTML might seem hard to read in the book, and
that’s a reasonable complaint. It’s also another valid argument for trying to
keep your Razor templates as simple as possible.

Luckily, if you’re using an editor like Visual Studio or Visual Studio Code,
the tooling can help somewhat. As you can see in this figure, Visual Studio
highlights the transition between the C# portions of the code and the
surrounding HTML, though this is less pronounced in recent versions of
Visual Studio.

Visual Studio highlights the @ symbols where C# transitions to HTML and uses C# syntax
coloring for C# code. This makes the Razor templates somewhat easier to read that than the pure
plain text.

Although the ability to use loops and conditionals is powerful—they’re one
of the advantages of Razor over static HTML—they also add to the
complexity of your view. Try to limit the amount of logic in your views to
make them as easy to understand and maintain as possible.

A common trope of the ASP.NET Core team is that they try to ensure you
“fall into the pit of success” when building an application. This refers to the
idea that by default, the easiest way to do something should be the correct
way of doing it. This is a great philosophy, as it means you shouldn’t get
burned by, for example, security problems if you follow the standard
approaches. Occasionally, however, you may need to step beyond the safety
rails; a common use case is when you need to render some HTML contained
in a C# object to the output, as you’ll see in the next section.

17.3.3 Rendering HTML with Raw

In the previous example, we rendered the list of tasks to HTML by writing
the string task using the @task Razor expression. But what if the task
variable contains HTML you want to display, so instead of "Check oil" it
contains "Check oil"? If you use a Razor expression to
output this as you did previously, you might hope to get this:

Check oil

But that’s not the case. The HTML generated comes out like this:

Check oil

Hmm, looks odd, right? What’s happened here? Why did the template not
write your variable to the HTML, like it has in previous examples? If you
look at how a browser displays this HTML, like in figure 17.7, I hope that it
makes more sense.

Figure 17.7 The second item, "Check oil" has been HTML-encoded, so the
 elements are visible to the user as part of the task. This prevents any security problems,
as users can’t inject malicious scripts into your HTML.

Razor templates HTML-encode C# expressions before they’re written to the
output stream. This is primarily for security reasons; writing out arbitrary
strings to your HTML could allow users to inject malicious data and
JavaScript into your website. Consequently, the C# variables you print in
your Razor template get written as HTML-encoded values.

Note

Razor also renders non-ASCII Unicode characters, such as ó and è, as HTML
entities: ó and è. You can customize this behavior using
WebEncoderOptions in Program.cs, as in this example:
builder.Services.Configure<WebEncoderOptions>(o =>

o.AllowCharacter('ó')).

In some cases, you might need to directly write out HTML contained in a
string to the response. If you find yourself in this situation, first, stop. Do
you really need to do this? If the values you’re writing have been entered by
a user, or were created based on values provided by users, there’s a serious
risk of creating a security hole in your website.

If you really need to write the variable out to the HTML stream, you can do
so using the Html property on the view page and calling the Raw method:

@Html.Raw(task)

With this approach, the string in task is directly written to the output stream,
without encoding, producing the HTML you originally wanted,
Check oil, which renders as shown in figure 17.8.

Figure 17.8 The second item, "Check oil" has been output using Html.Raw(), so
it hasn’t been HTML-encoded. The elements result in the second item being shown in
bold instead. Using Html.Raw() in this way should be avoided where possible, as it is a security
risk.

Warning

Using Html.Raw on user input creates a security risk that users could use to
inject malicious code into your website. Avoid using Html.Raw if possible.

The C# constructs shown in this section can be useful, but they can make
your templates harder to read. It’s generally easier to understand the intention
of Razor templates that are predominantly HTML markup rather than C#.

In the previous version of ASP.NET, these constructs, and in particular the
Html helper property, were the standard way to generate dynamic markup.
You can still use this approach in ASP.NET Core by using the various
HtmlHelper methods on the Html property, but these have largely been
superseded by a cleaner technique: Tag Helpers.

Note

I discuss Tag Helpers and how to use them to build HTML forms in chapter
18. HtmlHelper is essentially obsolete, though it’s still available if you prefer
to use it.

Tag Helpers are a useful feature that’s new to Razor in ASP.NET Core, but
many other features have been carried through from the legacy (.NET
Framework) ASP.NET. In the next section of this chapter, you’ll see how you
can create nested Razor templates and use partial views to reduce the amount
of duplication in your views.

17.4 Layouts, partial views, and _ViewStart

In this section you’ll learn about layouts and partial views, which allow you
to extract common code to reduce duplication. These files make it easier to
make changes to your HTML that affect multiple pages at once. You’ll also
learn how to run common code for every Razor Page using _ViewStart and
_ViewImports, and how to include optional sections in your pages.

Every HTML document has a certain number of elements that are required:

<html>, <head>, and <body>. As well, there are often common sections that
are repeated on every page of your application, such as the header and footer,
as shown in figure 17.9. Also, each page in your application will probably
reference the same CSS and JavaScript files.

Figure 17.9 A typical web application has a block-based layout, where some blocks are common
to every page of your application. The header block will likely be identical across your whole
application, but the sidebar may be identical only for the pages in one section. The body content
will differ for every page in your application.

All these different elements add up to a maintenance nightmare. If you had to
include these manually in every view, making any changes would be a
laborious, error-prone process involving editing every page. Instead, Razor
lets you extract these common elements into layouts.

Definition

A layout in Razor is a template that includes common code. It can’t be
rendered directly, but it can be rendered in conjunction with normal Razor
views.

By extracting your common markup into layouts, you can reduce the
duplication in your app. This makes changes easier, makes your views easier
to manage and maintain, and is generally good practice!

17.4.1 Using layouts for shared markup

Layout files are, for the most part, normal Razor templates that contain
markup common to more than one page. An ASP.NET Core app can have
multiple layouts, and layouts can reference other layouts. A common use for
this is to have different layouts for different sections of your application. For
example, an e-commerce website might use a three-column view for most
pages but a single-column layout when you come to the checkout pages, as
shown in figure 17.10.

Figure 17.10 The https://manning.com website uses different layouts for different parts of the
web application. The product pages use a three-column layout, but the cart page uses a single-
column layout.

You’ll often use layouts across many different Razor Pages, so they’re
typically placed in the Pages/Shared folder. You can name them anything you
like, but there’s a common convention to use _Layout.cshtml as the filename
for the base layout in your application. This is the default name used by the
Razor Page templates in Visual Studio and the .NET CLI.

Tip

A common convention is to prefix your layout files with an underscore (_) to
distinguish them from standard Razor templates in your Pages folder. Placing
them in Pages/Shared means you can refer to them by the short name, such as
"_Layout", without having to specify the full path to the layout file.

A layout file looks similar to a normal Razor template, with one exception:
every layout must call the @RenderBody() function. This tells the templating
engine where to insert the content from the child views. A simple layout is
shown in listing 17.7. Typically, your application references all your CSS and
JavaScript files in the layout and includes all the common elements, such as

headers and footers, but this example includes pretty much the bare minimum
HTML.

Listing 17.7 A basic _Layout.cshtml file calling RenderBody

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>@ViewData["Title"]</title> #A

 <link rel="stylesheet" href="~/css/site.css" /> #B

</head>

<body>

 @RenderBody() #C

</body>

</html>

As you can see, the layout file includes the required elements, such as <html>
and <head>, as well as elements you need on every page, such as <title>
and <link>. This example also shows the benefit of storing the page title in
ViewData; the layout can render it in the <title> element so that it shows in
the browser’s tab, as shown in figure 17.11.

Figure 17.11 The content of the <title> element is used to name the tab in the user’s browser, in
this case Home Page.

Note

Layout files are not standalone Razor Pages and do not take part in routing,
so they do not start with the @page directive.

Views can specify a layout file to use by setting the Layout property inside a
Razor code block, as shown in the following listing.

Listing 17.8 Setting the Layout property from a view

@{

 Layout = "_Layout"; #A

 ViewData["Title"] = "Home Page"; #B

}

<h1>@ViewData["Title"]</h1> #C

<p>This is the home page</p> #C

Any contents in the view are be rendered inside the layout, where the call to
@RenderBody() occurs. Combining the two previous listings generates the
following HTML.

Listing 17.9 Rendered output from combining a view with its layout

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Home Page</title> #A

 <link rel="stylesheet" href="/css/site.css" />

</head>

<body>

 <h1>Home Page</h1> #B

 <p>This is the home page</p> #B

</body>

<html>

Judicious use of layouts can be extremely useful in reducing the duplication
between pages. By default, layouts provide only a single location where you
can render content from the view, at the call to @RenderBody. In cases where
this is too restrictive, you can render content using sections.

17.4.2 Overriding parent layouts using sections

A common requirement when you start using multiple layouts in your
application is to be able to render content from child views in more than one
place in your layout. Consider the case of a layout that uses two columns.

The view needs a mechanism for saying “render this content in the left
column” and “render this other content in the right column.” This is achieved
using sections.

Note

Remember, all the features outlined in this chapter are specific to Razor,
which is a server-side rendering engine. If you’re using a client-side single-
page application (SPA) framework to build your application, you’ll likely
handle these requirements in other ways, within the client.

Sections provide a way of organizing where view elements should be placed
within a layout. They’re defined in the view using an @section definition, as
shown in the following listing, which defines the HTML content for a sidebar
separate from the main content, in a section called Sidebar. The @section
can be placed anywhere in the file, top or bottom, wherever is convenient.

Listing 17.10 Defining a section in a view template

@{

 Layout = "_TwoColumn";

}

@section Sidebar { #A

 <p>This is the sidebar content</p> #A

} #A

<p>This is the main content </p> #B

The section is rendered in the parent layout with a call to @RenderSection().
This renders the content contained in the child section into the layout.
Sections can be either required or optional. If they’re required, a view must
declare the given @section; if they’re optional, they can be omitted, and the
layout will skip them. Skipped sections won’t appear in the rendered HTML.
The following listing shows a layout that has a required section called
Sidebar and an optional section called Scripts.

Listing 17.11 Rendering a section in a layout file, _TwoColumn.cshtml

@{

 Layout = "_Layout"; #A

}

<div class="main-content">

 @RenderBody() #B

</div>

<div class="side-bar">

 @RenderSection("Sidebar", required: true) #C

</div>

@RenderSection("Scripts", required: false) #D

Tip

It’s common to have an optional section called Scripts in your layout pages.
This can be used to render additional JavaScript that’s required by some
views but isn’t needed on every view. A common example is the jQuery
Unobtrusive Validation scripts for client-side validation. If a view requires
the scripts, it adds the appropriate @section Scripts to the Razor markup.

You may notice that the previous listing defines a Layout property, even
though it’s a layout itself, not a view. This is perfectly acceptable and lets
you create nested hierarchies of layouts, as shown in figure 17.12.

Figure 17.12 Multiple layouts can be nested to create complex hierarchies. This allows you to
keep the elements common to all views in your base layout and extract layout common to
multiple views into sub-layouts.

Tip

Most websites these days need to be responsive, so they work on a wide
variety of devices. You generally shouldn’t use layouts for this. Don’t serve
different layouts for a single page based on the device making the request.
Instead, serve the same HTML to all devices, and use CSS on the client side
to adapt the display of your web page as required.

As well as the simple optional/required flags for sections, Razor Pages have
several other messages that you can use for flow control in your layout pages:

IsSectionDefined(string section)—Returns true if a Razor Page
has defined the named section.
IgnoreSection(string section)—Ignores an unrendered section. If a
section is defined in a page but not rendered, the Razor Page throws an

exception unless the section is ignored.
IgnoreBody()—Ignores the unrendered body of the Razor Page.
Layouts must call either RenderBody() or IgnoreBody(); otherwise,
they will throw an InvalidOperationException.

Layout files and sections provide a lot of flexibility for building sophisticated
UIs, but one of their most important uses is in reducing the duplication of
code in your application. They’re perfect for avoiding duplication of content
that you’d need to write for every view. But what about those times when you
find you want to reuse part of a view somewhere else? For those cases, you
have partial views.

17.4.3 Using partial views to encapsulate markup

Partial views are exactly what they sound like: part of a view. They provide a
means of breaking up a larger view into smaller, reusable chunks. This can be
useful for both reducing the complexity in a large view by splitting it into
multiple partial views or for allowing you to reuse part of a view inside
another.

Most web frameworks that use server-side rendering have this capability.
Ruby on Rails has partial views, Django has inclusion tags, and Zend has
partials. These all work in the same way, extracting common code into small,
reusable templates. Even client-side templating engines such as Mustache
and Handlebars, used by client-side frameworks like Angular and Ember,
have similar “partial view” concepts.

Consider a to-do list application again. You might find you have a Razor
Page called ViewToDo.cshtml that displays a single to-do with a given id.
Later, you create a new Razor Page, RecentToDos.cshtml, that displays the
five most recent to-do items. Instead of copying and pasting the code from
one page to the other, you could create a partial view, called _ToDo.cshtml,
as in the following listing.

Listing 17.12 Partial view _ToDo.cshtml for displaying a ToDoItemViewModel

@model ToDoItemViewModel #A

<h2>@Model.Title</h2> #B

 #B

 @foreach (var task in Model.Tasks) #B

 { #B

 @task #B

 } #B

 #B

Partial views are a bit like Razor Pages without the PageModel and handlers.
Partial views are purely about rendering small sections of HTML rather than
handling requests, model binding, and validation, and calling the application
model. They are great for encapsulating small usable bits of HTML that you
need to generate on multiple Razor Pages.

Both the ViewToDo.cshtml and RecentToDos.cshtml Razor Pages can render
the _ToDo.cshtml partial view, which handles generating the HTML for a
single class. Partial views are rendered using the <partial /> Tag Helper,
providing the name of the partial view to render and the data (the model) to
render. For example, the RecentToDos.cshtml view could achieve this as
shown in the following listing.

Listing 17.13 Rendering a partial view from a Razor Page

@page #A

@model RecentToDoListModel #B

@foreach(var todo in Model.RecentItems) #C

{

 <partial name="_ToDo" model="todo" /> #D

}

When you render a partial view without providing an absolute path or file
extension, such as _ToDo in listing 17.13, the framework tries to locate the
view by searching the Pages folder, starting from the Razor Page that invoked
it. For example, if your Razor Page is located at
Pages/Agenda/ToDos/RecentToDos.chstml, the framework would look in the
following places for a file called _ToDo.chstml:

Pages/Agenda/ToDos/ (the current Razor Page’s folder)
Pages/Agenda/
Pages/

Pages/Shared/
Views/Shared/

The first location that contains a file called _ToDo.cshtml will be selected. If
you include the .cshtml file extension when you reference the partial view,
the framework will look only in the current Razor Page’s folder. Also, if you
provide an absolute path to the partial, such as /Pages/Agenda/ToDo.cshtml,
that’s the only place the framework will look.

Tip

As with most of Razor Pages, the search locations are conventions that you
can customize. If you find the need, you can customize the paths as shown
here: http://mng.bz/nM9e.

The Razor code contained in a partial view is almost identical to a standard
view. The main difference is the fact that partial views are called only from
other views. The other difference is that partial views don’t run
_ViewStart.cshtml when they execute. You’ll learn about _ViewStart.cshtml
shortly in section 17.4.4.

Note

Like layouts, partial views are typically named with a leading underscore.

Child actions in ASP.NET Core

In the legacy .NET Framework version of ASP.NET, there was the concept
of a child action. This was an MVC controller action method that could be
invoked from inside a view. This was the main mechanism for rendering
discrete sections of a complex layout that had nothing to do with the main
action method. For example, a child action method might render the shopping
cart in the corner of every page on an e-commerce site.

This approach meant you didn’t have to pollute every page’s view model
with the view model items required to render the shopping cart, but it
fundamentally broke the MVC design pattern by referencing controllers from
a view.

In ASP.NET Core, child actions are no more. View components have
replaced them. These are conceptually quite similar in that they allow both
the execution of arbitrary code and the rendering of HTML, but they don’t
directly invoke controller actions. You can think of them as a more powerful
partial view that you should use anywhere a partial view needs to contain
significant code or business logic. You’ll see how to build a small view
component in chapter 32.

Partial views aren’t the only way to reduce duplication in your view
templates. Razor also allows you to put common elements such as namespace
declarations and layout configuration in centralized files. In the next section
you’ll see how to wield these files to clean up your templates.

17.4.4 Running code on every view with _ViewStart and
_ViewImports

Due to the nature of views, you’ll inevitably find yourself writing certain
things repeatedly. If all your views use the same layout, adding the following
code to the top of every page feels a little redundant:

@{

 Layout = "_Layout";

}

Similarly, if you find you need to reference objects from a different
namespace in your Razor views, then having to add @using
WebApplication1.Models to the top of every page can get to be a chore.
Fortunately, ASP.NET Core includes two mechanisms for handling these
common tasks: _ViewImports.cshtml and _ViewStart.cshtml.

Importing common directives with _ViewImports

The _ViewImports.cshtml file contains directives that are inserted at the top
of every Razor view. This can include things like the @using and @model
statements that you’ve already seen—basically any Razor directive. For
example, to avoid adding a using statement to every view, you can include it
in _ViewImports.cshtml instead of in your Razor Pages, as shown in the

following listing.

Listing 17.14 A typical _ViewImports.cshtml file importing additional namespaces

@using WebApplication1 #A

@using WebApplication1.Pages #A

@using WebApplication1.Models #B

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers #C

The _ViewImports.cshtml file can be placed in any folder, and it will apply to
all views and subfolders in that folder. Typically, it’s placed in the root Pages
folder so that it applies to every Razor Page and partial view in your app.

It’s important to note that you should put Razor directives only in
_ViewImports.cshtml; you can’t put any old C# in there. As you can see in
the previous listing, this is limited to things like @using or the
@addTagHelper directive that you’ll learn about in chapter 18. If you want to
run some arbitrary C# at the start of every view in your application, such as
to set the Layout property, you should use the _ViewStart.cshtml file instead.

Running code for every view with _ViewStart

You can easily run common code at the start of every Razor Page by adding a
_ViewStart.cshtml file to the Pages folder in your application. This file can
contain any Razor code, but it’s typically used to set the Layout for all the
pages in your application, as shown in the following listing. Then you can
omit the Layout statement from all pages that use the default layout. If a view
needs to use a nondefault layout, you can override it by setting the value in
the Razor Page itself.

Listing 17.15 A typical _ViewStart.cshtml file setting the default layout

@{

 Layout = "_Layout";

}

Any code in the _ViewStart.cshtml file runs before the view executes. Note
that _ViewStart.cshtml runs only for Razor Page views; it doesn’t run for
layouts or partial views. Also note that the names for these special Razor files

are enforced and can’t be changed by conventions.

Warning

You must use the names _ViewStart.cshtml and _ViewImports.cshtml for the
Razor engine to locate and execute them correctly. To apply them to all your
app’s pages, add them to the root of the Pages folder, not to the Shared
subfolder.

You can specify additional _ViewStart.cshtml or _ViewImports.cshtml files
to run for a subset of your views by including them in a subfolder in Pages.
The files in the subfolders run after the files in the root Pages folder.

Partial views, layouts, and AJAX

This chapter describes using Razor to render full HTML pages server-side,
which are then sent to the user’s browser in traditional web apps. A common
alternative approach when building web apps is to use a JavaScript client-side
framework to build an SPA, which renders the HTML client-side in the
browser.

One of the technologies SPAs typically use is AJAX (Asynchronous
JavaScript and XML), in which the browser sends requests to your ASP.NET
Core app without reloading a whole new page. It’s also possible to use AJAX
requests with apps that use server-side rendering. To do so, you’d use
JavaScript to request an update for part of a page.

If you want to use AJAX with an app that uses Razor, you should consider
making extensive use of partial views. Then you can expose these via
additional Razor Page handlers, as shown in this article: http://mng.bz/vzB1.
Using AJAX can reduce the overall amount of data that needs to be sent back
and forth between the browser and your app, and it can make your app feel
smoother and more responsive, as it requires fewer full-page loads. But using
AJAX with Razor can add complexity, especially for larger apps. If you
foresee yourself making extensive use of AJAX to build a highly dynamic
web app, you might want to consider using minimal APIs or web API
controllers with a client-side framework, or consider using Blazor instead.

That concludes our first look at rendering HTML using the Razor templating
engine. In the next chapter you’ll learn about Tag Helpers and how to use
them to build HTML forms, a staple of modern web applications. Tag
Helpers are one of the biggest improvements to Razor in ASP.NET Core over
legacy ASP.NET, so getting to grips with them will make editing your views
an overall more pleasant experience!

17.5 Summary

Razor is a templating language that allows you to generate dynamic
HTML using a mixture of HTML and C#. This provides the power of
C# without your having to build up an HTML response manually using
strings.
Razor Pages can pass strongly typed data to a Razor view by setting
public properties on the PageModel. To access the properties on the view
model, the view should declare the model type using the @model
directive.
Page handlers can pass key-value pairs to the view using the ViewData
dictionary. This is useful for implicitly passing shared data to layouts
and partial views.
Razor expressions render C# values to the HTML output using @ or @().
You don’t need to include a semicolon after the statement when using
Razor expressions.
Razor code blocks, defined using @{}, execute C# without outputting
HTML. The C# in Razor code blocks must be complete statements, so it
must include semicolons.
Loops and conditionals can be used to easily generate dynamic HTML
in templates, but it’s a good idea to limit the number of if statements in
particular, to keep your views easy to read.
If you need to render a string as raw HTML you can use Html.Raw, but
do so sparingly; rendering raw user input can create a security
vulnerability in your application.
Tag Helpers allow you to bind your data model to HTML elements,
making it easier to generate dynamic HTML while staying editor-
friendly.
You can place HTML common to multiple views in a layout to reduce
duplication. The layout will render any content from the child view at

the location @RenderBody is called.
Encapsulate commonly used snippets of Razor code in a partial view. A
partial view can be rendered using the <partial /> tag.
_ViewImports.cshtml can be used to include common directives, such as
@using statements, in every view.
_ViewStart.cshtml is called before the execution of each Razor Page and
can be used to execute code common to all Razor Pages, such as setting
a default layout page. It doesn’t execute for layouts or partial views.
_ViewImports.cshtml and _ViewStart.cshtml are hierarchical. Files in
the root folder execute first, followed by files in controller-specific view
folders.

18 Building forms with Tag Helpers
This chapter covers

Building forms easily with Tag Helpers
Generating URLs with the Anchor Tag Helper
Using Tag Helpers to add functionality to Razor

In chapter 17 you learned about Razor templates and how to use them to
generate the views for your application. By mixing HTML and C#, you can
create dynamic applications that can display different data based on the
request, the logged-in user, or any other data you can access.

Displaying dynamic data is an important aspect of many web applications,
but it’s typically only half of the story. As well as needing to displaying data
to the user, you often need the user to be able to submit data back to your
application. You can use data to customize the view or to update the
application model by saving it to a database, for example. For traditional web
applications, this data is usually submitted using an HTML form.

In chapter 16 you learned about model binding, which is how you accept the
data sent by a user in a request and convert it to C# objects that you can use
in your Razor Pages. You also learned about validation and how important it
is to validate the data sent in a request. You used DataAnnotations attributes
to define the rules associated with your models, as well as associated
metadata like the display name for a property.

The final aspect we haven’t yet looked at is how to build the HTML forms
that users use to send this data in a request. Forms are one of the key ways
users will interact with your application in the browser, so it’s important
they’re both correctly defined for your application and user-friendly.
ASP.NET Core provides a feature to achieve this, called Tag Helpers.

Tag Helpers are additions to Razor syntax that you use to customize the
HTML generated in your templates. Tag Helpers can be added to an

otherwise-standard HTML element, such as an <input>, to customize its
attributes based on your C# model, saving you from having to write
boilerplate code. Tag Helpers can also be standalone elements and can be
used to generate completely customized HTML.

Note

Remember that Razor, and therefore Tag Helpers, are for server-side HTML
rendering. You can’t use Tag Helpers directly in frontend frameworks like
Angular and React.

If you’ve used legacy (.NET Framework) ASP.NET before, Tag Helpers may
sound reminiscent of HTML Helpers, which could also be used to generate
HTML based on your C# classes. Tag Helpers are the logical successor to
HTML Helpers, as they provide a more streamlined syntax than the previous,
C#-focused helpers. HTML Helpers are still available in ASP.NET Core, so
if you’re converting some old templates to ASP.NET Core, you can still use
them. But if you’re writing new Razor templates, I recommend using only
Tag Helpers, as they should cover everything you need. I don’t cover HTML
Helpers in this book.

In this chapter you’ll primarily learn how to use Tag Helpers when building
forms. They simplify the process of generating correct element names and
IDs so that model binding can occur seamlessly when the form is sent back to
your application. To put them into context, you’re going to carry on building
the currency converter application that you’ve seen in previous chapters.
You’ll add the ability to submit currency exchange requests to it, validate the
data, and redisplay errors on the form using Tag Helpers to do the legwork
for you, as shown in figure 18.1.

Figure 18.1 The currency converter application forms, built using Tag Helpers. The labels, drop-
down lists, input elements, and validation messages are all generated using Tag Helpers.

As you develop the application, you’ll meet the most common Tag Helpers
you’ll encounter when working with forms. You’ll also see how you can use
Tag Helpers to simplify other common tasks, such as generating links,
conditionally displaying data in your application, and ensuring that users see
the latest version of an image file when they refresh their browser.

To start, I’ll talk a little about why you need Tag Helpers when Razor can
already generate any HTML you like by combining C# and HTML in a file.

18.1 Catering to editors with Tag Helpers

One of the common complaints about the mixture of C# and HTML in Razor
templates is that you can’t easily use standard HTML editing tools with them;
all the @ and {} symbols in the C# code tend to confuse the editors. Reading
the templates can be similarly difficult for people; switching paradigms
between C# and HTML can be a bit jarring sometimes.

This arguably wasn’t such a problem when Visual Studio was the only
supported way to build ASP.NET websites, as it could obviously understand
the templates without any problems and helpfully colorize the editor. But
with ASP.NET Core going cross-platform, the desire to play nicely with
other editors reared its head again.

This was one of the big motivations for Tag Helpers. They integrate
seamlessly into the standard HTML syntax by adding what look to be
attributes, typically starting with asp-*. They’re most often used to generate
HTML forms, as shown in the following listing. This listing shows a view
from the first iteration of the currency converter application, in which you
choose the currencies and quantity to convert.

Listing 18.1 User registration form using Tag Helpers

@page #A

@model ConvertModel #A

<form method="post">

 <div class="form-group">

 <label asp-for="CurrencyFrom"></label> #B

 <input class="form-control" asp-for="CurrencyFrom" /> #C

 #D

 </div>

 <div class="form-group">

 <label asp-for="Quantity"></label> #B

 <input class="form-control" asp-for="Quantity" /> #C

 #D

 </div>

 <div class="form-group">

 <label asp-for="CurrencyTo"></label> #B

 <input class="form-control" asp-for="CurrencyTo" /> #C

 #D

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

At first glance, you might not even spot the Tag Helpers, they blend in so
well with the HTML! This makes it easy to edit the files with any standard
HTML text editor. But don’t be concerned that you’ve sacrificed readability
in Visual Studio. As you can see in figure 18.2, elements with Tag Helpers
are distinguishable from the standard HTML <div> element and the standard
HTML class attribute on the <input> element. The C# properties of the
view model being referenced (CurrencyFrom, in this case) are also displayed
differently from “normal” HTML attributes. And of course you get
IntelliSense, as you’d expect. Most other integrated development
environments (IDEs) also include syntax highlighting and IntelliSense
support.

Figure 18.2 In Visual Studio, Tag Helpers are distinguishable from normal elements by being
bold and a different color from standard HTML elements and attributes.

Tag Helpers are extra attributes on standard HTML elements (or new
elements entirely) that work by modifying the HTML element they’re
attached to. They let you easily integrate your server-side values, such as
those exposed on your PageModel, with the generated HTML.

Notice that listing 18.1 doesn’t specify the captions to display in the labels.
Instead, you declaratively use asp-for="CurrencyFrom" to say “For this
<label>, use the CurrencyFrom property to work out what caption to use.”
Similarly, for the <input> elements, Tag Helpers are used to

Automatically populate the value from the PageModel property.
Choose the correct id and name, so that when the form is POSTed back to
the Razor Page, the property is model-bound correctly.
Choose the correct input type to display (for example, a number input for
the Quantity property).
Display any validation errors, as shown in figure 18.3.

Figure 18.3 Tag Helpers hook into the metadata provided by DataAnnotations attributes, as well
as the property types themselves. The Validation Tag Helper can even populate error messages
based on the ModelState, as you saw in chapter 16.

Tag Helpers can perform a variety of functions by modifying the HTML
elements they’re applied to. This chapter introduces several common Tag
Helpers and how to use them, but it’s not an exhaustive list. I don’t cover all
the helpers that come out of the box in ASP.NET Core (there are more
coming with every release!), and you can easily create your own, as you’ll
see in chapter 32. Alternatively, you could use those published by others on
NuGet or GitHub.

WebForms flashbacks

For those who used ASP.NET back in the day of WebForms, before the
advent of the Model-View-Controller (MVC) pattern for web development,
Tag Helpers may be triggering bad memories. Although the asp- prefix is
somewhat reminiscent of ASP.NET Web Server control definitions, never
fear; the two are completely different beasts.

Web Server controls were added directly to a page’s backing C# class and
had a broad scope that could modify seemingly unrelated parts of the page.
Coupled with that, they had a complex life cycle that was hard to understand
and debug when things weren’t working. The perils of trying to work with
that level of complexity haven’t been forgotten, and Tag Helpers aren’t the
same.

Tag Helpers don’t have a life cycle; they participate in the rendering of the
element to which they’re attached, and that’s it. They can modify the HTML
element they’re attached to, but they can’t modify anything else on your
page, making them conceptually much simpler. An additional capability they
bring is the ability to have multiple Tag Helpers acting on a single element—
something Web Server controls couldn’t easily achieve.

Overall, if you’re writing Razor templates, you’ll have a much more
enjoyable experience if you embrace Tag Helpers as integral to its syntax.
They bring a lot of benefits without obvious downsides, and your cross-
platform-editor friends will thank you!

18.2 Creating forms using Tag Helpers

In this section you’ll learn how to use some of the most useful Tag Helpers:
Tag Helpers that work with forms. You’ll learn how to use them to generate
HTML markup based on properties of your PageModel, creating the correct
id and name attributes, and setting the value of the element to the model
property’s value (among other things). This capability significantly reduces
the amount of markup you need to write manually.

Imagine you’re building the checkout page for the currency converter
application, and you need to capture the user’s details on the checkout page.
In chapter 16 you built a UserBindingModel model (shown in listing 18.2),
added DataAnnotations attributes for validation, and saw how to model-bind
it in a POST to a Razor Page. In this chapter you’ll see how to create the view
for it by exposing the UserBindingModel as a property on your PageModel.

Warning

With Razor Pages, you often expose the same object in your view that you
use for model binding. When you do this, you must be careful to not include
sensitive values (that shouldn’t be edited) in the binding model, to prevent
mass-assignment attacks on your app. You can read more about these attacks
on my blog at http://mng.bz/RXw0.

Listing 18.2 UserBindingModel for creating a user on a checkout page

public class UserBindingModel

{

 [Required]

 [StringLength(100, ErrorMessage = "Maximum length is {1}")]

 [Display(Name = "Your name")]

 public string FirstName { get; set; }

 [Required]

 [StringLength(100, ErrorMessage = "Maximum length is {1}")]

 [Display(Name = "Last name")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress]

 public string Email { get; set; }

 [Phone(ErrorMessage = "Not a valid phone number.")]

 [Display(Name = "Phone number")]

 public string PhoneNumber { get; set; }

}

The UserBindingModel is decorated with various DataAnnotations
attributes. In chapter 16 you saw that these attributes are used during model
validation when the model is bound to a request, before the page handler is
executed. These attributes are also used by the Razor templating language to
provide the metadata required to generate the correct HTML when you use
Tag Helpers.

You can use the pattern I described in chapter 16, exposing a
UserBindindModel as an Input property of your PageModel, to use the model
for both model binding and in your Razor view:

public class CheckoutModel: PageModel

{

 [BindProperty]

 public UserBindingModel Input { get; set; }

}

With the help of the UserBindingModel property, Tag Helpers, and a little
HTML, you can create a Razor view that lets the user enter their details, as
shown in figure 18.4.

Figure 18.4 The checkout page for an application. The HTML is generated based on a
UserBindingModel, using Tag Helpers to render the required element values, input types, and
validation messages.

The Razor template to generate this page is shown in listing 18.3. This code
uses a variety of tag helpers, including

A Form Tag Helper on the <form> element
Label Tag Helpers on the <label>
Input Tag Helpers on the <input>
Validation Message Tag Helpers on validation elements for each
property in the UserBindingModel

Listing 18.3 Razor template for binding to UserBindingModel on the checkout page

@page

@model CheckoutModel #A

@{

 ViewData["Title"] = "Checkout";

}

<h1>@ViewData["Title"]</h1>

<form asp-page="Checkout"> #B

 <div class="form-group">

 <label asp-for="Input.FirstName"></label> #C

 <input class="form-control" asp-for="Input.FirstName" />

 </div>

 <div class="form-group">

 <label asp-for="Input.LastName"></label>

 <input class="form-control" asp-for="Input.LastName" />

 </div>

 <div class="form-group">

 <label asp-for="Input.Email"></label>

 <input class="form-control" asp-for="Input.Email" /> #D

 </div>

 <div class="form-group">

 <label asp-for="Input.PhoneNumber"></label>

 <input class="form-control" asp-for="Input.PhoneNumber" />

 #E

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

</form>

You can see the HTML markup that this template produces in listing 18.4,
which renders in the browser as you saw in figure 18.4. You can see that each

of the HTML elements with a Tag Helper has been customized in the output:
the <form> element has an action attribute, the <input> elements have an id
and name based on the name of the referenced property, and both the <input>
and have data-* attributes for validation.

Listing 18.4 HTML generated by the Razor template on the checkout page

<form action="/Checkout" method="post">

 <div class="form-group">

 <label for="Input_FirstName">Your name</label>

 <input class="form-control" type="text"

 data-val="true" data-val-length="Maximum length is 100"

 id="Input_FirstName" data-val-length-max="100"

 data-val-required="The Your name field is required."

 Maxlength="100" name="Input.FirstName" value="" />

 <span data-valmsg-for="Input.FirstName"

 class="field-validation-valid" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_LastName">Your name</label>

 <input class="form-control" type="text"

 data-val="true" data-val-length="Maximum length is 100"

 id="Input_LastName" data-val-length-max="100"

 data-val-required="The Your name field is required."

 Maxlength="100" name="Input.LastName" value="" />

 <span data-valmsg-for="Input.LastName"

 class="field-validation-valid" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_Email">Email</label>

 <input class="form-control" type="email" data-val="true"

 data-val-email="The Email field is not a valid e-mail address."

 Data-val-required="The Email field is required."

 Id="Input_Email" name="Input.Email" value="" />

 <span class="text-danger field-validation-valid"

 data-valmsg-for="Input.Email" data-valmsg-replace="true">

 </div>

 <div class="form-group">

 <label for="Input_PhoneNumber">Phone number</label>

 <input class="form-control" type="tel" data-val="true"

 data-val-phone="Not a valid phone number." Id="Input_PhoneNumber"

 name="Input.PhoneNumber" value="" />

 <span data-valmsg-for="Input.PhoneNumber"

 class="text-danger field-validation-valid"

 data-valmsg-replace="true">

 </div>

 <button type="submit" class="btn btn-primary">Submit</button>

 <input name="__RequestVerificationToken" type="hidden"

 value="CfDJ8PkYhAINFx1JmYUVIDWbpPyy_TRUNCATED" />

</form>

Wow, that’s a lot of markup! If you’re new to working with HTML, this
might all seem a little overwhelming, but the important thing to notice is that
you didn’t have to write most of it! The Tag Helpers took care of most of the
plumbing for you. That’s basically Tag Helpers in a nutshell; they simplify
the fiddly mechanics of building HTML forms, leaving you to concentrate on
the overall design of your application instead of writing boilerplate markup.

Note

If you’re using Razor to build your views, Tag Helpers will make your life
easier, but they’re entirely optional. You’re free to write raw HTML without
them or to use the legacy HTML Helpers.

Tag Helpers simplify and abstract the process of HTML generation, but they
generally try to do so without getting in your way. If you need the final
generated HTML to have a particular attribute, you can add it to your
markup. You can see that in the previous listings where class attributes are
defined on <input> elements, such as <input class="form-control" asp-
for="Input.FirstName" />. They pass untouched from Razor to the HTML
output.

Tip

This is different from the way HTML Helpers worked in legacy ASP.NET;
HTML helpers often require jumping through hoops to set attributes in the
generated markup.

Even better, you can also override attributes that are normally generated by a
Tag Helper, like the type attribute on an <input> element. For example, if
the FavoriteColor property on your PageModel was a string, by default Tag
Helpers would generate an <input> element with type="text". Updating
your markup to use the HTML5 color picker type is trivial; set the type
explicitly in your Razor view:

<input type="color" asp-for="FavoriteColor" />

Tip

HTML5 adds a huge number of features, including lots of form elements that
you may not have come across before, such as range inputs and color
pickers. You can read about them on the Mozilla Developer Network website
at http://mng.bz/qOc1.

For the remainder of section 18.2, you’ll build the currency converter Razor
templates from scratch, adding Tag Helpers as you find you need them.
You’ll probably find you use most of the common form Tag Helpers in every
application you build, even if it’s on a simple login page.

18.2.1 The Form Tag Helper

The first thing you need to start building your HTML form is, unsurprisingly,
the <form> element. In listing 18.3 the <form> element was augmented with
an asp-page Tag Helper attribute:

<form asp-page="Checkout">

The Tag Helper adds action and method attributes to the final HTML,
indicating which URL the form should be sent to when it’s submitted and the
HTTP verb to use:

<form action="/Checkout" method="post">

Setting the asp-page attribute allows you to specify a different Razor Page in
your application that the form will be posted to when it’s submitted. If you
omit the asp-page attribute, the form will post back to the same URL it was
served from. This is common with Razor Pages. You normally handle the
result of a form post in the same Razor Page that is used to display it.

Warning

If you omit the asp-page attribute, you must add the method="post" attribute
manually. It’s important to add this attribute so the form is sent using the

POST verb instead of the default GET verb. Using GET for forms can be a
security risk.

The asp-page attribute is added by a FormTagHelper. This Tag Helper uses
the value provided to generate a URL for the action attribute, using the URL
generation features of routing that I described in chapters 5 and 14.

Note

Tag Helpers can make multiple attributes available on an element. Think of
them like properties on a Tag Helper configuration object. Adding a single
asp- attribute activates the Tag Helper on the element. Adding more
attributes lets you override further default values of its implementation.

The Form Tag Helper makes several other attributes available on the <form>
element that you can use to customize the generated URL. I hope you’ll
remember that you can set route values when generating URLs. For example,
if you have a Razor Page called Product.cshtml that uses the directive

@page "{id}"

the full route template for the page would be "Product/{id}". To generate
the URL for this page correctly, you must provide the {id} route value. How
can you set that value using the Form Tag Helper?

The Form Tag Helper defines an asp-route-* wildcard attribute that you can
use to set arbitrary route parameters. Set the * in the attribute to the route
parameter name. For example, to set the id route parameter, you’d set the
asp-route-id value. If the ProductId property of your PageModel contains
the id value required, you could use:

<form asp-page="Product" asp-route-id="@Model.ProductId">

Based on the route template of the Product.cshtml Razor Page (and assuming
ProductId=5 in this example), this would generate the following markup:

<form action="/Product/5" method="post">

You can add as many asp-route-* attributes as necessary to your <form> to

generate the correct action URL. You can also set the Razor Page handler to
use the asp-page-handler attribute. This ensures that the form POST will be
handled by the handler you specify.

Note

The Form Tag Helper has many additional attributes, such as asp-action and
asp-controller, that you generally won’t use with Razor Pages. Those are
useful only if you’re using MVC controllers with views. In particular, look
out for the asp-route attribute—this is not the same as the asp-route-*
attribute. The former is used to specify a named route (such as a named
minimal API endpoint), and the latter is used to specify the route values to
use during URL generation.

The main job of the Form Tag Helper is to generate the action attribute, but
it performs one additional important function: generating a hidden <input>
field needed to prevent cross-site request forgery (CSRF) attacks.

Definition

Cross-site request forgery (CSRF) attacks are a website exploit that can allow
actions to be executed on your website by an unrelated malicious website.
You’ll learn about them in detail in chapter 29.

You can see the generated hidden <input> at the bottom of the <form> in
listing 18.4; it’s named __RequestVerificationToken and contains a
seemingly random string of characters. This field won’t protect you on its
own, but I’ll describe in chapter 29 how it’s used to protect your website. The
Form Tag Helper generates it by default, so you generally won’t need to
worry about it, but if you need to disable it, you can do so by adding asp-
antiforgery="false" to your <form> element.

The Form Tag Helper is obviously useful for generating the action URL, but
it’s time to move on to more interesting elements—those that you can see in
your browser!

18.2.2 The Label Tag Helper

Every <input> field in your currency converter application needs to have an
associated label so the user knows what the <input> is for. You could easily
create those yourself, manually typing the name of the field and setting the
for attribute as appropriate, but luckily there’s a Tag Helper to do that for
you.

The Label Tag Helper is used to generate the caption (the visible text) and the
for attribute for a <label> element, based on the properties in the
PageModel. It’s used by providing the name of the property in the asp-for
attribute:

<label asp-for="FirstName"></label>

The Label Tag Helper uses the [Display] DataAnnotations attribute that
you saw in chapter 16 to determine the appropriate value to display. If the
property you’re generating a label for doesn’t have a [Display] attribute, the
Label Tag Helper uses the name of the property instead. Consider this model
in which the FirstName property has a [Display] attribute, but the Email
property doesn’t:

public class UserModel

{

 [Display(Name = "Your name")]

 public string FirstName { get; set; }

 public string Email { get; set; }

}

The following Razor

<label asp-for="FirstName"></label>

<label asp-for="Email"></label>

would generate this HTML:

<label for="FirstName">Your name</label>

<label for="Email">Email</label>

The inner text inside the <label> element uses the value set in the [Display]
attribute, or the property name in the case of the Email property. Also note
that the for attribute has been generated with the name of the property. This
is a key bonus of using Tag Helpers; it hooks in with the element IDs

generated by other Tag Helpers, as you’ll see shortly.

Note

The for attribute is important for accessibility. It specifies the ID of the
element to which the label refers. This is important for users who are using a
screen reader, for example, as they can tell what property a form field relates
to.

As well as properties on the PageModel, you can also reference sub-properties
on child objects. For example, as I described in chapter 16, it’s common to
create a nested class in a Razor Page, expose that as a property, and decorate
it with the [BindProperty] attribute:

public class CheckoutModel: PageModel

{

 [BindProperty]

 public UserBindingModel Input { get; set; }

}

You can reference the FirstName property of the UserBindingModel by
“dotting” into the property as you would in any other C# code. Listing 18.3
shows more examples of this.

<label asp-for="Input.FirstName"></label>

<label asp-for="Input.Email"></label>

As is typical with Tag Helpers, the Label Tag Helper won’t override values
that you set yourself. If, for example, you don’t want to use the caption
generated by the helper, you could insert your own manually. The code

<label asp-for="Email">Please enter your Email</label>

would generate this HTML:

<label for="Email">Please enter your Email</label>

As ever, you’ll generally have an easier time with maintenance if you stick to
the standard conventions and don’t override values like this, but the option is
there. Next up is a biggie: the Input and Textarea Tag Helpers.

18.2.3 The Input and Textarea Tag Helpers

Now you’re getting into the meat of your form: the <input> elements that
handle user input. Given that there’s such a wide array of possible input
types, there’s a variety of ways they can be displayed in the browser. For
example, Boolean values are typically represented by a checkbox type
<input> element, whereas integer values would use a number type <input>
element, and a date would use the date type, as shown in figure 18.5.

Figure 18.5 Various input element types. The exact way in which each type is displayed varies by
browser.

To handle this diversity, the Input Tag Helper is one of the most powerful
Tag Helpers. It uses information based on both the type of the property (bool,
string, int, and so on) and any DataAnnotations attributes applied to it
([EmailAddress] and [Phone], among others) to determine the type of the
input element to generate. The DataAnnotations are also used to add data-
val-* client-side validation attributes to the generated HTML.

Consider the Email property from listing 18.2 that was decorated with the
[EmailAddress] attribute. Adding an <input> is as simple as using the asp-
for attribute:

<input asp-for="Input.Email" />

The property is a string, so ordinarily the Input Tag Helper would generate
an <input> with type="text". But the addition of the [EmailAddress]
attribute provides additional metadata about the property. Consequently, the
Tag Helper generates an HTML5 <input> with type="email":

<input type="email" id="Input_Email" name="Input.Email"

 value="test@example.com" data-val="true"

 data-val-email="The Email Address field is not a valid e-mail address."

 Data-val-required="The Email Address field is required."

 />

You can take a whole host of things away from this example. First, the id and
name attributes of the HTML element have been generated from the name of
the property. The value of the id attribute matches the value generated by the
Label Tag Helper in its for attribute, Input_Email. The value of the name
attribute preserves the “dot” notation, Input.Email, so that model binding
works correctly when the field is POSTed to the Razor Page.

Also, the initial value of the field has been set to the value currently stored in
the property ("test@example.com", in this case). The type of the element has
also been set to the HTML5 email type, instead of using the default text
type.

Perhaps the most striking addition is the swath of data-val-* attributes.
These can be used by client-side JavaScript libraries such as jQuery to

provide client-side validation of your DataAnnotations constraints. Client-
side validation provides instant feedback to users when the values they enter
are invalid, providing a smoother user experience than can be achieved with
server-side validation alone, as I described in chapter 16.

Client-side validation

To enable client-side validation in your application, you need to add some
jQuery libraries to your HTML pages. In particular, you need to include the
jQuery, jQuery-validation, and jQuery-validation-unobtrusive JavaScript
libraries. You can do this in several ways, but the simplest is to include the
script files at the bottom of your view using

<script src="~/lib/jquery-validation/dist/jquery.validate.min.js"></script>

<script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js"></script>

The default templates include these scripts for you in a handy partial template
that you can add to your page in a Scripts section. If you’re using the default
layout and need to add client-side validation to your view, add the following
section somewhere on your view:

@section Scripts{

 @Html.Partial("_ValidationScriptsPartial")

}

This partial view references files in your wwwroot folder. The default layout
template includes jQuery itself. If you don’t need to use jQuery in your
application, you may want to consider a small alternative validation library
called aspnet-client-validation. I describe why you might consider this library
and how to use it in this blog post: http://mng.bz/V1pX.

You can also load these files, whether you’re using jQuery or aspnet-client-
validation, from a content delivery network (CDN). If you want to take this
approach, you should consider scenarios where the CDN is unavailable or
compromised, as I discuss in this blog post: http://mng.bz/2e6d.

The Input Tag Helper tries to pick the most appropriate template for a given
property based on DataAnnotations attributes or the type of the property.
Whether this generates the exact <input> type you need may depend, to an

extent, on your application. As always, you can override the generated type
by adding your own type attribute to the element in your Razor template.
Table 18.1 shows how some of the common data types are mapped to
<input> types and how the data types themselves can be specified.

Table 18.1 Common data types, how to specify them, and the input element type they map to

Data type How it’s specified Input element
type

byte, int, short, long, uint Property type number

decimal, double, float Property type text

bool Property type checkbox

string

Property type,
[DataType(DataType.Text)]

attribute
text

HiddenInput [HiddenInput] attribute hidden

Password [Password] attribute password

Phone [Phone] attribute tel

EmailAddress [EmailAddress] attribute email

Url [Url] attribute url

Date

DateTime property type,
[DataType(DataType.Date)]

attribute
datetime-local

The Input Tag Helper has one additional attribute that can be used to
customize the way data is displayed: asp-format. HTML forms are entirely
string-based, so when the value of an <input> is set, the Input Tag Helper
must take the value stored in the property and convert it to a string. Under
the covers, this performs a string.Format() on the property’s value, passing
in the format string.

The Input Tag Helper uses a default format string for each different data type,
but with the asp-format attribute, you can set the specific format string to
use. For example, you could ensure that a decimal property, Dec, is formatted
to three decimal places with the following code:

<input asp-for="Dec" asp-format="{0:0.000}" />

If the Dec property had a value of 1.2, this would generate HTML similar to

<input type="text" id="Dec" name="Dec" value="1.200">

Alternatively, you can define the format to use by adding the
[DisplayFormat] attribute to the model property:

[DisplayFormat("{0:0.000}")]

public decimal Dec { get; set; }

Note

You may be surprised that decimal and double types are rendered as text
fields and not as number fields. This is due to several technical reasons,
predominantly related to the way different cultures render decimal points and
number group separators. Rendering as text avoids errors that would appear
only in certain browser-culture combinations.

In addition to the Input Tag Helper, ASP.NET Core provides the Textarea
Tag Helper. This works in a similar way, using the asp-for attribute, but it’s
attached to a <textarea> element instead:

<textarea asp-for="BigtextValue"></textarea>

This generates HTML similar to the following. Note that the property value is
rendered inside the element, and data-val-* validation elements are attached
as usual:

<textarea data-val="true" id="BigtextValue" name="BigtextValue"

 data-val-length="Maximum length 200." data-val-length-max="200"

 data-val-required="The Multiline field is required." >This is some text,

I'm going to display it

in a text area</textarea>

I hope that this section has hammered home how much typing Tag Helpers
can cut down on, especially when using them in conjunction with
DataAnnotations for generating validation attributes. But this is more than
reducing the number of keystrokes required; Tag Helpers ensure that the
markup generated is correct and has the correct name, id, and format to
automatically bind your binding models when they’re sent to the server.

With <form>, <label>, and <input> under your belt, you’re able to build
most of your currency converter forms. Before we look at displaying
validation messages, there’s one more element to look at: the <select>, or
drop-down, input.

18.2.4 The Select Tag Helper

As well as <input> fields, a common element you’ll see on web forms is the
<select> element, or drop-down lists and list boxes. Your currency converter
application, for example, could use a <select> element to let you pick which
currency to convert from a list.

By default, this element shows a list of items and lets you select one, but
there are several variations, as shown in figure 18.6. As well as the normal
drop-down list, you could show a list box, add multiselection, or display your
list items in groups.

Figure 18.6 Some of the many ways to display <select> elements using the Select Tag Helper.

To use <select> elements in your Razor code, you’ll need to include two
properties in your PageModel: one property for the list of options to display
and one to hold the value (or values) selected. For example, listing 18.5
shows the properties on the PageModel used to create the three leftmost select
lists shown in figure 18.6. Displaying groups requires a slightly different
setup, as you’ll see shortly.

Listing 18.5 View model for displaying select element drop-down lists and list boxes

public class SelectListsModel: PageModel

{

 [BindProperty] #A

 public class InputModel Input { get; set; } #A

 public IEnumerable<SelectListItem> Items { get; set; } #B

 = new List<SelectListItem> #B

 { #B

 new SelectListItem{Value = "csharp", Text="C#"}, #B

 new SelectListItem{Value = "python", Text= "Python"}, #B

 new SelectListItem{Value = "cpp", Text="C++"}, #B

 new SelectListItem{Value = "java", Text="Java"}, #B

 new SelectListItem{Value = "js", Text="JavaScript"}, #B

 new SelectListItem{Value = "ruby", Text="Ruby"}, #B

 }; #B

 public class InputModel

 {

 public string SelectedValue1 { get; set; } #C

 public string SelectedValue2 { get; set; } #C

 public IEnumerable<string> MultiValues { get; set; } #D

 }

}

This listing demonstrates several aspects of working with <select> lists:

SelectedValue1/SelectedValue2—Used to hold the value selected by
the user. They’re model-bound to the value selected from the drop-down
list/list box and used to preselect the correct item when rendering the
form.
MultiValues—Used to hold the selected values for a multiselect list. It’s
an IEnumerable, so it can hold more than one selection per <select>
element.

Items—Provides the list of options to display in the <select> elements.
Note that the element type must be SelectListItem, which exposes the
Value and Text properties, to work with the Select Tag Helper. This
isn’t part of the InputModel, as we don’t want to model-bind these items
to the request; they would normally be loaded directly from the
application model or hardcoded. The order of the values in the Items
property controls the order of items in the <select> list.

Note

The Select Tag Helper works only with SelectListItem elements. That
means you’ll normally have to convert from an application-specific list set of
items (for example, a List<string> or List<MyClass>) to the UI-centric
List<SelectListItem>.

The Select Tag Helper exposes the asp-for and asp-items attributes that
you can add to <select> elements. As for the Input Tag Helper, the asp-for
attribute specifies the property in your PageModel to bind to. The asp-items
attribute provides the IEnumerable<SelectListItem> to display the available
<option> elements.

Tip

It’s common to want to display a list of enum options in a <select> list. This
is so common that ASP.NET Core ships with a helper for generating a
SelectListItem for any enum. If you have an enum of the TEnum type, you
can generate the available options in your view using asp-
items="Html.GetEnumSelectList<TEnum>()".

The following listing shows how to display a drop-down list, a single-
selection list box, and a multiselection list box. It uses the PageModel from
the previous listing, binding each <select> list value to a different property
but reusing the same Items list for all of them.

Listing 18.6 Razor template to display a select element in three ways

@page

@model SelectListsModel

<select asp-for="Input.SelectedValue1" #A

 asp-items="Model.Items"></select> #A

<select asp-for="Input.SelectedValue2" #B

 asp-items="Model.Items" size="4"></select> #B

<select asp-for="Input.MultiValues" #C

 asp-items="Model.Items"></select> #C

I hope you can see that the Razor for generating a drop-down <select> list is
almost identical to the Razor for generating a multiselect <select> list. The
Select Tag Helper takes care of adding the multiple HTML attribute to the
generated output if the property it’s binding to is an IEnumerable.

Warning

The asp-for attribute must not include the Model. prefix. The asp-items
attribute, on the other hand, must include it if referencing a property on the
PageModel. The asp-items attribute can also reference other C# items, such
as objects stored in ViewData, but using a PageModel property is the best
approach.

You’ve seen how to bind three types of select lists so far, but the one I
haven’t yet covered from figure 18.6 is how to display groups in your list
boxes using <optgroup> elements. Luckily, nothing needs to change in your
Razor code; you have to update only how you define your SelectListItems.

The SelectListItem object defines a Group property that specifies the
SelectListGroup the item belongs to. The following listing shows how you
could create two groups and assign each list item to a “dynamic” or “static”
group, using a PageModel similar to that shown in listing 18.5. The final list
item, C#, isn’t assigned to a group, so it will be displayed as normal, without
an <optgroup>.

Listing 18.7 Adding Groups to SelectListItems to create optgroup elements

public class SelectListsModel: PageModel

{

 [BindProperty]

 public IEnumerable<string> SelectedValues { get; set; } #A

 public IEnumerable<SelectListItem> Items { get; set; }

 public SelectListsModel() #B

 {

 var dynamic = new SelectListGroup { Name = "Dynamic" }; #C

 var @static = new SelectListGroup { Name = "Static" }; #C

 Items = new List<SelectListItem>

 {

 new SelectListItem {

 Value= "js",

 Text="Javascript",

 Group = dynamic #D

 },

 new SelectListItem {

 Value= "cpp",

 Text="C++",

 Group = @static #D

 },

 new SelectListItem {

 Value= "python",

 Text="Python",

 Group = dynamic #D

 },

 new SelectListItem { #E

 Value= "csharp", #E

 Text="C#", #E

 }

 };

 }

}

With this in place, the Select Tag Helper generates <optgroup> elements as
necessary when rendering the Razor to HTML. The Razor template

@page

@model SelectListsModel

<select asp-for="SelectedValues" asp-items="Model.Items"></select>

would be rendered to HTML as follows:

<select id="SelectedValues" name="SelectedValues" multiple="multiple">

 <optgroup label="Dynamic">

 <option value="js">JavaScript</option>

 <option value="python">Python</option>

 </optgroup>

 <optgroup label="Static">

 <option value="cpp">C++</option>

 </optgroup>

 <option value="csharp">C#</option>

</select>

Another common requirement when working with <select> elements is to
include an option in the list that indicates that no value has been selected, as
shown in figure 18.7. Without this extra option, the default <select> drop-
down will always have a value, and it will default to the first item in the list.

Figure 18.7 Without a “not selected” option, the <select> element will always have a value. This
may not be the behavior you desire if you don’t want an <option> to be selected by default.

You can achieve this in one of two ways: you could add the “not selected”
option to the available SelectListItems, or you could add the option to the
Razor manually, such as by using

<select asp-for="SelectedValue" asp-items="Model.Items">

 <option Value="">**Not selected**</option>

</select>

This will add an extra <option> at the top of your <select> element, with a
blank Value attribute, allowing you to provide a “no selection” option for the
user.

Tip

Adding a “no selection” option to a <select> element is so common that you
might want to create a partial view to encapsulate this logic.

With the Input Tag Helper and Select Tag Helper under your belt, you should
be able to create most of the forms that you’ll need. You have all the pieces
you need to create the currency converter application now, with one
exception.

Remember that whenever you accept input from a user, you should always
validate the data. The Validation Tag Helpers provide a way for you to
display model validation errors to the user on your form without having to
write a lot of boilerplate markup.

18.2.5 The Validation Message and Validation Summary Tag
Helpers

In section 18.2.3 you saw that the Input Tag Helper generates the necessary
data-val-* validation attributes on form input elements themselves. But you
also need somewhere to display the validation messages. This can be
achieved for each property in your view model using the Validation Message
Tag Helper applied to a by using the asp-validation-for attribute:

When an error occurs during client-side validation, the appropriate error
message for the referenced property is displayed in the , as shown in
figure 18.8. This element is also used to show appropriate validation
messages if server-side validation fails when the form is redisplayed.

Figure 18.8 Validation messages can be shown in an associated by using the Validation
Message Tag Helper.

Any errors associated with the Email property stored in ModelState are
rendered in the element body, and the appropriate attributes to hook into
jQuery validation are added:

<span class="field-validation-valid" data-valmsg-for="Email"

 data-valmsg-replace="true">The Email Address field is required.

The validation error shown in the element is removed or replaced when the
user updates the Email <input> field and client-side validation is performed.

Note

For more details on ModelState and server-side validation, see chapter 16.

As well as display validation messages for individual properties, you can
display a summary of all the validation messages in a <div> with the
Validation Summary Tag Helper, shown in figure 18.9. This renders a
containing a list of the ModelState errors.

Figure 18.9 Form showing validation errors. The Validation Message Tag Helper is applied to
, close to the associated input. The Validation Summary Tag Helper is applied to a <div>,

normally at the top or bottom of the form.

The Validation Summary Tag Helper is applied to a <div> using the asp-
validation-summary attribute and providing a ValidationSummary enum
value, such as

<div asp-validation-summary="All"></div>

The ValidationSummary enum controls which values are displayed, and it has
three possible values:

None—Don’t display a summary. (I don’t know why you’d use this.)
ModelOnly—Display only errors that are not associated with a property.
All—Display errors associated with either a property or the model.

The Validation Summary Tag Helper is particularly useful if you have errors
associated with your page that aren’t specific to a single property. These can
be added to the model state by using a blank key, as shown in listing 18.8. In
this example, the property validation passed, but we provide additional
model-level validation to check that we aren’t trying to convert a currency to
itself.

Listing 18.8 Adding model-level validation errors to the ModelState

public class ConvertModel : PageModel

{

 [BindProperty]

 public InputModel Input { get; set; }

 [HttpPost]

 public IActionResult OnPost()

 {

 if(Input.CurrencyFrom == Input.CurrencyTo) #A

 {

 ModelState.AddModelError(#B

 string.Empty, #B

 "Cannot convert currency to itself"); #B

 }

 if (!ModelState.IsValid) #C

 { #C

 return Page(); #C

 } #C

 //store the valid values somewhere etc

 return RedirectToPage("Checkout");

 }

}

Without the Validation Summary Tag Helper, the model-level error would
still be added if the user used the same currency twice, and the form would be
redisplayed. Unfortunately, there would have been no visual cue to the user
indicating why the form did not submit. Obviously, that’s a problem! By
adding the Validation Summary Tag Helper, the model-level errors are
shown to the user so they can correct the problem, as shown in figure 18.10.

Figure 18.10 Model-level errors are only displayed by the Validation Summary Tag Helper.
Without one, users won’t have any indication that there were errors on the form and so won’t be
able to correct them.

Note

For simplicity, I added the validation check to the page handler. An
alternative approach would be to create a custom validation attribute or use
IValidatableObject (described in chapter 7). That way, your handler stays
lean and sticks to the single- responsibility principle (SRP). You’ll see how to
create a custom validation attribute in chapter 32.

This section covered most of the common Tag Helpers available for working
with forms, including all the pieces you need to build the currency converter
forms. They should give you everything you need to get started building
forms in your own applications. But forms aren’t the only area in which Tag
Helpers are useful; they’re generally applicable any time you need to mix
server-side logic with HTML generation.

One such example is generating links to other pages in your application using
routing-based URL generation. Given that routing is designed to be fluid as
you refactor your application, keeping track of the exact URLs the links
should point to would be a bit of a maintenance nightmare if you had to do it
by hand. As you might expect, there’s a Tag Helper for that: the Anchor Tag
Helper.

18.3 Generating links with the Anchor Tag Helper

In chapters 6 and 15, I showed how you could generate URLs for links to
other pages in your application using LinkGenerator and IUrlHelper. Views
are another common place where you need to generate links, normally by
way of an <a> element with an href attribute pointing to the appropriate
URL.

In this section I show how you can use the Anchor Tag Helper to generate the
URL for a given Razor Page using routing. Conceptually, this is almost
identical to the way the Form Tag Helper generates the action URL, as you
saw in section 18.2.1. For the most part, using the Anchor Tag Helper is
identical too; you provide asp-page and asp-page-handler attributes, along
with asp-route-* attributes as necessary. The default Razor Page templates
use the Anchor Tag Helper to generate the links shown in the navigation bar

using the code in the following listing.

Listing 18.9 Using the Anchor Tag Helper to generate URLs in _Layout.cshtml

<ul class="navbar-nav flex-grow-1">

 <li class="nav-item">

 <a class="nav-link text-dark"

 asp-area="" asp-page="/Index">Home

 <li class="nav-item">

 <a class="nav-link text-dark"

 asp-area="" asp-page="/Privacy">Privacy

As you can see, each <a> element has an asp-page attribute. This Tag Helper
uses the routing system to generate an appropriate URL for the <a>, resulting
in the following markup:

<ul class="nav navbar-nav">

 <li class="nav-item">

 Home

 <li class="nav-item">

 Privacy

 t

The URLs use default values where possible, so the Index Razor Page
generates the simple "/" URL instead of "/Index".

If you need more control over the URL generated, the Anchor Tag Helper
exposes several additional properties you can set, which are during URL
generation. The attributes most often used with Razor Pages are

asp-page—Sets the Razor Page to execute.
asp-page-handler—Sets the Razor Page handler to execute.
asp-area—Sets the area route parameter to use. Areas can be used to
provide an additional layer of organization to your application.[1]

asp-host—If set, the generated link points to the provided host and
generates an absolute URL instead of a relative URL.
asp-protocol—Sets whether to generate an http or https link. If set, it

generates an absolute URL instead of a relative URL.
asp-route-*—Sets the route parameters to use during generation. Can
be added multiple times for different route parameters.

By using the Anchor Tag Helper and its attributes, you generate your URLs
using the routing system, as described in chapters 5 and 14. This reduces the
duplication in your code by removing the hardcoded URLs you’d otherwise
need to embed in all your views.

If you find yourself writing repetitive code in your markup, chances are
someone has written a Tag Helper to help with it. The Append Version Tag
Helper in the following section is a great example of using Tag Helpers to
reduce the amount of fiddly code required.

18.4 Cache-busting with the Append Version Tag
Helper

A common problem with web development, both when developing and when
an application goes into production, is ensuring that browsers are all using the
latest files. For performance reasons, browsers often cache files locally and
reuse them for subsequent requests rather than calling your application every
time a file is requested.

Normally, this is great. Most of the static assets in your site rarely change, so
caching them significantly reduces the burden on your server. Think of an
image of your company logo. How often does that change? If every page
shows your logo, caching the image in the browser makes a lot of sense.

But what happens if it does change? You want to make sure users get the
updated assets as soon as they’re available. A more critical requirement might
be if the JavaScript files associated with your site change. If users end up
using cached versions of your JavaScript, they might see strange errors, or
your application might appear broken to them.

This conundrum is a common one in web development, and one of the most
common ways for handling it is to use a cache-busting query string.

Definition

A cache-busting query string adds a query parameter to a URL, such as ?v=1.
Browsers will cache the response and use it for subsequent requests to the
URL. When the resource changes, the query string is also changed, such as to
?v=2. Browsers will see this as a request for a new resource and make a fresh
request.

The biggest problem with this approach is that it requires you to update a
URL every time an image, CSS, or JavaScript file changes. This is a manual
step that requires updating every place the resource is referenced, so it’s
inevitable that mistakes are made. Tag Helpers to the rescue! When you add a
<script>, , or <link> element to your application, you can use Tag
Helpers to automatically generate a cache-busting query string:

<script src="~/js/site.js" asp-append-version="true"></script>

The asp-append-version attribute will load the file being referenced and
generate a unique hash based on its contents. This is then appended as a
unique query string to the resource URL:

<script src="/js/site.js?v=EWaMeWsJBYWmL2g_KkgXZQ5nPe"></script>

As this value is a hash of the file contents, it remains unchanged as long as
the file isn’t modified, so the file will be cached in users’ browsers. But if the
file is modified, the hash of the contents changes and so does the query
string. This ensures that browsers are always served the most up-to-date files
for your application without your having to worry about updating every URL
manually whenever you change a file.

So far in this chapter you’ve seen how to use Tag Helpers for forms, link
generation, and cache busting. You can also use Tag Helpers to conditionally
render different markup depending on the current environment. This uses a
technique you haven’t seen yet, where the Tag Helper is declared as a
completely separate element.

18.5 Using conditional markup with the
Environment Tag Helper

In many cases, you want to render different HTML in your Razor templates
depending on whether your website is running in a development or
production environment. For example, in development you typically want
your JavaScript and CSS assets to be verbose and easy to read, but in
production you’d process these files to make them as small as possible.
Another example might be the desire to apply a banner to the application
when it’s running in a testing environment, which is removed when you
move to production, as shown in figure 18.11.

Figure 18.11 The warning banner will be shown whenever you’re running in a testing
environment, to make it easy to distinguish from production.

You’ve already seen how to use C# to add if statements to your markup, so
it would be perfectly possible to use this technique to add an extra div to
your markup when the current environment has a given value. If we assume
that the env variable contains the current environment, you could use
something like this:

@if(env == "Testing" || env == "Staging")

{

 <div class="warning">You are currently on a testing environment</div>

}

There’s nothing wrong with this, but a better approach would be to use the
Tag Helper paradigm to keep your markup clean and easy to read. Luckily,
ASP.NET Core comes with the EnvironmentTagHelper, which can be used
to achieve the same result in a slightly clearer way:

<environment include="Testing,Staging">

 <div class="warning">You are currently on a testing environment</div>

</environment>

This Tag Helper is a little different from the others you’ve seen before.
Instead of augmenting an existing HTML element using an asp- attribute, the
whole element is the Tag Helper. This Tag Helper is completely responsible
for generating the markup, and it uses an attribute to configure it.

Functionally, this Tag Helper is identical to the C# markup (where the env
variable contains the hosting environment, as described in chapter 10), but
it’s more declarative in its function than the C# alternative. You’re obviously
free to use either approach, but personally I like the HTML-like nature of Tag
Helpers.

We’ve reached the end of this chapter on Tag Helpers, and with it, we’ve
finished our main look at building traditional web applications that display
HTML to users. In the last part of the book, we’ll revisit Razor templates
when you learn how to build custom components like custom Tag Helpers
and view components. For now, you have everything you need to build
complex Razor layouts; the custom components can help tidy up your code
down the line.

Part 3 of this book has been a whistle-stop tour of how to build Razor Page
applications with ASP.NET Core. You now have the basic building blocks to
start making server-rendered ASP.NET Core applications. Before we move
on to discussing security in part 4 of this book, I’ll take a couple of chapters
to discuss building apps with MVC controllers.

I’ve talked about MVC controllers a lot in passing, but in chapter 19 you’ll
learn why I recommend Razor Pages over MVC controllers for server-
rendered apps. Nevertheless, there are some situations for which MVC
controllers make sense.

18.6 Summary

With Tag Helpers, you can bind your data model to HTML elements,
making it easier to generate dynamic HTML while remaining editor
friendly.
As with Razor in general, Tag Helpers are for server-side rendering of
HTML only. You can’t use them directly in frontend frameworks, such
as Angular or React.
Tag Helpers can be standalone elements or can attach to existing HTML
using attributes. This lets you both customize HTML elements and add
entirely new elements.
Tag Helpers can customize the elements they’re attached to, add
additional attributes, and customize how they’re rendered to HTML.
This can greatly reduce the amount of markup you need to write.
Tag Helpers can expose multiple attributes on a single element. This
makes it easier to configure the Tag Helper, as you can set multiple,
separate values.
You can add the asp-page and asp-page-handler attributes to the
<form> element to set the action URL using the URL generation feature
of Razor Pages.
You specify route values to use during routing with the Form Tag
Helper using asp-route-* attributes. These values are used to build the
final URL or are passed as query data.
The Form Tag Helper also generates a hidden field that you can use to
prevent CSRF attacks. This is added automatically and is an important
security measure.
You can attach the Label Tag Helper to a <label> using asp-for. It
generates an appropriate for attribute and caption based on the
[Display] DataAnnotation attribute and the PageModel property name.
The Input Tag Helper sets the type attribute of an <input> element to
the appropriate value based on a bound property’s Type and any
DataAnnotation attributes applied to it. It also generates the data-val-
* attributes required for client-side validation. This significantly reduces
the amount of HTML code you need to write.
To enable client-side validation, you must add the necessary JavaScript
files to your view for jQuery validation and unobtrusive validation.
The Select Tag Helper can generate drop-down <select> elements as

well as list boxes, using the asp-for and asp-items attributes. To
generate a multiselect <select> element, bind the element to an
IEnumerable property on the view model. You can use these approaches
to generate several different styles of select box.
The items supplied in asp-for must be an
IEnumerable<SelectListItem>. If you try to bind another type, you’ll
get a compile-time error in your Razor view.
You can generate an IEnumerable<SelectListItem> for an enum TEnum
using the Html.GetEnumSelectList<TEnum>() helper method. This
saves you having to write the mapping code yourself.
The Select Tag Helper generates <optgroup> elements if the items
supplied in asp-for have an associated SelectListGroup on the Group
property. Groups can be used to separate items in select lists.
Any extra additional <option> elements added to the Razor markup are
passed through to the final HTML unchanged. You can use these
additional elements to easily add a “no selection” option to the <select>
element.
The Validation Message Tag Helper is used to render the client- and
server-side validation error messages for a given property. This gives
important feedback to your users when elements have errors. Use the
asp-validation-for attribute to attach the Validation Message Tag
Helper to a .
The Validation Summary Tag Helper displays validation errors for the
model, as well as for individual properties. You can use model-level
properties to display additional validation that doesn’t apply to just one
property. Use the asp-validation-summary attribute to attach the
Validation Summary Tag Helper to a <div>.
You can generate <a> URLs using the Anchor Tag Helper. This helper
uses routing to generate the href URL using asp-page, asp-page-
handler, and asp-route-* attributes, giving you the full power of
routing.
You can add the asp-append-version attribute to <link>, <script>,
and elements to provide cache-busting capabilities based on the
file’s contents. This ensures users cache files for performance reasons,
yet still always get the latest version of files.
You can use the Environment Tag Helper to conditionally render
different HTML based on the app’s current execution environment. You

can use this to render completely different HTML in different
environments if you wish.

[1] I don’t cover areas in detail in this book. They’re an optional aspect of
MVC that are often only used on large projects. You can read about them
here: http://mng.bz/3X64.

19 Creating a website with MVC
controllers
This chapter covers

Creating a Model-View-Controller (MVC) application
Choosing between Razor Pages and MVC controllers
Returning Razor views from MVC controllers

In this book I’ve focused on Razor Pages over MVC controllers for server-
rendered HTML apps, as I consider Razor Pages to be the preferable
paradigm in most cases. In this chapter we dig a bit more into exactly why I
consider Razor Pages to be the right choice and take a brief look at the
alternative.

In section 19.2 you’ll create a default MVC application using a template so
you can familiarize yourself with the general project layout of an MVC
application. We’ll look at some of the differences between an MVC
application and a Razor Pages app, as well as the many similarities.

Next, I’ll dig into why I find Razor Pages to be a preferable application
model compared with MVC controllers. You’ll learn about the improved
developer ergonomics of Razor Pages compared with MVC controllers, as
well as the cases in which MVC controllers are nevertheless the right choice.

In section 19.4 you’ll learn about rendering Razor views using MVC
controllers. You’ll learn how the MVC framework relies on conventions to
locate view files and how to override these by selecting a specific Razor view
template to render. Finally, you’ll see the full view selection algorithm in all
its glory.

19.1 Razor Pages vs. MVC in ASP.NET Core

In this book I focus on Razor Pages, but I have also mentioned that Razor
Pages use the ASP.NET Core MVC framework behind the scenes and that
you can choose to use the MVC framework directly if you wish.
Additionally, if you’re creating an API for working with mobile or client-side
apps, and you don’t want to (or can’t) use minimal APIs, you may well use
the MVC framework directly by creating web API controllers.

Note

I look at how to build web APIs with the MVC framework in chapter 20.

So what are the differences between Razor Pages and the MVC framework,
and when should you choose one or the other?

If you’re new to ASP.NET Core, the answer is pretty simple: use Razor
Pages for server-side rendered applications, and use web API controllers (or
minimal APIs) for building APIs. There are nuances to this advice, which I
discuss in section 19.5, but that distinction will serve you well for now.

Naming is hard, again

Microsoft have a long history of creating a framework and naming it after a
generic concept: MVC, Web Forms, Web Pages, Multi-platform App UI, and
so on. it’s frankly incredible that Blazor survived! Web API is no different.

In legacy ASP.NET, Microsoft created a web API framework, which was
similar in design to the existing MVC framework, but also was not
interoperable. You therefore had MVC controllers, which were controller
classes used with the MVC framework to generate HTML, and web API
controllers, which were controller classes used with the web API framework,
to generate JavaScript Object Notation (JSON) or Extensible Markup
Language (XML).

In ASP.NET Core, Microsoft merged these two parallel stacks into a single
ASP.NET Core MVC framework. Controllers in ASP.NET Core can generate
both HTML and JSON/XML; there is no separation. Nevertheless, it’s
common for a controller to be dedicated to either HTML generation or
JSON/XML. For that reason, the names MVC controller and web API

controller are often used to refer to the two general types of controller: MVC
for HTML and web API for JSON/XML.

In this book when I refer to web API controllers, I’m talking about standard
ASP.NET Core controllers that are generating API responses. This may be
described elsewhere as a web API application using MVC controllers or as a
web API application. All three cases refer to the same concept: an HTTP API
built using ASP.NET Core controllers.

Before we can get to comparisons, though, we should take a brief look at the
ASP.NET Core MVC framework itself. Understanding the similarities and
differences between MVC controllers and Razor Pages can be useful, as
you’ll likely find a use for MVC controllers at some point, even if you use
Razor Pages most of the time.

19.2 Your first MVC web application

In this section you’ll learn how to create your first MVC web application,
which server-renders HTML pages using MVC controllers and Razor views.
We use a template to create the app and compare the generated code to see
how it differs from a Razor Pages application.

We’ll again use a template to get an application up and running quickly. This
time we’ll use the ASP.NET Core Web App (Model-View-Controller)
template. To create the application in Visual Studio, follow these steps:

1. Choose File > New.
2. In the Create a new project dialog box, select the ASP.NET Core

Web App (Model-View-Controller) template.
3. In the Create a new project dialog box, enter your project name and

review the Additional information box, shown in figure 19.1.
4. Choose Create. If you’re using the command-line interface (CLI), you

can create a similar template using dotnet new mvc.

Figure 19.1 The Additional information screen for the MVC template. This screen follows on
from the Configure your new project dialog box and lets you customize the template that
generates your application.

The MVC template configures the ASP.NET Core project to use MVC
controllers with Razor views. As always, you configure your app to use MVC
controllers in Program.cs, as shown in listing 19.1. If you compare this
template with your Razor Pages projects, you’ll see that the web API project
uses AddControllersWithViews() instead of AddRazorPages(). The MVC
controllers are mapped as endpoints by calling MapControllerRoute(). This
method maps all the controllers in your app and configures a default
conventional route for them. We discussed conventional routing in chapter
14, and I will discuss it again briefly shortly.

Listing 19.1 Program.cs for the default MVC project

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllersWithViews(); #A

WebApplication app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Home/Error"); #B

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapControllerRoute(#C

 name: "default", #C

 pattern: "{controller=Home}/{action=Index}/{id?}"); #D

app.Run();

Much of the configuration for an MVC application is the same as for Razor
Pages. The middleware configuration is essentially identical, which isn’t that
surprising considering that MVC and Razor Pages are the same type of
application: a server-rendered app returning HTML. The main difference, as
you’ll see in section 19.3, is in the project structure.

Before we go any further, run the MVC application by pressing F5 in Visual
Studio or by running dotnet run in the project folder. The application should
look remarkably familiar; it’s essentially identical to the Razor Pages version
of the application you created in chapter 13, as shown in figure 19.2.

Figure 19.2 The default MVC application. The resulting application is identical to the Razor
Pages equivalent created in chapter 13.

The output of the MVC app is identical to the default Razor Pages app, but
the infrastructure used to generate the response differs. Instead of a Razor
Page PageModel and page handler, MVC uses the concept of controllers and
action methods. The following listing shows the HomeController class from
the default application. Each nonabstract, public method is an action that runs
in response to a request. You can ensure that a candidate method is not
treated as an action method by decorating it with the [NonAction] attribute.

Listing 19.2 The HomeController for the default MVC app

public class HomeController : Controller #A

{

 private readonly ILogger<HomeController> _logger;

 public HomeController(Ilogger<HomeController> logger)

 {

 _logger = logger;

 }

 public IactionResult Index() #B

 {

 return View(); #C

 }

 public IactionResult Privacy()

 {

 return View();

 }

 [ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, #D

 NoStore = true)] #D

 public IactionResult Error()

 {

 return View(new ErrorViewModel #E

 { #E

 RequestId = Activity.Current?.Id #E

 ?? HttpContext.TraceIdentifier #E

 }); #E

 }

}

Definition

An action (or action method) is a method that runs in response to a request.
An MVC controller is a class that contains one or more logically grouped
action methods.

Each of the three action methods calls View() and returns the result. This
returns a ViewResult, which instructs the MVC framework to render a Razor
view for the action. You’ll learn more about this process in section 19.4. The
Error action method also sets an object in the call to View(). This is the view
model, which is passed to the Razor view when it’s rendered.

Note

MVC controllers use explicit view models to pass data to a Razor view rather
than expose the data as properties on themselves (as Razor Pages do with
page models). This provides a clearer separation between the various
“models” than in Razor Pages, though both Razor Pages cases use the same
general MVC design pattern.

Another big difference between Razor Pages and MVC controllers is that
MVC controllers typically use conventional routing, as opposed to the
explicit routing used by Razor Pages. I touched on conventional routing and
how it differs from explicit routing in chapter 14, but you can see it in action
in this MVC application.

Conventional routing defines one or more route template patterns, which are
used for all the MVC controllers in your app. The default route template,
shown in listing 19.1, consists of three optional segments:

"{controller=Home}/{action=Index}/{id?}"

Conventional routes must describe which controller and action should run for
any given request, so they must include controller and action route
parameters at a minimum. When a request is received, ASP.NET Core
matches the route template and from that calculates which MVC controller
and action method to use. For example, the default route would match all the
following URLs:

/Home/Privacy—Executes the HomeController.Privacy() action
/Home—Executes the HomeController.Index() action
/customer/list—Executes the CustomerController.List() action
/products/view/123—Executes the ProductsController.View()
action, with the route parameter id=123

With conventional routing, a single route template maps to multiple
endpoints, whereas in explicit routing, one or more route templates typically
map to a single endpoint. There are subtleties in both cases, but in general
conventional routing is terser, and explicit routing is more expressive.

Note

As I mentioned in chapter 14, I won’t discuss conventional routing any
further in this book. It is often used only with MVC controllers, but even
then, I generally prefer to use explicit routing with attributes. I describe how
to use attribute routing in chapter 20 when I discuss web API controllers.

Once you’ve familiarized yourself with a basic MVC application you will

likely have spotted many of the similarities and differences between the
MVC framework and Razor Pages. In the next section we look at one aspect
of this: MVC controllers and their Razor Page PageModel equivalent.

19.3 Comparing an MVC controller with a Razor
Page PageModel

In chapter 13 we looked at the MVC design pattern, and at how it applies to
Razor Pages in ASP.NET Core. Perhaps unsurprisingly, you can use MVC
controllers with the MVC design pattern in almost exactly the same way.

As mentioned in section 19.2, MVC controllers and actions are analogous to
their Razor Pages counterparts of PageModel and page handlers. Figure 19.3
makes this clearer; it is the MVC controller equivalent of the Razor Pages
version from chapter 13.

Figure 19.3 A complete MVC controller request for a category. The MVC controller pattern is
almost identical to that of Razor Pages, which was shown in figure 13.12. The controller is
equivalent to a Razor Page, and the action is equivalent to a page handler.

In chapter 13 I showed a simple Razor Page PageModel for displaying all the
to-do items in a given category in a ToDO application. The following listing
reproduces that Razor Pages code from listing 13.5 for convenience.

Listing 19.3 A Razor Page for viewing all to-do items in a given category

public class CategoryModel : PageModel

{

 private readonly ToDoService _service;

 public CategoryModel(ToDoService service)

 {

 _service = service;

 }

 public ActionResult OnGet(string category)

 {

 Items = _service.GetItemsForCategory(category);

 return Page();

 }

 public List<ToDoListModel> Items { get; set; }

}

The MVC equivalent of this Razor Page is shown in listing 19.4. In the MVC
framework, controllers are often used to aggregate similar actions, so the
controller in this case is called ToDoController, as it would typically contain
additional action methods for working with to-do items, such as actions to
view a specific item or to create a new one.

Listing 19.4 An MVC controller for viewing all to-do items in a given category

public class ToDoController : Controller

{

 private readonly ToDoService _service; #A

 public ToDoController(ToDoService service) #A

 {

 _service = service;

 }

 public ActionResult Category(string id) #B

 {

 var items = _service.GetItemsForCategory(id); #C

 return View(items); #D

 }

 public ActionResult Create(ToDoListModel model) #E

 { #E

 // ... #E

 } #E

}

Aside from some naming differences, the ToDoController looks similar to

the Razor Page equivalent from listing 19.3:

They both use dependency injection to access services.
Both handlers (page handler and action method) accept parameters
created using model binding in exactly the same way.
Both interact with the application model in the same way to handle the
request.
They both create a view model for rendering the Razor view.

One of the main differences between Razor Pages and MVC controllers is in
the final step: rendering the Razor view. In the next section you’ll see how to
render Razor views from your MVC controller actions, how the views differ
from the Razor views you’ve seen with Razor Pages, and how the framework
locates the correct Razor view to render.

19.4 Selecting a view from an MVC controller

This section covers

How MVC controllers use ViewResults to render Razor views
How to create a new Razor view
How the framework locates a Razor view to render

One of the major differences between MVC controllers and Razor Pages is
how the page handler or action method chooses a Razor view to render. For
Razor Pages, it’s easy; the page renders the Razor view associated with the
page. For MVC controllers it’s more complicated, so it’s important to
understand how you choose which view to render once an action method has
executed. Figure 19.4 shows a zoomed-in view of this process, right after the
action has invoked the application model and received some data back.

Figure 19.4 The process of generating HTML from an MVC controller using a ViewResult. This
is similar to the process for a Razor Page. The main difference is that for Razor Pages, the view is
an integral part of the Razor Page; for MVC controllers, the view must be located at runtime.

Some of this figure should be familiar; it’s the bottom half of figure 19.3
(with a couple of additions). It shows that the MVC controller action method
uses a ViewResult object to indicate that a Razor view should be rendered.
This ViewResult contains the name of the Razor view template to render and
a view model, an arbitrary plain old CLR object (POCO) class containing the
data to render.

Note

ViewResult is the MVC equivalent of a Razor Page’s PageResult. The main
difference is that a ViewResult includes a view name to render and a model
to pass to the view template, while a PageResult always renders the Razor
Page’s associated view and always passes the PageModel to the view
template.

After returning a ViewResult from an action method, the control flow passes
back to the MVC framework, which uses a series of heuristics to locate the
view, based on the template name provided. Once it locates the Razor view
template, the Razor engine passes the view model from the ViewResult to the
view and executes the template to generate the final HTML. This final step,
rendering the HTML, is essentially the same process as for Razor Pages.

You can add a new Razor view template to your application in Visual Studio
by right-clicking the folder you wish to add the view to in Solution Explorer.
Choose Add > New Item and then select Razor View - Empty from the
dialog, as shown in figure 19.5. If you aren’t using Visual Studio, create a
blank new file in the Views folder with the file extension .cshtml.

Figure 19.5 The Add New Item dialog box. Choosing Razor View - Empty adds a new Razor view
template file to your application.

Razor view files are almost identical to the Razor Page .cshtml files you saw
in chapter 17. The only difference is that Razor view files must not specify a
@page directive at the top of the file. Aside from that, they’re identical; you
can use the same syntax, partial views, layouts, and view models as you can
with Razor Pages. The following listing, for example, shows part of the
Error.cshtml Razor view for the default MVC template. This is all
recognizable as standard Razor syntax.

Listing 19.5 A Razor view

@model ErrorViewModel #A

@{

 ViewData["Title"] = "Error"; #B

}

<h1 class="text-danger">Error.</h1> #C

<h2 class="text-danger">An error occurred while

 processing your request.</h2>

@if (Model.ShowRequestId) #D

{

 <p>

 Request ID: <code>@Model.RequestId</code> #E

 </p>

}

With your view template created, you now need to execute it. In most cases
you won’t create a ViewResult directly in your action methods. Instead,
you’ll use one of the View() helper methods on the Controller base class.
These helper methods simplify passing in a view model and selecting a view
template, but there’s nothing magic about them; all they do is create
ViewResult objects.

In the simplest case you can call the View method without any arguments, as
shown in the following listing, taken from the default MVC application. The
View() helper method returns a ViewResult that uses conventions to find the
view template to render and does not supply a view model when executing
the view.

Listing 19.6 Returning ViewResult from an action method using default conventions

public class HomeController : Controller #A

{

 public IActionResult Index()

 {

 return View(); #B

 }

}

In this example, the View helper method returns a ViewResult without
specifying the name of the template to run. Instead, the name of the template
to use is based on the name of the controller and the name of the action
method. Given that the controller is called HomeController and the method is
called Index, by default the Razor template engine looks for a template at the
Views/Home/Index.cshtml location, as shown in figure 19.6.

Figure 19.6 View files are located at runtime based on naming conventions. Razor view files
reside in a folder based on the name of the associated MVC controller and are named with the
name of the action method that requested them. Views in the Shared folder can be used by any
controller.

This is another case of using conventions in MVC to reduce the amount of
boilerplate you have to write. As always, the conventions are optional. You
can also explicitly pass the name of the template to run as a string to the

View method. For example, if the Index method in listing 19.6 instead
returned View("ListView"), the templating engine would look for a template
called ListView.cshtml instead. You can even specify the complete path to
the view file, relative to your application’s root folder, such as
View("Views/global.cshtml"), which would look for the template at the
Views/global.chtml location.

Note

When specifying the absolute path to a view, you must include both the top-
level Views folder and the .cshtml file extension in the path. This is similar to
the rules for locating partial view templates.

The process of locating an MVC Razor view is similar to the process of
locating a partial view to render, which you learned about in chapter 17. The
framework searches in multiple locations to find the requested view. The
difference is that for Razor Pages the search process happens only for partial
view rendering, as the main Razor view to render is already known; it’s the
Razor Page’s view template.

Figure 19.7 shows the complete process used by the MVC framework to
locate the correct View template to execute when a ViewResult is returned
from an MVC controller. It’s possible for more than one template to be
eligible, such as if an Index.chstml file exists in both the Home and Shared
folders. Similar to the rules for locating partial views, the engine uses the first
template it finds.

Figure 19.7 A flow chart describing how the Razor templating engine locates the correct view
template to execute. Avoiding the complexity of this diagram is one of the reasons I recommend
using Razor Pages wherever possible!

Tip

You can modify all these conventions, including the algorithm shown in
figure 19.8, during initial configuration. In fact, you can replace the whole
Razor templating engine if you really want to!

You may find it tempting to explicitly provide the name of the view file you
want to render in your controller; if so, I’d encourage you to fight that urge.
You’ll have a much simpler time if you embrace the conventions as they are
and go with the flow. That extends to anyone else who looks at your code; if
you stick to the standard conventions, there’ll be a comforting familiarity
when they look at your app. That can only be a good thing!

As well as providing a view template name, you can also pass an object to act
as the view model for the Razor view. This object should match the type
specified in the view’s @model directive, and it’s accessed in exactly the same
way as for Razor Pages; using the Model property.

Tip

All the other ways of passing data to the view I described in chapter 17 are
available in MVC controllers too. You should generally favor the view model
where possible, but you can also use ViewData, TempData, or @inject
services, for example.

The following listing shows two examples of passing a view model to a view.

Listing 19.7 Returning ViewResult from an action method using default conventions

public class ToDoController : Controller

{

 public IActionResult Index()

 {

 var listViewModel = new ToDoListModel(); #A

 return View(listViewModel); #B

 }

 public IActionResult View(int id)

 {

 var viewModel = new ViewToDoModel();

 return View("ViewToDo", viewModel); #C

 }

}

Once the Razor view template has been located, the view is rendered using
the Razor syntax you learned about in chapters 17 and 18. You can use all the
features you’ve already seen—layouts, partial views, _ViewImports, and
_ViewStart, for example. From the point of view of the Razor view, there’s
no difference between a Razor Pages view and an MVC Razor view.

Now you’ve had a brief overview of an MVC application, we can look in
more depth about when to choose MVC controllers over Razor Pages.

19.5 Choosing between Razor Pages and MVC
controllers

Throughout this book, I have said that you should generally choose Razor
Pages for server-rendered applications instead of using MVC controllers. In
this section I show the difference between Razor Pages and MVC controllers
from a project structure point of view and defend my reasoning. I also
describe the cases where MVC controllers are a good choice.

If you’re familiar with legacy .NET Framework ASP.NET or earlier versions
of ASP.NET Core, you may already be familiar and comfortable with MVC
controllers. If you’re unsure whether to stick to what you know or switch to
Razor Pages, this section should help you choose. Developers coming from
those backgrounds often have misconceptions about Razor Pages initially (as
I did!), incorrectly equating them with Web Forms and overlooking their
underlying basis of the MVC framework. This section attempts to set the
record straight.

Indeed, architecturally, Razor Pages and MVC are essentially equivalent, as
they both use the MVC design pattern. The most obvious differences relate to
where the files are placed in your project, as I discuss in the next section.

19.5.1 The benefits of Razor Pages

In section 19.5 I showed that the code for an MVC controller looks similar to
the code for a Razor Page PageModel. If that’s the case, what benefit is there
to using Razor Pages? In this section I discuss some of the pain points of
MVC controllers and how Razor Pages attempts to address them.

Razor Pages are not Web Forms

A common argument I hear from existing ASP.NET developers against
Razor Pages is “Oh, they’re just Web Forms.” That sentiment misses the
mark in many ways, but it’s common enough that it’s worth addressing
directly.

Web Forms was a web-programming model that was released as part of .NET
Framework 1.0 in 2002. It attempted to provide a highly productive
experience for developers moving from desktop development to the web for
the first time.

Web Forms are much maligned now, but their weaknesses only became
apparent later. Web Forms attempted to hide the complexities of the web
from you, to give you the impression of developing a desktop app. That often
resulted in apps that were slow, with lots of interdependencies, and that were
hard to maintain.

Web Forms provided a page-based programming model, which is why Razor
Pages sometimes gets associated with them. However, as you’ve seen, Razor
Pages is based on the MVC design pattern, and it exposes the intrinsic
features of the web without trying to hide them from you.

Razor Pages optimizes certain flows using conventions, but it’s not trying to
build a stateful application model over the top of a stateless web application,
in the way that Web Forms did.

If you were a fan of Web Forms’ stateful application model, you should
consider Blazor Server, which uses a similar paradigm but embraces the web
instead of fighting against it. You can read more about the similarities at
http://mng.bz/7Dy9.

In MVC, a single controller can have multiple action methods. Each action

handles a different request and generates a different response. The grouping
of multiple actions in a controller is somewhat arbitrary, but it’s typically
used to group actions related to a specific entity or resource: to-do list items
in this case. A more complete version of the ToDoController in listing 19.4
might include action methods for listing all to-do items, for creating new
items, and for deleting items, for example. Unfortunately, you can often find
that your controllers become large and bloated, with many dependencies.[1]

Note

You don’t have to make your controllers very large like this. It’s just a
common pattern. You could, for example, create a separate controller for
every action instead.

Another pitfall of MVC controllers is the way they’re typically organized in
your project. Most action methods in a controller need an associated Razor
view, for generating the HTML, and a view model for passing data to the
view. The MVC approach in .NET traditionally groups classes by type
(controller, view, view model), while the Razor Page approach groups by
function; everything related to a specific page is co-located.

Figure 19.8 compares the file layout for a simple Razor Pages project with
the MVC equivalent. Using Razor Pages means much less scrolling up and
down between the controller, views, and view model folders whenever you’re
working on a particular page. Everything you need is found in two files, the
.cshtml Razor view and the (nested) .cshtml.cs PageModel file.

Figure 19.8 Comparing the folder structure for an MVC project with the folder structure for a
Razor Pages project

There are additional differences between MVC and Razor Pages, which I
have highlighted throughout the book, but this layout difference is really the
biggest win. Razor Pages embraces the fact that you’re building a page-based
application and optimizes your workflow by keeping everything related to a
single page together.

Tip

You can think of each Razor Page as a mini controller focused on a single
page. Page handlers are functionally equivalent to MVC controller action
methods.

This layout also has the benefit of making each page a separate class. This
contrasts with the MVC approach of making each page an action on a given
controller. Each Razor Page is cohesive for a particular feature, such as
displaying a to-do item. MVC controllers contain action methods that handle
multiple different features for a more abstract concept, such as all the features
related to to-do items.

Note

ASP.NET Core is eminently customizable, so you don’t have to group your
MVC applications by type; it’s simply the default state and the easy path. In
fact, if you do choose to use MVC controllers, I strongly suggest grouping
using feature folders instead. This MSDN article provides a good
introduction: http://mng.bz/mVOr.

Another important point is that Razor Pages doesn’t lose any of the
separation of concerns that MVC has. The view part of Razor Pages is still
concerned only with rendering HTML, and the handler is the coordinator that
calls out to the application model. The only real difference is the lack of the
explicit view model that you have in MVC, but it’s perfectly possible to
emulate this in Razor Pages if that’s a deal-breaker for you.

The benefits of using Razor Pages are particularly noticeable when you have
content websites, such as marketing websites, where you’re mostly
displaying static data and there’s no real logic. In that case, MVC adds

complexity without any real benefits, as there’s not really any logic in the
controllers at all. Another great use case is when you’re creating forms for
users to submit data. Razor Pages is especially optimized for this scenario, as
you saw in previous chapters.

Clearly, I’m a fan of Razor Pages, but that’s not to say they’re perfect for
every situation. In the next section I discuss some of the cases when you
might choose to use MVC controllers in your application. Bear in mind it’s
not an either-or choice; it’s possible to use MVC controllers, Razor Pages,
and even minimal APIs in the same application, and in many cases that may
be the best option.

19.5.2 When to choose MVC controllers over Razor Pages

Razor Pages are great for building page-based server-side rendered
applications. But not all applications fit that mold, and even some
applications that do fall in that category might be best developed using MVC
controllers instead of Razor Pages. These are a few such scenarios:

When you don’t want to render views—Razor Pages are best for page-
based applications, where you’re rendering a view for the user. If you’re
building an HTTP API, you should use minimal APIs or MVC (web
API) controllers instead. You’ll learn about web API controllers in
chapter 20.
When you’re converting an existing MVC application to ASP.NET Core
—If you already have a legacy ASP.NET application that you’re
converting to ASP.NET Core or an app using an early version of
ASP.NET Core that you’re updating, you’re likely using MVC
controllers. It’s probably not worth converting your existing MVC
controllers to Razor Pages in this case. It makes more sense to keep your
existing code and consider whether to do new development in the
application with Razor Pages.
When you’re doing a lot of partial page updates—It’s possible to use
JavaScript in an MVC application to avoid doing full page navigations
by updating only part of the page at a time. This approach, halfway
between fully server-side rendered and a client-side application, may be
easier to achieve with MVC controllers than Razor Pages. On the other

hand, you can easily mix Razor Pages and MVC controllers, using
Razor Pages where appropriate and MVC controllers for the partial view
results.

When not to use Razor Pages or MVC controllers

Typically, you’ll use either Razor Pages or MVC controllers to write most of
the UI logic for an app. You’ll use it to define the APIs and pages in your
application and to define how they interface with your business logic. Razor
Pages and MVC provide an extensive framework and include a great deal of
functionality to help build your apps quickly and efficiently. But they’re not
suited to every app.

Providing so much functionality necessarily comes with a certain degree of
performance overhead. For typical line-of-business apps, the productivity
gains from using MVC or Razor Pages often outweighs any performance
effect. But if you’re building a JSON API you will likely want to consider
minimal APIs for the performance improvements. For server-to-server APIs
or nonbrowser clients, an alternative protocol like gRPC
(https://docs.microsoft.com/aspnet/core/grpc) may be a good fit. You might
also consider protocols like GraphQL, as discussed in Building Web APIs in
ASP.NET Core, by Valerio De Sanctis (Manning, 2023).

Alternatively, if you’re building an app with real-time functionality, you’ll
probably want to consider using WebSockets instead of traditional HTTP
requests. ASP.NET Core SignalR can be used to add real-time functionality
to your app by providing an abstraction over WebSockets. SignalR also
provides simple transport fallbacks and a remote procedure call (RPC) app
model. For details, see the documentation at
https://docs.microsoft.com/aspnet/core/signalr.

Another option available in ASP.NET Core 7 is Blazor. This framework
allows you to build interactive client-side web applications by using the
WebAssembly standard to run .NET code directly in your browser or by
using a stateful model with SignalR. See Blazor in Action, by Chris Sainty
(Manning, 2022), for more details.

I hope that by this point you’re sold on Razor Pages and their overall design

using the MVC pattern. Nevertheless, using MVC controllers makes sense in
some situations, so it’s worth bearing that in mind. Another important point
to remember is that you can include both MVC controllers and Razor Pages
in the same application if you need them.

You’ve learned about MVC controllers as an alternative to Razor Pages, and
in part 1 of this book you learned about using minimal APIs to build JSON
API. Web API controllers sit somewhere in between; they use MVC
controllers but generate JSON and other machine-friendly format data, not
HTML. In chapter 20 you’ll learn why you might choose to use web API
controllers over minimal APIs and how to build a web API application.

19.6 Summary

An action (or action method) is a method that runs in response to a
request. An MVC controller is a class that contains one or more
logically grouped action methods.
To use MVC controllers in an ASP.NET Core application, call
AddControllersWithViews() on your WebApplicationBuilder. This
adds all the required services for MVC controllers and Razor view
rendering to the dependency injection container.
MVC controllers typically use conventional routing to select an MVC
controller and action method. Instead of associating a route template
with each action method in your application, conventional routing
specifies one or more route template patterns that map to multiple
endpoints. Conventional routes must define a controller and action
route parameter to determine the action to execute.
You can return IActionResult instances from MVC controllers and
they are executed in the same way as for Razor Pages. The most
commonly returned type is ViewResult, using the View() helper
method, which instructs the framework to render a Razor view.
ViewResult may contain the name of the view to render and optionally a
view model object to use when rendering the view. If the view name is
not provided, a view is chosen using conventions.
By convention, MVC Razor views are named the same as the action
method that invokes them. They reside either in a folder with the same
name as the action method’s controller or in the Shared folder.

MVC controllers contain multiple action methods, typically grouped
around a high-level entity or resource. In contrast, Razor Pages groups
all the page handlers for a single page in one place, grouping around a
page/feature instead of an entity. This gives improved developer
ergonomics when working on an endpoint.
MVC controllers may make sense over Razor Pages if you are
upgrading an application that already uses MVC controllers or if your
application is using a lot of partial page updates.

[1] Before moving to Razor Pages, the ASP.NET Core template that includes
user login functionality contained two such controllers, each containing more
than 20 action methods and more than 500 lines of code!

20 Creating an HTTP API using
web API controllers
This chapter covers

Creating a web API controller to return JavaScript Object Notation
(JSON) to clients
Using attribute routing to customize your URLs
Generating a response using content negotiation
Applying common conventions with the [ApiController] attribute

In chapters 13 through 19 you worked through each layer of a server-side
rendered ASP.NET Core application, using Razor Pages and Model-View-
Controller (MVC) controllers to render HTML to the browser. In part 1 of
this book you saw a different type of ASP.NET Core application, using
minimal APIs to serve JSON for client-side SPAs or mobile apps. In this
chapter you’ll learn about web API controllers, which fit somewhere in
between!

You can apply much of what you’ve already learned to web API controllers;
they use the same routing system as minimal APIs and the same MVC design
pattern, model binding, and validation as Razor Pages.

In this chapter you’ll learn how to define web API controllers and actions,
and see how similar they are to the Razor Pages and controllers you already
know. You’ll learn how to create an API model to return data and HTTP
status codes in response to a request, in a way that client apps can understand.

After exploring how the MVC design pattern applies to web API controllers,
you’ll see how a related topic works with web APIs: routing. We’ll look at
how explicit attribute routing works with action methods, touching on many
of the same concepts we covered in chapters 6 and 14.

One of the big features added in ASP.NET Core 2.1 was the

[ApiController] attribute. This attribute applies several common
conventions used in web APIs, reducing the amount of code you must write
yourself. In section 20.5 you’ll learn how automatic 400 Bad Requests for
invalid requests, model-binding parameter inference, and ProblemDetails
support make building APIs easier and more consistent.

You’ll also learn how to format the API models returned by your action
methods using content negotiation, to ensure that you generate a response
that the calling client can understand. As part of this, you’ll learn how to add
support for additional format types, such as Extensible Markup Language
(XML), so that you can generate XML responses if the client requests it.

Finally, I discuss some of the differences between API controllers and
minimal API applications, and when you should choose one over the other.
Before we get to that, we look at how to get started. In section 20.1 you’ll see
how to create a web API project and add your first API controller.

20.1 Creating your first web API project

In this section you’ll learn how to create an ASP.NET Core web API project
and create your first web API controllers. You’ll see how to use controller
action methods to handle HTTP requests and how to use ActionResults to
generate a response.

Note

as I mentioned previously that a web API project is a standard ASP.NET
Core project, which uses the MVC framework and web API controllers.

Some people think of the MVC design pattern as applying only to
applications that render their UI directly, like the Razor views you’ve seen in
previous chapters or MVC controllers with Razor views. However, in
ASP.NET Core, I feel the MVC pattern applies equally well when building a
web API. For web APIs, the view part of the MVC pattern involves
generating a machine-friendly response rather than a user-friendly response.

As a parallel to this, you create web API controllers in ASP.NET Core in the

same way you create traditional MVC controllers. The only thing that
differentiates them from a code perspective is the type of data they return.
MVC controllers typically return a ViewResult; web API controllers
generally return raw .NET objects from their action methods, or an
IActionResult instance such as StatusCodeResult, as you saw in chapter
15.

You can create a new web API project in Visual Studio using the same
process you’ve seen previously in Visual Studio. Choose File > New, and in
the Create a new project dialog box, select the ASP.NET Core Web API
template. Enter your project name in the Configure your new project dialog
box, and review the Additional information box, shown in figure 20.1,
before choosing Create. If you’re using the command-line interface (CLI),
you can create a similar template using dotnet new webapi.

Figure 20.1 The Additional information screen. This screen follows on from the Configure your
new project dialog box and lets you customize the template that generates your application.

The web API template configures the ASP.NET Core project for web API
controllers only in Program.cs, as shown in listing 20.1. If you compare this
template with the MVC controller project in chapter 19, you’ll see that the
web API project uses AddControllers() instead of
AddControllersWithViews(). This adds only the services needed for
controllers but omits the services for rendering Razor views. Also, the API
controllers are added using MapControllers() instead of
MapControllerRoute(), as web API controller typically use explicit routing
instead of conventional routing. The default web API template also adds the
OpenAPI services and endpoints required by the Swagger UI, as you saw in
chapter 11.

Listing 20.1 Program.cs for the default web API project

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(); #A

builder.Services.AddEndpointsApiExplorer(); #B

builder.Services.AddSwaggerGen(); #B

WebApplication app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.UseSwagger(); #C

 app.UseSwaggerUI(); #C

}

app.UseHttpsRedirection();

app.UseAuthorization();

app.MapControllers(); #D

app.Run();

The program in listing 20.1 instructs your application to find all the web API
controllers in your application and configure them in the
EndpointMiddleware. Each action method becomes an endpoint and can
receive requests when the RoutingMiddleware maps an incoming URL to the
action method.

Note

Technically, you can include Razor Pages, minimal APIs, and web API
controllers in the same app, but I prefer to keep them separate where possible.
There are certain aspects (such as error handling and authentication) that are
made easier by keeping them separate. Of course, running two separate
applications has its own difficulties!

You can add a web API controller to your project by creating a new .cs file
anywhere in your project. Traditionally, this file is placed in a folder called
Controllers, but that’s not a technical requirement.

Tip

Vertical slice architecture and feature folders are (fortunately) becoming
more popular in .NET circles. With these approaches, you organize your
project based on features instead of technical concepts like controllers and
models.

Listing 20.2 shows an example of a simple controller, with a single endpoint,
that returns an IEnumerable<string> when executed. This example
highlights the similarity with traditional MVC controllers (using action
methods and a base class) and minimal APIs (returning the response object
directly to be serialized later).

Listing 20.2 A simple web API controller

[ApiController] #A

public class FruitController : ControllerBase #B

{

 List<string> _fruit = new List<string> #C

 { #C

 "Pear", #C

 "Lemon", #C

 "Peach" #C

 }; #C

 [HttpGet("fruit")] #D

 public IEnumerable<string> Index() #E

 { #F

 return _fruit; #F

 } #F

}

When invoked, this endpoint returns the list of strings serialized to JSON, as
shown in figure 20.2.

Figure 20.2 Testing the web API in listing 20.2 by accessing the URL in the browser. A GET
request is made to the /fruit URL, which returns a List<string> that is serialized to JSON.

Web API controllers typically use the [ApiController] attribute (introduced
in .NET Core 2.1) and derive from the ControllerBase class. The base class
provides several helper methods for generating results, and the
[ApiController] attribute automatically applies some common conventions,
as you’ll see in section 20.5.

Tip

The Controller base class is typically used when you use MVC controllers
with Razor views. You don’t need to return Razor views with web API
controllers, so ControllerBase is the better option.

In listing 20.2 you can see that the action method, Index, returns a list of
strings directly from the action method. When you return data from an action
like this, you’re providing the API model for the request. The client will
receive this data. It’s formatted into an appropriate response, a JSON
representation of the list in the case of figure 20.2, and sent back to the
browser with a 200 OK status code.

Tip

Web API controllers format data as JSON by default. You’ll see how to

format the returned data in other ways in section 20.6. Minimal API
endpoints that return data directly (rather than via an IResult) will format
data only as JSON; there are no other options.

The URL at which a web API controller action is exposed is handled in the
same way as for traditional MVC controllers and Razor Pages: using routing.
The [HttpGet("fruit")] attribute applied to the Index method indicates that
the method should use the route template "fruit" and should respond to
HTTP GET requests. You’ll learn more about attribute routing in section 20.4,
but it’s similar to the minimal API routing that you’re already familiar with.

In listing 20.2 data is returned directly from the action method, but you don’t
have to do that. You’re free to return an IActionResult instead, and often
this is required. Depending on the desired behavior of your API, you
sometimes want to return data, and other times you may want to return a raw
HTTP status code, indicating whether the request was successful. For
example, if an API call is made requesting details of a product that does not
exist, you might want to return a 404 Not Found status code.

Note

This is similar to the patterns you used in minimal APIs. But remember,
minimal APIs use IResult, web API controllers, MVC controllers, and
Razor Pages use IActionResult.

Listing 20.3 shows an example of where you must return an IActionResult.
It shows another action on the same FruitController as before. This method
exposes a way for clients to fetch a specific fruit by an id, which we’ll
assume for this example is an index into the list of _fruit you defined in the
previous listing. Model binding is used to set the value of the id parameter
from the request.

Note

API controllers use the same model binding infrastructure as Razor Pages to
bind action method parameters to the incoming request. Model binding and
validation work the same way you saw in chapter 16: you can bind the
request to simple primitives, as well as to complex C# objects. The only

difference is that there isn’t a PageModel with [BindProperty] properties;
you can bind only to action method parameters.

Listing 20.3 A web API action returning IActionResult to handle error conditions

[HttpGet("fruit/{id}")] #A

public ActionResult<string> View(int id) #B

{

 if (id >= 0 && id < _fruit.Count) #C

 {

 return _fruit[id]; #D

 }

 return NotFound(); #E

}

In the successful path for the action method, the id parameter has a value
greater than 0 and less than the number of elements in _fruit. When that’s
true, the value of the element is returned to the caller. As in listing 20.2, this
is achieved by simply returning the data directly, which generates a 200 status
code and returns the element in the response body, as shown in figure 20.3.
You could also have returned the data using an OkResult, by returning
Ok(_fruit[id]), using the Ok helper method on the ControllerBase class;
under the hood, the result is identical.

Note

Some people get uneasy when they see the phrase helper method, but there’s
nothing magic about the ControllerBase helpers; they’re shorthand for
creating a new IActionResult of a given type. You don’t have to take my
word for it, though. You can always view the source code for the base class
on GitHub at http://mng.bz/5wQB.

Figure 20.3 Data returned from an action method is serialized into the response body, and it
generates a response with status code 200 OK.

If the id is outside the bounds of the _fruit list, the method calls
NotFound() to create a NotFoundResult. When executed, this method
generates a 404 Not Found status code response. The [ApiController]
attribute automatically converts the response into a standard ProblemDetails
instance, as shown in figure 20.4.

Figure 20.4 The [ApiController] attribute converts error responses (in this case a 404 response)
into the standard ProblemDetails format.

One aspect you might find confusing from listing 20.3 is that for the
successful case, we return a string, but the method signature of View says
we return an ActionResult<string>. How is that possible? Why isn’t there a
compiler error?

The generic ActionResult<T> uses some fancy C# gymnastics with implicit
conversions to make this possible. Using ActionResult<T> has two benefits:

You can return either an instance of T or an ActionResult
implementation like NotFoundResult from the same method. This can
be convenient, as in listing 20.3.
It enables better integration with ASP.NET Core’s OpenAPI support.

You’re free to return any type of ActionResult from your web API
controllers, but you’ll commonly return StatusCodeResult instances, which
set the response to a specific status code, with or without associated data.
NotFoundResult and OkResult both derive from StatusCodeResult, for
example. Another commonly used status code is 400 Bad Request, which is
normally returned when the data provided in the request fails validation. You
can generate this using a BadRequestResult, but in many cases the
[ApiController] attribute can automatically generate 400 responses for you,
as you’ll see in section 20.5.

Tip

You learned about various ActionResults in chapter 15. BadRequestResult,
OkResult, and NotFoundResult all inherit from StatusCodeResult and set
the appropriate status code for their type (400, 200, and 404, respectively).
Using these wrapper classes makes the intention of your code clearer than
relying on other developers to understand the significance of the various
status code numbers.

Once you’ve returned an ActionResult (or other object) from your
controller, it’s serialized to an appropriate response. This works in several
ways, depending on

The formatters that your app supports
The data you return from your method

The data formats the requesting client can handle

You’ll learn more about formatters and serializing data in section 20.6, but
before we go any further, it’s worth zooming out a little and exploring the
parallels between traditional server-side rendered applications and web API
endpoints. The two are similar, so it’s important to establish the patterns that
they share and where they differ.

20.2 Applying the MVC design pattern to a web
API

In ASP.NET Core, the same underlying framework is used in conjunction
with web API controllers, Razor Pages, and MVC controllers with views.
You’ve already seen this yourself; the web API FruitController you
created in section 20.2 looks similar to the MVC controllers you saw in
chapter 19.

Consequently, even if you’re building an application that consists entirely of
web APIs, using no server-side rendering of HTML, the MVC design pattern
still applies. Whether you’re building traditional web applications or web
APIs, you can structure your application virtually identically.

By now I hope you’re nicely familiar with how ASP.NET Core handles a
request. But in case you’re not, figure 20.5 shows how the framework
handles a typical Razor Pages request after it passes through the middleware
pipeline. This example shows how a request to view the available fruit on a
traditional grocery store website might look.

Figure 20.5 Handling a request to a traditional Razor Pages application, in which the view
generates an HTML response that’s sent back to the user. This diagram should be familiar by
now!

The RoutingMiddleware routes the request to view all the fruit listed in the
apples category to the Fruit.cshtml Razor Page. The EndpointMiddleware
then constructs a binding model, validates it, sets it as a property on the
Razor Page’s PageModel, and sets the ModelState property on the PageModel
base class with details of any validation errors. The page handler interacts
with the application model by calling into services, talking to a database, and
fetching any necessary data.

Finally, the Razor Page executes its Razor view using the PageModel to
generate the HTML response. The response returns through the middleware
pipeline and out to the user’s browser.

How would this change if the request came from a client-side or mobile
application? If you want to serve machine-readable JSON instead of HTML,
what is different for web API controllers? As shown in figure 20.6, the
answer is “very little.” The main changes are related to switching from Razor
Pages to controllers and actions, but as you saw in chapter 19, both
approaches use the same general paradigms.

Figure 20.6 A call to a web API endpoint in an e-commerce ASP.NET Core web application. The
ghosted portion of the diagram is identical to figure 20.5.

As before, the routing middleware selects an endpoint to invoke based on the
incoming URL. For API controllers this is a controller and action instead of a
Razor Page.

After routing comes model-binding, in which the binder creates a binding
model and populates it with values from the request. web API controllers
often accept data in more formats than Razor Pages, such as XML, but
otherwise the model-binding process is the same as for the Razor Pages
request. Validation also occurs in the same way, and the ModelState property
on the ControllerBase base class is populated with any validation errors.

Note

Web APIs use input formatters to accept data sent to them in a variety of
formats. Commonly these formats are JSON or XML, but you can create
input formatters for any sort of type, such as CSV. I show how to enable the
XML input formatter in section 20.6. You can see how to create a custom
input formatter at http://mng.bz/e5gG.

The action method is the equivalent of the Razor Page handler; it interacts
with the application model in the same way. This is an important point; by
separating the behavior of your app into an application model instead of
incorporating it into your pages and controllers themselves, you’re able to
reuse the business logic of your application with multiple UI paradigms.

Tip

Where possible, keep your page handlers and controllers as simple as
practicable. Move all your business logic decisions into the services that
make up your application model, and keep your Razor Pages and API
controllers focused on the mechanics of interacting with a user or client.

After the application model has returned the data necessary to service the
request—the fruit objects in the apples category—you see the first
significant difference between API controllers and Razor Pages. Instead of
adding values to the PageModel to be used in a Razor view, the action method
creates an API model. This is analogous to the PageModel, but rather than
containing data used to generate an HTML view, it contains the data that will
be sent back in the response.

Definition

View models and PageModels contain both the data required to build a
response and metadata about how to build the response. API models typically
contain only the data to be returned in the response.

When we looked at the Razor Pages app, we used the PageModel in
conjunction with a Razor view template to build the final response. With the
web API app, we use the API model in conjunction with an output formatter.
An output formatter, as the name suggests, serializes the API model into a
machine-readable response, such as JSON or XML. The output formatter
forms the V in the web API version of MVC by choosing an appropriate
representation of the data to return.

Finally, as for the Razor Pages app, the generated response is sent back
through the middleware pipeline, passing through each of the configured
middleware components, and back to the original caller.

I hope the parallels between Razor Pages and web APIs are clear. The
majority of the behavior is identical; only the response varies. Everything
from when the request arrives to the interaction with the application model is
similar between the paradigms.

Most of the differences between Razor Pages and web APIs have less to do
with the way the framework works under the hood and are instead related to
how the different paradigms are used. For example, in the next section you’ll
learn how the routing constructs you learned about in chapters 6 and 15 are
used with web APIs, using attribute routing.

20.3 Attribute routing: Linking action methods to
URLs

In this section you’ll learn about attribute routing: the mechanism for
associating web API controller actions with a given route template. You’ll
see how to associate controller actions with specific HTTP verbs like GET and
POST and how to avoid duplication in your templates.

We covered route templates in depth in chapter 6 in the context of minimal
APIs, and again in chapter 14 with Razor Pages, and you’ll be pleased to
know that you use exactly the same route templates with API controllers. The
only difference is how you specify the templates. With Razor Pages you use
the @page directive, and with minimal APIs you use MapGet() or MapPost(),
whereas with API controllers you use routing attributes.

Note

All three paradigms use explicit routing under the hood. The alternative,
conventional routing, is typically used with traditional MVC controllers and
views, as described in chapter 19. As I’ve mentioned, I don’t recommend
using that approach generally, so I don’t cover conventional routing in this
book.

With attribute routing, you decorate each action method in an API controller
with an attribute and provide the associated route template for the action
method, as shown in the following listing.

Listing 20.4 Attribute routing example

public class HomeController: Controller

{

 [Route("")] #A

 public IActionResult Index()

 {

 /* method implementation*/

 }

 [Route("contact")] #B

 public IActionResult Contact()

 {

 /* method implementation*/

 }

}

Each [Route] attribute defines a route template that should be associated
with the action method. In the example provided, the / URL maps directly to
the Index method and the /contact URL maps to the Contact method.

Attribute routing maps URLs to a specific action method, but a single action
method can still have multiple route templates and hence can correspond to
multiple URLs. Each template must be declared with its own
RouteAttribute, as shown in this listing, which shows the skeleton of a web
API for a car-racing game.

Listing 20.5 Attribute routing with multiple attributes

public class CarController

{

 [Route("car/start")] #A

 [Route("car/ignition")] #A

 [Route("start-car")] #A

 public IActionResult Start() #B

 {

 /* method implementation*/

 }

 [Route("car/speed/{speed}")] #C

 [Route("set-speed/{speed}")] #C

 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

The listing shows two different action methods, both of which can be
accessed from multiple URLs. For example, the Start method will be
executed when any of the following URLs is requested:

/car/start

/car/ignition

/start-car

These URLs are completely independent of the controller and action method
names; only the value in the RouteAttribute matters.

Note

By default, the controller and action name have no bearing on the URLs or
route templates when RouteAttributes are used.

The templates used in route attributes are standard route templates, the same
as you used in chapter 6. You can use literal segments, and you’re free to
define route parameters that will extract values from the URL, as shown by
the SetCarSpeed method in listing 20.5. That method defines two route
templates, both of which define a route parameter, {speed}.

Tip

I’ve used multiple [Route] attributes on each action in this example, but it’s
best practice to expose your action at a single URL. This will make your API
easier to understand and for other applications to consume.

As in all parts of ASP.NET Core, route parameters represent a segment of the
URL that can vary. As with minimal APIs, and Razor Pages, the route
parameters in your RouteAttribute templates can

Be optional
Have default values
Use route constraints

For example, you could update the SetCarSpeed method in the previous
listing to constrain {speed} to an integer and to default to 20 like so:

[Route("car/speed/{speed=20:int}")]

[Route("set-speed/{speed=20:int}")]

public IActionResult SetCarSpeed(int speed)

Note

As discussed in chapter 6, don’t use route constraints for validation. For
example, if you call the preceding "set-speed/{speed=20:int}" route with
an invalid value for speed, /set-speed/oops, you will get a 404 Not Found
response, as the route does not match. Without the int constraint, you would
receive the more sensible 400 Bad Request response.

If you managed to get your head around routing in chapter 6, routing with
web API controllers shouldn’t hold any surprises for you. One thing you
might begin noticing when you start using attribute routing with web API
controllers is the amount you repeat yourself. Minimal APIs use route groups
to reduce duplication, and Razor Pages removes a lot of the repetition by
using conventions to calculate route templates based on the Razor Page’s
filename. So what can we use with web API controllers?

20.3.1 Combining route attributes to keep your route templates
DRY

Adding route attributes to all of your web API controllers can get a bit
tedious, especially if you’re mostly following conventions where your routes
have a standard prefix, such as "api" or the controller name. Generally,
you’ll want to ensure that you don’t repeat yourself (DRY) when it comes to
these strings. The following listing shows two action methods with several
[Route] attributes. (This is for demonstration purposes only. Stick to one per
action if you can!)

Listing 20.6 Duplication in RouteAttribute templates

public class CarController

{

 [Route("api/car/start")] #A

 [Route("api/car/ignition")] #A

 [Route("start-car")]

 public IActionResult Start()

 {

 /* method implementation*/

 }

 [Route("api/car/speed/{speed}")] #A

 [Route("set-speed/{speed}")]

 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

There’s quite a lot of duplication here; you’re adding "api/car" to most of
your routes. Presumably, if you decided to change this to "api/vehicles",
you’d have to go through each attribute and update it. Code like that is asking
for a typo to creep in!

To alleviate this pain, it’s possible to apply RouteAttributes to controllers,
in addition to action methods. When a controller and an action method both
have a route attribute, the overall route template for the method is calculated
by combining the two templates.

Listing 20.7 Combining RouteAttribute templates

[Route("api/car")]

public class CarController

{

 [Route("start")] #A

 [Route("ignition")] #B

 [Route("/start-car")] #C

 public IActionResult Start()

 {

 /* method implementation*/

 }

 [Route("speed/{speed}")] #D

 [Route("/set-speed/{speed}")] #E

 public IActionResult SetCarSpeed(int speed)

 {

 /* method implementation*/

 }

}

Combining attributes in this way can reduce some of the duplication in your
route templates and makes it easier to add or change the prefixes (such as
switching "car" to "vehicle") for multiple action methods. To ignore the
RouteAttribute on the controller and create an absolute route template, start
your action method route template with a slash (/). Using a controller
RouteAttribute reduces a lot of the duplication, but you can go one better
by using token replacement.

20.3.2 Using token replacement to reduce duplication in
attribute routing

The ability to combine attribute routes is handy, but you’re still left with
some duplication if you’re prefixing your routes with the name of the
controller, or if your route templates always use the action name. If you wish,
you can simplify even further!

Attribute routes support the automatic replacement of [action] and
[controller] tokens in your attribute routes. These will be replaced with the
name of the action and the controller (without the “Controller” suffix),
respectively. The tokens are replaced after all attributes have been combined,
which can be useful when you have controller inheritance hierarchies. This
listing shows how you can create a BaseController class that applies a
consistent route template prefix to all the web API controllers in your
application.

Listing 20.8 Token replacement in RouteAttributes

[Route("api/[controller]")] #A

public abstract class BaseController { } #B

public class CarController : BaseController

{

 [Route("[action]")] #C

 [Route("ignition")] #D

 [Route("/start-car")] #E

 public IActionResult Start()

 {

 /* method implementation*/

 }

}

Warning

If you use token replacement for [controller] or [action], remember that
renaming classes and methods will change your public API. If that worries
you, you can stick to using static strings like "car" instead.

When combined with everything you learned in chapter 6, we’ve covered
pretty much everything there is to know about attribute routing. There’s just
one more thing to consider: handling different HTTP request types like GET
and POST.

20.3.3 Handling HTTP verbs with attribute routing

In Razor Pages, the HTTP verb, such as GET or POST, isn’t part of the routing
process. The RoutingMiddleware determines which Razor Page to execute
based solely on the route template associated with the Razor Page. It’s only
when a Razor Page is about to be executed that the HTTP verb is used to
decide which page handler to execute: OnGet for the GET verb, or OnPost for
the POST verb, for example.

Web API controllers work like minimal API endpoints: the HTTP verb takes
part in the routing process itself. So a GET request may be routed to one
action, and a POST request may be routed to a different action, even if the
request used the same URL.

The [Route] attribute we’ve used so far responds to all HTTP verbs. Instead,
an action should typically only handle a single verb. Instead of the [Route]
attribute, you can use

[HttpPost] to handle POST requests
[HttpGet] to handle GET requests
[HttpPut] to handle PUT requests

There are similar attributes for all the standard HTTP verbs, like DELETE and

OPTIONS. You can use these attributes instead of the [Route] attribute to
specify that an action method should correspond to a single verb, as shown in
the following listing.

Listing 20.9 Using HTTP verb attributes with attribute routing

public class AppointmentController

{

 [HttpGet("/appointments")] #A

 public IActionResult ListAppointments() #A

 { #A

 /* method implementation */ #A

 } #A

 [HttpPost("/appointments")] #B

 public IActionResult CreateAppointment() #B

 { #B

 /* method implementation */ #B

 } #B

}

If your application receives a request that matches the route template of an
action method but doesn’t match the required HTTP verb, you’ll get a 405
Method not allowed error response. For example, if you send a DELETE
request to the /appointments URL in the previous listing, you’ll get a 405
error response.

When you’re building web API controllers, there is some code that you’ll
find yourself writing repeatedly. The [ApiController] attribute is designed
to handle some of this for you and reduce the amount of boilerplate you need.

20.4 Using common conventions with
[ApiController]

In this section you’ll learn about the [ApiController] attribute and how it
can reduce the amount of code you need to write to create consistent web API
controllers. You’ll learn about the conventions it applies, why they’re useful,
and how to turn them off if you need to.

The [ApiController] attribute was introduced in .NET Core 2.1 to simplify

the process of creating web API controllers. To understand what it does, it’s
useful to look at an example of how you might write a web API controller
without the [ApiController] attribute and compare that with the code
required to achieve the same thing with the attribute.

Listing 20.10 Creating a web API controller without the [ApiController] attribute

public class FruitController : ControllerBase

{

 List<string> _fruit = new List<string> #A

 { #A

 "Pear", "Lemon", "Peach" #A

 }; #A

 [HttpPost("fruit")] #B

 public ActionResult Update([FromBody] UpdateModel model) #C

 {

 if (!ModelState.IsValid) #D

 { #D

 return BadRequest(#D

 new ValidationProblemDetails(ModelState)); #D

 } #D

 if (model.Id < 0 || model.Id > _fruit.Count)

 {

 return NotFound(new ProblemDetails() #E

 { #E

 Status = 404, #E

 Title = "Not Found", #E

 Type = "https://tools.ietf.org/html/rfc7231" #E

 + "#section-6.5.4", #E

 }); #E

 } #E

 _fruit[model.Id] = model.Name; #F

 return Ok(); #F

 }

 public class UpdateModel

 {

 public int Id { get; set; }

 [Required] #G

 public string Name { get; set; } #G

 }

}

This example demonstrates many common features and patterns used with
web API controllers:

Web API controllers read data from the body of a request, typically sent
as JSON. To ensure the body is read as JSON and not as form values,
you have to apply the [FromBody] attribute to the method parameters to
ensure it is model-bound correctly.
As discussed in chapter 16, after model binding, the model is validated,
but it’s up to you to act on the validation results. You should return a
400 Bad Request response if the values provided failed validation. You
typically want to provide details of why the request was invalid: this is
done in listing 20.10 by returning a ValidationProblemDetails object
in the response body, built from the ModelState.
Whenever you return an error status, such as a 404 Not Found, where
possible you should return details of the problem that will allow the
caller to diagnose the issue. The ProblemDetails class is the
recommended way of doing that in ASP.NET Core.

The code in listing 20.10 is representative of what you might see in an
ASP.NET Core API controller before .NET Core 2.1. The introduction of the
[ApiController] attribute in .NET Core 2.1 (and subsequent refinement in
later versions) makes this same code much simpler, as shown in the following
listing.

Listing 20.11 Creating a web API controller with the [ApiController] attribute

[ApiController] #A

public class FruitController : ControllerBase

{

 List<string> _fruit = new List<string>

 {

 "Pear", "Lemon", "Peach"

 };

 [HttpPost("fruit")]

 public ActionResult Update(UpdateModel model) #B

 { #C

 if (model.Id < 0 || model.Id > _fruit.Count)

 {

 return NotFound(); #D

 }

 _fruit[model.Id] = model.Name;

 return Ok();

 }

 public class UpdateModel

 {

 public int Id { get; set; }

 [Required]

 public string Name { get; set; }

 }

}

If you compare listing 20.10 with listing 20.11, you’ll see that all the bold
code in listing 20.10 can be removed and replaced with the [ApiController]
attribute in listing 20.11. The [ApiController] attribute automatically
applies several conventions to your controllers:

Attribute routing—You must use attribute routing with your controllers;
you can’t use conventional routing—not that you would, as we’ve
discussed this approach only for API controllers anyway.
Automatic 400 responses—I said in chapter 16 that you should always
check the value of ModelState.IsValid in your Razor Page handlers
and MVC actions, but the [ApiController] attribute does this for you
by adding a filter, as we did with minimal APIs in chapter 7. We’ll
cover MVC filters in detail in chapters 21 and 22.
Model binding source inference—Without the [ApiController]
attribute, complex types are assumed to be passed as form values in the
request body. For web APIs, it’s much more common to pass data as
JSON, which ordinarily requires adding the [FromBody] attribute. The
[ApiController] attribute takes care of that for you.
ProblemDetails for error codes—You often want to return a consistent
set of data when an error occurs in your API. The [ApiController]
attribute intercepts any error status codes returned by your controller
(for example, a 404 Not Found response), and converts them to
ProblemDetails responses.

When it was introduced, a key feature of the [ApiController] attribute was
the Problem Details support, but as I described in chapter 5, the same

automatic conversion to Problem Details is now supported by the default
ExceptionHandlerMiddleware and StatusCodePagesMiddleware.
Nevertheless, the [ApiController] conventions can significantly reduce the
amount of boilerplate code you have to write and ensure that validation
failures are handled automatically, for example.

As is common in ASP.NET Core, you will be most productive if you follow
the conventions rather than trying to fight them. However, if you don’t like
some of the conventions introduced by [ApiController],or want to
customize them, you can easily do so.

You can customize the web API controller conventions your application uses
by calling ConfigureApiBehaviorOptions() on the IMvcBuilder object
returned from the AddControllers() method in your Program.cs file. For
example, you could disable the automatic 400 responses on validation failure,
as shown in the following listing.

Listing 20.12 Customizing [ApiAttribute] behaviors

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers();

 .ConfigureApiBehaviorOptions(options => #A

 {

 options.SuppressModelStateInvalidFilter = true; #B

 });

// ...

Tip

You can disable all the automatic features enabled by the [ApiController]
attribute, but I encourage you to stick to the defaults unless you really need to
change them. You can read more about disabling features in the
documentation at https://docs.microsoft.com/aspnet/core/web-api.

The ability to customize each aspect of your web API controllers is one of the
key differentiators with minimal APIs. In the next section you’ll learn how to
control the format of the data returned by your web API controllers—whether

that’s JSON, XML, or a different, custom format.

20.5 Generating a response from a model

This brings us to the final topic in this chapter: formatting a response. It’s
common for API controllers to return JSON these days, but that’s not always
the case. In this section you’ll learn about content negotiation and how to
enable additional output formats such as XML.

Consider this scenario: you’ve created a web API action method for returning
a list of cars, as in the following listing. It invokes a method on your
application model, which hands back the list of data to the controller. Now
you need to format the response and return it to the caller.

Listing 20.13 A web API controller to return a list of cars

[ApiController]

public class CarsController : Controller

{

 [HttpGet("api/cars")] #A

 public IEnumerable<string> ListCars() #B

 {

 return new string[] #C

 { "Nissan Micra", "Ford Focus" }; #C

 }

}

You saw in section 20.2 that it’s possible to return data directly from an
action method, in which case the middleware formats it and returns the
formatted data to the caller. But how does the middleware know which
format to use? After all, you could serialize it as JSON, as XML, or even
with a simple ToString() call.

Warning

Remember that in this chapter I’m talking only about web API controller
responses. Minimal APIs support only automatic serialization to JSON,
nothing else.

The process of determining the format of data to send to clients is known
generally as content negotiation (conneg). At a high level, the client sends a
header indicating the types of content it can understand—the Accept header
—and the server picks one of these, formats the response, and sends a
Content-Type header in the response, indicating which type it chose.

The Accept and Content-Type headers

The Accept header is sent by a client as part of a request to indicate the type
of content that the client can handle. It consists of a number of MIME types,
with optional weightings (from 0 to 1) to indicate which type would be
preferred. For example, the
application/json,text/xml;q=0.9,text/plain;q=0.6 header indicates
that the client can accept JSON, XML, and plain text, with weightings of 1.0,
0.9, and 0.6, respectively. JSON has a weighting of 1.0, as no explicit
weighting was provided. The weightings can be used during content
negotiation to choose an optimal representation for both parties.

The Content-Type header describes the data sent in a request or response. It
contains the MIME type of the data, with an optional character encoding. For
example, the application/json; charset=utf-8 header would indicate that
the body of the request or response is JSON, encoded using UTF-8.

For more on MIME types, see the Mozilla documentation:
http://mng.bz/gop8. You can find the RFC for content negotiation at
http://mng.bz/6DXo.

You’re not forced into sending only a Content-Type the client expects, and
in some cases, you may not even be able to handle the types it requests. What
if a request stipulates that it can accept only Microsoft Excel spreadsheets?
It’s unlikely you’d support that, even if that’s the only Accept type the
request contains.

When you return an API model from an action method, whether directly (as
in listing 20.13) or via an OkResult or other StatusCodeResult, ASP.NET
Core always returns something in the response. If it can’t honor any of the
types stipulated in the Accept header, it will fall back to returning JSON by
default. Figure 20.7 shows that even though XML was requested, the API

controller formatted the response as JSON.

Figure 20.7 Even though the request was made with an Accept header of text/xml, the response
returned was JSON, as the server was not configured to return XML.

Warning

In legacy ASP.NET, objects were serialized to JSON using PascalCase,

where properties start with a capital letter. In ASP.NET Core, objects are
serialized using camelCase by default, where properties start with a
lowercase letter.

However the data is sent, it’s serialized by an IOutputFormatter
implementation. ASP.NET Core ships with a limited number of output
formatters out of the box, but as always, it’s easy to add additional ones or
change the way the defaults work.

20.5.1 Customizing the default formatters: Adding XML
support

As with most of ASP.NET Core, the Web API formatters are completely
customizable. By default, only formatters for plain text (text/plain), HTML
(text/html), and JSON (application/json) are configured. Given the
common use case of single-page application (SPAs) and mobile applications,
this will get you a long way. But sometimes you need to be able to return data
in a different format, such as XML.

Newtonsoft.Json vs. System.Text.Json

Newtonsoft.Json, also known as Json.NET, has for a long time been the
canonical way to work with JSON in .NET. It’s compatible with every
version of .NET under the sun, and it will no doubt be familiar to virtually all
.NET developers. Its reach was so great that even ASP.NET Core took a
dependency on it!

That all changed with the introduction of a new library in ASP.NET Core 3.0,
System .Text.Json, which focuses on performance. In .NET Core 3.0 onward,
ASP.NET Core uses System.Text.Json by default instead of Newtonsoft.Json.

The main difference between the libraries is that System.Text.Json is picky
about its JSON. It will generally only deserialize JSON that matches its
expectations. For example, System.Text.Json won’t deserialize JSON that
uses single quotes around strings; you have to use double quotes.

If you’re creating a new application, this is generally not a problem; you

quickly learn to generate the correct JSON. But if you’re converting an
application to ASP.NET Core or are sending JSON to a third party you don’t
control, these limitations can be real stumbling blocks.

Luckily, you can easily switch back to the Newtonsoft.Json library instead.
Install the Microsoft.AspNetCore.Mvc.NewtonsoftJson package into your
project and update the AddControllers() method in Program.cs to the
following:

builder.Services.AddControllers()

 .AddNewtonsoftJson();

This will switch ASP.NET Core’s formatters to use Newtonsoft.Json behind
the scenes, instead of System.Text.Json. For more details on the differences
between the libraries, see Microsoft’s article “Compare Newtonsoft.Json to
System.Text.Json, and migrate to System.Text.Json”: http://mng.bz/0mRJ.
For more advice on when to switch to the Newtonsoft.Json formatter, see the
section “Add Newtonsoft.Json-based JSON format support” in Microsoft’s
“Format response data in ASP.NET Core Web API” documentation:
http://mng.bz/zx11.

You can add XML output to your application by adding an output formatter.
You configure your application’s formatters in Program.cs by customizing
the IMvcBuilder object returned from AddControllers(). To add the XML
output formatter, use the following:

services.AddControllers()

 .AddXmlSerializerFormatters();

Note

Technically, this also adds an XML input formatter, which means your
application can now receive XML in requests too. Previously, sending a
request with XML in the body would respond with a 415 Unsupported
Media Type response. For a detailed look at formatters, including creating a
custom formatter, see the documentation at http://mng.bz/e5gG.

With this simple change, your API controllers can now format responses as
XML as well as JSON. Running the same request as shown in figure 20.7

with XML support enabled means the app will respect the text/xml accept
header. The formatter serializes the string array to XML as requested
instead of defaulting to JSON, as shown in figure 20.8.

Figure 20.8 With the XML output formatters added, the Accept header’ text/xml value is
respected, and the response is serialized to XML.

This is an example of content negotiation, where the client has specified
which formats it can handle and the server selects one of those, based on
what it can produce. This approach is part of the HTTP protocol, but there are
some quirks to be aware of when relying on it in ASP.NET Core. You won’t
often run into these, but if you’re not aware of them when they hit you, they
could have you scratching your head for hours!

20.5.2 Choosing a response format with content negotiation

Content negotiation is where a client says which types of data it can accept

using the Accept header and the server picks the best one it can handle.
Generally speaking, this works as you’d hope: the server formats the data
using a type the client can understand.

The ASP.NET Core implementation has some special cases that are worth
bearing in mind:

By default, ASP.NET Core returns only application/json,
text/plain, and text/html MIME types. You can add
IOutputFormatters to make other types available, as you saw in the
previous section for text/xml.
By default, if you return null as your API model, whether from an
action method or by passing null in a StatusCodeResult, the
middleware returns a 204 No Content response.
When you return a string as your API model, if no Accept header is
set, ASP.NET Core formats the response as text/plain.
When you use any other class as your API model, and there’s no Accept
header or none of the supported formats was requested, the first
formatter that can generate a response is used (typically JSON by
default).
If the middleware detects that the request is probably from a browser
(the accept header contains */*), it will not use conneg. Instead, it
formats the response as though an Accept header was not provided,
using the default formatter (typically JSON).

These defaults are relatively sane, but they can certainly bite you if you’re not
aware of them. That last point in particular, where the response to a request
from a browser is virtually always formatted as JSON, has certainly caught
me out when trying to test XML requests locally!

As you should expect by now, all these rules are configurable; you can easily
change the default behavior in your application if it doesn’t fit your
requirements. For example, the following listing, taken from Program.cs,
shows how you can force the middleware to respect the browser’s Accept
header and remove the text/plain formatter for strings.

Listing 20.14 Customizing MVC to respect the browser’s Accept header in web APIs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(options => #A

{

 options.RespectBrowserAcceptHeader = true; #B

 options.OutputFormatters.RemoveType<StringOutputFormatter>(); #C

});

In most cases, conneg should work well for you out of the box, whether
you’re building an SPA or a mobile application. In some cases, you may find
you need to bypass the usual conneg mechanisms for specific action methods,
and there are various ways to achieve this, but I won’t cover them in this
book as I’ve found I rarely need to use them. For details, see Microsoft’s
“Format response data in ASP.NET Core Web API” documentation:
http://mng.bz/zx11.

At this point we’ve covered the main points of using API controllers, but you
probably still have one major question: why would I use web API controllers
over minimal APIs? That’s a great question, and one we’ll look at in section
20.6.

20.6 Choosing between web API controllers and
minimal APIs

In part 1 of this book you learned all about using minimal APIs to build a
JSON API. Minimal APIs are the new kid on the block, being introduced in
.NET 6, but they are growing up quickly. With all the new features
introduced in .NET 7 (discussed in chapter 5), minimal APIs are emerging as
a great way to build HTTP APIs in modern .NET.

By contrast, web API controllers have been around since day one. They were
introduced in their current form in ASP.NET Core 1.0 and were heavily
inspired by the web API framework from legacy ASP.NET. The designs,
patterns, and concepts used by web API controllers haven’t changed much
since then, so if you’ve ever used web API controllers, they should look
familiar in .NET 7.

The difficult question in .NET 7 is if you need to build an API, which should

you use, minimal APIs or web API controllers? Both have their pros and
cons, and a large part of the decision will be personal preference, but to help
your decision, you should ask yourself several questions:

1. Do you need to return data in multiple formats using content
negotiation?

2. Is performance critical to your application?
3. Do you have complex filtering requirements?
4. Is this a new project?
5. Do you already have experience with web API controllers?
6. Do you prefer convention over configuration?

Questions 1-3 in this list are focused on technical differences between
minimal APIs and web API controllers. Web API controllers support content
negotiation (conneg), which allows clients to request data be returned in a
particular format: JSON, XML, or CSV, for example, as you learned in
section 20.5. Web API controllers support this feature out of the box, so if it’s
crucial for your application, it may be better to choose web API controllers
over minimal APIs.

Tip

If you want to use content negotiation with minimal APIs, it’s possible but
not built in. I show how to add conneg to minimal APIs using the open-
source library Carter on my blog: http://mng.bz/o12d.

Question 2 is about performance. Everyone wants the most performant app,
but there’s a real question of how important it is. Are you going to be
regularly benchmarking your application and looking for any regressions? If
so, minimal APIs are probably going to be a better choice, as they’re often
more performant than web API controllers.

The MVC framework that web API controllers use relies on a lot of
conventions and reflection for discovering your controllers and a complex
filter pipeline. These are obviously highly optimized, but if you’re writing an
application where you need to squeeze out every little bit of throughput,
minimal APIs will likely help get you there more easily. For most
applications, the overhead of the MVC framework will be negligible when

compared with any database or network access in your app, so this is worth
worrying about only for performance-sensitive apps.

Question 3 focuses on filtering. You learned about filtering with minimal
APIs in chapter 5: filters allow you to attach a processing pipeline to your
minimal API endpoints and can be used to do things like automatic
validation. Web API controllers (as well as MVC controllers and Razor
Pages) also have a filter pipeline, but it’s much more complex than the simple
pipeline used by minimal APIs, as you’ll see in chapters 21 and 22.

In most cases the filtering provided by minimal APIs will be perfectly
adequate for your needs. The main cases where minimal API filtering will
fall down will be when you already have an application that uses web API
controllers and want to reuse some complex filters. In these cases, there may
be no way to translate your existing web API filters to minimal API filters. If
the filtering is important, then you may need to stick with web API
controllers.

This leads to question 4: are you building a new application or working on an
existing application? If this is a new application, I would be strongly in favor
of using minimal APIs. Minimal APIs are conceptually simpler than web API
controllers, are faster because of this, and are receiving a lot of improvements
from the ASP.NET Core team. If there’s no other compelling reason to
choose web API controllers in your new project, I suggest defaulting to
minimal APIs.

On the other hand, if you have an existing web API controller application, I
would be strongly inclined to stick with web API controllers. While it’s
perfectly possible to mix minimal APIs and web API controllers in the same
application, I would favor consistency over using the new hotness.

Question 5 considers how familiar you already are with web API controllers.
If you’re coming from legacy ASP.NET or have already used web API
controllers in ASP.NET Core and need to be productive quickly, you might
decide to stick with web API controllers.

I consider this one of the weaker arguments, as minimal APIs are
conceptually simpler than web API controllers; if you already know web API

controllers, you will likely pick up minimal APIs easily. That said, the
differences in the model binding approaches can be a little confusing, and
you may decide it’s not worth the investment or frustration if things don’t
work as you expect.

The final question comes down entirely to taste and preference: do you like
minimal APIs? web API controllers heavily follow the “convention over
configuration” paradigm (though not to the extent of MVC controllers and
Razor Pages). By contrast, you must be far more explicit with minimal APIs.
Minimal APIs also don’t enforce any particular grouping, unlike web API
controllers, which all follow the “action methods in a controller class”
pattern.

Different people prefer different approaches. Web API controllers mean less
manual wiring up of components, but this necessarily means more magic and
more rigidity around how you structure your applications.

By contrast, minimal API endpoints must be explicitly added to the
WebApplication instance, but this also means you have more flexibility
around how to group your endpoints. You can put all your endpoints in
Program.cs, create natural groupings for them in separate classes, or create a
file per endpoint or any pattern you choose.

Tip

You can also more easily layer on helper frameworks to minimal APIs, such
as Carter (https://github.com/CarterCommunity/Carter), which can provide
some structure and support functionality if you want it.

Overall, the choice is up to you whether web API controllers or minimal
APIs are better for your application. Table 20.1 summarizes the questions and
where you should favor one approach over the other, but the final choice is
up to you!

Table 20.1 Choosing between minimal APIs with web API controllers

Question Minimal APIs Web API controllers

1. Do you need conneg? Can’t use conneg out of
the box Built-in and extensible

2. How critical is
performance?

More performant than
web API controllers

Less performant than
minimal APIs

3. Complex filtering? Have a simple,
extensible filter pipeline

Have a complex,
nonlinear, filter pipeline

4. Is this a new project?

Minimal APIs are
getting many new
features and are a focus
of the ASP.NET Core
team

The MVC framework is
receiving small new
features, but is less of a
focus.

5. Do you have
experience with web
API controllers?

Minimal APIs share
many of the same
concepts, but have subtle
differences in model
binding

Web API controllers
may be familiar to users
of legacy ASP.NET or
older ASP.NET Core
versions

6. Do you prefer
convention over
configuration?

Requires a lot of explicit
configuration

Convention- and
discovery-based, which
can appear more magic
when you’re unfamiliar

That brings us to the end of this chapter on web APIs. In the next chapter
we’ll look at one of more advanced topics of MVC and Razor Pages: the
filter pipeline and how you can use it to reduce duplication in your code. The

good news is that it’s similar to minimal API filters in principle. The bad
news is that it’s far more complicated!

20.7 Summary

Web API action methods can return data directly or can use
ActionResult<T> to generate an arbitrary response. If you return more
than one type of result from an action method, the method signature
must return ActionResult<T>.
The data returned by a web API action is sometimes called an API
model. It contains the data that will be serialized and send back to the
client. This differs from view models and PageModels, which contain
both data and metadata about how to generate the response.
Web APIs are associated with route templates by applying
RouteAttributes to your action methods. These give you complete
control over the URLs that make up your application’s API.
Route attributes applied to a controller combine with the attributes on
action methods to form the final template. These are also combined with
attributes on inherited base classes. You can use inherited attributes to
reduce the amount of duplication in the attributes, such as where you’re
using a common prefix on your routes.
By default, the controller and action name have no bearing on the URLs
or route templates when you use attribute routing. However, you can use
the "[controller]" and "[action]" tokens in your route templates to
reduce repetition. They’ll be replaced with the current controller and
action name.
The [HttpPost] and [HttpGet] attributes allow you to choose between
actions based on the request’s HTTP verb when two actions correspond
to the same URL. This is a common pattern in RESTful applications.
The [ApiController] attribute applies several common conventions to
your controllers. Controllers decorated with the attribute automatically
bind to a request’s body instead of using form values, automatically
generate a 400 Bad Request response for invalid requests, and return
ProblemDetails objects for status code errors. This can dramatically
reduce the amount of boilerplate code you must write.
You can control which of the conventions to apply by using the
ConfigureApiBehaviorOptions() method and providing a

configuration lambda. This is useful if you need to fit your API to an
existing specification, for example.
By default, ASP.NET Core formats the API model returned from a web
API controller as JSON. In contrast to legacy ASP.NET, JSON data is
serialized using camelCase rather than PascalCase. You should consider
this change if you get errors or missing values when using data from
your API.
ASP.NET Core 3.0 onwards uses System.Text.Json, which is a strict,
high performance library for JSON serialization and deserialization. You
can replace this serializer with the common Newtonsoft.Json formatter
by calling AddNewtonsoftJson() on the return value from
services.AddControllers().
Content negotiation occurs when the client specifies the type of data it
can handle and the server chooses a return format based on this. It
allows multiple clients to call your API and receive data in a format they
can understand.
By default, ASP.NET Core can return text/plain, text/html, and
application/json, but you can add formatters if you need to support
other formats.
You can add XML formatters by calling
AddXmlSerializerFormatters() on the return value from
services.AddControllers() in your Startup class. These can format
the response as XML, as well as receive XML in a request body.
Content negotiation isn’t used when the Accept header contains */*,
such as in most browsers. Instead, your application uses the default
formatter, JSON. You can disable this option by setting the
RespectBrowserAcceptHeader option to true when adding your
controller services in Program.cs.
You can mix web API Controllers and minimal API endpoints in the
same application, but you may find it easier to use one or the other.
Choose web API controllers when you need content negotiation, when
you have complex filtering requirements, when you have experience
with web controllers, or when you prefer convention over configuration
for your apps.
Choose minimal API endpoints when performance is critical, when you
prefer explicit configuration over automatic conventions, or when you’re
starting a new app.

21 The MVC and Razor Pages filter
pipeline
This chapter covers

The filter pipeline and how it differs from middleware
The different types of filters
Filter ordering

Part 3 of this book has covered the Model-View-Controller (MVC) and Razor
Pages frameworks of ASP.NET Core in some detail. You learned how
routing is used to select a Razor Page or action to execute. You also saw
model binding, validation, and how to generate a response by returning an
IActionResult from your actions and page handlers. In this chapter I’m
going to head deeper into the MVC/Razor Pages frameworks and look at the
filter pipeline, sometimes called the action invocation pipeline, which is
analogous to the minimal API endpoint filter pipeline you learned about in
chapter 5.

MVC and Razor Pages use several built-in filters to handle cross-cutting
concerns, such as authorization (controlling which users can access which
action methods and pages in your application). Any application that has the
concept of users will use authorization filters as a minimum, but filters are
much more powerful than this single use case. In sections 21.1 and 21.2
you’ll learn about all the different types of filters and how they combine to
create the MVC filter pipeline for a request that reaches the MVC or Razor
Pages framework.

Think of the MVC filter pipeline as a mini middleware pipeline running
inside the MVC and Razor Pages frameworks, like the minimal API endpoint
filter pipeline. Like the middleware pipeline in ASP.NET Core, the MVC
filter pipeline consists of a series of components connected as a pipe, so the
output of one filter feeds into the input of the next. In section 21.3 we’ll look
at the similarities and differences between these two pipelines, and when you

should choose one over the other.

In section 21.4 you’ll see how to create a simple custom filter. Rather than
focus on the functionality of the filter itself, you’ll learn how to apply it to
multiple endpoints in section 21.5. In section 21.6 you’ll see how the choice
of where you apply your attributes affects the order in which your filters
execute.

The filter pipeline is a complex topic, but it can enable some advanced
behaviors in your app and potentially reduce overall complexity. In this
chapter you’ll learn the basics of the pipeline and how it works. In chapter 22
we dig into practical examples of filters, looking at the filters that come out
of the box in ASP.NET Core, as well as building custom filters to extract
common code from your controllers and Razor Pages.

Before we can start writing code, we should get to grips with the basics of the
filter pipeline. The first section of this chapter explains what the pipeline is,
why you might want to use it, and how it differs from the middleware
pipeline.

21.1 Understanding the MVC filter pipeline

In this section you’ll learn all about the MVC filter pipeline. You’ll see where
it fits in the life cycle of a typical request and the roles of the six types of
filters available.

The filter pipeline is a relatively simple concept in that it provides hooks into
the normal MVC request, as shown in figure 21.1. For example, say you
wanted to ensure that users can create or edit products on an e-commerce app
only if they’re logged in. The app would redirect anonymous users to a login
page instead of executing the action.

Figure 21.1 Filters run at multiple points in the EndpointMiddleware as part of the normal
handling of an MVC request. A similar pipeline exists for Razor Page requests.

Without filters, you’d need to include the same code to check for a logged-in
user at the start of each specific action method. With this approach, the MVC
framework would still execute the model binding and validation, even if the
user were not logged in.

With filters, you can use the hooks in the MVC request to run common code
across all requests or a subset of requests. This way you can do a wide range
of things, such as

Ensure that a user is logged in before an action method, model binding,
or validation runs.
Customize the output format of particular action methods.
Handle model validation failures before an action method is invoked.
Catch exceptions from an action method and handle them in a special
way.

In many ways, the MVC filter pipeline is like an extra middleware pipeline,
restricted to MVC and Razor Pages requests only. Like middleware, filters
are good for handling cross-cutting concerns for your application and are
useful tools for reducing code duplication in many cases.

The linear1 view of an MVC request and the filter pipeline that I’ve used so
far doesn’t quite match up with how these filters execute. There are five types
of filters that apply to MVC requests, each of which runs at a different stage
in the MVC framework, as shown in figure 21.2.

Figure 21.2 The MVC filter pipeline, including the five filter stages. Some filter stages (resource,
action, and result) run twice, before and after the remainder of the pipeline.

Each filter stage lends itself to a particular use case, thanks to its specific
location in the pipeline, with respect to model binding, action execution, and
result execution:

Authorization filters—These run first in the pipeline, so they’re useful
for protecting your APIs and action methods. If an authorization filter
deems the request unauthorized, it short-circuits the request, preventing

the rest of the filter pipeline (or action) from running.
Resource filters—After authorization, resource filters are the next filters
to run in the pipeline. They can also execute at the end of the pipeline, in
much the same way that middleware components can handle both the
incoming request and the outgoing response. Alternatively, resource
filters can completely short-circuit the request pipeline and return a
response directly.
Thanks to their early position in the pipeline, resource filters can have a
variety of uses. You could add metrics to an action method; prevent an
action method from executing if an unsupported content type is
requested; or, as they run before model binding, control the way model
binding works for that request.
Action filters—Action filters run immediately before and after an action
method is executed. As model binding has already happened, action
filters let you manipulate the arguments to the method—before it
executes—or they can short-circuit the action completely and return a
different IActionResult. Because they also run after the action
executes, they can optionally customize an IActionResult returned by
the action before the action result is executed.
Exception filters—Exception filters catch exceptions that occur in the
filter pipeline and handle them appropriately. You can use exception
filters to write custom, MVC-specific error-handling code, which can be
useful in some situations. For example, you could catch exceptions in
API actions and format them differently from exceptions in your Razor
Pages.
Result filters—Result filters run before and after an action method’s
IActionResult is executed. You can use result filters to control the
execution of the result or even to short-circuit the execution of the result.

Exactly which filter you pick to implement will depend on the functionality
you’re trying to introduce. Want to short-circuit a request as early as
possible? Resource filters are a good fit. Need access to the action method
parameters? Use an action filter.

Think of the filter pipeline as a small middleware pipeline that lives by itself
in the MVC framework. Alternatively, you could think of filters as hooks into
the MVC action invocation process that let you run code at a particular point

in a request’s life cycle.

Note

The design of the MVC filter pipeline is quite different from the minimal API
endpoint filter pipeline you saw in chapter 5. The endpoint filter pipeline is
linear and doesn’t have multiple types of filters.

This section described how the filter pipeline works for MVC and Web API
controllers; Razor Pages use an almost-identical filter pipeline.

21.2 The Razor Pages filter pipeline

The Razor Pages framework uses the same underlying architecture as MVC
and Web API controllers, so it’s perhaps not surprising that the filter pipeline
is virtually identical. The only difference between the pipelines is that Razor
Pages do not use action filters. Instead, they use page filters, as shown in
figure 21.3.

Figure 21.3 The Razor Pages filter pipeline, including the five filter stages. Authorization,
resource, exception, and result filters execute in exactly the same way as for the MVC pipeline.
Page filters are specific to Razor Pages and execute in three places: after page hander selection,
after model binding and validation, and after page handler execution.

The authorization, resource, exception, and result filters are exactly the same
filters you saw for the MVC pipeline. They execute in the same way, serve

the same purposes, and can be short-circuited in the same way.

Note

These filters are literally the same classes shared between the Razor Pages
and MVC frameworks.

The difference with the Razor Pages filter pipeline is that it uses page filters
instead of action filters. By contrast with other filter types, page filters run
three times in the filter pipeline:

After page handler selection—After the resource filters have executed, a
page handler is selected, based on the request’s HTTP verb and the
{handler} route value, as you learned in chapter 15. After page handler
selection, a page filter method executes for the first time. You can’t
short-circuit the pipeline at this stage, and model binding and validation
have not yet executed.
After model binding—After the first page filter execution, the request is
model-bound to the Razor Page’s binding models and is validated. This
execution is highly analogous to the action filter execution for API
controllers. At this point you could manipulate the model-bound data or
short-circuit the page handler execution completely by returning a
different IActionResult.
After page handler execution—If you don’t short-circuit the page
handler execution, the page filter runs a third and final time after the
page handler has executed. At this point you could customize the
IActionResult returned by the page handler before the result is
executed.

The triple execution of page filters makes it a bit harder to visualize the
pipeline, but you can generally think of them as beefed-up action filters.
Everything you can do with an action filter, you can do with a page filter, and
you can hook in after page handler selection if necessary.

Tip

Each execution of a filter executes a different method of the appropriate
interface, so it’s easy to know where you are in the pipeline and to execute a

filter in only one of its possible locations if you wish.

One of the main questions I hear when people learn about filters in ASP.NET
Core is “Why do we need them?” If the filter pipeline is like a mini
middleware pipeline, why not use a middleware component directly, instead
of introducing the filter concept? That’s an excellent point, which I’ll tackle
in the next section.

21.3 Filters or middleware: Which should you
choose?

The filter pipeline is similar to the middleware pipeline in many ways, but
there are several subtle differences that you should consider when deciding
which approach to use. The considerations are essentially the same as those
for the minimal API endpoint filter I discussed in chapter 5. MVC filters and
middleware are similar in three ways:

Requests pass through a middleware component on the way “in,” and
responses pass through again on the way “out.” Resource, action, and
result filters are also two-way, though authorization and exception filters
run only once for a request, and page filters run three times.
Middleware can short-circuit a request by returning a response instead
of passing it on to later middleware. MVC and page filters can also
short-circuit the filter pipeline by returning a response.
Middleware is often used for cross-cutting application concerns, such as
logging, performance profiling, and exception handling. Filters also lend
themselves to cross-cutting concerns.

Filters and middleware also differ primarily in three ways:

Middleware can run for all requests; filters run only for requests that
reach the EndpointMiddleware and execute a controller action or Razor
Page handler.
Filters have access to MVC constructs such as ModelState and
IActionResults. Middleware in general is independent from MVC and
Razor Pages and works at a lower level, so it can’t use these concepts.
Filters can be easily applied to a subset of requests, such as all actions

on a single controller or a single Razor Page. Middleware generally
applies to all requests that reach a given point in the middleware
pipeline.

As for the endpoint filter pipeline, I like to think of middleware versus MVC
filters as a question of specificity. Middleware is the more general concept, so
it has the wider reach. But if you need to access to MVC constructs or want
to behave differently for some MVC actions or Razor Pages, you should
consider using a filter.

The middleware-versus-filters argument is a subtle one, and it doesn’t matter
which you choose as long as it works for you. You can even use middleware
components inside the MVC filter pipeline, effectively turning a middleware
component into a filter!

Tip

The middleware-as-filters feature was introduced in ASP.NET Core 1.1 and
is also available in later versions. The canonical use case is for localizing
requests to multiple languages. I have a blog series on how to use the feature
here: http://mng.bz/RXa0.

Filters can be a little abstract in isolation, so in the next section we’ll look at
some code and learn how to write a custom MVC filter in ASP.NET Core.

21.4 Creating a simple filter

In this section, I show you how to create your first filters; in section 21.5
you’ll see how to apply them to MVC controllers and actions. We’ll start
small, creating filters that only write to the console, but in chapter 22 we look
at some more practical examples and discuss some of their nuances.

You implement a filter for a given stage by implementing one of a pair of
interfaces, one synchronous (sync) and one asynchronous (async):

Authorization filters—IAuthorizationFilter or
IAsyncAuthorizationFilter

Resource filters—IResourceFilter or IAsyncResourceFilter
Action filters—IActionFilter or IAsyncActionFilter
Page filters—IPageFilter or IAsyncPageFilter
Exception filters—IExceptionFilter or IAsyncExceptionFilter
Result filters—IResultFilter or IAsyncResultFilter

You can use any plain old CLR object (POCO) class to implement a filter,
but you’ll typically implement them as C# attributes, which you can use to
decorate your controllers, actions, and Razor Pages, as you’ll see in section
21.5. You can achieve the same results with either the sync or async
interface, so which you choose should depend on whether any services you
call in the filter require async support.

Note

You should implement either the sync interface or the async interface, not
both. If you implement both, only the async interface will be used.

Listing 21.1 shows a resource filter that implements IResourceFilter and
writes to the console when it executes. The OnResourceExecuting method is
called when a request first reaches the resource filter stage of the filter
pipeline. By contrast, the OnResourceExecuted method is called after the rest
of the pipeline has executed: after model binding, action execution, result
execution, and all intermediate filters have run.

Listing 21.1 Example resource filter implementing IResourceFilter

public class LogResourceFilter : Attribute, IResourceFilter

{

 public void OnResourceExecuting(#A

 ResourceExecutingContext context) #B

 {

 Console.WriteLine("Executing!");

 }

 public void OnResourceExecuted(#C

 ResourceExecutedContext context) #D

 {

 Console.WriteLine("Executed");

 }

}

The interface methods are simple and are similar for each stage in the filter
pipeline, passing a context object as a method parameter. Each of the two-
method sync filters has an *Executing and an *Executed method. The type
of the argument is different for each filter, but it contains all the details for
the filter pipeline.

For example, the ResourceExecutingContext passed to the resource filter
contains the HttpContext object itself, details about the route that selected
this action, details about the action itself, and so on. Contexts for later filters
contain additional details, such as the action method arguments for an action
filter and the ModelState.

The context object for the ResourceExecutedContext method is similar, but
it also contains details about how the rest of the pipeline executed. You can
check whether an unhandled exception occurred, you can see if another filter
from the same stage short-circuited the pipeline, or you can see the
IActionResult used to generate the response.

These context objects are powerful and are the key to advanced filter
behaviors like short-circuiting the pipeline and handling exceptions. We’ll
make use of them in chapter 22 when we create more complex filter
examples.

The async version of the resource filter requires implementing a single
method, as shown in listing 21.2. As for the sync version, you’re passed a
ResourceExecutingContext object as an argument, and you’re passed a
delegate representing the remainder of the filter pipeline. You must call this
delegate (asynchronously) to execute the remainder of the pipeline, which
returns an instance of ResourceExecutedContext.

Listing 21.2 Example resource filter implementing IAsyncResourceFilter

<pre class="codeacxspfirst">public class LogAsyncResourceFilter : Attribute, IAsyncResourceFilter

</pre> <pre class="codeacxspmiddle">{

</pre> <pre class="codeacxspmiddle"> public async Task OnResourceExecutionAsync(#A

</pre> <pre class="codeacxspmiddle"> ResourceExecutingContext context,

</pre> <pre class="codeacxspmiddle"> ResourceExecutionDelegate next) #B

</pre> <pre class="codeacxspmiddle"> {

</pre> <pre class="codeacxspmiddle"> Console.WriteLine("Executing async!"); #C

</pre> <pre class="codeacxspmiddle"> ResourceExecutedContext executedContext = await next(); #D

</pre> <pre class="codeacxspmiddle"> Console.WriteLine("Executed async!"); #E

</pre> <pre class="codeacxspmiddle"> }

</pre> <pre class="codeacxsplast">}

</pre>

The sync and async filter implementations have subtle differences, but for
most purposes they’re identical. I recommend implementing the sync version
for simplicity, falling back to the async version only if you need to.

You’ve created a couple of filters now, so we should look at how to use them
in the application. In the next section we’ll tackle two specific issues: how to
control which requests execute your new filters and how to control the order
in which they execute.

21.5 Adding filters to your actions and Razor Pages

In section 21.3 I discussed the similarities and differences between
middleware and filters. One of those differences is that filters can be scoped
to specific actions or controllers so that they run only for certain requests.
Alternatively, you can apply a filter globally so that it runs for every MVC
action and Razor Page.

By adding filters in different ways, you can achieve several different results.
Imagine you have a filter that forces you to log in to execute an action. How
you add the filter to your app will significantly change your app’s behavior:

Apply the filter to a single action or Razor Page. Anonymous users
could browse the app as normal, but if they tried to access the protected
action or Razor Page, they would be forced to log in.
Apply the filter to a controller. Anonymous users could access actions
from other controllers, but accessing any action on the protected
controller would force them to log in.
Apply the filter globally. Users couldn’t use the app without logging in.
Any attempt to access an action or Razor Page would redirect the user to
the login page.

Note

ASP.NET Core comes with such a filter out of the box: AuthorizeFilter. I
discuss this filter in chapter 22, and you’ll be seeing a lot more of it in
chapter 24.

As I described in the previous section, you normally create filters as
attributes, and for good reason: it makes it easy for you to apply them to
MVC controllers, actions, and Razor Pages. In this section you’ll see how to
apply LogResourceFilter from listing 21.1 to an action, a controller, a Razor
Page, and globally. The level at which the filter applies is called its scope.

Definition

The scope of a filter refers to how many different actions it applies to. A filter
can be scoped to the action method, to the controller, to a Razor Page, or
globally.

You’ll start at the most specific scope: applying filters to a single action. The
following listing shows an example of an MVC controller that has two action
methods, one with LogResourceFilter and one without.

Listing 21.3 Applying filters to an action method

public class RecipeController : ControllerBase

{

 [LogResourceFilter] #A

 public IActionResult Index() #A

 { #A

 return Ok(); #A

 } #A

 public IActionResult View() #B

 { #B

 return OK(); #B

 } #B

}

Alternatively, if you want to apply the same filter to every action method,
you could add the attribute at the controller scope, as in the next listing.
Every action method in the controller uses LogResourceFilter without
having to specifically decorate each method.

Listing 21.4 Applying filters to a controller

[LogResourceFilter] #A

public class RecipeController : ControllerBase

{

 public IActionResult Index () #B

 { #B

 return Ok(); #B

 } #B

 public IActionResult View() #B

 { #B

 return Ok(); #B

 } #B

}

For Razor Pages, you can apply attributes to your PageModel, as shown in the
following listing. The filter applies to all page handlers in the Razor Page. It’s
not possible to apply filters to a single page handler; you must apply them at
the page level.

Listing 21.5 Applying filters to a Razor Page

[LogResourceFilter] #A

public class IndexModel : PageModel

{

 public void OnGet() #B

 { #B

 } #B

 public void OnPost() #B

 { #B

 } #B

}

Filters you apply as attributes to controllers, actions, and Razor Pages are
automatically discovered by the framework when your application starts up.
For common attributes, you can go one step further and apply filters globally
without having to decorate individual classes.

You add global filters in a different way from controller- or action-scoped
filters—by adding a filter directly to the MVC services when configuring
your controllers and Razor Pages. The next listing shows three equivalent
ways to add a globally scoped filter.

Listing 21.6 Applying filters globally to an application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers(options => #A

{

 options.Filters.Add(new LogResourceFilter()); #B

 options.Filters.Add(typeof(LogResourceFilter)); #C

 options.Filters.Add<LogResourceFilter>(); #D

});

You can configure the MvcOptions by using the AddControllers() overload.
When you configure filters globally, they apply both to controllers and to any
Razor Pages in your application. If you wish to configure a global filter for a
Razor Pages application, there isn’t an overload for configuring the
MvcOptions. Instead, you need to use the AddMvcOptions() extension method
to configure the filters, as shown in the following listing.

Listing 21.7 Applying filters globally to a Razor Pages application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.RazorPages() #A

 .AddMvcOptions(options => #B

 {

 options.Filters.Add(new LogResourceFilter()); #C

 options.Filters.Add(typeof(LogResourceFilter)); #C

 options.Filters.Add<LogResourceFilter>(); #C

 });

With potentially three different scopes in play, you’ll often find action
methods that have multiple filters applied to them, some applied directly to
the action method and others inherited from the controller or globally. Then
the question becomes which filter runs first.

21.6 Understanding the order of filter execution

You’ve seen that the filter pipeline contains five stages, one for each type of
filter. These stages always run in the fixed order I described in sections 21.1
and 21.2. But within each stage, you can also have multiple filters of the
same type (for example, multiple resource filters) that are part of a single

action method’s pipeline. These could all have multiple scopes, depending on
how you added them, as you saw in the preceding section.

In this section we’re thinking about the order of filters within a given stage
and how scope affects this. We’ll start by looking at the default order and
then move on to ways to customize the order to your own requirements.

21.6.1 The default scope execution order

When thinking about filter ordering, it’s important to remember that resource,
action, and result filters implement two methods: an *Executing before
method and an *Executed after method. On top of that, page filters
implement three methods! The order in which each method executes depends
on the scope of the filter, as shown in figure 21.4 for the resource filter stage.

Figure 21.4 The default filter ordering within a given stage, based on the scope of the filters. For
the *Executing method, globally scoped filters run first, followed by controller-scoped, and
finally action-scoped filters. For the *Executed method, the filters run in reverse order.

By default, filters execute from the broadest scope (global) to the narrowest
(action) when running the *Executing method for each stage. The filters’
*Executed methods run in reverse order, from the narrowest scope (action) to
the broadest (global).

The ordering for Razor Pages is somewhat simpler, given that you have only
two scopes: global scope filters and Razor Page scope filters. For Razor
Pages, global scope filters run the *Executing and PageHandlerSelected
methods first, followed by the page scope filters. For the *Executed methods,
the filters run in reverse order.

You’ll sometimes find you need a bit more control over this order, especially
if you have, for example, multiple action filters applied at the same scope.
The filter pipeline caters to this requirement by way of the IOrderedFilter
interface.

21.6.2 Overriding the default order of filter execution with
IOrderedFilter

Filters are great for extracting cross-cutting concerns from your controller
actions and Razor Page, but if you have multiple filters applied to an action,
you’ll often need to control the precise order in which they execute.

Scope can get you some of the way, but for those other cases, you can
implement IOrderedFilter. This interface consists of a single property,
Order:

public interface IOrderedFilter

{

 int Order { get; }

}

You can implement this property in your filters to set the order in which they
execute. The filter pipeline orders the filters in each stage based on the Order
property first, from lowest to highest, and uses the default scope order to
handle ties, as shown in figure 21.5.

Figure 21.5 Controlling the filter order for a stage using the IOrderedFilter interface. Filters are
ordered by the Order property first, and then by scope.

The filters for Order = -1 execute first, as they have the lowest Order value.
The controller filter executes first because it has a broader scope than the
action-scope filter. The filters with Order = 0 execute next, in the default
scope order, as shown in figure 21.5. Finally, the filter with Order = 1
executes.

By default, if a filter doesn’t implement IOrderedFilter, it’s assumed to
have Order = 0. All the filters that ship as part of ASP.NET Core have Order
= 0, so you can implement your own filters relative to these.

Note

You can completely customize how the filter pipeline is built by customizing

the MVC frameworks application model conventions. These control
everything about how controllers and Razor Pages are discovered, how
they’re added to the pipeline, and how filters are discovered. This is an
advanced concept, that you won’t often need, but it may occasionally come in
handy. You can read about the MVC application model in the documentation
at http://mng.bz/nWNa.

This chapter has provided a lot of background on the MVC filter pipeline,
and we covered most of the technical details you need to use filters and create
custom implementations for your own application. In chapter 22 you’ll see
some of the built-in filters provided by ASP.NET Core, as well as some
practical examples of filters you might want to use in your own applications.

21.7 Summary

The filter pipeline provides hooks into an MVC request so you can run
functions at various points within an MVC request. With filters you can
run code at specific points in the MVC process across all requests or a
subset of requests. This is particularly useful for handling cross-cutting
concerns that are specific to MVC.
The filter pipeline executes as part of the MVC or Razor Pages
execution. It consists of authorization filters, resource filters, action
filters, page filters, exception filters, and result filters. Each filter type is
grouped in a stage and can be used to achieve effects specific to that
stage.
Resource, action, and result filters run twice in the pipeline: an
*Executing method on the way in and an *Executed method on the way
out. Page filters run three times: after page handler selection, and before
and after page handler execution.
Authorization and exception filters run only once as part of the pipeline;
they don’t run after a response has been generated.
Each type of filter has both a sync and an async version. For example,
resource filters can implement either the IResourceFilter interface or
the IAsync-ResourceFilter interface. You should use the synchronous
interface unless your filter needs to use asynchronous method calls.
You can add filters globally, at the controller level, at the Razor Page
level, or at the action level. This is called the scope of the filter. Which

scope you should choose depends on how broadly you want to apply the
filter.
Within a given stage, global-scoped filters run first, then controller-
scoped, and finally action-scoped. You can also override the default
order by implementing the IOrderedFilter interface. Filters run from
lowest to highest Order and use scope to break ties.

22 Creating custom MVC and
Razor Page filters
This chapter covers

Creating custom filters to refactor complex action methods
Using authorization filters to protect your action methods and Razor
Pages
Short-circuiting the filter pipeline to bypass action and page handler
execution
Injecting dependencies into filters

In chapter 21 I introduced the Model-View-Controller (MVC) and Razor
Pages filter pipeline and showed where it fits into the life cycle of a request.
You learned how to apply filters to your action method, controllers, and
Razor Pages, and the effect of scope on the filter execution order.

In this chapter you’ll take that knowledge and apply it to a concrete example.
You’ll learn to create custom filters that you can use in your own apps and
how to use them to reduce duplicate code in your action methods.

In section 22.1 I take you through the filter types in detail, how they fit into
the MVC pipeline, and what to use them for. For each one, I’ll provide
example implementations that you might use in your own application and
describe the built-in options available.

A key feature of filters is the ability to short-circuit a request by generating a
response and halting progression through the filter pipeline. This is similar to
the way short-circuiting works in middleware, but there are subtle differences
for MVC filters. On top of that, the exact behavior is slightly different for
each filter, and I cover that in section 22.2.

You typically add MVC filters to the pipeline by implementing them as
attributes added to your controller classes, action methods, and Razor Pages.

Unfortunately, you can’t easily use dependency injection (DI) with attributes
due to the limitations of C#. In section 22.3 I show you how to use the
ServiceFilterAttribute and TypeFilterAttribute base classes to enable
DI in your filters.

We covered all the background for filters in chapter 21, so in the next section
we jump straight into the code and start creating custom MVC filters.

22.1 Creating custom filters for your application

ASP.NET Core includes several filters that you can use out of the box, but
often the most useful filters are the custom ones that are specific to your own
apps. In this section we’ll work through each of the six types of filters I
covered in chapter 21. I’ll explain in more detail what they’re for and when
you should use them. I’ll point out examples of these filters that are part of
ASP.NET Core itself, and you’ll see how to create custom filters for an
example application.

To give you something realistic to work with, we’ll start with a web API
controller for accessing the recipe application from chapter 12. This
controller contains two actions: one for fetching a RecipeDetailViewModel
and another for updating a Recipe with new values. The following listing
shows your starting point for this chapter, including both action methods.

Listing 22.1 Recipe web API controller before refactoring to use filters

[Route("api/recipe")]

public class RecipeApiController : ControllerBase

{

 private readonly bool IsEnabled = true; #A

 public RecipeService _service;

 public RecipeApiController(RecipeService service)

 {

 _service = service;

 }

 [HttpGet("{id}")]

 public IActionResult Get(int id)

 {

 if (!IsEnabled) { return BadRequest(); } #B

 try

 {

 if (!_service.DoesRecipeExist(id)) #C

 { #C

 return NotFound(); #C

 } #C

 var detail = _service.GetRecipeDetail(id); #D

 Response.GetTypedHeaders().LastModified = #E

 detail.LastModified; #E

 return Ok(detail); #F

 }

 catch (Exception ex) #G

 { #G

 return GetErrorResponse(ex); #G

 } #G

 }

 [HttpPost("{id}")]

 public IActionResult Edit(

 int id, [FromBody] UpdateRecipeCommand command)

 {

 if (!IsEnabled) { return BadRequest(); } #H

 try

 {

 if (!ModelState.IsValid) #I

 { #I

 return BadRequest(ModelState); #I

 } #I

 if (!_service.DoesRecipeExist(id)) #J

 { #J

 return NotFound(); #J

 } #J

 _service.UpdateRecipe(command); #K

 return Ok(); #K

 }

 catch (Exception ex) #L

 { #L

 return GetErrorResponse(ex); #L

 } #L

 }

 private static IActionResult GetErrorResponse(Exception ex)

 {

 var error = new ProblemDetails

 {

 Title = "An error occurred",

 Detail = context.Exception.Message,

 Status = 500,

 Type = "https://httpstatuses.com/500"

 };

 return new ObjectResult(error)

 {

 StatusCode = 500

 };

 }

}

These action methods currently have a lot of code to them, which hides the
intent of each action. There’s also quite a lot of duplication between the
methods, such as checking that the Recipe entity exists and formatting
exceptions.

In this section you’re going to refactor this controller to use filters for all the
code in the methods that’s unrelated to the intent of each action. By the end
of the chapter you’ll have a much simpler controller controller that’s far
easier to understand, as shown here.

Listing 22.2 Recipe web API controller after refactoring to use filters

[Route("api/recipe")]

[ValidateModel] #A

[HandleException] #A

[FeatureEnabled(IsEnabled = true)] #A

public class RecipeApiController : ControllerBase

{

 public RecipeService _service;

 public RecipeApiController(RecipeService service)

 {

 _service = service;

 }

 [HttpGet("{id}")]

 [EnsureRecipeExists] #B

 [AddLastModifiedHeader] #B

 public IActionResult Get(int id)

 {

 var detail = _service.GetRecipeDetail(id); #C

 return Ok(detail); #C

 }

 [HttpPost("{id}")]

 [EnsureRecipeExists] #D

 public IActionResult Edit(

 int id, [FromBody] UpdateRecipeCommand command)

 {

 _service.UpdateRecipe(command); #E

 return Ok(); #E

 }

}

I think you’ll have to agree that the controller in listing 22.2 is much easier to
read! In this section you’ll refactor the controller bit by bit, removing cross-
cutting code to get to something more manageable. All the filters we’ll create
in this section will use the sync filter interfaces. I’ll leave it to you, as an
exercise, to create their async counterparts. We’ll start by looking at
authorization filters and how they relate to security in ASP.NET Core.

22.1.1 Authorization filters: Protecting your APIs

Authentication and authorization are related, fundamental concepts in
security that we’ll be looking at in detail in chapters 23 and 24.

Definition

Authentication is concerned with determining who made a request.
Authorization is concerned with what a user is allowed to access.

Authorization filters run first in the MVC filter pipeline, before any other
filters. They control access to the action method by immediately short-
circuiting the pipeline when a request doesn’t meet the necessary
requirements.

ASP.NET Core has a built-in authorization framework that you should use
when you need to protect your MVC application or your web APIs. You can
configure this framework with custom policies that let you finely control
access to your actions.

Tip

It’s possible to write your own authorization filters by implementing
IAuthorizationFilter or IAsyncAuthorizationFilter, but I strongly
advise against it. The ASP.NET Core authorization framework is highly
configurable and should meet all your needs.

At the heart of MVC authorization is an authorization filter,
AuthorizeFilter, which you can add to the filter pipeline by decorating your
actions or controllers with the [Authorize] attribute. In its simplest form,
adding the [Authorize] attribute to an action, as in the following listing,
means that the request must be made by an authenticated user to be allowed
to continue. If you’re not logged in, it will short-circuit the pipeline, returning
a 401 Unauthorized response to the browser.

Listing 22.3 Adding [Authorize] to an action method

public class RecipeApiController : ControllerBase

{

 public IActionResult Get(int id) #A

 {

 // method body

 }

 [Authorize] #B

 public IActionResult Edit(#C

 int id, [FromBody] UpdateRecipeCommand command) #C

 {

 // method body

 }

}

As with all filters, you can apply the [Authorize] attribute at the controller
level to protect all the actions on a controller, to a Razor Page to protect all
the page handler methods in a page, or even globally to protect every
endpoint in your app.

Note

We’ll explore authorization in detail in chapter 24, including how to add
more detailed requirements so that only specific sets of users can execute an
action.

The next filters in the pipeline are resource filters. In the next section you’ll
extract some of the common code from RecipeApiController and see how
easy it is to create a short-circuiting filter.

22.1.2 Resource filters: Short-circuiting your action methods

Resource filters are the first general-purpose filters in the MVC filter
pipeline. In chapter 21 you saw minimal examples of both sync and async
resource filters, which logged to the console. In your own apps, you can use
resource filters for a wide range of purposes, thanks to the fact that they
execute so early (and late) in the filter pipeline.

The ASP.NET Core framework includes a few implementations of resource
filters you can use in your apps:

ConsumesAttribute—Can be used to restrict the allowed formats an
action method can accept. If your action is decorated with
[Consumes("application/json")], but the client sends the request as
Extensible Markup Language (XML), the resource filter will short-
circuit the pipeline and return a 415 Unsupported Media Type response.
SkipStatusCodePagesAttribute—This filter prevents the
StatusCodePagesMiddleware from running for the response. This can
be useful if, for example, you have both web API controllers and Razor
Pages in the same application. You can apply this attribute to the
controllers to ensure that API error responses are passed untouched, but
all error responses from Razor Pages are handled by the middleware.

Resource filters are useful when you want to ensure that the filter runs early
in the pipeline, before model binding. They provide an early hook into the
pipeline for your logic so you can quickly short-circuit the request if you
need to.

Look back at listing 22.1 and see whether you can refactor any of the code
into a resource filter. One candidate line appears at the start of both the Get
and Edit methods:

if (!IsEnabled) { return BadRequest(); }

This line of code is a feature toggle that you can use to disable the
availability of the whole API, based on the IsEnabled field. In practice,
you’d probably load the IsEnabled field from a database or configuration file
so you could control the availability dynamically at runtime, but for this
example I’m using a hardcoded value.

Tip

To read more about using feature toggles in your applications, see my series
“Adding feature flags to an ASP.NET Core app” at http://mng.bz/2e40.

This piece of code is self-contained cross-cutting logic, which is somewhat
orthogonal to the main intent of each action method—a perfect candidate for
a filter. You want to execute the feature toggle early in the pipeline, before
any other logic, so a resource filter makes sense.

Tip

Technically, you could also use an authorization filter for this example, but
I’m following my own advice of “Don’t write your own authorization
filters!”

The next listing shows an implementation of FeatureEnabledAttribute,
which extracts the logic from the action methods and moves it into the filter.
I’ve also exposed the IsEnabled field as a property on the filter.

Listing 22.4 The FeatureEnabledAttribute resource filter

public class FeatureEnabledAttribute : Attribute, IResourceFilter

{

 public bool IsEnabled { get; set; } #A

 public void OnResourceExecuting(#B

 ResourceExecutingContext context) #B

 {

 if (!IsEnabled) #C

 { #C

 context.Result = new BadRequestResult(); #C

 } #C

 }

 public void OnResourceExecuted(#D

 ResourceExecutedContext context) { } #D

}

This simple resource filter demonstrates a few important concepts, which are
applicable to most filter types:

The filter is an attribute as well as a filter. This lets you decorate your
controller, action methods, and Razor Pages with it using
[FeatureEnabled(IsEnabled = true)].
The filter interface consists of two methods: *Executing, which runs
before model binding, and *Executed, which runs after the result has
executed. You must implement both, even if you only need one for your
use case.
The filter execution methods provide a context object. This provides
access to, among other things, the HttpContext for the request and
metadata about the action method that was selected.
To short-circuit the pipeline, set the context.Result property to an
IactionResult instance. The framework will execute this result to
generate the response, bypassing any remaining filters in the pipeline
and skipping the action method (or page handler) entirely. In this
example, if the feature isn’t enabled, you bypass the pipeline by
returning BadRequestResult, which returns a 400 error to the client.

By moving this logic into the resource filter, you can remove it from your
action methods and instead decorate the whole API controller with a simple
attribute:

[FeatureEnabled(IsEnabled = true)]

[Route("api/recipe")]

public class RecipeApiController : ControllerBase

You’ve extracted only two lines of code from your action methods so far, but
you’re on the right track. In the next section we’ll move on to action filters
and extract two more filters from the action method code.

22.1.3 Action filters: Customizing model binding and action
results

Action filters run just after model binding, before the action method executes.

Thanks to this positioning, action filters can access all the arguments that will
be used to execute the action method, which makes them a powerful way of
extracting common logic out of your actions.

On top of this, they run after the action method has executed and can
completely change or replace the IActionResult returned by the action if
you want. They can even handle exceptions thrown in the action.

Note

Action filters don’t execute for Razor Pages. Similarly, page filters don’t
execute for action methods.

The ASP.NET Core framework includes several action filters out of the box.
One of these commonly used filters is ResponseCacheFilter, which sets
HTTP caching headers on your action-method responses.

Note

I have described filters as being attributes, but that’s not always the case. For
example, the action filter is called ResponseCacheFilter, but this type is
internal to the ASP.NET Core framework. To apply the filter, you use the
public [ResponseCache] attribute instead, and the framework automatically
configures the ResponseCacheFilter as appropriate. This separation between
attribute and filter is largely an artifact of the internal design, but it can be
useful, as you’ll see in section 22.3.

Response caching vs. output caching

Caching is a broad topic that aims to improve the performance of an
application over the naive approach. But caching can also make debugging
issues difficult and may even be undesirable in some situations.
Consequently, I often apply ResponseCacheFilter to my action methods to
set HTTP caching headers that disable caching! You can read about this and
other approaches to caching in Microsoft’s “Response caching in ASP.NET
Core” documentation at http://mng.bz/2eGd.

Note that the ResponseCacheFilter applies cache control headers only to

your outgoing responses; it doesn’t cache the response on the server. These
headers tell the client (such as a browser) whether it can skip sending a
request and reuse the response. If you have relatively static endpoints, this
can massively reduce the load on your app.

This is different from output caching, introduced in .NET 7. Output caching
involves storing a generated response on the server and reusing it for
subsequent requests. In the simplest case, the response is stored in memory
and reused for appropriate requests, but you can configure ASP.NET Core to
store the output elsewhere, such as a database.

Output caching is generally more configurable than response caching, as you
can choose exactly what to cache and when to invalidate it, but it is also
much more resource-heavy. For details on how to enable output caching for
an endpoint, see the documentation at http://mng.bz/Bmlv.

The real power of action filters comes when you build filters tailored to your
own apps by extracting common code from your action methods. To
demonstrate, I’m going to create two custom filters for
RecipeApiController:

ValidateModelAttribute—This will return BadRequestResult if the
model state indicates that the binding model is invalid and will short-
circuit the action execution. This attribute used to be a staple of my web
API applications, but the [ApiController] attribute now handles this
(and more) for you. Nevertheless, I think it’s useful to understand what’s
going on behind the scenes.
EnsureRecipeExistsAttribute—This uses each action method’s id
argument to validate that the requested Recipe entity exists before the
action method runs. If the Recipe doesn’t exist, the filter returns
NotFoundResult and short-circuits the pipeline.

As you saw in chapter 16, the MVC framework automatically validates your
binding models before executing your actions and Razor Page handlers, but
it’s up to you to decide what to do about it. For web API controllers, it’s
common to return a 400 Bad Request response containing a list of the errors,
as shown in figure 22.1.

Figure 22.1 Posting data to a web API using Postman. The data is bound to the action method’s
binding model and validated. If validation fails, it’s common to return a 400 Bad Request response
with a list of the validation errors.

You should ordinarily use the [ApiController] attribute on your web API
controllers, which gives you this behavior (and uses Problem Details
responses) automatically. But if you can’t or don’t want to use that attribute,
you can create a custom action filter instead. The following listing shows a
basic implementation that is similar to the behavior you get with the
[ApiController] attribute.

Listing 22.5 The action filter for validating ModelState

public class ValidateModelAttribute : ActionFilterAttribute #A

{

 public override void OnActionExecuting(#B

 ActionExecutingContext context) #B

 {

 if (!context.ModelState.IsValid) #C

 {

 context.Result = #D

 new BadRequestObjectResult(context.ModelState); #D

 }

 }

}

This attribute is self-explanatory and follows a similar pattern to the resource
filter in section 22.1.2, but with a few interesting points:

I have derived from the abstract ActionFilterAttribute. This class
implements IActionFilter and IResultFilter, as well as their async
counterparts, so you can override the methods you need as appropriate.
This prevents needing to add an unused OnActionExecuted() method,
but using the base class is entirely optional and a matter of preference.
Action filters run after model binding has taken place, so
context.ModelState contains the validation errors if validation failed.
Setting the Result property on context short-circuits the pipeline. But
due to the position of the action filter stage, only the action method
execution and later action filters are bypassed; all the other stages of the
pipeline run as though the action executed as normal.

If you apply this action filter to your RecipeApiController, you can remove
this code from the start of both the action methods, as it will run
automatically in the filter pipeline:

if (!ModelState.IsValid)

{

 return BadRequest(ModelState);

}

You’ll use a similar approach to remove the duplicate code that checks
whether the id provided as an argument to the action methods corresponds to
an existing Recipe entity.

The following listing shows the EnsureRecipeExistsAttribute action filter.
This uses an instance of RecipeService to check whether the Recipe exists
and returns a 404 Not Found if it doesn’t.

Listing 22.6 An action filter to check whether a Recipe exists

public class EnsureRecipeExistsAtribute : ActionFilterAttribute

{

 public override void OnActionExecuting(

 ActionExecutingContext context)

 {

 var service = context.HttpContext.RequestServices #A

 .GetService<RecipeService>(); #A

 var recipeId = (int) context.ActionArguments["id"]; #B

 if (!service.DoesRecipeExist(recipeId)) #C

 {

 context.Result = new NotFoundResult(); #D

 }

 }

}

As before, you’ve derived from ActionFilterAttribute for simplicity and
overridden the OnActionExecuting method. The main functionality of the
filter relies on the DoesRecipeExist() method of RecipeService, so the first
step is to obtain an instance of RecipeService. The context parameter
provides access to the HttpContext for the request, which in turn lets you
access the DI container and use RequestServices.GetService() to return an
instance of RecipeService.

Warning

This technique for obtaining dependencies is known as service location and is
generally considered to be an antipattern. In section 22.3 I’ll show you a
better way to use the DI container to inject dependencies into your filters.

As well as RecipeService, the other piece of information you need is the id
argument of the Get and Edit action methods. In action filters, model binding
has already occurred, so the arguments that the framework will use to execute
the action method are already known and are exposed on
context.ActionArguments.

The action arguments are exposed as Dictionary<string, object>, so you
can obtain the id parameter using the "id" string key. Remember to cast the
object to the correct type.

Tip

Whenever I see magic strings like this, I always try to replace them by using
the nameof operator. Unfortunately, nameof won’t work for method
arguments like this, so be careful when refactoring your code. I suggest
explicitly applying the action filter to the action method (instead of globally,
or to a controller) to remind you about that implicit coupling.

With RecipeService and id in place, it’s a case of checking whether the
identifier corresponds to an existing Recipe entity and if not, setting
context.Result to NotFoundResult. This short-circuits the pipeline and
bypasses the action method altogether.

Note

Remember that you can have multiple action filters running in a single stage.
Short-circuiting the pipeline by setting context.Result prevents later filters
in the stage from running and bypasses the action method execution.

Before we move on, it’s worth mentioning a special case for action filters.
The ControllerBase base class implements IActionFilter and
IAsyncActionFilter itself. If you find yourself creating an action filter for a
single controller and want to apply it to every action in that controller, you
can override the appropriate methods on your controller instead, as in the
following listing.

Listing 22.7 Overriding action filter methods directly on ControllerBase

public class HomeController : ControllerBase #A

{

 public override void OnActionExecuting(#B

 ActionExecutingContext context) #B

 { } #B

 public override void OnActionExecuted(#C

 ActionExecutedContext context) #C

 { } #C

}

If you override these methods on your controller, they’ll run in the action
filter stage of the filter pipeline for every action on the controller. The

OnActionExecuting method runs before any other action filters, regardless of
ordering or scope, and the OnActionExecuted method runs after all other
action filters.

Tip

The controller implementation can be useful in some cases, but you can’t
control the ordering related to other filters. Personally, I generally prefer to
break logic into explicit, declarative filter attributes, but it depends on the
situation, and as always, the choice is yours.

With the resource and action filters complete, your controller is looking much
tidier, but there’s one aspect in particular that would be nice to remove: the
exception handling. In the next section we’ll look at how to create a custom
exception filter for your controller and why you might want to do this instead
of using exception handling middleware.

22.1.4 Exception filters: Custom exception handling for your
action methods

In chapter 4 I went into some depth about types of error-handling middleware
you can add to your apps. These let you catch exceptions thrown from any
later middleware and handle them appropriately. If you’re using exception
handling middleware, you may be wondering why we need exception filters
at all.

The answer to this is pretty much the same as I outlined in chapter 21: filters
are great for cross-cutting concerns, when you need behavior that’s specific
to MVC or that should only apply to certain routes.

Both of these can apply in exception handling. Exception filters are part of
the MVC framework, so they have access to the context in which the error
occurred, such as the action or Razor Page that was executing. This can be
useful for logging additional details when errors occur, such as the action
parameters that caused the error.

Warning

If you use exception filters to record action method arguments, make sure
you’re not storing sensitive data in your logs, such as passwords or credit
card details.

You can also use exception filters to handle errors from different routes in
different ways. Imagine you have both Razor Pages and web API controllers
in your app, as we do in the recipe app. What happens when an exception is
thrown by a Razor Page?

As you saw in chapter 4, the exception travels back up the middleware
pipeline and is caught by exception handler middleware. The exception
handler middleware reexecutes the pipeline and generates an HTML error
page.

That’s great for your Razor Pages, but what about exceptions in your web
API controllers? If your API throws an exception and consequently returns
HTML generated by the exception handler middleware, that’s going to break
a client that called the API expecting a JavaScript Object Notation (JSON)
response!

Tip

The added complexity introduced by having to handle these two very
different clients is the reason I prefer to create separate applications for APIs
and server-rendered apps.

Instead, exception filters let you handle the exception in the filter pipeline
and generate an appropriate response body for API clients. The exception
handler middleware intercepts only errors without a body, so it will let the
modified web API response pass untouched.

Note

The [ApiController] attribute converts error StatusCodeResults to a
ProblemDetails object, but it doesn’t catch exceptions.

Exception filters can catch exceptions from more than your action methods
and page handlers. They’ll run if an exception occurs at these times:

During model binding or validation
When the action method or page handler is executing
When an action filter or page filter is executing

You should note that exception filters won’t catch exceptions thrown in any
filters other than action and page filters, so it’s important that your resource
and result filters don’t throw exceptions. Similarly, they won’t catch
exceptions thrown when executing an IActionResult, such as when
rendering a Razor view to HTML.

Now that you know why you might want an exception filter, go ahead and
implement one for RecipeApiController, as shown next. This lets you
safely remove the try-catch block from your action methods, knowing that
your filter will catch any errors.

Listing 22.8 The HandleExceptionAttribute exception filter

public class HandleExceptionAttribute : ExceptionFilterAttribute #A

{

 public override void OnException(ExceptionContext context) #B

 {

 var error = new ProblemDetails #C

 { #C

 Title = "An error occurred", #C

 Detail = context.Exception.Message, #C

 Status = 500, #C

 Type = " https://httpwg.org/specs/rfc9110.html#status.500" #C

 }; #C

 context.Result = new ObjectResult(error) #D

 { #D

 StatusCode = 500 #D

 }; #D

 context.ExceptionHandled = true; #E

 }

}

It’s quite common to have an exception filter in your application if you are
mixing API controllers and Razor Pages in your application, but they’re not
always necessary. If you can handle all the exceptions in your application
with a single piece of middleware, ditch the exception filters and go with that
instead.

You’re almost done refactoring your RecipeApiController. You have one
more filter type to add: result filters. Custom result filters tend to be relatively
rare in the apps I’ve written, but they have their uses, as you’ll see.

22.1.5 Result filters: Customizing action results before they
execute

If everything runs successfully in the pipeline, and there’s no short-circuiting,
the next stage of the pipeline after action filters is result filters. These run
before and after the IActionResult returned by the action method (or action
filters) is executed.

Warning

If the pipeline is short-circuited by setting context.Result, the result filter
stage won’t run, but the IActionResult will still be executed to generate the
response. The exceptions to this rule are action and page filters, which only
short-circuit the action execution, as you saw in chapter 21. Result filters run
as normal, as though the action or page handler itself generated the response.

Result filters run immediately after action filters, so many of their use cases
are similar, but you typically use result filters to customize the way the
IActionResult executes. For example, ASP.NET Core has several result
filters built into its framework:

ProducesAttribute—This forces a web API result to be serialized to a
specific output format. For example, decorating your action method with
[Produces ("application/xml")] forces the formatters to try to
format the response as XML, even if the client doesn’t list XML in its
Accept header.
FormatFilterAttribute—Decorating an action method with this filter
tells the formatter to look for a route value or query string parameter
called format and to use that to determine the output format. For
example, you could call /api/recipe/11?format=json and
FormatFilter will format the response as JSON or call api/recipe/11?
format=xml and get the response as XML.

Note

Remember that you need to explicitly configure the XML formatters if you
want to serialize to XML, as described in chapter 20. For details on
formatting results based on the URL, see my blog entry on the topic:
http://mng.bz/1rYV.

As well as controlling the output formatters, you can use result filters to make
any last-minute adjustments before IActionResult is executed and the
response is generated.

As an example of the kind of flexibility available, in the following listing I
demonstrate setting the LastModified header, based on the object returned
from the action. This is a somewhat contrived example—it’s specific enough
to a single action that it likely doesn’t warrant being moved to a result filter—
but I hope you get the idea.

Listing 22.9 Setting a response header in a result filter

public class AddLastModifedHeaderAttribute : ResultFilterAttribute #A

{

 public override void OnResultExecuting(#B

 ResultExecutingContext context) #B

 {

 if (context.Result is OkObjectResult result #C

 && result.Value is RecipeDetailViewModel detail) #D

 {

 var viewModelDate = detail.LastModified; #E

 context.HttpContext.Response #E

 .GetTypedHeaders().LastModified = viewModelDate; #E

 }

 }

}

I’ve used another helper base class here, ResultFilterAttribute, so you
need to override only a single method to implement the filter. Fetch the
current IActionResult, exposed on context.Result, and check that it’s an
OkObjectResult instance with a RecipeDetailViewModel value. If it is, fetch
the LastModified field from the view model and add a Last-Modified
header to the response.

Tip

GetTypedHeaders() is an extension method that provides strongly typed
access to request and response headers. It takes care of parsing and
formatting the values for you. You can find it in the
Microsoft.AspNetCore.Http namespace.

As with resource and action filters, result filters can implement a method that
runs after the result has executed: OnResultExecuted. You can use this
method, for example, to inspect exceptions that happened during the
execution of IActionResult.

Warning

Generally, you can’t modify the response in the OnResultExecuted method,
as you may have already started streaming the response to the client.

We’ve finished simplifying the RecipeApiController now. By extracting
various pieces of functionality to filters, the original controller in listing 22.1
has been simplified to the version in listing 22.2. This is obviously a
somewhat extreme and contrived demonstration, and I’m not advocating that
filters should always be your go-to option.

Tip

Filters should be a last resort in most cases. Where possible, it is often
preferable to use a simple private method in a controller, or to push
functionality into the domain instead of using filters. Filters should generally
be used to extract repetitive, HTTP-related, or common cross-cutting code
from your controllers.

There’s still one more filter we haven’t looked at yet, because it applies only
to Razor Pages: page filters.

22.1.6 Page filters: Customizing model binding for Razor Pages

As already discussed, action filters apply only to controllers and actions; they
have no effect on Razor Pages. Similarly, page filters have no effect on

controllers and actions. Nevertheless, page filters and action filters fulfill
similar roles.

As is the case for action filters, the ASP.NET Core framework includes
several page filters out of the box. One of these is the Razor Page equivalent
of the caching action filter, ResponseCacheFilter, called
PageResponseCacheFilter. This works identically to the action-filter
equivalent I described in section 22.1.3, setting HTTP caching headers on
your Razor Page responses.

Page filters are somewhat unusual, as they implement three methods, as
discussed in section 22.1.2. In practice, I’ve rarely seen a page filter that
implements all three. It’s unusual to need to run code immediately after page
handler selection and before model validation. It’s far more common to
perform a role directly analogous to action filters. The following listing
shows a page filter equivalent to the EnsureRecipeExistsAttribute action
filter.

Listing 22.10 A page filter to check whether a Recipe exists

public class PageEnsureRecipeExistsAttribute : Attribute, IPageFilter #A

{

 public void OnPageHandlerSelected(#B

 PageHandlerSelectedContext context) #B

 {} #B

 public void OnPageHandlerExecuting(#C

 PageHandlerExecutingContext context) #C

 {

 var service = context.HttpContext.RequestServices #D

 .GetService<RecipeService>(); #D

 var recipeId = (int) context.HandlerArguments["id"]; #E

 if (!service.DoesRecipeExist(recipeId)) #F

 {

 context.Result = new NotFoundResult(); #G

 }

 }

 public void OnPageHandlerExecuted(#H

 PageHandlerExecutedContext context) #H

 { } #H

}

The page filter is similar to the action filter equivalent. The most obvious
difference is the need to implement three methods to satisfy the IPageFilter
interface. You’ll commonly want to implement the OnPageHandlerExecuting
method, which runs after model binding and validation, and before the page
handler executes.

A subtle difference between the action filter code and the page filter code is
that the action filter accesses the model-bound action arguments using
context.ActionArguments. The page filter uses context.HandlerArguments
in the example, but there’s also another option.

Remember from chapter 16 that Razor Pages often bind to public properties
on the PageModel using the [BindProperty] attribute. You can access those
properties directly instead of using magic strings by casting a
HandlerInstance property to the correct PageModel type and accessing the
property directly, as in this example:

var recipeId = ((ViewRecipePageModel)context.HandlerInstance).Id

This is similar to the way the ControllerBase class implements
IActionFilter and PageModel implements IPageFilter and
IAsyncPageFilterT. If you want to create an action filter for a single Razor
Page, you could save yourself the trouble of creating a separate page filter
and override these methods directly in your Razor Page.

Tip

I generally find it’s not worth the hassle of using page filters unless you have
a common requirement. The extra level of indirection that page filters add,
coupled with the typically bespoke nature of individual Razor Pages, means
that I normally find they aren’t worth using. Your mileage may vary, of
course, but don’t jump to them as a first option.

That brings us to the end of this detailed look at each of the filters in the
MVC pipeline. Looking back and comparing listings 22.1 and 22.2, you can
see filters allowed us to refactor the controllers and make the intent of each
action method much clearer. Writing your code in this way makes it easier to
reason about, as each filter and action has a single responsibility.

In the next section we’ll take a slight detour into exactly what happens when
you short-circuit a filter. I’ve described how to do this, by setting the
context.Result property on a filter, but I haven’t described exactly what
happens. For example, what if there are multiple filters in the stage when it’s
short-circuited? Do those still run?

22.2 Understanding pipeline short-circuiting

In this short section you’ll learn about the details of filter-pipeline short-
circuiting. You’ll see what happens to the other filters in a stage when the
pipeline is short-circuited and how to short-circuit each type of filter.

A brief warning: the topic of filter short-circuiting can be a little confusing.
Unlike middleware short-circuiting, which is cut-and-dried, the filter pipeline
is a bit more nuanced. Luckily, you won’t often need to dig into it, but when
you do, you’ll be glad for the detail.

You short-circuit the authorization, resource, action, page, and result filters
by setting context.Result to IActionResult. Setting an action result in this
way causes some or all of the remaining pipeline to be bypassed. But the
filter pipeline isn’t entirely linear, as you saw in chapter 21, so short-
circuiting doesn’t always do an about-face back down the pipeline. For
example, short-circuited action filters bypass only action method execution;
the result filters and result execution stages still run.

The other difficultly is what happens if you have more than one filter in a
stage. Let’s say you have three resource filters executing in a pipeline. What
happens if the second filter causes a short circuit? Any remaining filters are
bypassed, but the first resource filter has already run its *Executing
command, as shown in figure 22.2. This earlier filter gets to run its
*Executed command too, with context.Cancelled = true, indicating that a
filter in that stage (the resource filter stage) short-circuited the pipeline.

Figure 22.2 The effect of short-circuiting a resource filter on other resource filters in that stage.
Later filters in the stage won’t run at all, but earlier filters run their OnResourceExecuted
function.

Running result filters after short-circuits with IAlwaysRunResultFilter

Result filters are designed to wrap the execution of an IActionResult
returned by an action method or action filter so that you can customize how
the action result is executed. However, this customization doesn’t apply to
the IActionResult set when you short-circuit the filter pipeline by setting
context.Result in an authorization filter, resource filter, or exception filter.

That’s often not a problem, as many result filters are designed to handle
“happy path” transformations. But sometimes you want to make sure that a
transformation is always applied to an IActionResult, regardless of whether
it was returned by an action method or a short-circuiting filter.

For those cases, you can implement IAlwaysRunResultFilter or
IAsyncAlwaysRunResultFilter. These interfaces extend (and are identical)
to the standard result filter interfaces, so they run like normal result filters in
the filter pipeline. But these interfaces mark the filter to also run after an
authorization filter, resource filter, or exception filter short-circuits the
pipeline, where standard result filters won’t run.

You can use IAlwaysRunResultFilter to ensure that certain action results
are always updated. For example, the documentation shows how to use an
IAlwaysRunResultFilter to convert a 415 StatusCodeResult to a 422

StatusCodeResult, regardless of the source of the action result. See the
“IAlwaysRunResultFilter and IAsyncAlwaysRunResultFilter” section of
Microsoft’s “Filters in ASP.NET Core” documentation: http://mng.bz/JDo0.

Understanding which other filters run when you short-circuit a filter can be
somewhat of a chore, but I’ve summarized each filter in table 22.1. You’ll
also find it useful to refer to the pipeline diagrams in chapter 21 to visualize
the shape of the pipeline when thinking about short circuits.

Table 22.1 The effect of short-circuiting filters on filter-pipeline execution

Filter type How to short-circuit? What else runs?

Authorization
filters Set context.Result. Runs only

IAlwaysRunResultFilters.

Resource
filters Set context.Result.

Resource-filter *Executed
functions from earlier filters run
with context.Cancelled = true.
Runs IAlwaysRunResultFilters
before executing the
IActionResult.

Action filters Set context.Result.

Bypasses only action method
execution. Action filters earlier in
the pipeline run their *Executed
methods with context.Cancelled
= true, then result filters, result
execution, and resource filters’
*Executed methods all run as
normal.

Page filters Set context.Result in
OnPageHandlerSelected.

Bypasses only page handler
execution. Page filters earlier in
the pipeline run their *Executed
methods with context.Cancelled
= true, then result filters, result
execution, and resource filters’
*Executed methods all run as
normal.

Exception
filters

Set context.Result and
Exception.Handled =

true.

All resource-filter *Executed
functions run. Runs
IAlwaysRunResultFilters before
executing the IActionResult.

Result filters Set context.Cancelled
= true.

Result filters earlier in the pipeline
run their *Executed functions with
context.Cancelled = true. All
resource-filter *Executed
functions run as normal.

The most interesting point here is that short-circuiting an action filter (or a
page filter) doesn’t short-circuit much of the pipeline at all. In fact, it
bypasses only later action filters and the action method execution itself. By
building primarily action filters, you can ensure that other filters, such as
result filters that define the output format, run as usual, even when your
action filters short-circuit.

The last thing I’d like to talk about in this chapter is how to use DI with your
filters. You saw in chapters 8 and 9 that DI is integral to ASP.NET Core, and
in the next section you’ll see how to design your filters so that the framework
can inject service dependencies into them for you.

22.3 Using dependency injection with filter

attributes

In this section you’ll learn how to inject services into your filters so you can
take advantage of the simplicity of DI in your filters. You’ll learn to use two
helper filters to achieve this, TypeFilterAttribute and
ServiceFilterAttribute, and you’ll see how they can be used to simplify
the action filter you defined in section 22.1.3.

The filters we’ve created so far have been created as attributes. This is useful
for applying filters to action methods and controllers, but it means you can’t
use DI to inject services into the constructor. C# attributes don’t let you pass
dependencies into their constructors (other than constant values), and they’re
created as singletons, so there’s only a single instance of an attribute for the
lifetime of your app. So what happens if you need to access a transient or
scoped service from inside the singleton attribute?

Listing 22.6 showed one way of doing this, using a pseudo-service locator
pattern to reach into the DI container and pluck out RecipeService at
runtime. This works but is generally frowned upon as a pattern in favor of
proper DI. So how can you add DI to your filters?

The key is to split the filter in two. Instead of creating a class that’s both an
attribute and a filter, create a filter class that contains the functionality and an
attribute that tells the framework when and where to use the filter.

Let’s apply this to the action filter from listing 22.6. Previously, I derived
from ActionFilterAttribute and obtained an instance of RecipeService
from the context passed to the method. In the following listing I show two
classes, EnsureRecipeExistsFilter and EnsureRecipeExistsAttribute.
The filter class is responsible for the functionality and takes in
RecipeService as a constructor dependency.

Listing 22.11 Using DI in a filter by not deriving from Attribute

public class EnsureRecipeExistsFilter : IActionFilter #A

{

 private readonly RecipeService _service; #B

 public EnsureRecipeExistsFilter(RecipeService service) #B

 { #B

 _service = service; #B

 } #B

 public void OnActionExecuting(ActionExecutingContext context) #C

 { #C

 var recipeId = (int) context.ActionArguments["id"]; #C

 if (!_service.DoesRecipeExist(recipeId)) #C

 { #C

 context.Result = new NotFoundResult(); #C

 } #C

 } #C

 public void OnActionExecuted(ActionExecutedContext context) { } #D

}

public class EnsureRecipeExistsAttribute : TypeFilterAttribute #E

{

 public EnsureRecipeExistsAttribute() #F

 : base(typeof(EnsureRecipeExistsFilter)) {} #F

}

EnsureRecipeExistsFilter is a valid filter; you could use it on its own by
adding it as a global filter (as global filters don’t need to be attributes). But
you can’t use it directly by decorating controller classes and action methods,
as it’s not an attribute. That’s where EnsureRecipeExistsAttribute comes
in.

You can decorate your methods with EnsureRecipeExistsAttribute
instead. This attribute inherits from TypeFilterAttribute and passes the
Type of filter to create as an argument to the base constructor. This attribute
acts as a factory for EnsureRecipeExistsFilter by implementing
IFilterFactory.

When ASP.NET Core initially loads your app, it scans your actions and
controllers, looking for filters and filter factories. It uses these to form a filter
pipeline for every action in your app, as shown in figure 22.3.

Figure 22.3 The framework scans your app on startup to find both filters and attributes that
implement IFilterFactory. At runtime, the framework calls CreateInstance() to get an instance
of the filter

When an action decorated with EnsureRecipeExistsAttribute is called, the
framework calls CreateInstance() on the IFilterFactory attribute. This
creates a new instance of EnsureRecipeExistsFilter and uses the DI
container to populate its dependencies (RecipeService).

By using this IFilterFactory approach, you get the best of both worlds: you
can decorate your controllers and actions with attributes, and you can use DI
in your filters. Out of the box, two similar classes provide this functionality,
which have slightly different behaviors:

TypeFilterAttribute—Loads all the filter’s dependencies from the DI
container and uses them to create a new instance of the filter.
ServiceFilterAttribute—Loads the filter itself from the DI container.
The DI container takes care of the service lifetime and building the
dependency graph. Unfortunately, you must also explicitly register your
filter with the DI container:

builder.Services.AddTransient<EnsureRecipeExistsFilter>();

Tip

You can register your services with any lifetime you choose. If your service
is registered as a singleton, you can consider setting the IsReusable flag, as
described in the documentation: http://mng.bz/d1JD.

If you choose to use ServiceFilterAttribute instead of
TypeFilterAttribute, and register the EnsureRecipeExistsFilter as a
service in the DI container, you can apply the ServiceFilterAttribute
directly to an action method:

[ServiceFilter(typeof(EnsureRecipeExistsFilter))]

public IActionResult Index() => Ok();

Whether you choose to use TypeFilterAttribute or
ServiceFilterAttribute is somewhat a matter of preference, and you can
always implement a custom IFilterFactory if you need to. The key
takeaway is that you can now use DI in your filters. If you don’t need to use
DI for a filter, implement it as an attribute directly, for simplicity.

Tip

I like to create my filters as a nested class of the attribute class when using
this pattern. This keeps all the code nicely contained in a single file and
indicates the relationship between the classes.

That brings us to the end of this chapter on the filter pipeline. Filters are a
somewhat advanced topic, in that they aren’t strictly necessary for building
basic apps, but I find them extremely useful for ensuring that my controller
and action methods are simple and easy to understand.

In the next chapter we’ll take our first look at securing your app. We’ll
discuss the difference between authentication and authorization, the concept
of identity in ASP.NET Core, and how you can use the ASP.NET Core
Identity system to let users register and log in to your app.

22.4 Summary

The filter pipeline executes as part of the MVC or Razor Pages
execution. It consists of authorization filters, resource filters, action

filters, page filters, exception filters, and result filters.
ASP.NET Core includes many built-in filters, but you can also create
custom filters tailored to your application. You can use custom filters to
extract common cross-cutting functionality out of your MVC controllers
and Razor Pages, reducing duplication and ensuring consistency across
your endpoints.
Authorization filters run first in the pipeline and control access to APIs.
ASP.NET Core includes an [Authorization] attribute that you can
apply to action methods so that only logged-in users can execute the
action.
Resource filters run after authorization filters and again after an
IActionResult has been executed. They can be used to short-circuit the
pipeline so that an action method is never executed. They can also be
used to customize the model-binding process for an action method.
Action filters run after model binding has occurred and before an action
method executes. They also run after the action method has executed.
They can be used to extract common code out of an action method to
prevent duplication. They don’t execute for Razor Pages, only for MVC
controllers.
The ControllerBase base class also implements IActionFilter and
IAsyncActionFilter. They run at the start and end of the action filter
pipeline, regardless of the ordering or scope of other action filters. They
can be used to create action filters that are specific to one controller.
Page filters run three times: after page handler selection, after model
binding, and after the page handler method executes. You can use page
filters for similar purposes as action filters. Page filters execute only for
Razor Pages; they don’t run for MVC controllers.
Razor Page PageModels implement IPageFilter and
IAsyncPageFilter, so they can be used to implement page-specific
page filters. These are rarely used, as you can typically achieve similar
results with simple private methods.
Exception filters execute after action and page filters, when an action
method or page handler has thrown an exception. They can be used to
provide custom error handling specific to the action executed.
Generally, you should handle exceptions at the middleware level, but
you can use exception filters to customize how you handle exceptions
for specific actions, controllers, or Razor Pages.

Result filters run before and after an IActionResult is executed. You
can use them to control how the action result is executed or to
completely change the action result that will be executed.
All filters can short-circuit the pipeline by setting a response. This
generally prevents the request progressing further in the filter pipeline,
but the exact behavior varies with the type of filter that is short-
circuited.
Result filters aren’t executed when you short-circuit the pipeline using
authorization, resource, or exception filters. You can ensure that result
filters also run for these short-circuit cases by implementing a result
filter as IAlwaysRunResultFilter or IAsyncAlwaysRunResultFilter.
You can use ServiceFilterAttribute and TypeFilterAttribute to
allow dependency injection in your custom filters.
ServiceFilterAttribute requires that you register your filter and all its
dependencies with the DI container, whereas TypeFilterAttribute
requires only that the filter’s dependencies have been registered.

23 Authentication: Adding users to
your application with Identity
This chapter covers

Seeing how authentication works in web apps in ASP.NET Core
Creating a project using the ASP.NET Core Identity system
Adding user functionality to an existing web app
Customizing the default ASP.NET Core Identity UI

One of the selling points of a web framework like ASP.NET Core is the
ability to provide a dynamic app, customized to individual users. Many apps
have the concept of an “account” with the service, which you can “sign in” to
and get a different experience.

Depending on the service, an account gives you varying things. On some
apps you may have to sign in to get access to additional features, and on
others you might see suggested articles. On an e-commerce app, you’d be
able to place orders and view your past orders; on Stack Overflow you can
post questions and answers; on a news site you might get a customized
experience based on previous articles you’ve viewed.

When you think about adding users to your application, you typically have
two aspects to consider:

Authentication—The process of creating users and letting them log in to
your app
Authorization—Customizing the experience and controlling what users
can do, based on the current logged-in user

In this chapter I’m going to be discussing the first of these points,
authentication and membership. In the next chapter I’ll tackle the second
point, authorization. In section 23.1 I discuss the difference between
authentication and authorization, how authentication works in a traditional

ASP.NET Core web app, and ways you can architect your system to provide
sign-in functionality. I don’t discuss API applications in detail in this chapter,
though many of the authentication principles apply to both styles of app. I
discuss API applications chapter 25.

In section 23.2 I introduce a user-management system called ASP.NET Core
Identity (Identity for short). Identity integrates with Entity Framework Core
(EF Core) and provides services for creating and managing users, storing and
validating passwords, and signing users in and out of your app.

In section 23.3 you’ll create an app using a default template that includes
ASP.NET Core Identity out of the box. This gives you an app to explore and
see the features Identity provides, as well as everything it doesn’t.

Creating an app is great for seeing how the pieces fit together, but you’ll
often need to add users and authentication to an existing app. In section 23.4
you’ll see the steps required to add ASP.NET Core Identity to an existing
app.

In sections 23.5 and 23.6 you’ll learn how to replace pages from the default
Identity UI by scaffolding individual pages. In section 23.5 you’ll see how to
customize the Razor templates to generate different HTML on the user
registration page, and in section 23.6 you’ll learn how to customize the logic
associated with a Razor Page. You’ll see how to store additional information
about a user (such as their name or date of birth) and how to provide them
permissions that you can later use to customize the app’s behavior (if the user
is a VIP, for example).

Before we look at the ASP.NET Core Identity system specifically, let’s take a
look at authentication and authorization in ASP.NET Core—what’s
happening when you sign in to a website and how you can design your apps
to provide this functionality.

23.1 Introducing authentication and authorization

When you add sign-in functionality to your app and control access to certain
functions based on the currently signed-in user, you’re using two distinct

aspects of security:

Authentication—The process of determining who you are
Authorization—The process of determining what you’re allowed to do

Generally you need to know who the user is before you can determine what
they’re allowed to do, so authentication always comes first, followed by
authorization. In this chapter we’re looking only at authentication; we’ll
cover authorization in chapter 24.

In this section I start by discussing how ASP.NET Core thinks about users,
and I cover some of the terminology and concepts that are central to
authentication. I found this to be the hardest part to grasp when I learned
about authentication, so I’ll take it slow.

Next, we’ll look at what it means to sign in to a traditional web app. After all,
you only provide your password and sign into an app on a single page; how
does the app know the request came from you for subsequent requests?

23.1.1 Understanding users and claims in ASP.NET Core

The concept of a user is baked into ASP.NET Core. In chapter 3 you learned
that the HTTP server, Kestrel, creates an HttpContext object for every
request it receives. This object is responsible for storing all the details related
to that request, such as the request URL, any headers sent, and the body of
the request.

The HttpContext object also exposes the current principal for a request as
the User property. This is ASP.NET Core’s view of which user made the
request. Any time your app needs to know who the current user is or what
they’re allowed to do, it can look at the HttpContext.User principal.

Definition

You can think of the principal as the user of your app.

In ASP.NET Core, principals are implemented using the ClaimsPrincipal
class, which has a collection of claims associated with it, as shown in figure

23.1.

Figure 23.1 The principal is the current user, implemented as ClaimsPrincipal. It contains a
collection of Claims that describe the user.

You can think about claims as properties of the current user. For example,
you could have claims for things like email, name, and date of birth.

Definition

A claim is a single piece of information about a principal; it consists of a
claim type and an optional value.

Claims can also be indirectly related to permissions and authorization, so you
could have a claim called HasAdminAccess or IsVipCustomer. These would
be stored in the same way—as claims associated with the user principal.

Note

Earlier versions of ASP.NET used a role-based approach to security rather
than a claims-based approach. The ClaimsPrincipal used in ASP.NET Core
is compatible with this approach for legacy reasons, but you should use the
claims-based approach for new apps.

Kestrel assigns a user principal to every request that arrives at your app.
Initially, that principal is a generic, anonymous, unauthenticated principal
with no claims. How do you log in, and how does ASP.NET Core know that
you’ve logged in on subsequent requests?

In the next section we’ll look at how authentication works in a traditional
web app using ASP.NET Core and the process of signing into a user account.

23.1.2 Authentication in ASP.NET Core: Services and
middleware

Adding authentication to any web app involves a few moving parts. The same
general process applies whether you’re building a traditional web app or a
client-side app (though there are often differences in the latter, as I discuss in
chapter 25):

1. The client sends an identifier and a secret to the app to identify the
current user. For example, you could send an email address (identifier)
and a password (secret).

2. The app verifies that the identifier corresponds to a user known by the
app and that the corresponding secret is correct.

3. If the identifier and secret are valid, the app can set the principal for the

current request, but it also needs a way of storing these details for
subsequent requests. For traditional web apps, this is typically achieved
by storing an encrypted version of the user principal in a cookie.

This is the typical flow for most web apps, but in this section I’m going to
look at how it works in ASP.NET Core. The overall process is the same, but
it’s good to see how this pattern fits into the services, middleware, and
Model-View-Controller (MVC) aspects of an ASP.NET Core application.
We’ll step through the various pieces at play in a typical app when you sign
in as a user, what that means, and how you can make subsequent requests as
that user.

Signing in to an ASP.NET Core application

When you first arrive on a site and sign in to a traditional web app, the app
will send you to a sign-in page and ask you to enter your username and
password. After you submit the form to the server, the app redirects you to a
new page, and you’re magically logged in! Figure 23.2 shows what’s
happening behind the scenes in an ASP.NET Core app when you submit the
form.

Figure 23.2 Signing in to an ASP.NET Core application. SignInManager is responsible for setting
HttpContext.User to the new principal and serializing the principal to the encrypted cookie.

This figure shows the series of steps from the moment you submit the login
form on a Razor Page to the point the redirect is returned to the browser.
When the request first arrives, Kestrel creates an anonymous user principal
and assigns it to the HttpContext.User property. The request is then routed
to the Login.cshtml Razor Page, which reads the email and password from
the request using model binding.

The meaty work happens inside the SignInManager service. This is
responsible for loading a user entity with the provided username from the
database and validating that the password they provided is correct.

Warning

Never store passwords in the database directly. They should be hashed using
a strong one-way algorithm. The ASP.NET Core Identity system does this for
you, but it’s always wise to reiterate this point!

If the password is correct, SignInManager creates a new ClaimsPrincipal
from the user entity it loaded from the database and adds the appropriate
claims, such as the email address. It then replaces the old, anonymous
HttpContext.User principal with the new, authenticated principal.

Finally, SignInManager serializes the principal, encrypts it, and stores it as a
cookie. A cookie is a small piece of text that’s sent back and forth between
the browser and your app along with each request, consisting of a name and a
value.

This authentication process explains how you can set the user for a request
when they first log in to your app, but what about subsequent requests? You
send your password only when you first log in to an app, so how does the app
know that it’s the same user making the request?

Authenticating users for subsequent requests

The key to persisting your identity across multiple requests lies in the final
step of figure 23.2, where you serialized the principal in a cookie. Browsers
automatically send this cookie with all requests made to your app, so you
don’t need to provide your password with every request.

ASP.NET Core uses the authentication cookie sent with the requests to
rehydrate a ClaimsPrincipal and set the HttpContext.User principal for the
request, as shown in figure 23.3. The important thing to note is when this
process happens—in the AuthenticationMiddleware.

Figure 23.3 A subsequent request after signing in to an application. The cookie sent with the

request contains the user principal, which is validated and used to authenticate the request.

When a request containing the authentication cookie is received, Kestrel
creates the default, unauthenticated, anonymous principal and assigns it to the
HttpContext.User principal. Any middleware that runs before the
AuthenticationMiddleware sees the request as unauthenticated, even if
there’s a valid cookie.

Tip

If it looks like your authentication system isn’t working, double-check your
middleware pipeline. Only middleware that runs after
AuthenticationMiddleware will see the request as authenticated.

The AuthenticationMiddleware is responsible for setting the current user
for a request. The middleware calls the authentication services, which reads
the cookie from the request, decrypts it, and deserializes it to obtain the
ClaimsPrincipal created when the user logged in.

The AuthenticationMiddleware sets the HttpContext.User principal to the
new, authenticated principal. All subsequent middleware now knows the user
principal for the request and can adjust its behavior accordingly (for example,
displaying the user’s name on the home page or restricting access to some
areas of the app).

Note

The AuthenticationMiddleware is responsible only for authenticating
incoming requests and setting the ClaimsPrincipal if the request contains an
authentication cookie. It is not responsible for redirecting unauthenticated
requests to the login page or rejecting unauthorized requests; that is handled
by the AuthorizationMiddleware, as you’ll see in chapter 24.

The process described so far, in which a single app authenticates the user
when they log in and sets a cookie that’s read on subsequent requests, is
common with traditional web apps, but it isn’t the only possibility. In chapter
25 we’ll take a look at authentication for web API applications, used by
client-side and mobile apps and at how the authentication system changes for
those scenarios.

Another thing to consider is where you store the authentication details for
users of your app. In figure 23.2 I showed the authentication services loading
the user authentication details from your app’s database, but that’s only one
option.

Another option is to delegate the authentication responsibilities to a third-
party identity provider, such as Okta, Auth0, Azure Active Directory
B2B/B2C, or even Facebook. These manage users for you, so user
information and passwords are stored in their database rather than your own.
The biggest advantage of this approach is that you don’t have to worry about
making sure your customer data is safe; you can be pretty sure that a third
party will protect it, as it’s their whole business.

Tip

Wherever possible, I recommend this approach, as it delegates security
responsibilities to someone else. You can’t lose your users’ details if you
never had them! Make sure to understand the differences in providers,
however. With a provider like Auth0, you would own the profiles created,
whereas with a provider like Facebook, you don’t!

Each provider provides instructions on how to integrate with their identity
services, ideally using the OpenID Connect (OIDC) specification. This
typically involves configuring some authentication services in your
application, adding some configuration, and delegating the authentication
process itself to the external provider. These providers can be used with your
API apps too, as I discuss in chapter 25.

Note

Hooking up your apps and APIs to use an identity provider can require a fair
amount of tedious configuration, both in the app and the identity provider,
but if you follow the provider’s documentation you should have plain sailing.
For example, you can follow the documentation for adding authentication to
a traditional web app using Microsoft’s Identity Platform here:
http://mng.bz/4D9w.

While I recommend using an external identity provider where possible,
sometimes you really want to store all the authentication details of your users
directly in your app. That’s the approach I describe in this chapter.

ASP.NET Core Identity (hereafter shortened to Identity) is a system that
makes building the user-management aspect of your app. It handles all the
boilerplate for saving and loading users to a database, as well as best
practices for security, such as user lockout, password hashing, and
multifactor authentication.

Definition

Multifactor authentication (MFA), and the subset two-factor authentication
(2FA) require both a password and an extra piece of information to sign in.

This could involve sending a code to a user’s phone by Short Message
Service (SMS) or using a mobile app to generate a code, for example.

In the next section I’m going to talk about the ASP.NET Core Identity
system, the problems it solves, when you’d want to use it, and when you
might not want to use it. In section 23.3 we take a look at some code and see
ASP.NET Core Identity in action.

23.2 What is ASP.NET Core Identity?

Whenever you need to add nontrivial behaviors to your application, you
typically need to add users and authentication. That means you’ll need a way
of persisting details about your users, such as their usernames and passwords.

This might seem like a relatively simple requirement, but given that this is
related to security and people’s personal details, it’s important you get it
right. As well as storing the claims for each user, it’s important to store
passwords using a strong hashing algorithm to allow users to use MFA where
possible and to protect against brute-force attacks, to name a few of the many
requirements. Although it’s perfectly possible to write all the code to do this
manually and to build your own authentication and membership system, I
highly recommend you don’t.

I’ve already mentioned third-party identity providers such as Auth0 and
Azure Active Directory. These Software as a Service (SaaS) solutions take
care of the user-management and authentication aspects of your app for you.
If you’re in the process of moving apps to the cloud generally, solutions like
these can make a lot of sense.

If you can’t or don’t want to use these third-party solutions, I recommend you
consider using the ASP.NET Core Identity system to store and manage user
details in your database. ASP.NET Core Identity takes care of most of the
boilerplate associated with authentication, but it remains flexible and lets you
control the login process for users if you need to.

Note

ASP.NET Core Identity is an evolution of the legacy .NET Framework
ASP.NET Identity system, with some design improvements and update to
work with ASP.NET Core.

By default, ASP.NET Core Identity uses EF Core to store user details in the
database. If you’re already using EF Core in your project, this is a perfect fit.
Alternatively, it’s possible to write your own stores for loading and saving
user details in another way.

Identity takes care of the low-level parts of user management, as shown in
table 23.1. As you can see from this list, Identity gives you a lot, but not
everything—by a long shot!

Table 23.1 Which services are and aren’t handled by ASP.NET Core Identity

Managed by ASP.NET Core Identity Requires implementing by the
developer

Database schema for storing users
and claims

UI for logging in, creating, and
managing users (Razor Pages or
controllers); included in an optional
package that provides a default UI

Creating a user in the database Sending email messages

Password validation and rules Customizing claims for users (adding
new claims)

Handling user account lockout (to
prevent brute-force attacks)

Configuring third-party identity
providers

Managing and generating MFA/2FA
codes

Integration into MFA such as sending
SMS messages, time-based one-time
password (TOTP) authenticator apps,
or hardware keys

Generating password-reset tokens

Saving additional claims to the
database

Managing third-party identity
providers (for example, Facebook,
Google, and Twitter)

The biggest missing piece is the fact that you need to provide all the UI for
the application, as well as tying all the individual Identity services together to
create a functioning sign-in process. That’s a big missing piece, but it makes
the Identity system extremely flexible.

Luckily, ASP.NET Core includes a helper NuGet library,
Microsoft.AspNetCore.Identity.UI, that gives you the whole of the UI
boilerplate for free. That’s over 30 Razor Pages with functionality for logging
in, registering users, using 2FA, and using external login providers, among
other features. You can still customize these pages if you need to, but having
a whole login process working out of the box, with no code required on your
part, is a huge win. We’ll look at this library and how you use it in sections
23.3 and 23.4.

For that reason, I strongly recommend using the default UI as a starting point,
whether you’re creating an app or adding user management to an existing
app. But the question remains as to when you should use Identity and when
you should consider rolling your own.

I’m a big fan of Identity when you need to store your own users, so I tend to
suggest it in most situations, as it handles a lot of security-related things for
you that are easy to mess up. I’ve heard several arguments against it, some
valid and others less so:

I already have user authentication in my app. Great! In that case, you’re
probably right, Identity may not be necessary. But does your custom
implementation use MFA? Do you have account lockout? If not, and if
you need to add them, considering Identity may be worthwhile.
I don’t want to use EF Core. That’s a reasonable stance. You could be
using Dapper, some other object-relational mapper (ORM), or even a
document database for your database access. Luckily, the database
integration in Identity is pluggable, so you could swap out the EF Core
integration and use your own database integration libraries instead.
My use case is too complex for Identity. Identity provides lower-level
services for authentication, so you can compose the pieces however you
like. It’s also extensible, so if you need to, for example, transform
claims before creating a principal, you can.
I don’t like the default Razor Pages UI. The default UI for Identity is
entirely optional. You can still use the Identity services and user
management but provide your own UI for logging in and registering
users. However, be aware that although doing this gives you a lot of
flexibility, it’s also easy to introduce a security flaw in your user-
management system—the last place you want security flaws!
I’m not using Bootstrap to style my application. The default Identity UI
uses Bootstrap as a styling framework, the same as the default ASP.NET
Core templates. Unfortunately, you can’t easily change that, so if you’re
using a different framework or need to customize the HTML generated,
you can still use Identity, but you’ll need to provide your own UI.
I don’t want to build my own identity system. I’m glad to hear it. Using
an external identity provider like Azure Active Directory or Auth0 is a
great way of shifting the responsibility and risk associated with storing
users’ personal information to a third party.

Any time you’re considering adding user management to your ASP.NET
Core application, I’d recommend looking at Identity as a great option for
doing so. In the next section I’ll demonstrate what Identity provides by

creating a new Razor Pages application using the default Identity UI. In
section 23.4 we’ll take that template and apply it to an existing app instead,
and in sections 23.5 and 23.6 you’ll see how to override the default pages.

23.3 Creating a project that uses ASP.NET Core
Identity

I’ve covered authentication and Identity in general terms, but the best way to
get a feel for it is to see some working code. In this section we’re going to
look at the default code generated by the ASP.NET Core templates with
Identity, how the project works, and where Identity fits in.

23.3.1 Creating the project from a template

You’ll start by using the Visual Studio templates to generate a simple Razor
Pages application that uses Identity for storing individual user accounts in a
database.

Tip

You can create a similar project using the .NET CLI by running dotnet new
webapp -au Individual. The Visual Studio template uses a LocalDB
database, but the dotnet new template uses SQLite by default. To use
LocalDB instead, run dotnet new webapp -au Individual --use-local-db.

To create the template using Visual Studio, you must be using the 2022
version or later and have the .NET 7 software development kit (SDK)
installed. Follow these steps:

1. Choose File > New > Project or choose Create a New Project on the
splash screen.

2. From the list of templates, choose ASP.NET Core Web Application,
ensuring that you select the C# language template.

3. On the next screen, enter a project name, location, and a solution name,
and choose Create.

4. On the Additional Information screen, change the Authentication

type to Individual Accounts, as shown in figure 23.4. Leave the other
settings at their defaults, and choose Create to create the application.
Visual Studio automatically runs dotnet restore to restore all the
necessary NuGet packages for the project.

Figure 23.4 Choosing the authentication mode of the new ASP.NET Core application template in
VS 2022

5. Run the application to see the default app, as shown in figure 23.5.

Note

The Visual Studio template configures the application to use LocalDB and
includes EF Core migrations for SQL Server. If you want to use a different
database provider, you can replace the configuration and migrations with

your database of choice, as described in chapter 12.

Figure 23.5 The default template with individual account authentication looks similar to the no
authentication template, with the addition of a Login widget at the top right of the page.

This template should look familiar, with one twist: you now have Register
and Login buttons! Feel free to play with the template—creating a user,
logging in and out—to get a feel for the app. Once you’re happy, look at the

code generated by the template and the boilerplate it saved you from writing.

Tip

Don’t forget to run the included EF Core migrations before trying to create
users. Run dotnet ef database update from the project folder.

23.3.2 Exploring the template in Solution Explorer

The project generated by the template, shown in figure 23.6, is similar to the
default no-authentication template. That’s largely due to the default UI
library, which brings in a big chunk of functionality without exposing you to
the nitty-gritty details.

Figure 23.6 The project layout of the default template with individual authentication

The biggest addition is the Areas folder in the root of your project, which
contains an Identity subfolder. Areas are sometimes used for organizing
sections of functionality. Each area can contain its own Pages folder, which is
analogous to the main Pages folder in your application.

Definition

Areas are used to group Razor Pages into separate hierarchies for
organizational purposes. I rarely use areas and prefer to create subfolders in
the main Pages folder instead. The one exception is the Identity UI, which

uses a separate Identity area by default. For more details on areas, see
Microsoft’s “Areas in ASP.NET Core” documentation: http://mng.bz/7Vw9.

The Microsoft.AspNetCore.Identity.UI package creates Razor Pages in the
Identity area. You can override any page in this default UI by creating a
corresponding page in the Areas/Identity/Pages folder in your application. In
figure 23.6, the default template adds a _ViewStart.cshtml file that overrides
the template that is included as part of the default UI. This file contains the
following code, which sets the default Identity UI Razor Pages to use your
project’s default _Layout.cshtml file:

@{

 Layout = "/Pages/Shared/_Layout.cshtml";

}

Some obvious questions at this point are “How do you know what’s included
in the default UI?” and “Which files can you override?” You’ll see the
answers to both in section 23.5, but in general you should try to avoid
overriding files where possible. After all, the goal with the default UI is to
reduce the amount of code you have to write!

The Data folder in your new project template contains your application’s EF
Core DbContext, called ApplicationDbContext, and the migrations for
configuring the database schema to use Identity. I’ll discuss this schema in
more detail in section 23.3.3.

The final additional file included in this template compared with the no-
authentication version is the partial Razor view
Pages/Shared/_LoginPartial.cshtml. This provides the Register and Login
links you saw in figure 23.5, and it’s rendered in the default Razor layout,
_Layout.cshtml.

If you look inside _LoginPartial.cshtml, you can see how routing works with
areas by combining the Razor Page path with an {area} route parameter
using Tag Helpers. For example, the Login link specifies that the Razor Page
/Account/Login is in the Identity area using the asp-area attribute:

<a asp-area="Identity" asp-page="/Account/Login">Login

Tip

You can reference Razor Pages in the Identity area by setting the area route
value to Identity. You can use the asp-area attribute in Tag Helpers that
generate links.

In addition to viewing the new files included thanks to ASP.NET Core
Identity, open Program.cs and look at the changes there. The most obvious
change is the additional configuration, which adds all the services Identity
requires, as shown in the following listing.

Listing 23.1 Adding ASP.NET Core Identity services to ConfigureServices

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

string connectionString = builder.Configuration #A

 .GetConnectionString("DefaultConnection"); #A

builder.Services.AddDbContext<ApplicationDbContext>(options => #A

 options.UseSqlServer(connectionString)); #A

builder.Services.AddDatabaseDeveloperPageExceptionFilter(); #B

builder.Services.AddDefaultIdentity<IdentityUser>(options => #C

 options.SignIn.RequireConfirmedAccount = true) #D

 .AddEntityFrameworkStores<ApplicationDbContext>(); #E

builder.Services.AddRazorPages();

// remaining configuration not show

The AddDefaultIdentity() extension method does several things:

Adds the core ASP.NET Core Identity services.
Configures the application user type to be IdentityUser. This is the
entity model that is stored in the database and represents a “user” in your
application. You can extend this type if you need to, but that’s not
always necessary, as you’ll see in section 23.6.
Adds the default UI Razor Pages for registering, logging in, and
managing users.
Configures token providers for generating MFA and email confirmation
tokens.

Where is the authentication middleware?

If you’re already familiar with previous versions of ASP.NET Core, you
might be surprised to notice the lack of any authentication middleware in the
default template. Given everything you’ve learned about how authentication
works, that should be surprising!

The answer to this riddle is that the authentication middleware is in the
pipeline, even though you can’t see it. As I discussed in chapter 4,
WebApplication automatically adds many middleware components to the
pipeline for you, including the routing middleware, the endpoint middleware,
and—yes—the authentication middleware. So the reason you don’t see it in
the pipeline is that it’s already been added.

In fact, WebApplication also automatically adds the authorization
middleware to the pipeline, but in this case the template still calls
UseAuthorization(). Why? For the same reason that the template also calls
UseRouting(): to control exactly where in the pipeline the middleware is
added.

As I mentioned in chapter 4, you can override the automatically added
middleware by adding it yourself manually. It’s crucial that the authorization
middleware be placed after the routing middleware, and as mentioned in
chapter 4, you typically want to place your routing middleware after the static
file middleware. As the routing middleware needs to move, so does the
authorization middleware!

Traditionally, the authentication middleware is also placed after the routing
middleware, before the authorization middleware, but this isn’t crucial. The
only requirement is that it’s placed before any middleware that requires an
authenticated user, such as the authorization middleware.

If you wish, you can move the location of the authentication middleware by
calling UseAuthentication() at the appropriate point. I prefer to limit the
work done on requests where possible, so I typically take this approach,
moving it between the call to UseRouting() and UseAuthorization():

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

If you don’t place the authentication middleware at the correct point in the
pipeline, you can run into strange bugs where users aren’t authenticated
correctly or authorization policies aren’t applied correctly. The templates
work out of the box, but you need to take care if you’re working with an
existing application or moving middleware around.

Now that you’ve got an overview of the additions made by Identity, we’ll
look in a bit more detail at the database schema and how Identity stores users
in the database.

23.3.3 The ASP.NET Core Identity data model

Out of the box, and in the default templates, Identity uses EF Core to store
user accounts. It provides a base DbContext that you can inherit from, called
IdentityDbContext, which uses an IdentityUser as the user entity for your
application.

In the template, the app’s DbContext is called ApplicationDbContext. If you
open this file, you’ll see it’s sparse; it inherits from the IdentityDbContext
base class I described earlier, and that’s it. What does this base class give
you? The easiest way to see is to update a database with the migrations and
take a look.

Applying the migrations is the same process as in chapter 12. Ensure that the
connection string points to where you want to create the database, open a
command prompt in your project folder, and run this command to update the
database with the migrations:

dotnet ef database update

Tip

If you see an error after running the dotnet ef command, ensure that you
have the .NET tool installed by following the instructions provided in section

12.3.1. Also make sure that you run the command from the project folder, not
the solution folder.

If the database doesn’t exist, the command-line interface (CLI) creates it.
Figure 23.7 shows what the database looks like for the default template.

Tip

If you’re using MS SQL Server (or LocalDB), you can use the SQL Server
Object Explorer in Visual Studio to browse tables and objects in your
database. See Microsoft’s “How to: Connect to a Database and Browse
Existing Objects” article for details: http://mng.bz/mg8r.

Figure 23.7 The database schema used by ASP.NET Core Identity

That’s a lot of tables! You shouldn’t need to interact with these tables directly
(Identity handles that for you), but it doesn’t hurt to have a basic grasp of
what they’re for:

__EFMigrationsHistory—The standard EF Core migrations table that
records which migrations have been applied.
AspNetUsers—The user profile table itself. This is where IdentityUser
is serialized to. We’ll take a closer look at this table shortly.

AspNetUserClaims—The claims associated with a given user. A user
can have many claims, so it’s modeled as a many-to-one relationship.
AspNetUserLogins and AspNetUserTokens—These are related to third-
party logins. When configured, these let users sign in with a Google or
Facebook account (for example) instead of creating a password on your
app.
AspNetUserRoles, AspNetRoles, and AspNetRoleClaims—These tables
are somewhat of a legacy left over from the old role-based permission
model of the pre-.NET 4.5 days, instead of the claims-based permission
model. These tables let you define roles that multiple users can belong
to. Each role can be assigned multiple claims. These claims are
effectively inherited by a user principal when they are assigned that role.

You can explore these tables yourself, but the most interesting of them is the
AspNetUsers table, shown in figure 23.8.

Figure 23.8 The AspNetUsers table is used to store all the details required to authenticate a user.

Most of the columns in the AspNetUsers table are security-related—the
user’s email, password hash, whether they have confirmed their email,
whether they have MFA enabled, and so on. By default, there are no columns
for additional information, like the user’s name.

Note

You can see from figure 23.8 that the primary key Id is stored as a string
column. By default, Identity uses Guid for the identifier. To customize the
data type, see the “Change the primary key type” section of Microsoft’s
“Identity model customization in ASP.NET Core” documentation:
http://mng.bz/5jdB.

Any additional properties of the user are stored as claims in the
AspNetUserClaims table associated with that user. This lets you add arbitrary
additional information without having to change the database schema to
accommodate it. Want to store the user’s date of birth? You could add a
claim to that user; there’s no need to change the database schema. You’ll see
this in action in section 23.6, when you add a Name claim to every new user.

Note

Adding claims is often the easiest way to extend the default IdentityUser,
but you can add properties to the IdentityUser directly. This requires
database changes but is nevertheless useful in many situations. You can read
how to add custom data using this approach here: http://mng.bz/Xd61.

It’s important to understand the difference between the IdentityUser entity
(stored in the AspNetUsers table) and the ClaimsPrincipal, which is
exposed on HttpContext.User. When a user first logs in, an IdentityUser is
loaded from the database. This entity is combined with additional claims for
the user from the AspNetUserClaims table to create a ClaimsPrincipal. It’s
this ClaimsPrincipal that is used for authentication and is serialized to the
authentication cookie, not the IdentityUser.

It’s useful to have a mental model of the underlying database schema Identity
uses, but in day-to-day work, you shouldn’t have to interact with it directly.
That’s what Identity is for, after all! In the next section we’ll look at the other

end of the scale: the UI of the app and what you get out of the box with the
default UI.

23.3.4 Interacting with ASP.NET Core Identity

You’ll want to explore the default UI yourself to get a feel for how the pieces
fit together, but in this section I’ll highlight what you get out of the box, as
well as areas that typically require additional attention right away.

The entry point to the default UI is the user registration page of the
application, shown in figure 23.9. The register page enables users to sign up
to your application by creating a new IdentityUser with an email and a
password. After creating an account, users are redirected to a screen
indicating that they should confirm their email. No email service is enabled
by default, as this is dependent on your configuring an external email service.
You can read how to enable email sending in Microsoft’s “Account
confirmation and password recovery in ASP.NET Core” documentation at
http://mng.bz/6gBo. Once you configure this, users will automatically receive
an email with a link to confirm their account.

Figure 23.9 The registration flow for users using the default Identity UI. Users enter an email and
password and are redirected to a “confirm your email” page. This is a placeholder page by
default, but if you enable email confirmation, this page will update appropriately.

By default, user emails must be unique (you can’t have two users with the
same email), and the password must meet various length and complexity
requirements. You can customize these options and more in the configuration
lambda of the call to AddDefaultIdentity() in Program.cs, as shown in the
following listing.

Listing 23.2 Customizing Identity settings in ConfigureServices in Startup.cs

builder.Services.AddDefaultIdentity<IdentityUser>(options =>

{

 options.SignIn.RequireConfirmedAccount = true; #A

 options.Lockout.AllowedForNewUsers = true; #B

 options.Password.RequiredLength = 12; #C

 options.Password.RequireNonAlphanumeric = false; #C

 options.Password.RequireDigit = false; #C

})

.AddEntityFrameworkStores<AppDbContext>();

After a user has registered with your application, they need to log in, as
shown in figure 23.10. On the right side of the login page, the default UI

templates describe how you, the developer, can configure external login
providers, such as Facebook and Google. This is useful information for you,
but it’s one of the reasons you may need to customize the default UI
templates, as you’ll see in section 23.5.

Figure 23.10 Logging in with an existing user and managing the user account. The Login page
describes how to configure external login providers, such as Facebook and Google. The user-
management pages allow users to change their email and password and to configure MFA.

Once a user has signed in, they can access the management pages of the
identity UI. These allow users to change their email, change their password,
configure MFA with an authenticator app, or delete all their personal data.

Most of these functions work without any effort on your part, assuming that
you’ve already configured an email-sending service.

That covers everything you get in the default UI templates. It may seem
somewhat minimal, but it covers a lot of the requirements that are common to
almost all apps. Nevertheless, there are a few things you’ll nearly always
want to customize:

Configure an email-sending service, to enable account confirmation and
password recovery, as described in Microsoft’s “Account confirmation
and password recovery in ASP.NET Core” documentation:
http://mng.bz/vzy7.
Add a QR code generator for the enable MFA page, as described in
Microsoft’s “Enable QR Code generation for TOTP authenticator apps
in ASP.NET Core” documentation: http://mng.bz/4Zmw.
Customize the register and login pages to remove the documentation
link for enabling external services. You’ll see how to do this in section
23.5. Alternatively, you may want to disable user registration entirely, as
described in Microsoft’s “Scaffold Identity in ASP.NET Core projects”
documentation: http://mng.bz/QmMG.
Collect additional information about users on the registration page.
You’ll see how to do this in section 23.6.

There are many more ways you can extend or update the Identity system and
lots of options available, so I encourage you to explore Microsoft’s
“Overview of ASP.NET Core authentication” at http://mng.bz/XdGv to see
your options. In the next section you’ll see how to achieve another common
requirement: adding users to an existing application.

23.4 Adding ASP.NET Core Identity to an existing
project

In this section we’re going to add users to an existing application. The initial
app is a Razor Pages app, based on recipe application from chapter 12. This
is a working app that you want to add user functionality to. In chapter 24
we’ll extend this work to restrict control regarding who’s allowed to edit
recipes on the app.

By the end of this section, you’ll have an application with a registration page,
a login screen, and a manage account screen, like the default templates.
You’ll also have a persistent widget in the top right of the screen showing the
login status of the current user, as shown in figure 23.11.

Figure 23.11 The recipe app after adding authentication, showing the login widget

As in section 23.3, I’m not going to customize any of the defaults at this
point, so we won’t set up external login providers, email confirmation, or
MFA. I’m concerned only with adding ASP.NET Core Identity to an existing
app that’s already using EF Core.

Tip

It’s worth making sure you’re comfortable with the new project templates
before you go about adding Identity to an existing project. Create a test app,
and consider setting up an external login provider, configuring an email

provider, and enabling MFA. This will take a bit of time, but it’ll be
invaluable for deciphering errors when you come to adding Identity to
existing apps.

To add Identity to your app, you’ll need to do the following:

1. Add the ASP.NET Core Identity NuGet packages.
2. Add the required Identity services to the dependency injection (DI)

container.
3. Update the EF Core data model with the Identity entities.
4. Update your Razor Pages and layouts to provide links to the Identity UI.

This section tackles each of these steps in turn. At the end of section 23.4
you’ll have successfully added user accounts to the recipe app.

23.4.1 Configuring the ASP.NET Core Identity services

You can add ASP.NET Core Identity with the default UI to an existing app
by referencing two NuGet packages:

Microsoft.AspNetCore.Identity.EntityFrameworkCore—Provides all the
core Identity services and integration with EF Core
Microsoft.AspNetCore.Identity.UI—Provides the default UI Razor Pages

Update your project .csproj file to include these two packages:

<PackageReference

 Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore"

 Version="7.0.0" />

<PackageReference

 Include="Microsoft.AspNetCore.Identity.UI" Version="7.0.0" />

These packages bring in all the additional required dependencies you need to
add Identity with the default UI. Be sure to run dotnet restore after adding
them to your project.

Once you’ve added the Identity packages, you can update your Program.cs
file to include the Identity services, as shown in the following listing. This is
similar to the default template setup you saw in listing 23.1, but make sure to

reference your existing AppDbContext.

Listing 23.3 Adding ASP.NET Core Identity services to the recipe app

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddDbContext<AppDbContext>(options => #A

 options.UseSqlite(builder.Configuration #A

 .GetConnectionString("DefaultConnection")!)); #A

builder.Services.AddDefaultIdentity<ApplicationUser>(options => #B

 options.SignIn.RequireConfirmedAccount = true) #B

 .AddEntityFrameworkStores<AppDbContext>(); #C

builder.Services.AddRazorPages();

builder.Services.AddScoped<RecipeService>();

This adds all the necessary services and configures Identity to use EF Core.
I’ve introduced a new type here, ApplicationUser, which we’ll use to
customize our user entity later. You’ll see how to add this type in section
23.4.2.

The next step is optional: add the AuthenticationMiddleware after the call
to UseRouting() on WebApplication, as shown in the following listing. As I
mentioned previously, the authentication middleware is added automatically
by WebApplication, so this step is optional. I prefer to delay authentication
until after the call to UseRouting(), as it eliminates the need to perform
unnecessary work decrypting the authentication cookie for requests that don’t
reach the routing middleware, such as requests for static files.

Listing 23.4 Adding AuthenticationMiddleware to the recipe app

app.UseStaticFiles(); #A

app.UseRouting();

app.UseAuthentication(); #B

app.UseAuthorization(); #C

app.MapRazorPages();

app.Run

You’ve configured your app to use Identity, so the next step is updating EF
Core’s data model. You’re already using EF Core in this app, so you need to
update your database schema to include the tables that Identity requires.

23.4.2 Updating the EF Core data model to support Identity

The code in listing 23.3 won’t compile, as it references the ApplicationUser
type, which doesn’t yet exist. Create the ApplicationUser in the Data folder,
using the following line:

public class ApplicationUser : IdentityUser { }

It’s not strictly necessary to create a custom user type in this case (for
example, the default templates use the raw IdentityUser), but I find it’s
easier to add the derived type now rather than try to retrofit it later if you
need to add extra properties to your user type.

In section 23.3.3 you saw that Identity provides a DbContext called
IdentityDbContext, which you can inherit from. The IdentityDbContext
base class includes the necessary DbSet<T> to store your user entities using
EF Core.

Updating an existing DbContext for Identity is simple: update your app’s
DbContext to inherit from IdentityDbContext (which itself inherits from
DbContext), as shown in the following listing. We’re using the generic
version of the base Identity context in this case and providing the
ApplicationUser type.

Listing 23.5 Updating AppDbContext to use IdentityDbContext

public class AppDbContext : IdentityDbContext<ApplicationUser> #A

{

 public AppDbContext(DbContextOptions<AppDbContext> options) #B

 : base(options) #B

 { } #B

 public DbSet<Recipe> Recipes { get; set; } #B

}

Effectively, by updating the base class of your context in this way, you’ve

added a whole load of new entities to EF Core’s data model. As you saw in
chapter 12, whenever EF Core’s data model changes, you need to create a
new migration and apply those changes to the database.

At this point, your app should compile, so you can add a new migration
called AddIdentitySchema using

dotnet ef migrations add AddIdentitySchema

The final step is updating your application’s Razor Pages and layouts to
reference the default identity UI. Normally, adding 30 new Razor Pages to
your application would be a lot of work, but using the default Identity UI
makes it a breeze.

23.4.3 Updating the Razor views to link to the Identity UI

Technically, you don’t have to update your Razor Pages to reference the
pages included in the default UI, but you probably want to add the login
widget to your app’s layout at a minimum. You’ll also want to make sure that
your Identity Razor Pages use the same base Layout.cshtml as the rest of
your application.

We’ll start by fixing the layout for your Identity pages. Create a file at the
“magic” path Areas/Identity/Pages/_ViewStart.cshtml, and add the following
contents:

@{ Layout = "/Pages/Shared/_Layout.cshtml"; }

This sets the default layout for your Identity pages to your application’s
default layout. Next, add a _LoginPartial.cshtml file in Pages/Shared to
define the login widget, as shown in the following listing. This is pretty much
identical to the template generated by the default template, but it uses our
custom ApplicationUser instead of the default IdentityUser.

Listing 23.6 Adding a _LoginPartial.cshtml to an existing app

@using Microsoft.AspNetCore.Identity

@using RecipeApplication.Data; #A

@inject SignInManager<ApplicationUser> SignInManager #B

@inject UserManager<ApplicationUser> UserManager #B

<ul class="navbar-nav">

@if (SignInManager.IsSignedIn(User))

{

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Manage/Index" title="Manage">

 Hello @User.Identity.Name!

 <li class="nav-item">

 <form class="form-inline" asp-page="/Account/Logout"

 asp-route-returnUrl="@Url.Page("/", new { area = "" })"

 asp-area="Identity" method="post" >

 <button class="nav-link btn btn-link text-dark"

 type="submit">Logout</button>

 </form>

}

else

{

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Register">Register

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="Identity"

 asp-page="/Account/Login">Login

}

This partial shows the current login status of the user and provides links to
register or sign in. All that remains is to render the partial by calling

<partial name="_LoginPartial" />

in the main layout file of your app, _Layout.cshtml.

And there you have it: you’ve added Identity to an existing application. The
default UI makes doing this relatively simple, and you can be sure you
haven’t introduced any security holes by building your own UI!

As I described in section 23.3.4, there are some features that the default UI
doesn’t provide and you need to implement yourself, such as email

confirmation and MFA QR code generation. It’s also common to find that
you want to update a single page here and there. In the next section I’ll show
how you can replace a page in the default UI, without having to rebuild the
entire UI yourself.

23.5 Customizing a page in ASP.NET Core
Identity’s default UI

In this section you’ll learn how to use scaffolding to replace individual pages
in the default Identity UI. You’ll learn to scaffold a page so that it overrides
the default UI, allowing you to customize both the Razor template and the
PageModel page handlers.

Having Identity provide the whole UI for your application is great in theory,
but in practice there are a few wrinkles, as you saw in section 23.3.4. The
default UI provides as much as it can, but there are some things you may
want to tweak. For example, both the login and register pages describe how
to configure external login providers for your ASP.NET Core applications, as
you saw in figures 23.12 and 23.13. That’s useful information for you as a
developer, but it’s not something you want to be showing to your users.
Another often-cited requirement is the desire to change the look and feel of
one or more pages.

Luckily, the default Identity UI is designed to be incrementally replaceable,
so you can override a single page without having to rebuild the entire UI
yourself. On top of that, both Visual Studio and the .NET CLI have functions
that allow you to scaffold any (or all) of the pages in the default UI so that
you don’t have to start from scratch when you want to tweak a page.

Definition

Scaffolding is the process of generating files in your project that serve as the
basis for customization. The Identity scaffolder adds Razor Pages in the
correct locations so they override equivalent pages with the default UI.
Initially, the code in the scaffolded pages matches that in the default Identity
UI, but you are free to customize it.

As an example of the changes you can easily make, we’ll scaffold the
registration page and remove the additional information section about
external providers. The following steps describe how to scaffold the
Register.cshtml page in Visual Studio:

1. Add the Microsoft.VisualStudio.Web.CodeGeneration.Design and
Microsoft .EntityFrameworkCore.Tools NuGet packages to your project
file, if they’re not already added. Visual Studio uses these packages to
scaffold your application correctly, and without them you may get an
error running the scaffolder:

<PackageReference Version="7.0.0"

 Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" />

<PackageReference Version="7.0.0"

 Include="Microsoft.EntityFrameworkCore.Tools" />

2. Ensure that your project builds. If it doesn’t build, the scaffolder will fail
before adding your new pages.

3. Right-click your project, and choose Add > New Scaffolded Item from
the contextual menu.

4. In the selection dialog box, choose Identity from the category, and
choose Add.

5. In the Add Identity dialog box, select the Account/Register page, and
select your application’s AppDbContext as the Data context class, as
shown in figure 23.12. Choose Add to scaffold the page.

Figure 23.12 Using Visual Studio to scaffold Identity pages. The generated Razor Pages will
override the versions provided by the default UI.

Tip

To scaffold the registration page using the .NET CLI, install the required
tools and packages as described in Microsoft’s “Scaffold Identity in
ASP.NET Core projects” documentation: http://mng.bz/QPRv. Then run
dotnet aspnet-codegenerator identity -dc

RecipeApplication.Data.AppDbContext --files "Account.Register".

Visual Studio builds your application and then generates the Register.cshtml
page for you, placing it in the Areas/Identity/Pages/Account folder. It also
generates several supporting files, as shown in figure 23.13. These are
required mostly to ensure that your new Register.cshtml page can reference
the remaining pages in the default Identity UI.

Figure 23.13 The scaffolder generates the Register.cshtml Razor Page, along with supporting files
required to integrate with the remainder of the default Identity UI.

We’re interested in the Register.cshtml page, as we want to customize the UI
on the Register page, but if we look inside the code-behind page,
Register.cshtml.cs, we see how much complexity the default Identity UI is
hiding from us. It’s not insurmountable (we’ll customize the page handler in
section 23.6), but it’s always good to avoid writing code if we can help it.

Now that you have the Razor template in your application, you can customize
it to your heart’s content. The downside is that you’re now maintaining more
code than you were with the default UI. You didn’t have to write it, but you
may still have to update it when a new version of ASP.NET Core is released.

I like to use a bit of a trick when it comes to overriding the default Identity UI
like this. In many cases, you don’t want to change the page handlers for the
Razor Page—only the Razor view. You can achieve this by deleting the
Register.cshtml.cs PageModel file, and pointing your newly scaffolded
.cshtml file at the original PageModel, which is part of the default UI NuGet
package.

The other benefit of this approach is that you can delete some of the other
files that were autoscaffolded. In total, you can make the following changes:

Update the @model directive in Register.cshtml to point to the default UI

PageModel:

@model Microsoft.AspNetCore.Identity.UI.V5.Pages.Account.Internal.RegisterModel

Update Areas/Identity/Pages/_ViewImports.cshtml to the following:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Delete Areas/Identity/Pages/_ValidationScriptsPartial.cshtml.
Delete Areas/Identity/Pages/Account/Register.cshtml.cs.
Delete Areas/Identity/Pages/Account/_ViewImports.cshtml.

After making all these changes, you’ll have the best of both worlds: you can
update the default UI Razor Pages HTML without taking on the
responsibility of maintaining the default UI code-behind.

Tip

In the source code for the book, you can see these changes in action, where
the Register view has been customized to remove the references to external
identity providers.

Unfortunately, it’s not always possible to use the default UI PageModel.
Sometimes you need to update the page handlers, such as when you want to
change the functionality of your Identity area rather than only the look and
feel. A common requirement is needing to store additional information about
a user, as you’ll see in the next section.

23.6 Managing users: Adding custom data to users

In this section you’ll see how to customize the ClaimsPrincipal assigned to
your users by adding claims to the AspNetUserClaims table when the user is
created. You’ll also see how to access these claims in your Razor Pages and
templates.

Often, the next step after adding Identity to an application is customizing it.
The default templates require only an email and password to register. What if
you need more details, like a friendly name for the user? Also, I’ve

mentioned that we use claims for security, so what if you want to add a claim
called IsAdmin to certain users?

You know that every user principal has a collection of claims, so
conceptually, adding any claim requires adding it to the user’s collection.
There are two main times that you would want to grant a claim to a user:

For every user, when they register on the app—For example, you might
want to add a Name field to the Register form and add that as a claim to
the user when they register.
Manually, after the user has registered—This is common for claims
used as permissions, where an existing user might want to add an
IsAdmin claim to a specific user after they have registered on the app.

In this section I’ll show you the first approach, automatically adding new
claims to a user when they’re created. The latter approach is more flexible
and ultimately is the approach many apps will need, especially line-of-
business apps. Luckily, there’s nothing conceptually difficult to it; it requires
a simple UI that lets you view users and add a claim through the same
mechanism I’ll show here.

Tip

Another common approach is to customize the IdentityUser entity, by
adding a Name property, for example. This approach is sometimes easier to
work with if you want to give users the ability to edit that property.
Microsoft’s “Add, download, and delete custom user data to Identity in an
ASP.NET Core project” documentation describes the steps required to
achieve that: http://mng.bz/aoe7.

Let’s say you want to add a new Claim to a user, called FullName. A typical
approach would be as follows:

1. Scaffold the Register.cshtml Razor Page, as you did in section 23.5.
2. Add a Name field to the InputModel in the Register.cshtml.cs

PageModel.
3. Add a Name input field to the Register.cshtml Razor view template.
4. Create the new ApplicationUser entity as before in the OnPost() page

handler by calling CreateAsync on UserManager<ApplicationUser>.
5. Add a new Claim to the user by calling UserManager.AddClaimAsync().
6. Continue the method as before, sending a confirmation email or signing

the user in if email confirmation is not required.

Steps 1–3 are fairly self-explanatory and require only updating the existing
templates with the new field. Steps 4–6 take place in Register.cshtml.cs in the
OnPostAsync() page handler, which is summarized in the following listing.
In practice, the page handler has more error checking, boilerplate, extra
features, and abstraction. I’ve simplified the code in listing 23.7 to focus on
the additional lines that add the extra Claim to the ApplicationUser; you can
find the full code in the sample code for this chapter.

Listing 23.7 Adding a custom claim to a new user in the Register.cshtml.cs page

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

 if (ModelState.IsValid)

 {

 var user = new ApplicationUser { #A

 UserName = Input.Email, Email = Input.Email }; #A

 var result = await _userManager.CreateAsync(#B

 user, Input.Password); #B

 if (result.Succeeded)

 {

 var claim = new Claim("FullName", Input.Name); #C

 await _userManager.AddClaimAsync(user, claim); #D

 var code = await _userManager #E

 .GenerateEmailConfirmationTokenAsync(user); #E

 await _emailSender.SendEmailAsync(#E

 Input.Email, "Confirm your email", code); #E

 await _signInManager.SignInAsync(user); #F

 return LocalRedirect(returnUrl);

 }

 foreach (var error in result.Errors) #G

 { #G

 ModelState.AddModelError(#G

 string.Empty, error.Description); #G

 } #G

 }

 return Page(); #G

}

Tip

Listing 23.7 shows how you can add extra claims at registration time, but you
will often need to add more data later, such as permission-related claims or
other information. You will need to create additional endpoints and pages for
adding this data, securing the pages as appropriate (so that users can’t update
their own permissions, for example).

This is all that’s required to add the new claim, but you’re not using it
anywhere currently. What if you want to display it? Well, you’ve added a
claim to the ClaimsPrincipal, which was assigned to the HttpContext.User
property when you called SignInAsync. That means you can retrieve the
claims anywhere you have access to the ClaimsPrincipal—including in
your page handlers and in view templates. For example, you could display
the user’s FullName claim anywhere in a Razor template with the following
statement:

@User.Claims.FirstOrDefault(x=>x.Type == "FullName")?.Value

This finds the first claim on the current user principal with a Type of
"FullName" and prints the assigned value (or, if the claim is not found, prints
nothing). The Identity system even includes a handy extension method that
tidies up this LINQ expression (found in the System.Security.Claims
namespace):

@User.FindFirstValue("FullName")

With that last tidbit, we’ve reached the end of this chapter on ASP.NET Core
Identity. I hope you’ve come to appreciate the amount of effort using Identity
can save you, especially when you make use of the default Identity UI
package.

Adding user accounts and authentication to an app is typically the first step in
customizing your app further. Once you have authentication, you can have
authorization, which lets you lock down certain actions in your app, based on
the current user. In the next chapter you’ll learn about the ASP.NET Core
authorization system and how you can use it to customize your apps; in
particular, the recipe application, which is coming along nicely!

23.7 Summary

Authentication is the process of determining who you are, and
authorization is the process of determining what you’re allowed to do.
You need to authenticate users before you can apply authorization.
Every request in ASP.NET Core is associated with a user, also known as
a principal. By default, without authentication, this is an anonymous
user. You can use the claims principal to behave differently depending
on who made a request.
The current principal for a request is exposed on HttpContext.User.
You can access this value from your Razor Pages and views to find out
properties of the user such as their, ID, name, or email.
Every user has a collection of claims. These claims are single pieces of
information about the user. Claims could be properties of the physical
user, such as Name and Email, or they could be related to things the user
has, such as HasAdminAccess or IsVipCustomer.
Legacy versions of ASP.NET used roles instead of claims. You can still
use roles if you need to, but you should typically use claims where
possible.
Authentication in ASP.NET Core is provided by
AuthenticationMiddleware and a number of authentication services.
These services are responsible for setting the current principal when a
user logs in, saving it to a cookie, and loading the principal from the
cookie on subsequent requests.
The AuthenticationMiddleware is added automatically by
WebApplication. You can ensure that it’s inserted at a specific point in
the middleware pipeline by calling UseAuthentication(). It must be
placed before any middleware that requires authentication, such as
UseAuthorization().
ASP.NET Core Identity handles low-level services needed for storing
users in a database, ensuring that their passwords are stored safely, and
for logging users in and out. You must provide the UI for the
functionality yourself and wire it up to the Identity subsystem.
The Microsoft.AspNetCore.Identity.UI package provides a default UI
for the Identity system and includes email confirmation, MFA, and
external login provider support. You need to do some additional
configuration to enable these features.

The default template for Web Application with Individual Account
Authentication uses ASP.NET Core Identity to store users in the
database with EF Core. It includes all the boilerplate code required to
wire the UI up to the Identity system.
You can use the UserManager<T> class to create new user accounts, load
them from the database, and change their passwords. SignInManager<T>
is used to sign a user in and out by assigning the principal for the request
and by setting an authentication cookie. The default UI uses these
classes for you, to facilitate user registration and login.
You can update an EF Core DbContext to support Identity by deriving
from IdentityDbContext<TUser>, where TUser is a class that derives
from IdentityUser.
You can add additional claims to a user using the
UserManager<TUser>.AddClaimAsync(TUser user, Claim claim)
method. These claims are added to the HttpContext.User object when
the user logs in to your app.
Claims consist of a type and a value. Both values are strings. You can
use standard values for types exposed on the ClaimTypes class, such as
ClaimTypes.GivenName and ClaimTypes.FirstName, or you can use a
custom string, such as "FullName".

25 Authentication and authorization
for APIs
This chapter covers

Seeing how authentication works for APIs in ASP.NET Core
Using bearer tokens for authentication
Testing APIs locally with JSON Web Tokens
Applying authorization policies to minimal APIs

In chapter 23 you learned how authentication works with traditional web
apps, such as those you would build with Razor Pages or Model-View-
Controller (MVC) controllers. Traditional web apps typically use encrypted
cookies to store the identity of a user for a request, which the
AuthenticationMiddleware then decodes. In this chapter you’ll learn how
authentication works for API applications, how it differs from traditional web
apps, and what options are available.

We start by taking a high-level look at how authentication works for APIs,
both in isolation and when they’re part of a larger application or distributed
system. You’ll learn about some of the protocols involved, such as OAuth 2.0
and OpenID Connect; patterns you can use to protect your APIs; and the
tokens used to control access, typically JSON Web Tokens, called JWTs.

In section 25.3 you’ll learn how to put this knowledge into practice, adding
authentication to a minimal API application using JWTs. In section 25.4
you’ll learn how to use the .NET command-line interface (CLI) to generate
JWTs for testing your API locally.

The .NET CLI works well for generating tokens, but you need a way to add
this token to a request. Specifically, if you’re using OpenAPI definitions and
Swagger UI as described in chapter 11, you need a way to tell Swagger about
your authentication requirements. In section 25.5 you’ll learn about some of
the authentication configuration options for your OpenAPI documents and

how to use Swagger UI to send authenticated requests to your API.

Finally, in section 25.6 I show how to apply authorization policies to minimal
API endpoints to restrict which users can call your APIs. The authorization
concepts you learned about in chapter 24 for Razor Pages are the same for
APIs, so you’re still using claims, requirements, handlers, and polices.

We’ll start off by looking at how authentication works when you have an API
application. Many of the authentication concepts are similar to traditional
apps, but the requirement to support multiple types of users, traditional apps,
client-side apps, and mobile apps has led to subtly different solutions.

25.1 Authentication for APIs and distributed
applications

In this section you’ll learn about the authentication process for API
applications, why it typically differs from authentication for traditional web
apps, and some of the common patterns and protocols that are involved.

25.1.1 Extending authentication to multiple apps

I outlined the authentication process for traditional web apps in chapter 23.
When a user signs in to your application, you set an encrypted cookie. This
cookie contains a serialized version of the ClaimsPrincipal of the user,
including their ID and any associated claims. When you make a second
request, the browser automatically sends this cookie. The
AuthenticationMiddleware then decodes the cookie, deserializes the
ClaimsPrincipal, and sets the current user for the request, as shown
previously in figure 23.3 and reproduced in figure 25.1.

Figure 25.1 When a user first signs in to an app, the app sets an encrypted cookie containing the
ClaimsPrincipal. On subsequent requests, the cookie sent with the request contains the user
principal, which is deserialized, validated, and used to authenticate the request.

This flow works particularly well when you have a single traditional web app
that’s doing all the work. The app is responsible for authenticating and
managing users, as well as serving your app data and executing business
logic, as shown in figure 25.2.

Figure 25.2 Traditional apps typically handle all the functionality of an app: the business logic,
generating the UI, authentication, and user management.

In addition to traditional web apps, it’s common to use ASP.NET Core as an
API to serve data for mobile and client-side single-page applications (SPAs).

Similarly, even traditional web apps using Razor Pages often need to call API
applications behind the scenes, as shown in figure 25.3.

Figure 25.3 Modern applications typically need to expose web APIs for mobile and client-side
apps, as well as potentially calling APIs on the backend. When all these services need to
authenticate and manage users, this becomes logistically complicated.

In this situation you have multiple apps and APIs, all of which need to
understand that the same user is logically making a request across all the apps
and APIs. If you keep the same approach as before, where each app manages
its own users, things can quickly become unmanageable!

You’d need to duplicate all the sign-in logic between the apps and APIs, as
well as have some central database holding the user details. Users would
likely need to sign in multiple times to access different parts of the service.
On top of that, using cookies becomes problematic for some mobile clients in
particular or where you’re making requests to multiple domains (as cookies
belong to only a single domain). So how can we improve this? By moving the
authentication responsibilities to a separate service.

25.1.2 Centralizing authentication in an identity provider

Modern systems often have many moving parts, each of which requires some
level of authentication and authorization to protect each app from
unauthorized use. Instead of embedding authentication responsibilities in
each application, a common approach is to extract the code that’s common to

all the apps and APIs and then move it to an identity provider, as shown in
figure 25.4.

Figure 25.4 An alternative architecture involves using a central identity provider to handle all the
authentication and user management for the system. Tokens are passed back and forth among
the identity provider, apps, and APIs.

Instead of signing in to an app directly, the app redirects to an identity
provider. The user signs in to this identity provider, which passes bearer
tokens back to the client (a browser or mobile app, for example) to indicate
who the user is and what they’re allowed to access. The client can pass these
tokens to the APIs to provide information about the logged-in user without
needing to reauthenticate or manage users directly in the API.

Definition

Bearer tokens are strings that contain authentication details about a user or
app. They may or may not be encrypted but are typically signed to avoid
tampering. JWTs are the most common format. We’ll look more at JWTs in
section 25.2.

Using a separate identity provider is clearly more complicated on the face of
it, as you’ve thrown a whole new service into the mix, but in the long run this
has several advantages:

Users can share their identity among multiple services. As you’re
logged in to the central identity provider, you’re essentially logged in to
all apps that use that service. This gives you the single-sign-on
experience, where you don’t have to keep logging in to multiple
services.
You don’t need to duplicate sign-in logic between multiple services. All
the sign-in logic is encapsulated in the identity provider, so you don’t
need to add sign-in screens to all your apps.
The identity provider has a single responsibility. The identity provider is
responsible only for authentication and managing users. In many cases,
this is generic enough that you can (and should!) use a third-party
identity service, such as Auth0 or Azure Active Directory, instead of
building your own.
You can easily add new sign-in mechanisms. Whether you use the
identity provider approach or the traditional approach, it’s possible to
use external services to handle the authentication of users. You’ll have
seen this in apps that allow you to “log in using Facebook” or “log in
using Google,” for example. If you use a centralized identity provider,
you can add support for more providers in one place instead of having to
configure every app and API explicitly.

Out of the box, ASP.NET Core supports architectures like this and for
consuming bearer tokens from identity providers, but it doesn’t include
support for issuing those tokens in the core framework. That means you’ll
need to use another library or service as the identity provider.

As I mentioned in chapter 23, one excellent option is to use a third-party
identity provider, such as Facebook, Google, Okta, Auth0, or Azure Active
Directory. These providers take care of storing user passwords, authenticating
using modern standards like WebAuthn (https://webauthn.guide), and looking
for malicious attempts to impersonate users.

By using an identity provider, you leave the tricky security details to the
experts and can focus on the core purpose of your business, whichever

domain that is. Not all providers are equal, though: For some providers (such
as Auth0) you own the profiles, whereas for others (Facebook or Google) you
don’t. Make sure to choose a provider that matches your requirements.

Tip

Wherever possible, I recommend using a third-party identity provider. Well-
respected identity providers have many experts working solely on securing
your customers’ details, proactively preventing attacks and ensuring that the
data is safe. By leaving this tricky job to the experts, you’re free to focus on
the core business of your app, whatever that may be.

Another common option is to build your own identity provider. This may
sound like a lot of work (and it is!), but thanks to excellent libraries like
OpenIddict (https://github.com/openiddict) and Duende’s IdentityServer
(https://duendesoftware.com), it’s perfectly possible to write your own
identity provider to serve bearer tokens that can be consumed by your apps
and APIs.

Warning

You should consider carefully whether the effort and risks associated with
creating your own identity provider are worthwhile. Bugs are a fact of life,
and a bug in your identity provider could easily result in a security
vulnerability. Nevertheless, if you have specific identity requirements,
creating your own identity provider may be a reasonable or necessary option.

An aspect often overlooked by people getting started with OpenIddict and
IdentityServer is that they aren’t prefabricated solutions. They consist of a set
of services and middleware that you add to a standard ASP.NET Core app,
providing an implementation of relevant identity standards, according to the
specification. You, as a developer, still need to write the profile management
code that knows how to create a new user (normally in a database), load a
user’s details, validate their password, and manage their associated claims.
On top of that, you need to provide all the UI code for the user to log in,
manage their passwords, and configure two-factor authentication (2FA). It’s
not for the faint of heart!

In many ways, you can think of an identity provider as a traditional web app
that has only account management pages. If you want to take on building
your own identity provider, ASP.NET Core Identity, described in chapter 23,
provides a good basis for the user management side. Adding IdentityServer
or OpenIddict gives you the ability to generate tokens for other services,
using the OpenID Connect standard, for maximum interoperability with other
services.

25.1.3 OpenID Connect and OAuth 2.0

OpenID Connect (OIDC) (http://openid.net/connect) is an authentication
protocol built on top of the OAuth 2.0 (https://oauth.net/2) specification. It’s
designed to facilitate the kind of approaches described in section 25.1.2,
where you want to leave the responsibility of storing user credentials to
someone else (an identity provider). It provides an answer to the question
“Which user sent this request?” without your having to manage the user
yourself.

Note

It isn’t strictly necessary to understand these protocols to add authentication
to your APIs, but I think it’s best to have a basic understanding of them so
that you understand where your APIs fit into the security landscape. If you
want to learn more about OpenID Connect, OpenID Connect in Action, by
Prabath Siriwardena (Manning, 2023), provides lots more details.

Open ID Connect is built on top of the OAuth 2.0 protocol, so it helps to
understand that protocol a little first. OAuth 2.0 is an authorization protocol.
It allows a user to delegate access of a resource to a different service in a
controlled manner without revealing any additional details, such as your
identity or any other information.

That’s all a bit abstract, so let’s consider an example. You want to print some
photos of your dog through a photo printing service, dogphotos.com. You
sign up to the dogphotos.com service, and they give you two options for
uploading your photos:

Upload from your computer.
Download directly from Facebook using OAuth 2.0.

As you’re using a new laptop, you haven’t downloaded all the photos of your
dog to your computer, so you choose to use OAuth 2.0 instead, as shown in
figure 25.5. This triggers the following sequence:

1. dogphotos.com redirects you to Facebook, where you must sign in (if
you haven’t already).

2. Once you’re authenticated, Facebook shows a consent screen, which
describes the data dogphotos.com wants to access, which should be your
photos only in this case.

3. When you choose OK, Facebook automatically redirects you to a URL
on dogphotos.com and includes an authorization code in the URL.

4. dogphotos.com uses this code, in combination with a secret known only
by Facebook and dogphotos.com, to retrieve an access token from
Facebook.

5. Finally, dogphotos.com uses the token to call the Facebook API and
retrieve your dog photos!

Figure 25.5 Using OAuth 2.0 to authorize dogphotos.com to access your photos on Facebook

There’s a lot going on in this example, but it gives some nice benefits:

You didn’t have to give your Facebook credentials to dogphotos.com.
You simply signed in to Facebook as normal.
You had control of which details dogphotos.com could access on your
behalf via the Facebook photos API.
You didn’t have to give dogphotos.com any of your identity information
(though in practice, this is often requested).

Effectively, you delegated your access of the Facebook photos API to
dogphotos.com. This approach is why OAuth 2.0 is described as an
authorization protocol, not an authentication protocol. dogphotos.com doesn’t
know your identity on Facebook; it is authorized only to access the photos
API on behalf of someone.

OAuth 2.0 authorization flows and grant types

The OAuth 2.0 example shows in this section uses a common flow or grant
type, as it’s called in OAuth 2.0, for obtaining a token from an identity
provider. Oauth 2.0 defines several grant types and extensions, each designed
for a different scenario:

· Authorization code—This is the flow I described in figure 25.5, in which
an application uses the combination of an authorization code and a secret to
retrieve a token.

· Proof Key for Code Exchange (PKCE)—This is an extension to the
authorization code that you should always favor, if possible, as it provides
additional protections against certain attacks, as described in the RFC at
https://www.rfc-editor.org/rfc/rfc7636.

· Client credentials—This is used when no user is involved, such as when
you have an API talking to another API.

Many more grants are available (see https://oauth.net/2/grant-types), and each
grant is suited to a different situation. The examples are the most common
types, but if your scenario doesn’t match these, it’s worth exploring the other
OAuth 2.0 grants available before thinking you need to invent your own! And
with Oauth 2.1 coming soon (http://mng.bz/XNav), there may well be
updated guidance to be aware of.

OAuth 2.0 is great for the scenario I’ve described so far, in which you want
to delegate access to a resource (your photos) to someone else
(dogphotos.com). But it’s also common for apps to want to know your
identity in addition to accessing an API. For example, dogphotos.com may
want to be able to contact you via Facebook if there’s a problem with your
photos.

This is where OpenID Connect comes in. OpenID Connect takes the same
basic flows as OAuth 2.0 and adds some conventions, discoverability, and
authentication. At a high level, OpenID Connect treats your identity (such as
an ID or email address) as a resource that is protected in the same way as any
other API. You still need to consent to give dogphotos.com access to your

identity details, but once you do, it’s an extra API call for dogphotos.com to
retrieve your identity details, as shown in figure 25.6.

Figure 25.6 Using OpenID Connect to authenticate with Facebook and retrieve identity
information. The overall flow is the same as with Oauth 2.0, as shown in figure 25.5, but with an
additional identity token describing the authentication event and API call to retrieve the identity
details.

OpenID Connect is a crucial authentication component in many systems, but
if you’re building the API only (for example, the Facebook photos API from
figures 25.5 and 25.6), all you really care about are the tokens in the requests;
how that token was obtained is less important from a technical standpoint. In

the next section we’ll look in detail at these tokens and how they work.

25.2 Understanding bearer token authentication

In this section you’ll learn about bearer tokens: what they are, how they can
be used for security with APIs, and the common JWT format for tokens.
You’ll learn about some of the limitations of the tokens, approaches to work
around these, and some common concepts such as audiences and scopes.

The name bearer token consists of two parts that describe its use:

Token—A security token is a string that provides access to a protected
resource.
Bearer—A bearer token is one in which anyone who has the token (the
bearer) can use it like anyone else. You don’t need to prove that you
were the one who received the token originally or have access to any
additional key. You can think of a bearer token as being a bit like
money: if it’s in your possession, you can spend it!

If the second point makes you a little uneasy, that’s good. You should think
of bearer tokens as being a lot like passwords: you must protect them at all
costs! You should avoid including bearer tokens in URL query strings, for
example, as these may be automatically logged, exposing the token
accidentally.

Everything old is new again: Cookies for APIs

Bearer token authentication is extremely common for APIs, but as with
everything in tech, the landscape is constantly evolving. One area that has
seen a lot of change is the process of securing SPAs like React, Angular, and
Blazor WASM. The advice for some years was to use the Authorization code
with PKCE grant (https://www.rfc-editor.org/rfc/rfc8252#section-6), but the
big problem with this pattern is that the bearer tokens for calling the API are
ultimately stored in the browser.

An alternative pattern has emerged recently: the Backend for Frontend (BFF)
pattern. In this approach, you have a traditional ASP.NET Core application

(the backend, which hosts the Blazor WASM or other SPA application (the
frontend). The main job of the ASP.NET Core application is to handle
OpenID Connect authentication, store the bearer tokens securely, and set an
authentication cookie, exactly like a traditional web app.

The frontend app in the browser sends requests to the backend app, which
automatically includes the cookie. The backend swaps out the authentication
cookie for the appropriate bearer token and forwards the request to the real
API.

The big advantages of this approach are that no bearer tokens are ever sent to
the browser, and much of the frontend code is significantly simplified. The
main down side is that you need to run the additional backend service to
support the frontend app. Nevertheless, this is quickly becoming the
recommended approach. You can read more about the pattern in Duende’s
documentation at http://mng.bz/yQdB. Alternatively, you can find a project
template for the BFF pattern from Damien Boden at http://mng.bz/MBlW.

Bearer tokens don’t have to have any particular value; they could be a
completely random string, for example. However, the most common format
and the format used by OpenID Connect is a JWT. JWTs (defined in
https://www.rfc-editor.org/rfc/rfc7519.html) consist of three parts:

A JavaScript Object Notation (JSON) header describing the token
A JSON payload containing the claims
A binary signature created from the header and the payload

Each part is base64-encoded and concatenated with a '.' into a single string
that can be safely passed in HTTP headers, for example, as shown in figure
25.7. The signature is created using key material that must be shared by the
provider that created the token and any API that consumes it. This ensures
that the JWT can’t be tampered with, such as to add extra claims to a token.

Warning

Always validate the signature of any JWTs you consume, as described in the
JWT Best Current Practices RFC (https://www.rfc-editor.org/rfc/rfc8725).
ASP.NET Core does this by default.

Figure 25.7 An example JWT, decoded using the website https://jwt.io. The JWT consists of three
parts: the header, the payload, and the signature. You must always verify the signature of any
JWTs you receive.

Figure 25.7 shows the claims included in the JWT, some of which have
cryptic names like iss and iat. These are standard claim names used in
OpenID Connect (standing for “Issuer” and “Issued at,” respectively). You
generally don’t need to worry about these, as they’re automatically handled
by ASP.NET Core when it decodes the token. Nevertheless, it’s helpful to
understand what some of these claims mean, as it will help when things go
wrong:

sub—The subject of the token, the unique identifier of the subject it’s
describing. This will often be a user, in which case it may be the identity

provider’s unique ID for the user.
aud—The audience of the token, specifying the domains for which this
token was created. When an API validates the token, the API should
confirm that the JWT’s aud claim contains the domain of the API.
scope—The scopes granted in the token. Scopes define what the
user/app consented to (and is allowed to do). Taking the example from
section 25.1, dogphotos.com may have requested the photos.read and
photos.edit scopes, but if the user consented only to the photos.read
scope, the photos.edit scope would not be in the JWT it receives for
use with the Facebook photos API. It’s up to the API itself to interpret
what each scope means for the business logic of the request.
exp—The expiration time of the token, after which it is no longer valid,
expressed as the number of seconds since midnight on January 1, 1970
(known as the Unix timestamp).

An important point to realize is that JWTs are not encrypted. That means
anyone can read the contents of a JWT by default. Another standard, JSON
Web Encryption (JWE), can be used to wrap a JWT in an encrypted envelope
that can’t be read unless you have the key. Many identity providers include
support for using JWEs with nested JWTs, and ASP.NET Core includes
support for both out of the box, so it’s something to consider.

Bearer tokens, access tokens, reference tokens, oh my!

The concept of a bearer token described in this section is a generic idea that
can be used in several ways and for different purposes. You’ve already read
about access tokens and identity tokens used in OpenID Connect. These are
both bearer tokens; their different names describe the purpose of the token.

The following list describes some of the types of tokens you might read about
or run into:

· Access token—Access tokens are used to authorize access to a resource.
These are the tokens typically referred to when you talk about bearer
authentication. They come in two flavors:

Self-contained—These are the most common tokens, with JWT as the most
common format. They contain metadata, claims, and a signature. The strength

of self-contained tokens—that they contain all the data and can be validated
offline—is also their weakness, as they can’t be revoked. Due to this, they
typically have a limited valid lifespan. They can also become large if they
contain many claims, which increases request sizes.

Reference token—These don’t contain any data and are typically a random
string. When a protected API receives a reference token, it must exchange the
reference token with the identity provider for the claims (for example, a
JWT). This approach ensures more privacy, as the claims are never exposed
to the client, and the token can be revoked at the identity provider. However,
it requires an extra HTTP round trip every time the API receives a request.
This makes reference tokens a good option for high-security environments,
where the performance effect is less critical.

· ID token—This token is used in OpenID Connect (http://mng.bz/a1M7) to
describe an authentication event. It may contain additional claims about the
authenticated user, but this is not required; if the claims aren’t provided in the
ID token, they can be retrieved from the identity provider’s UserInfo
endpoint. The ID token is always a JWT, but you should never send it to
other APIs; it is not an access token. The ID token can also be used to log out
the user at the identity provider.

· Refresh token—For security reasons, access tokens typically have
relatively short lifetimes, sometimes as low as 5 minutes. After this time, the
access token is no longer valid, and you need to retrieve a new one. Making
users log in to their identity provider every 5 minutes is clearly a bad
experience, so as part of the OAuth or OpenID Connect flow you can also
request a refresh token.

When an access token expires, you can send the refresh token to an identity
provider, and it returns a new access token without the user’s needing to log
in again. The power to obtain valid access tokens means that it’s critical to
protect refresh tokens; should an attacker obtain a refresh token, they
effectively have the power to impersonate a user.

In most of your work building and interacting with APIs, you’ll likely be
using self-contained JWT access tokens. These are what I’m primarily
referring to in this chapter whenever I mention bearer tokens or bearer

authentication.

Now you know what a token is, as well as how they’re issued by identity
providers using the OpenID Connect and OAuth 2.0 protocols. Before we get
to some code in section 25.3, we’ll see what a typical authentication flow
looks like for an ASP.NET Core API app using JWT bearer tokens for
authentication.

At a high level, authenticating using bearer tokens is identical to
authenticating using cookies for a traditional app that has already
authenticated, which you saw in figure 25.1. The request to the API contains
the bearer token in a header. Any middleware before the authentication
middleware sees the request as unauthenticated, exactly the same as for
cookie authentication, as shown in figure 25.8.

Figure 25.8 When an API request contains a bearer token, the token is validated and deserialized
by the authentication middleware. The middleware creates a ClaimsPrincipal from the token,
optionally transforming it with additional claims, and sets the HttpContext.User property.
Subsequent middleware sees the request as authenticated.

Things are a bit different in the AuthenticationMiddleware. Instead of
deserializing a cookie containing the ClaimsPrincipal, the middleware
decodes the JWT token in the Authorization header. It validates the
signature using the signing keys from the identity provider, and verifies that
the audience has the expected value and that the token has not expired.

If the token is valid, the authentication middleware creates a
ClaimsPrincipal representing the authenticated request and sets it on
HttpContext.User. All middleware after the authentication middleware sees
the request as authenticated.

Tip

If the claims in the token don’t match the key values you’re expecting, you
can use claims transformation to remap claims. This applies to cookie
authentication too, but it’s particularly common when you’re receiving
tokens from third-party identity providers, where you don’t control the names
of claims. You can also use this approach to add extra claims for a user,
which weren’t in the original token. To learn more about claims
transformation, see http://mng.bz/gBJV.

We’ve covered a lot of theory about JWT tokens in this chapter, so you’ll be
pleased to hear it’s time to look at some code!

25.3 Adding JWT bearer authentication to minimal
APIs

In this section you’ll learn how to add JWT bearer token authentication to an
ASP.NET Core app. I use the minimal API Recipe API application we started
in chapter 12 in this chapter, but the process is identical if you’re building an
API application using web API controllers.

.NET 7 significantly simplified the number of steps you need to get started
with JWT authentication by adding some conventions, which we’ll discuss
shortly. To add JWT to an existing API application, first install the
Microsoft.AspNetCore.Authentication.JwtBearer NuGet package using the
.NET CLI

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

or by adding the <PackageReference> to your project directly:

<PackageReference Include="Microsoft.AspNetCore.Authentication.JwtBearer"

 Version="7.0.0" />

Next, add the required services to configure JWT authentication for your
application, as shown in listing 25.1. As you may remember, the
authentication and authorization middleware are automatically added to your
middleware pipeline by WebApplication, but if you want to control the
position of the middleware, you can override the location, as I do here.

Listing 25.1 Adding JWT bearer authentication to a minimal API application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthentication() #A

 .AddJwtBearer(); #B

builder.Services.AddAuthorization(); #C

builder.Services.AddScoped<RecipeService>();

WebApplication app = builder.Build();

app.UseAuthentication(); #D

app.UseAuthorization(); #E

app.MapGet("/recipe", async (RecipeService service) =>

{

 return await service.GetRecipes();

}).RequireAuthorization(); #F

app.Run();

As well as configuring the JWT authentication, listing 25.1 adds an
authorization policy to the one minimal API endpoint shown in the app. The
RequireAuthorization() function adds a simple “Is authenticated”
authorization policy to the endpoint. This is exactly analgous to when you
add an [Authorize] attribute to MVC or Web API controllers. Any requests
for this endpoint must be authenticated; otherwise, the request is rejected by
the authorization middleware with a 401 Unauthorized reponse, as shown in

figure 25.9.

Figure 25.9 If you send a request to an API protected with JWT bearer authentication and don’t
include a token, you’ll receive a 401 Unauthorized challenge response.

Authentication schemes: Choosing between cookies and bearer tokens

One question you may have while reading about bearer authentication is how
the authentication middleware knows whether to look for the cookie or a
header. The answer is authentication schemes.

An authentication scheme in ASP.NET Core has an ID and an associated
authentication handler that controls how the user is authenticated, as well as
how authentication and authorization failures should be handled.

For example, in chapter 23 the cookie authentication scheme was used
implicitly by ASP.NET Core Identity. The cookie authentication handler in

this case authenticates users by looking for a cookie and redirects users to the
login or “access denied” pages for authentication or authorization failures.

In listing 25.1 you registered the JWT Bearer authentication scheme. The
JWT bearer authentication handler reads tokens from the Authorization
header and returns 401 and 403 responses for authentication or authorization
failures.

When you register only a single authentication scheme, such as in listing
25.1, ASP.NET Core automatically sets that as the default, but it’s possible to
register multiple authentication schemes. This is particularly common if you
are using OpenID Connect with a traditional web app, for example. In these
cases you can choose which scheme is used for authentication events or
authentication failures and how the schemes should interact.

Using multiple authentication schemes can be confusing, so it’s important to
follow the documentation closely when configuring authentication for your
app. You can read more about authentication schemes at http://mng.bz/5w1a.
If you need only a single scheme, you shouldn’t have any problems, but
otherwise, here be dragons!

Great! The 401 response in figure 25.9 verifies that the app is behaving
correctly for unauthenticated requests. The obvious next step is to send a
request to your API that includes a valid JWT bearer token. Unfortunately,
this is where things traditionally get tricky. How do you generate a valid
JWT? Luckily, in .NET 7, the .NET CLI comes with a tool to make creating
test tokens easy.

25.4 Using the user-jwts tool for local JWT testing

In section 25.3 you added JWT authentication to your application and
protected your API with a basic authorization policy. The problem is that you
can’t test your API unless you can generate JWT tokens. In production you’ll
likely have an identity provider such as Auth0, Azure Active Directory, or
IdentityServer to generate tokens for you using OpenID Connect. But that
can make for cumbersome local testing. In this section you’ll learn how to
use the .NET CLI to generate JWTs for local testing.

In .NET 7, the .NET CLI includes a tool called user-jwts that you can use to
generate tokens. This tool acts as a mini identity provider, meaning that you
can generate tokens with any claims you may need, and your API can verify
them using signing key material generated by the tool.

Tip

The user-jwts tool is built into the software development kit (SDK), so
there’s nothing extra to install. You need to enable User Secrets for your
project, but user-jwts will do this for you if you haven’t already. The user-
jwts tool uses User Secrets to store the signing key material used to generate
the JWTs, which your app uses to validate the JWT signatures.

Let’s look at how to create a JWT with the user-jwts tool and use that to send
a request to our application.

25.4.1 Creating JWTs with the user-jwts tool

To create a JWT that you can use in requests to your API, run the following
with the user-jwts tool from inside your project folder:

dotnet user-jwts create

This command does several things:

Enables User Secrets in the project if they’re not already configured, as
though you had manually run dotnet user-secrets init.
Adds the signing key material to User Secrets, which you can view by
running dotnet user-secrets list as described in chapter 10, which
prints out the key material configuration, as in this example:

Authentication:Schemes:Bearer:SigningKeys:0:Value =

 rIhUzB3DIbtbUwiIxkgoKfFDkLpY+gIJOB4eaQzczq8=

Authentication:Schemes:Bearer:SigningKeys:0:Length = 32

Authentication:Schemes:Bearer:SigningKeys:0:Issuer = dotnet-user-jwts

Authentication:Schemes:Bearer:SigningKeys:0:Id = c99a872d

Configures the JWT authentication services to support tokens generated
by the user-jwts tool by adding configuration to

appsettings.Development.json, as follows:

{

 "Authentication": {

 "Schemes": {

 "Bearer": {

 "ValidAudiences": [

 "http://localhost:5073",

 "https://localhost:7112"

],

 "ValidIssuer": "dotnet-user-jwts"

 }

 }

 }

}

The user-jwts tool automatically configures the valid audiences based on
the profiles in your launchSettings.json file. All the applicationUrls
listed in launchSettings.json are listed as valid audiences, so it doesn’t
matter which profile you use to run your app; the generated token should
be valid. The JWT bearer authentication service automatically reads this
configuration and configures itself to support user-jwts JWTs.

Creates a JWT. By default, the token is created with a sub and
unique_claim set to your operating system’s username, with aud claims
for each of the applicationUrls in your launchSettings.json and an
issuer of dotnet-user-jwts. You’ll notice that these match the values
added to your APIs configuration file.
After calling dotnet user-jwts create, the JWT token is printed to
the console, along with the sub name used and the ID of the token. I’ve
truncated the tokens throughout this chapter for brevity:

New JWT saved with ID 'f2080e51'.

Name: andrewlock

Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl…

Tip

You can visualize exactly what’s in the token by copy and pasting it into
https://jwt.io, as I showed in figure 25.7.

Now that you have a token, it’s time to test it. To use the token, you need to
add an Authorization header to requests using the following format (where
<token> is the full token printed by user-jwts):

Authorization: Bearer <token>

If any part of this header is incorrect—if you misspell Authorization,
misspell Bearer, don’t include a space between Bearer and your token, or
mistype your token—you’ll get a 401 Unauthorized response.

Tip

If you get 401 Unauthorized responses even after adding an Authorization
header to your requests, double-check your spelling, and make sure that the
token is added correct with the "Bearer " prefix. Typos have a way of
creeping in here! You can also increase the logging level in your API to see
why failures are happening, as you’ll learn in chapter 26.

Once you have added the token you can call your API, which should now
return successfully, as shown in figure 25.10.

Figure 25.10 Sending a request with an Authorization Bearer using Postman. The Authorization
header must have the format Bearer <token>. You can also configure this in the Authorization
tab of Postman.

The default token created by the JWT is sufficient to authenticate with your
API, but depending on your requirements, you may want to customize the
JWT to add or change claims. In the next section you’ll learn how.

25.4.2 Customizing your JWTs

By default, the user-jwts tool creates a bare-bones JWT that you can use to
call your app. If you need more customization, you can pass extra options to
the dotnet user-jwts create command to control the JWT it generates.
Some of the most useful options are

--name sets the sub and unique_name claims for the JWT instead of
using the operating system user as the name.
--claim <key>=<value> adds a claim called <key> with value <value>
to the JWT. Use this option multiple times to add claims.
--scope <value> adds a scope claim called <value> to the JWT. Use
this option multiple times to add scopes.

These aren’t the only options; you can control essentially everything about
the generated JWT. Run dotnet user-jwts create --help to see all the
options available. One option that may be useful in certain automated scripts

or tests is the --output option. This controls how the JWT is printed to the
console after creation. The default value, default, prints a summary of the
JWT and the token itself, as you saw previously:

New JWT saved with ID 'f2080e51'.

Name: andrewlock

Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl…

This is handy if you’re creating tokens ad hoc at the command line, but the
alternative output options may be more useful for scripts. For example,
running

dotnet user-jwts create --output token

outputs the token only,

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6ImFuZHJl…

which is much more convenient if you’re trying to parse the output in a
script, for example. Alternatively, you can pass --output json, which prints
details about the JWT instead, as in this example:

{

 "Id": "8bf9b2fd",

 "Scheme": "Bearer",

 "Name": "andrewlock",

 "Audience": " https://localhost:7236, http://localhost:5229",

 "NotBefore": "2022-10-22T17:50:26+00:00",

 "Expires": "2023-01-22T17:50:26+00:00",

 "Issued": "2022-10-22T17:50:26+00:00",

 "Token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6Im…",

 "Scopes": [],

 "Roles": [],

 "CustomClaims": {}

}

Note that this isn’t the payload of the token; it’s the configuration details used
to create the JWT. The token itself is exposed in the Token field. Again, this
may be useful if you’re generating JWTs using a script and need to parse the
output.

25.4.3 Managing your local JWTs

When you’re generating a JWT, the user-jwts tool automatically saves the
JWT configuration (the JSON shown in section 25.4.2) to your hard drive.
This is stored next to the secrets.json file that contains the User Secrets, in a
location that varies depending on your operating system and the
<UserSecretsId> in your project file:

Windows—%APPDATA%\Microsoft\UserSecrets\
<UserSecretsId>\user-jwts.json
Linux and macOS—~/.microsoft/usersecrets/<UserSecretsId>/user-
jwts.json

As for User Secrets, JWTs created by user-jwts aren’t encrypted, but they’re
outside your project directory, so they are a better approach to managing
secrets locally. The generated JWTs should be used only for local testing;
you should be using a real identity provider for production systems to
securely produce JWTs for a logged-in user. This is the reason why the user-
jwts tool updates only appsettings.Development.json with the required
configuration, not appsettings.json; it stops you from accidentally using user-
jwts in production. You should add your production identity provider details
in appsettings.json instead.

As well as editing the user-jwts.json file manually, you can use the user-jwts
tool to manage the JWTs stored locally. In addition to using create, you can
call dotnet user-jwts <command> from the project folder, where <command>
is one of the following options:

list—Lists a summary of all the tokens stored in user-jwts.json for the
project.
clear—Deletes all the tokens created for a project.
remove—Deletes a single token for the project, using the token ID
displayed by the list command.
print—Outputs the details of a single JWT, using the token ID, as key
value pairs.
key—Can be used to view or reset the signing key material of tokens
stored in the User Secrets Manager. Note that resetting the key material

renders all previous JWTs generated by the tool invalid.

The user-jwts tool is handy for generating JWTs locally, but you must
remember to add it to your local testing tool for all requests. If you’re using
Postman for testing, you need to add the JWT to your request, as I showed in
figure 25.10. However, if you’re using Swagger UI as I described in chapter
11, things aren’t quite that simple. In the next section you’ll learn how to
describe your authorization requirements in your OpenAPI document.

25.5 Describing your authentication requirements
to OpenAPI

In chapter 11 you learned how to add an OpenAPI document to your
ASP.NET Core app that describes your API. This is used to power tooling
such as automatic client generation, as well as Swagger UI. In this section
you’ll learn how to add authentication requirements to your OpenAPI
document so you can test your API using Swagger UI with tokens generated
by the user-jwts tool.

One of the slightly annoying things about adding authentication and
authorization to your APIs is that it makes testing harder. You can’t just fire a
web request from a browser; you must use a tool like Postman that you can
add headers to. Even for command-line aficionados, curl commands can
become unwieldy once you need to add authorization headers. And tokens
expire and are typically harder to generate. The list goes on!

I’ve seen these difficulties lead people to disable authentication requirements
for local testing or to try to add them only late in a product’s life cycle. I
strongly suggest you don’t do this! Trying to add real authentication late in a
project is likely to cause headaches and bugs that you could easily have
caught if you weren’t trying to work around the security complexity.

Tip

Add real authentication and authorization to your APIs as soon as you
understand the requirements, as you will likely catch more security-related
bugs.

The user-jwts tool can help significantly with these challenges, as you can
easily generate tokens in a format you need, optionally with a long expiration
(so you don’t need to keep renewing them) without having to wrestle with an
identity provider directly. Nevertheless, you need a way to add these tokens
to whichever tool you use for testing, such as Swagger UI.

Swagger UI is based on the OpenAPI definition of your API, so the best (and
easiest) way to add support for authentication to Swagger UI is to update the
security requirements of your application in your OpenAPI document. This
consists of two steps:

Define the security scheme your API uses, such as OAuth 2.0, OpenID
Connect, or simple Bearer authentication.
Declare which endpoints in your API use the security scheme.

The following listing shows how to configure an OpenAPI document using
Swashbuckle for an API that uses JWT bearer authentication. The values
defined on OpenApiSecurityScheme match the default settings configured by
the user-jwts tool when you use AddJwtBearer(). AddSecurityDefinition()
defines a security scheme for your API, and AddSecurityRequirement()
declares that the whole API is protected using the security scheme.

Listing 25.2 Adding bearer authentication to an OpenAPI document using Swashbuckle

WebApplicationBuilder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthentication().AddJwtBearer();

builder.Services.AddAuthorization();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(x =>

{

 x.SwaggerDoc("v1", new OpenApiInfo {

 Title = "Recipe App", Version = "v1" });

 var security = new OpenApiSecurityScheme #A

 {

 Name = HeaderNames.Authorization, #B

 Type = SecuritySchemeType.ApiKey, #C

 In = ParameterLocation.Header, #D

 Description = "JWT Authorization header", #E

 Reference = new OpenApiReference

 {

 Id = JwtBearerDefaults.AuthenticationScheme, #F

 Type = ReferenceType.SecurityScheme #G

 }

 };

 x.AddSecurityDefinition(security.Reference.Id, security); #H

 x.AddSecurityRequirement(new OpenApiSecurityRequirement #I

 {{security, Array.Empty<string>()}}); #I

});

var app = builder.Build();

app.UseSwagger();

app.UseSwaggerUI();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.MapGet("/", () => "Hello world!").RequireAuthorization();

app.Run();

When you run your application after adding the definition to your OpenAPI
document, you should see an Authorize button in the top-right corner of
Swagger UI, as shown in figure 25.11. Choosing this button opens a dialog
box describing your authentication scheme, including a text box to enter your
token. You must enter Bearer <token> in this box with a space between
them. Choose Authorize, which saves the value, and then Close. Now when
you send a request to the API, Swagger UI attaches the token in the
Authorization header, and the request succeeds.

Figure 25.11 Adding an Authorization header using Swagger UI. When adding the token, ensure
that you enter Bearer <token>, including the Bearer prefix. Swagger UI then attaches the token
to all subsequent requests, so you are authorized to call the API.

If you’re specifically using OpenID Connect or OAuth 2.0 to protect your
APIs, you can configure these in the OpenApiSecurityScheme document
instead of using bearer authentication. In that case, choosing Authorize in
Swagger UI would redirect you to your identity provider to sign in and
retrieve a token without your having to copy and paste anything. That’s
extremely useful if you’re running an identity provider locally or exposing
Swagger UI in production.

The example in listing 25.2 shows the configuration when your whole API is
protected by an authorization requirement. That’s the most common situation
in my experience, but you may want to expose certain endpoints to

anonymous users without any authorization requirements. In that case, you
can configure Swashbuckle to conditionally apply the requirement to only
those endpoints with a requirement.

Tip

See the Swashbuckle documentation to learn how to configure this and many
other features related to OpenAPI document generation: http://mng.bz/6D1A.
Swashbuckle is highly extensible, but as always, it’s worth considering
whether the added complexity you introduce to achieve perfect
documentation of your API is worth the tradeoff. For publicly exposed
OpenAPI documents, this may well be the case, but for local testing or
internal APIs, the argument may be harder to make.

In this chapter we’ve looked in depth at using JWT bearer tokens for
authentication and explored the parallels with cookie authentication for
traditional apps. In the final section of this chapter we look at authorization
and how you can apply different authorization policies to your minimal API
endpoints.

25.6 Applying authorization policies to minimal API
endpoints

So far in this chapter we’ve focused on authentication: the process of
validating the identity of the request initiator. For APIs, this typically requires
decoding and validating a JWT bearer token in the authentication middleware
and setting the ClaimsPrincipal for the request, as you saw in section 25.2.
In this section we look at the next stage in protecting your APIs,
authorization, and how you can apply different authorization requirements to
your minimal API endpoints.

The good news is that authorization for minimal APIs is essentially identical
to the authorization process you learned about in chapter 24 for Razor Pages
and MVC controllers. The same concept of authorization policies,
requirements, handlers, and claims-based authorization apply in the same
way and use the exact same services. Figure 25.12 shows how this looks for a

request to a minimal API endpoint protected with bearer authentication,
which is remarkably similar to the Razor Pages equivalent in figure 24.2.

Figure 25.12 Authorizing a request to a minimal API endpoint. The routing middleware selects
an endpoint that is protected by an authorization requirement. The authentication middleware
decodes and verifies the bearer token, creating a ClaimsPrincipal, which the authorization
middleware uses along with the endpoint metadata to determine whether the request is
authorized.

You’ve already seen that you can apply a general authorization requirement
by calling RequireAuthorization() on an endpoint or a route group. This is
directly equivalent to adding the [Authorize] attribute to a Razor Page or
MVC controller action. In fact, you can use the same [Authorize] attribute
on an endpoint if you wish, so the following two endpoint definitions are
equivalent:

app.MapGet("/", () => "Hello world!").RequireAuthorization();

app.MapGet("/", [Authorize] () => "Hello world!");

If you want to require a specific policy (the "CanCreate" policy, for
example), you can pass the policy names to the RequireAuthorization()
method the same way you would for the [Authorize] attribute:

app.MapGet("/", () => "Hello world!").RequireAuthorization("CanCreate");

app.MapGet("/", [Authorize("CanCreate")] () => "Hello world!");

Similarly, you can exclude endpoints from authentication requirements using
the AllowAnonymous() function or [AllowAnonymous] attribute:

app.MapGet("/", () => "Hello world!").AllowAnonymous();

app.MapGet("/", [AllowAnonymous] () => "Hello world!");

This is a good start, but as you saw in chapter 24, you often need to perform
resource-based authorization. For example, in the context of the recipe API,
users should be allowed to edit or delete only recipes that they created; they
can’t edit someone else’s recipe. That means you need to know details about
the resource (the recipe) before determining whether a request is authorized.

Resource-based authorization is essentially the same for minimal API
endpoints as for Razor Pages or MVC controllers. You must follow several
steps, most of which we covered in chapter 24:

1. Create an AuthorizationHandler<TRequirement, TResource>, and
register it in the DI container, as shown in chapter 24.

2. Inject the IAuthorizationService into your endpoint handler.
3. Call IAuthorizationService.AuthorizeAsync(user, resource,

policy), passing in the ClaimsPrincipal for the request, the resource
to authorize access to, and the policy to apply.

The first step is identical to the process shown in chapter 24, so you can reuse
the same authorization handlers whether you’re using Razor Pages, minimal
APIs, or both! You can access the IAuthorizationService from a minimal
API endpoint using standard dependency injection (DI), which you learned
about in chapters 8 and 9.

Listing 25.3 shows an example minimal API endpoint that uses resource-

based authorization to protect the “delete” action for a recipe. The
IAuthorizationService and HttpContext.User property are injected into
the handler method along with the RecipeService. The endpoint then
retrieves the recipe and calls AuthorizeAsync() to determine whether to
continue with the delete or return a 403 Forbidden response.

Listing 25.3 Using resource authorization to protect a minimal API endpoint

app.MapDelete("recipe/{id}", async (

 int id, RecipeService service,

 IAuthorizationService authService, #A

 ClaimsPrincipal user) => #B

{

 var recipe = await service.GetRecipe(id); #C

 var result = await authService.AuthorizeAsync(#D

 user, recipe, "CanManageRecipe"); #D

 if (!result.Succeeded) #E

 { #E

 return Results.Forbid(); #E

 } #E

 await service.DeleteRecipe(id); #F

 return Results.NoContent(); #F

});

As is common when you start adding functionality, the logic at the heart of
the endpoint has become a bit muddled as the endpoint has grown. There are
several possible approaches you could take now:

Do nothing. The logic isn’t that confusing, and this is only one endpoint.
This may be a good approach initially but can become problematic if the
logic is duplicated across multiple endpoints.
Pull the authorization out into a filter. As you saw in chapters 5 and 7,
endpoint filters can be useful for extracting common cross-cutting
concerns, such as validation and authorization. You may find that
endpoint filters help reduce the duplication in your endpoint handlers,
though this often comes at the expense of additional complexity in the
filter itself, as well as a layer of indirection in your handlers. You can
see this approach in the source code accompanying this chapter.
Push the authorization responsibilities down into the domain. Instead of

performing the resource-based authorization in your endpoint handlers,
you could run the checks inside the domain instead, in the
RecipeService in this case. This has advantages, in that it often reduces
duplication, keeps your endpoints simpler, and ensures that
authorization checks are always applied regardless of how you call the
domain methods.
The downside to this approach is that it may cause your
domain/application model to depend directly on ASP.NET Core-specific
constructs such as IAuthorizationService. You can work around this
by creating a wrapper façade around the IAuthorizationService, but
this may also add some complexity. Even if you take this approach, you
typically want to apply declarative authorization policies to your
endpoints as well to ensure that the endpoint executes only for users
who could possibly be authorized.

There’s no single best answer on which approach to take; it will vary
depending on what works best for your application. Authentication and
authorization are inevitably tricky subjects, so it’s important to consider them
early and design your application with security in mind.

Scope-based authorization policies

In section 15.2 I described the role of scopes in the authentication process.
When you obtain a bearer token from an identity provider—whether you’re
using OpenID Connect or OAuth 2.0—you define the scopes that you wish to
retrieve. The user can then choose to grant or deny some or all of those
requested scopes. Additionally, the identity provider might allow certain
client applications access only to specific scopes. The final access token you
receive from the identity provider, which is sent to the API, may have some
or none of the requested scopes.

It’s up to the API itself to decide what each scope means and how it should
be used to enforce authorization policies. Scopes have no inherent
functionality on their own, much like claims, but you can build functionality
on top. For example, you can create authorization polices that require a token
has the scope "recipe.edit" using

builder.Services.AddAuthorizationBuilder()

.AddPolicy("RecipeEditScope", policy =>

policy.RequireClaim("scope", " recipe.edit "));

This policy could then be applied to any endpoints that edit a recipe.

Another common pattern is to require a specific scope for you to be
authorized to make any requests to a given ASP.NET Core app, such as a
"receipeApi" scope. This approach can often replace audience validation in
bearer token authorization and may be more flexible, as it doesn’t require
your identity provider to know the domain at which your API app will be
hosted.

Alternatively, you can use scopes to partition your APIs into groups that can
only be accessed by certain types of clients. For example, you might have one
set of APIs that can be accessed only by internal machine-to-machine clients,
another set that can be accessed only by admin users, and another set that can
be accessed only by nonadmin users.

Duende has many practical examples of approaches to authorization and
authentication using OpenID Connect at http://mng.bz/o1Jp. The examples
are geared to IdentityServer users but show many best practices and patterns
you can use with identity provider services as well.

That brings us to the end of this chapter on authentication and authorization.
We’re not completely done with security, though; in chapter 27 we look at
potential security threats and how to mitigate them. But first, in chapter 26
you’ll learn about the logging abstractions in ASP.NET Core and how you
can use them to keep tabs on exactly what your app’s up to.

25.7 Summary

In large systems with multiple applications or APIs, you can use an
identity provider to centralize authentication and user management. This
often reduces the authentication responsibilities of apps, reducing
duplication and making it easier to add new user management features.
You should strongly consider using a third-party identity provider
service instead of building your own. User management is rarely core to
your business, and by delegating responsibility to a third-party you can

leave protecting your most vulnerable assets to the experts.
If you do need to build your own identity provider, you can use the
IdentityServer or OpenIddict library. These libraries implement the
OpenID Connect protocol, adding token generation to a standard
ASP.NET Core application. You must build the user management and
UI components yourself.
OAuth 2.0 is an authorization protocol that allows a user to delegate
authorization for accessing a resource to another application. This
standard allows applications to interoperate without compromising on
security.
OAuth 2.0 has multiple grant types representing common authorization
flows. The authorization code flow with PKCE is the most common
interactive grant type when a user initiates an interaction. For machine-
only workflows, such as an API calling another API, you can use the
client credentials grant type.
OpenID Connect is built on top of OAuth 2.0. It adds conventions,
discoverability, and authentication to OAuth 2.0, making it easier to
interact with third-party providers and retrieve identity information
about a user.
JWTs are the most common bearer token format. They consist of a
header, a payload, and a signature, and are base64-encoded. When
receiving a JWT you must always verify the signature to ensure that it
hasn’t been tampered with.
JWTs are not encrypted, so anyone can read them by default. JWE is a
standard that wraps the JWT and encrypts it, protecting the contents.
Many identity providers support generating JWEs, and ASP.NET Core
supports decoding JWEs automatically.
Bearer token authentication in ASP.NET Core is similar to cookie
authentication with traditional web apps. The authentication middleware
deserializes the token and validates it. If the token is valid, the
middleware creates a ClaimsPrincipal and sets HttpContext.User.
Configure JWT bearer authentication by adding the
Microsoft.AspNetCore.Authentication.JwtBearer NuGet Package and
calling AddAuthentication().AddJwtBearer() to add the required
services to your app.
To generate a JWT for local testing, run dotnet user-jwts create.
This configures your API to support JWTs created by the tool and prints

a token to the terminal, which you can use for local testing of your API.
Add the token to requests in the Authorization header, using the format
"Bearer <token>".
Pass additional options to the dotnet user-jwts create command to
customize the generated JWT. Add extra claims to the generated JWT
using the --claim option, change the sub claim name using --name, or
add scope claims to the JWT using --scope.
To enable authorization in Swagger UI, you should add a security
scheme to your OpenAPI document. Create an OpenApiSecurityScheme
object, and register it with the OpenAPI document by calling
AddSecurityDefinition(). Apply it to all the APIs in your app by
calling AddSecurityRequirement(), passing in the scheme object.
To add authorization to minimal API endpoints, call
RequireAuthorization() or add the [Authorize] attribute to your
endpoint handler. This optionally takes the name of an authorization
policy to apply, n the same way as you would apply policies to Razor
Pages and MVC controllers. You can call RequireAuthorization() on
route groups to apply authorization to multiple APIs at the same time.
Override an authorization requirement on an endpoint by calling
AllowAnonymous() or by adding the [AllowAnonymous] attribute to an
endpoint handler. This removes any authentication requirements from
the endpoint, so users can call the endpoint without a bearer token in the
request.

26 Monitoring and troubleshooting
errors with logging
This chapter covers

Understanding the components of a log message
Writing logs to multiple output locations
Controlling log verbosity in different environments using filtering
Using structured logging to make logs searchable

Logging is one of those topics that seems unnecessary, right up until you
desperately need it! There’s nothing more frustrating than finding a problem
that you can reproduce only in production and then discovering there are no
logs to help you debug it.

Logging is the process of recording events or activities in an app, and it often
involves writing a record to a console, a file, the Windows Event Log, or
some other system. You can record anything in a log message, though there
are generally two different types of messages:

Informational messages—A standard event occurred: a user logged in, a
product was placed in a shopping cart, or a new post was created on a
blogging app.
Warnings and errors—An error or unexpected condition occurred: a
user had a negative total in the shopping cart, or an exception occurred.

Historically, a common problem with logging in larger applications was that
each library and framework would generate logs in a slightly different format,
if at all. When an error occurred in your app and you were trying to diagnose
it, this inconsistency made it harder to connect the dots in your app to get the
full picture and understand the problem.

Luckily, ASP.NET Core includes a new generic logging interface that you
can plug into. It’s used throughout the ASP.NET Core framework code itself,

as well as by third-party libraries, and you can easily use it to create logs in
your own code. With the ASP.NET Core logging framework, you can control
the verbosity of logs coming from each part of your code, including the
framework and libraries, and you can write the log output to any destination
that plugs into the framework.

In this chapter I cover the .NET logging framework ASP.NET Core uses in
detail, and I explain how you can use it to record events and diagnose errors
in your own apps. In section 26.1 I’ll describe the architecture of the logging
framework. You’ll learn how dependency injection (DI) makes it easy for
both libraries and apps to create log messages, as well as to write those logs
to multiple destinations.

In section 26.2 you’ll learn how to write your own log messages in your apps
with the ILogger interface. We’ll break down the anatomy of a typical log
record and look at its properties, such as the log level, category, and message.

Writing logs is useful only if you can read them, so in section 26.3 you’ll
learn how to add logging providers to your application. Logging providers
control where your app writes your log messages, such as to the console, to a
file, or even to an external service.

Logging is an important part of any application, but determining how much
logging is enough can be a tricky question. On one hand, you want to provide
sufficient information to be able to diagnose any problems. On the other
hand, you don’t want to fill your logs with data that makes it hard to find the
important information when you need it. Even worse, what is sufficient in
development might be far too much once you’re running in production.

In section 26.4 I’ll explain how you can filter log messages from various
sections of your app, such as the ASP.NET Core infrastructure libraries, so
that your logging providers write only the important messages. This lets you
keep that balance between extensive logging in development and writing only
important logs in production.

In the final section of this chapter I’ll touch on some of the benefits of
structured logging, an approach to logging that you can use with some
providers for the ASP.NET Core logging framework. Structured logging

involves attaching data to log messages as key-value pairs to make it easier to
search and query logs. You might attach a unique customer ID to every log
message generated by your app, for example. Finding all the log messages
associated with a user is much simpler with this approach, compared with
recording the customer ID in an inconsistent manner as part of the log
message.

We’ll start this chapter by digging into what logging involves and why your
future self will thank you for using logging effectively in your application.
Then we’ll look at the pieces of the ASP.NET Core logging framework you’ll
use directly in your apps and how they fit together.

26.1 Using logging effectively in a production app

Imagine you’ve just deployed a new app to production when a customer calls
saying that they’re getting an error message using your app. How would you
identify what caused the problem? You could ask the customer what steps
they were taking and potentially try to re-create the error yourself, but if that
doesn’t work, you’re left trawling through the code, trying to spot errors with
nothing else to go on.

Logging can provide the extra context you need to quickly diagnose a
problem. Arguably, the most important logs capture the details about the
error itself, but the events that led to the error can be equally useful in
diagnosing the cause of an error.

There are many reasons for adding logging to an application, but typically,
the reasons fall into one of three categories:

Logging for auditing or analytics reasons, to trace when events have
occurred
Logging errors
Logging nonerror events to provide a breadcrumb trail of events when
an error does occur

The first of these reasons is simple. You may be required to keep a record of
every time a user logs in, for example, or you may want to keep track of how

many times a particular API method is called. Logging is an easy way to
record the behavior of your app by writing a message to the log every time an
interesting event occurs.

I find the second reason for logging to be the most common. When an app is
working perfectly, logs often go completely untouched. It’s when there’s a
problem and a customer comes calling that logs become invaluable. A good
set of logs can help you understand the conditions in your app that caused an
error, including the context of the error itself, but also the context in previous
requests.

Tip

Even with extensive logging in place, you may not realize you have a
problem in your app unless you look through your logs regularly. For any
medium-size to large app, this becomes impractical, so monitoring services
such as Sentry (https://sentry.io) can be invaluable for notifying you of
problems quickly.

If this sounds like a lot of work, you’re in luck. ASP.NET Core does a ton of
the “breadcrumb logging” for you so that you can focus on creating high-
quality log messages that provide the most value when diagnosing problems.

26.1.1 Highlighting problems using custom log messages

ASP.NET Core uses logging throughout its libraries. Depending on how you
configure your app, you’ll have access to the details of each request and EF
Core query, even without adding logging messages to your own code. In
figure 26.1 you can see the log messages created when you view a single
recipe in the recipe application.

Figure 26.1 The ASP.NET Core Framework libraries use logging throughout. A single request
generates multiple log messages that describe the flow of the request through your application.

This gives you a lot of useful information. You can see which URL was
requested, the Razor Page and page handler that were invoked (for a Razor
Pages app), the Entity Framework Core (EF Core)database command, the
action result executed, and the response. This information can be invaluable
when you’re trying to isolate a problem, whether it’s a bug in a production
app or a feature in development when you’re working locally.

This infrastructure logging can be useful, but log messages that you create
yourself can have even greater value. For example, you may be able to spot
the cause of the error from the log messages in figure 26.1; we’re attempting
to view a recipe with an unknown RecipeId of 5, but it’s far from obvious. If
you explicitly add a log message to your app when this happens, as in figure
26.2, the problem is much more apparent.

Figure 26.2 You can write your own logs. These are often more useful for identifying problems
and interesting events in your apps.

This custom log message easily stands out and clearly states both the problem
(the recipe with the requested ID doesn’t exist) and the parameters/variables
that led to it (the ID value of 5). Adding similar log messages to your own
applications will make it easier for you to diagnose problems, track important
events, and generally know what your app is doing.

I hope you’re now motivated to add logging to your apps, so we’ll dig into
the details of what that involves. In section 26.1.2 you’ll see how to create a
log message and how to define where the log messages are written. We’ll
look in detail at these two aspects in sections 26.2 and 26.3; first, though,
we’ll look at where they fit in terms of the ASP.NET Core logging
framework as a whole.

26.1.2 The ASP.NET Core logging abstractions

The ASP.NET Core logging framework consists of several abstractions
(interfaces, implementations, and helper classes), the most important of
which are shown in figure 26.3:

ILogger—This is the interface you’ll interact with in your code. It has a
Log() method, which is used to write a log message.
ILoggerProvider—This is used to create a custom instance of an
ILogger, depending on the provider. A console ILoggerProvider would
create an ILogger that writes to the console, whereas a file
ILoggerProvider would create an ILogger that writes to a file.

ILoggerFactory—This is the glue between the ILoggerProvider
instances and the ILogger you use in your code. You register
ILoggerProvider instances with an ILoggerFactory and call
CreateLogger() on the ILoggerFactory when you need an ILogger.
The factory creates an ILogger that wraps each of the providers, so
when you call the Log() method, the log is written to every provider.

Figure 26.3 The components of the ASP.NET Core logging framework. You register logging
providers with an ILoggerFactory, which creates implementations of ILogger. You write logs to
the ILogger, which delegates to the ILogger implementations that write logs to the console or a
file. You can send logs to multiple locations with this design without having to configure the
locations when you create a log message.

The design in figure 26.3 makes it easy to add or change where your
application writes the log messages without having to change your
application code. The following listing shows all the code required to add an
ILoggerProvider that writes logs to the console.

Listing 26.1 Adding a console log provider in Program.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddConsole()

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

Note

The console logger is added by default by WebApplicationBuilder, as you’ll
see in section 26.3.

Other than this configuration on WebApplicationBuilder, you don’t interact
with ILoggerProvider instances directly. Instead, you write logs using an
instance of ILogger, as you’ll see in the next section.

26.2 Adding log messages to your application

In this section we’ll look in detail at how to create log messages in your own
application. You’ll learn how to create an instance of ILogger, and how to
use it to add logging to an existing application. Finally, we’ll look at the
properties that make up a logging record, what they mean, and what you can
use them for.

Logging, like almost everything in ASP.NET Core, is available through DI.
To add logging to your own services, you need only inject an instance of
ILogger<T>, where T is the type of your service.

Note

When you inject ILogger<T>, the DI container indirectly calls
ILoggerFactory.CreateLogger<T>() to create the wrapped ILogger of
figure 26.3. In section 26.2.2 you’ll see how to work directly with
ILoggerFactory if you prefer. The ILogger<T> interface also implements the
nongeneric ILogger interface but includes additional convenience methods.

You can use the injected ILogger instance to create log messages, which it
writes to each configured ILoggerProvider. The following listing shows
how to inject an ILogger<> instance into the PageModel of the Index.cshtml
Razor Page for the recipe application from previous chapters and how to
write a log message indicating how many recipes were found.

Listing 26.2 Injecting ILogger into a class and writing a log message

public class IndexModel : PageModel

{

 private readonly RecipeService _service;

 private readonly ILogger<IndexModel> _log; #A

 public ICollection<RecipeSummaryViewModel> Recipes { get; set; }

 public IndexModel(

 RecipeService service,

 ILogger<IndexModel> log) #A

 {

 _service = service;

 _log = log; #A

 }

 public void OnGet()

 {

 Recipes = _service.GetRecipes();

 _log.LogInformation(#B

 "Loaded {RecipeCount} recipes", Recipes.Count); #B

 }

}

In this example you’re using one of the many extension methods on ILogger
to create the log message, LogInformation(). There are many extension
methods on ILogger that let you easily specify a LogLevel for the message.

Definition

The log level of a log is how important it is and is defined by the LogLevel
enum. Every log message has a log level.

You can also see that the message you pass to the LogInformation method
has a placeholder indicated by braces, {RecipeCount}, and you pass an

additional parameter, Recipes.Count, to the logger. The logger replaces the
placeholder with the parameter at runtime. Placeholders are matched with
parameters by position, so if you include two placeholders, for example, the
second placeholder is matched with the second parameter.

Tip

You could have used normal string interpolation to create the log message, as
in $"Loaded {Recipes.Count} recipes". But I recommend always using
placeholders, as they provide additional information for the logger that can be
used for structured logging, as you’ll see in section 26.5.

When the OnGet page handler in the IndexModel executes, ILogger writes a
message to any configured logging providers. The exact format of the log
message varies from provider to provider, but figure 26.4 shows how the
console provider displays the log message from listing 26.2.

Figure 26.4 An example log message as it’s written to the default console provider. The log-level
category provides information about how important the message is and where it was generated.
The EventId provides a way to identify similar log messages.

The exact presentation of the message will vary depending on where the log
is written, but each log record includes up to six common elements:

Log level—The log level of the log is how important it is and is defined
by the LogLevel enum.
Event category—The category may be any string value, but it’s typically
set to the name of the class creating the log. For ILogger<T>, the full
name of the type T is the category.
Message—This is the content of the log message. It can be a static
string, or it can contain placeholders for variables, as shown in listing
26.2. Placeholders are indicated by braces, {} and are replaced by the

provided parameter values.
Parameters—If the message contains placeholders, they’re associated
with the provided parameters. For the example in listing 26.2, the value
of Recipes.Count is assigned to the placeholder called RecipeCount.
Some loggers can extract these values and expose them in your logs, as
you’ll see in section 26.5.
Exception—If an exception occurs, you can pass the exception object to
the logging function along with the message and other parameters. The
logger records the exception in addition to the message itself.
EventId—This is an optional integer identifier for the error, which can
be used to quickly find all similar logs in a series of log messages. You
might use an EventId of 1000 when a user attempts to load a non-
existent recipe and an EventId of 1001 when a user attempts to access a
recipe they don’t have permission to access. If you don’t provide an
EventId, the value 0 is used.

High-performance logging with source generators

Source generators are a compiler feature introduced in C# 9. Using this
feature, you can automatically generate boilerplate code when your project
compiles. .NET 7 includes several built-in source generators, such as the
Regex generator I described in chapter 14. There’s also a source generator
that works with ILogger, which can help you avoid pitfalls such as
accidentally using interpolated strings, and makes more advanced and
performant logging patterns easy to use.

To use the logging source generator in the OnGet handler from listing 26.2,
define a partial method in the IndexModel class, decorate it with a
[LoggerMessage] attribute, and invoke the method inside the OnGet handler
method:

[LoggerMessage(10, LogLevel.Information, "Loaded {RecipeCount} recipes")]

partial void LogLoadedRecipes(int recipeCount);

public void OnGet()

{

Recipes = _service.GetRecipes();

LogLoadedRecipes(Recipes.Count);

}

The [LoggerMessage] attribute defines the event ID, log level, and message
the log message uses, and the parameters of the partial method it decorates
are substituted into the message at runtime. This pattern also comes with
several analyzers to make sure you use it correctly in your code while
optimizing the generated code behind the scenes to prevent allocations where
possible.

The logging source generator is optional, so it’s up to you whether to use it.
You can read more about the source generator, the extra configuration
options, and how it works on my blog at http://mng.bz/vn14 and in the
documentation at http://mng.bz/4D1j.

Not every log message will have all the possible elements. You won’t always
have an Exception or parameters, for example, and it’s common to omit the
EventId. There are various overloads to the logging methods that take these
elements as additional method parameters. Besides these optional elements,
each message has, at very least, a level, category, and message. These are the
key features of the log, so we’ll look at each in turn.

26.2.1 Log level: How important is the log message?

Whenever you create a log using ILogger, you must specify the log level.
This indicates how serious or important the log message is, and it’s an
important factor when it comes to filtering which logs are written by a
provider, as well as finding the important log messages after the fact.

You might create an Information level log when a user starts to edit a recipe.
This is useful for tracing the application’s flow and behavior, but it’s not
important, because everything is normal. But if an exception is thrown when
the user attempts to save the recipe, you might create a Warning or Error
level log.

The log level is typically set by using one of several extension methods on
the ILogger interface, as shown in listing 26.3. This example creates an
Information level log when the View method executes and a Warning level
error if the requested recipe isn’t found.

Listing 26.3 Specifying the log level using extension methods on ILogger

private readonly ILogger _log; #A

public async IActionResult OnGet(int id)

{

 _log.LogInformation(#B

 "Loading recipe with id {RecipeId}", id); #B

 Recipe = _service.GetRecipeDetail(id);

 if (Recipe is null)

 {

 _log.LogWarning(#C

 "Could not find recipe with id {RecipeId}", id); #C

 return NotFound();

 }

 return Page();

}

The LogInformation and LogWarning extension methods create log messages
with a log level of Information and Warning, respectively. There are six log
levels to choose among, ordered here from most to least serious:

Critical—For disastrous failures that may leave the app unable to
function correctly, such as out-of-memory exceptions or if the hard drive
is out of disk space or the server is on fire.
Error—For errors and exceptions that you can’t handle gracefully, such
as exceptions thrown when saving an edited entity in EF Core. The
operation failed, but the app can continue to function for other requests
and users.
Warning—For when an unexpected or error condition arises that you can
work around. You might log a Warning for handled exceptions or when
an entity isn’t found, as in listing 26.3.
Information—For tracking normal application flow, such as logging
when a user signs in or when they view a specific page in your app.
Typically these log messages provide context when you need to
understand the steps leading up to an error message.
Debug—For tracking detailed information that’s particularly useful
during development. Generally, this level has only short-term
usefulness.
Trace—For tracking extremely detailed information, which may contain
sensitive information like passwords or keys. It’s rarely used and not
used at all by the framework libraries.

Think of these log levels in terms of a pyramid, as shown in figure 26.5. As
you progress down the log levels, the importance of the messages goes down,
but the frequency goes up. Typically, you’ll find many Debug level log
messages in your application, but (I hope) few Critical- or Error-level
messages.

Figure 26.5 The pyramid of log levels. Logs with a level near the base of the pyramid are used
more frequently but are less important. Logs with a level near the top should be rare but are
important.

This pyramid shape will become more meaningful when we look at filtering
in section 26.4. When an app is in production, you typically don’t want to
record all the Debug-level messages generated by your application. The sheer
volume of messages would be overwhelming to sort through and could end
up filling your disk with messages that say “Everything’s OK!” Additionally,
Trace messages shouldn’t be enabled in production, as they may leak
sensitive data. By filtering out the lower log levels, you can ensure that you
generate a sane number of logs in production but have access to all the log
levels in development.

In general, higher-level logs are more important than lower-level logs, so a
Warning log is more important than an Information log, but there’s another
aspect to consider. Where the log came from, or who created the log, is a key
piece of information that’s recorded with each log message and is called the
category.

26.2.2 Log category: Which component created the log

As well as a log level, every log message also has a category. You set the log
level independently for every log message, but the category is set when you
create the ILogger instance. Like log levels, the category is particularly
useful for filtering, as you’ll see in section 26.4. It’s written to every log
message, as shown in figure 26.6.

Figure 26.6 Every log message has an associated category, which is typically the class name of the
component creating the log. The default console logging provider outputs the log category for
every log.

The category is a string, so you can set it to anything, but the convention is
to set it to the fully qualified name of the type that’s using ILogger. In
section 26.2 I achieved this by injecting ILogger<T> into RecipeController;
the generic parameter T is used to set the category of the ILogger.

Alternatively, you can inject ILoggerFactory into your methods and pass an
explicit category when creating an ILogger instance, as shown in the
following listing. This lets you change the category to an arbitrary string.

Listing 26.4 Injecting ILoggerFactory to use a custom category

public class RecipeService

{

 private readonly ILogger _log;

 public RecipeService(ILoggerFactory factory) #A

 {

 _log = factory.CreateLogger("RecipeApp.RecipeService"); #B

 }

}

There is also an overload of CreateLogger() with a generic parameter that
uses the provided class to set the category. If the RecipeService in listing
26.4 were in the RecipeApp namespace, the CreateLogger call could be
written equivalently as

_log = factory.CreateLogger<RecipeService>();

Similarly, the final ILogger instance created by this call would be the same
as if you’d directly injected ILogger<RecipeService> instead of
ILoggerFactory.

Tip

Unless you’re using heavily customized categories for some reason, favor
injecting ILogger<T> into your methods over ILoggerFactory.

The final compulsory part of every log entry is fairly obvious: the log
message. At the simplest level, this can be any string, but it’s worth thinking
carefully about what information would be useful to record—anything that
will help you diagnose problems later on.

26.2.3 Formatting messages and capturing parameter values

Whenever you create a log entry, you must provide a message. This can be
any string you like, but as you saw in listing 26.2, you can also include
placeholders indicated by braces, {}, in the message string:

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

Including a placeholder and a parameter value in your log message
effectively creates a key-value pair, which some logging providers can store
as additional information associated with the log. The previous log message
would assign the value of Recipes.Count to a key, RecipeCount, and the log
message itself is generated by replacing the placeholder with the parameter
value, to give the following (where Recipes.Count=3):

"Loaded 3 recipes"

You can include multiple placeholders in a log message, and they’re
associated with the additional parameters passed to the log method. The order
of the placeholders in the format string must match the order of the
parameters you provide.

Warning

 You must pass at least as many parameters to the log method as there are
placeholders in the message. If you don’t pass enough parameters, you’ll get
an exception at runtime.

For example, the log message

_log.LogInformation("User {UserId} loaded recipe {RecipeId}", 123, 456)

would create the parameters UserId=123 and RecipeId=456. Structured
logging providers could store these values, in addition to the formatted log
message "User 123 loaded recipe 456". This makes it easier to search the
logs for a particular UserId or RecipeId.

Definition

Structured or semantic logging attaches additional structure to log messages
to make them more easily searchable and filterable. Rather than storing only
text, it stores additional contextual information, typically as key-value pairs.
JavaScript Object Notation (JSON) is a common format used for structured
log messages.

Not all logging providers use semantic logging. The default console logging

provider format doesn’t, for example; the message is formatted to replace the
placeholders, but there’s no way of searching the console by key-value.

Tip

You can enable JSON output for the console provider by calling
WebApplicationBuilder.Logging.AddJsonConsole(). You can further
customize the format of the provider, as described in the documentation at
http://mng.bz/QP8v.

Even if you’re not using structured logging initially, I recommend writing
your log messages as though you are, with explicit placeholders and
parameters. That way, if you decide to add a structured logging provider
later, you’ll immediately see the benefits. Additionally, I find that thinking
about the parameters that you can log in this way prompts you to record more
parameter values instead of only a log message. There’s nothing more
frustrating than seeing a message like "Cannot insert record due to
duplicate key" but not having the key value logged!

Tip

Generally speaking, I’m a fan of C#’s interpolated strings, but don’t use them
for your log messages when a placeholder and parameter would also make
sense. Using placeholders instead of interpolated strings gives you the same
output message but also creates key-value pairs that can be searched later.

We’ve looked a lot at how you can create log messages in your app, but we
haven’t focused on where those logs are written. In the next section we’ll
look at the built-in ASP.NET Core logging providers, how they’re
configured, and how you can add a third-party provider.

26.3 Controlling where logs are written using
logging providers

In this section you’ll learn how to control where your log messages are
written by adding ILoggerProviders to your application. As an example,
you’ll see how to add a simple file logger provider that writes your log

messages to a file, in addition to the existing console logger provider.

Up to this point, we’ve been writing all our log messages to the console. If
you’ve run any ASP.NET Core sample apps locally, you’ll probably have
seen the log messages written to the console window.

Note

If you’re using Visual Studio and debugging by using the Internet
Information Services (IIS) Express option, you won’t see the console window
(though the log messages are written to the Debug Output window instead).

Writing log messages to the console is great when you’re debugging, but it’s
not much use for production. No one’s going to be monitoring a console
window on a server, and the logs wouldn’t be saved anywhere or be
searchable. Clearly, you’ll need to write your production logs somewhere
else.

As you saw in section 26.1, logging providers control the destination of your
log messages in ASP.NET Core. They take the messages you create using the
ILogger interface and write them to an output location, which varies
depending on the provider.

Note

This name always gets to me: the log provider effectively consumes the log
messages you create and outputs them to a destination. You can probably see
the origin of the name from figure 26.3, but I still find it somewhat
counterintuitive.

Microsoft has written several first-party log providers for ASP.NET Core that
are available out of the box in ASP.NET Core. These providers include

Console provider—Writes messages to the console, as you’ve already
seen
Debug provider—Writes messages to the debug window when you’re
debugging an app in Visual Studio or Visual Studio Code, for example
EventLog provider—Writes messages to the Windows Event Log and

outputs log messages only when running in Windows, as it requires
Windows-specific APIs
EventSource provider—Writes messages using Event Tracing for
Windows (ETW) or LTTng tracing on Linux

There are also many third-party logging provider implementations, such as an
Azure App Service provider, an elmah.io provider, and an Elasticsearch
provider. On top of that, there are integrations with other existing logging
frameworks like NLog and Serilog. It’s always worth looking to see whether
your favorite .NET logging library or service has a provider for ASP.NET
Core, as most do.

Tip

Serilog (https://serilog.net) is my go-to logging framework. It’s a mature
framework with a huge number of supported destinations for writing logs.
See Serilog’s ASP.NET Core integration repository for details on how to use
Serilog with ASP.NET Core apps: https://github.com/serilog/serilog-
aspnetcore.

You configure the logging providers for your app in Program.cs.
WebApplicationBuilder configures the console and debug providers for
your application automatically, but it’s likely that you’ll want to change or
add to these.

In this section I show how to add a simple third-party logging provider that
writes to a rolling file so our application writes logs to a new file each day.
We’ll continue to log using the console and debug providers as well, because
they’re more useful than the file provider when developing locally.

To add a third-party logging provider in ASP.NET Core, follow these steps:

1. Add the logging provider NuGet package to the solution. I’m going to
be using a provider called
NetEscapades.Extensions.Logging.RollingFile, which is available on
NuGet and GitHub. You can add it to your solution using the NuGet
Package Manager in Visual Studio or using the .NET command-line
interface (CLI) by running

dotnet add package NetEscapades.Extensions.Logging.RollingFile

from your application’s project folder.

Note

This package is a simple file logging provider, available at
http://mng.bz/XN5a. It’s based on the Azure App Service logging provider. If
you need a more robust package, consider using Serilog’s file providers
instead.

2. Add the logging provider to WebApplicationBuilder.Logging. You can
add the file provider by calling AddFile(), as shown in the next listing.
AddFile() is an extension method provided by the logging provider
package to simplify adding the provider to your app.

Listing 26.5 Adding a third-party logging provider to WebApplicationBuilder

WebApplicationBuilder builder = WebApplication.CreateBuilder(args); #A

builder.Logging.AddFile();

WebApplication app = builder.Build();

app.MapGet("/", () => "Hello world!");

app.Run();

Note

Adding a new provider doesn’t replace existing providers.
WebApplicationBuilder automatically adds the console and debug logging
providers in listing 26.5. To remove them, call
builder.Logging.ClearProviders() before adding the file provider.

With the file logging provider configured, you can run the application and
generate logs. Every time your application writes a log using an ILogger
instance, ILogger writes the message to all configured providers, as shown in
figure 26.7. The console messages are conveniently available, but you also
have a persistent record of the logs stored in a file.

Figure 26.7 Logging a message with ILogger writes the log using all the configured providers.
This lets you, for example, log a convenient message to the console while also persisting the logs to
a file.

Tip

By default, the rolling file provider writes logs to a subdirectory of your
application. You can specify additional options such as filenames and file
size limits using overloads of AddFile(). For production, I recommend using
a more established logging provider, such as Serilog.

The key takeaway from listing 26.5 is that the provider system makes it easy
to integrate existing logging frameworks and providers with the ASP.NET
Core logging abstractions. Whichever logging provider you choose to use in
your application, the principles are the same: add a new logging provider to
WebApplicationBuilder.Logging using extension methods like

AddConsole(), or AddFile() in this case.

Logging your application messages to a file can be useful in some scenarios,
and it’s certainly better than logging to a nonexistent console window in
production, but it may still not be the best option.

If you discovered a bug in production and needed to look at the logs quickly
to see what happened, for example, you’d need to log on to the remote server,
find the log files on disk, and trawl through them to find the problem. If you
have multiple web servers, you’d have a mammoth job to fetch all the logs
before you could even start to tackle the bug—assuming that you even have
remote access to the production servers! Not fun. Add to that the possibility
of file permission or drive space problems, and file logging seems less
attractive.

Instead, it’s often better to send your logs to a centralized location, separate
from your application. Exactly where this location may be is up to you; the
key is that each instance of your app sends its logs to the same location,
separate from the app itself.

If you’re running your app on Microsoft Azure, you get centralized logging
for free because you can collect logs using the Azure App Service provider.
Alternatively, you could send your logs to a third-party log aggregator
service such as elmah.io (https://elmah.io) or Seq (https://getseq.net). You
can find ASP.NET Core logging providers for each of these services on
NuGet, so adding them is the same process as adding the file provider you’ve
seen already.

Whichever providers you add, once you start running your apps in
production, you’ll quickly discover a new problem: the sheer number of log
messages your app generates! In the next section you’ll learn how to keep
this under control without affecting your local development.

26.4 Changing log verbosity with filtering

In this section you’ll see how to reduce the number of log messages written
to the logger providers. You’ll learn how to apply a base level filter, filter out

messages from specific namespaces, and use logging provider-specific filters.

If you’ve been playing around with the logging samples, you’ll probably
have noticed that you get a lot of log messages, even for a single request like
the one in figure 26.2: messages from the Kestrel server and messages from
EF Core, not to mention your own custom messages. When you’re debugging
locally, having access to all that detailed information is extremely useful, but
in production you’ll be so swamped by noise that picking out the important
messages will be difficult.

ASP.NET Core includes the ability to filter out log messages before they’re
written, based on a combination of three things:

The log level of the message
The category of the logger (who created the log)
The logger provider (where the log will be written)

You can create multiple rules using these properties, and for each log that’s
created, the most specific rule is applied to determine whether the log should
be written to the output. You could create the following three rules:

The default minimum log level is Information. If no other rules apply,
only logs with a log level of Information or above will be written to
providers.
For categories that start with Microsoft, the minimum log level is
Warning. Any logger created in a namespace that starts with Microsoft
will write only logs that have a log level of Warning or above. This
would filter out the noisy framework messages you saw in figure 26.6.
For the console provider, the minimum log level is Error. Logs written
to the console provider must have a minimum log level of Error. Logs
with a lower level won’t be written to the console, though they might be
written using other providers.

Typically, the goal with log filtering is to reduce the number of logs written
to certain providers or from certain namespaces (based on the log category).
Figure 26.8 shows a possible set of filtering rules that apply to the console
and file logging providers.

Figure 26.8 Applying filtering rules to a log message to determine whether a log should be
written. For each provider, the most specific rule is selected. If the log exceeds the rule’s required
minimum level, the provider writes the log; otherwise, it discards it.

In this example, the console logger explicitly restricts logs written in the
Microsoft namespace to Warning or above, so the console logger ignores the
log message shown. Conversely, the file logger doesn’t have a rule that
explicitly restricts the Microsoft namespace, so it uses the configured
minimum level of Information and writes the log to the output.

TIP

 Only a single rule is chosen when deciding whether a log message should
be written; rules aren’t combined. In figure 26.8, rule 1 is considered to be
more specific than rule 5, so the log is written to the file provider, even
though technically, both rules could apply.

You typically define your app’s set of logging rules using the layered
configuration approach discussed in chapter 10, because this lets you easily
have different rules when running in development and production.

Tip

As you saw in chapter 11, you can load configuration settings from multiple
sources, like JSON files and environment variables, and can load them
conditionally based on the IHostingEnvironment. A common practice is to
include logging settings for your production environment in appsettings.json
and overrides for your local development environment in
appsettings.Development.json.

WebApplicationBuilder automatically loads configuration rules from the
"Logging" section of the IConfiguration object. This happens
automatically, and you rarely need to customize it, but listing 26.6 shows
how you could also add configuration rules from the "LoggingRules" section
using AddConfiguration().

Note

WebApplicationBuilder always adds the configuration to load from the
"Logging" section; you can’t remove this. For this reason, it’s rarely worth
adding configuration yourself; instead, use the default "Logging"

configuration section where possible.

Listing 26.6 Loading logging configuration using AddConfiguration()

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddConfiguration(

 builder.Configuration.GetSection("LoggingRules"));

var app = builder.Build();

app.MapGet("/", () => "Hello world!");

app.Run();

Assuming that you don’t override the configuration section, your
appsettings.json will typically contain a "Logging" section, which defines the
configuration rules for your app. Listing 26.8 shows how this might look to
define all the rules shown in figure 26.8.

Listing 26.7 The log filtering configuration section of appsettings.json

{

 "Logging": {

 "LogLevel": { #A

 "Default": "Debug", #A

 "System": "Warning", #A

 "Microsoft": "Warning" #A

 },

 "File": { #B

 "LogLevel": { #B

 "Default": "Information" #B

 }

 },

 "Console": { #C

 "LogLevel": { #C

 "Default": "Debug", #C

 "Microsoft": "Warning" #C

 }

 }

 }

}

When creating your logging rules, the important thing to bear in mind is that
if you have any provider-specific rules, these will take precedence over the
category-based rules defined in the "LogLevel" section. Therefore, for the

configuration defined in listing 26.7, if your app uses only the file or console
logging providers, the rules in the "LogLevel" section will effectively never
apply.

If you find this confusing, don’t worry; so do I. Whenever I’m setting up
logging, I check the algorithm used to determine which rule applies for a
given provider and category, which is as follows:

1. Select all rules for the given provider. If no rules apply, select all rules
that don’t define a provider (the top "LogLevel" section from listing
26.7).

2. From the selected rules, select rules with the longest matching category
prefix. If no selected rules match the category prefix, select the
"Default" if present.

3. If multiple rules are selected, use the last one.
4. If no rules are selected, use the global minimum level,

"LogLevel:Default" (Debug in listing 26.7).

Each of these steps except the last narrows down the applicable rules for a
log message until you’re left with a single rule. You saw this in effect for a
"Microsoft" category log in figure 26.8. Figure 26.9 shows the process in
more detail.

Figure 26.9 Selecting a rule to apply from the available set for the console provider and an
Information level log. Each step reduces the number of rules that apply until you’re left with only
one.

Warning

 Log filtering rules aren’t merged; a single rule is selected. Including
provider-specific rules will override global category-specific rules, so I tend
to stick to category-specific rules where possible to make the overall set of
rules easier to understand.

With some effective filtering in place, your production logs should be much
more manageable, as shown in figure 26.10. Generally, I find it’s best to limit
the logs from the ASP.NET Core infrastructure and referenced libraries to
Warning or above while keeping logs that my app writes to Debug in
development and Information in production.

Figure 26.10 Using filtering to reduce the number of logs written. In this example, category filters
have been added to the Microsoft and System namespaces, so only logs of Warning and above are
recorded. That increases the proportion of logs that are directly relevant to your application.

This is close to the default configuration used in the ASP.NET Core
templates. You may find you need to add additional category-specific filters,
depending on which NuGet libraries you use and the categories they write to.
The best way to find out is generally to run your app and see whether you get
flooded with uninteresting log messages.

Tip

Most logging providers listen for configuration changes and update their
filters dynamically. That means you should be able to modify your
appsettings.json or appsettings.Development.json file and check the effect on
the log messages, iterating quickly without restarting your app.

Even with your log verbosity under control, if you stick to the default logging
providers like the file or console loggers, you’ll probably regret it in the long
run. These log providers work perfectly well, but when it comes to finding
specific error messages or analyzing your logs, you’ll have your work cut out
for you. In the next section you’ll see how structured logging can help you
tackle this problem.

26.5 Structured logging: Creating searchable, useful
logs

In this section you’ll learn how structured logging makes working with log
messages easier. You’ll learn to attach key-value pairs to log messages and

how to store and query for key values using the structured logging provider
Seq. Finally, you’ll learn how to use scopes to attach key-value pairs to all
log messages within a block.

Let’s imagine you’ve rolled out the recipe application we’ve been working on
to production. You’ve added logging to the app so that you can keep track of
any errors in your application, and you’re storing the logs in a file.

One day, a customer calls and says they can’t view their recipe. Sure enough,
when you look through the log messages, you a see a warning:

warn: RecipeApplication.Pages.Recipes.ViewModel [12]

 Could not find recipe with id 3245

This piques your interest. Why did this happen? Has it happened before for
this customer? Has it happened before for this recipe? Has it happened for
other recipes? Does it happen regularly?

How would you go about answering these questions? Given that the logs are
stored in a text file, you might start doing basic text searches in your editor of
choice, looking for the phrase "Could not find recipe with id". Depending
on your notepad-fu skills, you could probably get a fair way in answering
your questions, but it would likely be a laborious, error-prone, and painful
process.

The limiting factor is that the logs are stored as unstructured text, so text
processing is the only option available to you. A better approach is to store
the logs in a structured format so that you can easily query the logs, filter
them, and create analytics. Structured logs could be stored in any format, but
these days they’re typically represented as JSON. A structured version of the
same recipe warning log might look something like this:

{

 "eventLevel": "Warning",

 "category": "RecipeApplication.Pages.Recipes.ViewModel",

 "eventId": "12",

 "messageTemplate": "Could not find recipe with {recipeId}",

 "message": "Could not find recipe with id 3245",

 "recipeId": "3245"

}

This structured log message contains all the same details as the unstructured
version, but in a format that would easily let you search for specific log
entries. It makes it simple to filter logs by their EventLevel or to show only
those logs relating to a specific recipe ID.

Note

This is only an example of what a structured log could look like. The format
used for the logs will vary depending on the logging provider used and could
be anything. The main point is that properties of the log are available as key-
value pairs.

Adding structured logging to your app requires a logging provider that can
create and store structured logs. Elasticsearch is a popular general search and
analytics engine that can be used to store and query your logs. One big
advantage of using a central store such as Elasticsearch is the ability to
aggregate the logs from all your apps in one place and analyze them together.
You can add the Elasticsearch.Extensions.Logging provider to your app in
the same way as you added the file sink in section 26.3.

Note

Elasticsearch is a REST-based search engine that’s often used for aggregating
logs. You can find out more at https://www.elastic.co/elasticsearch.

Elasticsearch is a powerful production-scale engine for storing your logs, but
setting it up and running it in production isn’t easy. Even after you’ve got it
up and running, there’s a somewhat steep learning curve associated with the
query syntax. If you’re interested in something more user-friendly for your
structured logging needs, Seq (https://getseq.net) is a great option. In the next
section I’ll show you how adding Seq as a structured logging provider makes
analyzing your logs that much easier.

26.5.1 Adding a structured logging provider to your app

To demonstrate the advantages of structured logging, in this section you’ll
configure an app to write logs to Seq. You’ll see that the configuration is

essentially identical to unstructured providers, but the possibilities afforded
by structured logging make considering it a no-brainer.

Seq is installed on a server or your local machine and collects structured log
messages over HTTP, providing a web interface for you to view and analyze
your logs. It is currently available as a Windows app or a Linux Docker
container. You can install a free version for development, which allows you
to experiment with structured logging in general.

Tip

You can download Seq from https://getseq.net/Download.

From the point of view of your app, the process for adding the Seq provider
should be familiar:

1. Install the Seq logging provider using Visual Studio or the .NET CLI
with

dotnet add package Seq.Extensions.Logging

2. Add the Seq logging provider in Program.cs. To add the Seq provider
call AddSeq():

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Logging.AddSeq();

That’s all you need to add Seq to your app. This will send logs to the default
local URL when you have Seq installed in your local environment. The
AddSeq() extension method includes additional overloads to customize Seq
when you move to production, but this is all you need to start experimenting
locally.

If you haven’t already, install Seq on your development machine (or run the
Docker container) and navigate to the Seq app at http://localhost:5341. In a
different tab, open your app, and start browsing your app and generating logs.
Back in Seq, if you refresh the page, you’ll see a list of logs, something like
figure 26.11. Clicking a log expands it and shows you the structured data
recorded for the log.

Figure 26.11 The Seq UI. Logs are presented as a list. You can view the structured logging details
of individual logs, view analytics for logs in aggregate, and search by log properties.

ASP.NET Core supports structured logging by treating each captured
parameter from your message format string as a key-value pair. If you create
a log message using the following format string,

_log.LogInformation("Loaded {RecipeCount} recipes", Recipes.Count);

the Seq logging provider creates a RecipeCount parameter with a value of
Recipes.Count. These parameters are added as properties to each structured
log, as you can see in figure 26.11.

Structured logs are generally easier to read than your standard-issue console
output, but their real power comes when you need to answer a specific
question. Consider the problem from before, where you see this error:

Could not find recipe with id 3245

You want to get a feel for how widespread the problem is. The first step
would be to identify how many times this error has occurred and to see
whether it’s happened to any other recipes. Seq lets you filter your logs, but it
also lets you craft SQL queries to analyze your data, so finding the answer to
the question takes a matter of seconds, as shown in figure 26.12.

Figure 26.12 Querying logs in Seq. Structured logging makes log analysis like this example easy.

Note

You don’t need query languages like SQL for simple queries, but they make
digging into the data easier. Other structured logging providers may provide
query languages other than SQL, but the principle is the same as in this Seq
example.

A quick search shows that you’ve recorded the log message with
EventId.Id=12 (the EventId of the warning we’re interested in) 13 times,
and every time, the offending RecipeId was 3245. This suggests that there
may be something wrong with that recipe specifically, which points you in
the right direction to find the problem.

More often than not, figuring out errors in production involves logging
detective work like this to isolate where the problem occurred. Structured
logging makes this process significantly easier, so it’s well worth
considering, whether you choose Seq, Elasticsearch, or a different provider.

I’ve already described how you can add structured properties to your log
messages using variables and parameters from the message. But as you can
see in figure 26.11, there are far more properties visible than exist in the
message alone.

Scopes provide a way to add arbitrary data to your log messages. They’re
available in some unstructured logging providers, but they shine when used
with structured logging providers. In the final section of this chapter I’ll
demonstrate how you can use them to add data to your log messages.

26.5.2 Using scopes to add properties to your logs

You’ll often find in your apps that you have a group of operations that all use
the same data, which would be useful to attach to logs. For example, you
might have a series of database operations that all use the same transaction
ID, or you might be performing multiple operations with the same user ID or
recipe ID. Logging scopes provide a way of associating the same data to
every log message in such a group.

Definition

Logging scopes are used to group multiple operations by adding relevant data
to multiple log message.

Logging scopes in ASP.NET Core are created by calling
ILogger.BeginScope<T>(T state) and providing the state data to be
logged. You create scopes inside a using block; any log messages written
inside the scope block will have the associated data, whereas those outside
won’t.

Listing 26.8 Adding scope properties to log messages with BeginScope

_logger.LogInformation("No, I don't have scope"); #A

using(_logger.BeginScope("Scope value")) #B

using(_logger.BeginScope(new Dictionary<string, object> #C

 {{ "CustomValue1", 12345 } })) #C

{

 _logger.LogInformation("Yes, I have the scope!"); #D

}

_logger.LogInformation("No, I lost it again"); #A

The scope state can be any object at all: an int, a string, or a Dictionary,
for example. It’s up to each logging provider implementation to decide how
to handle the state you provide in the BeginScope call, but typically, it is
serialized using ToString().

Tip

The most common use for scopes I’ve found is to attach additional key-value
pairs to logs. To achieve this behavior in Seq, you need to pass
Dictionary<string, object> as the state object. Nicholas Blumhardt, the
creator of Serilog and Seq, has examples and the reasoning for this on his
blog in the “The semantics of ILogger.BeginScope()” article:
http://mng.bz/GxDD.

When the log messages inside the scope block are written, the scope state is
captured and written as part of the log, as shown in figure 26.13. The
Dictionary<> of key-value pairs is added directly to the log message
(CustomValue1), and the remaining state values are added to the Scope
property. You will likely find the dictionary approach the more useful of the

two, as the added properties are more easily filtered on, as you saw in figure
26.12.

Figure 26.13 Adding properties to logs using scopes. Any scope state that is added using the
dictionary approach is added as structured logging properties, but other state is added to the
Scope property. Adding properties makes it easier to associate related logs with one another.

That brings us to the end of this chapter on logging. Whether you use the
built-in logging providers or opt to use a third-party provider like Serilog or
NLog, ASP.NET Core makes it easy to get detailed logs not only for your
app code, but also for the libraries that make up your app’s infrastructure, like
Kestrel and EF Core. Whichever you choose, I encourage you to add more
logs than you think you’ll need; you’ll thank me when it comes time to track
down a problem.

In the next chapter we’re going to be looking at your ASP.NET Core
application from a different point of view. Instead of focusing on the code
and logic behind your app, we’re going to look at how you prepare an app for
production. You’ll see how to specify the URLs your application uses and
how to publish an app so that it can be hosted in IIS. Finally, you’ll learn
about the bundling and minification of client-side assets, why you should
care, and how to use BundlerMinifier in ASP.NET Core.

26.6 Summary

Logging is critical for quickly diagnosing errors in production apps. You
should always configure logging for your application so that logs are
written to a durable location such as a filesystem or other service, not
just to the console, where they will be lost if the window closes or the
server restarts.
You can add logging to your own services by injecting ILogger<T>,
where T is the name of the service. Alternatively, inject ILoggerFactory
and call CreateLogger().
The log level of a message indicates how important it is and ranges from
Trace to Critical. Typically, you’ll create many low-importance log
messages and a few high-importance log messages.
You specify the log level of a log by using the appropriate extension
method of ILogger to create your log. To write an Information level
log, use ILogger.LogInformation(message).
The log category indicates which component created the log. It is
typically set to the fully qualified name of the class creating the log, but
you can set it to any string if you wish. ILogger<T> will have a log
category of T.

You can format messages with placeholder values, similar to the
string.Format method, but with meaningful names for the parameters.
Calling logger.LogInfo("Loading Recipe with id {RecipeId}",
1234) would create a log reading "Loading Recipe with id 1234", but it
would also capture the value RecipeId=1234. This structured logging
makes analyzing log messages much easier.
ASP.NET Core includes many logging providers out of the box,
including the console, debug, EventLog, and EventSource providers.
Alternatively, you can add third-party logging providers.
You can configure multiple ILoggerProvider instances in ASP.NET
Core, which define where logs are output. WebApplicationBuilder adds
the console and debug providers, and you can add providers using the
Logging property.
You can control logging output verbosity using configuration.
WebApplicationBuilder uses the "Logging" configuration section to
control output verbosity. You typically filter out more logs in production
than when developing your application.
Only a single log filtering rule is selected for each logging provider
when determining whether to output a log message. The most specific
rule is selected based on the logging provider and the category of the log
message.
Structured logging involves recording logs so that they can be easily
queried and filtered, instead of the default unstructured format that’s
output to the console. This makes analyzing logs, searching for
problems, and identifying patterns easier.
You can add properties to a structured log by using scope blocks. A
scope block is created by calling ILogger.BeginScope<T>(state) in a
using block. The state can be any object and is added to all log
messages inside the scope block.

27 Publishing and deploying your
application
This chapter covers

Publishing an ASP.NET Core application
Hosting an ASP.NET Core application in IIS
Customizing the URLs for an ASP.NET Core app

We’ve covered a vast amount of ground so far in this book. We’ve gone over
the basic mechanics of building an ASP.NET Core application, such as
configuring dependency injection (DI), loading app settings, and building a
middleware pipeline. We’ve looked at building APIs using minimal APIs and
web API controllers. We’ve looked at the server-rendered UI side, using
Razor templates and layouts to build an HTML response. And we’ve looked
at higher-level abstractions, such as Entity Framework Core (EF Core) and
ASP.NET Core Identity, that let you interact with a database and add users to
your application. In this chapter we’re taking a slightly different route.
Instead of looking at ways to build bigger and better applications, we’ll focus
on what it means to deploy your application so that users can access it.

We’ll start by looking again at the ASP.NET Core hosting model in section
27.1 and examining why you might want to host your application behind a
reverse proxy instead of exposing your app directly to the internet. I show
you the difference between running an ASP.NET Core app in development
using dotnet run and publishing the app for use on a remote server. Finally, I
describe some of the options available when you’re deciding how and where
to deploy your app.

In section 27.2 I show you how to deploy your app to one such option: a
Windows server running Internet Information Services (IIS). This is a typical
deployment scenario for many developers who are familiar with the legacy
.NET Framework version of ASP.NET, so it acts as a useful case study, but
it’s certainly not the only possibility. I don’t go into all the technical details

of configuring the venerable IIS system; instead, I show you the bare
minimum required to get it up and running. If your focus is cross-platform
development, don’t worry, because I don’t dwell on IIS for too long.

In section 27.3 I provide an introduction to hosting on Linux. You’ll see how
it differs from hosting applications on Windows, learn the changes you need
to make to your apps, and find out about some gotchas to look out for. I
describe how reverse proxies on Linux differ from IIS and point you to some
resources you can use to configure your environments rather than give
exhaustive instructions in this book.

If you’re not hosting your application using IIS, you’ll likely need to set the
URL that your ASP.NET Core app is using when you deploy your
application. In section 27.4 I show two approaches: using the special
ASPNETCORE_URLS environment variable and using command-line arguments.
Although this task generally is not a problem during development, setting the
correct URLs for your app is critical when you need to deploy it.

This chapter covers a relatively wide array of topics, all related to deploying
your app. But before we get into the nitty-gritty, I’ll go over the hosting
model for ASP.NET Core so that we’re on the same page. This is
significantly different from the hosting model of the legacy version of
ASP.NET, so if you’re coming from that background, it’s best to try to forget
what you know!

27.1 Understanding the ASP.NET Core hosting
model

If you think back to part 1 of this book, you may remember that we discussed
the hosting model of ASP.NET Core. ASP.NET Core applications are,
essentially, console applications. They have a static void Main function that
is the entry point for the application, as a standard .NET console app would.

Note

The entry point for programs using top-level statements is automatically
generated by the compiler. It’s not called Main (it typically has an “invalid”

name, such as <Main>$), but otherwise it has the same signature as the classic
static void Main function you would write by hand.

What makes a .NET app an ASP.NET Core app is that it runs a web server,
typically Kestrel, inside the console app process. Kestrel provides the HTTP
functionality to receive requests and return responses to clients. Kestrel
passes any requests it receives to the body of your application and generates a
response, as shown in figure 27.1. This hosting model decouples the server
and reverse proxy from the application itself so that the same application can
run unchanged in multiple environments.

Figure 27.1 The hosting model for ASP.NET Core gives flexibility. The same application can run
exposed directly to the network, behind various reverse proxies without modification, and even
inside the IIS process.

In this book we’ve focused on the “application” part of figure 27.1—the
ASP.NET Core application itself—but the reality is that sometimes you’ll
want to place your ASP.NET Core apps behind a reverse proxy, such as IIS
in Windows or NGINX or Apache in Linux. The reverse proxy is the
program that listens for HTTP requests from the internet and then makes
requests to your app as though the request came from the internet directly.

Definition

 A reverse proxy is software that’s responsible for receiving requests and
forwarding them to the appropriate web server. The reverse proxy is exposed
directly to the internet, whereas the underlying web server is exposed only to
the proxy.

If you’re running your application using a Platform as a Service (PaaS)
offering such as Azure App Service, you’re using a reverse proxy there too—
one that is managed by Azure. Using a reverse proxy has many benefits:

Security—Reverse proxies are specifically designed to be exposed to
malicious internet traffic, so they’re typically extremely well-tested and
battle-hardened.
Performance—You can configure reverse proxies to provide
performance improvements by aggressively caching responses to
requests.
Process management—An unfortunate reality is that apps sometimes
crash. Some reverse proxies can act as monitors/schedulers to ensure
that if an app crashes, the proxy can automatically restart it.
Support for multiple apps—It’s common to have multiple apps running
on a single server. Using a reverse proxy makes it easier to support this
scenario by using the host name of a request to decide which app should
receive the request.

I don’t want to make it seem like using a reverse proxy is all sunshine and
roses. There are some downsides:

Complexity—One of the biggest complaints is how complex reverse
proxies can be. If you’re managing the proxy yourself (as opposed to

relying on a PaaS implementation), there can be lots of proxy-specific
pitfalls to look out for.
Inter-process communication—Most reverse proxies require two
processes: a reverse proxy and your web app. Communicating between
the two is often slower than if you directly exposed your web app to
requests from the internet.
Restricted features—Not all reverse proxies support all the same
features as an ASP.NET Core app. For example, Kestrel supports
HTTP/2, but if your reverse proxy doesn’t, you won’t see the benefits.

Whether you choose to use a reverse proxy or not, when the time comes to
host your app, you can’t copy your code files directly to the server. First, you
need to publish your ASP.NET Core app to optimize it for production. In
section 27.1.1 we’ll look at building an ASP.NET Core app so that it can be
run on your development machine, compared with publishing it so that it can
be run on a server.

27.1.1 Running vs. publishing an ASP.NET Core app

One of the key changes in ASP.NET Core from previous versions of
ASP.NET is making it easy to build apps using your favorite code editors and
integrated development environments (IDEs). Previously, Visual Studio was
required for ASP.NET development, but with the .NET command-line
interface (CLI), you can build apps with the tools you’re comfortable with on
any platform.

As a result, whether you build using Visual Studio or the .NET CLI, the same
tools are being used under the hood. Visual Studio provides an additional
graphical user interface (GUI), functionality, and wrappers for building your
app, but it (mostly) executes the same commands as the .NET CLI behind the
scenes.

As a refresher, you’ve used four main .NET CLI commands so far to build
your apps:

dotnet new—Creates an ASP.NET Core application from a template
dotnet restore—Downloads and installs any referenced NuGet

packages for your project
dotnet build—Compiles and builds your project
dotnet run—Executes your app so you can send requests to it

If you’ve ever built a .NET application, whether it’s a legacy ASP.NET app
or a .NET Framework console app, you’ll know that the output of the build
process is written to the bin folder by default. The same is true for ASP.NET
Core applications.

If your project compiles successfully when you call dotnet build, the .NET
CLI writes the artifacts to a bin folder in your project’s directory. Inside this
bin folder are several files required to run your app, including a .dll file that
contains the code for your application. Figure 27.2 shows the output of the
bin folder for a basic ASP.NET Core application.

Figure 27.2 The bin folder for an ASP.NET Core app after running dotnet build. The
application is compiled into a single .dll file, ExampleApp.dll.

Note

 In Windows you also have an executable .exe file, ExampleApp.exe. This

is a simple wrapper file for convenience that makes it easier to run the
application contained in ExampleApp.dll.

When you call dotnet run in your project folder (or run your application
using Visual Studio), the .NET CLI uses the .dll to run your application. But
this file doesn’t contain everything you need to deploy your app.

To host and deploy your app on a server, you first need to publish it. You can
publish your ASP.NET Core app from the command line using the dotnet
publish command, which builds and packages everything your app needs to
run. The following command packages the app from the current directory and
builds it to a subfolder called publish. I’ve used the Release configuration
instead of the default Debug configuration so that the output will be fully
optimized for running in production:

dotnet publish --output publish --configuration Release

Tip

 Always use the Release configuration when publishing your app for
deployment. This ensures that the compiler generates optimized code for your
app.

Once the command completes, you’ll find your published application in the
publish folder, as shown in figure 27.3.

Figure 27.3 The publish folder for the app after running dotnet publish. The app is still compiled
into a single .dll file, but all the additional files, such as wwwroot, are also copied to the output.

As you can see, the ExampleApp.dll file is still there, along with some
additional files. Most notably, the publish process has copied across the
wwwroot folder of static files. When running your application locally with
dotnet run, the .NET CLI uses these files from your application’s project
folder directly. Running dotnet publish copies the files to the output
directory, so they’re included when you deploy your app to a server.

If your first instinct is to try running the application in the publish folder
using the dotnet run command you already know and love, you’ll be
disappointed. Instead of seeing the application starting up, you’ll see a
somewhat confusing message: Couldn’t find a project to run.

To run a published application, you need to use a slightly different command.
Instead of calling dotnet run, you must pass the path to your application’s
.dll file to the dotnet command. If you’re running the command from the
publish folder, for the example app in figure 27.3, it would look something
like

dotnet ExampleApp.dll

This is the command that your server will run when running your application

in production.

Tip

You can also use the dotnet exec command to achieve the same thing, such
as dotnet exec ExampleApp.dll. This makes some advanced runtime
options available, as described in the docs at http://mng.bz/x4d8.

When you’re developing, the dotnet run command does a whole load of
work to make things easier on you. It makes sure that your application is
built, looks for a project file in the current folder, works out where the
corresponding .dlls will be (in the bin folder), and finally runs your app.

In production, you don’t need any of this extra work. Your app is already
built; it only needs to be run. The dotnet <dll> syntax does this alone, so
your app starts much faster.

Note

 The dotnet command used to run your published application is part of the
.NET Runtime. The (identically named) dotnet command used to build and
run your application during development is part of the .NET software
development kit (SDK).

Framework-dependent deployments vs. self-contained deployments

.NET Core applications can be deployed in two ways: runtime-dependent
deployments (RDD) and self-contained deployments (SCD).

By default, you’ll use an RDD. This relies on the .NET 7 runtime being
installed on the target machine that runs your published app, but you can run
your app on any platform—Windows, Linux, or macOS—without having to
recompile.

By contrast, an SCD contains all the code required to run your app, so the
target machine doesn’t need to have .NET 7 installed. Instead, publishing
your app packages up the .NET 7 runtime with your app’s code and libraries.

Each approach has its pros and cons, but in most cases I tend to create RDDs.
The final size of RDDs is much smaller, as they contain only your app code
instead of the whole .NET 7 framework, which SCDs contain. Also, you can
deploy your RDD apps to any platform, whereas SCDs must be compiled
specifically for the target machine’s operating system, such as Windows 10
64-bit or Red Hat Enterprise Linux 64-bit.

That said, SCDs are excellent for isolating your application from
dependencies on the hosting machine. SCDs don’t rely on the version of
.NET installed on a hosting provider, so you can (for example) use preview
versions of .NET in Azure App Service without needing the preview version
to be supported.

Another advantage of SCDs is for regulated industries that require
certification or procedure to change applications. In RDDs (such as in Azure
App Service) the underlying runtime may be patched at any time without
your intervention, potentially leading to noncompliance. With SCDs, your
app contains a fixed runtime and can be considered an immutable snapshot of
your app. Of course, that means you must make sure to patch the runtime of
your SCDs manually, performing regular deployments. Patch versions of the
.NET runtime are generally released every month, so make sure to plan for at
least monthly releases of your SCD apps.

In this book I discuss RDDs only for simplicity, but if you want to create an
SCD, provide a runtime identifier (in this case, Windows 10 64-bit) when
you publish your app:

dotnet publish -c Release -r win10-x64 --self-contained -o publish_folder

The output will contain an .exe file, which is your application, and a ton of
.dlls (about 100 MB of .dlls for a default sample app), which are the .NET 7
framework. You need to deploy this whole folder to the target machine to run
your app. Note that you need to publish for a specific operating system and
architecture. The list of available runtime identifiers is available in the
documentation at http://mng.bz/Aolp.

In .NET 7 it’s possible to trim these assemblies during the publish process,
but this comes with risks in some scenarios. You can also bundle this folder

into a single file automatically for easier deployments. For more details, see
Microsoft’s “.NET application publishing overview” documentation at
https://learn.microsoft.com/dotnet/core/deploying.

We’ve established that publishing your app is important for preparing it to
run in production, but how do you go about deploying it? How do you get the
files from your computer onto a server so that people can access your app?
You have many, many options, so in the next section I’ll give you a brief list
of approaches to consider.

27.1.2 Choosing a deployment method for your application

To deploy any application to production, you generally have two fundamental
requirements:

A server that can run your app
A means of loading your app onto the server

Historically, putting an app into production was a laborious and error-prone
process. For many people, this is still true. If you’re working at a company
that hasn’t changed practices in recent years, you may need to request a
server or virtual machine for your app and provide your application to an
operations team that will install it for you. If that’s the case, you may have
your hands tied regarding how you deploy.

For those who have embraced continuous integration (CI) or continuous
delivery/deployment (CD), there are many more possibilities. CI/CD is the
process of detecting changes in your version control system (for example,
Git, SVN, Mercurial, or Team Foundation Version Control) and
automatically building, and potentially deploying, your application to a server
with little to no human intervention.

Note

There are important but subtle differences between these terms. Atlassian has
a good comparison article, “Continuous integration vs. continuous delivery
vs. continuous deployment,” at http://mng.bz/vzp4.

There are many CI/CD systems out there—Azure DevOps, GitHub Actions,
Jenkins, TeamCity, AppVeyor, Travis, and Octopus Deploy, to name a few.
Each can manage some or all of the CI/CD process and can integrate with
many systems.

Rather than push any particular system, I suggest trying some of the services
available and seeing which works best for you. Some are better suited to
open-source projects, and some are better when you’re deploying to cloud
services; it all depends on your particular situation.

If you’re getting started with ASP.NET Core and don’t want to have to go
through the setup process of getting CI working, you still have lots of
options. The easiest way to get started with Visual Studio is to use the built-in
deployment options. These are available from Visual Studio via the Build >
Publish <AppName> command, which presents the screen shown in figure
27.4.

Figure 27.4 The Publish application screen in Visual Studio 2022. This provides easy options for
publishing your application directly to Azure App Service, to IIS, to an FTP site, or to a folder on
the local machine.

From here, you can publish your application directly from Visual Studio to
many locations. This is great when you’re getting started, though I
recommend looking at a more automated and controlled approach when you
have a larger application or a whole team working on a single app.

Tip

For guidance on choosing your Visual Studio publishing options, see
Microsoft’s “Deploy your app to a folder, IIS, Azure, or another destination”
documentation at http://mng.bz/4Z8j.

Given the number of possibilities available in this space and the speed with
which these options change, I’m going to focus on one specific scenario in
this chapter: you’ve built an ASP.NET Core application, and you need to
deploy it. You have access to a Windows server that’s already serving legacy
.NET Framework ASP.NET applications using IIS, and you want to run your
ASP.NET Core app alongside them.

In the next section you’ll see an overview of the steps required to run an
ASP.NET Core application in production, using IIS as a reverse proxy. It
won’t be a master class in configuring IIS (there’s so much depth to the 25-
year-old product that I wouldn’t know where to start!), but I’ll cover the
basics needed to get your application serving requests.

27.2 Publishing your app to IIS

In this section I briefly show you how to publish your first app to IIS. You’ll
add an application pool and website to IIS and ensure that your app has the
necessary configuration to work with IIS as a reverse proxy. The deployment
itself will be as simple as copying your published app to IIS’s hosting folder.

In section 27.1 you learned about the need to publish an app before you
deploy it and the benefits of using a reverse proxy when you run an
ASP.NET Core app in production. If you’re deploying your application to
Windows, IIS will likely be your reverse proxy and will be responsible for
managing your application.

IIS is an old and complex beast, and I can’t possibly cover everything related
to configuring it in this book. Neither would you want me to; that discussion
would be boring! Instead, in this section I’ll provide an overview of the basic
requirements for running ASP.NET Core behind IIS, along with the changes
you may need to make to your application to support IIS.

If you’re on Windows and want to try these steps locally, you’ll need to

enable IIS manually on your development machine. If you’ve done this with
older versions of Windows, nothing much has changed. You can find a step-
by-step guide to configuring IIS and troubleshooting tips in the ASP.NET
Core documentation at http://mng.bz/6g2R.

27.2.1 Configuring IIS for ASP.NET Core

The first step in preparing IIS to host ASP.NET Core applications is
installing the ASP.NET Core Windows Hosting Bundle
(http://mng.bz/opED). This includes several components needed to run .NET
apps:

The .NET Runtime—Runs your .NET 7 application
The ASP.NET Core Runtime—Required to run ASP.NET Core apps
The IIS AspNetCore Module—Provides the link between IIS and your
app so that IIS can act as a reverse proxy

If you’re going to be running IIS on your development machine, make sure
that you install the bundle as well; otherwise, you’ll get strange errors from
IIS.

Tip

 The Windows Hosting Bundle provides everything you need for running
ASP.NET Core behind IIS in Windows. If you’re hosting your application in
Linux or Mac, or aren’t using IIS in Windows, you need to install only the
.NET Runtime and ASP.NET Core Runtime to run runtime-dependent
ASP.NET Core apps. Note that you need to install the IIS AspNetCore
Module even if you are using SCDs.

Once you’ve installed the bundle, you need to configure an application pool
in IIS for your ASP.NET Core apps. Previous versions of ASP.NET would
run in a managed app pool that used .NET Framework, but for ASP.NET
Core you should create a No Managed Code pool. The native ASP.NET Core
Module runs inside the pool, which boots the .NET 7 Runtime itself.

Definition

 An application pool in IIS represents an application process. You can run
each app in IIS in a separate application pool to keep the apps isolated from
one another.

To create an unmanaged application pool, right-click Application Pools in
IIS and choose Add Application Pool from the contextual menu. Provide a
name for the app pool in the resulting dialog box, such as dotnet7, and set
the .NET CLR version to No Managed Code, as shown in figure 27.5.

Figure 27.5 Creating an app pool in IIS for your ASP.NET Core app. The .NET CLR version
should be set to No Managed Code.

Now that you have an app pool, you can add a new website to IIS. Right-
click the Sites node, and choose Add Website from the contextual menu. In
the Add Website dialog box, shown in figure 27.6, you provide a name for
the website and the path to the folder where you’ll publish your website. I
created a folder that I’ll use to deploy the Recipe app from previous chapters.
It’s important to change the Application Pool for the app to the new dotnet7
app pool you created. In production, you’d also provide a hostname for the
application, but I’ve left it blank for now in this example and changed the
port to 81 so the application will bind to the URL http://localhost:81.

Note

 When you deploy an application to production, you need to register a
hostname with a domain registrar so that your site is accessible by people on
the internet. Use that hostname when configuring your application in IIS, as
shown in figure 27.6.

Figure 27.6 Adding a new website to IIS for your app. Be sure to change the Application Pool to
the No Managed Code pool created in the previous step. You also provide a name, the path where
you’ll publish your app files, and the URL that IIS will use for your app.

Once you click OK, IIS creates the application and attempts to start it. But
you haven’t published your app to the folder, so you won’t be able to view it
in a browser yet.

You need to carry out one more critical setup step before you can publish and
run your app: grant permissions for the dotnet7 app pool to access the path

where you’ll publish your app. To do this, right-click the folder that will host
your app in Windows File Explorer, and choose Properties from the
contextual menu. In the Properties dialog box, choose Security > Edit >
Add. Enter IIS AppPool\dotnet7 in the text box, as shown in figure 27.7,
where dotnet7 is the name of your app pool; then choose OK. Close all the
dialog boxes by choosing OK, and you’re all set.

Figure 27.7 Adding permission for the dotnet7 app pool to the website’s publish folder

Out of the box, the ASP.NET Core templates are configured to work
seamlessly with IIS, but if you’ve created an app from scratch, you may need
to make a couple of changes. In the next section I’ll briefly show the changes
you need to make and explain why they’re necessary.

27.2.2 Preparing and publishing your application to IIS

As I discussed in section 27.1, IIS acts as a reverse proxy for your ASP.NET
Core app. That means IIS needs to be able to communicate directly with your
app to forward incoming requests to and outgoing responses from your app.

IIS handles this with the ASP.NET Core Module, but a certain degree of
negotiation is required between IIS and your app. For this to work correctly,

you need to configure your app to use IIS integration.

IIS integration is added automatically when you use
WebApplicationBuilder, so there’s typically nothing more to do. However,
in chapter 30 you’ll learn about the generic host and how to create custom
application builders using HostBuilder. If your app uses a customer
application builder and you want to use IIS, you need to ensure that you add
IIS integration with the UseIIS() or UseIISIntegration() extension
methods:

UseIIS() configures your application to support IIS with an in-process
hosting model.
UseIISIntegration() configures your application to support IIS with
an out-of-process hosting model.

These methods are automatically called by WebApplicationBuilder, but if
you’re not using your application with IIS, the UseIIS() and
UseIISIntegration() methods will have no effect on your app, so it’s safe
to include them anyway.

In-process vs. out-of-process hosting in IIS

The common reverse-proxy description assumes that your application is
running in a separate process from the reverse proxy itself. That is the case if
you’re running on Linux and was the default for IIS up until ASP.NET Core
3.0.

In ASP.NET Core 3.0, ASP.NET Core switched to using an in-process
hosting model by default for applications deployed to IIS. In this model, IIS
hosts your application directly inside the IIS process, reducing interprocess
communication and boosting performance.

You can switch to the out-of-process hosting model with IIS if you wish,
which can sometimes be useful for troubleshooting problems. Rick Strahl has
an excellent post on the differences between the hosting models, how to
switch between them, and the advantages of each: “ASP.NET Core In
Process Hosting on IIS with ASP.NET Core” at http://mng.bz/QmEv.

In general, you shouldn’t need to worry about the differences between the
hosting models, but it’s something to be aware of if you’re deploying to IIS.
If you choose to use the out-of-process hosting model, you should use the
UseIISIntegration() extension method. If you use the in-process model,
use UseIIS(). Alternatively, play it safe and use both; the correct extension
method is activated based on the hosting model used in production. Neither
extension does anything if you don’t use IIS.

When running behind IIS, these extension methods configure your app to pair
with IIS so that it can seamlessly accept requests. Among other things, the
extensions do the following:

Define the URL that IIS uses to forward requests to your app and
configures your app to listen on this URL
Configure your app to interpret requests coming from IIS as coming
from the client by setting up header forwarding
Enable Windows authentication if required

Adding the IIS extension methods is the only change you need to make to
your application to host in IIS (and even then, only when using a custom
application builder). But there’s one additional aspect to be aware of when
you publish your app. As with legacy .NET Framework ASP.NET, IIS relies
on a web.config file to configure the applications it runs. It’s important that
your application include a web.config file when it’s published to IIS;
otherwise you could get broken behavior or even expose files that shouldn’t
be exposed.

Tip

For details on using web.config to customize the IIS AspNetCore Module,
see Microsoft’s “ASP.NET Core Module” documentation:
http://mng.bz/Xdna.

If your ASP.NET Core project already includes a web.config file, the .NET
CLI or Visual Studio copies it to the publish directory when you publish your
app. If your app doesn’t include a web.config file, the publish command
creates the correct one for you. If you don’t need to customize the web.config
file, it’s generally best not to include one in your project and let the CLI

create the correct file for you.

With these changes, you’re finally in a position to publish your application to
IIS. Publish your ASP.NET Core app to a folder, either from Visual Studio or
with the .NET CLI, by running

dotnet publish --output publish_folder --configuration Release

This will publish your application to the publish_folder folder. You can then
copy your application to the path specified in IIS, as shown in figure 27.6. At
this point, if all has gone smoothly, you should be able to navigate to the
URL you specified for your app (http://localhost:81, in my case) and see it
running, as shown in figure 27.8.

Figure 27.8 The published application, using IIS as a reverse proxy listening at the URL
http://localhost:81

And there you have it—your first application running behind a reverse proxy.
Even though ASP.NET Core uses a different hosting model from previous
versions of ASP.NET, the process of configuring IIS is similar.

As is often the case when it comes to deployment, the success you have is
highly dependent on your precise environment and your app itself. If, after

following these steps, you find that you can’t get your application to start, I
highly recommend checking out the documentation at http://mng.bz/Zqom.
This contains many troubleshooting steps to get you back on track if IIS
decides to throw a hissy fit.

This section was deliberately tailored to deploying to IIS, as it provides a
great segue for developers who are used to deploying legacy ASP.NET apps
and want to deploy their first ASP.NET Core app. But that’s not to say that
IIS is the only, or best, place to host your application.

In the next section I provide a brief introduction to hosting your app on
Linux, behind a reverse proxy like NGINX or Apache. I won’t go into
configuration of the reverse proxy itself, but I will provide an overview of
things to consider and resources you can use to run your applications on
Linux.

27.3 Hosting an application in Linux

One of the great new features in ASP.NET Core is the ability to develop and
deploy applications cross-platform, whether on Windows, Linux, or macOS.
The ability to run on Linux in particular opens the possibility of cheaper
deployments to cloud hosting, deploying to small devices like a Raspberry Pi
or to Docker containers.

One of the characteristics of Linux is that it’s almost infinitely configurable.
Although that’s definitely a feature, it can also be extremely daunting,
especially if you’re coming from the Windows world of wizards and GUIs.
This section provides an overview of what it takes to run an application on
Linux. It focuses on the broad steps you need to take rather than the
somewhat-tedious details of the configuration itself. Instead, I point to
resources you can refer to as necessary.

27.3.1 Running an ASP.NET Core app behind a reverse proxy
in Linux

You’ll be glad to hear that running your application on Linux is broadly the
same as running your application on Windows with IIS:

1. Publish your app using dotnet publish. If you’re creating an RDD, the
output is the same as you’d use with IIS. For an SCD, you must provide
the runtime identifier, as described in section 27.1.1.

2. Install the necessary prerequisites on the server. For an RDD
deployment, you must install the .NET 7 Runtime and the necessary
prerequisites. You can find details on this in Microsoft’s “Install .NET
on Linux” documentation at http://mng.bz/Rxlj.

3. Copy your app to the server. You can use any mechanism you like: FTP,
USB stick, or whatever you need to get your files onto the server!

4. Configure a reverse proxy, and point it to your app. As you know by
now, you may want to run your app behind a reverse proxy, for the
reasons described in section 27.1. In Windows you’d use IIS, but in
Linux you have more options. NGINX, Apache, and HAProxy are
commonly used options. The ASP.NET Core-based YARP is also an
option (https://microsoft.github.io/reverse-proxy). Alternatively, go
without, and expose your app directly to the network.

5. Configure a process-management tool for your app. In Windows, IIS
acts as both a reverse proxy and a process manager, restarting your app
if it crashes or stops responding. In Linux, you typically need to
configure a separate process manager to handle these duties; the reverse
proxies won’t do them for you.

The first three steps are generally the same, whether you’re running in
Windows with IIS or in Linux, but the last two steps are more interesting. By
contrast with the monolithic IIS, Linux has a philosophy of small
applications, each with a single responsibility.

IIS runs on the same server as your app and takes on multiple duties—
proxying traffic from the internet to your app, but also monitoring the app
process itself. If your app crashes or stops responding, IIS restarts the process
to ensure that you can keep handling requests.

In Linux, the reverse proxy might be running on the same server as your app,
but it’s also common for it to be running on a different server, as shown in
figure 27.9. This is similarly true if you choose to deploy your app to Docker;
your app would typically be deployed in a container without a reverse proxy,
and a reverse proxy on a server would point to your Docker container.

Figure 27.9 In Linux, it’s common for a reverse proxy to be on a different server from your app.
The reverse proxy forwards incoming requests to your app, while a process manager, such as
systemd, monitors your apps for crashes and restarts it as appropriate.

As the reverse proxies aren’t necessarily on the same server as your app, they
can’t be used to restart your app if it crashes. Instead, you need to use a
process manager such as systemd to monitor your app. If you’re using
Docker, you typically use a container orchestrator such as Kubernetes
(https://kubernetes.io) to monitor the health of your containers.

Running ASP.NET Core applications in Docker

Docker is the most commonly used engine for containerizing your
applications. A container is like a small, lightweight virtual machine, specific
to your app. It contains an operating system, your app, and any dependencies
for your app. This container can then be run on any machine that runs
Docker, and your app will run exactly the same, regardless of the host
operating system and what’s installed on it. This makes deployments highly
repeatable: you can be confident that if the container runs on your machine, it
will run on the server too.

All the major cloud vendors have support for running containers, either

standalone or as part of an orchestration service. For example, in Azure, you
can run containers in Azure App Service, Azure Container Instances, Azure
Container Apps, and Azure Kubernetes Service. One advantage of containers
is that you can easily use the same container in all these services or even
move to a different cloud provider, and your app will run the same.

ASP.NET Core is well suited to container deployments, but moving to
Docker involves a big shift in your deployment methodology and may or may
not be right for you and your apps. If you’re interested in the possibilities
afforded by Docker and want to learn more, I suggest checking out the
following resources:

· Docker in Practice, 2nd ed., by Ian Miell and Aidan Hobson Sayers
(Manning, 2019) provides a vast array of practical techniques to help you get
the most out of Docker (http://mng.bz/nM8d).

· Even if you’re not deploying to Linux, you can use Docker with Docker
for Windows. Check out the free e-book Introduction to Windows
Containers, by John McCabe and Michael Friis (Microsoft Press, 2017), at
https://aka.ms/containersebook.

· You can find a lot of details on building and running your ASP.NET Core
applications on Docker in the .NET documentation at http://mng.bz/vz5a.

· Steve Gordon has an excellent blog post series on Docker for ASP.NET
Core developers at http://mng.bz/2Da8.

Configuring a reverse proxy and process manager on Linux is a laborious
task that makes for dry reading, so I won’t detail it here. Instead, I
recommend checking out the ASP.NET Core docs. They have a guide for
NGINX and systemd, “Host ASP.NET Core on Linux with Nginx”
(http://mng.bz/yYGd), and a guide for configuring Apache with systemd,
“Host ASP.NET Core on Linux with Apache” (http://mng.bz/MXVB).

Both guides cover the basic configuration of the respective reverse proxies
and systemd supervisors, but more important, they also show how to
configure them securely. The reverse proxy sits between your app and the
unfettered internet, so it’s important to get it right!

Configuring the reverse proxy and the process manager is typically the most
complex part of deploying to Linux, and that isn’t specific to .NET
development: the same would be true if you were deploying a Node.js web
app. But you need to consider a few things inside your application when
you’re going to be deploying to Linux, as you’ll see in the next section.

27.3.2 Preparing your app for deployment to Linux

Generally speaking, your app doesn’t care which reverse proxy it sits behind,
whether it’s NGINX, Apache, or IIS; your app receives requests and responds
to them without the reverse proxy affecting things. When you’re hosting
behind IIS, you need UseIISIntegration() to tell your app about IIS’s
configuration; when you’re hosting on Linux, you need a similar method.

When a request arrives at the reverse proxy, it contains some information that
is lost after the request is forwarded to your app. For example, the original
request comes with the IP address of the client/browser connecting to your
app; once the request is forwarded from the reverse proxy, the IP address is
that of the reverse proxy, not the browser. Also, if the reverse proxy is used
for SSL/TLS offloading (see chapter 28), then a request that was originally
made using HTTPS may arrive at your app as an HTTP request.

The standard solution to these problems is for the reverse proxy to add more
headers before forwarding requests to your app. For example, the X-
Forwarded-For header identifies the original client’s IP address, whereas the
X-Forwarded-Proto header indicates the original scheme of the request (http
or https).

For your app to behave correctly, it needs to look for these headers in
incoming requests and modify the request as appropriate. A request to
http://localhost with the X-Forwarded-Proto header set to https should be
treated the same as if the request were to https://localhost.

You can use ForwardedHeadersMiddleware in your middleware pipeline to
achieve this. This middleware overrides Request.Scheme and other properties
on HttpContext to correspond to the forwarded headers.
WebApplicationBuilder partially handles this for you; the middleware is

automatically added to the pipeline in a disabled state. To enable it, set the
environment variable ASPNETCORE_FORWARDEDHEADERS_ENABLED=true.

If you don’t want to use the automatically added middleware for some
reason, or if you’re using the generic host (which you’ll learn about in
chapter 30), you can add the middleware to the start of your middleware
pipeline manually, as shown in listing 27.1, and configure it with the headers
to look for.

Warning

 It’s important that ForwardedHeadersMiddleware be placed early in the
middleware pipeline to correct Request.Scheme before any middleware that
depends on the scheme runs.

Listing 27.1 Configuring an app to use forwarded headers in Startup.cs

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

WebApplication app = builder.Build();

app.UseForwardedHeaders(new ForwardedHeadersOptions #A

{

 ForwardedHeaders = ForwardedHeaders.XForwardedFor | #B

 ForwardedHeaders.XForwardedProto #B

});

app.UseHttpsRedirection(); #C

app.UseRouting(); #C

app.MapGet("/", () => "Hello world!");

app.Run();

Note

 This behavior isn’t specific to reverse proxies on Linux; the UseIis()
extension adds ForwardedHeadersMiddleware under the hood as part of its
configuration when your app is running behind IIS.

Aside from considering the forwarded headers, you need to consider a few
minor things when deploying your app to Linux that may trip you up if
you’re used to deploying to Windows alone:

Line endings (LF in Linux versus CRLF in Windows)—Windows and
Linux use different character codes in text to indicate the end of a line.
This isn’t often a problem for ASP.NET Core apps, but if you’re writing
text files on one platform and reading them on a different platform, it’s
something to bear in mind.
Path directory separator ("\" on Windows, "/" on Linux)—This is one
of the most common bugs I see when Windows developers move to
Linux. Each platform uses a different separator in file paths, so although
loading a file using the "subdir\myfile.json" path will work fine in
Windows, it won’t in Linux. Instead, you should use Path.Combine to
create the appropriate separator for the current platform, such as
Path.Combine("subdir", "myfile.json").
":" in environment variables—In some Linux distributions, the colon
character (:) isn’t allowed in environment variables. As you saw in
chapter 10, this character is typically used to denote different sections in
ASP.NET Core configuration, so you often need to use it in environment
variables. Instead, you can use a double underscore in your environment
variables (__); ASP.NET Core will treat it the same as though you’d
used a colon.
Missing time zone and culture data—Linux distributions don’t always
come with time zone or culture data, which can cause localization
problems and exceptions at runtime. You can install the time zone data
using your distribution’s package manager.[1] It also may be organized
differently. The hierarchy of Norwegian cultures is different in Linux,
for example.
Different directory structures—Linux distributions use a different folder
structure from Windows, so you need to bear that in mind if your app
hardcodes paths. In particular, consider differences in temporary/cache
folders.

The preceding list is not exhaustive by any means, but as long as you set up
ForwardedHeadersMiddleware and take care to use cross-platform constructs
like Path.Combine, you shouldn’t have too many problems running your
applications on Linux. But configuring a reverse proxy isn’t the simplest of
activities, so wherever you’re planning on hosting your app, I suggest
checking the documentation for guidance at http://mng.bz/1qM1.

27.4 Configuring the URLs for your application

At this point, you’ve deployed an application, but there’s one aspect you
haven’t configured: the URLs for your application. When you’re using IIS as
a reverse proxy, you don’t have to worry about this inside your app. IIS
integration with the ASP.NET Core Module works by dynamically creating a
URL that’s used to forward requests between IIS and your app. The hostname
you configure in IIS (in figure 27.6) is the URL that external users see for
your app; the internal URL that IIS uses when forwarding requests is never
exposed.

If you’re not using IIS as a reverse proxy—maybe you’re using NGINX or
exposing your app directly to the internet—you may find you need to
configure the URLs your application listens to directly.

By default, ASP.NET Core listens for requests on the URL
http://localhost:5000. There are lots of ways to set this URL, but in this
section I describe two: using environment variables or using command-line
arguments. These are the two most common approaches I see (outside of IIS)
for controlling which URLs your app uses.

Tip

 For further ways to set your application’s URL, see my “5 ways to set the
URLs for an ASP.NET Core app” blog post: http://mng.bz/go0v.

In chapter 10 you learned about configuration in ASP.NET Core, and in
particular about the concept of hosting environments so that you can use
different settings when running in development compared with production.
You choose the hosting environment by setting an environment variable on
your machine called ASPNETCORE_ENVIRONMENT. The ASP.NET Core
framework magically picks up this variable when your app starts and uses it
to set the hosting environment.

You can use a similar special environment variable to specify the URL that
your app uses; this variable is called ASPNETCORE_URLS. When your app starts
up, it looks for this value and uses it as the application’s URL. By changing

this value, you can change the default URL used by all ASP.NET Core apps
on the machine. For example, you could set a temporary environment
variable in Windows from the command window using

set ASPNETCORE_URLS=http://localhost:8000

Running a published application using dotnet <app.dll> within the same
command window, as shown in figure 27.10, shows that the app is now
listening on the URL provided in the ASPNETCORE_URLS variable.

Figure 27.10 Change the ASPNETCORE_URLS environment variable to change the URL used by
ASP.NET Core apps.

You can instruct an app to listen on multiple URLs by separating them with a
semicolon, or you can listen to a specific port without specifying the
localhost hostname. If you set the ASPNETCORE_URLS environment variable to

http://localhost:5001;http://*:5002

your ASP.NET Core apps will listen for requests sent to the following:

http://localhost:5001—This address is accessible only on your local
computer, so it will not accept requests from the wider internet.

http://*:5002—Any URL on port 5002. External requests from the
internet can access the app on port 5002, using any URL that maps to
your computer.

Note that you can’t specify a different hostname, like tastyrecipes.com.
ASP.NET Core listens to all requests on a given port; it doesn’t listen for
specific domain names. The exception is the localhost hostname, which
allows only requests that came from your own computer.

Note

 If you find the ASPNETCORE_URLS variable isn’t working properly, ensure
that you don’t have a launchSettings.json file in the directory. When present,
the values in this file take precedence. By default, launchSettings.json isn’t
included in the publish output, so this generally won’t be a problem in
production.

Setting the URL of an app using a single environment variable works great
for some scenarios, most notably when you’re running a single application in
a virtual machine, or within a Docker container.

Tip

ASP.NET Core is well suited to running in containers but working with
containers is a separate book in its own right. For details on hosting and
publishing apps using Docker, see Microsoft’s “Host ASP.NET Core in
Docker containers” documentation: http://mng.bz/e5GV.

If you’re not using Docker containers or a PaaS offering, chances are that
you’re hosting multiple apps side-by-side on the same machine. A single
environment variable is no good for setting URLs in this case, as it would
change the URL of every app.

In chapter 10 you saw that you could set the hosting environment using the
ASPNETCORE_ENVIRONMENT variable, but you could also set the environment
using the --environment flag when calling dotnet run:

dotnet run --no-launch-profile --environment Staging

You can set the URLs for your application in a similar way, using the --urls
parameter. Using command-line arguments enables you to have multiple
ASP.NET Core applications running on the same machine, listening to
different ports. For example, the following command would run the recipe
application, set it to listen on port 8081, and set the environment to staging
(figure 27.11):

dotnet RecipeApplication.dll --urls "http://*:8081" --environment Staging

Figure 27.11 Setting the hosting environment and URLs for an application using command-line
arguments. The values passed at the command line override values provided from
appSettings.json or environment variables.

Remember that you don’t need to set your URLs in this way if you’re using
IIS as a reverse proxy; IIS integration handles this for you. Setting the URLs
is necessary only when you’re manually configuring the URL your app is
listening on, such as if you’re using NGINX or are exposing Kestrel directly
to clients.

Warning

 If you are running your ASP.NET Core application without a reverse
proxy, you should use host filtering for security reasons to ensure that your
app only responds to requests for hostnames you expect. For more details, see
my “Adding host filtering to Kestrel in ASP.NET Core” blog entry:
http://mng.bz/pVXK.

That brings us to the end of this chapter on publishing your app. This last

mile of app development—deploying an application to a server where users
can access it—is a notoriously thorny problem. Publishing an ASP.NET Core
application is easy enough, but the multitude of hosting options available
makes providing concise steps for every situation difficult.

Whichever hosting option you choose, there’s one critical topic that you
mustn’t overlook: security. In the next chapter you’ll learn about HTTPS,
how to use it when testing locally, and why it’s important your production
apps all use HTTPS.

27.5 Summary

ASP.NET Core apps are console applications that self-host a web server.
In production, you may use a reverse proxy, which handles the initial
request and passes it to your app. Reverse proxies can provide additional
security, operations, and performance benefits, but they can also add
complexity to your deployments.
.NET has two parts: the .NET SDK (also known as the .NET CLI) and
the .NET Runtime. When you’re developing an application, you use the
.NET CLI to restore, build, and run your application. Visual Studio uses
the same .NET CLI commands from the IDE.
When you want to deploy your app to production, you need to publish
your application, using dotnet publish. This creates a folder containing
your application as a DLL, along with all its dependencies.
To run a published application, you don’t need the .NET CLI because
you won’t be building the app. You need only the .NET Runtime to run
a published app. You can run a published application using the dotnet
app.dll command, where app.dll is the application .dll created by the
dotnet publish command.
To host ASP.NET Core applications in IIS, you must install the
ASP.NET Core Module. This allows IIS to act as a reverse proxy for
your ASP.NET Core app. You must also install the .NET Runtime and
the ASP.NET Core Runtime, which are installed as part of the ASP.NET
Core Windows Hosting Bundle.
IIS can host ASP.NET Core applications using one of two modes: in-
process and out-of-process. The out-of-process mode runs your
application as a separate process, as is typical for most reverse proxies.

The in-process mode runs your application as part of the IIS process.
This has performance benefits, as no interprocess communication is
required.
If you are using a custom web application builder with IIS, ensure that
you call UseIISIntegration() and UseIIS() so that IIS forwards the
request to your app correctly. If you’re using the default
WebApplicationBuilder, these methods are called automatically for
you.
When you publish your application using the .NET CLI, a web.config
file is added to the output folder. It’s important that this file be deployed
with your application when publishing to IIS, as it defines how your
application should run.
The URL that your app listens on is specified by default using the
environment variable ASPNETCORE_URLS. Setting this value changes the
URL for all the apps on your machine. Alternatively, pass the --urls
command-line argument when running your app, as in this example:
dotnet app.dll --urls http://localhost:80.

[1] I ran into this problem myself. You can read about it in detail and how I
solved it on my blog: http://mng.bz/aoem.

28 Adding HTTPS to an application
This chapter covers

Encrypting traffic between clients and your app using HTTPS
Using the HTTPS development certificate for local development
Configuring Kestrel with a custom HTTPS certificate
Enforcing HTTPS for your whole app

Web application security is a hot topic at the moment. Practically every week
another breach is reported, or confidential details are leaked. It may seem like
the situation is hopeless, but the reality is that the vast majority of breaches
could have been prevented with the smallest amount of effort.

In chapter 29 we’ll look at a range of common attacks and how to protect
against them in your ASP.NET Core app. In this chapter we start by looking
at one of the most basic security measures: encrypting the traffic between a
client such as a browser and your application.

Without HTTPS encryption, you risk third parties spying on or modifying the
requests and responses as they travel over the internet. The risks associated
with unencrypted traffic mean that HTTPS is effectively mandatory for
production apps these days, and it is heavily encouraged by the makers of
modern browsers such as Chrome and Firefox. In section 28.1 you’ll learn
more about these risks and some of the approaches you can take to protect
your application.

In section 28.2 you’ll see how to get started with HTTPS locally using the
ASP.NET Core development certificate. I describe what it is, how to trust it
on your application, and what to do if it’s not working as you expect.

The development certificate is great for local work, but in production you’ll
need to configure a real, production certificate. I don’t describe the process of
obtaining a certificate in section 28.3, as that will vary by provider; instead, I
show how to configure Kestrel to use a custom certificate you’ve acquired.

In section 28.4 I describe some of the approaches to enforcing HTTPS in
your application. Unfortunately, web browsers still expect apps to be
available over HTTP by default, so you typically need to expose your
application on both HTTP and HTTPS ports. Nevertheless, there are things
you can do to push clients toward the HTTPS endpoint, which are considered
security best practices these days.

Before we look at HTTPS in ASP.NET Core specifically, we’ll start by
looking at HTTPS in general and why you should use it in all your
applications.

28.1 Why do I need HTTPS?

In this section you’ll learn about HTTPS: what it is, and why you need to be
aware of it for all your production applications. We’re not going to go into
details about the protocol or how certificates work at this point, instead
focusing on why you need to use HTTPS. You’ll see two approaches to
adding HTTPS to your application: supporting HTTPS directly in your
application and using SSL/TLS-offloading with a reverse proxy.

So far in this book, I’ve shown how the user’s browser sends a request across
the internet to your app using the HTTP protocol. We haven’t looked too
much into the details of that protocol other than to establish that it uses verbs
to describe the type of request (such as GET and POST), that it contains
headers with metadata about the request, and optionally includes a body
payload of data.

By default, HTTP requests are unencrypted; they’re plain-text files being sent
over the internet. Anyone on the same network as a user (such as someone
using the same public Wi-Fi in a coffee shop) can read the requests and
responses sent back and forth. Attackers can even modify the requests or
responses as they’re in transit, as shown in figure 28.1.

Figure 28.1 Unencrypted HTTP requests can be read by users on the same network. Attackers
can even intercept the request and response, reading or changing the data. HTTPS requests can’t
be read or manipulated by attackers.

Using unencrypted web apps in this way presents both a privacy and a
security risk to your users. Attackers could read sensitive details such as
passwords and personally identifiable information (PII), they could inject
malicious code into your responses to attack users, or they could steal
authentication cookies and impersonate the user on your app.

To protect your users, your app should encrypt the traffic between the user’s
browser and your app as it travels over the network by using the HTTPS
protocol. This is similar to HTTP traffic, but it uses an SSL/TLS certificate to
encrypt requests and responses, so attackers cannot read or modify the
contents.

Definition

Secure Sockets Layer (SSL) is an older standard that facilitates HTTPS. The
SSL protocol has been superseded by Transport Layer Security (TLS), so I’ll
be using TLS preferentially throughout this chapter. Normally, if you hear
someone talking about SSL or SSL certificates, they actually mean TLS. You
can find the RFC for the latest version of the TLS protocol at
https://www.rfc-editor.org/rfc/rfc8446.

In browsers, you can tell that a site is using HTTPS by the https:// prefix to
URLs (notice the s), or sometimes by a padlock, as shown in figure 28.2.
Most modern browsers these days deemphasize that a site is using HTTPS, as
most sites use HTTPS, and instead highlight when you’re on a site that isn’t
using HTTPS, flagging it as insecure.

Figure 28.2 Encrypted apps using HTTPS and unencrypted apps using HTTP in Edge. Using
HTTPS protects your application from being viewed or tampered with by attackers.

The reality is that these days, you should always serve your production
websites over HTTPS. The industry is pushing toward HTTPS by default,
with most browsers marking HTTP sites as explicitly not secure. Skipping
HTTPS will hurt the perception of your app in the long run, so even if you’re
not interested in the security benefits, it’s in your best interest to set up
HTTPS.

Tip

You can find a good cheat sheet for HTTPS by OWASP at
http://mng.bz/PzxY. ASP.NET Core takes care of most of the points in this
list for you, but there are some important ones in the Application section
specifically.

Another reason to support HTTPS is that many browser features are available
only when your site is served over HTTPS. Some of these features are
JavaScript browser APIs, such as location APIs, microphone APIs, and
storage APIs. These are available only over HTTPS to protect users from
attackers that could modify insecure HTTP requests. Other features apply to
server-side apps too, such as Brotli compression and HTTP/2 support.

Tip

 For details on how the SSL/TLS protocols work, see chapter 9 of Real-
World Cryptography, by David Wong (Manning, 2021), http://mng.bz/zxz1.

To enable HTTPS, you need to obtain and configure a TLS certificate for
your server. Unfortunately, although that process is a lot easier than it used to
be and is now essentially free thanks to Let’s Encrypt
(https://letsencrypt.org), it’s still far from simple in many cases. If you’re
setting up a production server, I recommend carefully following the tutorials
on the Let’s Encrypt site. It’s easy to get it wrong, so take your time.

Tip

 If you’re hosting your app in the cloud, most providers will provide one-
click TLS certificates so that you don’t have to manage certificates yourself.
This is extremely useful, and I highly recommend it for everyone. You don’t

even have to host your application in the cloud to take advantage of this.
Cloudflare (https://www.cloudflare.com) provides a CDN service that you
can add TLS to. You can even use it for free.

As an ASP.NET Core application developer, you can often get away without
directly supporting HTTPS in your app by taking advantage of the reverse-
proxy architecture, as shown in figure 28.3, in a process called SSL/TLS
offloading/termination. This is generally standard in Platform as a Service
(PaaS) cloud services, such as Azure App Service.

Figure 28.3 You have two options when using HTTPS with a reverse proxy: SSL/TLS
passthrough and SSL/TLS offloading. In SSL/TLS passthrough, the data is encrypted all the way
to your ASP.NET Core app. For SSL/TLS offloading, the reverse proxy handles decrypting the
data, so your app doesn’t have to.

With SSL/TLS offloading, instead of your application handling requests
using HTTPS directly, your app continues to use HTTP. The reverse proxy is
responsible for encrypting and decrypting HTTPS traffic to the browser. This
often gives you the best of both worlds: data is encrypted between the user’s
browser and the server, but you don’t have to worry about configuring
certificates in your application.

Note

If you’re concerned that the traffic is unencrypted between the reverse proxy

and your app, I recommend reading Troy Hunt’s post “CloudFlare, SSL and
unhealthy security absolutism”: http://mng.bz/eHCi. It discusses the pros and
cons of the problem as it relates to decrypting on the reverse proxy and why
you must consider the most likely attacks on your website, in a process called
threat modeling.

Depending on the specific infrastructure where you’re hosting your app,
SSL/TLS could be offloaded to a dedicated device on your network, a third-
party service like Cloudflare, or a reverse proxy (such as Internet Information
Services [IIS], NGINX, or HAProxy) running on the same or a different
server. Nevertheless, in some situations, you may need to handle SSL/TLS
directly in your app:

If you’re exposing Kestrel to the internet directly, without a reverse
proxy—This is a supported approach since ASP.NET Core 3.0, and can
give high performance. It is also often the case when you’re developing
your app locally.
If having HTTP between the reverse proxy and your app is not
acceptable—While securing traffic inside your network is less critical
compared with external traffic, it is undoubtedly more secure to use
HTTPS for internal traffic too. This may be a hard requirement for some
applications or sectors.
If you’re using technology that requires HTTPS—Some newer network
protocols, such as gRPC and HTTP/2, generally require an end-to-end
HTTPS connection.

In each of these scenarios, you’ll need to configure a TLS certificate for your
application so Kestrel can receive HTTPS traffic. In section 28.2 you’ll see
the easiest way to get started with HTTPS when developing locally, using the
ASP.NET Core development certificate.

28.2 Using the ASP.NET Core HTTPS development
certificates

Working with HTTPS certificates is easier than it used to be, but
unfortunately it can still be a confusing topic, especially if you’re a
newcomer to the web. In this section you’ll learn how the .NET software

development kit (SDK), Visual Studio, and IIS Express try to improve this
experience by handling a lot of the grunt work for you, and what to do when
things go wrong.

The first time you run a dotnet command using the .NET SDK, the SDK
installs an HTTPS development certificate on your machine. Any ASP.NET
Core application you create using the default templates (or for which you
don’t explicitly configure certificates) will use this development certificate to
handle HTTPS traffic. However, the development certificate is not trusted by
default. If you access a site that’s using an untrusted certificate, you’ll get a
browser warning, as shown in figure 28.4.

Figure 28.4 The developer certificate is not trusted by default, so apps serving HTTPS traffic
using it will be marked as insecure by browsers. Although you can bypass the warnings if
necessary, you should instead update the certificate to be trusted.

A brief primer on certificates and signing

HTTPS uses public key cryptography as part of the data-encryption process.
This uses two keys: a public key that anyone can see and a private key that
only your server can see. Anything encrypted with the public key can be

decrypted only with the private key. That way, a browser can encrypt
something with your server’s public key, and only your server can decrypt it.
A complete TLS certificate consists of both the public and private parts.

When a browser connects to your app, the server sends the public key part of
the TLS certificate. But how does the browser know that it was definitely
your server that sent the certificate? To achieve this, your TLS certificate
contains additional certificates, including one or more certificates from a
third party, a certificate authority (CA). At the end of the certificate chain is
the root certificate.

CAs are special trusted entities, and browsers are hardcoded to trust specific
root certificates. For the TLS certificate for your app to be trusted, it must
contain (or be signed by) a trusted root certificate. Browsers periodically
update their internal list of root certificates and revoke root certificates that
can no longer be trusted.

When you use the ASP.NET Core development certificate, or if you create
your own self-signed certificate, your site’s HTTPS is missing that trusted
root certificate. That means browsers won’t trust your certificate and won’t
connect to your server by default. To get around this, you need to tell your
development machine to explicitly trust the certificate.

In production, you can’t use a development or self-signed certificate, as a
user’s browser won’t trust it. Instead, you need to obtain a signed HTTPS
certificate from a service like Let’s Encrypt or from a cloud provider like
AWS, Azure, or Cloudflare. These certificates are already signed by a trusted
CA, so they are automatically trusted by browsers.

To solve these browser warnings, you need to trust the certificate. Trusting a
certificate is a sensitive operation; it’s saying “I know this certificate doesn’t
look quite right, but ignore that,” so it’s hard to do automatically. If you’re
running on Windows or macOS, you can trust the development certificate by
running

dotnet dev-certs https --trust

This command trusts the certificate by registering it in the operating system’s

certificate store. After you run this command, you should be able to access
your websites without seeing any warnings or “not secure” labels, as shown
in figure 28.5.

Figure 28.5 Once the development certificate is trusted, you will no longer see browser warnings
about the connection.

Tip

 You may need to close your browser after trusting the certificate to clear
the browser’s cache.

If you’re using Windows, Visual Studio, and IIS Express for development,

then you might not need to explicitly trust the development certificate. IIS
Express acts as a reverse proxy when you’re developing locally, so it handles
the SSL/TLS setup itself. On top of that, Visual Studio should trust the IIS
development certificate as part of installation, so you may never see the
browser warnings at all.

Tip

In macOS, before .NET 7, you would have to retrust the developer certificate
repeatedly for every new app. In .NET 7, the process is a lot smoother, so you
shouldn’t have to retrust it anything like as often!

Trusting the developer certificate works smoothly in Windows and macOS,
in most cases. Unfortunately, trusting the certificate in Linux is a little trickier
and depends on the specific flavor of Linux you’re using. On top of that,
software in Linux often uses its own certificate store, so you’ll probably need
to add the certificate directly to your favorite browser. If you’re using any of
the following scenarios, you’ll need to do more work:

Firefox browser in Windows, macOS, or Linux
Edge or Chrome browsers in Linux
API-to-API communication in Linux
An app running in Windows Subsystem for Linux (WSL)
Running applications in Docker

Each of these scenarios requires a slightly different approach. In many cases
it’s one or two commands, so I suggest following the documentation for your
scenario carefully at http://mng.bz/JglK.

Tip

If you’ve tried trusting the certificate, and your app is still giving errors, try
closing all your browser windows and running dotnet dev-certs https --
clean followed by dotnet dev-certs https --trust. Browsers cache
certificate trust, so the close and open step is important!

The ASP.NET Core and IIS development certificates make it easy to use
Kestrel with HTTPS locally, but those certificates won’t help once you move

to production. In the next section I show how to configure Kestrel to use a
production TLS certificate.

28.3 Configuring Kestrel with a production HTTPS
certificate

Creating a TLS certificate for production is often a laborious process, as it
requires proving to a third-party CA that you own the domain you’re creating
the certificate for. This is an important step in the trust process and ensures
that attackers can’t impersonate your servers. The result of the process is one
or more files, which is the HTTPS certificate you need to configure for your
app.

Tip

 The specifics of how to obtain a certificate vary by provider and by your
OS platform, so follow your provider’s documentation carefully. The
vagaries and complexities of this process are one of the reasons I strongly
favor the SSL/TLS-offloading or “one-click” approaches described
previously. Those approaches mean my apps don’t need to deal with
certificates, and I don’t need to use the approaches described in this section; I
delegate that responsibility to another piece of the network, or to the
underlying platform.

Once you have a certificate, you need to configure Kestrel to use it to serve
HTTPS traffic. In chapter 27 you saw how to set the port your application
listens on with the ASPNETCORE_URLS environment variable or via the
command line, and you saw that you could provide an HTTPS URL. As you
didn’t provide any certificate configuration, Kestrel used the development
certificate by default. In production you need to tell Kestrel which certificate
to use.

You can configure the certificates Kestrel uses in multiple ways. For a start,
you can load the certificate from multiple locations: from a .pfx file, from
.pem/.crt and .key files, or from the OS certificate store. You can also use
different certificates for different ports, use a different configuration for each

URL endpoint you expose, or configure Server Name Indication (SNI). For
full details, see the “Replace the default certificate from configuration”
section of Microsoft’s “Configure endpoints for the ASP.NET Core Kestrel
web server” documentation: http://mng.bz/wvv2.

The following listing shows one possible way to set a custom HTTPS
certificate for your production app by configuring the default certificate
Kestrel uses for HTTPS connections. You can add the
“Kestrel:Certificates:Default” section to your appsettings.json file (or
use any other configuration source, as described in chapter 10) to define the
.pfx file of the certificate to use. You must also provide the password for
accessing the certificate.

Listing 28.1 Configuring the default HTTPS certificate for Kestrel using a .pfx file

{

 “Kestrel”: { #A

 “Certificates”: { #A

 “Default”: { #A

 “Path”: “localhost.pfx”, #B

 “Password”: “testpassword” #C

 }

 }

 }

}

The preceding example is the simplest way to replace the HTTPS certificate,
as it doesn’t require changing any of Kestrel’s defaults. You can use a similar
approach to load the HTTPS certificate from the OS certificate store
(Windows or macOS), as shown in the “Replace the default certificate from
configuration” documentation mentioned previously (http://mng.bz/wvv2).

Warning

 Listing 28.1 hardcoded the certificate filename and password for
demonstration, but you should never do this in production. Either load these
from a configuration store like user-secrets, as you saw in chapter 10, or load
the certificate from the local store. Never put production passwords in your
appsettings.json files.

All the default ASP.NET Core templates configure your application to serve
both HTTP and HTTPS traffic, and with the configuration you’ve seen so far,
you can ensure that your application can handle both HTTP and HTTPS in
development and in production.

However, whether you use HTTP or HTTPS may depend on the URL users
click when they first browse to your app. For example, imagine you have an
app that listens using the default ASP.NET Core URLs: http://localhost:5000
for HTTP traffic and https://localhost:5001 for HTTPS traffic. The HTTPS
endpoint is available, but if a user doesn’t know that and uses the HTTP URL
(the default option in browsers), their traffic is unencrypted. Seeing as you’ve
gone to all the trouble to set up HTTPS, it’s probably best that you force
users to use it.

28.4 Enforcing HTTPS for your whole app

Enforcing HTTPS across your whole website is practically required these
days. Browsers are beginning to explicitly label HTTP pages as insecure; for
security reasons, you must use TLS any time you’re transmitting sensitive
data across the internet. Additionally, thanks to HTTP/2 (and the upcoming
HTTP/3), adding TLS can improve your app’s performance. In this section
you’ll learn three techniques for enforcing HTTPS in your application.

Tip

HTTP/2 offers many performance improvements over HTTP/1.x, and all
modern browsers require HTTPS to enable it. For a great introduction to
HTTP/2, see Google’s “Introduction to HTTP/2” at http://mng.bz/9M8j.
ASP.NET Core even includes support for HTTP/3, the next version of the
protocol! You can read about HTTP/3 at http://mng.bz/qrrJ.

There are multiple approaches to enforcing HTTPS for your application. If
you’re using a reverse proxy with SSL/TLS-offloading, it might be handled
for you anyway, without your having to worry about it within your apps. If
that’s the case, you may be able to disregard some of the steps in this section.

Warning

If you’re building a web API rather than a Razor Pages app, it’s common to
reject insecure HTTP requests entirely. You’ll see this approach in section
28.4.3.

One approach to improving the security of your app is to use HTTP security
headers. These are HTTP headers sent as part of your HTTP response that
tell the browser how it should behave. There are many headers available,
most of which restrict the features your app can use in exchange for increased
security. In chapter 30 you’ll see how to add your own custom headers to
your HTTP responses by creating custom middleware.

Tip

Scott Helme has some great guidance on this and other security headers you
can add to your site, such as the Content Security Policy (CSP) header. See
“Hardening your HTTP response headers” on his website at
http://mng.bz/7DDe.

One of these security headers, the HTTP Strict Transport Security (HSTS)
header, can help ensure that browsers use HTTPS where it’s available instead
of defaulting to HTTP.

28.4.1 Enforcing HTTPS with HTTP Strict Transport Security
headers

It’s unfortunate, but by default, browsers load apps over HTTP unless
otherwise specified. That means your apps must typically support both HTTP
and HTTPS, even if you don’t want to serve any traffic over HTTP, as shown
in figure 28.6. On top of that, if the initial request is over HTTP, the browser
may end up sending subsequent requests over HTTP too.

Figure 28.6 When you type in a URL, browsers load the app over HTTP by default. Depending
on the links returned by your app or the URLs entered, the browser may make HTTP or HTTPS
requests.

One partial mitigation (and a security best practice) is to add HTTP Strict
Transport Security headers to your responses.

Definition

 HTTP Strict Transport Security (HSTS) is a specification (https://www.rfc-
editor.org/rfc/rfc6797) for the Strict-Transport-Security header that
instructs the browser to use HTTPS for all subsequent requests to your
application. The HSTS header can be sent only with responses to HTTPS
requests. It is also relevant only for requests originating from a browser; it
has no effect on server-to-server communication or on mobile apps.

After a browser receives a valid HSTS header, the browser stops sending
HTTP requests to your app and uses only HTTPS instead, as shown in figure
28.7. Even if your app has an http:// link or the user enters http:// in the URL
bar of the app, the browser automatically replaces the request with an https://
version.

Figure 28.7 After a browser sends an HTTPS request, the app returns an HSTS header,
instructing the browser to always send requests over HTTPS. The next time the user attempts to

make an http:// request, the browser aborts the request and makes an https:// request instead.

Tip

You can achieve a similar upgrading of HTTP to HTTPS requests using the
Upgrade-Insecure-Requests directive in the Content-Security-Policy
(CSP) header. This provides fewer protections than the HSTS header but can
be used in combination with it. For more details on this directive and CSP in
general, see http://mng.bz/mVV4.

HSTS headers are strongly recommended for production apps. You generally
don’t want to enable them for local development, as that would mean you
could never run a non-HTTPS app locally. In a similar fashion, you should
use HSTS only on sites for which you always intend to use HTTPS, as it’s
hard (sometimes impossible) to turn off HTTPS once it’s enforced with
HSTS.

ASP.NET Core comes with built-in middleware for setting HSTS headers,
which is included in some of the default templates automatically. The
following listing shows how you can configure the HSTS headers for your
application using the HstsMiddleware in Program.cs.

Listing 28.2 Using HstsMiddleware to add HSTS headers to an application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddHsts(options => #A

{ #A

 options.MaxAge = TimeSpan.FromHours(1); #A

}); #A

WebApplication app = builder.Build();

if(app.Environment.IsProduction()) #B

{

 app.UseHsts(); #C

}

app.UseStaticFiles();

app.UseRouting();

app.MapRazorPages();

app.Run();

The preceding example shows how to change the MaxAge sent in the HSTS
header. It’s a good idea to start with a small value initially. Once you’re sure
your app’s HTTPS is functioning correctly, you can increase the age for
greater security. A typical value for production deployments is one year.

Warning

Once client browsers have received the HSTS header, browsers will default
to using HTTPS for all requests to your application. That means you must
commit to always using HTTPS for as long as you set MaxAge. If you disable
HTTPS, browsers will not revert to using HTTP until this duration has
expired, so your application may be inaccessible until then if you aren’t
listening on HTTPS! You can notify the browser that your app no longer

supports HSTS by setting MaxAge to 0.

One limitation with the HSTS header is that you must make an initial request
over HTTPS before you can receive the header. If the browser makes only
HTTP requests, the app never has a chance to send the HSTS header, so the
browser never knows to use HTTPS. One potential solution is called HSTS
preload.

HSTS preload isn’t part of the HSTS specification, but it’s supported by all
modern browsers. Preload bakes your HSTS header into the browser so that
the browser knows it should make only HTTPS requests to your site. That
removes the “first request” problem entirely, but be aware that HSTS preload
commits you to HTTPS forever, as it can’t easily be undone.

Once you’re comfortable with your application’s HTTPS configuration, you
can prepare your app for HSTS preload by configuring an HSTS header that

Has a MaxAge of at least one year, though two years are recommended
Has the includeSubDomains directive
Has the preload directive

Listing 28.3 shows how you can configure these directives in your app. The
listing also shows how to exclude the domain never-https.com so that if you
host your app at this domain, HSTS headers won’t be sent. This can be useful
for testing purposes.

Listing 28.3 Configuring the application HSTS header for preload

builder.Services.AddHsts(options =>

{

 options.Preload = true; #A

 options.IncludeSubDomains = true; #B

 options.MaxAge = TimeSpan.FromDays(365); #C

 options.ExcludedHosts.Add("never-https.com"); #D

});

Once you’ve prepared your application for HSTS preload, you can submit
your app for inclusion in the HSTS preload list that ships with modern
browsers. Visit the site https://hstspreload.org, confirm that your application

meets the requirements, and submit your domain. If all goes well, your
domain will be included in a future release of all modern browsers!

Tip

For more details on HSTS and attacks it can mitigate, see Scott Helme’s
article “HSTS—The missing link in Transport Layer Security,” at
http://mng.bz/5wwa.

HSTS is a great option for forcing users to use HTTPS on your website, and
if you can use HSTS preload, you can ensure that modern clients never send
requests over HTTP. Nevertheless, HSTS preload can take months to enforce,
and you won’t always want to take that approach. In the meantime, if a
browser makes an initial request over HTTP, it won’t receive the HSTS
header and may stay on HTTP! That’s unfortunate, but you can mitigate the
problem by redirecting insecure requests to HTTPS immediately.

28.4.2 Redirecting from HTTP to HTTPS with HTTPS
redirection middleware

The HstsMiddleware should always be used in conjunction with middleware
that redirects all HTTP requests to HTTPS.

Tip

 It’s possible to apply HTTPS redirection only to specific parts of your
application, such as to specific Razor Pages, but I don’t recommend that, as
it’s too easy to open a security hole in your application.

ASP.NET Core comes with HttpsRedirectionMiddleware, which you can
use to enforce HTTPS across your whole app. You add it to the middleware
pipeline in Program.cs, and it ensures that any requests that pass through it
are secure. If an HTTP request reaches the HttpsRedirectionMiddleware,
the middleware immediately short-circuits the pipeline with a redirect to the
HTTPS version of the request. The browser then repeats the request using
HTTPS instead of HTTP, as shown in figure 28.8.

Figure 28.8 The HttpsRedirectionMiddleware works with the HstsMiddleware to ensure that all
requests after the initial request are always sent over HTTPS.

Note

Even with HSTS and the HTTPS redirection middleware, there is still an
inherent weakness: by default, browsers always make an initial insecure
request over HTTP to your app. The only way to prevent this is with HSTS
preload, which tells browsers to always use HTTPS.

The HttpsRedirectionMiddleware is added in some of the default ASP.NET
Core templates. It is typically placed after the error handling and
HstsMiddleware, as shown in the following listing. By default, the
middleware redirects all HTTP requests to the secure endpoint, using an
HTTP 307 Temporary Redirect status code.

Listing 28.4 Using HttpsRedirectionMiddleware to enforce HTTPS for an application

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddRazorPages();

builder.Services.AddHsts(o => options.MaxAge = TimeSpan.FromHours(1));

WebApplication app = builder.Build();

if(app.Environment.IsProduction())

{

 app.UseHsts();

}

app.UseHttpsRedirection(); #A

app.UseStaticFiles();

app.UseRouting();

app.MapRazorPages();

app.Run();

The HttpsRedirectionMiddleware automatically redirects HTTP requests to
the first configured HTTPS endpoint for your application. If your application
isn’t configured for HTTPS, the middleware won’t redirect and instead logs a
warning:

warn: Microsoft.AspNetCore.HttpsPolicy.HttpsRedirectionMiddleware[3]

 Failed to determine the https port for redirect.

If you want the middleware to redirect to a different port than Kestrel knows
about, you can configure that by setting the ASPNETCORE_HTTPS_PORT
environment variable. This is sometimes necessary if you’re using a reverse
proxy, and it can be set in alternative ways, as described in Microsoft’s
“Enforce HTTPS in ASP.NET Core” documentation: http://mng.bz/6DDA.

SSL/TLS offloading, header forwarding, and detecting secure requests

At the start of section 28.1 I encouraged you to consider terminating HTTPS
requests at a reverse proxy. That way, the user uses HTTPS to talk to the
reverse proxy, and the reverse proxy talks to your app using HTTP. With this
setup, your users are protected, but your app doesn’t have to deal with TLS
certificates itself.

For the HttpsRedirectionMiddleware to work correctly, Kestrel needs some
way of knowing whether the original request that the reverse proxy received
was over HTTP or HTTPS. The reverse proxy communicates to your app
over HTTP, so Kestrel can’t figure that out without extra help.

The standard approach used by most reverse proxies (such as IIS, NGINX,
and HAProxy) is to add headers to the request before forwarding it to your
app. Specifically, a header called X-Forwarded-Proto is added, indicating
whether the original request protocol was HTTP or HTTPS.

ASP.NET Core includes ForwardedHeadersMiddleware to look for this
header (and others) and update the request accordingly, so your app treats a
request that was originally secured by HTTPS as secure for all intents and
purposes.

If you’re using IIS with the UseIisIntegration() extension, the header
forwarding is handled for you automatically. If you’re using a different
reverse proxy, such as NGINX or HAProxy, you can enable the middleware
by setting the environment variable
ASPNETCORE_FORWARDEDHEADERS_ENABLED=true, as you saw in chapter 27.
Alternatively, you can add the middleware to your application manually, as
shown in section 27.3.2.

When the reverse proxy forwards a request, the
ForwardedHeadersMiddleware looks for the X-Forwarded-Proto header and
updates the request details as appropriate. For all subsequent middleware, the
request is considered secure. When adding the middleware manually, it’s
important that you place ForwardedHeadersMiddleware before the call to
UseHsts() or UseHttpsRedirection() so that the forwarded headers are read
and the request is marked secure, as appropriate.

Using the HSTS and HTTPS redirection middleware is best practice when
you’re building a server-side application such as a Razor Pages app that will
always be accessed in the browser. If you’re building an API application.
however, a better approach is to not listen for insecure HTTP requests at all!

28.4.3 Rejecting HTTP requests in API applications

Browsers have been adding more and more protections, such as the HSTS
header, to try to protect users from using insecure HTTP requests. But not all
clients are using a web browser. In this section you’ll learn why API
applications should generally disable HTTP entirely.

If you’re building an API application, you often can’t rely on requests
coming from a browser. Your API application may primarily serve a client-
side framework in the browser, but it may also serve mobile applications or
provide an API to other backend services. That means you can’t rely on the
protections built into web browsers to use HTTPS for your API apps.

On top of that, even if you know all your users are using a browser, the only
way to prevent sending all requests over HTTP is to use HSTS preload, as
you saw in section 28.4.2. Sending even one request over HTTP can
compromise a user, so the safest approach is to listen only for HTTPS
requests, not HTTP requests. This is the best option for API apps.

Note

It would be safest to take this same approach for your browser apps, but
unfortunately, browsers currently default to the HTTP versions of apps by
default.

You can disable HTTP requests for your application by setting the URLs for
your app to include only https:// requests, using ASPNETCORE_URLS or another
approach, as described in chapter 27. Setting

ASPNETCORE_URLS=https://*:5001

would ensure that your app serves only HTTPS requests on port 5001 and
won’t handle HTTP connections at all. This protects your clients, as they
can’t incorrectly make HTTP requests, and it may even make things simpler
on your side, as you don’t need to add the HTTP redirection middleware.

HTTPS is one of the most basic requirements for adding security to your
application these days. It can be tricky to set up initially, but once you’re up
and running, you can largely forget about it, especially if you’re using
SSL/TLS termination at a reverse proxy.

Unfortunately, most other security practices require rather more vigilance to
ensure that you don’t accidentally introduce vulnerabilities into your app as it
grows and develops. In the next chapter we’ll look at several common
attacks, learn how ASP.NET Core protects you, and see a few things you
need to watch out for.

28.5 Summary

HTTPS is used to encrypt your app’s data as it travels from the server to
the browser and back. This encryption prevents third parties from seeing
or modifying it.
HTTPS is virtually mandatory for production apps, as modern browsers
like Chrome and Firefox mark non-HTTPS apps as explicitly “not
secure.”
In production, you can avoid handling the TLS in your app by using
SSL/TLS offloading. This is where a reverse proxy uses HTTPS to talk
to the browser, but the traffic is unencrypted between your app and the
reverse proxy. The reverse proxy could be on the same or a different
server, such as IIS or NGINX, or it could be a third-party service, such
as Cloudflare.
You can use the ASP.NET Core developer certificate or the IIS express

developer certificate to enable HTTPS during development. This can’t
be used for production, but it’s sufficient for testing locally. You must
run dotnet dev-certs https --trust when you first install the .NET
SDK to trust the certificate.
Kestrel is the default web server in ASP.NET Core. It is responsible for
reading and writing data from and to the network, parsing the bytes
based on the underlying HTTP and network protocols and converting
from raw bytes to .NET objects you can use in your apps.
You can configure an HTTPS certificate for Kestrel in production using
the Kestrel:Certificates:Default configuration section. This does
not require any code changes to your application; Kestrel automatically
loads the certificate when your app starts and uses it to serve HTTPS
requests.
You can use the HstsMiddleware to set HSTS headers for your
application to ensure that the browser always sends HTTPS requests to
your app instead of HTTP requests. HSTS can be enforced only when an
initial HTTPS request is made to your app, so it’s best used in
conjunction with HTTP to HTTPS redirection.
You can enable HSTS preload for your application to ensure that HTTP
requests from browsers are never sent and are always upgraded to
HTTPS. You must configure your app as shown in listing 28.3, deploy
your app with a TLS certificate, and register your app at the URL
https://hstspreload.org. This will schedule your app to be included in
browsers’ built-in list of HTTPS only sites.
You can enforce HTTPS for your whole app using the
HttpsRedirectionMiddleware. This will redirect any HTTP requests to
the HTTPS version of endpoints.
If you’re building an API application, you should avoid exposing your
application over HTTP entirely and use only HTTPS. Mobile and other
nonbrowser clients don’t have protections such as HSTS, so there’s no
safe way to support both HTTP and HTTPS. Disable HTTP for your app
by listening only on https:// URLs, such as by setting
ASPNETCORE_URLS=https://*:5001.

	Copyright_2023_Manning_Publications
	welcome
	1_Getting_started_with_ASP.NET_Core
	Part_1_Getting_started_with_minimal_APIs
	2_Understanding_ASP.NET_Core
	3_Your_first_application
	4_Handling_requests_with_the_middleware_pipeline
	5_Creating_a_JSON_API_with_minimal_APIs
	6_Mapping_URLs_to_endpoints_using_routing
	7_Model_binding_and_validation_in_minimal_APIs
	Part_2_Building_complete_applications
	8_An_introduction_to_dependency_injection
	9_Registering_services_with_dependency_injection
	10_Configuring_an_ASP.NET_Core_application
	11_Documenting_APIs_with_OpenAPI
	12_Saving_data_with_Entity_Framework_Core
	Part_3_Generating_HTML_with_Razor_Pages_and_MVC
	13_Creating_a_website_with_Razor_Pages
	14_Mapping_URLs_to_Razor_Pages_using_routing
	15_Generating_responses_with_page_handlers_in_Razor_Pages
	16_Binding_and_validating_requests_with_Razor_Pages
	17_Rendering_HTML_using_Razor_views
	18_Building_forms_with_Tag_Helpers
	19_Creating_a_website_with_MVC_controllers
	20_Creating_an_HTTP_API_using_web_API_controllers
	21_The_MVC_and_Razor_Pages_filter_pipeline
	22_Creating_custom_MVC_and_Razor_Page_filters
	23_Authentication:_Adding_users_to_your_application_with_Identity
	25_Authentication_and_authorization_for_APIs
	26_Monitoring_and_troubleshooting_errors_with_logging
	27_Publishing_and_deploying_your_application
	28_Adding_HTTPS_to_an_application

