

ASP.NET Core 8 and Angular
Sixth Edition

Full-stack web development with ASP.NET Core 8 and Angular

Valerio De Sanctis

BIRMINGHAM—MUMBAI

ASP.NET Core 8 and Angular
Sixth Edition
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Jane D’Souza
Project Editor: Janice Gonsalves
Content Development Editor: Shazeen Iqbal
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Presentation Designer: Pranit Padwal
Senior Developer Relations Marketing Executive: Priyadarshini Sharma

First published: October 2016
Second edition: November 2017
Third edition: February 2020
Fourth edition: January 2021
Fifth edition: April 2022
Sixth edition: February 2024

Production reference: 1220224

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80512-993-6

www.packt.com

www.packt.com

Contributors

About the author
Valerio De Sanctis is a skilled IT professional with more than 20 years of experience in lead pro-
gramming, web-based development, and project management using ASP.NET, PHP, and Java. He
held senior positions at a range of financial and insurance companies, most recently serving as Chief
Technology Officer, Chief Security Officer, and Chief Operating Officer at a leading after-sales and IT
service provider for multiple top-tier life and non-life insurance groups. He’s also one of Microsoft’s
Most Valuable Professional (MVP) for Developer Technologies and Cloud and Datacenter Management.

He has written various books on web development, many of which have become best-sellers on Am-
azon, with tens of thousands of copies sold worldwide.

I would like to thank those who supported me in writing this book: my beloved and beautiful wife,
Carla, for her awesome encouragement and invaluable support; my children, Viola and Daniele;
and my parents and sister. Last, but not least, I want to thank you, the reader, for picking up this
book. I really hope you will enjoy it!

About the reviewer
Wouter Huysentruit is a seasoned software developer and architect with over 20 years of experi-
ence across various fields. He aims to create solutions that are both easy to understand and maintain.
Currently, his focus lies in developing user-friendly web applications utilizing Microsoft technologies
and Angular, alongside contributing to numerous open-source projects, where he has been honored
with the Microsoft MVP award.

A big thanks goes out to my wife and kids for supporting me during the review of this book.

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

Table of Contents

Preface xxvii

Chapter 1: Introducing ASP.NET and Angular 1

Technical requirements �� 1
Two players, one goal ��� 2
The ASP�NET Core revolution �� 2

ASP.NET Core 1.x • 3
ASP.NET Core 2.x • 4
ASP.NET Core 3.x • 5
.NET 5 • 7
.NET 6 • 9
.NET 7 • 10
.NET 8 • 11

What’s new in Angular? �� 12
GetAngular • 12
AngularJS • 12
Angular 2 • 13
Angular 4 • 15
Angular 5 • 15
Angular 6 • 16
Angular 7 • 16
Angular 8 • 17
Angular 9 • 18
Angular 10 • 19
Angular 11 • 20
Angular 12 • 20
Angular 13 • 21

Table of Contentsviii

Angular 14 • 21
Angular 15 • 22
Angular 16 • 22
Angular 17 • 22

Reasons for choosing �NET and Angular �� 23
Summary ��� 24
Suggested topics ��� 24
References ��� 24

Chapter 2: Getting Ready 27

Technical requirements �� 27
A full-stack approach �� 28
MPAs, SPAs, PWAs, and NWAs ��� 28

Multi-page applications • 29
Single-page applications • 29
Progressive web applications • 30
Native web applications • 32
Product owner expectations • 32

An example SPA project �� 34
Not your usual Hello World! • 35

Preparing the workspace �� 35
Disclaimer — do (not) try this at home • 35

The broken code myth • 36
Stay hungry, stay foolish, yet be responsible as well • 37

Setting up the project(s) • 37
Installing the .NET 8 SDK • 38
Checking the SDK version • 39
Installing Node.js and the Angular CLI • 39
Creating the Angular and ASP.NET Core project • 39

Performing a test run • 48
Troubleshooting • 51

Architecture overview • 51
Summary ��� 52
Suggested topics ��� 53
References ��� 53

Table of Contents ix

Chapter 3: Looking Around 55

Technical requirements �� 56
Solution overview ��� 56
The ASP�NET back-end �� 56

Configuration files • 57
Program.cs • 57
appsettings.json • 60

Controllers • 61
WeatherForecastController • 62

Introducing OpenAPI (Swagger) • 63
The Angular front-end �� 66

The root files • 66
angular.json • 67
package.json • 67
tsconfig.json • 71
Other workspace-level files • 72

The /src/ folder • 73
The /src/app/ folder • 73

Our first test run • 77
First testing attempt • 78

Getting to work �� 79
Changing the API endpoints • 80

Implementing a baseUrl property • 82
Refactoring the Angular app • 83

Adding HomeComponent • 84
Adding FetchDataComponent • 85
Adding the navigation menu • 85
Updating the AppComponent • 87
Updating the AppRoutingModule • 90
Finishing touches • 91
Test run • 92

Summary ��� 94
Suggested topics ��� 94
References ��� 94

Table of Contentsx

Chapter 4: Front-End and Back-End Interactions 97

Technical requirements �� 98
Introducing ASP�NET Core health checks ��� 98

Adding the HealthCheck middleware • 98
Adding an Internet Control Message Protocol (ICMP) check • 99

Possible outcomes • 100
Creating an ICMPHealthCheck class • 100
Adding the ICMPHealthCheck • 102

Improving the ICMPHealthCheck class • 104
Adding parameters and response messages • 104
Updating the middleware setup • 105
Implementing a custom output message • 106
Configuring the output message • 108

Health checks in Angular �� 109
Creating the Angular component • 110

health-check.component.ts • 110
health-check.component.html • 119
health-check.component.css • 120

Adding the component to the Angular app • 122
AppRoutingModule • 122
NavMenuComponent • 123
Testing it out • 123

Restyling the UI �� 124
Introducing Angular Material • 125
Installing Angular Material • 125
Adding a MatToolbar • 127

Updating the AppModule • 127
Updating the NavMenuComponent HTML template • 127
First test run • 128

Playing with (S)CSS • 129
Introducing Sass • 130
Replacing CSS with Sass • 133
Restyling the tables • 135

Summary ��� 137
Suggested topics ��� 137
References ��� 137

Table of Contents xi

Chapter 5: Data Model with Entity Framework Core 141

Technical requirements �� 142
The WorldCities web app �� 142

Updating the ASP.NET Core app • 143
Updating the Angular app • 143

Minimal UI restyling • 144
Reasons to use a data server • 148

The data source �� 149
The data model �� 151

Introducing Entity Framework Core • 151
Installing Entity Framework Core • 152
The SQL Server Data Provider • 153

DBMS licensing models • 154
What about Linux? • 154
SQL Server alternatives • 154

Data modeling approaches • 155
Code-First • 155
Database-First • 156
Making a choice • 158

Creating the entities ��� 158
Defining the entities • 159

The City entity • 160
The Country entity • 163
Should we (still) use #region blocks? • 164

Defining relationships • 166
Adding the Country property to the City entity class • 166
Adding the Cities property to the Country entity class • 167

Defining the database table names • 169
Defining indexes • 169

Getting a SQL Server instance ��� 170
Installing SQL Server 2022 • 171
Installing the database management tool(s) • 173
Creating a SQL database on Azure • 173

SQL Database • 173
SQL Managed Instance • 173
SQL virtual machine • 174
Making a choice • 174

Table of Contentsxii

Setting up a SQL database • 174
Configuring the instance • 178

Configuring the database • 183
Creating the WorldCities database • 184
Adding the WorldCities login • 185
Mapping the login to the database • 186

Creating the database using Code-First �� 187
Setting up the DbContext • 187
Entity type configuration methods • 188

Data annotations • 188
Fluent API • 189
EntityTypeConfiguration classes • 190
Making a choice • 192

Database initialization strategies • 192
Updating the appsettings.json file • 193
Securing the connection string • 194

Introducing Secrets Storage • 195
Adding the secrets.json file • 195
Working with the secrets.json file • 198

Creating the database • 199
Updating Program.cs • 199
Adding the initial migration • 200
Using the dotnet CLI • 200
Using the Package Manager Console • 203
Checking the autogenerated database tables • 204
Understanding migrations • 205

Populating the database �� 205
Implement SeedController • 206
Import the Excel file • 207

Entity controllers ��� 214
CitiesController • 215
CountriesController • 216
Should we really use entities? • 216
Testing it out • 217

Summary ��� 218
Suggested topics ��� 219
References ��� 219

Table of Contents xiii

Chapter 6: Fetching and Displaying Data 223

Technical requirements �� 223
Fetching data ��� 224

Requests and responses • 224
JSON conventions and defaults • 225

A (very) long list • 226
city.ts • 227
cities.component.ts • 227
cities.component.html • 228
cities.component.scss • 230
app-routing.module.ts • 230
nav-component.html • 231

Serving data with Angular Material ��� 232
Adding AngularMaterialModule • 233
Introducing MatTable • 234

Updating AngularMaterialModule • 234
Updating CitiesComponent • 235

Adding pagination with MatPaginatorModule • 237
Client-side paging • 238
Server-side paging • 241

Adding sorting with MatSortModule • 251
Extending ApiResult • 251
Installing System.Linq.Dynamic.Core • 256
Updating CitiesController • 260
Updating the Angular app • 261

Adding filtering • 265
Extending ApiResult (again) • 266
CitiesController • 272
CitiesComponent • 273
CitiesComponent template (HTML) file • 275
CitiesComponent style (SCSS) file • 276
AngularMaterialModule • 276
Performance considerations • 278

Adding countries to the loop ��� 279
ASP.NET • 279

CountriesController • 279

Table of Contentsxiv

Angular • 282
country.ts • 283
countries.component.ts • 283
countries.component.html • 285
countries.component.scss • 286
AppModule • 287
AppRoutingModule • 287
NavComponent • 287
Testing CountriesComponent • 288

Summary ��� 289
Suggested topics ��� 289

ASP.NET • 290
Angular • 290

References ��� 290

Chapter 7: Forms and Data Validation 293

Technical requirements �� 294
Exploring Angular forms �� 294

Forms in Angular • 294
Reasons to use forms • 296
Template-driven forms • 297

The pros • 298
The cons • 298

Model-driven/Reactive Forms • 298
Building our first Reactive Form �� 301

ReactiveFormsModule • 302
CityEditComponent • 302

city-edit.component.ts • 304
city-edit.component.html • 307
city-edit.component.scss • 309

Adding the navigation link • 309
app-routing.module.ts • 310
cities.component.html • 310

Adding a new city ��� 312
Extending the CityEditComponent • 313
Adding the “Add a new City” button • 316

Adding a new route • 317

Table of Contents xv

HTML select • 319
Angular Material select (MatSelectModule) • 324

Understanding data validation �� 326
Template-driven validation • 327
Model-driven validation • 328

Our first validators • 328
Testing the validators • 331

Server-side validation • 333
DupeCityValidator • 335

Introducing the FormBuilder �� 340
Creating the CountryEditComponent • 341

country-edit.component.ts • 341
The IsDupeField server-side API • 346
country-edit.component.html • 348
country-edit.component.scss • 350
AppRoutingModule • 350
CountriesComponent • 351

Testing the CountryEditComponent • 352
Improving the filter behavior �� 355

Throttling and debouncing • 356
Definitions • 356
Why would we want to throttle or debounce our code? • 356
Debouncing calls to the back-end • 357

Updating the CitiesComponent • 357
Updating the CountriesComponent • 359

What about throttling? • 359
Summary ��� 360
Suggested topics ��� 360
References ��� 361

Chapter 8: Code Tweaks and Data Services 363

Technical requirements �� 364
Optimizations and tweaks ��� 364

Template improvements • 364
Form validation shortcuts • 365

Class inheritance • 367
Implementing a BaseFormComponent • 367

Table of Contentsxvi

Extending CountryEditComponent • 369
Extending CityEditComponent • 370

Bug fixes and improvements ��� 371
Validating lat and lon • 371

city-edit.component.ts • 371
base-form.component.ts • 373
city-edit.component.html • 374

Adding the number of cities • 376
CountriesController • 377
Creating the CountryDTO class • 379
Angular front-end updates • 380

DTO classes – should we really use them? • 383
Separation of concerns • 384
Security considerations • 384
DTO classes versus anonymous types • 384
Securing entities • 386
Final thoughts • 389

Adding the country name • 390
CitiesController • 390
Angular front-end updates • 391

Data services �� 394
XMLHttpRequest versus Fetch (versus HttpClient) • 394

XMLHttpRequest • 394
Fetch • 396
HttpClient • 397

Building a data service • 399
Creating the BaseService • 400
Adding the common interface methods • 401
Creating CityService • 403
Implementing CityService • 405
Creating CountryService • 412

Summary ��� 418
Suggested topics ��� 418
References ��� 419

Table of Contents xvii

Chapter 9: Back-End and Front-End Debugging 421

Technical requirements �� 422
Backend debugging �� 422

Windows or Linux? • 422
The basics • 423
Conditional breakpoints • 423

Conditions • 425
Actions • 425
Testing the conditional breakpoint • 426

The Output window • 427
LogLevel types • 428
Testing the LogLevel • 429
Configuring the Output window • 432

Debugging EF Core • 432
The GetCountries() SQL query • 433

Frontend debugging ��� 437
Visual Studio JavaScript debugging • 437

JavaScript source maps • 439
Browser developer tools • 439
Angular form debugging • 441

A look at the Form Model • 441
The pipe operator • 444
Reacting to changes • 444
The activity log • 445

Client-side debugging • 448
Unsubscribing the Observables • 449

The unsubscribe() method • 449
The takeUntil() operator • 451
Other viable alternatives • 452
Should we always unsubscribe? • 455

Application logging �� 456
Introducing ASP.NET Core logging • 457
Database Management System (DBMS) structured logging with Serilog • 458

Installing the NuGet packages • 458
Configuring Serilog • 458

Table of Contentsxviii

Logging HTTP requests • 460
Accessing the logs • 460

Summary ��� 462
Suggested topics ��� 463
References ��� 463

Chapter 10: ASP.NET Core and Angular Unit Testing 465

Technical requirements �� 466
ASP�NET Core unit tests �� 466

Creating the WorldCities.Server.Tests project • 466
Moq • 468
Microsoft.EntityFrameworkCore.InMemory • 469
Adding the WorldCities dependency reference • 469

Our first test • 470
Arrange • 472
Act • 473
Assert • 474
Executing the test • 474
Debugging tests • 476

Test-driven development • 478
Behavior-driven development • 479

Angular unit tests ��� 481
General concepts • 482

Introducing the TestBed interface • 482
Testing with Jasmine • 483

Our first Angular test suite • 483
The import section • 484
The describe and beforeEach sections • 484
Adding a mock CityService • 486
Implementing the mock CityService • 487
Configuring the fixture and the component • 489
Creating the title test • 490
Creating the cities tests • 491
Running the test suite • 492

Summary ��� 495
Suggested topics ��� 495
References ��� 495

Table of Contents xix

Chapter 11: Authentication and Authorization 497

Technical requirements �� 498
To auth, or not to auth? ��� 498

Authentication • 499
Authentication methods • 499
Third-party authentication • 504

Authorization • 505
Proprietary authorization • 505
Third-party authorization • 506

Proprietary versus third-party • 506
Proprietary auth with ASP�NET Core ��� 507

The ASP.NET Core Identity model • 510
Entity types • 510

Setting up ASP.NET Core Identity • 511
Adding the NuGet packages • 511
Creating ApplicationUser • 512
Extending ApplicationDbContext • 512
Configuring the ASP.NET Core Identity service • 513
Implementing AccountController • 514
Configuring JwtBearerMiddleware • 521
Updating SeedController • 522
Securing the action methods • 533
A word on async tasks, awaits, and deadlocks • 535

Updating the database �� 536
Adding identity migration • 537
Applying the migration • 537

Updating the existing data model • 538
Dropping and recreating the data model from scratch • 539

Seeding the data • 539
Implementing authentication in Angular �� 541

Adding the LoginRequest interface • 542
Adding the LoginResult interface • 542
Implementing AuthService • 542
Creating LoginComponent • 544

login.component.ts • 544
login.component.html • 545

Table of Contentsxx

login.component.scss • 547
Updating AppRoutingModule • 547
Updating NavMenuComponent • 547
Testing LoginComponent • 548

Adding the authStatus observable • 550
Updating the UI • 551
Testing the observable • 554

HttpInterceptors • 555
Implementing AuthInterceptor • 556
Updating AppModule • 558
Testing HttpInterceptor • 558

Route Guards • 558
Available guards • 559
Implementing AuthGuard • 560
Updating AppRoutingModule • 561
Testing AuthGuard • 562

Finishing touches ��� 562
Identity API endpoints �� 563

Activating the Identity API endpoints • 563
Testing the endpoints • 564
Should we use the Identity API endpoints? • 566

Summary ��� 567
Suggested topics ��� 568
References ��� 568

Chapter 12: Progressive Web Apps 571

Technical requirements �� 572
PWA distinctive features ��� 572

Secure origin • 573
Offline loading • 574

Service workers versus HttpInterceptors • 574
Introducing @angular/service-worker • 575

Implementing the PWA requirements ��� 576
Manual installation • 576

Adding the @angular/service-worker npm package • 577
Updating the angular.json file • 577
Importing ServiceWorkerModule • 578

Table of Contents xxi

Updating the index.html file • 578
Adding the Web App Manifest file • 579
Adding the favicon • 583
Adding the ngsw-config.json file • 584

Automatic installation • 585
The Angular PNG icon set • 586

Handling the offline status �� 587
Option 1 – the window’s ononline/onoffline events • 587
Option 2 – the navigator.onLine property • 587

Downsides of the JavaScript approaches • 588
Option 3 – the ng-connection-service npm package • 588

Installing the service • 589
Updating the AppModule file • 589
Updating the AppComponent • 590

Adding the api/heartbeat endpoint • 593
Introducing Minimal APIs • 594

Cross-Origin Resource Sharing • 594
Implementing CORS • 596

Testing the PWA capabilities ��� 598
Compiling the app • 598
Installing http-server • 598
Testing out our PWAs • 599

Installing the PWA • 602
Summary ��� 603
Suggested topics ��� 604
References ��� 604

Chapter 13: Beyond REST – Web API with GraphQL 607

Technical requirements �� 608
GraphQL versus REST ��� 608

REST • 608
Guiding constraints • 609
Drawbacks • 610

GraphQL • 612
Advantages over REST • 612
Limitations • 613

Table of Contentsxxii

Implementing GraphQL �� 613
Adding GraphQL to ASP.NET Core • 614

Installing HotChocolate • 614
Testing the GraphQL schema • 622

Adding GraphQL to Angular • 625
Installing Apollo Angular • 625
Refactoring CityService • 628
Refactoring CountryService • 636

Summary ��� 636
Suggested topics ��� 637
References ��� 637

Chapter 14: Real-Time Updates with SignalR 639

Technical requirements �� 640
Real-time HTTP and server push ��� 640

Introducing SignalR • 641
Hubs • 641
Protocols • 641
Connections, users, and groups • 642

Implementing SignalR �� 642
Setting up SignalR in ASP.NET Core • 643

Creating the HealthCheckHub • 643
Setting up services and middleware • 644
Adding the broadcast message • 644

Installing SignalR in Angular • 646
Adding the npm package • 646
Implementing the HealthCheckService • 647
Adding WebSocket support to Angular proxy • 649
Refactoring the HealthCheckComponent • 650

Testing it all ��� 652
Client-initiated events �� 653

Updating the HealthCheckHub • 653
Updating the HealthCheckService • 654
Updating the HealthCheckComponent • 655
Testing the new feature • 656

Summary ��� 656

Table of Contents xxiii

Suggested topics ��� 657
References ��� 657

Chapter 15: Windows, Linux, and Azure Deployment 659

Technical requirements �� 659
Getting ready for production ��� 660

Configuring the endpoints • 660
Tweaking the HOSTS file • 661
Other viable alternatives • 662

ASP.NET Core deployment tips • 663
The launchSettings.json file • 663
Runtime environments • 665
.NET deployment modes • 671

Angular deployment tips • 673
ng serve, ng build, and the package.json file • 674
Differential loading • 675
The angular.json configuration file(s) • 676
Updating the environment.ts file(s) • 676
Automatic deployment • 676

Windows deployment ��� 677
Creating a Windows Server VM on MS Azure • 677

Accessing the MS Azure portal • 677
Adding a new Windows VM • 678
Configuring a DNS name label • 682
Setting the inbound security rules • 682

Configuring the Windows VM • 683
Adding the IIS web server • 684
Installing the ASP.NET Core Windows hosting bundle • 686

Publishing healthcheck.client and HealthCheck.Server • 687
Introducing Visual Studio publish profiles • 688
Folder publish profile • 688
FTP publish profile • 689
Azure Virtual Machine publish profile • 690

Configuring IIS • 691
Adding the healthcheck.client website entry • 691
Adding the HealthCheck.Server website entry • 693
A note on TLS/SSL certificates • 693

Table of Contentsxxiv

Configuring the IIS application pool • 695
Adding the .webmanifest MIME type • 697

Testing healthcheck.client and HealthCheck.Server • 698
Testing the app • 698

Linux deployment �� 699
Creating a Linux VM on MS Azure • 700

Adding a new Linux VM • 700
Configuring a DNS name label • 701
Setting the inbound security rules • 702

Configuring the Linux VM • 702
Connecting to the VM • 703
Installing the ASP.NET Core Runtime • 704
Installing Nginx • 705
Opening the 80 and 443 TCP ports • 707

Publishing worldcities.client and WorldCities.Server • 708
Building the Angular app • 708
Building the WorldCities.Server app • 709
Deploying the files to the Linux VM • 711
Configuring Kestrel and Nginx • 715

Testing WorldCities and WorldCities.Server • 724
Testing the app • 724
Troubleshooting • 726

Azure App Service deployment �� 727
Creating the App Service instances • 727

Adding the healthcheck.client Static Web App • 728
Adding the HealthCheck.Server Web App • 730

Adapting our apps for App Service • 731
Publishing our apps to App Service • 732

Publishing the Angular app • 732
Publishing the ASP.NET Core project • 733

Testing healthcheck.client and HealthCheck.Server • 736
Summary ��� 738
Suggested topics ��� 738
References ��� 739
Why subscribe? �� 741

Table of Contents xxv

Other Books You May Enjoy 743

Index 747

Preface

ASP.NET Core is a free, open-source, modular web framework developed by Microsoft. It operates on
top of the full .NET Framework on Windows or .NET Core on cross-platform compatibility. Specifically
designed for the efficient creation of HTTP services, it caters to a wide array of clients, including web
browsers, mobile devices, smart TVs, and web-based home automation tools.

Angular is the successor of AngularJS, a world-renowned development framework born to equip cod-
ers with the necessary tools for building reactive, cross-platform web applications optimized for both
desktop and mobile environments. It features a structure-rich template approach based on a natural,
easily writable, and readable syntax.

Technically, ASP.NET Core and Angular share little in common. ASP.NET Core primarily focuses on
server-side web development, while Angular addresses client-side aspects such as the User Interface
(UI) and User Experience (UX). However, both frameworks emerged from a shared vision: utilizing
the HTTP protocol not just for serving web pages but as a platform for building web-based APIs that
efficiently send and receive data. This concept, emerging over the first two decades of the World Wide
Web, is now a widely accepted foundation of modern web development.

The compelling reasons behind this shift in perspective are many, but the most important is the in-
trinsic characteristics of the HTTP protocol. Its simplicity, flexibility, and universality make it suited
to the diverse needs of the ever-evolving World Wide Web. Nowadays, almost any platform that we
can think of has an HTTP library, so HTTP services can reach a broad range of clients, from browsers
and IoT devices to desktop applications and video games.

The main purpose of this book is to bring together the latest versions of ASP.NET Core and Angular
into a single development. This combination demonstrates how to create high-performance web
applications and services accessible to a wide range of clients, seamlessly blending server and cli-
ent-side functionalities.

Who this book is for
This book is for intermediate and experienced developers who already know about ASP.NET Core and
Angular and are looking to learn more about them and understand how to use them together to create
a production-ready Single-Page Application (SPA) or Progressive Web Application (PWA) using SQL
Server and Entity Framework Core.

Prefacexxviii

However, the fully documented code samples (also available on GitHub) and the step-by-step imple-
mentation tutorials make this book easy to understand even for beginners and developers who are
just getting started.

What this book covers
Chapter 1, Introducing ASP.NET and Angular, introduces some of the basic concepts of the frameworks
that we are going to use throughout the book, as well as the various kinds of web applications that can
be created (SPAs, PWAs, native web apps, and more).

Chapter 2, Getting Ready, explains how to create the ASP.NET Core projects that will be used for the
rest of the book using the templates provided by Visual Studio for the back-end (ASP.NET Core Web
API) and the front-end (Standalone Angular App).

Chapter 3, Looking Around, is a detailed overview of the various back-end and front-end elements
provided by the .NET Core and Angular templates shipped with Visual Studio, backed up with some
high-level explanations about how they can work together in a typical HTTP request-response cycle.

Chapter 4, Front-End and Back-End Interactions, provides a comprehensive tutorial for building a sample
ASP.NET Core and Angular app that provides diagnostic info to the end user by querying health check
middleware using a Bootstrap-based Angular client.

Chapter 5, Data Model with Entity Framework Core, constitutes a journey through Entity Framework
Core and its capabilities as an Object-Relational Mapping (ORM) framework, from SQL database
deployment (cloud-based and/or local instance) to data model design, including various techniques
to read and write data from backend controllers.

Chapter 6, Fetching and Displaying Data, covers how to expose Entity Framework Core data using the
ASP.NET Core back-end web API, consume that data with Angular, and then show it to end users using
the front-end UI.

Chapter 7, Forms and Data Validation, details how to implement the HTTP PUT and POST methods in
back-end web APIs in order to perform insert and update operations with Angular, along with serv-
er-side and client-side data validation.

Chapter 8, Code Tweaks and Data Services, explores some useful refactoring and improvements to
strengthen your app’s source code and includes an in-depth analysis of Angular’s data services to
understand why and how to use them.

Chapter 9, Back-End and Front-End Debugging, looks at how to properly debug the back-end and front-
end stacks of a typical web application using the various debugging tools provided by Visual Studio
to their full extent.

Chapter 10, ASP.NET Core and Angular Unit Testing, comprises a detailed review of the Test-Driven De-
velopment (TDD) and Behavior-Driven Development (BDD) development practices and goes into how
to define, implement, and perform back-end and front-end unit tests using xUnit, Jasmine, and Karma.

Preface xxix

Chapter 11, Authentication and Authorization, gives you a high-level introduction to the concepts of
authentication and authorization and presents a narrow lineup of some of the various techniques,
methodologies, and approaches to properly implementing proprietary or third-party user identity
systems. A practical example of a working ASP.NET Core and Angular authentication mechanism
based upon ASP.NET Identity and IdentityServer4 is included.

Chapter 12, Progressive Web Apps, delves into how to convert an existing SPA into a PWA using service
workers, manifest files, and offline caching features.

Chapter 13, Beyond REST – Web API with GraphQL, introduces the concept of the GraphQL query language,
explains its pros and cons, and shows how to implement a GraphQL-based API using HotChocolate
(for the back-end) and Apollo Angular (for the front-end).

Chapter 14, Real-Time Updates with SignalR, is dedicated to SignalR, a free and open-source library that
can be used to send asynchronous notifications to client-side web applications and explains how to
implement it in ASP.NET Core and Angular.

Chapter 15, Windows, Linux, and Azure Deployment, teaches you how to deploy the ASP.NET and An-
gular apps created in the previous chapters and publish them in a cloud-based environment using a
Windows Server or a Linux CentOS virtual machine, as well as Azure App Service deployment.

To get the most out of this book
These are the software packages (and relevant version numbers) used to write this book and test the
source code:

• Visual Studio 2022 Community Edition 17.8.3 with the optional ASP.NET and web development
workload (it can be selected from the Workloads section within the Visual Studio installer app)

• Microsoft .NET 8 SDK 8.0.101
• TypeScript 5.2
• NuGet package manager 6.8.0
• Node.js 20.10.0
• Angular 17.0.3

For deployment on Windows:

• Internet Information Services (IIS) (Windows Server)
• ASP�NET Core Runtime 8 and Windows Hosting Bundle Installer for Win64 (ASP.NET official

website)

For deployment on Linux:

• ASP�NET Core Runtime 8 for Linux (YUM package manager)
• �NET 8 CLR for Linux (YUM package manager)
• Nginx HTTP Server (YUM package manager)

Prefacexxx

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/ASP.
NET-Core-8-and-Angular. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/gbp/9781805129936.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file exten-
sions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Navigate to the /
ClientApp/src/app/cities folder.”

A block of code is set as follows:

<mat-form-field [hidden]="!cities">
<input matInput (keyup)="loadData($event.target.value)"
placeholder="Filter by name (or part of it)...">
</mat-form-field>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are highlighted:

import { FormGroup, FormControl } from '@angular/forms';

class ModelFormComponent implements OnInit {
 form: FormGroup;

 ngOnInit() {
 this.form = new FormGroup({
 title: new FormControl()
 });
 }
}

Any command-line input or output is written as follows:

> dotnet new angular -o HealthCheck

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in
menus or dialog boxes, also appear in the text like this. For example: “Select System info from the
Administration panel.”

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular
https://github.com/PacktPublishing/
https://packt.link/gbp/9781805129936

Preface xxxi

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Prefacexxxii

Share your thoughts
Once you’ve read ASP.NET Core 8 and Angular, Sixth Edition, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1805129937

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805129936

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805129936

1
Introducing ASP.NET and Angular

Over the first two chapters of this book, we’ll build the basics of our ASP�NET and Angular journey by
mixing theoretical coverage of their most relevant features with a practical approach. More specifically,
in the first chapter, we’ll briefly review the recent history of ASP.NET/.NET Core and Angular frame-
works, while in the second chapter, we’ll learn how to configure our local development environment
so we can assemble, build, and test a sample web application boilerplate.

By the end of these chapters, you’ll have gained knowledge of the path taken by ASP.NET and Angular
to improve web development in the last few years and learned how to properly set up an ASP.NET and
Angular web application.

Here are the main topics that we are going to cover in this chapter:

• Two players, one goal: How ASP.NET and Angular can be used together to build a modern,
feature-rich, and highly versatile web application

• The ASP�NET Core revolution: A brief history of ASP.NET’s most recent achievements
• What’s new in Angular: A recap of the Angular development journey, from its origins to the

most recent days

Technical requirements
These are the software packages (and relevant version numbers) used to write this book and test the
source code:

• Visual Studio 2022 Community edition 17.8.1 with the optional ASP.NET and web development
workload (it can be selected from the Workloads section within the Visual Studio installer app)

• Microsoft .NET 8 SDK 8.0.100
• TypeScript 5.2
• NuGet package manager 6.8.0
• Node.js 20.10.0
• Angular 17.0.3

Introducing ASP.NET and Angular2

We strongly suggest using the same version used within this book, or newer, but at your own risk!
Jokes aside, if you prefer to use a different version, that’s perfectly fine, as long as you are aware that,
in that case, you may need to make some manual changes and adjustments to the source code.

The code files for this book can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular.

Two players, one goal
From the perspective of a fully functional web-based application, we can say that the web API interface
provided with the ASP.NET framework is a programmatic set of server-side handlers used by the server
to expose a number of hooks and/or endpoints to a defined request-response message system. This is
typically expressed in structured markup languages (XML), language-independent data formats (JSON),
or query languages for APIs (GraphQL). As we’ve already said, this is achieved by exposing application
programming interfaces (APIs) through HTTP and/or HTTPS protocols via a publicly available web
server such as IIS, Node.js, Apache, or NGINX.

Similarly, Angular can be described as a modern, feature-rich, client-side framework that pushes the
HTML and ECMAScript’s most advanced features, along with the modern browser’s capabilities, to
their full extent by binding the input and/or output parts of an HTML web page into a flexible, reus-
able, and easily testable model.

Can we combine the back-end strengths of ASP.NET and the front-end capabilities of Angular in order
to build a modern, feature-rich, and highly versatile web application?

The answer, in short, is yes. In the following sections, we’ll see how we can do that by analyzing all
the fundamental aspects of a well-written, properly designed, web-based product, and how the latest
versions of ASP.NET and/or Angular can be used to handle each one of them. However, before doing
all that, it might be very useful to backtrack a bit and spend some valuable time recollecting what’s
happened in the last 8 years in the development history of the two frameworks we’re going to use. It
will be very useful to understand the main reasons why we’re still giving them full credit, despite the
valuable efforts of their ever-growing competitors.

The ASP.NET Core revolution
To summarize what has happened in the ASP.NET world within the last decade is not an easy task;
in short, we can say that we’ve undoubtedly witnessed the most important series of changes in .NET
Framework since the year it came to life. This was a revolution that changed the whole Microsoft ap-
proach to software development in almost every way. To properly understand what happened in those
years, it would be useful to identify some distinctive key frames within a slow, yet constant, journey
that allowed a company known (and somewhat loathed) for its proprietary software, licenses, and
patents to become a driving force for open source development worldwide.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular

Chapter 1 3

The first relevant step, at least in my humble opinion, was taken on April 3, 2014, at the annual Micro-
soft Build conference, which took place at the Moscone Center (West) in San Francisco. It was there,
during a memorable keynote speech, that Anders Hejlsberg – father of Delphi and lead architect of
C# – publicly released the first version of the .NET Compiler Platform, known as Roslyn, as an open
source project. It was also there that Scott Guthrie, executive vice president of the Microsoft Cloud
and AI group, announced the official launch of .NET Foundation, a non-profit organization aimed
at improving open source software development and collaborative work within the .NET ecosystem.

From that pivotal day, the .NET development team published a constant flow of Microsoft open source
projects on the GitHub platform, including Entity Framework Core (May 2014), TypeScript (October
2014), .NET Core (October 2014), CoreFX (November 2014), CoreCLR and RyuJIT (January 2015), MSBuild
(March 2015), the .NET Core CLI (October 2015), Visual Studio Code (November 2015), .NET Standard
(September 2016), and so on.

ASP.NET Core 1.x
The most important achievement brought by these efforts toward open source development was the
public release of ASP.NET Core 1.0, which came out in Q3 2016. It was a complete reimplementation
of the ASP.NET framework that we had known since January 2002 and that had evolved, without sig-
nificant changes in its core architecture, up to version 4.6.2 (August 2016). The brand-new framework
united all the previous web application technologies, such as MVC, Web API, and web pages, into
a single programming module, formerly known as MVC6. The new framework introduced a fully
featured, cross-platform component, also known as .NET Core, shipped with the whole set of open
source tools mentioned previously, namely, a compiler platform (Roslyn), a cross-platform runtime
(CoreCLR), and an improved x64 Just-In-Time compiler (RyuJIT).

Some of you might remember that ASP.NET Core was originally called ASP.NET 5. As a
matter of fact, ASP.NET 5 was no less than the original name of ASP.NET Core until mid-
2016, when the Microsoft developer team chose to rename it to emphasize the fact that
it was a complete rewrite. The reasons for that, along with the Microsoft vision about
the new product, are further explained in the following Scott Hanselman blog post that
anticipated the changes on January 16, 2016: http://www.hanselman.com/blog/ASPNE
T5IsDeadIntroducingASPNETCore10AndNETCore10.aspx.

For those who don’t know, Scott Hanselman has been the outreach and community man-
ager for .NET/ASP.NET/IIS/Azure and Visual Studio since 2007. Additional information
regarding the perspective switch is also available in the following article by Jeffrey T.
Fritz, program manager for Microsoft and a NuGet team leader: https://blogs.msdn.
microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/.

As for Web API 2, it was a dedicated framework for building HTTP services that returned
pure JSON or XML data instead of web pages. Initially born as an alternative to the MVC
platform, it has been merged with the latter into the new, general-purpose web application
framework known as MVC6, which is now shipped as a separate module of ASP.NET Core.

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

Introducing ASP.NET and Angular4

The 1.0 final release was shortly followed by ASP.NET Core 1.1 (Q4 2016), which introduced some new
features and performance enhancements and also addressed many bugs and compatibility issues af-
fecting the earlier release. These new features include the ability to configure middleware as filters (by
adding them to the MVC pipeline rather than the HTTP request pipeline); a built-in, host-independent
URL rewrite module, made available through the dedicated Microsoft.AspNetCore.Rewrite NuGet
package; view components as tag helpers; view compilation at runtime instead of on-demand; and

.NET native compression and caching middleware modules.

ASP.NET Core 2.x
Another major step was taken with ASP.NET Core 2.0, which came out in Q2 2017 as a preview and
then in Q3 2017 for the final release. The new version featured a wide number of significant interface
improvements, mostly aimed at standardizing the shared APIs among .NET Framework, .NET Core,
and .NET Standard to make them backward-compatible with .NET Framework. Thanks to these efforts,
moving existing .NET Framework projects to .NET Core and/or .NET Standard became a lot easier than
before, giving many traditional developers a chance to try and adapt to the new paradigm without
losing their existing know-how.

Again, the major version was shortly followed by an improved and refined one: ASP.NET Core 2.1. This
was officially released on May 30, 2018, and introduced a series of additional security and performance
improvements, as well as a bunch of new features, including SignalR, an open source library that
simplifies adding real-time web functionality to .NET Core apps; Razor class libraries; a significant
improvement in the Razor SDK that allows developers to build views and pages into reusable class
libraries, and/or library projects that could be shipped as NuGet packages; the Identity UI library and
scaffolding, to add identity to any app and customize it to meet your needs; HTTPS support enabled by
default; built-in General Data Protection Regulation (GDPR) support using privacy-oriented APIs and
templates that give users control over their personal data and cookie consent; updated SPA templates
for Angular and ReactJS client-side frameworks; and much more.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core
1.1, check out the following links:

• Release notes: https://github.com/aspnet/AspNetCore/releases/1.1.0
• Commits list: https://github.com/dotnet/core/blob/master/release-

notes/1.1/1.1-commits.md

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core
2.1, check out the following links:

• Release notes: https://docs.microsoft.com/en-US/aspnet/core/release-
notes/aspnetcore-2.1

• Commits list: https://github.com/dotnet/core/blob/master/release-
notes/2.1/2.1.0-commit.md

https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md

Chapter 1 5

Wait a minute: did we just say Angular? Yeah, that’s right. As a matter of fact, since its initial release,
ASP.NET Core has been specifically designed to seamlessly integrate with popular client-side frame-
works such as ReactJS and Angular. It is precisely for this reason that books such as this exist. The
major difference introduced in ASP.NET Core 2.1 is that the default Angular and ReactJS templates
have been updated to use the standard project structures and build systems for each framework (the
Angular CLI and NPX’s create-react-app command) instead of relying on task runners such as Grunt
or Gulp, module builders such as webpack, or toolchains such as Babel, which were widely used in
the past, although they were quite difficult to install and configure.

Six months after the release of the 2.1 version, the .NET Foundation came out with a further im-
provement: ASP.NET Core 2.2 was released on December 4, 2018, with several fixes and new features,
including an improved endpoint routing system for better dispatching of requests, updated templates
featuring Bootstrap 4 and Angular 6 support, and a new health checks service to monitor the status
of deployment environments and their underlying infrastructures, including container orchestration
systems such as Kubernetes, built-in HTTP/2 support in Kestrel, and a new SignalR Java client to ease
the usage of SignalR within Android apps.

ASP.NET Core 3.x
ASP.NET Core 3 was released in September 2019 and came with another bunch of performance and
security improvements and new features, such as:

• Windows desktop application support (Windows only) with advanced importing capabilities
for Windows Forms and Windows Presentation Foundation (WPF) applications

• C# 8 support
• .NET Platform-dependent intrinsic access through a new set of built-in APIs that could bring

significant performance improvements in certain scenarios

Being able to eliminate the need for these tools was a major achievement, which has played
a decisive role in revamping the .NET Core usage and growth rate among the developer
communities since 2017. If you take a look at the two previous installments of this book –
ASP.NET Core and Angular 2, published in mid-2016, and ASP.NET Core 2 and Angular 5, out
in late 2017 – and compare their first chapter with this one, you will see the huge difference
between having to manually use Gulp, Grunt, or webpack, and relying on the integrated
framework-native tools. This is a substantial reduction in complexity that would greatly
benefit any developer, especially those less accustomed to working with those tools.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core
2.2, check out the following links:

• Release notes: https://docs.microsoft.com/en-US/aspnet/core/release-
notes/aspnetcore-2.2

• Commits list: https://github.com/dotnet/core/blob/master/release-
notes/2.2/2.2.0/2.2.0-commits.md

https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md

Introducing ASP.NET and Angular6

• Single-file executable support via the dotnet publish command using the <PublishSingleFile>
XML element in project configuration or through the /p:PublishSingleFile command-line
parameter

• New built-in JSON support featuring high performance and low allocation that’s arguably
two to three times faster than the JSON.NET third-party library (which became the de facto
standard in most ASP.NET web projects)

• TLS 1.3 and OpenSSL 1.1.1 support in Linux
• Some important security improvements in the System.Security.Cryptography namespace,

including AES-GCM and AES-CCM cipher support; and so on

A lot of work has also been done to improve the performance and reliability of the framework when
used in a containerized environment. The ASP.NET Core development team put a lot of effort into
improving the .NET Core Docker experience on .NET Core 3.0. More specifically, this is the first release
featuring substantive runtime changes to make CoreCLR more efficient, honor Docker resource limits
better (such as memory and CPU) by default, and offer more configuration tweaks. Among the various
improvements, we could mention improved memory and GC heap usage by default, and PowerShell
Core, a cross-platform version of the famous automation and configuration tool, which is now shipped
with the .NET Core SDK Docker container images.

.NET Core 3 also introduced Blazor, a free and open source web framework that enables developers
to create web apps using C# and HTML.

Last but not least, it’s worth noting that the new .NET Core SDK is much smaller than the previous
installments, mostly thanks to the fact that the development team removed a huge set of unneces-
sary artifacts included in the various NuGet packages that were used to assemble the previous SDKs
(including ASP.NET Core 2.2) from the final build. The size improvements are huge for Linux and
macOS versions, while less noticeable on Windows because that SDK also contains the new WPF and
Windows Forms set of platform-specific libraries.

ASP.NET Core 3.1 was released on December 3, 2019. Most of the updates were fixes related to Blazor,
such as preventing default actions for events and stopping event propagation in Blazor apps, partial
class support for Razor components, and additional Tag Helper Component features; however, much
like the other .1 releases, the primary goal of .NET Core 3.1 was to refine and improve the features
already delivered in the previous version, with more than 150 performance and stability issues fixed.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core
3.0, check out the following links:

• Release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-
new/dotnet-core-3-0

• ASP�NET Core 3�0 releases page: https://github.com/dotnet/core/tree/
master/release-notes/3.0

https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0

Chapter 1 7

.NET 5
Just when everyone thought that Microsoft had finally taken a clear path with the naming convention
of its upcoming frameworks, the Microsoft developer community was shaken again on May 6, 2019,
by the following post by Richard Lander, Program Manager of the .NET team, which appeared on the
Microsoft Developer Blog: https://devblogs.microsoft.com/dotnet/introducing-net-5/.

The post got an immediate backup from another article that came out the same day written by Scott
Hunter, Program Management Director of the .NET ecosystem: https://devblogs.microsoft.com/
dotnet/net-core-is-the-future-of-net/.

The two posts were meant to share the same big news with the readers: .NET Framework 4.x and
.NET Core 3.x would converge in the next major installment of .NET Core, which would skip a major
version number to properly encapsulate both installments.

The new unified platform would be called .NET 5 and would include everything that had been released
so far with uniform capabilities and behaviors: .NET Runtime, JIT, AOT, GC, BCL (Base Class Library),
C#, VB.NET, F#, ASP.NET, Entity Framework, ML.NET, WinForms, WPF, and Xamarin.

From Microsoft’s point of view, the reasons behind this bold choice were rather obvious:

• Produce a single .NET runtime and framework that can be used everywhere and that has
uniform runtime behaviors and developer experiences

• Expand the capabilities of .NET by taking the best of .NET Core, .NET Framework, Xamarin,
and Mono

• Build that product out of a single code base that internal (Microsoft) and external (community)
developers can work on and expand together and that improves all scenarios

A detailed list of the new features, improvements, and bug fixes introduced with ASP.NET
Core 3.1 is available at the following URL:

• Release notes: https://learn.microsoft.com/en-us/aspnet/core/release-
notes/aspnetcore-3.1

Microsoft said they wanted to eventually drop the term “Core” from the framework name
because .NET 5 would be the main implementation of .NET going forward, thus replacing

.NET Framework and .NET Core. However, for the time being, the ASP.NET Core ecosystem
is still retaining the name “Core” to avoid confusing it with ASP.NET MVC 5; Entity Frame-
work Core will also keep the name “Core” to avoid confusing it with Entity Framework 5
and 6. For all of these reasons, in this book, we’ll keep using “ASP.NET Core” and “Entity
Framework Core” (or “EF Core”) as well.

https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-3.1
https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-3.1

Introducing ASP.NET and Angular8

.NET 5 was released on General Availability in November 2020, a couple of months after its first Release
Candidate, thus respecting the updated .NET schedule that aims to ship a new major version of .NET
once a year, every November:

Figure 1.1: .NET schedule

In addition to the new name, the .NET 5 framework brought a lot of interesting changes, such as:

• Performance improvements and measurement tools, summarized in this great analysis performed
by Stephen Toub (.NET Partner Software Engineer) using the new Benchmark.NET tools:
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/.

• Half Type, a binary floating point that occupies only 16 bits and that can help to save a good
amount of storage space where the computed result does not need to be stored with full
precision. For additional info, take a look at this post by Prashanth Govindarajan (Senior En-
gineering Manager at LinkedIn): https://devblogs.microsoft.com/dotnet/introducing-
the-half-type/.

• Assembly trimming, a compiler-level option to trim unused assemblies as part of publishing
self-contained applications when using the self-contained deployment option, as explained by
Sam Spencer (.NET Core team Program Manager) in this post: https://devblogs.microsoft.
com/dotnet/app-trimming-in-net-5/.

The new name could reasonably generate some confusion among those developers who
still remember the short timeframe (early to mid-2016) in which ASP.NET Core v1 was
still called ASP.NET 5 before its final release. Luckily enough, that “working title” was
ditched by the Microsoft developer team and the .NET community before it could leave
noticeable traces on the web.

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/introducing-the-half-type/
https://devblogs.microsoft.com/dotnet/introducing-the-half-type/
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/

Chapter 1 9

• Various improvements in the new System.Text.Json API, including the ability to ignore default
values for value-type properties when serializing (for better serialization performance) and
to better deal with circular references.

• C# 9 and F# 5 language support, with a bunch of new features such as Init Only Setters (that allows
the creation of immutable objects), function pointers, static anonymous functions, target-typed
conditional expressions, covariant return types, and module initializers.

And a lot of other new features and improvements besides.

.NET 6

.NET 6 came out on November 8, 2021, a year after .NET 5, as expected by the .NET schedule. The most
notable improvement in this version is the introduction of the Multi-platform Application UI, also known
as MAUI: a modern UI toolkit built on top of Xamarin.Forms that was specifically created to eventually
replace Xamarin.Forms and become the .NET standard for creating multi-platform applications that
can run on Android, iOS, macOS, and Windows from a single code base.

The main difference between MAUI and Xamarin is that the new approach now ships as a core work-
load, shares the same base class library as other workloads (such as Blazor), and adopts the most
recent SDK Style project system introduced with .NET 5, thus allowing a consistent tooling and coding
experience for all .NET developers.

In addition to MAUI, .NET 6 introduces a lot of new features and improvements, such as:

• C# 10 language support, with some new features such as null parameter checking, required prop-
erties, field keyword, file-scoped namespaces, top-level statements, async main, target-typed new
expressions, and more.

• Implicit using directives, a feature that instructs the compiler to automatically import a set of
using statements based on the project type, without the need to explicitly include them in
each file.

• New project templates, which are much cleaner and simpler since they do implement (and
demonstrate) most of the language improvements brought by C# version 9 and 10 (including
those we’ve just mentioned).

• Package Validation tooling, an option that allows developers to validate that their packages are
consistent and well formed during package development.

A detailed list of the new features and improvements and a comprehensive explanation of
the reasons behind the release of ASP.NET 5 are available at the following URL:

• Release notes: https://docs.microsoft.com/en-us/dotnet/core/dotnet-
five

For additional info about the C# 9.0 new features, take a look at the following URL: https://
docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9.

https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9

Introducing ASP.NET and Angular10

• SDK workloads, a feature that leverages the concepts of “workloads” introduced with .NET Core
to allow developers to install only necessary SDK components, skipping the parts they don’t
need: in other words, it’s basically a “package manager” for the SDKs.

• Inner-loop performance improvements, a family of tweaks dedicated to the performance optimi-
zation of the various tools and workflows used by developers (such as CLI, runtime, and MS-
Build), thereby aiming to improve their coding and building experience. The most important
of them is the hot reload, a feature that allows the project’s source code to be modified while
the application is running, without the need to manually pause or hit a breakpoint.

.NET 7

.NET 7 came out on November 8, 2022 and was mostly focused on performance: it was presented by
Microsoft as “unified, modern, simple, and fast.” The optimizations include enhancements to the Just-
In-Time (JIT) compiler, garbage collector improvements, and runtime updates.

One of the most praised changes was the introduction of on-stack replacement (OSR), a feature
that allows the runtime to change the code executed by currently running methods. Thanks to OSR,
long-running methods can switch to more optimized versions during their execution, thus improving
the overall startup time.

Other improvements include:

• Faster code generation for Arm64 architectures.
• Several optimizations to the Mono runtime.
• New APIs and improvements to the System.Text.RegularExpressions and System.Text.

Json libraries.
• New metrics for the IMemoryCache interface (part of Microsoft.Extensions.Caching library)

that allow developers to track statistics for one or more memory caches.
• Added support for microseconds and nanoseconds in TimeSpan, TimeOnly, DateTime, and

DateTimeOffset types.
• Added a new rate-limiting middleware (Microsoft.AspNetCore.RateLimiting) that allows

developers to configure several rate-limiting policies and attach them to the HTTP endpoints
using the [EnableRateLimiting] attribute. The built-in rate limiting algorithms include fixed
window, sliding window, token bucket, and concurrency.

For a comprehensive list of the new C# 10 features, check out the following URL: https://
docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10.

For additional information on how OSR works, check out the official documentation:

https://github.com/dotnet/runtime/blob/main/docs/design/features/
OnStackReplacement.md

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10
https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md
https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md

Chapter 1 11

• HTTP/3 improved support.
• HTTP/2 performance improvements.

.NET 8
Coming out on November 14, 2023, .NET 8 is the successor of .NET 7 and the current long-term support
(LTS) release. The new version brings a lot of performance improvements and new features, including:

• A revamp of the serialization and deserialization functionalities provided by the System.Text.
Json library, such as built-in support for Half, Int128, and Uint128 numeric types; new nam-
ing policies (snake_case and kebab-case); read-only properties deserialization; and several new
extension methods

• Many improvements to globalization, including better support for different cultures, UTF8
support, and improved performance for globalization-related operations

On the ASP.NET Core side, the new release adds several new features to authentication and authori-
zation, such as:

• New ASP.NET Core Identity API endpoints — /register and /login — to ease up the imple-
mentation of the built-in authentication workflow in JavaScript-based single-page apps (SPAs)

• A new IAuthorizationRequirementData interface that allows to define custom authorization
policies with fewer lines of code

A lot of progress has also been made on Blazor, which can now be considered a full-stack web UI
framework that can render content at either the component or page level, in a number of ways:

• Static server rendering (SSR), to generate static HTML on the server
• Interactive server rendering (ISR), to generate interactive components with prerendering on

the server
• Interactive WebAssembly rendering (CSR), to generate interactive components on the client

with prerendering on the server
• Interactive automatic rendering (IAR), to generate content using the server-side ASP.NET Core

runtime at startup, and then switching to the .NET WebAssembly runtime on the client after
the Blazor bundle is downloaded and the WebAssembly runtime activates

Other valuable improvements include SignalR stateful reconnect, minimal APIs explicit binding to
HTTP forms (using the [FromForm] attribute), better antiforgery capabilities, a more comprehensive
AOT deployment model, and so on.

For additional information regarding the Blazor render modes, check out the following
article:

https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-
modes

https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes
https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes

Introducing ASP.NET and Angular12

This concludes our journey through the recent history of ASP.NET. In the next section, we’ll move our
focus to the Angular ecosystem, which experienced a rather similar turn of events.

What’s new in Angular?
If following in the footsteps of Microsoft and the .NET Foundation in recent years has not been an
easy task, things were not going to get any better when we turned our eyes to the client-side web
framework known as Angular. To understand what happened there, we have to go back 10 years to
when JavaScript libraries such as jQuery and MooTools were dominating the client-side scene; the first
client-side frameworks, such as Dojo, Backbone.js, and Knockout.js, were struggling to gain popularity
and reach wide adoption; and stuff such as React and Vue.js didn’t even exist.

GetAngular
The story of AngularJS started in 2009 when Miško Hevery (now senior computer scientist and Agile
coach at Google) and Adam Abrons (now director of engineering at Grand Rounds) were working on
their side project, an end-to-end (E2E) web development tool that would have offered an online JSON
storage service and also a client-side library to build web applications depending on it. To publish
their project, they took the GetAngular.com hostname.

During that time, Hevery, who was already working at Google, was assigned to the Google Feedback
project with two other developers. Together, they wrote more than 17,000 lines of code in 6 months,
slowly sinking into a frustrating scenario of code bloat and testing issues. Given the situation, Hevery
asked his manager to rewrite the application using GetAngular (the side project mentioned previous-
ly), betting that he could do that alone within 2 weeks. His manager accepted and Hevery lost the bet
shortly thereafter, as the whole thing took him 3 weeks instead of 2; however, the new application
had only 1,500 lines of code instead of 17,000. This was more than enough to get Google’s interest in
the new framework, which was given the name AngularJS shortly thereafter.

AngularJS
The first stable release of AngularJS (version 0.9.0, also known as dragon-breath) was released on
GitHub in October 2010 under an MIT license; when AngularJS 1.0.0 (also known as temporal domi-
nation) came out in June 2012, the framework had already achieved huge popularity within the web
development communities worldwide.

Truth be told, jQuery is still dominating the scene to a huge extent, at least according to
BuiltWith (https://trends.builtwith.com/javascript/javascript-library) and
w3Techs (https://w3techs.com/technologies/overview/javascript_library/all).
However, despite being used by 74.1% of all websites, it’s definitely an option chosen less
often by web developers than it was 10 years ago.

To listen to the full story, take a look at the following Miško Hevery keynote speech at ng-
conf 2014: https://www.youtube.com/watch?v=r1A1VR0ibIQ.

https://trends.builtwith.com/javascript/javascript-library
https://w3techs.com/technologies/overview/javascript_library/all
https://www.youtube.com/watch?v=r1A1VR0ibIQ

Chapter 1 13

The reasons for such extraordinary success can hardly be summarized in a few words, but I’ll try to
do that nonetheless by emphasizing some key selling points:

• Dependency injection: AngularJS was the first client-side framework to implement it. This was
undeniably a huge advantage over the competitors, including DOM-manipulating libraries such
as jQuery. With AngularJS, developers could write loosely coupled and easily testable compo-
nents, leaving the framework with the task of creating them, resolving their dependencies,
and passing them to other components when requested.

• Directives: These can be described as markers on specific DOM items such as elements, at-
tributes, and styles: a powerful feature that could be used to specify custom and reusable
HTML-like elements and attributes that define data bindings and/or other specific behaviors
of presentation components.

• Two-way data binding: The automatic synchronization of data between model and view com-
ponents. When data in a model changes, the view reflects the change; when data in the view
changes, the model is updated as well. This happens immediately and automatically, which
makes sure that the model and the view are updated at all times.

• Single-page approach: AngularJS was the first framework to completely remove the need for
page reloads. This provided great benefits on both the server side (fewer and smaller network
requests) and client side (smoother transitions, a more responsive experience), and paved the
way for the SPA pattern that would also be adopted by React, Vue.js, and the other runner-up
frameworks later on.

• Cache-friendly: All the AngularJS magic was meant to happen on the client side, without any
server-side effort to generate the UI/UX parts. For this very reason, all AngularJS websites
could be cached anywhere and/or made available through a CDN.

Angular 2
The new release of AngularJS, released on September 14, 2016, and known as Angular 2, was a complete
rewrite of the previous one, entirely based upon the new ECMAScript version 6 (officially ECMAScript
2015) specifications. Just like the ASP.NET Core rewrite, the revolution brought such a number of
breaking changes at the architectural level and for HTTP pipeline handling, the app life cycle, and
state management that porting the old code to the new one was nearly impossible. Despite keeping its
former name, the new Angular version was a brand-new framework with little or nothing in common
with the previous one.

The choice to not make Angular 2 backward-compatible with AngularJS clearly demonstrated the
intention of the author’s team to adopt a completely new approach, not only in the code syntax but
also in their way of thinking and designing the client app.

For a detailed list of AngularJS features, improvements, and bug fixes from 0.9.0
through 1.7.8, check out the following link:

• AngularJS 1�x Changelog: https://github.com/angular/angular.js/
blob/master/CHANGELOG.md

https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md

Introducing ASP.NET and Angular14

The new Angular was highly modular, component-based, and came with a new and improved depen-
dency injection model and a whole lot of programming patterns its older cousin had never heard of.

Here’s a brief list of the most important improvements introduced with Angular 2:

• Semantic versioning: Angular 2 is the first release to use semantic versioning, also known as
SemVer: a universal way of versioning the various software releases to help developers track
down what’s going on without having to dig into the changelog details. SemVer is based on three
numbers – X.Y.Z, where X stands for a major version, Y stands for a minor version, and Z stands
for a patch release. More specifically, the X number, representing the major version, gets incre-
mented when incompatible API changes are made to stable APIs; the Y number, representing
the minor version, gets incremented when backward-compatible functionality is added; and
the Z number, representing a patch release, gets incremented when a backward-compatible
bug is fixed. Such improvements can be easily underestimated, yet it’s a must-have for most
modern software development scenarios where continuous delivery (CD) is paramount and
new versions are released with great frequency.

• TypeScript: Seasoned developers will probably already know what TypeScript is. Those who
don’t won’t need to worry since we’re going to use it a lot during the Angular-related chapters
of this book. For now, let’s just say that TypeScript is a Microsoft-made superset of JavaScript
that allows the use of all ES2015 features (such as Default, Rest, and Spread parameters; tem-
plate literals; arrow functions; Promises; and more) and adds powerful type-checking and
object-oriented features during development (such as class and type declarations). The Type-
Script code can be transpiled into standard JavaScript code that all browsers can understand.

• Server-side rendering (SSR): Angular 2 comes with Angular Universal, an open source tech-
nology that allows a back-end server to run Angular applications and serve only the resulting
static HTML files to the client. In a nutshell, the server will render a first pass of the page for
faster delivery to the client, and then immediately refresh it with client code. SSR has its ca-
veats, such as requiring Node.js to be installed on the host machine to execute the necessary
pre-rendering steps, as well as having the whole node_modules folder there, but can greatly
increase the app’s response time for a typical internet browser, thus mitigating a known An-
gularJS performance issue.

• Angular Mobile Toolkit (AMT): A set of tools specifically designed for building high-perfor-
mance mobile apps.

• Command-line interface (CLI): The new CLI introduced with Angular 2 can be used by devel-
opers to generate components, routes, services, and pipes via console/terminal commands,
together with simple test shells.

• Components: These are the main building blocks of Angular 2, entirely replacing the control-
lers and scopes of AngularJS, and also taking on most of the tasks previously covered by the
former directives. Application data, business logic, templating, and the styling of an Angular
2 app can all be done using components.

Chapter 1 15

Angular 4
On March 23, 2017, Google released Angular 4: the number 3 version was skipped entirely in order to
unify all the major versions of the many Angular components that had been developed separately before
that date, such as Angular Router, which already was at version 3.x at the time. Starting with Angular 4,
the entire Angular framework was then unified into the same MAJOR.MINOR.PATCH SemVer pattern.

The new major version brought a limited number of breaking changes, such as a new and improved
routing system, TypeScript 2.1+ support (and a requirement), and some deprecated interfaces and
tags. There were also a good number of improvements, including:

• Ahead-of-time (AOT) compilation: Angular 4 compiles the templates during the build phase and
generates JavaScript code accordingly. That’s a huge architectural improvement over the JIT
mode used by AngularJS and Angular 2, where the app was compiled at runtime. For example,
when the application starts, not only is the app faster since the client doesn’t have to compile
anything, but it throws/breaks at build time instead of during runtime for most component
errors, thus leading to more secure and stable deployments.

• Animations npm package: All the existing UI animations and effects – as well as new ones –
were moved to the @angular/animations dedicated package instead of being part of @angular/
core. This was a smart move to give non-animated apps the chance to drop that part of code,
thereby being much smaller and arguably faster.

Other notable improvements included a new form validator to check for valid email addresses, a new
paramMap interface for URL parameters in the HTTP routing module, and better internalization support.

Angular 5
Released on November 1, 2017, Angular 5 featured TypeScript 2.3 support, another small set of breaking
changes, many performance and stability improvements, and a few new features, such as the following:

• New HTTP Client API: Starting from Angular 4.3, the @angular/http module was put aside
in favor of a new @angular/common/http package with better JSON support, interceptors,
immutable request/response objects, and other stuff. The switch was completed in Angular 5
with the previous module being deprecated and the new one recommended for use in all apps.

• State Transfer API: A new feature that gives the developer the ability to transfer the state of
the application between the server and the client.

• A new set of router events for more granular control over the HTTP life cycle: ActivationStart,
ActivationEnd, ChildActivationStart, ChildActivationEnd, GuardsCheckStart,
GuardsCheckEnd, ResolveStart, and ResolveEnd.

I did my best to explore most of these features in my first book, ASP.NET Core and Angular
2, which was published in October 2016, right after the final release of the two frameworks:
https://www.packtpub.com/product/asp-net-core-and-angular-2/9781786465689.

https://www.packtpub.com/product/asp-net-core-and-angular-2/9781786465689

Introducing ASP.NET and Angular16

Angular 6
Released in April 2018, Angular 6 was mostly a maintenance release, more focused on improving the
overall consistency of the framework and its toolchain than adding new features. Therefore, there
were no major breaking changes. RxJS 6 supports a new way to register providers, the new providedIn
injectable decorator, improved Angular Material support (a component specifically made to implement
material design in the Angular client-side UI), more CLI commands/updates, and so on.

Another improvement worth mentioning was the new CLI ng add command, which uses the package
manager to download new dependencies and invoke an installation script to update our project with
configuration changes, add additional dependencies, and/or scaffold package-specific initialization
code.

Last, but not least, the Angular team introduced Ivy, a next-generation Angular rendering engine that
aims to increase the speed and decrease the size of the application.

Angular 7
Angular 7 came out in October 2018 and was certainly a major update, as we can easily guess by read-
ing the words written by Stephen Fluin, developer relations lead at Google and prominent Angular
spokesman, on the official Angular development blog upon the official release:

Here’s a list of the new features:

• Easy upgrade: Thanks to the groundwork laid by version 6, the Angular team was able to reduce
the steps that need to be done to upgrade an existing Angular app from an older version to the
most recent one. The detailed procedure can be viewed by visiting https://update.angular.
io, an incredibly useful Angular upgrade interactive guide that can be used to quickly recover
the required steps, such as CLI commands and package updates.

• CLI update: A new command that attempts to automatically upgrade the Angular application
and its dependencies by following the procedure mentioned previously.

• CLI prompts: The Angular CLI has been modified to prompt users when running common
commands such as ng new or ng add @angular/material to help developers discover built-in
features such as routing and SCSS support.

November 2017 was also the release month of my ASP.NET Core 2 and Angular 5 book,
which covers most of the aforementioned improvements: https://www.packtpub.com/
product/asp-net-core-2-and-angular-5/9781788293600.

In June 2018, that book was made available as a video course: https://www.packtpub.
com/product/asp-net-core-2-and-angular-5-video/9781789531442.

“This is a major release spanning the entire platform, including the core framework,
Angular Material, and the CLI with synchronized major versions. This release contains
new features for our toolchain and has enabled several major partner launches.”

https://update.angular.io
https://update.angular.io
https://www.packtpub.com/product/asp-net-core-2-and-angular-5/9781788293600
https://www.packtpub.com/product/asp-net-core-2-and-angular-5/9781788293600
https://www.packtpub.com/product/asp-net-core-2-and-angular-5-video/9781789531442
https://www.packtpub.com/product/asp-net-core-2-and-angular-5-video/9781789531442

Chapter 1 17

• Angular Material and CDK: Additional UI elements, such as virtual scrolling; a component
that loads and unloads elements from the DOM based on the visible parts of a list, making it
possible to build very fast experiences for users with very large scrollable lists; CDK-native
drag-and-drop support; and improved drop-down list elements.

• Partner launches: Improved compatibility with a number of third-party community projects,
such as Angular Console, a downloadable console for starting and running Angular projects
on your local machine; AngularFire, the official Angular package for Firebase integration;
Angular for NativeScript, integration between Angular and NativeScript – a framework for
building native iOS and Android apps using JavaScript and/or JS-based client frameworks;
and some interesting new Angular-specific features for StackBlitz, an online IDE that can be
used to create Angular and React projects, such as a tabbed editor and integration with the
Angular Language Service.

• Updated dependencies: Added support for TypeScript 3.1, RxJS 6.3, and Node 10, although the
previous versions can still be used for backward compatibility.

Angular 8
Angular 7 was quickly followed by Angular 8, which was released on May 29, 2019. The new release
is mostly about Ivy, the long-awaited new compiler/runtime of Angular: despite being an ongoing
project since Angular 5, version 8 was the first one to officially offer a runtime switch to actually opt
into using Ivy, which would become the default runtime starting from Angular 9.

Other notable improvements and new features include:

• Bazel support: Angular 8 was the first version to support Bazel, a free software tool developed
and used by Google for the automation of building and testing software. It can be very useful
for developers aiming to automate their delivery pipeline as it allows incremental builds and
tests, and even the possibility to configure remote builds (and caches) on a build farm.

The Angular Language Service is a way to get completions, errors, hints, and navigation
inside Angular templates: think about it as a virtuous mix between a syntax highlighter,
IntelliSense, and a real-time syntax error checker. Before Angular 7, which added the sup-
port for StackBlitz, such a feature was only available for Visual Studio Code and WebStorm.

For additional information about the Angular Language Service, take a look at the following
URL: https://angular.io/guide/language-service.

To enable Ivy on Angular 8, the developers had to add an "enableIvy": true property
to the angularCompilerOptions section within the app’s tsconfig.json file.

Those who want to know more about Ivy are encouraged to have an extensive look at the
following post by Cédric Exbrayat, cofounder and trainer of the Ninja Squad website and
now part of the Angular developer team: https://blog.ninja-squad.com/2019/05/07/
what-is-angular-ivy/.

https://angular.io/guide/language-service
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/

Introducing ASP.NET and Angular18

• Routing: A new syntax was introduced to declare the lazy-loading routes using the import()
syntax from TypeScript 2.4+ instead of relying on a string literal. The old syntax was kept for
backward compatibility but may be dropped soon.

• Service workers: A new registration strategy was introduced to allow developers to choose
when to register their workers instead of doing it automatically at the end of the app’s startup
life cycle. It’s also possible to bypass a service worker for a specific HTTP request using the
new ngsw-bypass header.

• Workspace API: A new and more convenient way to read and modify the Angular workspace
configuration instead of manually modifying the angular.json file.

The new version also introduced some notable breaking changes – mostly due to Ivy – and removed
some long-time deprecated packages such as @angular/http, which was replaced by @angular/common/
http in Angular 4.3 and then officially deprecated in 5.0.

Angular 9
Angular 9 was released in February 2020 after a long streak of release candidates through 2019 Q4 and
was the most recent version for only 4 months before being replaced by its successor (Angular 10).

The new release brought the following new features:

• JavaScript bundles and performance: An attempt to fix the very large bundle files, one of the
most cumbersome issues of the previous versions of Angular, which drastically increased the
download time and brought down the overall performance.

• Ivy compiler: The new Angular build and render pipeline, shipped with Angular 8 as an opt-in
preview, is now the default rendering engine.

• Selector-less bindings: A useful feature that was available to the previous rendering engine
but missing from the Angular 8 Ivy preview, is now available to Ivy as well.

• Internationalization: Another Ivy enhancement that makes use of the Angular CLI to generate
most of the standard code necessary to create files for translators and to publish an Angular
app in multiple languages, thanks to the new i18n attribute.

In client-side development, a service worker is a script that the browser runs in the back-
ground to do any kind of stuff that doesn’t require either a user interface or any user
interaction. If you’re new to the concept, don’t worry – we’ll extensively talk about them
in Chapter 12, Progressive Web Apps, where we’ll build our very own service worker.

A comprehensive list of all the deprecated APIs can be found in the official Angular dep-
recations guide at the following URL: https://angular.io/guide/deprecations.

https://angular.io/guide/deprecations

Chapter 1 19

The long-awaited Ivy compiler deserves a couple more words, being a very important feature for the
future of Angular.

As the average Angular developer already knows, the rendering engine plays a major role in the overall
performance of any front-end framework since it’s the tool that translates the actions and intents laid
out by the presentation logic (in Angular components and templates) into the instructions that will
update the DOM. If the renderer is more efficient, it will arguably require fewer instructions, thus
increasing the overall performance while decreasing the amount of required JavaScript code at the
same time. Since the JavaScript bundles produced by Ivy are much smaller than the previous rendering
engine, Angular 9’s overall improvement is relevant in terms of both performance and size.

Angular 10
Angular 10 was released on June 24, 2020, just a few months after Angular 9. The short timeframe
between Angular 9 and 10 was explained by the Angular development team as an attempt to get the
framework back on its regular schedule since Angular 9 got delayed by a few weeks.

The new release was mostly focused on fixing issues: more than 700 issues were fixed and over 2,000
were touched on in the process. However, there were still quite a few important updates to be aware of:

• Upgrade to TypeScript 3.9, as well as TSLib 2.0 and TS Lint v6. It’s worth noting that earlier
versions of TypeScript are no longer supported because they are not compatible with some
potentially breaking changes in the tsconfig.json file structure (see below).

• Angular Material improvements, including a new date range picker.
• Additional warnings when using CommonJS imports, as they can result in both larger and slower

applications.
• Optional stricter settings: Developers are now able to create new projects with a strict flag that

enables stricter listing rules and bundle sizes, thereby resulting in more efficient tree-shaking
(a term commonly used in JavaScript contexts for dead-code elimination using the import and
export module syntax).

The new i18n attribute is a numeronym, which is often used as an alias for internation-
alization. The number 18 stands for the number of letters between the first i and the last
n in the word internationalization. The term seems to have been coined by the Digital
Equipment Corporation (DEC) around the 1970s or 1980s, together with l10n for local-
ization, due to the excessive length of the two words.

February 2020 was also the release month of my ASP.NET Core 3 and Angular 9 book, fea-
turing a whole new set of source code snippets and project samples that can also be found
in this book: https://www.packtpub.com/product/asp-net-core-3-and-angular-
9-third-edition/9781789612165.

https://www.packtpub.com/product/asp-net-core-3-and-angular-9-third-edition/9781789612165
https://www.packtpub.com/product/asp-net-core-3-and-angular-9-third-edition/9781789612165

Introducing ASP.NET and Angular20

Angular 11
Angular 11 was released on November 11, 2020, the same release day as .NET 5. The new release added
the following features:

• Component test harnesses, a set of classes that lets a test interact with a component via a sup-
ported API. By using the Harness API, a test insulates itself against updates to the internals
of a component, such as changing its DOM structure. This idea comes from the PageObject
pattern, which is commonly used for integration testing.

• Updated Hot Module Replacement support: HMR is a mechanism that allows modules to be re-
placed without a full browser refresh; configuring HMR in Angular 11 is a lot easier, and they
also introduced a new --hmr CLI command to enable it.

• TypeScript 4.0 support: While TypeScript 3.9 (and lower) support has been dropped, this import-
ant upgrade allows Angular 11 apps to build much faster than previous versions.

• Webpack 5 support, although it is still experimental since the new version has only been released
recently and might still not be entirely stable.

• TSLint to ESLint migration: This is one of the most important changes to this version since
TSLint and Codelyzer have been officially deprecated, and they will definitely be removed in the
next release. To help developers deal with such an update, the Angular team has introduced a
three-step method that can be used to seamlessly migrate from TSLint to ESLint using the CLI.

• Dropped support for Internet Explorer 9 and 10, as well as IE mobile.

Other new features included an updated Language Service Preview, new automated migrations and
schematics, some service worker improvements, lazy-loading support for named outlets, resolve
guard generation via the Angular CLI, stricter types for built-in pipes, and ISO 8601 week-numbering
year format support in the formatDate function.

Angular 12
Angular 12 came out on May 12, 2021, after numerous beta releases and release candidates. The major
update to this version is the long-announced deprecation of the legacy View Engine compilation and
rendering pipeline in favor of the now stable and objectively superior Ivy technology, thus granting
faster AOT compilation.

Other notable improvements include:

• Nullish coalescing operator (??) in Angular templates.

For additional info about the improved tsconfig.json file structure (namely, “Solution
Style” tsconfig.json files), take a look at the following paragraph from the TypeScript 3.9
release notes: https://www.typescriptlang.org/docs/handbook/release-notes/
typescript-3-9.html#support-for-solution-style-tsconfigjson-files.

To find out more about the meaning of the term “tree-shaking,” check out the following
guide: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking.

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking

Chapter 1 21

• Style improvements, thanks to inline Sass support in Components (within the styles field of
the @Component decorator).

• Deprecating support for IE11, which will be removed in Angular 13.
• HTTP improvements, such as human-readable HttpStatusCode names and some new methods

for dealing with HTTP parameters and metadata more efficiently.
• Strict mode by default. The Angular strict mode is now enabled by default in the CLI: this flag

will enable several source code consistency checks in the TypeScript compiler as well as in
Angular. Writing code with strict mode enabled helps developers to catch bugs early, reduce
bundle size, avoid allocating unnecessary memory, follow best practices and get better IDE
support, thus improving the maintainability of the app.

Angular 13
Angular 13 was released on November 3, 2021, and brought a lot of important changes to the overall
architecture, such as:

• FormControlStatus, a new type that will seamlessly include all possible status strings for form
controls.

• View Engine, which was already deprecated in Angular 12, has been removed, thus leaving
the new Ivy rendering engine as the only choice. View Engine removal also means that IE11
support has been dropped as well.

• Angular Package Format (APF) has been redesigned, removing View Engine-specific metadata,
matching the format of ES2020, and adding support for Node Package Exports.

• New Component API, which allows developers to create components with less boilerplate code.
• Persistent build cache support has been enabled by default.
• RxJS dependency version has been updated from 6.x to 7.4.
• TestBed performance improvements that lead to faster, less memory-intensive, less interdepen-

dent, and more optimized tests.

Angular 14
Angular 14 came out on June 2, 2022, with a strong focus on CLI enhancements and type safety en-
forcement measures, including:

• Typed Angular Forms, a new form implementation approach that allows developers to use strict
typing for the Angular Reactive Forms package, thus resulting in more safe and secure forms.

• Standalone Components/APIs, which allows developers to add imports directly in the @Component()
without having to add an @NgModule().

• Tree-shakeable error messages, which allows the build optimizer to remove readable error mes-
sages from production bundles while retaining the error codes.

Introducing ASP.NET and Angular22

Angular 15
The 15th release of Angular, released on November 16, 2022, is considered the culmination of the many
changes introduced with the previous versions since it contains a lot of performance and stability
fixes over the previously added features: Standalone Components/APIs (which now works in HttpClient,
Angular Elements, router, and more), NgOptimizedImage, Directive Composition API, and more.

The new version also included better stack traces, revamping several opaque error messages with the
goal of improving the stack trace information shown in the browser’s development console.

Angular 16
The 16th version of Angular came out on May 3, 2023, and has been widely acknowledged as the biggest
release since the initial rollout of Angular, with a huge set of improvements and new features affecting
reactivity, server-side rendering, and tooling. Those worth mentioning include:

• Angular Signals, a new library that allows developers to define reactive values and express
dependencies between them.

• Full app non-descructive hydration, a new feature that enables Angular to update only the DOM
nodes requiring actual changes instead of re-rendering the full page from scratch, thus reducing
content flickering, saving bandwidth, and increasing the speed/performance of the whole app.

• Improved unit testing with Jest and Web Test Runner, which greatly reduces the complexity of the
previous, Karma-based testing framework because it doesn’t require a real browser.

• Self-closing tags for components, a small developer experience improvement that improves the
readability (and DRYness) of the source code.

• MDC components, a set of web-based components designed together with the Google Material
Design Team and based upon the Material Design v3 paradigm.

Angular 17
Last, but not least, we come to Angular 17, which was released on November 8, 2023, and is currently
the most recent version.

The new features list includes:

• Deferrable views, which allow developers to defer the rendering of some components (or parts
of them) until they are needed, thus improving the overall performance of the app.

• Built-in control flow, a new block template syntax that can be used to control flow, lazy loading,
and content deferring using a simple, declarative approach.

• Improved performance, thanks to a 90% faster runtime and several optimizations.
• View Transitions API, which allows developers to set up animations and transitions when switch-

ing between pages and components.

This concludes our brief review of the recent history of the ASP.NET Core and Angular ecosystems. In
the next sections, we’ll summarize the most important reasons that led us to choose them in 2023-2024.

Chapter 1 23

Reasons for choosing .NET and Angular
As we have seen, both frameworks have gone through many intense years of changes. This led to a
whole refoundation of their core and, right after that, a constant strain to get back on top – or at least
not lose ground against most modern frameworks that came out after their now-departed golden
age. These frameworks are eager to dominate the development scene: Python, Go, and Rust for the
server-side part, and React, Vue.js, and Ember.js for the client-side part, not to mention the Node.js
and Express ecosystem, and most of the old competitors from the 1990s and 2000s, such as Java, Ruby,
and PHP, which are still alive and kicking.

That said, here’s a list of good reasons for picking ASP.NET Core in 2024:

• Performance: The new .NET web stack is considerably fast, especially since .NET Core 3.1,
with continuous improvements up to .NET 8.

• Integration: It supports most, if not all, modern client-side frameworks, including Angular,
React, and Vue.js.

• Cross-platform approach: .NET web applications can run on Windows, macOS, and Linux in
an almost seamless way.

• Hosting: .NET web applications can be hosted almost anywhere: from a Windows machine
with IIS to a Linux appliance with Apache or NGINX, from Docker containers to edge-case,
self-hosting scenarios using the Kestrel and WebListener HTTP servers.

• Dependency injection: The framework supports a built-in dependency injection design pattern
that provides a huge number of advantages during development, such as reduced dependencies,
code reusability, readability, and testing.

• Modular HTTP pipeline: ASP.NET middleware grants developers granular control over the
HTTP pipeline, which can be reduced to its core (for ultra-lightweight tasks) or enriched with
powerful, highly configurable features such as internationalization, third-party authentication/
authorization, caching, routing, seamless integration with industry-standard APIs, interfaces,
and tools such as SignalR, GraphQL, Swagger, Webhooks, and JWT.

• Open source: The whole .NET stack has been released as open source and is entirely focused
on strong community support, thus being reviewed and improved by thousands of developers
every day.

• Side-by-side execution: It supports the simultaneous running of multiple versions of an ap-
plication or component on the same machine. This basically means that it’s possible to have
multiple versions of the common language runtime, and multiple versions of applications
and components that use a version of the runtime, on the same computer at the same time.
This is great for most real-life development scenarios as it gives the development team more
control over which versions of a component an application binds to, and more control over
which version of the runtime an application uses.

As for the Angular framework, the most important reason we’re picking it over other excellent JavaS-
cript libraries such as React, Vue.js, and Ember.js is the fact that it already comes with a huge pack of
features out of the box, making it the most suitable choice, although maybe not as simple to use as
other frameworks/libraries.

Introducing ASP.NET and Angular24

If we combine that with the consistency benefits brought by the TypeScript language, we can say that
Angular, from its 2016 rebirth up to the present day, has embraced the framework approach more con-
vincingly than the others. This has been consistently confirmed in the last few years, with the project
undergoing six major versions and gaining a lot in terms of stability, performance, and features, without
losing much in terms of backward compatibility, best practices, and overall approach. All these reasons
are solid enough to invest in it, hoping it will continue to keep up with these compelling premises.

Now that we have acknowledged the reasons to use these frameworks, let’s ask ourselves the best way
to find out more about them: the next chapter should give us the answers we need.

Summary
Before moving on, let’s do a quick recap of what we just talked about in this chapter.

We briefly described our platforms of choice – ASP.NET Core and Angular – and acknowledged their
combined potential in the process of building a modern web application. We spent some valuable time
recalling what’s happened in these last few years and summarizing the efforts of both development
teams to reboot and improve their respective frameworks. These recaps were very useful to enumer-
ate and understand the main reasons why we’re still using them over their ever-growing competitors.

In the next chapter, we will deal with the typical challenges of a full stack developer: define our goals,
acquire the proper mindset, set up the environment, and create our first ASP.NET and Angular projects.

Suggested topics
For further information, we recommend the following topics: ASP.NET Core, .NET Core, .NET 8,
Angular, Angular 17, tree-shaking, Angular Ivy, tsconfig.json, Roslyn, CoreCLR, RyuJIT, NuGet, npm,
ECMAScript 6, JavaScript, TypeScript, webpack, SystemJS, RxJS, cache-control, HTTP headers, .NET
middleware, Angular Universal, server-side rendering (SSR), ahead-of-time (AOT) compiler, service
workers, web manifest files, and tsconfig.json.

References
• ASP.NET 5 is dead – Introducing ASP.NET Core 1.0 and .NET Core 1.0: http://www.hanselman.

com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

• An Update on ASP.NET Core and .NET Core: https://blogs.msdn.microsoft.com/
webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

• ASP.NET Core 1.1.0 release notes: https://github.com/aspnet/AspNetCore/releases/1.1.0
• ASP.NET Core 1.1.0 Commits list: https://github.com/dotnet/core/blob/master/release-

notes/1.1/1.1-commits.md

• ASP.NET Core 2.1.0 release notes: https://docs.microsoft.com/en-US/aspnet/core/release-
notes/aspnetcore-2.1

• ASP.NET Core 2.1.0 Commits list: https://github.com/dotnet/core/blob/master/release-
notes/2.1/2.1.0-commit.md

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md

Chapter 1 25

• ASP.NET Core 2.2.0 release notes: https://docs.microsoft.com/en-US/aspnet/core/release-
notes/aspnetcore-2.2

• ASP.NET Core 2.2.0 Commits list: https://github.com/dotnet/core/blob/master/release-
notes/2.2/2.2.0/2.2.0-commits.md

• ASP.NET Core 3.0.0 release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-
new/dotnet-core-3-0

• ASP.NET Core 3.0 releases page: https://github.com/dotnet/core/tree/master/release-
notes/3.0

• ASP.NET Core 3.1.0 release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-
new/dotnet-core-3-1

• .NET Core is the future of .NET: https://devblogs.microsoft.com/dotnet/net-core-is-the-
future-of-net/

• The Evolution from .NET Core to .NET 5: https://docs.microsoft.com/en-us/dotnet/core/
dotnet-five

• Introducing .NET 5: https://devblogs.microsoft.com/dotnet/introducing-net-5/
• Performance improvements in .NET 5: https://devblogs.microsoft.com/dotnet/performance-

improvements-in-net-5/

• Introducing the Half Type: https://devblogs.microsoft.com/dotnet/introducing-the-half-
type/

• App Trimming in .NET 5: https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
• What’s new in C# 9.0: https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/

csharp-9

• On Stack Replacement in the CLR: https://github.com/dotnet/runtime/blob/main/docs/
design/features/OnStackReplacement.md

• ASP.NET Core Blazor render modes: https://learn.microsoft.com/en-us/aspnet/core/blazor/
components/render-modes

• BuiltWith: JavaScript Library Usage Distribution: https://trends.builtwith.com/javascript/
javascript-library

• Usage of JavaScript libraries for websites: https://w3techs.com/technologies/overview/
javascript_library/all

• Miško Hevery and Brad Green – Keynote – NG-Conf 2014: https://www.youtube.com/
watch?v=r1A1VR0ibIQ

• AngularJS 1.7.9 Changelog: https://github.com/angular/angular.js/blob/master/
CHANGELOG.md

• ASP.NET Core and Angular 2: https://www.packtpub.com/application-development/aspnet-
core-and-angular-2

• ASP.NET Core 2 and Angular 5: https://www.packtpub.com/application-development/aspnet-
core-2-and-angular-5

• ASP.NET Core 2 and Angular 5 – Video Course: https://www.packtpub.com/web-development/
asp-net-core-2-and-angular-5-video

https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/introducing-the-half-type/
https://devblogs.microsoft.com/dotnet/introducing-the-half-type/
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9
https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md
https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md
https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes
https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes
https://trends.builtwith.com/javascript/javascript-library
https://trends.builtwith.com/javascript/javascript-library
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video

Introducing ASP.NET and Angular26

• Angular Update Guide: https://update.angular.io
• Angular Language Service: https://angular.io/guide/language-service
• Angular Deprecated APIs and Features: https://angular.io/guide/deprecations
• What is Angular Ivy?: https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
• Solution Style tsconfig.json files: https://www.typescriptlang.org/docs/handbook/release-

notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files

• Tree Shaking: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://update.angular.io
https://angular.io/guide/language-service
https://angular.io/guide/deprecations
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://packt.link/aspdotnet8angular

2
Getting Ready

In this second chapter, we’ll switch from theory to practice: more specifically, we will choose the kind
of web application that we want to build and see how we can do it in accordance with the expectations
of a typical product owner.

In the second part of this chapter, we’ll start our development journey by setting up our local devel-
opment environment and creating our first Angular and ASP.NET Core projects.

Here’s a full breakdown of the topics we’re going to cover:

• A full-stack approach: The importance of being able to learn how to design, assemble, and
deliver a complete product.

• Multi-page applications (MPAs), single-page applications (SPAs), native web applications
(NWAs), and progressive web applications (PWAs): Key features of and the most important
differences between the various types of web applications, as well as how well ASP.NET and
Angular could relate to each one of them.

• A sample SPA project: What we’re going to do throughout this book.
• Preparing the workspace: How to set up our workstation to achieve our first goal – implement-

ing a simple Hello World boilerplate that will be further extended in the following chapters.

By the end of the chapter, we’ll have everything we need to start our full-stack development journey.

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with
no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/main/Chapter_02/HealthCheck.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_02/HealthCheck
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_02/HealthCheck

Getting Ready28

A full-stack approach
Learning to use ASP.NET Core and Angular together means being able to work with both the front-end
(client side) and back-end (server side) of a web application; to put it in other words, it means being
able to design, assemble, and deliver a complete product.

Eventually, in order to do that, we’ll need to dig through the following:

• Back-end programming
• Front-end programming
• UI styling and UX design
• Database design, modeling, configuration, and administration
• Web server configuration and administration
• Web application deployment

At first glance, it can seem that this kind of approach goes against common sense; a single developer
should not be allowed to do everything by themselves. Every developer knows that the back-end and
the front-end require entirely different skills and experience, so why in the world should we do that?

Before answering this question, we should understand what we really mean when we say being able
to. We don’t have to become experts on every single layer of the stack; no one expects us to. When
we choose to embrace the full-stack approach, what we really need to do is raise our awareness level
throughout the whole stack we’re working on; this means that we need to know how the back-end
works, and how it can and will be connected to the front-end. We need to know how the data will be
stored, retrieved, and then served through the client. We need to acknowledge the interactions we
will need to layer out between the various components that our web application is made from, and
we need to be aware of security concerns, authentication mechanisms, optimization strategies, load
balancing techniques, and so on.

This doesn’t necessarily mean that we have to have strong skills in all these areas; as a matter of fact,
we hardly ever will. Nonetheless, if we want to pursue a full-stack approach, we need to understand
the meaning, role, and scope of all of them. Furthermore, we should be able to work our way through
any of these fields whenever we need to.

MPAs, SPAs, PWAs, and NWAs
In order to demonstrate how ASP.NET and Angular can work together to their full extent, we couldn’t
think of anything better than building some small SPA projects with most, if not all, PWA features.
The reason for this choice is quite obvious: there is no better approach to demonstrate some of the
best features they have to offer nowadays. We’ll have the chance to work with modern interfaces
and patterns such as the HTML5 pushState API, webhooks, data-transport-based requests, dynamic
web components, UI data bindings, and a stateless, AJAX-driven architecture capable of flawlessly
encompassing all of these features. We’ll also make good use of some distinctive PWA features such
as service workers and web manifest files.

Chapter 2 29

If you don’t know the meaning of these definitions and acronyms, don’t worry, we are going to explore
these concepts in the next couple of sections, which are dedicated to enumerating the most relevant
features of the following types of web applications: MPAs, SPAs, PWAs, and NWAs. While we’re there,
we’ll also try to figure out the most common product owner’s expectations for a typical web-based
project.

Multi-page applications
Multi-page applications, also known as MPAs, are those web applications that work in a traditional
way: each time the user asks for (or submits) data to the server, they render a new page that is sent
back to the browser.

This is how all websites used to work during the first 20 years of the World Wide Web, and is still the
most widely used approach nowadays due to a number of advantages that MPAs can still provide:
excellent SEO performance, a fast and steady learning curve, the ability to manage and customize
static and dynamic content, and a lot of great content management systems (CMSes), frameworks,
and UI themes – such as WordPress, Joomla, and the like – that can be used to build them from the
ground up in a few minutes.

However, MPAs also come with some significant cons: the required server-side roundtrips tend to
make them quite expensive in terms of bandwidth; moreover, front-end and back-end development
are often tightly coupled, thus making them harder to maintain and update. Luckily enough, most
of these issues have been mitigated throughout the years, thanks to various browser features and
technology improvements such as CDN, server-side caching, XHR/Fetch requests, and so on. At the
same time, such techniques add more complexity to the development and deployment phases; that
is, unless we choose to rely upon one of the CMS platforms that we talked about early on, thus giving
up on most of the coding aspects – with all that that implies.

Single-page applications
To put it briefly, an SPA is a web-based application that tries to provide the same user experience as
a desktop application. If we consider the fact that all SPAs are still served through a web server and
thus accessed by web browsers, just like any other standard website, we can easily understand how
that desired outcome can only be achieved by changing some of the default patterns commonly used
in web development, such as resource loading, DOM management, and UI navigation. In a good SPA,
both content and resources – HTML, JavaScript, CSS, and so on – are either retrieved within a single
page load or are dynamically fetched when needed. This also means that the page doesn’t reload or
refresh; it just changes and adapts in response to user actions, performing the required server-side
calls behind the scenes.

The AJAX acronym stands for Asynchronous JavaScript And XML and is typically used when
referring to a set of web development techniques to send and retrieve data from a server
asynchronously. In practice, modern implementations of these techniques – such as Fetch
API – utilize JSON instead of XML, thus making the term “AJAX” less precise to describe
this type of interaction. Although that noun is still used nowadays for historical reasons,
the term “XHR/Fetch” is a more correct way to properly describe these techniques.

Getting Ready30

These are some of the key features provided by a competitive SPA nowadays:

• No server-side round trips: A competitive SPA can redraw any part of the client UI without
requiring a full server-side round trip to retrieve a full HTML page. This is mostly achieved by
implementing the separation of concerns (SOC) design principle, which means that the data
source, the business logic, and the presentation layer will be separated.

• Efficient routing: A competitive SPA is able to keep track of the user’s current state and location
during its whole navigation experience using organized, JavaScript-based routers. We’ll talk
more about that in the upcoming chapters when we introduce the concepts of server-side and
client-side routing.

• Performance and flexibility: A competitive SPA usually transfers all of its UI to the client, thanks
to its JavaScript SDK of choice (Angular, jQuery, Bootstrap, and so on). This is often good for
network performance as increasing client-side rendering and offline processing reduces the
UI impact over the network. However, the real deal brought by this approach is the flexibility
granted to the UI as the developer will be able to completely rewrite the application’s front-end
with little or no impact on the server, aside from a few of the static resource files.

This list can easily grow, as these are only some of the major advantages of a properly designed, com-
petitive SPA. These aspects play a major role nowadays, as many business websites and services are
switching from their traditional MPA mindset to fully committed or hybrid SPA-based approaches.

Progressive web applications
In 2015, another web development pattern pushed its way into the light when Frances Berriman (a
British freelance designer) and Alex Russel (a Google Chrome engineer) used the term PWAs for the
first time to refer to those web applications that could take advantage of a couple of new important
features supported by modern browsers: service workers and web manifest files. These two important
improvements could be successfully used to deliver some functionalities usually only available on
mobile apps – push notifications, offline mode, permission-based hardware access, and so on – using
standard web-based development tools such as HTML, CSS, and JavaScript.

The rise of PWAs began on March 19, 2018, when Apple implemented support for service workers in
Safari 11.1. Since that date, PWAs have been widely adopted throughout the industry thanks to their
undeniable advantages over their “non-progressive” counterparts: faster load times, smaller applica-
tion sizes, higher audience engagement, and so on.

Here are the main technical features of a PWA (according to Google):

• Progressive: Works for every user, regardless of browser choice, using progressive enhance-
ment principles

• Responsive: Fits any form factor: desktop, mobile, tablet, or forms yet to emerge
• Connectivity independent: Service workers allow offline use, or use on low-quality networks
• App-like: Feels like an app to the user with app-style interactions and navigation
• Fresh: Always up to date due to the service worker update process
• Safe: Served via HTTPS to prevent snooping and ensure content hasn’t been tampered with

Chapter 2 31

• Discoverable: Identifiable as an application by a web manifest (manifest.json) file, and a
registered service worker, and discoverable by search engines

• Re-engageable: The ability to use push notifications to maintain engagement with the user
• Installable: Provides home screen icons without the use of an app store
• Linkable: Can easily be shared via a URL and does not require complex installation

However, their technical baseline criteria can be restricted to the following subset:

• HTTPS: They must be served from a secure origin, which means over TLS with green padlock
displays (no active mixed content)

• Minimal offline mode: They must be able to start even if the device is not connected to the
web, with limited functions or at least displaying a custom offline page

• Service workers: They have to register a service worker with a fetch event handler (which is
required for minimal offline support, as explained previously)

• Web manifest file: They need to reference a valid manifest.json file with at least four key
properties (name, short_name, start_url, and display) and a minimum set of required icons

Although they have some similarities, PWAs and SPAs are two different concepts, have different re-
quirements, and differ in many important aspects. As we can see, none of the PWA requirements
mentioned previously refer to SPAs or server-side round trips. A PWA can work within a single HTML
page and XHR/Fetch requests (thus also being an SPA), but it could also request other server-rendered
(or static) pages and/or perform standard HTTP GET or POST requests, much like an MPA. It’s also
the opposite: any SPA can implement any single PWA technical criteria, depending on the product
owner’s requirements (more on that later), the server-side and client-side frameworks adopted, and
the developer’s ultimate goal.

For those interested in reading about this directly from the source, here’s the original link
from the Google Developers website:

https://developers.google.com/web/progressive-web-apps/

In addition, here are two follow-up posts from Alex Russell’s Infrequently Noted blog:

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-
losing-our-soul/

https://infrequently.org/2016/09/what-exactly-makes-something-a-
progressive-web-app/

For those who don’t know, Alex Russell has worked as a senior staff software engineer at
Google since December 2008.

https://developers.google.com/web/progressive-web-apps/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/

Getting Ready32

Native web applications
The first good definition of native web applications (also known as NWAs) available on the web can
arguably be found in Sam Johnston’s blog post written on January 16, 2009, which went like this:

A similar approach was used 6 years later (January 22, 2015) by Henrik Joreteg to describe the defining
feature of NWAs:

These definitions help us to understand that we’re dealing with a rather generic term that encompasses
SPAs, MPAs, and even PWAs – since they all depend on native web technologies that are supported
out of the box by all recent browsers; however, due to the emphasis given to the recent keyword and
the existence of the more specific web application types, the term NWA is mostly used to identify
those web applications that, although being built using modern web-based technologies, cannot be
classified as MPAs, SPAs, or PWAs because they tend to adopt a hybrid approach.

Since we’re going to use Angular, which is all about developing SPAs and has also shipped with a strong
and steady service worker implementation since version 5, we are fully entitled to take advantage of
the best of both worlds. For this very reason, we’re going to use service workers – along with the ben-
efits of increased reliability and performance they provide – whenever we need to, all while keeping
a solid SPA approach. Furthermore, we’re definitely going to implement some strategic HTTP round
trips (and/or other redirect-based techniques) whenever we can profitably use a microservice to lift
off some workload from our app, just like any good NWA is meant to do.

Are all these features able to respond to modern market needs? Let’s try to find it out.

Product owner expectations
One of the most interesting, yet underrated, concepts brought out by many modern Agile software
development frameworks, such as Scrum, is the importance given to the meanings and definitions
of roles. Among these roles, there’s nothing as important as the product owner, also known as the
customer in the Extreme Programming methodology, or customer representative elsewhere. They’re
the ones who bring to the development table the expectations we’ll struggle to satisfy. They will tell us
what’s most important to deliver and when they will prioritize our work based on its manifest business
value rather than its underlying architectural value. They’ll be empowered by management to make
decisions and make tough calls, which is sometimes great, sometimes not.

“A Native Web Application (NWA) is a web application which is 100% supported out
of the box by recent standards-compliant web browsers.”

“The thing these apps all have in common is that they all depend on the native web
technologies: HTML, CSS, and JavaScript (arguably, you could add WebGL to that list).”

Chapter 2 33

This will often have a big impact on our development schedule. To cut it short, they’re the ones in
charge of the project; that’s why, in order to deliver a web application matching their expectations,
we’ll need to understand their vision and feel it as if it were our own.

This is always true, even if the project’s product owner is our dad, wife, or best friend: that’s how it works.

Now that we have made that clear, let’s take a look at some of the most common product owner ex-
pectations for a typical web-based SPA project. We ought to see whether the choice of using ASP.NET
and Angular will be good enough to fulfill each one of them, as follows:

• Early release(s): No matter what we’re selling, the customer will always want to see what they’re
buying. For example, if we plan to use an Agile development framework such as Scrum, we’ll
have to release a potentially shippable product at the end of each sprint, or if we are looking
to adopt a Waterfall-based approach, we’re going to have milestones. One thing is for sure,
the best thing we can do in order to efficiently organize our development efforts will be to
adopt an iterative and/or modular-oriented approach. ASP.NET and Angular, along with the
strong separation of concerns granted by their underlying MVC- or MVVM-based patterns,
will gracefully push us into the mindset needed to do just that.

• GUI over back-end: We’ll often be asked to work on the GUI and front-end functionalities
because they will be the only things that are viewable and measurable for the customer. This
basically means that we’ll have to mock the data model and start working on the front-end
as soon as possible, delaying the back-end implementation as much (and as long) as we can.
Note that this kind of approach is not necessarily bad; we just won’t do that just to satisfy the
product owner’s expectations.

On the contrary, the choice of using ASP.NET along with Angular will grant us the chance to
easily decouple the presentation layer and the data layer, implementing the first and mocking
the latter, which is a great thing to do. We’ll be able to see where we’re going before wasting
valuable time or being forced to make potentially wrong decisions. ASP.NET’s web API inter-
face will provide the proper tools to do that by allowing us to create a sample web application
skeleton in a matter of seconds using the controller templates available within Visual Studio
and in-memory data contexts powered by Entity Framework Core, which we’ll be able to access
using Entity models and code first. As soon as we do that, we’ll be able to switch to GUI design
using the Angular presentation layer toolbox as much as we want until we reach the desired
results. Once we’re satisfied, we’ll just need to properly implement the Web API controller
interfaces and hook up the actual data.

• Fast completion: None of the preceding things will work unless we also manage to get ev-
erything done in a reasonable time span. This is one of the key reasons to choose to adopt a
server-side framework and a client-side framework that work together with ease. ASP.NET and
Angular are the tools of choice, not only because they’re both built on solid, consistent ground,
but also because they’re meant to do precisely that – get the job done on their respective sides
and provide a usable interface to the other partner.

Getting Ready34

• Adaptability: As stated by the Agile Manifesto, being able to respond to change requests is
more important than following a plan. This is especially true in software development where
we can even claim that anything that cannot handle change is a failed project. That’s another
great reason to embrace the separation of concerns enforced by our two frameworks of choice,
as this grants the developer the ability to manage—and even welcome, to some extent—most
of the layout or structural changes that will be expected during the development phase.

That’s about it. Note that we didn’t cover everything here as it would be impossible without the context
of an actual assignment. We just tried to give an extensive answer to the following general question:
if we were to build an SPA and/or a PWA, would ASP.NET and Angular be an appropriate choice? The
answer is undoubtedly yes, especially when used together.

Does this mean that we’re done already? Not a chance, as we have no intention of taking this assumption
for granted. Conversely, it’s time for us to demonstrate this by ceasing to speak in general terms and
starting to put things in motion. That’s precisely what we’re going to do in the next section: prepare,
build, and test an example SPA project.

An example SPA project
What we need now is to conceive a suitable test case scenario similar to the ones we will eventually
have to deal with – an example SPA project with all the core aspects we would expect from a poten-
tially shippable product.

In order to do this, the first thing we need to do is to become our own customer for a minute and
come up with an idea, a vision to share with our other self. We’ll then be able to put our developer
shoes back on and split our abstract plan into a list of items we’ll need to implement; these items will
be the core requirements of our project. Finally, we’ll set up our workstation by getting the required
packages, adding the resource files, and configuring both the ASP.NET and Angular frameworks in
the Visual Studio IDE.

A few lines ago, we mentioned Scrum, which is one of the most popular Agile software
development frameworks out there. Those who don’t know it yet should definitely take a
look at what it can offer to any results-driven team leader and/or project manager. Here’s
a good place to start:

https://en.wikipedia.org/wiki/Scrum_(software_development)

For those who are curious about the Waterfall model, here’s a good place to learn more
about it:

https://en.wikipedia.org/wiki/Waterfall_model

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Waterfall_model

Chapter 2 35

Not your usual Hello World!
The code we’re going to write within this book won’t be just a shallow demonstration of full-stack
development concepts; we won’t throw some working code here and there and expect you to connect
the dots. Our objective is to create solid, realistic web applications – with server-side web APIs and
client-side UIs – using the frameworks we’ve chosen, and we’re also going to do that following the
current development best practices.

Each chapter will be dedicated to a single core aspect. If you feel like you already know your way
there, feel free to skip to the next one. Conversely, if you’re willing to follow us through the whole
loop, you’ll have a great journey through the most useful aspects of ASP.NET and Angular, as well as
how they can work together to deliver the most common and useful web development tasks, from the
most trivial ones to the more complex beasts. It’s an investment that will pay dividends as it will leave
you with a maintainable, extensible, and well-structured project, plus the knowledge needed to build
your own. The following chapters will guide us through this journey. During the trip, we’ll also learn
how to take care of some important high-level aspects, such as SEO, security, performance issues, best
coding practices, and deployment, as they will become very important if/when our applications are
eventually published in a production environment.

To avoid making things too boring, we’ll try to pick enjoyable themes and scenarios that will also have
some usefulness in the real world: to better understand what we mean – no spoilers here – you’ll just
have to keep reading.

Preparing the workspace
The first thing we have to do is set up our workstation; it won’t be difficult because we only need a small
set of essential tools. These include Visual Studio 2022, an updated Node.js runtime, a development
web server (such as the built-in IIS Express), and a decent source code control system, such as Git. We
will take the latter for granted as we most likely already have it up and running.

In the next sections, we’ll set up the web application project, install or upgrade the packages and li-
braries, and build and eventually test the result of our work. However, before doing that, we’re going
to spend a couple of minutes understanding a very important concept that is required to properly use
this book without getting (emotionally) hurt, at least in my opinion.

Disclaimer — do (not) try this at home
There’s something very important that we need to understand before proceeding. If you’re a seasoned
web developer, you will most likely know about it already; however, since this book is for (almost)
everyone, I feel like it’s very important to deal with this matter as soon as possible.

In the unlikely case you don’t, you should really make amends before moving on! Stop
reading, go to www.github.com, www.bitbucket.com, or whichever online source code
management (SCM) service you like the most, create a free account, and spend some time
learning how to effectively use these tools; you won’t regret it, that’s for sure.

Getting Ready36

This book will make extensive use of a number of different programming tools, external components,
third-party libraries, and so on. Most of them (such as TypeScript, npm, NuGet, most .NET frame-
works/packages/runtimes, and so on) are shipped together with Visual Studio 2022, while others (such
as Angular, its required JavaScript dependencies, and other third-party server-side and client-side
packages) will be fetched from their official repositories. These things are meant to work together in
a 100% compatible fashion; however, they are all subject to changes and updates during the inevitable
course of time. As time passes by, the chance that these updates might affect the way they interact
with each other, and the project’s health, will increase.

The broken code myth
In an attempt to minimize the chances of broken code occurring, this book will always work with
fixed versions/builds of any third-party component that can be handled using the configuration files.
However, some of them, such as Visual Studio and/or .NET SDK updates, might be out of that scope
and might wreak havoc on the project. The source code might cease to work, or Visual Studio could
suddenly be unable to properly compile it.

When something like that happens, a less experienced person will always be tempted to put the blame
on the book itself. Some of them may even start thinking something like this: There are a lot of compile
errors, hence the source code must be broken!

Alternatively, they may think like this: The code sample doesn’t work: the author must have rushed things
here and there and forgot to test what he was writing.

It goes without saying that such hypotheses are rarely true, especially considering the amount of time
that the authors, editors, and technical reviewers of these books spend in writing, testing, and refin-
ing the source code before building it up, making it available on GitHub, and often even publishing
working instances of the resulting applications to worldwide public websites.

Any experienced developer will easily understand that most of these things couldn’t even be done
if there was some broken code somewhere; there’s no way this book could even attempt to hit the
shelves without coming with a 100% working source code, except for a few possible minor typos that
will quickly be reported to the publisher and thus fixed within the GitHub repository in a short while.
In the unlikely case that it looks like it doesn’t, such as raising unexpected compile errors, the novice
developer should spend a reasonable amount of time trying to understand the root cause.

Here’s a list of questions they should try to answer before anything else:

• Am I using the same development framework, third-party libraries, versions, and builds ad-
opted by the book?

The GitHub repository for this book can be found here:

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular

It contains a Visual Studio solution file for each chapter containing source code (Chapter_02.
sln, Chapter_03.sln, and so on), as well as an additional solution file (All_Chapters.
sln) containing the source code for all the chapters.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular

Chapter 2 37

• If I updated something because I felt like I needed to, am I aware of the changes that might
affect the source code? Did I read the relevant changelogs? Have I spent a reasonable amount
of time looking around for breaking changes and/or known issues that could have had an
impact on the source code?

• Is the book’s GitHub repository also affected by this issue? Did I try to compare it with my own
code, possibly replacing mine?

If the answer to any of these questions is No, then there’s a good chance that the problem is not as-
cribable to this book.

Stay hungry, stay foolish, yet be responsible as well
Don’t get me wrong: if you want to use a newer version of Visual Studio, update your TypeScript com-
piler, or upgrade any third-party library, you are definitely encouraged to do that. This is nothing less
than the main scope of this book – making you fully aware of what you’re doing and capable of, way
beyond the given code samples.

However, if you feel you’re ready to do that, you will also have to adapt the code accordingly; most of
the time, we’re talking about trivial stuff, especially these days when you can Google the issue and/or
get the solution on Stack Overflow. Have they changed the name of a property or method? Then you
need to load the new spelling. Have they moved the class somewhere else? Then you need to find the
new namespace and change it accordingly, and so on.

That’s about it – nothing more, nothing less. The code reflects the passage of time; the developer just
needs to keep up with the flow, performing minimum changes to it when required. You can’t possibly
get lost and blame someone other than yourself if you update your environment and fail to acknowl-
edge that you have to change a bunch of code lines to make it work again.

Am I implying that the author is not responsible for the source code of this book? It’s the exact opposite;
the author is always responsible. They’re supposed to do their best to fix all the reported compatibility
issues while keeping the GitHub repository updated. However, you should also have your own level of
responsibility; more specifically, you should understand how things work for any development book
and the inevitable impact of the passage of time on any given source code. No matter how hard the
author works to maintain it, the patches will never be fast or comprehensive enough to make these
lines of code always work in any given scenario. That’s why the most important thing you need to
understand – even before the book’s topics – is the most valuable concept in modern software devel-
opment: being able to efficiently deal with the inevitable changes that will always occur. Whoever
refuses to understand that is doomed; there’s no way around it.

Now that we’ve clarified these aspects, let’s get back to work.

Setting up the project(s)
Assuming we have already installed Visual Studio 2022 and Node.js (as described in Chapter 1, Intro-
ducing ASP.NET and Angular), here’s what we need to do:

1. Download and install the .NET 8 SDK.
2. Check that the .NET CLI will use that SDK version.

Getting Ready38

3. Install the Angular CLI.
4. Create a new .NET and Angular project.
5. Check out the newly created project within Visual Studio.
6. Update all the packages and libraries to our chosen versions.

Let’s get to work.

Installing the .NET 8 SDK
The .NET 8 SDK can be downloaded from either the official Microsoft URL (https://dotnet.microsoft.
com/download/dotnet/8.0) or from the GitHub official release page (https://github.com/dotnet/
core/tree/master/release-notes/8.0).

The installation is very straightforward – just follow the wizard until the end to get the job done, as
follows:

Figure 2.1: .NET SDK 8.0.100 installer

The whole installation process shouldn’t take more than a couple of minutes.

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://github.com/dotnet/core/tree/master/release-notes/8.0
https://github.com/dotnet/core/tree/master/release-notes/8.0

Chapter 2 39

Checking the SDK version
Once the .NET SDK has been installed, we need to confirm that the new SDK PATH has been properly
set and/or that the .NET CLI will actually use it. The fastest way to check that is by opening Command
Prompt and typing the following:

> dotnet --version

Be sure that the .NET CLI executes without issue and that the version number is the same as we in-
stalled a moment ago.

Installing Node.js and the Angular CLI
The next thing we must do is to install the Angular Command-Line Interface – better known as the
Angular CLI. In order to do that, we have to install Node�js, so that we can access npm and use it to
get the official Angular packages.

If you’re on Windows, we strongly suggest installing Node.js using nvm for Windows – a neat Node.js
version manager for the Windows system. The tool can be downloaded from the following URL:
https://github.com/coreybutler/nvm-windows/releases.

Once Node.js has been installed, the Angular CLI can be installed using the following command:

npm install -g @angular/cli@17.0.3

After doing that, you should be able to type ng -version and get the Angular CLI ASCII logo containing
the installed packages version. If that’s not the case, you might have to add the Node.js and/or npm /
bin/ folder to your PATH environment variable.

After our frameworks and all the prerequisites have been installed, we can restart your computer (to
ensure that everything will be loaded on startup) and go ahead.

Creating the Angular and ASP.NET Core project
Now we can create our first .NET and Angular project – in other words, our first app.

Visual Studio 2022 gives us two built-in options for doing this:

• Use the Standalone TypeScript Angular Template together with the ASP�NET Core Web API
template, an approach introduced with the initial release of Visual Studio 2022 that allows to
keep the front-end Angular app and the back-end ASP.NET Core API in two separate projects,
although fully able to interoperate with each other.

• Use the new Angular and ASP�NET Core Template, a new approach introduced with Visual
Studio 2022 v17.8 that allows to achieve the same results as the standalone template, but with
less configuration effort.

If the prompt is unable to execute the command, go to Control Panel | System | Advanced
System Settings | Environment Variables and check that the C:\Program Files\dotnet\
folder is present within the PATH environment variable; manually add it if needed.

https://github.com/coreybutler/nvm-windows/releases

Getting Ready40

The two approaches are very similar, and both of them are viable enough since they enforce the good
practice of decoupling the front-end and the back-end architecture (as well as codebases), which is
a pivotal concept when dealing with SPAs: being able to deal with this “multi-project approach” will
definitely help the reader to better understand the distinct underlying logic of both frameworks, not
only during development but also when we’ll have to eventually publish and deploy our app(s).

Furthermore, both of them will generate the boilerplate code of the front-end app using the Angular
CLI version installed on the computer, which is great, because it means that our source code will be
fully compatible (and up to date) with the Angular version that we have installed.

That said, for the purpose of this book we’re going to use the new Angular and ASP�NET Core Template,
which will allow us to achieve optimal results with less effort.

Creating the Angular project
Let’s start with the front-end Angular project, which will also provide the name for our Visual Studio
2022 solution.

Launch Visual Studio, then click on the Create a new project button: use the search textbox near the
top of the window to look for the Angular and ASP�NET Core project template, just like shown in the
following screenshot:

For those who don’t know the Visual Studio naming conventions, a solution is basically a
collection of one or multiple projects: in our multi-project approach we’ll end up having
two projects (the front-end Angular App and the back-end ASP.NET Core Web API) within
a single solution.

Chapter 2 41

Figure 2.2: Creating a new Standalone TypeScript Angular template

Select that template and click Next to access the Configure your new project screen. In the following
screenshot, fill the form with the following values:

• Solution name: HealthCheck
• Location: C:\Projects\
• Create in new folder: Yes (checked)

There’s a good reason for calling our project HealthCheck, as we’re going to see in a short
while (no spoilers, remember?).

Getting Ready42

Figure 2.3: Standalone TypeScript Angular Project configuration wizard

It goes without saying that these are only suggested choices. However, in this book we’re going to use
these names – which will impact our source code in terms of class names, namespaces, and so on –
and \Projects\ as our root folder. Inexperienced developers are strongly advised to use the same
names and folder.

Choosing a root-level folder with a short name is also advisable to avoid possible errors
and/or issues related to path names being too long: Windows 10 has a 260-character limit
that can create some issues with some deeply nested npm packages.

Chapter 2 43

When done, click the Next button again to access the third and last section of the wizard: Additional
information.

Here, we need to be sure to choose the �NET 8 Framework, then leave the default options as they
already are: Configure for HTTPS: checked, Enable OpenAPI support: checked, Do not use top-level
statements: unchecked, Use controllers: checked, as shown in the following screenshot.

Figure 2.4: ASP.NET Core Web API template configuration wizard

Getting Ready44

Once this is done, hit Create to complete the wizard. As soon as we do that, Visual Studio will start to
create and prepare our new project(s): when everything is set and done, the development GUI will
appear with the new solution’s file tree clearly visible in the Solution Explorer window, as shown in
the following screenshot:

Figure 2.5: Our HealthCheck solution, featuring two distinct projects for client and server

As we can easily expect, our solution is composed of two distinct projects:

• The healthcheck�client project, for the Angular app
• The HealthCheck�Server project, for the ASP.NET Core Web API

Now we have the front-end project and the back-end project ready within the same solution: we just
need a few tweaks to their configuration settings to ensure they will be executed together as we want
them to do.

Chapter 2 45

Setting up the HTTP and HTTPS ports
From Solution Explorer, open the HealthCheck�Server project node (the ASP.NET one), then open
the /Properties/ folder and double-click the launchSettings.json file to open it in the text editor.

Once you’re there, perform the following changes:

• Set all the "launchBrowser" settings to false.
• Replace the random-generated HTTP and HTTPS ports with fixed values. We’re going to use

40080 for HTTP and 40443 for HTTPS.

Here’s what our launchSettings.json file should look like after these changes (updated lines are
highlighted):

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:40080",
 "sslPort": 40443
 }
 },
 "profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "launchUrl": "swagger",
 "applicationUrl": "http://localhost:40080",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,

The reason to use fixed ports is that we’ll have to deal with some framework features (such
as internal proxies) that require fixed endpoints. In the unlikely event that these ports end
up being busy and/or cannot be used, feel free to change them: just be sure to apply the
same changes throughout the whole book to avoid getting HTTP 404 errors.

Getting Ready46

 "launchBrowser": false,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:40443;http://localhost:40080",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": false,
 "launchUrl": "swagger",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
 }
 }
 }
}

Now we just need to tell Visual Studio how to properly run our projects.

Setting the startup project(s)
Since we are dealing with two projects that need to work together, we need to make good use of one
of the most important, yet less-known features introduced with the latest versions of Visual Studio, at
least for SPAs: the ability to set up multiple startup projects.

It’s worth noting that, in the latest versions of Visual Studio 2022, the following settings should be
already OK, but it’s better to check that this is the case.

From Solution Explorer, right-click on the HealthCheck solution (the top-level node) and select Con-
figure Startup Projects, then perform the following steps:

1. In the modal window that opens, ensure that the startup project radio button is set to Multiple
startup projects, and that the Action column value is set to Start for both of our projects.

2. Ensure that the HealthCheck�Server (ASP.NET) project is placed above the healthcheck�client
(Angular) project, so that it will be launched first. If that’s not the case, operate with the two
arrows to the right to achieve that result.

Chapter 2 47

Here’s what the Multiple startup project settings should look like after these changes:

Figure 2.6: Solution ‘HealthCheck’ startup project settings window

Once this is done, we can move to the next (and last) step. Remember when we said that we would be
dealing with fixed endpoints? Here’s the first one we need to take care of.

From the HealthCheck project, open the /src/proxy.conf.js file, which is the configuration file for
the proxy that will be used by the Angular development server to reach our ASP.NET API project URLs
when running our projects in Debug mode. Don’t worry about these concepts for now; we’ll explain
them in a short while. For the time being, we just need to ensure that the proxy will route the API
requests to the correct URL, including the HTTPS port.

For that reason, change the target URL to match the fixed HTTPS port that we’ve configured in the
ASP.NET Core API project, which should be 40433 (unless we chose a different one):

const PROXY_CONFIG = [
 {
 context: [
 "/weatherforecast",
],
 target: "https://localhost:40443",
 secure: false

Getting Ready48

 }
]

module.exports = PROXY_CONFIG;

Let’s take the chance to choose a fixed HTTPS port for the Angular development server as well.

Open the /.vscode/launch.json file and change the default HTTPS port to 4200, as shown in the
following highlighted code:

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "edge",
 "request": "launch",
 "name": "localhost (Edge)",
 "url": "https://localhost:4200",
 "webRoot": "${workspaceFolder}"
 }
 {
 "type": "chrome",
 "request": "launch",
 "name": "localhost (Chrome)",
 "url": "https://localhost:4200",
 "webRoot": "${workspaceFolder}"
 },
]
}

Now we’re finally ready to launch our project(s) and see how well they work together: this is what the
next section is all about.

Performing a test run
The best way to see if our multi-project is working as expected is to perform a quick test run by launch-
ing our projects in Debug mode. To do that, hit the Visual Studio Start button or the F5 key to start
downloading the required npm dependencies, compiling, and eventually running our app.

IMPORTANT: Your launch.json file might be different if you have Chrome and/or MS
Edge installed. Just keep the configuration blocks for the browser you have on your system
and plan to use to debug your app and remove (or avoid adding) the others, otherwise
your project will crash on startup. In this book, we’re going to use Chrome and MS Edge,
hence we’ll keep the file as it is.

Chapter 2 49

After a few seconds, we’ll be asked to trust a self-signed certificate that ASP.NET Core will generate
to allow our app to be served through HTTPS (as shown in the following screenshot). Let’s just click
Yes to continue.

Figure 2.7: Trust ASP.NET Core SSL Certificate popup

Right after that, Visual Studio will launch three separate processes:

• The ASP�NET Core Server, a web server that will serve the server-side APIs. This web server
will be Kestrel (the default) or IIS Express, depending on the project configuration. Either of
them will work for our purposes since we’ve wisely configured both to use the same fixed
endpoints and HTTP/HTTPS ports:

Figure 2.8: Kestrel web server for the ASP.NET Core Web API project

If we don’t want to have to authorize the ASP.NET Core self-signed SSL certificates, we can
flag the Don’t ask me again checkbox right before hitting Yes.

Getting Ready50

• The Angular Live Development Server, a console application acting as a web server that will
host our Angular application’s files using the ng serve command from the Angular CLI:

Figure 2.9 Angular Live Development Server for the Standalone TypeScript Angular project

• Our favorite web browser, such as MS Edge, Mozilla Firefox, or Google Chrome (we’re going to
use MS Edge from now on), which will interact with the Angular Live Development Server
through the fixed HTTPS endpoint we configured a while ago:

Figure 2.10: MS Edge web browser for the Standalone TypeScript Angular project

Chapter 2 51

The page we’re going to see in the web browser shows a basic Angular component performing a simple
data fetching retrieval task from the ASP.NET Core Web API project: a tiny, yet good (and fully working)
example of what we’ll be doing from now on.

What we just did was an excellent consistency check to ensure that our development system is properly
configured. If we see the page shown in the preceding screenshot, it means that we’re ready to move on.

Troubleshooting
In the unlikely case we don’t, it probably means that we’re either missing something or that we’ve
got some conflicting software preventing Visual Studio and/or the underlying .NET and Angular CLIs
from properly compiling the project. To fix that, we can try to do the following:

• Uninstall/reinstall Node.js, as we possibly have an outdated version installed.
• Uninstall/reinstall Visual Studio, as our current installation might be broken or corrupted.

The .NET SDK should come shipped with it already; however, we can try reinstalling it as well.

If everything still fails, we can try to install Visual Studio and the previously mentioned packages in a
clean environment (either a physical system or a VM) to overcome any possible issues related to our
current operating system configuration.

Architecture overview
Before moving on to the next chapter, let’s take a couple more minutes to fully understand the under-
lying logic behind the development environment that we’ve just built.

We’ve already seen that when Visual Studio starts our projects in the development environment, three
processes are launched: the standalone Angular project (healthcheck.client), the ASP.NET Core Web
API (HealthCheck.Server), and the web browser that will interact with them.

If none of these attempts work, the best thing we can do is to ask for specific sup-
port on the .NET community forums at https://forums.asp.net/default.
aspx/7?General+ASP+NET.

https://forums.asp.net/default.aspx/7?General+ASP+NET
https://forums.asp.net/default.aspx/7?General+ASP+NET

Getting Ready52

Here’s a simple diagram that summarizes how these three processes work together and interact with
each other:

Figure 2.11: healthcheck.client (front-end) and HealthCheck.Server (back-end) interaction in the
development setup

As we can see from the previous diagram, the web browser will call the Angular Live Development
Server (which listens to HTTPS port 4200), which will deal with them in the following way:

• Directly serve all the requests for the Angular pages and static resources.
• Proxy all the API requests to the Kestrel web server hosting the ASP.NET Core Web API (which

listens to the HTTPS port 40443).

It’s important to understand that the Angular Live Development Server is only meant for local devel-
opment, where it will allow the use of most debug tools and greatly speed up the coding experience
with features such as hot reload. Whenever we want to deploy our app(s) in production, or in any
environment other than local development, we’re going to build our app into production bundles and
deploy them to a web server (or a CDN) that will basically take its place in the preceding diagram.
We’ll talk about all this extensively in Chapter 15, Windows, Linux, and Azure Deployment, when we’ll
learn how to publish our apps.

Summary
So far, so good; we’ve just set up a working skeleton of what’s about to come. Before moving on, let’s
do a quick recap of what we just did (and learned) in this chapter.

First of all, we learned the differences between the various approaches that can be adopted to create
web apps nowadays: SPAs, MPAs, and PWAs. We also explained that since we’ll be using .NET and
Angular, we’ll stick to the SPA approach, but we’ll also implement most PWA features, such as a ser-
vice worker and a web manifest file. In an attempt to reproduce a realistic production-case scenario,
we also went through the most common SPA features, first from a technical point of view, and then
putting ourselves in the shoes of a typical product owner while trying to enumerate their expectations.

Chapter 2 53

Last, but not least, we learned how to properly set up our development environment; we chose to do
that using the latest Angular SPA template shipped with the .NET SDK, thus adopting the standard
ASP.NET Core/.NET 8 approach. Then, we used the built-in Visual Studio Angular and ASP.NET Core
project template to create our healthcheck.client (front-end) and HealthCheck.Server (back-end) projects,
configured them to be able to work together, and tested the overall result to ensure that everything
was working properly. Finally, we spent some valuable time to fully understand how the development
architecture that we’ve just built works.

In the next chapter, Chapter 3, Looking Around, we’ll take an extensive look at the app we just created
to properly understand how the .NET back-end and the Angular front-end perform their respective
tasks and what they can do together.

Suggested topics
For further information, we recommend the following topics: Single-Page Application (SPA), Progres-
sive Web Application (PWA), Native Web Application (NWA), Multi-Page Application (MPA), Scrum,
Agile Manifesto, ASP.NET Web API, Angular CLI, Node.js, npm, nvm for Windows, Visual Studio 2022,
and Visual Studio project templates.

References
• Native Web Apps, Henrik Joreteg, 2015: https://blog.andyet.com/2015/01/22/native-web-

apps/

• Manifesto for Agile Software Development, Kent Beck, Mike Beedle, and many others, 2001: https://
agilemanifesto.org/

• Progressive Web Apps: https://developers.google.com/web/progressive-web-apps/
• Progressive Web Apps: Escaping Tabs Without Losing Our Soul: https://infrequently.

org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

• What, Exactly, Makes Something A Progressive Web App?: https://infrequently.org/2016/09/
what-exactly-makes-something-a-progressive-web-app/

• Scrum (software development): https://en.wikipedia.org/wiki/Scrum_(software_
development)

• Waterfall model: https://en.wikipedia.org/wiki/Waterfall_model
• CLI-Based Front-End Project Templates: https://devblogs.microsoft.com/visualstudio/the-

new-javascript-typescript-experience-in-vs-2022-preview-3/#cli-based-front-end-
project-templates

• NVM for Windows: https://github.com/coreybutler/nvm-windows/releases

https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://developers.google.com/web/progressive-web-apps/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Waterfall_model
https://devblogs.microsoft.com/visualstudio/the-new-javascript-typescript-experience-in-vs-2022-preview-3/#cli-based-front-end-project-templates
https://devblogs.microsoft.com/visualstudio/the-new-javascript-typescript-experience-in-vs-2022-preview-3/#cli-based-front-end-project-templates
https://devblogs.microsoft.com/visualstudio/the-new-javascript-typescript-experience-in-vs-2022-preview-3/#cli-based-front-end-project-templates
https://github.com/coreybutler/nvm-windows/releases

Getting Ready54

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

3
Looking Around

Now that our project has been created, it’s time to take a quick look around and try to understand
some of the hard work that the .NET and Angular SPA template has done to make it work.

Hey, wait a minute! Shouldn’t we skip all these setup technicalities and just jump into coding?

As a matter of fact, yes, we’ll definitely be jumping into the coding in a little while. However, before
doing so, it’s wise to highlight a couple of aspects of the code that have been put in place already so that
we’ll know how to move effectively within our project in advance: that is, where to find the server-side
and client-side code, where to put new content, how to change our initialization parameters, and so
on. It will also be a good chance to review our basic knowledge of the Visual Studio environment and
the packages we will need.

That’s precisely what we’re going to do in this chapter. More specifically, the following are the main
topics we’re going to cover:

• Solution overview: A high-level summary of what we’ll be dealing with
• The ASP�NET back-end: An overview of the ASP.NET Core Web API project (HealthCheck.Server)

– controllers, configuration files, and so on
• The Angular front-end: An overview of the Angular project (healthcheck.client) – the workspace,

the /src/ folder, the Angular initialization cycle, and so on
• Getting the app to work: A series of upgrading, refactoring, and testing tasks to ensure that

the back-end and the front-end are able to work together
• Getting to work: Changing the Web API endpoints, adding new Angular components, imple-

menting a basic navigation and routing system, and so on

Looking Around56

Technical requirements
In this chapter, all of the previous technical requirements listed in Chapter 2, Getting Ready, will apply,
with no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/master/Chapter_03/.

Solution overview
The first thing that catches the eye is that, as we’ve already mentioned, the layout of a standard ASP.
NET Core solution is quite different from what it used to be in ASP.NET 5 and earlier versions. The
most notable thing is that we have two different projects – one for Angular (healthcheck.client) and
one for the ASP.NET Core Web API (HealthCheck.Server) – that start together and need to interact with
each other. If you have previous “classic” ASP.NET single-project experience, you may find such an
approach quite different from what you are used to working with.

The best thing about the new approach is that we’re instantly able to distinguish the ASP.NET back-end
part from the Angular front-end part, which could be troublesome with the previous single-project
experience, when the two stacks were often intertwined.

Let’s quickly review their overall structure to better understand how each one of them works.

The ASP.NET back-end
The ASP.NET back-end stack is contained in the following folders:

• The Dependencies virtual folder, which basically replaces the old References folder and con-
tains all the internal, external, and third-party references required to build and run our project.
All the references to the NuGet packages that we’ll add to our project will also be put there.

• The /Controllers/ folder, which has been shipped with any MVC-based ASP.NET application
since the preceding release of the MVC framework: this folder contains a single controller –
WeatherForecastController.cs – which is responsible for serving the sample weather forecast
data that we briefly saw in Chapter 2, Getting Ready, during our final test run.

• The root-level files – Program.cs and appsettings.json – which will determine our web ap-
plication’s configuration, including the modules and middleware, compilation settings, and
publishing rules; we’ll address them all in a while.

IMPORTANT! The sample code we’re reviewing here is the code that comes with the default
Visual Studio templates shipped by the .NET 8 SDK at the time of writing. In the (likely)
event that this sample code is updated in future releases, ensure you get the former source
code from the web using this book’s official GitHub repository and use it to replace the
contents of your project folder.

Caution: Failing to do this could result in you working with different sample code from
the code featured in this book.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_03/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_03/

Chapter 3 57

If you have experience with the ASP.NET MVC framework(s), you might want to know why this template
doesn’t contain a /Pages/ or /Views/ folder: where did our Razor Pages and views go?

As a matter of fact, this template doesn’t make use of pages or views. If we think about it, the reason is
quite obvious: a Web API project doesn’t need any of them, since its main purpose is to return JSON data.

Configuration files
Let’s start by taking a look at the root-level configuration files and their purpose: Program.cs and
appsettings.json. These files contain our web application’s configuration, including the modules
and middleware, as well as environment-specific settings and rules.

The WeatherForecast.cs file contains a strongly typed class designed to be returned from the Get
method of WeatherForecastController: this model will be serialized into JSON by the ASP.NET Core
Framework.

Program.cs
The Program.cs file will most likely intrigue most seasoned ASP.NET programmers, as it’s not some-
thing we usually see in a web application project. First introduced in ASP.NET Core 1.0, the Program.
cs file’s main purpose is to create a builder: a factory object that is used to set up and build the interface
that will host our ASP.NET Core web application.

In the first ASP.NET Core versions (up to 2.2), the builder was called WebHostBuilder and the hosting
interface was known as IWebHost; in ASP.NET Core 3.0, they became HostBuilder and IHost, respec-
tively, due to the introduction of the generic host, a more versatile host that can support other workloads
like worker services, gRPC services, and Windows services.

Those who are already familiar with ASP.NET Core will notice that we’re not mentioning
the Startup.cs file, which was a pivotal configuration element along with the Program.
cs file. The reason for that is fairly simple: it’s not required anymore. Starting from .NET 6,
the framework introduced a new hosting model for ASP.NET Core applications that unifies
Startup.cs and Program.cs in a single file experience that takes advantage of the new
C# top-level statements feature (which we briefly mentioned in Chapter 1, Introducing ASP.
NET and Angular) to reduce the amount of boilerplate code required to get the app up and
running; that same approach is still valid in .NET 8.

For additional info regarding this change, check out the Migration to ASP�NET Core in
�NET 6 development notes by David Fowler (ASP.NET Team Distinguished Engineer) at
the following URL:

https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d

https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d

Looking Around58

The generic host approach can still be used, but the recommended way to set up a web application
with the latest .NET releases involves the use of the new hosting model that we briefly mentioned a
moment ago. The new approach relies upon a new WebApplicationBuilder class with a built-in im-
plementation of IHostBuilder and IHost: this small, yet effective, improvement makes the Program.
cs overall logic much simpler for new developers to understand without changing the underlying
host-based approach.

If we open the Program.cs file and take a look at the code, we can see what the new minimal template
looks like:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/
swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

var app = builder.Build();

app.UseDefaultFiles();
app.UseStaticFiles();

// Configure the HTTP request pipeline.

That’s great to know, but what is a host? In just a few words, it is the execution context of
any ASP.NET Core app. In a web-based application, the host must implement the IHost
interface, which exposes a collection of web-related features and services that will be
used to handle the HTTP requests.

The preceding statement can lead to the assumption that the web host and the web server
are the same thing. However, it’s very important to understand that they’re not, as they
serve very different purposes. Simply put, the host is responsible for application startup
and lifetime management, while the server is responsible for accepting HTTP requests.
Part of the host’s responsibility includes ensuring that the application’s services and the
server are available and properly configured.

We can think of the host as being a wrapper around the server: the host is configured to
use a particular server, while the server is unaware of its host.

For further info regarding the IHost interface, as well as the whole ASP.NET Core ini-
tialization stack, check out the following guide: https://docs.microsoft.com/en-us/
aspnet/core/fundamentals/.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/

Chapter 3 59

if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}

app.UseHttpsRedirection();

app.UseAuthorization();

app.MapControllers();

app.MapFallbackToFile("/index.html");

app.Run();

If we compare the new Program.cs code with the old Program.cs plus Startup.cs approach, which
was the default until .NET 5, we can immediately see a huge difference in terms of overall complexity:
the new code is very readable, so we can easily understand what happens on each line of code.

As we can easily see, the new code is mostly about executing the following tasks:

• Instantiate a WebApplicationBuilder (line 1)
• Add some services (lines 5-8)
• Use the builder to create a WebApplication object (line 10)
• Configure the app with the required middleware (lines 13-23)
• Run the app (line 25)

The IHost interface that we’ve just talked about is implemented by the WebApplication object and
can be accessed by the Host public property (app.Host).

After instantiating the WebApplication object, the code configures the HTTP request pipeline by load-
ing the required middleware and services that will be used by our web application. More specifically,
here’s what happens during that portion of the above code (line 10 and following):

• An if statement that registers a couple of pieces of middleware only if the app is being run
in a development environment: this “development” middleware is related to Swagger, which is
something that we’ll talk about in a short while.

• Another block of middleware that will be used with any environment: HttpsRedirection, which
will handle HTTP-to-HTTPS redirects, and Authorization, which allows access to some API
requests to be restricted to authorized users only. Note how these methods are called with no
parameters; this just means that their default settings are more than enough for us, so there’s
nothing to configure or override here.

Looking Around60

• After the environment-specific and always-on middleware, there’s a call to the MapControllers
method, which adds the endpoints required by the controller’s action methods to handle the
incoming HTTP requests. We’ll extensively talk about that in upcoming chapters, when we
deal with server-side routing aspects. For now, let’s just note that the method is called without
any parameters, meaning that we’re not specifying any custom route here. This means that
we’re just using the default routing rules enforced by the framework’s naming conventions,
at least for now.

• Last but not least comes the call to the Run method, which executes the application and blocks
the calling thread until the IHost shutdown.

Let’s now move to another important configuration file.

appsettings.json
The appsettings.json file is just a replacement for the good old Web.config file; the XML syntax
has been replaced by the more readable and considerably less verbose JSON format. Moreover, the
new configuration model is based upon key/value settings that can be retrieved from a wide variety
of sources, including, but not limited to, JSON files, using a centralized interface.

Once retrieved, they can be easily accessed within our code using dependency injection via lit-
eral strings (using the IConfiguration interface). This can be demonstrated by opening the
WeatherForecastController.cs file and modifying the constructor in the following way (new/up-
dated lines are highlighted):

public WeatherForecastController(
 ILogger<WeatherForecastController> logger,
 IConfiguration configuration
)
{
 _logger = logger;
 var defaultLogLevel = configuration["Logging:LogLevel:Default"];
}

If we place a breakpoint by the end of the constructor and run our project in Debug mode, we can
check that the defaultLogLevel variable will contain the "Information" string, which is precisely
the value specified in the appsettings.json file.

It’s worth noting that middleware and services added to the HTTP pipeline will pro-
cess incoming requests in registration order, from top to bottom. This means that
HttpsRedirection will take priority over Authorization, which will take place before
the MapControllers method, and so on. Such behavior is very important and could
cause unexpected results if taken lightly, as shown in the following Stack Overflow thread:
https://stackoverflow.com/questions/52768852/.

https://stackoverflow.com/questions/52768852/

Chapter 3 61

appsettings.Development.json
It’s worth noting that there’s also an appsettings.Development.json file nested below the main one.
Such a file serves the same purpose as the old Web.Debug.config file, which was widely used during
the ASP.NET 4.x period. In a nutshell, these additional files can be used to specify additional config-
uration key/value pairs (and/or override existing ones) for specific environments.

To better understand the concept, let’s take the chance to slightly modify the default logging behavior
of the Development environment.

Open the appsettings.Development.json file and update the following lines:

{
 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "Microsoft.AspNetCore": "Warning"
 }
 }
}

After performing this change, every time our Web API project is launched in a Development environ-
ment the default log level will be set to Debug instead of Information, which will still be the default
log level for the other environments – until we create other appsettings.<EnvironmentName>.json
files to override it.

Assuming we have understood everything here, let’s move on to the main players of any ASP.NET
Core project: the controllers.

Controllers
Controllers are the backbone of most ASP.NET Core applications since they are required to handle the
incoming HTTP requests. More specifically, a controller is used to define a set of actions (or action
methods), which are basically the methods that get called by the routing middleware to handle the
requests mapped to them through routing rules.

Controllers logically group similar actions together; such aggregation mechanisms allow developers
to conveniently define common sets of rules, not only for routing but also for caching, authorization,
and other settings that can benefit from being applied collectively.

Those who don’t like to deal with string literals to access configuration files could take the
chance to define a custom POCO class that will internally read the IConfiguration values
and return them as named properties: however, since we won’t need to access those values
frequently, for the sake of simplicity, we’re going to avoid implementing such strongly typed
logic and just use the literal approach shown above.

Looking Around62

In a typical ASP.NET MVC project, controllers are mostly used to serve the views to the client, which
contains static or dynamic HTML content. That’s not the case in Web API projects, where their main
purpose is to serve JSON output (REST APIs), XML-based responses (SOAP web services), a static or
dynamically created resource (JPG, JS, and CSS files), or even a simple HTTP response (such as an
HTTP 301 redirect) without the content body.

Moreover, the controllers of a typical ASP.NET MVC project derive from the Controller class, which
adds support from views; in Web API projects, since they don’t need to serve views, it’s better to have
them extend the ControllerBase class instead, which is more lightweight.

The only exception to this good practice comes if we plan to use the same controller to serve both
views and Web APIs: when that’s the case, deriving it from Controller is the most logical and con-
venient choice.

WeatherForecastController
By acknowledging all this, we can already infer that the single sample WeatherForecastController
contained in the /Controllers/ folder is there to expose a set of Web APIs that will be used by the
Angular front-end. To quickly check it out, hit F5 to launch our project(s) in Debug mode and execute
the default route by typing the following URL: https://localhost:40443/weatherforecast.

If we remember what we did in the previous chapters, we already know that this is the URL endpoint
for the local Kestrel (or IISExpress) web server hosting the Web API projects.

This will execute the Get() method defined in the WeatherForecastController.cs file. As we can see
by looking at the source code, such a method has an IEnumerable<WeatherForecast> return value,
meaning that it will return multiple objects of the WeatherForecast type.

If we copy the preceding URL into the browser and execute it, we should see a JSON array of randomly
generated data, as shown in the following screenshot:

As per ASP.NET Core convention, each controller class resides in the project’s root-level
/Controllers/ folder and is suffixed with the Controller keyword.

This approach is also followed by the ASP.NET Core Web API project template we’re using:
if we look at the WeatherForecastController source code, we can see that it derives
from the ControllerBase class.

The actual port number may vary, depending on the configuration we did to launch
Settings.json file early on. Those who want to use different HTTP and/or HTTPS ports
can follow the instructions that we supplied in Chapter 2, Getting Ready.

Chapter 3 63

Figure 3.1: JSON array of weather data

It’s easy to imagine who’ll be asking for these values: the answer is… our Angular app.

Introducing OpenAPI (Swagger)
Before moving on to the Angular front-end project, there’s another back-end feature we should famil-
iarize ourselves with: OpenAPI, formerly known as Swagger.

Those who have some experience with web services should have already heard the name; in very
short terms, the OpenAPI Specification (OAS) is a language-agnostic specification to document and
describe REST APIs. Its main role is to allow computers, as well as humans, to univocally understand
the capabilities of a REST API without having direct access to the source code.

Adding OpenAPI support to a RESTful web service project will grant some relevant benefits, such as:

• Minimizing the amount of work needed to connect decoupled services
• Reducing the amount of time needed to accurately document the service

The OpenAPI Specification was initially known as Swagger since its development (2010).
The name was officially changed on January 1, 2016, when the Swagger specification was
renamed the OpenAPI Specification (OAS) and was moved to a new GitHub repository,
which is still there today.

The OpenAPI Specification GitHub repository is available at the following URL:

https://github.com/OAI/OpenAPI-Specification

https://github.com/OAI/OpenAPI-Specification

Looking Around64

If we consider how important these aspects have become in the last few years, we can easily understand
why OpenAPI can be included by default in most Visual Studio API templates; the one we’ve used to
create our HealthCheck.Server project is no exception, as we saw in Chapter 2, Getting Ready, and early
on in this chapter, when we were looking at the middleware included in the Program.cs file.

More precisely, the default OpenAPI implementation added by our template is called Swashbuckle
and is made available with the Swashbuckle�AspNetCore NuGet package. However, since we checked
Enable OpenAPI Support when we created our project back in Chapter 2, Getting Ready, we don’t need
to explicitly add it; it’s already included in our project.

To check whether the Swashbuckle�AspNetCore NuGet package is already installed, right-click on
the HealthCheck.Server project node from Solution Explorer and select Manage NuGet Packages. The
package should be clearly visible in the Installed tab, as shown in the following screenshot:

Figure 3.2: Swashbuckle.AspNetCore NuGet package

However, we could take the chance to upgrade the package to the most recent version.

Adding Swashbuckle to our project allows us to use three different components:

• Swashbuckle�AspNetCore�Swagger: Middleware that can be used to expose SwaggerDocument
objects as JSON endpoints

• Swashbuckle�AspNetCore�SwaggerGen: A generator that builds SwaggerDocument objects
directly from the app’s routes, controllers, and models

• Swashbuckle�AspNetCore�SwaggerUI: A user interface that uses Swagger JSON to create a rich
and customizable user experience to visually document the Web API

In this book, we’ll use version 6�5�0, which is currently the most recent release. As always,
we strongly suggest that you use it as well.

Chapter 3 65

If we look again at our existing Program.cs source code, we can see that these components are already
present in our app’s initialization pipeline; however, SwaggerUI is currently only available in our
Development environment – which kind of makes sense, since we don’t know if we want to publish it
(yet). Publicly documenting a Web API service might be a good thing if we want third-party services
to consume it, but can be a major security, privacy, and/or performance flaw if we want to keep our
endpoints (and data) for our eyes only.

As a matter of fact, keeping the SwaggerUI only available during development seems a good idea, at
least for now: let’s use this opportunity to take a good look at it.

To do that, hit F5 to launch our project(s) in Debug mode and execute the Swagger UI default endpoint:

https://localhost:40443/swagger

As soon as we hit Enter, the default Swashbuckler Swagger UI should appear in all its glory, as shown
in the following screenshot:

Figure 3.3: Swagger UI for HealthCheck.Server

Looking Around66

As we can see, the SwaggerEndpoint that we configured in the Program.cs file is mentioned within
a hyperlink right below the main title. If we click on that hyperlink, we’ll be able to see the auto-
generated swagger.json file, which contains a comprehensive description of our single (for now) /
WeatherForecast action method: accepted HTTP methods, input parameters, return types of the
various JSON values, and so on.

We can easily understand how such an auto-documentation feature can be an invaluable resource
for other back-end developers who don’t have much experience with the project’s code base – not to
mention any third party who wants (or needs) to integrate with our Web API without having access
to the source code.

That’s enough for now: we’ll come back to Swagger/OpenAPI in the upcoming chapters when we add
more controllers and action methods to our Web API project.

Now that we’re done inspecting the ASP.NET Core back-end part, we can finally move on to the Angular
front-end project.

The Angular front-end
The Angular front-end project comprises the following stuff:

• The /src/ folder, which contains the Angular app source code files, as well as some static
assets (HTML, CSS, and the like). If we look at the source code files, we can see that they have
a .ts extension, which means we’ll be using the TypeScript programming language (we’ll say
more about this in a bit).

• A bunch of root files, which contain the Angular configuration settings, the required npm pack-
ages to run the app, and the scripts to build the development and production bundles to host it.

The front-end part of the template will probably be seen as more complex to understand, because An-
gular – just like most client-side frameworks – has evolved at a dramatic pace, thus experiencing many
breaking changes in its core architecture, toolchain management, coding syntax, template, and setup.

For this very reason, it’s very important to take our time and understand the roles of the various files
shipped with the template. This brief overview will start with root-level configuration files, which
will also be updated with the latest versions of the Angular packages (and their dependencies) that
we’ll need to use.

The root files
The Angular workspace is the place on the file system containing the Angular files: a collection of ap-
plication files, libraries, assets, and so on. In earlier ASP.NET Core and Angular project templates, this
type of workspace is located within the /ClientApp/ folder; however, since we opted for a multi-project
template that decouples the front-end and the back-end, our workspace is located within the project’s
root folder.

Chapter 3 67

Any CLI commands operating on the app and/or their libraries (such as adding or updating new pack-
ages) will be executed from within the workspace.

angular.json
The most important role within the workspace is played by the angular.json file, created by the CLI
in the workspace root. This is the workspace configuration file and contains workspace-wide and
project-specific configuration defaults for all build and development tools provided by the Angular CLI.

The first few properties at the top of the file define the workspace and project configuration options:

• version: The configuration file version.
• newProjectRoot: The path where new projects are created, relative to the workspace root folder.

We can see that this value is set to the projects folder, which doesn’t even exist (no need to
worry about that; we won’t create any new Angular projects anyway).

• projects: A container item that hosts a sub-section for each project in the workspace, con-
taining project-specific configuration options.

That’s all we need to know, at least for the time being. All the configuration values are already good
enough for our scenario; hence, we’ll just leave them as they are for now.

package.json
The package.json file is the Node Package Manager (npm) configuration file. It basically contains
a list of npm packages that the developer wants to be restored before the project starts. Those who
already know what npm is and how it works can skip to the next section, while those who don’t should
definitely keep reading.

The workspace is created and initialized by the Angular CLI command used to create the
app. Since we’ve used the Visual Studio GUI, we didn’t see that part with our own eyes
because it was executed in the background. However, we’re going to fully experience it
later on, when we manually create a new app with the Angular CLI.

It’s worth noting that the angular.json file follows a standard generic-to-specific cascad-
ing rule. All configuration values set at the workspace level will be the default values for
any project and can be overridden by those set at the project level. These, in turn, can be
overridden by command-line values available when using the CLI.

Up to Angular 7, manually modifying the angular.json file was the only way to make
changes to the workspace config. This changed with Angular 8 with the introduction of
the workspace API, which now allows us to read and modify these configurations much
more conveniently. For additional info regarding this new feature, we suggest taking a
look at the following page: https://github.com/angular/angular-cli/blob/master/
packages/angular_devkit/core/README.md#workspaces.

https://github.com/angular/angular-cli/blob/master/packages/angular_devkit/core/README.md#workspaces
https://github.com/angular/angular-cli/blob/master/packages/angular_devkit/core/README.md#workspaces

Looking Around68

npm started its life as the default package manager for the JavaScript runtime environment known as
Node�js. During recent years, though, it has also been used to host a number of independent JavaScript
projects, libraries, and frameworks of any kind, including Angular. Eventually, it became the de facto
package manager for JavaScript frameworks and tooling. Those who have never used it can think of
it as the NuGet of the JavaScript world.

Although npm is mostly a command-line tool, the easiest way to use it from Visual Studio is to properly
configure a package.json file containing all the npm packages we want to get, restore, and keep up
to date later on. These packages get downloaded in the /node_modules/ folder within our project di-
rectory, which is hidden by default within Visual Studio; however, all retrieved packages can be seen
from the npm virtual folder. As soon as we add, delete, or update the package.json file, Visual Studio
will automatically update that folder accordingly.

In the Angular SPA template we’ve been using, the shipped package.json file contains a huge number
of packages – all Angular packages – plus a good bunch of dependencies, tools, and third-party utilities
such as Karma (a test runner for JavaScript/TypeScript).

Before moving ahead, let’s take a further look at our package.json file and try to get the most out of
it. We can see how all packages are listed within a standard JSON object entirely made up of key-value
pairs. The package name is the key, while the value is used to specify the version number. We can either
input precise build numbers or use the standard npmJS syntax to specify auto-update rules bound to
custom version ranges using supported prefixes, such as the following:

• The tilde (~): A value of "~1.1.4" will match all 1.1.x versions, excluding 1.2.0, 1.0.x, and so on
• The caret (^): A value of "^1.1.4" will match everything above 1.1.4, excluding 2.0.0 and above

This is another scenario where IntelliSense comes in handy, as it will also visually explain the actual
meaning of these prefixes.

Upgrading (or downgrading) Angular
As we can see, the Angular SPA template uses fixed version numbers for all Angular-related packages;
this is definitely a wise choice since we have no guarantees that newer versions will seamlessly inte-
grate with our existing code without raising some potentially breaking changes and/or compiler errors.
Needless to say, the version number will naturally increase over time because template developers
will definitely try to keep their good work up to date.

That said, here are the most important Angular packages and releases that will be used throughout
this book (not including a small bunch of additional packages that will be added later on):

 "@angular/animations": "17.0.3",
 "@angular/common": "17.0.3",
 "@angular/compiler": "17.0.3",

For an extensive list of available npmJS commands and prefixes, it’s advisable to check out
the official npmJS documentation at https://docs.npmjs.com/files/package.json.

https://docs.npmjs.com/files/package.json

Chapter 3 69

 "@angular/core": "17.0.3",
 "@angular/forms": "17.0.3",
 "@angular/platform-browser": "17.0.3",
 "@angular/platform-browser-dynamic": "17.0.3",
 "@angular/router": "17.0.3",

 "@angular-devkit/build-angular": "17.0.3",
 "@angular/cli": "17.0.3",
 "@angular/compiler-cli": "17.0.3",

The former group can be found in the dependencies section, while the latter is part of the
devDependencies section. As we can see, the version number is mostly the same for all packages and
corresponds to the latest Angular final release available at the time of writing; also notice that we even
removed the caret (^) in front of each package’s version number, which is present by default on most
Angular packages, to ensure that npm will retrieve that exact same version.

If we want to ensure the highest possible level of compatibility between our project and this book’s
source code, we should definitely adopt that same release, which, at the time of writing, also corre-
sponds to the latest stable one. We can easily perform the upgrade – or downgrade – by changing the
version numbers; as soon as we save the file, Visual Studio should automatically fetch new versions
through npm. In the unlikely scenario that it doesn’t, manually deleting the old packages and issuing
a full rebuild should be enough to fix the issue.

As always, we’re free to overwrite such behavior and get newer (or older) versions of these packages,
assuming that we properly understand the consequences according to the disclaimer in Chapter 2,
Getting Ready.

Upgrading (or downgrading) the other packages
As we might expect, if we upgrade (or downgrade) Angular to the latest available version (at the time
of writing), we also need to take care of a series of other npm packages that might need to be updated
(or downgraded).

The version of Angular that we use in this book was released a few weeks before this book
hit the shelves. We did our best to use the latest available (non-beta, non-rc) version to
give the reader the best possible experience with the most recent technology available.
That said, that freshness will eventually decrease over time and this book’s code will start
to become obsolete. When this happens, try not to blame us for that!

If you encounter problems while updating your package.json file, such as conflicting
packages or broken code, ensure that you download the full source code from the official
GitHub repository of this book, which includes the same package.json file that has been
used to write, review, and test this book. It will definitely ensure a great level of compat-
ibility with the source code you’ll find here.

Looking Around70

Here’s the full package list (including the Angular packages) we’ll be using in our package.json file
throughout the book, split into dependencies and devDependencies sections. The relevant packages
are summarized in the following snippet – be sure to triple-check them!

 "dependencies": {
 "@angular/animations": "17.0.3",
 "@angular/common": "17.0.3",
 "@angular/compiler": "17.0.3",
 "@angular/core": "17.0.3",
 "@angular/forms": "17.0.3",
 "@angular/platform-browser": "17.0.3",
 "@angular/platform-browser-dynamic": "17.0.3",
 "@angular/router": "17.0.3",
 "rxjs": "7.8.0",
 "tslib": "2.3.0",
 "zone.js": "0.14.2",
 "jest-editor-support": "*",
 "run-script-os": "*"
 },
 "devDependencies": {
 "@angular-devkit/build-angular": "17.0.3",
 "@angular/cli": "17.0.3",
 "@angular/compiler-cli": "17.0.3",
 "@types/jasmine": "5.1.0",
 "jasmine-core": "5.1.0",
 "karma": "6.4.0",
 "karma-chrome-launcher": "3.2.0",
 "karma-coverage": "2.2.0",
 "karma-jasmine": "5.1.0",
 "karma-jasmine-html-reporter": "2.1.0",
 "typescript": "5.2.2"
 }

It’s advisable to perform a manual command-line npm install from the project’s root folder right after
applying these changes to the package.json file in order to trigger a batch update of all the project’s
npm packages. Sometimes, Visual Studio doesn’t update the packages automatically, and doing that
using the GUI can be tricky.

Those who run into npm and/or ngcc compilation issues after the npm update command can also try
to delete the /node_modules/ folder and then perform an npm install from scratch.

Chapter 3 71

Upgrading the Angular code
It’s worth noting that our updated package.json file might not include some of the packages that were
present in the Visual Studio default ASP.NET and Angular SPA project template. The reason for that
is quite simple: those packages are either deprecated, obsolete, or not required by the code samples
we’ll be working with from now on.

tsconfig.json
The tsconfig.json file is the TypeScript configuration file. Again, those who already know what
TypeScript is won’t need to read all this, although those who don’t should.

In fewer than 100 words, TypeScript is a free, open source programming language developed and
maintained by Microsoft that acts as a JavaScript superset; this means that any JavaScript program is
also a valid TypeScript program. TypeScript also compiles to JavaScript, meaning it can seamlessly
work on any JavaScript-compatible browser without external components. The main reason for using
it is to overcome JavaScript’s syntax limitations and overall shortcomings when developing large-scale
applications or complex projects. Simply put, it makes the developer’s life easier when they are forced
to deal with non-trivial code.

In this project, we will definitely use TypeScript for a number of good reasons. The most important
ones are as follows:

• TypeScript has several advantageous features compared with JavaScript, such as static typing,
classes, and interfaces. Using it in Visual Studio also gives us the chance to benefit from the
built-in IntelliSense, which is a great benefit and often leads to a remarkable productivity boost.

• For a large client-side project, TypeScript will allow us to produce more robust code, which will
also be fully deployable anywhere a plain JavaScript file would run.

Not to mention the fact that the Angular SPA template we chose already uses TypeScript. Hence, we
can say that we already have one foot in the water!

Humour aside, we’re not the only ones praising TypeScript; this has been acknowledged by the Angu-
lar team itself, considering the fact that the Angular source code has been written using TypeScript since
Angular 2, as was proudly announced by Microsoft in the following MDSN blog post in March 2015:
https://devblogs.microsoft.com/typescript/angular-2-built-on-typescript/.

This was further emphasized in this great post by Victor Savkin (cofounder of Narwhal Technologies
and acknowledged Angular consultant) on his personal blog in October 2016: https://vsavkin.com/
writing-angular-2-in-typescript-1fa77c78d8e8.

Getting back to the tsconfig.json file, there’s not much to say; the option values used by the Angular
template are just what we need to configure both Visual Studio and the TypeScript compiler (TSC)
to properly transpile the TypeScript code files included in the /src/ folder, hence there’s no need to
change it.

https://devblogs.microsoft.com/typescript/angular-2-built-on-typescript/
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8
https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8

Looking Around72

Other workspace-level files
There are also other notable files created by the CLI in the workspace root. Since we’ll not be changing
them, we’ll just briefly mention them in the following list:

• .editorconfig: A workspace-specific configuration for code editors.
• .gitignore: A text file that tells Git – a version-control system you most likely know quite well

– which files or folders to ignore in the workspace. These are intentionally untracked files that
shouldn’t be added to the version control repository.

• /node_modules/: A (hidden) folder containing all the npm packages for the entire workspace.
This folder will be populated with packages defined in the package.json file located on the
workspace root; since it’s excluded from the project by default, we can only see it if we click
on the Show All Files button at the top of Solution Explorer.

• aspnetcore-https.js: A script that sets up HTTPS for the application using the ASP.NET
Core HTTPS certificate. Remember the HTTPS authorization popup that appeared in Chapter
2, Getting Ready, during our first test run? We’ve just found what triggered it.

• karma.conf.js: An application-specific Karma configuration. Karma is a tool used to run
Jasmine-based tests. We can safely ignore the whole topic for now, as we’ll get to it later on.

• nuget.config: A NuGet configuration file; we can safely ignore it.
• package-lock.json: Provides version information for all packages installed in the /node_

modules/ folder by the npm client. If you plan to replace npm with Yarn, you can safely delete
this file (the yarn.lock file will be created instead).

• README.md: Introductory documentation for the workspace. The .md extension stands for
Markdown, a lightweight markup language created by John Gruber and Aaron Swartz in 2004.

• tsconfig.*.json: Project-specific configuration options for various aspects of our app – .app.
json for application level, .server.json for server level, and .spec.json for tests. These options
will override those set in the generic tsconfig.json file in the workspace root.

Now that we know the basics of various workspace-level files, we can move on to examining Angular’s
source code files.

For additional info about the tsconfig.json file and all the available options, visit the
following URL: https://angular.io/config/tsconfig.

Yarn is a package manager for the JavaScript programming language developed
and released by Facebook in October 2016 to address some of the limitations
that npm had at the time, and is meant to be a drop-in replacement for npm. For
further info, go to: https://yarnpkg.com/.

https://angular.io/config/tsconfig
https://yarnpkg.com/

Chapter 3 73

The /src/ folder
It’s time to pay a visit to the Angular app and see how it works by looking at its source code files. Rest
assured, we won’t stay for long; we just want to get a glimpse of what’s under the hood.

By expanding the /src/ directory, we can see that there are the following sub-folders:

• The /src/app/ folder, along with all its sub-folders, contains all the TypeScript files related
to our Angular app; in other words, the whole client-side application source code is meant to
be put here.

• The /src/assets/ folder is meant to store all the application’s images and other asset files.
These files will be copied and/or updated as is in the deployment folder whenever the appli-
cation is built.

There is also a bunch of root-level files:

• favicon.ico: A file containing one or more small icons that will be shown in the web browser’s
address bar when we visit the Angular app, as well as near the page’s title in various browser
components (tabs, bookmarks, history, and so on).

• index.html: The main HTML page that is served when we access the Angular app. The CLI
automatically adds all JavaScript and CSS files when building our app, so we typically don’t
need to add any <script> or <link> tags here manually.

• main.ts: The main entry point for our application. Compiles the application with the JIT
compiler and bootstraps the application’s root module (AppModule) to run in the browser. We
can also use the AOT compiler without changing any code by appending the --aot flag to CLI
build and serve commands.

• proxy.conf.ts: The Angular live development server’s proxy configuration settings. We’ve
already seen it in Chapter 2, Getting Ready, when we changed the HTTPS port to the single rule
currently present, the one that redirects all the HTTP requests to /weatherforecast to the
API web server. In short, we’re going to update that rule to make it more generic so that it will
redirect all the API HTTP requests to the Web API server.

• styles.css: A list of CSS files that supply styles for a project.

Let’s start our coding review with the /src/app/ folder’s content.

The /src/app/ folder
Our template’s /src/app/ folder follows Angular folder structure best practices and contains our
project’s logic and data, thereby including all Angular modules, services, and components, as well as
templates and styles. It’s also the only sub-folder worth investigating, at least for the time being.

AppModule
As we briefly anticipated in Chapter 1, Introducing ASP.NET and Angular, the basic building blocks of
an Angular application are NgModules, which provide a compilation context for components. The
role of NgModules is to collect related code into functional sets; therefore, the whole Angular app is
defined by a set of one or more NgModules.

Looking Around74

Any Angular app requires a root module – conventionally called AppModule – that tells Angular how to
assemble the application, thus enabling bootstrapping and starting the initialization life cycle (see the
diagram that follows). The remaining modules are known as feature modules and serve a different
purpose. The root module also contains a reference list of all available components.

The following is a schema of the standard Angular initialization cycle, which will help us to better
visualize how it works:

Figure 3.4: The Angular initialization cycle

As we can see, the main.ts file bootstraps app.module.ts (AppModule), which then loads the app.
component.ts file (AppComponent); the latter, as we’ll see in a short while, will then load all the other
components whenever the application needs them.

The root module of the sample Angular app created by our template can be found in the /src/app/
folder and is defined within the app.module.ts file. If we look at the source code, we can see that our
AppModule is split into two main code blocks:

• A list of import statements, pointing to all the references (in the form of TypeScript files)
required by the application.

• The root NgModule block, which is basically a collection of named arrays, each one containing
a set of Angular objects that serve a common purpose: directives, components, pipes, mod-
ules, providers, and so on. The last one contains the component we want to bootstrap, which,
in most scenarios – including ours – is the main application component: the AppComponent.

NgModules were introduced in Angular 2 RC5 and are a great, powerful way to organize
and bootstrap any Angular application; they help developers consolidate their own set
of components, directives, and pipes into reusable blocks. As we said previously, every
Angular application since v2 RC5 must have at least one module, which is conventionally
called a root module and is thus given the AppModule class name.

Chapter 3 75

AppComponent
If NgModules are Angular building blocks, components can be defined as the bricks used to put the
app together, to the extent that we can say that an Angular app is basically a tree of components
working together.

Components define views, which are sets of screen elements that Angular can choose between and
modify according to your program logic and data, and use services, which provide specific functionality
not directly related to views. Service providers can also be injected into components as dependencies,
thus making the app code modular, reusable, and efficient.

The cornerstone of these components is conventionally called AppComponent, which is also the only
component that – according to Angular folder structure conventions – should be placed in the /app/
root folder. All other components should be put in a sub-folder, which will act as a dedicated namespace.

As we can see, our AppComponent consists of four files:

• app.component.ts: Defines the component logic, that is, the component class source code.
• app.component.html: Defines the HTML template associated with the AppComponent. Any

Angular component can have an optional HTML file containing its UI layout structure instead
of defining it within the component file itself. This is almost always a good practice unless the
component comes with a very minimal UI.

• app.component.css: Defines the base CSS style sheet for the component. Just like the .html file,
this file is optional, yet it should always be used unless the component doesn’t require UI styling.

• app.component.spec.ts: Contains the unit tests for the app.component.ts source file and can
be run using the Jasmine JavaScript test framework through the Karma test runner.

Let’s take a brief look at each one of them.

The TypeScript class file
Let’s start with the app.component.ts file, which will help us to start familiarizing ourselves with the
source code of a typical Angular component class:

import { HttpClient } from '@angular/common/http';
import { Component, OnInit } from '@angular/core';

interface WeatherForecast {
 date: string;
 temperatureC: number;
 temperatureF: number;

As we can easily notice, AppComponent is also the only component present in our Angular
and ASP.NET Core template. This means that the app currently offers a single view only.
On top of that, it also lacks a proper menu and navigation system. In other words, it’s
literally a single-page application! Don’t worry, though; we’ll soon add other components,
as well as perform some UI and UX tweaks to improve its look and feel.

Looking Around76

 summary: string;
}

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent implements OnInit {
 public forecasts: WeatherForecast[] = [];

 constructor(private http: HttpClient) {}

 ngOnInit() {
 this.getForecasts();
 }

 getForecasts() {
 this.http.get<WeatherForecast[]>('/weatherforecast').subscribe(
 (result) => {
 this.forecasts = result;
 },
 (error) => {
 console.error(error);
 }
);
 }

 title = 'HealthCheck';
}

As we can see, the class contains the following coding blocks:

• A list of import statements, much like we’ve seen in the AppModule class.
• An interface to store the weather forecast JSON data coming from the ASP.NET Core Web API

in a typed fashion. Ideally, these interfaces should require their own dedicated and separate
file – however, for the sake of simplicity, the template we’re using puts it here.

• The @Component decorator, which defines selector, as well as the templateUrl and styleUrls
of the component. selector is the most important thing defined there as it tells Angular to
instantiate this component wherever it finds the corresponding tag in template HTML. In this
case, AppComponent will be instantiated wherever Angular finds the <app-root> tag.

• The TypeScript class for the component, which includes the constructor, local properties,
methods, and so on.

Chapter 3 77

Let’s now switch to the HTML template file.

The HTML template file
The /src/app/app.component.html file contains the HTML required to render the component on the
browser’s screen. Within these templates, we can use HTML, CSS, and JS code, as well as some special
Angular syntax that can be used to add powerful features, such as interpolation, template statements,
binding syntax, property binding, directives, and reference variables.

We’ll talk more about these features in Chapter 4, Front-End and Back-End Interactions, when we create
a custom component with a table-based template similar to this one.

The StyleSheet file
The /src/app/app.component.css file is meant to contain the set of CSS rules used to control the
layout and design of the component. As we can see when opening it, it currently contains a handful
of classes that are meant to give some padding and background coloring to the component’s HTML
elements. For now, we can just leave it as it is; we’ll come back to this file later on, when we start
styling our Angular app.

The spec.ts file
Before continuing further, let’s spend some time taking a better look at the app.component.spec.ts
file. Those files, as per the Angular naming convention, are meant to contain unit tests for their cor-
responding source files and are run using the Jasmine JavaScript test framework through the Karma
test runner.

While we’re there, it could be useful to give them a run to see whether the Jasmine + Karma testing
framework that has been set up by our template actually works.

Our first test run
Before running the test, it may be useful to understand a little bit more about Jasmine and Karma. If
you don’t know anything about them, don’t worry – you will soon. For now, just know that Jasmine is
an open source testing framework for JavaScript that can be used to define tests, while Karma is a test
runner tool that automatically spawns a web server that will execute JavaScript source code against
Jasmine-made tests and output their respective (and combined) results on a command line.

In this quick test, we’ll basically launch Karma to execute the source code of our sample Angular app
against the Jasmine tests defined by the template in the app.component.spec.ts file; this is actually
a much easier task than it might seem.

For additional info regarding Jasmine and Karma, check out the following guides:

• Jasmine: https://jasmine.github.io/
• Karma: https://karma-runner.github.io/
• Angular unit testing: https://angular.io/guide/testing

https://jasmine.github.io/
https://karma-runner.github.io/
https://angular.io/guide/testing

Looking Around78

Open Command Prompt, navigate to the Angular project root folder, and then execute the following
command:

> npm run ng test

This will call the Angular CLI using npm.

In the unlikely event that the npm command returns a program not found error, check that the Node.
js/npm binary folder is properly set within the PATH variable. If it’s not there, be sure to add it, and
then close and re-open the command-line window and try again.

First testing attempt
Right after we hit Enter, a new browser window should open with the Karma console and a list of
results for the Jasmine tests, as shown in the following figure:

Figure 3.5: First run of the Jasmine test

As we can see, we have two successful tests; that’s quite expected, since we’re using template-generated
code that should work right off the bat.

If we open the app.component.spec.ts file, we can easily spot the source code that determines the
success or failure of those two tests.

Alternatively, since there is a "test: ng test" script in the package.json file, we can
type npm test, which in turn will start ng test.

IMPORTANT: Chrome needs to be installed, otherwise the test won’t work.

Chapter 3 79

Here’s the should create the app test, which – as its name suggests – aims to check if the app has been
initialized without issues:

 it('should create the app', () => {
 expect(component).toBeTruthy();
 });

And here’s the should retrieve weather forecasts from the server test, which serves the purpose of verifying
that the app is receiving data from the ASP.NET Core back-end:

 it('should retrieve weather forecasts from the server', () => {
 const mockForecasts = [
 { date: '2021-10-01', temperatureC: 20, temperatureF: 68, summary: 'Mild'
},
 { date: '2021-10-02', temperatureC: 25, temperatureF: 77, summary: 'Warm'
}
];

 component.ngOnInit();

 const req = httpMock.expectOne('/weatherforecast');
 expect(req.request.method).toEqual('GET');
 req.flush(mockForecasts);

 expect(component.forecasts).toEqual(mockForecasts);
 });

The code is quite easy to read thanks to the JS expressive methods made available by Jasmine; it
basically makes some assumptions about what we should expect to have available and inspects the
various parts of the app (components, request info, HTML content, etc.) to check if they are there.

Getting to work
Now that we’ve got a general picture of our projects, it’s time to do something. Let’s start with two
simple exercises that will also come in handy in the future. The first of these will involve the server-side
endpoints of our Web API project, while the second will affect the client-side user experience of our
Angular app. Both will help us to ensure we have really understood everything there is to know before
proceeding to subsequent chapters.

Don’t worry if you don’t understand something here – we’re just scratching the surface of
how this testing framework actually works; we’ll come back to these topics in Chapter 10,
ASP.NET Core and Angular Unit Testing.

Looking Around80

Changing the API endpoints
If we take another look at Angular’s proxy.conf.js file, we can easily see that the only existing rule
is explicitly mapping the single action method of our Web API:

const PROXY_CONFIG = [
 {
 context: [
 "/weatherforecast",
],
 target: "https://localhost:40443",
 secure: false
 }
]

module.exports = PROXY_CONFIG;

This might be OK for our initial testing purposes, but it can become a very impractical approach as
soon as we start to add controllers and action methods; we surely don’t want to manually update these
rules every time.

The best thing we can do to fix that is to define a single rule that will work for all our API endpoints;
this can be done by defining a prefix (such as /api/) that will be used by all of our action methods’
endpoints. Such a change needs to be performed in three files:

• The Angular app.component.ts file (the healthcheck.client project), where the HTTP request
is issued

• The Angular proxy configuration file (the healthcheck.client project), where the HTTP request
is diverted to the Web API web server

• The WeatherForecastController.cs file (the HealthCheck.Server project), which will respond
to the HTTP request with the weather forecast JSON data

Let’s start with the Angular project.

Open the /src/app/app.component.ts file and update the existing '/weatherforecast' value in the
following way:

constructor(http: HttpClient) {
 http.get<WeatherForecast[]>('/api/weatherforecast').subscribe(result => {
 this.forecasts = result;
 }, error => console.error(error));
}

Now we need to change the proxy, so the new URL will be properly addressed to the Web API appli-
cation. Open the /src/proxy.conf.json file and update the existing endpoint in the following way:

Chapter 3 81

const PROXY_CONFIG = [
 {
 context: [
 "/api",
],
 target: "https://localhost:40443",
 secure: false
 }
]

The Angular aspects of our job are done; now, every HTTP request starting with /api – including the
updated /api/weatherforecast – will be diverted to our back-end Web API application.

However, our Web API application doesn’t know it yet; if we now try to run our Angular app by hitting
F5, we’d get no more weather forecast data, since the old /weatherforecast endpoint will return an
HTTP 404 (Not Found) error. To fix the issue, we simply need to change it to /api/weatherforecast
so that the updated rule will affect it.

Switch to the HealthCheck.Server project, open the /Controllers/WeatherForecastController.cs
file, and add the api/ prefix to the existing [Route] attribute value (line 6 or so) in the following way:

[Route("api/[controller]")]

Now we can launch our project(s) in Debug mode and see if the Angular app is able to fetch the weather
forecast data again.

The good thing about this change is that our Angular proxy now features a generic rule that will be
valid for any API endpoint – as long as we include the api/ prefix in the controller’s route – without
having to add a new rule every time.

The changes we’ve just applied to our endpoint URLs are good enough when running our app(s) in
Development mode since we can rely upon the Angular proxy and they will work great even when
publishing our app(s) in a Production environment as long as we can serve the Web API through a
proxy using similar techniques.

However, what if our hosting service (or strategy) doesn’t allow that? What if we want to publish our
healthcheck.client Angular app and the HealthCheck.Server back-end on two completely different domains
without being able to proxy the latter through the /api/ folder of the former one? This is a typical
scenario of most modern deployment techniques, for example, if we wanted to host our Angular app
on a Content Delivery Network (CDN) instead of using an actual HTTP server.

For additional info about the Angular live development server proxy settings, check out the
following URL:

https://angular.io/guide/build#proxying-to-a-backend-server

https://angular.io/guide/build#proxying-to-a-backend-server

Looking Around82

If we want our app(s) to support such behaviors, the best thing we can do is to implement an additional
baseUrl property and use it as a “prefix” for all our API calls; let’s take the chance to do that.

Implementing a baseUrl property
In order to implement a baseUrl property we need to define different named build configurations for
our project, such as production and development, with different defaults. Does it ring a bell? It should,
because we already met something that fulfills this exact same purpose for our ASP.NET Core back-
end early on: the appsettings.*.json files; what we need now is to replicate the same approach for
our front-end app.

Luckily, Angular is equipped with a neat feature that does just that, thanks to its application environ-
ment files. However, in order to be able to use that feature, we need to use the Angular CLI to generate
those files.

Generate the environment files
To generate the environment files, open a command prompt, navigate to the HealthCheck Angular
project’s root folder, and type the following command:

> ng generate environments

Which will produce the following output:

Figure 3.6: ng generate environments

As we can see by looking at the previous screenshot, the Angular CLI performed three tasks:

• Create the src/environments/environment.ts file, which is meant to contain the settings for
the production environment

• Create the src/environments/environment.development.ts file, which will host the settings
for the development environment

• Update the angular.json file to use the environment file corresponding to the selected build
type

Now we can use those files to define environment-specific settings, which is precisely what we wanted
to do.

Chapter 3 83

Adding the baseUrl
As a matter of fact, the environment.*.ts files we have just created are the Angular counterpart of the
ASP.NET Core appsettings.*.json files, and they can be used to fulfill the same requirements: set up
configuration values that will be automatically overridden depending on the app’s execution environ-
ment. Let’s use this new feature to create the environment-specific baseUrl property we wanted to add.

Open the /src/environments/environment.development.ts file and add the production and baseUrl
properties to the environment constant in the following way:

export const environment = {
 production: false,
 baseUrl: "/"
};

This is the value that we’re going to use in the Development environment since we can rely upon the
Angular proxy.

Let’s now open the /src/environments/environment.ts file and set up the baseUrl property with a
slightly different value:

export const environment = {
 production: true,
 baseUrl: "https://localhost:40443/"
};

As we can see, this time we’ve set up a whole URL with a protocol and port. We’ve used localhost for
the time being since we don’t have any clue about our Web API’s Production endpoint (yet); however,
now that we have the baseUrl variable ready, we’ll easily be able to replace this value with an FQDN
as soon as we have it available. As a matter of fact, we’re going to do that in Chapter 15, Windows, Linux,
and Azure Deployment, when we learn how to publish our apps in production.

Refactoring the Angular app
The next thing we’re going to do is refactor our current Angular app to make it a bit more versatile
and user-friendly. More specifically, here’s what we’re going to do:

• Add two new components, one for the app’s “welcome screen” and another for the existing
data-fetching example (where we’ll move the existing weather forecast implementation)

• Add a top-level navigation menu, so that the user will be able to navigate between the new
components from the UI

• Implement a client-side routing system, so that each choice selected by the user through the
navigation menu will be handled by showing the correct components

Let’s get to work.

Looking Around84

Adding HomeComponent
Let’s start by adding HomeComponent, which will host our app’s home page contents. Given our devel-
opment workspace, there are two main approaches for doing that:

• Use the Angular CLI
• Use the Visual Studio Add New Item feature

The Angular CLI method is considered the most convenient choice since it automatically generates
all the required files and references; that’s the reason why we’re going to use it.

Open Command Prompt and navigate to the Angular project’s root folder. It should be /Projects/
HealthCheck/healthcheck.client/ if you followed our path naming conventions. Type the following
command:

> ng generate component Home

The preceding command will perform the following tasks, as shown in the following screenshot:

• Create a new /src/app/home/ folder to host the new component files
• Generate the component’s .ts, .css, .html, and spec.ts files and fill them with sample data
• Update the app.module.ts file to add a reference to the new component

Figure 3.7: Output of the ng generate component’s Home command

Once done, we can move on to the next steps.

The dry run switch
If we want to see what the preceding ng command does without making any changes, we can use the
--dry-run switch in the following way:

> ng generate component Home --dry-run

From now on, we’ll always create component files using the Angular CLI throughout the
rest of the book. However, those who prefer to use the manual approach are free to do
that. Just be sure to add the required references to Angular’s AppModule, which will be
shown in a short while.

Chapter 3 85

That switch will prevent the CLI from making any changes to the file system, meaning that we will see
what the ng command does without having to create or modify any file. This can be useful whenever
we are unsure about what the command might do, since we’ll be able to see what it does without the
risk of breaking something in our app.

Skipping the spec.ts file
If we want to prevent the creation of the file for the unit tests, we can add the --skip-tests switch to
the CLI command in the following way:

> ng generate component Home --skip-tests

This switch will prevent the Angular CLI from creating the spec.ts file for the component. We briefly
saw spec.ts files in Chapter 2, Getting Ready, when we performed our first unit test. Since we’re not
going to use these files until Chapter 10, ASP.NET Core and Angular Unit Testing, when we talk about
client-side and server-side testing, for the sake of simplicity, we’ll just skip them using the --skip-
tests switch from now on. For that very reason, if we have already generated the home.component.
spec.ts file, we can delete it before going on.

Adding FetchDataComponent
The next thing we’re going to do is to create the FetchDataComponent, where we’ll put the autogene-
rated data-fetching example that currently resides in AppComponent.

Again, use Command Prompt from within the HealthCheck project root path to issue the following
console command:

ng generate component FetchData --skip-tests

Again, the command will add the required files and update AppModule accordingly.

Now we have two (mostly empty) components to play with; however, there’s currently no way for the
user to reach them since our Angular app lacks a proper navigation menu, as well as a routing mech-
anism that allows such navigation to work.

Let’s solve this problem for good.

Adding the navigation menu
In a typical HTML-based user interface, a navigation menu is an element containing several hyperlinks
(or buttons, or tabs) that allow the user to navigate between the various website sections, pages, or views.

It’s also worth noting that the --dry-run switch is not limited to the ng generate
component; it can be used with any Angular CLI command.

Looking Around86

If we think of it from an Angular perspective, we can easily see how it’s no different than a component,
just like Home and FetchData. For that very reason, we’re going to create it with the same technique
that we’ve used until now:

ng generate component NavMenu --skip-tests

With this, we can finally start to code!

First of all, open the /src/app/app.module.ts file to acknowledge the (highlighted) changes auto-
matically performed by the Angular CLI:

import { HttpClientModule } from '@angular/common/http';
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module;
import { AppComponent } from './app.component';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';
import { NavMenuComponent } from './nav-menu/nav-menu.component';

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 FetchDataComponent,
 NavMenuComponent
],
 imports: [
 BrowserModule, HttpClientModule, AppRoutingModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

We don’t need to do anything here, but it can be useful to understand what we should have done if we
didn’t use the Angular CLI and chose to create these components manually instead.

Let’s now create our navigation menu. From Visual Studio Solution Explorer, open the HealthCheck
project, navigate to the /src/app/nav-menu/ folder, select the nav-menu.component.html file, and fill
it with the following HTML code, overwriting the existing content:

<header>
 <nav>

Chapter 3 87

 <a [routerLink]="['/']">Home
 |
 <a [routerLink]="['/fetch-data']">Fetch Data
 </nav>
</header>

As we can see, we didn’t do much: just the minimal amount of HTML code to implement a hyper-
link-based navigation mechanism within a standard <header> element.

The only thing worth noting here is that each hyperlink element contains a reference to a RouterLink
– an Angular directive that makes that element a link that initiates the navigation to a route. The naviga-
tion system that we’re going to build will open the routed components in a dedicated <router-outlet>
container present on the page.

Updating the AppComponent
The best place to put that <router-outlet> location is AppComponent, which should also contain the
NavMenuComponent; that way, AppComponent will truly become the backbone of our Angular app, con-
taining both the navigation component and the container where the routed components will be shown.

However, before doing that, we need to “move” the current AppComponent behavior – showing the
weather forecast data – to the dedicated FetchDataComponent that we added a moment ago. Since the
component’s behavior is handled by the source code contained in its TypeScript and HTML files, it
means that we need to move the content of those files as well.

Open the /src/app/fetch-data/fetch-data.component.ts file and update it in the following way
(added/updated code is highlighted):

import { HttpClient } from '@angular/common/http';
import { Component, OnInit } from '@angular/core';

import { environment } from '../../environments/environment';

@Component({
 selector: 'app-fetch-data',
 templateUrl: './fetch-data.component.html',
 styleUrl: './fetch-data.component.css'
})
export class FetchDataComponent {
 public forecasts?: WeatherForecast[];

For the sake of simplicity, we can ignore the StyleSheet file for now since it’s currently
empty.

Looking Around88

 constructor(http: HttpClient) {
 http.get<WeatherForecast[]>(environment.baseUrl + 'api/weatherforecast').
subscribe(result => {
 this.forecasts = result;
 }, error => console.error(error));
 }
}

interface WeatherForecast {
 date: string;
 temperatureC: number;
 temperatureF: number;
 summary: string;
}

As we can see, all the updated code lines are taken from the app.component.ts file; that was expected
since we’re actually transferring the original behavior of AppComponent to this component.

The same thing must be done with the /src/app/fetch-data/fetch-data.component.html file, which
contains the HTML template for the component. This time, we can just perform a copy and paste from
the app.component.html file (replacing the existing code) since we have no class names to preserve.
Here’s the updated code:

<h1 id="tableLabel">Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

<p *ngIf="!forecasts">Loading... Please refresh once the ASP.NET backend
has started.</p>

<table *ngIf="forecasts">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>

We also took the chance to use the baseUrl property we added earlier on as a prefix for
the 'api/weatherforecast' endpoint to make it ready for both Development and Pro-
duction environments.

Chapter 3 89

 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let forecast of forecasts">
 <td>{{ forecast.date }}</td>
 <td>{{ forecast.temperatureC }}</td>
 <td>{{ forecast.temperatureF }}</td>
 <td>{{ forecast.summary }}</td>
 </tr>
 </tbody>
</table>

Now that we’ve “moved” the data-fetching behavior to FetchDataComponent, we can finally update the
AppComponent source code so that it can perform its new “backbone” job.

Here’s the updated /src/app/app.component.ts file:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent {
 title = 'HealthCheck';
}

And here’s the corresponding /src/app/app.component.html modified file:

 <app-nav-menu></app-nav-menu>
 <div class="container">
 <router-outlet></router-outlet>
 </div>

It’s worth noting that in order to add a reference to NavMenuComponent, we have to use the <app-nav-
menu> tag, which matches the value of the selector property specified in the nav-menu.component.
ts file.

Lastly, we need to move the table-related CSS rules from the /src/app/app.component.css file to the
/src/app/fetch-data/fetch-data.component.css file, so that our sample weather forecast listing
will preserve its minimalistic (yet relevant) look and feel.

Looking Around90

Here are the affected rules:

tr:nth-child(even) {
 background: #F2F2F2;
}

tr:nth-child(odd) {
 background: #FFF;
}

th, td {
 padding-left: 1rem;
 padding-right: 1rem;
}

table {
 margin: 0 auto;
}

As expected, the updated AppComponent is just a container for NavMenuComponent and the <router-
outlet> Angular elements.

Updating the test files
Now that we’ve moved the behavior of AppComponent (and the source code) to FetchDataComponent,
the test defined in the app.component.spec.ts file that looks for the app’s title will fail; this can be
easily tested by running Karma with the ng test command and viewing the outcome.

To fix that, we have two options:

• Remove the /src/app.component.spec.ts file
• Comment out the code for that test since we no longer need it

For the sake of simplicity, we’ll go with the latter option; just open the file, select all the content, and
then comment it out using Visual Studio’s “Comment out” command (or the CTRL+K, C hotkey).

With this, all our components are ready. We just need to add the RouterModule to our Angular app
to make everything work.

Updating the AppRoutingModule
The Angular RouterModule is an optional service that can be used to show a different component when
the client URL changes. The component to display will be instantiated and shown within <router-
outlet>, the tag we’ve just added to our HTML template file of AppComponent.

Chapter 3 91

The RouterModule can be implemented within the AppModule or in a separate module; however, since
using a dedicated module is considered a best practice (more on that later), the Angular template
created by Visual Studio 2022 using the Angular CLI already follows that approach. We already have
a RouterModule, which is located within the /src/app/app-routing.module.ts file. We just have to
properly update it.

From Solution Explorer, navigate to the /src/app/ folder and open the app-routing.module.ts file.
Then, modify it by adding the following highlighted lines of code:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'fetch-data', component: FetchDataComponent }
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Thanks to these newly added routes, our NavMenu component should now work as expected.

Finishing touches
We’re finally ready to test our new components, as well as our minimal navigation and routing system.
However, before doing that, let’s spend a couple more minutes changing the ultra-minimalistic default
HTML template of HomeComponent with a more satisfying welcome message.

Open the /src/app/home/home.component.html file and replace its entire contents with the following:

<h1>Greetings, stranger!</h1>
<p>This is what you get for messing up with ASP.NET and Angular.</p>

Looking Around92

Save all the files, run the project in Debug mode, and get ready to see the following:

Figure 3.8: Looking at our new home view

It still looks pretty plain and uninspired, but hey… it’s just the start of the journey, right?

Test run
Now we can perform our final test run to see if our new components – as well as the routing and
navigation system – actually work. If we get something similar to what we can see in the previous
screenshot, we can already see that the new AppComponent works since it shows NavComponent and
HomeComponent.

We just have to click on the Fetch Data link at the top to check whether the navigation and routing
system is working as well. If everything has been done properly, we should be able to see our new
DataFetchComponent together with the retrieved API data, just like in the following screenshot:

Chapter 3 93

Figure 3.9: Our new FetchDataComponent

That’s about it for now. Rest assured, we can easily do better than that in terms of UI, UX, and overall
features; we’ll greatly improve the look and feel of our sample apps in the following chapters, where
we’ll start to use StyleSheets (which we haven’t even touched yet!), add new components, and so on.
However, at least for the time being, we can be happy with what we did: understanding how easy it
is to add components and update their content – and also how rapidly Visual Studio, ASP.NET, and
Angular will react to our modifications.

Looking Around94

Summary
In this chapter, we spent some valuable time exploring and understanding our sample project’s core
components, how they work together, and their distinctive roles. For the sake of simplicity, we split
the analysis into two parts: the .NET back-end ecosystem, where we inspected the ASP.NET Core Web
API project (HealthCheck.Server), and the Angular front-end architecture, which was dedicated to the
Angular project (healthcheck.client). We’ve seen how each project comes with its own configuration
files, folder structure, naming conventions, and overall scope.

At the end of the day, we’ve met the end goal of this chapter and learned a fair number of useful things.
We know the location and purpose of both server-side and client-side source code files. We are aware
of most ASP.NET Core and Angular configuration settings and parameters. We also learned how to
change these settings to meet our needs, such as the Web API routing endpoints, and insert new stuff,
as we did with the Angular components and routing module.

Part of the chapter was dedicated to the Angular CLI; we’ve spent a good amount of time learning how
to create new components following the Angular best practices. Such time was very well spent since
now we know how to set up a new ASP.NET Core and Angular project without having to rely on the
Visual Studio default templates or use a manual approach.

Last but not least, we also took the time to perform a quick test run to see whether we’re ready to hold
our ground against what’s coming in upcoming chapters: setting up an improved request-response
cycle, building our own controllers, defining additional routing strategies, and more.

Suggested topics
For further information, we recommend the following topics: separation of concerns, the single
responsibility principle, JSON, web hosts, Kestrel, ASP.NET middleware, dependency injection, the
Angular workspace, Jasmine, Karma, unit tests, server-side rendering (SSR), TypeScript, Angular
architecture, the Angular initialization cycle, and the Angular Router module.

References
• Introduction to ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/

• Migration to ASP.NET Core in .NET 6: https://gist.github.com/davidfowl/0e0372c3c1d89
5c3ce195ba983b1e03d

• Angular: Setting Up the Local Environment and Workspace: https://angular.io/guide/setup-
local

• Angular architecture overview: https://angular.io/guide/architecture
• Angular upgrade guide: https://update.angular.io/
• npmJS: https://docs.npmjs.com/files/package.json
• Yarn package manager: https://yarnpkg.com/
• TypeScript – modules: https://www.typescriptlang.org/docs/handbook/modules.html
• TypeScript – module resolution: https://www.typescriptlang.org/docs/handbook/module-

resolution.html

https://docs.microsoft.com/en-us/aspnet/core/
https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d
https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d
https://angular.io/guide/setup-local
https://angular.io/guide/setup-local
https://angular.io/guide/architecture
https://update.angular.io/
https://docs.npmjs.com/files/package.json
https://yarnpkg.com/
https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html

Chapter 3 95

• TypeScript configuration: https://angular.io/config/tsconfig
• TSLint: https://palantir.github.io/tslint/
• Angular AoT compiler: https://angular.io/guide/aot-compiler
• Karma: https://karma-runner.github.io/
• Jasmine: https://jasmine.github.io/
• Angular – testing: https://angular.io/guide/testing
• Strongly Typed Configuration Settings in ASP.NET Core: https://weblog.west-wind.com/

posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core

• Strongly Typed Configuration Settings in ASP.NET Core without IOptions<T>: https://www.
strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-
ioptionst/

• Strongly Typed Configuration Settings in ASP.NET Core Part II: https://rimdev.io/strongly-
typed-configuration-settings-in-asp-net-core-part-ii/

• Angular Development Server proxy settings: https://angular.io/guide/build#proxying-to-
a-backend-server

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://angular.io/config/tsconfig
https://palantir.github.io/tslint/
https://angular.io/guide/aot-compiler
https://karma-runner.github.io/
https://jasmine.github.io/
https://angular.io/guide/testing
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/
https://angular.io/guide/build#proxying-to-a-backend-server
https://angular.io/guide/build#proxying-to-a-backend-server
https://packt.link/aspdotnet8angular

4
Front-End and Back-End
Interactions

Now that we have a minimalistic—yet fully working—Angular web app up and running and connected
with our ASP.NET Core API, we can start to build some stuff. In this chapter, we’re going to learn the
basics of client-side and server-side interactions: in other words, how the front-end (Angular) can fetch
some relevant data from the back-end (ASP.NET Core) and display it on screen, in a readable fashion.

As a matter of fact, we should’ve already got the gist of how it works in Chapter 3, Looking Around, when
we worked with Angular’s FetchDataComponent and ASP.NET Core’s WeatherForecastController.cs
classes and files. The Angular component (front-end) pulls data from the ASP.NET controller (back-end)
and then puts it on the browser screen (UI) for display.

However, controllers aren’t the only way for our ASP.NET Core back-end to serve data to the front-end;
we can also serve static files, or use any other middleware designed to handle requests and output a
response stream or content of some sort, as long as we add it to our application pipeline. Such a highly
modular approach is one of the most relevant concepts of ASP.NET Core. In this chapter, we’ll make
use of that by introducing (and playing with) a type of built-in middleware that has little or nothing
to do with .NET controllers, although it is able to deal with requests and responses just like they do:
HealthChecksMiddleware.

Here’s a quick breakdown of what we’re going to cover:

• Introducing ASP�NET Core health checks: What they are and how we can use them to learn
some useful concepts about ASP.NET Core and Angular interactions

• HealthCheckMiddleware: How to properly implement it within our ASP.NET Core back-end,
configure it within our web application’s pipeline, and output a JSON-structured message that
can be used by our Angular app

• HealthCheckComponent: How to build an Angular component to fetch the HealthCheck struc-
tured data from the ASP.NET Core back-end and bring it all to the front-end in a human-readable
fashion

Front-End and Back-End Interactions98

• Restyling the UI: How to improve the look and feel of our Angular app using Angular Material,
a user interface component library containing a lot of reusable and beautiful UI components

Are you ready? Let’s do this!

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with
no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/main/Chapter_04/HealthCheck

Introducing ASP.NET Core health checks
We called our first project HealthCheck for a reason: the web app we’re about to build will act as a
monitoring and reporting service that will check the health status of a target server—and/or its infra-
structure—and show it on screen in real time.

In order to do that, we’re going to make good use of the Microsoft.AspNetCore.Diagnostics.
HealthChecks package, a built-in feature of the ASP.NET Core framework first introduced in 2.2, refined
and improved for the ASP.NET Core 3 release and still available up to the current .NET version. This
package is designed to allow a monitoring service to check the status of another running service—for
example, another web server—which is precisely what we’re about to do.

For additional information about ASP.NET Core health checks, we strongly suggest reading the official
MS documentation at the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-
and-deploy/health-checks.

Adding the HealthCheck middleware
The first thing we need to do is add the HealthChecks middleware to our web app. This can be done
by opening the Program.cs file and adding the following lines:

var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddHealthChecks();
builder.Services.AddControllers();
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/
swashbuckle
builder.Services.AddSwaggerGen();
var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_04/HealthCheck
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_04/HealthCheck
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

Chapter 4 99

}
app.UseHttpsRedirection();
app.UseAuthorization();
app.UseHealthChecks(new PathString("/api/health"));
app.MapControllers();
app.Run();

The /api/health parameter we passed to the UseHealthChecks middleware will create a serv-
er-side route for the health checks. It’s also worth noting that we added that middleware right before
MapControllers, ensuring that our new route won’t be overridden by any controller that could share
that same route in the future.

We can immediately check out the new route by doing the following:

1. Press F5 so that our web application will run in debug mode.
2. Navigate to the https://localhost:40443/api/health URL and hit Enter.

As soon as we do that, we should be able to see something like this:

Figure 4.1: Checking our health check

As we can see, our system is Healthy; that’s rather obvious, since we have no checks defined yet.

How about adding one? That’s what we’re going to do in the next section.

Adding an Internet Control Message Protocol (ICMP) check
The first check we’re going to implement is one of the most popular ones: an Internet Control Message
Protocol (ICMP) request check to an external host, also known as PING.

As you most likely already know, a PING request is a rather basic way to check the presence—and
therefore the availability—of a server that we know we should be able to reach within a local area
network (LAN) or wide area network (WAN) connection.

Front-End and Back-End Interactions100

In a nutshell, it works in the following way: the machine that performs the PING sends one or more
ICMP echo request packets to the target host and waits for a reply. If it receives one, it reports the
round-trip time of the whole task; otherwise, it times out and reports a host not reachable error.

The host not reachable error can be due to a number of possible scenarios, as listed here:

• The target host is not available.
• The target host is available but actively refuses network communications of any kind.
• The target host is available and accepts incoming connections, but it has been configured to

explicitly refuse ICMP requests and/or not send ICMP echo replies back.
• The target host is available and properly configured to accept ICMP requests and send echo

replies back, but the connection is very slow or hindered by unknown reasons (performance,
heavy load, and so on), so the round-trip time takes too long—or even times out.

As we can see, this is an ideal scenario for a health check; if we properly configure the target host to
accept the PING and always answer it, we can definitely use it to determine whether the host is in a
healthy status or not.

Possible outcomes
Now that we know the common scenarios behind a PING test request, we can put down a list of pos-
sible outcomes, as follows:

• Healthy: We can consider the host Healthy whenever the PING succeeds with no errors or
timeouts.

• Degraded: We can consider the host Degraded whenever the PING succeeds but the round-trip
takes too long.

• Unhealthy: We can consider the host Unhealthy whenever the PING fails—that is, the check
times out before any reply.

Now that we’ve identified these three statuses, we just need to properly implement them within our
health check.

Creating an ICMPHealthCheck class
The first thing we have to do is create a new ICMPHealthCheck.cs class in our HealthCheck.Server
project’s root folder.

Chapter 4 101

Once done, fill it with the following content:

using Microsoft.Extensions.Diagnostics.HealthChecks;
using System.Net.NetworkInformation;

namespace HealthCheck.Server
{
 public class ICMPHealthCheck : IHealthCheck
 {
 private readonly string Host = $"10.0.0.0";
 private readonly int HealthyRoundtripTime = 300;
 public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default)
 {
 try
 {
 using var ping = new Ping();
 var reply = await ping.SendPingAsync(Host);
 switch (reply.Status)
 {
 case IPStatus.Success:
 return (reply.RoundtripTime > HealthyRoundtripTime)
 ? HealthCheckResult.Degraded()
 : HealthCheckResult.Healthy();
 default:
 return HealthCheckResult.Unhealthy();
 }
 }
 catch (Exception e)
 {
 return HealthCheckResult.Unhealthy();
 }
 }
 }
}

As we can see, we implemented the IHealthCheck interface, since it’s the official .NET way to deal
with health checks; such an interface requires a single async method—CheckHealthAsync—which we
used to determine if the ICMP request was successful or not.

Front-End and Back-End Interactions102

The code is very easy to understand and handles the three possible scenarios we defined in the pre-
vious section. Let’s go over what the host can be considered to be:

• Healthy, if the PING request gets a successful reply with a round-trip time of 300 ms or less
• Degraded, if the PING request gets a successful reply with a round-trip time greater than 300 ms
• Unhealthy, if the PING request fails or an Exception is thrown

There’s one final notice regarding the single line of code that we used to set the Host value:

private readonly string Host = $"10.0.0.0";

As we can see, we’ve set Host to a non-routable IP address—which might seem rather awkward. We
did that for demonstration purposes so that we’ll be able to simulate an “unhealthy” scenario; we’re
definitely going to change it later on.

That’s pretty much it. Our health check is ready to be tested—we just need to find a way to load it into
our web application’s pipeline.

Adding the ICMPHealthCheck
In order to load our ICMP health check into the web application pipeline, we need to add it to the
HealthChecks middleware. To do that, open the Program.cs class again and change the first line we
previously added in the following way:

// ...existing code...
builder.Services.AddHealthChecks()
 .AddCheck<ICMPHealthCheck>("ICMP");
// ...existing code...

In the preceding code, the ping variable has been declared with the using keyword; this
technique is called a using declaration and was introduced in C# version 8 as a convenient
replacement for the using statements/blocks, reducing nesting and producing more
readable code.

For further info regarding the using declaration feature, take a look at the following URL:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
proposals/csharp-8.0/using

Those who want to use it are strongly advised to also read this great post by Steve Gordon
(Microsoft MVP) to better understand how using declarations work under the hood:

https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations

Another great way to reduce nesting is using file-scoped namespace declarations, a new
feature released with C# version 10, which won’t be covered in this book for reasons of
space. For additional info about this enhancement, check out the following link:

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-
scoped-namespace-declaration

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using
https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration

Chapter 4 103

That’s all there is to it.

The // ...existing code... comment is just a way to tell us to leave the already-existing code as it
is, without altering it. We’re going to use that pattern whenever we need to add a few lines of code to
an existing block instead of rewriting the unmodified lines.

It’s worth noting that, since we added a reference to the ICMPHealthCheck class, which we’ve just
created within the HealthCheck.Server namespace, we must add a reference to that namespace as
well. Here, we’ll take the chance to use another handy C# 10 feature called global using; as the name
suggests, this feature allows us to define some common using statements that will automatically be
available for use within the entire project.

To do that, we just need to add the global keyword before the using statement that we want to make
global. Since the HealthCheck.Server happens to be our API project’s namespace, it seems the perfect
candidate for that.

Here’s the single line we need to add at the top of the Program.cs file:

global using HealthCheck.Server;

Now, we can hit F5 and try it out. Here’s what we should be able to see when visiting the /api/health
endpoint:

Figure 4.2: Checking our health check

As expected, the hardcoded ICMP request to 10.0.0.0 has failed; hence, we get the Unhealthy status.
That’s great, right?

Well, actually, it’s not that great. Our health check does indeed work, but it comes with the following
three major flaws:

• Hardcoded values: The Host and HealthyRoundtripTime variables should be passed as pa-
rameters so that we can set them programmatically.

• Uninformative response: Healthy and Unhealthy are not that great—we should find a way to
have a custom (and better) output message instead.

• Untyped output: The current response is sent in plain text—if we want to fetch it with Angular,
a JSON content type would definitely be better (and way more usable, as we’ll see in the Health
checks in Angular section later on).

Front-End and Back-End Interactions104

Let’s fix these issues, one at a time.

Improving the ICMPHealthCheck class
In this section, we’ll improve our ICMPHealthCheck class by adding the host and healthyRoundtripTime
parameters, a custom outcome message for each possible status, and a JSON-structured output.

Adding parameters and response messages
Open the ICMPHealthCheck.cs class file and perform the following changes (added/modified lines
are highlighted):

using Microsoft.Extensions.Diagnostics.HealthChecks;
using System.Net.NetworkInformation;

namespace HealthCheck.Server
{
 public class ICMPHealthCheck : IHealthCheck
 {
 private readonly string Host;
 private readonly int HealthyRoundtripTime;

 public ICMPHealthCheck(string host, int healthyRoundtripTime)
 {
 Host = host;
 HealthyRoundtripTime = healthyRoundtripTime;
 }

 public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default)
 {
 try
 {
 using var ping = new Ping();
 var reply = await ping.SendPingAsync(Host);
 switch (reply.Status)
 {
 case IPStatus.Success:
 var msg =
 $"ICMP to {Host} took {reply.RoundtripTime} ms.";
 return (reply.RoundtripTime > HealthyRoundtripTime)
 ? HealthCheckResult.Degraded(msg)
 : HealthCheckResult.Healthy(msg);

Chapter 4 105

 default:
 var err =
 $"ICMP to {Host} failed: {reply.Status}";
 return HealthCheckResult.Unhealthy(err);
 }
 }
 catch (Exception e)
 {
 var err =
 $"ICMP failed: {e.Message}";
 return HealthCheckResult.Unhealthy(err);
 }
 }
 }
}

As we can see, we changed a couple of things, as follows:

• We added a constructor accepting the two parameters we’d like to set programmatically: host
and healthyRoundtripTime. The old hardcoded variables are now set by the constructor upon
initialization and then used within the class afterward (such as within the main method).

• We created various outcome messages containing the target host, the PING outcome, and
the round-trip duration (or the runtime error), and we added them as parameters to the
HealthCheckResult return objects.

In the preceding code, we’ve used string interpolation, a powerful text formatting feature released in
C# version 6 to replace the previous string.Format approach. For further info regarding this feature,
go to the following URL:

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation

That’s pretty much it. Now, we just need to set the host name and healthyRoundtripTime program-
matically, since the old hardcoded defaults are now gone. In order to do that, we have to update our
middleware setup in the Program.cs file.

Updating the middleware setup
Open the Program.cs file again and change the existing HealthChecksMiddleware implementation
in the following way:

// ...existing code...
builder.Services.AddHealthChecks()
 .AddCheck("ICMP_01",
 new ICMPHealthCheck("www.ryadel.com", 100))
 .AddCheck("ICMP_02",
 new ICMPHealthCheck("www.google.com", 100))

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation

Front-End and Back-End Interactions106

 .AddCheck("ICMP_03",
 new ICMPHealthCheck($"www.{Guid.NewGuid():N}.com", 100));
// ...existing code...

Here we go: as we can see, another advantage of being able to programmatically configure the host is
that we can add the ICMP health check multiple times—once for each host we’d like to actually check.
In the preceding example, we’re taking the chance to test three different hosts: www.ryadel.com, www.
google.com, and the same non-existing host we used before, which allows us to emulate an Unhealthy
status as well as the Healthy ones.

Now, we could be tempted to hit F5 and try it out... However, if we were to do that, we would face a
rather disappointing outcome, as shown in the following screenshot:

Figure 4.3: Checking our health check

The reason for this is quite obvious: even if we’re running multiple checks, we’re still relying on the
default outcome message, which is nothing more than a Boolean sum of the statuses returned by all
the checked hosts. For that very reason, if at least one of them is Unhealthy, the whole check will be
flagged as Unhealthy as well.

Luckily enough, we can avoid that sum—and get a much more granular output—by dealing with the
third flaw of our ICMPHealthCheck: implementing a custom, JSON-structured output message.

Implementing a custom output message
To implement a custom output message, we need to override the HealthCheckOptions class. To do
that, add a new CustomHealthCheckOptions.cs file to the project’s root folder and fill it with the
following content:

using Microsoft.AspNetCore.Diagnostics.HealthChecks;
using System.Net.Mime;
using System.Text.Json;

namespace HealthCheck.Server
{
 public class CustomHealthCheckOptions : HealthCheckOptions
 {

Chapter 4 107

 public CustomHealthCheckOptions() : base()
 {
 var jsonSerializerOptions = new JsonSerializerOptions()
 {
 WriteIndented = true
 };
 ResponseWriter = async (c, r) =>
 {
 c.Response.ContentType =
 MediaTypeNames.Application.Json;
 c.Response.StatusCode = StatusCodes.Status200OK;
 var result = JsonSerializer.Serialize(new
 {
 checks = r.Entries.Select(e => new
 {
 name = e.Key,
 responseTime =
 e.Value.Duration.TotalMilliseconds,
 status = e.Value.Status.ToString(),
 description = e.Value.Description
 }),
 totalStatus = r.Status,
 totalResponseTime =
 r.TotalDuration.TotalMilliseconds,
 }, jsonSerializerOptions);
 await c.Response.WriteAsync(result);
 };
 }
 }
}

The code is quite self-explanatory: we override the standard class—which outputs the one-word output
we want to change—with our own custom class so that we can change its ResponseWriter property,
in order to make it output whatever we want.

More specifically, we want to output a custom JSON-structured message containing a lot of useful stuff
from each of our checks, listed here:

• name: The identifying string we provided while adding the check to the HealthChecks middle-
ware within the Program.cs file: "ICMP_01", "ICMP_02", and so on

• responseTime: The whole duration of that single check
• status: The individual status of a check, not to be confused with the status of the whole

HealthCheck—that is, the Boolean sum of all the inner checks’ statuses

Front-End and Back-End Interactions108

• description: The custom informative message we configured earlier on when we refined the
ICMPHealthCheck class

All these values will be properties of the array items contained in the JSON output: one for each
check. It’s worth noting that the JSON file, in addition to that array, will also contain the following
two additional properties:

• totalStatus: The Boolean sum of all the inner checks’ statuses—Unhealthy if there’s at least
an Unhealthy host, Degraded if there’s at least a Degraded host, and Healthy otherwise

• totalResponseTime: The whole duration of all the checks

That’s a lot of useful information, right? We just have to configure our middleware to output them,
instead of those one-word responses we’ve seen before.

About health check responses and HTTP status codes
Before going further, it’s worth noting that—in the preceding CustomHealthCheckOptions class—we set
ResponseWriter's HTTP status code to a fixed StatusCodes.Status200OK. Is there a reason behind that?

As a matter of fact, there is, and it’s also quite an important one. The HealthChecks middleware’s default
behavior returns either HTTP status code 200, if all the checks are OK (Healthy), or HTTP status code
503, if one or more checks are KO (Unhealthy). Since we’ve switched to a JSON-structured output, we
don’t need the 503 code anymore, as it would most likely break our front-end client UI logic—unless
properly handled. Therefore, for the sake of simplicity, we just forced an HTTP 200 response, regardless
of the end result. We’ll find a way to properly emphasize the errors within the upcoming Angular UI.

Configuring the output message
Open the Program.cs file and change the following lines accordingly (the updated code is highlighted):

// ... existing code
app.UseHealthChecks(new PathString("/api/health"),
 new CustomHealthCheckOptions());
// ... existing code

Once done, we can finally hit F5 and properly test it out. This time, we won’t be disappointed by the
outcome, as shown in the following screenshot:

Chapter 4 109

Figure 4.4: A more detailed health check output message

That’s a pretty nice response, isn’t it?

Now, each and every check is properly documented, as well as the total outcome data, in a structured
JSON object. This is just what we need to feed some Angular components that we can show on screen
in a human-readable (and fashionable) way, which we’re just about to do, starting with the next section.

Health checks in Angular
It’s now time to build an Angular component that is capable of fetching and displaying the structured
JSON data we managed to pull off in the previous sections.

As we know from Chapter 3, Looking Around, an Angular component is commonly made of four sep-
arate files, as follows:

• The component (.ts) file, written in TypeScript and containing the component class, together
with all the module references, functions, variables, and so on

• The template (.html) file, written in HTML and extended with the Angular template syntax,
which defines the UI layout architecture

• The style (.css) file, written in CSS and containing the Cascading Style Sheets rules and defi-
nitions for styling the UI

• The test (.spec.ts) file, written in TypeScript and containing the tests that will be run by Karma

Front-End and Back-End Interactions110

Although the four-file approach is arguably the most practical one, the only required file is the compo-
nent one, as both the template and the style files could also be embedded as inline elements within the
component file. The choice between using separate files or going inline is a matter of taste; however,
since the Angular CLI adopts the four-file approach, we strongly suggest following this good practice.
Such an approach will also enforce the separation of concerns embodied within the component/
template duality featured by Angular.

Let’s now use the Angular CLI to generate the first three files for a new HealthCheck component
(skipping the test file), just like we did in Chapter 3, Looking Around.

Creating the Angular component
Open a command prompt, navigate through the /src/app folder of our Angular project, and type the
following command:

> ng generate component HealthCheck --module=app --skip-tests

As always, the CLI will create the component files and add the required references to the AppModule
for us.

It’s worth noting that, since our app has multiple modules (AppModule and AppRoutingModule), every
time we create a new module, we need to specify which module to add the component’s references
to using the --module switch (as explained in Chapter 3, Looking Around).

As soon as the CLI generates the new component files, we can fill them with the following content.

health-check.component.ts
Here’s the /src/app/health-check/health-check.component.ts source code:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from '../../environments/environment';

@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styleUrls: ['./health-check.component.css']
})
export class HealthCheckComponent implements OnInit {
 public result?: Result;
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.http.get<Result>(environment.baseUrl + 'api/health').subscribe(result
=> {
 this.result = result;

Chapter 4 111

 }, error => console.error(error));
 }
}
interface Result {
 checks: Check[];
 totalStatus: string;
 totalResponseTime: number;
}
interface Check {
 name: string;
 responseTime: number;
 status: string;
 description: string;
}

If you’re curious about what we did there, here’s a breakdown of the most relevant stuff:

• At the start of the file, we made sure to import all the Angular directives, pipes, services, and
components—in one word, modules—that we need throughout the whole class.

• In the class declaration, we’ve explicitly implemented the OnInit interface by adding the
implements OnInit instruction to add type-safety; this way, we won’t risk typing or spelling
mistakes within the ngOnInit lifecycle hook.

• In the component’s constructor, we instantiated the HttpClient service using dependency
injection (DI).

• Last but not least, we defined two interfaces to deal with the JSON request we’re expecting to
receive from the HealthChecksMiddleware, Result and Check, which we designed to host the
whole JSON resultant object and each element of the internal array, respectively.

Before going further, it could be useful to spend some valuable time expanding on some very important
topics we’ve just covered when implementing the preceding code, as follows:

• Imports and modules
• Dependency injection
• ngOnInit (and other lifecycle hooks)
• Constructor
• HttpClient
• Observables
• Interfaces

Since we’re going to see them all throughout this book, it’s definitely advisable to review them now.

Imports and modules
The static import statement that we used multiple times in the preceding HealthCheckComponent is
used to import bindings that are exported by other JavaScript modules.

Front-End and Back-End Interactions112

The concept of working with modules started with ECMAScript 2015 and has been thoroughly adopted
by TypeScript and, therefore, Angular. A module is basically a collection of variables, functions, classes,
and so on, grouped within a class; each module is executed within its own scope, not in the global
scope, meaning that all the elements declared within it are not visible from the outside unless they
are explicitly exported, using the export statement.

Conversely, to consume a variable, function, class, interface, and so on contained (and exported) within
a module, that module has to be imported using the import statement. This is quite similar to what we
do with namespaces in most programming languages (C# has using statements, for example).

As a matter of fact, all the Angular directives, pipes, services, and components are also packed into col-
lections of JavaScript modules, which we have to import into any TypeScript class whenever we want
to use them. These collections are basically libraries of modules; we can easily recognize them, since
their name begins with the @angular prefix. Our packages.json file (the NPM package file), which
we’ve seen in previous chapters, contains most of them.

To learn more about ECMAScript modules and better understand the module resolution strategy in
TypeScript, check out the following URLs:

• TypeScript modules: https://www.typescriptlang.org/docs/handbook/modules.html
• Module resolution: https://www.typescriptlang.org/docs/handbook/module-resolution.

html

JavaScript modules should not be confused with Angular’s own modularity system, which is based
on the @NgModule decorator. As we already know from previous chapters, Angular’s @NgModule are
building blocks—that is, containers for a cohesive block of code dedicated to an application domain, a
workflow, or a common feature set. We know from the aforementioned chapters that each Angular
app has at least one NgModule class, called the root module, which is conventionally named AppModule
and resides in the app.module.ts file in the application root; additional NgModules will be added in
the upcoming chapters.

Unfortunately, the JavaScript module system and the Angular NgModule system use a rather similar
vocabulary (import versus imports, export versus exports), which might lead to confusion—especially
considering that Angular apps require the developer to use both of them at the same time (and often in
the same class file). Luckily enough, although being forced to intertwine these two systems might be a
bit tricky at first, eventually, we’ll become familiar with the different contexts in which they are used.

Here’s a sample screenshot, taken from our HealthCheck app’s AppModule class file, which should help
you distinguish between the two different systems:

https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html

Chapter 4 113

Figure 4.5: Inspecting the AppModule class file

For additional information regarding the Angular module system and the NgModule decorator, check
out the following URLs:

• NgModule: https://angular.io/guide/ngmodules
• Angular architecture—NgModules and JavaScript modules: https://angular.io/guide/

architecture-modules#ngmodules-and-javascript-modules

Dependency injection (DI)
We’ve talked about DI a number of times already, and with good reason, because it’s an important ap-
plication design pattern for both ASP.NET Core and Angular, with both frameworks making extensive
use of it to increase their efficiency and modularity.

To explain what DI actually is, we must first talk about what dependencies are in a class; these can be
defined as services or objects that a class needs to instantiate into variables or properties, in order to
perform one or more tasks.

In a classic coding pattern, those dependencies are instantiated on the fly within the class itself—for
example, during its initialization phase, such as within the constructor method. Here’s a typical ex-
ample of that:

public MyClass() {
 var myElement = new Element();
 myElement.doStuff();
}

https://angular.io/guide/ngmodules
https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules
https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules

Front-End and Back-End Interactions114

In the preceding example, the myElement variable is an object instance of the Element type, and also
a (local) dependency of MyClass. As we can see, it gets instantiated in the constructor because we most
likely need to use it there. From there, we can either use it as a local variable (and let it die at the end
of the constructor’s scope) or assign it to a class property to further extend its life span and scope.

DI is an alternative software design pattern in which a class asks for dependencies from external
sources rather than creating them itself. To better understand this concept, let’s try to rewrite the
same code as before with a DI approach, like this:

public MyClass(Element myElement) {
 myElement.doStuff();
}

As we can see, there’s no need to instantiate the myElement variable because this task is already han-
dled by the dependency injector—external code that is responsible for creating the injectable objects
and injecting them into the classes.

The whole DI coding pattern is based upon the concept of Inversion of Control (IoC), resolving depen-
dencies. Such a concept revolves around the basic idea that, formally, if ObjectA depends on ObjectB,
then ObjectA must not create or import ObjectB directly, but provide a way to inject ObjectB instead.
In the preceding code block example, ObjectA is obviously MyClass, while ObjectB is the myElement
instance.

For additional information about the DI software design pattern, check out the following links:

• DI in ASP�NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
dependency-injection

• DI in Angular: https://angular.io/guide/dependency-injection

In Angular, the DI framework provides declared dependencies to a class when that class is instantiated.

In the preceding HealthCheckComponent class, we used DI in the component’s constructor method to
inject an HttpClient service instance; as we can see, we also took the chance to assign the private
access modifier to both of them. Thanks to that modifier, those variables will be accessible through the
whole component class.

As per Angular conventions, a parameter injected without an access modifier can only be accessed
within the constructor; conversely, if it gets an access modifier such as private or public, it will be
defined as a class member, hence changing its scope to the class. Such a technique is called variable
scoping, and we’re going to use it a lot in our Angular components from now on.

ngOnInit (and other lifecycle hooks)
The ngOnInit method that we used in the HealthCheckComponent class is one of the component’s
lifecycle hook methods, in this section, we’ll try to shed some light on them, since we’re going to use
them a lot throughout this book.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://angular.io/guide/dependency-injection

Chapter 4 115

Each Angular component has a lifecycle, which is managed by Angular. Each time a user visits a view
within our app, the Angular framework creates and renders the required components (and directives)
along with their children, reacts to their changes whenever the user interacts with them, and even-
tually destroys and removes them from the Document Object Model (DOM) when the user navigates
elsewhere. All these “key moments” trigger some lifecycle hook methods that Angular exposes to the
developers so that they can perform something when each one of them actually occurs.

Here’s a list of the available hooks, in order of execution (when possible, since some of them are called
multiple times during the component’s lifecycle):

• ngOnChanges(): Responds when Angular (re)sets data-bound input properties. The meth-
od receives a SimpleChanges object of current and previous property values. Called before
ngOnInit() and whenever one or more data-bound input properties changes.

• ngOnInit(): Initializes the directive/component after Angular first displays the data-bound
properties and sets the directive/component’s input properties. Called once, after the first
ngOnChanges() method.

• ngDoCheck(): Detects and acts upon changes that Angular can’t, or won’t, detect on its own.
Called during every change detection run, immediately after ngOnChanges() and ngOnInit().

• ngAfterContentInit(): Responds after Angular projects external content into the component’s
view/the view that a directive is in. Called once after the first ngDoCheck() method.

• ngAfterContentChecked(): Responds after Angular checks the content projected into the
directive/component. Called after the ngAfterContentInit() method and every subsequent
ngDoCheck() method.

• ngAfterViewInit(): Responds after Angular initializes the component’s views and child views/
the view that a directive is in. Called once after the first ngAfterContentChecked() method.

• ngAfterViewChecked(): Responds after Angular checks the component’s views and child views/
the view that a directive is in. Called after the ngAfterViewInit() method and every subsequent
ngAfterContentChecked() method.

• ngOnDestroy(): Cleans up just before Angular destroys the directive/component. Unsubscribes
Observables and detaches the event handlers to avoid memory leaks. Called just before Angular
destroys the directive/component.

The preceding lifecycle hook methods are available for all Angular components and directives. To make
use of them, we can just add them to our component class—which is precisely what we did in the
preceding HealthCheckComponent.

Now that we have understood the role of ngOnInit(), we should take a moment to explain why we put
the HttpClient source code in the ngOnInit() lifecycle hook method instead of using the component’s
constructor() method; shouldn’t we have used that instead?

The next section should greatly help us to understand the reason for such a choice.

Front-End and Back-End Interactions116

Constructor
As you most likely already know, all TypeScript classes have a constructor() method that will be called
whenever we create an instance of that class: since TypeScript is, in every possible way, a superset of
JavaScript, any TypeScript constructor() method will be transpiled into a JavaScript constructor()
function.

The following code block shows an example of a TypeScript class:

class MyClass() {
 constructor() {
 console.log("MyClass has been instantiated");
 }
}

This will be transpiled into the following JavaScript function:

function MyClass() {
 console.log("MyClass has been instantiated");
}

If we omit the constructor in TypeScript, the JavaScript transpiled function will be empty; however,
whenever the framework needs to instantiate it, it will still call it in the following way, regardless of
whether it has the constructor or not:

var myClassInstance = new MyClass();

Understanding this is very important because it greatly helps us to understand the difference between
the component’s constructor() method and its ngOnInit() lifecycle hook, and it’s a huge difference,
at least from the perspective of the component initialization phase.

The whole Angular Bootstrap process can be split into two major (and subsequent) stages:

• Instantiating the components
• Performing change detection

As we can easily guess, the constructor() method is called during the former phase, while all the
lifecycle hooks—including the ngOnInit() method—are called throughout the latter.

If we look at these methods from this perspective, it’s pretty easy to understand the following key
concepts:

• If we need to create or inject some dependencies into an Angular component, we should use the
constructor() method; as a matter of fact, this is also the only way we can do that, since the
constructor is the only method that gets called in the context of the Angular injector.

• Conversely, whenever we need to perform any component initialization and/or update task—
such as performing an HTTP request or updating the DOM—we should definitely do that by
using one of the lifecycle hooks.

Chapter 4 117

The ngOnInit() method, as its name implies, is often a great choice for the component’s initialization
tasks, since it happens right after the directive’s and/or component’s input properties are set. That’s
why we have used this to implement our HTTP request, using the Angular built-in HttpClient service.

HttpClient
Being able to efficiently send and receive JSON data from our ASP.NET Core controllers is probably
the most important requirement for our single-page application (SPA). We chose to do that using the
Angular HttpClient service, first introduced in Angular 4.3.0-RC.0, which is among the best resources
that the framework can provide to get the job done. For this very reason, we will use it a lot throughout
this book; however, before doing that, it might be advisable to properly understand what it is, why it
is better than the former implementation, and how to properly implement it.

The new HttpClient service was introduced in July 2017 as an improved version of the former Angular
HTTP client API, also known as @angular/http, or, simply, HTTP. Instead of replacing the old version
in the @angular/http package, the Angular development team has put the new classes in a separate
package—@angular/common/http. They chose to do that to preserve the backward compatibility with
the existing code bases, also ensuring a slow, yet steady, migration to the new API.

Those who used the old Angular HTTP service class at least once will most likely remember its main
limitations, listed here:

• JSON was not enabled by default, forcing the developers to explicitly set it within the request
headers—and JSON.parse/JSON.stringify the data—when working with RESTful APIs.

• There was no easy way to access the HTTP request/response pipeline, thus preventing the
developer from intercepting or altering the request and/or response calls after they were issued
or received by using some ugly and pattern-breaking hacks. As a matter of fact, extensions and
wrapper classes were basically the only way to customize the service, at least on a global scale.

• There was no native strong-typing for request and response objects, although that could be
addressed by casting JSON as interfaces as a workaround.

The great news is that the new HttpClient does all of this and much more; other features include
testability support and better error handling, via APIs entirely based on Observables.

It’s worth noting that putting the HttpClient service within the component itself is not good practice
because it will often lead to unnecessary code repetition among the various components that need to
perform HTTP calls and handle their results. This is a known issue that greatly affects production-level
apps, which will likely require post-processing of the received data, handling errors, adding retry logic
to deal with intermittent connectivity, and so on.

To better deal with those scenarios, it’s strongly advisable to separate the data access logic and the
data presentation role by encapsulating the former in a separate service, which can then be injected
into all the components that require it, in a standardized and centralized way. We’ll talk more about
that in Chapter 8, Code Tweaks and Data Services, where we’ll eventually replace multiple HttpClient
implementations and centralize their source code within a couple of data services.

Front-End and Back-End Interactions118

Observables
Observables are a powerful feature for managing async data; they are the backbone of the ReactiveX
JavaScript (RxJS) library, which is one of Angular’s required dependencies. Those who are familiar
with ES6 Promises can think of them as an improved version of that approach.

An observable can be configured to send literal values, structured values, messages, and events, either
synchronously or asynchronously. The values can be received by subscribing to the observable itself
using the subscribe method hook, meaning that the whole data flow is handled within it—until we
programmatically choose to unsubscribe. The great thing about this approach is that, regardless of the
chosen approach (sync or async), streaming frequency, and data type, the programming interface for
listening to values and stopping listening is the same.

The great advantages of observables are the reason why Angular makes extensive use of them when
dealing with data. If we take a good look at our HealthCheckComponent source code, we can see how
we can use them as well when our HttpClient service fetches data from the server and stores the
result in the this.result local variable. Such a task is performed by calling two consecutive methods:
get<Result>() and subscribe().

Let’s try to summarize what they do, as follows:

• get<Result>(): As the name suggests, this method issues a standard HTTP request to our ASP.
NET Core HealthChecks middleware to fetch the resulting JSON response object. This method
needs a URL parameter, which we create on the fly by adding the health-check route (the same
string that we set early on within the Program.cs file) to the base Web API URL.

• subscribe(): This method invokes the observable returned by the get call, which will execute
two very different actions right after a result and/or in case of an error. Needless to say, all
this will be done asynchronously, meaning that the app won’t wait for the result and will keep
executing the rest of the code.

Those who want to get additional information can take a look at the following URLs, taken from the
RxJS official documentation:

• ReactiveX library—Observables guide: http://reactivex.io/rxjs/class/es6/Observable.
js~Observable.html

• Angular�io—Observables guide: https://angular.io/guide/observables

It’s very important to understand that we’re only scratching the surface of what an observable can do.
However, this is all we need for now; we’ll have the chance to talk more about them later on.

Interfaces
Now that we know how the Angular HttpClient service works, we have every right to ask ourselves
a couple of questions: why are we even using these interfaces? Can’t we just use the raw JSON data
sent by the ASP.NET Core HealthChecks middleware that we defined early on, consuming them as
anonymous JavaScript objects?

http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
https://angular.io/guide/observables

Chapter 4 119

Theoretically speaking, we can, just as we can output raw JSON from the controllers, instead of cre-
ating all the classes as we did instead. However, in a well-written app, we should always resist the
temptation to handle raw JSON data and/or to use anonymous objects, for a number of good reasons:

• We have chosen TypeScript over JavaScript because we want to work with type definitions:
Anonymous objects and properties are the exact opposite; they lead to the JavaScript way of
doing things, which is something we wanted to avoid in the first place.

• Anonymous objects (and their properties) are not easy to validate: We don’t want our data
items to be error-prone or forced to deal with missing properties.

• Anonymous objects are hardly reusable: In other words, they won’t benefit from many handy
Angular features—such as object mapping—that require our objects to be actual instances of an
interface and/or a type.

The first two arguments are very important, especially if we’re aiming for a production-ready appli-
cation; no matter how easy our development task might seem at first, we should never think that we
can afford to lose that level of control over our application’s source code.

The third reason is also crucial, as long as we want to use Angular to its full extent. If that’s the case,
using an undefined array of properties—such as raw JSON data—is basically out of the question; con-
versely, using a structured TypeScript interface is arguably the most lightweight way to work with
structured JSON data in a strongly typed fashion.

It’s worth noting that we’ve not added the export statement to our interface; we did that on purpose,
since we’re only going to use this within the HealthCheckComponent class. Should we need to change
this behavior in the future—for example, to create an external data service—we’ll have to add this
statement (and, arguably, move each one of them into a separate file) to enable us to import these
interfaces into other classes.

health-check.component.html
Here’s the /src/app/health-check/health-check.component.html source code:

<h1>Health Check</h1>
<p>Here are the results of our health check:</p>
<p *ngIf="!result">Loading...</p>
<table class='table table-striped' aria-labelledby="tableLabel" *ngIf="result">
 <thead>
 <tr>
 <th>Name</th>
 <th>Response Time</th>
 <th>Status</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let check of result.checks">

Front-End and Back-End Interactions120

 <td>{{ check.name }}</td>
 <td>{{ check.responseTime }}</td>
 <td class="status {{ check.status }}">{{ check.status }}</td>
 <td>{{ check.description }}</td>
 </tr>
 </tbody>
</table>

As we already know from Chapter 3, Looking Around, the template part of our Angular component is
basically an HTML page, containing a table with some Angular directive. Before moving on, let’s have
a closer look, as follows:

• ngIf: This is a structural directive that conditionally includes the container HTML element, based
on the Boolean expression value specified after the equals (=) sign. When such an expression
evaluates to true, Angular renders the element; otherwise, it doesn’t. It can be chained with
an else block that—if present—will be shown when the expression evaluates to false or null. In
the preceding code block, we use the ngIf directive within the <table> element so that it only
appears when the result internal variable (which we defined in the component class earlier
on) stops being undefined, which will happen after the data has been fetched from the server.

• ngFor: Another structural directive that renders a template for each item contained in a given
collection. The directive is placed on an element, which becomes the parent of the cloned
templates. In the preceding code block, we use it inside the main <table> element to create
and show a <tr> element (a row) for each check item within the result.checks array.

• {{ check.name }}, {{ check.responseTime }}, and so on: These are called interpolations and
can be used to incorporate calculated strings into the text between HTML element tags and/or
within attribute assignments. In other words, we can use them as placeholders for our class
variables’ property values. As we can see, the interpolation default delimiters are the double
curly braces, {{ and }}.

To understand more about ngIf, ngFor, interpolations, and other Angular UI fundamentals, we strongly
suggest taking a look at the official documentation:

• Displaying data: https://angular.io/guide/displaying-data
• Template syntax: https://angular.io/guide/template-syntax
• Structural directives: https://angular.io/guide/structural-directives

health-check.component.css
Here’s the /src/app/health-check/health-check.component.css source code:

table {
 margin: 0 auto;
}

.status {

https://angular.io/guide/displaying-data
https://angular.io/guide/template-syntax
https://angular.io/guide/structural-directives

Chapter 4 121

 font-weight: bold;
}

.Healthy {
 color: green;
}

.Degraded {
 color: orange;
}

.Unhealthy {
 color: red;
}

There’s not much to note here—just some vanilla CSS to style out the component template. Notice how
we played a bit with the styling of the table cell, which will contain the status of the various checks.
It’s strongly advisable to highlight them as much as we can, so we made them bold and with a color
matching the status type: green for Healthy, orange for Degraded, and red for Unhealthy.

Due to space limitations, we won’t be able to talk much about CSS styling in this book; we will just take
it for granted that the average web programmer knows how to handle the simple definitions, selectors,
and styling rules we will use in our examples.

Those who want (or need) to understand more about CSS and CSS3 are encouraged to take a look at
this great online tutorial: https://developer.mozilla.org/en-US/docs/Web/CSS.

A word on Angular component styling
As a matter of fact, Angular gives us at least two ways to define custom CSS rules for our components:

• Setting them within a styles property in the component metadata
• Loading styles from external CSS files by adding a styleUrls property in the component

metadata

Both of the preceding approaches rely upon properties that need to be added to the component’s
@Component decorator; the latter is the one used by the default template we reviewed back in Chapter
3, Looking Around, and is preferable in most cases, since it allows us to separate the HTML structure
from the CSS styling.

If we wanted to migrate to the former, here’s how we should set the styles property instead:

@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styles: ['
 .status { font-weight:bold; }

https://developer.mozilla.org/en-US/docs/Web/CSS

Front-End and Back-End Interactions122

 .Healthy { color: green; }
 .Degraded { color: orange; }
 .Unhealthy { color: red; }
 ']
})

The only real advantage of such an approach is that it doesn’t need the addition of a separate CSS file,
which could make it viable enough for small and lightweight components that require little styling:
that said, in the vast majority of cases, the styleUrls property is definitely the way to go.

It goes without saying that we’ve only scratched the surface of a huge and complex topic; however, for
obvious reasons of space, we won’t go much further than this for the rest of the book.

Those who want to know more about component styling are strongly encouraged to take a look at the
Angular official guide: https://angular.io/guide/component-styles.

Now that our component is ready, we need to properly add it to our Angular app.

Adding the component to the Angular app
Since we’ve generated the component using the Angular CLI, we don’t need to update the app.module.
ts file; all the required changes have been automatically performed by the CLI.

However, if we want our new component to be reachable to our users within our Angular app, we
need to make some minimal changes to the following files:

• app-routing.module.ts

• nav-menu.component.ts

• nav-menu.component.html

Let’s get this done.

AppRoutingModule
Since we have a dedicated AppRoutingModule to handle routing, we need to update it by adding the
new routing entry so that our users will be able to navigate to that page.

Open the /src/app/app-routing.module.ts file and add the following highlighted lines:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';
import { HealthCheckComponent } from './health-check/health-check.component';

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'fetch-data', component: FetchDataComponent },

https://angular.io/guide/component-styles

Chapter 4 123

 { path: 'health-check', component: HealthCheckComponent }
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})

export class AppRoutingModule { }

What we did here is not hard to understand: we’ve added a dedicated health-check route that will han-
dle the navigation to our new component. Once done, we just need to add it to our NavMenuComponent
so that our users will be able to see and use it within the app’s UI, which is what we’ll do now.

NavMenuComponent
Adding our new component navigation path to RoutingModule was a required step to make sure our users
are able to reach it; however, we also need to add a link for our users to click on. Since NavMenuComponent
is the component that handles the navigation user interface, we need to perform some stuff there as
well.

Open the /src/app/nav-menu/nav-menu.component.html file and add the following highlighted lines:

<header>
 <nav>
 <a [routerLink]="['/']">Home
 |
 <a [routerLink]="['/fetch-data']">Fetch Data
 |
 <a [routerLink]="['/health-check']">Health Check
 </nav>
</header>

Now that our new component has been added to our Angular app, we just need to test it out.

Testing it out
To see our new HealthCheckComponent in all of its glory, we just need to do the following:

1. Hit F5 to launch the project in debug mode.
2. When the home view is done loading, click on the new Health Check link in the top-left nav-

igation menu.

Front-End and Back-End Interactions124

If we did everything correctly, the browser should load the new Health Check view, which should look
just like the following screenshot:

Figure 4.6: Our new HealthCheckComponent

It definitely seems like we did it!

Our health check is up and running, proudly showing us the results of the three ICMP requests we set
up within our ASP.NET Core’s HealthChecksMiddleware.

That said, we must admit that the look and feel of the table are not that great. And the rest of the app
doesn’t look any better. The fact that we’re barely using any styling is starting to take its toll in terms
of the visual experience.

For this reason, before moving forward, it might be useful to spend some valuable time addressing
such issues for good. Let’s be clear—we’re not going to turn our “minimalist” HTML templates into a
jaw-dropping layout; we’ll just add some minor UI tweaks with the help of a free, open source, and
well-known UI component framework.

Restyling the UI
You might think that the framework we’re referring to is Bootstrap, since it’s one of the most used
choices when building responsive, mobile-first front-end applications. However, we’re not going to
use it; we’ll opt for Angular Material instead, since it natively integrates with most Angular apps, pro-
vides a wide set of UI components, and gives a great look and feel, possibly even better than Bootstrap.

Chapter 4 125

Introducing Angular Material
Angular Material is a UI component library that implements Material Design in Angular. As you most
likely already know, Material Design is a UI design language that Google developed in 2014, which
focuses on using grid-based layouts, responsive animations, transitions, padding, and depth effects
such as lighting and shadows.

Material Design was introduced by the Google designer Matías Duarte on June 25, 2014, at the 2014
Google I/O conference. To make UI designers familiarize themselves with its core concepts, he ex-
plained that “unlike real paper, our digital material can expand and reform intelligently. Material has
physical surfaces and edges. Seams and shadows provide meaning about what you can touch.”

The main purpose of Material Design is to create a new UI language combining principles of good
design with technical and scientific innovation, providing a consistent user experience across not
only all Google platforms and applications but also any other web applications seeking to adopt such
concepts. The language was revamped in 2018, providing more flexibility and advanced customization
features based on themes.

Since 2020, Material Design is used on almost all Google web applications and tools—including Gmail,
YouTube, Google Drive, Google Docs, Sheets, Slides, Google Maps, and all of the Google Play-branded
applications, as well as most Android and Google OS UI elements. Such wide adoption also includes
Angular, which has been provided with a dedicated NPM package that can be added to any Angu-
lar-based project to implement Material Design into any Angular app; this package is called @angular/
material and includes the native UI elements, the Component Dev Kit (CDK), a set of animations,
and other useful stuff.

Installing Angular Material
Installing Angular Material is a rather easy process; the best thing is to follow the official instructions
from the following URL:

https://material.angular.io/guide/getting-started

Which is what we’ll do right now.

Let’s start by opening a command prompt window; once done, navigate to the Angular project’s root
folder—just like we do when we add a new component—and type the following command:

ng add @angular/material@17.0.3

https://material.angular.io/guide/getting-started

Front-End and Back-End Interactions126

The Angular Material installation wizard will start, as shown in the following screenshot:

Figure 4.7: Installing Angular Material using the CLI

The Angular CLI will automatically find the most suitable/compatible version, depending on the version
of the CLI itself. That said, it’s strongly advisable to use the version used within this book.

The wizard will ask you to do the following:

• Choose a prebuilt theme name: Indigo/Pink
• Set up global Angular Material typography styles? Yes
• Include the Angular animations module? Include and enable animations

As a matter of fact, we’re free to choose any default theme and opt out of the browser animations if
we don’t want them; however, adding the global typography styles is highly recommended, since we
don’t have any additional CSS frameworks—and the default browser typography is not great.

Here’s what the wizard will do to our Angular app:

• Add the required NPM packages and dependencies to the package.json file: @angular/material
and @angular/cdk.

• Add the BrowserAnimationModule to the /src/app/app.module.ts file (if we have enabled
browser animations).

• Add the Roboto font and the Material Design icon set to the /src/index.html file.
• Add the mat-typography CSS class to the <body> element of the/src/index.html file.
• Add some basic styling to the /src/style.css files.

Once Angular Material has been installed, we can start restyling our components.

For additional info about Angular Material, its setup process, and a list of supported features, check
out the following links:

https://material.angular.io/

https://material.angular.io/guide/getting-started

https://material.angular.io/
https://material.angular.io/guide/getting-started

Chapter 4 127

Adding a MatToolbar
The first component we’ll revamp is the NavMenuComponent, which doesn’t look that great. More pre-
cisely, we’ll replace its basic HTML template with an Angular Material native component specifically
designed to host navigation menus: the MatToolbar. To install it, we need to perform the following tasks:

1. Add the required references to the AppModule class.
2. Update the NavMenuComponent's HTML template accordingly.

Let’s do this.

Updating the AppModule
Open the /src/app/app.module.ts file and add the following highlighted lines just below the already
existing AppRoutingModule import statement:

import { AppRoutingModule } from './app-routing.module';

import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';

Then, add the following highlighted lines at the end of the @NgModule's imports array:

 imports: [
 BrowserModule,
 HttpClientModule,
 AppRoutingModule,
 BrowserAnimationsModule,
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
]

As we can see, we’ve added three Angular Material modules:

• MatButtonModule, which adds supports for button components
• MatIconModule, which allows the use of material icons
• MatToolbarModule, the main component we want to add

We’re going to use all three of them to revamp our NavMenuComponent template file.

Updating the NavMenuComponent HTML template
Open the /src/app/nav-menu/nav-menu.component.html file and replace all the existing content
with the following code:

<header>
 <mat-toolbar color="primary">

Front-End and Back-End Interactions128

 <button mat-icon-button [routerLink]="['/']">
 <mat-icon>
 home
 </mat-icon>
 </button>
 <a mat-flat-button color="primary" [routerLink]="['/fetch-data']">
 Fetch Data

 <a mat-flat-button color="primary" [routerLink]="['/health-check']">
 Health Check

 </mat-toolbar>
</header>

As we can see, we’ve replaced our previous hand-made implementation—which was based on a plain
<nav> HTML element—with a new one relying upon the three modules we’ve just added:

• The Angular Material module syntax is quite simple to understand; each component has its
own tag—for example, the whole toolbar is defined by the <mat-toolbar> tag.

• These components can be styled using standard CSS classes or custom attribute directives, a
specific kind of directive specifically designed to change the appearance or behavior of DOM
elements and Angular components—for example, the menu links are styled with the mat-
flat-button directive, which applies some CSS classes to the <a> element itself to make it
look like a button.

The official documentation of the Angular Material modules that we’ve used here are available at the
following URLs:

https://material.angular.io/components/button/overview

https://material.angular.io/components/icon/overview

https://material.angular.io/components/toolbar/overview

To read more about Angular’s attribute directives, check out the following URL: https://angular.io/
guide/attribute-directives.

First test run
Let’s take a small break from coding and styling to see what we just did. Press F5 to launch our project(s)
in debug mode and see if our new top-level navigation menu looks better than before.

If you can’t see the updated Angular app after hitting F5, you can try to manually close all the console
windows (including the one where ng serve is running) and then launch the projects again.

https://material.angular.io/components/button/overview
https://material.angular.io/components/icon/overview
https://material.angular.io/components/toolbar/overview
https://angular.io/guide/attribute-directives
https://angular.io/guide/attribute-directives

Chapter 4 129

If we did everything correctly, we should see something like in the following screenshot:

Figure 4.8: Our new top-level navigation menu using Angular Material’s MatToolbar component

Not bad at all! Maybe a bit of padding applied to the content below the menu would make it look even
better; let’s quickly add it before moving on.

Open the /src/app/app.component.css file and append the following CSS rule to the existing content:

.container {
 padding: 10px;
}

This will create a small space between the content and the menu, as well as between the content and
the external borders of the page.

Now, we can continue styling our other components.

Playing with (S)CSS
The next thing we are about to do is improve the look and feel of our HTML tables; we currently have
two of them, one in the DataFetchComponent—which we moved there from AppComponent a while
ago—and another one in the HealthCheckComponent.

However, before doing that, we’re going to take the chance to replace our existing CSS files with SCSS
files, enabling us to use the extended CSS syntax provided by the powerful Sass preprocessor.

Wait a minute. What is Sass?

If you feel the urge to ask this question, read the following section; if you already know what we’re
talking about, you might as well skip it, since you probably already know the story.

Front-End and Back-End Interactions130

Introducing Sass
If you’ve worked with style sheets within the last few years, there’s no chance you haven’t heard of
Sass; however, for the sake of those who haven’t, let’s spend a bit of time talking about it.

Before getting to that though, we must briefly introduce the concept of style sheets.

This section is mostly aimed at those who have never used Sass before. If you have some experience
with Sass already or feel like you don’t need to know anything else about why we’ll use it, you might
as well skip it entirely and jump to the next section: Replacing CSS with Sass.

A brief history of CSS
Style sheet language, also known as style language, is a programming language used to define the pre-
sentation layer’s UI design rules of a structured document. We can think of it as a skin or a theme that
we can apply to a logical item (the structured document) to change its appearance. For example, we
can make it look blue, red, or yellow; we can make the characters bigger or smaller and thinner or
wider; we can change the text spacing, alignment, and flow; and so on.

Using dedicated style sheet languages gives developers the chance to separate the presentation layer’s
code and structure (respectively, JavaScript and HTML) from the UI design rules, thus enforcing the
Separation of Concerns (SoC) principle within the presentation layer itself.

When it comes to web pages, web applications, and anything else that mostly uses HTML, XHTML,
XML, and other markup language-based documents, the most important style sheet language un-
doubtedly is CSS.

It was December 17, 1996, when the World Wide Web Consortium (W3C) released the official W3C
CSS recommendation for the style sheet language that would be known as CSS1. CSS2 came less than
two years later (May 1998), while its revised version, CSS2.1, took considerably more time (June 2011).

Starting from CSS3, things started to become more complex, since the W3C ditched the single, mono-
lithic specification approach by splitting it into separate documents called modules, each one of them
following its very own publishing, acceptance, and recommendation history. Starting in 2012, with
four of its modules (media queries, namespaces, selectors, and color) being published as formal rec-
ommendations and with full CSS2.1 backward compatibility, CSS3 quickly became the most adopted
style sheet language standard for the development of new websites.

CSS code sample
Regardless of its version, each one adding new features while maintaining backward compatibility
with the previous one(s), CSS sticks to the following syntax:

<selector> [sub-selector] [sub-sub-selector] {
 <property>: <value>;
 <another-property>: <value>;
 <yet-another-property>: <value>;
 /* ... and so on... */
}

Chapter 4 131

This translates as follows:

.container {
 padding: 5px 10px;
}

We saw this code a short while ago; it’s the container class we just added in the /src/app/app.
component.css file to apply some padding to our app’s content.

That class basically says that any HTML element with the container class assigned will have a padding
of 5 px (top and bottom) and 10 px (left and right).

To assign a CSS class to an HTML element, we can use the class attribute in the following way:

<div class="container">
 [...some content...]
</div>

If the class attribute is already present, additional CSS classes can be assigned by separating them
with a single space:

<div class="container otherClass someOtherClass">
 [...some content...]
</div>

Simple enough, isn’t it?

What is Sass and why use it?
Sass is a Cascading Style Sheets preprocessor; we can think of it as a “syntax enhancer” for CSS files,
enabling us to do a number of things that CSS doesn’t support (yet), just like PHP and/or ASP can do
for an HTML page.

The following diagram should help us better understand the concept:

Figure 4.9: PHP advantages over static HTML pages

Front-End and Back-End Interactions132

These are the main advantages of using a hypertext preprocessor instead of writing raw HTML pag-
es; here, we’re talking about PHP, but the same goes for ASP.NET Web Forms, Razor, and basically
everything else.

The following are the advantages of using Sass instead of writing raw CSS files:

Figure 4.10: Sass advantages over standard CSS syntax

As we can see, they serve the exact same purpose in terms of assisting, improving, and enhancing
the development effort.

Making the switch from static style sheets to dynamic style sheets is just as easy as switching from
static HTML pages to PHP or ASP dynamic pages; they both feature a nested metalanguage that can
extend the base static language in a pure backward-compatible fashion. This means that a valid CSS
file is also a valid Sass file, just as a valid HTML file is also a valid PHP or ASP file.

There are also some key differences between hypertext preprocessors and style sheet preprocessors,
the most important being how web servers deal with them.

Hypertext preprocessors such as PHP and ASP are compiled by the web server upon each request; the
web server compiles them on the fly and then serves the resulting HTML for each request/response
flow. Conversely, style sheet preprocessor files are usually compiled into standard CSS files before
being published; in other words, the web service doesn’t know about the existence of these files, as it
just serves the resulting CSS-compiled result.

As a matter of fact, Sass also provides other great benefits, such as nested styles—which we
are going to use a lot throughout this book.

Chapter 4 133

This also means that using a stylesheet preprocessor will have no performance impact on the server,
unless we choose to install some experimental and still highly inefficient handlers, extensions, mod-
ules, or client-side scripts that will compile the source files on the fly.

Replacing CSS with Sass
As we know from Chapter 3, Looking Around, the Angular CLI’s default behavior is to generate stan-
dard CSS files. To perform the switch from CSS to SCSS, the first thing we need to do is to change such
behavior; right after that, we also need to rename all of our existing StyleSheet files by changing their
extension from .css to .scss; last, but not least, we’ll also have to rename all the references to these
StyleSheet files located within our Angular components.

If we had to manually perform all these tasks, it would be a tedious work; luckily, there is a convenient
NPM package called schematics-scss-migrate that can take care of all these changes for us.

To benefit from it, open a command prompt, navigate to the healthcheck.client project’s root folder,
and execute the following command:

> ng add schematics-scss-migrate

Doing that will launch a prompt-based wizard that will ask us a few questions, which can be answered
in the following way:

• Which stylesheet format are you migrating from? css
• Which stylesheet format are you migrating to? scss
• Which project do you want to migrate? healthcheck�client

IMPORTANT NOTE: From now on, we’ll take for granted that you have a decent knowl-
edge of CSS files, syntax, selectors, and their common use within HTML pages. If this is
not the case, we strongly suggest that you learn the core CSS and Sass concepts before
going further. The following URLs can greatly help newcomers understand the distinctive
features of both languages:

CSS: https://www.w3.org/Style/CSS/learning

Sass: https://sass-lang.com/guide

https://www.w3.org/Style/CSS/learning
https://sass-lang.com/guide

Front-End and Back-End Interactions134

After receiving these inputs, the script will automatically perform all the required code change and
rename tasks, logging all its activities on screen, as shown in the following screenshot:

Figure 4.11: Working with the schematics-scss-migrate NPM package

As soon as the script finishes its job, our CSS-to-SCSS migration will be complete; from now on, when-
ever we use the Angular CLI to generate our components, Sass files (SCSS) will be created instead of the
standard CSS files. Furthermore, all our existing StyleSheet files are now proper SCSS files, allowing
us to use Sass wherever we want.

Those who prefer to avoid using the schematics-scss-migrate NPM package and per-
form the CSS-to-SCSS migration manually can check out the GitHub project for this chapter,
where all the files have been updated with the proper extension.

IMPORTANT: Be sure to manually close all the console windows and relaunch the projects
again after performing the CSS-to-SCSS migration, ensuring that all the updated artifacts
will be reloaded from scratch.

Once done, we can finally use Sass syntax (together with CSS syntax) anywhere in our
Angular project.

Chapter 4 135

Restyling the tables
Let’s immediately take advantage of the Sass syntax by restyling our existing HTML tables. Since we
have two of them, we can define a global table-related rule within our new (renamed) /src/styles.
scss files, which hosts our application-wide style sheet rules:

Open that file and append the following highlighted lines to the existing code:

html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }

table {
 margin: 0 auto;

 tr:nth-child(even) {
 background: #F2F2F2;
 }

 tr:nth-child(odd) {
 background: #FFF;
 }

 th, td {
 padding-left: 1rem;
 padding-right: 1rem;
 }
}

Right after that, open the /src/app/fetch-data/fetch-data.component.scss file and the /src/app/
health-check/health-check.component.scss files and remove all the table-related rules (those re-
lated to the table, tr, th, and td selectors), as we have already set them all in the app-wide SCSS file.

Once done, save the files and hit F5 to test the new table styling. To see that, we need to navigate to
our FetchDataComponent and our HealthCheckComponent, which can be done using our new Angular
Material menu.

Front-End and Back-End Interactions136

If we did everything correctly, we should be able to see the new rules affecting the tables of both
components, just like in the following screenshots:

Figure 4.12: HTML tables styled with Sass

That’s it; our UI is still not perfect, but we can be satisfied with these improvements, at least for now.

It’s worth noting that, instead of restyling our existing HTML tables, we could have used the Angular
Material’s MatTable component to entirely replace them; by doing that, we would have gained a lot
of powerful features, such as filtering, sorting, paging, and so on.

However, for the sake of simplicity, we have opted for a “faster” approach, which also allowed us to
integrate Sass in our Angular project. We will make extensive use of the MatTable component in the
next chapters, when we’ll have to deal with more complex (and overly populated) tables.

Now that we’ve learned the basics, we’ll move on to a completely different topic. However, you should
already be able (and are strongly encouraged) to further expand this sample project with more so-
phisticated use case scenarios, such as:

• Creating additional checks using the same approach that we’ve adopted for the ICMPHealthCheck
class: a DBMS connection check, read/write permissions on a UNC folder or resources, the
presence/absence of watchdog files, internet connectivity, CPU/memory/bandwidth usage,
and so on.

• Proactively handling the different states in our application depending on the various health
check results: show a message to our users if the application is not working properly, disable
the components of the application that are not working, switch to a fallback alternative, send
alert email notifications to the administrators, and so on.

Chapter 4 137

• Extending the HealthChecksMiddleware capabilities with LiteXHealthChecks, a lightweight, yet
powerful, NuGet package with a number of modular add-ons that allow us to check the status
of a component in the application, such as a back-end service, database, or some internal state.

Further improve the look and feel of our Angular app by applying additional styling rules using the
CSS and/or Sass syntax.

That said, we’ve just gained some important knowledge regarding Angular Material and Sass, two very
useful tools that we’ll definitely use in the upcoming chapters.

Summary
Let’s spend a minute briefly recapping what we learned in this chapter. First of all, we acknowledged
that .NET controllers are not the only tool in the shed; as a matter of fact, any middleware is virtually
able to deal with the HTTP request and response cycle—as long as it is in our application’s pipeline.

To demonstrate such a concept, we introduced HealthChecksMiddleware, a neat ASP.NET Core built-in
feature that can be used to implement status monitoring services, and then we implemented it. We
started with the ASP.NET Core back-end, refining our work until we were able to create a JSON-structured
output; then, we switched to Angular, where we learned how to properly fetch it with a component and
show it on screen through the browser’s HTML-based UI.

Last but not least, we’ve spent some valuable time improving the UI and UX of our Angular app by
adding a couple of powerful layout-based features: Angular Material and Sass. Eventually, the final
outcome was good enough to reward us for our hard work.

That’s enough for the HealthCheck app, at least for the time being. Starting from the next chapter, we’ll
bring back the standard .NET controllers pattern and see how we can leverage it to learn something new.

Suggested topics
For further information, we recommend the following topics: health monitoring, health checks, Health-
ChecksMiddleware, HealthCheckOptions, HTTP requests, HTTP responses, ICMP, PING, Response-
Writer, JSON, JsonSerializerOptions, components, routing, modules, AppModule, HttpClient, ngIf,
ngFor, directives, structural directives, interpolations, NgModule, Angular module system, JavaScript
module system (import/export), Angular Material, Cascading Style Sheets (CSS), Sass.

References
• Health checks in ASP.NET Core: https://docs.microsoft.com/en-US/aspnet/core/host-and-

deploy/health-checks

• Request and response operations in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/
core/fundamentals/middleware/request-response

• ASP.NET Core health monitoring: https://docs.microsoft.com/en-us/dotnet/architecture/
microservices/implement-resilient-applications/monitor-app-health

• “pattern-based using” and “using declarations”: https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/proposals/csharp-8.0/using

https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/request-response
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/request-response
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/monitor-app-health
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/monitor-app-health
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using

Front-End and Back-End Interactions138

• File-scoped namespace declaration: https://learn.microsoft.com/en-us/dotnet/csharp/
whats-new/csharp-10#file-scoped-namespace-declaration

• C# 8.0: Understanding Using Declarations: https://www.stevejgordon.co.uk/csharp-8-
understanding-using-declarations

• String interpolation in C#: https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/
string-interpolation

• TypeScript modules: https://www.typescriptlang.org/docs/handbook/modules.html
• Module resolution: https://www.typescriptlang.org/docs/handbook/module-resolution.

html

• Dependency injection in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/dependency-injection

• Angular.io—Dependency injection: https://angular.io/guide/dependency-injection
• Angular—Lifecycle hooks: https://angular.io/guide/lifecycle-hooks
• ReactiveX library—Observables: http://reactivex.io/rxjs/class/es6/Observable.

js~Observable.html

• Angular.io—Observables guide: https://angular.io/guide/observables
• JavaScript—Import statement: https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Statements/import

• JavaScript—Export statement: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Statements/export

• Angular—HttpClient: https://angular.io/guide/http#httpclient
• Angular—NgModules: https://angular.io/guide/ngmodules
• Angular—NgModules and JavaScript modules: https://angular.io/guide/architecture-

modules#ngmodules-and-javascript-modules

• Angular—Displaying data: https://angular.io/guide/displaying-data
• Angular—Template syntax: https://angular.io/guide/template-syntax
• Angular—Structural directives: https://angular.io/guide/structural-directives
• Angular Material: https://material.angular.io/
• CSS—Cascading Style Sheets: https://developer.mozilla.org/en-US/docs/Web/CSS
• Sass basics: https://sass-lang.com/guide

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration
https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations
https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation
https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://angular.io/guide/dependency-injection
https://angular.io/guide/lifecycle-hooks
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html
https://angular.io/guide/observables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://angular.io/guide/http#httpclient
https://angular.io/guide/ngmodules
https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules
https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules
https://angular.io/guide/displaying-data
https://angular.io/guide/template-syntax
https://angular.io/guide/structural-directives
https://material.angular.io/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://sass-lang.com/guide

Chapter 4 139

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

5
Data Model with Entity Framework
Core

The HealthCheck sample app that we’ve been playing with since Chapter 2, Getting Ready, is working
fine, yet it lacks some important features we would likely make use of in a typical web application;
among the most important of them is the ability to read and write data from a Database Manage-
ment System (DBMS) since this is essential for almost any web-related task: content management,
knowledge sharing, instant communication, data storage and/or mining, tracking and statistics, user
authentication, system logging, and so on.

Truth be told, even our HealthCheck app could definitely use some of these tasks: tracking the host
statuses over time could be a nice feature; user authentication should be a must-have, especially if
we plan to publicly release it to the web; system logging is always great to have; and so on. However,
since we prefer to keep our projects as simple as possible, we’re going to create a new one and grant
some DBMS capabilities to it.

Here’s what we’re going to do in this chapter:

• Create a brand-new �NET and Angular web application project called WorldCities: a database
of cities from all over the world

• Choose a suitable data source to fetch a reasonable amount of real data to play with
• Define and implement a data model using Entity Framework Core
• Configure and deploy a DBMS engine that will be used by our project
• Create the database using Entity Framework Core’s Data Migrations feature
• Implement a data seeding strategy to load the data source to the database
• Read and write data with �NET using the Object-Relational Mapping (ORM) techniques pro-

vided by Entity Framework Core

Are you ready to get started?

Data Model with Entity Framework Core142

Technical requirements
In this chapter, we’re going to need all of the technical requirements that were listed in the previous
chapters, plus the following external libraries:

• Microsoft.EntityFrameworkCore NuGet package
• Microsoft.EntityFrameworkCore.Tools NuGet package
• Microsoft.EntityFrameworkCore.SqlServer NuGet package
• SQL Server 2022 (if we opt for the local SQL instance route)
• Azure subscription (if we opt for the cloud database hosting route)

As always, it’s advisable to avoid installing these straight away. We’re going to bring them in during
this chapter so that we can contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/main/Chapter_05/WorldCities.

The WorldCities web app
The first thing we’re going to do is create two new projects using the Angular and ASP.NET Core VS2022
template that we used in Chapter 2, Getting Ready. This time we are going to call it “WorldCities,” mean-
ing that the following two projects will be created:

• worldcities�client, which will contain the Angular app
• WorldCities�Server, for the ASP.NET Core web API

In a nutshell, we just need to repeat what we did during the second part of Chapter 2, Getting Ready,
where we created the healthcheck�client and HealthCheck�Server projects. The only difference is
that this time we’re going to end up with different names.

Creating these two projects from scratch will be a great exercise, and a good chance to put into practice
what you’ve learned until now. Let’s see if you’re able to do that without help!

Once we’ve created the two projects, we’ll need to apply the same upgrades and improvements to
our new projects that we did on the healthcheck�client and HealthCheck�Server projects in Chapter
2, Getting Ready.

If you have issues, you can check out the book’s GitHub repository for this chapter and
compare its content with what you did.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_05/WorldCities
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_05/WorldCities

Chapter 5 143

Updating the ASP.NET Core app
Let’s start with the ASP.NET Core app, which only requires some minor changes. Here’s what we need
to do:

• In the launchSettings.json file, set all the launchBrowser properties to false, and change
HTTP and HTTPS ports to 40080 and 40443.

That’s about it.

Updating the Angular app
Let’s move on to the Angular app. Here’s what we need to do:

1. Upgrade (or downgrade) the Angular version in the package.json file.
2. Edit the /src/proxy.conf.json file to update the Angular proxy context from /weatherforecast

to /api, and change the HTTPS port to 40443 to match the ASP.NET Core app.
3. Generate the /environment/ folder and files (using the ng generate environments Angular

CLI command or manually).
4. Add the baseUrl property to the /src/environments/environment.development.ts and

environment.ts files, using the "/" and "https://localhost:40443/" values respectively,
as well as setting the production property and value accordingly.

5. Add the HomeComponent and the NavMenuComponent using the ng generate Angular CLI com-
mand.

6. Add the HomeComponent catch-all route to the AppRoutingModule.
7. Remove the weather forecast data-fetching features from the AppComponent, so that it will only

contain the app-nav-menu and router-outlet elements.
8. Delete (or comment out) the app.component.spec.ts file.

While we’re there, we can keep the exercise going by applying the UI improvements that we imple-
mented in the Restyling the UI section of Chapter 4, Front-End and Back-End Interactions:

1. Install Angular Material.
2. Add the MatToolbar to the NavMenuComponent.
3. Migrate from CSS to Sass (using the schematics-scss-migrate NPM package or manually).
4. Perform the UI/UX changes that we applied to the HTML and SCSS files of the healthcheck.

client Angular app components.

As we can see, we didn’t mention the FetchDataComponent: we will not use it in our new
worldcities�client Angular app, therefore we can avoid creating it—as well as referencing
it in the NavMenuComponent and AppRoutingModule.

Data Model with Entity Framework Core144

Having to repeat all these steps might seem unpleasant at first, but it’s a good way to confirm that we’ve
understood each relevant step. However, if you don’t want to practice you can also copy and paste the
updated code from the healthcheck.client Angular app… or directly pull the updated source code
from this chapter’s GitHub repository.

After making all these changes, we can check that everything is working by pressing F5 and inspecting
the outcome. If everything has been done properly, we should be able to see the following screen:

Figure 5.1: Inspecting our new WorldCities ASP.NET and Angular app

Since we don’t want to read that “Greetings, stranger!” phrase for the rest of this book, let’s take 2
minutes of our time to briefly revamp our new app’s home page.

Minimal UI restyling
Open the web browser and go to www.pexels.com, a neat website that offers free stock photos and
videos shared by talented creators from all over the world. Type world map in the search bar and pick
a suitable cover image, possibly with landscape proportions.

Again, we can skip the HealthCheckComponent and all its references since we don’t need it.

If you get a different outcome (or run into UI or compilation errors), you might want to
compare your new worldcities.client project against the one present in the GitHub
repository for this chapter to ensure that all the updates and refactoring steps have been
applied.

Chapter 5 145

Here’s a good one, taken from https://www.pexels.com/photo/close-up-of-globe-335393/:

Figure 5.2: World map for our cover image

Download the photo using the lowest possible resolution available (640x427) and save it within our
worldcities.client project using the following path and name:

/src/assets/img/home.jpg

In order to do this, we’ll have to create the /img/ folder, because it isn’t there yet.

Now that we have our own home cover image, let’s update the home view to show it in a proper way;
open the /src/app/home/home.component.html file and change its contents in the following way:

<h1>WorldCities</h1>
<p>
 A sample web application to demonstrate
 how to interact with ASP.NET, Angular,
 Entity Framework Core and a SQL Database.
</p>

<img src="/assets/img/home.jpg" alt="WorldCities"
 class="home-cover" />

Many thanks to NastyaSensei for making the preceding image available under Pexel’s
free-to-use license: https://www.pexels.com/license/.

You can check out more of her photos here: https://www.pexels.com/@
nastyasensei-66707.

https://www.pexels.com/photo/close-up-of-globe-335393/
https://www.pexels.com/license/
https://www.pexels.com/@nastyasensei-66707
https://www.pexels.com/@nastyasensei-66707

Data Model with Entity Framework Core146

As we can see from the preceding code, we plan to show our new image using an element that
also features a class attribute: this means that now we need to implement that home-cover CSS class
using one of the styling component approaches supported by Angular.

As we know from what we’ve experienced in the previous chapters, we could do that by either adding
a styles property to the component’s metadata by updating the /src/app/home/home.component.ts
TypeScript file:

@Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styles: ['.home-cover { display:block; margin:auto; max-width:100%; }']
})

Or we could use the separate SCSS file and implement the class there. We also know that this latter
approach is almost always preferable, as it will allow us to separate the HTML structure from the CSS
styling without messing up the component code, hence we’ll do it that way.

From Solution Explorer, open the /src/app/home/home.component.scss file—which should be empty
by now—and fill its contents with the following code:

.home-cover {
 display:block;
 margin: auto;
 max-width:100%;
}

Be sure to check that the home.component.scss file is properly referenced in the styleUrls property
within the component’s /src/app/home/home.component.ts file in the following way:

@Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styleUrls: ['./home.component.scss']
})

Now that we’ve updated the SCSS file, let’s look at the style sheet rules that we’ve put in the home-
cover class. As we can see, we’ve applied some minimal CSS styling to center the image and make it
automatically resize so that its base width (640 px) won’t be a hindrance for mobile phones.

Chapter 5 147

Let’s now press F5 and see what our new home view looks like:

Figure 5.3: Inspecting our cover image

We will never win an award for this layout, but that’s OK for our purposes.

Data Model with Entity Framework Core148

If we reduce our browser width to the minimum amount (or use Microsoft Edge’s Mobile Emulation
feature by opening the Developer Tools and then pressing Ctrl + Shift + I), we can also see how it would
look on mobile devices:

Figure 5.4: Mobile devices view of our cover page

Not that bad, is it?

That’s about it: now we have a brand-new .NET and Angular web application to play with. We just need
a data source and a data model that can be accessed through a back-end Web API to retrieve some data
from: in other words, a data server.

Reasons to use a data server
Before we move on, it would be wise to spend a couple of minutes answering the following question:
do we really need a real data server? Can’t we just emulate one somehow? We’re only running code
samples, after all.

As a matter of fact, we could definitely avoid doing that and skip this entire chapter: Angular provides
a neat in-memory Web API package that replaces the HttpClient module’s HttpBackend and emulates
CRUD operations over a RESTful API; the emulation is performed by intercepting the Angular HTTP
requests and redirecting them to an in-memory data store under our control.

Chapter 5 149

This package is great and works really well for most test case scenarios, such as the following:

• To simulate operations against data collections that haven’t been implemented on our dev/
test server

• To write unit test apps that read and write data without having to intercept multiple HTTP calls
and manufacture sequences of responses

• To perform end-to-end tests without messing with the real database, which is great for Con-
tinuous Integration (CI) builds

The in-memory Web API service works so well that the entire Angular documentation at https://
angular.io/ relies upon it. However, we’re not going to use it for now, for a simple (and rather obvious)
reason: this book’s focus is not on Angular, but the client/server interoperability between Angular and

�NET; for that very reason, developing a real Web API and connecting it to a real data source through
a real data model is part of the game.

We don’t want to simulate the behavior of a RESTful back-end because we need to understand what’s
going on there and how to implement it properly: we want to implement it, along with the DBMS that
will host and provide the data.

This is the reason why we created the WorldCities�Server project in the first place, and we definitely
plan to use it: that’s precisely what we’re going to do, starting from the next section.

Now it’s time to talk about the source of our data.

The data source
What kind of data will our WorldCities web application need? We already know the answer: a database
of cities from all over the world. Does such a repository even exist yet?

As a matter of fact, there are several alternatives we can use to populate our database and then make
it available to our end users.

The following is the free world cities database by OpenDataSoft:

• URL: https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-
a-population-1000/table/

• Format: CSV
• License: Free to use

The following is GeoDataSource’s world cities database (free edition):

• URL: http://www.geodatasource.com/world-cities-database/free
• Format: CSV
• License: Free to use (registration required)

Those who want to get additional information about the Angular in-memory Web API
service can visit the in-memory-web-api GitHub project page at https://github.com/
angular/in-memory-web-api/.

https://angular.io/
https://angular.io/
https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/table/
https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/table/
http://www.geodatasource.com/world-cities-database/free
https://github.com/angular/in-memory-web-api/
https://github.com/angular/in-memory-web-api/

Data Model with Entity Framework Core150

The following is the world cities database by simplemaps:

• URL: https://simplemaps.com/data/world-cities
• Format: CSV, XLSX
• License: Free to use (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

All of these alternatives are good enough to suit our needs: we’ll go with simplemaps.com since it
requires no registration and provides a human-readable spreadsheet format.

Open your favorite browser, type in or copy the above URL, and look for the Basic column of the
World Cities Database section:

Figure 5.5: Downloading a world cities database from simplemaps.com

Click the Download button to retrieve the (huge) ZIP file containing both the .csv and .xlsx files and
save it somewhere. That’s it for now; we’ll deal with these files later on.

https://simplemaps.com/data/world-cities
https://creativecommons.org/licenses/by/4.0/

Chapter 5 151

Starting with the next section, we’ll start the building process of our data model: it’s going to be a long,
but also very rewarding, journey.

The data model
Now that we have our raw data source, we need to find a way to make it available to our web application
so that our users will be able to retrieve (and maybe alter) the actual data.

For the sake of simplicity, we won’t waste our precious time by introducing the whole data model
concept, as well as the various meanings of these two words. Those of you who are seasoned devel-
opers will probably be aware of all of the relevant stuff. We’ll just say that when we are talking about
a data model, we don’t mean anything more or anything less than a lightweight, definitely typed set
of entity classes representing persistent, code-driven data structures that we can use as resources
within our Web API code.

The word persistent has been used for a reason; we want our data structure to be stored in a database.
That’s rather obvious for any application based on data. The brand-new web application we’re about
to create won’t be an exception since we want it to act as a collection—or a repository—of records so
that we can read, create, delete, and/or modify according to our needs.

As we can easily guess, all of these tasks will be performed by some back-end business logic (.NET
controllers) that’s triggered by a front-end UI (Angular components).

Introducing Entity Framework Core
We will create our database with the help of Entity Framework Core (also known as EF Core), the
well-known, open-source Object Relational Mapper (ORM) for �NET that’s developed by Microsoft.
The reasons for this choice are as follows:

• Seamless integration with the Visual Studio IDE.
• A conceptual model based upon entity classes (Entity Data Model (EDM)), which will allow

us to work with data using domain-specific objects without needing to write data-access code,
which is precisely what we’re looking for.

• Easy to deploy, use, and maintain in development and production phases
• Compatible with all of the major open-source and commercial SQL engines, including MSSQL,

SQLite, Azure Cosmos DB, PostgreSQL, MySQL/MariaDB, MyCAT, Firebird, Db2/Informix,
and Oracle DB, thanks to the official and/or third-party providers and/or connectors available
via NuGet.

You might be wondering why we’re choosing to adopt a SQL-based approach instead of going for a
NoSQL alternative; there are many good NoSQL products, such as MongoDB, RavenDB, and CouchDB,
that happen to have a C# connector library. What about using one of them instead?

It’s worth mentioning that Entity Framework Core was previously known as Entity Frame-
work 7 until its latest RC release. The name change follows the ASP.NET 5/ASP.NET Core
perspective switch we already talked about as it also emphasizes the Entity Framework
Core major rewrite/redesign if we compare it to the previous installments.

Data Model with Entity Framework Core152

The answer is rather simple: despite being available as third-party providers, they haven’t been in-
cluded in the official Entity Framework Core Database Providers list (see the link in the following
information box). For that very reason, we’re going to stick to the relational database, which may also
be a more convenient approach for the simple database schemas we’re going to design within this book.

Installing Entity Framework Core
To install Entity Framework Core, we need to add the relevant packages to the dependencies section
of our project file. We can easily do this using the visual GUI in the following way:

1. Right-click on the WorldCities.Server project.
2. Select Manage NuGet Packages.
3. Ensure that the Package source drop-down list is set to All.
4. Go to the Browse tab and search for the packages containing the Microsoft.EntityFrameworkCore

keyword:

Figure 5.6: Installing Entity Framework Core

Once you’re there, select and install the following packages (the latest at the time of writing):

• Microsoft.EntityFrameworkCore version 8.0.0

For those who want to know more about the upcoming release and/or feel bold enough to
use it anyway—maybe with a NoSQL database as well—we strongly suggest that you take
a look at the following links and docs:

• Project roadmap: https://github.com/aspnet/EntityFramework/wiki/
Roadmap

• Source code on GitHub: https://github.com/aspnet/EntityFramework
• Official documentation: https://docs.efproject.net/en/latest/
• Official Entity Framework Core Database Providers list: https://learn.

microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli

https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework/wiki/Roadmap
https://github.com/aspnet/EntityFramework
https://docs.efproject.net/en/latest/
https://learn.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli
https://learn.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli

Chapter 5 153

• Microsoft.EntityFrameworkCore.Tools version 8.0.0
• Microsoft.EntityFrameworkCore.SqlServer version 8.0.0

These packages will also bring some required dependencies, which we’ll need to install as well, and
require the acceptance of their license terms:

Figure 5.7: Accepting the license

If we want to do this using the NuGet Package Manager command line, we can input the following:

PM> Install-Package Microsoft.EntityFrameworkCore -Version 8.0.0
PM> Install-Package Microsoft.EntityFrameworkCore.Tools -Version 8.0.0
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer -Version 8.0.0

It’s worth noting that the version number, which is the one that’s the most recent at the time of writing,
might be subject to change: be sure to triple-check it in this book’s GitHub repository as well!

The SQL Server Data Provider
Among the installed packages, it’s worth noting the presence of Microsoft.EntityFrameworkCore.
SqlServer, which is the Microsoft SQL Database Provider for Entity Framework Core. This highly
versatile connector provides an interface for the whole Microsoft SQL Server database family, includ-
ing the latest SQL Server 2022.

Data Model with Entity Framework Core154

DBMS licensing models
Despite having a rather expensive (to say the least) licensing model, there are at least three Microsoft
SQL editions that can be used for free, as long as certain requirements are met:

• Evaluation edition is free, but comes with no production use rights, meaning that we can only
use it on development servers. Additionally, it can only be used for 180 days. After that, we’ll
have to either buy a license or uninstall it (and migrate to a different edition).

• Developer edition is also free and comes with no production use rights. However, it can be used
without limitations, providing that we only use it for development and/or testing scenarios.

• Express edition is free and can be used in any environment, meaning that we can use it on
development and production servers. However, it has some major performance and size lim-
itations that could hinder the performance of a complex and/or high-traffic web application.

As you can see, both the Developer and Express editions can be a great deal for small web applications
like those we’re playing with in this book.

What about Linux?
SQL Server 2022 is also available for Linux and officially supported for the following distributions:

• Red Hat Enterprise Linux (RHEL)
• SUSE Enterprise Server
• Ubuntu

Other than that, it can also be set to run on Docker and even provisioned as a virtual machine on Azure,
which can often be a great alternative if we don’t want to install a local DMBS instance and save our
precious hardware resources.

As for the licensing model, all SQL Server products are licensed the same way for all of these envi-
ronments: this basically means that we can use our license (including the free ones) on the platform
of our choice.

SQL Server alternatives
If you don’t feel like using Microsoft SQL Server, you’re 100% free to pick another DBMS engine, such
as MySQL, PostgreSQL, or any other product, as long as it has some kind of Entity Framework Core
official (or third-party) support.

For additional information regarding the various SQL Server editions, including
the commercial ones that do require a paid licensing model, check out the fol-
lowing links:

• https://www.microsoft.com/en-us/sql-server/sql-server-2022

• https://www.microsoft.com/en-us/sql-server/sql-server-2022-
comparison

https://www.microsoft.com/en-us/sql-server/sql-server-2022
https://www.microsoft.com/en-us/sql-server/sql-server-2022-comparison
https://www.microsoft.com/en-us/sql-server/sql-server-2022-comparison

Chapter 5 155

Should we make this decision now? This entirely depends on the data modeling approach we want to
adopt; for the time being, and for the sake of simplicity, we’re going to stick to the Microsoft SQL Server
family, which allows us to install a decent DBMS for free on either our local machine (development
and/or production) or Azure (thanks to its €200 cost and 12-month free trial). Don’t worry about this
for now—we’ll get there later on.

Data modeling approaches
Now that we have Entity Framework Core installed and we know—more or less—which DBMS we are
going to use, we have to choose between one of the two available approaches to model the data struc-
ture: Code-First or Database-First. Each one comes with a fair number of advantages and disadvan-
tages, as those of you with experience and those of you who are seasoned .NET developers will almost
certainly know. Although we won’t dig too much into these, it would be useful to briefly summarize
each before making a choice.

Code-First
This is Entity Framework’s flagship approach since version 4 and also the recommended one: an el-
egant, highly efficient data model development workflow. The appeal of this approach can be easily
found in its premise; the Code-First approach allows developers to define model objects using only
standard classes, without needing any design tools, XML mapping files, or cumbersome piles of au-
togenerated code.

To summarize, we can say that going Code-First means writing the data model entity classes we’ll be using
within our project and letting Entity Framework generate the database accordingly:

Figure 5.8: The Code-First approach

The pros and cons are explained in the following sections.

Data Model with Entity Framework Core156

Pros
• There is no need for diagrams and visual tools whatsoever, which can be great for small-to-

medium-sized projects as it will save a lot of time
• It has a fluent code API that allows the developer to follow a convention-over-configuration

approach so that it can handle the most common scenarios, while also giving them the chance
to switch to a custom, attribute-based implementation that overrides the need to customize
the database mapping

Cons
• Good knowledge of C# and updated EF conventions is required.
• Maintaining the database can often be tricky, as well as handling updates without suffering

data loss. Migration support, which was added in Entity Framework v4.3 to overcome this
issue and has been continuously updated since then, greatly mitigates the problem, although
it also affects the learning curve in a negative way.

Database-First
If we either have an existing database already or don’t mind building it beforehand, we could consider
an alternative approach that goes the other way around: instead of letting EF Core automatically build
the database using the SQL commands generated from the model objects, we generate these objects
from an existing database using the dotnet ef command-line tool. This code-generation technique
is known as model scaffolding and relies upon the following command:

> dotnet ef dbcontext scaffold

We can summarize this by saying that going Database-First will mean building the database and letting
Entity Framework create/update the rest accordingly:

For additional info about EF model scaffolding and Database-First, visit the following URL:

https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/
dotnet#dotnet-ef-dbcontext-scaffold

https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-dbcontext-scaffold
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-dbcontext-scaffold

Chapter 5 157

Figure 5.9: The Database-First approach

The pros and cons are explained in the following sections.

Pros
• If we have an already-existing database in place, this will probably be the way to go as it will

spare us the need to recreate it.
• The risk of data loss will be kept to a minimum because any structural change or database

model update will always be performed on the database itself.

Cons
• Manually updating the database can be tricky if we’re dealing with clusters, multiple instances,

or several development/testing/production environments as we will have to manually keep
them in sync instead of relying on code-driven updates/migrations or autogenerated SQL scripts.

• We will have less control over the autogenerated model classes, therefore managing associa-
tions, foreign keys, and constraints will be more difficult.

Data Model with Entity Framework Core158

Making a choice
By taking the advantages and disadvantages of these two options into account, there is no such thing
as an overall better or best approach; conversely, we can say that each project scenario will likely have a
best-suited approach. That said, considering that Code-First is the recommended approach for Entity
Framework Core, especially for new applications and/or whenever the database doesn’t exist yet, we
have little to no doubt that adopting it will be our best choice.

Now that we’ve made our choice, we’ll need to create some entities and find a suitable DBMS to store
our data. This is precisely what we’re going to do in the following sections.

Creating the entities
Now that we have a data source, we can leverage one of the major advantages of the Code-First approach
we talked about earlier and start writing our entity classes early on, without worrying too much about
what database engine we’ll eventually use.

However, to create the entity classes, we need to know what kind of data they are going to contain
and how to structure it. That strongly depends on the data source and the database tables that we
eventually want to create using Code-First.

In the following sections, we’re going to learn how we can deal with these tasks.

Truth be told, the Database-First approach has become less and less popular in recent years,
and the framework support for this technique dropped as well: as a matter of fact, such an
approach is rarely used nowadays, unless there’s an already-existing database structure
that can’t be easily updated or needs to be preserved the way it already is because other
apps and/or services are already accessing it.

Truth be told, we already know something about what we’ll eventually use. We won’t be
adopting a NoSQL solution as they aren’t officially supported by Entity Framework Core
yet; we also don’t want to commit ourselves to purchasing expensive license plans, so
the commercial editions of Oracle and SQL Server are probably out of the picture as well.

This leaves us with relatively few choices: SQL Server Developer (or Express) edition,
MySQL/MariaDB, the community edition of Oracle (known as Oracle XE), or other less
well-known solutions such as PostgreSQL. Furthermore, we are still not 100% sure about
installing a local DBMS instance on our development machine (and/or on our production
server) or relying on a cloud-hosted solution such as Azure.

That being said, adopting Code-First will give us the chance to postpone the call until our
data model is ready.

Chapter 5 159

Defining the entities
In Entity Framework Core, as well as in most ORM frameworks, an entity is a class that maps to a given
database table. The main purpose of entities is to make us able to work with data in an object-oriented
fashion while using strongly typed properties to access table columns (and data relations) for each
row. We’re going to use entities to fetch data from the database and serialize them to JSON for the front-
end. We will also do the opposite, that is, deserializing them back whenever the front-end issues POST
or PUT requests that will require the back-end to perform some permanent changes to the database,
such as adding new rows or updating existing ones.

If we try to enlarge our focus and look at the general picture, we will be able to see how the entities
play a central role among the whole bi-directional data flow between the DBMS, the back-end, and the
front-end parts of our web application.

To understand such a concept, let’s take a look at the following diagram:

Figure 5.10: The DBMS data lifecycle

Data Model with Entity Framework Core160

As we can clearly see, the main purpose of Entity Framework Core is to map the database tables to
entity classes: that’s precisely what we need to do now.

Unzip the world cities compressed file we downloaded a while ago and open the worldcities.xlsx
file: if you don’t have Excel, you can import it on Google Drive using Google Sheets, as shown at the
following URL: http://bit.ly/worldcities-xlsx.

If we open the preceding URL, we will see what the imported spreadsheet looks like:

Figure 5.11: Inspecting the worldcities.xlsx file

By looking at the spreadsheet headers, we can infer at least two database tables we’re going to need:

• Cities: For columns A, B, C, and D (and arguably K, if we want to keep those unique IDs)
• Countries: For columns E, F, and G

This seems to be the most convenient choice in terms of common sense. Alternatively, we could put
everything into a single Cities table, but we’re going to have a lot of redundant content, which is
something we would arguably want to avoid.

If we’re going to deal with two database tables, this means that we need two entities to map them on
and to create them in the first place, since we plan to adopt the Code-First approach.

The City entity
Let’s start with the City entity.

Right after importing it, I also took the chance to make some small readability improve-
ments to that file: bolding column names, resizing the columns, changing the background
color, freezing on the first row, and so on.

http://bit.ly/worldcities-xlsx

Chapter 5 161

From the project’s Solution Explorer, do the following:

1. Create a new /Data/ folder at the root level of the WorldCities.Server project; this will be
where all of our Entity Framework-related classes will reside.

2. Create a /Data/Models/ folder.
3. Right-click on this new folder, then select Add | New item | C# | Class file.
4. Name the new file City.cs and click OK to create it.
5. Replace the sample code with the following:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace WorldCities.Server.Data.Models
{
 public class City
 {
 #region Properties
 /// <summary>
 /// The unique id and primary key for this City
 /// </summary>
 [Key]
 [Required]
 public int Id { get; set; }

 /// <summary>
 /// City name (in UTF8 format)
 /// </summary>
 public required string Name { get; set; }

 /// <summary>
 /// City latitude
 /// </summary>
 [Column(TypeName = "decimal(7,4)")]
 public decimal Lat { get; set; }

 /// <summary>
 /// City longitude
 /// </summary>
 [Column(TypeName = "decimal(7,4)")]
 public decimal Lon { get; set; }

 /// <summary>

Data Model with Entity Framework Core162

 /// Country Id (foreign key)
 /// </summary>
 public int CountryId { get; set; }
 #endregion
 }
}

As we can see, we added a dedicated property for each of the spreadsheet columns we identified early
on; we also included a CountryId property, which we’re going to use to map the foreign key for the
Country related to the city (more on that later on). We also tried to improve the overall readability of
the entity class source code by providing each property with some useful comments that will definitely
help us to remember what they are meant for.

As for the Name property, which is the only nullable type in this class, we made good use of the required
modifier (available since C# 11) to indicate that it must be initialized by an object initializer.

Last but not least, it’s worth noting that we took the chance to decorate our entity class using some
Data Annotations attributes as they are the most convenient way to override the default Code-First
conventions. More specifically, we used the following annotations:

• [Required]: This defines the property as a required (non-nullable) field.
• [Key]: This means that the property hosts the primary key of the database table.
• [Column(TypeName="decimal(7,4)"]: This means that the property will require a database

column of the specified type and precision. If we don’t provide this information, Entity Frame-
work won’t know which precision to set for the database table columns it will create for those
properties and will fall back to its default values. This fallback could result in a loss of precision
if our actual data has a greater number of decimals.

Additional Data Annotations attributes will be added later on.

Those of you who have some experience with Entity Framework (and relational databases) will most
likely understand what those Data Annotations are there for: they are a convenient way to instruct
Entity Framework on how to properly build our database when using the Code-First approach. There’s
nothing complex here; we’re just telling Entity Framework that the database columns that were cre-
ated to host these properties should be set as required and that the primary key should be bound in
a one-to-many relationship to other foreign columns in different tables.

For additional information regarding the required modifier, check out the C# official docs
at the following URL:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
keywords/required

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required

Chapter 5 163

In order to use the Data Annotations, we have to add a reference to one or both of the following name-
spaces, depending on the attributes we’re going to use:

System.ComponentModel.DataAnnotations
System.ComponentModel.DataAnnotations.Schema

If we take a look at the preceding code, we will see that both of these namespaces have been referenced
with a using statement for convenience.

The Country entity
The next entity will be the one for identifying the countries, which will have a one-to-many relation-
ship with Cities.

Right-click on the /Data/Models/ folder, add a Country.cs class file, and fill it with the following code:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace WorldCities.Server.Data.Models
{
 public class Country
 {
 #region Properties
 /// <summary>
 /// The unique id and primary key for this Country
 /// </summary>
 [Key]
 [Required]
 public int Id { get; set; }

 /// <summary>
 /// Country name (in UTF8 format)

We’ll definitely talk more about Data Annotations in this chapter later on. If you want to
find out more about Data Annotations in Entity Framework Core, we strongly suggest
reading the official documentation, which can be found at the following URL: https://
learn.microsoft.com/en-us/ef/core/modeling/.

This is hardly a surprise. We’re definitely going to expect a single Country for each City
and multiple Cities for each given Country; this is what one-to-many relationships are for.

https://learn.microsoft.com/en-us/ef/core/modeling/
https://learn.microsoft.com/en-us/ef/core/modeling/

Data Model with Entity Framework Core164

 /// </summary>
 public required string Name { get; set; }

 /// <summary>
 /// Country code (in ISO 3166-1 ALPHA-2 format)
 /// </summary>
 public required string ISO2 { get; set; }

 /// <summary>
 /// Country code (in ISO 3166-1 ALPHA-3 format)
 /// </summary>
 public required string ISO3 { get; set; }
 #endregion
 }
}

Again, there’s a property for each spreadsheet column with the relevant Data Annotations and com-
ments.

Should we (still) use #region blocks?
If we look at the code samples of the two entity classes we’ve just added, we can see that we’ve used
some #region directives: let’s spend a minute talking about them.

As most C# developers already know, regions are preprocessor directives that let the developer specify
a block of code that can be expanded or collapsed when using the outlining feature of the code editor.

ISO 3166 is a standard that was published by the International Organization for Standard-
ization (ISO) that’s used to define unique codes for the names of countries, dependent
territories, provinces, and states. For additional information, check out the following URLs:

• https://en.wikipedia.org/wiki/ISO_3166

• https://www.iso.org/iso-3166-country-codes.html

The part that describes the country codes is the first one (ISO 3166-1), which defines
three possible formats: ISO 3166-1 alpha-2 (two-letter country codes), ISO 3166-1 alpha-3
(three-letter country codes), and ISO 3166-1 numeric (three-digit country codes). For
additional information about the ISO 3166-1 ALPHA-2 and ISO 3166-1 ALPHA-3 formats,
which are the ones that are used in our data source and therefore in this book, check out
the following URLs:

• https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

• https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

https://en.wikipedia.org/wiki/ISO_3166
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Chapter 5 165

Regions were introduced with the first versions of C# and were praised during the language’s early
years because they were seen as a viable technique to improve code readability, especially in long
and complex classes. However, they can also lure the developer into adopting a number of bad prac-
tices, such as shoving in unoptimized or repeated code to hide it from view instead of refactoring it,
dividing a complex method (or class) into multiple tasks instead of splitting it into multiple methods
(or classes), and embedding redundant code instead of making it less redundant.

Since the potential disadvantages of regions vastly exceed their supposed advantages, regions are
now considered a bad practice by most C# developers and their usage has declined. This opinion has
been enforced by StyleCop, a great open-source static code analysis tool from Microsoft that checks C#
code for conformance to the recommended coding styles and design guidelines, which summarizes
its judgment regarding regions in its SA1124 rule:

This kind of settles it; we should never use regions, period.

For additional info about C# regions and common usage samples, read this guide:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
preprocessor-directives/preprocessor-region

TYPE: SA1124DoNotUseRegions

CAUSE: The C# code contains a region.

DESCRIPTION: A violation of this rule occurs whenever a region is placed anywhere
within the code. In many editors, including Visual Studio, the region will appear col-
lapsed by default, hiding the code within the region. It is generally a bad practice to hide
code, as this can lead to bad decisions as the code is maintained over time.

HOW TO FIX: To fix a violation of this rule, remove the region from the code.

Those who want to know more about the #regions debate within the C# developer com-
munity and the reasons why they are discouraged nowadays might enjoy reading this
Stack Overflow thread, which pretty much summarizes it:

https://softwareengineering.stackexchange.com/questions/53086/are-
regions-an-antipattern-or-code-smell

Again, the verdict was (almost) unanimous: region blocks = code smell, and the best thing
you can do to avoid such smell is open a window—and throw regions away.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell
https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell

Data Model with Entity Framework Core166

Although I generally agree with such an anti-region approach, I still think that using #regions to
group together fields, properties, and so on can be useful in some edge-case scenarios, such as code
samples and tutorials (like the classes we’re creating and reviewing in this book), because it allows
us to distinguish between different parts of code. For example, we’re going to use them to help the
reader tell apart standard properties versus navigation properties within an entity type.

This is why in this book we’re still using them here and there, even if we’re fully aware that good, Style-
Cop-compliant code won’t need them—not even to group together fields, properties, private methods,
constructors, and so on. At the same time, I also recommend not using them (or limiting their usage
to a minimum amount) in your actual code.

Defining relationships
Now that we have built our main City and Country entity skeleton, we need to enforce the relationship
we know exists between them. We want to be able to do stuff such as retrieving a Country and then
browsing all of its related Cities, possibly in a strongly typed fashion.

To do this, we have to add a couple of new entity-related properties, one for each entity class. More
specifically, we will be adding the following:

• A Country property in our City entity class, which will contain a single country related to that
city (the parent)

• A Cities property in our Country entity class, which will contain a collection of the cities
related to that country (the children)

If we take a deeper look and try to visualize the relationship between those entities, we will be able
to see how the former property identifies the parent (from each child’s perspective), while the latter
will contain the children (from the parent’s perspective). This pattern is precisely what we can expect
for a one-to-many relationship like the one we’re dealing with.

In the following sections, we’ll learn how we can implement these two navigation properties.

Adding the Country property to the City entity class
Add the following code lines near the end of the file, near the end of the Properties region (new lines
are highlighted):

using System.ComponentModel.DataAnnotations.Schema;

// ...existing code...

/// <summary>
/// Country Id (foreign key)
/// </summary>
[ForeignKey(nameof(Country))]
public int CountryId { get; set; }
#endregion

Chapter 5 167

#region Navigation Properties
/// <summary>
/// The country related to this city.
/// </summary>
public Country? Country { get; set; }
#endregion

// …existing code...

As we can see, other than adding the new Country property, we also decorated the already-existing
CountryId property with a new [ForeignKey(nameof(Country))] data annotation. Thanks to that
annotation, Entity Framework will know that such a property will host a primary key of a foreign table
and that the Country navigation property will be used to host the parent entity.

It’s also worth noting that we used nameof(Country) instead of a mere "Country" literal string: we did
that to increase the type safety of our code, thus making it less prone to typing errors.

As we can see by looking at the first line of the preceding source code, in order to use the [ForeignKey]
data annotation we have to add a reference to the System.ComponentModel.DataAnnotations.Schema
namespace at the beginning of the class if we haven’t already.

Adding the Cities property to the Country entity class
Let’s now switch to the Country.cs class. Once you’re there, add the following right after the end of
the Properties region:

// ...existing code...

#region Navigation Properties
/// <summary>
/// A collection of all the cities related to this country.
/// </summary>
public ICollection<City>? Cities { get; set; }
#endregion

// ...existing code...

It’s worth noting that the binding that’s declared using that [ForeignKey] data annotation
will also be formally enforced by creating a constraint, as long as the database engine
supports such a feature.

Data Model with Entity Framework Core168

That’s it. As we can see, no foreign key properties have been defined for this entity since one-to-many
relationships don’t need them from the parent side. Therefore, there’s no need to add a [ForeignKey]
data annotation and/or its required namespace.

Entity Framework Core loading pattern
Now that we have a Cities property in the Country entity and a corresponding [ForeignKey] data
annotation in the City entity, you may be wondering how we can use these navigation properties to
load the related entities. To put this another way: how are we going to populate the Cities property
within the Country entity whenever we need to?

Such a question gives us the chance to spend a couple of minutes enumerating the three ORM patterns
supported by Entity Framework Core to load these kinds of related data:

• Eager loading: The related data is loaded from the database as part of the initial query.
• Explicit loading: The related data is explicitly loaded from the database at a later time.
• Lazy loading: The related data is transparently loaded from the database when the entity

navigation property is accessed for the first time. This is the most complex pattern among the
three and might suffer some serious performance penalties when not implemented properly.

It’s important to understand that whenever we want to load an entity’s related data, we need to activate
(or implement) one of these patterns. This means that, in our scenario, our Country entity’s Cities
property will be set to NULL whenever we fetch one or more countries from the database unless we
explicitly tell Entity Framework Core to load the cities as well. This is a very important aspect to con-
sider when dealing with web APIs because it will definitely impact how our .NET back-end will serve
their JSON structured data responses to our front-end Angular client.

To understand what we mean, let’s take a look at a couple of examples.

The following is a standard Entity Framework Core query that’s used to retrieve Country from a given
Id with the EF Core default behavior (no loading pattern defined or implemented):

var country = await _context.Countries
 .FindAsync(id);

return country; // country.Cities is still set to nulln

As we can see, the country variable is returned to the caller with the Cities property set to null,
simply because we didn’t ask for it: for that very reason, if we convert that variable into a JSON object
and return it to the client, the JSON object would contain no cities either.

The following is an Entity Framework Core query that retrieves country from a given id using eager
loading:

var country = await _context.Countries
 .Include(c => c.Cities)
 .FindAsync(id);

return country; // country.Cities is (eagerly) loaded

Chapter 5 169

Let’s try to understand what is happening here:

• The Include() method that was specified at the start of the query tells Entity Framework Core
to activate the eager loading data retrieval pattern

• As for the new pattern, the EF query will fetch the country as well as all of the corresponding
cities in a single query

• For all of these reasons, the returned country variable will have the Cities property filled with
all the cities related to country (that is, the CountryId value will be equal to that country’s
id value)

For the sake of simplicity, we’re only going to use eager loading through this book, using the Include()
method whenever we need it; for additional information regarding lazy loading and explicit loading,
we strongly suggest that you take a look at the following URL: https://learn.microsoft.com/en-US/
ef/core/querying/related-data.

Defining the database table names
The SQL script generated by EF Core using the Code-First approach, as per its default settings, will
create a database table for each entity using the entity’s class name: this basically means that we’re
going to have a City table containing all the cities and a Country table for the countries. Although
there’s nothing wrong with these names, we might as well change this default setting to create the
tables in plural form for consistency reasons: Cities for the cities and Countries for the countries.

To force a database table name of our choice for each individual entity, we can add the [Table] data
annotation attribute to the entity class in the following way.

For the City entity (the /Data/Models/City.cs file):

[Table("Cities")]
public class City

For the Country entity (the /Data/Models/Country.cs file):

[Table("Countries")]
public class Country

Before going further, let’s perform this simple update to our classes in order to demonstrate how easy
it is to achieve additional control over the autogenerated database.

With this, we’re done with the entities, at least for the time being. Now, we just need to get ourselves
a DBMS so that we can actually create our database.

Defining indexes
Since we’re going to deal with a dataset featuring tens of thousands of records, it could also be wise
to add some indexes to our entities. Such a task can be easily done using the [Index] data annotation
attribute in the following way.

https://learn.microsoft.com/en-US/ef/core/querying/related-data
https://learn.microsoft.com/en-US/ef/core/querying/related-data

Data Model with Entity Framework Core170

For the City entity (the /Data/Models/City.cs file):

[Table("Cities")]
[Index(nameof(Name))]
[Index(nameof(Lat))]
[Index(nameof(Lon))]
public class City

For the Country entity (the /Data/Models/Country.cs file):

[Table("Countries")]
[Index(nameof(Name))]
[Index(nameof(ISO2))]
[Index(nameof(ISO3))]
public class Country

To use the [Index] attribute, we’ll also need to add the following reference in both files:

using Microsoft.EntityFrameworkCore;

When we generate the database using EF Core’s Code-First approach, these property attributes will
be used to create SQL indexes for the corresponding table columns—which will greatly improve the
performance of any lookup query.

Getting a SQL Server instance
Until now we have always fed our apps with sample data. Let’s close this gap once and for all and
provide ourselves with a SQL Server instance. As we have already mentioned, there are two major
routes we can take:

• Install a local SQL Server instance (Express or Developer edition) on our development machine
• Set up a SQL database (and/or server) on Azure using one of the several options available on

that platform

The former option embodies the classic, cloudless approach that software and web developers have
been using since the dawn of time: a local instance is easy to pull off and will provide everything we’re
going to need in development and production environments... as long as we don’t care about data
redundancy, heavy infrastructure load and possible performance impacts (in the case of high-traffic
websites), scaling, and other bottlenecks due to the fact that our server is a single physical entity.

In Azure, things work in a different way: putting our DBMS there gives us the chance to have our SQL
Server workloads running as either a hosted infrastructure (Infrastructure as a Service, also known as
IaaS) or a hosted service (Platform as a Service, also known as PaaS). The first option is great if we want
to handle the database maintenance tasks by ourselves, such as applying patches and taking backups;
the second option is preferable if we want to delegate these operations to Azure. However, regardless of
the path we choose, we’re going to have a scalable database service with full redundancy and no-single-
point-of-failure guarantees, plus a lot of other performance and data security benefits. The downsides,
as we can easily guess, are as follows: the additional cost and the fact that we’re going to have our data
located elsewhere, which can be a major issue in terms of privacy and data protection in certain scenarios.

Chapter 5 171

In the following section, we’ll quickly summarize how to pull off both of these approaches so that we
can make the most convenient choice.

Installing SQL Server 2022
If we want to avoid the cloud and stick to an old-school approach, we can choose to install a SQL Serv-
er Express (or Developer) on-premises instance on our development (and later, on our production)
machine.

To do that, perform the following steps:

1. Download the SQL Server 2022 on-premises installation package (we’re going to use the Win-
dows build here, but the Linux installer is also available) from the following URL: https://
www.microsoft.com/en-us/sql-server/sql-server-downloads. Be sure to scroll down the
page until you see the specialized editions (Developer and Express), then click on the Download
now button to start the download process.

2. Double-click on the executable file to start the installation process. When prompted for the
installation type, select the BASIC option (unless we need to configure some advanced options
to accommodate specific needs, provided that we know what we’re doing).

The installation package will then start downloading the required files. When it’s done, we will access
the SQL Server Installation Center window, where we can click New SQL Server standalone instal-
lation (the first available option starting from the top, as shown in the following screenshot) to start
the actual installation process:

Figure 5.12: Installing SQL Server 2022

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Data Model with Entity Framework Core172

Accept the license terms and go ahead, keeping all of the default options and performing the required
operations (such as opening the Windows Firewall) when asked to.

Set the Instance Name to SQLExpress and the Instance ID to SQLEXPRESS. Remember that choice:
we’re going to need it when we have to write down our connection string.

When we’re asked to choose an Authentication Mode (as we can see in the following screenshot),
choose one of the following options:

• Windows authentication mode, if we want to be able to have unrestricted access to the database
engine only from the local machine (using our Windows credentials)

• Mixed Mode, to enable the SQL Server system administrator (the sa user) and set a password
for it

The former option is great for security, while the latter is much more versatile—especially if we’re
going to administer the SQL server remotely using the SQL Server built-in administrative interface,
which is the tool we’re going to use to create our database.

After the SQL Server installation is complete, we can immediately connect to the newly installed
instance using a neat management tool provided by Microsoft, which is also free to use: SQL Server
Management Studio, also known as SSMS.

In a nutshell, SSMS is a software application that facilitates connecting to a SQL Server database and
managing its contents (tables, users, agents, and so on), as well as running queries and scripts. From
version 19.x, it also includes Azure Data Studio, a lightweight and multiplatform tool specifically de-
signed to connect to SQL Server databases hosted on Azure.

The main difference between SSMS and Azure Data Studio is that the first one provides a feature-rich
experience, with an excellent GUI that allows the developer to perform most tasks without having to
write raw SQL code, while the second one has a minimalistic GUI and supports only a subset of basic
tasks: connect to the database server, perform SQL queries, retrieve the results, and so on. However,
SSMS is only available for Windows, meaning that if you are a Linux or Mac user you will be unable to
install it. If that’s the case, you can download and install the stand-alone version of Azure Data Studio.

If we want to keep our disk space consumption to a minimum, we can safely remove the
SQL Replication and Machine Learning services from the Feature Selection section and
save roughly 500 MB.

Those who need a more comprehensive guide to perform the SQL Server local instance
installation can take a look at the following tutorials:

• Installing SQL Server on Windows: https://learn.microsoft.com/en-US/
sql/database-engine/install-windows/installation-for-sql-server

• Installing SQL Server on Linux: https://learn.microsoft.com/en-US/sql/
linux/sql-server-linux-setup

https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server
https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup

Chapter 5 173

That said, for the purpose of this book we’re going to use SQL Server Management Studio, since it
allows a more graceful learning curve for SQL novices; however, Azure Data Studio might be a great
alternative for seasoned SQL developers who prefer to avoid the GUI-based approach and perform
everything through SQL queries and scripts as well as for those who are using a developer machine
powered by a non-Windows OS.

Installing the database management tool(s)
SQL Server Management Studio can be installed through the SQL Server installation wizard’s additional
components (the SQL Server Management tools section) or downloaded as a standalone package from
the following URL:

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Azure Data Studio can be downloaded from the following URL:

https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

Before using these tools to connect to our database, we’re going to spend some valuable time talking
about the Azure path.

Creating a SQL database on Azure
If you want to get over the DBMS local instances and embrace the cloudful Azure route, our to-do list
entirely depends on which of the main approaches provided by the Azure platform we’re going to
choose from. The three main options available to end users are, from the least to most expensive, a
SQL database, a SQL managed instance, and a SQL virtual machine. We’ll go through each in turn.

SQL Database
This is a fully managed SQL Database engine based on SQL Server Enterprise edition. This option al-
lows us to set up and manage one or more single relational databases hosted in the Azure cloud with
a PaaS usage and billing model: more specifically, we can define it as a Database-as-a-Service (DBaaS)
approach. This option provides built-in high availability, intelligence, and management, which means
it’s great for those who want a versatile solution without the hassle of having to configure, manage,
and pay for a whole server host.

SQL Managed Instance
This is a dedicated SQL Managed Instance on Azure. It is a scalable database service that provides near
100% compatibility with a standard SQL Server instance and features an IaaS usage and billing model.
This option provides all of the same PaaS benefits as the previous one (SQL Database) but adds some
additional features and capabilities, such as linked servers, service brokers, database mail, full Azure
Virtual Network support, multiple databases with shared resources, and so on.

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

Data Model with Entity Framework Core174

SQL virtual machine
This is a fully managed SQL Server consisting of a Windows or Linux virtual machine with a SQL Server
instance installed on top of it. This approach, which also adopts an IaaS usage and billing model, offers
full administrative control over the whole SQL Server instance and the underlying OS, hence being
the most complex and customizable one. The most significant difference from the other two options
(SQL Database and SQL Managed Instance) is that SQL Server virtual machines also allow full control
over the database engine: we can choose when to start maintenance/patching, change the recovery
model, pause/start the service, and so on.

Making a choice
All of these options are good and, although very different in terms of overall costs, can be activated
free of charge: SQL Database is arguably the cheapest one because it’s free for 12 months, thanks to
the trial subscription plan offered by Azure, as long as we keep its size under 250 GB; both SQL Man-
aged Instance and SQL Virtual Machine are rather expensive, since they both provide a virtualized
IaaS, but they can be activated for free (at least for a few weeks) with the €200 provided by that same
Azure trial subscription plan.

In the following sections, we’re going to learn how to set up a SQL database since it is the less expensive
approach in the long term: the only downside is that we’ll have to keep its size under 250 GB, which
is definitely not an issue, considering that our world cities data source file is less than 1 GB in size.

If you want to opt for an Azure SQL Managed Instance (option #2), here’s a great guide explaining how
to do that: https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-
instance-get-started.

If you wish to set up SQL Server installed on a virtual machine (option #3), here’s a tutorial covering that
topic: https://learn.microsoft.com/en-US/azure/virtual-machines/windows/sql/quickstart-
sql-vm-create-portal.

Setting up a SQL database
Let’s start by visiting the following URL: https://azure.microsoft.com/en-us/free/services/
sql-database/.

For more information regarding the pros and cons of the Azure options described in
the previous sections, we strongly suggest that you read the following guide: https://
learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-
server-iaas.

https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started
https://learn.microsoft.com/en-US/azure/virtual-machines/windows/sql/quickstart-sql-vm-create-portal
https://learn.microsoft.com/en-US/azure/virtual-machines/windows/sql/quickstart-sql-vm-create-portal
https://azure.microsoft.com/en-us/free/services/sql-database/
https://azure.microsoft.com/en-us/free/services/sql-database/
https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas

Chapter 5 175

This will bring us to the following web page, which allows us to create an Azure SQL Database instance:

Figure 5.13: Creating a new Azure free account

Click the Start free button and create a new account.

After a brief registration form (and/or login phase), we’ll be redirected to the Azure portal.

If you already have a valid Microsoft account, you can definitely use it; however, you should
only do that if you’re sure that you want to use the free Azure trial on it: if that’s not the
case, consider creating a new one.

Data Model with Entity Framework Core176

It goes without saying that if the account we’ve logged in with has already used up its free period or
has an active paid subscription plan, we’ll be gracefully bounced back:

Figure 5.14: View for users who aren’t new

Eventually, after we’ve sorted everything out, we should be able to access the Azure portal (https://
portal.azure.com) in all of its glory:

Figure 5.15: The Azure portal

https://portal.azure.com
https://portal.azure.com

Chapter 5 177

Once there, do the following:

1. Click the Create a resource button to access the Azure Marketplace.
2. Search for an entry called Azure SQL.
3. Click Create to access the selection page shown in the following screenshot:

Figure 5.16: Selecting an SQL deployment option

From the preceding selection screen, do the following:

1. Select the first option (SQL databases).
2. Set the Resource type drop-down list to Single database.
3. Click the Create button to start the main setup wizard.

During this process, we’ll also be asked to create our very first Azure tenant (unless we already have
one). This is a virtual organization that owns and manages a specific set of Microsoft cloud services.
Tenants are identified by unique URLs in the following format: <TenantName>.onmicrosoft.com. Just
give it a suitable name and go ahead.

IMPORTANT: Be careful that you don’t pick the SQL Managed Instances entry
instead, which is the one for creating the SQL Server virtual machine—this is
option #2 that we talked about earlier.

Data Model with Entity Framework Core178

Configuring the instance
As soon as we click the Create button, we’ll be asked to configure our SQL Database instance with a
wizard-like interface split into the following tabs:

• Basics: Subscription type, instance name, admin username and password, and so on
• Networking: Network connectivity method and firewall rules
• Security: Security settings
• Additional settings: Collation and time zone
• Tags: A set of name/value pairs that can be applied to logically organize Azure resources into

functional categories or groups sharing a common scope (such as Production and Test)
• Review + create: Review and confirm all of the preceding settings

In the Basics tab, we have to insert the database details, such as the database name—which will also
be the prefix of the database URL, in the <NAME>.database.windows.net format—and the server we
would like to use. If this is our first time coming here, we’re not going to have any available servers.
Due to this, we’ll have to create our first one by clicking on the Create new link and filling in the pop-
over form that will slide to the rightmost side of the screen. Select the Use SQL Authentication radio
button, since this is the method we are going to use. Be sure to set a non-trivial Server admin login
(we will use WorldCitiesAdmin in our screenshots) and a complex Password.

It’s important to understand that the Server admin login is not the account that will be used
by our web application to access the WorldCities database: we’ll create a dedicated user
(with fewer rights) for that. The Server admin login is the global administrator account of
the whole Azure SQL Database service instance: we will mostly use it to perform high-level
administrative tasks, such as creating the WorldCities database, adding the web application’s
dedicated user, and so on.

Chapter 5 179

The following screenshot shows an example of how to configure this part of the wizard:

Figure 5.17: Configuring our SQL database

Data Model with Entity Framework Core180

The last three options in the Basics tab will ask us for the Workload environment, Compute + storage
type, and Backup storage redundancy, and are all related to how much capable we want our database
to be in terms of performance, storage size, and redundancy. How to configure these options entirely
depends on what we want to do with our app – or, to put it in other words, how much we want (or are
allowed) to spend.

For the purpose of this book, we are going to select the Development workload environment, which
will automatically configure a serverless database with General Purpose settings (in terms of perfor-
mance and storage size) at very low costs. However, since we want to spend even less than that, we
will change the Compute + storage type from General Purpose to Basic, which is the bare minimum
we can obtain in terms of cost, performance, and size (while still being enough for our purposes), as
shown in the following screenshot:

Figure 5.18: Choosing the compute and storage type

However, if we were setting up a production environment (or having to satisfy “bigger” requirements)
we should definitely choose a more demanding tier.

It’s also important to keep in mind that most service tiers (except the budget-friendly ones) offers two
alternatives in terms of compute resources:

• Provisioned – Compute resources are pre-allocated. The database is billed per hour based on
the number of vCores selected/configured.

• Serverless – Compute resources are auto-scaled. The database is billed per second based on
vCores actually used.

Chapter 5 181

Both alternatives might be viable, depending on the expected workload of our application, the required
size of the database, and the performance level we want to achieve.

As for the Backup storage redundancy option, the choice here depends on how we want our database
backup to be replicated. Again, for the demonstration purposes of this book, we are going to choose the
less expensive option: locally redundant backup storage; feel free to change it if you have different needs.

On the Networking tab, be sure to choose a Public endpoint to enable external access from the internet
so that we’ll be able to connect to our database from all of our environments. We should also set both
the firewall rules to Yes to allow Azure services and resources to access the server and add our current IP
address to the allowed IPs whitelist. All the remaining options on this tab can be left to their default value.

The Security, Additional settings, and Tags tabs are OK with their default settings. We should only
change them if we need to alter some options (such as the collation and the time zone that is most
suitable for our language and country) or to activate specific stuff such as the advanced data security—
which is completely unnecessary for our current needs.

If the serverless database option is good enough for your purposes, you can also benefit
from a free Azure SQL Database offer, which allows you to create a free serverless data-
base with the first 100,000 vCore seconds, 32 GB of data, and 32 GB of backup storage free
per month for the lifetime of the subscription. For additional information, check out the
following URL:

https://learn.microsoft.com/en-us/azure/azure-sql/database/free-
offer?view=azuresql

Wait a minute: isn’t that a major security issue? What if our databases contain personal
or sensitive data?

As a matter of fact, it is: allowing public access from the internet is something we should
always avoid unless we’re playing with open data for testing, demonstrative, or tutorial
purposes... which is precisely what we’re doing right now.

https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql

Data Model with Entity Framework Core182

On the Review + create tab, we’ll have our last chance to review and change our settings (as shown
in the following screenshot):

Figure 5.19: Reviewing our chosen settings

If we’re not sure about them, we have the chance to go back and change them. When we’re 100% sure,
we can hit the Create button and have our SQL database deployed in a few seconds.

That’s it! Now, we can focus on configuring our database.

It’s worth noting that we can also download a template for automation in case we want to
save these settings to create additional SQL databases in the future.

Chapter 5 183

Configuring the database
Regardless of the path we take—a local instance or Azure—we should be ready to manage our newly
created SQL database.

The most practical way to do that is to connect to it using one of the two free SQL Server Management
GUIs provided by Microsoft that we talked about early on: SQL Server Management Studio and Azure
Data Studio. If you haven’t installed them yet, now is the time to do so.

Once the tool is installed, launch it. On the main dashboard, click on the New Connection link, then
fill out the form with your SQL Database data, as shown in the following screenshot:

Figure 5.20: Connecting to the SQL Server

More specifically, we need to use the Server name, Login, and Password we chose when we installed
our local SQL Server instance or created the SQL database on Azure.

We’re going to use SQL Server Management Studio in the following examples and screen-
shots, as well as through the rest of the book.

Data Model with Entity Framework Core184

By clicking the Connect button, we should be able to log in to our database server. As soon as SSMS
connects to the SQL Database server, an Object Explorer window will appear, containing a tree view
representing the structure of our SQL Server instance. This is the interface we’ll use to create our
database, as well as the user/password that our application will use to access it.

Creating the WorldCities database
If we took the Azure SQL Database route, we should already be able to see the WorldCities database
in the Databases folder of the Object Explorer tree to the left:

Figure 5.21: Inspecting the WorldCities folder in the Object Explorer

Alternatively, if we installed our local SQL Server Express or Developer instance, we’ll have to manually
create it by doing the following:

1. Right-click on the Databases folder.
2. Choose Add Database from the contextual menu.
3. Type in the WorldCities name, then click on OK to create it.

Once the database has been created, we’ll get the chance to expand its tree node by clicking on the
plus (+) sign to the left and visually interacting with all its child objects—tables, stored procedures, users,
and so on—through the SSMS GUI. It goes without saying that if we did that now, we would find no
tables because we haven’t created them yet.

As we can see by looking at the URL that we wrote in the Server field, in the preceding
screenshot we’re connecting to a typical Azure SQL Database instance. In order to connect
to a locally installed SQL Server, we would use localhost\SQLEXPRESS, 127.0.0.1\
SQLEXPRESS, or something like that, depending on the instance name that we’ve chosen
during the installation process.

Chapter 5 185

That’s something that Entity Framework Core will do for us later on. However, before doing that, we’re
going to add a login account to make our web application able to connect.

Adding the WorldCities login
The database’s security settings can be configured using two different approaches:

• Using the SSMS GUI, which is only available when the database is hosted on a local (or remote)
SQL Server instance, such as SQL Server Express or Developer

• Using raw SQL commands, which is always available—as well as the only available option if
we created our SQL database on Azure (or if we’re using Azure Data Studio instead of SSMS)

Let’s start with the first option, which allows us to add and configure login accounts without writing
a single line of SQL code.

Using the SSMS GUI
From the SSMS Object Explorer, go back to the top root folder and expand the Security folder, which
should be just below it. Once you’re there, do the following:

1. Right-click on the Logins subfolder and choose New Login.
2. In the modal window that appears, set the login name to WorldCities.
3. From the radio button list below the login name, select SQL Server Authentication and set a

suitable password with decent strength (such as MyVeryOwn$721—we’re going to use this one
for the code samples and screenshots from now on).

4. Be sure to disable the User must change the password at next login and Enforce password
expiration options (both are checked by default); otherwise, Entity Framework Core will be
unable to perform the login later on.

5. Set the user’s default database to WorldCities.
6. Review all of the options, then click on OK to create the WorldCities account.

If we want a simple password, such as WorldCities or Password, we might have to disable the enforce
password policy option. However, we strongly advise against doing that. Choosing a weak password
is never a wise choice, especially in a production-ready environment. We suggest that you always use
a strong password, even in testing and development environments. Just be sure not to forget it, as
we’re going to need it later on.

Using raw SQL commands
If we’re dealing with a SQL database hosted on Azure, we’re using Azure Data Studio, or we prefer to
use raw SQL, here’s the script that will create the above user:

CREATE LOGIN WorldCities
 WITH PASSWORD = 'MyVeryOwn$721'
GO

Be sure to execute the above SQL command against the master database, otherwise you will get a User
must be in the master database error.

Data Model with Entity Framework Core186

If we want to relax the password policy, we can add the CHECK_POLICY = OFF option to the above
query; however, we strongly advise against doing this for the security reasons explained earlier on.

Mapping the login to the database
The next thing we need to do is properly map this login to the WorldCities database we added earlier.

Here’s how to do that using the SSMS GUI:

1. Double-click the WorldCities login name from the Security folder to open the same model
we used just a few seconds ago.

2. From the navigation menu to the left, switch to the User Mapping tab.
3. Click on the checkbox to the left of the WorldCities database. The User cell should be automat-

ically filled with the WorldCities value. If it doesn’t, we’ll need to manually type WorldCities
into it.

4. In the Database role membership for box in the bottom-right panel, assign the db_owner
membership role.

All of the preceding steps are depicted in the following screenshot:

Figure 5.22: Mapping the login to the WorldCities database

Again, if we need (or prefer) to use raw SQL commands, here’s the script to use (be sure to switch to
the WorldCities database before launching it):

Chapter 5 187

CREATE USER WorldCities
 FOR LOGIN WorldCities
 WITH DEFAULT_SCHEMA = dbo
GO
EXEC sp_addrolemember N'db_owner', N'WorldCities'
GO

That’s it! Now, we can go back to our web application project, add the connection string, and create
our tables (and data) using the Entity Framework Code-First approach.

Creating the database using Code-First
Before going further, let’s do a quick checklist:

• Are we done with our entities? Yes
• Do we have a DBMS and a WorldCities database available? Yes
• Have we gone through all of the required steps we need to complete to actually create and fill

in the aforementioned database using Code-First? No

As a matter of fact, we need to take care of two more things:

• Set up an appropriate Database Context
• Enable Code-First Data Migrations support within our project

Within the following sections, we’re going to fill all of these gaps and eventually fill our WorldCities
database.

Setting up the DbContext
To interact with data as objects/entity classes, Entity Framework Core uses the Microsoft.
EntityFrameworkCore.DbContext class, also called DbContext or simply Context. This class is in
charge of all of the entity objects during runtime, including populating them with data from the
database, keeping track of changes, and persisting them to the database during CRUD operations.

We can easily create our very own DbContext class for our project—which we will call
ApplicationDbContext—by doing the following:

1. From Solution Explorer, right-click on the /Data/ folder we created a while ago and add a new
ApplicationDbContext.cs class file.

2. Fill it with the following code:

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Data
{
 public class ApplicationDbContext : DbContext

Data Model with Entity Framework Core188

 {

 public ApplicationDbContext() : base()
 {
 }

 public ApplicationDbContext(DbContextOptions options)
 : base(options)
 {
 }

 public DbSet<City> Cities => Set<City>();
 public DbSet<Country> Countries => Set<Country>();

 }
}

As we can see, we took the chance to add a DbSet<T> property for each of our entities so that we can
easily access them later on.

Entity type configuration methods
Since we chose to adopt the Code-First data modeling approach, we need to make sure that our entities
are properly configured from within the code so that the SQL scripts generated by Entity Framework
Core will create the database using the names, database types, definitions, and rules that we want.

EF Core provides three methods for configuring various aspects of your model:

• Data Annotations, through attributes applied directly on the entity types
• Fluent API (also known as ModelBuilder API), via custom rules applied by overriding the

OnModelCreating method in DbContext
• EntityTypeConfiguration classes, via custom rules applied to separate configuration classes

referenced in the DbContext OnModelCreating override method (an alternative take on the
Fluent API approach)

All of them are viable for most scenarios. However, in a real project, it is highly advisable to avoid
mixing them and just pick one for the sake of consistency.

Let’s briefly review all of them before choosing our pick.

Data annotations
Data Annotations are dedicated attributes that can be applied to entity classes and properties to
override the default Code-First conventions and/or to define new rules. The major advantage of Data
Annotations is that they allow the developer to manage the data definition within the class code, which
is great for code readability and maintainability.

Chapter 5 189

As a matter of fact, we used Data Annotations in our existing entity classes when we added the [Key],
[Required], and [ForeignKey] attributes to their database-relevant properties. This means that, if
we want to switch to another configuration method, we’ll need to perform some minor refactoring
on our code.

Data Annotations are great for applying simple configuration changes, which often makes them ideal
for small projects; however, they don’t support the whole set of configuration options made available
by EF Core. Whenever we need to gain more control over our entity type settings, we might easily feel
the urge to switch to a more powerful method.

Fluent API
In order to use the Fluent API, we need to override the OnModelCreating method in our derived context
and use the ModelBuilder API to configure our model.

A great way to understand how we can use the Fluent API might be to see how we can convert our
existing Data Annotations into ModelBuilder settings. Here’s how we can do that:

[...]

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<City>().ToTable("Cities");
 modelBuilder.Entity<City>()
 .HasKey(x => x.Id);
 modelBuilder.Entity<City>()
 .Property(x => x.Id).IsRequired();
 modelBuilder.Entity<City>()
 .Property(x => x.Lat).HasColumnType("decimal(7,4)");
 modelBuilder.Entity<City>()
 .Property(x => x.Lon).HasColumnType("decimal(7,4)");

 modelBuilder.Entity<Country>().ToTable("Countries");
 modelBuilder.Entity<Country>()
 .HasKey(x => x.Id);
 modelBuilder.Entity<Country>()
 .Property(x => x.Id).IsRequired();
 modelBuilder.Entity<City>()
 .HasOne(x => x.Country)
 .WithMany(y => y.Cities)
 .HasForeignKey(x => x.CountryId);
}

[...]

Data Model with Entity Framework Core190

As we can see, for each data annotation that we’ve used so far there’s a corresponding Fluent API
method: ToTable() for [Table], HasKey() for [Key], IsRequired() for [Required], and so on.

The major advantage of the Fluent API is that it allows us to specify the entity configuration without
modifying our entity classes; furthermore, Fluent API configurations have the highest precedence,
meaning that they will override any existing EF Core convention and/or data annotation applied to
entity classes and properties.

Their only real downside is that, despite being fluid, they are quite verbose. In big projects and/or
complex entity configuration scenarios, which is also when they really shine, the amount of code they
require easily increases a lot as the required settings pile up, thus making the DbContext source code
quite hard to read and maintain.

EntityTypeConfiguration classes
EntityTypeConfiguration classes are a pivotal aspect of an advanced coding pattern that aims to
overcome the major issues of the Fluent API while retaining all its advantages.

In a nutshell, this technique leverages the ApplyConfigurationsFromAssembly Fluent API method,
which allows the definition of external rules within separate configuration files, thus removing the
need to stack up all of them within DbContext's OnModelCreating override method, and reduces the
required amount of code to a single line.

Again, the best way to understand how this method works is to explain how we could convert our
existing data annotation rules into configuration classes.

This time, we need to create two additional files. The first one is called /Data/Models/
CityEntityTypeConfiguration.cs:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

namespace WorldCities.Server.Data.Models
{
 public class CityEntityTypeConfiguration
 : IEntityTypeConfiguration<City>
 {
 public void Configure(EntityTypeBuilder<City> builder)
 {
 builder.ToTable("Cities");
 builder.HasKey(x => x.Id);

The preceding override method should be added to the ApplicationDbContext class
right after the constructors: refer to the source code in the GitHub repository for details.

Chapter 5 191

 builder.Property(x => x.Id).IsRequired();
 builder
 .HasOne(x => x.Country)
 .WithMany(x => x.Cities)
 .HasForeignKey(x => x.CountryId);
 builder.Property(x => x.Lat).HasColumnType("decimal(7,4)");
 builder.Property(x => x.Lon).HasColumnType("decimal(7,4)");
 }
 }
}

And the second one is called /Data/Models/CountryEntityTypeConfiguration.cs:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

namespace WorldCities.Server.Data.Models
{
 public class CountryEntityTypeConfiguration
 : IEntityTypeConfiguration<Country>
 {
 public void Configure(EntityTypeBuilder<Country> builder)
 {
 builder.ToTable("Countries");
 builder.HasKey(x => x.Id);
 builder.Property(x => x.Id).IsRequired();
 }
 }
}

Adding these configuration classes to our ApplicationDbContext is as easy as adding this single line
within the OnModelCreating method, which we added earlier:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 // add the EntityTypeConfiguration classes
 modelBuilder.ApplyConfigurationsFromAssembly(
 typeof(ApplicationDbContext).Assembly
);
}

Not bad, right?

Data Model with Entity Framework Core192

Making a choice
Now that we’ve explored the three alternative ways to configure our entities offered by EF Core, we
need to choose which one we use from now on.

It goes without saying that the EntityTypeConfiguration classes method is easily the most prefera-
ble approach for large projects because it gives us the chance to organize our settings in a consistent,
structured, and readable way. However, since we’ll be dealing with very simple database models that
will require a minimal number of configuration settings throughout this book, we’ll keep using the
data annotation approach.

Database initialization strategies
Creating the database for the first time isn’t the only thing we need to worry about; for example, how
can we keep track of the changes that will definitely occur for our data model?

In previous, non-core versions of EF (up to 6.x), we could choose one of the database management
patterns (known as database initializers or DbInitializers) offered by the Code-First approach, that is,
by picking the appropriate database initialization strategy for our specific needs, from the following:

• CreateDatabaseIfNotExists

• DropCreateDatabaseIfModelChanges

• DropCreateDatabaseAlways

• MigrateDatabaseToLatestVersion

Additionally, should we need to address specific requirements, we can also set up our own custom
initializer by extending one of the preceding ones and overriding their core methods.

The major flaw of DbInitializers was that they were not immediate and streamlined enough for the
average developer. They were viable yet difficult to handle without extensive knowledge of Entity
Framework’s logic.

In Entity Framework Core, this pattern has been greatly simplified; there are no DbInitializers, and
automatic data migrations have also been removed. The database initialization aspect is now entirely
handled through PowerShell commands, with the sole exception of a small set of commands that can
be placed directly on the DbContext implementation constructor to partially automate the process.
They are as follows:

The basic implementation of the other two methods that we’ve discussed in this sec-
tion early on is also available in this chapter’s source code in the GitHub repository
so that if you want to adopt a different approach, you can still review them. Both the
ApplicationDbContext's OnModelCreating method and the EntityTypeConfiguration
classes have been documented with a <summary> explaining that this code is a redundant
override of the data annotation rules and meant for educational purposes only. Such
redundant code will be removed in Chapter 6, Fetching and Displaying Data, and in the
subsequent chapters, which will only feature the Data Annotations.

Chapter 5 193

• Database.EnsureCreated()

• Database.EnsureDeleted()

• Database.Migrate()

There’s currently no way to create data migrations programmatically; they must be added via Power-
Shell, as we will see shortly.

Updating the appsettings.json file
From Solution Explorer, open the appsettings.json file and add a new "ConnectionStrings" JSON
key section right below the "Logging" section with the following value (new lines are highlighted):

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "DefaultConnection": "Server=localhost\\SQLEXPRESS;
 Database=WorldCities;
 User Id=WorldCities;Password=MyVeryOwn$721;
 Integrated
Security=False;MultipleActiveResultSets=True;TrustServerCertificate=True"
 }
}

This is the connection string we’ll be referencing in our project’s Program.cs file later on.

Unfortunately, JSON doesn’t support line breaks inside a value, so we’ll need to put the
DefaultConnection value on a single line. If you copy and paste the preceding text, en-
sure that Visual Studio doesn’t automatically add additional double quotes and/or escape
characters to these lines; otherwise, your connection string won’t work.

IMPORTANT: As we can see, now our appsettings.json file contains our database User
Id and Password in clear text, thus posing a non-trivial security issue. While this file
currently resides solely on our development machine, it is possible that sooner or later it
will be “accidentally” shared or published elsewhere, for example, in a GitHub repository.
For that very reason, do not check in your project until you’ve read the next paragraph.

Data Model with Entity Framework Core194

Securing the connection string
Being able to securely store the database password and API keys in web applications while maintain-
ing full efficiency in terms of debugging and testing has always been a challenge for all developers.

Back in the ASP.NET pre-Core days, most ASP.NET developers used to store them in the
<connectionStrings> and/or <appSettings> sections of their project’s Web.config file in the follow-
ing way:

<connectionStrings>
 <add name="DefaultConnection" connectionString="[MY CONNECTION STRING]"/>
</connectionStrings>
<appSettings>
 <add key="Google_ApiKey" value="[MY API KEY]"/>
 <add key="Facebook_Secret" value="[MY FB SECRET]"/>
</appSettings>

This practice is still in use nowadays, with the Web.config file being replaced by the appsettings.
json file.

In terms of pure functionality, this behavior works very well, because when we launch our web appli-
cations, they will automatically fetch the required credentials whenever they need them even if we
run them in Debug mode, just like they would do in a production environment.

This practice has always been very convenient because it also leverages the fact that ASP.NET allows
us to define multiple files for different environments. More specifically:

• The Web�config approach can rely on multiple configuration files (Web.Debug.config, Web.
Release.config, and so on) that could be easily merged during the publishing phase using a
highly configurable XSD transformation feature

• The appsettings�json approach supports multiple configuration files as well (appsettings.
Development.json, appsettings.Production.json, and so on) that can be used to add or
override the default settings for specific runtime environments using a cascade logic

Unfortunately, none of these places are safe or secure. If we get used to putting our valuable credentials
in those plain text files, there’s a high risk that we’ll end up accidentally pushing them into a GitHub
repository, with all the other developers being able to see and use them. For that very reason, such
a habit is widely considered a bad practice and—if we’re still using it—we should definitely take the
chance to get rid of it and start to handle our valuable secrets in a much better (and safer) way.

The question is: how we can do that without losing the effectiveness provided by the “good old” (and
insecure) approach?

Chapter 5 195

Introducing Secrets Storage
Starting with .NET Core 2.x and Visual Studio 2019, Microsoft provided their developers with a new
feature that can be used to store any secret (database passwords, API keys, and so on) in a secure and
effective way: this feature is called Secrets Storage and is well documented in Microsoft’s Safe storage
of app secrets in development in ASP.NET Core official guide, available at the following URL: https://
learn.microsoft.com/en-us/aspnet/core/security/app-secrets.

In a nutshell, the new feature creates a secrets.json file in the development machine’s user folder
(in a typical Windows environment, the \Users\UserName\AppData\Roaming\Microsoft\UserSecrets
directory), which can be used to add to or override elements of the standard appsettings.json files
using the same syntax they already have.

This is good for a number of reasons, including:

• The secrets.json file cannot be accessed by remote users, such as those who could get the
project from a GitHub repository, because it will be created in a local folder

• The secrets.json file cannot be accessed by local users because it will be created in the de-
veloper’s very own personal folder (which is inaccessible to other local users)

• The secrets.json file will work right out of the box, basically extending the appsettings.
json file without forcing us to write any secrets there

This feature is a great alternative to the environment variables approach, which is another workaround
suggested by Microsoft in the preceding guide that I personally don’t like as much (at least for devel-
opment environments) because it is much less flexible and straightforward.

Now that we’ve chosen our path, let’s see how we can implement it.

Adding the secrets.json file
Among the greatest aspects of the Secrets Storage feature is the fact that it can be used from within the
Visual Studio GUI, which is arguably the best way to do it.

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

Data Model with Entity Framework Core196

All we need to do is to right-click the WorldCities.Server project’s root folder from Solution Explorer
and select the Manage User Secrets options, as shown in the following screenshot:

Figure 5.23: Adding the secrets.json file

Chapter 5 197

As soon as we select that option, Visual Studio will add a UserSecretsId element within a PropertyGroup
of the project’s .csproj file, assigning a random GUID value to it:

 <PropertyGroup>

 [...]

 <UserSecretsId>9430de8f-8575-4a47-9d22-a98e491af64c</UserSecretsId>
 </PropertyGroup>

This random UserSecretsId value is then used by Visual Studio to generate an empty secrets.json
file in the following folder:

\Users\UserName\AppData\Roaming\Microsoft\UserSecrets\

Right after that, Visual Studio will open that secrets.json file within the GUI in edit mode, so that
we can use it to store our secrets.

Sharing the secrets.json file between multiple projects
By default, the inner text of UserSecretsId is a randomly generated GUID; however, this value is ar-
bitrary and can be changed. Using a (random) unique identifier will prevent different projects from
having the same secrets.json file; at the same time, choosing the same identifier can be useful if we
want to share the same secrets between multiple projects.

In this book’s GitHub repository, we’ve taken advantage of this behavior by defining an arbitrary
UserSecretsId for each different project—one for HealthCheck�Server, another one for WorldCities�
Server, and so on—and recycling it through all the instances of these projects within the various
chapters’ folders. For example, here’s the UserSecretsId value that we’ve used for all the instances
of the current project:

<UserSecretsId>WorldCities.Server</UserSecretsId>

Data Model with Entity Framework Core198

In order to manually set that value, we can use the Edit Project File option available in the Visual
Studio GUI, which is accessible by right-clicking on Solutions Explorer’s WorldCities.Server project
root folder:

Figure 5.24: Manually setting the UserSecretsId value

Alternatively, we can also edit the WorldCities.csproj file in the project’s root folder using the text
editor of our choice (including Windows’ Notepad) and find the relevant line/value to change.

Working with the secrets.json file
Now that we’ve created our secrets.json file, let’s use it.

Open the appsettings.json file and cut out the whole ConnectionStrings block that we added a
short while ago:

{
 "Logging": {

Chapter 5 199

 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*"
}

And paste it within the secrets.json file in the following way:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=localhost\\SQLEXPRESS;
 Database=WorldCities;
 User Id=WorldCities;Password=MyVeryOwn$721;
 Integrated
Security=False;MultipleActiveResultSets=True;TrustServerCertificate=True"
 }
}

That’s basically it: the JSON keys defined in the secrets.json file will be added to those already present
in the appsettings.json file (replacing them if already present) in a seamless and transparent way,
without us having to do anything else.

In the next section, we’ll get a good chance to make use of this handy feature.

Creating the database
Now that we have set up our own DbContext and defined a valid connection string pointing to our
WorldCities database, we can easily add the initial migration and create our database.

Updating Program.cs
The first thing we have to do is add the EntityFramework support and our ApplicationDbContext
implementation to our application startup class. Open the Program.cs file and add the following new
lines right below the last service (it should be SwaggerGen):

// ...existing code...
builder.Services.AddSwaggerGen();

// Add ApplicationDbContext and SQL Server support
builder.Services.AddDbContext<ApplicationDbContext>(options =>

NOTE: The "DefaultConnection" value must be specified on a single line, otherwise it
won’t work.

Data Model with Entity Framework Core200

 options.UseSqlServer(
 builder.Configuration.GetConnectionString("DefaultConnection")
)
);

// ...existing code...

The new code will also require the following namespace references:

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data;

As we can see, we’ve used the GetConnectionString("DefaultConnection") extension method—pro-
vided by the IConfiguration interface—which can be used to retrieve the ConnectionStrings:Defa
ultConnection JSON key from the appsettings.json file.

However, in our scenario, this value will be fetched from the secrets.json file, since we moved the
whole ConnectionStrings block there a short while ago.

Adding the initial migration
To add the initial migration we can either use the dotnet CLI (from the command line) or the Package
Manager Console (from within the Visual Studio GUI).

Using the dotnet CLI
Open a Command Prompt and navigate through the project’s root folder, which is as follows in our
example:

C:\ThisBook\Chapter_05\WorldCities\WorldCities.Server\

Once there, type the following command to globally install the dotnet-ef command-line tool:

dotnet tool install --global dotnet-ef

The GetConnectionString("DefaultConnection") method is basically a shortcut for the
Configuration["ConnectionStrings:DefaultConnection"] command: both of them
will return the same JSON key value, as long as those keys exist, from the appsettings.
json and/or secrets.json files.

Based on reader feedback, if your development environment went through a number of
.NET Core SDK subsequent updates, the Package Manager Console might pick the wrong
tooling and fail. With that in mind, I suggest trying the CLI first, then switching to the
Package Manager Console in case of issues. If both approaches fail, it might be advisable
to uninstall some of the old .NET Core SDKs and try again.

Chapter 5 201

Wait until the installation is complete. When we receive the green message output, type in the following
command to add the first migration:

dotnet ef migrations add "Initial" -o "Data/Migrations"

The preceding command will produce the following output:

Figure 5.25: Command-line output after adding the first migration

If we see a Build succeeded and then a Done output, it means that everything went OK: the initial
migration has been set up and we’re ready to apply it.

Updating the database
Applying a data migration basically means creating (or updating) the database in order to synchronize
its contents (tables structure, constraints, and so on) with the rules that are defined by the overall
patterns and definitions within the DbContext, and by the Data Annotations within the various entity
classes. More specifically, the first data migration creates the whole database from scratch, while the
subsequent ones will update it (creating tables, adding/modifying/removing table fields, and so on).

In our specific scenario, we’re about to execute our first migration. Here’s the one-liner we need to
type from the command line (within the project root folder, just like before) to do that:

dotnet ef database update

The optional -o parameter can be used to change the location where the migration
code-generated files will be created. If we don’t specify it, a root-level /Migrations/
folder will be created and used by default. Since we put all of the EntityFrameworkCore
classes into the /Data/ folder, it’s advisable to store migrations there as well.

If we go back to Visual Studio and take a look at our project’s Solution Explorer, we will see
that there’s a new /Data/Migrations/ folder containing a bunch of code-generated files.

Data Model with Entity Framework Core202

Once we hit Enter, a bunch of SQL statements will fill the output of our command-line terminal win-
dow. When done, if everything is looking good, we can go back to the SSMS tool, refresh the Server
Object Explorer tree view, and verify that the WorldCities database has been created, along with all
of the relevant tables:

Figure 5.26: Checking the Object Explorer

If we see an error here, don’t worry: there are a couple of known issues that we might have to fix before
getting the dotnet ef database update command to work as expected.

The “No executable found matching command dotnet-ef” error
At the time of writing, there’s a nasty issue affecting most .NET-based Visual Studio projects that can
prevent the dotnet ef command from working properly. More specifically, we may be prompted by
the following error message when trying to execute any dotnet ef-based command:

No executable found matching command "dotnet-ef"

If we happen to experience this issue, we can try to check out the following:

• Double-check that we added the Microsoft.EntityFrameworkCore.Tools package library (as
explained earlier) properly, as it’s required for the command to work.

• Ensure that we’re issuing the dotnet ef command in the project’s root folder—the same one
that also contains the <ProjectName>.csproj file; it won’t work anywhere else.

A lot more can be said regarding this issue but doing so is outside the scope of this book.
Those of you who want to know more can take a look at this article I wrote while working
on my ASP.NET Core 2 and Angular 5 book at https://goo.gl/Ki6mdb.

https://goo.gl/Ki6mdb

Chapter 5 203

The “System.Globalization.CultureNotFoundException” error
Another troublesome issue I encountered at the time of writing involves the following error being
given by the dotnet-ef command when trying to update the database:

System.Globalization.CultureNotFoundException: Only the invariant culture
is supported in globalization-invariant mode. See https://aka.ms/
GlobalizationInvariantMode for more information. (Parameter 'name') en-us is an
invalid culture identifier.

This exception is determined by the conflict of two different breaking changes introduced by the .NET
development team in the last two years:

1. The System.Globalization.CultureNotFoundException exception is thrown if we set the
GlobalizationInvariantMode setting to true for our app and then create any culture other
than the invariant culture (introduced in .NET 6).

2. The GlobalizationInvariantMode setting is set to true in most Visual Studio 2022 17.8+ project
templates (introduced with the release of .NET 8).

This “explosive combination” will likely be fixed in the next Visual Studio update by reverting the
GlobalizationInvariantMode setting value from true to false (the default). While waiting for this
to happen, we can easily fix the issue by opening the WorldCities.Server project file and manually
changing that value in the following way (the updated line is highlighted):

 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <InvariantGlobalization>false</InvariantGlobalization>
 <SpaRoot>..\worldcities.client</SpaRoot>
 <SpaProxyLaunchCommand>npm start</SpaProxyLaunchCommand>
 <SpaProxyServerUrl>https://localhost:4200</SpaProxyServerUrl>
 <UserSecretsId>WorldCities.Server</UserSecretsId>
 </PropertyGroup>

After performing this change, we should be able to run the dotnet-ef command again without issues.

For additional information regarding the globalization-invariant mode and its impact on .NET Core
applications, check out the following URL:

https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-
creation-invariant-mode

Using the Package Manager Console
If we get issues while using the dotnet CLI, we can often prevent nasty headaches by switching to
the Package Manager Console provided by the Visual Studio GUI. To activate it, select View > Other
Windows > Package Manager Console from Visual Studio’s main topmost menu.

https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode
https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode

Data Model with Entity Framework Core204

Here’s the full set of Package Manager Console commands that can be used to replace the previously
mentioned dotnet ef ones:

Add-Migration Initial -OutputDir "Data/Migrations"
Update-Database

Checking the autogenerated database tables
Regardless of the tool used (dotnet CLI or Package Manager Console), our WorldCities database should
now have a couple of autogenerated tables ready to contain our Cities and Countries data. Let’s
quickly check them out before proceeding.

Open the SSMS tool and connect to SQL Server like we did a while ago, and open the WorldCities
database that we created early on. The Cities and Countries tables generated by the dotnet-ef tool
should indeed be there with their columns and keys, as shown in the following screenshot:

Figure 5.27: The autogenerated Cities table

Before we move on, it would be useful to say a few words explaining what Code-First migrations actually
are, and the advantages we gain by using them.

To know more about the dotnet CLI commands and their corresponding Package Manager
Console alternatives, check out the following official guides:

• EF Core �NET CLI reference: https://learn.microsoft.com/en-us/ef/core/
miscellaneous/cli/dotnet

• EF Core PMC / PowerShell reference: https://learn.microsoft.com/en-us/
ef/core/miscellaneous/cli/powershell

https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

Chapter 5 205

Understanding migrations
Whenever we’re developing an application and defining a data model, we can be sure that it will
change a number of times for many good reasons, such as new requirements from the product owner,
optimization processes, consolidation phases, and so on. A bunch of properties will be added, deleted,
or have their types changed. Chances are, sooner or later, we’ll be adding new entities as well and/or
changing their relation pattern according to our ever-changing needs.

Each time we do something like that, we’ll also put our data model out of sync with its underlying,
Code-First-generated database. This won’t be a problem when we’re debugging our app within a de-
velopment environment because that scenario usually allows us to recreate the database from scratch
whenever the project changes.

Upon deploying the application into production, we’ll be facing a whole different story: as long as
we’re handling real data, dropping and recreating our database won’t be an option anymore. This is
what the Code-First migrations feature is meant to address: giving the developer a chance to alter the
database schema without having to drop/recreate the whole thing.

Is data migration required?
Data migration can be very useful, but it’s not a required feature and we are definitely not forced to
use it if we don’t want to. As a matter of fact, it can be quite a difficult concept to understand for a lot
of developers, especially for those who aren’t much into DBMS design and/or scripting. It can also
be very complex to manage in most scenarios, such as in companies where the DBA role is covered
by someone who is below the IT development team (such as an external IT consultant or specialist).

Whenever we don’t want to use data migration from the beginning—or we get to a point where we
don’t want to use it anymore—we can switch to a Database-First approach and start to manually design,
create, and/or modify our tables. Entity Framework Core will work well, as long as the property types
that are defined in the entities 100% match the corresponding database table fields. This can definitely
be done, including when we put the project samples presented in this book into practice (this also
applies to the WorldCities project), as long as we feel that data migration is not needed.

Alternatively, we can give it a try and see how it goes. The choice, as always, is yours.

Populating the database
Now that we have a SQL database available and a DbContext that we can use to read from and write
to it, we are finally ready to populate those tables with our world cities data.

We won’t dig deeper into this topic; Entity Framework Core is a world of its own and ad-
dressing it in detail is out of the scope of this book. If you want to learn more, we suggest
that you start with the official Entity Framework Core documentation at the following link:

https://learn.microsoft.com/en-us/ef/core/

https://learn.microsoft.com/en-us/ef/core/

Data Model with Entity Framework Core206

To do that, we need to implement a data seeding strategy. We can do this using one of the various
Entity Framework Core-supported approaches:

• Model data seed
• Manual migration customization
• Custom initialization logic

These three methods are well explained in the following article, along with their very own sets of pros
and cons: https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding.

Since we have to handle a relatively big Excel file, we’re going to adopt the most customizable pattern
we can make use of: some custom initialization logic relying upon a dedicated .NET controller that we
can execute—manually or even automatically—whenever we need to seed our database.

Implement SeedController
Our custom initialization logic implementation will rely upon a brand-new dedicated controller, which
will be called SeedController.

From our project’s Solution Explorer, do the following:

1. Open the /Controllers/ folder.
2. If the WeatherForecastController is still there, remove it.
3. Right-click on the /Controllers/ folder.
4. Click on Add | Controller.
5. Choose the API Controller – Empty option.
6. Give the controller the SeedController name and click Add to create it.

Once you’ve done this, open the newly created /Controllers/SeedController.cs file and take a look
at the source code. You’ll see that there’s just an empty class, just as expected for an empty controller!
This is great since we need to understand some key concepts and—most importantly—learn how to
properly translate them into source code.

Do you remember when we added our ApplicationDbContext class to the Program.cs file? As we should
already know from Chapter 2, Getting Ready, this means that we’ve registered the Entity Framework
Core-related services and our ApplicationDbContext in the DI container. This means that we can now
leverage the dependency injection loading feature provided by ASP.NET Core to inject an instance of
that DbContext class within our controllers.

Here’s how we can translate such a concept into source code (the new lines are highlighted):

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using WorldCities.Server.Data;

namespace WorldCities.Server.Controllers
{

https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding

Chapter 5 207

 [Route("api/[controller]")]
 [ApiController]
 public class SeedController : ControllerBase
 {
 private readonly ApplicationDbContext _context;

 public SeedController(ApplicationDbContext context)
 {
 _context = context;
 }
 }
}

As we can see, we’ve added a _context private variable and used it to store an object instance of the
ApplicationDbContext class within the constructor. This instance will be provided by the frame-
work—through its dependency injection feature—within the constructor method of SeedController.

Before making good use of that DbContext instance to insert a bunch of entities into our database, we
need to find a way to read those world cities values from the Excel file. How can we do that?

Import the Excel file
Luckily enough, there’s a great third-party library that does precisely what we need: reading (and even
writing!) Excel files using the Office Open XML format (xlsx), hence making their content available
within any .NET-based application.

The name of this great tool is EPPlus. Its author, Jan Källman, made it freely available on GitHub and
NuGet at the following URLs:

• GitHub (source code): https://github.com/JanKallman/EPPlus
• NuGet (�NET package): https://www.nuget.org/packages/EPPlus

As we can see, the project recently changed its licensing model:

• Until version 4.x, it was licensed under the GNU Library General Public License (LGPL) v3.0,
meaning that we were allowed to integrate it into our software without limitations, as long as
we didn’t modify it.

• From version 5.x and below, it uses a PolyForm Noncommercial and Commercial dual license,
which basically means that we can use it only for non-commercial purposes.

For that very reason, in order to avoid any possible license infringement, we’re going to use the
(now-deprecated) 4�5�3�3, it being the latest GNU-LGPL version available.

That said, those who want to use the latest EPPlus version with the Noncommercial license can do that
by adding the following line in the Program.cs file:

ExcelPackage.LicenseContext = LicenseContext.NonCommercial;

https://github.com/JanKallman/EPPlus
https://www.nuget.org/packages/EPPlus

Data Model with Entity Framework Core208

However, v4.x is still viable enough for the purposes of our sample.

The best way to install EPPlus in our WorldCities.Server project is to add the NuGet package using
the NuGet Package Manager GUI:

1. From the project’s Solution Explorer, right-click on the WorldCities.Server project.
2. Select Manage NuGet Packages���.
3. Use the Browse tab to search for the EPPlus package, choose the version you want to install

(4.5.3.3 in our case), and then initiate the task by clicking the Install button at the top right:

Figure 5.28: Adding the NuGet package using the NuGet Package Manager

Alternatively, type the following command from Visual Studio’s Package Manager Console:

> Install-Package EPPlus -Version 4.5.3.3

Once done, we can go back to the SeedController.cs file and use the awesome features of EPPlus to
read the worldcities.xlsx Excel file.

However, before doing that, it could be wise to move that file so that it’s within our sample project’s
/Data/ folder so that we’ll be able to read it using the .NET filesystem capabilities provided by the
System.IO namespace. While we’re there, let’s create a /Data/Source/ subfolder and put it there to
separate it from the other Entity Framework Core files:

For additional info about the new EPPlus PolyForm Noncommercial license, check out the
following URL:

https://polyformproject.org/licenses/noncommercial/1.0.0/

To find out more about the EPPlus licensing change, read this:

https://www.epplussoftware.com/Home/LgplToPolyform

https://polyformproject.org/licenses/noncommercial/1.0.0/
https://www.epplussoftware.com/Home/LgplToPolyform

Chapter 5 209

Figure 5.29: Creating a separate Source subfolder for the worldcities.xlsx file

Here’s the source code that we need to add to our SeedController.cs file to read the worldcities.
xlsx file and store all of the rows in a list of City entities:

using System.Security;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using OfficeOpenXml;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Controllers
{
 [Route("api/[controller]/[action]")]
 [ApiController]
 public class SeedController : ControllerBase
 {
 private readonly ApplicationDbContext _context;
 private readonly IWebHostEnvironment _env;

 public SeedController(
 ApplicationDbContext context,
 IWebHostEnvironment env)
 {
 _context = context;

Data Model with Entity Framework Core210

 _env = env;
 }

 [HttpGet]
 public async Task<ActionResult> Import()
 {
 // prevents non-development environments from running this method
 if (!_env.IsDevelopment())
 throw new SecurityException("Not allowed");

 var path = Path.Combine(
 _env.ContentRootPath,
 "Data/Source/worldcities.xlsx");

 using var stream = System.IO.File.OpenRead(path);
 using var excelPackage = new ExcelPackage(stream);

 // get the first worksheet
 var worksheet = excelPackage.Workbook.Worksheets[0];

 // define how many rows we want to process
 var nEndRow = worksheet.Dimension.End.Row;

 // initialize the record counters
 var numberOfCountriesAdded = 0;
 var numberOfCitiesAdded = 0;

 // create a lookup dictionary
 // containing all the countries already existing
 // into the Database (it will be empty on first run).
 var countriesByName = _context.Countries
 .AsNoTracking()
 .ToDictionary(x => x.Name, StringComparer.OrdinalIgnoreCase);

 // iterates through all rows, skipping the first one
 for (int nRow = 2; nRow <= nEndRow; nRow++)
 {
 var row = worksheet.Cells[
 nRow, 1, nRow, worksheet.Dimension.End.Column];

 var countryName = row[nRow, 5].GetValue<string>();

Chapter 5 211

 var iso2 = row[nRow, 6].GetValue<string>();
 var iso3 = row[nRow, 7].GetValue<string>();

 // skip this country if it already exists in the database
 if (countriesByName.ContainsKey(countryName))
 continue;

 // create the Country entity and fill it with xlsx data
 var country = new Country
 {
 Name = countryName,
 ISO2 = iso2,
 ISO3 = iso3
 };

 // add the new country to the DB context
 await _context.Countries.AddAsync(country);

 // store the country in our lookup to retrieve its Id later on
 countriesByName.Add(countryName, country);

 // increment the counter
 numberOfCountriesAdded++;
 }

 // save all the countries into the Database
 if (numberOfCountriesAdded > 0)
 await _context.SaveChangesAsync();

 // create a lookup dictionary
 // containing all the cities already existing
 // into the Database (it will be empty on first run).
 var cities = _context.Cities
 .AsNoTracking()
 .ToDictionary(x => (
 Name: x.Name,
 Lat: x.Lat,
 Lon: x.Lon,
 CountryId: x.CountryId));

 // iterates through all rows, skipping the first one

Data Model with Entity Framework Core212

 for (int nRow = 2; nRow <= nEndRow; nRow++)
 {
 var row = worksheet.Cells[
 nRow, 1, nRow, worksheet.Dimension.End.Column];

 var name = row[nRow, 1].GetValue<string>();
 var lat = row[nRow, 3].GetValue<decimal>();
 var lon = row[nRow, 4].GetValue<decimal>();
 var countryName = row[nRow, 5].GetValue<string>();

 // retrieve country Id by countryName
 var countryId = countriesByName[countryName].Id;

 // skip this city if it already exists in the database
 if (cities.ContainsKey((
 Name: name,
 Lat: lat,
 Lon: lon,
 CountryId: countryId)))
 continue;

 // create the City entity and fill it with xlsx data
 var city = new City
 {
 Name = name,
 Lat = lat,
 Lon = lon,
 CountryId = countryId
 };

 // add the new city to the DB context
 _context.Cities.Add(city);

 // increment the counter
 numberOfCitiesAdded++;
 }

 // save all the cities into the Database
 if (numberOfCitiesAdded > 0)
 await _context.SaveChangesAsync();

Chapter 5 213

 return new JsonResult(new
 {
 Cities = numberOfCitiesAdded,
 Countries = numberOfCountriesAdded
 });
 }
 }
}

As we can see, we’re doing a lot of interesting things here. The preceding code features a lot of comments
and should be very readable; however, it could be useful to briefly enumerate the most relevant parts:

• We injected an IWebHostEnvironment instance through dependency injection, just like we
did for ApplicationDbContext, so that we can retrieve the web application path and read the
Excel file.

• We added an Import action method that will use ApplicationDbContext and the EPPlus pack-
age to read the Excel file and add Countries and Cities.

• At the start of the Import method’s implementation, we used the IWebHostEnvironment in-
stance to determine if we’re running in a development environment or not. If we aren’t, the
code will throw a SecurityException. By acting that way we’ll prevent anyone—including our
users—from calling this method in production, thus restricting the whole importing task to
developers only.

• Countries are imported first because the City entities require the CountryId foreign key
value, which will be returned when the corresponding Country is created in the database as
a new record.

• We defined a Dictionary container object to store all existing countries (plus each new Country
right after we create it) so that we can directly access each one of them using its CountryId
instead of performing a lot of SELECT queries. This logic will also prevent the method from
inserting the same country multiple times, should we happen to execute it more than once.

• We defined another Dictionary container object to prevent the insertion of duplicate cities
as well.

• Last but not least, we created a JSON object to show the overall results on the screen.

It’s worth noting that we’ve issued our queries using EF Core’s AsNoTracking extension
method, which returns a new query where the entities returned will not be cached in the
DbContext or ObjectContext if they are modified within the code. This basically means
that less data will be cached and tracked, with obvious benefits in terms of memory usage
and performance.

For additional info on the AsNoTracking extension method, check out the following URL:

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.
dbextensions.asnotracking

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking

Data Model with Entity Framework Core214

If we want to get a closer look at how the whole importing procedure works, we can put some break-
points inside the if loops to check it out while it’s running.

To execute the action method, hit F5 to launch the web application in debug mode and then type the
following URL into the browser’s address bar: https://localhost:40443/api/Seed/Import.

Be aware that the Import method is designed to import 230+ countries and 12,000+ cities, so this task
will likely require some time—between about 10 and 30 seconds on an average development machine,
depending on the amount of available RAM, CPU performance, and database connection speed. It’s
definitely a major data seed! We’re kind of stressing out the framework here.

Eventually, we should be able to see the following response in our browser window:

Figure 5.30: Inspecting the data import

The preceding output means that the import has been performed successfully: we did it! Our database
is now filled with 44691 cities and 240 countries for us to play with.

In the next section, we’re going to learn how we can read this data as well so that we’ll be able to bring
Angular into the loop.

Entity controllers
Now that we have thousands of cities and hundreds of countries in our database, we need to find a
way to bring this data to Angular and vice versa. As we already know from Chapter 2, Getting Ready,
this role is played by the ASP.NET controllers, so we’re going to create two of them:

If we don’t want to wait, we can always give the nEndRow internal variable a fixed value,
such as 1,000, to limit the total number of cities (and countries) that will be read and
therefore loaded into the database.

Those numbers might slightly change depending on the WorldCities database version. At
the time of writing, we’re using v1.76, which was updated on March 2023, but any subse-
quent version should work as well—as long as the Excel file structure doesn’t change. If
you want to use the same exact Excel file that was used to write this book, you can find it
in the GitHub project’s /Data/Source/ folder.

Chapter 5 215

• CitiesController, to serve (and receive) the cities data
• CountriesController, to do the same with the countries

Let’s get started.

CitiesController
Let’s start with the cities. Remember what we did when we created SeedController? What we’re going
to do now is rather similar, but this time we’ll make good use of Visual Studio’s code-generation features.

From our project’s Solution Explorer, follow these steps:

1. Right-click on the /Controllers/ folder.
2. Click on Add | Controller.
3. Choose the Add API Controller with actions, using Entity Framework option.
4. In the model window that appears, choose the City model class and the ApplicationDbContext

data context class, as shown in the following screenshot. Name the controller CitiesController
and click Add to create it:

Figure 5.31: Creating CitiesController

The settings we specified during this phase will be used by Visual Studio to analyze our entities (and
our DbContext) and autogenerate a whole API controller stuffed with useful methods.

After the CitiesController.cs file has been generated we can open it and see how the code gener-
ator did a lot of useful work, while sticking to a pattern that’s similar to the one we followed for our
SeedController class.

You can see the generated code in the book’s GitHub repository for this chapter.

Data Model with Entity Framework Core216

Here’s a breakdown of the relevant methods, in order of appearance:

• GetCities() returns a JSON array containing all of the cities in the database
• GetCity(id) returns a JSON object containing a single City
• PutCity(id, city) allows us to modify an existing City
• PostCity(city) allows us to add a new City
• DeleteCity(id) allows us to delete an existing City

It definitely seems that we do have everything we need for our front-end. Before moving on to Angular,
let’s do the same for our Countries.

CountriesController
From Solution Explorer, right-click the /Controllers/ folder and perform the same set of tasks we per-
formed to add CitiesController—except for the name, which will obviously be CountriesController.

At the end of the code-generation process, we’ll end up with a CountriesController.cs file stuffed
with the Get, Put, Post, and Delete action methods that we need to handle the Countries.

Before going further, let’s spend a couple of minutes examining some methodological considerations
regarding using entities in controllers the way we just did.

Should we really use entities?
When we created our CitiesController and CountriesController a short while ago, we selected our
existing City and Country as our model classes. From a point of view, this seems like the most logical
thing to do. Those classes already contain everything we need to receive from the client, thus they are
ideal for use as input parameters for the Put() and Post() action methods that we need.

However, using a model class to return results or accept parameters from the client is hardly a good
practice. These model classes are meant to be a full representation of our database tables, not the
interface to use to exchange data with the client. A much better approach is to keep the model entities
that communicate with the database separated from the Data Transfer Objects (DTOs) that we use for
GET, POST, and PUT methods. We’ll talk more about that in Chapter 8, Code Tweaks and Data Services,
when we’ll refactor those action methods, replacing those model entities with DTOs, thus enforcing
the single responsibility principle between them; however, for the next few chapters, we can benefit
from the simplicity resulting from such a non-recommended approach and go ahead.

That concludes our journey through Entity Framework. Now, we need to connect the dots and reap
what we’ve sown using our favorite front-end framework.

Again, the generated code is available in the book’s GitHub repository for this chapter.

Chapter 5 217

Testing it out
Now that our controllers are ready, we can perform a quick test to see if they’re working as expected.

Hit F5 to launch our web application in debug mode, then copy the following URL into the browser’s
address bar: https://localhost:40443/api/Cities/.

If we made everything properly, we should see something like this:

Figure 5.32: Testing CitiesController

Here come our cities!

While we’re here, let’s check the countries as well with the following URL: https://localhost:40443/
api/Countries/.

Data Model with Entity Framework Core218

This is what we should receive from our browser:

Figure 5.33: Testing CountriesController

Here they are.

Our job here is done. Let’s move on to the next chapter, where we’ll see how to present this data to
the front-end.

Summary
We started this chapter by enumerating a number of things that simply cannot be done without a
proper data provider. To overcome these limitations, we decided to provide ourselves with a DBMS
engine and a persistent database for reading and/or writing data. To avoid messing with what we did
in the previous chapters, we created a brand-new web application project to deal with that, which we
called WorldCities.

Then, we chose a suitable data source for our new project: a list of world cities and countries that we
could download for free in a handy Excel file.

Right after that, we moved on to the data model. Entity Framework Core seemed an obvious choice
to get what we wanted, so we added its relevant packages to our project. We briefly enumerated the
available data modeling approaches and resorted to using Code-First due to its flexibility. Once done,
we created our two entities, City and Country, both of which are based on the data source values
we had to store within our database, along with a set of Data Annotations and relationships taking
advantage of the renowned Entity Framework Core’s convention-over-configuration approach. Then,
we built our ApplicationDbContext class accordingly.

Chapter 5 219

After we created our data model, we evaluated the various options for configuring and deploying our
DBMS engine. We reviewed the DMBS local instances and cloud-based solutions such as Azure, and
we explained how to implement both of them.

Last but not least, we created our ASP.NET controller classes to deal with the data: SeedController to read
the Excel file and seed our database, CitiesController to deal with cities, and CountriesController
to handle countries.

After completing all of these tasks, we ran our application in Debug mode to verify that everything was
working as intended. Now, we’re ready to mess with the front-end part of our app. In the next chapter,
we’ll learn how to properly fetch this data from the server and bring it to the user in a fashionable way.

Angular, here we come!

Suggested topics
For further information, we recommend the following topics: Web API, in-memory Web API, data
source, data server, data model, data provider, ADO.NET, ORM, Entity Framework Core, Code-First,
Database-First, Model-First, Entity class, Data Annotations, DbContext, CRUD operations, data mi-
gration, dependency injection, ORM mapping, JSON, ApiController.

References
• Angular In-Memory Web API: https://github.com/angular/in-memory-web-api/
• C# required modifier: https://learn.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/required

• Wikipedia: ISO 3166: https://en.wikipedia.org/wiki/ISO_3166
• Wikipedia: ISO 3166 alpha-2: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
• Wikipedia: ISO 3166 alpha-3: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
• ISO 3166 country codes: https://www.iso.org/iso-3166-country-codes.html
• SQL Server 2019 official page: https://www.microsoft.com/en-us/sql-server/sql-server-2019
• SQL Server 2019 – compare SQL Server versions: https://www.microsoft.com/en-us/sql-server/

sql-server-2019-comparison

• SQL Server 2019 on Linux: https://learn.microsoft.com/en-US/sql/linux/sql-server-
linux-overview

• Installing SQL Server on Windows: https://learn.microsoft.com/en-US/sql/database-
engine/install-windows/installation-for-sql-server

• Installing SQL Server on Linux: https://learn.microsoft.com/en-US/sql/linux/sql-server-
linux-setup

• Download SQL Server Management Studio (SSMS): https://learn.microsoft.com/en-us/sql/
ssms/download-sql-server-management-studio-ssms

• Create a SQL Server Database on Azure: https://azure.microsoft.com/en-us/resources/
videos/create-sql-database-on-azure/

https://github.com/angular/in-memory-web-api/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required
https://en.wikipedia.org/wiki/ISO_3166
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://www.iso.org/iso-3166-country-codes.html
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019-comparison
https://www.microsoft.com/en-us/sql-server/sql-server-2019-comparison
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-overview
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-overview
https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server
https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup
https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://azure.microsoft.com/en-us/resources/videos/create-sql-database-on-azure/
https://azure.microsoft.com/en-us/resources/videos/create-sql-database-on-azure/

Data Model with Entity Framework Core220

• Azure free account FAQ: https://azure.microsoft.com/en-in/free/free-account-faq/
• Azure SQL Server Managed Instance: https://azure.microsoft.com/en-us/services/sql-

database/

• Azure SQL Database free offer: https://learn.microsoft.com/en-us/azure/azure-sql/
database/free-offer?view=azuresql

• Use tags to organize your Azure resources: https://learn.microsoft.com/en-us/azure/azure-
resource-manager/management/tag-resources

• Choose the right deployment option in Azure SQL: https://learn.microsoft.com/en-US/azure/
sql-database/sql-database-paas-vs-sql-server-iaas

• Create an Azure SQL Database Managed Instance: https://learn.microsoft.com/en-us/azure/
sql-database/sql-database-managed-instance-get-started

• Entity Framework Core: Loading Related Data: https://learn.microsoft.com/en-US/ef/core/
querying/related-data

• Entity Framework Core: Modeling: https://learn.microsoft.com/en-us/ef/core/modeling/
• Entity Framework Core: Data Seeding: https://learn.microsoft.com/en-us/ef/core/modeling/

data-seeding

• Entity Framework Core: DbContext: https://www.entityframeworktutorial.net/efcore/
entity-framework-core-dbcontext.aspx

• Culture creation and case mapping in globalization-invariant mode: https://learn.microsoft.
com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-
mode

• EF Core .NET CLI reference: https://learn.microsoft.com/en-us/ef/core/miscellaneous/
cli/dotnet

• EF Core PMC/PowerShell reference: https://learn.microsoft.com/en-us/ef/core/
miscellaneous/cli/powershell

• #region (C# reference): https://learn.microsoft.com/en-us/dotnet/csharp/language-
reference/preprocessor-directives/preprocessor-region

• Are #regions an antipattern or code smell?: https://softwareengineering.stackexchange.com/
questions/53086/are-regions-an-antipattern-or-code-smell

• PolyForm Noncommercial license: https://polyformproject.org/licenses/
noncommercial/1.0.0/

• EPPlus library licensing change: https://www.epplussoftware.com/Home/LgplToPolyform
• DbExtensions.AsNoTracking Method: https://learn.microsoft.com/en-us/dotnet/api/

system.data.entity.dbextensions.asnotracking

https://azure.microsoft.com/en-in/free/free-account-faq/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started
https://learn.microsoft.com/en-US/ef/core/querying/related-data
https://learn.microsoft.com/en-US/ef/core/querying/related-data
https://learn.microsoft.com/en-us/ef/core/modeling/
https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding
https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx
https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx
https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode
https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode
https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region
https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell
https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell
https://polyformproject.org/licenses/noncommercial/1.0.0/
https://polyformproject.org/licenses/noncommercial/1.0.0/
https://www.epplussoftware.com/Home/LgplToPolyform
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking

Chapter 5 221

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

6
Fetching and Displaying Data

In the previous chapter, we created a new WorldCities solution containing a worldcities.client
project (our Angular app) and a WorldCities.Server project (our ASP.NET Web API) and made a con-
siderable effort to empower the latter with a DBMS-based data provider, built upon Entity Framework
Core using the Code-First approach. Now that we have data persistence, we’re ready to entrust our
users with the ability to interact with our application; this means that we can switch to the Angular
app and implement some much-needed stuff, such as the following:

• Fetching data: Querying the data provider from the client side using HTTP requests and getting
structured results back from the server side.

• Displaying data: Populating typical client-side components such as tables and lists, thereby
ensuring a good user experience for the end user.

• Adding countries to the loop: For the sake of simplicity, we’ll learn how to implement the fetch
and display tasks by focusing on the City entity. In the last part of the chapter, we’ll use the
knowledge gained to apply the same techniques to the Country entity as well.

In this chapter, we’ll cover the fetch and display topics by adding several client-server interactions
handled by standard HTTP request/response chains; it goes without saying that Angular will play a
major role here, together with a couple of useful packages that will help us reach our goal.

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in the previous chapters, plus
the following external library:

• System.Linq.Dynamic.Core (.NET Core NuGet package) for the WorldCities.Server ASP.
NET app

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during
this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/main/Chapter_06.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_06
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_06

Fetching and Displaying Data224

Fetching data
As we already know from Chapter 2, Getting Ready, reading data from the database is mostly a matter
of having the Angular app (the front-end) send HTTP requests to the ASP.NET app (the back-end) and
fetching the corresponding HTTP responses accordingly; these data transfers will be mostly imple-
mented using JavaScript Object Notation (JSON), a lightweight data-interchange format that is natively
supported by both frameworks.

In this section, we’ll mostly talk about HTTP requests and responses, see how we can fetch data from
the ASP.NET app, and lay out some raw UI examples using Angular components that will be further
refined throughout the next sections.

Are you ready? Let’s start!

Requests and responses
Let’s start by taking a look at those HTTP requests and responses we’ll be dealing with. Hit F5 to launch
both the worldcities.client and WorldCities.Server projects in debug mode – or right-click the
WorldCities.Server project and select Debug > Start New Instance to launch that project alone – and
type the following URL in the browser’s address bar: https://localhost:40443/api/Cities/.

If we did everything correctly, we should see a list of cities, each one with a unique id. From that list,
we can easily pick the id of each city and add it to our URL to retrieve that specific city only; for ex-
ample, we can choose to use 12, which, in our specific scenario, corresponds to the city of New York.

Figure 6.1: Entry for New York

Important Note: The IDs of the various cities and countries referenced throughout the
book might differ from those you see in your own database, depending on various factors:
the world cities file version/progress, the starting auto-incrementing id of the [Cities]
database table we used to store the data source, and so on. Don’t mind that: all the code
samples should still work, regardless of any difference in ID.

Chapter 6 225

JSON conventions and defaults
The JSON data received with the HTTP response is basically a serialization of our City entity, with
some built-in conventions such as the following:

• camelCase instead of PascalCase: We have name instead of Name, countryId instead of CountryId,
and so on, meaning that all our PascalCase .NET class names and properties will be automati-
cally converted into camelCase when they are serialized to JSON.

• No indentation and no line feed/carriage return (LF/CR): Don’t get fooled by the fact that MS
Edge, which is the browser we are using for this book’s screenshots, is showing it with proper
indentation, formatting, and even syntax highlighting; that’s a UI/UX rendering feature of
the browser. The JSON data we receive from the server is stacked within a single line of text.

To quickly verify the “no indentation” default convention of the source JSON data, right-click on a
white spot within the browser’s page and select View page source. Doing this will allow us to see the
actual JSON output received by the server – which features no indentation at all:

{"id":12,"name":"New York","lat":40.6943,"lon":-73.9249,"countryId":10,"country
":null}

These conventions are the default options set by ASP.NET Core when dealing with JSON outputs. Most
of them can be changed by adding some customization options to the MVC middleware. However, we
don’t need to do that as they are perfectly supported by Angular, which is what we’re going to use to
deal with those strings; we’ll just have to ensure that the Angular interfaces that we’ll create to mirror
the entity classes have their names and properties set to camelCase.

That said, if we want to increase the readability of our JSON output in browsers that don’t support
automatic JSON formatting, such as Google Chrome or Mozilla Firefox, we can add some indentation
so that we’ll be able to understand more of those outputs.

To do that, open the Program.cs file and add the following options to the builder.Services.
AddControllers method (new/updated lines highlighted):

builder.Services.AddControllers()
 .AddJsonOptions(options =>
 {
 options.JsonSerializerOptions.WriteIndented = true;
 });

Anyone who wants to know why they chose camelCase instead of PascalCase as the default
serialization option should check out the following GitHub thread: https://github.com/
aspnet/Mvc/issues/4283.

https://github.com/aspnet/Mvc/issues/4283
https://github.com/aspnet/Mvc/issues/4283

Fetching and Displaying Data226

After saving the file, hit F5 to start the project in Debug mode, then type the previous URL once more.
Once the page is loaded, right-click on it and select View page source to see the indentation changes:

Figure 6.2: New JSON file with camelCase and indentation changes

Here we go: as we can see, by enabling this option, the JSON becomes much more readable, with
Angular still being able to properly access it. However, such a change will also have a (minor) impact
on performance, since all those line feeds and space characters will slightly increase the overall size
of all the HTTP responses returned by the server-side API.

If we wanted to switch from camelCase (default) to PascalCase, we could also add the following option:

options.JsonSerializerOptions.PropertyNamingPolicy = null;

That said, for the sake of these sample projects, we prefer to keep the default conventions (no inden-
tation and camelCase). For that very reason, we’ll comment out those two options.

A (very) long list
Let’s now move to our Angular app and create a sample component to show a list of Cities. We al-
ready created a component in Chapter 4, Front-End and Back-End Interactions, so we know what to do:

1. Open Command Prompt.
2. Navigate to the /src/app/ folder of the worldcities.client Angular project.
3. Type ng generate component Cities --module=app --skip-tests to create the following

new files using the Angular CLI:

• /src/app/cities/cities.component.ts

• /src/app/cities/cities.component.html

• /src/app/cities/cities.component.scss

Those who want to uncomment those options are free to do that. Just be aware that if
PascalCase is used instead of camelCase, the Angular code samples shown in this chapter

– and in the following chapters – will need to be changed accordingly.

Chapter 6 227

4. From Solution Explorer, create an additional city.ts file inside the /src/app/cities/ folder
of the worldcities.client Angular project.

Once this is done, fill the new files with the following content.

city.ts
Open the /src/app/cities/city.ts file and add the following:

export interface City {
 id: number;
 name: string;
 lat: number;
 lon: number;
}

This small file contains our city interface, which we’ll be using in our CitiesComponent class file. Since
we’re eventually going to use it in other components as well, it’s better to create it within a separate
file and decorate it with the export statement so that we’ll be able to use it there as well when the
time comes.

cities.component.ts
Open the /src/app/cities/cities.component.ts file and replace its content with the following:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from './../../environments/environment';

import { City } from './city';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public cities!: City[];

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 this.http.get<City[]>(environment.baseUrl + 'api/Cities')
 .subscribe({

Fetching and Displaying Data228

 next: (result) => {
 this.cities = result;
 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we added an import reference to the City interface we created a short while ago. We also
used the ngOnInit() life cycle hook method to perform the HTTP request that will retrieve the cities,
just like we did in Chapter 4, Front-End and Back-End Interactions, for our previous HealthCheck app.

cities.component.html
Open the /src/app/cities/cities.component.html file and add the following:

<h1>Cities</h1>

<p>Here's a list of cities: feel free to play with it.</p>

<p *ngIf="!cities">Loading...</p>

<table [hidden]="!cities">
 <thead>
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Lat</th>
 <th>Lon</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let city of cities">
 <td>{{ city.id }}</td>
 <td>{{ city.name }}</td>
 <td>{{ city.lat }}</td>
 <td>{{ city.lon }}</td>
 </tr>
 </tbody>
</table>

As we can see, the preceding HTML structure has nothing special: it’s just a header, a paragraph, and
a table with some standard loading logic to let the user know that we’ll asynchronously load the data
in a (hopefully) short while. However, there are at least two attributes that deserve a couple of words.

Chapter 6 229

The [hidden] attribute
If we take a look at the cities.component.html file’s HTML code, we can see that the <table> element
features a strange [hidden] attribute. Why is it there, and why is it between square brackets?

As a matter of fact, the hidden attribute is an HTML5-valid content attribute that can be legitimately
set on any HTML element. The role it’s supposed to play is very similar to the CSS display: none
setting: it indicates to the browser that the element and all of its descendants should not be visible or
perceivable to any user. In other words, it’s just another way to hide content from the user.

As for the square brackets, that’s just the Angular syntax used to define a property binding, that is, an
HTML property or attribute within the component template (our .html file) that gets its value from a
variable, property, or expression defined within the component class (our .ts file). It’s worth noting
that such a binding flows in one direction: from the component class (the source) to the HTML element
within the component template (the target).

As a direct consequence of what we have just said, every time the source value evaluates to true, the
HTML property (or attribute) between square brackets will be set to true as well (and vice versa);
this is a great way to deal with a lot of HTML attributes that work with Boolean values because we can
dynamically set them through the whole component’s life cycle. That’s precisely what we do with the
<table> element in the preceding code block; its hidden attribute will evaluate to true until the cities
component variable is filled by the actual cities fetched from the server, which will only happen when
the HttpClient module finishes its request/response task. Not bad, right?

Wait a minute: isn’t that the same behavior as the *ngIf structural directive that we already know from
Chapter 4, Front-End and Back-End Interactions? Why are we using this [hidden] attribute instead?

This is a very good question that gives us the chance to clarify the difference between these two sim-
ilar – yet not identical – approaches:

• The *ngIf structural directive adds or removes the element from the Document Object Model
(DOM) based on its corresponding condition or expression; this means that the element will
be initialized and/or disposed of (together with all its children, events, and so on) every time
its status changes.

• The hidden attribute, much like the display: none CSS setting, will only instruct the browser
to show the element to or hide the element from the user; this means that the element will
still be there, thus being fully available and reachable (for example, by JavaScript or other
DOM-manipulating actions).

For additional information regarding the hidden attribute, check out the following URL:

HTML Living Standard (last updated on January 12, 2024): https://html.spec.whatwg.
org/multipage/interaction.html#the-hidden-attribute

https://html.spec.whatwg.org/multipage/interaction.html#the-hidden-attribute
https://html.spec.whatwg.org/multipage/interaction.html#the-hidden-attribute

Fetching and Displaying Data230

As we can see by looking at the preceding HTML code, we’re using both of them: the *ngIf structural
directive adds or removes the loading <p> element, while the [hidden] attribute binding shows or
hides the main <table>. We have chosen to do this for a reason: the <p> element won’t have children
or events depending on it, while the <table> attribute will soon become a complex object with a lot
of features to initialize and preserve within the DOM. Using the [hidden] attribute for that will also
grant better performance than *ngIf when we need to show/hide lots of DOM elements.

cities.component.scss
Before testing our new component, let’s take the chance to apply some styling to our <table> element
using our SCSS file.

Open the /src/app/cities/cities.component.scss file and add the following SASS code:

table {
 width: 100%;
 margin-bottom: 1rem;
 color: #212529;
 vertical-align: top;
 border-color: #dee2e6;

 th, td {
 text-align: left;
 }

 tbody > tr:hover {
 background-color: rgba(0, 0, 0, 0.075);
 color: #212529;
 }
}

That’s it, at least for now. Our CitiesComponent is good enough to be shipped; we just need to integrate
it within our Angular app.

app-routing.module.ts
As we already know, this component can only be loaded – and can only be reached by Angular cli-
ent-side routing – if we add it to the app-routing.module.ts file in the following way (new lines are
highlighted):

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';

Chapter 6 231

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent }
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Here we go: now we need to deal with the UI.

nav-component.html
More specifically, we need to add a reference to the new component route within the app navigator
component; otherwise, the user won’t be able to see (and thus reach) it using the UI.

To do that, open the nav-menu-component.html file and add the following (highlighted) lines:

<header>
 <mat-toolbar color="primary">
 <button mat-icon-button [routerLink]="['/']">
 <mat-icon>
 home
 </mat-icon>
 </button>
 <a mat-flat-button color="primary" [routerLink]="['/cities']">
 Cities

 </mat-toolbar>
</header>

Fetching and Displaying Data232

That’s it. Now, we could launch our app, click on the Cities link that will appear in the top-right part
of the screen, and experience the following outcome:

Figure 6.3: Cities table

As we can see by looking at the vertical scrollbar to the right, we would be overwhelmed by a huge
HTML table consisting of more than 40,000 rows!

That’s another huge performance stress test for both ASP.NET and Angular – which should pass with
flying colors on any average development machine since both frameworks can deal well with their
respective tasks.

However, such a UI outcome is definitely a no-go in terms of user experience. We can’t reasonably
expect our end users to be happy if we force them to navigate through a ~41k-row HTML table with a
browser. They would go mad trying to find the city they’re looking for!

To fix these major usability issues, we need to implement a few important features that are frequently
used to deal with fat HTML tables: paging, sorting, and filtering.

Serving data with Angular Material
To implement a table with paging, sorting, and filtering features, we’re going to use Angular Material,
the UI component library that we already introduced in Chapter 4, Front-End and Back-End Interactions.

However, before adding new Angular Material components, we’ll take the chance to apply a bit of
refactoring to the way we’ve implemented the existing ones.

Chapter 6 233

Adding AngularMaterialModule
From Solution Explorer, navigate to the /src/app/ folder, create a new angular-material.module.
ts file, and fill it with the following content:

import { NgModule } from '@angular/core';
import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';

@NgModule({
 imports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
],
 exports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
]
})
export class AngularMaterialModule { }

This is a brand-new module that we’re going to use for all the Angular Material modules we want to
implement within our app. As we can see by looking at the preceding code, we’ve already included
every Angular Material component that we’ve learned how to use so far. Putting them here instead
of using the app.module.ts file will keep that file smaller, which is great for project manageability.

Needless to say, for this module container to work properly, we need to add it to our existing app.module.
ts file. Open that file, remove all references to Mat* modules in the import, imports[], and exports[]
sections, and replace them with the following (highlighted) lines:

// ...existing code...

import { BrowserAnimationsModule } from '@angular/platform-browser/animations';

import { AngularMaterialModule } from './angular-material.module';

// ...existing code...

 imports: [
 BrowserModule,
 HttpClientModule,

Fetching and Displaying Data234

 AppRoutingModule,
 BrowserAnimationsModule,
 AngularMaterialModule
],

// ...existing code...

Here we go: now, everything we’re going to put in the angular-material.module.ts file will also be
referenced within our app.

Introducing MatTable
The Angular Material module we’re going to use is MatTable, which provides a Material Design-styled
HTML table that can be used to display rows of data. We briefly introduced it back in Chapter 4, Front-End
and Back-End Interactions, when we revamped the UI of FetchDataComponent and HealthCheckComponent
in our HealthCheck app. Now we’ll learn how to use it properly to replace our plain HTML tables, which
will allow us to take advantage of its unique and convenient features.

Updating AngularMaterialModule
Since we’re planning to introduce a new Angular Material module, the first thing we need to do is add
its references to our new AngularMaterialModule.

Open the /src/app/angular-material.module.ts file and add the following highlighted lines:

import { NgModule } from '@angular/core';
import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';
import { MatTableModule } from '@angular/material/table';

@NgModule({
 imports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule,
 MatTableModule
],
 exports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule,
 MatTableModule
]
})
export class AngularMaterialModule { }

Chapter 6 235

Now we can take advantage of the MatTableModule in all our Angular app’s components.

Updating CitiesComponent
Let’s start with CitiesComponent.

Open the /src/app/cities/cities.component.ts file and add the following (highlighted) lines:

// ...existing code...

export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: City[];

 constructor(private http: HttpClient) {
 }
}

// ...existing code...

Right after that, open the /src/app/cities/cities.component.html file and replace our previous table
implementation with the new MatTable component in the following way (updated code is highlighted):

<h1>Cities</h1>

<p>Here's a list of cities: feel free to play with it.</p>

<p *ngIf="!cities">Loading...</p>

<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities">
 <!-- Id Column -->
 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>ID</th>
 <td mat-cell *matCellDef="let city">{{city.id}}</td>
 </ng-container>

 <!-- Name Column -->
 <ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef>Name</th>
 <td mat-cell *matCellDef="let city">{{city.name}}</td>
 </ng-container>

Fetching and Displaying Data236

 <!-- Lat Column -->
 <ng-container matColumnDef="lat">
 <th mat-header-cell *matHeaderCellDef>Latitude</th>
 <td mat-cell *matCellDef="let city">{{city.lat}}</td>
 </ng-container>

 <!-- Lon Column -->
 <ng-container matColumnDef="lon">
 <th mat-header-cell *matHeaderCellDef>Longitude</th>
 <td mat-cell *matCellDef="let city">{{city.lon}}</td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
 <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

As we can see, MatTableModule kind of mimics the behavior of a standard HTML table, but with a tem-
plate-based approach for each column; the template features a series of auxiliary structural directives
(applied using the *<directiveName> syntax) that can be used to mark certain template sections and
define the template section’s actual role. As we can see, all these directives end with the Def postfix.

Here are the most relevant ones among those used in the preceding code:

• The [hidden] attribute binding is not a surprise as it was already present in the previous table
for the exact same purpose: keeping the table hidden until the cities have been loaded.

• The matColumnDef directive identifies a given column with a unique key.
• The matHeaderCellDef directive defines how to display the header for each column.
• The matCellDef directive defines how to display the data cells for each column.
• The matHeaderRowDef directive, which can be found near the end of the preceding code, iden-

tifies a configuration element for the table header row and the display order of the header
columns. As we can see, we had this directive expression pointing to a component variable
called displayedColumns, which we defined in the cities.component.ts file early on; this
variable hosts an array containing all the column keys we want to show, which need to be
identical to the names specified via the various matColumnDef directives.

Before testing our new MatTable-based implementation, we need to update our component’s styling
rules.

Open the /src/app/cities/cities.component.scss file and replace its content with the following:

table.mat-table {
 width: 100%;
}

Chapter 6 237

As we can see, most of the previous CSS rules are gone, since we no longer need to style the HTML
table element manually. Angular Material will do most of the styling job for us.

Now we can hit F5 and navigate to the Cities view to see what our brand-new table looks like. This can
be seen in the following screenshot:

Figure 6.4: New Cities table implemented using MatTable

OK, Material Design is indeed there, but the table has the same UI/UX problems as before! For one,
it’s still very long; let’s fix that by implementing the paging feature.

Adding pagination with MatPaginatorModule
Now that we are using Angular Material, implementing pagination is a rather easy task. The first thing
we need to do is add a reference to MatPaginatorModule to the angular-material.module.ts file, just
like we did with MatTableModule a short while ago.

For reference purposes, the previous TypeScript, HTML, and CSS implementation can be
found in the GitHub repository – the /Chapter_06/ folder, within the _cities.component_
v1.ts, _cities.component_v1.html, and _cities.component_v1.scss files.

Fetching and Displaying Data238

Here’s the import statement to add at the end of the already existing ones, right after MatTableModule:

import { MatPaginatorModule } from '@angular/material/paginator';

Remember to also add it to the imports and exports collections of @NgModule.

Client-side paging
Now that we’ve referenced the new module, we can open the cities.component.ts file and import
the MatPaginator, MatTableDataSource, and ViewChild services in the following way (new and up-
dated lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator } from '@angular/material/paginator';

import { City } from './city';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;
 @ViewChild(MatPaginator) paginator!: MatPaginator;

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 this.http.get<City[]>(environment.baseUrl + 'api/Cities')
 .subscribe({
 next: (result) => {
 this.cities = new MatTableDataSource<City>(result);
 this.cities.paginator = this.paginator;

For reasons of space, we’re not going to show the resulting source code here: however, if you
would like to, you can check out the updated angular-material.module.ts on GitHub.

Chapter 6 239

 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we’ve used the @ViewChild decorator to set a static view query and store its result in
the paginator variable; let’s spend a couple of minutes on the purpose of such a decorator and why
we need it.

In a nutshell, the @ViewChild decorator can be used to get a reference of a DOM template element
from within the Angular component, thus making it a very useful feature whenever we need to ma-
nipulate the element’s properties. As we can see from the preceding code, the decorator is defined
using a selector parameter, which is required to access the DOM element. This selector can be a class
name (if the class has either the @Component or @Directive decorator), a template reference variable,
a provider defined in the child component tree, and so on.

In our specific scenario, we’ve used the MatPaginator class name, since it does have the @Component
decorator.

Once this is done, open the cities.component.html file and add the following pagination directive
(highlighted) right after the </table> closing tag:

<!-- ...existing code... -->

 <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
 <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

<!-- Pagination directive -->

While we’re at it, it can be useful to know that the @ViewChild decorator also accepts a
second parameter, which was required until Angular 8 and became optional since Angular
9: a static flag, which can be either true or false (from Angular 9, it defaults to false).
If this flag is explicitly set to true, @ViewChild is retrieved from the template before the
change detection phase runs (that is, even before the ngOnInit() life cycle); conversely,
the component/element retrieval task is resolved either after the change detection phase
if the element is inside a nested view (for example, a view with an *ngIf conditional
display directive), or before change detection if it isn’t.

Since we’ve used the [hidden] attribute binding in the template instead of the *ngIf
directive, our MatPaginator won’t run into initialization issues, even without having to
set that flag to true.

For additional information about the @ViewChild decorator, we suggest you take a look
at the Angular docs: https://angular.io/api/core/ViewChild.

https://angular.io/api/core/ViewChild

Fetching and Displaying Data240

<mat-paginator [hidden]="!cities"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

As we can see, we used the [hidden] attribute binding again to keep the paginator hidden until the
cities were loaded. The other properties that we can see on the <mat-paginator> element configure
some of the MatPaginatorModule UI options, such as the default page size and an array of all the page
size options that we want to make available to the users.

Now, we can hit F5 and take a look at our efforts:

Figure 6.5: Cities table with pagination

Now, our table only shows the first 10 cities. It has also got a neat paginator at its bottom-right corner
that can be used to navigate through the various pages using arrows. Our end user can even choose
how many items per page to display using a neat drop-down list (10, 20, or 50 cities per page, as spec-
ified in the [pageSizeOptions] property). It definitely seems like we did it!

Chapter 6 241

However, if we think about it, we can easily acknowledge that we’re not quite there yet. Sure, now our
users can browse the table nicely without having to scroll up and down for ages, but it doesn’t take
a genius to understand that all those rows are still being transferred to the client browser; we never
told the server to actually support a paginated request, so we still fetch all of the cities from our data
provider (and through the ASP.NET API controller) just like before. As a matter of fact, they’re just
not rendered by the front-end.

This basically means that we still have the same performance impact that we had before on the server
side (huge SQL query result, massive JSON) and only a partial performance improvement on the client
side. Even if fewer HTML elements are now added to the DOM, there are still lots of HTML rows to
show/hide on each paginator action, leading to a page change.

In order to mitigate the aforementioned issues, we need to move from client-side paging to server-side
paging – which is precisely what we’ll do in the next section.

Server-side paging
Implementing server-side paging is a bit more complex than its client-side counterpart. Here’s what
we need to do (and where):

• WorldCities�Server (ASP�NET project). Change our CitiesController class to make it support
paged HTTP GET requests.

• WorldCities�Server (ASP�NET project). Create a new ApiResult class that we can use to improve
the JSON response of our ASP.NET controllers.

• worldcities�client (Angular project). Change our cities.controller.ts Angular component
– and the current MatPaginatorModule configuration – to make it able to issue the new GET
request and deal with the new JSON response.

Let’s do this!

CitiesController
The GetCities method of our CitiesController returns a JSON array of all the ~41,000 cities in our
database by default; that’s definitely a no-go in terms of server-side performance, so we need to change
it. Ideally, we would like to only return a small number of Cities, which is something we can easily
pull off by adding some (required) variables to the method signature, such as pageIndex and pageSize.

Here’s how we could change that to enforce such behavior (updated lines highlighted):

// ...existing code...

[HttpGet]
public async Task<ActionResult<IEnumerable<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10)
{
 return await _context.Cities

Fetching and Displaying Data242

 .Skip(pageIndex * pageSize)
 .Take(pageSize)
 .ToListAsync();
}

// ...existing code...

That’s it; we also specified some reasonable default values for those variables in order to avoid huge
JSON responses by default.

Let’s quickly test what we just did. Hit F5 and type the following URL in the browser’s address bar:
https://localhost:40443/api/Cities/?pageIndex=0&pageSize=10.

Here’s what we should get (using Google Chrome instead of MS Edge to avoid the JSON auto-indenta-
tion we talked about earlier on):

Figure 6.6: A snippet of the JSON array of 10 cities

It definitely seems that our plan is working!

However, there is a major issue we have to deal with: if we just return a JSON array of 10 cities, there
will be no way for our Angular app to actually know how many cities are present in our database.
Without that information, there is little chance that the paginator would reasonably work the way it
did when we implemented the client-side pagination early on.

Long story short, we need to find a way to tell our Angular app some additional information, such as
the following:

• The total number of pages (and/or records) available
• The current page
• The number of records on each page

Truth be told, the only required information is the first as the Angular client would then be able to
keep track of the other two; however, since we need to implement that one, we might as well return
them all, thus making our front-end life a lot easier.

In order to do that, the best thing we can do is create a dedicated response-type class – which we’re
going to use a lot from now on.

Chapter 6 243

ApiResult
From Solution Explorer, right-click the Data folder and add a new ApiResult.cs C# class file. Then,
fill it up with the following content:

using Microsoft.EntityFrameworkCore;

namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
 /// Private constructor called by the CreateAsync method.
 /// </summary>
 private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize)
 {
 Data = data;
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 }

 #region Methods
 /// <summary>
 /// Pages a IQueryable source.
 /// </summary>
 /// <param name="source">An IQueryable source of generic
 /// type</param>
 /// <param name="pageIndex">Zero-based current page index
 /// (0 = first page)</param>
 /// <param name="pageSize">The actual size of each
 /// page</param>
 /// <returns>
 /// A object containing the paged result
 /// and all the relevant paging navigation info.
 /// </returns>
 public static async Task<ApiResult<T>> CreateAsync(

Fetching and Displaying Data244

 IQueryable<T> source,
 int pageIndex,
 int pageSize)
 {
 var count = await source.CountAsync();
 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);

 var data = await source.ToListAsync();

 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize);
 }
 #endregion

 #region Properties
 /// <summary>
 /// The data result.
 /// </summary>
 public List<T> Data { get; private set; }

 /// <summary>
 /// Zero-based index of current page.
 /// </summary>
 public int PageIndex { get; private set; }

 /// <summary>
 /// Number of items contained in each page.
 /// </summary>
 public int PageSize { get; private set; }

 /// <summary>
 /// Total items count
 /// </summary>
 public int TotalCount { get; private set; }

 /// <summary>

Chapter 6 245

 /// Total pages count
 /// </summary>
 public int TotalPages { get; private set; }

 /// <summary>
 /// TRUE if the current page has a previous page,
 /// FALSE otherwise.
 /// </summary>
 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }
 }

 /// <summary>
 /// TRUE if the current page has a next page, FALSE otherwise.
 /// </summary>
 public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }
 #endregion
 }
}

This ApiResult class contains some really interesting stuff. Let’s try to summarize the most relevant
things:

• Data: A property of the List<T> type that will be used to contain the paged data (it will be
translated to a JSON array)

• PageIndex: Returns the zero-based index of the current page (0 for the first page, 1 for the
second, and so on)

• PageSize: Returns the total page size (TotalCount/PageSize)
• TotalCount: Returns the total Item count number
• TotalPages: Returns the total number of pages taking into account the total Items count

(TotalCount/PageSize)

Fetching and Displaying Data246

• HasPreviousPage: Returns True if the current page has a previous page, otherwise False
• HasNextPage: Returns True if the current page has a next page, otherwise False

Those properties are precisely what we were looking for; the underlying logic to calculate their values
should be quite easy to understand by looking at the preceding code.

Other than that, the class basically revolves around the static method CreateAsync<T>(IQueryable<T>
source, int pageIndex, int pageSize), which can be used to paginate an Entity Framework
IQueryable object.

Here’s how we can make use of our brand-new ApiResult class in the GetCities method of our
CitiesController:

// ...existing code...

// GET: api/Cities
// GET: api/Cities/?pageIndex=0&pageSize=10
[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities.AsNoTracking(),
 pageIndex,
 pageSize
);
}

// ...existing code...

Here we go! Now, we should have our 10 cities and all the information we were looking for.

It’s worth noting that the ApiResult class cannot be instantiated from the outside since
its constructor has been marked as private; the only way to create it is by using the static
CreateAsync factory method. There are good reasons to do that: since it is not possible
to define an async constructor, we have resorted to using a static async method that
returns a class instance; the constructor has been set to private to prevent developers
from directly using it instead of the factory method, since it’s the only reasonable way to
instantiate this class.

Chapter 6 247

Let’s hit F5 and navigate to the same URL as before to see what’s changed: https://localhost:40443/
api/Cities/?pageIndex=0&pageSize=10.

Here’s the updated JSON response:

Figure 6.7: The updated JSON array containing extra page information

As we can see, the endpoint does not return a JSON array anymore; the new resulting content is a JSON
object that contains our previous array (in the data property), as well as the new properties that we
need to perform our pagination tasks (scroll down the page to the end to see them).

Let’s now move on to Angular’s CitiesComponent and update it to use this new, optimized way of
fetching our cities from the server.

CitiesComponent
The only Angular files we need to change are the following:

• The CitiesComponent TypeScript file, which is where we put all the data retrieval logic that
we now need to update

• The CitiesComponent HTML file, to bind a specific event to our MatPaginator element

Let’s do this.

It’s worth noting that, since we’re performing a read-only task, we’ve used the
AsNoTracking() extension method, which we introduced in Chapter 5, Data Model with
Entity Framework Core, to prevent EF Core from tracking all the entities, thereby avoiding
a non-trivial performance impact.

Fetching and Displaying Data248

Open the cities.component.ts file and perform the following changes (new/updated lines are high-
lighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../ environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';

import { City } from './city';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;

 @ViewChild(MatPaginator) paginator!: MatPaginator;

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = 0;
 pageEvent.pageSize = 10;
 this.getData(pageEvent);
 }

 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString());
 this.http.get<any>(url, { params })

Chapter 6 249

 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

Let’s try to summarize what we did here:

• We removed the HttpClient from the ngOnInit() life cycle hook method and placed the whole
data retrieval login in a separate getData() method.

• We changed the data retrieval logic to match our new JSON response object.
• We modified our paginator configuration strategy to manually set the values we get from the

server side instead of having it figure them out automatically. Doing that is required; otherwise,
it would just take into account (and paginate) the small portion of cities we retrieve upon each
HTTP request instead of the full batch.

As for the cities.component.html file, we just need to add a single line to the <mat-paginator>
directive to bind the getData() event upon each paging event. Here’s how to do that (the new line is
highlighted):

<!-- ...existing code... -->

<!-- Pagination directive -->
<mat-paginator [hidden]="!cities"
 (page)="getData($event)"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

This simple binding plays a very important role: it ensures that the getData() event is called every
time the user interacts with the paginator element to perform a page change, asking for the previ-
ous/next page, first/last page, changing the number of items to display, and so on. As we can easily
understand, such a call is required for server-side pagination since we need to fetch the updated data
from the server every time we have to display different rows.

Fetching and Displaying Data250

Once this is done, let’s try the new magic by hitting F5 and then navigating to the Cities view. If we
did everything properly, we should get the same UI that we could see before:

Figure 6.8: The same paginated Cities table with better performance

However, this time, we should experience better overall performance and faster response times for
the initial page load. That’s because we’re not dealing with thousands of JSON items and HTML table
rows under the hood; we’re fetching only a few of them at a time (that is, those we get to see) using
our improved server-side logic.

At the same time, navigating between pages can be a bit slower than before, since we are issuing a
new HTTP request (and data fetch) for every page instead of getting the in-memory data. However,
such a performance drawback is often preferable to downloading the entire dataset in one go, which
is what happens when using client-side paging, unless we are working with a rather small dataset. As
always when dealing with such performance issues, there is no “better approach”; it all depends on
the application requirements, the volume of affected data, and what we want to achieve.

Since we’re done with paging, we can finally deal with sorting.

Chapter 6 251

Adding sorting with MatSortModule
In order to implement sorting, we’re going to use MatSortModule, which can be implemented just
like the paginator module.

This time, we won’t make client-side sorting experiments as we did with paging early on; we’re going
for the server-side pattern right from the start.

Extending ApiResult
Let’s start with the ASP.NET back-end part – in other words, the WorldCities.Server project.

Do you remember the ApiResult class we created earlier? It’s time to improve its source code to add
sorting support.

From Solution Explorer, open the /Data/ApiResult.cs file and update its content accordingly (new/
updated lines are highlighted):

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;

namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
 /// Private constructor called by the CreateAsync method.
 /// </summary>
 private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize,
 string? sortColumn,
 string? sortOrder)
 {
 Data = data;
 PageIndex = pageIndex;

In general terms, whenever we deal with paging and sorting, we should always take the
server-side implementation into account, since it will likely improve the overall perfor-
mance of our apps while often preventing the need to handle that kind of stuff using
additional client-side code.

Fetching and Displaying Data252

 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 SortColumn = sortColumn;
 SortOrder = sortOrder;
 }

 #region Methods
 /// <summary>
 /// Pages and/or sorts a IQueryable source.
 /// </summary>
 /// <param name="source">An IQueryable source of generic
 /// type</param>
 /// <param name="pageIndex">Zero-based current page index
 /// (0 = first page)</param>
 /// <param name="pageSize">The actual size of each
 /// page</param>
 /// <param name="sortColumn">The sorting column name</param>
 /// <param name="sortOrder">The sorting order ("ASC" or
 /// "DESC")</param>
 /// <returns>
 /// A object containing the IQueryable paged/sorted result
 /// and all the relevant paging/sorting navigation info.
 /// </returns>
 public static async Task<ApiResult<T>> CreateAsync(
 IQueryable<T> source,
 int pageIndex,
 int pageSize,
 string? sortColumn = null,
 string? sortOrder = null)
 {
 var count = await source.CountAsync();

 if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
 {
 sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";
 source = source.OrderBy(

Chapter 6 253

 string.Format(
 "{0} {1}",
 sortColumn,
 sortOrder)
);
 }

 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);

 var data = await source.ToListAsync();

 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
 }
 #endregion

 #region Methods
 /// <summary>
 /// Checks if the given property name exists
 /// to protect against SQL injection attacks
 /// </summary>
 public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
 {
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException(
 string.Format(
 $"ERROR: Property '{propertyName}' does not exist.")

Fetching and Displaying Data254

);
 return prop != null;
 }
 #endregion

 #region Properties
 /// <summary>
 /// The data result.
 /// </summary>
 public List<T> Data { get; private set; }

 /// <summary>
 /// Zero-based index of current page.
 /// </summary>
 public int PageIndex { get; private set; }

 /// <summary>
 /// Number of items contained in each page.
 /// </summary>
 public int PageSize { get; private set; }

 /// <summary>
 /// Total items count
 /// </summary>
 public int TotalCount { get; private set; }

 /// <summary>
 /// Total pages count
 /// </summary>
 public int TotalPages { get; private set; }

 /// <summary>
 /// TRUE if the current page has a previous page,
 /// FALSE otherwise.
 /// </summary>
 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }

Chapter 6 255

 }

 /// <summary>
 /// TRUE if the current page has a next page, FALSE otherwise.
 /// </summary>
 public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }

 /// <summary>
 /// Sorting Column name (or null if none set)
 /// </summary>
 public string? SortColumn { get; set; }

 /// <summary>
 /// Sorting Order ("ASC", "DESC" or null if none set)
 /// </summary>
 public string? SortOrder { get; set; }
 #endregion
 }
}

What we did was add two new sortColumn and sortOrder attributes to the main class static method
and implement them through the code; while we were there, we also took the opportunity to define
two new properties with the same name (in uppercase) so that the sorting details will be part of the
JSON response, just like the paging ones.

It’s worth noting that since we’re now assembling our Language-Integrated Query (LINQ)-to-SQL
queries with literal data coming from the client, we also added a new IsValidProperty() method
that will check that the sortColumn specified does actually exist as a typed property of the generic
<T> entity we’re dealing with; as the method comment clearly says, that’s actually a security counter-
measure against SQL injection attempts. This is a very important security issue that we’ll be talking
about in a short while.

In the unlikely case that you’ve never heard of LINQ, don’t worry: we’ll get there soon.

Fetching and Displaying Data256

If we try to build our project right after these changes, we’ll most likely be greeted by some compiler
errors, such as the following one:

Error CS0246: The type or namespace name System.Linq.Dynamic could not be found
(are you missing a using directive or an assembly reference?).

Don’t worry, it’s perfectly normal; we just need to add a new NuGet package to our project.

Installing System.Linq.Dynamic.Core
The IQueryable<T>.OrderBy() extension method that we used in the improved ApiResult source code
to programmatically apply the column sorting is part of the System.Linq.Dynamic.Core namespace.
Thanks to this library, it’s possible to write Dynamic LINQ queries (string-based) on an IQueryable,
which is just like what we did in the preceding code.

Unfortunately, System.Linq.Dynamic.Core is not part of the ASP.NET stock binaries; therefore, in
order to use these features, we need to add them via NuGet.

The fastest way to do that is to open Visual Studio’s Package Manager Console and issue the following
command:

> Install-Package System.Linq.Dynamic.Core

What is LINQ?
Before moving forward, let’s spend a couple of minutes talking about LINQ in the unlikely case you
have never heard anything about it.

Also known as Language-Integrated Query, LINQ is the code name of a Microsoft .NET Framework set
of technologies that adds data query capabilities to .NET languages such as C# and VB.NET. LINQ was
first released in 2007 and was one of the major new features of .NET Framework 3.5.

The main purpose of LINQ is to make the developer able to express structured queries against data
using a first-class language construct without having to learn different query languages for each type
of data source (collection types, SQL, XML, CSV, and so on). For each of these major data source types,
there’s a LINQ implementation that provides the same query experience for objects (LINQ to Objects),
Entity Framework entities (LINQ to Entities), relational databases (LINQ to SQL), XML (LINQ to XML),
and so on.

IMPORTANT: Be sure to install System.Linq.Dynamic.Core and not System.Linq.
Dynamic, which is its .NET Framework 4.0 counterpart; the latter won’t work with our ASP.
NET web application project. At the time of writing, the most recent version of the System.
Linq.Dynamic.Core package is 1.3.7, which works absolutely fine for our purposes.

For those who want to retrieve additional information regarding this great package, we
suggest you take a look at the following resources:

• NuGet website: https://www.nuget.org/packages/System.Linq.Dynamic.
Core/

• GitHub project: https://github.com/StefH/System.Linq.Dynamic.Core

https://www.nuget.org/packages/System.Linq.Dynamic.Core/
https://www.nuget.org/packages/System.Linq.Dynamic.Core/
https://github.com/StefH/System.Linq.Dynamic.Core

Chapter 6 257

LINQ structured queries can be expressed using two alternative – yet also complementary – approaches:

• Lambda expressions, such as the following:

var city = _context.Cities.Where(c => c.Name == "New York").First();

• Query expressions, such as the following:

var city = (from c in _context.Cities where c.Name == "New York" select
c).First();

Both yield the same result with the same performance since query expressions are translated into
their lambda expression equivalents before they’re compiled.

System.Linq.Dynamic.Core pros and cons
Now, since LINQ has been incorporated with .NET Framework since v3.5 and it’s shipped with each
subsequent ASP.NET version ever since, what does the System.Linq.Dynamic.Core package actually
do and why are we using it?

As we can see from the two preceding examples, both lambda expressions and query expressions
work with a strongly typed approach. Whenever we query an object of any type using LINQ, the source
type – together with all the properties we want our query to check for – must be known by the com-
piler. This means that we would be unable to use these techniques with generic objects (object) or
types (<T>). That’s where Linq.Dynamic comes to the rescue, allowing the developer to write lambda
expressions and query expressions with literal strings and translate them into their strongly typed
equivalents using reflection.

Here’s the same query as before, written using System.Linq.Dynamic.Core:

var city = _context.Cities.Where("Name = @1", "New York").First();

We can immediately see the difference – and also the tremendous advantage we can get by using such
an approach; we will be able to build our queries dynamically, regardless of whether we’re dealing
with strongly typed objects or generic types, just like we did within the source code of ApiResult a
short while ago.

For additional information about LINQ, lambda expressions, and query expressions, check
out the following links:

• LINQ: https://learn.microsoft.com/en-us/dotnet/csharp/linq/
• LINQ lambda expressions (C# programming guide): https://learn.microsoft.

com/en-us/dotnet/csharp/programming-guide/statements-expressions-
operators/lambda-expressions

• LINQ query expression basics: https://learn.microsoft.com/en-us/dotnet/
csharp/linq/query-expression-basics

https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics
https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics

Fetching and Displaying Data258

However, such an approach will also have a major downside; our code will be less testable and way
too error-prone, for at least two important reasons:

• We’ll be just a literal string away from query errors, which will almost always lead to major
crashes.

• The risk of unwanted queries (including SQL injection attacks) could increase exponentially,
depending on how we build those queries and/or where we get our dynamic strings from.

The former issue is bad, but the latter is even worse. Being open to SQL injection attacks could be
devastating and therefore is something we should avoid at any cost.

Preventing SQL injection
Luckily, we don’t need to manually take countermeasures against SQL injection threats; although we’re
getting two potentially harmful variable strings coming from the client – sortColumn and sortOrder

– we have already put in place effective countermeasures for both of them in the preceding source
code of ApiResult.

Here’s what we did for sortOrder:

// ...existing code...

sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";

// ...existing code...

As we can see, we’ll convert it into either "ASC" or "DESC" before using it anywhere, thus leaving no
openings for SQL injection.

The sortColumn parameter is way more complex to handle because it can theoretically contain any
possible column name mapped to any of our entities: id, name, lat, lon, iso2, iso3... If we were to
check them all, we would need a very long conditional block! Not to mention the fact that it would
also be very hard to maintain whenever we add new entities and/or properties to our project.

For that very reason, we chose a completely different – and arguably better – approach, which relies
upon the following IsValidProperty method:

Those who don’t know what SQL injection is and/or why it is dangerous should definitely
take a look at the following guide, written by Tim Sammut and Mike Schiffman from the
Cisco Security Intelligence team:

Understanding SQL Injection: https://sec.cloudapps.cisco.com/security/center/
resources/sql_injection.html

https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html

Chapter 6 259

// ...existing code...

public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
{
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException($"ERROR: Property '{propertyName}' does
not exist.");
 return prop != null;
}

// ...existing code...

As we can see, this method checks that the given propertyName corresponds to an existing typed
Property within our <T> generic entity class. If it does, it returns True; otherwise, it throws a
NotSupportedException (or returns False, depending on how we call it). This is a great way to shield
our code against SQL injection because there’s absolutely no way that a harmful string would match
one of our entity’s properties.

As we can see by looking back at the ApiResult source code, such a method is being called in the
following way:

if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
{
 /// if we are here, sortColumn is safe to use
}

The property name check has been implemented through System.Reflection, a tech-
nique that’s used to inspect and/or retrieve metadata on types at runtime. To work with
reflection, we need to include the System.Reflection namespace in our class – which
is precisely what we did at the beginning of the source code of our improved ApiResult.

For additional information about System.Reflection, check out the following guide:
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/reflection.

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection

Fetching and Displaying Data260

Those curly brackets define our SQL injection safety zone; as long as we deal with sortColumn within
them, we have nothing to worry about.

Updating CitiesController
Now that we have improved our ApiResult class, we can implement it within our CitiesController.

Open the /Controllers/CitiesController.cs file and change its contents accordingly (updated
lines are highlighted):

// ...existing code...

// GET: api/Cities
// GET: api/Cities/?pageIndex=0&pageSize=10
// GET: api/Cities/?pageIndex=0&pageSize=10&sortColumn=name&
// sortOrder=asc
[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
}

// ...existing code...

Truth be told, even after implementing this defensive approach, there’s still a minor threat
we could be exposed to. If we have some reserved columns/properties that we don’t want
the client to interact with (system columns, for example), the preceding countermeasure
won’t block it from doing that; although being unable to acknowledge their existence or
to read their data, an experienced user could still be able to “order” the table results by
them – provided that the user knows their precise name somehow.

If we want to prevent this remote – yet theoretically possible – leak, we can set these
properties to private or internal (since we told our IsValidProperty method to only
check for public properties) and/or rethink the whole method logic so that it better suits
our security needs.

Chapter 6 261

Thanks to these two new parameters, our GetCities method will be able to sort the cities the way
we want.

We’re done with the back-end part; let’s now move on to the front-end.

Updating the Angular app
As always, we need to change three files:

• The angular-material.module.ts file, where we need to add the new @angular/material
module

• The cities.component.ts file, to implement the sorting business logic
• The cities.component.html file, to bind the new variables, methods, and references defined

in the .ts file within the UI template

Let’s do that.

angular-material.module.ts
Open the /src/app/angular-material.module.ts file and add the references to MatSortModule:

import { MatSortModule } from '@angular/material/sort';

Don’t forget to update the imports and exports arrays of @NgModule as well.

From now on, we’ll be able to import the MatSortModule-related classes into any Angular component.

cities.component.ts
Once done, open the cities.component.ts file and make the following modifications (updated lines
are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';

import { City } from './city';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];

Fetching and Displaying Data262

 public cities!: MatTableDataSource<City>;

 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";

 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 this.loadData();
 }

 loadData() {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.getData(pageEvent);
 }

 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);
 this.http.get<any>(url, { params })
 .subscribe(result => {
 console.log(result);
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;

Chapter 6 263

 this.cities = new MatTableDataSource<City>(result.data);
 }, error => console.error(error));
 }
}

Here’s a breakdown of the most relevant changes:

• We imported the MatSort reference from the @angular/material package.
• We added four new class variables to set the paging and sorting default values: defaultPageIndex,

defaultPageSize, defaultSortColumn, and defaultSortOrder. Two of them have been defined
as public because we need to use them from the HTML template via two-way data binding.

• We moved the initial getData() call from the class constructor to a new centralized loadData()
function so that we can bind it to the table (as we’ll see in a short while).

• We added the sortColumn and sortOrder HTTP GET parameters to our HttpParams object so
that we can send the sorting information to the server side.

Now we can move to the HTML template file.

cities.component.html
Open the cities.component.html file and make the following modifications (updated lines are high-
lighted):

<!-- ...existing code... -->

<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">

 <!-- Id Column -->
 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>ID</th>
 <td mat-cell *matCellDef="let city"> {{city.id}} </td>
 </ng-container>

 <!-- Name Column -->
 <ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
 <td mat-cell *matCellDef="let city"> {{city.name}} </td>
 </ng-container>

Fetching and Displaying Data264

 <!-- Lat Column -->
 <ng-container matColumnDef="lat">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Latitude
 </th>
 <td mat-cell *matCellDef="let city"> {{city.lat}} </td>
 </ng-container>

 <!-- Lon Column -->
 <ng-container matColumnDef="lon">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Longitude
 </th>
 <td mat-cell *matCellDef="let city"> {{city.lon}} </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
 <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

<!-- ...existing code... -->

Here’s what we did in a nutshell:

• We added the following attributes to the <table mat-table> element:

• matSort: A directive we added to the cities.component.ts file early on.
• (matSortChange): An event binding that will execute the sortData() method (also

defined in the .ts file earlier) upon each sorting attempt by the user.
• matSortActive and matSortDirection: Two data bindings to the defaultSortColumn

and defaultSortOrder variables that we defined in the .ts file early on.

• We added the mat-sort-header attribute to each <th mat-header-cell> element (one for
each table column).

Let’s quickly test it out by hitting F5 and navigating to the Cities view. Here’s what we should be able
to see:

Now we can see why we didn’t use the sleek URL we defined early on in our ASP.NET
CitiesController and opted for the standard GET parameters instead. This approach
allows us to programmatically add an indefinite number of HTTP GET parameters to our
request thanks to the HttpParams class from the @angular/common/http package.

Chapter 6 265

Figure 6.9: Cities table with pagination and sorting

The cities are now sorted alphabetically in ascending order. If we click on the various column headers,
we can change their order as we please. The first click will sort the content in ascending order, while
the second will do the opposite.

Now that the sorting has been implemented, there’s only one missing feature left: filtering.

Adding filtering
If we think that we’ll be able to get away with another component, this time, we’re going to be disap-
pointed. Angular Material does not provide a specific module to be used for filtering purposes. This
means that we cannot rely on a standard approach to add filtering to our table; we have to figure out
a reasonable approach by ourselves.

It’s worth noting how the paging and sorting features are able to coexist without issues;
needless to say, whenever we try to change the table sorting, the paging will just roll back
to the first page.

Fetching and Displaying Data266

In general terms, the best thing to do whenever we need to code a feature by ourselves is to start to
visualize what we want it to look like; for example, we can imagine a Search input field lying on top of
our table that would trigger our CitiesComponent to reload the cities data from the server – through
its getData() method – whenever we type something in it. How does that sound?

Let’s try to lay down an action plan:

1. As always, we’ll need to extend our ApiResult class to programmatically handle the filtering
task on the server side.

2. We’ll also need to change the signature of the GetCities() action method of our .NET
CitiesController so we can get the additional information from the client.

3. Right after that, we’ll have to implement the filtering logic within our Angular CitiesComponent.
4. Eventually, we’ll need to add the input textbox in the CitiesComponent HTML template file

and bind an event to it to trigger the data retrieval process upon typing something.
5. Before moving further, we’ll take the chance to talk about the performance impact of our

filtering feature and how we can address it.

Now that we have made it, let’s do our best to put this plan into action.

Extending ApiResult (again)
It seems like we need to perform another upgrade to our beloved ApiResult class to add filtering
support to the already existing paging and sorting logic.

Truth be told, we’re not forced to do everything within the ApiResult class; we could skip that part
entirely and just add the following to our existing CitiesController:

// ...existing code...

[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 // first we perform the filtering...
 var cities = _context.Cities;
 if (!string.IsNullOrEmpty(filterColumn)
 && !string.IsNullOrEmpty(filterQuery))
 {
 cities= cities.Where(c => c.Name.StartsWith(filterQuery));
 }

Chapter 6 267

 // ... and then we call the ApiResult
 return await ApiResult<City>.CreateAsync(
 cities,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
}

// ...existing code...

That’s definitely a viable approach. As a matter of fact, if we weren’t using the System.Linq.Dynamic.
Core package library, this would most likely be the only possible approach; we would have no way to
programmatically set a column filter using an external class that works with generic IQueryable<T>
objects because such a class would be unaware of the entity type and property names.

Luckily enough, we do have that package, so we can avoid performing the preceding changes (or
roll them back, if we have already done that) and modify our /Data/ApiResult.cs class file in the
following way instead:

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;

namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
 /// Private constructor called by the CreateAsync method.
 /// </summary>
 private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize,
 string? sortColumn,
 string? sortOrder,
 string? filterColumn,
 string? filterQuery)
 {

Fetching and Displaying Data268

 Data = data;
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 SortColumn = sortColumn;
 SortOrder = sortOrder;
 FilterColumn = filterColumn;
 FilterQuery = filterQuery;
 }

 #region Methods
 /// <summary>
 /// Pages, sorts and/or filters a IQueryable source.
 /// </summary>
 /// <param name="source">An IQueryable source of generic
 /// type</param>
 /// <param name="pageIndex">Zero-based current page index
 /// (0 = first page)</param>
 /// <param name="pageSize">The actual size of
 /// each page</param>
 /// <param name="sortColumn">The sorting column name</param>
 /// <param name="sortOrder">The sorting order ("ASC" or
 /// "DESC")</param>
 /// <param name="filterColumn">The filtering column
 /// name</param>
 /// <param name="filterQuery">The filtering query (value to
 /// lookup)</param>
 /// <returns>
 /// A object containing the IQueryable paged/sorted/filtered
 /// result
 /// and all the relevant paging/sorting/filtering navigation
 /// info.
 /// </returns>
 public static async Task<ApiResult<T>> CreateAsync(
 IQueryable<T> source,
 int pageIndex,
 int pageSize,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,

Chapter 6 269

 string? filterQuery = null)
 {
 if (!string.IsNullOrEmpty(filterColumn)
 && !string.IsNullOrEmpty(filterQuery)
 && IsValidProperty(filterColumn))
 {
 source = source.Where(
 string.Format("{0}.StartsWith(@0)",
 filterColumn),
 filterQuery);
 }

 var count = await source.CountAsync();

 if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
 {
 sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";
 source = source.OrderBy(
 string.Format(
 "{0} {1}",
 sortColumn,
 sortOrder)
);
 }

 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);

 var data = await source.ToListAsync();

 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize,
 sortColumn,

Fetching and Displaying Data270

 sortOrder,
 filterColumn,
 filterQuery);
 }

 /// <summary>
 /// Checks if the given property name exists
 /// to protect against SQL injection attacks
 /// </summary>
 public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
 {
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException($"ERROR: Property
'{propertyName}' does not exist.");
 return prop != null;
 }
 #endregion

 #region Properties
 /// <summary>
 /// IQueryable data result to return.
 /// </summary>
 public List<T> Data { get; private set; }

 /// <summary>
 /// Zero-based index of current page.
 /// </summary>
 public int PageIndex { get; private set; }

 /// <summary>
 /// Number of items contained in each page.
 /// </summary>
 public int PageSize { get; private set; }

Chapter 6 271

 /// <summary>
 /// Total items count
 /// </summary>
 public int TotalCount { get; private set; }

 /// <summary>
 /// Total pages count
 /// </summary>
 public int TotalPages { get; private set; }

 /// <summary>
 /// TRUE if the current page has a previous page,
 /// FALSE otherwise.
 /// </summary>
 public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }
 }

 /// <summary>
 /// TRUE if the current page has a next page, FALSE otherwise.
 /// </summary>
 public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }

 /// <summary>
 /// Sorting Column name (or null if none set)
 /// </summary>
 public string? SortColumn { get; set; }

 /// <summary>
 /// Sorting Order ("ASC", "DESC" or null if none set)

Fetching and Displaying Data272

 /// </summary>
 public string? SortOrder { get; set; }

 /// <summary>
 /// Filter Column name (or null if none set)
 /// </summary>
 public string? FilterColumn { get; set; }

 /// <summary>
 /// Filter Query string
 /// (to be used within the given FilterColumn)
 /// </summary>
 public string? FilterQuery { get; set; }
 #endregion
 }
}

And that’s it. As we can see, we were able to programmatically implement the IQueryable<T>.Where()
method – which actually performs the filtering task – thanks to another useful extension method
provided by the System.Linq.Dynamic.Core package.

Needless to say, we took the chance to use our IsValidProperty method again to shield our code
against possible SQL injection attempts; the filtering-related logic (and dynamic LINQ query) will
only be executed if it returns True, that is, if the filterColumn parameter value matches an existing
entity’s public property.

While we were there, we also added two additional properties (FilterColumn and FilterQuery), so
that we’ll have them on the JSON response object, and modified the constructor method signature
accordingly.

CitiesController
Now, we can open our /Controllers/CitiesController.cs file and make the following changes:

[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities.AsNoTracking(),

Chapter 6 273

 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

The preceding code is very similar to the alternative implementation that we assumed in the previous
section; as we mentioned earlier, both approaches are viable, depending on our preferences. However,
since we’re going to use this same implementation for the countries in a short while, making good use
of System.Linq.Dynamic.Core, and centralizing all the IQueryable logic, is arguably a better approach
since it keeps our source code as DRY as possible.

The .NET part is done; let’s move on to Angular.

CitiesComponent
Open the /src/app/cities/cities.component.ts file and update its content in the following way
(modified lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from '../../environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';

import { City } from './city';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;

Don’t Repeat Yourself (DRY) is a widely implemented principle of software development.
Whenever we violate it, we fall into a WET approach, which could mean Write Everything
Twice, We Enjoy Typing, or Waste Everyone’s Time, depending on what we like the most.

Fetching and Displaying Data274

 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";

 defaultFilterColumn: string = "name";
 filterQuery?:string;

 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 this.loadData(null);
 }

 loadData(query?: string) {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.filterQuery = query;
 this.getData(pageEvent);
 }

 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);

 if (this.filterQuery) {
 params = params
 .set("filterColumn", this.defaultFilterColumn)
 .set("filterQuery", this.filterQuery);

Chapter 6 275

 }

 this.http.get<any>(url, { params })
 .subscribe(result => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 }, error => console.error(error));
 }
}

This time, the new code only consists of a few additional lines; we’ve just changed the signature of the
loadData() method (with a string? optional type, so that we won’t break anything) and conditionally
added a couple of parameters to our HTTP request – that’s it.

CitiesComponent template (HTML) file
Let’s see what we need to add to the /src/app/cities/cities.component.html template file:

<h1>Cities</h1>

<p>Here's a list of cities: feel free to play with it.</p>

<p *ngIf="!cities">Loading...</p>

<mat-form-field [hidden]="!cities">
 <input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">

<!-- ...existing code... -->

As we can see, we just added a <mat-form-field> element with the usual [hidden] attribute binding
(to make it appear only after our cities have been loaded) and a (keyup) event binding that will trigger
the loadData() method upon each keypress; this call will also contain the input value, which will be
handled by our component class by the means we just implemented there.

Fetching and Displaying Data276

The only thing worth noting is that we’ve introduced a new Angular feature in the above code: a tem-
plate reference variable (#filter), which allows us to use data from a single element in another part
of the template. We did that so that we could pass the updated value of the MatInput element to our
loadData() method.

CitiesComponent style (SCSS) file
Before testing it out, we need to make a minor change to the /src/app/cities/cities.component.
scss file as well:

table.mat-table {
 width: 100%;
}

mat-form-field {
 font-size: 14px;
 width: 100%;
}

This is required to make our new MatInputModule span through the entire available space.

AngularMaterialModule
Wait a minute: did we just say MatInputModule? That’s correct: as a matter of fact, it seems like we
have actually used an Angular Material module in our filtering implementation after all – and for good
reason, since it looks much better than a vanilla HTML input textbox!

However, since we did that, we need to reference it within our AngularMaterialModule container or
we’ll get a compiler error. To do that, open the /src/app/angular-material.module.ts file and add
the required import statement…

import { MatInputModule } from '@angular/material/input';

…and the two references in the imports and exports arrays of @NgModule.

Theoretically speaking, we could have used $event.target.value instead of relying
on a template reference variable; however, we’ll make further use of that #filter in the
following chapters, so we took the chance to introduce it now.

For additional info on Angular’s template reference variables, check out the following
URL: https://angular.io/guide/template-reference-variables.

https://angular.io/guide/template-reference-variables

Chapter 6 277

That’s it: now, we can hit F5 and navigate to the Cities view to test the new filtering feature. If we did
everything properly, we should be able to see something similar to the following screenshot:

Figure 6.10: Cities table with pagination, sorting, and filtering

Fetching and Displaying Data278

Looks pretty good, right?

If we try to type something into the filter textbox, we should see the table and the paginator update
accordingly in real time. Look at what happens if we type New York in the filter textbox:

Figure 6.11: Cities table filtered for “New York”

That’s definitely a good real-time filtering feature.

Performance considerations
Before moving further, it would be wise to spend a few minutes talking about the performance impact
of the filter we’ve just implemented.

As we can see, the call to the loadData method is directly bound to the HTML input’s keyup event,
meaning that will fire upon each user’s keystroke. This is great in terms of user experience because
our users will immediately get filtered data as they type; however, this real-time filter also has a
serious downside in terms of performance impact: every time the filter text changes (that is, upon
each keystroke), Angular fires an HTTP request to the back-end to retrieve the updated list of results.
Such behavior is intrinsically resource-intensive and can easily become a huge performance issue,
especially if we’re dealing with large tables and/or non-indexed columns.

Are there ways to improve this approach without compromising the results obtained in terms of user
experience? As a matter of fact, the answer is yes, but we won’t do that now; we’ll talk more about it
in Chapter 7, Forms and Data Validation, when we introduce the concepts of debouncing and throttling.

Chapter 6 279

Adding countries to the loop
Before moving on, how about getting the countries up to speed? Yeah, it would mean redoing every-
thing that we just did a second time; however, now that we know how to do this, we’ll arguably be
able to do it in a flash... or maybe not.

Nonetheless, we should definitely spend a reasonable amount of time doing that now because it would
be a great way to plant everything we have learned so far in our muscle memory.

Let’s do this now so that we can move on to trying something else. To avoid wasting pages, we’ll just
focus on the most relevant steps here, leaving everything else to what we just did with the cities – and
to our GitHub repository, which hosts the full source code of what we need to do.

ASP.NET
Let’s start with the ASP.NET part.

CountriesController
We should already have our CountriesController ready from Chapter 5, Data Model with Entity Frame-
work Core, right? Open that file and replace the GetCountries() default action method with the fol-
lowing code:

// ...existing code...

[HttpGet]
public async Task<ActionResult<ApiResult<Country>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking(),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

// ...existing code...

Fetching and Displaying Data280

Luckily enough, our ApiResult class is type-agnostic; therefore, we can use it there with no issues.
Also, since we have centralized all the hard work there, the .NET server-side part is already done.

An odd JSON naming issue
Before moving on, let’s quickly test the component. Hit F5 and type the following URL into the brows-
er’s address bar: https://localhost:40443/api/Countries/?pageIndex=0&pageSize=2.

As soon as we hit Enter, we should be able to see the following:

Figure 6.12: JSON array for the countries

It seems like it’s all g... Hey, wait a minute: what’s up with those isO2 and isO3 property names? They
shouldn’t be capitalized like that!

In order to understand what happened there, we need to take a step back and acknowledge something
we might have underestimated so far: the camelCase conversion that the brand-new System.Text.Json
API (introduced with .NET Core 3) automatically does when serializing all our .NET classes to JSON.
We talked about this issue earlier on in this chapter, when we saw the .NET CitiesController JSON
output for the first time, and we said that it wasn’t a big deal since Angular is also camelCase-oriented

– we would just have to define the various interfaces using camelCase as well.

Chapter 6 281

Unfortunately, such automatic camelCase conversion might cause unwanted side effects when dealing
with all-uppercase properties such as those two; whenever this happens, we need to adapt our source
code to properly deal with that:

• The most obvious thing to do would be to just define them in our Angular interface in the exact
same way, that is, using that exact casing; however, this would mean dealing with those isO2
and isO3 variable names throughout our whole Angular code, which is rather ugly and might
also be quite misleading.

• If we don’t want to adopt those hideous property names, there is an alternative – and argu-
ably better – workaround we can use: we can decorate our offending properties with the
[JsonPropertyName] data annotation, which allows us to force a JSON property name, re-
gardless of the default casing convention (be it camelCase or PascalCase) specified within the
Startup class.

The [JsonPropertyName] workaround seems the most reasonable fix we can apply to our specific
scenario; let’s just go with it and get rid of this problem for good!

Open the /Data/Models/Country.cs file and add the following lines to the existing code (new lines
are highlighted):

// ...existing code...

/// <summary>
/// Country code (in ISO 3166-1 ALPHA-2 format)
/// </summary>
[JsonPropertyName("iso2")]
public string ISO2 { get; set; }

/// <summary>
/// Country code (in ISO 3166-1 ALPHA-3 format)
/// </summary>
[JsonPropertyName("iso3")]
public string ISO3 { get; set; }

// ...existing code...

The [JsonPropertyName] attribute requires the following reference at the top of the file:

using System.Text.Json.Serialization;

Fetching and Displaying Data282

Now, we can see whether those properties will respect this behavior by hitting F5 and typing the same
URL as before into the browser’s address bar: https://localhost:40443/api/Countries/?pageInd
ex=0&pageSize=2.

Figure 6.13: Amended JSON array for countries

It definitely seems like they do; thanks to this unexpected issue, we had the chance to add a powerful
new weapon to our ASP.NET arsenal.

Now, we just need to create and configure the Angular component.

Angular
The Angular implementation will be less straightforward than the ASP.NET one since we’ll have to
deal with multiple aspects:

• Creating a new CountriesComponent
• Implementing the Countries table, as well as the paging, sorting, and filtering features as we

did with the cities
• Updating NavComponent to add the navigation link

We already know what we need to do since we just did it with our CitiesComponent:

1. Open Command Prompt.
2. Navigate to the /src/app/ folder.
3. Type ng generate component Countries --module=app --skip-tests to create the .ts,

.html, and .scss files, as well as a new /src/app/countries/ folder.
4. From Solution Explorer, create an additional country.ts file inside the /src/app/countries/

folder of the worldcities.client project.

Chapter 6 283

Once that is done, fill the new files with the following content.

country.ts
Here’s the source code for the /src/app/countries/country.ts interface file:

export interface Country {
 id: number;
 name: string;
 iso2: string;
 iso3: string;
}

Nothing new here – the code is very similar to what we did when we created the city.ts interface file.

countries.component.ts
Here’s the source code for the /src/app/countries/countries.component.ts file:

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';

import { Country } from './country';

@Component({
 selector: 'app-countries',
 templateUrl: './countries.component.html',
 styleUrls: ['./countries.component.scss']
})
export class CountriesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'iso2', 'iso3'];
 public countries!: MatTableDataSource<Country>;

 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";

 defaultFilterColumn: string = "name";
 filterQuery?: string;

Fetching and Displaying Data284

 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;

 constructor(private http: HttpClient) {
 }

 ngOnInit() {
 this.loadData();
 }

 loadData(query?: string) {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.filterQuery = query;
 this.getData(pageEvent);
 }

 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Countries';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);
 if (this.filterQuery) {
 params = params
 .set("filterColumn", this.defaultFilterColumn)
 .set("filterQuery", this.filterQuery);
 }

 this.http.get<any>(url, { params })
 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;

Chapter 6 285

 this.countries = new MatTableDataSource<Country>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

Again, this is basically a mirror of the cities.component.ts file.

countries.component.html
Here’s the source code for the /src/app/countries/countries.component.html file:

<h1>Countries</h1>

<p>Here's a list of countries: feel free to play with it.</p>

<p *ngIf="!countries">Loading...</p>

<mat-form-field [hidden]="!countries">
 <input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

<table mat-table [dataSource]="countries"
 class="mat-elevation-z8"
 [hidden]="!countries"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">

 <!-- Id Column -->
 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>ID</th>
 <td mat-cell *matCellDef="let country"> {{country.id}} </td>
 </ng-container>

 <!-- Name Column -->
 <ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
 <td mat-cell *matCellDef="let country"> {{country.name}} </td>
 </ng-container>

Fetching and Displaying Data286

 <!-- ISO2 Column -->
 <ng-container matColumnDef="iso2">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 2</th>
 <td mat-cell *matCellDef="let country"> {{country.iso2}} </td>
 </ng-container>

 <!-- ISO3 Column -->
 <ng-container matColumnDef="iso3">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 3</th>
 <td mat-cell *matCellDef="let country"> {{country.iso3}} </td>
 </ng-container>

 <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
 <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

<!-- Pagination directive -->
<mat-paginator [hidden]="!countries"
 (page)="getData($event)"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

The template, just as expected, is almost identical to the cities.component.html template file.

countries.component.scss
Here’s the source code for the /src/app/countries/countries.component.scss file:

table.mat-table {
 width: 100%;
}

mat-form-field {
 font-size: 14px;
 width: 100%;
}

The preceding file is identical to the cities.component.scss file, to the point that we could even
reference it instead of creating a new one; however, dealing with separate files is almost always a
better choice, considering that we might need to apply different changes to the Cities and Countries
tables later on.

Chapter 6 287

AppModule
Since we’ve created our component using the Angular CLI, we don’t need to perform any change to
the AppModule configuration file, since the new component should have been registered automatically.
All we need to do is to update the routing module and the navigation component.

AppRoutingModule
The routing rule that we need to add is very similar to the one we added to CitiesComponent a while ago:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';
import { CountriesComponent } from './countries/countries.component';

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'countries', component: CountriesComponent }
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

The new routing rule will make our new CountriesComponent get served by Angular when the client
browser points to the /countries dedicated route. However, our users won’t know that such a route
exists if we don’t add a visible link to it within our NavComponent menu; that’s precisely why we’re
going to add it next.

NavComponent
Open the /src/app/nav-menu/nav-menu.component.html file and add the following highlighted lines
to the existing code:

<header>
 <mat-toolbar color="primary">
 <button mat-icon-button [routerLink]="['/']">
 <mat-icon>
 home
 </mat-icon>
 </button>
 <a mat-flat-button color="primary" [routerLink]="['/cities']">

Fetching and Displaying Data288

 Cities

 <a mat-flat-button color="primary" [routerLink]="['/countries']">
 Countries

 </mat-toolbar>
</header>

...and that’s it!

Our CountriesComponent is done, and – if we didn’t make mistakes – it should work in about the same
way as our beloved CitiesComponent that took so much time to finalize.

Testing CountriesComponent
It’s time to see the results of our hard work. Hit F5, navigate to the Countries view, and expect to see
the following:

Figure 6.14: Countries table with pagination, sorting, and filtering

Chapter 6 289

If you were able to get this same output on your first attempt, it definitely means that you have learned
what to do; if you didn’t, don’t worry: you’ll just have to check what you did wrong and fix it. Practice
makes perfect.

IMPORTANT: Don’t be fooled by appearances; be sure to check that paging, sorting, and filtering are
working properly before going any further.

Summary
This chapter was all about reading data from the ASP.NET back-end and finding a way to properly show
it to the browser with the Angular front-end.

We started by using our existing CitiesController to fetch a large number of cities with Angular
components; although both frameworks are perfectly able to deal with massive data, we quickly un-
derstood that we need to improve the whole data request, response, and render flow process to grant
our users a decent user experience.

For this very reason, we chose to adopt the System.Linq.Dynamic.Core .NET package to revamp our
server-side business logic and the Angular Material npm package to greatly improve our client-side UI.
By combining the powerful features of these two packages, we managed to pull off a bunch of interesting
features: paging, sorting, and filtering. During our development journey, we also took the chance to
identify, address, and mitigate some important security issues, such as a harmful SQL injection risk.

Right after finishing our work with Cities, we moved on to Countries, taking the chance to retrace
our steps and cement what we just learned into our muscle memory.

After all our hard work, we can definitely say that we did a great job and fulfilled our goal: being able
to read our data from the .NET back-end and gracefully present it through the front-end with Angular,
thus making end users fully able to see and interact with it.

We’re now ready to add another layer of complexity to our application: give our users the chance to
modify the existing data and/or add new data using HTML forms; these features are a must-have for
most interactive web applications such as CMSes, forums, social networks, chat rooms, and the like.
In the next chapter, Chapter 7, Forms and Data Validation, we’ll see how we can deal with such tasks
using reactive forms, a pivotal Angular module that provides a model-driven approach to handling
form inputs whose values change over time.

Suggested topics
For further information, we recommend the following topics: JSON, RESTful conventions, HTTP verbs,
HTTP status, life cycle hooks, client-side paging, server-side paging, sorting, filtering, dependency
injection, and SQL injection.

The browser’s console log can be a very useful tool for debugging server-side and cli-
ent-side errors; most Angular errors come with well-documented exception text and a
contextual link to the corresponding file and source code line, thus making it quite easy
for the developer to understand what happens under the hood.

Fetching and Displaying Data290

ASP.NET
System.Linq, System.Linq.Dynamic.Core, IQueryable, and Entity Framework Core.

Angular
Components, routing, modules, AppModule, HttpClient, ngIf, hidden, data binding, property binding,
attribute binding, ngFor, directives, structural directives, interpolations, templates, and template
reference variables.

References
• Add sorting, filtering, and paging – ASP.NET MVC with EF Core: https://learn.microsoft.com/

en-us/aspnet/core/data/ef-mvc/sort-filter-page

• Bootstrap official website: https://getbootstrap.com
• Angular Material official website: https://material.angular.io/
• Angular Material GitHub repository: https://github.com/angular/components
• Angular Material typography: https://material.angular.io/guide/typography
• Angular BrowserAnimationsModule: https://angular.io/api/platform-browser/animations/

BrowserAnimationsModule

• Angular animation system: https://angular.io/guide/animations
• Angular Material – table overview: https://material.angular.io/components/table/overview
• Angular – ViewChild: https://angular.io/api/core/ViewChild
• System.Linq.Dynamic.Core project page on GitHub: https://github.com/StefH/System.Linq.

Dynamic.Core

• LINQ overview: https://learn.microsoft.com/en-us/dotnet/csharp/linq/
• LINQ (Language Integrated Query): https://learn.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/linq/

• LINQ lambda expressions (C# programming guide): https://learn.microsoft.com/en-
us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-
expressions

• LINQ Query expression basics: https://learn.microsoft.com/en-us/dotnet/csharp/linq/
query-expression-basics

• Reflection (C#): https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/reflection

• .NET Core and Entity Framework – set IQueryable<T> Column Names programmatically with Dynamic
LINQ: https://www.ryadel.com/en/asp-net-core-set-column-name-programmatically-
dynamic-linq-where-iqueryable/

• Understanding SQL injection: https://sec.cloudapps.cisco.com/security/center/
resources/sql_injection.html

• Angular’s template reference variables: https://angular.io/guide/template-reference-
variables

https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/sort-filter-page
https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/sort-filter-page
https://getbootstrap.com
https://material.angular.io/
https://github.com/angular/components
https://material.angular.io/guide/typography
https://angular.io/api/platform-browser/animations/BrowserAnimationsModule
https://angular.io/api/platform-browser/animations/BrowserAnimationsModule
https://angular.io/guide/animations
https://material.angular.io/components/table/overview
https://angular.io/api/core/ViewChild
https://github.com/StefH/System.Linq.Dynamic.Core
https://github.com/StefH/System.Linq.Dynamic.Core
https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics
https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://www.ryadel.com/en/asp-net-core-set-column-name-programmatically-dynamic-linq-where-iqueryable/
https://www.ryadel.com/en/asp-net-core-set-column-name-programmatically-dynamic-linq-where-iqueryable/
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html
https://angular.io/guide/template-reference-variables
https://angular.io/guide/template-reference-variables

Chapter 6 291

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

7
Forms and Data Validation

In this chapter, we’ll mostly deal with forms, data input, and validation techniques. As we already
know, HTML forms are one of the most important and delicate aspects of any business application.
Nowadays, forms are used to fulfill almost any task involving user-submitted data, such as registering
on or logging in to a website, issuing a payment, reserving a hotel room, ordering a product, perform-
ing and retrieving search results, and more.

If we were asked to define a form from a developer’s perspective, we would come out with the statement
that a form is a UI-based interface that allows authorized users to enter data that will be sent to a server for
processing. The moment we accept this definition, two additional considerations should come to mind:

• Each form should provide a data entry experience good enough to efficiently guide our users
through the expected workflow; otherwise, they won’t be able to use it properly.

• Each form, as long as it brings potentially insecure data to the server, could have a major secu-
rity impact in terms of data integrity, data security, and system security, unless the developer
possesses the required know-how to adopt and implement the appropriate countermeasures.

These two considerations provide a good summary of what we’ll do in this chapter: we’ll do our best
to guide our users into submitting data in the most appropriate way, and we’ll also learn how to check
these input values properly to prevent, avoid, and/or minimize a wide spectrum of integrity and secu-
rity threats. It’s also important to understand that these two considerations are frequently intertwined
with each other; hence, we’ll often deal with them at the same time.

In this chapter, we’ll cover the following topics:

• Exploring Angular forms, where we’ll deal with template-driven forms as well as reactive
forms, all while understanding the pros and cons of both approaches and looking at which is
the most suitable to use in various common scenarios

• Building our first Reactive Form, where we’ll use the gained knowledge to create a Reactive
Form to edit our existing cities, as well as add new ones

• Adding a new city, using our brand-new Reactive Form

Forms and Data Validation294

• Understanding data validation, where we’ll learn how to double-check our users’ input data
in the front-end and also from the back-end, as well as the various techniques to give visual
feedback when they send incorrect or invalid values

• Introducing the FormBuilder, where we’ll implement another Reactive Form for our countries
using some factory methods instead of manually instantiating the various form model elements

• Improving the filter behavior, where we’ll introduce some throttling and debouncing techniques
to improve the overall performance and reduce server load

At the end of each task, we’ll also take some time to verify the result of our work using our web browser.

Technical requirements
In this chapter, we’re going to need all the technical requirements that we mentioned in the previous
chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/main/Chapter_07/WorldCities

Exploring Angular forms
If we take a look at our current .NET Core with Angular projects, we will see how none of them allow
our users to interact with the data:

• For the HealthCheck app, this is expected since there’s simply no data to deal with: this is a
monitoring app that doesn’t store anything and requires no input from the user

• The WorldCities app, however, tells a whole different story: we do have a database that we use
to return results to our users, who could—at least theoretically—be allowed to make changes

It goes without saying that the WorldCities app would be our best candidate for implementing our
forms. In the following sections, we’ll do just that, starting with the Angular project (the front-end)
and then moving to the ASP.NET Core Web API project (the back-end).

Forms in Angular
Let’s take a minute to briefly review our WorldCities app in the state we left it in at the end of Chapter
6, Fetching and Displaying Data. If we take a look at the CitiesComponent and CountriesComponent
templates, we will see that we actually already have a data input element of some sort: we’re clearly
talking about <mat-form-field>, which is the selector of Angular Material’s MatInputModule, which
we added to the loop during Chapter 6 to let our users filter the cities and countries by their names.

Here’s the relevant code snippet:

<mat-form-field [hidden]="!cities">
 <input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_07/WorldCities
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_07/WorldCities

Chapter 7 295

This means that we are already accepting some kind of user action – consisting of a single input string
– and reacting to it accordingly: such an action and reaction chain is the basis of an interaction between
the user and the app, which is basically what the vast majority of forms are all about.

However, if we look at the generated HTML code, we can clearly see that we do not have any actual
<form> element. We can test it by right-clicking that view’s input element from our browser window
and selecting Inspect element, as shown in the following screenshot:

Figure 7.1: Inspecting the HTML of the input element

As we can see, there is no main form, only a single input field that perfectly handles the task we’ve
assigned to it. The absence of the form is not missed because we’re not submitting anything using
FormData; we’re performing our data fetching using the Angular HttpClient module, which techni-
cally does this using an asynchronous XMLHttpRequest (XHR) through JavaScript – in one word, AJAX.

Such an approach does not require a <form> container element and is capable of handling the data
encoding and transmission tasks using the following supported methods:

• application/x-www-form-urlencoded

• multipart/form-data

• text/plain

Forms and Data Validation296

It only needs the actual input elements to get the required values from the user.

Although not required, a form element – or any HTML container for our input elements – might be
very useful for a number of important tasks that don’t fall into the data encoding and transmission
subjects. Let’s see what they are and why we may need them.

Reasons to use forms
Let’s try to summarize the most blatant shortcomings of our current formless approach:

• We cannot keep track of the global form state since there’s no way we can tell whether the
input text is valid or not

• We have no easy way to display an error message to the users to let them know what they have
to do to make the form valid

• We don’t verify the input data in any way; we just collect and toss it to the server without
thinking twice

That’s absolutely fine in our specific scenario since we’re only dealing with a single text string and
we don’t care too much about its length, the input text, and so on. However, if we have to deal with
multiple input elements and several value types, such limitations could seriously hinder our work – in
terms of either data flow control, data validation, or user experience.

Sure, we could easily work around most of the aforementioned issues by implementing some cus-
tom methods within our form-based components; we could throw some errors such as isValid(),
isNumber(), and so on here and there, and then hook them up to our template syntax and show/hide
the validation messages with the help of structural directives such as *ngIf, *ngFor, and the like.
However, it would definitely be a horrible way to address our problem; we didn’t choose a feature-rich
client-side framework such as Angular to work that way.

Luckily enough, we have no reason to do that since Angular provides us with a couple of alternative
strategies to deal with these common form-related scenarios:

• Template-driven forms
• Model-driven forms, also known as Reactive Forms

For further details regarding the encoding method supported by the HTML <form> ele-
ment, take a look at the following specifications:

• URL Living Standard – URL-encoded Form Data: https://url.spec.whatwg.
org/#concept-urlencoded

• HTML Living Standard, section 4.10.21.8 – Multipart Form Data: https://html.spec.
whatwg.org/multipage/form-control-infrastructure.html#multipart-
form-data

• HTML Living Standard, section 4.10.21.9 – Plain Text Form Data: https://html.
spec.whatwg.org/multipage/form-control-infrastructure.html#plain-
text-form-data

https://url.spec.whatwg.org/#concept-urlencoded
https://url.spec.whatwg.org/#concept-urlencoded
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data

Chapter 7 297

Both of them are highly coupled with the framework and thus extremely viable; they both belong to
the @angular/forms library and also share a common set of form control classes. However, they also
have their own specific sets of features, along with their pros and cons, which could ultimately lead
to us choosing one of them.

Let’s try to quickly summarize these differences.

Template-driven forms
If you’ve come from AngularJS, there’s a high chance that the template-driven approach will ring a
bell or two. As the name implies, template-driven forms host most of the logic in the template code;
working with a template-driven form means:

• Building the form in the .html template file
• Binding data to the various input fields using an ngModel instance
• Using a dedicated ngForm object related to the whole form and containing all the inputs, with

each being accessible through their name

These things need to be done in order to perform the required validity checks.

To understand this, here’s what a template-driven form looks like:

<form novalidate autocomplete="off" #form="ngForm"
 (ngSubmit)="onSubmit(form)">

 <input type="text" name="name" value="" required
 placeholder="Insert the city name..."
 [(ngModel)]="city.Name" #title="ngModel"
 />

 <button type="submit" name="btnSubmit"
 [disabled]="form.invalid">
 Submit
 </button>

</form>

As we can see, we can access any element, including the form itself, using some convenient template
reference variables – the attributes with the # sign, which we’ve already seen in Chapter 6, Fetching and
Displaying Data – and check for their current states to create our own validation workflow. We’ll talk
more about these states later on when we dive into form validation techniques.

This, in a nutshell, is template-driven forms; now that we’ve had an overall look at them, let’s try to
summarize the pros and cons of this approach.

Forms and Data Validation298

The pros
Here are the main advantages of template-driven forms:

• Template-driven forms are very easy to write. We can recycle most of our HTML knowledge
(assuming that we have any). On top of that, if we came from AngularJS, we already know how
well we can make them work once we’ve mastered the technique.

• They are rather easy to read and understand, at least from an HTML point of view; we have a
plain, understandable HTML structure containing all the input fields and validators, one after
another. Each element will have a name, a two-way binding with the underlying ngModel, and
(possibly) template-driven logic built upon aliases that have been hooked to other elements
that we can also see, or to the form itself.

The cons
Here are their weaknesses:

• Template-driven forms require a lot of HTML code, which can be rather difficult to maintain
and is generally more error-prone than pure TypeScript.

• For the same reason, these forms cannot be unit tested. We have no way to test their validators
or to ensure that the logic we implemented will work, other than running an end-to-end test
with our browser, which is hardly ideal for complex forms.

• Their readability will quickly drop as we add more and more validators and input tags. Keeping
all their logic within the template might be fine for small forms, but it doesn’t scale well when
dealing with complex data items.

Ultimately, we can say that template-driven forms might be the way to go when we need to build small
forms with simple data validation rules, where we can benefit more from their simplicity. On top of
that, they are quite similar to the typical HTML code we’re already used to (assuming that we do have
a plain HTML development background); we just need to learn how to decorate the standard <form>
and <input> elements with aliases and throw in some validators handled by structural directives such
as the ones we’ve already seen, and we’ll be set in (almost) no time.

That being said, the lack of unit testing, the HTML code bloat that they will eventually produce, and
the scaling difficulties will eventually lead us toward an alternative approach for any non-trivial form.

Model-driven/Reactive Forms
The model-driven approach was specifically added in Angular 2+ to address the known limitations of
template-driven forms. The forms that are implemented with this alternative method are known as
model-driven forms or Reactive Forms, which are the exact same thing.

For additional information on template-driven forms, we highly recommend that you read
the official Angular documentation at https://angular.io/guide/forms.

https://angular.io/guide/forms

Chapter 7 299

The main difference here is that (almost) nothing happens in the template, which acts as a mere
reference to a more complex TypeScript object that gets defined, instantiated, and configured pro-
grammatically within the component class: the form model.

To understand the overall concept, let’s try to rewrite the previous form in a model-driven/reactive
way (the relevant parts are highlighted). The outcome of doing this is as follows:

<form [formGroup]="form" (ngSubmit)="onSubmit()">

 <input formControlName="name" required />

 <button type="submit" name="btnSubmit"
 [disabled]="form.invalid">
 Submit
 </button>

</form>

As we can see, the required amount of code is less and more readable.

Here’s the underlying form model that we will define in the component class file (the relevant parts
are highlighted in the following code):

import { FormGroup, FormControl } from '@angular/forms';

class ModelFormComponent implements OnInit {
 form: FormGroup;

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl()
 });
 }
}

Let’s try to understand what’s happening here:

• The form property is an instance of FormGroup and represents the form itself.
• FormGroup, as the name suggests, is a container of form controls sharing the same purpose.

As we can see, the form itself acts as a FormGroup, which means that we can nest FormGroup
objects inside other FormGroup objects (we didn’t do that in our sample, though).

• Each data input element in the form template – in the preceding code, name – is represented
by an instance of FormControl.

• Each FormGroup instance encapsulates the state of each child control, meaning that it will only
be valid if/when all its children are also valid.

Forms and Data Validation300

Also, note that we have no way of accessing the FormControl objects directly like we were doing in
template-driven forms; we have to retrieve them using the .get() method of the main FormGroup,
which is the form itself.

At first glance, the model-driven template doesn’t seem too different from the template-driven one. We
still have a <form> element, an <input> element hooked to a validator, and a submit button;
on top of that, checking the state of the input elements takes a greater amount of source code since
they have no aliases we can use. What’s the real deal, then?

To help us visualize the difference, let’s look at the following diagrams. Here’s a schema depicting how
template-driven forms work:

Figure 7.2: Template-driven forms schematic

By looking at the arrows, we can easily see that, in template-driven forms, everything happens in the
template; the HTML form elements are directly bound to the DataModel component represented by
a property filled with an asynchronous HTML request to the web server, much like we did with our
cities and country table. That DataModel will be updated as soon as the user changes something – that
is, unless a validator prevents them from doing that. If we think about it, we can easily understand
how there isn’t a single part of the whole workflow that happens to be under our control; Angular
handles everything by itself using the information in the data bindings defined within our template.
This is what template-driven actually means: the template is calling the shots.

Chapter 7 301

Now, let’s take a look at the model-driven forms (or Reactive Forms) approach:

Figure 7.3: Model-driven/Reactive Forms schematic

As we can see, the arrows depicting the model-driven forms workflow tell a whole different story. They
show how the data flows between the DataModel component – which we get from the web server – and
a UI-oriented form model that retains the states and the values of the HTML form (and its children
input elements) that are presented to the user. This means that we’ll be able to get in between the data
and the form control objects and perform a number of tasks firsthand: push and pull data, detect and
react to user changes, implement our own validation logic, perform unit tests, and so on.

Instead of being superseded by a template that’s not under our control, we can track and influence
the workflow programmatically, since the form model that calls the shots is also a TypeScript class;
that’s what model-driven forms are about. This also explains why they are also called Reactive Forms

– an explicit reference to the reactive programming style that favors explicit data handling and change
management throughout the workflow.

Enough with the theory; it’s time to empower our components with some Reactive Forms.

Building our first Reactive Form
In this section, we’ll create our first Reactive Form. More specifically, we’re going to build a
CityEditComponent that will give our users the chance to edit an existing city record.

For additional information on model-driven/Reactive Forms, we highly recommend read-
ing the official Angular documentation at https://angular.io/guide/reactive-forms.

https://angular.io/guide/reactive-forms

Forms and Data Validation302

To do that, we’ll do the following:

• Add a reference to the ReactiveFormsModule to our AppModule class
• Create the CityEditComponent TypeScript and template files

Let’s get started.

ReactiveFormsModule
The first thing we have to do to start working with Reactive Forms is to add a reference to the
ReactiveFormsModule in the AppModule class.

From Solution Explorer, open the /src/app/app.module.ts file and add the following import state-
ment right after the BrowserModule:

import { ReactiveFormsModule } from '@angular/forms';

As always, remember to also add the ReactiveFormsModule to @NgModule's imports collection.

Now that we’ve added a reference to the ReactiveFormsModule in our app’s AppModule file, we can
implement the Angular component that will host the actual form.

CityEditComponent
Since our CityEditComponent is meant to allow our users to modify a city, we’ll need to let it know
which city it has to fetch from (and send to) the server. To do that, we need to pass the city id from
the city listing to that component: the most effective way to do that is by using a GET parameter, such
as the city id, which can then be used by the component to retrieve the city info from the server and
show it to the user.

Therefore, we’re going to implement a standard master/detail UI pattern, much like the following one:

Chapter 7 303

Figure 7.4: A master/detail UI pattern

This editing pattern, other than being the most used in the world when dealing with a list of items, is
a perfect fit for our scenario. Sounds like a plan: let’s do it!

Let’s start with creating a new CityEditComponent using the Angular CLI from the worldcities.
client app’s root folder:

ng generate component cities/CityEdit --flat --module=app --skip-tests

As we can see, this time, we added a cities/ prefix to the component name because we want the new
component to be generated within the existing /src/app/cities/ folder – together with the existing
CitiesComponents and the City.ts interface.

Furthermore, we added the --flat option, which tells the CLI to generate the new files in the current
folder instead of creating a new one: without that option, the component would be created in a new
/src/app/cities/city-edit/ dedicated folder, which is not what we want.

Once done, we can start updating the new component’s .ts, .html, and .scss files.

Forms and Data Validation304

city-edit.component.ts
Open the three new (and empty) files and fill them with the following source code for the /src/app/
cities/city-edit.component.ts file:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';

import { environment } from './../../environments/environment';
import { City } from './city';

@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {

 // the view title
 title?: string;

 // the form model
 form!: FormGroup;

 // the city object to edit
 city?: City;

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl('')
 });

Chapter 7 305

 this.loadData();
 }

 loadData() {

 // retrieve the ID from the 'id' parameter
 var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 var id = idParam ? +idParam : 0;

 // fetch the city from the server
 var url = environment.baseUrl + 'api/Cities/' + id;
 this.http.get<City>(url).subscribe({
 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;

 // update the form with the city value
 this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }

 onSubmit() {
 var city = this.city;
 if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;

 var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");

 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)

Forms and Data Validation306

 });
 }
 }
}

This is a fair amount of source code: luckily enough, there are a lot of comments that should help us
understand the purpose of each relevant step.

Let’s try to summarize what we did here:

• We added some import references to the modules we’re about to use within this class. Among
them, we can see a couple of new kids on the block: @angular/router and @angular/form.
The former is required to define some internal routing patterns, while the latter contains the
FormGroup and FormControl classes that we need in order to build our form.

• Right below the class definition, we created a FormGroup instance within a form variable: that’s
our form model.

• The form variable instance contains three FormControl objects that will store the city values
we want to allow our users to change: name, lat, and lon. We don’t want to make them change
the Id or the CountryId – at least, not for now.

• Right below the form variable, we defined a city variable that will host the actual city when
we retrieve it from the database.

• The city retrieval task is handled by the loadData() method, which is rather similar to the one
we implemented in the cities.component.ts file: a standard data-fetching task handled by an
HttpClient module that’s injected (as usual) through the constructor(). The most relevant
difference here is that the method, right after the HTTP request/response cycle, proactively
loads the retrieved city data within the form model (by using the form’s patchValue() meth-
od) instead of relying on the Angular data-binding feature: that’s hardly a surprise since we’re
using the model-driven/reactive approach and not the template-driven one.

• The onSubmit() method is where the update magic takes place: HttpClient plays a major
role here as well by issuing a PUT request to the server and sending the city variable properly.
Once the Observable subscription has been processed, we use the router instance to redirect
the user back to the CitiesComponent (the Master view).

Chapter 7 307

The @angular/router package deserves a special mention because it’s the first time we have seen it
in a component TypeScript file, and we’ve only used it twice before:

• In the app-routing.module.ts file, to define our client-side routing rules
• In the nav.component.html file, to implement the aforementioned routing rules and make

them appear as navigation links within the web application’s main menu

This time, we had to import it because we needed a way to retrieve the City id parameter from the
URL. To do this, we used the ActivatedRoute interface, which allows us to retrieve information about
the currently active route, as well as the GET parameter we were looking for.

city-edit.component.html
Here’s the content for the /src/app/cities/city-edit.component.html template file:

<div class="city-edit">
 <h1>{{title}}</h1>
 <p *ngIf="!city">Loading…</p>
 <div [formGroup]="form" (ngSubmit)="onSubmit()">

 <!-- Name -->
 <mat-form-field>
 <mat-label>Name:</mat-label>
 <input matInput formControlName="name" required
 placeholder="Type a name">
 </mat-form-field>

Before moving further, it could be wise to spend a few moments talking about the
patchValue() method that we used in the preceding code.

The @angular/forms package gives us two ways to update a Reactive Form’s model:
the setValue() method, which sets a new value for each individual control, and the
patchValue() method, which will replace any properties that have been defined in the
object that have changed in the form model.

The main difference between them is that setValue() performs a strict check of the source
object and will throw errors if it doesn’t fully adhere to the model structure (including
all nested FormControl elements), while patchValue() will silently fail on those errors.

Therefore, we can say that the former method might be a better choice for complex forms
and/or whenever we need to catch nesting errors, while the latter is the way to go when
things are simple enough – like in our current samples.

Forms and Data Validation308

 <!-- Lat -->
 <mat-form-field>
 <mat-label>Latitude:</mat-label>
 <input matInput formControlName="lat" required
 placeholder="Insert latitude">
 </mat-form-field>

 <!-- Lon -->
 <mat-form-field>
 <mat-label>Longitude:</mat-label>
 <input matInput formControlName="lon" required
 placeholder="Insert longitude">
 </mat-form-field>

 <div>
 <button mat-flat-button color="primary"
 type="submit" (click)="onSubmit()">
 Save
 </button>
 <button mat-flat-button color="secondary"
 [routerLink]="['/cities']">
 Cancel
 </button>
 </div>
 </div>
</div>

Wait a minute: where’s our <form> HTML element? Didn’t we say that we were working with form-based
approaches because they are way better than placing a bunch of separate <input> fields here and there?

As a matter of fact, we do have a form: we just used a <div> rather than the classic <form> element.
As you may have guessed at this point, forms in Angular don’t necessarily have to be created using
the <form> HTML element, since we won’t be using its distinctive features. For that very reason, we
are free to define them using <div>, <p>, or any HTML block-level element that could reasonably
contain <input> fields.

However, using the <form> HTML element has some advantages that we might want to consider, such as:

• We won’t need to explicitly bind the onSubmit() handler to the submit button’s click event,
since the form will be automatically submitted when the users click on it

• If our app includes the FormsModule – which is required for the template-driven forms approach
– Angular will automatically apply the NgForm directive to every <form> HTML template element

Chapter 7 309

• Using a <form> element to contain a sequence of <input> elements will make our HTML code
compliant with the W3C standards and recommendations

For all these reasons, it might be wise to replace that <div> element with a <form> element in the
following way:

<form [formGroup]="form" (ngSubmit)="onSubmit()">

<!-- ...existing code... -->

</form>

Right after that, we should also remove the (now redundant) manual bind to the onSubmit() event
handler that we have on the submit button:

<button mat-flat-button color="primary"
 type="submit">
 Save
</button>

If we don’t do that, the onSubmit() method will be called twice, which is something that we should
definitely avoid.

city-edit.component.scss
Last but not least, here’s our /src/app/cities/city-edit.component.scss content:

mat-form-field {
 display: block;
 margin: 10px 0;
}

Again, nothing fancy here: just the minimum amount of styles to override Angular Material’s form
fields default behavior – inline-block, which allows them to stack horizontally – and force a vertical
layout instead, with a minimum amount of spacing between fields.

Adding the navigation link
Now that our CityEditComponent is ready, we need to enforce our master/detail pattern by adding a
navigation link that will allow our users to navigate from our city listing (master) to the city edit form
(detail).

To do that, we need to perform the following tasks:

1. Create a new route within the app-routing.module.ts file
2. Implement the preceding route in the template code of CitiesComponent

Forms and Data Validation310

As always, we shouldn’t need to add the references for the city-edit.component.ts file in the app.
module.ts file, since the Angular CLI should’ve automatically done that when we generated the com-
ponent.

Let’s do this!

app-routing.module.ts
The first thing to do is to add a new route to the app-routing.module.ts file with the following source
code (new lines are highlighted):

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';
import { CityEditComponent } from './cities/city-edit.component';
import { CountriesComponent } from './countries/countries.component';

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent },
 { path: 'countries', component: CountriesComponent },
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

As we can see, we imported the CityEditComponent and defined a new city/:id corresponding to
the route. The syntax we used will route any URL composed of city and a parameter that will be
registered with the id name.

cities.component.html
Now that we have the navigation route, we need to implement it within the Master view so that the
Detail view can be reached.

Open the /src/app/cities/cities.component.html file and change the HTML template code for the
city’s Name column in the following way:

<!-- ...existing code... -->

<!-- Name Column -->

Chapter 7 311

<ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
 <td mat-cell *matCellDef="let city">
 <a [routerLink]="['/city', city.id]">{{city.name}}
 </td>
</ng-container>

<!-- ...existing code... -->

Once you’re done, test it out by hitting F5 and navigating to the Cities view. As shown in the following
screenshot, the city names are now clickable links:

Figure 7.5: Cities table with clickable links

Forms and Data Validation312

From there, filter the table for Paris and click on the first result to access the CityEditComponent,
which we’ll finally be able to see (as shown in the following screenshot):

Figure 7.6: The CityEditComponent

As we can see, everything is much as we would expect it to be. We have three textboxes, as well as a
Save button and a Cancel button, both of which are ready to perform the task they have been assigned.
The Save button will send the modified text to the server for the update and then redirect the user
to the Master view, while the Cancel button will redirect the user without performing any changes.

That’s definitely a good start! However, we’re far from done: we still have to add validators, implement
error handling, and write a couple of unit tests for the client side and the server side. Let’s get started.

Adding a new city
Before going any further, let’s spend a couple more minutes adding a very useful feature to our
CityEditComponent: the chance to add a brand-new City. This is a rather classic requirement of a
Detail view with editing capabilities, which can be handled with the same component – as long as we
perform some small modifications to enable it to handle a new feature (adding a new city) as well as
the existing one (editing an existing city) in a seamless way.

Chapter 7 313

To do that, we’ll have to perform the following steps:

1. Extend the functionalities of CityEditComponent to make it able to add new cities, as well as
edit existing ones

2. Add a new Add City button to our component’s template file and bind it to a new client-side route
3. Implement the required functionalities to select a country for the newly added city, which

will also be useful in edit mode (it will allow users to change the country for existing cities)

Let’s get to work!

Extending the CityEditComponent
Open the /src/app/cities/city-edit.component.ts file and add the following code (the new/up-
dated lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';

import { environment } from './../../environments/environment';
import { City } from './city';

@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {

 // the view title
 title?: string;

 // the form model
 form!: FormGroup;

 // the city object to edit or create
 city?: City;

 // the city object id, as fetched from the active route:
 // It's NULL when we're adding a new city,
 // and not NULL when we're editing an existing one.
 id?: number;

Forms and Data Validation314

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl('')
 });

 this.loadData();
 }

 loadData() {

 // retrieve the ID from the 'id' parameter
 var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE

 // fetch the city from the server
 var url = environment.baseUrl + 'api/Cities/' + this.id;
 this.http.get<City>(url).subscribe({
 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;

 // update the form with the city value
 this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE

 this.title = "Create a new City";

Chapter 7 315

 }
 }

 onSubmit() {
 var city = (this.id) ? this.city : <City>{};
 if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;

 if (this.id) {
 // EDIT mode

 var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");

 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
 var url = environment.baseUrl + 'api/Cities';
 this.http
 .post<City>(url, city)
 .subscribe({
 next: (result) => {

 console.log("City " + result.id + " has been created.");

 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });

Forms and Data Validation316

 }
 }
 }
}

Thanks to these modifications, our code will now be able to distinguish between the two different user
actions (adding a new city or editing an existing one) and properly deal with both of them.

The HTML template file may also perform a minor update to notify the user of the new feature.

Open the /src/app/cities/cities-edit.component.html file and modify it in the following way (the
new/updated lines are highlighted).

Add the following highlighted code near the beginning of the file:

<!-- ... existing code ... -->

<p *ngIf="id && !city">Loading...</p>

<!-- ... existing code ... -->

With such an improvement, we’ll ensure that the "Loading..." message won’t appear when we’re
adding a new city since the city variable will be empty.

Finally, change the Save button’s fixed text with a dynamic value using Angular’s string interpolation
feature, which we’ve already seen various times:

<button mat-flat-button color="primary"
 type="submit">
 {{ this.id ? "Save" : "Create" }}
</button>

This minor yet useful addition will let us know if the form is working as expected: whenever we add
a new city (and id evaluates to false), we will see a more appropriate Create button instead of the
Save one, which will still be visible in edit mode.

Now, we need to do two things:

1. Find a nice way to let our users know that they can add new cities, as well as modify the ex-
isting ones

2. Make them able to access this new feature

A simple Add a new City button will fix both these issues at once: let’s add it to our CitiesComponent.

Adding the “Add a new City” button
Open the /src/app/cities/cities.component.html file and add the following code right after the
Loading… paragraph:

Chapter 7 317

<!-- ... existing code ... -->

<p *ngIf="!cities">Loading...</p>

<button mat-flat-button color="primary"
 class="btn-add" *ngIf="cities" [routerLink]="['/city']">
 Add a new City
</button>

<!-- ... existing code ... -->

There’s nothing new here; we’ve added the usual route-based button within a container and an *ngIf
structural directive to make it appear after the Cities array becomes available.

Since we’ve given that button a new .btn-add CSS class, we can take the chance to decorate it with
some minimal UI styling by opening the /src/app/cities/cities.component.scss file and adding
something like this:

.btn-add {
 float: right;
}

This way, the button will be aligned to the right of the screen.

Adding a new route
Now, we need to define the new route that we referenced for the Add a new City button.

To do that, open the /src/app/app-routing.module.ts file and update the code, as follows:

// ...existing code...

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent },
 { path: 'city', component: CityEditComponent },
 { path: 'countries', component: CountriesComponent },
]),

// ...existing code...

As we can see, the (new) route to add a new city and the (existing) route to edit an existing city are
very similar since they both redirect the user to the same component; the only difference is that the
latter doesn’t have the id parameter, which is the technique we used to make our component aware
of which task it has been called for. If the id is present, the user is editing an existing city; otherwise,
they’re adding a new one.

Forms and Data Validation318

We are doing well... but we’re not quite there yet. If we were to test what we’ve done so far by hitting
F5 and trying to add a new city, our HttpClient module would be greeted by an HTTP 500 - Internal
Server Error from the server, similar to the one shown in the following screenshot:

Figure 7.7: HTTP 500 error after trying to add a new city

Here’s the full error text (with the relevant parts highlighted):

---> Microsoft.Data.SqlClient.SqlException (0x80131904): The INSERT statement
conflicted with the FOREIGN KEY constraint "FK_Cities_Countries_CountryId".
The conflict occurred in database "WorldCities", table "dbo.Countries", column
'Id'.
The statement has been terminated.

It definitely seems like we forgot the CountryId property of the City entity: we did that on purpose
when we had to define the Angular city interface because we didn’t need it at that time. We didn’t suffer
from its absence when we implemented the city edit mode because that property was silently fetched
from the server and then stored within our Angular local variable, which we were sending back to
the server while the HTTP PUT request was performing the update. However, now that we do want to
create a new city from scratch, such a missing property will eventually take its toll.

To fix this, we need to add the countryId property to the /src/app/cities/city.ts file in the following
way (the new lines are highlighted):

export interface City {
 id: number;
 name: string;

Chapter 7 319

 lat: number;
 lon: number;
 countryId: number;
}

However, this won’t be enough: we also need to give our users the chance to assign a specific Country
to the new city; otherwise, the countryId property will never see an actual value – unless we define
it programmatically with a fixed value, which would be a rather ugly workaround (to say the least).

Let’s fix this in a decent way by adding a list of countries to CityEditComponent so that the user will be
able to select one before hitting the Create button. Such a new feature will be very useful – even when
the component runs in edit mode – since it will allow our users to change the country for existing cities.

HTML select
The easiest way to allow our users to pick a country from a list of countries would be to use a <select>
element and populate it by fetching our data from the .NET back-end via the CountriesController
GetCountries() method. Let’s do that now.

Open the /src/app/cities/city-edit.component.ts file and add the following code (the new and
updated lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';

import { environment } from './../../environments/environment';
import { City } from './city';
import { Country } from './../countries/country';

@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {

 // the view title
 title?: string;

 // the form model
 form!: FormGroup;

 // the city object to edit or create

Forms and Data Validation320

 city?: City;

 // the city object id, as fetched from the active route:
 // It's NULL when we're adding a new city,
 // and not NULL when we're editing an existing one.
 id?: number;

 // the countries array for the select
 countries?: Country[];

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl(''),
 countryId: new FormControl('')
 });

 this.loadData();
 }

 loadData() {

 // load countries
 this.loadCountries();

 // retrieve the ID from the 'id' parameter
 var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE

 // fetch the city from the server
 var url = environment.baseUrl + 'api/Cities/' + this.id;
 this.http.get<City>(url).subscribe({

Chapter 7 321

 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;

 // update the form with the city value
 this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE

 this.title = "Create a new City";
 }
 }

 loadCountries() {
 // fetch all the countries from the server
 var url = environment.baseUrl + 'api/Countries';
 var params = new HttpParams()
 .set("pageIndex", "0")
 .set("pageSize", "9999")
 .set("sortColumn", "name");

 this.http.get<any>(url, { params }).subscribe({
 next: (result) => {
 this.countries = result.data;
 },
 error: (error) => console.error(error)
 });
 }

 onSubmit() {
 var city = (this.id) ? this.city : <City>{};
 if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;

Forms and Data Validation322

 if (this.id) {
 // EDIT mode

 var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");

 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
 var url = environment.baseUrl + 'api/Cities';
 this.http
 .post<City>(url, city)
 .subscribe({
 next: (result) => {

 console.log("City " + result.id + " has been created.");

 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 }
 }
}

What did we do here?

• We added the HttpParams module to the import list of @angular/common/http
• We added a reference to our Country interface since we need to handle countries as well
• We added a countries variable to store our countries

Chapter 7 323

• We added a countryId form control (with a required validator, since it’s a required value) to
our form

• We added a loadCountries() method to fetch the countries from the server
• We added a call to the loadCountries() method from the loadData() method so that we’ll

asynchronously fetch the countries while we do the rest of the loadData() stuff (such as loading
the city and/or setting up the form)

• We updated the city’s countryId so that it matches the one that’s selected in the form in the
onSubmit() method; this means that it will be sent to the server for the insert or update task

Now, we can use our brand-new countries variable on our HTML template.

Open the /src/app/cities/city-edit.component.html file and add the following code right below
the longitude mat-form-field (the new lines are highlighted):

<!-- ...existing code... -->

<!-- Lon -->
<mat-form-field>
 <mat-label>Longitude:</mat-label>
 <input matInput formControlName="lon" required
 placeholder="Insert longitude">
</mat-form-field>

<!-- Country -->
<p *ngIf="countries">
 <select id="countryId" formControlName="countryId">
 <option value="">--- Select a country ---</option>
 <option *ngFor="let country of countries" [value]="country.id">
 {{country.name}}
 </option>
 </select>
</p>

<!-- ...existing code... -->

It’s worth noting how, in the loadCountries() method, we had to set up some GET param-
eters for the /api/Countries URL to comply with the strict default values that we set in
Chapter 6, Fetching and Displaying Data: we don’t need paging here since we need to fetch
the entire countries list to populate our select list. More specifically, we set a pageSize
of 9999 to ensure that we get all our countries, as well as an appropriate sortColumn to
have them ordered by their name.

Forms and Data Validation324

If we press F5 to test our code and navigate to the Create a new City or Edit City view, we’ll see the
following output:

Figure 7.8: The CityEditComponent with a country drop-down list

Now, by clicking the --- Select a country --- drop-down list, our users will be able to pick a country
from the ones that are available. That’s not bad, right? However, the layout is not that great: the default,
unstyled <select> HTML element does not fill well with Angular Material’s UI.

Luckily enough, we can definitely improve this aspect by replacing our standard HTML select with
a more powerful component from the Angular Material package library: MatSelectModule.

Angular Material select (MatSelectModule)
Since we’ve never used MatSelectModule before, we need to add it to the /src/app/angular-material.
module.ts file.

Here’s the using reference to add:

import { MatSelectModule } from '@angular/material/select';

As always, remember to also add the module in @NgModule's imports and exports collections.

Right after that, we can replace the <select> HTML element we added to the /src/app/cities/city-
edit.component.html file a short while ago in the following way:

Chapter 7 325

<!-- ...existing code... -->

<!-- Country -->
<mat-form-field *ngIf="countries">
 <mat-label>Select a Country...</mat-label>
 <mat-select id="countryId" formControlName="countryId">
 <mat-option *ngFor="let country of countries"
 [value]="country.id">
 {{country.name}}
 </mat-option>
 </mat-select>
</mat-form-field>

<!-- ...existing code... -->

And that’s it! We can see the updated result by hitting F5 (see the following screenshot for the output):

Figure 7.9: The CityEditComponent using MatSelectModule for the country dropdown

The MatSelectModule is definitely prettier than the stock <select> HTML element, all while retaining
the same features: we don’t even need to change the underlying component class file since it uses the
same binding interface.

Forms and Data Validation326

Now, we can add our brand-new city to our database. Let’s do this using the following data:

• Name: New Tokyo
• Latitude: 35.685
• Longitude: 139.7514
• Country: Japan

Fill in our Create a new City form with these values and click the Create button. If everything goes
well, we should be brought back to the Cities view, where we’ll be able to find our New Tokyo city using
the filter (see the following screenshot):

Figure 7.10: Cities list after filtering for New Tokyo

Here we go: we successfully added our first city!

Now that our Reactive Form is working properly and we have decent know-how about how it works,
we’re ready to spend some time tweaking it by adding something that could be very useful in a pro-
duction scenario: some error-handling capabilities. We’ll obtain these capabilities by adding some
data validators.

Understanding data validation
Adding data validation to a form is hardly an option: it’s a required feature to check the user input
in terms of accuracy and completeness to improve the overall data quality by validating the data we
want – or need – to collect. It’s also very useful in terms of user experience because the error-handling
capabilities it comes with will enable our users to understand why the form doesn’t work and what
they can do to fix the issues preventing them from submitting their data.

Chapter 7 327

To understand such a concept, let’s take our current CityEditComponent Reactive Form: it works fine
if our users fill out all the required fields; however, there’s no way for them to understand what the
required values actually are, or what happens if they forget to fill all of them out... except for a console
error message, which is what our source code currently displays whenever our PUT and POST requests
end up with a back-end error of any sort.

In this section, we’ll learn how we can validate user input from the front-end UI and display useful
validation messages using our current Reactive Form. While we’re there, we’ll also take the chance to
create an Edit Country/Add new Country form and learn something new in the process.

Template-driven validation
For the sake of simplicity, we’ve chosen to not mess around with template-driven forms and bring our
focus to model-driven/Reactive Forms instead. However, it might be wise to spend a couple of minutes
understanding how we can add validation to a template-driven form as well.

The good news about this is that we can use the same standard validation attributes that we would
normally use to validate a native HTML form: the Angular framework uses directives to match them
with validator functions internally and in a fully transparent way. More specifically, every time the
value of a form control changes, Angular will run these functions and generate either a list of validation
errors, thus resulting in an invalid status, or null, meaning that the form is valid.

The form’s state – as well as each form control’s state – can be checked/inspected by exporting ngModel
to a local template variable. Here’s an example that can help clarify this:

<input id="name" name="name" required minlength="4"
 [(ngModel)]="city.name" #name="ngModel">

<div *ngIf="name.invalid && (name.dirty || name.touched)">
 <div *ngIf="name.errors?.required">Name is required.</div>
 <div *ngIf="name.errors?.minlength">Name must be at least 4
 characters long.</div>
</div>

The data validation directives are highlighted in bold. As we can see, the preceding form will raise an
error – and show a <div> element with an alert style to the user – whenever the city’s name is not present
or its character count is smaller than 4 since this is the minimum allowed length for the name input.

It’s worth noting that we’re checking two properties that might sound rather odd: name.dirty and
name.touched. Here’s a brief explanation of what they mean and why it’s wise to check for their status:

• The dirty property starts as being false and becomes true whenever the user changes its
starting values

• The touched property starts as being false and becomes true whenever the user blurs the
form control element – that is, clicks (or taps, or “tabs”) away from it after having it in focus

Forms and Data Validation328

Now that we know how these properties work, we should be able to understand why we are checking
them: we want our data validator error to only be seen if/when the user goes away from the control,
leaving it with an invalid value – or no value at all.

Model-driven validation
When dealing with Reactive Forms, the whole validation approach is rather different. In a nutshell,
we could say that most of this job has to be done within the component class: instead of adding val-
idators using HTML attributes in the template, we’ll have to add validator functions directly to the
form control model in the component class so that Angular will be able to call them whenever the
value of the control changes.

Since we’ll mostly be dealing with functions, we’ll also get the option to make them sync or async,
thus getting the chance to add synchronous and/or asynchronous validators:

• Sync validators immediately return either a set of validation errors or null. They can be set
up using the second argument when we instantiate the FormControl they need to check (the
first one being the default value).

• Async validators return a Promise or Observable that’s been configured to emit a set of vali-
dation errors or null. They can be set up using the third argument when we instantiate the
FormControl they need to check.

In the upcoming sections, we’ll create both of them and add them to our form.

Our first validators
Enough with the theory: let’s add our first set of validators in our CityEditComponent form.

Open the /src/app/cities/city-edit.component.ts file and add the following code:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators} from '@angular/forms';

// ...existing code...

That’s it for template-driven validation, at least for the purposes of this book. Those who
need additional information should check out the following guide at https://angular.
io/guide/forms#template-driven-forms.

It’s important to know that async validators will only be executed/checked after the sync
validators, and only if all of them successfully pass. Such an architectural choice has been
made for performance reasons.

https://angular.io/guide/forms#template-driven-forms
https://angular.io/guide/forms#template-driven-forms

Chapter 7 329

''''''''''''''''
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', Validators.required),
 lon: new FormControl('', Validators.required),
 countryId: new FormControl('', Validators.required)
 });

 this.loadData();
 }

// ...existing code...

As we can see, we added the following:

• An import reference to the Validators class from the @angular/forms package.
• A Validators.required to each of our FormControl elements. As the name suggests, this

validator expects a non-null value for these fields; otherwise, it will return an invalid status.

Once you’re done, open the /src/app/cities/city-edit.component.html file and append the fol-
lowing <mat-error> elements at the end of each corresponding mat-form-field existing element,
before that element’s closing tag:

<!-- ...existing code... --!/>

<mat-error *ngIf="form.controls['name'].errors?.['required']">
 Name is required.
</mat-error>

<!-- ...existing code... --!/>

<mat-error *ngIf="form.controls['lat'].errors?.['required']">
 Latitude is required.
</mat-error>

Validators.required is a built-in sync validator among those available from the
Validators class. Other built-in validators provided by this class include min, max,
requiredTrue, email, minLength, maxLength, pattern, nullValidator, compose, and
composeAsync.

For more information regarding Angular’s built-in validators, take a look at the following
URL: https://angular.io/api/forms/Validators.

https://angular.io/api/forms/Validators

Forms and Data Validation330

<!-- ...existing code... --!/>

<mat-error *ngIf="form.controls['lon'].errors?.['required']">
 Longitude is required.
</mat-error>

<!-- ...existing code... --!/>

<mat-error *ngIf="form.controls['countryId'].errors?.['required']">
 Please select a Country.
</mat-error>

<!-- ...existing code... --!/>

Each one of these new <mat-error> elements will check the corresponding input or select value
and return an error if one (or more) of the configured validators fails to validate it.

As we can see, all mat-error elements share the same underlying logic: they will be shown only when
the FormControl error.required property is set to true, which happens when the corresponding
field’s value is empty (since the required validator has been set for all of them).

It’s worth noting that the mat-error, as per its default behavior, will only be shown when
the control is invalid and either the user has interacted with the element (touched) or
the parent form has been submitted. This is great for our purposes since it means that
we don’t have to add additional checks to the *ngIf directive to handle the touched
status as we did early on in this chapter. Furthermore, it’s important to remember that
each mat-error element needs to be placed within its corresponding mat-form-field
element in order to work.

For additional info on the mat-error default behavior (and how to change it), see the
following URL from the Angular Material docs:

https://material.angular.io/components/input/overview#changing-when-
error-messages-are-shown

https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown
https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown

Chapter 7 331

All we need to do now is to properly test these validators. However, before doing that, let’s spend a
couple of minutes explaining the meaning of the ? question mark that we’ve used within the *ngIf
directives in the TypeScript code above.

The safe navigation operator
Let’s take another look at that code:

*ngIf="form.controls['lon'].errors?.['required']"

That question mark is TypeScript’s safe navigation operator, also known as the Elvis operator, and is
very useful for protecting against null and undefined values in property paths. When the safe navi-
gation operator is present, TypeScript stops evaluating the expression when it hits the first null (or
undefined) value. In the preceding code, if the errors nullable property happens to be null (which
happens whenever the FormControl has no errors), the whole expression would evaluate to false
without checking the required property, thus avoiding one of the following null-reference errors:

TypeError: Cannot read property 'required' of null.
Error TS2531: Object is possibly 'null'

In more general terms, the safe navigation operator makes us able to navigate an object path – even
when we are not aware of whether such a path exists or not – by returning either the value of the
object path (if it exists) or null/undefined. Such behavior is very convenient whenever we need to
check for the value of any nullable object: FormControl errors, GET or POST parameters, and a lot of
other common scenarios. For this very reason, we’re going to use it a lot from now on.

For more information about the Safe Navigation Operator, check out the following URL: https://
en.wikipedia.org/wiki/Safe_navigation_operator.

Testing the validators
Let’s quickly check everything we’ve done so far: hit F5, navigate to the Cities view, click on the Add
a new City button, and play with the form while trying to trigger the validators.

It’s worth noting that the safe navigation operator has been part of the Angular HTML tem-
plate language since Angular 2 and was only recently added to TypeScript. This much-need-
ed addition occurred in November 2019, with the release of TypeScript v3.7:

https://www.typescriptlang.org/docs/handbook/release-notes/
typescript-3-7.html

https://en.wikipedia.org/wiki/Safe_navigation_operator
https://en.wikipedia.org/wiki/Safe_navigation_operator
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html

Forms and Data Validation332

Here’s what happens when we cycle through the various input values without typing anything:

Figure 7.11: Testing the CityEditComponent form validators

Not bad, right? The input errors couldn’t be more visible: all of these colored warnings should help
our users understand what they’re doing wrong and fix these issues.

However, notice how the form’s Create button is still enabled – even when those validators are showing
an error: this is not a good behavior, since it allows the user to submit the form with invalid data. To
prevent that, we need to disable the Create button until the form is valid, which can be done by adding
a [disabled] attribute to the form’s submit button in the following way:

<button mat-flat-button color="primary"
 type="submit"
 [disabled]="!form.valid">

This will ensure that the Create button will stay disabled until all the validators give a positive (valid)
response, thus preventing accidental submissions.

Before ending our data validation journey, there’s still one topic we need to cover: server-side validation,
which can often be the only reasonable way to prevent some complex errors.

Chapter 7 333

Server-side validation
Server-side validation is the process of checking for errors (and handling them accordingly) on the
server side – that is, after the data has been sent to the back-end. This is a whole different approach
from client-side validation, where the data is checked by the front-end – that is, before the data is
sent to the server.

Handling errors on the client side has a lot of advantages in terms of speed and performance because
the user immediately knows whether the input data is valid or not without having to query the server.
However, server-side validation is a required feature of any decent web application because it prevents
a lot of potentially harmful scenarios, such as the following:

• Implementation errors of the client-side validation process, which can fail to block badly for-
matted data

• Client-side hacks performed by experienced users, browser extensions, or plugins that might
want to allow the user to send unsupported input values to the back-end

• Request forgery – that is, false HTTP requests containing incorrect or malicious data

All of these techniques are based upon circumventing the client-side validators, which is always possi-
ble because we have no way to prevent our users (or hackers) from skipping, altering, or eliminating
them; conversely, server-side validators cannot be avoided because they will be performed by the same
back-end that will process the input data.

Therefore, in a nutshell, we could reasonably say that client-side validation is an optional and conve-
nient feature, while server-side validation is a requirement for any decent web application that cares
about the quality of the input data.

Moreover, there are some scenarios where server-side validation is the only possible way to check for
certain conditions or requirements that cannot be verified by client-side validation alone. To explain
this concept, let’s look at a quick example.

Launch our WorldCities app in debug mode by hitting F5, go to our Cities view, and type paris into
the filter textbox.

To avoid confusion, it is important to understand that server-side validation, although being
implemented on the back-end, also requires a front-end implementation, such as calling
the back-end and then showing the validation results to the user. The main difference
between client-side validation and server-side validation is that the former only exists on
the client side and never calls the back-end, while the latter relies upon a front-end and
back-end coordinated effort, thus being more complex to implement and test.

Forms and Data Validation334

You should see the following output:

Figure 7.12: Cities list after filtering for “paris”

The preceding screenshot tells us the following things:

• There are no less than five cities called Paris in our archive (!)
• Multiple cities can have the same name

That’s not surprising: when we created our database using Entity Framework with the code-first ap-
proach, we didn’t make the name field unique since we knew that there was a high chance of homony-
mous cities. Luckily enough, this isn’t an issue since we can still distinguish between them by looking
at the lat, lon, and country values.

Now, what about adding a validator that could check if the city we are trying to add has the same name,
lat, and lon values as a city already present in our database? Such a feature would block our users
from inserting the same city multiple times, thus avoiding real duplicates, without blocking the hom-
onyms that have different coordinates.

If we check some of these cities on Google Maps, we will see that one of them is in France,
another one is in Texas (US), a third one is in Tennessee (US), and so on: same name, dif-
ferent cities.

Chapter 7 335

Unfortunately, there’s no way to do that on the client side only. To fulfill this task, we would need to
create an Angular custom validator that could asynchronously check these values against the server and
then return an OK (valid) or KO (invalid) result: in other words, a server-side validation task.

Let’s try to do that now.

DupeCityValidator
In this section, we’ll create a custom validator that will perform an asynchronous call to our .NET
Core back-end to ensure that the city we’re trying to add doesn’t have the same name, lat, lon, and
country as an existing one.

city-edit.component.ts
The first thing we have to do is create the validator itself and bind it to our Reactive Form. To do that,
open the /src/app/cities/city-edit.component.ts file and change its contents accordingly (the
new/updated lines are highlighted):

// ...existing code...

import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn
} from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';

// ...existing code...

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', Validators.required),
 lon: new FormControl('', Validators.required),
 countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());

 this.loadData();
 }

// ...existing code...

 isDupeCity(): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{ [key: string]: any } |
null> => {

 var city = <City>{};

Forms and Data Validation336

 city.id = (this.id) ? this.id : 0;
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;

 var url = environment.baseUrl + 'api/Cities/IsDupeCity';
 return this.http.post<boolean>(url, city).pipe(map(result => {

 return (result ? { isDupeCity: true } : null);
 }));
 }
 }
}

As we can see, we’ve made some important changes in the preceding code:

• We added some import references (AbstractControl, AsyncValidatorFn, Observable, and
map) that we used to implement our new async custom validator. If you don’t get what we need
them for, don’t worry: we’ll be talking about this topic later on.

• We created a new isDupeCity() method, which contains the whole implementation of our
async custom validator.

• We configured the new validator to be used by the main FormGroup (the one related to the
whole form).

As for our custom validator, it seems way more complex than it actually is. Let’s try to summarize
what it does:

• The first thing worth mentioning is that the isDupeCity() method returns an AsyncValidatorFn
that, in turn, returns an Observable: this means that we’re not returning a value, but a subscriber
function instance that will eventually return a value – which will be either a key/value object or
null. This value will only be emitted when the observable is executed.

• The inner function creates a temporary city object, fills it with the real-time form data, calls
an IsDupeCity back-end URL that we don’t know yet (but we will soon enough), and eventually
returns either true or null, depending on the result. It’s worth noting that we’re not subscribing
to the HttpClient this time, as we often did in the past; we’re manipulating it using the pipe
and map RxJS operators, which we’ll be talking about in a short while.

For more information regarding custom async validators, read the following guide:
https://angular.io/guide/form-validation#implementing-a-custom-async-
validator.

https://angular.io/guide/form-validation#implementing-a-custom-async-validator
https://angular.io/guide/form-validation#implementing-a-custom-async-validator

Chapter 7 337

Since our custom validator relies on an HTTP request being sent to our .NET Core back-end, we need
to implement that method as well.

CitiesController
Switch to the WorldCityAPI project, then open the /Controllers/CitiesController.cs file and add
the following method at the bottom of the file:

// ...existing code...

private bool CityExists(int id)
{
 return _context.Cities.Any(e => e.Id == id);
}

[HttpPost]
[Route("IsDupeCity")]
public bool IsDupeCity(City city)
{
 return _context.Cities.AsNoTracking().Any(
 e => e.Name == city.Name
 && e.Lat == city.Lat
 && e.Lon == city.Lon
 && e.CountryId == city.CountryId
 && e.Id != city.Id
);
}

// ...existing code...

The .NET method is very straightforward: it checks the data model for a City that has the same Name,
Lat, Lon, and CountryId as the one provided by the front-end (as well as a different Id) and returns
true or false as the result. The Id check has been added to conditionally disable the dupe check when
the user is editing an existing city. If that’s the case, using the same Name, Lat, Lon, and CountryId would
be allowed since we’re basically overwriting the same city and not creating a new one. When the user
adds a new city, that Id value will always be set to zero, preventing the dupe check from being disabled.

city-edit.component.html
Now that the back-end code is ready, we need to create a suitable error message from the UI. Open the
/src/app/cities/city-edit.component.html file and update its content in the following way (the
new lines are highlighted):

<div class="city-edit">
 <h1>{{title}}</h1>

Forms and Data Validation338

 <p *ngIf="id && !city">Loading...</p>
 <form [formGroup]="form" (ngSubmit)="onSubmit()">

 <p>
 <mat-error *ngIf="form.invalid && form.hasError('isDupeCity')">
 ERROR:
 A city with the same <i>name</i>, <i>lat</i>,
 <i>lon</i> and <i>country</i> already exists.
 </mat-error>
 </p>

<!-- ...existing code... -->

As shown in the preceding code, the alert <div> we added will only be shown if the following three
conditions are met:

• The form is invalid
• There are errors that are strictly related to the form itself
• The isDupeCity error is returning true

It’s very important to check all of them; otherwise, we risk showing such an alert even when it doesn’t
have to be shown.

Testing it out
Now that the component HTML template has been set up, we can test the result of our hard work.
Press F5, navigate to the Cities view, click the Add a new City button, and insert the following values:

• Name: New Tokyo
• Latitude: 35.685
• Longitude: 139.7514
• Country: Japan

Chapter 7 339

If we did everything properly, we should be greeted by the following error message:

Figure 7.13: Testing the duplicate city validator

That’s great! Our custom async validator is working fine and triggers both the front-end and the back-
end validation logic.

Observables and RxJS operators
The async logic that’s used to perform the call makes use of the Observable/RxJS pattern: this time,
though, instead of relying on the subscribe() method we’ve already used a number of times, we
opted for a pipe and map approach. These are two very important RxJS operators that allow us to per-
form our data manipulation tasks while retaining the Observable status of the returned value, while
subscriptions will execute the Observable and return actual data instead.

This concept might be quite difficult to understand. Let’s try to put it in other words:

• We should use the subscribe() method when we want to execute the Observable and get its
actual result – for example, a JSON structured response. Such a method returns a subscription
that can be canceled but can’t be subscribed to anymore.

• We should use the map() operator when we want to transform/manipulate the data events
of the Observable without executing it so that it can be passed to other async actors that will
also manipulate (and eventually execute) it. Such a method returns an Observable that can be
subscribed to.

Forms and Data Validation340

As for the pipe(), it’s just a method that composes/chains other RxJS operators (such as map, filter,
and so on).

The most important difference between Observable methods and RxJS operators is that the latter
always returns Observables, while the former returns a different (and mostly final) object type. Does
this ring a bell?

If we think about what we learned back in Chapter 6, Fetching and Displaying Data, when dealing with
.NET Entity Framework, it should definitely sound familiar. Remember when we were playing around
with the IQueryable<T> interface? The various Where, OrderBy, and CountAsync IQueryable methods
that we used when we built our ApiResult class are quite similar to what we can do in Angular by
chaining multiple map functions with the pipe operator. Conversely, the subscribe() method strictly
resembles the various ToListAsync()/ToArrayAsync() methods that we used in .NET to execute the
IQueryable and retrieve its result in a usable object.

Performance issues
Before moving on, let’s try to answer the following question: when will this validator be checked? In
other words, can we reasonably expect performance issues, considering the fact that it performs a
server-side API call upon each check?

If we recall what we said earlier, the asynchronous validators will only be checked when all the syn-
chronous validators return true. Since isDupeCity is async, it won’t be called until all the Validators.
required that we previously set up in all the FormControl elements return true. That’s a piece of great
news indeed since there would be no sense in checking for an existing city with name, lat, lon, and/
or countryId being null or empty.

Based on what we have just said, we can reasonably expect the isDupeCity validator to be called once
or twice for each form submission, which is perfectly fine in terms of performance impact. Everything
is fine, then. Let’s move on.

Introducing the FormBuilder
Now that our CityEditComponent has been set up, we might be tempted to reuse the same techniques
to create a CountryEditComponent and get the job done, just like we did in Chapter 6, Fetching and
Displaying Data, with our CitiesComponent and CountryComponent files. However, we won’t be doing
this. Instead, we’ll take the chance to introduce a new tool to our shed that can be very useful when
dealing with multiple forms: the FormBuilder service.

In the following sections, we’ll do the following:

• Create our CountryEditComponent with all the required TypeScript, HTML, and SCSS files
• Learn how to use the FormBuilder service to generate form controls in a better way
• Add a new set of Validators (including a brand-new isDupeCountry custom validator) to the

new form implementation
• Test our new FormBuilder-based implementation to check that everything works

Chapter 7 341

By the end of this section, we’ll have a fully functional CountryEditComponent that will work in the
same way that CityEditComponent does, except it will be based on a slightly different approach.

Creating the CountryEditComponent
Let’s start by creating the Angular component, just like we did with the CityEditComponent early on.

Open a command-line prompt, navigate to our worldcities.client project’s root folder, and then
execute the following command:

ng generate component countries/CountryEdit --flat --module=app --skip-tests

Once you’re done, fill the newly created component files with the following content.

country-edit.component.ts
Open the /src/app/countries/country-edit.component.ts file and fill it with the following code.
Watch out for the highlighted parts, which are rather different from the previous CityEditComponent;
other minor differences (such as country instead of city, countries instead of cities, and the like)
are not highlighted, since they’re more than expected:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormBuilder, Validators, AbstractControl, AsyncValidatorFn
} from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';

import { environment } from './../../environments/environment';
import { Country } from './country';

@Component({
 selector: 'app-country-edit',
 templateUrl: './country-edit.component.html',
 styleUrls: ['./country-edit.component.scss']
})
export class CountryEditComponent implements OnInit {

 // the view title
 title?: string;

 // the form model
 form!: FormGroup;

Forms and Data Validation342

 // the country object to edit or create
 country?: Country;

 // the country object id, as fetched from the active route:
 // It's NULL when we're adding a new country,
 // and not NULL when we're editing an existing one.
 id?: number;

 // the countries array for the select
 countries?: Country[];

 constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }

 ngOnInit() {
 this.form = this.fb.group({
 name: ['',
 Validators.required,
 this.isDupeField("name")
],
 iso2: ['',
 [
 Validators.required,
 Validators.pattern(/^[a-zA-Z]{2}$/)
],
 this.isDupeField("iso2")
],
 iso3: ['',
 [
 Validators.required,
 Validators.pattern(/^[a-zA-Z]{3}$/)
],
 this.isDupeField("iso3")
]
 });

 this.loadData();

Chapter 7 343

 }

 loadData() {

 // retrieve the ID from the 'id' parameter
 var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE

 // fetch the country from the server
 var url = environment.baseUrl + "api/Countries/" + this.id;
 this.http.get<Country>(url).subscribe({
 next: (result) => {
 this.country = result;
 this.title = "Edit - " + this.country.name;

 // update the form with the country value
 this.form.patchValue(this.country);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE

 this.title = "Create a new Country";
 }
 }

 onSubmit() {
 var country = (this.id) ? this.country : <Country>{};
 if (country) {
 country.name = this.form.controls['name'].value;
 country.iso2 = this.form.controls['iso2'].value;
 country.iso3 = this.form.controls['iso3'].value;

 if (this.id) {
 // EDIT mode

 var url = environment.baseUrl + 'api/Countries/' + country.id;

Forms and Data Validation344

 this.http
 .put<Country>(url, country)
 .subscribe({
 next: (result) => {
 console.log("Country " + country!.id + " has been updated.");

 // go back to countries view
 this.router.navigate(['/countries']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
 var url = environment.baseUrl + 'api/Countries';
 this.http
 .post<Country>(url, country)
 .subscribe({
 next: (result) => {
 console.log("Country " + result.id + " has been created.");

 // go back to countries view
 this.router.navigate(['/countries']);
 },
 error: (error) => console.error(error)
 });
 }
 }
 }

 isDupeField(fieldName: string): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{
 [key: string]: any
 } | null> => {

 var params = new HttpParams()
 .set("countryId", (this.id) ? this.id.toString() : "0")
 .set("fieldName", fieldName)
 .set("fieldValue", control.value);
 var url = environment.baseUrl + 'api/Countries/IsDupeField';
 return this.http.post<boolean>(url, null, { params })

Chapter 7 345

 .pipe(map(result => {
 return (result ? { isDupeField: true } : null);
 }));
 }
 }
}

As we can see, the component’s source code is quite similar to CityEditComponent, except for some
limited yet important differences that we’re going to summarize here:

• The FormBuilder service has been added to the @angular/forms import list, replacing the
FormControl reference that we don’t need anymore. As a matter of fact, we’re still creating
form controls, but we’ll do that via the FormBuilder instead of manually instantiating them,
which means we don’t need to explicitly reference them.

• The form variable is now instantiated using a different approach that strongly relies upon the
new FormBuilder service.

• The various FormControl elements that get instantiated within the form feature are some
validators that we have never seen before.

The FormBuilder service gives us three factory methods so that we can create our form structure:
control(), group(), and array(). Each generates an instance of the corresponding FormControl,
FormGroup, and FormArray class. In our example, we’re creating a single containing group with three
controls, each with its own set of validators.

As for the validators, we can see two new entries:

• Validators.pattern: A built-in validator that requires the control’s value to match a given
regular expression (regex) pattern. Since our ISO2 and ISO3 country fields are defined using
a strict format, we’re going to use them to ensure that the user will input the correct values.

• isDupeField: This is a custom async validator that we implemented here for the first time. It’s
similar to the isDupeCity validator that we created for our CityEditComponent but with some
key differences, which we’re going to summarize in the next section.

The pattern validator is quite self-explanatory, while the isDupeField custom validator deserves
some additional explanation.

Those who don’t know much about regular expressions (or regex for short) and want to use
the Validators.pattern to its full extent should definitely visit the following websites:

https://regexr.com/

https://regex101.com/

Both of them contain a good number of resources regarding regex and a great online
builder and tester with full JavaScript and PHP/PCRE regex support.

https://regexr.com/
https://regex101.com/

Forms and Data Validation346

The isDupeField validator
As we can see by looking at the preceding component’s source code, the isDupeField custom validator
is not assigned to the main FormGroup like isDupeCity is; instead, it’s set three times: once for each
FormControl it needs to check. The reason for this is simple: compared to isDupeCity, which was
meant to check for duplicate cities using a four-field dupe key, isDupeField needs to individually
check each field it’s assigned to. We need to do that because we don’t want more than one country
having the same name, the same iso2, or the same iso3.

This also explains why we need to specify a fieldName and a corresponding fieldValue instead of
passing a Country interface: the isDupeField server-side API will have to perform a different check
for each fieldName we’re going to pass, instead of relying on a single general-purpose check as the
isDupeCity API does.

As for the countryId parameter, it’s required to prevent the dupe check from raising a validation error
when editing an existing country. In the isDupeCity validator, it was passed as a property of the city
class. Now, we need to explicitly add it to the POST parameters.

The IsDupeField server-side API
Now, we need to implement our custom validator’s back-end API, just like we did with IsDupeCity()
early on. Switch to the WorldCities�Server project, then open the /Controllers/CountriesController.
cs file and add the following method at the bottom of the file:

// ...existing code...

private bool CountryExists(int id)
{
 return _context.Countries.Any(e => e.Id == id);
}

[HttpPost]
[Route("IsDupeField")]
public bool IsDupeField(
 int countryId,
 string fieldName,
 string fieldValue)
{
 switch (fieldName)
 {
 case "name":
 return _context.Countries.Any(
 c => c.Name == fieldValue && c.Id != countryId);
 case "iso2":
 return _context.Countries.Any(

Chapter 7 347

 c => c.ISO2 == fieldValue && c.Id != countryId);
 case "iso3":
 return _context.Countries.Any(
 c => c.ISO3 == fieldValue && c.Id != countryId);
 default:
 return false;
 }
}

Although the code resembles the IsDupeCity server-side API, we’re switching the fieldName param-
eter and performing a different dupe check depending on its value; such logic is implemented with a
standard switch/case conditional block with strongly typed LINQ lambda expressions for each field
we can reasonably expect. Again, we’re also checking that the countryId is different so that our users
can edit an existing country.

If the fieldName that’s received from the client differs from the three supported values, our API will
respond with false.

An alternative approach using Linq.Dynamic
Before moving on, we may want to ask ourselves why we’ve implemented the IsDupeField API using
strongly typed lambda expressions inside a switch...case block, instead of relying on the System.
Linq.Dynamic.Core library.

As a matter of fact, we did that for the sake of simplicity, since the dynamic approach would require us
to have to write additional code to protect our method from SQL injection attacks. However, since we
already implemented such a task in the IsValidProperty() method of our ApiResult class, maybe
we can use it and shrink the preceding code down: after all, we’ve made it public and static so that we
can use it anywhere.

Here’s an alternative implementation using the aforementioned tools (the old code is commented,
while the new code is highlighted):

using System.Linq.Dynamic.Core;

// ...existing code...

[HttpPost]
[Route("IsDupeField")]
public bool IsDupeField(
 int countryId,
 string fieldName,
 string fieldValue)
{
 // Default approach (using strongly-typed LAMBA expressions)
 //switch (fieldName)

Forms and Data Validation348

 //{
 // case "name":
 // return _context.Countries.Any(c => c.Name == fieldValue);
 // case "iso2":
 // return _context.Countries.Any(c => c.ISO2 == fieldValue);
 // case "iso3":
 // return _context.Countries.Any(c => c.ISO3 == fieldValue);
 // default:
 // return false;
 //}

 // Alternative approach (using System.Linq.Dynamic.Core)
 return (ApiResult<Country>.IsValidProperty(fieldName, true))
 ? _context.Countries.Any(
 string.Format("{0} == @0 && Id != @1", fieldName),
 fieldValue,
 countryId)
 : false;
}

Not bad, right?

The alternative dynamic approach definitely looks more DRY and versatile than the default one, all
while retaining the same security level against SQL injection attacks. The only downside may be due
to the additional overhead brought by the System.Linq.Dynamics.Core library, which will likely have
some minor performance impact. Although this shouldn’t be an issue in most scenarios, whenever
we want our APIs to respond to HTTP requests as quickly as possible, we should arguably favor the
default approach.

country-edit.component.html
It’s time to implement the template of our CountryEditComponent.

Open the /src/app/countries/country-edit.component.html file and fill it with the following code.
Once again, pay attention to the highlighted parts, which are rather different from the template of
CityEditComponent; other minor differences, such as country instead of city, are not highlighted
since they’re more than expected:

<div class="country-edit">
 <h1>{{title}}</h1>
 <p *ngIf="id && !country">Loading...</p>
 <form [formGroup]="form" (ngSubmit)="onSubmit()">

 <!-- Name -->
 <mat-form-field>

Chapter 7 349

 <mat-label>Name:</mat-label>
 <input matInput formControlName="name" required
 placeholder="Type a name">
 <mat-error *ngIf="form.controls['name'].errors?.['required']">
 Name is required.
 </mat-error>
 <mat-error *ngIf="form.controls['name'].errors?.['isDupeField']">
 Name already exists: please choose another.
 </mat-error>
 </mat-form-field>

 <!-- ISO2 -->
 <mat-form-field>
 <mat-label>
 ISO 3166-1 ALPHA-2 Country code (2 letters)
 </mat-label>
 <input matInput formControlName="iso2" required
 placeholder="Insert the ISO2 Country code">
 <mat-error *ngIf="form.controls['iso2'].errors?.['required']">
 ISO 3166-1 ALPHA-2 Country code is required.
 </mat-error>
 <mat-error *ngIf="form.controls['iso2'].errors?.['pattern']">
 ISO 3166-1 ALPHA-2 Country code requires 2 letters.
 </mat-error>
 <mat-error *ngIf="form.controls['iso2'].errors?.['isDupeField']">
 This code already exists: please choose another.
 </mat-error>
 </mat-form-field>

 <!-- ISO3 -->
 <mat-form-field>
 <mat-label>
 ISO 3166-1 ALPHA-3 Country code (3 letters)
 </mat-label>
 <input matInput formControlName="iso3" required
 placeholder="Insert the ISO3 Country code">
 <mat-error *ngIf="form.controls['iso3'].errors?.['required']">
 ISO 3166-1 ALPHA-3 Country code is required.
 </mat-error>
 <mat-error *ngIf="form.controls['iso3'].errors?.['pattern']">
 ISO 3166-1 ALPHA-3 Country code requires 3 letters.

Forms and Data Validation350

 </mat-error>
 <mat-error *ngIf="form.controls['iso3'].errors?.['isDupeField']">
 This code already exists: please choose another.
 </mat-error>
 </mat-form-field>

 <div>
 <button mat-flat-button color="primary"
 type="submit" [disabled]="!form.valid">
 {{ this.id ? "Save" : "Create" }}
 </button>
 <button mat-flat-button color="secondary"
 [routerLink]="['/countries']">
 Cancel
 </button>
 </div>
 </form>
</div>

As we can see, the most relevant differences are all related to the HTML code that’s required to show
the new pattern and isDupeField validators. Now, we have as many as three different validators for our
fields, which is pretty awesome: our users won’t be given a chance to input wrong values!

country-edit.component.scss
Last but not least, let’s apply the UI styling.

Open the /src/app/countries/country-edit.component.scss file and fill it with the following code:

mat-form-field {
 display: block;
 margin: 10px 0;
}

No surprises here; the preceding stylesheet code is identical to the one we used for CityEditComponent.

Our component is finally done! Now we just need to reference it in the AppRoutingModule file to im-
plement the client-side navigation routes.

AppRoutingModule
By now, we should know what to do. Open the app-routing.module.ts file and add the following
routing rules (new lines are highlighted):

// ...existing code...

import { CountryEditComponent } from './countries/country-edit.component';

Chapter 7 351

// ...existing code...

{ path: 'countries', component: CountriesComponent },
{ path: 'country/:id', component: CountryEditComponent },
{ path: 'country', component: CountryEditComponent }

// ...existing code...

Now that we’ve laid down the two routes so that we can edit and add countries, we just need to im-
plement them in the CountriesComponent template file by adding the route link in the Name column
and the Add new Country button, just like we did with the cities.

CountriesComponent
Open the /src/app/countries/countries.component.html file and add the following code (the new
and updated lines are highlighted):

<!--existing code... -->

<p *ngIf="!countries">Loading…</p>

<button mat-flat-button color="primary"
 class="btn-add" [routerLink]="['/country']">
 Add a new Country
</button>

<!--existing code... -->

<!--Name Column -->
<ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
 <td mat-cell *matCellDef="let country">
 <a [routerLink]="['/country', country.id]">{{country.name}}
 </td>
</ng-container>

<!--existing code... -->

We’re almost done; we just need to add the .add-btn CSS class to the countries.component.scss file,
so that the Add new Country button will be aligned to the right…

.btn-add {
 float: right;
}

Forms and Data Validation352

... And that’s it! Now, we’re ready to test everything out.

Testing the CountryEditComponent
Now, it’s time to press F5 and admire the result of our hard work.

Once the app has been launched in debug mode, navigate to the Countries view to see the Add a new
Country button and the edit links on the various country names, as shown in the following screenshot:

Figure 7.14: Countries list with the Add a new Country button and edit links

Now, let’s search for Denmark using our filter and click on the name to enter the CountryEditComponent
in edit mode. If everything works fine, the name, iso2, and iso3 fields should all be green, meaning
that our isDupeField custom validator(s) are not raising errors:

Chapter 7 353

Figure 7.15: CountryEditComponent for Denmark

Now, let’s try to change the country name to Japan and the ISO 3166-1 ALPHA-2 Country code to IT
and see what happens:

Figure 7.16: Duplicate error messages when trying to edit Denmark

Forms and Data Validation354

This is a great result: this means that our custom validators are doing their job, positively raising
some dupe errors since these values have been reserved for other existing countries (Japan and Italy,
respectively).

Now, let’s hit the Cancel button and go back to the Countries view. From there, click the Add a new
Country button and try to insert a country with the following values:

• Name: New Japan
• ISO 3166-1 ALPHA-2 Country code: JP
• ISO 3166-1 ALPHA-3 Country code: NJ2

If everything is working fine, we should raise two more validation errors, as shown in the following
screenshot:

Figure 7.17: Duplicate errors while trying to add a new country

The former error is raised by our isDupeField custom validator and is due to the fact that the ALPHA-2
country code already belongs to an existing country (Japan); the latter one is raised by the built-in
Validators.pattern, which we configured with a regular expression, /^[a-zA-Z]{3}$/, that doesn’t
allow digits.

Let’s fix these errors by typing in the following values:

• Name: New Japan
• ISO 3166-1 ALPHA-2 Country code: NJ
• ISO 3166-1 ALPHA-3 Country code: NJP

Chapter 7 355

Once you’re done, click Create to create the new country. If everything is working as expected, the
view should redirect us to the main Countries view.

From there, we can type New Japan into our text filter to ensure that our brand-new country is actually
there:

Figure 7.18: Countries list after filtering for New Japan

Here it is! This means that we’re finally done with CountryEditComponent and ready to move on to
new, exciting tasks.

Improving the filter behavior
The real-time filter that we’ve implemented in our Cities and Countries listing views works well
and should be very helpful for our users; however, every time the filter text changes (that is, upon
each keystroke), Angular fires an HTTP request to the back-end to retrieve the updated list of results.
Such behavior is intrinsically resource-intensive and can easily become a huge performance issue,
especially if we’re dealing with large tables and/or non-indexed columns.

Are there ways to improve this approach without compromising the results obtained in terms of user
experience? As a matter of fact, the answer is yes, as long as we’re willing to implement a couple of
widely used techniques specifically meant to improve the performance of code that gets executed
repeatedly within a short period of time.

Forms and Data Validation356

Throttling and debouncing
If we think about it, our everyday life is full of situations where we are forced to do something while
our attention is captured by something else: social networks such as X (previously Twitter) and instant
messaging apps such as WhatsApp are perfect examples of that, since they flood us with notifications
regardless of what we’re doing.

What do we usually do in these cases? Let’s consider the following alternatives:

• Respond to all notifications in real time, which would be great for the requesting party but
would compromise what we’re doing

• Take no immediate action and check our messages only once every, let’s say, five minutes
• Take no immediate action and check our messages only when no new notifications have come

in for the last five minutes

The first approach is what our app is currently doing; the second is called throttling, while the third is
called debouncing. Let’s try to better understand what these terms actually mean.

Definitions
In software development, throttling is used to define a behavior that enforces a maximum number
of times a function can be called over time. To put it in other words, it’s a way to say, “Let’s execute this
function at most once every N milliseconds.” No matter how many times the user fires the event, that
function will be executed only once in a given time interval.

The term debouncing is used to define a technique that prevents a function from being called until
a certain amount of time has passed without it being called: in other words, it’s a way to say, “Let’s
execute this function only if N milliseconds have passed without it being called.” The concept has some
similarities with the throttling technique, with an important difference: no matter how many times
the user fires the event, the attached function will be executed only after the specified time once the
user stops firing the event.

In a nutshell, we can say that the main difference between throttling and debouncing is that throt-
tling executes the function at a regular interval, while debouncing executes the function only after a
cooling period.

Why would we want to throttle or debounce our code?
Let’s cut it short – in information technology, throttling and debouncing are mostly useful for two
main reasons: optimization and performance. They are widely used in JavaScript because they can be
very helpful to efficiently handle some resource-intensive DOM-related tasks, such as scrolling and
resizing HTML components, as well as retrieving data from the server.

In our given scenario, we can think of them as two ways to optimize event handling, thus lifting some
work from our server (controller and database): more specifically, we want to find a way to reduce the
HTTP requests that Angular currently makes to our server upon each keystroke.

Shall we do that using throttling or debouncing?

Chapter 7 357

If we think about how the filter function works in terms of user experience, we can easily determine
the correct answer. Since we’re talking about a textbox that can be used to filter the listing results
to those that contain one or more characters typed by the user, we can reasonably conclude that we
could defer the HTTP request until the user stops typing, as long as we process it right after it does.
Such behavior won’t hinder the user experience granted by the current filter while preventing a good
number of unnecessary HTTP calls.

In other words, we need to debounce our calls to the back-end: let’s see how we can do that.

Debouncing calls to the back-end
An easy approach to debouncing with Angular is given by RxJS, the Reactive Extensions for JavaScript
library, which allows us to use Observables, which we introduced in Chapter 4, Front-End and Back-End
Interactions. Since we’re using an Observable to perform the HTTP call, we’re halfway there: we just
need to make use of the handy debounceTime RxJS operator, which will emit a value from the source
Observable only after a particular time span has passed without another source emission. While we are
there, we can also take the chance to add the distinctUntilChanged operator as well, which emits
a value only if it’s different from the last one inserted by the user: this will prevent any HTTP call
identical to the previous one, which could happen – for example – if the user writes a sentence, then
adds a letter and immediately deletes it.

Updating the CitiesComponent
To implement such logic, open the /src/app/cities/cities.component.ts file and perform the
following changes:

// [...]

import { MatSort } from '@angular/material/sort';

import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';

// ...existing code...

 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;

 filterTextChanged: Subject<string> = new Subject<string>();

// ...existing code...

 ngOnInit() {
 this.loadData();
 }

Forms and Data Validation358

 // debounce filter text changes
 onFilterTextChanged(filterText: string) {
 if (!this.filterTextChanged.observed) {
 this.filterTextChanged
 .pipe(debounceTime(1000), distinctUntilChanged())
 .subscribe(query => {
 this.loadData(query);
 });
 }
 this.filterTextChanged.next(filterText);
 }

// ...existing code...

As we can see, we haven’t touched the loadData method at all, so that we won’t mess up anything that
we’ve done up to now; we added a new onFilterTextChanged method instead, which will be called
by the filter’s input and will transparently handle the debouncing task.

If we take a closer look at the onFilterTextChanged method, we can see that it works with a new
filterTextChanged variable that we’ve also added to our component class: this variable hosts a Subject,
a special type of Observable that allows values to be multi-casted to many Observers.

In a nutshell, here’s what this new method does every time it gets called by the filter’s input method:

• Checks the filterTextChanged Subject to see if there are Observers listening; if there are no
Observers yet, it pipes the debounceTime and distinctUntilChanged operators and adds a new
subscription for the loadData method

• Feeds a new value to the Subject, which will be multi-casted to the Observers registered to listen
to it

Although we’ve already explained what these operators do, let’s quickly recap their role:

• debounceTime will emit the value after 1,000 milliseconds of no source input coming from
the user

• distinctUntilChanged will emit the value only if it’s different from the last inserted one

Now that we’ve implemented the debouncing logic in the Angular class, we just need to update the
component’s template file to make the filter’s input call the new onFilterTextChanged method instead
of loadData.

For space reasons, we won’t say any more about Subjects here, but the topic can be further
studied by taking a look at the following page from the RxJS official guide: https://rxjs-
dev.firebaseapp.com/guide/subject#.

https://rxjs-dev.firebaseapp.com/guide/subject#
https://rxjs-dev.firebaseapp.com/guide/subject#

Chapter 7 359

Open the /src/app/cities/cities.component.html file and apply the following changes:

<mat-form-field [hidden]="!cities">
 <input matInput #filter (keyup)="onFilterTextChanged(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

That’s it!

Updating the CountriesComponent
Before going further, let’s update the CountriesComponent in the exact same way. This can be done
by opening the following files:

• /src/app/countries/countries.component.ts

• /src/app/countries/countries.component.html

and applying the same changes that we did on the CitiesComponent files.

Delaying these HTTP requests in these two components will shut out most unnecessary HTTP requests
coming from our Angular app, thus preventing our database from being called over and over rapidly.

What about throttling?
As a matter of fact, our worldcities.client Angular app doesn’t have tasks or features that could
benefit from throttling. However, it’s worth noting that such a technique can be implemented using
the same approach that we’ve used for debouncing, replacing the debounceTime RxJS operator with
throttleTime.

For space reasons, we won’t demonstrate how to perform these changes here; however,
the updated CountriesComponent source code can be found in the GitHub repository.

For additional info regarding these RxJS operators, refer to the following pages from the
RxJS official guide:

https://rxjs-dev.firebaseapp.com/api/operators/debounceTime

https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

https://rxjs-dev.firebaseapp.com/api/operators/debounceTime
https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

Forms and Data Validation360

Summary
This chapter was entirely dedicated to Angular forms. We started by clarifying what a form actually
is and enumerated the features it needs to have in order to fulfill its duties, grouping them into two
main requirements: providing a good user experience and properly handling the submitted data.

Then, we turned our focus to the Angular framework and to the two form design models it offers: the
template-driven approach, mostly inherited from AngularJS, and the model-driven or Reactive alterna-
tive. We took some valuable time to analyze the pros and cons provided by each of them and then
we performed a detailed comparison of the underlying logic and workflow. At the end of the day, we
chose to embrace the Reactive way of doing things, as it gives the developer more control and enforces
a more consistent separation of duties between the data model and the form model.

Right after that, we went from theory to practice by creating a CityEditComponent and used it to
implement a fully featured Reactive Form; we also added the client-side and server-side data validation
logic by making good use of the Angular template syntax in conjunction with the classes and directives
granted by Angular’s ReactiveFormsModule. Once done, we did the same with CountryEditComponent,
where we took the chance to try and use a FormBuilder instead of the FormGroup/FormControl in-
stances we used previously.

We then performed a surface test with our browser to check all the built-in and custom validators,
ensuring that they worked properly on the front-end as well as on their back-end APIs.

Last but not least, we spent some valuable time analyzing some performance issues of our filter
feature and found a way to mitigate them by implementing a debouncing technique: this allowed
us to learn how to use some very useful features from the RxJS library: Subject, debounceTime, and
distinctUntilChanged.

In the next chapter, we’re going to refine what we’ve done so far by refactoring some rough aspects
of our Angular components in a better way. By doing so, we’ll learn how to post-process the data, add
decent error handling, implement some retry logic to deal with connection issues, debug our form
using the Visual Studio client-side debugger, and – most importantly – perform some unit tests.

Suggested topics
For further information, we recommend the following topics: template-driven forms, model-driven
forms, Reactive Forms, JSON, RFC 7578, RFC 1341, URL living standard, HTML living standard, data
validation, Angular validators, custom validators, asynchronous validators, regular expressions (re-
gex), Angular pipes, FormBuilder, RxJS, Observables, safe navigation operator (Elvis Operator), RxJS
operators, Subject, debounceTime, and throttleTime.

Chapter 7 361

References
• The application/www-form-urlencoded format draft-hoehrmann-urlencoded-01: https://tools.

ietf.org/html/draft-hoehrmann-urlencoded-01

• RFC 7578 – Returning Values from Forms: multipart/form-data: https://tools.ietf.org/html/
rfc7578

• RFC 1341, section 7.2 – The Multipart Content-Type: https://www.w3.org/Protocols/
rfc1341/7_2_Multipart.html

• URL Living Standard – URL-encoded Form Data: https://url.spec.whatwg.org/#concept-
urlencoded

• HTML Living Standard, section 4.10.21.7 – Multipart form data: https://html.spec.whatwg.
org/multipage/form-control-infrastructure.html#multipart-form-data

• HTML Living Standard, section 4.10.21.8 – Plain Text Form Data: https://html.spec.whatwg.
org/multipage/form-control-infrastructure.html#plain-text-form-data

• Angular: Template-driven forms: https://angular.io/guide/forms#template-driven-forms
• Angular: Reactive forms: https://angular.io/guide/reactive-forms
• Angular: Form validation: https://angular.io/guide/form-validation
• Angular: Validators: https://angular.io/api/forms/Validators
• Angular: Custom Async Validators: https://angular.io/guide/form-validation#implementing-

a-custom-async-validator

• RegExr: Learn, Build, and Test RegEx: https://regexr.com/
• regex101: Build, test, and debug regex: https://regex101.com/
• Angular Material input error messages: https://material.angular.io/components/input/

overview#changing-when-error-messages-are-shown

• TypeScript 3.7 Release Notes: https://www.typescriptlang.org/docs/handbook/release-
notes/typescript-3-7.html

• Safe navigation operator: https://en.wikipedia.org/wiki/Safe_navigation_operator
• RxJS Subject: https://rxjs-dev.firebaseapp.com/guide/subject#
• RxJS debounceTime operator: https://rxjs-dev.firebaseapp.com/api/operators/

debounceTime

• RxJS throttleTime operator: https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

https://tools.ietf.org/html/draft-hoehrmann-urlencoded-01
https://tools.ietf.org/html/draft-hoehrmann-urlencoded-01
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7578
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://url.spec.whatwg.org/#concept-urlencoded
https://url.spec.whatwg.org/#concept-urlencoded
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data
https://angular.io/guide/forms#template-driven-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/form-validation
https://angular.io/api/forms/Validators
https://angular.io/guide/form-validation#implementing-a-custom-async-validator
https://angular.io/guide/form-validation#implementing-a-custom-async-validator
https://regexr.com/
https://regex101.com/
https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown
https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://en.wikipedia.org/wiki/Safe_navigation_operator
https://rxjs-dev.firebaseapp.com/guide/subject#
https://rxjs-dev.firebaseapp.com/api/operators/debounceTime
https://rxjs-dev.firebaseapp.com/api/operators/debounceTime
https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

Forms and Data Validation362

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

8
Code Tweaks and Data Services

Our WorldCities web application is now a full-fledged project providing a number of interesting
features: we can retrieve a list of all the cities and countries available in our DBMS and browse them
through paged tables that we can order and filter; thanks to our master/detail UI pattern, we can also
access a detailed view of each city and country, where we can read and/or edit the most relevant fields
for both of them; and last, but not least, we can create new cities and countries thanks to the “add new”
capabilities of the aforementioned detail view.

Now, before going further, it could be wise to spend some time consolidating what we’ve learned so
far and improve the basic patterns we have followed. After all, refining our front-end and back-end, and
the overall logic they’re currently relying upon, will definitely make them more versatile and fail-proof
for what is yet to come.

This chapter is entirely dedicated to those tasks. Here’s what we’re going to do in the various sections
that we’re about to face:

• Optimizations and tweaks, where we’ll implement some high-level source code and UI re-
finements

• Bug fixes and improvements, where we’ll leverage the preceding tweaks to enhance our app’s
consistency and add some new features

• Data services, where we’ll learn how to migrate from our current simplified implementation
– where we used the raw HttpClient service directly inside the components – to a more ver-
satile approach that allows us to add features such as post-processing, error handling, retry
logic, and more

All these changes will be worth their time because they’ll strengthen our app’s source code and prepare
it for the debugging and testing phase that will feature in the next chapter.

All right, then... let’s get to work.

Code Tweaks and Data Services364

Technical requirements
In this chapter, we’re going to need all the technical requirements that were listed in all the previous
chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/main/Chapter_08.

Optimizations and tweaks
In computer programming, the term code bloat is commonly used to describe an unnecessarily long,
slow, or wasteful amount of source code. Such code is hardly desirable because it inevitably makes
our app more vulnerable to human error, regression bugs, logical inconsistencies, wasted resources,
and so on. It also makes debugging and testing a lot more difficult and stressful; for all of the aforemen-
tioned reasons, we should try to prevent that from happening as much as we can.

The most effective way to counter code bloat is to adopt and adhere to the Don’t Repeat Yourself (DRY)
principle, which is something that any developer should try to follow whenever they can. As already
stated in Chapter 6, Fetching and Displaying Data, DRY is a widely achieved principle of software de-
velopment; whenever we violate it, we fall into a WET approach, which could mean Write Everything
Twice, We Enjoy Typing, or Waste Everyone’s Time, depending on what we like the most.

In this section, we’ll try to address some rather WET parts of our current code and see how we can
make them more DRY; doing that will greatly help our debugging and testing sessions later on.

Template improvements
If we take another look at our CityEditComponent and CountryEditComponent template files, we can
definitely see a certain amount of code bloat. More specifically, we have a lot of mat-error elements,
sometimes as many as three of them (!) for a single input – such as those for ISO 3166-1 ALPHA-2
and ALPHA-3 country codes. Furthermore, most of these elements are redundant, meaning that they
check the same error status for different inputs and – when triggered – return very similar error text.

This approach can have some advantages, especially in small forms: for example, it provides a good
level of readability, since those mat-error elements allow us to immediately understand what happens
for each specific error. However, when dealing with big forms – or an app with a lot of forms – this
approach will eventually produce a considerable amount of source code, which could become hard
to maintain. That’s even more true for multi-language apps, where the effort required to handle lit-
eral strings grows exponentially with the number of strings. What do we do in those cases? Is there a

“better” or “smarter” way to address that?

As a matter of fact, there is: whenever we feel like we’re writing too much code or repeating a complex
task too many times, we can create one or more helper methods within our component class in order
to centralize the underlying logic. These helper methods will act as shortcuts that we can call instead
of repeating the whole validation logic. Let’s try to add them to our form-related Angular components.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_08
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_08

Chapter 8 365

Form validation shortcuts
Let’s see how to add form validation shortcuts in the CountryEditComponent class, which ended up
with a lot of redundant mat-error elements, since we had to check a lot of possible error statuses for
the two ISO 3166-1 country codes.

Open the /src/app/countries/country-edit.component.ts file and add the following code right
after the class declaration (new lines are highlighted):

// ... existing code...

export class CountryEditComponent implements OnInit {

getErrors(
 control: AbstractControl,
 displayName: string,
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} is required.`);
 break;
 case 'pattern':
 errors.push(`${displayName} contains invalid characters.`);
 break;
 case 'isDupeField':
 errors.push(`${displayName} already exists: please choose another.`);
 break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
}

// ... existing code...

As we can see, we added a simple getErrors() function that returns an array of error messages corre-
sponding to all the active errors for any given control, or an empty array if there are none; these errors
will also be prepended with the displayName parameter, which can be set by the caller to ensure that
each control will have its own personalized set of error messages.

Code Tweaks and Data Services366

The switch statement we’ve set up contains all the validators that we currently use and might want to
centralize, including the custom isDupeField validator that we implemented back in Chapter 7, Forms
and Data Validation; we’ve even included a default case that returns a generic error, which will act as
a catch-all for all the non-supported validators.

That’s precisely what we need: a centralized “shortcut” method that allows us to shrink the HTML
template and – most importantly – remove some mat-error elements and redundant literal text.

Let’s see how we can refactor the existing ISO2 mat-form-field component in the country-edit.
component.html file, which currently contains three mat-error elements, to take advantage of our
new getErrors() function:

<!-- ...existing code... -->

<!-- ISO2 -->
<mat-form-field>
 <mat-label>
 ISO 3166-1 ALPHA-2 Country code (2 letters)
 </mat-label>
 <input matInput formControlName="iso2" required
 placeholder="Insert the ISO2 Country code">
 <mat-error *ngFor="let error of getErrors(form.get('iso2')!,
 'ISO 3166-1 ALPHA 2 Country code')">
 {{error}}
 </mat-error>
</mat-form-field>

<!-- ...existing code... -->

Much better, right? If we test the component now, we can see that its behavior is still the same, meaning
that we have found a way to optimize the template without losing anything.

All we need to do now is to refactor all the other mat-form-field components in the CountryEditComponent
template, and then switch to CityEditComponent and perform the same optimization trick there…

...Or not.

Wait a minute: didn’t we just say we would adhere to the DRY pattern as much as we can? How can we
reasonably expect to do that if we’re about to copy and paste the same identical variables and methods
throughout different classes? What if we had 10 form-based components to patch instead of just 2?
That doesn’t sound anything but WET. Now that we’ve found a good way to shrink our template code,
we also need to find a decent way to implement those form-related methods without spawning clones
everywhere.

Luckily enough, TypeScript provides a great way to handle these kinds of scenarios: class inheritance.
Let’s see how we can use these features to our advantage.

Chapter 8 367

Class inheritance
Object-oriented programming (OOP) is usually defined by two core concepts: polymorphism and inher-
itance. Although both concepts are related, they are not the same. Here’s what they mean in a nutshell:

• Polymorphism allows us to assign multiple interfaces on the same entity (such as a variable,
function, object, or type) and/or to assign the same interface on different entities. In other words,
it allows entities to have more than one form.

• Inheritance allows us to extend an object or class by deriving it from another object (proto-
type-based inheritance) or class (class-based inheritance), while retaining a similar implementation;
the extended class is commonly called a subclass or child class, while the inherited class takes
the name of superclass or base class.

Let’s now focus on inheritance: in TypeScript, as in most class-based, object-oriented languages, a
type created through inheritance (a child class) acquires all the properties and behaviors of the parent
type, except constructors, destructors, overloaded operators, and private members of the base class.

If we think about it, it’s just what we need in our scenario: if we create a base class and implement all
our form-related methods there, we’ll just need to extend our current component class without having
to write it more than once.

Let’s see how we can pull this off.

Implementing a BaseFormComponent
We’ve used the ng generate CLI command several times to generate components, but this is the first
time we’re going to use it to generate a class.

Open a command prompt, navigate to the worldcities.client app’s root folder, and then type the
following command:

ng generate component BaseForm --skip-import --skip-tests --inline-template
--inline-style --flat

These settings will prevent the Angular CLI from creating anything other than the TypeScript file, since
the component that we want to generate doesn’t need HMTL, tests, and (S)CSS files and doesn’t need
to be referenced in the AppModule. The preceding command will just create the /src/app/base-form.
component.ts file and nothing else.

Once the file has been created, open it and replace the existing content with the following code:

import { Component } from '@angular/core';
import { FormGroup, AbstractControl } from '@angular/forms';

This also means that we could even manually create that file instead of using the Angular
CLI, should we prefer to do that.

Code Tweaks and Data Services368

@Component({
 template: ''
})
export abstract class BaseFormComponent {

 // the form model
 form!: FormGroup;

 getErrors(
 control: AbstractControl,
 displayName: string,
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} is required.`);
 break;
 case 'pattern':
 errors.push(`${displayName} contains invalid characters.`);
 break;
 case 'isDupeField':
 errors.push(`${displayName} already exists: please choose another.`);
 break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
 }

 constructor() { }

}

As we can see, there’s nothing much there, only the getError() method that we saw a short while ago
and the form variable itself. These two members can be moved (and centralized) here instead of declar-
ing them in any component that needs to deal with a form. Also, we’ve purposely added the abstract
modifier, since we don’t plan to ever instantiate this class; we only want other classes to derive from it.

Chapter 8 369

Now, we have a BaseFormComponent superclass that we can use to extend our subclasses; this means
that we can update our current CityEditComponent and CountryEditComponent TypeScript files in
order to extend their classes accordingly.

Extending CountryEditComponent
Open the /src/app/countries/country-edit.component.ts file, and then add the BaseFormComponent
superclass at the end of the import list to the beginning of the file:

// ...existing code...

import { Country } from './country';
import { BaseFormComponent } from '../base-form.component';

// ...existing code...

Now, we need to implement the class inheritance using the extends modifier that is right after the
class declaration:

// ...existing code...

export class CountryEditComponent
 extends BaseFormComponent implements OnInit {

// ...existing code...

That’s it: CountryEditComponent has now officially become a child class of the BaseFormComponent
superclass.

Last but not least, we need to invoke the superclass constructor by calling super() inside the child class
constructor’s implementation:

// ...existing code...

constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 super();

From now on, we’ll assume that you understand the logic behind our code samples; conse-
quently, we’re going to present them in a more succinct way to avoid wasting more pages
by saying the obvious: please bear with it! If you need to see the full file, you can always
find it in the book’s online source code repository on GitHub.

Code Tweaks and Data Services370

}

// ...existing code...

Before closing the TypeScript file, we should take the chance to remove the form variable, as well as the
getErrors() method that we added earlier, since we have chosen to centralize them in the superclass.

Now, we can finally refactor the remaining mat-form-field components included in the
CountryEditComponent's HTML template (name and iso3) using the getErrors() method defined in
the base class, since our child class will transparently inherit it from its superclass.

Let’s now test what we did by hitting F5 and navigating through CountryEditComponent in both the
edit and add new modes. If we did everything correctly, we should see no issues: everything should
work just like it was, with a considerably smaller amount of source code.

As soon as we’re sure that everything is working fine, we can finally switch to the CityEditComponent
and perform the same optimization tweak there.

Extending CityEditComponent
CityEditComponent can be extended just like we did with the TypeScript file for CountryEditComponent:
adding the import statement for the BaseFormComponent class, using the extends keyword in the class
declaration, and finally, adding the super() function within the constructor.

Once this is done, we can remove the now-redundant form variable, just like we did with the
CountryEditComponent class a minute ago.

Right after that, we can move to the CityEditComponent's HTML template and refactor all the mat-
form-field components so that each one of them will have a single mat-error element using the
getErrors() method.

For reasons of space, we won’t show how to refactor them; just keep what we did with the
iso2 field early on for reference, changing the form.get and displayName parameters
accordingly, or look at the GitHub code for this chapter for the fully updated source code.

When performing the test, be sure to check out all the validators, since what we did af-
fects them the most; if the form validators are still working and show their errors when
triggered, this means that the child class is able to inherit and use the required method
for its base class, thereby proving that our brand-new superclass/subclass implementation
is working fine.

We’re not going to show the source code changes here because the required steps are
almost identical to what we’ve just seen; if you’ve got any doubts, you can refer to this
chapter’s source code on the GitHub repository.

Chapter 8 371

At the end of the day, the only mat-error element that won’t be touched by our refactoring task will
be the one triggered by the isDupeCity validator (the first one in order of appearance); as a matter
of fact, centralizing this code doesn’t make much sense, since we will hardly ever (re)use it outside
CityEditComponent.

Now that we’ve optimized and refactored our components’ TypeScript and HTML code, let’s see what
we can do to improve our app’s user experience.

Bug fixes and improvements
Let’s be honest: although we did a decent job of building up our master/detail UI pattern, and we as-
sembled both views using the most relevant city and country fields, our app is still lacking something
that our users might want to see. More specifically, the following detail is missing:

• Our City Detail view doesn’t validate the lat and lon input values properly: For example, we
are allowed to type letters instead of numbers, which utterly crashes the form

• Our Countries view doesn’t show the number of cities that each country actually contains
• Our Cities view doesn’t show the country name for each listed city

Let’s do our best to fix all of these issues for good.

Validating lat and lon
Let’s start with the only real bug: a form that can be broken from the front-end is something that we
should always avoid, even if those input types are implicitly checked in the back-end by our ASP.NET
Core API.

Luckily enough, we already know how to fix those kinds of errors: we need to add some pattern-based
validators to the lat and lon FormControls for CityEditComponent, just like we did with the iso2
and iso3 controls in the CountryEditComponent files. As we already know, we’ll need to update the
CityEditComponent class file to implement the validators and define a validation pattern based on a regex.

city-edit.component.ts
Open the /src/app/cities/city-edit.component.ts file and update its content accordingly (new/
updated lines are highlighted):

// ...existing code...

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),

That’s a perfect example of context-specific, non-reusable code that should just be kept
there, as moving it to a superclass won’t make our code base any DRYer.

Code Tweaks and Data Services372

 lat: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 lon: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());

 this.loadData();
 }

// ...existing code...

Here we go. As we already know from Chapter 7, Forms and Data Validation, this form’s implementa-
tion is still based on the manually instantiated FormGroup and FormControl objects, instead of using
FormBuilder; however, there’s no reason to change it now, since we were still able to implement
Validators.pattern without any issues.

Let’s spend a couple of minutes explaining the regex that we’ve used there:

• ^ defines the start of the user input string that we need to check
• [-]? allows the presence of an optional minus sign, which is required when dealing with

negative coordinates
• [0-9]+ expects one or more numbers between 0 and 9
• (\.[0-9]{1,4})? defines an optional group (thanks to ? at the end), which, if present, needs

to respect the following rules:

• \.: requires the input to start with a single dot (the decimal sign). The dot is escaped
because it’s a reserved regex character, which, when unescaped, means any character.

• [0-9]{1,4} expects one to four numbers between 0 and 9 (since we want between one
and four decimal values after the dot).

• $ defines the end of the user input string

We could’ve used \d (any digit) as an alternative to [0-9], which is a slightly more succinct
syntax; however, we have chosen to stick with [0-9] for better readability. Feel free to
replace it with \d at any time.

Chapter 8 373

Now that the pattern validators have been set in place, everything should automatically work; the
corresponding error message will already be handled by our centralized getErrors() function, which
already contains a proper message to return when the pattern validator raises an error.

However, the message is still rather generic:

{displayName} contains invalid characters.

This warning will make our users aware of the fact that they have typed something wrong, but it
won’t tell them what characters they should use instead. What if we want to provide them with these
additional details? We can hardly fix that by simply rewriting it, since this message is used for ISO2
and ISO3, which require only letters, as well as for LAT and LON, which only want numbers.

As a matter of fact, we only have two options:

• Avoid using the getErrors() centralized function for these fields, using some manual mat-
error elements instead

• Improve the getErrors() centralized function so that it can (optionally) accept custom mes-
sages for one (or more) validator error types

Both approaches are viable. However, since we don’t want to discard the hard work we just did, we
might as well go for the latter and improve our getErrors() method.

Luckily enough, that won’t be hard.

base-form.component.ts
Open the /src/app/base-form.component.ts file and change the existing code of the getErrors()
function in the following way (updated code has been highlighted):

// ... existing code...

getErrors(
 control: AbstractControl,
 displayName: string,
 customMessages: { [key: string] : string } | null = null
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} ${customMessages?.[key] ?? "is
required."}`);
 break;
 case 'pattern':
 errors.push(`${displayName} ${customMessages?.[key] ?? "contains
invalid characters."}`);

Code Tweaks and Data Services374

 break;
 case 'isDupeField':
 errors.push(`${displayName} ${customMessages?.[key] ?? "already exists:
please choose another."}`);
 break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
}

// ... existing code...

Here we go. As we can see, we’ve added an optional third parameter that we can now use to specify
optional customMessages whenever we don’t want to use the generic message, and we can do that for
any validator, not just for the pattern one.

Let’s see how we can implement the new feature, starting with the HTML template file of
CityEditComponent.

city-edit.component.html
Open the /src/app/cities/city-edit.component.html file and change the existing implementation
for the LAT and LON fields in the following way (updates have been highlighted):

<!-- ... existing code... -->

<!--Lat -->
<mat-form-field>
 <mat-label>Latitude:</mat-label>
 <input matInput formControlName="lat" required
 placeholder="Insert latitude">
 <mat-error *ngFor="let error of getErrors(form.get('lat')!,
 'Latitude',

It’s worth noting that, since the new customMessages parameter is optional, the
getErrors() refactoring that we just did is backward-compatible, meaning that our ex-
isting code will still work – even if we don’t implement the new feature in any of our
HTML templates.

Chapter 8 375

 { 'pattern' : 'requires a positive or negative number with 0-4 decimal
values' })">
 {{error}}
 </mat-error>
</mat-form-field>

<!--Lon -->
<mat-form-field>
 <mat-label>Longitude:</mat-label>
 <input matInput formControlName="lon" required
 placeholder="Insert longitude">
 <mat-error *ngFor="let error of getErrors(form.get('lon')!,
 'Longitude',
 { 'pattern' : 'requires a positive or negative number with 0-4 decimal
values' })">
 {{error}}
 </mat-error>
</mat-form-field>

<!-- ... existing code... -->

Once this is done, do the same in the ISO2 and ISO3 fields of the /src/app/country-edit.component.
html file, using a slightly different custom error message for ISO2:

{ 'pattern' : 'requires 2 letters' }

…And for ISO3:

{ 'pattern' : 'requires 3 letters' }

Let’s quickly test what we have done so far:

1. Hit F5 to start the app in debug mode.
2. Navigate through the Cities view.
3. Filter the list to find Madrid�
4. Type some invalid characters in the City latitude and City longitude input fields.

Code Tweaks and Data Services376

If the new feature has been implemented properly, we should see our error messages appear in all
their glory and the Save button disabled, just like in the following screenshot:

Figure 8.1: Error messages when inputting invalid latitude and longitude

That’s it. Now, we can repeat the same test for CountryEditController to ensure that everything
works there as well.

Now that we have fixed our first UI bug, let’s move on to the next task.

Adding the number of cities
What we need to do now is find a way to show an additional column in the Countries view that will
allow users to instantly see the number of cities for each listed country. In order to do that, we definitely
need to improve our back-end web API because we know that there’s currently no way to retrieve such
info from the server.

Well, technically speaking, there is a way: we could use the GetCities() method of CitiesController
with a huge pageSize parameter (99,999 or so) and a suitable filter to retrieve the whole set of cities
for each country, and then count that collection and output the number.

Chapter 8 377

However, doing this would indeed have a huge performance impact: not only would we have to retrieve
all the cities for all the listed countries, but we would have to do that by issuing a separate HTTP request
for each table row. That’s definitely not what we want if we are aiming to fulfill our task smartly and
efficiently.

Here’s what we’re going to do instead:

• Find a smart and efficient way to count the number of cities for each listed country from the
back-end

• Add a TotCities property to our Country Angular interface to store that same number on the
client

Let’s do this.

CountriesController
Let’s start with the back-end part. Finding a smart and efficient way to count the number of cities for
each country might be harder than it seems.

If we want to retrieve this value in a single shot, that is, without making additional API requests
with Angular, there’s no doubt that we need to improve our current GetCountries() method of
CountriesController, which is what we’re currently using to fetch the countries data.

Let’s open our /Controllers/CountriesController.cs file and see how ASP.NET Core and Entity
Framework Core (EF Core) can help us to do what we want.

Here’s the GetCountries() method that we need to update:

public async Task<ActionResult<ApiResult<Country>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking(),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

Code Tweaks and Data Services378

As we can see, there’s no trace of Cities. Although we know that our Country entity contains a Cities
property that is meant to store a list of cities, we also remember (from Chapter 5, Data Model with Entity
Framework Core) that this property is set to null, since we’ve never told EF Core to load the entity’s
related data.

What if we do it now? We could be tempted to solve our issue by activating the Eager Loading ORM pat-
tern (as discussed in Chapter 5, Data Model with Entity Framework Core) and filling our Cities property
with actual values with which to feed our Angular client. Here’s how we could do that:

return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Include(c => c.Cities),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

However, it doesn’t take a genius to understand that such a workaround is hardly smart and efficient:
a country entity might have lots of cities, sometimes hundreds of them. Do we really think it would
be acceptable for our back-end to retrieve them all from the DBMS? Are we really going to flood our
Angular front-end with those huge JSON arrays?

That’s definitely a no-go: we can do better than that, especially considering that, after all, we don’t need
to retrieve all the city data for each country to fulfill our goal; we just need to know the number of cities.

Here’s how we can do that (updated code is highlighted):

[HttpGet]
public async Task<ActionResult<ApiResult<CountryDTO>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CountryDTO>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new CountryDTO()
 {
 Id = c.Id,
 Name = c.Name,

Chapter 8 379

 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As we can see, we went for a totally different approach: the Include() method is out of the way; now,
instead of eagerly loading the cities, we’re using the Select() method to project our resulting countries
into a brand-new CountryDTO object that contains exactly the same properties as its source, plus a new
TotCities variable. That way, we never get the cities; we only fetch their number.

Although this method is a bit more complex to pull off, it’s definitely a smart and efficient way to deal
with our task; the only downside is that we need to create the CountryDTO class, which doesn’t exist yet.

Creating the CountryDTO class
From Solution Explorer, right-click on the /Data/ folder, and then add a new CountryDTO.cs file, open
it, and fill it with the following content:

using System.Text.Json.Serialization;

namespace WorldCities.Server.Data
{
 public class CountryDTO
 {
 #region Properties
 public int Id { get; set; }

 public string Name { get; set; } = null!;

 [JsonPropertyName("iso2")]
 public string ISO2 { get; set; } = null!;

It’s also worth noting that, since we switched out our Country entity class for a new
CountryDTO class, we had to change the ApiResult generic type (from ApiResult<Country>
to ApiResult<CountryDTO>) in the method’s return type.

Code Tweaks and Data Services380

 [JsonPropertyName("iso3")]
 public string ISO3 { get; set; } = null!;

 public int? TotCities { get; set; } = null!;
 #endregion
 }
}

As we can see, the CountryDTO class contains most of the properties that are already provided by the
Country entity class, without the Cities property – which we know we won’t need here – and a single,
additional TotCities property. It’s a Data Transfer Object (DTO) class that only serves the purpose
of feeding the client with (just) the data that we need to send.

It’s worth noting that we had to use the [JsonPropertyName] attributes here as well, since this class
will be converted to JSON and the ISO2 and ISO3 properties won’t be converted in the way that we
expect (as we saw in Chapter 6, Fetching and Displaying Data).

Angular front-end updates
It is time to switch to Angular and update the front-end accordingly, with the new changes applied to
the back-end.

Follow these steps:

1. Open the /src/app/countries/country.ts file to add the TotCities property to the Country
interface in the following way:

export interface Country {
 id: number;
 name: string;
 iso2: string;
 iso3: string;
 totCities: number;
}

As the name implies, a DTO is an object that carries data between processes. It’s a widely
used concept when developing web services and microservices, where each HTTP call
is an expensive operation that should always be cut to the bare minimum amount of
required data.

The difference between DTOs and business objects and/or data access objects (such as
DataSets, DataTables, DataRows, IQueryables, and Entities) is that a DTO should
only store, serialize, and deserialize its own data.

Chapter 8 381

2. Right after that, open the /src/app/countries/countries.component.ts file and update the
displayedColumns inner variable in the following way:

// ...existing code...

public displayedColumns: string[] = ['id', 'name', 'iso2',
 'iso3', 'totCities'];

// ...existing code...

3. Once done, open the /src/app/countries/countries.component.html file and add the
TotCities column to Angular Material’s MatTable template in the following way (updated
lines are highlighted):

<!-- ...existing code... -->

<!-- ISO3 Column -->
<ng-container matColumnDef="iso3">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 3</th>
 <td mat-cell *matCellDef="let country"> {{country.iso3}} </td>
</ng-container>

<!-- TotCities Column -->
<ng-container matColumnDef="totCities">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Tot. Cities</th>
 <td mat-cell *matCellDef="let country"> {{country.totCities}} </td>
</ng-container>

<!-- ...existing code... -->

Code Tweaks and Data Services382

4. Now, we can finally hit F5 and see the results of our hard work. If we did everything correctly,
we should be able to see the new Tot� Cities column, as shown in the following screenshot:

Figure 8.2: Countries table with the Tot. Cities column

Not bad at all: on top of that, the new column will also be sortable, meaning that we can order our
countries by the number of listed cities in ascending or descending order using one or two clicks. Thanks
to this new feature, we can learn that India and the United States are the countries with the most list-
ed cities, while New Japan, the imaginary country that we created back in Chapter 7, Forms and Data
Validation, still has zero.

While we’re here, let’s quickly fix this by going to the Cities view, using it to edit New Tokyo, and
changing its country to New Japan.

After hitting the Save button to apply the changes, go to the Countries view and search for New Ja-
pan; that country should now show a single city in the Tot� Cities column, as shown in the following
screenshot:

Chapter 8 383

Figure 8.3: Filtering the Countries list for New Japan

Now that we’ve successfully shown the number of cities for each country in our Countries views –
and bound New Japan together with New Tokyo in the process – we’re ready to move on to the third
improvement.

However, before doing that, it would be useful to spend some time thinking about that DTO class that
we had to create to fulfill our latest task.

DTO classes – should we really use them?
Now that we’ve seen how similar the Country entity class and the CountryDTO class actually are, we
should be asking ourselves whether we could do something better than that. For example, we could
inherit the Country entity class in the CountryDTO class, thus preventing the repetition of four proper-
ties; alternatively, we could entirely omit the CountryDTO class and just add the TotCities property
to the Country entity instead.

Well, the answer is yes: we definitely could’ve used those workarounds, thereby obviating the need
to create additional properties (or classes) and keeping the code undeniably more DRY. Why didn’t
we do that?

Code Tweaks and Data Services384

The answer is rather simple: because both of the previous workarounds come with some relevant
design and security flaws. Let’s do our best to address them and understand why they should be
avoided whenever we can.

Separation of concerns
As a general rule of thumb, entity classes shouldn’t be burdened with properties that only exist to fulfill
our client-side needs: whenever we need to create them, it’s wise to create an intermediate class, and
then we separate the entity from the output object that we send to the client through the web APIs.

Now, it goes without saying that putting a TotCities property within an entity class would break that
separation of concerns. There’s no TotCities column in our Countries database table; that property
would only be there to send some additional data to the front-end.

On top of that, there would be no relations between the TotCities property and the already existing
Cities property. If we do activate the EF Core Eager Loading pattern and fill the Cities property, the
TotCities property will still be set to 0 (and vice versa); such misleading behavior would be a bad
design choice and could even result in implementation errors for those who reasonably expect our
entity classes to be a C# version of our data source.

Security considerations
Keeping entity classes separate from the client-side API output classes is often a good choice, even for
security purposes. Now that we’re dealing with cities and countries, we don’t really suffer from it, but
what if we were to handle a users table with personal and/or login data? If we think about it, there are
a lot of possible scenarios where it wouldn’t be wise to just pull all the fields from the database and
send them to the client in the JSON format. The default methods created by ASP.NET Core web API
controllers when we add them from the Visual Studio interface – which is what we did in Chapter 5,
Data Model with Entity Framework Core – don’t care about that, which is perfectly fine for code samples
and even simple API-based projects. However, when things become more complex, it’s recommended
to feed the client with limited data and in a controlled way.

That said, the most effective way to do that in .NET is to create and serve thinner, and more secure,
DTO classes instead of the main entities; this is precisely what we did with the CountryDTO class in the
preceding sections.

DTO classes versus anonymous types
The only acceptable alternative to the aforementioned DTO classes would be using the Select() method
to project the main entity classes to anonymous types, serving them, instead.

If you’ve worked with the ASP.NET MVC framework, you can relate this separation of
concerns with the one that distinguishes the Model from the ViewModel in the Mod-
el-View-ViewModel (MVVM) presentation pattern. The scenario is basically the same:
both are simple classes with attributes, but they have different audiences – the controller
and the view. In our scenario, the view is our Angular client.

Chapter 8 385

Here’s another version of the previous GetCountries() method of CountriesController, using an
anonymous type instead of the CountryDTO class (relevant changes are highlighted in the following code):

[HttpGet]
public async Task<ActionResult<ApiResult<object>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<object>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new
 {
 id = c.Id,
 name = c.Name,
 iso2 = c.ISO2,
 iso3 = c.ISO3,
 totCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As expected, we had to change our ApiResult generic type to object in the code, and also in the
method’s return value; other than that, the preceding method seems to be fine, and it will definitely
work just like the previous one.

For additional info on the anonymous types in C#, read the following document: https://
learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/anonymous-types.

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types

Code Tweaks and Data Services386

What should we use, then? DTO classes or anonymous types?

Truth be told, both methods can be viable or not, depending on what we want to achieve. Anonymous
types can often be a great option, especially when we need to quickly define JSON return types; how-
ever, there are some specific scenarios (such as unit testing, as we’re going to see later on) where we
would prefer to deal with named types instead. The choice, as always, depends on the situation. In our
current scenario, we’ll stick to the CountryDTO class, but we’re going to use anonymous types as well
in the near future.

Securing entities
If we don’t want to use DTO classes, and anonymous types aren’t our cup of tea, there’s a third viable
alternative that we might want to consider: securing our entities to prevent them from either giving
incorrect instructions (such as creating wrong columns) to EF Core, or sending too much data through
our RESTful APIs. If we manage to do that, we could just continue to use them and keep our web API
code DRY.

We can achieve this result by decorating our entities’ properties with some specific data annotation
attributes, such as the following:

• [NotMapped]: Prevents EF Core from creating a database column for that property
• [JsonIgnore]: Prevents a property from being serialized or deserialized
• [JsonPropertyName("name")]: Allows us to override the property name upon the JSON class’s

serialization and deserialization, overriding the property name and any naming policy that is
specified by the JsonNamingPolicy settings within the Program.cs file

The first attribute requires the Microsoft.EntityFrameworkCore namespace, while the others are
part of the System.Text.Json.Serialization namespace.

We’ve already used the [JsonPropertyName] attribute, back in Chapter 6, Fetching and Displaying Data,
where we had to specify a JSON property name for the ISO2 and ISO3 properties of the Country entity.
Let’s now implement the other two as well.

[NotMapped] and [JsonIgnore] attributes
Open the /Data/Models/Country.cs file and update the existing code at the end of the file as follows
(new/updated lines are highlighted):

#region Client-side properties
/// <summary>
/// The number of cities related to this country.
/// </summary>
[NotMapped]
public int TotCities
{
 get
 {

Chapter 8 387

 return (Cities != null)
 ? Cities.Count
 : _TotCities;
 }
 set { _TotCities = value; }
}

private int _TotCities = 0;
#endregion

#region Navigation Properties
/// <summary>
/// A list containing all the cities related to this country.
/// </summary>
[JsonIgnore]
public ICollection<City>? Cities { get; set; } = null!;
#endregion

Here’s what we’ve done, in a nutshell:

• We have implemented the TotCities property in the entity code and decorated it with the
[NotMapped] attribute so that EF Core won’t create its corresponding database column upon
any migration and/or update task.

• While we were there, we took the chance to write some additional logic to link this property to
the Cities property value (only when it’s not null). That way, our Entity won’t give misleading
info, such as having 20+ cities in the Cities list property and a TotCities value of 0 at the
same time.

• Last but not least, we added the [JsonIgnore] attribute to the Cities properties, thus prevent-
ing this info from being sent to the client (regardless of its value, even when null).

The [NotMapped] attribute, which we’ve never used before, helps mitigate the fact that
we’re using an entity to store the properties that are required by the front-end and are,
therefore, completely unrelated to the data model. In a nutshell, this attribute will tell EF
Core that we do not want to create a database column for that property in the database.

Since we’ve created our database using EF Core’s code-first approach (see Chapter 5, Data
Model with Entity Framework Core), and we’re using migrations to keep the database struc-
ture updated, we need to use that attribute each and every time we want to create an extra
property on our entity classes. Whenever we forget to do that, we will definitely end up
with unwanted database fields.

Code Tweaks and Data Services388

Using [JsonIgnore] to prevent the server from sending away the Cities property might seem like
overkill: why would we even want to skip this value, since it’s currently null?

As a matter of fact, we’ve taken this decision as a precaution. Since we’re using entities directly, instead
of relying upon DTO classes or anonymous types, we want to implement a restrictive approach with
our data. Whenever we don’t need it, it’s wise to apply [JsonIgnore] to be sure we won’t be disclos-
ing anything more than we need to; we could call it a data protection by default approach, which will
hopefully help us to keep our web API under control and prevent it from sharing too much. After all,
we can always remove that attribute whenever we need to.

It goes without saying that if we want to adopt the secured entities approach, we won’t need the
CountryDTO.cs class anymore; therefore, we could revert the changes we recently made to the
/Controllers/CountriesController.cs file’s GetCountries() method and put the Country refer-
ence back where it was:

return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Include(c => c.Cities)
 .Select(c => new Country()
 {
 Id = c.Id,
 Name = c.Name,
 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

However, before doing all that, we should spend a couple of minutes carefully evaluating the down-
sides of this securing entities approach.

The downsides of Swiss Army knives
The Securing Entities approach that we’ve just discussed might sound like a valid DTO alternative: it
gives us the chance to write less code by “shrinking” all the logic within the entity class, making it a

“jack of all trades.” But is it really as good as it looks?

Unfortunately, the answer is no. Although this method will work, it exposes our code base to several
downsides that we should want to avoid.

Chapter 8 389

Here’s a list of reasons that should lead us to avoid this method:

• Entity classes are meant to be object wrappers for database tables and views; directly using them
to “configure” the JSON data output for our client-side app will break the Single Responsibility
Principle (SRP), which states that every module, class, or function in a computer program
should be responsible for a single part of that program’s functionality.

• Entities can contain a lot of data that the user and/or the client-side app should never be able
to see, such as password hashes and personal data. Hiding these properties with [JsonIgnore]
attributes will continuously force the developer to over-complicate their source code, which
will eventually lead to a confusing code base.

• Entity classes will likely evolve over the course of time. For example, in the database table, they
are meant to “wrap” changes; all developers working on the project will have to be aware of
the fact that all new properties will be served by the API response, unless it’s not properly
secured: a single missing [JsonIgnore] attribute could cause a dangerous leak.

• Last but not least, populating the TotCities field forced us to load the whole Cities property
using the Include(c => c.Cities) method, which means transferring a lot of data from the
DBMS to the back-end. This behavior, known as over-fetching, would have a significant perfor-
mance impact and is widely considered a bad practice, and hence should be avoided at any cost.

All of this considered, this approach will eventually expose our database’s data to potential leaks due to
an increased chance of developer mistakes, with the only real advantage being having fewer (useful)
classes to deal with. Is it worth it?

Honestly, we don’t think so. We don’t need a few Swiss Army knives but, instead, several well-made and
readable classes that can deal with their required tasks in the best (and most efficient) possible way.

Enough with theory crafting; it’s now time to conclude this topic.

Final thoughts
All three alternative implementations of the GetCountries() method that have been discussed in
this section – CountryDTO, anonymous types, and Country – could be viable or not, depending on our
specific scenario – as soon as we are aware of their pros and cons.

The DTO approach is what we’ll use for this book’s samples, while the other two have been included
for reference only. You are encouraged to implement them at will until you find the most suitable
approach for your programming style. That said, we strongly suggest taking our advice into consid-
eration in order to make the most responsible choice.

That’s it. Now, we can finally move on to our third and final task.

A Swiss Army knife, sometimes also known as a kitchen sink, is a name that most devel-
opers give to excessively complex class interfaces explicitly designed to meet all possible
needs; this approach often overcomplicates things instead of simplifying them, thus ending
up in a futile attempt that negates most of their premises. For this very reason, it is almost
always considered a bad practice.

Code Tweaks and Data Services390

Adding the country name
Now, we need to find a way to add a Country column to the Cities view so that our users will be able to
see the country name for each listed city. Considering what we just did with the countries, this should
be a rather straightforward task.

CitiesController
As always, let’s start with the web API. Follow these steps:

1. Open the /Controllers/CitiesController.cs file and change the GetCities() method in
the following way:

// ...existing code...

[HttpGet]
public async Task<ActionResult<ApiResult<CityDTO>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CityDTO>.CreateAsync(
 _context.Cities.AsNoTracking()
 .Select(c => new CityDTO()
 {
 Id = c.Id,
 Name = c.Name,
 Lat = c.Lat,
 Lon = c.Lon,
 CountryId = c.Country!.Id,
 CountryName = c.Country!.Name
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

// ...existing code...

Chapter 8 391

As we can see, we’re sticking to the DTO-based pattern, meaning that we’ll have to create an
additional CityDTO class.

2. Use the Visual Studio Solution Explorer to add a new /Data/CityDTO.cs file and fill it with the
following content:

namespace WorldCities.Server.Data
{
 public class CityDTO
 {
 public int Id { get; set; }

 public string Name { get; set; } = null!;

 public decimal Lat { get; set; }

 public decimal Lon { get; set; }

 public int CountryId { get; set; }

 public string? CountryName { get; set; } = null!;
 }
}

That’s it. It goes without saying that, as we saw when working with the GetCountries() method of
CountriesController early on, we could have implemented the web API by using anonymous types,
or with a secured City entity, thus avoiding having to write the CityDTO class. However, we inten-
tionally went for the DTO approach because of the security and performance considerations that we
mentioned earlier.

Our web API is ready, so let’s move on to Angular.

Angular front-end updates
Let’s start with the /src/app/cities/city.ts interface, where we need to add the countryName
property. Open that file and update its content as follows:

export interface City {
 id: number;
 name: string;
 lat: number;
 lon: number;
 countryId: number;
 countryName: string;
}

Code Tweaks and Data Services392

Once done, open the /src/app/cities/cities.component.ts class, where we need to add the
countryName column definition:

// ...existing code...

public displayedColumns: string[] = ['id', 'name', 'lat', 'lon',
'countryName'];

// ...existing code...

Then, open the /src/app/cities/cities.component.html class and add a new <ng-container>
accordingly:

<!-- ...existing code... -->

<!-- Lon Column -->
<ng-container matColumnDef="lon">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Longitude</th>
 <td mat-cell *matCellDef="let city">{{city.lon}}</td>
</ng-container>

<!-- CountryName Column -->
<ng-container matColumnDef="countryName">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Country</th>
 <td mat-cell *matCellDef="let city">
 <a [routerLink]="['/country', city.countryId]">{{city.countryName}}
 </td>
</ng-container>

<!-- ...existing code... -->

As we can see, we wrapped countryName within routerLink, pointing to the Edit Country view, so that
our users will be able to use it as a navigation element.

Let’s test what we’ve done. Hit F5 to launch the app in debug mode, and then go to the Cities view. If
we did everything properly, we should be welcomed by the following result:

Chapter 8 393

Figure 8.4: Cities list with an added Country column

Not bad, right?

From there, if we click on a country name, we should be brought to the Edit Country view. That’s awe-
some, right?

This brings us to the end of the minor code improvements and UI tweaks. In the next section, we’ll
face a more demanding task, which will require a code refactoring of all the Angular components that
we’ve created so far.

In software development, code refactoring is the process of restructuring existing source
code without changing its external behavior. There could be multiple reasons to perform
refactoring activities, such as improving the code’s readability, extensibility, or perfor-
mance, making it more secure, or reducing its complexity.

For additional information regarding the high-level concept of code refactoring, check
out the following URL: https://learn.microsoft.com/en-us/visualstudio/ide/
refactoring-in-visual-studio

https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio
https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio

Code Tweaks and Data Services394

It’s now time to move on to a whole different topic, which will provide another major improvement
to our Angular app.

Data services
The two web applications that we have created so far – HealthCheck and WorldCities – both feature
front-end to back-end communication between their two projects over the HTTP(S) protocol, and in order
to establish such communication, we made good use of the HttpClient class, a built-in Angular HTTP
API client shipped with the @angular/common/http package that rests on the XMLHttpRequest interface.

Angular’s HttpClient class has a lot of benefits, including testability features, request and response
typed objects, request and response interception, Observable APIs, and streamlined error handling. It
can even be used without a data server thanks to the in-memory web API package, which emulates CRUD
operations over a RESTful API. We briefly talked about that at the beginning of Chapter 5, Data Model
with Entity Framework Core, when we asked ourselves if we really needed a data server or not (the answer
was no; therefore, we didn’t use it).

For all of these reasons, making good use of the HttpClient class is arguably the most logical choice
for anyone who wants to develop a front-end web app using the Angular framework; that said, there
are multiple ways to implement it, depending on how much we want to take advantage of its valuable
features.

In this section, after a brief look at the alternatives, we’ll see how to refactor our app to replace our
current HttpClient implementation with a more versatile approach, based upon a dedicated HTTP
data service.

XMLHttpRequest versus Fetch (versus HttpClient)
As we said a moment ago, Angular’s HttpClient class is based on XMLHttpRequest (XHR), an API
consisting of an object that is provided by the browser through its JavaScript engine, which can be
used to transfer data between a web browser and a web server asynchronously, without you having to
reload the whole page. This technique, which recently celebrated its 20-year anniversary, was basically
the only option until 2017, when the Fetch API finally came out.

The Fetch API is another interface for fetching resources that aims to be a modern alternative to the
XMLHttpRequest API, providing a more powerful and flexible feature set; in the next section, we’ll
quickly review both of them and discuss their pros and cons.

XMLHttpRequest
The concept behind this made its first appearance back in 1999, when Microsoft released the first
version of Outlook Web Access (OWA) for Exchange Server 2000.

Here’s an excerpt of a very old post written by Alex Hopmann, one of the developers who created it:

Chapter 8 395

Those people were right; a few months later, his team released an interface called IXMLHTTPRequest,
which was implemented in the second version of the Microsoft XML Core Services (MSXML) library.
That version was then shipped with Internet Explorer 5.0 in March 1999, which arguably was the first
browser that was able to access that interface (through ActiveX).

Soon after that, the Mozilla project developed an interface called nsIXMLHttpRequest and implement-
ed it in their Gecko layout engine. This was very similar to the Microsoft interface, but it also came
with a wrapper that allowed it to be used through JavaScript, thanks to an object that was returned by
the browser. The object, which was made accessible on Gecko v0.6 on December 6, 2000, was called
XMLHttpRequest.

In the following years, the XMLHttpRequest object became a de facto standard in all major browsers,
being implemented in Safari 1.2 (February 2004), Opera 8.0 (April 2005), iCab 3.0b352 (September 2005),
and Internet Explorer 7 (October 2006). These early adoptions allowed Google engineers to develop and
release Gmail (2004) and Google Maps (2005), two pioneering web applications, which were entirely
based on the XMLHttpRequest API. A single look at these apps was enough to demonstrate that web
development had entered a new era.

The only thing missing from this exciting technology was a name, which was found on February 18,
2005, when Jesse James Garrett wrote an iconic article called AJAX: A New Approach to Web Applications.

This was the first known appearance of the term AJAX, the acronym for Asynchronous JavaScript +
XML, a set of web development techniques that can be used to create asynchronous web applications
from the client side, where the XMLHttpRequest object played a pivotal role.

On April 5, 2006, the World Wide Web Consortium (W3C) released the first draft specification for the
XMLHttpRequest object in an attempt to create an official web standard.

“XMLHTTP actually began its life out of the Exchange 2000 team. I had joined Micro-
soft in November 1996 and moved to Redmond in the spring of 1997, working initially
on some internet Standards stuff as related to the future of Outlook. I was specifically
doing some work on meta-data for websites including an early proposal called ‘Web
Collections’. During this time period, Thomas Reardon one day dragged me down the
hall to introduce me to this guy named Jean Paoli that had just joined the company.
Jean was working on this new thing called XML that some people suspected would be
very big someday (for some unclear reason at the time).”

 – Alex Hopmann, The story of XMLHTTP.

The quote comes from a post on his blog, which unfortunately doesn’t seem to be online
anymore: http://www.alexhopmann.com/xmlhttp.htm.

However, there’s an archived copy here: http://archive.is/7i5l.

http://www.alexhopmann.com/xmlhttp.htm
http://archive.is/7i5l

Code Tweaks and Data Services396

The W3C draft paved the way for the wide adoption of AJAX development. However, the first imple-
mentations were rather difficult for most web developers, due to some differences between the various
browsers’ implementation of the involved APIs. Luckily, things became a lot easier thanks to the many
cross-browser JavaScript libraries – such as jQuery, Axios, and MooTools – that were smart enough to
add it to their available set of tools. This allowed developers to use the underlying XMLHttpRequest
object functionality indirectly, through a standardized set of high-level methods.

Over time, the XHR data format quickly switched from XML to JSON, HTML, and plain text, which
were more suited to work with the DOM page, without changing the overall approach. Also, when
the Reactive Extensions for JavaScript (RxJS) library came out, the XMLHttpRequest object could be
easily put behind Observable, thus gaining a lot of advantages (such as being able to mix and match
it with other Observables, subscribe/unsubscribe, and pipe/map).

This is the main idea behind Angular’s HttpClient class, which can be described as the Angular way
to deal with XMLHttpRequest: a very convenient wrapper that allows developers to effectively use it
through the Observable pattern.

Fetch
During its early years, using the raw XMLHttpRequest object was rather difficult for most web devel-
opers, and it could easily lead to a large amount of JavaScript source code that was often difficult to
read and understand; these issues were eventually solved by the superstructures that were provided by
libraries such as jQuery, but at the cost of some inevitable code (and resource) overheads.

The Fetch API was released to address such issues more cleanly, using a built-in, Promise-based ap-
proach, which could be used to perform the same asynchronous server requests easily, without requiring
third-party libraries.

Here’s an example of an HTTP request using XHR:

var oReq = new XMLHttpRequest();
oReq.onload = function() {
 // success
 var jsonData = JSON.parse(this.responseText);
};
oReq.onerror = function() {
 // error
 console.error(err);
};
oReq.open('get', './api/myCmd', true);
oReq.send();

The latest draft of the XMLHttpRequest object was published on October 6, 2016,
and is available at the following URL: https://www.w3.org/TR/2016/NOTE-
XMLHttpRequest-20161006/.

https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/
https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/

Chapter 8 397

And here’s the same request performed using fetch:

fetch('./api/myCmd')
 .then((response) => {
 response.json().then((jsonData) => {
 // success
 });
 })
 .catch((err) => {
 // error
 console.error(err);
 });

As we can see, the fetch-based code is definitely more readable. Its generic interfaces provide better
consistency, the native JSON capabilities make the code more DRY, and the Promises it returns permit
easier chaining and async/await tasks without having to define callbacks.

Long story short, it doesn’t take a genius to see that if we compare the raw XHR implementation with
the brand-new fetch() API, the latter clearly wins.

HttpClient
Thanks to Angular’s HttpClient class, using raw XHR is out of the question; what we’ll use is the
built-in abstraction that is provided by the client, which allows us to write the previous code in the
following way:

this.http.get('./api/myCmd')
 .subscribe(jsonData => {
 // success
 },
 error => {
 // error
 console.error(error));
 };

As we can see, the Observable-based code of HttpClient in the previous code provides similar benefits
to the fetch-based code that we saw before: we get a consistent interface, native JSON capabilities,
chaining, and async/await tasks.

On top of that, Observables can also be converted into Promises, meaning that we could even do the
following:

this.http.get('./api/myCmd')
 .toPromise()
 .then((response) => {
 response.json().then((jsonData) => {

Code Tweaks and Data Services398

 // success
 });
 })
 .catch((err) => {
 // error
 console.error(err);
 });

All in all, both the JavaScript-native Fetch API and the Angular-native HttpClient class are perfectly
viable, and either of them can be effectively used in an Angular app.

Here are the major advantages of using Fetch:

• It’s the newest industry standard that can be used to handle HTTP requests and responses
• It’s JavaScript-native; therefore, it can be used not only on Angular, but also on any other JavaS-

cript-based front-end framework (such as React and Vue)
• It simplifies working with service workers, as the request and response objects are the same as

the ones we use in our normal code
• It’s built around the norm that HTTP requests have single return values, thus returning a Promise

instead of a stream-like type, like the Observable is (this can be an advantage in most scenarios,
but it can also become a disadvantage)

Here are the most relevant advantages of using HttpClient:

• It’s Angular-native and, therefore, widely supported and constantly updated by the framework
(and will most likely be in the future as well)

• It allows easy mixing and matching of multiple Observables
• Its abstraction level allows us to easily implement some HTTP magic (such as defining auto-retry

attempts in case of request failures)
• Observables are arguably more versatile and feature-rich than Promises, which can be useful in

some complex scenarios, such as performing sequencing calls and being able to cancel HTTP
requests after they have been sent

• It can be injected and, therefore, used to write unit tests for various scenarios
• It allows us to use HttpInterceptors to transparently handle HTTP headers, bearer tokens,

and more HTTP-based tasks, as we’ll see in Chapter 11, Authentication and Authorization

For all of these reasons, after careful consideration, we genuinely think that adopting HttpClient in
Angular might be a better choice, and therefore, we’ll be sticking to it for the rest of the book. That
said, since the Fetch API is almost as viable in most scenarios, you can definitely try both approaches
and see which one is the most fitting for any given task.

At the same time, it’s true that Promises can also be converted to Observables using the
RxJS library.

Chapter 8 399

Now that we know the advantage of the Angular HttpClient, we can see how to further improve the
way we use it in our code.

Building a data service
Since we’ve chosen to stick with Angular’s HttpClient class, which we’ve already used everywhere,
this means we’re good, right?

Well, as a matter of fact, no. Although using HttpClient is definitely a good choice, we have imple-
mented it using an oversimplified approach. If we look at our Angular source code, we can see how
the actual HTTP calls are placed inside the components, which could be acceptable for small-scale
sample apps, but it’s definitely not the best way of doing it in real-life scenarios. What if we want to
handle the HTTP errors in a more complex way (for example, sending them all to a remote server for
statistical purposes)? What if we need to cache and/or post-process the data that we fetch through the
back-end API? Not to mention the fact that we would definitely implement some retry logic in order
to deal with potential connectivity issues, which is a typical requirement of any progressive web app.

Shall we implement all of the previous stuff within each component’s set of methods? That’s definitely
not an option if we want to stick to the DRY pattern; maybe we could define a superclass, provide it with
HTTP capabilities, and adapt our subclasses’ source code to perform everything, by calling the super
methods with a bunch of highly customized parameters. Such a workaround could work for small
tasks, but it could easily become a mess once things become more complex.

As a general rule, we should try our best to prevent our TypeScript classes – be they standard, super,
or sub – from being cluttered with huge amounts of data access code. As soon as we fall into that
trap, our components will become much more difficult to understand, and we will have a hard time
whenever we want to upgrade, standardize, and/or test them. In order to avoid such an outcome, it’s
highly advisable to separate the data access layer from the data presentation logic, which can be done by
encapsulating the former in a separate service and then injecting that service into the component itself.

This is precisely what we’re about to do.

For the sake of simplicity, we’re not going any further with these topics. Those who want
to know more about XMLHttpRequest, the Fetch API, Observables, and Promises are en-
couraged to check out the following URIs:

XMLHttpRequest Living Standard (September 27, 2023): https://xhr.spec.whatwg.
org/

Fetch API – Concepts and usage: https://developer.mozilla.org/en-US/docs/Web/
API/Fetch_API

RxJS – Observable: https://angular.io/guide/observables

MDN – Promise: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Promise

https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://angular.io/guide/observables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Code Tweaks and Data Services400

Creating the BaseService
Since we’re dealing with multiple component classes that handle different tasks depending on their
context (that is, the data source that they need to access), it’s highly advisable to create multiple ser-
vices, one for each context.

More specifically, we’ll need the following:

• CityService, to deal with the city-related Angular components and ASP.NET Core web APIs
• CountryService, to deal with the country-related Angular components and ASP.NET Core web

APIs

Also, assuming that they will most likely have some relevant things in common, it might be useful to
provide each of them with a superclass that will act as a common interface. Let’s do it.

To create the BaseService, we can either run the following CLI command from the worldcities.
client project’s root folder:

ng generate service Base --flat --skip-tests

Or we can simply create a new /src/app/base.service.ts file using Visual Studio’s Solution Explorer.

Once the new file has been created, open it and fill it with the following code:

import { HttpClient } from '@angular/common/http';

export abstract class BaseService {
 constructor(
 protected http: HttpClient) {
 }
}

The preceding source code (minus the abstract and protected highlighted modifiers) is also the core
of a typical HTTP data service; we’re going to use it as a base class with which to extend our service
classes. More precisely, we’ll have a single superclass (BaseService) containing a common interface for
the two different subclasses (CityService and CountryService) that will be injected into our components.

As for the two highlighted modifiers, let’s try to shed some light on them:

• abstract: We used this modifier in the BaseFormComponent class earlier on. While we’re here,
let’s talk a bit more about it. In TypeScript, an abstract class is a class that may have some
unimplemented methods; these methods are called abstract methods. Abstract classes can’t
be created as instances, but other classes can extend the abstract class and, therefore, reuse
its constructor and members.

• protected: The HttpClient class will be required by all the service subclasses. Therefore, it’s
the first member that we’re going to make available to them (and also the only one, at least for
now). In order to do that, we need to use an access modifier that allows the subclasses to use it.
In our sample, we’ve used protected, but we could have used public as well.

Chapter 8 401

Before going any further, it might be useful to briefly recap how many access modifiers are supported
by TypeScript and how they actually work. If we already know them from C# or other object-oriented
programming languages, it’ll be a familiar story for the most part.

TypeScript access modifiers
Access modifiers are a TypeScript concept that allows developers to declare methods and properties
as public, private, protected, or read-only. If no modifier is provided, then the method or property
is assumed to be public, meaning that it can be accessed internally and externally without issues.
Conversely, if it is marked as private, that method or property will only be accessible within the
class, not including its subclasses (if any). protected implies that the method or property is accessible
only internally within the class and all its subclasses, that is, any class that extends it, but not externally.
Finally, read-only will cause the TypeScript compiler to throw an error if the value of the property is
changed after its initial assignment in the class constructor.

However, it’s important to keep in mind that these access modifiers will be enforced only at compile time.
The TypeScript transpiler will warn us about all inappropriate uses, but it won’t be able to stop inap-
propriate usage at runtime.

Adding the common interface methods
Let’s now expand our BaseService common interface with some high-level methods that correspond
to what we’ll need to do in our subclasses. Since the components we’re refactoring are already there,
the best way to define these common interface methods is by reviewing their source code and acting
accordingly.

Here’s a good start:

import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';
import { environment } from '../environments/environment';

export abstract class BaseService<T> {
 constructor(
 protected http: HttpClient) {
 }

 abstract getData(
 pageIndex: number,

For the sake of completeness, it’s worth noting that access modifiers work in a slightly
different way when assigned to constructor parameters. If no modifier is provided there,
the variable will only be available within the constructor’s scope; conversely, if we assign
a modifier to that variable, it will be accessible within the whole class following the mod-
ifier rules that we described earlier, just like how it was declared as a separate member.

Code Tweaks and Data Services402

 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null): Observable<ApiResult<T>>;

 abstract get(id: number): Observable<T>;
 abstract put(item: T): Observable<T>;
 abstract post(item: T): Observable<T>;

 protected getUrl(url: string) {
 return environment.baseUrl + url;
 }
}

export interface ApiResult<T> {
 data: T[];
 pageIndex: number;
 pageSize: number;
 totalCount: number;
 totalPages: number;
 sortColumn: string;
 sortOrder: string;
 filterColumn: string;
 filterQuery: string;
}

Let’s briefly review each one of the preceding abstract methods:

• getData(): The updates are meant to replace our current implementation for methods in our
CitiesComponent and CountriesComponent TypeScript files to retrieve the cities and countries
lists. As we can see, we took the chance to specify a new strongly typed interface – ApiResult<T>

– that will be populated with the structured JSON output that we already receive from the
GetCities and GetCountries ASP.NET Core web APIs.

• get(): This will replace our current implementation for the loadData() methods of our
CityEditComponent and CountryEditComponent TypeScript files.

• put() and post(): These methods will replace our current implementations for the submit()
methods of our CityEditComponent and CountryEditComponent TypeScript files.

• getUrl(): This helper method will centralize the required tasks to build the URL for the API
endpoints, thus avoiding the compulsive usage of the environment.baseUrl property for each
HTTP request.

Chapter 8 403

Since we’re using a good number of generic-type variables, it may be useful to briefly recap what they
are and how they can help us define our common interfaces.

Type variables and generic types – <T> and <any>
It’s worth noting that for the GET, PUT, and POST methods, we didn’t use a strongly typed interface, and
we went for a type variable instead. We were kind of forced to do that because these methods will
return either a City or a Country interface, depending on the derived class that will implement them.

Taking that into account, we will choose to use <T> instead of <any> so that we won’t lose the informa-
tion about what that type was when the function returns. The <T> generic type allows us to defer the
specification of the returned variable type until the class or method is declared and instantiated by the
client code, meaning that we’ll be able to capture the type of the given argument whenever we implement
the method in the derived class (that is, when we know what is being returned).

These concepts are nothing new, since we’ve already used them in our back-end code; it’s just great
that we can also use them on the Angular front-end, thanks to the TypeScript programming language.

Why return Observables and not JSON?
Before moving on, it could be wise to briefly explain why we’ve chosen to return Observable types
instead of the actual JSON-based interfaces that we already have, such as City, Country, and ApiResult.
Wouldn’t it be a more practical choice?

The reason is simple: the Observable type is the most convenient way to deal with API responses
that come in asynchronously – thus being the reason why it is the default return type for most of the
HttpClient methods. Although we could pipe / map the Observable to return a JSON result, doing
that would leave us with extremely limited options, preventing us from leveraging the feature-rich
Observable collections that we’ve talked about a number of times since Chapter 4, Front-End and
Back-End Interactions.

Creating CityService
Let’s now create our first derived service, that is, the first derived class (or subclass) of BaseService.

From Solution Explorer, browse to the /src/app/cities/ folder, right-click to create a new city.
service.ts file, and fill it with the following code:

import { Injectable} from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { BaseService, ApiResult } from '../base.service';
import { Observable } from 'rxjs';

The type <T> variable is a great way to deal with unknown types in an interface, to the
point that we’ve also used it in the preceding ApiResult Angular interface, just like we
did in the /Data/ApiResult.cs C# file in the .NET back-end.

Code Tweaks and Data Services404

import { City } from './city';

@Injectable({
 providedIn: 'root',
})
export class CityService
 extends BaseService<City> {
 constructor(
 http: HttpClient) {
 super(http);
 }

 getData(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<City>> {
 var url = this.getUrl("api/Cities");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);

 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }

 return this.http.get<ApiResult<City>>(url, { params });
 }

 get(id: number): Observable<City> {
 var url = this.getUrl("api/Cities/" + id);
 return this.http.get<City>(url);
 }

Chapter 8 405

 put(item: City): Observable<City> {
 var url = this.getUrl("api/Cities/" + item.id);
 return this.http.put<City>(url, item);
 }

 post(item: City): Observable<City> {
 var url = this.getUrl("api/Cities");
 return this.http.post<City>(url, item);
 }
}

The most relevant aspect of the preceding source code is the providedIn property in the service’s @
Injectable() decorator, which we’ve set to root. This will tell Angular to provide this injectable in
the application root, thus making it a singleton service.

Other than that, there’s nothing new in the preceding code: we just copied (and slightly adapted) the
implementation that already exists in our CitiesComponent and CityEditComponent TypeScript files.
The main difference is that we’re now using HttpClient here, meaning that we can remove it from
the component classes and abstract its usage with CityService instead.

Implementing CityService
Let’s now refactor our Angular components to use our brand-new CityService instead of the raw
HttpClient. As we’ll be able to see in a short while, the new singleton services pattern that we used
(and talked about) earlier will make things slightly easier than before.

AppModule
In Angular versions prior to 6.0, the only way to make a singleton service available throughout the app
would have been to reference it within the AppModule file in the following way:

// ...existing code...

import { CityService } from './cities/city.service';

A singleton service is a service for which only one instance exists in an app. In other words,
Angular will create only one instance of that service, which will be shared with all the
components that will use it (through dependency injection) in our application. Although
Angular services are not required to be singletons, this technique makes efficient use of
memory and provides good performance, thereby making it the most frequently used
implementation approach.

For additional info about singleton services, check out the following URL: https://
angular.io/guide/singleton-services.

https://angular.io/guide/singleton-services
https://angular.io/guide/singleton-services

Code Tweaks and Data Services406

// ...existing code...

 providers: [CityService],

// ...existing code...

As we can see, we should have added the import statement for the new service at the beginning of the
AppModule file, and we also registered the service itself in the existing (albeit still empty) providers:
[] section.

Luckily enough, since we’ve used the providedIn: root approach that was introduced with Angular
6.0, the previous technique is no longer required – although it is still supported as a viable alternative.

Long story short, thanks to the new approach, we no longer have to update the AppModule file; we just
need to refactor the components that will use the service.

CitiesComponent
From Solution Explorer, open the /src/app/cities/cities.component.ts file and update its content
as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
// import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';

import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';

import { City } from './city';
import { CityService } from './city.service';
import { ApiResult } from '../base.service';

@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',

As a matter of fact, the providedIn: root approach is preferable because it makes our
service tree-shakable. Tree shaking is a method of optimizing the JavaScript-compiled
code bundles by eliminating any code from the final file that isn’t actually being used.

For additional info about tree shaking in JavaScript, take a look at the following URL:
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking.

https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking

Chapter 8 407

 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
// ...existing code...

 constructor(
 private cityService: CityService) {
 }

// ...existing code...

 getData(event: PageEvent) {

 var sortColumn = (this.sort)
 ? this.sort.active
 : this.defaultSortColumn;

 var sortOrder = (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder;

 var filterColumn = (this.filterQuery)
 ? this.defaultFilterColumn
 : null;

 var filterQuery = (this.filterQuery)
 ? this.filterQuery
 : null;

 this.cityService.getData(
 event.pageIndex,
 event.pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery)
 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;

Code Tweaks and Data Services408

 this.cities = new MatTableDataSource<City>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we just had to perform some minor updates:

• In the import section, we added some references to our new files
• In the constructor, we switched the existing http variable of the HttpClient type with a brand-

new cityService variable of the CityService type
• Last but not least, we changed the getData() method’s existing implementation—based upon

the HttpClient – for a new one that relies upon the new CityService

It’s worth noting that we have commented out all the import references from the @angular/common/
http package simply because we no longer need them, now that we’re not directly using that stuff in
this class.

CityEditComponent
Implementing CityService in CityEditComponent is going to be just as easy as it was for
CitiesComponents.

From Solution Explorer, open the /src/app/cities/city-edit.component.ts file and update its
content as follows:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn
} from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';

import { environment } from './../../environments/environment;
import { City } from './city';
import { Country } from './../countries/country';
import { BaseFormComponent } from '../base-form.component';
import { CityService } from './city.service';

// ...existing code...

 constructor(
 private activatedRoute: ActivatedRoute,

Chapter 8 409

 private router: Router,
 private http: HttpClient,
 private cityService: CityService) {
 super();
 }

// ...existing code...

 onSubmit() {

 // ...existing code...

 if (this.id) {
 // EDIT mode
 this.cityService
 .put(city)
 .subscribe({

 // ...existing code...

 });
 }
 else {
 // ADD NEW mode
 this.cityService
 .post(city)
 .subscribe({

 // ...existing code...

 });
 }
 }

// ...existing code...

As we can see, this time we weren’t able to get rid of the @angular/common/http package reference
because we still need HttpClient to perform some specific tasks – loadCountries() and isDupeCity()

– that we can’t handle with our current service. In order to fix these issues, it definitely seems like we
need to implement two more methods in CityService.

Let’s do this!

Code Tweaks and Data Services410

Implementing loadCountries and isDupeCity in CityService
From Solution Explorer, open the /src/app/cities/city.service.ts file and add the following
methods at the end of the file, just before the last curly bracket:

// ...existing code...

getCountries(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<Country>> {
 var url = this.getUrl("api/Countries");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);

 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }

 return this.http.get<ApiResult<Country>>(url, { params });
}

isDupeCity(item: City): Observable<boolean> {
 var url = this.getUrl("api/Cities/IsDupeCity");
 return this.http.post<boolean>(url, item);
}

Since this code contains a reference to the Country interface, we also need to add the following import
statement (we can put that right below the City interface):

import { Country } from './../countries/country';

Now that we have these methods, we can patch our CityEditComponent class file as follows:

Chapter 8 411

import { Component, OnInit } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';

// ...existing code...

// import { environment } from './../../environments/environment';

// ...existing code...

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private cityService: CityService) {
 super();
 }

// ...existing code...

 loadData() {

 // ...existing code...

 // fetch the city from the server
 this.cityService.get(this.id).subscribe({

 // ...existing code...
 }

 loadCountries() {
 // fetch all the countries from the server
 this.cityService.getCountries(
 0,
 9999,
 "name",
 "asc",
 null,
 null).subscribe({
 next: (result) => {
 this.countries = result.data;
 },
 error: (error) => console.error(error)

Code Tweaks and Data Services412

 });
 }

// ...existing code...

 isDupeCity(): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{ [key: string]:
 any } | null> => {

 var city = <City>{};
 city.id = (this.id) ? this.id : 0;
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;

 return this.cityService.isDupeCity(city)
 .pipe(map(result => {
 return (result ? { isDupeCity: true } : null);
 }));
 }
 }
}

And that’s it! As soon as we delegated all the retrieval tasks to our CityService, we were eventually able
to remove the @angular/common/http references and HttpClient from our CityEditComponent code.

In the next section, we’ll do the same with the country-related components.

Creating CountryService
It’s now time to create CountryService, which will be the second – and last – derived class (or subclass)
of BaseService.

Just like we did with CityService early on, create a new /src/app/countries/country.service.ts file
using the ng generate Angular CLI command (or Solution Explorer) and fill it with the following code:

Before going further, it would be wise to check what we have done so far by hitting F5 and
ensuring that everything still works as before. If we did everything correctly, we should
see no differences; our new CityService should be able to transparently perform all
the tasks that were previously handled by HttpClient. That’s expected, since we’re still
using it under the hood!

Chapter 8 413

import { Injectable } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { BaseService, ApiResult } from '../base.service';
import { Observable } from 'rxjs';

import { Country } from './country';

@Injectable({
 providedIn: 'root',
})
export class CountryService
 extends BaseService<Country> {
 constructor(
 http: HttpClient) {
 super(http);
 }

 getData (
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<Country>> {
 var url = this.getUrl("api/Countries");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);

 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }

 return this.http.get<ApiResult<Country>>(url, { params });
 }

Code Tweaks and Data Services414

 get(id: number): Observable<Country> {
 var url = this.getUrl("api/Countries/" + id);
 return this.http.get<Country>(url);
 }

 put(item: Country): Observable<Country> {
 var url = this.getUrl("api/Countries/" + item.id);
 return this.http.put<Country>(url, item);
 }

 post(item: Country): Observable<Country> {
 var url = this.getUrl("api/Countries");
 return this.http.post<Country>(url, item);
 }

 isDupeField(countryId: number, fieldName: string, fieldValue: string):
Observable<boolean> {
 var params = new HttpParams()
 .set("countryId", countryId)
 .set("fieldName", fieldName)
 .set("fieldValue", fieldValue);
 var url = this.getUrl("api/Countries/IsDupeField");
 return this.http.post<boolean>(url, null, { params });
 }
}

As we can see, this time we took the chance to directly add the isDupeField() method in advance, since
we’re definitely going to need it to refactor the validator of our CountryEditComponent in a short while.

As always, now that we have created the service, we need to implement it within our app. Luckily, as
we explained earlier on, we don’t have to reference it in our AppModule file; we just need to properly
implement it in our country-related components.

CountriesComponent
From Solution Explorer, open the /src/app/countries/countries.component.ts file and update its
content as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
// import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';

Chapter 8 415

import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';

import { Country } from './country';
import { CountryService } from './country.service';

 // ...existing code...

 constructor(
 private countryService: CountryService) {
 }

 // ...existing code...

 getData(event: PageEvent) {

 var sortColumn = (this.sort)
 ? this.sort.active
 : this.defaultSortColumn;

 var sortOrder = (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder;

 var filterColumn = (this.filterQuery)
 ? this.defaultFilterColumn
 : null;

 var filterQuery = (this.filterQuery)
 ? this.filterQuery
 : null;

 this.countryService.getData(
 event.pageIndex,
 event.pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery)
 .subscribe({

Code Tweaks and Data Services416

 // ...existing code...

 });
 }
}

Nothing new here; we just repeated what we did with CitiesComponent a short while ago.

CountryEditComponent
From Solution Explorer, open the /src/app/countries/country-edit.component.ts file and change
its content as follows:

import { Component, OnInit } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormBuilder, Validators, AbstractControl, AsyncValidatorFn
} from '@angular/forms';
import { map } from 'rxjs/operators';
import { Observable } from 'rxjs';

// import { environment } from './../../environments/environment';
import { Country } from './country';
import { BaseFormComponent } from '../base-form.component';
import { CountryService } from './country.service';

 // ...existing code...

 constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private countryService: CountryService) {
 super();
 }

// ...existing code...

 loadData() {

 // ...existing code...

Chapter 8 417

 // fetch the country from the server
 this.countryService.get(this.id).subscribe({

 // ...existing code...

 });
 }
 else {
 // ADD NEW MODE

 this.title = "Create a new Country";
 }
 }

 onSubmit() {

 // ...existing code...

 if (this.id) {
 // EDIT mode
 this.countryService
 .put(country)
 .subscribe({

 // ...existing code...

 });
 }
 else {
 // ADD NEW mode
 this.countryService
 .post(country)
 .subscribe({

 // ...existing code...

 });
 }
 }

 isDupeField(fieldName: string): AsyncValidatorFn {

Code Tweaks and Data Services418

 return (control: AbstractControl): Observable<{ [key: string]:
 any } | null> => {

 return this.countryService.isDupeField(
 this.id ?? 0,
 fieldName,
 control.value)
 .pipe(map(result => {
 return (result ? { isDupeField: true } : null);
 }));
 }
 }
}

As we can see, the code changes that we applied here are very similar to what we did in CityEditComponent.
Since we took the chance to preventively add the isDupeField() method in our CountryService class,
this time we were able to get rid of the @angular/common/http package in a single shot.

That’s it, at least for now. In the next chapter, we’ll make good use of these new services. However,
before going further, you are strongly advised to perform some debug runs (by hitting F5) to ensure
that everything still works.

If it doesn’t, refer to the Bug fixes and improvements section earlier in this chapter.

Summary
In this chapter, we have spent some valuable time consolidating the existing source code of our
worldcities.client Angular app. We successfully implemented some optimizations and tweaks
by making good use of the TypeScript class inheritance features, and we learned how to create base
classes (superclasses) and derived classes (subclasses), thus making our source code more maintainable
and DRY. At the same time, we took the chance to perform some bug fixing and add a couple of new
features to our app’s UI.

Right after that, we refined the data fetching capabilities of our Angular app by switching from direct
usage of Angular’s HttpClient class in our components to a more versatile service-based approach.
Eventually, we created CityService and CountryService – both extending a BaseService abstract
class – to deal with all the HTTP requests, thus paving the way for post-processing, error handling,
retry logic, and more interesting stuff that will be introduced in the upcoming chapter.

Suggested topics
For further information, we recommend the following topics: object-oriented programming, polymor-
phism, inheritance, AJAX, XMLHttpRequest, Fetch API, Angular HttpClient, Angular services, RxJS,
Observables, Promises, tree shaking, singleton services, TypeScript access modifiers, TypeScript ge-
neric types, base classes and their derived classes, superclasses and subclasses, and access modifiers.

Chapter 8 419

References
• Jesse James Garrett – AJAX: A New Approach to Web Applications: https://web.archive.

org/web/20061107032631/http://www.adaptivepath.com/publications/essays/
archives/000385.php

• The XMLHttpRequest Object – W3C First Working Draft (April 5, 2006): https://www.w3.org/
TR/2006/WD-XMLHttpRequest-20060405/

• Alex Hopmann talks about XMLHttpRequest (currently offline): http://www.alexhopmann.com/
xmlhttp.htm

• Alex Hopmann talks about XMLHttpRequest (archived copy): http://archive.is/7i5l
• XMLHttpRequest Level 1 – W3C Latest Draft (October 6, 2016): https://www.w3.org/TR/2016/

NOTE-XMLHttpRequest-20161006/

• XMLHttpRequest Living Standard (September 24, 2019): https://xhr.spec.whatwg.org/
• Fetch API – Concepts and usage: https://developer.mozilla.org/en-US/docs/Web/API/

Fetch_API

• RxJS – Observables: https://angular.io/guide/observables
• MDN – Promises: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/Promise

• Angular – Singleton services: https://angular.io/guide/singleton-services
• Tree shaking in JavaScript: https://developer.mozilla.org/en-US/docs/Glossary/Tree_

shaking

• TypeScript: Access modifiers: http://www.typescriptlang.org/docs/handbook/classes.
html#public-private-and-protected-modifiers

• TypeScript: Generic types: https://www.typescriptlang.org/docs/handbook/generics.html
• Anonymous types in C#: https://learn.microsoft.com/en-us/dotnet/csharp/programming-

guide/classes-and-structs/anonymous-types

• Create Data Transfer Objects (DTOs): https://learn.microsoft.com/en-us/aspnet/web-api/
overview/data/using-web-api-with-entity-framework/part-5

• Pros and Cons of Data Transfer Objects: https://learn.microsoft.com/en-us/archive/msdn-
magazine/2009/brownfield/pros-and-cons-of-data-transfer-objects

• Microsoft.EntityFrameworkCore namespace: https://learn.microsoft.com/en-us/dotnet/api/
microsoft.entityframeworkcore

• System.Text.Json.Serialization namespace: https://learn.microsoft.com/en-us/dotnet/api/
system.text.json.serialization

• Refactoring code: https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-
in-visual-studio

https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
https://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/
http://www.alexhopmann.com/xmlhttp.htm
http://www.alexhopmann.com/xmlhttp.htm
http://archive.is/7i5l
https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/
https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/
https://xhr.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://angular.io/guide/observables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://angular.io/guide/singleton-services
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
http://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers
http://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers
https://www.typescriptlang.org/docs/handbook/generics.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://learn.microsoft.com/en-us/aspnet/web-api/overview/data/using-web-api-with-entity-framework/part-5
https://learn.microsoft.com/en-us/aspnet/web-api/overview/data/using-web-api-with-entity-framework/part-5
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/brownfield/pros-and-cons-of-data-transfer-objects
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/brownfield/pros-and-cons-of-data-transfer-objects
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization
https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio
https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio

Code Tweaks and Data Services420

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

9
Back-End and Front-End
Debugging

One of the most relevant features of all programming languages (such as C#), and most scripting lan-
guages (such as JavaScript), is the debugging capabilities they offer to developers.

The term debugging universally refers to the process of finding and resolving the issues and/or prob-
lems, commonly called bugs, that prevent a program or an application from working as expected. In
a nutshell, we can say that the debugging process allows the developer to better understand how the
source code is being executed under the hood and why it produces the result that it does.

Debugging is a very important skill for any developer, arguably as much as programming itself; it’s a
skill that all developers have to learn with theory, practice, and experience, just like coding.

The best way to fulfill these tasks is by making use of a debugger—a tool that allows running the target
program under controlled conditions. This enables the developer to track its operations in real time,
halting them using breakpoints, executing them step by step, viewing the values of the underlying type,
and so on. Advanced debugger features also allow the developer to access the memory contents, CPU
registers, storage device activities, and so on, viewing or altering their values to reproduce specific
conditions that might be causing the addressed issues.

Luckily enough, Visual Studio provides a set of debuggers that can be used to track any .NET applica-
tion. Although most of its features have been designed to debug the managed code portion of our app
(for example, our C# files), some of them—when configured properly—can be very useful for tracking
the client-side code as well.

“If debugging is the process of removing software bugs, then programming must be the
process of putting them in.”

— E. W. Dijkstra

Back-End and Front-End Debugging422

Throughout this chapter, we’ll learn how to use them, as well as the various debugging tools built into
some web browsers such as Chrome, Firefox, and Edge to constantly monitor and keep under control
the whole HTTP workflow of our WorldCities app.

For practical reasons, the debugging process has been split into two separate sections:

• The backend, where the debug tasks are mostly being handled using the Visual Studio and
.NET tools

• The frontend, where both Visual Studio and the web browser play a major role

The last section of the chapter is dedicated to backend logging using the .NET logging API and a
third-party logging provider (Serilog).

By the end of this chapter, we’ll have learned how to properly debug our web application’s Web API,
as well as our Angular components, using the various debugging and logging tools provided by Visual
Studio and ASP.NET Core to their full extent.

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in the previous chapters, plus
the following external libraries:

• The EFCore.BulkExtensions NuGet package
• The Serilog.AspNetCore NuGet package
• The Serilog.Settings.Configuration NuGet package
• The Serilog.Sinks.MSSqlServer NuGet package

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/master/Chapter_09/.

Backend debugging
In this section, we’ll learn how to make use of the debug features offered by the Visual Studio envi-
ronment to take a look at the server-side life cycle of our web application and understand how we can
properly troubleshoot some potential flaws.

However, before doing that, let’s spend a couple of minutes seeing how it works for the various oper-
ating systems available.

Windows or Linux?
For the sake of simplicity, we’ll take for granted that we’re using the Visual Studio Community, Profes-
sional, or Enterprise edition for Windows operating systems. However, since .NET and ASP.NET Core
have been designed to be cross-platform, there are at least two options for those who want to debug
in other environments, such as Linux or macOS:

• Using Visual Studio Code, a lightweight and open source alternative to Visual Studio available
for Windows, Linux, and macOS with full debug support

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_09/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_09/

Chapter 9 423

• Using Visual Studio, thanks to the Docker container tools available since Visual Studio 2017
and built into Visual Studio since version 2019 (16.3)

In this book, for the sake of simplicity, we’ll stick to the Windows environment, thus making use of
the Visual Studio set of debuggers available for Windows.

The basics
We’ll take for granted that everyone who is reading this book already knows all the basic debugging
features offered by Visual Studio, such as the following:

• Debug versus Release build configuration modes
• Breakpoints and how to set and use them
• Stepping in and out of a program
• The Watch, Call Stack, Locals, and Immediate windows

In the following section, we’ll briefly introduce some advanced debug options that can be useful in
our specific scenarios.

Conditional breakpoints
The conditional breakpoint is a useful debugging feature that is often unknown to (or underutilized
by) most developers; it acts just like a normal breakpoint, but it only triggers when certain conditions
are met.

Visual Studio Code can be downloaded for free (under the MIT license) from the following
URL: https://code.visualstudio.com/download.

Visual Studio Docker container tools require Docker Desktop, which can be installed from
the following URL: https://docs.docker.com/desktop/windows/install/.

The container tools usage information is available here: https://learn.microsoft.com/
en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker.

For additional information about the .NET Core debugging features under Linux and ma-
cOS, check out the following URL: https://github.com/Microsoft/MIEngine/wiki/
Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio.

For those who don’t know (or remember) them well enough, here’s a great tutorial that
can be useful if you want a quick recap: https://learn.microsoft.com/en-US/dotnet/
core/tutorials/debugging-with-visual-studio?tabs=csharp.

https://code.visualstudio.com/download
https://docs.docker.com/desktop/windows/install/
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio
https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio
https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp
https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp

Back-End and Front-End Debugging424

To set a conditional breakpoint, we have two options:

• Place a standard breakpoint, then right-click on it and select Conditions…
• Right-click on the column when we typically set a standard breakpoint, then select Insert

Conditional Breakpoint

The two approaches are shown in the following screenshot:

Figure 9.1: Creating a conditional breakpoint

As soon as we do that, a panel will appear at the bottom of the window showing a number of possible
conditional settings that we can configure for that breakpoint:

Figure 9.2: Conditional breakpoint settings panel

As we can see, there are a number of possible settings available (Conditions, Actions, and so on). Let’s
see how we can use them.

Chapter 9 425

Conditions
If we check the Conditions checkbox, we’ll be able to define the code condition that will trigger the
breakpoint.

To better explain how it works, let’s perform a quick debugging test:

1. From Solution Explorer, choose the WorldCities�Server ASP.NET Core project and open the
/Controllers/CitiesController.cs file.

2. Set a breakpoint on the last line of the GetCity() method (the one that returns the city to the
client once it has been found—see the following screenshot for details).

3. Click the Settings icon to access the Breakpoint Settings panel.
4. Activate the Conditions checkbox.
5. Select Conditional Expression and Is true in the two drop-down lists.
6. Type the following condition into the textbox to the right: city.Name == "Moscow".

Once done, our Breakpoint Settings panel should look like the following screenshot:

Figure 9.3: Activating the Conditions checkbox

As we can see, our condition has been created; the interface lets us add other conditions, as well as
perform certain Actions by activating the checkbox below it.

Actions
The Actions feature can be used to show a custom message in the Output window (such as, Hey, we’re
currently editing Moscow from our Angular app!) and/or choose whether the code execution should
continue or not. If no Action is specified, the breakpoint will behave normally, without emitting mes-
sages and halting the code execution.

Back-End and Front-End Debugging426

While we’re here, let’s take the chance to test the Actions feature as well. Activate the checkbox, then
type the message in the previous paragraph into the rightmost textbox. Once done, our Breakpoint
Settings panel should look like the following screenshot:

Figure 9.4: Activating the Actions checkbox

We’ve just created our first conditional breakpoint; let’s quickly test it to see how it works.

Testing the conditional breakpoint
To test what happens when the breakpoint is hit, run the WorldCities app in debug mode (by hitting
F5), navigate to the Cities view, filter the table to locate the city of Moscow, and click on its name to
enter edit mode.

If everything has been done properly, our conditional breakpoint should trigger and behave in the
following way:

Figure 9.5: Outcome after triggering the conditional breakpoint

Chapter 9 427

As we can see, the Output window has been populated with our custom message as well. If we now
repeat the same test with any other city with a different name (for example, Rome, Prague, or New
York), that same breakpoint won’t trigger at all; nothing will happen.

All good so far; let’s move on.

The Output window
In the previous section, we talked about the Visual Studio Output window, which we used to write a
custom message whenever our conditional breakpoint was hit.

If you have some experience with the Visual Studio debugger, you’ll know about the utmost impor-
tance of this window for understanding what happens behind the curtain. The Output window shows
the status messages for various features in the IDE, meaning that most .NET middlewares, libraries,
and packages write their relevant information there, just like we did with our conditional breakpoint.

If we take a look at what happened in the Output window during the test we have just performed, we
can see some interesting stuff:

Figure 9.6: The Visual Studio Output window

It’s worth mentioning that there are two cities called Moscow in our WorldCities database:
the Russian capital city and a city in Idaho, USA. It goes without saying that our conditional
breakpoint will trigger on both of them because it only checks for the Name property. If
we wanted to limit its scope to the Russian city only, we should refine the conditional
expression to also match CityId, CountryId, or any other suitable property.

To open the Output window, either choose View | Output from the main menu bar or
press Ctrl + Alt + O.

Back-End and Front-End Debugging428

The Output window is full of info coming from EntityFrameworkCore, including the actual SQL que-
ries used to map the City entity properties and the database content; however, we don’t have info
from any other source. Why are we only tracking the status messages coming from the Microsoft.
EntityFrameworkCore namespace?

The reason for such behavior is pretty simple: it all depends on the LogLevel that we’ve set for the
various namespaces (or namespace prefixes) in the appsettings.json file.

If we open the appsettings.Development.json files of our WorldCities�Server project, we can see
that our current LogLevel settings for the Microsoft.AspNetCore namespace prefix is currently set
to Warning:

 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 }

We’ve briefly seen those LogLevel settings back in Chapter 3, Looking Around, when we talked about
the appsettings.json and appsettings.<Environment>.json files. However, we haven’t spent time
explaining how such settings actually work and how can we use them to influence the Output window

– and any other logging provider we might want to use: let’s do it now.

LogLevel types
The LogLevel settings specify the minimum level to log for any given namespace (or namespace pre-
fix). This level corresponds to one of the seven possible values supported by the framework, each one
having a distinctive name and a corresponding incremental number: Trace (0), Debug (1), Information
(2), Warning (3), Error (4), Critical (5), and None (6).

Here’s a quick breakdown for each one of them:

• Trace: The application’s internal activities and values – typically useful only for debugging
low-level operations. It is a rarely used LogLevel because it often contains confidential data,
such as the control of encryption keys or other “sensitive” information that should not be
memorized or viewed. For that reason, using it in production is highly discouraged and might
lead to severe security issues.

• Debug: Interactive analysis and debugging info. These are logs that should be disabled in pro-
duction environments as they may contain information that should not be disclosed.

• Information: Information messages; that is, they describe events relating to the normal be-
havior of the system.

• Warning: Abnormal or unexpected behaviors, but ones that do not cause the application to
stop running.

Chapter 9 429

• Error: Info captured when the current execution flow is interrupted due to an error: this
means that they are error messages related to the current activity, not to be confused with
application-wide runtime errors (see Critical).

• Critical: Events that describe an irreversible application crash.
• None: A placeholder value that we can use if we want to entirely disable logging (“don’t log

anything”).

All events and/or status messages produced by any ASP.NET Core library fall in one of the seven cate-
gories above: the LogLevel settings allow us to choose what to “capture” and what to ignore.

Now that we understand how the LogLevel settings work, let’s take another look at our appsettings.
Development.json's LogLevel settings and give meaning to these values:

• The Default namespace is set to Information, meaning that we want to see all Information,
Warning, Error, and Critical events and status messages for all namespaces that don’t have
more specific rules.

• The Microsoft.AspNetCore namespace is set to Warning, meaning that we want to see all
Warning, Error, and Critical events and status messages for everything related to a name-
space that starts with Microsoft.AspNetCore.

It’s worth noting that the specialized Microsoft.AspNetCore key will override the value of the generic
Default key, which acts as a catch-all for any unspecified namespace. If we consider that we’ve almost
only used built-in middlewares and services that belong to the Microsoft.AspNetCore namespace,
we can now easily understand why we don’t see any of them in the Output window: we have explicitly
told our app to not show them.

At the same time, the Microsoft.EntityFrameworkCore namespaces start with a different prefix. For
this very reason, they will fall back to the Default behavior and therefore get the Information settings,
and this is why we do see them and all their informative events and status messages (in addition to
the Warning, Error, and Critical ones).

Testing the LogLevel
To quickly demonstrate how the LogLevel settings work, let’s perform a quick test.

Open the appsettings.Development.json file and add Microsoft.EntityFrameworkCore to the
LogLevel JSON key using the same settings as the Microsoft.AspNetCore namespace, in the follow-
ing way:

 "Logging": {
 "LogLevel": {
 "Default": "Debug",

It’s important to understand that the value present in the LogLevel setting specifies the
minimum level to log: for example, if we set the LogLevel to Warning, the system will
log Warning, Error, and Critical events and status messages.

Back-End and Front-End Debugging430

 "Microsoft.AspNetCore": "Warning",
 "Microsoft.EntityFrameworkCore": "Warning"
 }
 }

Right after that, launch our project(s) again and perform the same identical steps until they trigger
the “Moscow” conditional breakpoint that we set earlier.

This time, the Output window will be more succinct than before, as shown in the following screenshot:

Figure 9.7: The Visual Studio Output window with the Microsoft.EntityFrameworkCore’s new LogLevel
settings

Now, let’s configure all LogLevel settings to Information in the following way:

 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Information"
 }
 }

Once done, run the project again and perform another test up to the “Moscow” conditional breakpoint,
then take another look at the Output window:

Chapter 9 431

Figure 9.8: Visual Studio Output window

As we can see, now there are pieces of information coming out from a number of different sources,
including the following:

• Microsoft.AspNetCore.Hosting.Diagnostics: The ASP.NET Core middleware dedicated to
exception handling, exception display pages, and diagnostics information. It handles developer
exception page middleware, exception handler middleware, runtime information middleware,
status code page middleware, and welcome page middleware. In a nutshell, it’s the king of the
Output window when debugging web applications.

• Microsoft.AspNetCore.Mvc.Infrastructure: The namespace that handles (and tracks) the
controller’s actions and responds to the ASP.NET Core MVC middleware.

• Microsoft.AspNetCore.Routing: The ASP.NET Core middleware that handles static and dy-
namic routing, such as all our web application’s URI endpoints.

• Microsoft.EntityFrameworkCore: The ASP.NET Core middleware that handles the connections
to the data source; for example, our SQL server, which we extensively talked about in Chapter
5, Data Model with Entity Framework Core.

Back-End and Front-End Debugging432

All this information is basically a sequential log of everything that happens during our web applica-
tion’s execution. We can learn a lot from the ASP.NET Core life cycle just by performing a user-driven
action and reading it.

Configuring the Output window
Needless to say, the Visual Studio interface allows us to filter the output and/or choose the level of
detail of the captured information.

To configure what to show and what to hide, select Debug | Options from the main menu, then navigate
to Output Window from the tree menu item to the right. From that panel, we can select (or deselect) a
number of output messages: Exception Messages, Module Load Messages/Module Unload Messages,
Process Exit Messages, Step Filtering Messages, and so on:

Figure 9.9: Output window configuration

Now that we’ve got the gist of the backend debugging output, let’s move our focus to one of the mid-
dlewares that arguably requires special attention: Entity Framework (EF) Core.

Debugging EF Core
If we take a look at the Output window right after one of our web applications runs in debug mode, we
should be able to see a bunch of SQL queries written in plain text. These are the SQL queries generat-
ed by EF Core from our lambda expressions, query expressions, IQueryable objects, and expression
trees into valid T-SQL queries.

Chapter 9 433

Here’s the output information line emitted by the Microsoft.EntityFrameworkCore middleware
containing the SQL query used to retrieve the city of Moscow (the actual SQL query is highlighted):

Microsoft.EntityFrameworkCore.Database.Command: Information: Executed
DbCommand (1ms) [Parameters=[@__p_0='?' (DbType = Int32)], CommandType='Text',
CommandTimeout='30']
SELECT TOP(1) [c].[Id], [c].[CountryId], [c].[Lat], [c].[Lon], [c].[Name]
FROM [Cities] AS [c]
WHERE [c].[Id] = @__p_0

Not bad, right? These SQL queries in clear text might be very useful to determine whether EF Core
does a good job or not when converting our lambda or LINQ query expressions to SQL in terms of
performance.

The GetCountries() SQL query
Let’s try to use this same technique to retrieve the SQL query that corresponds to the
CountriesController's GetCountries() method implementation, which we refined during Chapter
8, Code Tweaks and Data Services, to include the cities count.

Here’s the source code snippet:

return await ApiResult<CountryDTO>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new CountryDTO()
 {
 Id = c.Id,
 Name = c.Name,
 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

To see how it was converted into T-SQL, do the following:

1. Hit F5 to run the web app in debug mode.
2. Navigate to the Countries view.
3. Take a look at the resulting Output window (searching for TotCities will help there).

Back-End and Front-End Debugging434

Here’s the SQL query that we should find there:

SELECT [c].[Id], [c].[Name], [c].[ISO2], [c].[ISO3], (
 SELECT COUNT(*)
 FROM [Cities] AS [c0]
 WHERE [c].[Id] = [c0].[CountryId]) AS [TotCities]
FROM [Countries] AS [c]
ORDER BY [c].[Name]
OFFSET @__p_0 ROWS FETCH NEXT @__p_1 ROWS ONLY

That’s not bad; EF Core converted our LINQ expression to SQL using a subquery, which is a good choice
in terms of performance. The OFFSET part of the SQL query, together with the DBCommand parameters
mentioned in the preceding code snippet, handles the pagination and ensures that we’re only getting
the rows we’ve been asking for.

However, the Visual Studio Output window is not the only way to take a look at those SQL queries—
we can provide ourselves with an even better alternative by adding another great third-party NuGet
package, as we’re going to see in the following sections.

Getting the SQL code programmatically
The Output window is good enough for most scenarios, but what if we want to retrieve the SQL code
from an IQueryable<T> programmatically? Such an option might be very useful to debug (or condi-
tionally debug) some parts of our app, especially if we want to automatically save these SQL queries
outside the Output window (for example, a log file or a log aggregator service).

To achieve such a result, we can do one of the following:

• Create a dedicated function that will be able to do that using System.Reflection, the .NET
namespace containing types that can be used to retrieve information about assemblies, mod-
ules, members, parameters, and other entities in managed code by examining their metadata

• Install a third-party NuGet package that already does that

Sometimes, it can be useful (and instructive) to manually code something instead of relying on an
existing library; however, when it comes to System.Reflection tasks, that’s often not the case since
the practice of extracting info from non-public members can easily lead to unstable code workarounds,
which is often also very hard to maintain.

For that very reason, instead of reinventing the wheel, let’s install the EFCore.BulkExtensions NuGet
package to our WorldCities�Server ASP.NET Core project. As always, we can do that using Visual Stu-
dio’s GUI (Manage NuGet Packages) or the Package Manager Console interface in the following way:

PM> Install-Package EFCore.BulkExtensions

In this book we’re going to use version 8�0�1, which is the latest at the time of writing and provides
full support for Entity Framework Core 8.

Chapter 9 435

Once the package has been installed, we’ll be able to use the new ToParametrizedSql() extension
method from any of our existing IQueryable<T> objects, simply by adding a reference to the EFCore.
BulkExtensions.IqueryableExtensions namespace to the class.

Such a namespace provides several extension methods for the IQueryable<T> type: a very convenient
approach to extend the functionality of that type without creating a new derived type, modifying
the original type, or creating a static function that will explicitly require it as a reference parameter.

Let’s see how we can implement the ToParametrizedSql() extension method in our ApiResult.cs
class, which is the place where most of our IQueryable<T> objects get executed.

Implementing the ToParametrizedSql() method
From Solution Explorer, select the /Data/ApiResult.cs file, open it for editing, and add the following
lines to the existing CreateAsync method implementation (the new lines are highlighted):

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;
using EFCore.BulkExtensions;

// ...existing code...

 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);

 // retrieve the SQL query (for debug purposes)
 var sql = source.ToParametrizedSql();

 var data = await source.ToListAsync();

// ...existing code...

As we can see, we added a single variable to store the results of the ToParametrizedSql method im-
mediately before calling the ToListAsync() method, which requires the execution of the resulting
SQL query.

For those who have never heard of them, C# extension methods are static methods that can
be called as if they were instance methods on the extended type. For further information,
take a look at the following URL from the Microsoft C# programming guide: https://
learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/extension-methods.

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

Back-End and Front-End Debugging436

Let’s quickly test it out to see how it works. Put a breakpoint on the line of the ApiResult.cs class,
immediately below the new lines we added earlier on. Once done, hit F5 to run the web application
in debug mode, then navigate to the Countries view. Wait for the breakpoint to hit, then move the
mouse cursor over the sql variable and click the magnifier lens icon.

After doing all that, we should be able to see the SQL query in the Text Visualizer window, as shown
in the following screenshot.

Figure 9.10: Seeing the SQL query when the breakpoint is triggered

Now, we know how to quickly view the SQL queries produced by EF Core from our IQueryable<T>
objects.

Using the #if preprocessor directive
If we are worried about the performance hit of the ToParametrizedSql() method task, we can defi-
nitely tweak the previous code using the #if preprocessor directive in the following way:

#if DEBUG
 // retrieve the SQL query (for debug purposes)
 var sql = source.ToParametrizedSql();
 // TODO: do something with the sql string
#endif

As we can see, we have wrapped the ToParametrizedSql() method call in an #if preprocessor directive
block. When the C# compiler encounters these directives, it will compile the code between them only
if the specified symbol is defined. More specifically, the DEBUG symbol that we used in the previous
code will prevent that wrapped code from being compiled unless the web application is being run in
debug mode, thus avoiding any performance loss in release/production builds.

Chapter 9 437

There is still a lot to say about the backend debugging features offered by Visual Studio and .NET;
however, for our purposes, it’s better to stop here for the time being and move on to the frontend.

Frontend debugging
In this section, we’ll briefly review the various frontend debugging options we have available (Visual
Studio or the browser’s developer tools). Right after that, we’ll take a look at some Angular features
that we can leverage to increase our awareness of the various tasks performed by our client-side ap-
plication under the hood and debug them.

Visual Studio JavaScript debugging
Frontend debugging works just like backend debugging, thanks to the JavaScript debugging feature
of Visual Studio. The JavaScript debugger is not enabled by default, but the Visual Studio IDE will
automatically ask whether to activate it or not the first time we put a breakpoint on a JavaScript (or
TypeScript) file and run our app in debug mode.

As of the time of writing, client-side debugging support is only provided for Chrome and Microsoft
Edge. On top of that, since we’re using TypeScript and not JavaScript directly, the use of source maps
is required if we want to set and hit breakpoints in the TypeScript file (our Angular component class
file) and not in the JavaScript-transpiled file.

Luckily enough, the Angular template we’re using already provides source map support, as we can
see by taking a look at the sourceMap parameter value in the /tsconfig.json file of our worldcities�
client Angular project:

[...]

"sourceMap": true

[...]

This means that we can do the following:

1. Open the /src/app/countries/countries.component.ts file.
2. Place a breakpoint inside the subscription to the Observable returned by the countryService

(see the following screenshot for details).
3. Hit F5 to launch the web application in debug mode.

For additional information regarding the C# preprocessor directives, take a look at the
following URLs:

• C# preprocessor directives: https://learn.microsoft.com/en-us/dotnet/
csharp/language-reference/preprocessor-directives/.

• #if preprocessor directives: https://learn.microsoft.com/en-us/dotnet/
csharp/language-reference/preprocessor-directives/preprocessor-if.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if

Back-End and Front-End Debugging438

If we do everything correctly, the runtime environment will stop the program execution as soon as
we navigate to the Countries view.

Once the breakpoint is hit, we’ll be able to inspect the various members of the Angular component
class, such as the result object returned by the getData() method and containing the countries data,
as shown in the following screenshot:

Figure 9.11: Inspecting the Angular Component class

That’s pretty cool, right? We can even define conditional breakpoints and use the Watch, Call Stack,
Locals, and Immediate windows without significant flaws.

In the next section, we’re going to introduce another important frontend debugging resource: JavaS-
cript source maps.

Since this is likely the first time we’re using the JavaScript debugging feature for this
project, Visual Studio could ask us whether we want to enable the JavaScript debugging
feature. If it does, be sure to enable it.

For additional information about debugging a TypeScript or JavaScript app in Visual Studio,
take a look at the following URL: https://learn.microsoft.com/en-US/visualstudio/
javascript/debug-nodejs.

https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs
https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs

Chapter 9 439

JavaScript source maps
For those who don’t know what source maps actually are, let’s try to briefly summarize the concept.

Technically speaking, a source map is a file that maps the code within a compressed, combined, mini-
fied, and/or transpiled file back to its original position in a source file. Thanks to these mappings, we
can debug our applications even after our assets have been optimized.

As we saw a moment ago, source maps are extensively used by the Visual Studio JavaScript debugger
to enable us to set breakpoints within the TypeScript source code, and they are also supported by the
Google Chrome, Mozilla Firefox, and Microsoft Edge developer tools, thus allowing these browsers’
built-in debuggers to display the unminified and uncombined source to the developer, even when
dealing with compressed and minified files.

However, given our specific scenario, the debugging capabilities of the aforementioned browsers
might not be ideal; in the next section, we’ll do our best to explain why.

Browser developer tools
As we can easily guess, the Visual Studio JavaScript debugging feature is not the only way we can debug
our TypeScript files. A good alternative is the built-in debugger provided available by most browser
developer tools, such as Google Chrome, Mozilla Firefox, and MS Edge.

As a matter of fact, those debuggers don’t directly access our TypeScript files: they read (and execute)
a huge, main.js file containing all our Angular app’s source code transpiled from TypeScript to vanilla
JavaScript (ECMAScript 2022) using the settings specified in the root-level tsconfig.json file, which
we’ve briefly talked about in Chapter 3, Looking Around.

Minification, also known as minimisation or minimization, is the process of removing
all unnecessary characters from the source code of interpreted programming languages
or markup languages without changing its functionality; this includes white spaces, new
line/carriage returns, comments, and everything that is not required for the code to be
executed. Minification is good for a production environment because it will reduce the
size of the source code, thus making its transmission more efficient in terms of bandwidth.

For additional information about JavaScript source maps, check out the following URL:

An Introduction to Source Maps, Matt West: https://blog.teamtreehouse.com/
introduction-source-maps

https://blog.teamtreehouse.com/introduction-source-maps
https://blog.teamtreehouse.com/introduction-source-maps

Back-End and Front-End Debugging440

To quickly demonstrate it, hit F5 to launch our app in Debug mode, then navigate to the Countries
page, activate the MS Edge developer tools, and go to the Sources tab; you’ll immediately see the main.
js file we’re talking about:

Figure 9.12: the main.js file shown in MS Edge developer tools

As we can see, the CountriesComponent class (which is currently less than 100 lines long) makes its
appearance around line 900 of that main.js file (the actual line number might vary).

However, the main.js file comes with an auto-generated main.js.map source map file (main.js.map),
which allows the browser not only to identify the original TypeScript file, but even to access it.

To quickly demonstrate this, let’s see what happens if we place a breakpoint in the same source code
line as before – inside the subscription returned by the countryService. As soon as we click on that
line to set a breakpoint there, the corresponding TypeScript file will also become accessible, just like
in Visual Studio:

Figure 9.13: The countries.components.ts TypeScript file shows up

If we look at the folder tree to the left, we can see that the TypeScript file is located within a /src/app/
folder, which contains all the TypeScript files of our whole Angular app! How is such a thing possible?
Didn’t we just say that the browser doesn’t directly access those TypeScript classes?

Chapter 9 441

As a matter of fact, it doesn’t; however, the TypeScript source code is mapped from the main.js file
thanks to the main.js.map source map file. Now, since we’re running the app in an Angular Live De-
velopment Server (as explained in Chapter 2, Getting Ready), the browser can follow that source map to
reach the underlying TypeScript files.

If we set the breakpoint on the TypeScript page, as soon as we make it trigger, we should be brought
back to Visual Studio, where we can debug the CountriesComponent TypeScript file just like we did
when we put the breakpoint there.

Angular form debugging
In this section, we’re going to spend some valuable time understanding some key concepts related
to form debugging.

As we mentioned in Chapter 7, Forms and Data Validation, one of the advantages granted by the mod-
el-driven approach is the fact that it allows us to have granular control over our form elements. How
can we use these features to our advantage and translate them into writing more robust code?

In the following sections, we’ll try to address this question by showing some useful techniques that
can be used to gain more control over our forms.

A look at the Form Model
We talked a lot about the Form Model in Chapter 7, Forms and Data Validation, yet we’ve never seen it
up close. It would greatly help to have it on screen while developing the form templates, especially if
it can be updated in real time as we play with the form inputs and controls.

Here’s a convenient HTML snippet containing the template syntax required to let it happen:

<!-- Form debug info panel -->
<div class="info">
 <div class="info-header">Form Debug Info</div>
 <div class="info-body">
 <div class="info-label">
 Form Value:
 </div>
 <div class="info-value">
 {{ form.value | json }}
 </div>
 <hr />
 <div class="info-label">
 Form Status:
 </div>
 <div class="info-value">
 {{ form.status | json }}
 </div>

Back-End and Front-End Debugging442

 </div>
</div>

And here’s its SCSS styling:

.info {
 margin-top: 20px;
 background-color: #efefef;
 border: 1px solid #cdcdcd;
 border-radius: 10px;

 .info-header {
 font-weight: 500;
 padding: 10px 20px;
 border-bottom: 1px solid #cdcdcd;
 }

 .info-body {
 background-color: #fafafa;
 padding: 10px 20px;
 border-radius: 0 0 10px 10px;

 .info-label {
 }

 .info-value {
 padding: 2px 0;
 font-size: 0.8em;
 }

 hr {
 border: 0;
 border-top: 1px solid #cdcdcd;
 }
 }
}

Chapter 9 443

Append the first snippet to the CityEditComponent HTML file and the second to the CityEditComponent
SCSS file to obtain the following result:

Figure 9.14: The Form Debug Info window while editing Tokyo

Pretty useful, right? If we play with the form a bit, we can see how the values contained in the Form
Debug Info panel will change as we change the input controls; something like that will definitely come
in handy when dealing with complex forms.

Back-End and Front-End Debugging444

The pipe operator
By looking at the new HTML snippet that we added to the CityEditComponent HTML file, we can see how
we used the pipe operator (|), which is another useful tool coming from the Angular template syntax.

To quickly summarize what it does, we can say the following: the pipe operator allows the use of some
transformation functions that can be used to perform various tasks such as format strings, join array
elements into a string, uppercase/lowercase text, and sort a list.

Here are the pipes built into Angular:

• DatePipe

• UpperCasePipe

• LowerCasePipe

• CurrencyPipe

• PercentPipe

• JsonPipe

These are all pipe operators available for use in any template. Needless to say, we used the last pipe in
the preceding script to transform the form.value and form.status objects into readable JSON strings.

Reacting to changes
One of the reasons we chose the Reactive approach was to be able to react to the changes issued by
the user. We can do that by subscribing to the valueChanges property exposed by the FormGroup and
FormControl classes, which returns an RxJS Observable that emits the latest values.

We’ve been using Observables since Chapter 4, Front-End and Back-End Interactions, when we subscribed
to the get() method of HttpClient to handle the HTTP response received by the web server for the
first time. We used them again in Chapter 7, Forms and Data Validation, when we had to implement
support for the put() and post() methods as well.

Last but not least, we extensively talked about them in Chapter 8, Code Tweaks and Data Services, when
we explained their pros and cons against promises, learned about some of their most relevant fea-
tures, and integrated them into our CityService and CountryService. As a matter of fact, we’ll likely
keep using them wherever and whenever we need to fetch the JSON data that feeds our Data Model
interfaces and Form Model objects.

In the following section, we’re going to use them to demonstrate how we can perform some arbitrary
operations whenever the user changes something within a form. More precisely, we’ll try to observe
the observable by implementing a custom activity log.

It’s worth noting that we can also chain multiple pipes and define custom pipes; however,
we don’t need to do that for the time being, and talking about such a topic would take us
far away from the scope of this chapter. Those who want to know more about pipes should
take a look at the official Angular documentation at https://angular.io/guide/pipes.

https://angular.io/guide/pipes

Chapter 9 445

The activity log
Once again, CityEditComponent will be our lab rat.

Open the /src/app/cities/city-edit.component.ts class file and update its code with the following
highlighted lines:

// ...existing code...

 // Activity Log (for debugging purposes)
 activityLog: string = '';

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private cityService: CityService) {
 super();
 }

 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 lon: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());

 // react to form changes
 this.form.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });

Back-End and Front-End Debugging446

 this.loadData();
 }

 log(str: string) {
 this.activityLog += "["
 + new Date().toLocaleString()
 + "] " + str + "
";
 }

// ...existing code...

In the preceding code, we provided our Form Model with a simple, yet effective, logging feature that
will register any change activity performed by the framework and/or by the user.

As we can see, all the logic has been put within the ngOnInit because this is where the component
class gets initialized, along with the observable we need to monitor. The log() function is just a shortcut
to append a basic timestamp to the log activity string and add it to the activityLog local variable in
a centralized way.

In order to enjoy our new logging feature to the fullest, we have to find a way to put the activityLog
on screen.

To do that, open the /src/app/cities/city-edit.component.html template file and append the
following HTML code snippet at the end of the file, right below the previous Form Debug Info panel:

<!-- Form activity log panel -->
<div class="info">
 <div class="info-header">Form Activity Log</div>
 <div class="info-body">
 <div class="info-value">
 <span *ngIf="activityLog"
 [innerHTML]="activityLog">

 </div>
 </div>
</div>

That’s it; now, the activity log will be shown in real time, meaning in a truly reactive way.

It’s worth noting that we didn’t use the double curly braces of interpolation here—we went
straight for the [innerHTML] directive instead. The reason for that is very simple. The
interpolation strips the HTML tags from the source string; hence, we would’ve lost the

 tag that we used in the log() function to separate all log lines with a line feed. If
not for that, we would have used the {{ activityLog }} syntax instead.

Chapter 9 447

Testing the activity log
All we need to do now is test our new activity log.

To do so, run the project in debug mode, go straight to CityEditComponent by editing an already-ex-
isting city (for example, Prague), play with the form fields, and see what happens in the Form Activity
Log panel:

Figure 9.15: Testing the activity log

The first log line should trigger automatically as soon as the HttpClient retrieves the city JSON from
the backend Web API and the Form Model gets updated. Then, the form will log any updates per-
formed by the user; all we can do is change the various input fields, yet that’s more than enough for
our humble reactivity test to complete successfully.

Extending the activity log
Reacting to the Form Model changes is not the only thing we can do; we can extend our subscriptions
to observe any form control as well. Let’s perform a further upgrade on our current activity log im-
plementation to demonstrate that.

Open the /src/app/cities/city-edit.component.ts class file and update the code in the ngOnInit
method with the following highlighted lines:

// ...existing code...

// react to form changes
this.form.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });

// react to changes in the form.name control

Back-End and Front-End Debugging448

this.form.get("name")!.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 });

// ...existing code...

The preceding code will add further log lines within the Form Activity Log, all related to the changes
occurring in the name form control, which contains the city name, as follows:

Figure 9.16: Inspecting the Form Activity Log for changes in the name form control

What we just did here is more than enough to demonstrate the wonders of the valueChanges observable
property; let’s move on to the next topic.

Client-side debugging
Another great advantage of Observables is that we can use them to debug a good part of the whole Re-
active workflow by placing breakpoints within our subscription source code. To quickly demonstrate
this, just add a Visual Studio breakpoint to our latest subscription, as follows:

We can definitely keep the Form Debug Info and Form Activity Log panels in the
CityEditComponent template for further reference, yet there’s no need to copy/paste it
within the other form-based components’ templates or anywhere else. After all, this logging
info will be unnecessary for the average user and shouldn’t be visible in the application
user interface, for demonstration purposes.

Chapter 9 449

Figure 9.17: Adding a Visual Studio breakpoint

Once done, run the project in debug mode and navigate to CityEditComponent; the breakpoint will
be hit as soon as the Form Model is loaded, since the name control will be updated as well, and also
every time we make a change to that control. Whenever this happens, we’ll be able to use all the Visual
Studio JavaScript debugging tools and features that are available on client-side debugging, such as
Watch, Locals, Autos, Immediate, and Call Stack.

Unsubscribing the Observables
Observables are a great way to monitor our client-side app’s behavior. Once we subscribe to them, we can
be sure that our event handlers will be called when a new value is emitted. However, with great power
comes great responsibility: whenever we subscribe to an Observable, such subscription will live until
that Observable completes its job, unless we proactively unsubscribe. However, most Observables (such
as our previously mentioned valueChanges) are not meant to be completed; if we subscribe to those

“infinite Observables” and don’t unsubscribe from them, those subscriptions will live on indefinitely,
even when the component that originated them is destroyed, thus ending up with a memory leak until
the whole Angular app is removed from memory—such as when we navigate away to a different site.

In order to avoid such behavior, we need to learn how to properly deal with them: in a word, un-
subscribe. Let’s briefly introduce some ways to do that using imperative, declarative, and automatic
approaches.

The unsubscribe() method
The first approach we should consider is to collect all the subscriptions that we can declare within our
CityEditComponent class in a single Subscription instance in the following way:

// ... existing code...

import { Observable, Subscription } from 'rxjs';

For additional information about client-side debugging with Google Chrome, we
strongly suggest reading the following post on the official MSDN blog: https://blogs.
msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-
projects-in-google-chrome/.

https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/

Back-End and Front-End Debugging450

// ... existing code...

private subscriptions: Subscription = new Subscription();

And then use it to store all our existing subscriptions:

// ...existing code...

// react to form changes
this.subscriptions.add(this.form.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 }));

// react to changes in the form.name control
this.subscriptions.add(this.form.get("name")!.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 }));

// ...existing code...

If we do that, we can then unsubscribe all the “collected” subscriptions in the ngOnDestroy life cycle
hook, which gets called when the component is destroyed:

ngOnDestroy() {
 this.subscriptions.unsubscribe();
}

That’s it: in the preceding code, we make good use of a neat built-in mechanism provided by the
Subscription class that does most of the unsubscribe job for us; we just have to “wrap up” all the
subscriptions that we want to get rid of and implement the ngOnDestroy method.

Chapter 9 451

The takeUntil() operator
If we prefer to use a declarative approach, we can use another fancy mechanism provided by the RxJS
library: the takeUntil operator.

Here’s how we can implement it in the CityEditComponent class, replacing the previous unsubscribe()
approach (new/updated lines are highlighted):

// ...existing code...

import { Observable, Subject } from 'rxjs';
import { map, takeUntil } from 'rxjs/operators';

// ...existing code...

private destroySubject = new Subject();

// ...existing code...

 // react to form changes
 this.form.valueChanges
 .pipe(takeUntil(this.destroySubject))
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });

 // react to changes in the form.name control
 this.form.get("name")!.valueChanges
 .pipe(takeUntil(this.destroySubject))
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 });

Back-End and Front-End Debugging452

// ...existing code...

ngOnDestroy() {
 // emit a value with the takeUntil notifier
 this.destroySubject.next(true);
 // complete the subject
 this.destroySubject.complete();
}

In a nutshell, here’s what we’ve done:

• We’ve added a destroySubject internal variable of type Subject, a special type of Observable
introduced in Chapter 8, Code Tweaks and Data Services, which allows values to be multi-casted
to many observers

• We’ve piped the takeUntil() operator to all our observable chains; the operator will register
destroySubject as a notifier, meaning that it will emit the values emitted by the source ob-
servable until destroySubject emits

• We’ve implemented the ngOnDestroy life cycle hook where our notifier emits a value (thus
stopping all the subscriptions) and marks itself as completed; by completing the subject, all
existing subscriptions will be unsubscribed

As we can see, this method allows us to declare our observable chain beforehand with everything
that it needs to accommodate for the whole life cycle from start to end: a viable alternative to the
unsubscribe() method, as long as we don’t forget to implement the ngOnDestroy interface! To help
us remember it, we could acquire the (good) habit of explicitly declaring the OnDestroy interface in
all our component classes:

import { Component, OnInit, OnDestroy } from '@angular/core';

// ... existing code...

export class CityEditComponent
 extends BaseFormComponent implements OnInit, OnDestroy {

For the time being, let’s do this in our CityEditComponent and move on.

In order to give a proper source code reference to the reader, we’ve implemented the takeUntil()
method—as well as the OnDestroy explicit declaration—in CityEditComponent: the code can be found
in the book’s GitHub repository for this chapter.

Other viable alternatives
There are many other ways of unsubscribing from Observables, most of them being even more efficient
and concise for some specific scenarios.

Chapter 9 453

For example, if we only need a single result to be emitted, we can use the first() or take(1) oper-
ators: these operators can be “piped” before the subscription just like the takeUntil() operator and
will automatically complete after receiving the first result, without having to create a destroySubject
notifier; if we want to unsubscribe from the source stream once the emitted value no longer matches
a certain condition, we can use the takeWhile() operator.

Furthermore, whenever we use a subscription to feed data to our templates, we can use the Angular
async pipe, which subscribes and unsubscribes automatically when the component is destroyed. This
basically means that, in our CityEditComponent TypeScript class file, instead of doing this:

// ...

// the countries array for the select
countries?: Country[];

// ...

loadCountries() {
 // fetch all the countries from the server
 this.cityService.getCountries(
 0,
 9999,
 "name",
 null,
 null,
 null,
).subscribe(result => {
 this.countries = result.data;
 }, error => console.error(error));
}

A great advantage of all these RxJS operators is that they will automatically unsubscribe,
without having to perform it manually (thus removing the risk of forgetting about it).
However, if not used correctly they could still cause memory leaks: for example, if we use a
first() operator and the component is destroyed before the source observable emits for
the first time, that operator won’t come into play and the subscription will keep on living.
For that very reason, even when using those operators, it’s highly recommended to adopt
some disposal techniques such as the takeUntil(destroy) pattern or the subscription
object explained previously.

Back-End and Front-End Debugging454

We could do this:

// ...

// the countries observable for the select (using async pipe)
countries?: Observable<Country[]>;

// ...

loadCountries() {
 // fetch all the countries from the server
 this.countries = this.cityService
 .getCountries(
 0,
 9999,
 "name",
 "asc",
 null,
 null)
 .pipe(map(x => x.data));
}

Then we can handle the updated countries variable (which is now an observable) by modifying the
city-edit.component.html template file in the following way:

<!-- ... -->

<mat-form-field *ngIf="countries | async as result">
 <mat-label>Select a Country...</mat-label>
 <mat-select formControlName="countryId">
 <mat-option *ngFor="let country of result" [value]="country.id">
 {{country.name}}
 </mat-option>
 </mat-select>
</mat-form-field>

<!-- ... -->

Now the async pipe will automatically subscribe to the observable, return the latest value, and then
unsubscribe from it when the component is destroyed, thus avoiding memory leaks.

Let’s quickly implement this valuable sample in our CityEditComponent (TypeScript and HTML files)
and move on; as always, those who encounter issues while trying to do that can find the full source
code reference in the GitHub repository.

Chapter 9 455

Should we always unsubscribe?
As a matter of fact, no; however, in order to determine when we should unsubscribe, we need to
understand where our “enemy” actually hides.

In a nutshell, the memory leaks that we would like to avoid occur when we destroy and recreate our
components without cleaning up existing subscriptions. If those components are re-created, which
will likely happen if the user keeps browsing around the app, they will spawn more and more sub-
scriptions, and so on, thus producing the leak.

This brief analysis should be more than enough to help you understand when we should use the un-
subscribe method(s) explained previously. As a general rule, we should do it for the Observables that
get subscribed in components that are meant to be instantiated and destroyed multiple times, such
as the components hosting the views.

Conversely, any component that gets instantiated only once during the application startup won’t have
the chance to generate multiple “endless subscriptions” and therefore doesn’t require any “unsub-
scription” logic. AppComponent, as well as most of the services, are good examples: they are meant to
live for the whole duration of the application’s lifetime and won’t produce any memory leaks while
the app is running.

Now that we’ve dealt with unsubscribing and we know how to properly debug our backend code, let’s
switch to a slightly different topic.

For reasons of space, we won’t have the chance to talk much more about these techniques
within this book; however, the reader can learn how to use them by taking a look at the
following posts:

• No need to unsubscribe – RxJS operators will help you out, by Wojciech Trawińs-
ki: https://medium.com/javascript-everyday/no-need-to-unsubscribe-
rxjs-operators-will-help-you-out-f8b8ce7bf26a.

• Async Pipe all the Things!, by Joaquin Cid: https://medium.com/@joaqcid/
async-pipe-all-the-things-2607a7bc6732.

For additional info regarding this topic, we strongly suggest reading the following articles
by Tomas Trajan and Maciej Treder:

• https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-
rxjs-observable-in-the-angular-applications-d8f9aa42f6a0

• https://www.twilio.com/blog/prevent-memory-leaks-angular-
observable-ngondestroy

https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a
https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a
https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732
https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732
https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0
https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0
https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy
https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy

Back-End and Front-End Debugging456

Application logging
As all developers most likely know, the term logging—when used in any IT context, from programming
languages to computer science—is mostly used to define the process of recording application actions
and states to a secondary channel. To better understand this definition, we need to grasp the difference
between a primary and secondary channel.

All applications are meant to communicate with their users through a dedicated interface, which is
often called the user interface, or UI:

• Desktop applications, for example, use the Graphical User Interface (GUI) provided by the
Windows (or other operating systems) libraries

• Console applications rely upon the operating system terminal
• Web applications display their data through the web browser

… and so on. In all the preceding examples, the user interface is the main output mechanism used by
the software to communicate with users, thus being the application’s primary channel.

At the same time, it’s often very useful for an application to keep track of the various actions it performs
while it works: state changes, access to internal resources, event handlers that trigger in response to
user interactions, and so on. We made something like that in Angular early on in this chapter, when
we implemented the activity log.

Now, that level of info is often neglectable for the average user, as long as the application works as
expected; not to mention the fact that such low-level details could easily disclose some internal me-
chanics and/or behaviors of our web application that shouldn’t be made available to the public for
obvious security reasons.

At the same time, these logs might become extremely useful for developers and system administra-
tors whenever the app hangs or behaves in an unexpected way, because they could greatly help them
understand what is going wrong and how to fix it. Truth be told, any experienced developer knows
that logging is a must-have feature for any application, as it is necessary for detecting, investigating,
and debugging issues.

This brings us to the main question: if the primary channel is not an option, where should we put
such info? The answer lies in the definition of logging that we stated a short while ago: in a secondary
channel that only developers, system administrators, and other interested (and authorized) parties
will be able to access.

If we think of a client-side framework, such as Angular, the best secondary channel we have available is
the browser’s console log, which can be accessed using the console.log and/or debug.log JavaScript
commands; ideally, that’s the place where we should move all our activity log’s output, thus keeping
the user interface—the primary channel—as clear as possible.

Doing this would be simple, and we should just change a couple of things:

• Remove the Form Activity Log panel (up to the root <div> element)
• Remove the this.activityLog variable (in the city-edit.component.ts file)

Chapter 9 457

• Modify the CityEditComponent's log method in the following way:

 log(str: string) {
 console.log("["
 + new Date().toLocaleString()
 + "] " + str);
 }

That’s it for the client side.

What about server-side logging? We’ve previously seen that we have the Output window, but that’s
only available when we’re running our app from Visual Studio, right?

Or is it not?

Introducing ASP.NET Core logging
.NET provides support for a standardized, general-purpose logging API through the Microsoft.
Extensions.Logging NuGet package, which is implicitly included when building an ASP.NET Core
application; this API can be used to collect, display, and/or store logs using a default interface (ILogger)
that has been implemented by a variety of built-in and third-party logging providers.

In a typical ASP.NET Core web application, the built-in logging providers are automatically added to
our web application by the Program.cs file’s CreateDefaultBuilder helper method, which we saw
back in Chapter 3, Looking Around. More precisely, the following providers are enabled:

• Console, which logs output to the console
• Debug, which writes log output by using the System.Diagnostics.Debug class
• Event Source, which writes to a cross-platform event source with the name Microsoft-

Extensions-Logging

• EventLog, which sends log output to the Windows event log (Windows operating system only)

As a matter of fact, the content that we see within Visual Studio’s Output window entirely comes from
the Debug built-in provider. This also means that, if we want to add additional logging features, all we
need to do is to find more providers that can write these logs whenever we want to.

The previous “on-screen” implementation will be kept in the book’s GitHub source code
for reference purposes; however, the reader is strongly encouraged to rely upon console.
log for most real-case scenarios.

Back-End and Front-End Debugging458

Database Management System (DBMS) structured logging with
Serilog
As we can see, there are no native logging providers that can be used to have these logs stored within
a DBMS, which would certainly be very useful as it would allow us to review our logs using a structured
approach. As a matter of fact, structured logging would definitely be a great way to produce readable,
filterable, indexed, and exportable logs.

Luckily enough, we can achieve this using one of the many third-party logging providers that imple-
ment the ILogger interface available on NuGet: its name is Serilog and it’s pretty awesome.

In the following sections, we’ll see how we can implement it within our WorldCities�Server ASP.NET
Core project to save its logs in a dedicated SQL Server database in a structured way.

Installing the NuGet packages
The first thing we must do is add the following NuGet packages to our WorldCities�Server ASP.NET
Core project:

• Serilog.AspNetCore

• Serilog.Settings.Configuration

• Serilog.Sinks.MSSqlServer

As always, these packages can be installed using Visual Studio’s GUI (Manage NuGet Packages) or the
Package Manager Console interface in the following way:

PM> Install-Package Serilog.AspNetCore
PM> Install-Package Serilog.Settings.Configuration
PM> Install-Package Serilog.Sinks.MSSqlServer

Serilog.Sinks.MSSqlServer is required in our scenario since we’re using an MS SQL Server; however,
there are many other connectors (“sinks”) available for MySQL, MariaDB, PostgreSQL, and even NoSQL
databases, such as RavenDB and MongoDB.

Configuring Serilog
Once the required NuGet packages have been installed, we can configure Serilog using our web ap-
plication’s configuration files. More precisely, we’re going to update the Program.cs file, where the
IHostBuilder is created with its set of built-in logging providers.

From Solution Explorer, open the Program.cs file and add the following code (new lines highlighted):

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data;
using Serilog;
using Serilog.Events;
using Serilog.Sinks.MSSqlServer;

Chapter 9 459

var builder = WebApplication.CreateBuilder(args);

// Adds Serilog support
builder.Host.UseSerilog((ctx, lc) => lc
 .ReadFrom.Configuration(ctx.Configuration)
 .WriteTo.MSSqlServer(connectionString:
 ctx.Configuration.GetConnectionString("DefaultConnection"),
 restrictedToMinimumLevel: LogEventLevel.Information,
 sinkOptions: new MSSqlServerSinkOptions
 {
 TableName = "LogEvents",
 AutoCreateSqlTable = true
 }
)
 .WriteTo.Console()
);

// ...existing code...

As we can see, we’ve performed several different tasks here:

1. We added the required references to the various Serilog namespaces.
2. We added Serilog support to the IHostBuilder that will be eventually used to build the ASP.

NET Core app.
3. We told Serilog to read its configuration settings from the context’s IConfiguration, which stores

the values declared and/or overridden in the appsettings.json, appsettings.<Environment>.
json, and secrets.json combined files.

4. We configured Serilog to write logs to SQL Server, using our existing connection string, and
to the console.

The Serilog SQL Server sink that we are using here writes the logs to a dedicated [LogEvents] table,
creating that table if it doesn’t exist already. Now, since we’ve used the same connection string that
we used to instantiate our ApplicationDbContext in Chapter 5, Data Model with Entity Framework Core,
such a table will be created within our existing WorldCities database.

Automatically creating the [LogEvents] table is OK in our scenario, since we don’t have an existing
[LogEvents] table that we want to preserve: if we had that, we could either change the Serilog default
log table name or disable the “create if it does not exist” default behavior of the MSSQLServer sink
using the TableName and AutoCreateSqlTable options.

Back-End and Front-End Debugging460

Before we test our implementation, let’s spend a minute adding another useful logging feature to our
application: the SerilogRequestLogging middleware.

Logging HTTP requests
Another great feature of Serilog is that we can use it to log incoming HTTP requests. Once implemented,
this feature will produce the following log message:

HTTP GET /cities responded 200 in 1348.6188 ms

In order to do that, we need to add the UseSerilogRequestLogging middleware to our Program.cs
file in the following way:

// ... existing code...

var app = builder.Build();

app.UseSerilogRequestLogging();

// ... existing code...

Let’s do that.

Now that everything is set, we just have to perform a quick test to confirm that our new Serilog-based
logging provider actually works.

Accessing the logs
Since we’ve told Serilog to auto-create the LogEvents table if it doesn’t exist yet, we just have to launch
our project in debug mode by hitting F5 and see what happens to the database.

As soon as the web app is fully loaded, open SQL Server Management Studio and access the World-
Cities database following the instructions given in Chapter 5, Data Model with Entity Framework Core.

If we did everything as expected, we should be able to see the new LogEvents table and a bunch of
initialization logs, just as shown in the following screenshot:

All the Serilog configuration settings that we’ve added from within the code could’ve been
defined in the appsettings.json file(s) within a "Serilog" key.

For additional info on how to do that and regarding the settings syntax, read the
MSSqlServer sink official docs on GitHub: https://github.com/serilog/serilog-
sinks-mssqlserver.

https://github.com/serilog/serilog-sinks-mssqlserver
https://github.com/serilog/serilog-sinks-mssqlserver

Chapter 9 461

Figure 9.18: Viewing our new LogEvents table

Now we can conveniently access our log in a structured way using SQL queries.

Furthermore, we can use this new feature to log whatever we want using the convenient Serilog.Log
static entry point provided by the library.

Here’s how we can do that from a controller:

public class SampleController : Controller
{
 public SampleController()
 {
 Serilog.Log.Information("SampleController initialized.");
 }
}

And here’s how to call it within a view:

@Serilog.Log.Information("SampleView shown to the user");

If we don’t like the Serilog.Log static entry point, we can still use the standard ILogger interface using
dependency injection and achieve the same result, since it will also use the new Serilog outputs/sinks.

Here’s how to implement the ILogger interface in a controller:

using Microsoft.Extensions.Logging;

[...]

public class SampleController : Controller

Back-End and Front-End Debugging462

{
 public ILogger<SampleController> Logger { get; set; }

 public SampleController(ILogger<SampleController> logger)
 {
 Logger = logger;
 Logger.LogInformation("SampleController initialized.");
 }
}

And here’s the same approach within a view:

@using Microsoft.Extensions.Logging
@inject ILogger<_Views_Dress_Edit> logger

@logger.LogInformation("SampleView shown to the user");

The Serilog.Log static entry point is great and provides a lot of additional features; that said, the stan-
dard ILogger interface is often the most advisable approach because it will make it easier to connect our
app with other MS-based telemetry and monitoring tools (such as Application Insights on MS Azure).

It’s important to understand that we’ve only scratched the surface of Serilog here, just to demonstrate
how easy it is to set it up to write logs to a DBMS of our choice; for example, we could’ve used a different
database within the same SQL Server instance—or even a different DBMS engine; we could’ve modified
the default EventLog table name and/or column names, as well as adding additional columns; and so on.

Summary
Throughout this chapter, we talked about a number of debugging features and techniques that can be
very useful during development. Let’s try to quickly summarize what we’ve learned so far.

We started our journey with the Visual Studio server-side debugging features. These are a set of run-
time debugging features that can be used to prevent most compiler errors on our Web API and allow
us to track the whole backend application life cycle: from the middleware initialization, through to
the whole HTTP request/response pipeline, down to the controllers, entities, and IQueryable objects.

Right after that, we moved to the Visual Studio client-side debugging feature. This is a neat JavaScript
debugger that, thanks to the source maps created by the TypeScript transpiler, allows us to directly
debug our TypeScript classes and access variables, subscriptions, and initializers in a truly efficient way.

Those who want to know more about Serilog and all the available settings can check out
the following URL: https://serilog.net/.

https://serilog.net/

Chapter 9 463

Furthermore, we designed and implemented a real-time activity log. This is a quick and effective way
to exploit the Reactive features of the various Observables exposed by the Angular modules to keep
track of what happens to our components; not to mention the fact that the Visual Studio TypeScript
transpiler (and IntelliSense) will hopefully shield us from most syntax, semantic, and logical pro-
gramming errors, freeing us from the pests of script-based programming, at least for the most part.

Last but not least, we saw how to implement a handy third-party library (Serilog) to store our applica-
tion logs in the database, so that we’ll be able to access them in a structured way.

However, what if we want to test our forms against some specific use cases? Is there a way we can
mock our backend ASP.NET Core controllers’ behaviors, as well as those of our frontend Angular
components, and perform unit tests?

The answer is yes. As a matter of fact, our two frameworks of choice provide various open source test-
ing tools to perform unit tests. In the next chapter, we’ll learn how to use them to improve the quality
of our code and prevent bugs during refactoring, regression, and new implementation processes.

Suggested topics
For further information, we recommend the following topics: Visual Studio Code, debugger, server-side
debugging, client-side debugging, extension methods, C# preprocessor directives, JavaScript source
maps, Angular pipes, Observable, Subject, unsubscribe, RxJS operators, async pipe, ILogger, and Serilog.

References
• Visual Studio Code: https://code.visualstudio.com/
• Visual Studio Container Tools with ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/

core/host-and-deploy/docker/visual-studio-tools-for-docker

• Offroad Debugging of .NET Core on Linux OSX from Visual Studio: https://github.com/Microsoft/
MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio

• Debug an application using Visual Studio: https://learn.microsoft.com/en-US/dotnet/core/
tutorials/debugging-with-visual-studio?tabs=csharp

• Extension Methods: https://learn.microsoft.com/en-us/dotnet/csharp/programming-
guide/classes-and-structs/extension-methods

• Microsoft.EntityFrameworkCore Namespace: https://learn.microsoft.com/en-us/dotnet/
api/microsoft.entityframeworkcore

• C# Preprocessor Directives: https://learn.microsoft.com/en-us/dotnet/csharp/language-
reference/preprocessor-directives/

• The #IF preprocessor directive in C#: https://learn.microsoft.com/en-us/dotnet/csharp/
language-reference/preprocessor-directives/preprocessor-if

• Debug a JavaScript or TypeScript app in Visual Studio: https://learn.microsoft.com/en-US/
visualstudio/javascript/debug-nodejs

https://code.visualstudio.com/
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio
https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio
https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp
https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if
https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs
https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs

Back-End and Front-End Debugging464

• An Introduction to Source Maps: https://blog.teamtreehouse.com/introduction-source-maps
• Angular Pipes: https://angular.io/guide/pipes
• No need to unsubscribe – RxJS operators will help you out: https://medium.com/javascript-

everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a

• Async Pipe all the Things!: https://medium.com/@joaqcid/async-pipe-all-the-things-
2607a7bc6732

• Client-side debugging of ASP.NET projects in Google Chrome: https://blogs.msdn.microsoft.
com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/

• Angular Debugging: https://blog.angular-university.io/angular-debugging/
• The best way to unsubscribe RxJS Observables in Angular: https://medium.com/angular-in-

depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-
d8f9aa42f6a0

• Preventing Memory Leaks in Angular Observables with ngOnDestroy: https://www.twilio.com/
blog/prevent-memory-leaks-angular-observable-ngondestroy

• Serilog: https://serilog.net
• Serilog MSSqlServer sink: https://github.com/serilog/serilog-sinks-mssqlserver

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://blog.teamtreehouse.com/introduction-source-maps
https://angular.io/guide/pipes
https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a
https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a
https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732
https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/
https://blog.angular-university.io/angular-debugging/
https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0
https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0
https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0
https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy
https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy
https://serilog.net
https://github.com/serilog/serilog-sinks-mssqlserver
https://packt.link/aspdotnet8angular

10
ASP.NET Core and Angular Unit
Testing

Unit testing is the name given to a method of software testing that helps to determine whether the
isolated modules of a program (units) are working correctly. After the various units have been verified,
they can be merged together and tested as a whole (integration testing and system testing) and/or
released in production.

Given this definition, it’s pretty easy to understand the importance of properly defining and isolating
the various units. These are the smallest testable parts of our software, featuring a few inputs and
a single output. In Object-Oriented Programming (OOP), where the program’s source code is split
into classes, a unit is often a method of a super, abstract, or derived class, yet it can also be a static
function of a helper class.

Although they’ve become a de facto standard for high-quality projects, unit tests are often underesti-
mated by most developers and project managers who are eager to speed up the whole development
process and, therefore, reduce its overall cost. As a matter of fact, creating several unit tests alongside
development might become a hindrance for small-scale projects with low profit margins, since such
an approach undeniably requires some additional work. However, it’s very important to understand
their huge benefits for medium to big projects and enterprise solutions, especially if they require the
coordinated effort of a large number of developers.

This chapter is entirely dedicated to unit tests. More precisely, we’ll learn how to define, implement,
and perform the following:

• Back-end unit tests in ASP�NET Core, using the xUnit�net testing tool
• Front-end unit tests in Angular, using the Jasmine testing framework and the Karma test

runner that we briefly saw in Chapter 3, Looking Around

We’ll also get the opportunity to briefly introduce some widely used testing practices that can help
us get the most out of our tests, such as Test-Driven Development (TDD) and Behavior-Driven Devel-
opment (BDD). By the end of this chapter, we’ll have learned how to properly design and implement
back-end and front-end unit tests following these practices.

ASP.NET Core and Angular Unit Testing466

For the sake of simplicity, we’re going to perform our unit test in our existing worldcities.client
Angular app. However, to do this, we’re going to add some new packages to our project.

Technical requirements
In this chapter, we’re going to need all of the technical requirements listed in previous chapters, with
the following additional packages:

• Microsoft.NET.Test.Sdk

• xunit

• xunit.runner.visualstudio

• Moq

• Microsoft.EntityFrameworkCore.InMemory

As always, it’s advisable to avoid installing them straight away. We’re going to bring them in during
this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/main/Chapter_10/WorldCities

ASP.NET Core unit tests
In this section, we’ll learn how to build an ASP.NET Core unit test project using xUnit.net, a free, open-
source, community-focused unit testing tool for .NET created by Brad Wilson, who also developed
NUnit v2. We’ve chosen this tool because it’s arguably one of the most powerful and easy-to-use unit
testing tools available today. It’s part of the .NET Foundation, hence operating under their code of
conduct, and is licensed under the Apache License, version 2.

Before moving on, we’ll also take the opportunity to talk about TDD and BDD in the following sections.
These are two widely used testing approaches that have a number of similarities and differences that
are worth exploring.

Creating the WorldCities.Server.Tests project
The first thing to do is to add a third project to our WorldCities solution, which currently hosts the
worldcities.client Angular app and the WorldCities.Server ASP.NET Core Web API.

If you created the solution in a dedicated folder, as we suggested in Chapter 2, Getting Ready —leaving
the Place solution and project in the same directory flag set to OFF—the task is rather easy; just open
a command-line prompt, navigate to the solution folder—such as C:/Projects/WorldCities/—and
type the following command:

> dotnet new xunit -o WorldCities.Server.Tests

The .NET CLI should create a new project for us and process some post-creation actions. Once done,
a message will inform us that the restore task has been completed (Restore succeeded). If we have
done everything correctly, a new WorldCities.Server.Tests project should be present at the same
folder level as the existing worldcities.client and WorldCities.Server projects.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_10/WorldCities
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_10/WorldCities

Chapter 10 467

Immediately after this, we can add our new WorldCities.Server.Tests project to our main solution
in the following way:

1. From Solution Explorer, right-click on the root solution’s node and select Add Existing Project.
2. Navigate inside the /WorldCities�Server�Tests/ folder and select the WorldCities.Server.Tests.

proj file.

The new WorldCities.Server.Tests project will be loaded in the existing solution, right below the
existing WorldCities.Server project, as shown in the following screenshot:

Figure 10.1: The new WorldCities.Server.Tests project

Let’s delete the existing UnitTest1.cs file since we won’t need it. We’ll create our own unit testing
classes in a short while.

The new WorldCities.Server.Tests project should already have the following NuGet package ref-
erences:

• Microsoft�NET�Test�Sdk (version 17.8.0 or later)
• xunit (version 2.6.2 or later)
• xunit�runner�visualstudio (version 2.5.4 or later)

Furthermore, we need to install two additional NuGet packages: Moq and Microsoft.
EntityFrameworkCore.InMemory. Let’s see what they are meant for and how to add them in the fol-
lowing sections.

Alternatively, we could add the new project to the solution file directly from the CLI with
the following command: dotnet sln add WorldCities.Server.Tests.

The preceding packages’ version numbers are the latest at the time of writing, and the
ones that we’re going to use in this book. If you run into issues by using different versions,
be sure to upgrade or downgrade them accordingly.

ASP.NET Core and Angular Unit Testing468

Moq
Moq is arguably the most popular and friendly mocking framework for .NET. To better understand
why we need it, we need to introduce the concept of mocking.

Mocking is a convenient feature that we can use in unit testing whenever the unit that we want to test
has external dependencies that cannot be easily created within the testing project. The main purpose
of a mocking framework is to create replacement objects that simulate the behavior of real ones. Moq
is a minimalistic framework that will do just that.

To install it, do the following:

1. From Solution Explorer, right-click on the WorldCities.Server.Tests project and choose
Manage NuGet Packages.

2. Search for the Moq keyword.
3. Find and install the Moq NuGet package.

Alternatively, just type the following command in Visual Studio’s Package Manager Console (setting
WorldCities.Server.Tests as the default project):

> Install-Package Moq

At the time of writing, we’re using Moq 4.20.70, this being the latest stable version. To be
sure that you are using this version as well, just add -version 4.20.70 to the preceding
command.

The latest Moq NuGet package, as well as all of the previous versions, are available here:
https://www.nuget.org/packages/moq/

IMPORTANT: Before installing Moq, be sure to read this post from BleepingComputer.
com that explains a non-trivial privacy concern regarding this Nuget package that was
discovered on August 9, 2023:

https://www.bleepingcomputer.com/news/security/popular-open-source-
project-moq-criticized-for-quietly-collecting-data/

… And also the enlightening take of Tomáš Herceg, .NET & Microsoft technologies expert,
regarding that same matter:

https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-
moq-tomáš-herceg

Those who don’t want to install Moq after reading the whole story can use the Nsubstitute
NuGet package instead, which is a great alternative to Moq and can be used to achieve
the same results.

https://www.nuget.org/packages/moq/
https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/
https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/
https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg
https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg

Chapter 10 469

That’s it! We now need to install another NuGet package.

Microsoft.EntityFrameworkCore.InMemory
Microsoft.EntityFrameworkCore.InMemory is an in-memory database provider for Entity Framework
Core that can be used for testing purposes. This is basically the same concept as the Angular in-mem-
ory Web API that we talked about in Chapter 5, Data Model with Entity Framework Core. In a nutshell,
we can think of it as a convenient database mock.

To install it, do the following:

1. From Solution Explorer, right-click on the WorldCities.Server.Tests project and choose
Manage NuGet Packages.

2. Search for the Microsoft.EntityFrameworkCore.InMemory keyword.
3. Find and install the Microsoft.EntityFrameworkCore.InMemory NuGet package.

Alternatively, just type the following command in Visual Studio’s Package Manager Console:

> Install-Package Microsoft.EntityFrameworkCore.InMemory

With this, we’re done with the external packages.

Adding the WorldCities dependency reference
The next thing we need to do is to add a reference to the API project in our new WorldCities.Server.
Tests project’s dependencies so that we’ll be able to import the required classes and types.

At the time of writing, we’re using Microsoft.EntityFrameworkCore.InMemory 8.0.1,
this being the latest stable version. To be sure that you are using this version as well, just
add -version 8.0.1 to the preceding command.

The latest Microsoft.EntityFrameworkCore.InMemory NuGet package, as well as
all of the previous versions, are available here: https://www.nuget.org/packages/
Microsoft.EntityFrameworkCore.InMemory/

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/

ASP.NET Core and Angular Unit Testing470

To do that, right-click on the Dependencies node of the new project to add a new project reference to
the WorldCities.Server ASP.NET Core project, as shown in the following screenshot, and press OK:

Figure 10.2: Adding a new project reference

By doing this, our test project will be able to access (and hence test) the whole WorldCities.Server
code.

We’re now ready to learn how xUnit actually works. As always, the best way to do this is to create our
first unit test.

Our first test
In standard testing development practice, which we’re going to call STD from now on, unit tests are
often used to ensure that our existing code is working properly. Once ready, those units will be pro-
tected against regression bugs and breaking changes.

Since our back-end code is a Web API, the first thing we cover with our unit tests should be the in-
dividual controllers’ methods. However, instantiating our controllers outside our web application’s
life cycle is not that simple, since they have at least two important dependencies: HttpContext and
ApplicationDbContext. Is there a way to instantiate them too in our WorldCities.Server.Tests
project?

Thanks to Microsoft.EntityFrameworkCore.InMemory, this can be a rather easy task... as soon as we
understand how to use it.

From Solution Explorer, open the WorldCities.Server.Tests project. Create a new CitiesController_
Test.cs file in the project’s root and fill it with the following content:

Chapter 10 471

using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
using WorldCities.Server.Controllers;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
using Xunit;

namespace WorldCities.Server.Tests
{
 public class CitiesController_Tests
 {
 /// <summary>
 /// Test the GetCity() method
 /// </summary>
 [Fact]
 public async Task GetCity()
 {
 // Arrange
 // todo: define the required assets

 // Act
 // todo: invoke the test

 // Assert
 // todo: verify that conditions are met.
 }
 }
}

As we can see by looking at the highlighted comments, we have split the unit test into three code
blocks, or phases:

• Arrange: Defines the assets required to run the test
• Act: Invokes the testing subject’s behavior
• Assert: Verifies that the expected conditions are met by evaluating the behavior’s return value,

or measuring it against some user-defined rules

Such an approach is known as the Arrange, Act, Assert pattern. This is a typical way to describe the
various phases of software testing in TDD. However, there are also alternative names used to describe
these same test phases; for example, BDD frameworks usually refer to them as Given, When, and Then.

TDD and BDD are two development practices that enforce a different coding approach when compared
to STD. We’ll talk more about these soon enough.

ASP.NET Core and Angular Unit Testing472

Regardless of the names, the important thing here is to understand the following key concepts:

• Separating the three phases increases the readability of the test
• Executing the three phases in the proper order makes the test easier to understand

Let’s now take a look at how we have implemented the three phases.

Arrange
The Arrange phase is the place where we define the assets required to run the test. In our scenario,
since we’re going to test the functionality of the GetCity() method of CitiesController, we need to
provide our controller with a suitable ApplicationDbContext.

However, since we’re not testing ApplicationDbContext itself, instantiating the real thing wouldn’t
be advisable, at least for now. We don’t want our test to fail just because the database is unavailable
or the database connection is incorrect, because these are different units and, therefore, should be
checked by different unit tests. Moreover, we definitely can’t allow our unit tests to operate against
our actual data source: what if we want to test an update or a delete task?

The best thing we can do to test our Web API controllers is to find a way to provide them with a re-
placement object that can behave just like our real ApplicationDbContext—in other words, a mock.
This is where the Microsoft.EntityFrameworkCore.InMemory NuGet package that we installed earlier
might come in handy.

Here’s how we can use it to properly implement the Arrange phase:

// ...existing code...

// Arrange
var options = new DbContextOptionsBuilder<ApplicationDbContext>()
 .UseInMemoryDatabase(databaseName: "WorldCities")
 .Options;
using var context = new ApplicationDbContext(options);
context.Add(new City()
{
 Id = 1,
 CountryId = 1,
 Lat = 1,
 Lon = 1,
 Name = "TestCity1"
});
context.SaveChanges();

var controller = new CitiesController(context);
City? city_existing = null;
City? city_notExisting = null;

Chapter 10 473

// ...existing code...

As we can see, we’ve used the UseInMemoryDatabase extension method provided by the Microsoft.
EntityFrameworkCore.InMemory package to create a suitable DbContextOptionsBuilder. Once we have
it, we can use it to instantiate an ApplicationDbContext session with an in-memory database, instead
of the SQL Server used by the WorldCities.Server project: it’s worth noting that we’ve instantiated
it using a using statement so that the ApplicationDbContext will be automatically disposed of at the
end of the test method.

Once created, that context can be populated by creating new cities, which is what we did in the pre-
ceding code, creating TestCity1 with some random data. This will allow our GetCity() method of
CitiesController to actually retrieve something, provided that we pass a city id.

Other than that, we have created a CitiesController instance using the in-memory context and de-
fined two City objects that will contain the two specimens for this test.

Act
The Act phase is where the test takes place. It often consists of a single instruction that corresponds
to the behavior of the unit that we want to check.

Here’s the Act phase implementation:

// ...existing code...

// Act
city_existing = (await controller.GetCity(1)).Value;
city_notExisting = (await controller.GetCity(2)).Value;

// ...existing code...

The above code is quite self-explanatory. We are using the previously created controller instance to
execute the GetCity() method two times:

• The first occasion is to retrieve an existing city (using the same Id that we used to populate
our in-memory database)

• The second occasion is to retrieve a non-existing city (using a different Id)

Starting from C# 8, the using statement can be used without setting an explicit scope, thus
allowing for a more convenient syntax as we did in the above code. For additional info
about such a convenient feature, read the official docs at the following URL:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
keywords/using-statement

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

ASP.NET Core and Angular Unit Testing474

The two return values are then stored in the city_existing and city_notExisting variables. Ide-
ally, the first one should contain TestCity1, which we created in the Arrange phase, while the latter
should be null.

Assert
The purpose of the Assert phase is to verify that the conditions that we expect are properly met by
the values retrieved by the Act phase. To do this, we’ll make use of the Assert class provided by xUnit,
which contains various static methods that can be used to verify that these conditions are met.

Here’s the Assert phase implementation:

// ...existing code...

// Assert
Assert.NotNull(city_existing);
Assert.Null(city_notExisting);

// ...existing code...

As we can see, we’re just checking the values of the two variables that contain the return values of
the two GetCity() method calls of CitiesController made in the Act phase. We reasonably expect
city_existing not to be null, while city_notExisting should definitely be null.

Our test is now ready, so let’s see how we can execute it.

Executing the test
Each unit test can be executed in two ways:

• From the command line, using the .NET CLI
• From the Visual Studio GUI, using Visual Studio’s built-in test runner (Test Explorer)

Let’s quickly try both of these approaches.

Using the CLI
To execute our test unit(s) by using the .NET CLI, perform the following steps:

1. Open Command Prompt.
2. Navigate to the WorldCities.Server.Tests project root folder.
3. Execute the following command:

> dotnet test

If we have done everything correctly, we should see something like this:

Chapter 10 475

Figure 10.3: Command Prompt output after executing the test

That’s it. Our test is working and it passes, meaning that the GetCity() method of CitiesController
is behaving as expected.

Using the Visual Studio Test Explorer
Being able to run our tests from the command line can be a great feature if we want to automate these
kinds of tasks. However, in most cases, we’ll instead want to be able to run these tests directly from
within the Visual Studio GUI.

Luckily enough, this is definitely possible thanks to the Test Explorer window, which can be activated
by pressing Ctrl + E, T or from Menu | View, as shown in the following screenshot:

Figure 10.4: Navigating to Test Explorer in Visual Studio

ASP.NET Core and Angular Unit Testing476

Once activated, the Test Explorer window should appear, either undocked in the middle of the screen
or in the rightmost part of the Visual Studio GUI, just below the Solution Explorer window. From there,
we can either run all tests or just the current test by pressing the first two green play icons placed in
the top-left part of the panel, called Run All and Run, respectively (refer to the following screenshot):

Figure 10.5: The Test Explorer window

Since we only have a single test, for now, either command will do the same thing: run our unit test
and show the results using either a green check (success) or a red cross (failure).

Before moving further, we should spend another couple of minutes learning how to debug these unit
tests.

Debugging tests
If we click on the arrow handle next to the second Run icon in the top-left part of the Test Explorer
window, we can see that there are a number of other possible commands we can give to our tests,
including Debug, Debug All Tests In View, and Debug Last Run (refer to the following screenshot):

As we can see in the preceding screenshot, those green and/or red icons will be used to de-
termine the combined results of the testing class, the namespace, and the whole assembly.

Chapter 10 477

Figure 10.6: Viewing the test run and debug options

Alternatively, we can use the Debug Tests command that is shown when we right-click on the
WorldCities.Server.Tests project node from the Solution Explorer window:

Figure 10.7: Viewing the Debug Tests option

ASP.NET Core and Angular Unit Testing478

Both commands will execute our test in debug mode, meaning that we can set breakpoints (or condi-
tional breakpoints) and evaluate the results.

To quickly test it, set a breakpoint on the first line of the Assert region, then execute the preceding
Debug Tests command, and wait for the hit:

Figure 10.8: Hitting the breakpoint

There we go. Now, we know how to debug our unit tests. This can be very useful during the adoption
phase when we still don’t know how to properly use them and/or we’re still learning the various
xUnit.net commands.

Before switching to the front-end, it is worth spending a couple of minutes familiarizing ourselves
with the concepts of TDD and BDD, since this is something that could greatly help us to create useful
and relevant tests.

Test-driven development
TDD is more of a programming practice than a testing approach, and it can be a very good practice,
at least for certain scenarios.

In a nutshell, a software developer that adopts the TDD methodology will convert all of the software
requirements into specific test cases and then write the new code, or improve the existing code, so
that the tests will pass.

Let’s try to visualize the actual life cycle of these programming practices with the help of a small
diagram:

Those readers who want to know more about xUnit.net for .NET and the unique unit test
classes and methods provided by this package are strongly encouraged to check out the
following URL: https://xunit.net/docs/getting-started/netcore/cmdline.

https://xunit.net/docs/getting-started/netcore/cmdline

Chapter 10 479

Figure 10.9: Test-driven development life cycle

As we can see, TDD is mostly a way of designing the code that requires developers to start writing test
cases that express what they intend the code to do before writing any actual code (RED). Once done,
it asks them to only write the code required to make the test cases pass (GREEN). Eventually, when
all of the test cases pass, the existing code can be improved (REFACTOR) until more test cases appear.
This short development cycle is conventionally called RED-GREEN-REFACTOR and is the backbone of
the TDD practice. It’s worth noting that RED is always the initial step of any cycle since the tests will
always fail at the start because the code that could allow them to pass is yet to be written.

Such a practice is very different from the STD practice, where we first generate the code and then
(maybe) the tests. In other words, our source code can be (and, therefore, usually is) written before
(or even without) test cases. The main difference between the two approaches is that, in TDD, tests
are the requirement conditions that we need to fulfill, while in STD, as we have already said a short
while ago, they are mostly proof that our existing code is working.

In the next chapter, when dealing with authentication and authorization, we’ll try to create a couple
of back-end unit tests using the TDD approach; after all, since the TDD practice requires the creation
of test cases only when we have to implement additional requirements, the best way to use it is when
we have some new features to add.

Behavior-driven development
BDD is an Agile software development process that shares the same test-first approach as TDD but
emphasizes results from the end user’s perspective instead of focusing on implementation.

ASP.NET Core and Angular Unit Testing480

To better understand the key differences between TDD and BDD, we can ask ourselves the following
question:

What are we testing for?

That’s a great question to ask when we’re about to write some unit tests.

If we want to test the actual implementation of our methods/units, TDD might be the appropriate way
to go. However, if we aim to figure out the end-user behavior of our application under specific circum-
stances, TDD might give us false positives, especially if the system evolves (as Agile-driven projects
often do). More specifically, we could encounter a scenario where one or more units are passing their
tests despite failing to deliver the expected end-user outcome.

In more general terms, we can say the following:

• TDD is meant to enforce developers’ control over the source code they write
• BDD aims to satisfy both the developer and the end-user (or customer)

Therefore, we can easily see how BDD supersedes TDD instead of replacing it.

Let’s try to wrap up these concepts in a diagram:

Figure 10.10: Behavior-driven development life cycle

Chapter 10 481

As we can see, BDD acts just like an extension of TDD. Instead of writing the test cases, we start by
writing a behavior. As soon as we do that, we will develop the required code for our application to be
able to perform it (arguably using TDD), and then move on to define additional behaviors or refactor
existing ones.

Since these behaviors are aimed at the end-user, they must also be written using understandable
terms. For that very reason, BDD tests are usually defined using a semi-formal format that is borrowed
from Agile’s user stories, with a strong narrative and explicit contextualization. These user stories are
generally meant to comply with the following structure:

• Title: An explicit title, such as Editing an Existing City
• Narrative: A descriptive section that uses the Role / Feature / Benefit pattern from Agile user

stories, such as As a user, I want to edit an existing City, so that I can change its values
• Acceptance criteria: A description of the three test phases, using the Given / When / Then model,

which is basically a more understandable version of the Arrange / Act / Assert cycle used in TDD,
such as Given a world cities database containing one or more cities; When the user selects a City;
Then the app must retrieve it from the DB and display it on the front-end

As we can see, we just tried to describe the unit test we created a while ago using a typical BDD approach.
Although it mostly works, it’s evident that a single behavior might require multiple back-end and front-
end unit tests. This lets us understand another distinctive feature of the BDD practice. Emphasizing
the utmost importance of the front-end testing phase is the best way to test user behavior rather than
an implementation specification.

All in all, BDD can be a great way to extend a standard TDD approach to design our tests in a way that
means their results can address a wider audience—provided we’re able to properly design not only
the required back-end test (using ASP.NET Core) but also the front-end tests (using Angular).

In this section, we’ve learned how to handle the back-end part of the story; in the next section, we’re
going to expand our knowledge to the front-end.

Angular unit tests
Luckily enough, this time, we won’t need to install anything since the ASP.NET Core and Angular Visual
Studio template that we used to create our WorldCities project already contains everything we need
to write app tests for our Angular application.

More specifically, we can already count on the following packages, which we briefly introduced in
Chapter 3, Looking Around:

• Jasmine: A JavaScript testing framework that fully supports the BDD approach that we talked
about earlier

• Karma: A tool that lets us spawn browsers and run our Jasmine tests inside them (and show
their results) from the command line

• Protractor: An end-to-end test framework that runs tests against Angular applications from
within a real browser, interacting with it as if it were a real user

ASP.NET Core and Angular Unit Testing482

In the following sections, we’re going to do the following:

• Review the testing configuration files still present in our worldcities.client Angular app
• Introduce the TestBed interface, one of the most important concepts of Angular testing
• Explore Jasmine and Karma to understand how they actually work
• Create some �spec�ts files to test our existing components
• Set up and configure some tests for our Angular app

Let’s get started!

General concepts
In contrast to what we did in ASP.NET Core, where we created our unit tests in separate WorldCities.
Server.Tests projects, all our front-end tests will be written in the same project that hosts our Angular
app.

As a matter of fact, we’ve already seen one of these tests in Chapter 3, Looking Around, when we explored
the /src/app/ Angular folder of our healthcheck�client app for the first time. The test was written in
the app.component.spec.ts file, and we played with it just before refactoring that component.

Now we’ve switched to the worldcities�client app; however, we should still have the /src/karma.conf.
js file: this is the application-specific Karma configuration file, containing information about the
reporters, the browser to use, the TCP port, and so on.

Since we’ve created all our components using the Angular CLI’s ng generate command with the
--skip-tests option, we should only have a single .spec.ts file in our Angular project: the app.
component.spec.ts file (unless we deleted it). This means that if we want to create some tests for our
components, we need to manually create them.

However, before doing that, it would be wise to spend a bit longer explaining how Angular testing
actually works.

Introducing the TestBed interface
The TestBed interface is one of the most important concepts of the Angular testing approach. In a
nutshell, TestBed is a dynamically constructed Angular test module that emulates the behavior of an
Angular @NgModule.

For additional information, check out the following guides:

Karma: https://karma-runner.github.io/

Jasmine: https://jasmine.github.io/

Protractor: https://www.protractortest.org/

Angular unit test: https://angular.io/guide/testing

https://karma-runner.github.io/
https://jasmine.github.io/
https://www.protractortest.org/
https://angular.io/guide/testing

Chapter 10 483

The TestBed concept was first introduced with Angular 2 as a convenient way to test a component with
a real DOM behind it. The TestBed interface significantly assists in this regard thanks to its support
for injecting services (either real or mock) into our components, as well as automatically binding
components and templates.

To better understand how TestBed actually works and how we can use it, let’s take a look at the TestBed
implementation of the app.component.spec.ts file that we modified back in Chapter 3, Looking Around:

await TestBed.configureTestingModule({
 declarations: [
 AppComponent
],
 imports: [
 HttpClientTestingModule
],
}).compileComponents();

In the preceding code, we can see how TestBed reproduces the behavior of a minimalistic AppModule
file—the bootstrap @NgModule of an Angular app—with the sole purpose of compiling the components
that we need to test: more specifically, it uses the Angular module system to declare and compile the
AppComponent so that we can use its source code in our tests.

Testing with Jasmine
Jasmine tests are usually constructed using the following three main APIs:

• describe(): A wrapping context used to create a group of tests (also called a test suite)
• it(): The declaration of a single test
• expect(): The expected result of a test

These APIs are already available within the *.spec.ts files generated by the Angular CLI, thanks
to the built-in Angular integration with the Jasmine testing framework; if we quickly check our app.
component.spec.ts file, we can easily confirm that.

Keeping this in mind, let’s create our first testing class file for our Angular app.

Our first Angular test suite
Let’s now create our own test suite, and a corresponding TestBed, for one of our existing Angular
components. We’ll use CitiesComponent since we know it very well.

ASP.NET Core and Angular Unit Testing484

From Solution Explorer, create a new /src/app/cities/cities.component.spec.ts file and open it.
Since we’re going to write a fair amount of source code, it would be wise to separate it into multiple
blocks.

The import section
Let’s start by defining the required import statements:

import { ComponentFixture, TestBed } from '@angular/core/testing';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';
import { AngularMaterialModule } from '../angular-material.module';
import { RouterTestingModule } from '@angular/router/testing';
import { of } from 'rxjs';

import { CitiesComponent } from './cities.component';
import { City } from './city';
import { CityService } from './city.service';
import { ApiResult } from '../base.service';

// ... to be continued ...

As we can see, we added a bunch of modules that we already used in our AppModule and CitiesComponent
classes. This is certainly anticipated since our TestBed will need to reproduce a suitable @NgModule
for our tests to run.

The describe and beforeEach sections
Now that we have got all of our required references, let’s see how we can use the describe() API to
lay out our testing suite:

// ...existing code...

describe('CitiesComponent', () => {
 let component: CitiesComponent;
 let fixture: ComponentFixture<CitiesComponent>;

Unfortunately, the Angular CLI doesn’t (yet) provide a way to automatically generate
spec.ts files for existing component classes. However, there are a number of third-party
libraries that generate specs.ts files based on Angular CLI spec presets.

The most popular (and widely used) package that does that is called ngx-spec and is
available on GitHub at the following URL: https://github.com/smnbbrv/ngx-spec.

However, we’re not going to use it in our specific scenario: we’ll create and implement our
spec.ts files manually so that we can better understand how they work.

https://github.com/smnbbrv/ngx-spec

Chapter 10 485

 beforeEach(async () => {

 // TODO: declare & initialize required providers

 await TestBed.configureTestingModule({
 declarations: [CitiesComponent],
 imports: [
 BrowserAnimationsModule,
 AngularMaterialModule,
 RouterTestingModule
],
 providers: [

 // TODO: reference required providers

]
 })
 .compileComponents();
 });

 beforeEach(() => {
 fixture = TestBed.createComponent(CitiesComponent);
 component = fixture.componentInstance;

 // TODO: configure fixture/component/children/etc.

 fixture.detectChanges();
 });

 it('should create', () => {
 expect(component).toBeTruthy();
 });

 // TODO: implement some other tests

});

As we can see by looking at the preceding code, everything happens within a single describe()
wrapping context, which represents our CitiesComponent test suite. All of the tests related to our
CitiesComponent class will be implemented inside this suite.

ASP.NET Core and Angular Unit Testing486

The first thing we have done in the test suite is define two important variables that will play a pivotal
role in all tests:

• fixture: This property hosts a fixed state of CitiesComponent for running tests; we can use
this fixture to interact with the instantiated component and its child elements

• component: This property contains the CitiesComponent instance created from the preceding
fixture

Immediately after this, we have two consecutive beforeEach() method calls:

• An asynchronous beforeEach(), where TestBed is created and initialized
• A synchronous beforeEach(), where fixtures and components are instantiated and configured

Inside the first (asynchronous) beforeEach(), we have defined a TestBed for our CitiesComponent,
which imports the required modules for the tests we want to add: BrowserAnimationModule,
AngularMaterialModule, and RouterTestingModule. As we can see from the two todo comments
we’ve placed here, this is also the place where we’re going to declare, initialize, and reference our
providers (such as CityService); otherwise, CitiesComponent won’t be able to inject them. We’ll do
that in a short while.

Inside the second (synchronous) beforeEach(), we have instantiated our fixture and component
variables. Since we’ll likely have to properly set them up and/or configure some of our component’s
child elements, we’ve left a third todo comment there as well.

At the end of the file, we can find our first test, which basically checks that the component has been
created without errors: such a test mimics the “default” test created by the Angular CLI when using
the ng generate component command without the --skip-tests option.

That first test is followed by a fourth todo comment; this is where we’ll get to implement our additional
tests using the it() and expect() APIs provided by the Jasmine framework.

Adding a mock CityService
Now, we’re going to replace our first and second todos by implementing a mock CityService so that
we can reference it within our TestBed.

It’s worth noting that the above cities.component.spec.ts source code is almost iden-
tical to the one generated by the Angular CLI when running the ng generate component
command without using the --skip-tests option. Such boilerplate is a great way to
start writing tests since it already contains the TestBed, the component references, and
a basic sample test.

As we already know from the previous sections, a mock is a replacement object that sim-
ulates the behavior of a real one.

Chapter 10 487

Just like ASP.NET Core and xUnit, Jasmine provides multiple ways to set up mock objects. In the fol-
lowing sections, we’ll briefly review some of the most frequently used approaches.

Fake service class
We can create a fake CityService, which just returns whatever we want for our test. Once done, we
can import it in the .spec.ts class and add it to TestBed’s providers list so that it will be called by
our component just like the real one.

Extending and overriding
Instead of creating a whole double class, we can just extend the real service and then override the
methods we need in order to perform our tests. Once done, we can set up an instance of the extended
class in our TestBed using @NgModule's useValue feature.

Interface instance
Instead of creating a new double or extended class, we can just instantiate the interface of our service,
implementing just the method that we need for our tests. Once done, we can set up that instance in
our TestBed using @NgModule's useValue feature.

Spy
This approach relies upon a Jasmine-specific feature called a spy, which lets us take an existing class,
function, or object and mock it so that we can control its return values. Since the real method won’t
be executed, a spy method will work just like an override, without having to create an extended class.

We can use such a feature to create a real instance of our service, spy the method that we want to
override, and then set up that specific instance in our TestBed using @NgModule's useValue feature.
Alternatively, we can use the jasmine.createSpyObj() static function to create a mock object with
multiple spy methods that we can then configure in various ways.

Implementing the mock CityService
Which route should we take? Unfortunately, there’s no one best answer for all scenarios, since the
best approach often depends on the complexity of the features we want to test and/or how we want
to structure our test suite.

Theoretically speaking, creating a whole fake service class is arguably the safest and most versatile
choice since we can fully customize our mock service return values. However, it can also be time-con-
suming and often unnecessary when we’re dealing with simple services and/or small-scale tests. Con-
versely, the extend and override, interface, and spy approaches are often a great way to address the
basic requirements of most tests, yet they might give unexpected results in complex testing scenarios
unless we pay close attention to overriding/spying all of the required methods.

Everything considered, since our CityService is quite small and features a simple implementation
with a small number of methods, we’re going to use the spy approach, which seems to be the most
apt approach for our given scenario.

ASP.NET Core and Angular Unit Testing488

Let’s go back to the /src/cities/cities.components.spec.ts file. Once there, the following line of
code needs to be replaced:

 // TODO: declare & initialize required providers

The preceding line of code has to be replaced with the following code:

// Create a mock cityService object with a mock 'getData' method
let cityService = jasmine.createSpyObj<CityService>('CityService',
['getData']);

// Configure the 'getData' spy method
cityService.getData.and.returnValue(
 // return an Observable with some test data
 of<ApiResult<City>>(<ApiResult<City>>{
 data: [
 <City>{
 name: 'TestCity1',
 id: 1, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 },
 <City>{
 name: 'TestCity2',
 id: 2, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 },
 <City>{
 name: 'TestCity3',
 id: 3, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 }
],
 totalCount: 3,
 pageIndex: 0,
 pageSize: 10
 }));

That’s it. Now, we can add our new mock CityService to the TestBed configuration, replacing the
second todo:

// TODO: reference required providers

Chapter 10 489

This is replaced with the highlighted lines of the following code:

// ...existing code...

await TestBed.configureTestingModule({
 declarations: [CitiesComponent],
 imports: [
 BrowserAnimationsModule,
 AngularMaterialModule,
 RouterTestingModule
],
 providers: [
 {
 provide: CityService,
 useValue: cityService
 }
]
})
 .compileComponents();

// ...existing code...

That mock CityService will now be injected into CitiesComponent, thereby making us able to control
the data returned for each test.

Alternative implementation using the interface approach
Here’s how we could have implemented the mock CityService using the interface approach:

 // Create a mock cityService object with a mock 'getData' method
 let cityService = <CityService>{
 put: (): Observable<City> => { /* todo */ },
 post: (): Observable<City> => { /* todo */ },
 // todo
 };

As we can see, implementing the interface would require a lot of additional code if we want to maintain
the <CityService> type assertion. That’s why we’ve used the spy approach instead.

Configuring the fixture and the component
It’s now time to remove the third todo in our /src/cities/cities.components.spec.ts class:

// todo: configure fixture/component/children/etc.

ASP.NET Core and Angular Unit Testing490

This needs to be replaced with the following highlighted lines:

// ...existing code...

beforeEach(() => {
 fixture = TestBed.createComponent(CitiesComponent);
 component = fixture.componentInstance;

 component.paginator = jasmine.createSpyObj(
 "MatPaginator", ["length", "pageIndex", "pageSize"]
);

 fixture.detectChanges();
 });

// ...existing code...

The preceding code will perform the following steps directly before each test:

• Create a mock MatPaginator object instance
• Trigger a change detection run on our component

Now, we’re finally ready to create our first test.

Creating the title test
The last remaining todo line in our /src/cities/cities.components.spec.ts class needs to be re-
placed:

// TODO: implement some other tests

The preceding line of code needs to be replaced as follows:

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities');
});

As we might easily surmise, change detection isn’t done automatically there: it must be
triggered by calling the detectChanges method on our fixture. Such a call will make our
ngOnInit() method fire and populate the table with the cities. Since we’re testing the
component behavior, that’s definitely something to do before running our tests.

Chapter 10 491

As we can see, we’re finally using the it() and expect() Jasmine methods. The former declares the
meaning of our test, while the latter evaluates the component’s behavior against the expected one
and determines the test result.

In this first test, we want to check that the component displays a Cities title to the user. Since we
know that our component’s template holds the title inside an <H1> HTML element, we can check it by
performing a DOM query against fixture.nativeElement, the root component element that contains
all of the rendered HTML content.

Once we get the title element, we check its textContent property to see whether it’s what we expect
(Cities). This is what will make the test pass or fail.

Creating the cities tests
Before running our test suite, let’s add another test.

Open the /src/cities/cities.components.spec.ts file again and add the following lines right below
the previous test:

// ...existing code...

it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');
 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(0);
});

// ...existing code...

This time, we’re checking the table that contains the list of cities. More precisely, we’re counting the
table body rows to ensure that the resulting number is greater than zero, meaning that the table has
been filled with at least one city. To perform such a count, we’re using the CSS classes that Angular
Material assigns to its MatTable component by default.

ASP.NET Core and Angular Unit Testing492

To better understand this, take a look at the following screenshot:

Figure 10.11: Inspecting rows of our Cities list

As we can see, the mat-mdc-row CSS class is only applied to the table body rows, while the table header
rows have the mat-mdc-header-row class. Therefore, if the test passes, it definitely means that the
component created at least one row within the table.

It goes without saying that relying on CSS classes applied by a third-party package to define our tests
is not a good practice. We’re doing this just to demonstrate what we can do with our current imple-
mentation. A safer approach for such DOM-based tests would arguably require defining custom CSS
classes and checking for their presence instead.

Running the test suite
It’s now time to run our test suite and see what we’ve got.

To do this, perform the following steps:

1. Open Command Prompt.
2. Navigate to the root folder of the worldcities.client Angular project.
3. Execute the following command:

> ng test

This will launch the Karma test runner, which will open a dedicated browser in which to run the tests.
If we have done everything correctly, we should be able to see the following results:

Chapter 10 493

Figure 10.12: Results of our test

That’s it; all three tests designed for CitiesComponent have passed. To be 100% certain that we did
everything properly, let’s now try to make them fail.

Open the /src/cities/cities.components.spec.ts file again and modify the test’s source code in
the following way (the updated lines are highlighted):

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities!!!');
});

it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');
 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(3);
});

ASP.NET Core and Angular Unit Testing494

Now, our first test will expect an incorrect title value, and the second will look for more than three
rows, which won’t be the case since our mock CityService has been configured to serve three of them.

As soon as we save the file, the Karma test runner should automatically reload the testing page and
show the updated results (refer to the following screenshot):

Figure 10.13: Results showing the test has failed

There we go. Now, we are experiencing two failures, just as expected. The Jasmine framework is also
telling us what’s wrong so that we can address the issues promptly.

Let’s do this. Open the /src/cities/cities.components.spec.ts file and revert the test’s source
code to how it was before:

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities');
});

it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');

Chapter 10 495

 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(0);
});

That’s it. Now that we have tested our test suite, we can close the test runner by pressing Ctrl + C on the
ng test terminal window and then choosing Y (and hitting Enter) to terminate the batch job.

With this, we’ve concluded our learning journey through front-end testing.

Summary
This chapter was entirely dedicated to the concepts of testing and unit testing. After a brief introduc-
tion, where we explained the meaning of these concepts and the various testing practices available,
we spent some valuable time learning how to implement them properly.

We started focusing on back-end testing with the help of the xUnit.net testing tool. Such an approach
required us to create a new test project, where we implemented our first back-end unit tests. While
working on it, we learned about the importance of some test-related concepts, such as mocking, which
we used to emulate the behavior of our ApplicationDbContext class to provide some in-memory data
instead of using our SQL Server data source.

The back-end testing approach greatly helped us to understand the meaning of TDD and its similarities
and differences vis-à-vis the BDD approach, which is a distinctive front-end testing practice.

Such a comparison guided us to Angular, where we used the Jasmine testing framework and the
Karma test runner to develop some front-end tests. Here, we got the opportunity to learn about some
good testing practices as well as other important concepts strictly related to the Jasmine framework,
such as TestBed, test suites, and the spy method. Eventually, we successfully saw our tests in action
in our worldcities.client app.

In the next chapter, we’ll try to design some more tests when dealing with the authorization and
authentication topics. The concepts that we learned here will definitely be very useful when imple-
menting the registration and login workflows.

Suggested topics
For further information, we recommend the following topics: unit testing, xUnit, Moq, TDD, BDD,
mock, stub, fixture, Jasmine, Karma, Protractor, Spy, test suite, and TestBed.

References
• Getting Started with xUnit.net: https://xunit.net/docs/getting-started/netcore/cmdline
• Unit testing in .NET: https://learn.microsoft.com/en-US/dotnet/core/testing/
• Unit test controller logic in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/

mvc/controllers/testing

https://xunit.net/docs/getting-started/netcore/cmdline
https://learn.microsoft.com/en-US/dotnet/core/testing/
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/testing
https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

ASP.NET Core and Angular Unit Testing496

• Popular open source project Moq criticized for quietly collecting data: https://www.
bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-
for-quietly-collecting-data/

• Microsoft.EntityFrameworkCore.InMemory NuGet package: https://www.linkedin.com/pulse/
my-take-open-source-recent-drama-around-moq-tomáš-herceg

• My take on open-source and the recent “drama” around Moq: https://www.nuget.org/packages/
Microsoft.EntityFrameworkCore.InMemory/

• The using statement (C#): https://learn.microsoft.com/en-US/dotnet/csharp/language-
reference/keywords/using-statement

• xUnit.net – Using ASP.NET Core with the .NET SDK command line: https://xunit.net/docs/
getting-started/netcore/cmdline

• Angular – Testing: https://angular.io/guide/testing
• Protractor: End-to-end testing for Angular: https://www.protractortest.org/
• Jasmine: Behavior-Driven JavaScript: https://jasmine.github.io/
• Karma: Spectacular Test Runner for JavaScript: https://karma-runner.github.io/latest/

index.html

• Angular Testing: ComponentFixture: https://angular.io/api/core/testing/ComponentFixture
• Angular References: ngAfterViewInit: https://ngrefs.com/latest/core/ng-after-view-init

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/
https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/
https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/
https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg
https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/keywords/using-statement
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/keywords/using-statement
https://xunit.net/docs/getting-started/netcore/cmdline
https://xunit.net/docs/getting-started/netcore/cmdline
https://angular.io/guide/testing
https://www.protractortest.org/
https://jasmine.github.io/
https://karma-runner.github.io/latest/index.html
https://karma-runner.github.io/latest/index.html
https://angular.io/api/core/testing/ComponentFixture
https://ngrefs.com/latest/core/ng-after-view-init
https://packt.link/aspdotnet8angular

11
Authentication and Authorization

Generally, the term authentication refers to any process of verification that determines whether some-
one, be it a human being or an automated system, is who (or what) they claim to be. This is also true
within the context of the World Wide Web (WWW), where that same word is mostly used to denote any
technique used by a website or service to collect a set of login information from a user agent, typically
a web browser, and authenticate them using a membership and/or identity service.

Authentication should never be confused with authorization, as this is a different process and is in charge
of a very different task. To give a quick definition, we can say that the purpose of authorization is to
confirm that the requesting user is allowed to have access to the action they want to perform. In other
words, while authentication is about who they are, authorization is about what they’re allowed to do.

To better understand the difference between these two, apparently, similar concepts, we can think
of two real-world scenarios:

• A free, yet registered, account trying to gain access to a paid or premium-only service or fea-
ture. This is a common example of authenticated, yet not authorized, access; we know who
they are, yet they’re not allowed to go there.

• An anonymous user trying to gain access to a publicly available page or file; this is an example
of non-authenticated, yet authorized, access; we don’t know who they are, yet they can access
public resources just like everyone else.

Authentication and authorization will be the main topics of this chapter, which we’ll try to address
from both theoretical and practical points of view, and we’ll also show some possible implementation
approaches, for demonstration purposes only.

More precisely, we’re going to talk about the following topics:

• To auth, or not to auth? Here, we discuss some typical scenarios where authentication and
authorization could either be required or not, ensuring we properly understand the meaning
of such terms and how they can be implemented in a typical web application context.

Authentication and Authorization498

• Proprietary auth with �NET Core: Introduces ASP.NET Core Identity, a modern member-
ship system that allows developers to add login functionality to their applications, as well
as JwtBearerMiddleware, a middleware designed to add JWT authentication support to any
ASP.NET Core application; furthermore, we’ll implement ASP.NET Core Identity and JwtBear-
erMiddleware to add login functionalities to our existing WorldCities app.

• Updating the database: Focuses on updating our existing WorldCities database to create the
auth-related tables and add a couple of test users to test the login.

• Implementing authentication in Angular: This is where we’ll refactor our Angular app to
make it able to interact with the ASP.NET Core Identity system, introducing some new Angular
features, such as HttpInterceptors and Route Guards, that will handle the whole authentication
and authorization flow.

Let’s go!

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with
the following additional packages:

• Microsoft.AspNetCore.Identity.EntityFrameworkCore

• Microsoft.AspNetCore.Authentication.JwtBearer

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during
the chapter to better contextualize their purposes within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/master/Chapter_11/

To auth, or not to auth?
As a matter of fact, implementing authentication and/or authorization logic isn’t mandatory for most
web-based applications or services; there are a number of websites that still don’t do that, mostly be-
cause they serve content that can be accessed by anyone at any time. This used to be pretty common
among most corporate, marketing, and informative websites until some years ago; that was before
their owners learned how important it is to build a network of registered users and how much these

“loyal” contacts are worth nowadays.

We don’t need to be experienced developers to acknowledge how much the WWW has changed in the
last few years; each and every website, regardless of its purpose, has an increasing and more or less
legitimate interest in tracking its users nowadays, giving users the chance to customize their naviga-
tion experience, interact with their social networks, collect email addresses, and so on. None of the
preceding can be done without an authentication mechanism of some sort.

There are billions of websites and services that require authentication to work properly, as most of
their content and/or intentions depend upon the actions of registered users: forums, blogs, shopping
carts, subscription-based services, and even collaborative tools such as wikis.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_11/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_11/

Chapter 11 499

Long story short, the answer is yes; as long as we want to have users performing Create, Read, Update,
and Delete (CRUD) operations within our client app, there is no doubt that we should implement
some kind of authentication and authorization procedure. If we’re aiming for a production-ready
Single-Page Application (SPA) featuring some user interactions of any kind, we definitely want to
know who our users are in terms of names and email addresses. It is the only way to determine who
will be able to view, add, update, or delete our records, not to mention perform administrative-level
tasks, keep track of our users, and so on.

Authentication
Since the origin of the WWW, the vast majority of authentication techniques rely upon HTTP/HTTPS
implementation standards, and all of them work more or less in the following way:

1. A non-authenticated user agent asks for content that cannot be accessed without some kind
of permission.

2. The web application returns an authentication request, usually in the form of an HTML page
containing an empty web form to complete.

3. The user fills in the web form with their credentials, usually a username and a password, and
then sends it back with a POST command, which is most likely issued by a click on a Submit
button.

4. The web application receives the POST data and calls the aforementioned server-side imple-
mentation, which will try to authenticate the user with the given input and return an appro-
priate result.

5. If the result is successful, the web application will authenticate the user and store the relevant
data somewhere, depending on the chosen authentication method; this may include sessions/
cookies, tokens, signatures, and so on (we’ll talk about these later on). Conversely, the result
will be presented to the user as a readable outcome on an error page, possibly asking them to
try again, contact an administrator, or something else.

This is still the most common approach nowadays. Almost all websites we can think of use it, albeit
with a number of big or small differences regarding security layers, state management, JSON Web
Tokens (JWTs) or other RESTful tokens, basic or digest access, single sign-on properties, and more.
Before moving forward, let’s spend a bit of time explaining the most relevant of them.

Authentication methods
As we most certainly know, the HTTP protocol is stateless, meaning that whatever we do during a re-
quest/response cycle will be lost before the subsequent request, including the authentication result.
The only way we can overcome this is to store that result somewhere, along with all its relevant data,
such as the user ID, login date/time, and last request time. In the following sections, we’ll briefly
discuss some methods to store that data.

Authentication and Authorization500

Sessions/cookies
Up until a few years ago, the most common and traditional method to do this was to store the data on
the server using either a memory-based, disk-based, or external session manager. Each session could
be retrieved using a unique ID that the client received with the authentication response, usually inside
a session cookie, which was transmitted to the server on each subsequent request.

Here’s a diagram outlining the Session-Based Authentication Flow:

Figure 11.1: Session-based authentication flow

This is still a very common technique used by most web applications. There’s nothing wrong with
adopting this approach, as long as we are okay with its widely acknowledged downsides, such as the
following:

• Memory issues: Whenever there are many authenticated users, the web server will consume
more and more memory. Even if we use a file-based or external session provider, there will
nonetheless be an intensive I/O, TCP, or socket overhead.

Chapter 11 501

• Scalability issues: Replicating a session provider in a scalable architecture (IIS web farm,
load-balanced cluster, and the like) might not be an easy task, and will often lead to bottlenecks
or wasted resources.

• Cross-domain issues: Session cookies behave just like standard cookies, so they cannot be
easily shared between different origins/domains. These kinds of problems can often be solved
with some workarounds, yet they will often lead to insecure scenarios to make things work.

• Security issues: There is a wide range of detailed literature on security-related issues involving
sessions and session cookies: for instance, Cross-Site Request Forgery (CSRF) attacks, and a
number of other threats that won’t be covered here for the sake of simplicity. Most of them
can be mitigated by some countermeasures, yet they can be difficult to handle for junior or
novice developers.

As these issues have arisen over the years, there’s no doubt that most analysts and developers have
put a lot of effort into figuring out different approaches, as well as mitigating them.

A pivotal improvement regarding mitigation was achieved in 2016 with the SameSite cookies draft, which
suggested an HTTP security policy that was then improved by the Cookies HTTP State Management
Mechanism (April 2019) and the Incrementally Better Cookies (May 2019) drafts.

Now that most browsers have adopted the SameSite cookie specification, cookie-based authentication
is a lot safer than before.

Tokens
Token-based authentication has been increasingly adopted by SPAs and mobile apps in the last few
years for several undeniably good reasons, which we’ll try to briefly summarize here.

The most important difference between session-based authentication and token-based authentication
is that the latter is stateless, meaning that we won’t be storing any user-specific information on the
server memory, database, session provider, or other data containers of any sort.

This single aspect solves most of the downsides that we pointed out earlier for session-based authen-
tication. We won’t have sessions, so there won’t be an increasing overhead; we won’t need a session
provider, so scaling will be much easier. Also, for browsers supporting LocalStorage, we won’t even
be using cookies, so we won’t get blocked by cross-origin restrictive policies, and hopefully, we’ll get
around most security issues.

These drafts are linked here, should you wish to read them yourself:

https://tools.ietf.org/html/draft-west-first-party-cookies-07

https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

Authentication and Authorization502

Here’s a typical Token-Based Authentication Flow:

Figure 11.2: Token-based authentication flow

In terms of client-server interaction, these steps don’t seem that different from the session-based au-
thentication flow diagram; apparently, the only difference is that we’ll be issuing and checking tokens
instead of creating and retrieving sessions. However, the real deal is happening (or not happening) on
the server side. We can immediately see that the token-based authentication flow does not rely on a
stateful session-state server, service, or manager. This will easily translate into a considerable boost
in terms of performance and scalability.

Chapter 11 503

Signatures
This is a method used by most modern API-based cloud computing and storage services, including
Microsoft Azure and Amazon Web Services (AWS). In contrast to session-based and token-based
approaches, which rely on a transport layer that can theoretically be accessed by or exposed to a
third-party attacker, signature-based authentication performs a hash of the whole request using a
previously shared private key. This ensures that no intruder or man-in-the-middle can ever act as the
requesting user, as they won’t be able to sign the request.

Two-factor
This is the standard authentication method used by most banking and financial accounts, being
arguably the most secure one.

The implementation may vary, but it always relies on the following base workflow:

1. The user performs a standard login with a username and password
2. The server identifies the user and prompts them with an additional, user-specific request that

can only be satisfied by something obtained or obtainable through a different channel: for ex-
ample, an OTP password sent by SMS, a unique authentication card with a number of answer
codes, or a dynamic PIN generated by a proprietary device or a mobile app

3. If the user gives the correct answer, they are authenticated using a standard session-based or
token-based method

Two-Factor Authentication (2FA) has been supported by ASP.NET Core since its 1.0 release, which
implemented it using SMS verification (SMS 2FA). However, starting with ASP.NET Core 2, the SMS
2FA approach was deprecated in favor of a Time-Based One-Time Password (TOTP) algorithm, which
became the industry-recommended approach to implement 2FA in web applications.

After reviewing all these authentication methods, we can definitely say that the token-based authen-
tication approach seems to be a viable choice for our specific scenario; for that very reason, in the
upcoming sections, we’re going to follow this route.

For additional information about SMS 2FA, check out the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa

For additional information about TOTP 2FA, take a look at the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
identity-enable-qrcodes

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes

Authentication and Authorization504

Third-party authentication
Regardless of the authentication method that a web application chooses to adopt, being forced to
have a potentially different username and password for each website visit can be frustrating, and
it can also require users to develop custom password storage techniques that might lead to security
risks. In order to overcome this issue, a large number of IT developers started to look around for an
alternative way to authenticate users that could replace the standard authentication technique, based
on usernames and passwords, with an authentication protocol based on trusted third-party providers.

The rise and fall of OpenID
Among the first successful attempts to implement a third-party authentication mechanism was the
first release of OpenID, an open and decentralized authentication protocol promoted by the non-profit
OpenID Foundation. Available since 2005, it was quickly and enthusiastically adopted by some big
players such as Google and Stack Overflow, who originally based their authentication providers on it.

Here’s how it works in a few words:

1. Whenever our application receives an OpenID authentication request, it opens a transpar-
ent connection interface through the requesting user and a trusted third-party authentica-
tion provider (for example, the Google identity provider); the interface can be a popup, an
AJAX-populated modal window, populated modal windows, or an API call, depending on the
implementation.

2. The user sends their username and password to the aforementioned third-party provider, who
performs the authentication accordingly and communicates the result to our application, by
redirecting the user to where they came from, along with a security token that can be used to
retrieve the authentication result.

3. Our application consumes the token to check the authentication result, authenticating the user
in the event of success or sending an error response in the event of failure.

Despite the great enthusiasm for OpenID between 2005 and 2009, with a good number of relevant
companies publicly declaring their support for OpenID and even joining the foundation, including
PayPal and Facebook, the original protocol didn’t live up to its great expectations. Legal controversies,
security issues, and, most importantly, the massive popularity surge of the social networks with their
improper—yet working—OAuth-based social logins in the 2009–2012 period basically killed it.

OpenID Connect
In a desperate attempt to keep their flag flying after the takeover of the OAuth/OAuth 2 social logins,
the OpenID Foundation released the third generation of the OpenID technology in February 2014;
this was called OpenID Connect (OIDC).

For those who don’t know what OAuth is, have patience; we’ll get there soon enough.

Chapter 11 505

Despite the name, the new installment of OIDC has little to nothing to do with its ancestor; it’s merely
an authentication layer built upon the OAuth 2 authorization protocol. In other words, it’s little more
than a standardized interface to help developers use OAuth 2 as an authentication framework in a
less improper way, which is kind of funny, considering that OAuth 2 played a major role in replacing
OpenID 2.0 in the first place.

The choice of giving up on OpenID in favor of OIDC was highly criticized in 2014; however, after all
these years, we can definitely say that OIDC can still provide a useful, standardized way to obtain
user identities. It allows developers to request and receive information about authenticated users and
sessions using a convenient, RESTful-based JSON interface; it features an extensible specification that
also supports some promising optional features, such as encryption of identity data, auto-discovery of
OpenID providers, and even session management. In short, it’s still useful enough to be used instead
of relying on pure OAuth 2.

Authorization
In most standard implementations, including those featured by ASP.NET, the authorization phase
kicks in right after authentication, and it’s mostly based on permissions or roles; any authenticated
user might have their own set of permissions and/or belong to one or more roles and, thus, be grant-
ed access to a specific set of resources. These role-based checks are usually set by the developer in a
declarative fashion within the application source code and/or configuration files.

Authorization, as we said, shouldn’t be confused with authentication, despite the fact that it can be
easily exploited to perform an implicit authentication as well, especially when it’s delegated to a
third-party actor.

Proprietary authorization
Most development frameworks provide a built-in authorization model, which can be used to imple-
ment permission-based, role-based, and/or claims-based policies. ASP.NET Core makes no exception,
since it ships with a simple, declarative API. In a nutshell, authorization is expressed in requirements,
intended as required claims to access a given resource or perform a specific task; these requirements
are checked by handlers that evaluate the user’s claims against them.

Using a proprietary authorization model is often a good choice, providing that the developers have the
required skills and know-how to properly implement it and handle the level of complexity inevitably
bound to such an approach.

For additional information about OpenID, we strongly suggest reading the following spec-
ifications from the OpenID Foundation official website:

• OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html
• OpenID 2�0 to OIDC migration guide: http://openid.net/specs/openid-

connect-migration-1_0.html

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html

Authentication and Authorization506

Third-party authorization
The best-known third-party authorization protocol nowadays is the 2.0 release of OAuth, also known
as OAuth 2, which supersedes the former release (OAuth 1, or simply OAuth) originally developed by
Blaine Cook and Chris Messina in 2006.

We have already talked about it a lot, for good reason: OAuth 2 has quickly become the industry-stan-
dard protocol for authorization and is currently used by a gigantic number of community-based
websites and social networks, including Google, Facebook, and X (formerly known as Twitter). It
basically works like this:

1. Whenever an existing user requests a set of permissions to our application via OAuth, we open
a transparent connection interface between them and a third-party authorization provider
that is trusted by our application (for example, Facebook).

2. The provider acknowledges the user and, if they have the proper rights, responds by entrusting
them with a temporary, specific access key.

3. The user agent presents the access key to our application and will be granted access.

We can clearly see how easy it is to exploit this authorization logic for authentication purposes as
well; after all, if Facebook says I can do something, shouldn’t it also imply that I am who I claim to
be? Isn’t that enough?

The short answer is no. It might be the case for Facebook because their OAuth 2 implementation implies
that subscribers receiving the authorization must have authenticated themselves to Facebook first;
however, this assurance is not written anywhere. Considering how many websites use the platform
for authentication purposes, we can assume that Facebook won’t likely change their actual behavior,
yet we have no guarantees of this.

Theoretically speaking, these websites can split their authorization system from their authentication
protocol at any time, thus leading our application’s authentication logic to an unrecoverable state of
inconsistency. More generally, we can say that presuming something from something else is almost
always a bad practice, unless that assumption lies upon very solid, well-documented, and (most im-
portantly) highly guaranteed grounds.

Proprietary versus third-party
Theoretically speaking, it’s possible to entirely delegate the authentication and/or authorization tasks
to existing external, third-party providers such as those we mentioned before; there are a lot of web
and mobile applications that proudly follow this route nowadays. There are a number of undeniable
advantages to using such an approach, including the following:

• No user-specific database tables/data models, just some provider-based identifiers to use here
and there as reference keys.

• Immediate registration, since there’s no need to fill in a registration form and wait for a con-
firmation email—no username, no password. This will be appreciated by most users and will
probably increase our conversion rates as well.

Chapter 11 507

• Few or no privacy issues, as there’s no personal or sensitive data on the application server.
• No need to handle usernames and passwords and implement automatic recovery processes.
• Fewer security-related issues, such as form-based hacking attempts or brute-force login at-

tempts.

Of course, there are also some downsides:

• There won’t be an actual user base, so it will be difficult to get an overview of active users, get
their email addresses, analyze statistics, and so on

• The login phase might be resource-intensive, since it will always require an external, back-
and-forth secure connection with a third-party server

• All users will need to have (or open) an account with the chosen third-party provider(s) in
order to log in

• All users will need to trust our application because the third-party provider will ask them to
authorize it to access their data

• We will have to register our application with the provider in order to be able to perform a
number of required or optional tasks, such as receiving our public and secret keys, authorizing
one or more URI initiators, and choosing the information we want to collect

Taking all these pros and cons into account, we can say that relying on third-party providers might be
a great time-saving choice for small-scale apps, including ours; however, building our own account
management system seems to be the only way to overcome the aforementioned governance and
control-based flaws undeniably brought by that approach.

Therefore, in this chapter, we’ll explore the proprietary option; more specifically, we’ll create an internal
membership provider that will handle authentication and provide its very own set of authorization
rules.

Proprietary auth with ASP.NET Core
The authentication patterns made available by ASP.NET Core are basically the same as those supported
by the previous versions of ASP.NET:

• No authentication, if we don’t feel like implementing anything, or if we want to use (or develop)
a self-made auth interface without relying upon the ASP.NET Core Identity system

• Individual user accounts, when we set up an internal database to store user data using the
standard ASP.NET Core Identity interface

• Microsoft Entra ID (formerly known as Azure Active Directory), which implies using a to-
ken-based set of API calls handled by the Azure AD Authentication Library (ADAL)

• Windows authentication, which is only viable for local-scope applications within Windows
domains or AD trees

However, the implementation patterns introduced by the ASP.NET Core team over the past few years
are constantly evolving in order to match the latest security practices available.

Authentication and Authorization508

All the aforementioned approaches—excluding the first one—are handled by the ASP�NET Core Identity
system, a membership system that allows us to add authentication and authorization functionalities
to our application.

Starting with ASP.NET Core 3.0, ASP.NET Core Identity has been integrated with a third-party au-
thorization mechanism to handle authentication in SPAs; this new feature is based on IdentityServer,
a piece of open source OIDC and OAuth 2.0 middleware that has been part of the .NET Foundation
since ASP.NET Core 3.0.

However, on October 1, 2020, the IdentityServer team made an announcement, saying that the license
model would be changed to a reciprocal public license. In a nutshell, this means that the product
will be still open source for testing, learning, and non-commercial use, but if used for commercial
purposes and an organization makes more than 1M USD/year, then a paid license must be purchased.

Following this change in the IdentityServer license model, the ASP.NET development team made its
own announcement on May 7, 2021, saying that they will continue to ship IdentityServer in .NET 6
templates, but they will be looking for an alternative to .NET 7 and beyond, since they want to provide
a built-in identity system for any purpose.

The “built-in alternative” eventually came out in 2023, with the release of .NET 8, in the form of a
new feature called Identity API endpoints: although it looks promising, the new feature has several
shortcomings that make it difficult to effectively use it in a production environment (as we’ll see by
the end of this chapter, where we will deal with it in a dedicated section).

For additional info about the ASP.NET Core Identity APIs, check out the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/
identity

Further information about IdentityServer can be retrieved from the official documentation
website, which is available at the following URL:

https://identityserver4.readthedocs.io/en/latest/

The full IdentityServer team announcement can be read at the following URL: https://
leastprivilege.com/2020/10/01/the-future-of-identityserver/

The full ASP.NET development team announcement can be read at the following URL:
https://devblogs.microsoft.com/dotnet/asp-net-core-6-and-authentication-
servers/

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://identityserver4.readthedocs.io/en/latest/
https://leastprivilege.com/2020/10/01/the-future-of-identityserver/
https://leastprivilege.com/2020/10/01/the-future-of-identityserver/
https://devblogs.microsoft.com/dotnet/asp-net-core-6-and-authentication-servers/
https://devblogs.microsoft.com/dotnet/asp-net-core-6-and-authentication-servers/

Chapter 11 509

All that said, for the purposes of this book, we’re not going to use IdentityServer or Identity API endpoints;
instead, we’ll implement a login mechanism that will allow our users to create an account and log in
with a username and a password, using the services and middlewares natively provided by ASP.NET
Core.

More specifically, we’ll implement an authentication mechanism based upon JWTs, a JSON-based
open standard explicitly designed for native web applications, available in multiple languages, such
as .NET, Python, Java, PHP, Ruby, JavaScript/Node.js, and Perl. We’ve chosen it because it’s becoming
a de facto standard for token authentication, as it’s natively supported by most technologies.

In this section, we’re going to do the following:

• Introduce the ASP�NET Core Identity model, the framework provided by ASP.NET Core to
manage and store user accounts

• Set up an ASP�NET Core Identity implementation by installing the required NuGet packages
in our existing WorldCities app

Setting up ASP.NET Core Identity will require the following steps:

1. Add the required NuGet packages for the services and middlewares we’re going to use.
2. Create the ApplicationUser entity to handle registered users.
3. Extend the ApplicationDbContext using the Individual User Accounts authentication type.
4. Configure the ASP.NET Core Identity Service in our application’s Program class based upon the

ApplicationUser and ApplicationDbContext classes.
5. Implement a new AccountController with a Login action method to validate login attempts

from the Angular client and return a valid JWT token if there is success.
6. Configure the JwtBearerMiddleware in our application’s Program class to validate the JWT

tokens that will be sent by the Angular client within the HTTP requests (when we implement
the auth capabilities).

7. Update the existing SeedController by adding a method to create our default users with the
.NET Identity API providers.

8. Secure the Action Methods with the [Authorize] attribute whenever we want to restrict their
usage to authorized users only.

Right after that, we’ll take the opportunity to say a couple of words about the ASP.NET Core Task Asyn-
chronous Programming (TAP) model, and then we’ll switch to Angular to implement the client-side
part of the job.

For additional information about JSON web tokens, check out the following URL: https://
jwt.io/

https://jwt.io/
https://jwt.io/

Authentication and Authorization510

The ASP.NET Core Identity model
ASP.NET Core provides a unified framework to manage and store user accounts that can be easily
used in any .NET application (even non-web ones); this framework is called ASP�NET Core Identity
and provides a set of APIs that allows developers to handle the following tasks:

• Design, set up, and implement user registration and login functionalities
• Manage users, passwords, profile data, roles, claims, tokens, email confirmations, and so on
• Support external (third-party) login providers such as Facebook, Google, Microsoft accounts,

Twitter, and more

The ASP.NET Core Identity source code is open source and available on GitHub at https://github.
com/aspnet/AspNetCore/tree/master/src/Identity.

It goes without saying that ASP.NET Core Identity requires a persistent data source to store (and retrieve)
identity data (e.g., usernames, password-hashes, and profile data), such as a SQL Server database; for
that very reason, it features built-in integration mechanisms with Entity Framework Core.

This means that, in order to implement our very own identity system, we’ll basically extend what we
did in Chapter 5, Data Model with Entity Framework Core; more specifically, we’ll update our existing
ApplicationDbContext to support the additional entity classes required to handle users, roles, and
so on.

Entity types
The ASP.NET Core Identity platform strongly relies upon the following entity types, each one of them
representing a specific set of records:

• User: The users of our application
• Role: The roles that we can assign to each user
• UserClaim: The claims that a user possesses
• UserToken: The authentication token that a user might use to perform auth-based tasks
• UserLogin: The login account associated with each user
• RoleClaim: The claims that are granted to all users within a given role
• UserRole: The lookup table to store the relationship between users and their assigned roles

These entity types are related to each other in the following ways:

• Each User can have many UserClaim, UserLogin, and UserToken entities (one-to-many)
• Each Role can have many associated RoleClaim entities (one-to-many)
• Each User can have many associated Role entities, and each Role can be associated with many

User entities (many-to-many)

The many-to-many relationship requires a join table in the database, which is represented by the
UserRole entity.

https://github.com/aspnet/AspNetCore/tree/master/src/Identity
https://github.com/aspnet/AspNetCore/tree/master/src/Identity

Chapter 11 511

Luckily enough, we won’t have to manually implement all these entities from scratch because ASP.NET
Core Identity provides some default Common Language Runtime (CLR) types for each one of them:

• IdentityUser

• IdentityRole

• IdentityUserClaim

• IdentityUserToken

• IdentityUserLogin

• IdentityRoleClaim

• IdentityUserRole

These types can be used as base classes for our own implementation, whenever we need to explicitly
define an identity-related entity model. Moreover, most of them don’t have to be implemented in
most common authentication scenarios, since their functionalities can be handled at a higher level
thanks to the ASP.NET Core Identity sets of APIs, which can be accessed from the following classes:

• RoleManager<TRole>: Provides the APIs for managing roles
• SignInManager<TUser>: Provides the APIs for signing users in and out (login and logout)
• UserManager<TUser>: Provides the APIs for managing users

Once the ASP.NET Core Identity service has been properly configured and set up, these providers can
be injected into our ASP.NET Core controllers using Dependency Injection (DI), just like we did with
ApplicationDbContext; in the following section, we’ll see how we can do that.

Setting up ASP.NET Core Identity
In Chapter 2, Getting Ready, and Chapter 5, Data Model with Entity Framework Core, when we created our
HealthCheckAPI and WorldCities.Server ASP.NET Core projects, respectively, we always chose to
go with an empty project featuring no authentication. That was because we didn’t want Visual Studio
to install ASP�NET Core Identity within our application’s startup files right from the start. However,
now that we’re using it, we need to manually perform the required setup steps.

Adding the NuGet packages
Enough with the theory; let’s put the plan into action.

From Solution Explorer, right-click on the WorldCities.Server tree node, and then select Manage NuGet
Packages. Look for the following two packages and install them:

• Microsoft.AspNetCore.Identity.EntityFrameworkCore

• Microsoft.AspNetCore.Authentication.JwtBearer

Alternatively, open Package Manager Console and install them with the following commands:

> Install-Package Microsoft.AspNetCore.Identity.EntityFrameworkCore
> Install-Package Microsoft.AspNetCore.Authentication.JwtBearer

Authentication and Authorization512

At the time of writing, the latest version for both of them is 8�0�1; as always, we are free to install a newer
version, as long as we know how to adapt our code accordingly to fix potential compatibility issues.

Creating ApplicationUser
Now that we have installed the required identity libraries, we need to create a new ApplicationUser
entity class with all the features required by the ASP.NET Core Identity service to use it for auth pur-
poses. Luckily enough, the package comes with a built-in IdentityUser base class that can be used
to extend our own implementation, thus granting it everything that we need.

From Solution Explorer, navigate to the /Data/Models/ folder, create a new ApplicationUser.cs class,
and fill its content with the following code:

using Microsoft.AspNetCore.Identity;

namespace WorldCities.Server.Data.Models
{
 public class ApplicationUser : IdentityUser
 {
 }
}

As we can see, we don’t need to implement anything there, at least not for the time being; we’ll just
extend the IdentityUser base class, which already contains everything we need for now.

Extending ApplicationDbContext
In order to support the ASP.NET Core authentication mechanism, our existing ApplicationDbContext
needs to be extended from a different database abstraction base class that supports ASP.NET Core
Identity.

Open the /Data/ApplicationDbContext.cs file and update its contents accordingly (updated lines
are highlighted):

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Options;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Data
{
 public class ApplicationDbContext
 : IdentityDbContext<ApplicationUser>
 {

// ... existing code...

Chapter 11 513

As we can see from the preceding code, we replaced the current DbContext base class with the new
IdentityDbContext base class; the new class strongly relies on the ASP.NET Core Identity service
we’re about to add.

Configuring the ASP.NET Core Identity service
Now that we’re done with all the prerequisites, we can open the Program.cs file and add the following
highlighted lines to set up the services required by the ASP.NET Core Identity system:

// ...existing code...

using WorldCities.Server.Data.Models;
using Microsoft.AspNetCore.Identity;

// ...existing code...

// Add ApplicationDbContext and SQL Server support
builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 builder.Configuration.GetConnectionString("DefaultConnection")
)
);

// ...existing code...

// Add ASP.NET Core Identity support
builder.Services.AddIdentity<ApplicationUser, IdentityRole>(options =>
{
 options.SignIn.RequireConfirmedAccount = true;
 options.Password.RequireDigit = true;
 options.Password.RequireLowercase = true;
 options.Password.RequireUppercase = true;
 options.Password.RequireNonAlphanumeric = true;
 options.Password.RequiredLength = 8;
})
 .AddEntityFrameworkStores<ApplicationDbContext>();

// ...existing code...

The preceding code loosely resembles the default ASP.NET Core Identity implementation used by most
Visual Studio ASP.NET Core templates. In a nutshell, we’re adding the ASP.NET Identify service for the
specified User and Role types. While there, we took the chance to override some of the default pass-
word policy settings to demonstrate how we can configure the Identity service to better suit our needs.

Authentication and Authorization514

Let’s take another look at the preceding code, emphasizing the changes (highlighted lines):

options.SignIn.RequireConfirmedAccount = true;
options.Password.RequireLowercase = true;
options.Password.RequireUppercase = true;
options.Password.RequireDigit = true;
options.Password.RequireNonAlphanumeric = true;
options.Password.RequiredLength = 8;

These changes don’t alter the RequireConfirmedAccount default settings, which would require a
confirmed user account (verified through email) to sign in. What we did instead was explicitly set our
password strength requirements so that all our users’ passwords would need to have the following:

• At least one lowercase letter
• At least one uppercase letter
• At least one digit character
• At least one non-alphanumeric character
• A minimum length of eight characters

That will grant our app a decent level of authentication security, should we ever want to make it pub-
licly accessible on the web. Needless to say, we can change these settings depending on our specific
needs; a development sample could probably live with more relaxed settings, as long as we don’t make
it available to the public.

Now that we have properly set up the ASP.NET Core Identity service in our Program class, we can add
the required code to deal with actual login attempts coming from our Angular client.

Implementing AccountController
Based on what we’ve learned in the previous chapters, we already know that our Angular app will
handle the end user authentication attempts using a login form; such a form will likely issue an HTTP
POST request to our ASP.NET Core Web API, containing the end user’s username and password. Since
we are implementing a JWT-based authentication mechanism, we need to perform the following
server-side steps:

• Validate the username and password against the internal user database.
• Create a JWT if the given credentials are valid.
• Return a JSON result containing the JWT or a client-readable error, depending on the login

attempt result.

It’s worth noting that the preceding code will also require some using references to the
new identity-related packages that we installed a moment ago, and to the namespace that
we used for our data models, since we’re now referencing the ApplicationUser class.

Chapter 11 515

These tasks can be done with a dedicated controller that we need to add to our current WorldCities�
Server project. However, before adding that controller, we need to create some utility classes that will
serve as prerequisites for those tasks.

LoginRequest
The first class we’re going to add is a Data Transfer Object (DTO) that we will use to receive the user’s
credentials from the client. We already know why we need a DTO to better deal with this kind of task,
from Chapter 9, Back-End and Front-End Debugging, right? We already did that for our City and Country
entities, and now ApplicationUser needs it as well. However, since we’re only going to use this class to
handle login requests, calling it ApplicationUserDTO would be rather confusing; for that very reason,
we’ll just call it LoginRequest, which best represents our limited purpose.

Create a new file in the /Data/ folder, call it ApiLoginRequest.cs, and fill it with the following code:

using System.ComponentModel.DataAnnotations;

namespace WorldCities.Server.Data
{
 public class ApiLoginRequest
 {
 [Required(ErrorMessage = "Email is required.")]
 Public required string Email { get; set; }

 [Required(ErrorMessage = "Password is required.")]
 public required string Password { get; set; }
 }
}

The preceding code should be self-explanatory by now, so let’s move on.

ApiLoginResult
The next thing to do is to create a strongly typed result class to inform our client of the login attempt
result, sending it the JWT if successful; we’ll call it ApiLoginResult, since that’s precisely what it is.

Create a new file in the /Data/ folder, call it ApiLoginResult.cs, and fill it with the following code:

namespace WorldCities.Server.Data
{
 public class ApiLoginResult

It’s worth noting that we can’t use our existing ApiResult class for this purpose, since it’s
meant to store an array of results.

Authentication and Authorization516

 {
 /// <summary>
 /// TRUE if the login attempt is successful, FALSE otherwise.
 /// </summary>
 public bool Success { get; set; }

 /// <summary>
 /// Login attempt result message
 /// </summary>
 public required string Message { get; set; }

 /// <summary>
 /// The JWT token if the login attempt is successful, or NULL if not
 /// </summary>
 public string? Token { get; set; }
 }
}

Again, there’s not much to say about this class; the comments provided should explain everything.

Now, we just need to generate our JWT.

JwtSettings
To securely generate a JWT, we need to know some information in advance, such as:

• The security key to sign the token
• The identity of the issuer (the server that generates the token) and the audience (the clients

who will receive and use it)
• The token expiration time

Most of these settings must be configured at runtime; however, since they contain some security-sen-
sitive information, instead of hardcoding them in our source code, we should define them in the
appsettings.json configuration file(s), just like we did with our database connection strings back
in Chapter 5, Data Model with Entity Framework Core. Such good practice will also allow us to define
environment-specific settings, as well as to protect that data using the User Secrets technique that we
explained in that same chapter.

For the sake of simplicity, for now, let’s just add some sample settings at the end of our appsettings.
json file:

// ...existing code...

"JwtSettings": {
 "SecurityKey": "1234567890-MyVeryOwnSecurityKey-1234567890",
 "Issuer": "MyVeryOwnIssuer",

Chapter 11 517

 "Audience": "https://localhost:4200",
 "ExpirationTimeInMinutes": 30
 },

// ...existing code...

It’s worth noting that we’re going to use these settings not only to generate the JWT but also to validate it.

JwtHandler
Now, we can finally create the service class that will generate the JWT.

Create a new file in the /Data/ folder, call it JwtHandler.cs, and fill it with the following code:

using Microsoft.AspNetCore.Identity;
using Microsoft.IdentityModel.Tokens;
using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;
using System.Text;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Data
{
 public class JwtHandler
 {
 private readonly IConfiguration _configuration;
 private readonly UserManager<ApplicationUser> _userManager;

 public JwtHandler(
 IConfiguration configuration,
 UserManager<ApplicationUser> userManager
)
 {
 _configuration = configuration;
 _userManager = userManager;
 }

 public async Task<JwtSecurityToken> GetTokenAsync(ApplicationUser user)
 {
 var jwt = new JwtSecurityToken(
 issuer: _configuration["JwtSettings:Issuer"],
 audience: _configuration["JwtSettings:Audience"],
 claims: await GetClaimsAsync(user),
 expires: DateTime.Now.AddMinutes(Convert.ToDouble(

Authentication and Authorization518

 _configuration["JwtSettings:ExpirationTimeInMinutes"])),
 signingCredentials: GetSigningCredentials());
 return jwt;
 }

 private SigningCredentials GetSigningCredentials()
 {
 var key = Encoding.UTF8.GetBytes(
 _configuration["JwtSettings:SecurityKey"]!);
 var secret = new SymmetricSecurityKey(key);
 return new SigningCredentials(secret,
 SecurityAlgorithms.HmacSha256);
 }

 private async Task<List<Claim>> GetClaimsAsync(
 ApplicationUser user)
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, user.Email!)
 };

 foreach (var role in await _userManager.GetRolesAsync(user))
 {
 claims.Add(new Claim(ClaimTypes.Role, role));
 }
 return claims;
 }
 }
}

As we can see, this class hosts a public GetTokenAsync method, which can be used to generate the JWT,
and a couple of private methods used internally to retrieve the security key, algorithm, and digest to
digitally sign the token, as well as the claims to add – the user’s Email, and all their Roles.

It’s worth noting that, to retrieve the app’s configuration settings and the user’s roles, we’ve injected the
IConfiguration object that hosts the appsettings.json values and the UserManager<TUser> provider
that we talked about early on; we did that using DI, just like we did with ApplicationDbContext and
IWebHostEnvironment back in Chapter 5, Data Model with Entity Framework Core.

The JwtHandler class is the first ASP.NET Core service that we create; since we’re going to use it through
DI, we need to add it to the app’s DI container by adding the following highlighted line to the Program.
cs file, just before building the app:

Chapter 11 519

// ...existing code...

builder.Services.AddScoped<JwtHandler>();

var app = builder.Build();

// ...existing code...

As we can see, we’re adding it using the AddScoped method, meaning that the service will be registered
with the Scoped registration option. Before going further, it might be worth saying a few words to
explain what these registration options are and how they impact the service’s lifetime.

DI registration options
We already know from Chapter 2, Getting Ready Bullet list? that ASP.NET Core supports the DI soft-
ware design pattern, a technique for achieving Inversion of Control (IoC) between classes and their
dependencies.

In a typical ASP.NET Core app, such dependencies are registered in the built-in service container
(IServiceProvider) within the Program.cs file. Whenever we register a service in the DI container, we
can choose a registration option, which will determine how that service’s instances will be provided
during the app and/or the request life cycle.

The following registration options are available:

• Transient: A new instance of the service is provided every time it’s requested, regardless of
the HTTP scope. This basically means that we’ll always have a brand-new object, thus without
the risk of having concurrency issues.

• Scoped: A new instance of the service is provided for each different HTTP request. However,
the same instance is provided within the scope of any single HTTP request.

• Singleton: A single instance of the service will be created upon the first request and then
provided to all subsequent requests until the application stops.

The Transient option is great for lightweight services with little or no state; however, it uses more
memory and resources, thus having a negative impact on performance, especially if a website must
deal with a lot of simultaneous HTTP requests.

The Scoped option is the framework default and is often the best approach whenever we need to maintain
state within HTTP requests, assuming that we don’t need to recreate the service every time we inject it.

The Singleton option is the most efficient in terms of memory and performance, since the service is
created once and reused everywhere within the app’s life cycle; on top of that, it can also be useful
to preserve a “global,” request-independent state. However, the fact that the service (and its state) is
shared with all requests strongly limits its scope and, if used improperly, might lead to vulnerabilities,
memory leaks, or other security or performance issues.

Authentication and Authorization520

Since our JwtHandler service is very lightweight and doesn’t have specific state requirements, any
registration option would work without issues. That said, we’ve opted for the Scoped approach so that
each instance will follow the same life cycle of the login HTTP request that makes use of it.

Now, we’re finally ready to implement our AccountController.

AccountController
Create a new file in the /Controllers/ folder, call it AccountController.cs, and fill it with the fol-
lowing code:

using System.IdentityModel.Tokens.Jwt;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class AccountController : ControllerBase
 {
 private readonly ApplicationDbContext _context;
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly JwtHandler _jwtHandler;

 public AccountController(
 ApplicationDbContext context,
 UserManager<ApplicationUser> userManager,
 JwtHandler jwtHandler)
 {
 _context = context;
 _userManager = userManager;
 _jwtHandler = jwtHandler;
 }

 [HttpPost("Login")]
 public async Task<IActionResult> Login(ApiLoginRequest loginRequest)
 {
 var user = await _userManager.FindByNameAsync(loginRequest.Email);
 if (user == null

Chapter 11 521

 || !await _userManager.CheckPasswordAsync(user, loginRequest.
Password))
 return Unauthorized(new ApiLoginResult() {
 Success = false,
 Message = "Invalid Email or Password."
 });
 var secToken = await _jwtHandler.GetTokenAsync(user);
 var jwt = new JwtSecurityTokenHandler().WriteToken(secToken);
 return Ok(new ApiLoginResult() {
 Success = true, Message = "Login successful", Token = jwt
 });
 }
 }
}

As we can see, the Login action method makes good use of all the classes we’ve implemented so far.
More specifically, it does the following:

• Accepts the ApiLoginRequest object containing the user’s credentials
• Validates them using the UserManager API that we injected in the controller using DI
• Creates a JWT using our JwtHandler class if the given credentials are valid; otherwise, it emits

an error message
• Sends the overall result to the client, using the ApiLoginResult POCO class we added a short

while ago

Now, our ASP.NET Core Web API can authenticate a login request and return a JWT. However, we’re
still unable to properly verify those tokens and confirm they’re valid. To do that, we need to set up
JwtBearerMiddleware with the same configuration settings we use to generate them.

Configuring JwtBearerMiddleware
To properly set up the JwtBearerMiddleware, we need to append the following lines to the Program.
cs file, just below the ASP.NET Core Identity settings that we added a while ago:

// ...existing code...

// Add Authentication services & middlewares
builder.Services.AddAuthentication(opt =>
{
 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
}).AddJwtBearer(options =>
{
 options.TokenValidationParameters = new TokenValidationParameters

Authentication and Authorization522

 {
 RequireExpirationTime = true,
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,
 ValidIssuer = builder.Configuration["JwtSettings:Issuer"],
 ValidAudience = builder.Configuration["JwtSettings:Audience"],
 IssuerSigningKey = new SymmetricSecurityKey(System.Text.Encoding.UTF8.
GetBytes(builder.Configuration["JwtSettings:SecurityKey"]!))
 };
});

// ...existing code...

The preceding code will register JwtBearerMiddleware, which will extract any JWT from the
Authorization request header and validate it, using the configuration settings defined in the
appsettings.json file.

It’s worth noting that, since we’re now using the authentication services, we also need to add
AuthenticationMiddleware to the request pipeline in the Program.cs file. We can do that just before
AuthorizationMiddleware, in the following way (the new line is highlighted):

// ...existing code...

app.UseAuthentication();
app.UseAuthorization();

// ...existing code...

All we need to do now is create some users to authenticate.

Updating SeedController
The best way to create a new user from scratch would be from SeedController, which implements
the seeding mechanism that we set up in Chapter 5, Data Model with Entity Framework Core; however,
in order to interact with the ASP.NET Core Identity APIs required to do that, we need to inject them
using DI, just like we already did with ApplicationDbContext.

Adding RoleManager and UserManager through DI
From Solution Explorer, open the /Controllers/SeedController.cs file of the WorldCities project
and update its content accordingly with the following code (new/updated lines are highlighted):

using Microsoft.AspNetCore.Identity;

// ...existing code...

Chapter 11 523

public class SeedController : ControllerBase
{
 private readonly ApplicationDbContext _context;
 private readonly RoleManager<IdentityRole> _roleManager;
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly IWebHostEnvironment _env;
 private readonly IConfiguration _configuration;

 public SeedController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IWebHostEnvironment env,
 IConfiguration configuration)
 {
 _context = context;
 _roleManager = roleManager;
 _userManager = userManager;
 _env = env;
 _configuration = configuration;
 }

// ...existing code...

Again, we added the RoleManager<TRole> and UserManager<TUser> providers using DI. We’ll see how
we can use these providers to create our users and roles soon enough.

While we were there, we also took the opportunity to inject an IConfiguration instance that we’ll use
to retrieve the default passwords for our users. We can define these passwords in our secrets.json
file in the following way:

{
 "ConnectionStrings": {
 // ...
 },
 "DefaultPasswords": {
 "RegisteredUser": "Sampl3Pa$$_User",
 "Administrator": "Sampl3Pa$$_Admin"
 },
// ...

Let’s do this now so that we’ll have them ready later.

Authentication and Authorization524

Now, let’s define the following method at the end of the /Controllers/SeedController.cs file, right
below the existing Import() method:

// ...existing code...

[HttpGet]
public async Task<ActionResult> CreateDefaultUsers()
{
 throw new NotImplementedException();
}

// ...existing code...

Opposite to what we usually do, we’re not going to implement this method straight away; we’ll take
this chance to embrace the Test-Driven Development (TDD) approach, which means that we’ll start
by creating a (failing) unit test.

Defining the CreateDefaultUsers() unit test
If we want to emulate the “add new user” process within a test, we’re going to need a UserManager
instance (to add users) and a RoleManager instance (to give them a role). For that very reason, before
creating the actual test method, it could be useful to provide our WorldCities.Server.Tests project
with a helper class that we can use to create these instances. Let’s do this.

Adding the IdentityHelper static class
From Solution Explorer, create a new IdentityHelper.cs file in the WorldCities.Server.Tests
project. Once done, fill its content with the following code:

using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using Moq;
using System;
using System.Collections.Generic;
using System.Text;

In a typical ApiController, adding another action method with the [HttpGet] attribute
would create an ambiguous route that will conflict with the original method accepting
HTTP GET requests (the Import() method); this code will not run when you hit the end-
point. However, since our SeedController has been configured to take the action names
into account thanks to the [Route("api/[controller]/[action]")] routing rule that
we placed above the class constructor back in Chapter 5, Data Model with Entity Framework
Core, we’re entitled to add this method without creating a conflict.

Chapter 11 525

namespace WorldCities.Server.Tests
{
 public static class IdentityHelper
 {
 public static RoleManager<TIdentityRole>
 GetRoleManager<TIdentityRole>(
 IRoleStore<TIdentityRole> roleStore) where TIdentityRole :
 IdentityRole
 {
 return new RoleManager<TIdentityRole>(
 roleStore,
 new IRoleValidator<TIdentityRole>[0],
 new UpperInvariantLookupNormalizer(),
 new Mock<IdentityErrorDescriber>().Object,
 new Mock<ILogger<RoleManager<TIdentityRole>>>(
).Object);
 }

 public static UserManager<TIDentityUser>
 GetUserManager<TIDentityUser>(
 IUserStore<TIDentityUser> userStore) where TIDentityUser :
 IdentityUser
 {
 return new UserManager<TIDentityUser>(
 userStore,
 new Mock<IOptions<IdentityOptions>>().Object,
 new Mock<IPasswordHasher<TIDentityUser>>().Object,
 new IUserValidator<TIDentityUser>[0],
 new IPasswordValidator<TIDentityUser>[0],
 new UpperInvariantLookupNormalizer(),
 new Mock<IdentityErrorDescriber>().Object,
 new Mock<IServiceProvider>().Object,
 new Mock<ILogger<UserManager<TIDentityUser>>>(
).Object);
 }
 }
}

Authentication and Authorization526

As we can see, we created two methods—GetRoleManager and GetUserManager—which we can use to
create these providers for other tests. It’s worth noting that we are creating real instances (not mocks)
of the RoleManager and UserManager providers, since we’ll need them to perform some read/write
operations to the in-memory database, which we will provide to the ApplicationDbContext that will
be instantiated for the test. This basically means that these providers will perform their job for real,
but everything will be done on the in-memory database instead of the SQL Server data source, just
like we did with our previous tests.

That said, we still made good use of the Moq package library to create a number of mocks to emulate
the number of parameters required to instantiate RoleManager and UserManager. Luckily enough,
most of them are internal objects that won’t be needed to perform our current tests; for those that
are required, we had to create a real instance.

Now that we have these two helper methods, we can create a test that will make good use of them.

Adding the SeedController_Test class
From Solution Explorer, create a new /SeedController_Tests.cs file in the WorldCities.Server.
Tests project. Once done, fill its content with the following code:

using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Moq;
using System.Threading.Tasks;
using WorldCities.Server.Controllers;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
using Xunit;

namespace WorldCities.Server.Tests
{
 public class SeedController_Tests
 {
 /// <summary>
 /// Test the CreateDefaultUsers() method

For example, for both providers, we were forced to create a real instance of
UpperInvariantLookupNormalizer—which implements the ILookupNormalizer in-
terface—because it’s being used internally by RoleManager (to look up existing roles) as
well as UserManager (to look up existing usernames); if we had mocked it instead, we
would’ve hit some nasty runtime errors while trying to make these tests pass.

Chapter 11 527

 /// </summary>
 [Fact]
 public async Task CreateDefaultUsers()
 {
 // Arrange
 // create the option instances required by the
 // ApplicationDbContext
 var options = new
 DbContextOptionsBuilder<ApplicationDbContext>()
 .UseInMemoryDatabase(databaseName: "WorldCities")
 .Options;

 // create a IWebHost environment mock instance
 var mockEnv = Mock.Of<IWebHostEnvironment>();

 // create a IConfiguration mock instance
 var mockConfiguration = new Mock<IConfiguration>();
 mockConfiguration.SetupGet(x => x[It.Is<string>(s => s ==
"DefaultPasswords:RegisteredUser")]).Returns("M0ckP$$word");
 mockConfiguration.SetupGet(x => x[It.Is<string>(s => s ==
"DefaultPasswords:Administrator")]).Returns("M0ckP$$word");

 // create a ApplicationDbContext instance using the
 // in-memory DB
 using var context = new ApplicationDbContext(options);

 // create a RoleManager instance
 var roleManager = IdentityHelper.GetRoleManager(
 new RoleStore<IdentityRole>(context));

 // create a UserManager instance
 var userManager = IdentityHelper.GetUserManager(
 new UserStore<ApplicationUser>(context));

 // create a SeedController instance
 var controller = new SeedController(
 context,
 roleManager,
 userManager,
 mockEnv,

Authentication and Authorization528

 mockConfiguration.Object
);

 // define the variables for the users we want to test
 ApplicationUser user_Admin = null!;
 ApplicationUser user_User = null!;
 ApplicationUser user_NotExisting = null!;

 // Act
 // execute the SeedController's CreateDefaultUsers()
 // method to create the default users (and roles)
 await controller.CreateDefaultUsers();

 // retrieve the users
 user_Admin = await userManager.FindByEmailAsync(
 "admin@email.com");
 user_User = await userManager.FindByEmailAsync(
 "user@email.com");
 user_NotExisting = await userManager.FindByEmailAsync(
 "notexisting@email.com");

 // Assert
 Assert.NotNull(user_Admin);
 Assert.NotNull(user_User);
 Assert.Null(user_NotExisting);
 }
 }
}

The above code is quite long but should be easily understandable by now. Here, in a nutshell, is what
we are doing there:

• In the Arrange phase, we create the mock (and non-mock) instances required to perform the
actual test

• In the Act phase, we execute the test and attempt to retrieve the resulting (created) users to
confirm the result

• In the Assert phase, we evaluate the expected outcome

With this, our unit test is ready; we just need to execute it to see it fail.

To do that, right-click the WorldCities.Server.Test node from Solution Explorer and select Run Tests.

Chapter 11 529

If we did everything correctly, we should be able to see our CreateDefaultUsers() test failing, just
like in the following screenshot:

Figure 11.3: Failure of our CreateDefaultUsers() test

That’s it; all we have to do now is implement the CreateDefaultUsers() method in our SeedController
to make the preceding test pass.

Implementing the CreateDefaultUsers() method
Open the /Controllers/SeedController.cs file again, scroll down to the CreateDefaultUsers action
method, and replace NotImplementedException with the following code:

// ...existing code...

[HttpGet]
public async Task<ActionResult> CreateDefaultUsers()
{
 // setup the default role names
 string role_RegisteredUser = "RegisteredUser";
 string role_Administrator = "Administrator";

 // create the default roles (if they don't exist yet)
 if (await _roleManager.FindByNameAsync(role_RegisteredUser) == null)

Alternatively, just switch to the Test Explorer window and use the topmost buttons to run
the tests from there.

Authentication and Authorization530

 await _roleManager.CreateAsync(new
 IdentityRole(role_RegisteredUser));

 if (await _roleManager.FindByNameAsync(role_Administrator) == null)
 await _roleManager.CreateAsync(new
 IdentityRole(role_Administrator));

 // create a list to track the newly added users
 var addedUserList = new List<ApplicationUser>();

 // check if the admin user already exists
 var email_Admin = "admin@email.com";
 if (await _userManager.FindByNameAsync(email_Admin) == null)
 {
 // create a new admin ApplicationUser account
 var user_Admin = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = email_Admin,
 Email = email_Admin,
 };

 // insert the admin user into the DB
 await _userManager.CreateAsync(user_Admin, _
configuration["DefaultPasswords:Administrator"]);

 // assign the "RegisteredUser" and "Administrator" roles
 await _userManager.AddToRoleAsync(user_Admin,
 role_RegisteredUser);
 await _userManager.AddToRoleAsync(user_Admin,
 role_Administrator);

 // confirm the e-mail and remove lockout
 user_Admin.EmailConfirmed = true;
 user_Admin.LockoutEnabled = false;

 // add the admin user to the added users list
 addedUserList.Add(user_Admin);
 }

Chapter 11 531

 // check if the standard user already exists
 var email_User = "user@email.com";
 if (await _userManager.FindByNameAsync(email_User) == null)
 {
 // create a new standard ApplicationUser account
 var user_User = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = email_User,
 Email = email_User
 };

 // insert the standard user into the DB
 await _userManager.CreateAsync(user_User, _
configuration["DefaultPasswords:RegisteredUser"]);

 // assign the "RegisteredUser" role
 await _userManager.AddToRoleAsync(user_User,
 role_RegisteredUser);

 // confirm the e-mail and remove lockout
 user_User.EmailConfirmed = true;
 user_User.LockoutEnabled = false;

 // add the standard user to the added users list
 addedUserList.Add(user_User);
 }

 // if we added at least one user, persist the changes into the DB
 if (addedUserList.Count > 0)
 await _context.SaveChangesAsync();

 return new JsonResult(new
 {
 Count = addedUserList.Count,
 Users = addedUserList
 });
}

// ...existing code...

Authentication and Authorization532

The code is quite self-explanatory, and it has a lot of comments explaining the various steps; however,
here’s a convenient summary of what we just did:

• We started by defining some default role names (RegisteredUsers for the standard registered
users, Administrator for the administrative-level ones).

• We created logic to check whether these roles already exist. If they don’t exist, we create them.
As expected, both tasks are performed using RoleManager.

• We defined a user list local variable to track the newly added users so that we can output it to
the user in the JSON object we’ll return at the end of the action method.

• We created logic to check whether a user with the admin@email.com username already exists.
If it doesn’t, we create it and assign it both the RegisteredUser and Administrator roles, since
it will be a standard user and also the administrative account of our app.

• We created logic to check whether a user with the user@email.com username already exists;
if it doesn’t, we create it and assign it the RegisteredUser role.

• At the end of the action method, we configured the JSON object that we’ll return to the caller;
this object contains a count of the added users and a list containing them, which will be seri-
alized into a JSON object that will show their entity values.

The Administrator and RegisteredUser roles we just implemented here will be the core of our au-
thorization mechanism; all of our users will be assigned to at least one of them. Note how we assigned
both of them to the Admin user to make them able to do everything a standard user can do, plus more;
all the other users only have the latter role, so they’ll be unable to perform any administrative-level
tasks (as long as they’re not assigned the Administrator role).

Before moving on, it’s worth noting that we’re using the user’s email address for both the Email and
UserName fields. We did that on purpose because those two fields in the ASP.NET Core Identity system
are used interchangeably by default; whenever we add a user using the default APIs, the Email provided
is saved in the UserName field as well, even if they are two separate fields in the AspNetUsers database
table. Although this behavior can be changed, we’re going to stick to the default settings so that we’ll
be able to use them without changing them throughout the whole ASP.NET Core Identity system.

Rerunning the unit test
Now that we have implemented the test, we can rerun the CreateDefaultUsers() test and see whether
it passes. As usual, we can do that by right-clicking the WorldCities.Server.Test root node from
Solution Explorer and selecting Run Tests, or from within the Test Explorer panel.

Chapter 11 533

If we did everything correctly, we should see something like this:

Figure 11.4: CreateDefaultUsers() test passed

Now that our unit test has passed, we can move to on the next topic.

Securing the action methods
The main purpose of what we’re doing in this chapter is restricting the usage of some of our Web API
to authorized users only. That’s the reason we’re adding the ASP.NET Identity system, creating a couple
of registered users and roles, and implementing a process to authenticate them.

However, we still have to tell our ASP.NET Core app what we want to restrict to registered users only; as
a matter of fact, all our controllers and action methods are currently available to everyone, regardless
of whether the HTTP request comes from a registered user (determined by the presence of a valid
JWT, or not). What’s the point of authenticating these requests if we don’t “close” some of these doors?

To perform such a task, we can use AuthorizeAttribute, included with the Microsoft.AspNetCore.
Authorization namespace. This attribute can be used to restrict access to controllers and/or action
methods to authorized users only; on top of that, it also allows us to specify one or more Roles to
authorize, which is precisely what we need to implement a granular authorization scheme.

The first thing we must do is to identify the action methods we want to protect; in our current scenar-
io, it could be wise to restrict the access to all the PUT and POST methods of CitiesController and
CountriesController to registered users only, meaning that anonymous users won’t be able to perform
updates to our database. An even more restrictive policy should be applied to the DELETE methods of
those controllers and the whole SeedController, since they are meant to perform critical changes to
our data. Those actions should be accessible to administrators only.

Let’s see how we can use AuthorizeAttribute to do this.

Authentication and Authorization534

Securing CitiesController
Open the /Controllers/CitiesController.cs file, and add the following using statement to the
top of the file:

using Microsoft.AspNetCore.Authorization;

Once done, add the following attribute above the PutCity and PostCity methods:

[Authorize(Roles = "RegisteredUser")]

Last but not least, add the following attribute above the DeleteCity method:

[Authorize(Roles = "Administrator")]

That’s it. Let’s do the same with CountriesController.

Securing CountriesController
Open the /Controllers/CountriesController.cs file, and add the following using statement to the
top of the file:

using Microsoft.AspNetCore.Authorization;

Once done, add the following attribute above the PutCountry and PostCountry methods:

[Authorize(Roles = "RegisteredUser")]

Last but not least, add the following attribute above the DeleteCountry method:

[Authorize(Roles = "Administrator")]

Now, we can switch to SeedController.

Securing SeedController
SeedController requires a more radical approach, since we want to secure all of its action methods,
not just some of them.

To do that, after adding the usual using reference to the Microsoft.AspNetCore.Authorization name-
space at the top of the file, put the following attribute above the SeedController class declaration:

[Authorize(Roles = "Administrator")]

When placed at the class declaration level, AuthorizeAttribute will be applied to all the controller’s
action methods, which is precisely what we want.

Now, all these action methods are protected against unauthorized access, as they will accept only
requests coming from registered and logged-in users; those who don’t have access will receive a 401
Unauthorized HTTP error response.

That’s it; now, we’re finally done updating our project’s classes. However, before switching to Angular,
let’s take a couple of minutes to better understand a fundamental ASP.NET Core architectural concept
that we’ve been using for quite a while.

Chapter 11 535

A word on async tasks, awaits, and deadlocks
As we can see by looking at what we did so far, all the ASP.NET Core Identity system API’s relevant
methods are asynchronous, meaning that they return an async task rather than a given return value. For
that very reason, since we need to execute these various tasks one after another, we had to prepend
all of them with the await keyword.

Here’s an example of await usage taken from the preceding code:

await _userManager.AddToRoleAsync(user_Admin, role_RegisteredUser);

The await keyword, as the name implies, awaits the completion of the async task before going forward.
It’s worth noting that such an expression does not block the thread on which it is executing; instead,
it causes the compiler to sign up the rest of the async method as a continuation of the awaited task,
thus returning the thread control to the caller. Eventually, when the task completes, it invokes its
continuation, thus resuming the execution of the async method where it left off.

Alternatively, we could have used the Wait() method, in the following way:

_userManager.AddToRoleAsync(user_Admin, role_RegisteredUser).Wait();

However, we didn’t do that for good reason. In constrast to the await keyword, which tells the compiler
to asynchronously wait for the async task to complete, the parameterless Wait() method will block the
calling thread until the async task has been completed. Therefore, the calling thread will uncondition-
ally wait until the task completes.

To better explain how such techniques impact our ASP.NET Core application, we should spend a little
time better understanding the concept of async tasks, as they are a pivotal part of the ASP.NET Core
TAP model.

One of the first things we should learn when working with sync methods invoking async tasks in legacy
ASP.NET is that when the top-level method awaits a task, its current execution context gets blocked
until the task completes. This won’t be a problem unless that context allows only one thread to run
at a time, which is precisely the case with AspNetSynchronizationContext. If we combine these two
things, we can easily see that blocking an async method (that is, a method returning an async task)
will expose our application to a high risk of deadlock.

A deadlock, from a software development perspective, is a dreadful situation that occurs whenever a
process or thread enters a waiting state indefinitely, usually because the resource it’s waiting for is held
by another waiting process. In any legacy ASP.NET web application, we would face a deadlock every
time we block a task, simply because that task, in order to complete, would require the same execu-
tion context as the invoking method, which is kept blocked by that method until the task completes!

That’s the reason why the await keyword can only be used within async methods. As a
matter of fact, the preceding logic requires the caller to be async as well; otherwise, it
wouldn’t work.

Authentication and Authorization536

Luckily enough, we’re not using legacy ASP.NET here; we’re using ASP.NET Core, where the legacy
ASP.NET pattern based upon SynchronizationContext has been replaced by a contextless approach,
layered upon a versatile, deadlock-resilient thread pool.

This basically means that blocking the calling thread using the Wait() method is no longer that problem-
atic. Therefore, if we switched our await keywords with it, our method would still run and complete
just fine. However, by doing so, we would basically use synchronous code to perform asynchronous
operations, which is generally considered a bad practice; moreover, we would lose all the benefits
brought by asynchronous programming, such as performance and scalability.

For all those reasons, the await approach is definitely the way to go here.

Now that we’ve updated our project’s classes and acknowledged the importance of async tasks, we
should switch to our database and do what it takes to bring it up to speed with our brand-new, iden-
tity-powered Data Model.

Updating the database
It’s now time to create a new migration, and reflect the code changes to the database, by taking ad-
vantage of the code-first approach we adopted in Chapter 5, Data Model with Entity Framework Core.

Here’s a list of what we’re going to do in this section:

• Add the identity migration using the dotnet-ef command, just like we did in Chapter 5, Data
Model with Entity Framework Core

For additional information regarding threads, async task awaits, and asynchronous pro-
gramming in ASP.NET, we highly recommend checking out the outstanding articles written
by Stephen Cleary on the topic, which will greatly help in understanding some of the most
tricky and complex scenarios that we could face when developing with these technologies.
Some of them were written a while ago, yet they never really age:

• https://blog.stephencleary.com/2012/02/async-and-await.html

• https://devblogs.microsoft.com/pfxteam/asyncawait-faq/

• http://blog.stephencleary.com/2012/07/dont-block-on-async-code.
html

• https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/
march/async-await-best-practices-in-asynchronous-programming

• https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-
context.html

Also, we strongly suggest checking out this excellent article about asynchronous program-
ming with async and await at the following link:

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/async/index

https://blog.stephencleary.com/2012/02/async-and-await.html
https://devblogs.microsoft.com/pfxteam/asyncawait-faq/
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index

Chapter 11 537

• Apply the migration to the database, updating it without altering the existing data or perform-
ing a drop and recreate

• Seed the data, using the CreateDefaultUsers() method of SeedController that we imple-
mented earlier on

Let’s get to work.

Adding identity migration
The first thing we need to do is to add a new migration to our data model to reflect the changes that
we have implemented, by extending the ApplicationDbContext class.

To do that, open a command line or PowerShell prompt, go to our WorldCities.Server project’s root
folder, and then write the following:

dotnet ef migrations add "Identity" -o "Data/Migrations"

A new migration should then be added to the project, as shown in the following screenshot:

Figure 11.5: Adding a new migration

The new migration files will be autogenerated in the \Data\Migrations\ folder.

Applying the migration
The next thing to do is apply the new migration to our database. We can choose between two options:

• Updating the existing data model schema while keeping all its data as it is
• Dropping and recreating the database from scratch

As a matter of fact, the whole purpose of the EF Core migration feature is to provide a way to incre-
mentally update the database schema while preserving the existing data in the database; for that very
reason, we’re going to follow the former path.

Those who experience issues while creating migrations can try to clear the \Data\
Migrations\ folder before running the preceding dotnet-ef command.

For additional information regarding Entity Framework Core migrations and how to trou-
bleshoot them, check out the following guide:

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/

Authentication and Authorization538

Updating the existing data model
To apply the migration to the existing database schema without losing the existing data, run the fol-
lowing command from our WorldCities.Server project’s root folder:

dotnet ef database update

The dotnet ef tool will then apply the necessary updates to our SQL database schema and output the
relevant information, as well as the actual SQL queries, in the console buffer.

Once the task has been completed, we should connect to our database using the SQL Server Manage-
ment Studio tool that we installed back in Chapter 5, Data Model with Entity Framework Core, and check
for the presence of the new identity-related tables.

If everything went well, we should be able to see the new identity tables together with our existing
Cities and Countries tables:

Figure 11.6: Viewing the new identity tables in SSMS Object Explorer

Before applying migrations, it’s always advisable to perform a full database backup; this
advice is particularly important when dealing with production environments. For small
databases such as the one currently used by our WorldCities.Server web app, backup
would take a few seconds.

For additional information about how to perform a full backup of a SQL Server database,
read the following guide:

https://learn.microsoft.com/en-us/sql/relational-databases/backup-
restore/create-a-full-database-backup-sql-server

https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server

Chapter 11 539

As we can easily guess, these tables are still empty. To populate them, we’ll have to run the
CreateDefaultUsers() method of SeedController, which is something that we’re going to do shortly.

Dropping and recreating the data model from scratch
For completeness, let’s spend a little time looking at how to recreate our data model and database
schema (DB schema) from scratch. Needless to say, if we opt for that route, we will lose all our existing
data. However, we could always reload everything using the Import() method of SeedController;
hence, it wouldn’t be a great loss. As a matter of fact, we would only lose what we did during our
CRUD-based tests in Chapter 5, Data Model with Entity Framework Core.

Although performing a database drop and recreation is not the suggested approach, especially con-
sidering that we’ve adopted the migration pattern precisely to avoid such a scenario, it can be a decent
workaround whenever we lose control of our migrations, provided that we entirely back up the data
before doing that and, most importantly, know how to restore everything afterward.

Should we choose to take this route, here are the dotnet-ef console commands to use:

> dotnet ef database drop
> dotnet ef database update

The drop command should ask for a Y/N confirmation before proceeding. When it does, hit the Y key
and let it happen. When the drop and update tasks are both done, we can run our project in Debug
mode and pay a visit to the Import() method of SeedController. Once done, we should have an up-
dated database with ASP.NET Core Identity support.

Seeding the data
Regardless of the option we chose to update the database, we now have to repopulate it.

To do that, open the /Controllers/SeedController.cs file and (temporarily) comment out the
AuthorizeAttribute that we added a moment ago to restrict its usage to Administrators, ensuring
that we’ll (temporarily) be able to use it.

As a matter of fact, we need to do that because we currently have no way to authenticate ourselves
as administrators, since our Angular app doesn’t have a login form (yet). Don’t worry, though; we’ll
close this gap soon enough!

Once done, hit F5 to run the project in Debug mode, and then manually input the following URL in the
browser’s address bar: https://localhost:40443/api/Seed/CreateDefaultUsers

Then, let the CreateDefaultUsers() method of SeedController work its magic.

Although it might seem like a horrible way to fix things, that’s definitely not the case. We’re
still in the development phase; hence, we can definitely allow a full database refresh.

Authentication and Authorization540

We should then be able to see the following JSON response:

Figure 11.7: The CreateDefaultUsers() JSON response

This output already tells us that our first two users have been created and stored in our data model.
However, we can also confirm that by connecting to our database, using the SQL Server Management
Studio tool, and taking a look at the dbo.AspNetUsers table (see the following screenshot):

Figure 11.8: Querying the [AspNetUsers] and [AspNetRoles] tables

Chapter 11 541

As we can see, we used the following T-SQL queries to check for the existing users and roles:

SELECT *
 FROM [WorldCities].[dbo].[AspNetUsers];

SELECT *
 FROM [WorldCities].[dbo].[AspNetRoles];

Now that we’ve confirmed that the users and roles are there, we can uncomment the AuthorizeAttribute
of SeedController to protect it from unauthorized access.

We’re finally done with the back-end part; our ASP.NET Core Identity system implementation is up
and running and fully integrated with our data model and database. Now, we just need to implement
it within our components and hook it up with our Angular client app.

Implementing authentication in Angular
In order to handle JWT-based token authentication, we need to set up our ASP.NET back-end and our
Angular front-end to handle all the required tasks.

In the previous sections, we spent a good amount of time configuring the ASP.NET Core Identity ser-
vices and middlewares, meaning that we’re halfway done; as a matter of fact, we’re almost done with
the server-side tasks. At the same time, we did nothing at the front-end level; the sample users that we
created in the previous section—admin@email.com and user@email.com—have no way to log in, and
there isn’t a registration form to create new users.

However, if we think about what we did during the previous chapters, we should already know what
to do to fill such a gap: implementing an interactive login (and possibly a registration) form, using the
same techniques adopted for CityEditComponent and CountryEditComponent.

More specifically, here’s a list of our upcoming tasks:

• Adding the LoginRequest and LoginResult interfaces to communicate with the ASP.NET Core
Web API

• Implementing a new AuthService that will perform the HTTP requests and receive the login
challenge result

• Creating a LoginComponent that will host the login form and allow the users that own an
account to initiate the login attempt

• Updating the NavMenuComponent to allow users to access the LoginComponent, make them
aware of their logged-in status, and perform the logout

• Adding some additional control mechanisms to better deal with the authentication status and
authorization permissions, such as HttpInterceptor and Route Guards

• Testing the new implementation to see if everything works up to this point

By the end of the section, we should be able to log in and log out, using the users that we created with
SeedController earlier on.

Authentication and Authorization542

Adding the LoginRequest interface
Let’s start by creating a new /src/app/auth/ folder in our worldcities.client Angular project, where
we’ll put everything that we’re going to add.

Once done, create a new login-request.ts file in that folder, and fill it with the following content:

export interface LoginRequest {
 email: string;
 password: string;
}

As we can see, the interface strictly resembles the ApiLoginRequest class used by our ASP.NET Core
Web API. That shouldn’t be a surprise, since it will be used by the HTTP request that will call the Login
action method of AccountController.

Adding the LoginResult interface
Now, we need the interface that will handle the login action method’s JSON response.

Create a new login-result.ts file in the /src/app/auth/ folder, and fill it with the following content:

export interface LoginResult {
 success: boolean;
 message: string;
 token?: string;
}

Again, the interface strictly resembles the ApiLoginResult POCO class of our ASP.NET Core Web API.

Implementing AuthService
Now that we have the required interfaces to initiate our requests (and receive the responses), we can
implement the Angular service that will perform them.

Create a new auth.service.ts file in the /src/app/auth/ folder, and fill it with the following content:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';

import { environment } from './../../environments/environment';
import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';

@Injectable({
 providedIn: 'root',
})

Chapter 11 543

export class AuthService {
 constructor(
 protected http: HttpClient) {
 }

 public tokenKey: string = "token";

 isAuthenticated() : boolean {
 return this.getToken() !== null;
 }

 getToken() : string | null {
 return localStorage.getItem(this.tokenKey);
 }

 login(item: LoginRequest): Observable<LoginResult> {
 var url = environment.baseUrl + "api/Account/Login";
 return this.http.post<LoginResult>(url, item)
 .pipe(tap(loginResult => {
 if (loginResult.success && loginResult.token) {
 localStorage.setItem(this.tokenKey, loginResult.token);
 }
 }));
 }
}

The preceding code shouldn’t be a surprise. We’re just doing the same tasks we already did in the pre-
vious Angular services we implemented back in Chapter 8, Code Tweaks and Data Services. The only new
concept there is introduced by the following line, when the successful token is stored in localStorage:

localStorage.setItem(this.authService.tokenKey, result.token);

The above line makes use of the Web Storage API, a JavaScript feature that provides a storage mechanism
that browsers can use to securely store key/value pairs. The API provides two mechanisms to store data:

• sessionStorage, which is available for the duration of the page session as long as the browser
is open (including page reloads and restores)

• localStorage, which persists even when the browser is closed and then reopened; the data
stored that way has no expiration date and must be manually cleared (through JavaScript or
by clearing the browser’s cache or Locally Stored Data)

In our code sample, we’re using localStorage because we want to keep the JWT token until we man-
ually invalidate it when it expires. However, both mechanisms are viable enough, depending on the
given usage scenario and desired outcome.

Authentication and Authorization544

Creating LoginComponent
Let’s now create the LoginComponent file, which will allow our users to perform the login attempt.

Open Command Prompt, navigate to the worldcities.client Angular project’s root folder, and type
the following:

> ng generate component auth/Login --flat --module=app --skip-tests

The above command will create the LoginComponent files within the auth folder.

login.component.ts
Once done, open the login.component.ts file, and update its content in the following way:

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn
} from '@angular/forms';

import { BaseFormComponent } from '../base-form.component';
import { AuthService } from './auth.service';
import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';

@Component({
 selector: 'app-login',
 templateUrl: './login.component.html',
 styleUrls: ['./login.component.scss']
})
export class LoginComponent
 extends BaseFormComponent implements OnInit {

 title?: string;
 loginResult?: LoginResult;

 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private authService: AuthService) {
 super();
 }

 ngOnInit() {
 this.form = new FormGroup({

Chapter 11 545

 email: new FormControl('', Validators.required),
 password: new FormControl('', Validators.required)
 });
 }

 onSubmit() {
 var loginRequest = <LoginRequest>{};
 loginRequest.email = this.form.controls['email'].value;
 loginRequest.password = this.form.controls['password'].value;

 this.authService
 .login(loginRequest)
 .subscribe({
 next: (result) => {
 console.log(result);
 this.loginResult = result;
 },
 error: (error) => {
 console.log(error);
 if (error.status == 401) {
 this.loginResult = error.error;
 }
 }
 });
 }
}

For the sake of simplicity, we’ll not review the preceding code, since we should already be able to fully
understand everything it does.

login.component.html
Let’s now open the login.component.html file and provide our LoginComponent with a suitable UI:

<div class="login">
 <h1>Login</h1>
 <form [formGroup]="form" (ngSubmit)="onSubmit()">

 <p>
 <mat-error *ngIf="loginResult && !loginResult.success">
 ERROR: {{loginResult.message}}
 </mat-error>
 </p>

Authentication and Authorization546

 <!-- Name -->
 <mat-form-field>
 <mat-label>Email:</mat-label>
 <input matInput formControlName="email" required
 placeholder="Insert email">
 <mat-error *ngFor="let error of getErrors(form.get('email')!,
 'Email')">
 {{error}}
 </mat-error>
 </mat-form-field>

 <!-- Lat -->
 <mat-form-field>
 <mat-label>Password:</mat-label>
 <input matInput type="password" formControlName="password" required
 placeholder="Insert Password">
 <mat-error *ngFor="let error of getErrors(form.get('password')!,
 'Password')">
 {{error}}
 </mat-error>
 </mat-form-field>

 <div>
 <button mat-flat-button color="primary"
 type="submit">
 Login
 </button>
 <button mat-flat-button color="secondary"
 [routerLink]="['/']">
 Cancel
 </button>
 </div>
 </form>
</div>

Again, nothing new here—just a plain Reactive Form featuring Angular Material components, cre-
ated using the same techniques as our good old CityEditComponent. The only real difference is
type="password", which we used in matInput for the password field, which will mask the input text
when we type it.

Chapter 11 547

As we can see, we used a global mat-error component to handle the error message of LoginResult
coming with a failed login attempt, and we added the usual required validator checks to the two form
fields we need to use: email and password.

login.component.scss
Last but not least, let’s insert some minimal content into the login.component.scss file:

mat-form-field {
 display: block;
 margin: 10px 0;
}

And that’s it! Our LoginComponent is ready; we just need to add the client-side route and update our
NavMenuComponent so that our users will be able to reach it.

Updating AppRoutingModule
Open the app-routing.module.ts file, and add the following line after the last import statement:

import { LoginComponent } from './auth/login.component';

And add the following line after the last route:

 { path: 'login', component: LoginComponent }

Now, our users will be able to access LoginComponent using the /login route.

Updating NavMenuComponent
However, we definitely don’t want our users having to manually type the login page URL in their
browser’s address bar.

For that very reason, open the nav-menu.component.html file, and add the following highlighted lines
right below the existing Countries button:

<!-- ...existing code... -->
<a mat-flat-button color="primary" [routerLink]="['/countries']">
 Countries

<a mat-flat-button color="primary" [routerLink]="['/login']">
 Login

<!-- ...existing code... -->

Authentication and Authorization548

As we can see, this time we didn’t just add a new Login button; we also took the chance to add a sep-
arator element between the new button and the previous ones to enforce a different UI behavior. More
precisely, we want our login button to be aligned to the right side of our navigation menu, instead of
being stacked on the left with the other ones.

To make this happen, we need to open the nav-menu.component.scss file and add the following class:

.separator {
 flex: 1 1 auto;
}

That’s it. Now, we can finally test what we have done so far.

Testing LoginComponent
To test our new LoginComponent, hit F5 to run the projects in Debug mode, and then click on the Login
navigation link that should appear to the right side of our top menu. If we did everything properly, we
should see the login form.

Let’s test the error message first. Fill the form with invalid data, and click the Login button. If we did
everything properly, we should see mat-error displaying an error message, as shown in the following
screenshot:

Figure 11.9: Angular LoginComponent showing an error

Now, we can test the actual login using the user@email.com address that we created with our
SeedController earlier on (and its password). If everything works as it should, we should be able to
receive a valid token in the browser’s console log, as shown in the following screenshot:

Chapter 11 549

Figure 11.10: Angular LoginComponent performing a successful login

Not bad. Furthermore, if we check our browser’s Local Storage (Application > Local Storage for chro-
mium-based browsers), we should also find our token stored there.

While we are here, let’s take the chance to call the router.navigate method to bring the authorized
user back to the home view if the login attempt is successful, adding the following highlighted lines
to the login method:

// ...existing code...

 this.authService
 .login(loginRequest)
 .subscribe({
 next: (result) => {
 console.log(result);
 this.loginResult = result;
 if (result.success) {
 this.router.navigate(["/"]);
 }
 },

// ...existing code...

Now, we need to update our app’s UI to let our users know that they are logged in, as well as perform
a logout. Let’s do this.

Authentication and Authorization550

Adding the authStatus observable
A great way to let our Angular app know that a valid token has been retrieved, and therefore that the
user has been successfully authenticated, is to set up a dedicated Observable in AuthService.

Open the auth.service.ts file, and add the following highlighted lines to the existing code:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { BehaviorSubject, Observable, tap } from 'rxjs';

import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';
import { environment } from './../../environments/environment';

@Injectable({
 providedIn: 'root',
})
export class AuthService {

 private tokenKey: string = "token";

 private _authStatus = new BehaviorSubject<boolean>(false);
 public authStatus = this._authStatus.asObservable();

 constructor(
 protected http: HttpClient) {
 }

 isAuthenticated() : boolean {
 return this.getToken() !== null;
 }

 getToken() : string | null {
 return localStorage.getItem(this.tokenKey);
 }

 init() : void {
 if (this.isAuthenticated())
 this.setAuthStatus(true);
 }

 login(item: LoginRequest): Observable<LoginResult> {

Chapter 11 551

 var url = environment.baseUrl + "api/Account/Login";
 return this.http.post<LoginResult>(url, item)
 .pipe(tap(loginResult => {
 if (loginResult.success && loginResult.token) {
 localStorage.setItem(this.tokenKey, loginResult.token);
 this.setAuthStatus(true);
 }
 }));
 }

 logout() {
 localStorage.removeItem(this.tokenKey);
 this.setAuthStatus(false);
 }

 private setAuthStatus(isAuthenticated: boolean): void {
 this._authStatus.next(isAuthenticated);
 }
}

The authStatus observable we’ve just added to the AuthService class will notify all the subscribed
components regarding the authentication status (true or false, depending on the login challenge re-
sult). The status can be updated using the setAuthStatus method, which we’ll have to call three times:

• When the user logs in, passing a true parameter
• When the user logs out, passing a false parameter
• When the app starts, passing a true parameter if the user is already authenticated

We’ve already implemented the first two scenarios in the AuthService class; the third and final one
can be implemented in the AppComponent class, which is something that we will do in a short while.

Now, we just need to subscribe to the authStatus observable wherever we need it.

Updating the UI
The first component that comes to mind is NavMenuComponent, since we want to update the app’s top
navigation menu according to the user login status.

However, since we’ve used localStorage, and therefore plan to preserve the token between browser
sessions, we also need to update the AppComponent to notify the authStatus subscribers of the token
presence when the app starts up.

Authentication and Authorization552

NavMenuComponent
Let’s start with NavMenuComponent. Open the nav-menu.component.ts file, and add the following
highlighted lines:

import { Component, OnInit, OnDestroy } from '@angular/core';
import { Router } from '@angular/router';
import { Subject, takeUntil } from 'rxjs';
import { AuthService } from '../auth/auth.service';

@Component({
 selector: 'app-nav-menu',
 templateUrl: './nav-menu.component.html',
 styleUrls: ['./nav-menu.component.scss']
})
export class NavMenuComponent implements OnInit, OnDestroy {

 private destroySubject = new Subject();
 isLoggedIn: boolean = false;

 constructor(private authService: AuthService,
 private router: Router) {
 this.authService.authStatus
 .pipe(takeUntil(this.destroySubject))
 .subscribe(result => {
 this.isLoggedIn = result;
 })
 }

 onLogout(): void {
 this.authService.logout();
 this.router.navigate(["/"]);
 }

 ngOnInit(): void {
 this.isLoggedIn = this.authService.isAuthenticated();
 }

 ngOnDestroy() {
 this.destroySubject.next(true);
 this.destroySubject.complete();
 }
}

Chapter 11 553

As we can see, we subscribed to the authStatus observable to change the value of our isLoggedIn
variable, which we can use to update the UI.

Technically speaking, manually updating the isLoggedIn local variable during the ngOnInit() is not
necessary, since we have subscribed to a BehaviorSubject and initialized it with false. Since we call
authService.init from the App component, it would automatically update the BehaviorSubject and
notify subscribers.

We’ve also added a local onLogout() method that we can use to handle a Logout action; when the user
performs a logout, that method will call the logout() method of AuthService, which will remove the
token and notify the subscribers. Right after that, the onLogout() method will bring the user back to
the home view, using the Router service that we injected into the constructor.

Furthermore, we also took the opportunity to implement the takeUntil() method that we saw in
Chapter 9, Back-End and Front-End Debugging, to unsubscribe it when the component is destroyed. This
measure wasn’t strictly necessary in this specific case, as NavMenuComponent is typically meant to be
instantiated once, but getting used to it won’t hurt.

Let’s now make use of these new local members. Open the nav-menu.component.html file, and update
its content by adding the following highlighted lines:

<!-- ...existing code... -->

<a *ngIf="!isLoggedIn" mat-flat-button color="primary"
 [routerLink]="['/login']">
 Login

<a *ngIf="isLoggedIn" mat-flat-button color="primary"
 (click)="onLogout()">
 Logout

<!-- ...existing code... -->

That’s it.

The cool thing about the BehaviorSubject is that it also emits its current value to new
subscribers – meaning that components that subscribe after authService.init was
called will also be notified of the fact that authStatus is already true.

Authentication and Authorization554

AppComponent
Let’s now move on to AppComponent. Open the app.component.ts file, and change the existing code
accordingly with the following highlighted lines:

import { Component, OnInit } from '@angular/core';
import { AuthService } from './auth/auth.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.scss']
})

export class AppComponent implements OnInit {
 title = 'WorldCities';

 constructor(private authService: AuthService) { }

 ngOnInit(): void {
 this.authService.init();
 }
}

Now, the authStatus subscribers will be notified of the token presence when the app starts up and
act accordingly. In our scenario, this will allow NavMenuComponent to show a Login or Logout link,
according to the user’s status.

Testing the observable
Now, we can run the same test we did a short while ago again and see the result of our work. If we did
everything correctly, we should be able to see the Logout button in the navigation menu (as shown in
the following screenshot), which can be used to bring the user back to the initial, non-logged-in status:

Chapter 11 555

Figure 11.11: Angular LoginComponent with the Logout button

That’s great, right? However, our authentication puzzle still has two very important missing pieces:

• We need to add that token to the header of all our HTTP requests so that the Web API will be
able to check it and authenticate our calls

• We need to restrict some routes of our Angular app so that unauthorized users won’t be able
to navigate to the components they’re not allowed to reach, see, and/or interact with

Luckily enough, the Angular framework provides two powerful interfaces that allow us to do all that:
HttpInterceptors and Route Guards. In the next section, we’ll learn what they are meant for and how
we can use them to fulfill our tasks.

HttpInterceptors
The Angular HttpInterceptor interface provides a standardized mechanism to intercept and/or
transform outgoing HTTP requests and/or incoming HTTP responses. Interceptors are quite similar
to the ASP.NET middlewares that we introduced in Chapter 3, Looking Around, and then played with
so far, except that they work at the front-end level.

Authentication and Authorization556

Interceptors are a major feature of Angular, since they can be used for a number of different tasks:
they can inspect and/or log our app’s HTTP traffic, modify the requests, cache the responses, and so
on; they are a convenient way to centralize all these tasks so that we don’t have to implement them
explicitly on our data services and/or within the various HttpClient-based method calls. Moreover,
they can also be chained, meaning that we can have multiple interceptors working together in a for-
ward-and-backward chain of request/response handlers.

The best way to understand how an HttpInterceptor works is to implement one.

Implementing AuthInterceptor
Create a new auth.interceptor.ts file in the /src/app/auth/ folder and fill its content in the fol-
lowing way:

import { Injectable } from '@angular/core';
import { HttpInterceptor, HttpRequest, HttpHandler, HttpEvent,
HttpErrorResponse } from '@angular/common/http';
import { Router } from '@angular/router';
import { catchError, Observable, throwError } from 'rxjs';
import { AuthService } from './auth.service';

@Injectable({
 providedIn: 'root'
})
export class AuthInterceptor implements HttpInterceptor {
 constructor(
 private authService: AuthService,
 private router: Router) { }

 intercept(req: HttpRequest<any>, next: HttpHandler):
Observable<HttpEvent<any>> {
 // get the auth token
 var token = this.authService.getToken();

 // if the token is present, clone the request
 // replacing the original headers with the authorization
 if (token) {
 req = req.clone({

For additional information about HttpInterceptors, take a look at the following URLs:

• https://angular.io/api/common/http/HttpInterceptor

• https://angular.io/api/common/http/HTTP_INTERCEPTORS

https://angular.io/api/common/http/HttpInterceptor
https://angular.io/api/common/http/HTTP_INTERCEPTORS

Chapter 11 557

 setHeaders: {
 Authorization: `Bearer ${token}`
 }
 });
 }

 // send the request to the next handler
 return next.handle(req).pipe(
 catchError((error) => {
 // Perform logout on 401 – Unauthorized HTTP response errors
 if (error instanceof HttpErrorResponse && error.status === 401) {
 this.authService.logout();
 this.router.navigate(['login']);
 }

 return throwError(() => error);
 })
);
 }
}

As we can see, AuthInterceptor implements the HttpInterceptor interface by defining an intercept()
method. This method carries out two main tasks:

• Intercepting all the outgoing HTTP requests and adding the token to their HTTP headers (if
present), ensuring that the ASP.NET Core’s JwtBearerMiddleware will be able to validate it
and authenticate our calls

• Intercepting all HTTP errors and, in case of a 401 – Unauthorized response status code, per-
forming the logout() method of AuthService and bringing the user back to the Login view

Calling the logout() method after a 401 error will ensure that the token will be removed from
localStorage whenever the back-end discovers it is no longer valid (such as when it expires), thus
allowing our users to log in again.

Now, we have an AuthInterceptor that can make good use of our token throughout the whole HTTP
request/response cycle; we just need to tell our Angular app to use it.

Removing the token when it expires – and consequently logging out our users – is an im-
plementation choice that we made to keep things simple; most production apps provide
a better alternative by adopting a refresh token mechanism, which can be rather complex
to implement within the scope of this book. See the Finishing touches section at the end
of this chapter for further details on that.

Authentication and Authorization558

Updating AppModule
Just like any other Angular class, AuthInterceptor needs to be properly configured within the root-level
AppModule. This requires the addition of the following highlighted references:

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';
import { AuthInterceptor } from './auth/auth.interceptor';

And add the AuthInterceptor in the providers collection, in the following way:

providers: [
 { provide: HTTP_INTERCEPTORS,
 useClass: AuthInterceptor,
 multi: true }
]

AuthInterceptor is now ready to “intercept” all the outgoing HTTP requests and add the token (if
present) so that our ASP.NET Core Web API will be able to fetch it and authorize us accordingly.

Before moving on to the next topic, let’s spend a moment checking that AuthInterceptor works fine.

Testing HttpInterceptor
Hit F5 to run our app in Debug mode. Click the Login link on the navigation menu, and perform the
login using one of our test users, just like we did for our previous tests.

Once logged in, navigate to the Countries view, and then click on a country of your choice to access
the Edit Country view; once there, try to edit the country and save your work. If the HttpInterceptor
works properly, we should be brought back to the Countries view and see the updated country’s data,
as the HTTP request was sent to the Web API with a valid token.

Right after that, click the Logout link on the navigation menu and try to perform the same identical
steps. If HttpInterceptor works properly, we should now see a 401 – Unauthorized HTTP error message
in the browser’s console log when trying to save our country. That’s the expected behavior, since the
token was removed from localStorage right after the logout, and therefore the HTTP request was
sent without a valid authorization header, thus was blocked by the Web API’s AuthorizeAttribute.

Let’s now move on to the next feature: Route Guards.

Route Guards
As we learned in Chapter 3, Looking Around, the Angular router is the service that allows our users to
navigate through the various views of our app; each view updates the front-end and (possibly) calls the
back-end to retrieve content.

The multi: true property that we can see in the preceding code is a required setting
because HTTP_INTERCEPTORS is a multi-provider token that expects to inject an array of
multiple values, rather than just one.

Chapter 11 559

If we think about it, we can see how the Angular router is the front-end counterpart of the ASP.NET
Core routing interface, which is responsible for mapping request URIs to back-end endpoints and dis-
patching incoming requests to those endpoints. Since both of these modules share the same behavior,
they also have similar requirements that we have to take care of when we implement an authentication
and authorization mechanism in our app.

Throughout the previous chapters, we’ve defined a lot of routes on the back-end as well as on the
front-end, granting our users access to the various ASP.NET Core action methods and Angular views
that we’ve implemented. If we think about it, we can see how all of these routes share a common
feature: anyone can access them. To put it in other words, any user is free to go anywhere within our web
app. They can edit cities and countries, for example… Or at least they will think they can, until the
AuthorizeAttribute that we implemented on our back-end controllers earlier on prevents them from
doing that. The fact that the Web API will actively block their attempt is great for protecting our data,
and we should never get rid of such a feature, but it’s not that great in terms of user experience, since
it will still leave our users in the dark:

Why does the app tell me I can edit such an item if I am not allowed to?

It goes without saying that such behavior, although acceptable in development, is highly undesirable
in any production scenario; when the app goes live, we would definitely want to protect some of these
routes by restricting them to authorized users only—in other words, to guard them.

Route Guards are a mechanism to properly enforce such a requirement; they can be added to our route
configuration to return values that can control the router’s behavior in the following way:

• If a Route Guard returns true, the navigation process continues
• If it returns false, the navigation process stops
• If it returns UrlTree, the navigation process is canceled and replaced by a new navigation to

the given UrlTree

When implemented properly, Route Guards will prevent our users from seeing odd client-side behaviors
and asking questions like the one above.

Available guards
The following Route Guards are currently available in Angular:

• CanActivate: Mediates navigation to a given route
• CanActivateChild: Mediates navigation to a given child route
• CanDeactivate: Mediates navigation away from the current route
• Resolve: Performs some arbitrary operations (such as custom data retrieval tasks) before

activating the route
• CanMatch: Mediates navigation to a given asynchronous module

Until Angular 14, each Route Guard was available through a superclass that acted as a common interface;
whenever we wanted to create our own guard, we’d have to extend the corresponding superclass and
implement the relevant method(s). However, starting from Angular 15, class-based Route Guards have
been deprecated in favour of functional guards, which is the approach we are going to use in this book.

Authentication and Authorization560

Any route can be configured with multiple guards: CanDeactivate and CanActivateChild guards
will be checked first, from the deepest child route to the top; right after that, the router will check
CanActivate guards from the top down to the deepest child route. Once done, CanMatch routes will
be checked for asynchronous modules. If any of these guards returns false, the navigation will be
stopped, and all pending guards will be canceled.

Enough with the theory; let’s add our own AuthGuard.

Implementing AuthGuard
Create a new auth.guard.ts file in the /src/app/auth/ folder, and fill its content in the following way:

import { inject } from '@angular/core';
import {
 ActivatedRouteSnapshot,
 CanActivateFn,
 Router,
 RouterStateSnapshot } from '@angular/router';
import { AuthService } from './auth.service';

export const AuthGuard: CanActivateFn = (
 next: ActivatedRouteSnapshot,
 state: RouterStateSnapshot
) => {
 const authService:AuthService = inject(AuthService);
 const router:Router = inject(Router);

 // If the user is authenticated, return true...
 if (authService.isAuthenticated()) {
 return true;
 }

The decision to deprecate class-based Guards and Resolvers has sparked a lot of discussions
among Angular developers; most of them have seen the dismissal of these interfaces as
a regression that leads to potential misuse and bad practices. For additional information
regarding this topic, take a look at the following GitHub issue on the official Angular repos-
itory, which offers some deep insights into the matter: https://github.com/angular/
angular/issues/50234

For further information about Route Guards and their role in the Angular routing work-
flow, check out the following link: https://angular.io/guide/router#preventing-
unauthorized-access

https://github.com/angular/angular/issues/50234
https://github.com/angular/angular/issues/50234
https://angular.io/guide/router#preventing-unauthorized-access
https://angular.io/guide/router#preventing-unauthorized-access

Chapter 11 561

 // ... otherwise, redirects to the login page
 return router.createUrlTree(['/login'], {
 queryParams: {
 returnUrl: state.url
 }
 });
};

As we can see, our guard (which extends the CanActivateFn signature) enforces a different behavior,
depending on the return value of the isAuthenticated() method of our AuthService (which is in-
jected within the function body), thus conditionally allowing or blocking the navigation based on it;
no wonder its name is AuthGuard.

Once they have been created, guards can be bound to the various routes from within the route con-
figuration itself, which provides a property for each guard type. Let’s add the canActivate property
to the relevant routes within our AppRoutingModule.

Updating AppRoutingModule
Open the app-routing.module.ts file, and update its content accordingly with the following high-
lighted lines:

// ...existing code...

import { AuthGuard } from './auth/auth.guard';

const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent, canActivate: [AuthGuard] },
 { path: 'city', component: CityEditComponent, canActivate: [AuthGuard] },
 { path: 'countries', component: CountriesComponent },
 { path: 'country/:id', component: CountryEditComponent, canActivate:
[AuthGuard] },
 { path: 'country', component: CountryEditComponent, canActivate: [AuthGuard]
},
 { path: 'login', component: LoginComponent }
];

It’s worth noting that we added a returnUrl query string parameter, which can be useful
to automatically redirect the client to the desired “auth-restricted” page after a successful
login. We won’t do that for reasons of space, but readers should not have issues in imple-
menting this behavior within the AuthService.

Authentication and Authorization562

// ...existing code...

That’s it. Our AuthGuard will now prevent non-registered users from accessing CityEditComponent
and CountryEditComponent, taking them to the LoginComponent instead.

Testing AuthGuard
Let’s now test our AuthGuard to see whether it returns the expected results.

Hit F5 to run our app in Debug mode. Click the Login link on the navigation menu, and perform the
login using one of our test users, just like we did for our previous tests.

Once logged in, navigate to the Countries view, and then click on a country of your choice to access
the Edit Country view. If AuthGuard works properly, we should be able to reach the view, since our
logged-in status allows us to activate that route.

Once done, click the Logout link on the navigation menu, and try to perform the same steps again.
If AuthGuard works properly, clicking on the country name or the Add new country button should
bring us to the Login view, since our not logged in status prevents unregistered users from activating
those routes.

That’s it. Now, our Angular app’s behavior will be consistent with the auth policies that we set up in
our Web API.

Finishing touches
Our hard work has finally come to an end. However, our app still lacks some additional finishing
touches that would further improve what we have done so far.

More specifically, here’s a list of “minor” and major UI, UX, and functional issues that we should
address if we aim to release our app in production:

• Hide the “Add New City” and “Add new Country” buttons from unregistered users, using the
*ngIf preprocessor directive and the isAuthenticated() method of AuthService.

• Implement a RegisterComponent to allow users to create an account. Needless to say, this
feature will also require the addition of new client-side routes, new interfaces, new validators
for email addresses and passwords, new action methods in AccountController, and so on.

• Add a refresh token mechanism to allow the client to automatically retrieve a new token
after the previous one expires, instead of deleting the expired one and redirecting our users
to the login page. Implementing this feature will require a refactor of our AuthInterceptor
class, a dedicated database table to store the refresh tokens (the AspNetUserTokens created
by our Identity migration can be used to do that, at least to some extent), additional back-end
endpoints, and more.

The first two features can be easily implemented with what we’ve learned so far; however, the refresh
token mechanism can be rather complex to implement and goes way beyond the sample implemen-
tation that we’ve pulled off in this chapter, which is intended to be for demonstration purposes only.

Chapter 11 563

Luckily enough, there are many third-party packages, including but not limited to the IdentityServer
package that we talked about at the start of this chapter, which will allow us to skip most of the heavy
lifting.

Before moving on to the next chapter, it would be useful to spend some valuable time exploring a new
feature introduced by .NET 8 that we could have used to deal with the server-side authentication tasks,
instead of relying on our JWT-based code: Identity API Endpoints.

Identity API endpoints
In this section, we’ll talk about one of the most anticipated features of .NET 8: a convenient set of help-
ers that can be used by developers to add identity-related, REST-based endpoints to any ASP.NET Core
app with (very) few lines of code. These endpoints have been specifically designed to be called by SPAs,
providing them with access tokens that can be used to grant authentication and authorization rights.

On paper, we could say that these endpoints definitely seem a good fit for our scenario; we do have
an SPA app that requires authentication and authorization rights, and finding a way to provide those
access tokens is what we did throughout the first half of this chapter. Why did we do all this if there
was a convenient built-in feature that could relieve us from all that work?

To properly answer this question, we are going to take a look at this new feature with the aim of un-
derstanding its pros and cons; as always, the best way to do that from a developer perspective is to dig
into its implementation details. More specifically, in the next sections, we will add these API endpoints
to our WorldCities.Server app and compare them with our JWT-based approach.

Activating the Identity API endpoints
The first thing we need to do is to activate these endpoints; as expected from a built-in feature, this
can be seamlessly done by adding a convenient helper method to our existing ASP.NET Core Identity
implementation.

To do that, open the Program.cs file of our WorldCities.Server app, scroll down to the identity-related
block, and add the following highlighted line:

// …existing code

builder.Services.AddIdentity<ApplicationUser, IdentityRole>(options =>
{
 // …existing code
})
 .AddApiEndpoints()
 .AddEntityFrameworkStores<ApplicationDbContext>();

// …existing code

Authentication and Authorization564

The AddApiEndpoints helper method adds the services required for the new feature, but it doesn’t
add the necessary authentication scheme. To do that, we must manually add the following line to the
authentication builder, also located in the Program.cs file, in the following way:

// …existing code

builder.Services.AddAuthentication(opt =>
{
 // …existing code
}).AddJwtBearer(options =>
{
 // …existing code
}).AddBearerToken(IdentityConstants.BearerScheme);

// …existing code

Now, we just need to map the endpoints, which can be done by adding the following line of code down
below the Program.cs file, just before the call to MapControllers():

// …existing code
app.MapIdentityApi<IdentityUser>();
app.MapControllers();
// …existing code

That’s it.

Testing the endpoints
To quickly test what we did, hit F5 to launch our app in Debug mode and navigate to the following URL:

https://localhost:40443/swagger

This is the endpoint of the Swashbuckler Swagger UI, which we briefly introduced in Chapter 3, Looking
Around. If everything went well with our current implementation, we should be able to see a whole
bunch of newly available endpoints, all located within a new WorldCities�Server group:

Chapter 11 565

Figure 11.12: The new Identity API endpoints

As we can see, we have just provided our WorldCities.Server app with a new set of APIs that can be
used to perform all the required identity-related tasks: not only login but also register, change email
address, reset password, and even refresh the Bearer Token, which was one of the missing features
of our JWT-based implementation.

If we’re up for it, we can use the interactive capabilities provided by the Swagger UI to test these new
endpoints; to give it a try, expand the panel corresponding to the /login endpoint using the arrow
handle to the right, click the Try it out button to the right, and fill in the form and the request body
in the following way:

• useCookies: false
• useSessionCookies: false

As for the Request body text area, fill it in the following way, replacing the <password> placeholder
with the password we chose for the user@email.com user when we created it:

{
 "email": "user@email.com",
 "password": "<password>"
}

Authentication and Authorization566

After clicking the Execute button, we should receive the following JSON payload:

{
 "tokenType": "Bearer",
 "accessToken": "<accessToken>",
 "expiresIn": 3600,
 "refreshToken": "<refreshToken>"
}

The above output proves that the Identity API endpoints work properly.

If we wanted, we could easily refactor the auth-related code of our Angular app to implement the
Identity API endpoints instead of our JWT-based implementation, right?

That’s right; however, there are several good reasons why we shouldn’t do that, at least for now.

Should we use the Identity API endpoints?
The Identity API endpoints were one of the most anticipated features of .NET 8 and received a lot
of attention during its preview releases, for good reasons: every seasoned ASP.NET Core developer
knows the importance of having a built-in interface to handle auth-based requests, and how much
the community was asking for that.

Unfortunately, this first implementation, despite working well from a functional point of view, comes
with huge extensibility and configurability issues, to the point of being practically unusable in a pro-
duction environment.

The most relevant downsides can be summarized in the following key points:

• Endpoints cannot be removed: For example, if we wanted to prevent our users from register-
ing, we couldn’t do that, unless we adopt URL rewriting or URL blocking techniques using a
reverse proxy or something like that.

• Endpoints’ default URLs cannot be changed: Whether we like them or not, we are forced to
stick with the default paths. Again, this can be fixed somehow with URL rewriting techniques
(and a reverse proxy), but it can be very inconvenient, and it might even lead to non-trivial
security issues if we make mistakes with these rewrite rules.

• Endpoints cannot be customized: Ideally, we might want to override how the auth endpoints
work, for example, to implement some custom behavior, collect additional claims, integrate
new 2FA/MFA flows, and so on; unfortunately, the Identity API endpoints currently provide
no ways to do that.

For additional information regarding Identity API endpoints and how to implement them
to secure a Web API backend for SPAs, refer to the following official guide: https://
learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-
api-authorization

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization

Chapter 11 567

• We can’t add other authentication schemes: We are forced to deal with cookies, Bearer Tokens,
and/or the 2FA providers natively supported by ASP.NET Core Identity.

As we can see, we are mostly talking about configurability and/or extensibility shortcomings, most
likely due to the fact that this is a first release. We are pretty sure that many, if not all, of these issues
will be addressed in the next release of the framework, possibly even in one of the upcoming .NET
8 updates. However, at the time of writing, we can’t be sure of when the fix will occur, and that’s the
reason why we don’t suggest using it – unless it’s for experimental, non-production scenarios.

Now that we’ve briefly reviewed the .NET 8 Identity API endpoints, and explained the reasons why we
are not using them, we’re ready to move on to the next topic, progressive web apps, which will keep
us busy throughout the next chapter.

Summary
At the start of this chapter, we introduced the concepts of authentication and authorization, acknowl-
edging the fact that most applications, including ours, do require a mechanism to properly handle
authenticated and non-authenticated clients as well as authorized and unauthorized requests.

We took some time to properly understand the similarities and differences between authentication
and authorization, as well as the pros and cons of handling these tasks using our own internal pro-
vider or delegating them to third-party providers, such as Google, Facebook, and Twitter. Then, we
briefly enumerated the various web-based authentication methods available nowadays: sessions,
tokens, signatures, and two-factor strategies of various sorts. After careful consideration, we chose
to stick with the token-based approach using JWT, this being a solid and well-known standard for any
front-end framework.

To be able to use it, we added the required packages to our project and did what was needed to properly
configure them, such as performing some updates in our Program and ApplicationDbContext classes
and creating a new ApplicationUser entity. After implementing all the required back-end changes, as
well as adding some new controllers and services, we created a new Entity Framework Core migration
to update our database accordingly.

Right after that, we switched to our Angular project, where we had to deal with the front-end part of
the job. While doing that, we spent some valuable time reviewing the new Angular features we used
to perform the various tasks, such as HttpInterceptors and Route Guards, and we learned how to use
them to protect some of our application views, routes, and APIs from unauthorized access.

Last but not least, we reviewed the Identity API endpoints, a new set of auth-related endpoints introduced
with .NET 8 that can be used by SPAs to obtain the access tokens required to grant authentication
and authorization rights—a feature that looks promising but still too lacking to be used in production.

That said, now the WorldCities.Server app has now been configured to fully support the
Identity API endpoints. Those who want to try their hand at refactoring the worldcities.
client Angular app are encouraged to do that; it will be a great exercise to practice the
topics discussed in this chapter.

Authentication and Authorization568

Suggested topics
For further information, we recommend the following topics: Authentication, authorization, HTTP
protocol, secure socket layer, session state management, indirection, single sign-on, Azure AD Au-
thentication Library (ADAL), ASP.NET Core Identity, IdentityServer, OpenID, OpenID Connect (OIDC),
OAuth, OAuth 2, Two-Factor Authentication (2FA), SMS 2FA, Time-Based One-Time Password Algo-
rithm (TOTP), TOTP 2FA, IdentityUser, stateless, Cross-Site Scripting (XSS), Cross-Site Request Forgery
(CSRF), Angular HttpClient, Route Guard, Http Interceptor, LocalStorage, Web Storage API, server-side
prerendering, Angular Universal, browser types, Generic Types, JWTs, Claims, and AuthorizeAttribute.

References
• OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html
• OpenID 2.0 to OIDC migration guide: http://openid.net/specs/openid-connect-

migration-1_0.html

• Introduction to Identity on ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/
security/authentication/identity

• IdentityServer documentation: https://identityserver4.readthedocs.io/en/latest/
• Authentication and authorization for SPAs: https://learn.microsoft.com/en-us/aspnet/core/

security/authentication/identity-api-authorization

• RoleManager<TRole> Class: https://learn.microsoft.com/en-us/dotnet/api/microsoft.
aspnetcore.identity.rolemanager-1

• Identity model customization in ASP.NET Core: https://learn.microsoft.com/en-US/aspnet/
core/security/authentication/customize-identity-model

• Overview of ASP.NET Core security: https://learn.microsoft.com/en-us/aspnet/core/
security/

• Async and await: https://blog.stephencleary.com/2012/02/async-and-await.html
• Async/await FAQ: https://devblogs.microsoft.com/pfxteam/asyncawait-faq/
• Don’t Block on Async Code: http://blog.stephencleary.com/2012/07/dont-block-on-async-

code.html

• Async/await – Best practices in asynchronous programming: https:// learn.microsoft.com/en-
us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-
programming

• ASP.NET Core SynchronizationContext: https://blog.stephencleary.com/2017/03/
aspnetcore-synchronization-context.html

• Asynchronous programming with async and await: https://learn.microsoft.com/en-us/
dotnet/csharp/programming-guide/concepts/async/index

• EF Core migrations: https://learn.microsoft.com/en-us/ef/core/managing-schemas/
migrations/

• SQL Server: Create a full database backup: https://learn.microsoft.com/en-us/sql/
relational-databases/backup-restore/create-a-full-database-backup-sql-server

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
http://openid.net/specs/openid-connect-migration-1_0.html
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://identityserver4.readthedocs.io/en/latest/
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.rolemanager-1
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.rolemanager-1
https://learn.microsoft.com/en-US/aspnet/core/security/authentication/customize-identity-model
https://learn.microsoft.com/en-US/aspnet/core/security/authentication/customize-identity-model
https://learn.microsoft.com/en-us/aspnet/core/security/
https://learn.microsoft.com/en-us/aspnet/core/security/
https://blog.stephencleary.com/2012/02/async-and-await.html
https://devblogs.microsoft.com/pfxteam/asyncawait-faq/
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https:// learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https:// learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https:// learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server

Chapter 11 569

• Two-factor authentication with SMS in ASP.NET Core: https://learn.microsoft.com/en-us/
aspnet/core/security/authentication/2fa

• Enable QR code generation for TOTP authenticator apps in ASP.NET Core: https://learn.microsoft.
com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes

• Angular: Router guards: https://angular.io/guide/router#preventing-unauthorized-
access

• Routing in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/fundamentals/
routing

• Introduction to authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/
core/security/authorization/introduction

• Simple authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/
security/authorization/simple

• Authorize with a specific scheme in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/
core/security/authorization/limitingidentitybyscheme

• Scaffold identity in ASP.NET Core projects: https://learn.microsoft.com/en-us/aspnet/core/
security/authentication/scaffold-identity

• ASP.NET Core Identity: Create a full identity UI source: https://learn.microsoft.com/en-us/
aspnet/core/security/authentication/scaffold-identity#full

• Create reusable UI using the Razor class library project in ASP.NET Core: https://learn.microsoft.
com/en-us/aspnet/core/razor-pages/ui-class

• Angular: HttpInterceptor: https://angular.io/api/common/http/HttpInterceptor
• Role-based authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/

security/authorization/roles

• Account confirmation and password recovery in ASP.NET Core: https://learn.microsoft.com/
en-us/aspnet/core/security/authentication/accconfirm

• How to use Identity to secure a Web API backend for SPAs: https://learn.microsoft.com/en-us/
aspnet/core/security/authentication/identity-api-authorization

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes
https://angular.io/guide/router#preventing-unauthorized-access
https://angular.io/guide/router#preventing-unauthorized-access
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/introduction
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/introduction
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/simple
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/simple
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity#full
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity#full
https://learn.microsoft.com/en-us/aspnet/core/razor-pages/ui-class
https://learn.microsoft.com/en-us/aspnet/core/razor-pages/ui-class
https://angular.io/api/common/http/HttpInterceptor
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://learn.microsoft.com/en-us/aspnet/core/security/authorization/roles
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/accconfirm
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/accconfirm
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization
https://packt.link/aspdotnet8angular

12
Progressive Web Apps

In this chapter, we’ll focus on a topic that we just briefly mentioned back in Chapter 2, Getting Ready,
when we first talked about the different development patterns for web applications available nowadays:
Progressive Web Apps (PWAs).

As a matter of fact, both our HealthCheck and WorldCities apps currently stick to the Single-Page
Application (SPA) model, at least for the most part; in the following sections, we’ll see how we can
turn them into PWAs by implementing several well-established capabilities required by such a devel-
opment approach.

As we learned in Chapter 2, Getting Ready, a PWA is a web application that uses a modern web browser’s
capabilities to deliver an app-like experience to users. To achieve this, the PWA needs to meet some
technical requirements, including a Web App Manifest file and a service worker to allow it to work in
offline mode and behave just like a mobile app.

More precisely, here’s what we’re going to talk about:

• PWA distinctive features, where we’ll summarize the main characteristics of a PWA and identify
the technical requirements of a PWA by following its known specifications.

• Implementing the PWA requirements on our existing HealthCheck and WorldCities apps to
turn them into PWAs. More precisely, we’ll do that using two different approaches: manually
performing all the required steps for the HealthCheck app, and then using the PWA automatic
setup offered by the Angular CLI for the WorldCities app.

• Handling the offline status, where we’ll update our components to behave differently when
the app is offline – such as limiting their features and/or showing an offline status informative
message.

• Testing the new PWA capabilities, where we’ll ensure that our implementation will properly
work with both of our apps.

By the end of this chapter, we’ll have learned how to successfully convert an existing SPA into a PWA.

Progressive Web Apps572

Technical requirements
In this chapter, we’re going to need all previous technical requirements listed in previous chapters,
with the following additional packages:

• @angular/service-worker (npm package)
• ng-connection-service (npm package)
• Microsoft.AspNetCore.Cors (NuGet package)
• WebEssentials.AspNetCore.ServiceWorker (NuGet package, optional)
• http-server (npm package)

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during
this chapter to better contextualize their purposes within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/master/Chapter_12/.

PWA distinctive features
Let’s start by summarizing the main distinctive characteristics of a PWA:

• Progressive: A PWA should work for every user, regardless of the platform and/or browser used.
• Responsive: They must adapt well to any form factor: desktop, mobile, tablet, and so on.
• Connectivity-independent: They must be able to work offline—at least to some extent, such

as informing the user that some features might not work in offline mode—or on low-quality
networks.

• App-like: They need to provide the same navigation and interaction mechanics as mobile apps.
This includes tap support, gesture-based scrolling, and so on.

• Safe: They must provide HTTPS support for better security, such as preventing snooping and
ensuring that their content has not been tampered with.

• Discoverable: They have to be identifiable as web applications using a W3C manifest file and
a service worker registration scope so that search engines will be able to find, identify, and
categorize them.

• Re-engageable: They should make re-engagement easy through features such as push notifi-
cations.

• Installable: They should allow users to install and keep them on their desktop and/or mobile
home screen, just like any standard mobile app, yet without the hassle of having to download
and install them from an app store.

• Linkable: They should be easily shared through a URL, without requiring complex installation.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_12/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_12/

Chapter 12 573

These high-level requirements can be translated into specific technical tasks that we have to imple-
ment. The best way to do that is by starting with the technical baseline criteria described by Alex
Russell, the Google Chrome engineer who coined the term PWA together with the designer Frances
Berriman back in 2015:

• Originate from a secure origin: In other words, there’s full HTTPS support with no mixed
content (green padlock display)

• Load while offline, even if it’s just an offline information page: This clearly implies that we
need to implement a service worker

• Reference a Web App Manifest with at least the four key properties: name, short_name, stat_url,
and display (with either a standalone or fullscreen value)

• A 144 × 144 icon in PNG format: Other sizes are supported, but the 144 x 144 one is the mini-
mum requirement

• Use vector graphics, as they can scale indefinitely and require smaller file sizes

Each one of these technical requirements can be translated into a specific technical task that we have
to implement. In the following sections, we’ll see how we can implement them.

Secure origin
Implementing the secure origin feature basically means serving our app through an HTTPS certificate.
Such a requirement is rather easy to fulfill nowadays: TLS certificates are quite cheap thanks to the
many resellers available. A PositiveSSL certificate issued by Comodo Inc. can be purchased online for
$10/year or so and is immediately available for download.

If we don’t want to spend money, there’s also a free alternative provided by Let’s Encrypt: a free, auto-
mated, open Certificate Authority that can be used to obtain a TLS certificate without costs. However,
the method they use to release the certificate requires shell access (also known as SSH access) to the
deployment web host.

The preceding characteristics can be inferred from the following articles written by the
Google developers and engineers who spent their efforts on introducing the PWA concept
and defining its core specs:

https://developers.google.com/web/progressive-web-apps

https://developers.google.com/web/fundamentals

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-
losing-our-soul/

For additional information about Let’s Encrypt and how to obtain an HTTPS certificate
for free, check out the official site: https://letsencrypt.org/.

https://developers.google.com/web/progressive-web-apps
https://developers.google.com/web/fundamentals
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://letsencrypt.org/

Progressive Web Apps574

For the sake of simplicity, we’ll not cover the HTTPS certificate release and installation part; we’ll take
for granted that you will be able to properly install it, thanks to the many how-to guides available from
the various resellers’ websites (including Let’s Encrypt).

Offline loading
Connection independency is one of the most important capabilities of PWAs; to properly implement it,
we need to introduce—and implement—a concept that we’ve just barely mentioned until now: service
workers. What are they, and how can they help our app to work while offline?

The best way to figure out what a service worker is would be to think of it as a script that runs inside the
web browser and handles a specific task for the application that registered it: such tasks can include
caching support and push notifications.

When properly implemented and registered, service workers will enhance the user experience (UX)
provided by standard websites by delivering a UX similar to what can be achieved by native mobile
apps; technically, their role is to intercept any ongoing HTTP request made by the user and—whenever
it’s directed to the web application they are registered for—check for the web application’s availability
and act accordingly. To put it in other words, we could say that they act as an HTTP proxy with fallback
capabilities when the application is unable to handle the request.

Such a fallback can be configured by the developer to behave in many ways, such as the following:

• Caching service (also known as offline mode): The service worker will deliver a cached re-
sponse by querying an internal (local) cache previously built from the app (when it was online)

• Offline warning: Whenever no cached content is available (or if we didn’t implement a caching
mechanism), the service worker can serve an offline status informative text, warning the user
that the app is unable to work

Those who are familiar with forward cache services might prefer to imagine service workers as reverse
proxies (or CDN edges) installed in the end user’s web browser instead.

The caching service feature is great for web applications that provide static content, such as HTML5-based
gaming apps and Angular apps that don’t require any back-end interaction. Unfortunately, it’s not ideal
for our two apps: both HealthCheck and WorldCities strongly rely upon the back-end Web API pro-
vided by ASP.NET. Conversely, these apps can definitely benefit from an offline warning, so that their
users will be informed that an internet connection is required—instead of getting a connection error,
a 404 - Not Found message, or any other message.

Service workers versus HttpInterceptors
If we remember the various Angular features that we introduced in Chapter 11, Authentication and
Authorization, we can see how the aforementioned behavior reminds us of the role performed by
HttpInterceptors.

However, since interceptors are part of the Angular app script bundle, they always cease to work when-
ever the user closes the browser tab that contains the web app. Furthermore, interceptors are only
able to intercept calls made with Angular’s HttpClient: they won’t be able to handle browser requests
issued to load scripts, stylesheets, images, and so on.

Chapter 12 575

Conversely, service workers need to be preserved after the user closes the tab so that they can intercept
the browser requests before connecting to the app.

Enough with the theory, let’s now see how we can implement an offline mode, Web App Manifest, and
PNG icons in our existing apps.

Introducing @angular/service-worker
Starting with version 5.0.0, Angular provides a fully featured service worker implementation that can
be easily integrated into any app without needing to code against low-level APIs. Such an implemen-
tation is handled by the @angular/service-worker npm package and relies upon a manifest file that
is loaded from the server that describes the resources to cache and will be used as an index by the
service worker, which behaves in the following way:

• When the app is online, each indexed resource will be checked to detect changes; if the source
has changed, the service worker will update or rebuild the cache

• When the app is offline, the cached version will be served instead

The aforementioned manifest file is generated from a CLI-generated configuration file called ngsw-
config.json, which we’ll have to create and set up accordingly.

Here’s an example of a manifest file similar to the one we need (and that we’ll add in a short while):

{
 "name": "My Sample App",
 "short_name": " MySampleApp ",
 "start_url": ".",
 "display": "standalone",
 "background_color": "#fff",
 "description": "A simply readable Hacker News app.",
 "icons": [{
 "src": "images/touch/homescreen48.png",
 "sizes": "48x48",
 "type": "image/png"
 }, {
 "src": "images/touch/homescreen72.png",
 "sizes": "72x72",
 "type": "image/png"

It’s worth mentioning that web browsers will always ignore service workers if the website
that tries to register them is served over an unsecured (non-HTTPS) connection. The
reason for that is quite simple to understand: since service workers’ defining role is to
proxy their source web application and potentially serve alternative content, malicious
parties could be interested in tampering with them; therefore, allowing their registration
to secure websites only will provide an additional security layer to the whole mechanism.

Progressive Web Apps576

 }, {

... multiple icon definitions ...

 }],
 "related_applications": [{
 "platform": "play",
 "url": "https://play.google.com/store/apps/details?id=my.sample.app "
 }]
}

In the following section, we’ll learn how to implement the @angular/service-worker package in our
existing Angular apps following two very different—yet equally rewarding—approaches.

Implementing the PWA requirements
To perform the required implementation steps that we’ve focused on in the previous section, we have
two choices:

• Perform a manual update of our app’s source code
• Use the automatic installation feature provided by the Angular CLI

To learn the most from the experience, both of these paths should be taken at least once. Luckily
enough, we have two existing Angular apps to experiment with. Therefore, we’ll take the manual route
for our HealthCheck app first, then we’ll experience the automatic CLI setup for the WorldCities app.

Manual installation
In this section, we’ll see how to manually implement the required technical steps we’re still missing
to make our HealthCheck app fully compliant with the PWA requirements.

Let’s briefly recap them:

1. Add the @angular/service-worker npm package (package.json)
2. Enable service worker support in the Angular CLI configuration file (angular.json)
3. Import and register ServiceWorkerModule in the AppModule class (app.module.ts)
4. Update the main app’s HTML template file (index.html)
5. Add a suitable icon file (favicon.ico)
6. Add the manifest file (manifest.webmanifest)
7. Add the service worker configuration file (ngsw-config.json)

For each step, we’ve mentioned the relevant file that we’ll have to update in parentheses.

Chapter 12 577

Adding the @angular/service-worker npm package
The first thing to do is to add the @angular/service-worker npm package to our package.json file.
As we can easily guess, such a package contains Angular’s service worker implementation that we
were talking about a moment ago.

Open the package.json file and add the following package reference to the "dependencies" section,
right below the @angular/router package:

// ...

"@angular/router": "17.0.3",
"@angular/service-worker": "17.0.3",

// ...

As soon as we save the file, the npm package should be downloaded and installed automatically by
Visual Studio; if that’s not the case, run npm install manually to force the packages to update.

Updating the angular.json file
Open the angular.json configuration file and add the "serviceWorker" key to the end of the projects
| healthcheck.client | architect | build | configuration | production section (the new line is
highlighted):

// ...

 "outputHashing": "all",
 "serviceWorker": "ngsw-config.json"

// ...

The "serviceWorker" value that we’ve just set up will cause the production build to include a couple
of extra files in the output folder:

• ngsw-worker.js: The main service worker file
• ngsw.json: The Angular service worker’s runtime configuration

Both of these files are required for our service worker to perform its job.

As always, whenever we have issues while applying these changes, we can check out the
source code available in this book’s GitHub repository.

Progressive Web Apps578

Importing ServiceWorkerModule
ServiceWorkerModule provided by the @angular/service-worker npm package library will take care
of registering the service worker as well as providing a few services we can use to interact with it.

To install it on our HealthCheck app, open the /src/app/app.module.ts file and add the following
lines (the new lines are highlighted):

// ...

import { ServiceWorkerModule } from '@angular/service-worker';
import { environment } from '../environments/environment';

// ...

imports: [
 // ...
 ServiceWorkerModule.register('ngsw-worker.js', {
 enabled: environment.production,
 // Register the ServiceWorker as soon as the app is stable
 // or after 30 seconds (whichever comes first).
 registrationStrategy: 'registerWhenStable:30000'
 })
],

// ...

As we said earlier, the ngsw-worker.js file referenced in the preceding code is the main service worker
file, which will be auto-generated by the Angular CLI when building the app.

When implemented in this way, the service worker will be enabled only when our Angular app runs
in a production environment, which is precisely what we want.

Updating the index.html file
The /src/index.html file is the main entry point for our Angular app(s). It contains the <app-root>
element, which will be replaced by our app’s GUI at the end of the Bootstrap phase, as well as some
resource references and meta tags that describe our application’s behavior and configuration settings.

For additional information regarding the service worker registration options and the
various registrationStrategy settings, visit the following URL: https://angular.io/
api/service-worker/SwRegistrationOptions.

https://angular.io/api/service-worker/SwRegistrationOptions
https://angular.io/api/service-worker/SwRegistrationOptions

Chapter 12 579

Open that file and add the following code at the end of the <head> element (the updated lines are
highlighted):

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>HealthCheck</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link href="https://fonts.googleapis.com/
css2?family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
 <!-- PWA required files -->
 <link rel="manifest" href="manifest.webmanifest">
 <meta name="theme-color" content="#1976d2">
</head>
<body class="mat-typography">
 <app-root></app-root>
</body>
</html>

The highlighted lines configure the app’s theme-color, and—most importantly—the link to the
manifest.webmanifest file, which—as its name clearly implies—is the app’s manifest file, one of the
key requirements for any PWA.

That’s great to hear, except it doesn’t exist in our app yet: let’s fix this gap now.

Adding the Web App Manifest file
Instead of manually creating a Web App Manifest file from scratch, we can generate it automatically
using one of the various Web App Manifest generators available online.

For the purpose of this book, we’re going to use the Web App Manifest Generator by Samson Amaugo:
https://github.com/sammychinedu2ky/Web-App-Manifest-Generator.

And more specifically, we’ll use the instance hosted by Netlify at the following URL: https://manifest-
gen.netlify.app/.

This handy tool will also generate all of the required PNG icon files for us, hence saving us a lot of time.
However, we’ll require a 512 x 512 image source. If we don’t have one, we can easily create one using
the DummyImage website, another useful free tool that can be used to generate placeholder images
of any size, which is available at https://dummyimage.com/.

https://github.com/sammychinedu2ky/Web-App-Manifest-Generator
https://manifest-gen.netlify.app/
https://manifest-gen.netlify.app/
https://dummyimage.com/

Progressive Web Apps580

Here’s a generated PNG file that we can use to feed the preceding Firebase Web App Manifest Generator
tool:

Figure 12.1: PNG file generated by DummyImage

As we can easily guess, HC stands for HealthCheck; we won’t likely win a graphic design contest with
this image, but it will work just fine for our current task.

The 512 x 512 icon will be used by the Web App Manifest Generator online tool to create all the re-
quired icons for our PWA.

Once done, go back to the Web App Manifest Generator online tool and configure it using the following
parameters:

• App Name: HealthCheck
• Short Name: HealthCheck
• Theme Color: #2196f3
• Background Color: #2196f3
• Display Mode: Standalone

The preceding PNG file can be downloaded from: https://dummyimage.
com/512x512/361f47/fff.png&text=HC.

You are free to either use it, create another file using that same tool, or provide another
image.

As per Google’s recommendations, a valid PWA manifest file will need at least two icons
with a respective size of 192 x 192 and 512 x 512 pixels: https://web.dev/installable-
manifest/#recommendations.

The online generator will vastly exceed the minimum requirements by creating eight
different icons to accommodate most of the major formats used by different devices.

https://dummyimage.com/512x512/361f47/fff.png&text=HC
https://dummyimage.com/512x512/361f47/fff.png&text=HC
https://web.dev/installable-manifest/#recommendations
https://web.dev/installable-manifest/#recommendations

Chapter 12 581

• Orientation: Any
• Application Scope: /
• Start Url: /

Then, click to the right of the SUBMIT button at the bottom and select the HC image that we generated
a moment ago, as shown in the following screenshot:

Figure 12.2: Web App Manifest Generator

Generate the archive file by clicking on the SUBMIT button, unpack it, and copy the included files in
the following way:

• The manifest.json file in the /src/ folder
• The /icons/ folder, with all of its content, in the /src/assets/ folder, so that the actual PNG

files will be placed in the /src/assets/icons/ folder

Once done, we need to perform the following changes to the manifest.json file:

• Change all of the icon starting paths from images/icons/ to assets/icons/
• Rename it from manifest.json to manifest.webmanifest, since that’s the name defined by

the Web App Manifest W3C specs

As a matter of fact, the .json and .webmanifest extensions will both work; however, since most web
servers do not natively support the .webmanifest extension, opting for the .json choice would argu-
ably make things easier. On the other hand, .json files are typically served using the application/
json content type, which differs from the application/manifest+json content type recommended
by the Web App Manifest W3C specifications.

Progressive Web Apps582

That said, since we do want our PWAs to adhere to the Web App Manifest W3C specs, we’re going to
perform the above renaming and use the .webmanifest extension for our sample apps. This decision
will require us to perform some additional tasks when we deploy our PWAs in production, such as man-
ually adding that extension (and its application/manifest+json MIME type) to the list of supported
file types in several web servers —as we’ll see in Chapter 15, Windows, Linux, and Azure Deployment.

Now that we have made the necessary changes to the web app manifest file, we need to ensure it will
be included in the Angular publishing bundle.

Publishing the Web App Manifest file
To have our /src/manifest.webmanifest file published together with the rest of our HealthCheck
Angular app files, we need to add it to the /angular.json CLI configuration file.

Open that file and locate all of the following entries:

"assets": [
 "src/favicon.ico",
 "src/assets"
],

For each of them, add the manifest file to the existing assets in the following way:

"assets": [
 "src/favicon.ico",
 "src/assets",
 "src/manifest.webmanifest"
],

There should be two "assets" key entries in the angular.json file:

• projects > healthcheck.client > architect > build > options

• projects > healthcheck.client > architect > test > options

Both of them need to be modified as explained in the preceding code.

With this update, the manifest.webmanifest file will be published to the output folder whenever we
build the Angular app.

Those who want to take a look at the Web App Manifest W3C Working Draft 29 November
2023 can visit the following URL: https://www.w3.org/TR/appmanifest/.

To find out more about the .json versus .webmanifest extension debate, take a look at
this interesting discussion in the Web App Manifest GitHub repository: https://github.
com/w3c/manifest/issues/689.

https://www.w3.org/TR/appmanifest/
https://github.com/w3c/manifest/issues/689
https://github.com/w3c/manifest/issues/689

Chapter 12 583

Adding the favicon
A favicon (also known as a favorite icon, shortcut icon, website icon, tab icon, URL icon, or bookmark
icon) is a file containing one or more small icons that can be used to identify a specific website; when-
ever we see a small icon in a browser’s address bar, history, and/or tab containing a given website,
we’re looking at that website’s favicon.

Favicons can be generated manually, but if we’re not graphic designers, we might want to use one of
the various favicon generators available online, especially considering that most of them are entirely
free to use; the only thing that we need is a suitable image, which needs to be provided manually (and
uploaded to the service).

Alternatively, we can download one of the many royalty-free favicon sets available online.

As a matter of fact, the ASP.NET Core and Angular Visual Studio template that we used to create our
HealthCheck project already provided us with a favicon: we can find it in our project’s /wwwroot/ folder.

Honestly speaking, this favicon is not that bad, as we can see from the following screenshot:

Figure 12.3: The default favicon provided by our template

Here’s a couple of recommended favicon online generators available nowadays:

favicon�io (https://favicon.io/)

Real Favicon Generator (https://realfavicongenerator.net/)

Here are some websites that offer free favicons to download:

Icons8 (https://icons8.com/icons/set/favicon)

FreeFavicon (https://www.freefavicon.com/freefavicons/icons/)

https://favicon.io/
https://realfavicongenerator.net/
https://icons8.com/icons/set/favicon
https://www.freefavicon.com/freefavicons/icons/

Progressive Web Apps584

Keeping the above favicon won’t prevent our app from becoming a PWA; that said, if we want to replace
it with a custom one, we’re free to do that using one of the aforementioned websites.

Adding the ngsw-config.json file
From Solution Explorer, create a new ngsw-config.json file in the healthcheck.client project’s root
folder, and replace the content with the following:

{
 "$schema": "./node_modules/@angular/service-worker/config/schema.json",
 "index": "/index.html",
 "assetGroups": [
 {
 "name": "app",
 "installMode": "prefetch",
 "resources": {
 "files": [
 "/favicon.ico",
 "/index.html",
 "/manifest.webmanifest",
 "/*.css",
 "/*.js"
]
 }
 },
 {
 "name": "assets",
 "installMode": "lazy",
 "updateMode": "prefetch",
 "resources": {
 "files": [
 "/assets/**",
 "/*.(eot|svg|cur|jpg|png|webp|gif|otf|ttf|woff|woff2|ani)"
]
 }
 }
]
}

Chapter 12 585

As we can see by looking at the assetGroups > app section, the preceding file tells Angular to cache
the favicon.ico file and the manifest.webmanifest file, which we created a short while ago, as well
as the main index.html file and all of the CSS and JavaScript bundles—in other words, our application’s
static asset files. Right after that, there is an additional assetGroup > assets section, which defines
the image files to cache.

The main difference between these two sections is the installMode parameter value, which determines
how these resources are initially cached:

• prefetch tells the service worker to fetch those resources while it’s caching the current ver-
sion of the app; in other words, it will put all of those contents in the cache as soon as they
become available, that is, the first time the browser visits the online app. We might call this
an up-front caching strategy.

• lazy tells the service worker to only cache those resources when the browsers explicitly request
them for the first time. This could be called an on-demand caching strategy.

The preceding settings can be good for generic Angular apps that only rely on the front-end (no back-
end required calls) since these files basically contain the whole app; more specifically, an Angular app
hosting an HTML5 game—which arguably relies upon a lot of image files—might think about moving
some of its image files (or even all of them) from the assets section to the app section, so that the
whole application—including the icons, the sprites, and all of the image resources—will be cached
upfront and be entirely available even when the app is offline.

However, such a caching strategy would not be enough for our healthcheck.client and worldcities.
client apps; even if we tell our service worker to cache the whole app files, all of our apps’ HTTP
calls would still fail whenever the browser is offline, without letting the user know anything about
it. As a matter of fact, our back-end availability requirement forces us to do some additional work for
both of our apps.

However, before doing that, let’s bring our worldcities.client app up to speed.

Automatic installation
All of the steps that we performed manually in the previous section to enable Service Worker support
for our healthcheck.client app can be done automatically by using the following CLI command:

> ng add @angular/pwa@17.0.3

Let’s adopt this alternative technique for our worldcities.client app.

Open Command Prompt and navigate to the worldcities.client app’s root folder, then execute the
preceding command; the Angular CLI will automatically configure our app by adding the @angular/
service-worker package and performing the other required steps.

Progressive Web Apps586

The most relevant information for the whole operation will be written in the console output, as shown
in the following screenshot:

Figure 12.4: Enabling service worker support via Command Prompt

As we can see from the logs, the automatic process performs the same steps that we just applied to
the healthcheck.client app.

The Angular PNG icon set
The PWA automatic setup feature will also provide some PNG icons of various sizes in the /src/assets/
icons/ folder. If we open them with a graphics application, we can see that they all reproduce the
same Angular logo featured in the built-in favicon.ico file that we saw a moment ago, as shown in
the following figure:

Figure 12.5: The Angular logo provided by the PWA automatic setup

Whenever we want to make our app available to the public, we will likely want to change these icons.
However, they are more than enough, at least for the time being; let’s keep these files as they are and
move on to the last remaining task to transform our SPAs into PWAs.

Chapter 12 587

Handling the offline status
Now that we have configured a service worker in both of our apps, we can think of a way to handle
the offline status message, so that each one of our components will be able to behave in a different
way when the app is offline—such as limiting their features and showing an offline status informative
message to our users.

To implement these conditional behaviors, we need to find a way to properly determine the browser
connectivity status, that is, whether it’s online or not; in the following sections, we’ll briefly review
several different approaches that we can use to do that to make the (arguably) best possible choice.
These approaches are:

• The window’s ononline/onoffline events
• The navigator.onLine property
• A third-party package that determines the online/offline status in Angular

We will go into each of these in the following sections.

Option 1 – the window’s ononline/onoffline events
If we’re willing to accept a pure JavaScript way to handle this, such a task can be easily achieved using
the window.ononline and window.onoffline JavaScript events, which are directly accessible from
any Angular class.

Here’s how we can use them:

window.addEventListener("online", function(e) {
 alert("online");
}, false);

window.addEventListener("offline", function(e) {
 alert("offline");
}, false);

However, if we’re willing to adopt a pure JavaScript approach, there’s an even better way to implement it.

Option 2 – the navigator.onLine property
Since we don’t want to track the network status changes and are just looking for a simple way to de-
termine whether the browser is online or not, we can make things even simpler by just checking the
window.navigator.onLine property:

if (navigator.onLine) {
 alert("online");
}
else {
 alert("offline");
}

Progressive Web Apps588

As we can easily guess from its name, this property returns the online status of the browser. The prop-
erty returns a Boolean value, with true meaning online and false meaning offline, and is updated
whenever the browser’s ability to connect to the network changes.

Thanks to this property, our Angular implementation could be reduced to this:

ngOnInit() {
 this.isOnline = navigator.onLine;
}

Then, we can use the isOnline local variable within our component’s template file so that we can show
different content to our users using the ngIf structural directive. That would be pretty easy, right?

Unfortunately, things are never that simple; let’s try to understand why.

Downsides of the JavaScript approaches
Both of the JavaScript-based approaches we’ve mentioned suffer from a serious drawback caused
by the fact that modern browsers implement the navigator.onLine property (as well as the window.
ononline and window.onoffline events) in different ways.

More specifically, Chrome and Safari – as well as the new Chromium-based Microsoft Edge – will set
that property to true whenever the browser can connect to a LAN or a router. This can easily produce
a false positive since most home and business connections are connected to the internet through a
LAN, which will probably stay up even when the actual internet access is down.

All things considered, this basically means that we cannot use the convenient approaches described
earlier to check our browser’s online status, so in order to seriously deal with this matter, we need to
find a better way to do it.

Option 3 – the ng-connection-service npm package
Luckily enough, there’s a neat npm package that does precisely what we need: its name is ng-
connection-service and it’s basically an internet connection monitoring service that can detect whether
the browser has an active internet connection or not.

The online detection task is performed using a (configurable) heartbeat mechanism, which will period-
ically issue HTTP HEAD requests to a (configurable) URL to determine the internet connection status.

Needless to say, with it being an Angular service, we’ll be able to configure it in a centralized way and
then inject it whenever we need to without having to manually configure it every time: that almost
seems too good to be true!

Let’s see how we can implement it.

For additional information regarding the navigator.onLine property and its drawbacks,
check out the following URL: https://developer.mozilla.org/en-US/docs/Web/API/
Navigator/onLine.

https://developer.mozilla.org/en-US/docs/Web/API/Navigator/onLine
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/onLine

Chapter 12 589

Installing the service
To do that, open the package.json file of the healthcheck.client project and add the following line
right below the @angular/service-worker package that we added a moment ago:

// ...

"@angular/service-worker": "17.0.3",
"ng-connection-service": "15.0.0",

// ...

Once that is done, open Command Prompt and execute npm install to update the packages: right
after that, we can implement the service within our app(s).

After ensuring that our NPM packages have been updated, we can configure the new service.

Updating the AppModule file
The first thing to do is to add the package module to our AppModule file. To do that, open the
healthcheck.client project’s app.module.ts file and add the following highlighted lines:

// ...

import { ConnectionServiceModule } from 'ng-connection-service';

@NgModule({
// ...

 imports: [

// ...

 ConnectionServiceModule
],

// ...

We didn’t do much here – just the usual module added to the loop. The main part of the job will be
performed on the AppComponent.

The package version we specified in the above code (the latest at the time of writing)
explicitly grants supports for Angular from v8 to v15, but happens to be fully compatible
with Angular’s latest version as well.

Progressive Web Apps590

Updating the AppComponent
The whole point of what we’re doing right now is to make our users aware of the app being offline with
an offline status informative message. To be effective, this message should be displayed:

• As soon as possible, so that our users will know the app’s connectivity status before navigating
somewhere

• Everywhere, so that they will be warned about it even if they’re visiting some internal views

Therefore, a good place to implement it would be the AppComponent class, which contains all of our
components, regardless of the front-end route picked by the user.

app.component.ts
Let’s start with the TypeScript file.

Open the /src/app/app.component.ts file and modify its class file accordingly (the updated lines
are highlighted):

import { Component } from '@angular/core';
import { ConnectionService, ConnectionServiceOptions, ConnectionState } from
'ng-connection-service';
import { Observable, map } from 'rxjs';
import { environment } from '../environments/environment';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.scss']
})

export class AppComponent {
 title = 'HealthCheck';

 public isOffline: Observable<boolean>;

 constructor(private connectionService: ConnectionService) {
 const options: ConnectionServiceOptions = {
 enableHeartbeat: true,
 heartbeatUrl: environment.baseUrl + 'api/heartbeat',
 heartbeatInterval: 10000
 };
 this.isOffline = this.connectionService.monitor(options)
 .pipe(map(state => !state.hasNetworkConnection || state.
hasInternetAccess));

Chapter 12 591

 }

}

The above code should be quite easy to understand at this point: we’ve set up some local variables and
subscribed to the connectionService – instantiated in the component’s constructor using dependency
injection (DI) – to periodically update them. We’ve also added an isOffline observable that can be
used to determine the app’s online status.

Furthermore, we took the chance to define the service settings using ConnectionServiceOptions, a
convenient configuration object that can be used to change the service default values. More specifi-
cally, we made three changes:

• enableHeartbeat: Enables or disables the internet connectivity heartbeat system. The default
value is true, but we chose to explicitly set it to improve the code readability (and to make it
easier to disable it, in case we need to do that).

• heartbeatUrl: The URL that will be used to check internet connectivity by periodically is-
suing HTTP HEAD requests (see heartbeatInterval). The default value is a third-party URL //
internethealthtest.org, which we changed to a local endpoint served by our HealthCheck.
Server app that doesn’t exist yet (but we’ll implement it soon enough).

• heartbeatInterval: The interval (in milliseconds) used to retry internet connectivity checks
when an error is detected. The default value is 1000 (1 second). We raised it to 10000 (10 sec-
onds) to avoid issuing too many requests.

The other default values are already OK, so we are not going to change them.

It’s worth noting that we took the decision to change the heartbeatUrl for several good reasons, the
most important of them being the following:

• To avoid being a nuisance to those third-party hosts
• To receive a more relevant result, since we need to know not only if our app can reach the

internet but also if it can connect to the domain hosting our Web API back-end – and even if
the back-end is working or not!

• To avoid Cross-Origin Resource Sharing (CORS) issues against third-party resources (more
on that later)

That said, since we have set the heartbeatUrl to a local endpoint that doesn’t exist yet, we will need
to create it within our HealthCheck.Server ASP.NET Core project. However, before switching there,
let’s put the finishing touches to our Angular app.

app.component.html
Now that we know that the isOffline observable is available, we can modify the template file of
AppComponent to show the informative “offline status” message to our users whenever it becomes true.

Progressive Web Apps592

Open the /src/app/app.component.html file and update its content with the following highlighted
lines:

<app-nav-menu></app-nav-menu>

<div class="alert alert-warning" *ngIf="isOffline | async">
 WARNING: the app is currently <i>offline</i>:
 some features that rely upon the back-end might not work as
 expected. This message will automatically disappear as soon
 as the internet connection becomes available again.
</div>

<div class="container">
 <router-outlet></router-outlet>
</div>

That’s it: since our app’s Home view doesn’t directly require a back-end HTTP request, we’ve chosen to
just show a warning message to inform the user that some of our app’s features might not work while
offline. Conversely, we could’ve entirely shut down the app by putting an additional ngIf="isOffline
| async" structural directive to the other elements, so that the offline status message would be the
only visible output.

app.component.scss
Now we just need to style our new offline status alert.

Open the /src/app/app.component.scss file and append the following lines to the existing content:

.alert {
 position: relative;
 padding: .75rem 1.25rem;
 margin-bottom: 1rem;
 border: 1px solid transparent;
 border-radius: .25rem;

 &.alert-warning {
 color: #856404;
 background-color: #fff3cd;
 border-color: #ffeeba;
 }
}

That’s it: with this, we’re done with our Angular tasks.

Before switching to ASP.NET Core, let’s perform a quick test of what we’ve done so far: hit F5 to run
the project in Debug mode and press Ctrl + Shift + J to show the console window.

Chapter 12 593

If we did everything correctly, the AppComponent should subscribe to the new service, which should
hit an HTTP 404 while trying to check for the api/heartbeat endpoint, which doesn’t exist yet. As a
result, the isOffline local variable should return true, thus causing the alert to show up, as in the
following screenshot:

Figure 12.6: The offline alert message showing up

Now we need to ensure that the api/heartbeat endpoint will be found: to do that, we need to switch
to the HealthCheck.Server project and perform some updates there as well.

However, before switching to the ASP.NET Core Web API project, let’s take the chance to apply all
the Angular changes to the worldcities.client project as well. We don’t do that here for reasons of
space, but the GitHub project repository for this chapter contains all the required updates for both
projects and is a good reference for those who need help to replicate the steps we have taken so far.

Adding the api/heartbeat endpoint
To create a new API endpoint in our ASP.NET Core app, we might be tempted to add a new Controller,
just like we did in all previous chapters, or maybe we can create a new action method in an existing
controller?

As a matter of fact, both options would work just fine; however, the HealthCheck.Server project has just
a single controller, and creating a new one just to handle a heartbeat HEAD request might be overkill.
As for the WorldCities.Server project, the existing controllers are meant to serve a specific purpose:
what would a heartbeat action method have to do with controllers returning cities and countries data?

If controllers were the only way to handle such a task, we would definitely have to create a new con-
troller in both of our Web API projects. However, we can take this chance to introduce an alternative
method to deal with HTTP requests that we’ve never used until now; this method is called Minimal
APIs and it was introduced with ASP.NET Core 6.

Progressive Web Apps594

Introducing Minimal APIs
Explaining Minimal APIs in few words is not an easy task. However, for the sake of simplicity, let’s try
to briefly summarize the concepts of this new ASP.NET Core feature.

In a nutshell, Minimal APIs are a set of helper methods introduced to allow developers to handle HTTP
requests with minimal dependencies, files, and source code. This new approach can be used together
with standard controllers, as well as to entirely replace them, depending on the given scenario: ideally,
they are best suited for microservices and lightweight APIs, or to handle very simple requests – just
like the api/heartbeat endpoint that we need to add.

Without further ado, let’s open the Program.cs file and implement our very first Minimal API, right
below the existing app.MapControllers() method:

//...

app.MapControllers();

app.MapMethods("/api/heartbeat", new[] { "HEAD" },
 () => Results.Ok());

//...

As we can see, the newly added method is rather minimalistic, yet very readable: we are handling
incoming HTTP requests pointing to the api/heartbeat endpoint (HEAD requests only), returning
a standard 200 – OK HTTP response without content. That’s a lot swifter than creating a dedicated
controller, right?

As for the empty content, we just did that because we don’t need any: the content for a HEAD request
is quite irrelevant, the ng-connection-service just needs to check the status code of our response
to determine our app’s online status.

To test what we just did, we can run our HealthCheck project again: this time the alert shouldn’t be
visible anymore, meaning that our new api/heartbeat endpoint can be reached by the Angular app
and causes the AppComponent's isOffline local variable to return false.

Now we just need to perform the same tasks in our WorldCities.Server project, then we can move
to the next step.

Cross-Origin Resource Sharing
Now that we’ve added the api/heartbeat endpoint to our ASP.NET Web API project, let’s spend some
valuable time understanding the concept of Cross-Request Resource Sharing, better known as CORS.

As we said earlier, the latest version of ng-connection-service allows us to perform a HEAD request
over a defined amount of time (“heartbeat”) to determine whether we’re online or not. However, we
have chosen to change the third-party website that was set in the service’s default values to a dedicated
Web API endpoint under our control (api/heartbeat) that we’ve just added for that specific purpose.

Chapter 12 595

Why did we do that? What’s wrong with periodically issuing a HEAD request against a third-party
website?

The first reason is rather simple to understand: we don’t want to be a nuisance to those websites since
they’re definitely not meant for us to check their online status. If their system administrators see our
requests in their log, they could ban us or take some countermeasures that could prevent our heartbeat
check from working or—even worse—compromise its reliability status.

Another reason is that the reliability of a third-party site/service could be very different from our Web
API: what if such a website is reachable while the production environment of our WorldCities.Server
project is not? It’s rather obvious that we should check our heartbeat, not a different website’s one.

However, there’s yet another important reason for avoiding such a practice.

Allowing our app to issue HTTP requests to external websites might violate the default CORS policy
settings of those websites; while we’re here, it could be useful to take a bit of time to better understand
this concept.

As we might already know, modern browsers have built-in security settings that prevent a web page
from making JavaScript requests to a different domain than the one that served the web page: such a
restriction is called a same-origin policy and is introduced to prevent a malicious third-party website
from reading data from another site.

However, most websites might want (or need) to issue some external requests to other websites: for
example, the default heartbeatUrl configured in ng-connection-service would have told our app
to issue a HEAD request to the third-party service to check its online status.

These requirements, which are rather common in most apps, are called CORS. To allow them, the
browser expects to receive from the receiving server—the one that hosts the required resources—a
suitable CORS policy that will allow them to pass. If this policy doesn’t come—or doesn’t include the
requesting origin—the HTTP request will be blocked. Since this heartbeat-based mechanism is now
a critical part of our app, we can’t take the risk of being blocked by third-party CORS restrictions.
Therefore, we’ve replaced that troublesome external reference with a more secure URL pointing to
an internal resource under our control.

That said, since our Web API is playing the role of the external server, we might still want to configure
such a policy to allow our app to be able to call the api/heartbeat endpoint – as well as any other
endpoint – even from a non-local origin. This is not required now that we’re testing our app in our
localhost environment, but could definitely be the case when we publish our project in production.

At the time of writing, the third-party service defined in the default value of the
heartbeatUrl configuration parameter is accepting all origins, headers, and HTTP meth-
ods, thus posing no CORS issues. However, we have no guarantees that such a no-restric-
tions approach will be maintained in the future.

Progressive Web Apps596

Enough with the theory: let’s see how we can implement CORS in our HealthCheck.Server ASP.NET
Core project and allow all of its endpoints – including the api/heartbeat one – to be called from
external servers.

Implementing CORS
Configuring CORS in ASP.NET Core requires adding the CORS services and the CORS middleware, part
of the Microsoft.AspNetCore.Cors namespace, to the Program.cs file.

However, before doing that, we need to provide our app with a configuration setting that we can use
to specify the origin that we want to allow: a suitable place to do that is the appsettings.json file.

Adding the AllowedCORS configuration setting
Open the HealthCheck.Server’s appsettings.json file and add a new AllowedCORS key right below the
AllowedHosts key, as shown below:

// ...

"AllowedHosts": "*",
"AllowedCORS": "*"

// ...

The "*" wildcard value will relax the CORS policy for any endpoint, which will be good for our testing
purposes. We’ll restrict such permissive behavior in Chapter 15, Windows, Linux, and Azure Deployment,
when we’ll deploy our app(s) in production.

Right after saving the HealthCheck.Server’s appsettings.json file, open the WorldCities.Server’s
appsettings.json file and add the AllowedCORS key there as well before moving on.

Now that the AllowedCORS configuration setting is available, we can update our Program.cs file.

For additional information about CORS and its settings, visit the following URL: https://
developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

As we can see, we didn’t use the existing AllowedHosts key because it serves
a different purpose – which we will not deal with for reasons of space. If
you’re interested in learning more about it, check out the following URL:
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/
kestrel/host-filtering.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/host-filtering
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/host-filtering

Chapter 12 597

Updating the Program.cs file
Open the HealthCheck.Server’s Program.cs file and add the required highlighted lines of code:

using Microsoft.AspNetCore.Cors;

// ...

builder.Services.AddSwaggerGen();

builder.Services.AddCors(options =>
 options.AddPolicy(name: "AngularPolicy",
 cfg => {
 cfg.AllowAnyHeader();
 cfg.AllowAnyMethod();
 cfg.WithOrigins(builder.Configuration["AllowedCORS"]);
 }));

// ...

app.UseAuthorization();

app.UseCors("AngularPolicy");

// ...

The above code shouldn’t be too hard to understand:

• We’ve added the CORS services (AddCors) and configured a CORS policy that – when applied
– relaxes CORS for any HTTP header and method for the AllowedCORS endpoints specified in
the appsettings.json file.

• Down below, we added the CORS middleware (UseCors) just below the UseAuthorization()
method: it’s very important to place it before the middleware that handles the various endpoints
(Controllers, HealthChecks, Minimal APIs, and so on), so that our CORS policy will be applied
to all of them.

With this, we’ve successfully implemented all the required PWA features. Again, be sure to also apply
the above CORS settings to the WorldCities.Server project before moving on.

Let’s now find a way to properly test out what we did; it won’t be easy to do that from within Visual
Studio due to the distinctive features of PWAs, but there are some workarounds we can use to pull it off.

Progressive Web Apps598

Testing the PWA capabilities
In this section, we’ll try to test the service worker registration for our healthcheck.client app. Unfor-
tunately, doing it from a Visual Studio development environment is a rather complex task for several
reasons, including the following:

• ng serve, the Angular CLI command that pre-installs the packages and starts the app whenever
we run our app in debug mode, doesn’t support service workers

• The service worker registration tasks that we put in the AppModule class a while ago only works
when the app is running in a production environment

• The required static files generated by the Angular CLI using the angular.json configuration
file that we modified earlier on will only be available in production environments

However, we can easily work around these limitations by compiling our Angular app for production
and then running the generated files with a separate, dedicated HTTP server.

In the following sections, we are going to see how we can do all that.

Compiling the app
Here’s how we can publish our app using the Angular CLI. Open Command Prompt, navigate to the
project’s root folder, and type the following command:

ng build

The CLI will compile our Angular app within a new /dist/ folder that will contain all the generated
files. It’s worth noting that we are going to use this folder (and all its content) to test our service worker
only, deleting it afterward.

Now we just need to install a separate HTTP server that can support our service worker. To this end,
we’re going to use the http-server npm package: a simple, zero-configuration command-line static
HTTP server that is also recommended by the official Angular documentation for service workers.

It’s important to understand that http-service is not meant to be used for production usage. However,
its overall simplicity makes it perfect to use for testing, local development, and learning.

Installing http-server
http-server can be either installed using npm or directly launched using npx, a tool shipped with
Node.js that can be used to execute npm package binaries without installing them.

As an alternative, we could also exclude it from version control by adding the folder path
to the .gitignore file – which is what we did in the GitHub repository for this book.

Chapter 12 599

If we want to globally install it before launching it, we can do so with the following commands:

> npm install http-server -g
> http-server -p 8080 -c-1 dist/healthcheck.client/browser/

If we just want to test out our service worker, we can use the following command instead:

> npx http-server -p 8080 -c-1 dist/healthcheck.client/browser/

Both commands will launch http-server and serve our healthcheck.client app to the local 8080
TCP port, as shown in the following screenshot:

Figure 12.7: Launching http-server and serving the HealthCheck app

As soon as we do that, we can connect to it by opening a browser and typing the following URL in the
address bar: http://localhost:8080.

We can check out the PWA capabilities of our apps just like we did with Visual Studio and IIS Express
earlier; however, we won’t be able to test the back-end HTTP requests since http-server doesn’t natively
support ASP.NET Core. Luckily enough, we don’t need the back-end to run these tests.

Testing out our PWAs
For the sake of simplicity, the following screenshots will be all related to healthcheck.client, but
the same checks could be applied to the worldcities.client app as well since we configured it using
the same implementation patterns.

Progressive Web Apps600

Let’s start our test by stopping all our projects and closing all the windows to ensure we have no
running or active processes. Right after that, launch the http-server – as explained in the previous
section – and open a browser to the following URL: http://localhost:8080.

If we did everything correctly we should see the app’s Home view with the yellow offline alert visible
on screen. The reason for that is quite simple: our Web API is not launched (yet), hence the Angular
app is unable to reach the api/heartbeat endpoint.

We can easily check out this behavior by pressing Ctrl + Shift + J to open the Chrome Developer Tools
and then look at the Console tab, as shown in the following screenshot:

Figure 12.8: Chrome Developer Tools

Now we can hit F5 to start our healthcheck.client and HealthCheck.Server projects, which should
make the offline alert message disappear within a few seconds. Once you’re done, we can proceed
with the following test.

Keeping the Chrome Developer Tools window open, navigate to the Application tab, where we can see
that our Web App Manifest file has been properly loaded. If we scroll down the Application | Manifest
panel, we’ll be able to see our PNG icons as well.

It’s strongly advisable to perform the following tests with a Chromium-based browser, such
as Google Chrome or Microsoft Edge, since such engines come with some neat built-in
tools to check for the presence of a Web App Manifest and a service worker.

NOTE: It can take a while (10–20 seconds on a typical development machine) before the
service worker actually shows up on the first installation.

Chapter 12 601

The next thing we can check is the Application | Service Workers panel, which should strongly re-
semble the one shown in the following screenshot:

Figure 12.9: The Service workers panel

The service worker JavaScript file should be clearly visible, as well as its registration date and current
up-and-running status.

Let’s now try to put our web browser offline. To do that, activate the Offline checkbox in the top-left
section of the Chrome Developer Tools’ Application tab and see what happens:

Figure 12.10: View after putting the web browser offline

Our offline warning info message should immediately kick in, thanks to our angular-connected-
service implementation. If we move to the Network tab, we can see that the api/heartbeat endpoint
isn’t reachable anymore, meaning that the isOffline local variable of AppComponent is now returning
true.

Progressive Web Apps602

Now, we can resume the connectivity (by de-selecting the Offline checkbox) and check out two more
things: the linkable and installable PWA capabilities. Both of them are clearly shown on the rightmost
part of the browser’s address bar, as we can see in the following screenshot:

Figure 12.11: Checking the linkable and installable icons

If we go over those two icons with the mouse pointer, we should be able to see the contextual messages
asking us to create a QR code for the app (which will include the shareable URL) and install it on the
desktop. The actual implementation of these buttons may vary depending on the browser; however,
their core purpose remains the same.

Installing the PWA
Let’s now click the install button (the one with the plus sign inscribed in a circle) and confirm that we
want to locally install the HealthCheck PWA.

Within seconds, we should be able to see the Home view of our newly installed app in a desktop app-
like window, as shown in the following screenshot:

Figure 12.12: HealthCheck PWA in a desktop app-like window

From there, do the following:

1. Press Ctrl + Shift + J to open the Google Chrome Developer Tools again.
2. Navigate to the Application | Service workers panel.

Chapter 12 603

3. Click on the Offline checkbox to check/activate it again.

The app should, again, show the offline warning information message.

Needless to say, we won’t be able to see our health check results table while our app is offline, since
that data is fetched in real time and we currently have no offline caching mechanism that will save it
in local storage and make it available when the internet connection is unavailable. However, the offline
warning information message is enough to make our users aware of the fact that the app is offline.

That’s it: we have successfully turned our SPAs into PWAs. As a matter of fact, we have just scratched
the surface of the many possibilities offered by such a promising deployment approach. However,
we’ve successfully demonstrated that our front-end and back-end frameworks are fully able to handle
their main requirements properly and consistently.

Summary
This chapter was all about PWAs. We spent some valuable time better understanding the high-level
distinctive features of this modern web development pattern and how to translate them into techni-
cal specifications. Right after that, we started implementing them, taking into account the various
available options offered by our front-end and back-end frameworks.

As for the implementation, we chose to take the manual route for our healthcheck.client app first,
then to experience the automatic installation feature powered by the Angular CLI for the worldcities.
client app. In both scenarios, we made good use of the @angular/service-worker npm package, a
module available since Angular 5 that provides a fully featured service worker implementation that
can be easily integrated into our apps.

Next, we took some time to understand how to handle the offline status of our app, evaluating vari-
ous strategies and eventually choosing a heartbeat-based solution using the ng-connection-service
npm package and a dedicated Web API endpoint. While dealing with these tasks, we took the chance
to learn about and implement some convenient ASP.NET Core features, such as Minimal APIs and
Cross-Origin Resource Sharing.

After we did that, we manually ran some consistency tests to check the brand-new PWA capabilities
of our apps using Google Chrome (or MS Edge) and its developer tools.

At the end of this chapter, we finally saw our service worker in action, as well as the Web App Manifest
file being able to serve the PNG icons and provide the installing and linking features to our apps.

The various concepts that we learned about throughout this chapter have also helped us to focus on
some very important issues regarding the differences between development and production environ-
ments, hence making us ready to properly face the final part of our journey: Windows, Linux, and
Azure deployment, which will be the main topics of Chapter 15, Windows, Linux, and Azure Deployment.
However, before we get to that point, there are still a couple of topics that we need to address in the
next two chapters.

Progressive Web Apps604

Suggested topics
For further information, we recommend the following topics: Progressive Web Apps (PWAs), @an-
gular/service-worker, secure origin, HTTPS, TLS, Let’s Encrypt, service workers, HTTPInterceptors,
favicons, Web App Manifest file, Microsoft.AspNetCore.Cors, Cross-Origin Resource Sharing (CORS),
offline status, window.navigator, ng-connection-service, IIS Express, and http-server.

References
• Progressive Web Apps: https://developers.google.com/web/progressive-web-apps
• Web Fundamentals: https://developers.google.com/web/fundamentals
• Progressive Web Apps: Escaping Tabs Without Losing Our Soul: https://infrequently.

org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

• Let’s Encrypt: https://letsencrypt.org/
• The Web App Manifest: https://developers.google.com/web/fundamentals/web-app-manifest
• Angular Service Workers: https://angular.io/guide/service-worker-getting-started
• Service worker configuration: https://angular.io/guide/service-worker-config
• Service Workers – Practical Guided Introduction (several examples): https://blog.angular-

university.io/service-workers/

• Angular University: Service Worker step-by-step guide: https://blog.angular-university.io/
angular-service-worker/

• favicon.io: https://favicon.io/
• Real Favicon Generator: https://realfavicongenerator.net/
• Icons8: https://icons8.com/icons/set/favicon
• FreeFavicon: https://www.freefavicon.com/freefavicons/icons/
• Firebase Web App Manifest Generator: https://app-manifest.firebaseapp.com
• DummyImage – Placeholder Image Generator: https://dummyimage.com/
• Google Developers recommendation for installability requirements: https://web.dev/installable-

manifest/#recommendations

• Web App Manifest – W3C Working Draft 09 December 2019: https://www.w3.org/TR/appmanifest/
• Enable Cross-Origin Requests (CORS) in ASP.NET Core: https://learn.microsoft.com/en-us/

aspnet/core/security/cors

• http-server: https://www.npmjs.com/package/http-server
• npx - execute npm package binaries: https://www.npmjs.com/package/npx
• ng-serve: https://angular.io/cli/serve
• ng-connection-service: https://github.com/Ryadel/angular-connection-service
• Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment: https://learn.

microsoft.com/en-us/aspnet/core/host-and-deploy/visual-studio-publish-profiles

• Angular – Service Worker registration options: https://angular.io/api/service-worker/
SwRegistrationOptions

https://developers.google.com/web/progressive-web-apps
https://developers.google.com/web/fundamentals
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://letsencrypt.org/
https://developers.google.com/web/fundamentals/web-app-manifest
https://angular.io/guide/service-worker-getting-started
https://angular.io/guide/service-worker-config
https://blog.angular-university.io/service-workers/
https://blog.angular-university.io/service-workers/
https://blog.angular-university.io/angular-service-worker/
https://blog.angular-university.io/angular-service-worker/
https://favicon.io/
https://realfavicongenerator.net/
https://icons8.com/icons/set/favicon
https://www.freefavicon.com/freefavicons/icons/
https://app-manifest.firebaseapp.com
https://dummyimage.com/
https://web.dev/installable-manifest/#recommendations
https://web.dev/installable-manifest/#recommendations
https://www.w3.org/TR/appmanifest/
https://learn.microsoft.com/en-us/aspnet/core/security/cors
https://learn.microsoft.com/en-us/aspnet/core/security/cors
https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/npx
https://angular.io/cli/serve
https://github.com/Ryadel/angular-connection-service
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/visual-studio-publish-profiles
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/visual-studio-publish-profiles
https://angular.io/api/service-worker/SwRegistrationOptions
https://angular.io/api/service-worker/SwRegistrationOptions

Chapter 12 605

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

13
Beyond REST – Web API with
GraphQL

Up until this point, we have always assumed that the ASP.NET Web APIs used to feed data to our Angu-
lar app would do their job using the Representational State Transfer (REST) architectural style. Such
an assumption is fully justified by the fact that REST has been the most popular option for accessing
web services for decades, having imposed itself on all previous alternatives (such as SOAP) thanks to
its undeniable advantages in terms of reliability, performance, and bandwidth usage.

However, despite having become the de facto standard for most data retrieval tasks, the REST approach
is not always ideal in all circumstances and might suffer from some undeniable shortcomings, such
as being unable to keep up with the rapidly changing requirements of the clients.

In this chapter, we’re going to introduce a modern query language created with the specific aim of
providing a more efficient and flexible alternative to the traditional REST API architecture: the name
of this language is GraphQL and it’s reportedly already being used by thousands of companies in their
tech stacks, including Facebook, Shopify, Instagram, GitHub, X (formerly known as Twitter), PayPal,
Airbnb, Atlassian, Pinterest, and many more.

More specifically, here’s what we’ll do:

• Introduce GraphQL, explaining its distinctive features and its advantages over a traditional
REST architecture

• Add GraphQL support to our ASP�NET Core Web API using a third-party NuGet package
• Add GraphQL support to our Angular app using a third-party GraphQL client
• Perform some integration tests to see how the new GraphQL architecture works and how we

can use it to improve our existing app

Are we ready? Let’s start!

Beyond REST – Web API with GraphQL608

Technical requirements
In this chapter, we’re going to need all the previous technical requirements listed in previous chapters,
along with the following additional ASP.NET Core NuGet packages:

• HotChocolate.AspNetCore

• HotChocolate.Data.EntityFramework

And the following Angular npm packages:

• @apollo/client

• apollo-angular

• graphql

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during
this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/master/Chapter_13/.

GraphQL versus REST
As we said early on, GraphQL is an open source data query and manipulation language that provides
a set of rules and standards to create efficient and flexible Web APIs. The language was developed
by Facebook in 2012 as an internal project before being released to the public in 2015, immediately
getting the attention of many developers due to its innovative approach.

Comparing GraphQL with REST is almost inevitable since the former has been developed with the
precise goal of solving some of the most notable REST drawbacks: for that very reason, the best thing
we can do to understand the pros and cons of these two approaches is to briefly summarize the dis-
tinctive features of each one of them, starting with the technology that came first.

REST
Representational State Transfer, better known as REST, is an architectural style specifically designed for
network-based applications that use the standard HTTP get, post, put, and delete request methods
to access and manipulate data.

The REST concept was first introduced and defined in 2000 by Roy Thomas Fielding (co-founder of the
Apache HTTP Server project and one of the principal authors of the HTTP specification) in his doctoral
dissertation Architectural Styles and the Design of Network-based Software Architectures.

Those HTTP methods have been defined in RFC 2616 (June 1999), which contains the
specifications for the HTTP/1.1 protocol: https://www.w3.org/Protocols/rfc2616/
rfc2616.html.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_13/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_13/
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html

Chapter 13 609

As opposed to what many believe, in that dissertation, Fielding didn’t introduce a new set of method-
ologies to build Web APIs: he mostly summarized the core architectural principles used to design the
HTTP protocol and specifications, which he had contributed to (HTTP/1.0) and co-authored (HTTP/1.1).
As a matter of fact, the REST architectural style is nothing more than the distillation of these principles,
which (he thought) could be used as guidelines to implement any distributed application over the web,
including, but not limited to, those services specifically built to exchange data between clients and
servers that we now call Web APIs.

The fact that Fielding’s intuition was right is proven by the millions of RESTful web services created
in the last 20 years to handle a wide variety of tasks: websites, desktop and mobile apps, online games,
operating systems, IoT devices, and so on.

If we consider that one of the most important functions of the internet is to exchange data, then
we can acknowledge the importance of this architecture, since most of the information is currently
transmitted using REST.

Guiding constraints
The HTTP core architectural principles identified by Fielding define six REST guiding constraints that,
when properly implemented, provide the system with a set of desirable non-functional properties,
including performance, scalability, simplicity, modifiability, visibility, portability, and reliability.

Here’s a brief list of these six guiding constraints and the properties they allow us to achieve:

• Client-server architecture. RESTful APIs should enforce the Separation of Concerns principle,
thus separating the UI from data storage. Keeping these concerns apart improves the API’s
portability, as well as the simplicity, scalability, and modifiability of the whole system.

• Statelessness. The server should handle all communication between clients without retaining
data from previous calls. This basically means that the server shouldn’t keep a session state
containing context-related info (such as authentication keys). This implies that, if clients need
to authenticate and/or authorize themselves, the server should provide them with the means
to do that upon each call. A perfect example of that would be the JWT that we talked about in
Chapter 11, Authentication and Authorization, which is stored in the client’s local storage and
authenticated by the server without the need to retain any additional info. The statelessness
approach helps to reduce the overhead of each request on the server, which can significantly
improve the performance and scalability of the whole system, especially under heavy load.

• Cacheability. Servers and clients should make use of the caching capabilities natively provid-
ed by the HTTP protocol. This basically means that all HTTP responses should include the
appropriate caching (or non-caching) headers to reduce the size of the data being transferred,
as well as minimize the risk of serving stale or outdated content. A good caching strategy can
have a huge impact on the scalability and performance of the whole system.

Our HealthCheck.Server and WorldCities.Server ASP.NET Core apps are also part of
that list since they have been developed with a REST-based approach.

Beyond REST – Web API with GraphQL610

• Layered system. The server, instead of being accessed directly, should be put behind one
or more intermediary HTTP services or filters (NATs, proxies, load balancers, and the like).
Intermediating the incoming calls will not only improve the overall security aspects of a Web
API but also strengthen its performance, scalability, and reliability properties.

• Code on demand. The server should provide the clients with executable code or scripts that
can be used to adopt custom behavior. This is the only REST optional constraint and is rarely
used nowadays since it poses obvious security issues if not implemented properly. Furthermore,
the usage scenario is kind of limited: one possible application example might be distributed
computing, where the server might want to delegate to its clients part of its job, or remote
evaluation techniques, where the server needs the client to perform some local checks, such
as verifying whether some applications or drivers are installed. In these edge case scenarios,
code on demand will likely improve the performance and scalability of the system: however, it
might also reduce its overall visibility.

• Uniform interface. This constraint defines four fundamental requirements that a RESTful
interface needs to implement to decouple the client requirements (data exchange) from the
underlying implementation (such as data retrieval, update, and deletion). These features are:

• Identification of resources. Each resource must be univocally identified through a
unique URI.

• Manipulation of resources through representations. Clients must be able to perform
basic operations on resources using the resource URI and the corresponding HTTP
method without the need for additional info.

• Self-descriptive messages. Each sender’s message must include all the information
required by the recipient to properly understand and process it. Such a requirement
is easy to implement with the HTTP protocol thanks to the HTTP headers that can be
included in both requests and responses.

• Hypermedia As The Engine Of Application State (HATEOAS). The server should provide
clients with usage information through a standardized set of hyperlinks and URIs. Such
a requirement decouples the server from its clients and allows the server to evolve
independently, reducing the risks of creating backward compatibility issues.

When a web service implements all the above constraints, it’s conventionally called RESTful.

Drawbacks
Despite its undeniable success, the REST approach is intrinsically affected by some known limitations
that might have little or no impact in most scenarios but can become troublesome when dealing with
non-trivial data retrieval tasks. Let’s try to acknowledge them by looking at the REST API provided by
our WorldCities.Server app and used by our current Angular client to interact with the underlying
WorldCities database.

Whenever our client wants to retrieve a Country, it must call the following API endpoint: /api/
Countries/{id}.

Chapter 13 611

That call also allows the client to retrieve the number of cities, thanks to the TotCities property that
we added back in Chapter 8, Code Tweaks and Data Services.

However, we are currently unable to retrieve some properties of these cities, such as their name or
ID. That endpoint is unable to do that. Moreover, we don’t currently have any endpoint returning a
list of cities for a given CountryId. The only endpoint that returns a list of cities, /api/Cities, won’t
accept such a filter.

This basically means that, if we wanted to do that, we should do one of the following things:

• Update the existing /api/Countries/{id} endpoint, adding an additional Cities property to
the resulting CountryDTO containing a list of all the cities belonging to that country, with all
the properties we might possibly need

• Update the existing /api/Cities endpoint, making it accept a CountryId parameter (or filter)
• Implement a new endpoint, such as /api/Countries/{countryId}/Cities or something sim-

ilar

We can easily see how all the above alternatives have their drawbacks:

• Updating the /api/Countries/{id} endpoint to make it return a list of cities will greatly in-
crease the size of the HTTP response, which could have non-trivial performance impacts;
moreover, the update might produce some unexpected regression bugs and/or could require
changing its interface, thus forcing us to update the Angular app. Furthermore, we’ll ulti-
mately end up with a lot of Cities data that we don’t need for our purposes – an undesirable
phenomenon commonly known as over-fetching. To avoid over-fetching, we could think of only
returning a list of city IDs: however, doing so will force us to perform an additional roundtrip (a
new HTTP request) to retrieve the data we need for each city – a performance issue commonly
known as the N+1 problem.

• Updating the existing /api/Cities method might mitigate the over-fetching issue, but only to
a certain extent – we will still be forced to retrieve every city field from the server, even if we
don’t need all of them; furthermore, it won’t minimize the risks of regression bugs.

• Adding an additional endpoint, customizing it to suit our precise needs and to only fetch the
data we need, would protect us from over-fetching and regression bugs, but would likely impact
the back-end development time and add complexity to our API.

The above example allows us to identify some important shortcomings of the REST architectural style:
the risk of over-fetching and the frequent need for multiple roundtrips, both due to the lack of flexibility
of such approaches. As for regression bugs, although they aren’t a drawback specific to REST, the risk of
hitting them is often increased by the inevitable refactoring required whenever a new change request
arises: what if we need to only retrieve cities within a certain lat/lon range? Or, countries with more
(or less) than N cities? And so on.

As we can easily understand, overcoming such issues might be not that simple, especially if we need
a high level of versatility in terms of client-side data fetching requirements.

Beyond REST – Web API with GraphQL612

GraphQL
After 15 years of undisputed supremacy – and millions of RESTful web services developed around the
world – the REST architectural style was challenged by a newcomer. On September 14, 2015, Facebook
decided to release the specifications of its internal query language to the public, followed by a wide
set of implementation tools for the most popular programming languages, including JavaScript, Go,
PHP, Java, Python, Ruby, and more.

The GraphQL release allowed the developer community to take advantage of the distinctive features
of the new language, which allowed clients to send and retrieve data in a very different way than
REST. More precisely, instead of having to perform multiple HTTP requests to different endpoints
and receive multiple HTTP responses containing different datasets, clients could ask for what they
needed with a single request to a single endpoint and receive precisely what they need in a single,
dynamically structured response.

Advantages over REST
The main differences between REST and GraphQL can be visualized by looking at the following schema:

Figure 13.1: REST versus GraphQL

As we can see, with REST, we have to deal with multiple API endpoints, each one of them retrieving
data from our DBMS using its own implementation strategy (which might be standardized, specific, or
a mix of both). Adding more endpoints will reduce the risks of over-fetching and regression bugs, but will
inevitably require multiple roundtrips, as well as adding complexity and increasing the development time.

Chapter 13 613

Conversely, GraphQL gives us the chance to deal with a single endpoint that will accept our data re-
trieval query, execute it against our DBMS (or any other data source), and return a “merged” set of JSON
data, without over-fetching and avoiding multiple roundtrips. It’s worth noting that both the query and
the resulting data will have the same JSON structure, built using the standards given by the GraphQL
specs, that will be processed by a dedicated server-side runtime.

Limitations
While GraphQL has some undeniable advantages over traditional REST APIs, it comes with several
key disadvantages as well. Let’s briefly discuss the most relevant ones:

• GraphQL requires a client-side module to build queries and a server-side runtime to execute
those queries (or make a compatible ORM able to process them). These requirements will
inevitably add some complexity to clients and servers and/or increase the development time.

• GraphQL queries often return an HTTP status code of 200, regardless of whether that query was
successful. More precisely, if the query fails, the JSON response will have a top-level errors
key with the error message(s). This will make error handling more difficult for the client and
might also lead to additional complexity for logging and monitoring tasks. However, such a
limitation is mostly due to the fact that the tools we typically use for these tasks are meant to
receive and process HTTP-based responses, while GraphQL has been designed to sit on top
of that protocol.

• GraphQL comes with no built-in caching support. As opposed to REST APIs, which can lever-
age native HTTP caching thanks to their multiple endpoints returning the same data for the
same requests, GraphQL requires the developer to implement custom (and often non-RESTful)
caching support or to adopt a client library supporting such a feature.

• GraphQL queries are definitely more complex to implement than REST endpoints. This is true
at the client level when we need to assemble the query, and even more true on the server side,
where we have to execute the query against the DBMS.

The above limitations are the main reason why GraphQL is currently unable to defeat REST, at least
as of today. As a matter of fact, whenever we have to deal with simple datasets and/or with data that
is relatively consistent over time, the REST approach is still the most effective and convenient way to
go. Conversely, if we need to handle complex scenarios with rapidly changing data, GraphQL might
solve some painful REST drawbacks and help us create a more robust, efficient, and maintainable app.

For the purpose of this book, considering the overall simplicity of our sample HealthCheck.Server
and WorldCities.Server projects (and the underlying DBMS), we can say that REST APIs are definitely
the way to go. That said, in the next section, we’ll briefly see how we can implement a fully-featured
GraphQL API on top of our existing code base.

Implementing GraphQL
Providing GraphQL support to the WorldCities app requires some back-end and front-end level work.
Here are the tasks we’re going to address in this section:

• Add GraphQL support to ASP�NET Core with the HotChocolate third-party library

Beyond REST – Web API with GraphQL614

• Add GraphQL support to Angular using the Apollo Angular GraphQL client
• Test the server-side and client-side integration with Visual Studio

Let’s put this plan into action.

Adding GraphQL to ASP.NET Core
If we want to provide our existing ASP.NET Core app with GraphQL support, we need to add a GraphQL
layer to the HTTP pipeline that can perform the following tasks:

• Expose an API endpoint that clients will use to send their GraphQL queries
• Process the incoming queries using our existing data model
• Retrieve the requested data from the underlying DBMS
• Provide the response with the resulting data in JSON format

Implementing these features from scratch would require a considerable amount of work, even for
our limited database schema.

Luckily enough, we don’t need to do that thanks to the existence of several ASP.NET Core client li-
braries designed to do most of the job for us, such as GraphQL.NET and HotChocolate, both available
on GitHub under the MIT license.

In this chapter, we’re going to use HotChocolate, a comprehensive .NET GraphQL platform that can
help us achieve the above goal with minimal effort.

Installing HotChocolate
The HotChocolate components that we need are available in two convenient NuGet packages, which
we can install from the Visual Studio GUI (using the NuGet Package Manager) or using the Package
Manager console with the following command:

PM> Install-Package HotChocolate.AspNetCore -Version 13.7.0
PM> Install-Package HotChocolate.AspNetCore.Authorization -Version 13.7.0
PM> Install-Package HotChocolate.Data.EntityFramework -Version 13.7.0

The suggested version, the latest at the time of writing, is fully compatible with our WorldCities.
Server project.

GraphQL.NET is available at the following URL: https://github.com/graphql-dotnet/
graphql-dotnet/.

And here’s the URL for HotChocolate: https://github.com/ChilliCream/
hotchocolate.

As always, we’re free to opt for a different version if we think we’re able to deal with the
required updates.

https://github.com/graphql-dotnet/graphql-dotnet/
https://github.com/graphql-dotnet/graphql-dotnet/
https://github.com/ChilliCream/hotchocolate
https://github.com/ChilliCream/hotchocolate

Chapter 13 615

The first NuGet package contains HotChocolate's GraphQL services and middlewares and is the only
one required. The second and third packages contain some useful (yet optional) extensions that will
allow us to seamlessly integrate the ASP.NET Core authorization model and Entity Framework Core
into HotChocolate, which will greatly speed up our development time: that’s the reason why we’re
going to use this library.

Right after installing HotChocolate, we can start to set up the GraphQL schema, which defines how we
want to expose data to our client and the CRUD operations we want to allow. Such a schema can be
configured using three root types:

• Query, which exposes all the possible queries clients can use, thereby allowing them to retrieve
data in a read-only manner. We can think of it as a centralized view of all our entities, with a
number of methods corresponding to the various ways to retrieve them.

• Mutation, which can be used by clients to perform write operations such as inserting, updating,
and deleting entities.

• Subscription, which allows clients to subscribe to events and be notified in real time of their
occurrence.

In the following subsections, we’re going to implement the Query and Mutation types, which will allow
our clients to perform the same read, add, update, and delete operations that we’ve implemented over
the preceding chapters using REST.

Query
Using Solution Explorer, create a new /Data/GraphQL/ folder in the WorldCities.Server project. Once
done, add a new Query.cs file within it and fill its content with the following lines:

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Data.GraphQL
{
 public class Query
 {
 /// <summary>
 /// Gets all Cities.
 /// </summary>
 [Serial]
 [UsePaging]
 [UseFiltering]
 [UseSorting]
 public IQueryable<City> GetCities(
 [Service] ApplicationDbContext context)
 => context.Cities;

Beyond REST – Web API with GraphQL616

 /// <summary>
 /// Gets all Countries.
 /// </summary>
 [Serial]
 [UsePaging]
 [UseFiltering]
 [UseSorting]
 public IQueryable<Country> GetCountries(
 [Service] ApplicationDbContext context)
 => context.Countries;
 }
}

As we can see, the preceding Query type features two methods that use Entity Framework to return
IQueryable objects.

The most important thing worth noting here is those data annotation attributes that we’ve added above
the two methods to enable paging, filtering, and sorting. As we can easily guess, those attributes allow
us to transparently use some powerful built-in features of HotChocolate.

More specifically:

• Serial. This attribute will tell HotChocolate to execute certain tasks in serial rather than parallel
mode, thus making it compatible with our current ApplicationDbContext implementation.
It’s worth noting that this option will have a non-trivial impact on performances; however,
we’re going to use that – at least for this sample scenario – to avoid refactoring our app (see
below for additional info).

• UsePaging. This attribute will add a pagination middleware that allows GraphQL clients to
paginate results using the Cursor Connections Specification, a standardized way to allow clients
to consistently handle pagination best practices with support for related metadata.

• UseFiltering. This attribute will add a Filtering Middleware that allows GraphQL clients to use
filters, which will be translated to native database queries. The available filters will be auto-
matically inferred by HotChocolate by looking at the IQueryable entity types.

• UseSorting. This attribute will add a Sorting Middleware that allows GraphQL clients to sort
results using a sorting argument, which will be translated by HotChocolate to a LINQ query,
and eventually, thanks to EF Core, to native database queries.

The Serial attribute, and the reason we’re using it, is a rather complex topic that deserves some ad-
ditional explanation. When we use services.AddDbContext<T> to register a DbContext as a scoped
service, one instance of this DbContext is created and used for the entirety of a GraphQL request. This
is an issue since HotChocolate executes the query resolvers in parallel for performance reasons. If
two resolvers are executed in parallel and both try to perform an operation using the same DbContext,
we might see one of the following exceptions being thrown:

Chapter 13 617

• A second operation started in this context before a previous operation was completed
• Cannot access a disposed object

Both of them are concurrency exceptions caused by the fact that, in a nutshell, our DbContext is not
thread-safe. This issue can be fixed by either using the Serial attribute, thus forcing HotChocolate to
work in serial mode, or by implementing the AddDbContextFactory extension method – first introduced
in .NET 5 – that allows us to register a factory instead of a single DbContext instance.

Let’s switch to the other attributes: UsePaging, UseFiltering, and UseSorting. If we think about that
for a second, we can see how they handle the same requirements that we’ve implemented in Chapter
6, Fetching and Displaying Data, with our ApiResult class, without the need to write a single line of
code. These powerful built-in features are part of the reason why we’re using HotChocolate with the
integration package for EF Core.

This minimal Query type is all that we need to fulfill our read-only requirements. Let’s now move to
the writing part of the story.

Mutation
Add a new Mutation.cs file within it and fill its content with the following lines:

using HotChocolate.Authorization;
using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;

namespace WorldCities.Server.Data.GraphQL
{
 public class Mutation
 {
 /// <summary>

To keep things simple, we’re going to use the [Serial] attribute workaround for our
current implementation scenario. That said, the AddDbContextFactory approach is the
way to go for production-level apps.

To learn more about the above concepts, take a look at the following links from the Graph-
QL official docs:

https://chillicream.com/docs/hotchocolate/integrations/entity-
framework#serial-execution

https://chillicream.com/docs/hotchocolate/fetching-data/pagination

https://chillicream.com/docs/hotchocolate/fetching-data/filtering

https://chillicream.com/docs/hotchocolate/fetching-data/sorting

https://chillicream.com/docs/hotchocolate/integrations/entity-framework#serial-execution
https://chillicream.com/docs/hotchocolate/integrations/entity-framework#serial-execution
https://chillicream.com/docs/hotchocolate/fetching-data/pagination
https://chillicream.com/docs/hotchocolate/fetching-data/filtering
https://chillicream.com/docs/hotchocolate/fetching-data/sorting

Beyond REST – Web API with GraphQL618

 /// Add a new City
 /// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<City> AddCity(
 [Service] ApplicationDbContext context, CityDTO cityDTO)
 {
 var city = new City() {
 Name = cityDTO.Name,
 Lat = cityDTO.Lat,
 Lon = cityDTO.Lon,
 CountryId = cityDTO.CountryId
 };
 context.Cities.Add(city);
 await context.SaveChangesAsync();
 return city;
 }

 /// <summary>
 /// Update an existing City
 /// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<City> UpdateCity(
 [Service] ApplicationDbContext context, CityDTO cityDTO)
 {
 var city = await context.Cities
 .Where(c => c.Id == cityDTO.Id)
 .FirstOrDefaultAsync();
 if (city == null)
 // todo: handle errors
 throw new NotSupportedException();
 city.Name = cityDTO.Name;
 city.Lat = cityDTO.Lat;
 city.Lon = cityDTO.Lon;
 city.CountryId = cityDTO.CountryId;
 context.Cities.Update(city);
 await context.SaveChangesAsync();
 return city;
 }

Chapter 13 619

 /// <summary>
 /// Delete a City
 /// </summary>
 [Serial]
 [Authorize(Roles = ["Administrator"])]
 public async Task DeleteCity(
 [Service] ApplicationDbContext context, int id)
 {
 var city = await context.Cities
 .Where(c => c.Id == id)
 .FirstOrDefaultAsync();
 if (city != null)
 {
 context.Cities.Remove(city);
 await context.SaveChangesAsync();
 }
 }

 /// <summary>
 /// Add a new Country
 /// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<Country> AddCountry(
 [Service] ApplicationDbContext context, CountryDTO countryDTO)
 {
 var country = new Country() {
 Name = countryDTO.Name,
 ISO2 = countryDTO.ISO2,
 ISO3 = countryDTO.ISO3
 };
 context.Countries.Add(country);
 await context.SaveChangesAsync();
 return country;
 }

 /// <summary>
 /// Update an existing Country
 /// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]

Beyond REST – Web API with GraphQL620

 public async Task<Country> UpdateCountry(
 [Service] ApplicationDbContext context, CountryDTO countryDTO)
 {
 var country = await context.Countries
 .Where(c => c.Id == countryDTO.Id)
 .FirstOrDefaultAsync();
 if (country == null)
 // todo: handle errors
 throw new NotSupportedException();
 country.Name = countryDTO.Name;
 country.ISO2 = countryDTO.ISO2;
 country.ISO3 = countryDTO.ISO3;
 context.Countries.Update(country);
 await context.SaveChangesAsync();
 return country;
 }

 /// <summary>
 /// Delete a Country
 /// </summary>
 [Serial]
 [Authorize(Roles = ["Administrator"])]
 public async Task DeleteCountry(
 [Service] ApplicationDbContext context, int id)
 {
 var country = await context.Countries
 .Where(c => c.Id == id)
 .FirstOrDefaultAsync();
 if (country != null)
 {
 context.Countries.Remove(country);
 await context.SaveChangesAsync();
 }
 }
 }
}

As we can see, we’ve set up six methods that will allow clients to add, update, and delete our Cities
and Countries entities using Entity Framework.

Chapter 13 621

We’ve also applied the [Authorize] attribute provided by the HotChocolate.Authorization package
to those methods to restrict access to authorized users (roles) only. This is basically the same ap-
proach we’ve used in CitiesController and CountriesController, with one important difference:
that time we made use of a different [Authorize] attribute, provided by the Microsoft.AspNetCore.
Authorization namespace, which won’t work here.

Be sure to add the correct namespace reference on the top of the file, just like we did in the preceding
code.

Program.cs
Now that our GraphQL schema is ready, we just need to add the required services and middleware to
our Program.cs file.

Let’s start with the service. Open the Program.cs file and add the following highlighted lines right
below the JwtHandler service that we added in Chapter 11, Authentication and Authorization:

// ...

using WorldCities.Server.Data.GraphQL;

// ...

builder.Services.AddScoped<JwtHandler>();

builder.Services.AddGraphQLServer()
 .AddAuthorization()
 .AddQueryType<Query>()
 .AddMutationType<Mutation>()
 .AddFiltering()
 .AddSorting();

// ...

It’s worth noting that, in the add and update methods implementation, we’ve used the
CityDTO and CountryDTO Data Transfer Object classes that we have set up in Chapter 8, Code
Tweaks and Data Services, mapping them to the corresponding City and Country entities.

The two attributes share the same name but, luckily enough, they accept a different Roles
parameter type. Microsoft’s attribute wants a string, while HotChocolate requires a string
array. This difference can help us to distinguish between them.

Beyond REST – Web API with GraphQL622

The service comes with a lot of helper methods that can be used to configure its various settings. How-
ever, we don’t need to do anything now, since the default values are good enough for us. We just need
to add the Query and Mutation types that we’ve implemented early on and enable filtering and sorting.

Let’s now switch to middleware. Scroll down a bit and add the following highlighted lines right below
the MapControllers() method:

// ...

app.MapControllers();

app.MapGraphQL("/api/graphql");

// ...

Again, the middleware accepts various configuration settings. In our scenario, we just had to configure
the GraphQL endpoint (the default is "/graphql") to make it compatible with the Angular proxy rule
that we already have in the proxy.conf.js file of our Angular app.

Now we can finally test what we have done so far.

Testing the GraphQL schema
Another great feature of HotChocolate is that it comes with a built-in GraphQL web-based client that
can be used to test our GraphQL service using a convenient visual interface. That’s great for our pur-
poses since we still have to deal with our Angular app.

The name of this client is Banana Cake Pop (BCP), and it can be accessed using the default endpoint
(/api/graphql). To access it, launch the app by hitting F5 and then navigate to the following URL:
https://localhost:40443/api/graphql.

If we did everything correctly, we should be able to see the BCP welcome screen, as shown in the
following screenshot:

Chapter 13 623

Figure 13.2: Banana Cake Pop home page

From there, click on the Create Document button (or hit Ctrl + Alt + T) to open a new tab and then
type the following sample query:

query {
 cities(order: { id: ASC }, first:3) {
 nodes {
 id
 name
 }
 }
}

Beyond REST – Web API with GraphQL624

We will receive the following result:

{
 "data": {
 "cities": {
 "nodes": [
 {
 "id": 1,
 "name": "Tokyo"
 },
 {
 "id": 2,
 "name": "Jakarta"
 },
 {
 "id": 3,
 "name": "Delhi"
 }
]
 }
 }
}

If we can see the above results, this means that our server-side implementation using HotChocolate
works!

With this first query, we’ve already tested the sorting middleware. To test the filter middleware, we
can alter the query in the following way:

query {
 cities(
 order: { id: ASC }
 first:3
 where: { name: { endsWith: "tokyo" } }
)
 {
 nodes {
 id
 name
 }
 }
}

Chapter 13 625

This restricts our results to the only two cities ending with "tokyo": Tokyo and New Tokyo, the city that
we added back in Chapter 7, Forms and Data Validation.

All good so far. Now is the time to switch to Angular and connect to our new server-side GraphQL ser-
vice with our client.

Adding GraphQL to Angular
To consume our new GraphQL endpoint in Angular, we have two options:

• Manually implement a GraphQL client, taking care of the underlying HTTP connection as
well as the various fetching, caching, and optimization tasks

• Add a third-party package that (hopefully) already does all that

As odd as it might sound, implementing a minimal GraphQL client wouldn’t be that hard. Now that
we know how Angular’s HttpClient works, we can put that knowledge into action and implement
an observable-based service using the superclass/subclass pattern we used back in Chapter 8, Code
Tweaks and Data Services, with our existing BaseService, CountryService, and CityService types.

However, for the sake of simplicity, we’ll opt for the third-party package. More specifically, we’re go-
ing to use Apollo Angular, a flexible, community-driven GraphQL client for Angular, JavaScript, and
native platforms. The main advantage of such a client is given by the fact that it is incredibly easy to
configure and set up, which allows us to just drop it into our existing Angular app within minutes.

Here’s what we’ll do in the upcoming sections:

• Install Apollo Angular in our worldcities.client project, together with all its dependencies
• Update our CityService by refactoring a sample method so that it will use GraphQL instead of

the existing REST endpoints
• Test it to see whether the new implementation works as expected
• Improve the implementation by refactoring other REST methods
• Extend the changes by applying them to CountryService as well

Are we ready? Let’s go!

Installing Apollo Angular
Starting from version 2, Apollo Angular supports the ng-add command, meaning that we can install
it with a one-line command from the Angular CLI in the following way:

> ng add apollo-angular

The above command will launch a console-based configuration wizard that allows us to configure
some basic settings. Here’s how we should set them:

• Url to your GraphQL API: api/graphql
• Version of GraphQL: 16

Beyond REST – Web API with GraphQL626

After doing that, the wizard will perform its tasks.

Figure 13.3: Apollo Angular command-line installer

More specifically, the wizard will add the following npm packages to the package.json file:

• @apollo/client

• apollo-angular

• graphql

It will also create a new GraphQLModule, containing the Apollo Angular configuration settings, and
reference it within the AppModule.

After the wizard completes its job, the first thing we need to do is review (and update) the package’s
versions. Open the package.json file and replace the version of the installed packages in the follow-
ing way:

 "apollo-angular": "6.0.0",
 "@apollo/client": "3.8.8",
 "graphql": "16.8.1"

The specified versions are the latest at the time of writing and are also fully compatible with the book’s
code base.

The apollo/client package is the core GraphQL client, while apollo-angular is just a bridge to
make it compatible with Angular. Similar bridges are available for React, Vue, Svelte, and many other
frameworks. The graphql package is the official JS implementation for GraphQL.

As always, those who want to change/update them are free to do that, assuming they will
be able to handle any compatibility issue with other packages/dependencies that such a
choice might entail.

Chapter 13 627

As soon as the npm packages have been installed, we can start to configure the client within our app.

Updating GraphQLModule
During the installation process, the configuration wizard created a graphql.module.ts file in the /
src/app/ folder of our Angular app, containing Apollo Angular’s default configuration settings. Let’s
take the chance to briefly review the default configuration settings and change some values.

Open the /src/app/graphql.module.ts file and update the following highlighted lines:

// ...

import { environment } from '../environments/environment';

// ...

const uri = environment.baseUrl + 'api/graphql';
export function createApollo(httpLink: HttpLink): ApolloClientOptions<any> {
 return {
 link: httpLink.create({ uri }),
 cache: new InMemoryCache({ addTypename: false }),
 defaultOptions: {
 watchQuery: { fetchPolicy: 'no-cache' },
 query: { fetchPolicy: 'no-cache' }
 }
 };
}
// ...

As we can see, we performed the following changes:

• We added the environment.baseUrl prefix to the GraphQL API URL so that Apollo Angular will
be able to connect to the GraphQL endpoint that we’ve set on our ASP.NET Core application
in all our supported environments.

• We disabled the Apollo Angular’s in-memory cache built-in feature.

The reason why we disable the cache feature is pretty simple to explain: the objects put in Apollo An-
gular’s caching store become immutable, which is something that poses some non-trivial issues in our
current implementation. For the sake of simplicity, instead of having to refactor our app to avoid these
kinds of issues, we chose to explicitly disable such a feature using the fetchPolicy configuration setting.

Since we chose to disable caching, we have also set the addTypename option to false, thus preventing
Apollo Angular from adding a __typename field to all the JSON objects (which would be used as part
of the cache ID).

Beyond REST – Web API with GraphQL628

Now we’re ready to replace our existing REST implementation with GraphQL.

Refactoring CityService
Let’s start with a simple drop-in replacement of the get(id) method of CityService, which we cur-
rently use to retrieve a single City.

Here’s the existing REST-based code:

 get(id: number): Observable<City> {
 var url = this.getUrl("api/Cities/" + id);
 return this.http.get<City>(url);
 }

And here’s the replacement code for GraphQL:

// ...

import { Observable, map } from 'rxjs';
import { Apollo, gql } from 'apollo-angular';

// ...

 constructor(
 http: HttpClient,
 private apollo: Apollo) {
 super(http);
 }

// ...

 get(id: number): Observable<City> {
 return this.apollo
 .query({
 query: gql`
 query GetCityById($id: Int!) {
 cities(where: { id: { eq: $id } }) {
 nodes {
 id

Those who want to know more about Apollo Angular’s cache feature (and the issues it
might pose to existing code) can visit the following URL for the Apollo Angular official docs:

https://apollo-angular.com/docs/caching/configuration/

https://apollo-angular.com/docs/caching/configuration/

Chapter 13 629

 name
 lat
 lon
 countryId
 }
 }
 }
 `,
 variables: {
 id
 }
 })
 .pipe(map((result: any) =>
 result.data.cities.nodes[0]));
 }

// ...

Here we go. Take a closer look at what we did there:

• We’ve replaced our HttpClient with the Apollo client, thus adding the required import ref-
erences.

• We’ve used the query method to send a GraphQL query not much different from those we’ve
used to test the GraphQL server-side implementation early on in this chapter. This time, instead
of returning a collection of cities, we’re getting just one of them – the one corresponding to
the id variable we’re using inside the query.

• We’ve mapped the query method return type to the resulting node that contains the properties
of the resulting City.

Here’s the underlying GraphQL query that the above method will use to retrieve a given City, let’s
say with an id value of 1:

query {
 cities(where: { id: { eq: 1 } })
 {
 nodes {
 id
 name
 lat
 lon
 countryId
 }
 }
}

Beyond REST – Web API with GraphQL630

And here’s the corresponding GraphQL server-side JSON response:

{
 "data": {
 "cities": {
 "nodes": [
 {
 "id": 1,
 "name": "Tokyo",
 "lat": 35.6897,
 "lon": 139.6922,
 "countryId": 1
 }
]
 }
 }
}

If we want to perform a quick test now, we can run our worldcities.client and WorldCities.Server
apps and check whether we can still edit a City without issues. If we did everything correctly, we
should see no issues – everything should be working as it was when we had the REST implementation
up. This means that the drop-in replacement of the get(id) method went fine.

Let’s do the same with the getData<ApiResult> method, which poses some additional issues. This
method returns an ApiResult, the POCO class that we added back in Chapter 6, Fetching and Displaying
Data, to support features such as sorting, filtering, and paging.

As a matter of fact, we know that the HotChocolate and Entity Framework Core implementation that
we set up early on natively support these features; however, the HotChocolate paging – which follows
the GraphQL Cursor Connections Specification – works in a rather different way, and refactoring our app
to comply with those specs will require a lot of frontend work, as well as some non-straightforward
changes to our UI.

For that very reason, in order to preserve our existing work, we’ll approach it from the other direction:
work at the server-side level to make the GraphQL query return the same object (and data) that we’re
already set up to receive.

To learn more about the GraphQL Cursor Connections Specification, visit the following URL:
https://relay.dev/graphql/connections.htm.

https://relay.dev/graphql/connections.htm

Chapter 13 631

Improving the GraphQL query
Let’s switch back to our ASP.NET Core’s WorldCities.Server project. Open the /Data/GraphQL/Query.
cs file and add the following GetCitiesApiResult method, right below the existing ones:

/// <summary>
/// Gets all Cities (with ApiResult and DTO support).
/// </summary>
[Serial]
public async Task<ApiResult<CityDTO>> GetCitiesApiResult(
 [Service] ApplicationDbContext context,
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CityDTO>.CreateAsync(
 context.Cities.AsNoTracking()
 .Select(c => new CityDTO()
 {
 Id = c.Id,
 Name = c.Name,
 Lat = c.Lat,
 Lon = c.Lon,
 CountryId = c.Country!.Id,
 CountryName = c.Country!.Name
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As we can see, there’s nothing new here; it’s the same approach that we’ve used in our CitiesController
to receive the paging, filtering, and sorting parameters from the client and return ApiResult objects
containing the resulting data. This workaround is hardly the best GraphQL approach we can take,
but it’s a great way to show how versatile it can be when we need to comply with an existing scenario.

Beyond REST – Web API with GraphQL632

Now that we can conveniently count on the new GetCitiesApiResult method, we just need to con-
sume it from our client.

Back to Angular
Switch back to the worldcities.client Angular app, open the city.service.ts file, and replace the
existing GetData method with the following:

 getData(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<City>> {
 return this.apollo
 .query({
 query: gql`
 query GetCitiesApiResult(
 $pageIndex: Int!,
 $pageSize: Int!,
 $sortColumn: String,
 $sortOrder: String,
 $filterColumn: String,
 $filterQuery: String) {
 citiesApiResult(
 pageIndex: $pageIndex
 pageSize: $pageSize
 sortColumn: $sortColumn
 sortOrder: $sortOrder
 filterColumn: $filterColumn
 filterQuery: $filterQuery
) {
 data {
 id
 name
 lat

If we had more time (and pages), we might as well take the other route, replacing our
existing client-side pagination (and UI components) to implement the cursor-based Graph-
QL pagination, which would allow us to use the Cities method of Query instead of the
newly added one.

Chapter 13 633

 lon
 countryId
 countryName
 },
 pageIndex
 pageSize
 totalCount
 totalPages
 sortColumn
 sortOrder
 filterColumn
 filterQuery
 }
 }
 `,
 variables: {
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery
 }
 })
 .pipe(map((result: any) =>
 result.data.citiesApiResult));
 }

As we can see, we wrote a long, parametrized GraphQL query using the various values fetched from
the UI, and then used the new GetCitiesApiResult server-side method (and mapped its result) to
return the same Observable<ApiResult> as before.

In the above code, we have also used the variables parameter, a JSON object that can be used to send
one or more variables to the GraphQL engine. Those variables can be used in the preceding query
parameter, prepending them with the $ character, just like we did.

Using variables is often a convenient way to put dynamic data in the GraphQL query
without having to resort to JS or TS string manipulation techniques or other not-so-clean
workarounds.

Beyond REST – Web API with GraphQL634

To test what we did, we can launch our two projects and navigate to the Cities list. If we did everything
correctly, we should see no differences.

Now we just need to replace the put, post, getCountries, and isDupeCity methods. The last two
methods are quite straightforward now that we know how to read GraphQL data. The actual challenge
comes with the first two since they perform write operations to the server-side data.

Querying the mutation
Refactoring the put and post methods of CityService means that we’ll finally have to use ASP.NET
Core’s Mutation.cs file, which we implemented a while ago and haven’t used hitherto.

Before getting back to Angular, it might be useful to launch our WorldCities.Server project and
navigate to the Banana Cake Pop UI of HotChocolate to see what our Mutation type looks like.

Open the browser and navigate to the following URL:

https://localhost:40443/api/graphql/

Once there, click on the Browse Schema button, then select the Schema Reference tab, and finally,
click on Mutation from the Types menu located to the far right, as shown in the following screenshot:

Figure 13.4: Schema Reference for the mutation type

As we can see, we have four mutations that we can use to do what we need to do: addCity, addCountry,
updateCity, and updateCountry.

With that knowledge, we can now open the city.service.ts file and replace the existing put and
post methods with the following code:

put(input: City): Observable<City> {
 return this.apollo
 .mutate({
 mutation: gql`

Chapter 13 635

 mutation UpdateCity($city: CityDTOInput!) {
 updateCity(cityDTO: $city) {
 id
 name
 lat
 lon
 countryId
 }
 }
 `,
 variables: {
 city: input
 }
 }).pipe(map((result: any) =>
 result.data.updateCity));
}

post(item: City): Observable<City> {
 return this.apollo
 .mutate({
 mutation: gql`
 mutation AddCity($city: CityDTOInput!) {
 addCity(cityDTO: $city) {
 id
 name
 lat
 lon
 countryId
 }
 }
 `,
 variables: {
 city: item
 }
 }).pipe(map((result: any) =>
 result.data.addCity));
}

That’s it. The preceding code should be quite easy to understand since we’re just executing the GraphQL
method specified in the Mutation.cs class.

Beyond REST – Web API with GraphQL636

As always, we can test the new implementation by launching our apps and trying to update an existing
city and/or add a new city. If we did everything correctly, we should still be able to do that without issues.

With that, we’re done with CityService.

Refactoring CountryService
In this section, we’ll quickly recap what we need to do to refactor CountryService to use GraphQL in-
stead of REST for its most relevant data retrieval and update methods, just like we did for CityService.

For reasons of space, we’re not going to show all the source code updates. They can be found in the
GitHub repository for this chapter. However, trying to carry out updates to CountryService without
looking at the GitHub code might be a great exercise for you, and you are strongly encouraged to do that.

Here’s a list of the relevant steps:

1. Refactor the get(id) method, which is the easiest to update since we can use the default
GetCountries() method of the GraphQL Query type.

2. Refactor the getData method, which will be slightly more complex since it will also require
adding a new GetCountriesApiResult method in the Country.cs file of the ASP.NET Core app
(which can be found in the GitHub repository for reference).

3. Refactor the put and post methods, which will leverage the existing updateCountry and
addCountry methods of the Mutation type.

CityService can be a great reference for all the above tasks since the underlying entities are quite
similar. It all comes down to replacing some class and property names.

Summary
This chapter was entirely dedicated to GraphQL, an open source data query and manipulation language
aiming to be a great alternative to the REST architectural style for some specific scenarios, as it allows
the mitigation of some known REST limitations, such as over-fetching and the risks of regression bugs.

Following a quick review of the pros and cons of both approaches, we started to implement GraphQL
in our WorldCities ASP.NET Core project. We did that using HotChocolate, a comprehensive third-party

.NET GraphQL platform that helped us to do that with minimal effort, mostly thanks to the fact that it
provides great support to Entity Framework Core through its extension package.

Installing and configuring HotChocolate gave us the chance to familiarize ourselves with several
GraphQL-related concepts such as queries and mutations, all part of the overall GraphQL schema. Upon
completing the setup, we also took the opportunity to practice with some actual queries during the
first server-side tests.

Then we switched to Angular. Again, we have chosen to use a third-party package to lift most of the
hard work. The choice fell on Apollo Angular, a flexible, community-driven GraphQL client for Angu-
lar that could be used as a drop-in replacement for our existing REST implementation with minimal
changes to the code base.

Chapter 13 637

After installing Apollo Angular, we spent some valuable time refactoring most of the data retrieval and
update methods of our existing CityService to use GraphQL instead of the REST endpoints. Then we
tested the knowledge acquired by performing the same changes on the CountryService class.

In the next chapter we will introduce SignalR, a free and open-source software library that allows
server-side code to send asynchronous notifications to the front-end client

Suggested topics
For further information, we recommend the following topics: GraphQL, REST, GraphQL Schema, query,
mutation, subscription, HotChocolate, Banana Cake Pop, and Apollo Angular.

References
• GraphQL adopters: https://graphql.org/users/
• RFC 2616 (HTTP/1.1): https://www.w3.org/Protocols/rfc2616/rfc2616.html
• Architectural Styles and the Design of Network-based Software Architectures (Roy Thomas Fielding):

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• GraphQL specifications: https://github.com/graphql/graphql-spec
• HotChocolate – Entity Framework integration: https://chillicream.com/docs/hotchocolate/

integrations/entity-framework

• HotChocolate – Pagination: https://chillicream.com/docs/hotchocolate/fetching-data/
pagination

• HotChocolate – Filtering: https://chillicream.com/docs/hotchocolate/fetching-data/
filtering

• HotChocolate – Sorting: https://chillicream.com/docs/hotchocolate/fetching-data/
sorting

• Apollo Angular: https://apollo-angular.com/
• Apollo Angular Caching: https://apollo-angular.com/docs/caching/configuration/
• GraphQL Cursor Connections specification: https://relay.dev/graphql/connections.htm

https://graphql.org/users/
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://github.com/graphql/graphql-spec
https://chillicream.com/docs/hotchocolate/integrations/entity-framework
https://chillicream.com/docs/hotchocolate/integrations/entity-framework
https://chillicream.com/docs/hotchocolate/fetching-data/pagination
https://chillicream.com/docs/hotchocolate/fetching-data/pagination
https://chillicream.com/docs/hotchocolate/fetching-data/filtering
https://chillicream.com/docs/hotchocolate/fetching-data/filtering
https://chillicream.com/docs/hotchocolate/fetching-data/sorting
https://chillicream.com/docs/hotchocolate/fetching-data/sorting
https://apollo-angular.com/
https://apollo-angular.com/docs/caching/configuration/
https://relay.dev/graphql/connections.htm

Beyond REST – Web API with GraphQL638

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://packt.link/aspdotnet8angular

14
Real-Time Updates with SignalR

In this chapter, we’ll talk about ASP�NET Core SignalR, an open-source library that allows us to add
real-time functionality to web applications by enabling server-side code to push content to clients
instantly.

Such a requirement might have little or no use in most general-purpose apps, including the WorldCities
app we’ve been working on since Chapter 5, Data Model with Entity Framework Core; however, it can be
very useful for some specific scenarios, such as:

• Online games, especially if they need to support multiple players acting simultaneously in a
common or shared environment

• Social networks, assuming they need some kind of notification system
• Collaborative apps such as blogs, CMSes, whiteboards, team meetings, file-sharing services,

and the like
• Dashboard and monitoring apps, including our HealthCheck app

As we can easily guess, the HealthCheck app will be the perfect candidate to explore such a topic. With
that in mind, here’s what we’ll do in the following sections:

• Review the various techniques and workarounds to implement real-time capabilities in web
applications using server push technologies since the introduction of HTTP/1.0

• Introduce SignalR, an open-source library that allows us to add real-time web functionality
to apps leveraging the above techniques

• Implement SignalR at the server-side level in our HealthCheck.Server ASP.NET Core app
• Add SignalR capabilities at the client-side level to our Angular app

Are we ready? Let’s go!

Real-Time Updates with SignalR640

Technical requirements
In this chapter, we’re going to need all the technical requirements listed in previous chapters, with
the following additional packages:

• Microsoft.AspNetCore.SignalR

• @microsoft/signalr

The Microsoft.AspNetCore.SignalR package comes with the Microsoft.AspNetCore.App framework,
meaning that our ASP.NET Core apps already have it.

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during
this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-
8-and-Angular/tree/master/Chapter_14/.

Real-time HTTP and server push
Providing real-time functionalities to a web application was a very complex task for the first two decades
of the internet, mostly due to the fact that the HTTP protocol was never meant for it. As we learned in
Chapter 13, Beyond REST – Web API and GraphQL, when we briefly reviewed the REST principles and
constraints distilled from the HTTP/1.0 and 1.1 specifications, there were no references to real-time
communications, streaming protocols, server-initiated calls, or any other technique that might lead
to something different from the pull-based request/response cycle initiated by a client request and
handled by the server with a corresponding (and terminating) response.

For that very reason, for most of the 1990s, the most effective ways to implement real-time behaviors
in a web application were:

• Using Java, Flash/ActionScript, or other “embeddable” content that could (A) support a suit-
able technology to achieve such behavior (socket, streaming, push/pub) and (B) interact with
the DOM via JavaScript, a browser plug-in, a VM, a runtime component, or any other viable
technique

• “Emulating” real-time behavior, performing frequent content updates via full-page refresh,
iframe-based refresh, Ajax-based (XMLHttpRequest) polls, or other workarounds that could
be used to keep the data up to date

The above techniques were rather common in stock exchange and chat-based websites: however, they
weren’t widely used since they were difficult to maintain and often led to compatibility issues among
the various browsers—it was the “cross-browser compatibility hell” period, after all.

However, RFC 2616 (HTTP/1.1, 1999) introduced a significant difference in promoting persistent con-
nections to the default behavior of any HTTP connection; this basically meant that, unless otherwise
indicated, the client SHOULD assume that the server will maintain a persistent connection, even after
error responses from the server.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_14/
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_14/

Chapter 14 641

Such a statement, although not strictly related to streaming or real-time communication, has led many
developers to look for an alternative way to establish a connection between the client and server that
could allow the two-way exchange of information in real time. Such experiments, over the course of
almost 20 years, led to pushlets, long polling, Server-Sent Events (SSEs), and—eventually—HTTP/2-
based alternatives such as Web Push, gRPC, and WebRTC: however, it was only after the introduction
and adoption of the WebSocket protocol (RFC 6455, December 2011) that the presence of real-time
capabilities in web applications began to spread widely.

Introducing SignalR
What does all this have to do with SignalR? As a matter of fact, the ASP.NET Core approach to han-
dling real-time requirements for web applications is an abstraction of most of the techniques we’ve
just mentioned.

More specifically, SignalR takes advantage of the following transport methods (in order of fallback):

• WebSockets
• SSE
• HTTP long polling

The best technology supported by the client and server is used by SignalR to initiate the connection
and fulfill its tasks, which are mostly handled through hubs and data exchange protocols.

Hubs
Hubs are a pivotal concept in SignalR, as they are used to communicate between clients and servers:
the Hub type is defined within the Microsoft.AspNetCore.SignalR namespace and is part of the
Microsoft.AspNetCore.SignalR NuGet package.

We can think of hubs as high-level dispatchers that allow the client and the server to call methods on
each other using a standardized API—the SignalR Hubs API.

Protocols
The data between the client and the server is transmitted using serialization and deserialization tech-
niques based upon two data exchange protocols: a JSON-based text protocol and a binary protocol
based on MessagePack, a lesser-known data interchange format.

A Hub is exposed by the server through a dedicated route, which can be used by clients to connect and
receive events in the form of messages, which are dispatched to the subscribed users and groups.

For more information regarding the SignalR data exchange protocols, check out the of-
ficial docs:

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/
HubProtocol.md

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md
https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md

Real-Time Updates with SignalR642

Connections, users, and groups
Connections, users, and groups are the three fundamental concepts used by the server to transmit
real-time messages to clients using SignalR. Each of them has peculiar characteristics and serves a
specific purpose:

• Connections: In SignalR, each client has a unique connection to the server; when a client
connects to a hub, SignalR generates a unique identifier that is known only by the interested
parties, meaning that each client connection has its own identifier.

• Users: A user is seen by SignalR as a subscribed individual, which is handled as part of a group.
Users shouldn’t be confused with connections or clients, since a single user can connect from
multiple client applications. For example, the same user might connect from a web browser
and a mobile phone at the same time, thus receiving messages on both of them.

• Groups: Groups are collections of one or more connections and are the main mechanism used
by SignalR to transmit real-time data to clients. Any group has a given name that acts as its
unique identifier; this name will be used by SignalR to send real-time messages. When these
messages are dispatched to a group, all the group members (the connections that are part of
that group) are notified.

Enough with the theory: the best way to understand these concepts is to see SignalR in action, which
is what we’re going to do in the upcoming sections.

Implementing SignalR
Let’s briefly recap how our healthcheck.client and HealthCheck.Server projects currently work:

1. The healthcheck.client Angular app features a component—the HealthCheckComponent—that,
right after being loaded, performs a call to the server-side /health endpoint.

2. The above endpoint is handled by the HealthCheckMiddleware: when called, the HealthCheck.
Server ASP.NET Core Web API is configured to launch various ICMP health checks, each one
configured to ping a hostname or IP address and return its status (healthy or unhealthy).

3. The health checks’ statuses are wrapped together by the HealthCheckMiddleware and sent in
a single JSON response.

4. The Angular app fetches the JSON response and uses it to create an HTML table, thus showing
the result in a readable format.

As we can see, the only interaction between the two projects is a single HTTP call issued to the /health
endpoint: right after the first health check result is received, the on-screen result will not change un-
less we manually refresh the browser’s page, thus “rebooting” the HealthCheckComponent and forcing
a new HTTP call. Until we do that, the data shown by the HTML table is nothing more than a static,
possibly outdated, snapshot from the past.

Rest assured, we could easily implement a timer (using a JS interval function or something like that)
to automatically force a page refresh every few minutes or seconds, thus ensuring that the HTML data
will always be fresh: that’s the “real-time emulation” strategy we talked about at the beginning of the
chapter, where a frequent polling technique is used to work around the fact that the data-update task
is always initiated by the client (pull) and never by the server (push).

Chapter 14 643

However, such a workaround would have a lot of disadvantages:

• Performance impact: A lot of potentially unnecessary (and non-cached) HTTP requests, not
to mention the ICMP calls issued by the server each time it’s asked to show the updated result.

• Over-fetching: Frequently polling the health check will inevitably lead to a lot of useless calls—
more precisely, any HTTP request receiving a JSON response with the same result as the
previous one can be considered “wasted.”

• Inefficient: No matter how frequently we configure the polling, there will always be a certain
amount of “lag” between a health check change and the corresponding UI update; if we plan
to use that HTML table as a monitor to promptly react whenever a check fails, our reaction
time would be hindered by that lag.

• Self-limited: Whenever the data update task can only be initiated at the client level, each
client will always work as a separate, independent peer. This means that there will be no way
to update that data from a different source, such as the server, a third-party service, another
client, and so on.

SignalR can help us to improve the current behavior of the HealthCheck app without hitting the above
downsides; more precisely, we can use it to implement a data update strategy initiated by the server
using a broadcast message simultaneously sent to all connected clients, which will trigger a refresh.

Here’s a breakdown of the required tasks to achieve such a result:

1. Set up and configure SignalR in ASP�NET Core using the required services and middleware, as
well as the required CORS configuration settings to allow connections from external sources

2. Update the HealthCheck�Server project to implement SignalR at the server-side level
3. Install and configure SignalR in Angular using the @microsoft/signalr npm package
4. Update the healthcheck�client project to implement SignalR in our Angular app
5. Test everything to ensure that our implementation is working as expected

As always, let’s start with the server-side tasks.

Setting up SignalR in ASP.NET Core
To enable the SignalR services in the HealthCheck.Server project, the first thing we need to do is to
create a hub. Then, we will set up the required services and middleware, and finally, we’ll implement
the broadcast message to issue the client update.

Creating the HealthCheckHub
Create a new HealthCheckHub.cs file in the HealthCheck.Server project’s root folder and fill it with
the following content:

using Microsoft.AspNetCore.SignalR;

namespace HealthCheck.Server
{
 public class HealthCheckHub : Hub

Real-Time Updates with SignalR644

 {
 }
}

The class is intentionally empty since we don’t need to add any method (yet); however, the important
thing was to have it derived from the Hub base class, which is a requirement for any SignalR hub.

Setting up services and middleware
Now that we have a hub, we can add the SignalR services and middleware to our app’s configuration
class. Open the Program.cs file and add the following line right below the CORS settings:

// ...

builder.Services.AddCors(options =>
 options.AddPolicy(name: "AngularPolicy",
 cfg => {
 cfg.AllowAnyHeader();
 cfg.AllowAnyMethod();
 cfg.WithOrigins(builder.Configuration["AllowedCORS"]);
 }));

builder.Services.AddSignalR();

// ...

Once done, scroll down to the end of the file and add the following line right below the Minimal API
that handles the heartbeat that we added back in Chapter 12, Progressive Web Apps:

// ...

app.MapMethods("/api/heartbeat", new[] { "HEAD" },
 () => Results.Ok());

app.MapHub<HealthCheckHub>("/api/health-hub");

// ...

The /api/health-hub endpoint will allow our client to connect to the hub and receive the broadcast
message; now we just need to find a way to send it.

Adding the broadcast message
The best thing we can do to implement a SignalR broadcast message in a way that we can send it
on-demand is to add a dedicated route that does just that. This will allow us to issue the message by
executing a given URL, which is great for testing since it allows us to emulate not only a server-side
task but also something initiated by a third party.

Chapter 14 645

Using a controller
If we want to handle such a route using a controller, we can do that by adding a new BroadcastController.
cs file in the /Controllers/ folder and fill it with the following code:

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.SignalR;

namespace HealthCheck.Server.Controllers
{
 [ApiController]
 [Route("api/[controller]/[action]")]
 public class BroadcastController : ControllerBase
 {
 private IHubContext<HealthCheckHub> _hub;

 public BroadcastController(
 IHubContext<HealthCheckHub> hub
)
 {
 _hub = hub;
 }

 [HttpGet]
 public async Task<IActionResult> Update()
 {
 await _hub.Clients.All.SendAsync("Update", "test");
 return Ok("Update message sent.");
 }
 }
}

The above code should be quite easy to understand: we’ve just injected our Hub in the controller’s
constructor using DI and then used it within the Update action method to broadcast an "Update"
message to all connected clients.

This basically means that the broadcast message will be fired upon executing the /api/broadcast/
update endpoint.

Using the Minimal API
However, using a controller is not the only way to fulfill our task: since .NET 6, we can also opt for a
Minimal API to achieve the same result with a considerably smaller amount of source code.

Real-Time Updates with SignalR646

Let’s take the chance to implement this alternative as well. Open the Program.cs file and add the
following highlighted lines right below the SignalR middleware:

using Microsoft.AspNetCore.SignalR;

// ...

app.MapHub<HealthCheckHub>("/api/health-hub");

app.MapGet("/api/broadcast/update2", async (IHubContext<HealthCheckHub> hub) =>
{
 await hub.Clients.All.SendAsync("Update", "test");
 return Results.Text("Update message sent.");
});

// ...

As we can see, we’ve used a different route to distinguish the two approaches since we want to support
both of them. Now the broadcast message will be fired upon executing either the /api/broadcast/
update endpoint (handled by the BroadcastController) or the /api/broadcast/update2 endpoint
(handled by the Minimal API method above).

Now we can finally switch to Angular.

Installing SignalR in Angular
To install SignalR in Angular we’re going to use @microsoft/signalr, an npm package released by
Microsoft containing the required JavaScript and TypeScript clients. Once done, we will create a
HealthCheckService to perform the required tasks and replace the current HttpClient implemen-
tation within the HealthCheckComponent.

Adding the npm package
Let’s start with the @microsoft/signalr npm package. Open a command-line console, navigate to the
healthcheck.client app’s root folder, and type the following command:

> npm install @microsoft/signalr@7.0.14

Or, if you prefer, just add the package reference in the project’s package.json file and then perform
an npm install.

It’s worth noting that having a controller and a Minimal API method performing the same
task is something we should always avoid in real-world apps: we’re doing this here for sam-
ple purposes only. The important thing to understand here is how these two approaches
can be used together in the same web application, ideally to handle different tasks.

Chapter 14 647

Now we can create our new service.

Implementing the HealthCheckService
The healthcheck.client app doesn’t have any services yet; as a matter of fact, we never felt the urge
to create one, since it performs a minimal amount of HTTP calls. However, now that we need to add
some SignalR-related tasks, it’s better to refactor the whole HTTP connection and retrieval logic in a
dedicated class.

From Visual Studio’s Solution Explorer, navigate to the /src/app/health-check/ folder, create a new
health-check.service.ts file, and fill it with the following code:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import * as signalR from "@microsoft/signalr";

import { environment } from './../../environments/environment';
import { Observable, Subject, tap } from 'rxjs';

@Injectable({
 providedIn: 'root'
})
export class HealthCheckService {

 private hubConnection!: signalR.HubConnection;
 private _result: Subject<Result> = new Subject<Result>();
 public result = this._result.asObservable();

 constructor(private http: HttpClient) {
 }

 public startConnection() {
 this.hubConnection = new signalR.HubConnectionBuilder()
 .configureLogging(signalR.LogLevel.Information)

IMPORTANT: As things are now, using a more recent version of @microsoft/signalr
(such as 8.0.0 and above) will create some non-trivial issues due to the following known bug:

https://github.com/dotnet/aspnetcore/issues/52082

As always, the suggested version is fully compatible with the current book’s code base; those
who want to change/update it are free to do that, assuming they will be able to handle any
compatibility issues with other packages/dependencies that such a choice might cause.

https://github.com/dotnet/aspnetcore/issues/52082

Real-Time Updates with SignalR648

 .withUrl(environment.baseUrl + 'api/health-hub', { withCredentials:
false })
 .build();

 console.log("Starting connection...");
 this.hubConnection
 .start()
 .then(() => console.log("Connection started."))
 .catch((err : any) => console.log(err));

 this.updateData();
 }

 public addDataListeners() {
 this.hubConnection.on('Update', (msg) => {
 console.log("Update issued by server for the following reason: " + msg);
 this.updateData();
 });
 }

 public updateData() {
 console.log("Fetching data...");
 this.http.get<Result>(environment.baseUrl + 'api/health')
 .subscribe(result => {
 this._result.next(result);
 console.log(result);
 });
 }
}

export interface Result {
 checks: Check[];
 totalStatus: string;
 totalResponseTime: number;
}

interface Check {
 name: string;
 responseTime: number;
 status: string;
 description: string;
}

Chapter 14 649

The above code might not be simple to understand at first glance; however, there are some useful
console.log calls that can be used to understand what’s going on.

As we can see, the important tasks are handled by three methods:

• startConnection: This method instantiates the hubConnection, a persistent connection to the
SignalR endpoint that we’ve configured in our ASP.NET Core app so that our client will be able
to listen to the Hub events and act accordingly. It also executes the updateData method once
to retrieve the initial data to display.

• addDataListeners: This method is meant to be executed right after the above one, since it
requires an already-existing hubConnection, and registers a handler to the "Update" event.
Such a handler basically logs the received message and executes the updateData method to

“refresh” the data shown by the UI.
• updateData: This method, as the name implies, performs a standard HTTP call to the

HealthCheckMiddleware API endpoint to retrieve the health check data and emit a new value
to the private _result subject, thus notifying all the subscribers of the public result observable
that encapsulates it.

As we can see, we’re using the same observable-based logic that we adopted for the worldcities.client
app’s AuthService in Chapter 11, Authentication and Authorization: the result observable will notify all
the subscribed components about any updated SignalR result so that they can act accordingly.

Moreover, since all the HTTP work is being performed here, we took the chance to move the Result and
Check interfaces in this file (they are currently in the health-check.component.ts file). We’ve also add-
ed the export keyword to the Result interface since we’re going to use it in the HealthCheckComponent—
as we’ll see in a short while.

Adding WebSocket support to Angular proxy
The SignalR library uses WebSocket whenever possible, a communication protocol that enables full-du-
plex interaction between a web browser and the web server and includes a lot of useful features such as
connection management, automatic reconnections, support for different transport protocols, and so on.

The SignalR services and middleware that we have added to our ASP.NET Core app come with full
WebSocket support, but the Angular proxy that we are currently using in our development environ-
ment to connect our Angular app to our back-end API does not.

For that reason, if we want our Angular SignalR library to connect to our ASP.NET Core app using
WebSocket, we need to add WebSocket support to the Angular proxy: let’s do this.

We first introduced the Angular proxy in Chapter 3, Looking Around, when we changed the
API endpoints to allow our Angular app to connect to the ASP.NET Core back-end; if you
forgot that part by any chance, be sure to check it out!

Real-Time Updates with SignalR650

Open the /src/proxy.conf.js file and add the following highlighted line to the existing JSON:

const PROXY_CONFIG = [
 {
 context: [
 "/api",
],
 target: "https://localhost:40443",
 secure: false,
 ws: true
 }
]

module.exports = PROXY_CONFIG;

This will allow our local Angular proxy to correctly handle WebSocket connections. If we didn’t make
the above change, we would likely get the following errors in the console.log of our Angular app
when trying to connect:

Error: Failed to start the connection.
Error: There was an error with the transport.

Let’s move on to the next steps.

Refactoring the HealthCheckComponent
Now that we have the HealthCheckService performing the heavy lifting, we need to refactor the
HealthCheckComponent, replacing the current HttpClient implementation with the service’s methods.

Let’s start with the TypeScript file.

health-check.component.ts
Open the /src/app/health-check/health-check.component.ts file and replace the existing content
with the following code (relevant new lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { Observable } from 'rxjs';
import { HealthCheckService, Result } from './health-check.service';

@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styleUrls: ['./health-check.component.scss']
})
export class HealthCheckComponent implements OnInit {

Chapter 14 651

 public result: Observable<Result | null>;

 constructor(
 public service: HealthCheckService) {
 this.result = this.service.result;
 }

 ngOnInit() {
 this.service.startConnection();
 this.service.addDataListeners();
 }
}

If we compare the new code with the old one, we can acknowledge how the new implementation is
much swifter and easier to read now that all the data-retrieval logic has been put away: that’s what
services are meant for.

Now we can move on to the template file.

health-check.component.html
The component’s template file requires only minimal updates, mostly due to the fact that we’re using
HealthCheckService's result member instead of the previous local variable.

Open the /src/app/health-check/health-check.component.html file and perform the following
changes (updated code is highlighted):

<h1>Health Check</h1>

<p>Here are the results of our health check:</p>

<p *ngIf="!(result | async)">Loading...</p>

<table *ngIf="result | async as res">
 <thead>
 <tr>
 <th>Name</th>
 <th>Response Time</th>
 <th>Status</th>

It’s worth noting that the approach used to refactor the HealthCheckComponent is quite
similar to what we did in the NavMenuComponent of our worldcities.client app, since
we need to fulfill the same task: updating the UI whenever new/fresh data is received from
a dependency service. The only difference is that we’ve used an async pipe instead of a
Subject, just like we did in Chapter 9, Back-End and Front-End Debugging.

Real-Time Updates with SignalR652

 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let check of res.checks">
 <td>{{ check.name }}</td>
 <td>{{ check.responseTime }}</td>
 <td class="status {{ check.status }}">{{ check.status }}</td>
 <td>{{ check.description }}</td>
 </tr>
 </tbody>
</table>

That’s it: the style sheet file doesn’t require changes, meaning that we’re done.

Testing it all
It’s finally time to test all we have done so far.

Launch the two projects in Debug mode and, from the Angular app, navigate to the HealthCheckComponent.
We should see no UI differences up to this point since we’re still performing the initial HTTP call to
fetch the health check data. However, if we take a look at the browser’s console, we can already see
the console.log entries showing that the connection with the Hub has been established successfully,
as shown in the following screenshot:

Figure 14.1: SignalR connection started

That wss:// prefix at the beginning of the URL indicates that the Angular SignalR library established
the connection using the WebSocket protocol, meaning that the changes we made to our Angular proxy
are working as expected.

Now we can test that the server-initiated update works as expected. To do that, open a different browser
(or tab) and navigate to the following URLs:

https://localhost:40443/api/broadcast/update

https://localhost:40443/api/broadcast/update2

Chapter 14 653

As we already know, the former endpoint is handled by the BroadcastController, and the latter using
the Minimal API. However, both of them should produce the same outcome: upon each request, the
HealthCheckComponent should refresh the health check data.

The refresh can be verified by looking at the Response Time values, in milliseconds (which will likely
have a different value upon each update), and in the browser’s console, where we should be able to
see the server update request messages and the new data received by the subsequent HTTP call:

Figure 14.2: Console logs showing the server-initiated updates

Our basic implementation seems to be working.

Client-initiated events
However, we’ve only worked on a server-to-client broadcast: what if we want to send something from
our client to the server? It’s true that we have a URL endpoint to test our update message, but could
we send it from the hubConnection instead?

As a matter of fact, we can, and it’s actually quite simple to implement since we already did most of
the required groundwork.

More precisely, here’s what we need to do:

1. Update the HealthCheckHub at the server-side level, to give clients the chance to invoke an
Update method

2. Update the HealthCheckComponent at the client-side level, to actually invoke the method
3. Test it to see if everything works as expected

Let’s do this.

Updating the HealthCheckHub
As we already know, the SignalR Hub allows a bi-directional data exchange, meaning that clients can
send data through it; however, if we want to allow such behavior, we need to implement the necessary
methods within the Hub itself.

Real-Time Updates with SignalR654

To do that, open the HealthCheckHub.cs file and add the following Update method:

using Microsoft.AspNetCore.SignalR;

namespace HealthCheck.Server
{
 public class HealthCheckHub : Hub
 {
 public async Task ClientUpdate(string message) =>
 await Clients.All.SendAsync("ClientUpdate", message);
 }
}

The above code closely resembles what we’ve used in the BroadcastController and the Minimal API;
however, this time, we’ve used a different broadcast event so that we’ll be able to distinguish it from
the server-initiated one. Furthermore, we took the chance to allow a custom message that clients might
want to send, which will be transmitted together with the event.

Updating the HealthCheckService
Now that our Hub has an Update method, we just need to invoke it from our client.

Switch back to our Angular app, open the /src/app/health-check/health-check.service.ts file, and
add the following method just below the existing updateData method, right before the end of the class:

// ...

 public sendClientUpdate() {
 this.hubConnection.invoke('ClientUpdate', 'client test')
 .catch(err => console.error(err));
 }

// ...

Since we’re using a new event, we also need to add a new event handler for when we receive it. Scroll
up on that same file and append the following code to the existing addDataListeners method (new
lines highlighted):

// ...

public addDataListeners() {
 this.hubConnection.on('Update', (msg) => {
 console.log("Update issued by server for the following reason: " + msg);
 this.updateData();
 });

Chapter 14 655

 this.hubConnection.on('ClientUpdate', (msg) => {
 console.log("Update issued by client for the following reason: " + msg);
 this.updateData();
 });
}

// ...

Now we just need to execute the sendClientUpdate method from the client. The best place to do that
is the HealthCheckComponent.

Updating the HealthCheckComponent
Since we just need to execute a public method, a simple HTML button in the HealthCheckComponent's
template file, like the following one, would be enough to do the trick:

<button (click)="service.sendClientUpdate()">
 Refresh
</button>

However, since we don’t want to directly call that service’s method through the component’s HTML
template, let’s create a local method for that.

Open the /src/app/health-check/health-check.component.ts file and append the following method
at the end of the file, right below the ngOnInit() existing method:

onRefresh() {
 this.service.sendClientUpdate();
}

Once done, open the /src/app/health-check/health-check.component.html file and append the
following lines to the existing code to call the method we’ve just added:

<hr />

<button (click)="onRefresh()">
 Refresh
</button>

That’s it: now we can test what we did.

Real-Time Updates with SignalR656

Testing the new feature
To test the new feature, run the two projects in Debug mode, then use the Angular app to navigate to
the HealthCheckComponent. Once there, click the refresh button and let the magic happen: if we did
everything correctly, we’ll be able to see the Response Time values, in milliseconds, vary upon each
refresh, as well as see the client update messages in the browser’s console, as shown in the following
screenshot:

Figure 14.3: Client update test

With that, our ASP.NET Core SignalR overview is over.

Rest assured, we’ve only scratched the surface of the library’s many built-in features and usage ex-
amples, but now that we’ve learned how to set up the Hub connection and send data from the server
to clients and vice versa, we can definitely use it to bring real-time update capabilities to our projects.

Summary
This chapter was entirely dedicated to SignalR, an open-source library developed by Microsoft and
shipped with ASP.NET Core that allows us to add real-time functionality to web applications.

We spent the first part of the chapter understanding the concepts of real-time HTTP and server-side
push, reviewing the various techniques and workarounds used since the beginning of the internet to
achieve or emulate such capabilities; then we quickly reviewed the main features of SignalR, which
leverages most of these techniques to provide an abstraction layer accessible through a proprietary
API and built around concepts such as hubs, protocols, connections, users, and groups.

Right after that, we put our hand to code and implemented SignalR in ASP.NET Core and Angular, as
well as setting up and configuring the required Microsoft NuGet and npm packages. More specifically,
we started with implementing a server-initiated broadcast event that could be issued by executing a
dedicated route; while we were there, we took the chance to implement such a route using either a
dedicated controller or the Minimal API alternative approach introduced with .NET 6. Once done, we
added a client-initiated event to see how the Hub connection that we implemented early on could be
used the other way around.

Now we’re ready to move on to the next—and final—topic of this book: app deployment.

Chapter 14 657

Suggested topics
For further information, we recommend the following topics: SignalR, HTTP/1.0, HTTP/1.1, RFC 2616,
server push, HTTP long polling, gRPC, WebRTC, WebSocket API, RFC 6455, Server-Sent Events (SSEs),
MessagePack, and BlazorPack.

References
• SignalR Hub Protocol: https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/

docs/specs/HubProtocol.md

• ASP.NET SignalR GitHub repository: https://github.com/SignalR/SignalR
• @microsoft/signalr npm package: https://www.npmjs.com/package/@microsoft/signalr

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md
https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md
https://github.com/SignalR/SignalR
https://www.npmjs.com/package/@microsoft/signalr
https://packt.link/aspdotnet8angular

15
Windows, Linux, and Azure
Deployment

Our valuable journey through ASP.NET Core and Angular development is coming to an end. The two
projects we’ve been working on since Chapter 1, Introducing ASP.NET and Angular—HealthCheck and
WorldCities—are now potentially shippable products and are mostly ready to be published in a suit-
able environment for evaluation purposes.

In this chapter, we’ll deal with the following topics:

• Preparing our app for production, where we’ll learn some useful optimization strategies to
move our app into a production folder

• Windows deployment, where we’ll see how we can deploy our HealthCheck web application
to a Windows Server virtual machine and publish it over the web using Internet Information
Services (IIS) with the new in-process hosting model

• Linux deployment, where we’ll deploy our WorldCities web application to a Linux virtual
machine and publish it over the web using the Kestrel web server over an Nginx-based proxy

• Azure App Service deployment, where we’ll deploy our HealthCheck web application to an MS
Azure web app fully managed instance without the need to set up a VM-based infrastructure

The ultimate goal of this long and ambitious chapter is to learn the requisite tools and techniques to
deploy an ASP.NET Core and Angular app on a production Windows and/or Linux hosting server, as
well as within a cloud-based environment. Let’s embark upon this final effort!

Technical requirements
In this chapter, we’re going to need all the previous technical requirements listed in Chapters 1-14,
together with the following additional packages.

Windows, Linux, and Azure Deployment660

For Windows deployment:

• IIS (Windows Server)
• ASP�NET Core 8�0 Runtime (and the Windows Hosting Bundle installer for Win64 (Microsoft

.NET official website))

For Linux deployment:

• ASP�NET Core 8�0 Runtime for Linux (YUM package manager)
• �NET 8 CLR for Linux (YUM package manager)
• Nginx HTTP server (YUM package manager)

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in over the
course of the chapter to better contextualize their purpose within our project.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-
Core-8-and-Angular/tree/main/Chapter_15.

Getting ready for production
In this section, we’ll see how we can further refine our apps’ source code in order to get them ready for
production usage. We’ll mostly deal with server-side and client-side caching, environment configura-
tion, and so on. While we’re there, we’ll take the chance to learn some useful production optimization
tips offered by our front-end and back-end frameworks.

More specifically, we’re going to cover the following:

• Configuring the endpoints, where we’ll see how we will set up the production endpoints (host
names, aliases, and IP addresses) and SSL certificates throughout the chapter

• ASP�NET Core deployment tips, where we’ll learn how our back-end has been optimized for
production usage

• Angular deployment tips, where we’ll review some strategies used by the Visual Studio template
to optimize the front-end production-building phase

Let’s get to work!

Configuring the endpoints
When a web application is published in a production environment, it needs a public endpoint (URL)
so that its users will be able to access it. Such an endpoint is typically a dedicated domain name (www.
myapp.com), a third-level domain name (myapp.someapps.com), a path within a shared domain name
(www.someapps.com/myapp/), or an IP address (20.103.255.220).

Sometimes these endpoints are also configured to use non-standard TCP ports (www.myapp.
com:8080), just like the 40433 and 40080 ports we’ve used to locally host our projects
during the development phase; however, this approach is rarely used in production, since it
could easily cause compatibility issues, site reputation penalties, SEO drawbacks, and so on.

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_15
https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_15

Chapter 15 661

In our specific scenario, we’re going to need several endpoints, since we’re aiming to publish no less
than four apps—healthcheck.client, HealthCheck.Server, worldcities.client, and WorldCities.
Server—in multiple places. To address such a requirement without having to use non-standard TCP
ports, rely upon subpaths, or purchase multiple domains, we suggest choosing between the following
two routes:

• Use third-level domain names from a single domain under our possession, and map them to
the production server’s public IP address using the public DNS settings for that domain

• Use “fake” domain names, and map them to the production server’s public IP address using
the local machine’s HOSTS file

Throughout this chapter, we’re going to take the first route, creating the following third-level domain
names:

• healthcheck-2023.ryadel.com—for the healthcheck.client Angular app
• healthcheck-api-2023.ryadel.com—for the HealthCheck.Server Web API
• worldcities-2023.ryadel.com—for the worldcities.client Angular app
• worldcities-api-2023.ryadel.com—for the WorldCities.Server Web API

This convenient choice allows us to use a single domain and a single wildcard SSL certificate (*.ryadel.
com) for all our needs, with considerable economic savings.

Those who don’t have (or want to purchase) a domain and a wildcard SSL certificate can take the al-
ternative route, creating some mappings between the public IP address assigned to the servers we’re
going to create and use and some “fake” hostnames, using the above names or even more elegant
alternatives, such as healthcheck.io, healthcheck-api.io, and the like. We’re free to choose any
name we like, since they will only exist in our local environment. In the next section, we’ll briefly
explain how to create these mappings using the operating system’s HOSTS file.

Tweaking the HOSTS file
The easiest and most effective way to map a hostname to a given IP address on any Windows, Linux,
and macOS operating system is by editing the HOSTS file, which is used by the OS to ultimately map
hostnames to IP addresses before (and instead of) resolving them through the DNS lookup.

On Windows systems, the HOSTS file is located at the following filesystem path:

C:\Windows\System32\drivers\etc\hosts

For additional information about the Windows HOSTS file, check out the following URL:
https://en.wikipedia.org/wiki/Hosts_(file).

https://en.wikipedia.org/wiki/Hosts_(file)

Windows, Linux, and Azure Deployment662

On Linux and macOS systems, the HOSTS file is located at the following filesystem path:

/etc/hosts

Such a file can be edited with a text editor in the following way:

<IP.ADDRESS.0.1> healthcheck.io
<IP.ADDRESS.0.2> healthcheck-api.io
<IP.ADDRESS.0.3> worldcities.io
<IP.ADDRESS.0.4> worldcities-api.io

We don’t have to do this now, since we don’t know those IP addresses yet; we’re going to add the above
entries throughout this chapter, replacing the various <IP.ADDRESS.0.N> entries with the public IP
address of the virtual machine or app service we’re going to use.

As a matter of fact, creating these “overrides” within the local machine’s HOSTS file is an easy and
effective way to test our web apps in production using a “real” hostname (instead of a mere IP address)
without having to actually purchase any domain or SSL certificate. However, such a choice comes with
some obvious downsides, including:

• Unreachability: No one else will be able to reach these apps, unless they tweak the HOSTS
file just like we’re doing

• TLS/SSL issues: We likely won’t have a valid TLS/SSL certificate for these “fake” domains, mean-
ing that we’ll have to live with browser warning pages, security exceptions, antivirus warnings,
service worker registration failures, and so on—even if we use the MS Azure tenant certificate
or a self-signed TLS/SSL certificate (more on that later on)

If you want to take the HOSTS file route, be sure to understand the full extent of these drawbacks.

Other viable alternatives
Those who don’t want to follow our suggested routes are free to use any suitable alternative—owned
domain names, additional IP addresses, DNS entries provided by third parties, and so on—as long as
you know how to properly handle them.

The same goes for TLS/SSL certificates, which can be obtained free of charge using some dedicated
services (such as ZeroSSL) or non-profit certificate authorities (such as Let’s Encrypt) instead of having
to purchase them.

In order to edit the Windows HOSTS file, we’ll need administrative privileges for it; oth-
erwise, we won’t be able to permanently change it on disk.

Chapter 15 663

Furthermore, if we plan to host our app using Azure App Service (see the Azure App Service deployment
section below), we can use the App Service Managed Certificate feature to create a free TLS/SSL cer-
tificate managed by Azure, which is actually very easy to pull off.

That said, for the sake of simplicity, in this chapter, we’re going to use (and assume the use of) some
third-level domains with a wildcard SSL certificate. Those who want to use one of the above alterna-
tives can replace this technique with their preferred approach; just remember to change the ASP.NET
Core projects’ appsettings.json files and/or the Angular projects’ /environments/environment.ts
files accordingly.

ASP.NET Core deployment tips
As you most likely already know, ASP.NET Core allows developers to adjust an application’s behavior
across many environments. The most common of these are development, staging, and production
environments. The currently active environment is identified at runtime by checking an environment
variable that can be configured and modified from the project’s configuration files.

This variable is called ASPNETCORE_ENVIRONMENT and, while we’re running our project on Visual Studio,
it can be set by using the /Properties/launchSettings.json file, which controls various settings that
will be applied to our local development machine upon our web application’s launch.

The launchSettings.json file
If we take a look at the launchSettings.json file, we can see that it contains some specific settings
for each execution profile of our project. To see a quick example of this, here are the contents of the
HealthCheck.Server project’s /Properties/launchSettings.json file:

{
 "$schema": "https://json.schemastore.org/launchsettings.json",
 "iisSettings": {
 "windowsAuthentication": false,

To find out more about ZeroSSL, check out the following URL: https://zerossl.com/.

For additional info regarding Let’s Encrypt, check out the following URL: https://
letsencrypt.org/.

And here’s a guide explaining how to use the above services to generate and configure a
free TLS/SSL certificate for an MS Azure Windows virtual machine: https://blog.kloud.
com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-
windows-iaas-virtual-machines/.

For further info about this technique, refer to the following guide from the Microsoft docs:

https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-
certificate

https://zerossl.com/
https://letsencrypt.org/
https://letsencrypt.org/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate

Windows, Linux, and Azure Deployment664

 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:40080",
 "sslPort": 40443
 }
 },
 "profiles": {
 "HealthCheck.Server": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:40443;http://localhost:40080",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": false,
 "launchUrl": "swagger",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

As we can see, there are two execution profiles currently set:

• The IIS Express profile, which is related to the IIS Express HTTP server.
• The HealthCheck�Server profile, which is related to the application itself (hosted using Kestrel).

This profile will be used whenever we launch our project using the .NET Core CLI—in other
words, the dotnet run console command—and is also the default profile being used when we
launch our project in debug mode from Visual Studio.

For both of them, the ASPNETCORE_ENVIRONMENT variable is currently set to the Development value,
meaning that we’re always going to run our apps in development mode from Visual Studio, unless we
change these values.

How do different environments affect our web application’s behavior? In the next section, we’ll shed
some light on that.

Chapter 15 665

Runtime environments
Let’s start by briefly explaining what happens at runtime.

Right after our web application starts, ASP.NET Core reads the ASPNETCORE_ENVIRONMENT environment
variable and stores its value in the EnvironmentName property of our app’s IWebHostEnvironment
instance, which, as its name suggests, provides information about the web hosting environment our
application is running in. Once set, this variable can be used programmatically—either directly or
with some helper methods—to determine our app’s behavior at any moment of our back-end life cycle.

We’ve already seen these methods in action in the Program class of our ASP.NET Core applications—for
example, here’s what we can find in HealthCheck.Server's Program.cs source code:

// ... existing code...

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}

// ... existing code...

In the preceding lines, we’re telling our app to register the Swagger and SwaggerUI middleware only
if the app is running in a development environment. This condition, which is part of most Visual
Studio web application templates, is there for a reason; it’s a precautionary measure to prevent us
from accidentally disclosing our OpenAPI documentation to the public—unless we explicitly choose
to do that by rewriting that if block.

Given our current scenario, since our HealthCheck.Server project’s sole purpose is to interact with
our healthcheck.client Angular project, there’s no reason to release our Swagger JSON file or a UI
that will make it more human-readable. For that very reason, we can just leave things like that. The
same logic can be applied to the WorldCities.Server project as well.

While we’re here, we can take the chance to further improve the Program.cs file’s configuration
settings for the staging and production environments by using the ExceptionHandler middleware
instead of the default DeveloperExceptionPage. However, before doing that, it could be wise to take
a step back and briefly introduce the concept of error handling in ASP.NET Core to better understand
the underlying context.

The story would’ve been different if we were dealing with a Web API meant to be consumed
from some third-party services or arbitrary clients. In those circumstances, providing
detailed API documentation would have probably been a wise choice, provided that the
necessary security measures were considered.

Windows, Linux, and Azure Deployment666

Error handling techniques
As per its default settings, all ASP.NET Core web applications show detailed stack traces for server errors
using the DeveloperExceptionPageMiddleware. This middleware is inserted early in the middleware
pipeline and can catch any unhandled exceptions thrown by any subsequent middleware, thus being
very useful during the development phase; however, exception information and stack traces shouldn’t
be shown when the project is made available to the public.

For that very reason, a common security practice is to replace it with the UseExceptionHandlerMiddleware
when the project runs in a non-development environment. Such middleware will still be able to catch
(and potentially log) exceptions, but instead of printing all the relevant info within a dedicated error
page, it can be configured to redirect the request to a customizable “error” route, which can be handled
using a controller’s action method, a Minimal API method, or anything else.

Now that we know all that, we can set up the UseExceptionHandlerMiddleware by slightly updating
that “conditional” part of the Program.cs file in the following way (new lines are highlighted):

// ... existing code...

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
else
{
 app.UseExceptionHandler("/Error");
 app.MapGet("/Error", () => Results.Problem());
}

// ... existing code...

As we can see by looking at the above code, we’ve configured the exception handler middleware to
redirect errors to the /Error route, and we’ve also added a simple MinimalAPI method to handle it.

With such modifications applied, whenever our ASP.NET Core app crashes, its error page will condi-
tionally show the following messages:

The Results.Problem() we’re returning produces a ProblemDetails response, a
JSON-formatted, machine-readable response message for specifying errors in HTTP APIs
based on https://tools.ietf.org/html/rfc7807.

https://tools.ietf.org/html/rfc7807

Chapter 15 667

• Development environment: A low-level/detailed error message, such as the exception info
and the stack trace (for developers only)

• Staging or production environment: A high-level/generic unavailability message (for all end-us-
ers)

The developer exception page includes a detailed series of useful information about the exception and
the request, such as exceptions and inner exceptions, stack traces, query string parameters, cookies,
and HTTP headers.

While we’re here, we can add other middleware to further increase the security posture of our non-de-
velopment environments, HSTSMiddleware, which adds the HTTP Strict Transport Security (HSTS) max
age header value to all our responses.

Here’s how we can do that (new code is highlighted):

// ... existing code...

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
else
{
 app.UseExceptionHandler("/Error");
 app.MapGet("/Error", () => Results.Problem());
 app.UseHsts();
}

// ... existing code...

The HSTS header complies with some good HTTP security practices and is therefore highly desirable
for any app that is publicly facing the web; however, it is basically useless (and can be a hindrance)
during debugging, which is the reason why we are only setting it for non-development environments,
just like the custom error page.

Before moving on, let’s copy all the updates we’ve done to the HealthCheck.Server's Program.cs file
to the WorldCities.Server's Program.cs file, so that both our apps will benefit from these convenient
settings.

For additional information about this, and error handling in ASP.NET Core in general, visit
the following URL: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
error-handling.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling

Windows, Linux, and Azure Deployment668

Rule(s) of thumb
Now that we’ve seen how to programmatically determine our web app’s execution environment and
make our HTTP pipeline act accordingly, we should learn how to properly adopt, and adapt, these
conditional practices to best suit those environments.

Since the development environment is only available to developers, it should always favor debugging
capabilities over performance. Therefore, it should avoid caching, use in-memory loading strategies
to quickly respond to changes, and emit as much diagnostic information as possible (logs, exceptions,
and so on) to help developers promptly understand what’s happening.

Conversely, while addressing a production environment, a good way to make these decisions is by
applying the following rules of thumb:

• Turn on caching whenever possible in order to save resources and increase performance
• Ensure that all the client-side resources (JavaScript, CSS files, and so on) are bundled, minified,

and potentially served from a Content Delivery Network (CDN)
• Turn off diagnostic error pages and/or replace them with friendly, human-readable error

pages instead
• Enable production logging and monitoring using application performance management tools

or other real-time monitoring, auditing, and watchdog strategies
• Implement the best security practices made available by the frameworks
• Implement Open Web Application Security Project (OWASP) methodologies for software

development, as well as network, firewall, and server configurations

These are the general guidelines (or good practices) that we should always take into serious consider-
ation while refining the back-end part of our web applications for production usage.

What about the staging environment? It’s mostly used as a preproduction environment where we can
perform (or make some testers perform) our front-end testing before giving the OK for production
deployment. Ideally, its physical characteristics should mirror that of production, so that any issues
that may arise in production occur first in the staging environment, where they can be addressed
without impacting users.

If you remember what was said in Chapter 10, ASP.NET Core and Angular Unit Testing,
regarding Test-Driven Development (TDD), you should easily understand how the devel-
opment environment is where the TDD practice shines the most.

Again, if we think back to our behavior-driven development analysis back in Chapter 10,
ASP.NET Core and Angular Unit Testing, we can definitely acknowledge that the staging
environment would be the perfect place to test for the expected behavior of any newly
added features of our apps before releasing them into production.

Chapter 15 669

Let’s continue our learning path through the ASP.NET Core environments with another important
question: how can we set the proper environment when we deploy our app(s)?

Setting the environment in production
When we deploy our app using one of the available Visual Studio publish profiles—which is something
we’re going to do later on in this chapter—the launchSettings.json file will be excluded from the
published files. That is certainly to be expected, since it’s only meant to be used by Visual Studio and
other local development tools.

Whenever we host the app on a production server, we’ll have to manually set that value using one of
the following approaches:

• A dedicated environment variable with the same name
• Specific platform settings
• A command-line switch

These methods strongly depend on the server’s operating system. In the upcoming sections, we’ll see
how we can perform them on Windows and Linux servers.

If no environment-related setting is found, the web app will always use the production value as the
default, this being the most conservative choice for performance and security, since most debugging
features and diagnostic messages will be disabled.

Conversely, if the environment is set multiple times (such as by the environment variable and then
a command-line switch), the app will use the last environment setting read, thereby following a cas-
cading rule.

Updating the appsettings.Production.json file(s)
We already know from Chapter 3, Looking Around, that the configuration settings contained in the
appsettings.json file of our ASP.NET Core projects can be overridden for specific runtime environ-
ments using environment-specific files—such as appsettings.Development.json and appsettings.
Production.json. Now that we’re about to deploy our apps in production, we should take the chance
to briefly review those file(s) and see if we need to change some of these settings.

HealthCheck.Server
Let’s start with the HealthCheck.Server project. As a matter of fact, this project doesn’t use connection
strings, secret keys, or anything that could require an override for a production environment—except
for the AllowedCORS key that we added in Chapter 12, Progressive Web Apps.

It’s important to remember that the environment, once set, can’t be changed while the
web app is running.

Windows, Linux, and Azure Deployment670

If we want to make our Web API only be accessible from the healthcheck.client Angular app’s host
name, we’ll need to create a new appsettings.Production.json file to override this key using the
following command:

{
 "AllowedCORS": "https://healthcheck-2023.ryadel.com"
}

Needless to say, the above value would be OK only for our specific scenario, since we’re using third-level
domain names of the ryadel.com domain. Those who are using different domains (or any alternative
approach) should set that value according to their specific choice.

If we don’t want to restrict the CORS policy for our production app, we can avoid creating the
appsettings.Production.json file for the HealthCheck.Server project.

Let’s now move on to the WorldCities.Server project.

WorldCities.Server
The situation for our WorldCities.Server is slightly more complex, since we have several keys we
might want to override in production: the connection string to access our SQL database and the whole
JwtSetting block.

Here’s what a suitable appsettings.Production.json file would look like (relevant settings are high-
lighted):

{
 "ConnectionStrings": {
 "DefaultConnection": "PUT-YOUR-PRODUCTION-CONNECTION-STRING-HERE"
 },
 "JwtSettings": {
 "Audience": "https://worldcities-2023.ryadel.com"
 },
 "AllowedCORS": "https://worldcities-2023.ryadel.com"
}

The above appsettings.Production.json file has been added to the GitHub repository
for this chapter for reference purposes only. However, putting that file under the same
source control of the app is widely considered bad practice, even if it does not contain per-
sonal or sensitive info, since it could be inadvertently deployed in production and therefore
override the file already present on the server, which could be subject to code-independent
changes over time. To minimize this risk, it’s better to have it stored in a separate location
and manually copy it on the server whenever we need to.

Chapter 15 671

Be sure to replace the ConnectionStrings:DefaultConnection value with your actual connection
string; moreover, set the JwtSettings:Audience and AllowedCORS values to match the Angular app’s
production endpoint that you plan to use.

We’re now ready to proceed to the next steps: deploying our app in a Production environment on Win-
dows, Linux, and Azure. However, before doing that, let’s take a moment to discuss the deployment
modes available to us.

.NET deployment modes
The .NET deployment mode is a very important configuration feature that we definitely need to under-
stand in order to make the right choice whenever we have to deploy our application for production usage.

Let’s now try to shed some light on the three different types of deployments available from Visual
Studio for .NET applications:

• Framework-dependent deployment (FDD): As the name implies, such a deployment mode
requires the presence of the .NET runtime, which must be installed and available on the target
system; in other words, we’ll build a portable .NET application as long as the hosting server
supports it.

• Self-contained deployment (SCD): This deployment mode doesn’t rely on the presence of .NET
components on the target system. All components, including the .NET libraries and runtime,
will be included in the production build. If the hosting server supports .NET, the app will run
in isolated mode, separating itself from other .NET applications. SCD builds will include an
executable file (a .exe file on Windows platforms) as well as a .dll file containing the appli-
cation’s runtime.

• Framework-dependent executable (FDE): This deployment mode will produce an execut-
able file that will run on the hosting server, which must have the .NET and ASP.NET Core
runtimes installed. Therefore, such a mode is rather similar to FDD since both of them are
framework-dependent.

Let’s now try to understand the pros and cons of each deployment mode.

Framework-dependent deployment
Using the FDD mode grants the developer a number of advantages, including the following:

• Platform independence: There’s no need to define the target operating system since the .NET
runtime installed on the hosting server will seamlessly handle the app’s execution, regardless
of its platform.

Again, a sample appsettings.Production.json file for the WorldCities.Server proj-
ect with the above values has been added to the GitHub repository for this chapter, for
reference purposes only; what we should actually do is create and/or update it on the
production server (or service) after we’ve deployed our app.

Windows, Linux, and Azure Deployment672

• Small package size: The deployment bundle will be small since it will only contain the app’s
runtime and the third-party dependencies. .NET itself won’t be there since we expect it to
already be present on the target machine by design.

• Latest version: As per its default settings, FDD will always use the latest serviced runtime
installed on the target system, with all the latest security patches.

• Better performance in multihosting scenarios: If the hosting server has multiple .NET apps
installed, the shared resources will enable us to save some storage space and, most importantly,
obtain reduced memory usage.

However, this deployment mode also has a number of weaknesses, including the following:

• Reduced compatibility: Our app will require a .NET runtime with a version compatible with
the one used by our app (or later). If the hosting server is stuck to a previous version, our app
won’t be able to run.

• Stability issues: If the .NET runtime and/or libraries were to change their behavior (in other
words, if they had breaking changes or reduced compatibility for security or licensing reasons),
our app would potentially be impacted by these changes as well.

Self-contained deployment
Using the SCD mode has two big advantages that could easily outweigh the disadvantages regarding
some specific scenarios:

• Full control over the published �NET version, regardless of what is installed on the hosting
server (or what will happen to it in the future)

• No compatibility issues, since all the requisite libraries are provided within the bundle

Unfortunately, there are also some relevant disadvantages:

• Platform dependency: Providing the runtime with the production package requires the devel-
oper to select the target building platforms in advance.

• Increased bundle size: The additional presence of the runtime resources will definitely take
its toll in terms of disk space requirements. This can be a heavy hit if we plan to deploy mul-
tiple SCD .NET Core apps to a single hosting server, as each of them will require a significant
amount of disk space.

The self-contained deployment bundle size issue was addressed in .NET Core 3.0 with the introduction
of the app trimming feature (also called assembly linker), which basically trims the unused assem-
blies. This approach has been further improved in the subsequent .NET versions, where assemblies
get “cracked open” and purged of the types and members not used by the application, further reducing
the size.

For further info about the .NET app trimming feature, check out the following post by
Sam Spencer (Program Manager, .NET Core team): https://devblogs.microsoft.com/
dotnet/app-trimming-in-net-5/.

https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/

Chapter 15 673

Framework-dependent executable
The FDE deployment mode was introduced in .NET Core 2.2 and, starting from version 3.0, is the de-
fault mode for the basic dotnet publish command (if no options are specified). This new approach
has the following advantages:

• Small package size, latest version, and better performance in multihosting scenarios, just
like FDD mode

• Easy to run: The deployed executable can be directly launched and executed, without having
to invoke the dotnet CLI

This approach also has some disadvantages:

• Reduced compatibility: Just like FDD, the app requires an ASP.NET Core Runtime with a version
compatible with the one used by our app (or later)

• Stability issues: Again, if the ASP.NET Core Runtime and/or libraries were to change their
behavior, those changes could break the app or alter its behavior

• Platform dependency: As the app is an executable file, it must be published for each different
target platform

As we can easily guess, all of these three deployment modes can either be good or bad, depending
on a number of factors, such as how much control we have over the deployment server, how many
ASP.NET Core apps we plan to publish, and the target system’s hardware and software capabilities.

As a general rule, as long as we have the rights to install and update system packages on the deployment
server, the FDD modes should work well; conversely, if we host our apps on a cloud-hosting provider that
doesn’t have our desired .NET runtime, SCD would arguably be the most logical choice. The available
disk space and memory size will also play a major role, especially if we plan to publish multiple apps.

That said, we’re going to use the FDD (default) deployment mode, since our current scenario requires
the publication of two different apps that share the same ASP.NET Core Runtime version on the same
server.

Angular deployment tips
Let’s now turn our gaze to the front-end to properly understand how the Visual Studio template that
we’ve used to build our two apps handles Angular’s production deployment tasks.

It goes without saying that the same good practices we’ve determined for the back-end retain their
value at the front-end as well, as we’ll see in a short while. In other words, performance and security
will still be the principal goals in this regard.

As a matter of fact, the requirement of being able to manually install and update the
packages on the server should no longer be a hindrance since all .NET updates will now
be released through the regular Microsoft Update channel, as explained in the following
post by Jamshed Damkewala (Principal Engineering Manager, .NET): https://devblogs.
microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/.

https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/
https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/

Windows, Linux, and Azure Deployment674

Let’s now try to understand how the Angular CLI handles our applications’ publishing and deployment
tasks.

ng serve, ng build, and the package.json file
As we should already know, whenever we run one of our Angular projects in Visual Studio, the actual
app is served using an in-memory instance of the Angular CLI server. This server is launched by
Visual Studio using the ng serve command, as we can see by looking at the console window that is
automatically opened during the launch to host that process.

If we take a look at that window, we can see this clearly, as shown in the following screenshot:

Figure 15.1: Visual Studio output window during the initial debug phase

Conversely, whenever we want to compile our app for production, as we learned in Chapter 12, Pro-
gressive Web Apps, we need to use the ng build CLI command instead:

> ng build

The above command creates the Angular bundle with several optimization features meant for pro-
duction deployment, including the following:

• Ahead-of-time (AOT) compilation: This converts the HTML and TypeScript code into efficient
JavaScript code in order to provide faster rendering in the browser; the default mode (used for
ng serve), called just-in-time (JIT) compilation, compiles the app in the browser at runtime
and is, therefore, a much slower and less-optimized alternative.

• Production mode: This makes the app run faster by disabling some development-specific
checks, such as the dual change detection cycles.

• Bundling: This concatenates the various app and third-party files (npm packages) into a few
bundles.

Chapter 15 675

• Minification: This removes whitespaces, comments, optional tokens, and any unnecessary
characters and artifacts to HTML, JavaScript, and CSS files.

• Uglification: This internally rewrites the JavaScript code to shorten the variable and function
names; this will also make our published code less readable, which is often a good thing since
it will shield our app against malicious reverse-engineering attempts.

• Dead code purging: This removes any unreferenced modules and/or unused code files, snip-
pets, or sections.

As we can see, all of the preceding features aim to increase the performance and security capabilities
of our production build.

Differential loading
Another nice feature worth mentioning is differential loading, which was introduced in Angular 8 and
enabled by default when using the ng build command.

Differential loading is Angular’s way of overcoming the compatibility issues between various browsers,
especially the older ones; in other words, those that are still based on older versions of JavaScript.

As we can see by looking at the tsconfig.json file placed at the root of our Angular projects, our Type-
Script code will be transpiled and bundled into ES2022, also known as ECMAScript 2022, a JavaScript
syntax that is compatible with the vast majority of modern browsers. However, there is still a number
of users with older clients, such as old desktop, laptop, and/or mobile devices, that are bound to ES5
and earlier versions.

To work around this, previous versions of Angular, as well as most other front-end frameworks, pro-
vided a number of support libraries (known as polyfills) that would have conditionally implemented
the missing features for those browsers that didn’t natively support them. Unfortunately, such a
workaround massively increased the production bundle, thereby resulting in a performance hit for
all users, including those using modern browsers that didn’t need those polyfills to begin with.

Differential loading solves this issue by generating two separate bundle sets during the build phase:

• The first bundle contains the app’s code, which has been transpiled, minified, and uglified
using a modern ECMAScript syntax. This bundle ships fewer polyfills and therefore results
in a much smaller size.

• The second bundle contains the same code transpiled in the old ES5 syntax, along with all the
necessary polyfills. Needless to say, this bundle is much bigger than the first one in terms of
file size, but properly supports older browsers.

The differential loading feature can be configured by altering two files:

• The .browserlistrc file, which lists the minimum browsers supported by our application
• The tsconfig.json file, which determines the ECMAScript target version that the code is

compiled to

By taking both of these settings into consideration, the Angular CLI will automatically determine
whether or not to enable the differential loading functionality.

Windows, Linux, and Azure Deployment676

This strategy is very effective since it will allow our Angular apps to support multiple browsers without
forcing our modern users to retrieve all the unnecessary bundles.

The angular.json configuration file(s)
The most important difference between ng serve and ng build is that the latter is the only command
that actually writes the build-generated artifacts to the output folder. Those files are built using the
webpack build tool, which can be configured using the angular.json configuration file.

The output folder is also set within that file, more precisely, in the projects | [projectName] | architect
| build | options | outputPath section. In our sample apps, it’s the dist/[projectName]/browser folder,
meaning that all the build-generated artifacts will be deployed in the /dist/healthcheck.client/
browser and /dist/worldcities.client/browser folders.

Updating the environment.ts file(s)
Another file we need to remember is the /environments/environment.ts file of the healthcheck.
client and worldcities.client Angular apps, where we must replace the baseUrl key value—cur-
rently set to https://localhost:40443/—with the actual endpoints that our HealthCheck.Server
and WorldCities.Server apps will respond to.

In our specific scenario, since we’re using third-level domain names of the ryadel.com domain, we
need to change them in the following way:

• https://healthcheck-api-2023.ryadel.com/

• https://worldcities-api-2023.ryadel.com/

Those who used different domains (or any alternative approach) should update the above values
according to their specific choice.

Automatic deployment
Angular 8.3.0 introduced the new ng deploy command, which can be used to deploy the Angular app
to one of the available production platforms thanks to some third-party builders that can be installed
using ng add.

Here’s a list of the supported builders at the time of writing:

• @angular/fire (Firebase)
• @azure/ng-deploy (MS Azure)
• @zeit/ng-deploy (ZEIT Now)
• @netlify-builder/deploy (Netlify)
• angular-cli-ghpages (GitHub Pages)
• ngx-deploy-npm (NPM)

Chapter 15 677

Although the ng deploy CLI option is not yet supported by Visual Studio, it can be very useful to instantly
deploy our app using some presets that can be configured in the deploy section of the angular.json
file. Such a section isn’t available in the angular.json file of our projects, but it will be automatically
added as soon as one of the preceding builders is installed using the ng add CLI command (with its
corresponding default settings).

With this, we are ready to begin the actual deployment phase.

Windows deployment
In this section, we’ll learn how to deploy our HealthCheck web application on a Windows 2019 Data-
center Edition server hosted on MS Azure.

Here’s what we’re going to do:

• Create a new VM on MS Azure using the Windows 2022 Datacenter Edition template and con-
figure it to accept inbound calls to TCP ports 3389 (for Remote Desktop), 80 (for HTTP), 443
(for HTTPS), and 22 (for SSH)

• Configure the VM by downloading and/or installing all the necessary services and runtimes
to host the HealthCheck app

• Publish the HealthCheck app to the web server we’ve just set up
• Configure IIS to serve the app in the proper way
• Test the HealthCheck app from a remote client

Let’s get to work!

Creating a Windows Server VM on MS Azure
If we remember our journey through MS Azure in Chapter 5, Data Model and Entity Framework Core,
when we deployed a SQL database there, we should already be prepared for what we’re going to do:

• Access the MS Azure portal.
• Add and configure a new VM.
• Set the inbound security rules to access the VM from the internet.

Let’s do this.

Accessing the MS Azure portal
As usual, let’s start by visiting the following URL, which will bring us to the MS Azure website: https://
azure.microsoft.com/.

In this deployment example, we’re going to set up a brand-new VM on the MS Azure
platform, which requires some additional work; those users who already have a produc-
tion-ready Windows server should skip the sections related to the VM setup and go directly
to the publishing topics.

https://azure.microsoft.com/
https://azure.microsoft.com/

Windows, Linux, and Azure Deployment678

Again, we can either log in using an already-existing MS Azure account or create a new one (possibly
taking the chance to use the free 30-day trial, if we haven’t used it already).

As soon as we have created the account, we can go to https://portal.azure.com/ to access the MS
Azure administration portal, where we can create our new VM.

Adding a new Windows VM
Once logged in, click on the Virtual machines icon (refer to the following screenshot):

Figure 15.2: Clicking on the Virtual machines icon

From the next page, click Add (near the top-left corner of the page) to access the Create a virtual
machine panel.

The Create a virtual machine panel is basically a detailed wizard that allows us to configure a new VM
from scratch. The various configuration settings are split into a number of panels, each one dedicated
to a specific set of capabilities, as shown in the following screenshot:

Refer to Chapter 5, Data Model and Entity Framework Core, for additional information on
creating a free MS Azure account.

https://portal.azure.com/

Chapter 15 679

Figure 15.3: The Create a virtual machine panel

Windows, Linux, and Azure Deployment680

It’s worth noting that the MS Azure settings we’re going to review, as well as the look and feel of the
various screenshots, might vary in the future, as Microsoft is continuously adding new features, control
switches, and other UI/UX goodies to their wizards.

That said, here’s a brief summary of the main settings panels:

• Basics: Subscription type, VM name, deployment region, image, login credentials, and so on
• Disks: The number and capacity of HDDs/SDDs to provide the VM with
• Networking: Network-related configuration settings
• Management: Microsoft Defender for Cloud, Identity, auto-shutdown capabilities, backup,

and more
• Monitoring: Alerts, Diagnostics, and Health monitoring features
• Advanced: Additional configuration, agents, scripts, extensions, and the like
• Tags: These allow some name-value pairs that can be useful in categorizing the various MS

Azure resources to be set

In our current scenario, we just have to slightly modify the first four tabs, leaving the remaining ones
as their default settings.

In the Basics tab, we have the following:

• Resource group: Use the same resource group used for the SQL database (or create a new one).
• Virtual machine name: Use NET8-Angular-Windows, HealthCheck, or any other suitable name.
• Region: Choose the region closest to our geographical position.
• Availability options: No infrastructure redundancy required.
• Security type: Trusted launch virtual machines.
• Image: In our example, we’re going to use the Windows Server 2022 Datacenter default image;

feel free to use it as well or pick another one.
• Run with Azure Spot discount: Check this flag if you want to create the VM using the Azure

Spot feature, which allows us to take advantage of Azure’s unused capacity at a significant cost
saving. However, since these VMs can be evicted at any point in time when Azure needs the
capacity back, we should only use this feature for short-term testing purposes; if we want to
create a permanent, production-like VM, we should definitely leave this flag unchecked and
create a standard pay-as-you-go machine.

• Size: Standard B1ms (1 vCPU, 2 GiB memory). Feel free to choose a different size if you’re willing
to spend more. B1ms is an entry-level machine featuring a very limited set of resources that
will suffice for this deployment sample but won’t perform well in production.

• Administrator account: Select the Password authentication type, and then create a suitable
username and password set. Remember to write these down in a secure place, since we’ll
definitely need these credentials to access our machine in a while.

In the Disk tab, we have the following:

• OS disk type: Select Premium SSD (locally-redundant storage) for optimal performance, or
Standard HDD if you want the cheapest available choice

Chapter 15 681

• Data disks: We do not need to create additional data disks for our current purposes

In the Networking tab, we have the following:

• Virtual Network: If you created a SQL database hosted on Azure in Chapter 5, Data Model and
Entity Framework Core, select the same VNet used for it; otherwise, create a new one

• NIC network security group: Basic
• Public inbound ports: Choose Allow selected ports, then select the following ports from the

list: HTTP (80), HTTPS (443), SSH (22), and RDP (3389)
• Load balancing options: None

In the Monitoring tab, we have the following:

• Boot diagnostics: Disable

Leave all the other settings as their defaults.

Once done, click the Review + create button to review our configuration settings and initiate the VM
deployment process.

At the end of the process, we should see a screen like the following:

Figure 15.4: Deployment complete screen

From there, we can click the Go to resource button to access the VM’s Overview panel.

For further info regarding the Azure Spot feature, read the following article: https://
docs.microsoft.com/en-us/azure/virtual-machines/spot-vms.

https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms

Windows, Linux, and Azure Deployment682

Configuring a DNS name label
Now we have the chance to add a DNS name label to our VM, which will be used to generate a unique
fifth-level domain name in addition to its unique numeric IP address.

To do this, locate the DNS name label in the virtual machine’s Overview panel and click on the Not
configured link next to it, as shown in the following screenshot:

Figure 15.5: Configuring a DNS name label

Once generated, the DNS name will look like this: your-chosen-name.westeurope.cloudapp.azure.
com.

Configuring the DNS name label and getting the DNS name can be useful if we want to access our web
application from the web without having to configure anything on our end (such as a host mapping
to the VM’s IP address or something like that). We could even use it to replace one of the “fake” host-
names that we plan to put within our local machine’s HOSTS file for our healthcheck.client and
HealthCheck.Server apps—healthcheck.io or healthcheck-api.io—if we want to.

Before leaving the Overview tab, be sure to take note of the virtual machine’s IP address and DNS
name, since we’re going to need them in a short while.

Setting the inbound security rules
Go to the Settings | Networking tab and ensure that the Inbound port rules tab contains the routes for
the public inbound ports we specified when we created the VM: HTTP (80), HTTPS (443), SSH (22),
and RDP (3389). In the unlikely case that they are not here, we need to manually set them.

The DNS name label is basically an A record that will grant a “human-readable” public
endpoint to your VM server. It goes without saying that the DNS name must be unique
within the chosen Azure region.

In our example, we’re going to use the following DNS name:

healthcheck-2023.westeurope.cloudapp.azure.com

Chapter 15 683

While we’re here, we can also take the chance to restrict access to some of these rules instead of leav-
ing them open to the public, depending on our specific needs; for example, it’s strongly advisable to
restrict access to the SSH and RDP inbound rules to a secure source IP address (or address range),
which can be set to either our static IP address or our ISP’s IP mask. Such a setting will ensure that no
third parties will be able to attempt Remote Desktop access or visit our web application.

Regardless of how we will eventually set these inbound rules, we assume that we leave the RDP port
3389 open for our local machine, so that we can connect to our VM using Remote Desktop Connection.

Configuring the Windows VM
With TCP port 3389 open, we can launch the Remote Desktop Connection built-in tool from our local
Windows-based development machine. Type in the public IP address (or the DNS name) of the Azure
VM and click Connect to initiate an RDC session with our remote host:

Figure 15.6: The Remote Desktop Connection tool

IMPORTANT: For reasons of space, we will not go into any more detail on the security
aspects related to connections with MS Azure and the virtual machines hosted therein.
Opening port 3389 and/or 22 to a single IP address is a simple solution that works well for
our testing purposes, but for a production environment, we should definitely switch to safer
and stronger access protocols, such as JIT access, Azure Bastion, and/or secure SSH tunnels.

For additional info on these security best practices, read the following guides:

https://docs.microsoft.com/en-us/azure/security-center/just-in-time-
explained

https://docs.microsoft.com/en-us/azure/bastion/

https://docs.microsoft.com/en-us/azure/security-center/just-in-time-explained
https://docs.microsoft.com/en-us/azure/security-center/just-in-time-explained
https://docs.microsoft.com/en-us/azure/bastion/

Windows, Linux, and Azure Deployment684

If the inbound security rule has been properly configured, we should be able to connect to our new
VM’s desktop and set up our VM for serving our ASP.NET Core and Angular HealthCheck web appli-
cation. Doing this requires a series of configuration tasks that will be described in the next sections.

The first step, which we’ll be dealing with in the following section, will be installing IIS, a flexible,
secure, and manageable HTTP server that we’ll use to host our ASP.NET Core and Angular application
over the web.

For reasons of space, we’re not going to talk about IIS or explore its functionalities. We’ll just use the
minimum amount of settings required to host our apps. For additional information regarding IIS,
check out the following URL: https://www.iis.net/overview.

Adding the IIS web server
Once connected via Remote Desktop, we can access Control Panel | Program and Features | Turn
Windows features on and off (or the Add Roles and Features Wizard from the Server Manager dash-
board) to install IIS on the VM, as shown in the following screenshot:

Figure 15.7: The Add Roles and Features Wizard

From the various roles available, select Web Server (IIS), as shown in the following screenshot. Be
sure that the Include management tools checkbox is checked, and then click Add Features to start
installing it:

https://www.iis.net/overview

Chapter 15 685

Figure 15.8: Selecting Web Server (IIS)

Select Next on the next two windows to reach the Role Services panel. Once there, expand the Ap-
plication Development node and select WebSocket Protocol to ensure it will be installed. As we
learned in Chapter 14, Real-Time Updates with SignalR, this will allow SignalR to connect using the
best-supported protocol.

Windows, Linux, and Azure Deployment686

Figure 15.9: Adding support for WebSocket Protocol

Once done, click Next again and then Install to launch the installation process.

Installing the ASP.NET Core Windows hosting bundle
Once IIS has been installed, we can proceed with downloading and installing the ASP�NET Core
Runtime.

Be sure to pick the ASP�NET Core 8�0�1 Runtime – Windows Hosting Bundle installer package for
Windows x64, as shown in the following screenshot:

It’s strongly advisable to install the .NET runtime after installing IIS because the package
bundle will perform some modifications to the IIS default configuration settings.

To download the .NET runtime, visit the following URL: https://dotnet.microsoft.
com/en-us/download/dotnet/8.0.

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

Chapter 15 687

Figure 15.10: Picking the Windows Hosting Bundle installer package

The bundle includes the .NET runtime, the ASP.NET Core Runtime, and the ASP.NET Core IIS module
– everything we need to run our ASP.NET Core and Angular app from our VM.

Restarting IIS following ASP.NET Core Runtime installation
Once the ASP.NET Core Runtime installation process is complete, it’s advisable to issue a stop/start
command to restart the IIS service.

To do this, open a Command Prompt window with administrative rights and execute the following
console commands:

> net stop w3svc /y
> net start w3svc

These commands will allow IIS to pick up a change to the system path made by the Windows Hosting
Bundle installer.

Publishing healthcheck.client and HealthCheck.Server
Now, we must find a way to publish the healthcheck.client Angular app and HealthCheck.Server
Web API and deploy them to our server.

As for the Angular app, we already know how to perform the first step, from Chapter 12, Progressive
Web Apps: we need to open a Command Prompt, navigate to the project’s root path, and run the ng
build command. We just need a way to copy the generated Angular application bundle to our new VM.

Windows, Linux, and Azure Deployment688

A simple way to do this is by using the Remote Desktop resource-sharing feature, which allows our
local HDD to be accessed from a remote instance… or even a simple cut and paste. We can use one of
these features to copy the whole content of our development machine’s /build/healthcheck.client/
browser/ folder into a new C:/inetpub/healthcheck.client/ folder created on the remote VM.

As for the ASP.NET Core app, there are several alternative options to perform the publishing and
deployment task, all accessible from the publish profiles feature.

Introducing Visual Studio publish profiles
Visual Studio’s publish profiles feature allows us to build, publish, and sometimes even deploy a web
application directly from the GUI, thus greatly simplifying the publishing process.

To create a publish profile, choose one of the following paths:

• Right-click the API project in Solution Explorer and select Publish
• Select Publish {PROJECT NAME} from the Build menu

Once we do that, we’ll be asked to select one from several available publish targets, including:

• Azure
• Docker Container Registry
• Folder
• FTP/FTPS Server
• Web Server (IIS)
• Import Profile

Given our specific scenario, we should take one of the following routes:

• Create a Folder publish profile to publish our app to a local folder of our development machine,
and then copy the files to the web server somehow

• Install an FTP/FTPS server on our web server and then set up an FTP publish profile
• Use Visual Studio’s Azure Virtual Machine publish profile
• Use Visual Studio’s Web Server (IIS) publish profile

All the above options are viable. The last two require installing some additional components (Web
Deploy) on the VM server; however, once we do that, they will work in an almost fully automated
fashion (one-click deploy).

That said, in the following sections, we’ll briefly review all of them.

Folder publish profile
Here’s what we need to do to create a new Folder publish profile:

1. Select the Folder option.
2. Specify the path of the folder that will contain the published application.
3. Click the Create Profile button to create the profile.

Chapter 15 689

4. Click the Publish button to deploy our HealthCheck.Server back-end to the chosen local fold-
er. Visual Studio will suggest a path located within the application’s /bin/Release/ subfolder,
such as /bin/Release/net8.0/publish/; we can either use this or choose another folder of
our choice.

When the publishing task is complete, we can use the RDP resource-sharing feature to copy the whole
content of our development machine’s /bin/Release/net8.0/publish/ folder into a new C:/inetpub/
HealthCheck.Server/ folder—just like we did with our Angular app.

FTP publish profile
If our web server can accept FTP (or FTPS) connections, then a suitable alternative way of publishing
our project is to create an FTP-based publish profile that will automatically upload our web project to
our web server using the FTP/FTPS protocol.

To make use of the FTP publish profile, we’ll also need to open our VM’s TCP port 21 (or another non-de-
fault port) by adding another inbound security rule, just like we did with ports 22, 80, 443, and 3389.

All we need to do is link the FTP destination folder to a new website project using IIS, and we’ll be
able to publish/update our website in a real-time fashion, as everything will be put online as soon as
the publishing task is complete.

To set up the FTP publishing profile, select IIS, FTP, and the other icons, wait for the wizard-like modal
window to appear, and then select the following options:

• Publish method: Select FTP.
• Server: Specify the FTP server URL (IP address or domain name).
• Site path: Insert the target folder from the FTP server root, such as /HealthCheck.Server/.
• Passive Mode, Username, Password: Set these values according to our FTP server settings and

given credentials. Activate Save Password if you want to let Visual Studio store it, so we won’t
have to write it with each publishing attempt.

• Destination URL: This URL will be automatically launched as soon as the publishing task suc-
cessfully ends using the default browser. It’s often wise to set it to our web application’s base
domain, such as www.our-website-url.com, or to leave it empty.

If we don’t want to use the built-in FTP server provided by Windows Server, we can install
a third-party FTP server, such as FileZilla FTP Server, a great open-source alternative that
comes with full FTPS support. You can find FileZilla FTP Server at the following URL:
https://filezilla-project.org/download.php?type=server.

As we said earlier, we’re doing all this assuming that we have a web server accessible
through FTP or that we’re willing to install an FTP server. If that’s not the case, you might
as well skip this section and use a different publishing profile, such as Azure Virtual
Machine or Folder.

https://filezilla-project.org/download.php?type=server

Windows, Linux, and Azure Deployment690

Once done, click on the Validate Connection button to check the preceding settings and ensure that
you’re able to reach the server through FTP. If you aren’t, it might be wise to perform a full-scale
network check, looking for firewalls, proxies, antivirus, or other software that could prevent the FTP
connection from being established.

Azure Virtual Machine publish profile
The Azure Virtual Machine publish profile is a great way to enforce the continuous integration and
continuous delivery (CI/CD) DevOps pattern because it will act as either a build system (for producing
packages and other build artifacts) or a release management system to deploy our changes.

To use this, select the Azure Virtual Machine option, click Browse, and then select the VM that we
created a moment ago (see the following screenshot):

Figure 15.11: Selecting the newly created VM

Chapter 15 691

However, in order to do this, we need to perform some additional configuration changes on our VM,
including the following:

• Install the Web Deploy Windows feature (just like we did with IIS early on).
• Open the 8172 TCP port, just like we did with 22, 80, 443, and 3389 a while ago.
• Set up a globally unique DNS name for the VM (as explained in the Configuring a DNS name

label section previously).

Once we’re done with these settings, we should be able to publish our web application to the VM in a
seamless and transparent manner.

Configuring IIS
Regardless of the publishing technique we’ve used, by now our remote VM server should have the
following folders:

• C:/inetpub/healthcheck.client/—with our Angular app bundled files
• C:/inetpub/HealthCheck.Server/—with our ASP.NET Core Web API published files

Now is a good chance to create (or edit) our HealthCheck.Server app’s appsettings.Production.
json file, following the guidelines we explained early on.

As for the appsettings.Development.json file, we can just delete it, since we likely won’t ever need
to execute our app in a development environment on this VM server.

After doing that, we need to configure IIS to make these two apps available on the World Wide Web. To
do that, we need to add two IIS website entries:

• Healthcheck.client, for the Angular app
• HealthCheck.Server, for the ASP.NET Core app

Let’s start with the Angular app.

Adding the healthcheck.client website entry
From the IIS Manager main page, expand the root node to show the Sites folder, then right-click it
and select the Add Website option to create a new website.

If we want to never have to worry about deleting the development file, and minimize the
risk of overwriting the production file, we can even configure our Visual Studio publish
profile(s) to exclude them both using the following guide:

https://weblog.west-wind.com/posts/2020/Jul/25/Excluding-Files-and-
Folders-in-Visual-Studio-Web-Site-Project

https://weblog.west-wind.com/posts/2020/Jul/25/Excluding-Files-and-Folders-in-Visual-Studio-Web-Site-Project
https://weblog.west-wind.com/posts/2020/Jul/25/Excluding-Files-and-Folders-in-Visual-Studio-Web-Site-Project

Windows, Linux, and Azure Deployment692

Fill out the Add Website modal window, as shown in the following screenshot:

Figure 15.12: Add Website modal window

Here’s a summary of the most relevant settings (and how we recommend they are set for our specific
purpose):

• Site name: The name you want to give to your website; in our example, we are using healthcheck.
client.

• Physical path: C:\inetpub\healthcheck.client (the path where we’ve copied the Angular
app’s bundled files).

• Binding | Type: https.
• IP address: All Unassigned.
• Port: 443.
• Host name: This is the endpoint the Angular app will respond to: in other words, the main

entry point of our end-users. In the above screenshot, we’ve used healthcheck-2023.ryadel.
com, but you obviously need to use your actual hostname instead.

• Require Server Name Indication: Yes.

Chapter 15 693

• SSL certificate: In our given scenario, we’re using our TLS/SSL wildcard certificate. If you don’t
have one, you can select the TenantEncryptionCert provided by Azure or use a self-signed
TLS/SSL certificate (see below).

• Start Website immediately: Yes.

Once done, click OK to add the new website. A new entry will appear in the tree view on the right
within the Sites folder.

Adding the HealthCheck.Server website entry
Right-click again on the Sites folder, then right-click it and select the Add Website option to create
another website.

Repeat the same steps as before, with the following differences:

• Site name: In our example, we’re using HealthCheck.Server.
• Physical path: C:\inetpub\HealthCheck.Server (the path where we’ve copied the published

files of our ASP.NET Core app).
• Host name: This is the endpoint the ASP.NET Core Web API will respond to – in other words,

the endpoint we need to put in the Angular app’s environment.ts file. Put your chosen host-
name there.

Once done, click OK to add the new website. Now we should have two website entries within the Sites
folder, healthcheck.client and HealthCheck.Server, each one configured to handle a different
domain name.

Before going further, it might be wise to spend a couple of words on SSL certificates.

A note on TLS/SSL certificates
Since our apps are meant to be served using HTTPS, when we created the IIS website entries, we
had to specify a TLS/SSL certificate for both of them. For the sake of simplicity, we assumed that we
already have a valid TLS/SSL certificate compatible with the hostnames we’ve used. If we don’t have
them, we can either:

• Purchase and install a TLS/SSL certificate from a third-party reseller
• Get a free TLS/SSL certificate using a non-profit certificate authority such as Let’s Encrypt
• Use the MS Azure tenant certificate autogenerated by MS Azure when we created our VM
• Create a self-signed certificate using the guide below

The first two routes will likely be the ways to go for any non-testing scenario. The other alternatives
should be OK when performing the initial deployment tests, because they provide a faster (and cost-
free) alternative to achieve our goal; that’s why we’re going to use them in our sample scenario.

However, an Azure-generated or self-signed certificate has the following downsides:

• All browsers (and antiviruses with web protection filters) will raise the typical SSL warnings
and “unsecure website” messages, which we’ll have to manually confirm/accept/skip

Windows, Linux, and Azure Deployment694

• We won’t be able to properly test most of the PWA features of our app, because the service
worker registration will fail

In the next section, we’ll briefly see how we can create a self-signed SSL certificate that can be used
instead of the MS Azure ones.

Creating a self-signed SSL certificate
To create a self-signed SSL certificate, connect to the VM using Remote Desktop and perform the
following steps:

1. Open the IIS Manager desktop app, select the root node from the tree view on the left, and then
double-click the Server Certificates icon, as shown in the following screenshot:

Figure 15.13: Accessing the IIS Manager’s Server Certificates feature

2. Once in the Server Certificates panel, click the Create Self-Signed Certificate link in the Ac-
tions column on the right.

As we’ve seen in Chapter 12, Progressive Web Apps, a trusted HTTPS connection is one of
the requirements for PWAs; unfortunately, a self-signed SSL certificate won’t do the trick,
unless we create a CA certificate, register it in our Chromium browser, and then use it to
sign our own SSL certificate.

Those who want to try that route can follow the instructions explained in this Stack Over-
flow answer by JellicleCat: https://stackoverflow.com/a/60516812/1233379.

Or, check other alternative methods discussed in that thread.

https://stackoverflow.com/a/60516812/1233379

Chapter 15 695

3. A modal window will appear (see the following screenshot), where we’ll be asked to specify a
friendly name for the certificate. Choose a friendly name for the certificate, select the Personal
certificate store, and then click OK to create the self-signed certificate:

Figure 15.14: Create Self-Signed Certificate modal window

In the above example, we’re using the healthcheck.io friendly name for the certificate, but we’re free
to use any name we like: we’re not using a specific domain name, since we’re likely going to use that
certificate for all the websites and services that can’t rely upon a CA-signed certificate.

Once done, we’ll be able to assign our new self-signed SSL certificate to all our website entries, re-
placing the MS Azure one.

Configuring the IIS application pool
As you may already know, the IIS service runs the various configured websites under one or more
application pools. Each application pool configured will spawn a dedicated w3wp.exe Windows process
that will be used to serve all the websites that have been configured to use it.

Depending on the publishing requirements of the various websites we need to host, we could run all
websites in a few application pools (or even a single one) or each one with its own application pool.
Needless to say, all the websites that share the same application pool will also share their various
settings, such as memory usage, pipeline mode, identity, and idle timeout.

Windows, Linux, and Azure Deployment696

In our specific scenario, when we created our healthcheck.client and HealthCheck.Server websites
in the previous section, we chose to create a dedicated application pool with that same name—which
is also the IIS default behavior. Therefore, in order to configure the website’s application pool settings,
we need to click on the Application Pools folder from the tree view on the left and then double-click
each website entry from the Application Pools list panel, as shown in the following screenshot:

Figure 15.15: The Edit Application Pool modal window

In the Edit Application Pool modal window, choose the following settings, as shown in the preceding
screenshot:

• �NET CLR version: No Managed Code
• Managed pipeline mode: Integrated

You might be wondering why we’re also choosing No Managed Code for the API application pool,
since we’re clearly using the ASP.NET Core CLR. The answer is simple: since ASP.NET Core runs in a
separate IIS process, there’s no need to set any .NET CLR version on IIS.

The IIS configuration is almost done. However, before being able to test what we did, we need to
perform a last task: add the .webmanifest file extension to the list of the IIS-supported MIME types.

For additional information regarding the ASP.NET Core hosting model on IIS, including
the various differences between the in-process and out-of-process hosting models, check
out the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-and-
deploy/iis/

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/

Chapter 15 697

Adding the .webmanifest MIME type
As per its default settings, IIS does not serve any files with an extension that does not have a MIME
map associated with it. Unfortunately, the .webmanifest extension—which we used in Chapter 12,
Progressive Web Apps, for our PWA manifest file—is not associated with a MIME map, meaning that
this file won’t be sent to the browser.

To fix this issue, we need to perform the following tasks from the IIS Manager tool:

1. From the tree view on the left, select either the server’s root node or the healthcheck.client
website, depending on whether we want to add the new mapping to all the websites or to our
Angular app’s website only. In our scenario, both options will work, but we suggest adding the
mapping to all the websites since it won’t pose significant security issues.

2. Select MIME Types from the options listed in the right part of the window.
3. Once there, select Add from the menu to the right.
4. In the dialog box that opens, type .webmanifest in the File name extension, and application/

manifest+json in the MIME type box, as shown in the screenshot below:

Figure 15.16: Mapping the .webmanifest file extension to the application/manifest+json
MIME type

That’s it: now we’re ready to check our healthcheck.client Angular app and HealthCheck.Server
ASP.NET Core Web API and see if they are still able to work together like they did on our development
machine.

Windows, Linux, and Azure Deployment698

Testing healthcheck.client and HealthCheck.Server
Our web application should now be ready to receive HTTP requests; we only need to ensure that
remote clients will be able to access it, including the machine we want to use to perform our first
connection test.

More specifically, what we need to do depends on how we have configured the host name of our IIS
websites:

• If we have used real domain names (or IP addresses, or DNS names), we just have to set the
new DNS records and/or wait for them to propagate

• If we have used some “fake” hostnames, we need to map them to the remote VM server’s IP
address within the local machine’s HOSTS file, as explained in the Tweaking the HOSTS file
section above

Once both our websites’ endpoints are reachable from our machine, we can proceed with the test.

Testing the app
Now, we can finally launch our favorite Chromium-based web browser and call the Angular app’s
endpoint that we configured earlier on.

If we did everything correctly, we should be able to see our healthcheck.client Angular application
(with full back-end support provided by HealthCheck.Server) in all its glory:

Figure 15.17: Launching our HealthCheck web application

A Chromium-based browser, such as Google Chrome or Microsoft Edge, will make us able
to immediately check out the Web App Manifest file and the service worker, just like we
did with the “local” publishing test that we performed in Chapter 12, Progressive Web Apps.

Chapter 15 699

Other than seeing the home view, we should also be able to see the following:

• The app manifest file (with all the HC icons) in the Application | Manifest panel of the brows-
er’s development console

• The service worker properly registered in the Application | Service Workers panel of the
browser’s development console

• The send this page and install icons in the rightmost part of the browser’s address bar

In order to see those panels, remember to press Shift + Ctrl + J to bring the development console into view.

From there, we can now install the app and check/uncheck its offline status to test the service work-
er’s behavior, just like we did in Chapter 12, Progressive Web Apps, when we tested our published app
from a standard Visual Studio debug run; if we did everything properly, everything should work and
behave in the same way.

Last but not least, check the SignalR functionalities by navigating to the Health Check page and hitting
the Refresh button. If everything works as expected, you should be able to see the Response Time
value changing upon each refresh, just like we did in Chapter 14, Real-Time Updates with SignalR.

With this, we’ve completed our Windows deployment journey; our healthcheck.client and
HealthCheck.Server web apps have achieved their ultimate goal.

In the next section, we’ll see how we can deploy our worldcities.client and WorldCities.Server
web apps to a completely different machine.

Linux deployment
Throughout this section, we’ll learn how to deploy our WorldCities web application on a Linux Ubuntu
server hosted on MS Azure.

More precisely, here’s what we’re going to do:

• Create a new VM on MS Azure using the Ubuntu Server 22.04 template
• Configure the VM to accept inbound calls to TCP ports 22 (for SSH), 80 (for HTTP), and 443

(for HTTPS), as well as setting up the Nginx + Kestrel edge-origin hosting model
• Publish the WorldCities app to the web server we’ve just set up
• Test the WorldCities app from a remote client

Let’s get to work!

It’s worth noting that the Ubuntu Server template that we’re going to use in this deployment
sample can be easily replaced—with minor variations—with any other Linux VM template
available on MS Azure. As a matter of fact, the ASP.NET Core Linux runtime works well
with most Debian-based and RPM-based Linux distributions, with a few minor differences
mostly related to their package management systems.

Needless to say, those who already have a production-ready Linux server could probably
skip the sections related to the VM setup and go directly to the subsequent publishing topics.

Windows, Linux, and Azure Deployment700

Creating a Linux VM on MS Azure
Once again, we need to perform the following steps:

• Access the MS Azure portal
• Add and configure a new VM
• Set the inbound security rules to access the VM from the internet

However, since we already explained the MS Azure VM creation process with Windows Server earlier
on in this chapter, we’re going to briefly summarize all the common tasks and avoid resubmitting the
same screenshots.

Let’s go back to MS Azure once more!

Adding a new Linux VM
Once again, we need to log in to MS Azure using our (existing or new) account and access the MS
Azure portal administration dashboard.

Right after that, we can click on the Virtual Machine icon and click Add to access the Create a virtual
machine panel and enter the following settings.

In the Basics tab:

• Resource group: Use the same resource group used for the SQL database (this is mandatory
unless our database is not there).

• Virtual machine name: Use NET8-Angular-Linux, WorldCities, or any other suitable name.
• Region: Choose the region closest to your geographical position.
• Availability options: No infrastructure redundancy required.
• Security type: Trusted launch virtual machines.
• Image: In our example, we’re going to use the Ubuntu Server 22�04 LTS – x64 image, which

is provided free of cost; alternatively, you can choose any other Linux-based VM template as
long as you’re willing, and able, to adapt the following instructions according to the (arguably
minor) differences between different Linux distributions.

• Azure Spot instance: Again, select Yes for an Azure Spot instance, or No for a standard pay-
as-you-go instance.

• Size: Standard B1ms (1 vcpu, 2 GiB memory): Feel free to choose a different size if you’re willing
to spend more; B1ms is an entry-level machine featuring a very limited set of resources that
will suffice for this deployment sample, but won’t perform well in production.

Those who require additional explanations regarding the various required steps can check
out the Creating a Windows Server VM on MS Azure section.

Chapter 15 701

• Administrator account: Select the Password authentication type, and then create a suitable
username and password set. Remember to write these down in a secure place, since we’ll
definitely need these credentials to access our machine in a while.

In the Disk tab:

• OS disk type: Select Standard SSD for performance, or Standard HDD to save money
• Data disks: Azure Linux VMs come with a temporary disk and an OS disk, which are good

enough for our sample purposes; again, those who want to set up a production environment
can (and should) add additional storage here

In the Network tab:

• Virtual Network: Select the same VNet used for the SQL database (or create a new one)
• Public inbound ports: If the wizard allows this (depending on the chosen OS image), choose

Allow selected ports, then select the following ports from the list: HTTP (80), HTTPS (443),
and SSH (22)

In the Monitoring tab:

• Boot diagnostics: Disable

Once done, click the Review + create button to review our configuration settings and initiate the VM
deployment process.

Once deployment is complete, we can click the Go to Resource button to access the Virtual Machine
overview panel.

Configuring a DNS name label
Again, we have the chance to add a DNS name label to our VM and generate a unique fifth-level do-
main name to conveniently access it. If we choose to do this, we need to locate the DNS Name label
in the virtual machine’s Overview panel, click on the Configure link next to it, and perform the steps
already explained for the Windows VM.

Before proceeding, take note of both the DNS name and the machine’s IP address, as we’ll likely need
them later on.

In our example, we’re going to use the following DNS name:

worldcities-2023.westeurope.cloudapp.azure.com

Windows, Linux, and Azure Deployment702

Setting the inbound security rules
Go to the Settings | Networking tab and take note of the machine’s public IP address. Then, check
for the existence of the following inbound security rules, adding them if they’re not already present:

• TCP port 22, so that we’ll be able to access the machine using the Secure Shell protocol (also
known as SSH)

• TCP ports 80 and 443, to access the HTTP server (and our WorldCities web app) from the
internet using SSL

Again, if you want to increase the security posture of the VM, be sure to restrict access to these in-
bound rules to a secure source IP address (or address range), which can be set to either our static IP
address or our ISP’s IP mask.

Configuring the Linux VM
Now, we can use the SSH protocol to access our new Linux VM and perform two different (yet both
required) sets of tasks:

• Set up and configure the VM by installing the various required packages (the ASP.NET Core
Runtime, the Nginx HTTP server, and the like)

• Build, publish, and deploy the worldcities�client and WorldCities�Server projects using the
Angular CLI and the Visual Studio publish profile, just like we did for the Windows VM

For the first set of tasks, we’re going to use PuTTY, a free SSH client for Windows that can be used
to remotely access a Linux machine’s console. As for the deployment tasks, we’ll handle them using
Secure Copy (aka SCP), a Windows command-line tool that allows files to be copied from a (local)
Windows system to a remote Linux machine.

PuTTY can be downloaded and installed from the following URL: https://www.putty.
org/.

The SCP command-line tool is already shipped with most Windows versions, including
Windows 10; for additional information on it, visit the following URL: https://docs.
microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-
using-scp.

https://www.putty.org/
https://www.putty.org/
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp

Chapter 15 703

Connecting to the VM
Once installed, launch PuTTY and insert the VM’s public IP address (or DNS name), as shown in the
following screenshot:

Figure 15.18: PuTTY Configuration window

Once done, click Open to launch the remote connection.

Windows, Linux, and Azure Deployment704

We’ll be asked to accept the public SSH key. Once accepted, we’ll be able to authenticate ourselves
with the username and password specified a short time ago in the MS Azure portal’s virtual machine
setup wizard:

Figure 15.19: Accessing the Linux Terminal via SSH using PuTTY

Once connected, we’ll be able to issue terminal commands on the remote VM to set up and configure
it according to our needs.

The configuration steps explained in the following sections are OK for the time being, but could change
in the future following the release of new versions of .NET and/or Ubuntu Server. For up-to-date info,
check out the following guide:

https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204

Installing the ASP.NET Core Runtime
Once we’ve successfully logged in to the Linux VM terminal, we can start to configure the remote
system to enable it to run (and host) ASP.NET Core applications. To achieve this, the first thing to do
is to download and install the ASP.NET Core Runtime.

However, before we can do that, we need to execute the following required steps:

1. Download the Microsoft signing key and repository.
2. Register the product repository.
3. Install the ASP.NET Core Runtime.

https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204

Chapter 15 705

These steps need to be done once per Linux machine.

Downloading Microsoft signing key and repository
Type the following command using the SSH terminal window provided by PuTTY:

$ wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-
prod.deb -O packages-microsoft-prod.deb

Once done, we can move to the next step.

Registering the product repository
Here’s the command to register the Microsoft signing key and the package repository we just down-
loaded:

$ sudo dpkg -i packages-microsoft-prod.deb

Once done, we can clean up the package:

$ rm packages-microsoft-prod.deb

And perform a package update:

$ sudo apt update

Now we can finally install the runtime.

Installing the ASP.NET Core Runtime
To do that, type the following terminal command:

$ sudo apt -y install aspnetcore-runtime-8.0

The -y option command will allow us to skip a couple of confirmation prompts.

Once done, we can proceed to the next step: installing the web server.

Installing Nginx
The next thing we have to do involves installing the Nginx server package. For those that don’t know
it, Nginx is a free and open-source high-performance HTTP server, load balancer, and reverse proxy
used by millions. This is the HTTP server we’re going to use in Linux to serve our web application by
reverse-proxying the Kestrel service.

Alternatively, if we don’t want to install the ASP.NET Core Runtime on the Linux server,
we could publish the app as a Self-Contained Deployment (SCD), as explained in the first
section of this chapter.

Windows, Linux, and Azure Deployment706

To install Nginx, type the following command:

$ sudo apt -y install nginx

Now we need to configure Nginx to start automatically whenever the VM is started (or restarted).

Starting up Nginx
When we install IIS on Windows, the service will start automatically and will be configured with an
automatic startup type by default. Conversely, Nginx does not start on its own and won’t be executed
automatically upon startup.

To start Nginx, execute the following command:

$ sudo systemctl start nginx

To set Nginx to run automatically on system startup, use the following command:

$ sudo systemctl enable nginx

After applying these settings, it would be wise to reboot the Linux machine to be sure that all the
configured settings will be applied upon reboot. The reboot can be done with the following command:

$ sudo reboot

Now we can configure the machine’s TCP and HTTP layers.

Checking the HTTP connection
The MS Azure VM template that we’ve used in this deployment scenario doesn’t come with a local
firewall rule blocking TCP ports 80 and/or 443. Therefore, as soon as Nginx is up and running, we
should be able to connect to it properly by typing the VM’s public IP address (or DNS name) in the
browser’s address bar from our development machine.

If we did everything correctly, we should see the Nginx welcome page, as shown in the following
screenshot:

In February 2020, Netcraft estimated that Nginx served 36.48 percent of all active websites
ranked, ranking it first, above Apache, at 24.51 percent; however, according to W3Techs,
Apache was ranked first at 40.1 percent and Nginx second at 31.8 percent around that same
period. That said, we’re going to use Nginx because it features a modular, event-driven,
asynchronous, single-threaded architecture that scales well on generic server hardware
and across multiprocessor systems, thus being an ideal partner for an ASP.NET Core web
application hosted on Linux.

For additional information about installing an ASP.NET Core web application on Linux
with Nginx, check out the following URL: https://docs.microsoft.com/en-us/aspnet/
core/host-and-deploy/linux-nginx.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx

Chapter 15 707

Figure 15.20: Connecting to the VM’s Nginx HTTP server

If we can see the preceding response, it means that we likely have no firewall to worry about, therefore
we can skip the following section and move on to the next. Conversely, if the connection cannot be
established, we might have to perform some additional steps to open the VM’s 80 and 443 TCP ports.

Opening the 80 and 443 TCP ports
Depending on the Linux template chosen, it could be necessary to change the local firewall settings
to allow incoming traffic for the 80 and 443 TCP ports. The commands required to do this might vary,
depending on the built-in firewall abstraction layer shipped with Linux distributions.

In Linux, the kernel-based firewall is controlled by iptables; however, most modern distributions
commonly use either the firewalld (CentOS or RHEL) or ufw (Ubuntu) abstraction layers to configure
iptables settings.

In most Ubuntu templates provided by MS Azure, ufw is present, but it’s usually disabled (although it
can be started and/or enabled to have it automatically run on each startup); however, if we’re using
a different template/VM/Linux distribution, it might be useful to spend a couple of minutes learning
how we can properly configure these tools.

Before altering the VM firewall rules, it might be wise to carefully check for the TCP 80 and
443 inbound security rules that we should have set on the MS Azure portal administration
site, as explained in the Setting the inbound security rules section.

In a nutshell, both firewalld and ufw are firewall management tools that can be used by
system administrators to configure the firewall features using a managed approach. We
can think of them as front-ends for the Linux kernel’s networking internals.

Windows, Linux, and Azure Deployment708

ufw
Here’s the command to check whether ufw is running:

$ sudo ufw status

If the preceding command returns something other than command not found, this means that the tool
is installed. Its current status (active or inactive) should be clearly understandable from the resulting
prompt.

If it is reported to be active, here are the ufw required terminal commands to open TCP ports 80 and 443:

$ sudo ufw allow 80/tcp
$ sudo ufw allow 443/tcp

After executing these commands, we should be able to connect the Nginx HTTP server from our de-
veloper machine and receive the response page shown in the previous screenshot.

firewalld
Here’s the command to check whether firewalld is installed:

$ sudo firewall-cmd --state

If the command returns something other than not running or command not found, this means that
the tool is installed and active. Therefore, we need to execute the following firewalld commands to
open TCP ports 80 and 443:

$ sudo firewall-cmd --permanent --add-port=80/tcp
$ sudo firewall-cmd --permanent --add-port=443/tcp
$ sudo firewall-cmd --reload

The --reload command is required to immediately apply the firewalld settings without having to
issue a reboot.

Publishing worldcities.client and WorldCities.Server
Now we can publish the worldcities.client and WorldCities.Server projects and deploy them to
the Linux VM server.

Building the Angular app
As for the Angular app, we can generate the production bundle in the /dist/ folder using the ng build
command of the Angular CLI, just like we did with the healthcheck.client app early on.

Before doing that, be sure to check the /environments/environment.cs file to ensure that the baseUrl
key is set to the public endpoint that we plan to use for our WorldCities.Server ASP.NET Core Web
API. In our current scenario, we’re going to use the following URL:

Chapter 15 709

export const environment = {
 production: true,
 baseUrl: "https://worldcities-api-2023.ryadel.com/"
};

Again, be sure to adapt the above value depending on the chosen approach to define the public end-
points.

That’s it for the worldcities.client Angular app; conversely, its WorldCities.Server counterpart
deserves some additional work.

Building the WorldCities.Server app
To publish the WorldCities.Server web app, we need to create another Visual Studio publish profile
and then execute it to build the production files in the /bin/Release/net8.0/publish/ folder that
we’ll have to upload to the VM server, just like we did with the HealthCheck.Server early on.

However, before doing that, we need to ensure that our web application is properly configured to be
served through a reverse proxy and will be able to access the production database.

In order to do the former, we need to use the Forwarded Headers Middleware from the Microsoft.
AspNetCore.HttpOverrides package.

When HTTPS requests are proxied over HTTP using an edge-origin technique, such as the one we’re
pulling off with Kestrel and Nginx, the originating client IP address, as well as the original scheme
(HTTPS), is lost between the two actors. Therefore, we must find a way to forward this information. If
we don’t do this, we could run into various issues while performing routing redirects, authentication,
IP-based restrictions or grants, and so on.

The most convenient way to forward this data is to use the HTTP headers: more specifically, using
X-Forwarded-For (client IP), X-Forwarded-Proto (originating scheme), and X-Forwarded-Host (host
header field value). The built-in Forwarded Headers Middleware provided by ASP.NET Core performs
this task by reading these headers and filling in the corresponding fields on the web application’s
HttpContext.

While we’re there, we also need to properly check the connection string to the SQL database that we
set up in Chapter 5, Data Model and Entity Framework Core, to ensure that it will still be reachable by the
Linux VM (or change it accordingly). In the following two sections, we will deal with both of these issues.

For additional information regarding Forwarded Headers Middleware and its most com-
mon usage scenarios, check out the following URL: https://docs.microsoft.com/
en-us/aspnet/core/host-and-deploy/proxy-load-balancer.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer

Windows, Linux, and Azure Deployment710

Adding the Forwarded Headers Middleware
To add the Forwarded Headers Middleware, open WorldCities.Server's Program.cs file and add the
following highlighted lines to the existing code:

using Microsoft.AspNetCore.HttpOverrides;

// ...

app.UseHttpsRedirection();

// Invoke the UseForwardedHeaders middleware and configure it
// to forward the X-Forwarded-For and X-Forwarded-Proto headers.
// NOTE: This must be put BEFORE calling UseAuthentication
// and other authentication scheme middlewares.
app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.XForwardedFor
 | ForwardedHeaders.XForwardedProto
});

app.UseAuthentication();
app.UseAuthorization();

// ...

As we can see, we’re telling the middleware to forward the X-Forwarded-For and X-Forwarded-Proto
headers, thereby ensuring that redirected URIs and other security policies will work properly.

Now, we can move on to the following step: adding a connection string that lets us connect to the
production database.

Checking the database connection string
From Solution Explorer, open the secrets.json file and check out the connection string that we set up
in Chapter 5, Data Model and Entity Framework Core, which has worked flawlessly for our development
machine since then. We need to be sure that such a connection string will work on our Linux VM as well.

IMPORTANT: As written in the comments, this middleware must be put before calling
UseAuthentication or other authentication scheme middleware.

Chapter 15 711

If the SQL database is hosted on MS Azure or a publicly accessible server, we can use the same con-
nection string; however, in the case where we’ve used a local SQL database instance installed on our
development machine, we’ll need to choose one of the following available options:

1. Move and/or copy the WorldCities SQL database to MS Azure
2. Install a local SQL Server Express (or Development) instance on the Ubuntu VM right after cre-

ating it
3. Configure an inbound rule to the custom local (or remote) SQL Server Express (or Development)

instance that we set up in Chapter 5, Data Model and Entity Framework Core, possibly restricting
external access to the new VM’s public IP address only

For option #1, right-click the local SQL Database instance and select Tasks | Deploy Database to MS
Azure SQL Database; check out Chapter 5, Data Model and Entity Framework Core, for additional details.

For option #2, take a look at the following SQL Server Linux installation guide: https://docs.microsoft.
com/en-us/sql/linux/sql-server-linux-setup.

For option #3, check out the following URL: https://docs.microsoft.com/en-us/sql/sql-server/
install/configure-the-windows-firewall-to-allow-sql-server-access.

Regardless of the option we choose to adopt, we’ll eventually end up with a connection string that will
allow us to connect to the production database. We can then create a new appsettings.Production.
json file on the VM server and add the connection string there, together with the JwtSettings and the
AllowedCORS keys, as explained earlier on in this chapter, in the Updating the appsettings.Production.
json file(s) section.

It’s worth noting that creating and setting up the appsettings.Production.json file is not a Linux-spe-
cific task; if we had published the WorldCities.Server app on a Windows server, we would have had
to do the exact same thing.

As soon as we have built the production bundles for our worldcities.client and WorldCities.Server
apps, together with the required configuration files, we can finally deploy them to our VM server.

Deploying the files to the Linux VM
Copying the production bundles from our development machine to the Linux VM server is a task that
can be fulfilled in many ways, including:

• Using a Folder publish profile and then copying the files to the web server using the SCP
command-line tool

A sample appsettings.Production.json file for the WorldCities.Server has been
added—for reference purposes only—in the GitHub repository for this chapter. Be sure
not to do that in your non-sample projects and/or when dealing with actual database
credentials, as doing that would negate the whole purpose of the Visual Studio user secrets
feature, which we introduced back in Chapter 5, Data Model and Entity Framework Core:
keeping our credentials away from source control repositories.

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access

Windows, Linux, and Azure Deployment712

• Using a Folder publish profile and then copying the files to the web server using a GUI-based
SFTP Windows client, such as:

• Using WinSCP: A free SFTP, SCP, S3, and FTP client for Windows: https://winscp.net/
• Using FileZilla FTP Client: Another free, open-source FTP client with FTP over TLS

(FTPS) and SFTP support: https://filezilla-project.org/
• Installing an FTP/FTPS server on our web server and then setting up an FTP publish

profile
• Using Visual Studio’s Azure Virtual Machine publish profile

In this deployment scenario, we’ll go with the first option, which is arguably the easiest one to achieve;
as for the other available alternatives, we’ve already talked about them in the previous section (Windows
deployment), so we won’t repeat anything here.

Creating the /var/www folder
The first thing we need to do is create a suitable folder to store our application’s published files on the
Linux VM. For this deployment scenario, we’re going to use the /var/www/<AppName> folder, thereby
following a typical Linux convention; needless to say, since we’re going to publish two apps, we’re
going to create two folders.

The Azure Ubuntu template should already come with an existing /var/www folder. If it doesn’t, we
need to create it by executing the following command from the Linux VM console:

$ sudo mkdir /var/www

This /var/www/ folder will be our Linux equivalent of the Windows C:\inetpub\ folder, the directory
that will contain the files of our web applications.

After making sure the /var/www/ folder exists, we can create two new subfolders there by means of
the following command:

$ sudo mkdir /var/www/worldcities.client
$ sudo mkdir /var/www/WorldCities.Server

These two folders will contain our application’s published files.

Setting permissions
Now, we need to configure the access permissions to the folders we just created for Nginx—or, more
precisely, for the Nginx user.

In this deployment scenario, we’re taking for granted the fact that the Nginx instance is running with
its default nginx user and nginx group. In other Linux environments, the username and/or group
might vary—for example, in some Linux distributions, the Nginx group is called www or www-data.

To determine which user Nginx is running in, use the following command:

$ ps -eo pid,comm,euser,supgrp | grep nginx

https://winscp.net/
https://filezilla-project.org/

Chapter 15 713

To list all available Linux users and/or groups, use the following commands:

$ getent passwd
$ getent group

Once we retrieve the user and group, we can use them to change the /var/www folder permissions. As-
suming the default values (www-data user and www-data group), this can be done in the following way:

$ sudo chown -R www-data:www-data /var/www
$ sudo chmod -R 550 /var/www

This will make both the nginx user and its corresponding nginx group able to access all of /var/www/
and all its content—including the two folders we created early on—in read and execute mode, while
blocking any access to every other user/group.

Before moving on, there’s still one thing to do. If we aim to publish our app using FTP, FTPS, or SFTP,
the above permissions won’t be enough; we need to be sure to set them accordingly with our FTP
server requirements and/or the account that we plan to use to perform the upload task.

Publishing permissions
The most common way to set up publishing permissions is to use the Linux setfacl command to
grant read and write permissions to the /var/www folder for the publishing account.

The Azure VM template we are using doesn’t come with the ACL feature available, hence the first thing
we need to do is to install it using the following command:

$ sudo apt -y install acl

Once done, we can publish the app using WinSCP.

Deploying the app using WinSCP
If we plan to publish our app with the user account that we set up in MS Azure, we can do that in the
following way:

$ sudo setfacl -R -m u:<USERNAME>:rwx /var/www

Be sure to replace the preceding <USERNAME> placeholder with the username that we previously set
up on the Azure VM (the same one we used to log in to the VM terminal).

Now we can finally copy the files.

Setting the permissions as explained previously should be enough for most scenarios;
however, the server could require additional tweaking depending on the Linux distribution
and version, system configuration, and other settings.

Windows, Linux, and Azure Deployment714

Copying the WorldCities publish folders
Once the /var/www/worldcities.client and /var/www/WorldCities.Server folders have been prop-
erly set up on the Linux VM, we can open the command prompt to our local development machine
and initiate the copy.

Let’s start with the worldcities.client Angular app. Using the command prompt, navigate to the
app’s root folder and issue the following SCP command to copy the production bundles built using
the ng build command to the remote VM:

> scp -r dist/worldcities.client/browser/* <USERNAME>@<VM.IP.ADDRESS>:/var/www/
worldcities.client

The SCP command will then ask us whether we want to connect to the remote folder, as shown in the
following screenshot:

Figure 15.21: Authorizing the connection to the remote folder

Type yes to authorize the connection, and then repeat the command to copy the source folder to its
destination. The SCP command will start to copy all the files from the local development machine to
the VM folder, as shown in the following screenshot:

Remember to replace the <USERNAME> and <VM.IP.ADDRESS> placeholders with the ac-
tual values.

Chapter 15 715

Figure 15.22: Copying all files from the local development machine to the VM folder

Right after that, we can do the same for the WorldCities.Server app—assuming we’ve already pub-
lished it locally using a Folder publish profile.

To do that, navigate to the WorldCities.Server project’s root folder and then launch the following
SCP command:

> scp -r bin/Release/net8.0/publish/* <USERNAME>@<VM.IP.ADDRESS>:/var/www/
WorldCities.Server

If we’ve created the appsettings.Production.json file within the project (bad practice), it will be
deployed within the rest of the app, meaning that we’ll need to manually edit it from the VM server;
if we have created it separately (good practice), now we can take the chance to either create it locally
and then upload it using the SCP tool, or directly create it in the VM server using a text editor such as
nano or vim. Be sure to do that before proceeding.

Now that our worldcities.client and WorldCities.Server apps’ files have been copied to the Linux
VM, we just need to configure the Kestrel service (to internally host the ASP.NET Core app) and then
the Nginx reverse proxy (to serve both of them for public access).

Configuring Kestrel and Nginx
Before starting, we will quickly explain how the Kestrel service and the Nginx HTTP server will in-
teract with each other.

Windows, Linux, and Azure Deployment716

The high-level architecture is quite similar to the Windows out-of-process hosting model that has
been used since ASP.NET Core 2.2:

• The Kestrel service will serve our web app on TCP port 5000 (or any other TCP port; 5000 is
just the default one)

• The Nginx HTTP server will act as a reverse proxy, forwarding all the incoming requests to
the Kestrel web server

This pattern is called the edge-origin proxy, and can briefly be summarized by the following diagram:

Figure 15.23: The edge-origin proxy

Now that we’ve understood the general picture, let’s do our best to pull it off.

Since our app will be served using HTTPS, we need to either purchase and install a TLS/SSL certificate
from a third-party reseller or create a self-signed one.

For this specific scenario, we’ll assume that we have a valid certificate, just like we did with Windows;
however, to benefit those who don’t have one, we’ll briefly explain how to create a self-signed certificate
on Linux using the OpenSSL command-line tool.

Creating the self-signed SSL certificate
If you already have a valid TLS/SSL certificate, you can skip the following guide and continue to the
next section. We just need to copy the certificate files to the /var/www/ssl folder of the VM server
machine, which can be done with SCP just like we did with the app’s production files.

If you need to create a self-signed certificate, here’s what you need to do:

1. Create the /var/www/ssl folder with sudo mkdir /var/www/ssl.
2. Create the self-signed SSL certificate (worldcities.crt) and the private key file (worldcities.

key) with the following command:

$ sudo openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout /var/
www/ssl/worldcities.key -out /var/www/ssl/worldcities.crt -subj "/
CN=worldcities.io" -days 3650

Chapter 15 717

3. Once done, merge the certificate and the private key into a single worldcities.pfx file:

$ sudo openssl pkcs12 -export -out /var/www/ssl/worldcities.pfx -inkey /
var/www/ssl/worldcities.key -in /var/www/ssl/worldcities.crt

When asked for the PFX file password, enter a random password and remember this as “the certificate
password” for later use.

Setting the SSL folder permissions
Regardless of how we obtained it, now we should have a TLS/SSL certificate in the /var/www/ssl folder.
This means that, now, we need to set the proper permissions to that folder to make it accessible from
both Nginx and the app, just like we did with the /var/www folder early on:

$ sudo chown -R www-data:www-data /var/www/ssl
$ sudo chmod -R 550 /var/www/ssl

Now we have a valid self-signed TLS/SSL certificate that can be accessed (and used) by Nginx.

Additional task for SELinux-protected kernels
If the Linux kernel we are using is protected by Security-Enhanced Linux (SELinux), we must perform
an additional step. More precisely, we need to change the security context of the /var/www/ssl folder
(and all its containing files) so that Nginx will be able to access it:

$ sudo chcon -R -v --type=httpd_sys_content_t /var/www/ssl

Without the above command, SELinux would prevent httpd daemons from accessing the /var/www/
ssl folder, causing unwanted “permission denied” errors during the Nginx startup phase. It goes
without saying that if our Linux system is not running SELinux, or we have permanently disabled it
(see below), the preceding command can be skipped. At the time of writing, the MS Azure Ubuntu
VM template we are suggesting to use doesn’t have it enabled.

SELinux is an access control (MAC) security mechanism implemented in some Linux
kernels. It is quite similar to the Windows UAC mechanism and has strong default values
that can be relaxed in the case of specific requirements.

To temporarily disable it, run the sudo setenforce 0 terminal command. Doing this
can be useful when we run into permission issues to determine whether the problem is
related to SELinux.

For additional information regarding SELinux and its default security settings, check out
the following URLs:

https://wiki.centos.org/HowTos/SELinux

https://wiki.centos.org/TipsAndTricks(2f)SelinuxBooleans.html

For additional information regarding the OpenSSL tool, check out the following URL:

https://www.openssl.org/docs/manmaster/man1/openssl.html

https://wiki.centos.org/HowTos/SELinux
https://wiki.centos.org/TipsAndTricks(2f)SelinuxBooleans.html
https://www.openssl.org/docs/manmaster/man1/openssl.html

Windows, Linux, and Azure Deployment718

Now we can proceed with the next step.

Configuring the systemd service
Now that we have a TLS/SSL certificate and we’ve set the proper permissions to the /var/www/ssl fold-
er, we can create a systemd entry to register the WorldCities.Server as a service. The worldcities.
client Angular app doesn’t need Kestrel and therefore will require much less work, since it’s all about
serving static files.

Let’s start by creating the service definition file in the /etc/systemd/system/ folder.

To do that, we’ll use nano, an open-source text editor for Linux that can be used from a command-line
interface (similar to vim, but much easier to use). Let’s go through the following steps:

1. Execute the following command to create a new /etc/systemd/system/kestrel-WorldCities.
Server.service file:

$ sudo nano /etc/systemd/system/kestrel-WorldCities.Server.service

2. Once done, fill the newly created file with the following content:

[Unit]
Description=WorldCities.Server

[Service]
WorkingDirectory=/var/www/WorldCities.Server
ExecStart=/usr/local/bin/dotnet /var/www/WorldCities.Server/WorldCities.
Server.dll
Restart=always

Restart service after 10 seconds if the dotnet service crashes:
RestartSec=10

KillSignal=SIGINT
SyslogIdentifier=WorldCities.Server
User=www-data
Environment=ASPNETCORE_ENVIRONMENT=Production
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false
Environment=ASPNETCORE_URLS=http://localhost:5000

How many seconds to wait for the app to shut down after it receives the
initial interrupt signal.
If the app doesn't shut down in this period, SIGKILL is issued to
terminate the app.
The default timeout for most distributions is 90 seconds.
TimeoutStopSec=90

Chapter 15 719

[Install]
WantedBy=multi-user.target

3. Once done, press Ctrl + X to exit and then Y to save the file on disk.

The kestrel-WorldCities.Server.service file is available in the /_LinuxVM_ConfigFiles/ folder
of this book’s GitHub repository.

Depending on the Linux distribution, the dotnet executable might be located in different folders than
usr/bin, such as /usr/share/bin, /usr/local/bin, or /usr/share/dotnet; be sure to check it out.

As we can see, this file’s contents will be used by systemd to start the WorldCities.Server project with
our app’s production values, such as the ASPNETCORE_ENVIRONMENT variable, which we talked about
earlier on, and the TCP port, which will be used to internally serve the app.

Now that we have configured the service, we just need to start it, which can be done using the follow-
ing command:

$ sudo systemctl start kestrel-WorldCities.Server.service

If you also want to make the service automatically run on each VM reboot, add the following command:

$ sudo systemctl enable kestrel-WorldCities.Server.service

Immediately after this, it would be wise to run the following command to check whether the service
is running without issues:

$ sudo systemctl status kestrel-WorldCities.Server.service

If we see a green active (running) message, such as the one in the following screenshot, this most
likely means that our Kestrel web service is up and running:

Figure 15.24: Seeing the green active (running) message

The preceding settings are OK for our current deployment scenario; however, they should
be changed to comply with different usernames, folder names, TCP ports used, the web
app’s main DLL name, and so on. When hosting a different web application, be sure to
update them accordingly.

Windows, Linux, and Azure Deployment720

If the status command shows that something’s off (red lines or advice), we can troubleshoot the issue
by looking at the detailed ASP.NET Core application error log with the following command:

$ sudo journalctl -u kestrel-WorldCities.Server

The -u parameter will only return messages coming from the kestrel-WorldCities.Server service,
filtering out everything else.

Since the journalctl log could easily become very long, even with the preceding filter, it could also
be advisable to restrict its timeframe using the --since parameter in the following way:

$ sudo journalctl -u kestrel-WorldCities.Server --since "yyyy-MM-dd HH:mm:ss"

Be sure to replace the yyyy-MM-dd HH:mm:ss placeholders with a suitable date-time value.

Last but not least, we can just output the last-logged error with the -xe switch:

$ sudo journalctl -xe

These commands should be very useful in troubleshooting most error scenarios on Linux in an ef-
fective manner.

If the kestrel-WorldCities.service is up and running, our job here is done; we’ve successfully con-
figured systemd to start the WorldCities.Server project as a service, which is hosted by ASP.NET Core
using the Kestrel web server. Now we just need to set up Nginx to reverse proxy Kestrel and we’re done.

However, before doing that, it might be wise to spend a minute understanding why we need to build
such an edge-origin pattern in the first place.

Why are we not serving the web app with Kestrel directly?
We could be tempted to just configure the Kestrel web service on TCP port 443 (instead of TCP 5000)
and get the job done now, without having to deal with Nginx, and skipping the whole reverse proxy part.

Despite being 100% possible, we strongly advise against doing this for the same reasons as stated by
Microsoft here:

For additional information regarding the journalctl tool, check out the following URL:
https://www.freedesktop.org/software/systemd/man/journalctl.html.

https://www.freedesktop.org/software/systemd/man/journalctl.html

Chapter 15 721

In short, Kestrel is not intended to be used on the frontline, at least for the time being; therefore, the
correct thing to do is to definitely keep it far from the edge and leave such a task to Nginx.

Configuring Nginx for WorldCities.Server
The last thing we need to do is to configure the Nginx HTTP server to act as a reverse proxy for our
Kestrel service. Take the following steps:

1. Type the following command to create a dedicated Nginx configuration file for this job:

$ sudo nano /etc/nginx/sites-enabled/nginx-WorldCities.Server.conf

2. Then, fill the new file’s content with the following configuration settings:

server {
 listen 80;
 listen [::]:80;
 server_name worldcities-api-2023.ryadel.com;
 return 301 https://worldcities-api-2023.ryadel.com$request_uri;
}

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 ssl_certificate /var/www/ssl/star_ryadel_com.crt;
 ssl_certificate_key /var/www/ssl/star_ryadel_com.key;

 server_name worldcities-api-2023.ryadel.com;

 root /var/www/WorldCities.Server/;
 index index.html;
 autoindex off;

Kestrel is great for serving dynamic content from ASP.NET Core. However, the web
serving capabilities aren’t as feature-rich as servers such as IIS, Apache, or Nginx. A
reverse proxy server can offload work such as serving static content, caching requests,
compressing requests, and SSL termination from the HTTP server. A reverse proxy
server may reside on a dedicated machine or may be deployed alongside an HTTP server.

[Source: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/
linux-nginx]

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx

Windows, Linux, and Azure Deployment722

 location / {
 proxy_pass http://localhost:5000;
 proxy_http_version 1.1;

 proxy_cache_bypass $http_upgrade;

 proxy_set_header Connection $http_connection;
 proxy_set_header Host $host;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $host:$server_port;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Forwarded-Server $host;
 }
}

3. Once done, press Ctrl + X to exit and then Y to save the file.

If SELinux is active, we also need to execute the following command to authorize the Nginx service
to connect to the network:

$ sudo setsebool -P httpd_can_network_connect 1

The preceding command will change the SELinux default settings, which prevents all httpd daemons
(such as Nginx) from accessing the local network and, hence, the Kestrel service. Needless to say, if
our Linux system is not running SELinux—or we have permanently disabled it—we don’t need to do
anything.

While we’re here, we can take the chance to configure Nginx to serve the worldcities.client Angular
app as well.

Configuring Nginx for worldcities.client
The Angular app is not served locally by Kestrel, hence there’s no need to proxy it. Nginx just needs
to serve its static files, thus acting like a standard web server.

To configure it to behave that way, create a new Nginx configuration file in the following way:

$ sudo nano /etc/nginx/sites-enabled/nginx-worldcities.client.conf

And fill it with the following content:

server {
 listen 80;
 listen [::]:80;
 server_name worldcities-2023.ryadel.com;
 return 301 https://worldcities-2023.ryadel.com$request_uri;
}

Chapter 15 723

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 ssl_certificate /var/www/ssl/star_ryadel_com.crt;
 ssl_certificate_key /var/www/ssl/star_ryadel_com.key;

 server_name worldcities-2023.ryadel.com;

 root /var/www/worldcities.client/;
 index index.html;
 autoindex off;
}

As we can see, this time we’re dealing with a much simpler configuration file, since we don’t have to
proxy anything.

Let’s now see how we can instruct Nginx to read these new configuration files upon startup.

Updating the nginx.conf file
Since we have put the Nginx configuration files in Nginx’s /sites-enabled/ default folder, we don’t need
to explicitly instruct Nginx to read them—they will be automatically parsed and executed on startup.

However, we still need to edit the Nginx main configuration file to perform a minor update in the
default settings.

To do this, edit the /etc/nginx/nginx.conf file with the following command:

$ sudo nano /etc/nginx/nginx.conf

Then, add the following highlighted line near the end of the file, at the beginning of the http block:

...existing code...

http {
 ##
 # Basic Settings
 ##

The nginx-WorldCities.Server.conf and nginx-worldcities.client.conf config-
uration files are available in the /_LinuxVM_ConfigFiles/ folder of this book’s GitHub
repository.

Windows, Linux, and Azure Deployment724

 server_names_hash_bucket_size 128;

 # ...existing code...

Increasing the server_names_hash_bucket_size default value (64) to 128 like we just did allows Nginx
to handle longer hostnames such as those used in our scenario.

All the required deployment tasks on Linux have been completed. Now, we just have to properly test
the worldcities.client and WorldCities.Server web applications to see whether they work.

Testing WorldCities and WorldCities.Server
The testing phase will be very similar to what we did at the end of the Windows deployment section.
Observe the following steps:

1. Before leaving the Linux VM terminal, it would be wise to restart the Kestrel services and the
Nginx service in the following way:

$ sudo systemctl restart kestrel-WorldCities.Server
$ sudo systemctl restart nginx

2. Immediately after this, check for their statuses with the following commands to ensure that
they’re up and running:

$ sudo systemctl status kestrel-WorldCities.Server
$ sudo systemctl status nginx

In production environments, it is advisable to test the updated Nginx configuration before restarting
Nginx using the following command:

sudo nginx -t

That way, the production site won’t go down if Nginx fails to load due to a configuration error of any kind.

Now, we’re ready to switch to our local development machine and start the test.

Testing the app
Again, we’re going to perform these tests using a Chromium-based browser (Google Chrome or Mic-
rosoft Edge) because of their built-in development tools that conveniently allow us to check for web
app manifest and service worker presence.

Launch Google Chrome and write the Angular app’s public URL in the browser’s address bar:

https://worldcities-2023.ryadel.com

Chapter 15 725

If we have done everything correctly, we should be able to see the worldcities.client Angular app’s
home view:

Figure 15.25: The WorldCities home view

From there, we should check for the presence/availability of the following goodies:

• The app manifest file (with all the HC icons) in the Application | Manifest panel of the brows-
er’s development console

• The service worker properly registered in the Application | Service Workers panel of the
browser’s development console

• The send this page and install icons in the rightmost part of the browser’s address bar
• The service worker’s behavior when checking and unchecking the offline status to test the

service worker’s behavior
• Access to the SQL database
• The Edit City and Edit Country reactive forms
• The login and registration workflows

If everything works as expected, we can say that our Linux deployment journey is over as well. In the
next section, we’ll see how to deal with some typical ASP.NET Core error messages so we can under-
stand potential issues that may arise during or after the deployment phase—and properly address them.

Windows, Linux, and Azure Deployment726

Troubleshooting
If the web application encounters a runtime error, the production environment won’t show any detailed
information about the exception to the end-user. For this reason, we won’t be able to know anything
useful about the issue unless we switch to Development Mode (refer to the following screenshot):

Figure 15.26: Error message in the production environment

This can be done in the following way:

1. Change the ASPNETCORE_ENVIRONMENT variable value to Development in the WorldCities.Server
service settings file related to the app.

2. Restart the service (and regenerate the dependency tree afterward) with the following com-
mands:

$ sudo systemctl restart kestrel-WorldCities.Server
$ sudo systemctl daemon-reload

However, you are strongly advised to never do this in real production environments and to inspect
the WorldCities.Server service’s journal logs with the following journalctl commands instead, as
we suggested early on:

$ sudo journalctl -u kestrel-WorldCities.Server --since "yyyy-MM-dd HH:mm:ss"
$ sudo journalctl -xe

Such an approach will give us the same level of information without exposing our errors to the public.

Now that we’re done with Linux, we’re ready to explore our last—but not least—deployment alterna-
tive: Azure App Service.

Chapter 15 727

Azure App Service deployment
Throughout this section, we’ll learn how to deploy our healthcheck.client and HealthCheck.Server
web applications on MS Azure App Service, a fully managed platform for building, deploying, and
scaling web apps.

As we’ll be able to see, this deployment is considerably easier and faster than the previous ones,
because we won’t need to deploy a virtual machine; App Service’s fully managed approach grants a
deployment experience similar to the one we experienced back in Chapter 5, Data Model and Entity
Framework Core, when we created an MS Azure database; we’ll just get what we need to publish our app,
without the need to perform any hardware and/or software setup. This approach can be a tremendous
advantage for most projects, as long as we don’t need to perform complex low-level infrastructure
configuration tasks.

Here’s what we’ll do in detail:

• Create two web app instances on MS Azure for our healthcheck.client and HealthCheck.
Server apps, using the free-tier (F1) pricing plan

• Adapt our apps to make both of them work with the App Service public URLs
• Publish our apps to Azure App Service using FTPS (for the Angular app) and Visual Studio

(for the ASP.NET Core app)
• Test our new App Service instances to ensure they work as expected

This is going to be our last set of tasks; let’s get them done!

Creating the App Service instances
Go to https://portal.azure.com/ and log in with your account. Once done, input app service in
the search bar and select the App Services feature. From there, we need to create two new entries.
Let’s start with the healthcheck.client Angular app.

https://portal.azure.com/

Windows, Linux, and Azure Deployment728

Adding the healthcheck.client Static Web App
From the App Services main page, click on the Add button in the topmost menu, then select the Create
Static Web App option to access the form depicted in the following screenshot:

Figure 15.27: The Create Static Web App form

Fill out the required fields in the following way:

• Subscription: Select your MS Azure subscription and resource group.
• Name: This will be our web app instance’s unique name, which will also be used as the public

URL’s subdomain. In the preceding screenshot, we’ve used HealthCheck-2023, but any suitable
name will do.

• Plan type: Pick the free plan for testing and demonstration purposes, or the standard plan for
production scenarios.

Chapter 15 729

• Region for Azure Functions API and staging environments: Choose the region closest to your
geographical position.

• Source: Static web apps support direct deployment from several SCM sources, such as GitHub
and Azure DevOps. For our demonstration purposes, we’re going to choose Other, since we
won’t be using either of those.

Once done, click the Review + Create button at the bottom left of the page to access the review page.
From there, click the Create button to start the deployment process. The whole operation will take a
few seconds, after which we’ll be able to go to our newly created resource:

Figure 15.28: Deployment complete screen

If we click on the Go to resource button, we’ll be taken to the web app instance’s configuration panel,
which has a bunch of available options:

Figure 15.29: HealthCheck-2023 configuration panel

Windows, Linux, and Azure Deployment730

As we can see by looking at the above screenshot, our app has been given an auto-generated URL in
the https://<randomName>.azurestaticapps.net/ format; more precisely, it’s https://delightful-
coast-0dc5c6003.4.azurestaticapps.net. This is one of the (few) major limitations of static web
apps: they come with a random, auto-generated default URL that can only be changed with a custom
domain (owned by us).

Take note of that auto-generated URL, since we’re going to need it in a short while. If we navigate to it,
we’ll see a welcome screen informing us that the managed instance is ready to host our web app and
asking us to deploy our code, which is precisely what we’re going to do in a short while—after creating
another App Service instance for our HealthCheck.Server ASP.NET Core app.

Adding the HealthCheck.Server Web App
To add another App Service instance for our HealthCheck.Server ASP.NET Core app, we have to repeat
the same steps that we just did to create the previous one, with an important exception; this time, we
will create a web app instead of a static web app. The reason for that is rather obvious: our ASP.NET
Core back-end is definitely not “static,” as it requires the .NET 8 runtime environment in order to work.

Here are the key differences in what we need to do:

• Choose Create Web App instead of Create Static Web App.
• Use a different instance Name, such as HealthCheck-API-2023.
• Select a Runtime stack (.NET 8 LTS) and an Operating System (Windows will be fine for our

sample scenario, since we optimized our HealthCheck.Server app for a Windows OS to deploy
at the beginning of this chapter).

• Choose a Pricing Plan. Select Free F1 (Shared infrastructure) for testing and demonstration
purposes, or one of the paid plans (depending on your expected workload) for production
scenarios.

Although it can be perfectly fine for demonstration purposes—and can be changed with
custom domain names—we might think that it would have been better to have a better
URL right from the start. If we wanted to achieve such a result, we would have to create
a web app instead of a static web app, because they don’t have this kind of limitation (as of
the time of writing).

However, it’s important to understand that web apps and static web apps have several other
differences—and distinctive features—worth considering when having to choose between
them. For additional information about these two services, and an in-depth comparison
between them, check out the following blog post from April Edwards:

https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-
vs-azure-webapps-vs-azure-blob-storage-static-sites/

For additional knowledge regarding static web apps, check out the dedicated documentation:

https://learn.microsoft.com/en-us/azure/static-web-apps/

https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/
https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/
https://learn.microsoft.com/en-us/azure/static-web-apps/

Chapter 15 731

After the HealthCheck-API-2023 instance has been created, the first thing we must do is configure its
CORS settings, since these settings will override any CORS policies applied at the ASP.NET Core level.

Navigate to the CORS page using the left menu tree view and add the public URL of the HealthCheck-2023
App Service instance that we created earlier on to the list of Allowed Origins, as shown in the following
screenshot:

Figure 15.30: Azure App Service CORS setup

Once done, go back to the instance’s Overview page and take note of the public URL, which should be
something like the following: https://healthcheck-api-2023.azurewebsites.net/.

Now that we know the public URLs of our App Service instances, we can adapt our healthcheck.
client and HealthCheck.Server apps to work with them.

Adapting our apps for App Service
If we want our healthcheck.client Angular app to properly work with the HealthCheck.Server Web
API, we need to change the baseUrl value in the /environments/environment.ts file, replacing the
existing value.

Here’s how we can do that (updated value is highlighted):

export const environment = {
 production: true,
 baseUrl: "https://healthcheck-api-2023.azurewebsites.net/"
};

As we can see, this time the variable part of the URL was not automatically generated using
random numbers and words, but retains the name we gave to the web app.

Windows, Linux, and Azure Deployment732

In the GitHub repository for this chapter, instead of replacing the previous value, we’ve added three
baseUrl-related keys:

• baseUrl_v1, containing the previous value (custom hostname)
• baseUrl_v2, containing the new value (App Service)
• baseUrl, containing the value to use

Needless to say, the first two keys won’t have any effect—they are meant for reference purposes only.
The only URL that will be fetched (and used) by Angular is the one provided by the baseUrl property,
which we will set according to our needs.

As for the HealthCheck.Server app, there’s nothing we need to do; we don’t even have to change the
AllowedCORS value in the appsettings.Production.json file, since the CORS headers are managed
by Azure App Service.

That said, if we want to change them anyway to reflect the Angular app’s location, here’s how we can
do that (updated value is highlighted):

{
 "AllowedCORS": "https://delightful-coast-0dc5c6003.4.azurestaticapps.net"
}

Again, in the GitHub repository for this chapter, we have added three keys, AllowedCORS_v1,
AllowedCORS_v2, and AllowedCORS, so that the reader will be able to easily switch between them.

Now we can move on to the publishing tasks.

Publishing our apps to App Service
In this section, we’ll see how we can publish our healthcheck.client and HealthCheck.Server apps
to the App Service instance that we created a short while ago.

Publishing the Angular app
Let’s start with our healthcheck.client Angular app.

The first thing to do is to rebuild it using the ng build command, so that the Angular bundle will be
updated with the latest changes that we made.

Once done, type the following command to install the Azure Static Web Apps CLI, an open-source
command-line tool that streamlines local development and deployment for Azure Static Web Apps:

> npm install -g @azure/static-web-apps-cli

Since the Azure App Service type we chose for this project is static web app, the deployment
methods are quite limited—we can only use GitHub, Azure DevOps, and a neat alternative
that we’re going to use for our demonstration purposes.

Chapter 15 733

After the installation is complete, use the command prompt to navigate to the healthcheck.client
project’s root folder, then type the following command:

> swa deploy dist/healcheck.client/browser/ --env production

The above command will start a wizard that will allow us to publish our Angular app to the Health-
Check-2023 Azure static web app through a series of steps. More precisely, we will be asked to log in
to MS Azure, choose the subscription, and select the static web app project where the deployment will
take place, as shown in the following screenshot:

Figure 15.31: HealthCheck-2023 deployment using swa deploy

Once done, we will be able to navigate to the static web app URL and we should be able to see the
welcome screen of our healthcheck.client Angular app.

Needless to say, the app will be unable to connect to the API back-end, since the baseUrl property
now points to the public URL of the HealthCheck-API-2023 website hosted on Azure App Service,
which is still empty.

Let’s fill this gap by deploying the HealthCheck.Server ASP.NET Core project there.

Publishing the ASP.NET Core project
To publish our HealthCheck.Server ASP.NET Core project, we have several available options, since
web apps (unlike static web apps) come with the Deployment Center menu section, which is entirely
dedicated to the deployment task(s).

For additional information on the Azure Static Web Apps CLI, guides, and examples, check
out the following URL:

https://azure.github.io/static-web-apps-cli/

https://azure.github.io/static-web-apps-cli/

Windows, Linux, and Azure Deployment734

If we access it (using the left menu), we will see that we can choose between the following main ap-
proaches:

• Connect a Source Control Provider (SCP), such as GitHub, Bitbucket, a locally hosted Git, Azure
Repos, or an externally hosted Git

• Set up an FTPS connection, with a fixed (auto-generated) endpoint and configurable FTP
username and password

• Download a publish profile that can be imported into Visual Studio (or other compatible cli-
ents) to handle the deployment from there

As always, the choice is ours. For reasons of space, we won’t cover the SCP and FTPS alternatives, since
they are quite simple to activate—it’s just a matter of setting up the required parameters and following
the on-screen instructions provided by MS Azure.

To use the publish profile option, log in to the HealthCheck-API-2023 web app page on the MS Azure
portal, navigate to the Deployment Center section using the left menu, and click the Manage publish
profile button to access the download option, as shown in the following screenshot:

Figure 15.32: Downloading the Visual Studio publish profile from MS Azure

Once we have downloaded the file, we can switch back to Visual Studio and import it.

To do that, right-click the HealthCheck.Server project in Solution Explorer, then choose Publish to
make the Publish pane appear, just like we’ve done several times already. From there, click Create
new profile, and then select the option to import a profile, as shown in the following screenshot:

For additional information regarding Azure Web Apps deployment options, check out
the following guide:

https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/
deploy-web-app

https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app
https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app

Chapter 15 735

Figure 15.33: Importing a publish profile in Visual Studio

Click Next to access another window, where we can select the publish profile file we downloaded from
MS Azure early on, then follow the on-screen instructions to the end.

If everything goes well, Visual Studio will create three new publish profiles ready to be used: FTP,
Web Deploy, and Zip Deploy. We just have to pick one of them and hit the Publish button to deploy our
HealthCheck.Server app to MS Azure and get the job done!

Needless to say, those who want to manually create their publish profile(s) instead of downloading
them from MS Azure are free to do that; if we have added our Microsoft account to Visual Studio, the
Publish interface will automatically fetch the available web apps and/or static web apps from MS Azure
and allow us to set them up without us having to download anything.

Regardless of which publish profile we use, as soon as the publishing process completes, we’ll finally
be ready to perform our final test.

Since these publish profiles contain sensitive data, they are not included in the GitHub
repository; however, the reader can easily generate them using MS Azure and Visual Studio.

Windows, Linux, and Azure Deployment736

Testing healthcheck.client and HealthCheck.Server
To test our new App Service instances, we just need to connect (again) to the HealthCheck-2023 public
URL—which, in our demonstration scenario, is:

https://delightful-coast-0dc5c6003.4.azurestaticapps.net/

If we did everything correctly, we should be able to see our healthcheck.client Angular app publicly
available on the web and fully capable of connecting to the HealthCheck.Server ASP.NET Core app:

Figure 15.34: Our HealthCheck app hosted on Azure App Service

As we can see in the preceding screenshot, the app is served in HTTPS thanks to the built-in wildcard
certificate provided by MS Azure, meaning that we’ll also be able to test our service worker without
having to purchase an SSL certificate on our own.

There is only one (minor) issue left, which we can easily spot if we access the Health Check page of our
app. All our health checks are flagged as Unhealthy, as shown in the following screenshot:

https://delightful-coast-0dc5c6003.4.azurestaticapps.net/

Chapter 15 737

Figure 15.35: All health checks are unhealthy

If we remember how our HealthCheck app works, we know that the third check is meant to be unhealthy,
as it points to a non-existing hostname… However, what about the other two? Why is the ASP.NET Core
back-end unable to ping www.ryadel.com and www.google.com, which should be publicly available
and reachable from anywhere?

As a matter of fact, this behavior is due to the fact that, on Azure App Service, tools such as ping,
nslookup, and tracert won’t work due to security constraints. The reason for that is quite simple:
Azure web apps run in a secure environment (sandbox), isolating their execution from other instanc-
es on the same machine. In this environment, the only way an application can be accessed via the
internet is through the already-exposed HTTP (80) and HTTPS (443) TCP ports; this basically means
that these apps are unable to listen on other ports for packets arriving from the internet, hence they
can’t receive the ping result.

For reasons of space, we will not publish a fix for this ICMP issue. Readers are encouraged to find a
suitable solution on their own. We’ll just provide a small hint toward what could be the right direction:
try to check the availability of those websites using something that operates through the already-ex-
posed TCP port (80 and 443).

That’s it. Our ASP.NET Core and Angular deployment tasks have come to an end. We sincerely hope
you’ve enjoyed reading the book as much as we’ve enjoyed writing it.

For additional info regarding the Web App sandbox (and its implications in app develop-
ment), check out the following article:

https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-
endpoint-listening

https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening

Windows, Linux, and Azure Deployment738

Summary
Finally, our journey through ASP.NET Core and Angular has come to an end. Our final task involved
getting our SPAs—now empowered with the most relevant features of PWAs—ready to be published
in a suitable production environment.

The first thing we did was explore some pivotal deployment tips for our back-end and front-end frame-
works. Since the Visual Studio template already implements the most important optimization tweaks,
we took some valuable time to properly learn and understand the various techniques that can be used
to increase our web application’s performance and security when we need to publish it over the web.

Right after that, we went through Windows deployment with a step-by-step approach. We created a Win-
dows Server VM on the MS Azure portal, and then we installed the IIS service and properly configured
it in order to publish our existing healthcheck.client and HealthCheck.Server apps over the web.

Then, we switched to Linux, where we learned how to deploy our worldcities.client and WorldCities.
Server apps on an Ubuntu Server VM. After configuring it properly, we took the opportunity to imple-
ment the out-of-process hosting model using Kestrel and Nginx, which is the standard approach for
serving ASP.NET Core web applications on Linux-based platforms. To achieve this, we had to change
some of our WorldCities.Server app’s back-end settings to ensure that they would be properly served
behind a reverse proxy.

For both of the above scenarios, we used real domain names and SSL certificates, which allowed us
to properly test the service workers; however, we also learned how to create self-signed certificates and
host-mapping techniques, which can be useful for handling testing or non-production deployment
tasks in a cost-effective way.

We’ve also thoroughly tested the result of our deployment efforts with a web browser from our de-
velopment machine.

The last thing we did was deploy our HealthCheck app to MS Azure App Service, a fully managed plat-
form that can be a great fit for most projects that don’t require complex low-level configuration settings.

Our adventure with ASP.NET Core and Angular has finally ended. This is such a rich topic that we
could have spent even more time discussing the frameworks and perfecting our projects than we did;
that said, you should be satisfied with the results obtained and the lessons learned.

We hope you enjoyed this book. Many thanks for reading it!

Suggested topics
For further information, we recommend the following topics: HTTPS, Secure Socket Layer (SSL), ASP.
NET Core deploy, HTTP Strict Transport Security (HSTS), General Data Protection Regulation (GDPR),
Content Delivery Network (CDN) MS Azure, Open Web Application Security Project (OWASP), SQL Server,
SQL Server Management Studio (SSMS), Windows Server, IIS, FTP server, publish profiles, ASP.NET
Core in-process hosting model, ASP.NET Core out-of-process hosting model, Ubuntu Server, Kestrel,
Nginx, reverse proxy, Forwarded Headers Middleware, SCP, FileZilla FTP Client, WinSCP, journalctl,
nano, HOST mapping, self-signed SSL certificate, OpenSSL, Security-Enhanced Linux (SELinux), Azure
App Service, Static Web Apps.

Chapter 15 739

References
• ZeroSSL: https://zerossl.com/
• Let’s Encrypt: https://letsencrypt.org/
• Generating and Configuring Free SSL Certs for Azure Windows IaaS Virtual Machines: https://

blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-
windows-iaas-virtual-machines/

• Host and deploy ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/host-and-
deploy/

• Host ASP.NET Core on Windows with IIS: https://docs.microsoft.com/en-us/aspnet/core/
host-and-deploy/iis/

• ASP.NET Core Performance Best Practices: https://docs.microsoft.com/en-us/aspnet/core/
performance/performance-best-practices

• Use multiple environments in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/environments

• Handle errors in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/error-handling

• Enforce HTTPS in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/security/
enforcing-ssl

• .NET application publishing overview: https://docs.microsoft.com/en-us/dotnet/core/
deploying/

• .NET Core 2.1, 3.1, and .NET 5.0 updates are coming to Microsoft Update: https://devblogs.
microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/

• App Trimming in .NET 5: https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
• Angular – Deployment guide: https://angular.io/guide/deployment
• Enable cross-origin resource sharing: https://enable-cors.org/
• Angular: The Ahead-of-Time (AOT) compiler: https://angular.io/guide/aot-compiler
• Get publish settings from IIS and import into Visual Studio : https://docs.microsoft.com/en-us/

visualstudio/deployment/tutorial-import-publish-settings-iis

• Use Spot VMs in Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/spot-
vms

• Quick Reference : IIS Application Pool: https://blogs.msdn.microsoft.com/
rohithrajan/2017/10/08/quick-reference-iis-application-pool/

• Configure the Windows Firewall to allow SQL Server access: https://docs.microsoft.com/en-us/
sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access

• Configure ASP.NET Core to work with proxy servers and load balancers: https://docs.microsoft.
com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer

• Host ASP.NET Core on Linux with Nginx: https://docs.microsoft.com/en-us/aspnet/core/
host-and-deploy/linux-nginx

• PuTTY: A free SSH and Telnet client for Windows: https://www.putty.org/

https://zerossl.com/
https://letsencrypt.org/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/
https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
https://angular.io/guide/deployment
https://enable-cors.org/
https://angular.io/guide/aot-compiler
https://docs.microsoft.com/en-us/visualstudio/deployment/tutorial-import-publish-settings-iis
https://docs.microsoft.com/en-us/visualstudio/deployment/tutorial-import-publish-settings-iis
https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://blogs.msdn.microsoft.com/rohithrajan/2017/10/08/quick-reference-iis-application-pool/
https://blogs.msdn.microsoft.com/rohithrajan/2017/10/08/quick-reference-iis-application-pool/
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx
https://www.putty.org/

Windows, Linux, and Azure Deployment740

• Use SCP to move files to and from a VM: https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/copy-files-to-linux-vm-using-scp

• Install the .NET SDK or the .NET Runtime on Ubuntu: https://learn.microsoft.com/en-us/
dotnet/core/install/linux-ubuntu-2204

• Installation guidance for SQL Server on Linux: https://docs.microsoft.com/en-us/sql/linux/
sql-server-linux-setup

• journalctl – Query the systemd journal: https://www.freedesktop.org/software/systemd/
man/journalctl.html

• openssl – OpenSSL command-line tool: https://www.openssl.org/docs/manmaster/man1/
openssl.html

• Comparing Azure Static Web Apps vs Azure WebApps vs Azure Blob Storage Static Sites: https://
devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-
vs-azure-blob-storage-static-sites/

• Azure Static Web Apps documentation: https://learn.microsoft.com/en-us/azure/static-
web-apps/

• Deployment choices for your web app to Azure: https://learn.microsoft.com/en-us/azure/
developer/javascript/how-to/deploy-web-app

• Azure Web App sandbox: https://github.com/projectkudu/kudu/wiki/Azure-Web-App-
sandbox#network-endpoint-listening

Learn more on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp
https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204
https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup
https://www.freedesktop.org/software/systemd/man/journalctl.html
https://www.freedesktop.org/software/systemd/man/journalctl.html
https://www.openssl.org/docs/manmaster/man1/openssl.html
https://www.openssl.org/docs/manmaster/man1/openssl.html
https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/
https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/
https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/
https://learn.microsoft.com/en-us/azure/static-web-apps/
https://learn.microsoft.com/en-us/azure/static-web-apps/
https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app
https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening
https://packt.link/aspdotnet8angular

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com
www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Architecting ASP�NET Core Applications - Third Edition

Carl-Hugo Marcotte

ISBN: 9781805123385

• Apply the SOLID principles for building flexible and maintainable software
• Test your apps effectively with automated tests, including black-box testing
• Enter the path of ASP.NET Core dependency injection mastery
• Work with GoF design patterns such as strategy, decorator, facade, and composite
• Design REST APIs using Minimal APIs and MVC
• Discover layering techniques and the tenets of clean architecture
• Use feature-oriented techniques as an alternative to layering
• Explore microservices, CQRS, REPL, vertical slice architecture, and many more patterns

https://www.packtpub.com/product/architecting-aspnet-core-applications-third-edition/9781805123385

Other Books You May Enjoy744

Angular for Enterprise Applications - Third Edition

Doguhan Uluca

ISBN: 9781805127123

• Minimalist, value-first approach to delivering web apps
• How standalone components, services, providers, modules, lazy loading, and directives work

in Angular
• Manage your app’s data reactivity using Signals or RxJS
• State management for your Angular apps with NgRx
• Angular ecosystem to build and deliver enterprise applications
• Automated testing and CI/CD to deliver high quality apps
• Authentication and authorization
• Building role-based access control with REST and GraphQL

https://www.packtpub.com/product/angular-for-enterprise-applications-third-edition/9781805127123

Other Books You May Enjoy 745

Apps and Services with �NET 8 - Second Edition

Mark J. Price

ISBN: 9781837637133

• Familiarize yourself with a variety of technologies to implement services, such as gRPC and
GraphQL

• Store and manage data locally and cloud-natively with SQL Server and Cosmos DB
• Use ADO.NET SqlClient to implement web services with native AOT publish support
• Leverage Dapper for improved performance over EF Core
• Implement popular third-party libraries such as Serilog, FluentValidation, Humanizer, and

Noda Time
• Explore the new unified hosting model of Blazor Full Stack

https://www.packtpub.com/product/apps-and-services-with-net-8-second-edition/9781837637133

Other Books You May Enjoy746

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished ASP.NET Core 8 and Angular, Sixth Edition, we’d love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

authors.packtpub.com
https://packt.link/r/1805129937
https://packt.link/r/1805129937

Index

Symbols
80 and 443 TCP ports 707

firewalld 708
ufw 708

@angular/service-worker npm package 575
adding 577

#if preprocessor directives
reference link 437

.NET 151

.NET 5 7-9

.NET 6 9
features and improvements 9, 10

.NET 7 10
improvements 10, 11

.NET 8 11
download link 686
improvements and features 11

.NET console application, debugging using
Visual Studio

reference link 423

.NET deployment modes 671
framework-dependent deployment (FDD) 671
framework-dependent executable

(FDE) 671, 673
self-contained deployment (SCD) 671, 672

.NET SDK/.NET Runtime, installing on Ubuntu
22.04

reference link 704

 RxJS Subject
reference link 358

/src/app/ folder 73
AppComponent 75
AppModule 73, 74

/src/ folder 73
.webmanifest MIME type

adding 697

A
access modifiers 401
AccountController 520, 521

ApiLoginResult 515, 516
implementing 514
JwtHandler 517, 518
JwtSettings 516, 517
LoginRequest 515

action methods
CitiesController, securing 534
CountriesController, securing 534
securing 533
SeedController, securing 534

Act phase 473, 474, 528
addDataListeners 649
Admin user 532
ahead-of-time (AOT) compilation 674
Angular 2, 12

GraphQL, adding to 625

Index748

selecting, reasons 23
upgrading/downgrading 68, 69
used, for building web application 2

Angular 2 13
Angular 2, improvements

Angular Mobile Toolkit (AMT) 14
command-line interface (CLI) 14
components 14
semantic versioning 14
server-side rendering (SSR) 14
TypeScript 14

Angular 4 15
improvements 15

Angular 5 15
features 15

Angular 6 16
Angular 7 16

features 16, 17
Angular 8 17, 18

improvements and features 17
Angular 9 18, 19

features 18
Angular 10 19
Angular 11 20

features 20
Angular 12 20

improvements 20, 21
Angular 13 21
Angular 14 21
Angular 15 22
Angular 16 22
Angular 17 22

features 22
Angular app

AppComponent, updating 87-90
AppRoutingModule, updating 90, 91
building 708, 709
FetchDataComponent, adding 85

HomeComponent, adding 84
HomeComponent, modifying 91, 92
navigation menu, adding 85-87
publishing 732, 733
refactoring 83
test files of AppComponent, updating 90
test, running 92, 93
updating 143, 144

Angular app component
adding 122
AppRoutingModule 122
NavMenuComponent 123
testing 123, 124

Angular app, updating
angular-material.module.ts 261
cities.component.html 263-265
cities.component.ts 261-263
performing 261

Angular architecture
reference link 113

Angular CLI 39
Angular code

upgrading 71
Angular component 109, 282, 283

AppModule 287
AppRoutingModule 287
countries.component.html 285, 286
countries.component.scss 286
CountriesComponent, testing 288, 289
countries.component.ts 283-285
country.ts 283
creating 110
health-check.component.css 120, 121
health-check.component.html 119, 120
NavComponent 287
styling 121, 122

Angular component files
.css file 109
.html file 109

Index 749

.spec.ts file 109

.ts file 109
health-check.component.ts 110, 111

Angular deployment tips 673, 674
angular.json configuration file(s) 676
automatic deployment 676, 677
differential loading 675, 676
environment.ts file(s), updating 676
ng build 674, 675
ng serve 674, 675
package.json file 674, 675

Angular form debugging 441
activity log 445, 446
activity log, extending 447, 448
activity log, testing 447
Form Model, viewing 441-443
pipe operator 444
user, reacting to changes 444

Angular forms 295, 296
exploring 294

Angular front-end 66
/src/ folder 73
root files 66, 67
test, running 77-79

Angular health checks 110
Angular component, creating 110

Angular initialization cycle 74
Angular.io

reference link 118
AngularJS 12

cache-friendly 13
dependency injection 13
directives 13
single-page approach 13
two-way data binding 13

angular.json file
updating 577

Angular Language Service
reference link 17

Angular Live Development Server 50
Angular Material 125

AngularMaterialModule, adding 233, 234
data, serving with 232
filtering, adding 265
installing 125, 126
MatTable 234
pagination, adding with

MatPaginatorModule 237
reference link 126
sorting, adding with MatSortModule 251

AngularMaterialModule
adding 233, 234
updating 234, 235

Angular Material select 324-326
Angular packages 68

upgrading/downgrading 69, 70
Angular PNG icon set 586
Angular project

creating 40-44
Angular test suite 483

cities tests, creating 491, 492
describe and beforeEach sections 484-486
executing 492-495
fixture and component, configuring 489, 490
import section 484
mock CityService, adding 486
mock CityService, implementing 487-489
title test, creating 490

Angular unit tests 481, 482
general concepts 482
suite 483
TestBed interface 482
testing, with Jasmine 483

anonymous types
versus DTO classes 384, 385

API endpoints
modifying 80-82

Index750

api/heartbeat endpoint
adding 593
Minimal APIs 594

ApiResult
extending 251-255

Apollo Angular 625
installing 625-627

AppComponent 75
app.component.html 591, 592
app.component.scss 592, 593
app.component.ts 590, 591
files 75
HTML template file 77
spec.ts file 77
StyleSheet file 77
TypeScript class file 75, 76
updating 590

application logging 456, 457
application programming interfaces (APIs) 2
AppModule 73, 74
AppModule file

updating 589
AppRoutingModule 122
App Service

apps, adapting for 731, 732
apps, publishing to 732

App Service instances
creating 727

App Service Managed Certificate 663
appsettings.Development.json file 61
appsettings.json file 60

updating 193
appsettings.Production.json file(s)

HealthCheck.Server 669, 670
updating 669
WorldCities.Server 670, 671

app trimming feature 672
Arrange, Act, Assert pattern 471

Arrange phase 472, 473, 528
ASP.NET 279

CountriesController 279, 280
used, for building web application 2

ASP.NET 5 3
reference link 9

ASP.NET back-end 56
configuration files 57
controllers 61, 62
OpenAPI (Swagger) 63-66

ASP.NET Core
GraphQL, adding to 614
selecting, reasons 23

ASP.NET Core 1.x 3, 4
ASP.NET Core 2.1

references 4
ASP.NET Core 2.2

references 5
ASP.NET Core 2.x 4, 5
ASP.NET Core 3.0

references 6
ASP.NET Core 3.1

reference link 7
ASP.NET Core 3.x 5, 6
ASP.NET Core app

updating 143
ASP.NET Core, configuring to work with proxy

servers and load balancers
reference link 709

ASP.NET Core deployment tips 663
launchSettings.json file 663, 664
runtime environments 665

ASP.NET Core fundamentals overview
reference link 58

ASP.NET Core health checks 98
HealthChecks middleware, adding 98, 99
Internet Control Message Protocol (ICMP)

request check, adding 99, 100

Index 751

ASP.NET Core, hosting on Linux with Nginx
reference link 706

ASP.NET Core, hosting on Windows with IIS
reference link 696

ASP.NET Core Identity
AccountController, implementing 514
action methods, securing 533
ApplicationDbContext, extending 512, 513
ApplicationUser, creating 512
configuring 513, 514
JwtBearerMiddleware, configuring 521, 522
NuGet packages, adding 511, 512
SeedController, updating 522
setting up 511

ASP.NET Core Identity APIs
reference link 508

ASP.NET Core Identity model 510
entity types 510, 511

ASP.NET Core Identity system 508
ASP.NET Core logging 457
ASP.NET Core project

publishing 733-735
ASP.NET Core revolution 2
ASP.NET Core Runtime 686

installing 704, 705
Microsoft signing key and repository,

downloading 705
ASP.NET Core Runtime installation

IIS service, restarting 687
ASP.NET Core Server 49
ASP.NET Core SignalR 639
ASP.NET Core solution

overview 56
ASP.NET Core unit tests 466

Act phase 473, 474
Arrange phase 472, 473
Assert phase 474
behavior-driven development 479-481

debugging 476-478
executing 474
executing, with CLI 474, 475
executing, with Visual Studio Test

Explorer 475, 476
first test, creating 470-472
test-driven development 478, 479
WorldCities.Server.Tests project,

creating 466, 467
ASP.NET Core Windows hosting bundle

installing 686, 687
assembly linker 672
Assert phase 474, 528
Asynchronous JavaScript + XML (AJAX) 29, 395
Asynchronous programming scenarios

reference link 536
async tasks 535, 536
async validators 328
authentication 497, 499

third-party authentication 504
authentication, in Angular

AuthService, implementing 542, 543
HttpInterceptors 555
implementing 541
LoginComponent, creating 544
LoginRequest interface adding 542
LoginResult interface, adding 542
Route Guards 558, 559

authentication methods 499
signatures 503
tokens 501, 502
Two-Factor Authentication (2FA) 503

AuthGuard
implementing 560, 561
testing 562

authorization 497, 505
proprietary authorization 505
third-party authorization 506

Index752

AuthService
implementing 542, 543

authStatus observable
creating 550, 551
testing 554, 555
UI, updating 551

awaits 535, 536
Azure Active Directory 507
Azure App Service deployment 727
Azure Bastion documentation

reference link 683
Azure Data Studio 183

download link 173
Azure Spot feature

reference link 681
Azure SQL

reference link 174
Azure SQL Database for free

reference link 181
Azure SQL Managed Instance

reference link 174
Azure tenant 177
Azure Virtual Machine publish profile 690, 691
Azure Web Apps deployment options

reference link 734

B
backend debugging 422

basics 423
conditional breakpoint 423, 424
Entity Framework (EF) Core 432, 433
working, on Windows/Linux 422, 423

backend server, proxying
reference link 81

Banana Cake Pop (BCP) 622
BaseFormComponent

implementing 367, 368

baseUrl property
adding 83
environment files, generating 82
implementing 82

behavior-driven development
(BDD) 465, 479-481

Blazor render modes
reference link 11

broadcast message
adding 644
controller, using 645
Minimal API, using 645

browser developer tools 439-441
bugs 421
bundling 674

C
C# 10 features

reference link 10
Cache, configuring

reference link 628
calls, debouncing to back-end 357

CitiesComponent, updating 357-359
CountriesComponent, updating 359

child class 367
CitiesComponent

updating 235-237
Cities, list 226

[hidden] attribute 229
app-routing.module.ts 230, 231
cities.component.html 228
cities.component.scss 230
cities.component.ts 227, 228
city.ts 227
nav-component.html 231, 232

city
Add a new City button, adding 316
adding 312

Index 753

CityEditComponent, extending 313-316
route, adding for Add a new City

button 317-319
CityEditComponent

extending 370, 371
CityEditComponent, Reactive Forms 302, 303

city-edit.component.html 307-309
city-edit.component.scss 309
city-edit.component.ts 304-307

CityService
Angular app, using 632-634
mutation, querying 634-636
refactoring 628-630

class inheritance 366, 367
CLI

used, for executing test 474
client-initiated events 653

feature, testing 656
HealthCheckComponent, updating 655
HealthCheckHub, updating 653
HealthCheckService, updating 654

client-side debugging 448, 449
client-side paging 238-241
client-side validation 333
code

debouncing 356
throttling 356

code bloat 364
Code-First approach 155

cons 156
pros 156
used, for creating database 187

Common Language Runtime (CLR) 511
Component Dev Kit (CDK) 125
components 75
conditional breakpoint 423, 424

Actions feature 425, 426
Conditions checkbox 425

setting, options 424
testing 426, 427

configuration files 57
appsettings.json 60
Program.cs 57-60

connection string
securing 194

console applications 456
constructor 116
Content Delivery Network (CDN) 81, 668
content management systems (CMSes) 29
continuous integration and continuous delivery

(CI/CD) 690
Continuous Integration (CI) 149
controllers 61, 62
CORS policy 595
countries, adding to loop 279

Angular 282
ASP.NET 279

CountriesController 279, 280
odd JSON naming issue 280-282

CountryEditComponent
AppRoutingModule 350
CountriesComponent 351
country-edit.component.html 348-350
country-edit.component.scss 350
country-edit.component.ts 341-345
creating 341
extending 369, 370
IsDupeField server-side API 346, 347
isDupeField validator 346
testing 352-355

CountryService
refactoring 636

C# preprocessor directives
reference link 165, 437

Index754

CreateDefaultUsers() unit test
defining 524
IdentityHelper static class, adding 524-526
SeedController_Test class, adding 526-529

Create, Read, Update, and Delete
(CRUD) 148, 499

Cross-Origin Resource Sharing (CORS) 594-596
AllowedCORS configuration setting, adding 596
implementing 596
Program.cs file, updating 597

CSS
replacing, with Sass 133, 134

CSS code sample 130, 131
CSS history 130
custom async validator

reference link 336
C# version 9

reference link 9

D
data

fetching 224
Data Annotations 162, 188
database

autogenerated database tables, checking 204
configuring 183, 184
creating 199
creating, with Code-First approach 187
data, seeding 539-541
dotnet CLI, using 200
Excel file, importing 207-214
identity migration, adding 537
initial migration, adding 200
login, mapping to 186, 187
migration, applying to 537
migrations 205
Package Manager Console, using 203, 204
populating 205, 206

Program.cs, updating 199, 200
SeedController, implementing 206, 207
updating 536, 537
WorldCities database, creating 184, 185

Database-as-a-Service (DBaaS) approach 173
database connection string

checking 710, 711
Database-First approach 156

cons 157
pros 157

database initialization strategies 192, 193
database initializers/DbInitializers 192
Database Management System (DBMS) 141
database management tool(s)

installing 173
database schema (DB schema) 539
database table names

defining 169
data interchange format 641
data migration 205
data model 151
DataModel 300
data modeling approaches 155

Code-First approach 155, 156
Database-First approach 156, 157
options, selecting 158

data seeding
reference link 206

data seeding strategy 206
data server

using, reasons 148, 149
data services 394

building 399
Fetch 396, 397
HttpClient 397, 398
XMLHttpRequest 394-396

data source 149, 150

Index 755

Data Transfer Object (DTO) 216, 380
data validation 326, 327

model-driven validation 328
server-side validation 333-335
template-driven validation 327, 328

DbContext
setting up 187, 188

DbExtensions.AsNoTracking Method
reference link 213

DBMS licensing models 154
Developer edition 154
Evaluation edition 154
Express edition 154

DBMS structured logging, with Serilog 458
HTTP requests, logging 460
logs, accessing 460-462
NuGet packages, installing 458
Serilog, configuring 458-460

dead code purging 675
deadlocks 535, 536
debounceTime

reference link 359
debouncing 356
Debug built-in provider 457
debugger 421
debugging 421
dependency injection (DI) 113, 114, 511
deprecated APIs and features

reference link 18
desktop applications 456
development environment 665
differential loading 675, 676
Digital Equipment Corporation (DEC) 19
DI in Angular

reference link 114
DI in ASP.NET Core

reference link 114

DI registration options 519, 520
Document Object Model (DOM) 115, 229
Don’t Repeat Yourself (DRY) principle 364
dotnet CLI

database, updating 201, 202
No executable found matching command

dotnet-ef error 202
System.Globalization.

CultureNotFoundException error 203
using 200

dotnet-ef console commands 539
dragon-breath 12
DTO classes 383, 384

security considerations 384
separation of concerns 384
versus anonymous types 384, 385

DupeCityValidator, server-side validation 335
CitiesController 337
city-edit.component.html 337, 338
city-edit.component.ts 335, 336
Observable methods 339, 340
performance issues 340
RxJS operators 339, 340
testing 338, 339

E
eager loading 168
ECMAScript 2022 675
edge-origin proxy 716
EF Core .NET CLI

reference link 204
EF Core PMC / PowerShell

reference link 204
Elvis operator 331
endpoints

alternatives 662, 663
configuring 660, 661
HOSTS file, tweaking 661, 662

Index756

end-to-end (E2E) web development tool 12
entities

#region blocks, using 164-166
City entity 160-163
Country entity 163, 164
creating 158
defining 159, 160
securing 386

entity controllers 214
CitiesController 215, 216
CountriesController 216
testing 217, 218
usage, considering 216

Entity Data Model (EDM) 151
Entity Framework 7 151
Entity Framework Core Database

Providers list 152
Entity Framework Core (EF Core) 151, 152, 377

debugging 432, 433
installing 152, 153
reference link 205, 617

Entity Framework Core loading pattern 168
entity type configuration methods 188

Data Annotations 188
EntityTypeConfiguration classes 188-191
Fluent API 188-190
options, selecting 192

entity types 510, 511
error handling in ASP.NET Core

reference link 667
error handling techniques 666, 667
Excel file

importing 207-214
explicit loading 168

F
favicon

adding 583, 584
download link 583

favicon online generators
references 583

feature modules 74
Fetch 394-397

advantages 398
files

deploying, to Linux VM 711, 712
FileZilla

URL 712
FileZilla FTP Server

reference link 689
filter behavior

debouncing 356
improving 355
throttling 356

filtering
adding 265
AngularMaterialModule 276-278
ApiResult, extending 266-272
CitiesComponent 273-275
CitiesComponent style (SCSS) file 276
CitiesComponent template (HTML) file 275
CitiesController 272, 273
performance considerations 278
reference link 617

Fluent API 188-190
Folder publish profile

creating 688
FormBuilder 340

CountryEditComponent, creating 341
CountryEditComponent, testing 352-355

Index 757

forms
using, reasons 296, 297

Forwarded Headers Middleware 709
adding 710

framework-dependent deployment (FDD) 671
advantages 671
disadvantages 672

framework-dependent executable
(FDE) 671, 673

advantages 673
disadvantages 673

frontend debugging 437
Angular form debugging 441
browser developer tools 439-441
client-side debugging 448, 449
Observables, unsubscribing 449
Visual Studio JavaScript debugging 437, 438

FTP publish profile 689, 690
Full Database Backup

reference link 538
full-stack approach 28

G
General Data Protection Regulation (GDPR) 4
generic types 403
GetAngular 12
GetCountries() SQL query 433, 434

#if preprocessor directive, using 436, 437
SQL code, obtaining programmatically 434, 435
ToParametrizedSql() method,

implementing 435, 436

globalization-invariant mode
reference link 203

Google identity provider 504
GraphQL 607, 612

adding, to Angular 625
adding, to ASP.NET Core 614

advantages over REST 612, 613
CityService, refactoring 628-630
CountryService, refactoring 636
disadvantages 613
implementing 613
versus REST 608

GraphQL Cursor Connections Specification
reference link 630

GraphQLModule
updating 627

GraphQL query
improving 631, 632

GraphQL schema
testing 622-625

H
healthcheck.client

publishing 687
testing 698, 736, 737

healthcheck.client app 482
healthcheck.client Static Web App

adding 728-730
health-check.component.css 120, 121
health-check.component.ts 110, 111

constructor 116
dependency injection (DI) 113, 114
HttpClient 117
imports and modules 112
interfaces 118, 119
ngOnInit method 114, 115
observables 118

HealthCheck (HC) 580
health check responses 108
HealthCheck.Server

publishing 687
testing 698, 736, 737

Index758

HealthCheck.Server App Service
adding 730, 731

HealthCheck web application
testing 698, 699

HomeComponent, Angular app
dry run switch 84
spec.ts file, skipping 85

HOSTS file
tweaking 661, 662

HotChocolate
installing 614
mutation 615, 617-621
Program.cs 621, 622
query 615
Serial attribute 616
subscription 615
UseFiltering attribute 616
UsePaging attribute 616
UseSorting attribute 616

HTML Living Standard 229
HTML select 319-324
HTTP/1.1 protocol

reference link 608
HttpClient 117, 397, 398

advantages 398
HTTP/HTTPS implementation standards 499
HttpInterceptors 556, 574

AppModule, updating 558
AuthInterceptor, implementing 556, 557
reference link 556
testing 558

HTTP port
setting up 45, 46

HTTP requests 224
logging 460

HTTP responses 224
HTTPS port

setting up 45, 46

HTTP status codes 108
HTTP Strict Transport Security (HSTS) 667

I
ICMPHealthCheck class

custom output message,
implementing 106, 107

improving 104
middleware setup, updating 105, 106
output message, configuring 108
parameters and response messages,

adding 104, 105
Identity API endpoints 508, 563

activating 563, 564
disadvantages 566, 567
testing 564-566

identity migration
adding 537

IdentityServer
reference link 508

IIS application pool
configuring 695, 696

IIS Manager tool 697
indexes

defining 169, 170
index.html file

updating 578
Infrastructure as a Service (IaaS) 170
inheritance 367
in-memory Web API package 148
Interactive Automatic rendering (IAR) 11
Interactive Server rendering (ISR) 11
Interactive WebAssembly rendering (CSR) 11
interfaces 118, 119
internal membership provider 507
International Organization for Standardization

(ISO) 164

Index 759

Internet Control Message Protocol (ICMP)
request check 99

ICMPHealthCheck class, creating 100-102
ICMPHealthCheck middleware,

adding 102, 103
outcomes 100

Internet Information Services (IIS)
configuring 691
healthcheck.client website entry,

adding 691-693
HealthCheck.Server website entry, adding 693
reference link 684
TLS/SSL certificates 693, 694

Inversion of Control (IoC) 114, 519
ISO 3166 164

references 164
ISO 3166-1 alpha-2 164

reference link 164
ISO 3166-1 alpha-3 164

reference link 164
ISO 3166-1 numeric 164

J
Jasmine 481

testing with 483
Jasmine testing framework 465
JavaScript approaches

downsides 588
JavaScript Library Usage Distribution

references 12
JavaScript Object Notation (JSON) 224

conventions 225, 226
defaults 226

JavaScript source maps 439
journalctl

reference link 720
JSON Web Tokens (JWTs) 499, 509

URL 509

Just-In-Time (JIT) compiler 10, 674
just-in-time (JIT) VM access

reference link 683

K
Karma 68, 481
Kestrel

configuring 715, 716
kitchen sink 389

L
launchSettings.json file 663, 664
lazy loading 168
Let’s Encrypt 573

reference link 663
LGPL to Polyform Noncommercial

reference link 208
LINQ 256, 257
Linq.Dynamic

alternative approach with 347, 348
Linux 154
Linux deployment 699
Linux VM

/var/www folder, creating 712
app, deploying with WinSCP 713
configuring 702
files, deploying to 711, 712
permissions, publishing 713
permissions, setting 712, 713
WorldCities publish folders, copying 714, 715

Linux VM on MS Azure
creating 700
DNS name label, adding 701
inbound security rules, setting 702
Linux VM, adding 700, 701

LiteXHealthChecks 137

Index760

Loading Related Data
reference link 169

local area network (LAN) 100
login

mapping, to database 186, 187
LoginComponent

AppRoutingModule, updating 547
creating 544
login.component.html 545-547
login.component.scss 547
login.component.ts 544, 545
NavMenuComponent, updating 547
testing 548, 549

LoginRequest interface
adding 542

LoginResult interface
adding 542

logs
accessing 460-462

M
managed cloud database

reference link 174
master/detail UI pattern 302
mat-error default behavior

reference link 330
MatPaginatorModule

pagination, adding with 237
MatTable 234
MatTable component 136

MatToolbar
adding 127
AppModule, updating 127
NavMenuComponent HTML template,

updating 127, 128
test run 128, 129

Microsoft signing key and repository
downloading 705

Microsoft XML Core Services (MSXML)
library 395

migration
applying, to database 537
data model, dropping 539
data model, recreating 539
existing data model, updating 538, 539
reference link 537

minification 439, 675
Minimal APIs 594
minimisation/minimization 439
mock CityService

adding 486, 487
alternative implementation, using interface

approach 489
extending and overriding 487
fake service class 487
implementing 487-489
interface instance 487
spy 487

mocking 468
Model 384
ModelBuilder API 188
Model, creating and configuring

reference link 163
model-driven forms 298-301
model-driven validation 328

safe navigation operator 331
validators, adding in form 328-331
validators, testing 331, 332

model scaffolding 156
Model-View-ViewModel (MVVM) 384
module resolution

reference link 112
Moq 468, 469
multi-page applications (MPAs) 28, 29
Multi-platform Application UI (MAUI) 9

Index 761

multiple projects
secrets.json file, sharing between 197, 198

MVC6 3

N
N+1 problem 611
native web applications (NWAs) 28, 32
navigation link

adding 309
app-routing.module.ts 310
cities.component.html 310-312

navigator.onLine property 587
JavaScript approaches, downsides 588

NavMenuComponent 123
ng-connection-service npm package 588

AppComponent, updating 590
AppModule file, updating 589
service, installing 589

Nginx
configuring 715, 716
configuring, for worldcities.client 722, 723
configuring, for WorldCities.Server 721, 722
HTTP connection, checking 706, 707
installing 705
starting up 706

nginx.conf file
updating 723, 724

NgModules 73, 74
reference link 113

ngOnInit method 114, 115
ngsw-config.json file

adding 584, 585
Node.js 68
Node Package Manager (npm) configuration

file 67, 78
non-development environment 666
npmJS syntax 68

Nsubstitute NuGet package 468
NuGet packages

installing 458

O
OAuth 2 506
OAuth-based social login 504
Object-Oriented Programming (OOP) 367, 465
Object Relational Mapper (ORM) 151
Observables 118

alternatives methods, for
unsubscribing 452-454

takeUntil() operator 451, 452
unsubscribe, determining 455
unsubscribe() method 449, 450
unsubscribing 449

offline loading 574
offline mode 574
on-demand caching strategy 585
On-stack Replacement (OSR) 10
OpenAPI 63-66
OpenAPI Specification (OAS) 63
OpenID 504

working 504
OpenID Connect (OIDC) 504, 505

references 505
OpenSSL tool

reference link 717
Open Web Application Security Project (OWASP)

668
Oracle XE 158
Outlook Web Access (OWA) 394
output window, backend debugging 427, 428

configuring 432
LogLevel, testing 429-432
LogLevel types 428, 429

over-fetching 611

Index762

P
package.json

reference link 68
Package Manager Console 256
pagination

adding, with MatPaginatorModule 237
client-side paging 238-241
reference link 617
server-side paging 241

PING 99
pipes, using to transform data

reference link 444
Platform as a Service (PaaS) 170
polyfills 675
PolyForm Noncommercial License 1.0.0

reference link 208
polymorphism 367
production

app, preparing 660
production environments 665
production mode 674
product owner expectations 32, 33

adaptability 34
early releases 33
fast completion 33
GUI over back-end 33

product repository
registering 705

Program.cs file 57-60
Progressive Web Apps (PWAs) 28, 30, 571

capabilities, testing 598
distinctive features 572, 573
installing 602, 603
offline status, handling 587
technical baseline criteria 31
technical features 30
testing out 599-602

Progressive Web Apps (PWAs), capabilities
app, compiling 598
http-server, installing 598, 599

Progressive Web Apps (PWAs), distinctive
features

@angular/service-worker 575
offline loading 574
secure origin feature, implementing 573
service workers versus HttpInterceptors 574

proprietary
versus third-party providers 506, 507

proprietary authorization 505
Proprietary auth with ASP.NET Core 507-509
Protractor 481
PuTTY 702

URL 702
PWA, offline status

api/heartbeat endpoint, adding 593
Cross-Origin Resource Sharing (CORS) 594-596
navigator.onLine property 587
ng-connection-service npm package 588
window’s ononline/onoffline event 587

PWA requirements
automatic installation 585, 586
implementing 576
manual installation 576

PWA requirements, automatic installation
Angular PNG icon set 586

PWA requirements, manual installation
@angular/service-worker npm package,

adding 577
angular.json file, updating 577
favicon, adding 583, 584
index.html file, updating 578
ngsw-config.json file, adding 584, 585
ServiceWorkerModule, importing 578
Web App Manifest file, adding 579-582

Index 763

R
Reactive Extensions for JavaScript (RxJS)

library 118, 396
reference link 118

Reactive Forms 298, 301
building 301
navigation link, adding 309
ReactiveFormsModule 302
reference link 301

real-time HTTP 640, 641
RED-GREEN-REFACTOR 479
RegExr

URL 345
regression bugs 611
relationships

Cities property, adding to Country entity
class 167

Country property, adding to City entity
class 166, 167

defining 166
Representational State Transfer

(REST) 607-609
constraints, guiding 609, 610
drawbacks 610, 611
versus GraphQL 608

required modifier
reference link 162

Response Time values 653, 656
RESTful 610
root files 66, 67

angular.json 67
package.json 67, 68
tsconfig.json 71
workspace-level files 72

root module 74
Roslyn 3

Route Guards 558, 559
AppRoutingModule, updating 561
AuthGuard, implementing 560, 561
availability in Angular 559, 560

runtime environments 665
appsettings.Production.json file(s),

updating 669
environment, setting in production 669
error handling techniques 666, 667
rule(s) of thumb 668, 669

S
safe navigation operator 331

reference link 331
Safe storage of app secrets in development in

ASP.NET Core
reference link 195

same-origin policy 595
SameSite cookie specification 501
Sass 129, 130

CSS code sample 130, 131
CSS history 130
need for 131, 132

SCP, using to move files to and from VM
reference link 702

Scrum
reference link 34

secrets.json file
adding 195-197
sharing, between multiple projects 197, 198
working with 198, 199

Secrets Storage 195
Secure Copy (SCP) 702
secure origin feature

implementing 573
Security-Enhanced Linux (SELinux) 717

references 717

Index764

SeedController
CreateDefaultUsers() method,

implementing 529-532
CreateDefaultUsers() unit test, defining 524
implementing 206, 207
RoleManager, adding through DI 522
unit test, rerunning 532, 533
updating 522
UserManager, adding through DI 522, 523

self-contained deployment (SCD) 671, 672
advantages 672
disadvantages 672

self-signed SSL certificate
creating 694, 695, 716

SELinux-protected kernels
task for 717

semantic versioning (SemVer) 14
Separation of Concerns (SoC) 130, 384
Serilog

configuring 458-460
reference link 462

server push 640, 641
server-side paging 241

ApiResult 243-247
CitiesComponent 247-250
CitiesController 241, 242

server-side validation 333-335
ServiceWorkerModule

importing 578
Session-Based Authentication Flow 500
session cookies

disadvantages 500, 501
SignalR 641

connections 642
disadvantages 643
groups 642
Hubs 641
implementing 642

projects, testing 652, 653
protocols 641
tasks, to achieve result 643
user 642

SignalR, in Angular
health-check.component.html 651, 652
HealthCheckComponent, refactoring 650
health-check.component.ts 650, 651
HealthCheckService, implementing 647-649
installing 646
npm package, adding 646
WebSocket support, adding to Angular

proxy 649, 650
SignalR, in ASP.NET Core

broadcast message, adding 644
HealthCheckHub, creating 643
middleware, setting up 644
services, setting up 644
setting up 643

signature-based authentication 503
Single-Page Application (SPA) 28, 29, 117, 499,

571
key features 30

Single Responsibility Principle (SRP) 389
sorting

adding 251
reference link 617

sorting, with MatSortModule 251
Angular app, updating 261
ApiResult, extending 251, 255
CitiesController, updating 260, 261
System.Linq.Dynamic.Core, installing 256

Source Code Management (SCM) 35
source IP address 683
SPA project

example 34, 35
SQL database 173, 174

setting up 174-177
WorldCities login, adding 185

Index 765

SQL Database instance
configuring 178-182

SQL database on Azure
creating 173

SQL injection
preventing 258, 259

SQL Managed Instance 173, 174
SQL Server

download link 171
SQL Server 2022

installing 171-173
SQL Server alternatives 154
SQL Server Data Provider 153

DBMS licensing models 154
for Linux 154

SQL Server Express 171
SQL Server instance

database management tool(s), installing 173
obtaining 170, 171

SQL Server Linux installation guide
reference link 711

SQL Server Management Studio
(SSMS) 172, 183, 538

download link 173
SQL Server on Linux

installation link 172
SQL Server on Windows

installation link 172
SQL Server on Windows virtual machine

reference link 174
SQL virtual machine 174
SSH 702
SSH access 573
SSL folder permissions

setting 717
Stack Overflow

reference link 60

staging 665
staging environment 668
standard testing development (STD) 470
startConnection 649
startup project

setting up 46-48
Static Server rendering (SSR) 11
static web apps

reference link 730
StyleCop 165
subclass 367
Swagger 59, 63
Swashbuckle 64
Swashbuckle.AspNetCore NuGet package 64
Swashbuckle.AspNetCore.Swagger 64
Swashbuckle.AspNetCore.SwaggerGen 64
Swashbuckle.AspNetCore.SwaggerUI 64
Swiss Army knives

downsides 388, 389
sync validators 328
systemd service

configuring 718-720
System.Linq.Dynamic.Core

benefits 257
drawbacks 257
installing 256

T
tables

restyling 135, 136
template-driven forms 297-300

advantages 298
disadvantages 298
reference link 298

template-driven validation 327, 328
reference link 328

Index766

temporal domination 12
TestBed interface 482
Test-Driven Development (TDD) 465, 478, 479,

524, 668
test run

performing 48
troubleshooting 51

third-party authentication 504
OpenID 504
OpenID Connect (OIDC) 504, 505
OpenID, working 504

third-party authorization 506
third-party providers

versus proprietary 506, 507
throttleTime

reference link 359
throttling 356, 359
Time-Based One-Time Password (TOTP)

algorithm 503
reference link 503

TLS/SSL certificates 693, 694
TLS/SSL certificates in Azure App Service

reference link 663
token-based authentication 501, 502
tree-shaking

reference link 20
tsconfig.json file structure

reference link 20
Two-Factor Authentication (2FA) 503

reference link 503
TypeScript 66
TypeScript 3.7

reference link 331
TypeScript compiler (TSC) 71
TypeScript configuration

reference link 72

TypeScript modules
reference link 112

type variables 403

U
uglification 675
UI, authStatus observable

AppComponent 554
NavMenuComponent 552, 553
updating 551

UI component framework
Angular Material 125
MatToolbar, adding 127
restyling 124
Sass 129

unauthorized access prevention
reference link 560

unit testing 465
Unsubscribe RxJS Observables In Angular

Applications
reference link 455

updateData 649
up-front caching strategy 585
user experience (UX) 574
user interface (UI) 456

V
validators

reference link 329
variable scoping 114
ViewModel 384
virtual machine (VM)

connecting to 703, 704
Visual Studio JavaScript debugging 437, 438
Visual Studio publish profiles 688
Visual Studio Test Explorer

used, for executing test 475, 476

Index 767

W
waterfall model

reference link 34
WeatherForecastController 62, 63
Web API backend for SPAs, securing

reference link 566
web app 456

serving, avoidance with Kestrel
directly 720, 721

web application project
.NET 8 SDK, installing 38
Angular CLI, installing 39
Angular project, creating 39
architecture overview 51, 52
ASP.NET Core project, creating 39
broken code 36
Node.js, installing 39
problem solving 37
SDK version, checking 39
setting up 37, 38
test run, performing 48

Web App Manifest file
adding 579-582
publishing 582

web browser 50, 51
web server 300, 301
wide area network (WAN) 100
Windows deployment 677
Windows Firewall, configuring to allow SQL

Server access
reference link 711

Windows HOSTS file
reference link 661

window’s ononline/onoffline event 587
Windows Presentation Foundation (WPF) 5
Windows Server VM on MS Azure

creating 677
DNS name label, configuring 682

inbound security rules, setting 682, 683
MS Azure portal, accessing 677
Windows VM, adding 678-681

Windows VM
ASP.NET Core Windows hosting bundle,

installing 686, 687
configuring 683, 684
IIS web server, adding 684-686

WinSCP
reference link 712

workspace API 67
WorldCities

testing 724, 725
troubleshooting 726

worldcities.client
Nginx, configuring for 722, 723
publishing 708

worldcities.client app 482
WorldCities database

creating 184, 185
WorldCities login

adding 185
raw SQL commands, using 185
SSMS GUI, using 185

WorldCities.Server
Nginx, configuring for 721, 722
publishing 708
testing 724, 725
troubleshooting 726

WorldCities.Server app
building 709
database connection string, checking 710, 711
Forwarded Headers Middleware, adding 710

WorldCities.Server project 149
WorldCities.Server.Tests project

creating 466, 467
dependency reference, adding 469
Microsoft.EntityFrameworkCore.InMemory 469
Moq 468, 469

Index768

WorldCities web application 142, 363
[JsonIgnore] attribute 386-388
[NotMapped] attribute 386-388
Angular app, updating 143, 144
Angular front-end updates 380-383, 391-393
AppModule 405, 406
ASP.NET Core app, updating 143
BaseFormComponent, implementing 367, 368
base-form.component.ts 373, 374
BaseService, creating 400, 401
bug fixes and improvements 371
CitiesComponent 406-408
CitiesController 390, 391
CityEditComponent 408, 409
CityEditComponent, extending 370, 371
city-edit.component.html 374-376
city-edit.component.ts 371-373
CityService, creating 403-405
CityService, implementing 405
common interface methods, adding 401, 402
CountriesComponent 414
CountriesController 377-379
CountryDTO class, creating 379, 380
CountryEditComponent 416-418
CountryEditComponent, extending 369, 370
country name, adding 390
CountryService, creating 412-414
data server, using reasons 148, 149
DTO classes 383, 384
form validation shortcuts 365, 366
lat and lon, validating 371
loadCountries and isDupeCity, implementing in

CityService 410-412
minimal UI restyling 144-148
number of cities, adding 376, 377
template improvements 364

World Wide Web Consortium (W3C) 130, 395
World Wide Web (WWW) 497

X
XMLHttpRequest (XHR) 295, 394-396
xUnit.net testing tool 465

Y
Yarn 72

URL 72

Z
ZeroSSL

reference link 663

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805129936

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805129936

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing ASP.NET and Angular
	Technical requirements
	Two players, one goal
	The ASP.NET Core revolution
	ASP.NET Core 1.x
	ASP.NET Core 2.x
	ASP.NET Core 3.x
	.NET 5
	.NET 6
	.NET 7
	.NET 8

	What’s new in Angular?
	GetAngular
	AngularJS
	Angular 2
	Angular 4
	Angular 5
	Angular 6
	Angular 7
	Angular 8
	Angular 9
	Angular 10
	Angular 11
	Angular 12
	Angular 13
	Angular 14
	Angular 15
	Angular 16
	Angular 17

	Reasons for choosing .NET and Angular
	Summary
	Suggested topics
	References

	Chapter 2: Getting Ready
	Technical requirements
	A full-stack approach
	MPAs, SPAs, PWAs, and NWAs
	Multi-page applications
	Single-page applications
	Progressive web applications
	Native web applications
	Product owner expectations

	An example SPA project
	Not your usual Hello World!

	Preparing the workspace
	Disclaimer — do (not) try this at home
	The broken code myth
	Stay hungry, stay foolish, yet be responsible as well

	Setting up the project(s)
	Installing the .NET 8 SDK
	Checking the SDK version
	Installing Node.js and the Angular CLI
	Creating the Angular and ASP.NET Core project

	Performing a test run
	Troubleshooting

	Architecture overview

	Summary
	Suggested topics
	References

	Chapter 3: Looking Around
	Technical requirements
	Solution overview
	The ASP.NET back-end
	Configuration files
	Program.cs
	appsettings.json

	Controllers
	WeatherForecastController

	Introducing OpenAPI (Swagger)

	The Angular front-end
	The root files
	angular.json
	package.json
	tsconfig.json
	Other workspace-level files

	The /src/ folder
	The /src/app/ folder

	Our first test run
	First testing attempt

	Getting to work
	Changing the API endpoints
	Implementing a baseUrl property

	Refactoring the Angular app
	Adding HomeComponent
	Adding FetchDataComponent
	Adding the navigation menu
	Updating the AppComponent
	Updating the AppRoutingModule
	Finishing touches
	Test run

	Summary
	Suggested topics
	References

	Chapter 4: Front-End and Back-End Interactions
	Technical requirements
	Introducing ASP.NET Core health checks
	Adding the HealthCheck middleware
	Adding an Internet Control Message Protocol (ICMP) check
	Possible outcomes
	Creating an ICMPHealthCheck class
	Adding the ICMPHealthCheck

	Improving the ICMPHealthCheck class
	Adding parameters and response messages
	Updating the middleware setup
	Implementing a custom output message
	Configuring the output message

	Health checks in Angular
	Creating the Angular component
	health-check.component.ts
	health-check.component.html
	health-check.component.css

	Adding the component to the Angular app
	AppRoutingModule
	NavMenuComponent
	Testing it out

	Restyling the UI
	Introducing Angular Material
	Installing Angular Material
	Adding a MatToolbar
	Updating the AppModule
	Updating the NavMenuComponent HTML template
	First test run

	Playing with (S)CSS
	Introducing Sass
	Replacing CSS with Sass
	Restyling the tables

	Summary
	Suggested topics
	References

	Chapter 5: Data Model with Entity Framework Core
	Technical requirements
	The WorldCities web app
	Updating the ASP.NET Core app
	Updating the Angular app
	Minimal UI restyling

	Reasons to use a data server

	The data source
	The data model
	Introducing Entity Framework Core
	Installing Entity Framework Core
	The SQL Server Data Provider
	DBMS licensing models
	What about Linux?
	SQL Server alternatives

	Data modeling approaches
	Code-First
	Database-First
	Making a choice

	Creating the entities
	Defining the entities
	The City entity
	The Country entity
	Should we (still) use #region blocks?

	Defining relationships
	Adding the Country property to the City entity class
	Adding the Cities property to the Country entity class

	Defining the database table names
	Defining indexes

	Getting a SQL Server instance
	Installing SQL Server 2022
	Installing the database management tool(s)
	Creating a SQL database on Azure
	SQL Database
	SQL Managed Instance
	SQL virtual machine
	Making a choice
	Setting up a SQL database
	Configuring the instance

	Configuring the database
	Creating the WorldCities database
	Adding the WorldCities login
	Mapping the login to the database

	Creating the database using Code-First
	Setting up the DbContext
	Entity type configuration methods
	Data annotations
	Fluent API
	EntityTypeConfiguration classes
	Making a choice

	Database initialization strategies
	Updating the appsettings.json file
	Securing the connection string
	Introducing Secrets Storage
	Adding the secrets.json file
	Working with the secrets.json file

	Creating the database
	Updating Program.cs
	Adding the initial migration
	Using the dotnet CLI
	Using the Package Manager Console
	Checking the autogenerated database tables
	Understanding migrations

	Populating the database
	Implement SeedController
	Import the Excel file

	Entity controllers
	CitiesController
	CountriesController
	Should we really use entities?
	Testing it out

	Summary
	Suggested topics
	References

	Chapter 6: Fetching and Displaying Data
	Technical requirements
	Fetching data
	Requests and responses
	JSON conventions and defaults

	A (very) long list
	city.ts
	cities.component.ts
	cities.component.html
	cities.component.scss
	app-routing.module.ts
	nav-component.html

	Serving data with Angular Material
	Adding AngularMaterialModule
	Introducing MatTable
	Updating AngularMaterialModule
	Updating CitiesComponent

	Adding pagination with MatPaginatorModule
	Client-side paging
	Server-side paging

	Adding sorting with MatSortModule
	Extending ApiResult
	Installing System.Linq.Dynamic.Core
	Updating CitiesController
	Updating the Angular app

	Adding filtering
	Extending ApiResult (again)
	CitiesController
	CitiesComponent
	CitiesComponent template (HTML) file
	CitiesComponent style (SCSS) file
	AngularMaterialModule
	Performance considerations

	Adding countries to the loop
	ASP.NET
	CountriesController

	Angular
	country.ts
	countries.component.ts
	countries.component.html
	countries.component.scss
	AppModule
	AppRoutingModule
	NavComponent
	Testing CountriesComponent

	Summary
	Suggested topics
	ASP.NET
	Angular

	References

	Chapter 7: Forms and Data Validation
	Technical requirements
	Exploring Angular forms
	Forms in Angular
	Reasons to use forms
	Template-driven forms
	The pros
	The cons

	Model-driven/Reactive Forms

	Building our first Reactive Form
	ReactiveFormsModule
	CityEditComponent
	city-edit.component.ts
	city-edit.component.html
	city-edit.component.scss

	Adding the navigation link
	app-routing.module.ts
	cities.component.html

	Adding a new city
	Extending the CityEditComponent
	Adding the “Add a new City” button
	Adding a new route

	HTML select
	Angular Material select (MatSelectModule)

	Understanding data validation
	Template-driven validation
	Model-driven validation
	Our first validators
	Testing the validators

	Server-side validation
	DupeCityValidator

	Introducing the FormBuilder
	Creating the CountryEditComponent
	country-edit.component.ts
	The IsDupeField server-side API
	country-edit.component.html
	country-edit.component.scss
	AppRoutingModule
	CountriesComponent

	Testing the CountryEditComponent

	Improving the filter behavior
	Throttling and debouncing
	Definitions
	Why would we want to throttle or debounce our code?
	Debouncing calls to the back-end
	Updating the CitiesComponent
	Updating the CountriesComponent

	What about throttling?

	Summary
	Suggested topics
	References

	Chapter 8: Code Tweaks and Data Services
	Technical requirements
	Optimizations and tweaks
	Template improvements
	Form validation shortcuts

	Class inheritance
	Implementing a BaseFormComponent
	Extending CountryEditComponent
	Extending CityEditComponent

	Bug fixes and improvements
	Validating lat and lon
	city-edit.component.ts
	base-form.component.ts
	city-edit.component.html

	Adding the number of cities
	CountriesController
	Creating the CountryDTO class
	Angular front-end updates

	DTO classes – should we really use them?
	Separation of concerns
	Security considerations
	DTO classes versus anonymous types
	Securing entities
	Final thoughts

	Adding the country name
	CitiesController
	Angular front-end updates

	Data services
	XMLHttpRequest versus Fetch (versus HttpClient)
	XMLHttpRequest
	Fetch
	HttpClient

	Building a data service
	Creating the BaseService
	Adding the common interface methods
	Creating CityService
	Implementing CityService
	Creating CountryService

	Summary
	Suggested topics
	References

	Chapter 9: Back-End and Front-End Debugging
	Technical requirements
	Backend debugging
	Windows or Linux?
	The basics
	Conditional breakpoints
	Conditions
	Actions
	Testing the conditional breakpoint

	The Output window
	LogLevel types
	Testing the LogLevel
	Configuring the Output window

	Debugging EF Core
	The GetCountries() SQL query

	Frontend debugging
	Visual Studio JavaScript debugging
	JavaScript source maps

	Browser developer tools
	Angular form debugging
	A look at the Form Model
	The pipe operator
	Reacting to changes
	The activity log

	Client-side debugging
	Unsubscribing the Observables
	The unsubscribe() method
	The takeUntil() operator
	Other viable alternatives
	Should we always unsubscribe?

	Application logging
	Introducing ASP.NET Core logging
	Database Management System (DBMS) structured logging with Serilog
	Installing the NuGet packages
	Configuring Serilog
	Logging HTTP requests
	Accessing the logs

	Summary
	Suggested topics
	References

	Chapter 10: ASP.NET Core and Angular Unit Testing
	Technical requirements
	ASP.NET Core unit tests
	Creating the WorldCities.Server.Tests project
	Moq
	Microsoft.EntityFrameworkCore.InMemory
	Adding the WorldCities dependency reference

	Our first test
	Arrange
	Act
	Assert
	Executing the test
	Debugging tests

	Test-driven development
	Behavior-driven development

	Angular unit tests
	General concepts
	Introducing the TestBed interface
	Testing with Jasmine

	Our first Angular test suite
	The import section
	The describe and beforeEach sections
	Adding a mock CityService
	Implementing the mock CityService
	Configuring the fixture and the component
	Creating the title test
	Creating the cities tests
	Running the test suite

	Summary
	Suggested topics
	References

	Chapter 11: Authentication and Authorization
	Technical requirements
	To auth, or not to auth?
	Authentication
	Authentication methods
	Third-party authentication

	Authorization
	Proprietary authorization
	Third-party authorization

	Proprietary versus third-party

	Proprietary auth with ASP.NET Core
	The ASP.NET Core Identity model
	Entity types

	Setting up ASP.NET Core Identity
	Adding the NuGet packages
	Creating ApplicationUser
	Extending ApplicationDbContext
	Configuring the ASP.NET Core Identity service
	Implementing AccountController
	Configuring JwtBearerMiddleware
	Updating SeedController
	Securing the action methods
	A word on async tasks, awaits, and deadlocks

	Updating the database
	Adding identity migration
	Applying the migration
	Updating the existing data model
	Dropping and recreating the data model from scratch

	Seeding the data

	Implementing authentication in Angular
	Adding the LoginRequest interface
	Adding the LoginResult interface
	Implementing AuthService
	Creating LoginComponent
	login.component.ts
	login.component.html
	login.component.scss
	Updating AppRoutingModule
	Updating NavMenuComponent
	Testing LoginComponent

	Adding the authStatus observable
	Updating the UI
	Testing the observable

	HttpInterceptors
	Implementing AuthInterceptor
	Updating AppModule
	Testing HttpInterceptor

	Route Guards
	Available guards
	Implementing AuthGuard
	Updating AppRoutingModule
	Testing AuthGuard

	Finishing touches
	Identity API endpoints
	Activating the Identity API endpoints
	Testing the endpoints
	Should we use the Identity API endpoints?

	Summary
	Suggested topics
	References

	Chapter 12: Progressive Web Apps
	Technical requirements
	PWA distinctive features
	Secure origin
	Offline loading
	Service workers versus HttpInterceptors

	Introducing @angular/service-worker

	Implementing the PWA requirements
	Manual installation
	Adding the @angular/service-worker npm package
	Updating the angular.json file
	Importing ServiceWorkerModule
	Updating the index.html file
	Adding the Web App Manifest file
	Adding the favicon
	Adding the ngsw-config.json file

	Automatic installation
	The Angular PNG icon set

	Handling the offline status
	Option 1 – the window’s ononline/onoffline events
	Option 2 – the navigator.onLine property
	Downsides of the JavaScript approaches

	Option 3 – the ng-connection-service npm package
	Installing the service
	Updating the AppModule file
	Updating the AppComponent

	Adding the api/heartbeat endpoint
	Introducing Minimal APIs

	Cross-Origin Resource Sharing
	Implementing CORS

	Testing the PWA capabilities
	Compiling the app
	Installing http-server
	Testing out our PWAs
	Installing the PWA

	Summary
	Suggested topics
	References

	Chapter 13: Beyond REST – Web API with GraphQL
	Technical requirements
	GraphQL versus REST
	REST
	Guiding constraints
	Drawbacks

	GraphQL
	Advantages over REST
	Limitations

	Implementing GraphQL
	Adding GraphQL to ASP.NET Core
	Installing HotChocolate
	Testing the GraphQL schema

	Adding GraphQL to Angular
	Installing Apollo Angular
	Refactoring CityService
	Refactoring CountryService

	Summary
	Suggested topics
	References

	Chapter 14: Real-Time Updates with SignalR
	Technical requirements
	Real-time HTTP and server push
	Introducing SignalR
	Hubs
	Protocols
	Connections, users, and groups

	Implementing SignalR
	Setting up SignalR in ASP.NET Core
	Creating the HealthCheckHub
	Setting up services and middleware
	Adding the broadcast message

	Installing SignalR in Angular
	Adding the npm package
	Implementing the HealthCheckService
	Adding WebSocket support to Angular proxy
	Refactoring the HealthCheckComponent

	Testing it all
	Client-initiated events
	Updating the HealthCheckHub
	Updating the HealthCheckService
	Updating the HealthCheckComponent
	Testing the new feature

	Summary
	Suggested topics
	References

	Chapter 15: Windows, Linux, and Azure Deployment
	Technical requirements
	Getting ready for production
	Configuring the endpoints
	Tweaking the HOSTS file
	Other viable alternatives

	ASP.NET Core deployment tips
	The launchSettings.json file
	Runtime environments
	.NET deployment modes

	Angular deployment tips
	ng serve, ng build, and the package.json file
	Differential loading
	The angular.json configuration file(s)
	Updating the environment.ts file(s)
	Automatic deployment

	Windows deployment
	Creating a Windows Server VM on MS Azure
	Accessing the MS Azure portal
	Adding a new Windows VM
	Configuring a DNS name label
	Setting the inbound security rules

	Configuring the Windows VM
	Adding the IIS web server
	Installing the ASP.NET Core Windows hosting bundle

	Publishing healthcheck.client and HealthCheck.Server
	Introducing Visual Studio publish profiles
	Folder publish profile
	FTP publish profile
	Azure Virtual Machine publish profile

	Configuring IIS
	Adding the healthcheck.client website entry
	Adding the HealthCheck.Server website entry
	A note on TLS/SSL certificates
	Configuring the IIS application pool
	Adding the .webmanifest MIME type

	Testing healthcheck.client and HealthCheck.Server
	Testing the app

	Linux deployment
	Creating a Linux VM on MS Azure
	Adding a new Linux VM
	Configuring a DNS name label
	Setting the inbound security rules

	Configuring the Linux VM
	Connecting to the VM
	Installing the ASP.NET Core Runtime
	Installing Nginx
	Opening the 80 and 443 TCP ports

	Publishing worldcities.client and WorldCities.Server
	Building the Angular app
	Building the WorldCities.Server app
	Deploying the files to the Linux VM
	Configuring Kestrel and Nginx

	Testing WorldCities and WorldCities.Server
	Testing the app
	Troubleshooting

	Azure App Service deployment
	Creating the App Service instances
	Adding the healthcheck.client Static Web App
	Adding the HealthCheck.Server Web App

	Adapting our apps for App Service
	Publishing our apps to App Service
	Publishing the Angular app
	Publishing the ASP.NET Core project

	Testing healthcheck.client and HealthCheck.Server

	Summary
	Suggested topics
	References
	Why subscribe?

	Other Books You May Enjoy
	Index

