

[image: cover.png]

ASP.NET Core 8 and Angular

Sixth Edition

Full-stack web development with ASP.NET Core 8 and Angular

Valerio De Sanctis

[image:]

BIRMINGHAM—MUMBAI

ASP.NET Core 8 and Angular

Sixth Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Senior Publishing Product Manager: Suman Sen

Acquisition Editor – Peer Reviews: Jane D'Souza

Project Editor: Janice Gonsalves

Content Development Editor: Shazeen Iqbal

Copy Editor: Safis Editing

Technical Editor: Aniket Shetty

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Presentation Designer: Pranit Padwal

Senior Developer Relations Marketing Executive: Priyadarshini Sharma

First published: October 2016

Second edition: November 2017

Third edition: February 2020

Fourth edition: January 2021

Fifth edition: April 2022

Sixth edition: February 2024

Production reference: 1220224

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80512-993-6

www.packt.com

Contributors

About the author

Valerio De Sanctis is a skilled IT professional with more than 20 years of experience in lead programming, web-based development, and project management using ASP.NET, PHP, and Java. He held senior positions at a range of financial and insurance companies, most recently serving as Chief Technology Officer, Chief Security Officer, and Chief Operating Officer at a leading after-sales and IT service provider for multiple top-tier life and non-life insurance groups. He’s also one of Microsoft’s Most Valuable Professional (MVP) for Developer Technologies and Cloud and Datacenter Management.

He has written various books on web development, many of which have become best-sellers on Amazon, with tens of thousands of copies sold worldwide.

I would like to thank those who supported me in writing this book: my beloved and beautiful wife, Carla, for her awesome encouragement and invaluable support; my children, Viola and Daniele; and my parents and sister. Last, but not least, I want to thank you, the reader, for picking up this book. I really hope you will enjoy it!

About the reviewer

Wouter Huysentruit is a seasoned software developer and architect with over 20 years of experience across various fields. He aims to create solutions that are both easy to understand and maintain. Currently, his focus lies in developing user-friendly web applications utilizing Microsoft technologies and Angular, alongside contributing to numerous open-source projects, where he has been honored with the Microsoft MVP award.

A big thanks goes out to my wife and kids for supporting me during the review of this book.

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

Contents

	Preface

	Who this book is for

	What this book covers

	To get the most out of this book

	Get in touch

	Introducing ASP.NET and Angular

	Technical requirements

	Two players, one goal

	The ASP.NET Core revolution

	ASP.NET Core 1.x

	ASP.NET Core 2.x

	ASP.NET Core 3.x

	.NET 5

	.NET 6

	.NET 7

	.NET 8

	What’s new in Angular?

	GetAngular

	AngularJS

	Angular 2

	Angular 4

	Angular 5

	Angular 6

	Angular 7

	Angular 8

	Angular 9

	Angular 10

	Angular 11

	Angular 12

	Angular 13

	Angular 14

	Angular 15

	Angular 16

	Angular 17

	Reasons for choosing .NET and Angular

	Summary

	Suggested topics

	References

	Getting Ready

	Technical requirements

	A full-stack approach

	MPAs, SPAs, PWAs, and NWAs

	Multi-page applications

	Single-page applications

	Progressive web applications

	Native web applications

	Product owner expectations

	An example SPA project

	Not your usual Hello World!

	Preparing the workspace

	Disclaimer — do (not) try this at home

	The broken code myth

	Stay hungry, stay foolish, yet be responsible as well

	Setting up the project(s)

	Installing the .NET 8 SDK

	Checking the SDK version

	Installing Node.js and the Angular CLI

	Creating the Angular and ASP.NET Core project

	Performing a test run

	Troubleshooting

	Architecture overview

	Summary

	Suggested topics

	References

	Looking Around

	Technical requirements

	Solution overview

	The ASP.NET back-end

	Configuration files

	Program.cs

	appsettings.json

	Controllers

	WeatherForecastController

	Introducing OpenAPI (Swagger)

	The Angular front-end

	The root files

	angular.json

	package.json

	tsconfig.json

	Other workspace-level files

	The /src/ folder

	The /src/app/ folder

	Our first test run

	First testing attempt

	Getting to work

	Changing the API endpoints

	Implementing a baseUrl property

	Refactoring the Angular app

	Adding HomeComponent

	Adding FetchDataComponent

	Adding the navigation menu

	Updating the AppComponent

	Updating the AppRoutingModule

	Finishing touches

	Test run

	Summary

	Suggested topics

	References

	Front-End and Back-End Interactions

	Technical requirements

	Introducing ASP.NET Core health checks

	Adding the HealthCheck middleware

	Adding an Internet Control Message Protocol (ICMP) check

	Possible outcomes

	Creating an ICMPHealthCheck class

	Adding the ICMPHealthCheck

	Improving the ICMPHealthCheck class

	Adding parameters and response messages

	Updating the middleware setup

	Implementing a custom output message

	Configuring the output message

	Health checks in Angular

	Creating the Angular component

	health-check.component.ts

	health-check.component.html

	health-check.component.css

	Adding the component to the Angular app

	AppRoutingModule

	NavMenuComponent

	Testing it out

	Restyling the UI

	Introducing Angular Material

	Installing Angular Material

	Adding a MatToolbar

	Updating the AppModule

	Updating the NavMenuComponent HTML template

	First test run

	Playing with (S)CSS

	Introducing Sass

	Replacing CSS with Sass

	Restyling the tables

	Summary

	Suggested topics

	References

	Data Model with Entity Framework Core

	Technical requirements

	The WorldCities web app

	Updating the ASP.NET Core app

	Updating the Angular app

	Minimal UI restyling

	Reasons to use a data server

	The data source

	The data model

	Introducing Entity Framework Core

	Installing Entity Framework Core

	The SQL Server Data Provider

	DBMS licensing models

	What about Linux?

	SQL Server alternatives

	Data modeling approaches

	Code-First

	Database-First

	Making a choice

	Creating the entities

	Defining the entities

	The City entity

	The Country entity

	Should we (still) use #region blocks?

	Defining relationships

	Adding the Country property to the City entity class

	Adding the Cities property to the Country entity class

	Defining the database table names

	Defining indexes

	Getting a SQL Server instance

	Installing SQL Server 2022

	Installing the database management tool(s)

	Creating a SQL database on Azure

	SQL Database

	SQL Managed Instance

	SQL virtual machine

	Making a choice

	Setting up a SQL database

	Configuring the instance

	Configuring the database

	Creating the WorldCities database

	Adding the WorldCities login

	Mapping the login to the database

	Creating the database using Code-First

	Setting up the DbContext

	Entity type configuration methods

	Data annotations

	Fluent API

	EntityTypeConfiguration classes

	Making a choice

	Database initialization strategies

	Updating the appsettings.json file

	Securing the connection string

	Introducing Secrets Storage

	Adding the secrets.json file

	Working with the secrets.json file

	Creating the database

	Updating Program.cs

	Adding the initial migration

	Using the dotnet CLI

	Using the Package Manager Console

	Checking the autogenerated database tables

	Understanding migrations

	Populating the database

	Implement SeedController

	Import the Excel file

	Entity controllers

	CitiesController

	CountriesController

	Should we really use entities?

	Testing it out

	Summary

	Suggested topics

	References

	Fetching and Displaying Data

	Technical requirements

	Fetching data

	Requests and responses

	JSON conventions and defaults

	A (very) long list

	city.ts

	cities.component.ts

	cities.component.html

	cities.component.scss

	app-routing.module.ts

	nav-component.html

	Serving data with Angular Material

	Adding AngularMaterialModule

	Introducing MatTable

	Updating AngularMaterialModule

	Updating CitiesComponent

	Adding pagination with MatPaginatorModule

	Client-side paging

	Server-side paging

	Adding sorting with MatSortModule

	Extending ApiResult

	Installing System.Linq.Dynamic.Core

	Updating CitiesController

	Updating the Angular app

	Adding filtering

	Extending ApiResult (again)

	CitiesController

	CitiesComponent

	CitiesComponent template (HTML) file

	CitiesComponent style (SCSS) file

	AngularMaterialModule

	Performance considerations

	Adding countries to the loop

	ASP.NET

	CountriesController

	Angular

	country.ts

	countries.component.ts

	countries.component.html

	countries.component.scss

	AppModule

	AppRoutingModule

	NavComponent

	Testing CountriesComponent

	Summary

	Suggested topics

	ASP.NET

	Angular

	References

	Forms and Data Validation

	Technical requirements

	Exploring Angular forms

	Forms in Angular

	Reasons to use forms

	Template-driven forms

	The pros

	The cons

	Model-driven/Reactive Forms

	Building our first Reactive Form

	ReactiveFormsModule

	CityEditComponent

	city-edit.component.ts

	city-edit.component.html

	city-edit.component.scss

	Adding the navigation link

	app-routing.module.ts

	cities.component.html

	Adding a new city

	Extending the CityEditComponent

	Adding the “Add a new City” button

	Adding a new route

	HTML select

	Angular Material select (MatSelectModule)

	Understanding data validation

	Template-driven validation

	Model-driven validation

	Our first validators

	Testing the validators

	Server-side validation

	DupeCityValidator

	Introducing the FormBuilder

	Creating the CountryEditComponent

	country-edit.component.ts

	The IsDupeField server-side API

	country-edit.component.html

	country-edit.component.scss

	AppRoutingModule

	CountriesComponent

	Testing the CountryEditComponent

	Improving the filter behavior

	Throttling and debouncing

	Definitions

	Why would we want to throttle or debounce our code?

	Debouncing calls to the back-end

	Updating the CitiesComponent

	Updating the CountriesComponent

	What about throttling?

	Summary

	Suggested topics

	References

	Code Tweaks and Data Services

	Technical requirements

	Optimizations and tweaks

	Template improvements

	Form validation shortcuts

	Class inheritance

	Implementing a BaseFormComponent

	Extending CountryEditComponent

	Extending CityEditComponent

	Bug fixes and improvements

	Validating lat and lon

	city-edit.component.ts

	base-form.component.ts

	city-edit.component.html

	Adding the number of cities

	CountriesController

	Creating the CountryDTO class

	Angular front-end updates

	DTO classes – should we really use them?

	Separation of concerns

	Security considerations

	DTO classes versus anonymous types

	Securing entities

	Final thoughts

	Adding the country name

	CitiesController

	Angular front-end updates

	Data services

	XMLHttpRequest versus Fetch (versus HttpClient)

	XMLHttpRequest

	Fetch

	HttpClient

	Building a data service

	Creating the BaseService

	Adding the common interface methods

	Creating CityService

	Implementing CityService

	Creating CountryService

	Summary

	Suggested topics

	References

	Back-End and Front-End Debugging

	Technical requirements

	Backend debugging

	Windows or Linux?

	The basics

	Conditional breakpoints

	Conditions

	Actions

	Testing the conditional breakpoint

	The Output window

	LogLevel types

	Testing the LogLevel

	Configuring the Output window

	Debugging EF Core

	The GetCountries() SQL query

	Frontend debugging

	Visual Studio JavaScript debugging

	JavaScript source maps

	Browser developer tools

	Angular form debugging

	A look at the Form Model

	The pipe operator

	Reacting to changes

	The activity log

	Client-side debugging

	Unsubscribing the Observables

	The unsubscribe() method

	The takeUntil() operator

	Other viable alternatives

	Should we always unsubscribe?

	Application logging

	Introducing ASP.NET Core logging

	Database Management System (DBMS) structured logging with Serilog

	Installing the NuGet packages

	Configuring Serilog

	Logging HTTP requests

	Accessing the logs

	Summary

	Suggested topics

	References

	ASP.NET Core and Angular Unit Testing

	Technical requirements

	ASP.NET Core unit tests

	Creating the WorldCities.Server.Tests project

	Moq

	Microsoft.EntityFrameworkCore.InMemory

	Adding the WorldCities dependency reference

	Our first test

	Arrange

	Act

	Assert

	Executing the test

	Debugging tests

	Test-driven development

	Behavior-driven development

	Angular unit tests

	General concepts

	Introducing the TestBed interface

	Testing with Jasmine

	Our first Angular test suite

	The import section

	The describe and beforeEach sections

	Adding a mock CityService

	Implementing the mock CityService

	Configuring the fixture and the component

	Creating the title test

	Creating the cities tests

	Running the test suite

	Summary

	Suggested topics

	References

	Authentication and Authorization

	Technical requirements

	To auth, or not to auth?

	Authentication

	Authentication methods

	Third-party authentication

	Authorization

	Proprietary authorization

	Third-party authorization

	Proprietary versus third-party

	Proprietary auth with ASP.NET Core

	The ASP.NET Core Identity model

	Entity types

	Setting up ASP.NET Core Identity

	Adding the NuGet packages

	Creating ApplicationUser

	Extending ApplicationDbContext

	Configuring the ASP.NET Core Identity service

	Implementing AccountController

	Configuring JwtBearerMiddleware

	Updating SeedController

	Securing the action methods

	A word on async tasks, awaits, and deadlocks

	Updating the database

	Adding identity migration

	Applying the migration

	Updating the existing data model

	Dropping and recreating the data model from scratch

	Seeding the data

	Implementing authentication in Angular

	Adding the LoginRequest interface

	Adding the LoginResult interface

	Implementing AuthService

	Creating LoginComponent

	login.component.ts

	login.component.html

	login.component.scss

	Updating AppRoutingModule

	Updating NavMenuComponent

	Testing LoginComponent

	Adding the authStatus observable

	Updating the UI

	Testing the observable

	HttpInterceptors

	Implementing AuthInterceptor

	Updating AppModule

	Testing HttpInterceptor

	Route Guards

	Available guards

	Implementing AuthGuard

	Updating AppRoutingModule

	Testing AuthGuard

	Finishing touches

	Identity API endpoints

	Activating the Identity API endpoints

	Testing the endpoints

	Should we use the Identity API endpoints?

	Summary

	Suggested topics

	References

	Progressive Web Apps

	Technical requirements

	PWA distinctive features

	Secure origin

	Offline loading

	Service workers versus HttpInterceptors

	Introducing @angular/service-worker

	Implementing the PWA requirements

	Manual installation

	Adding the @angular/service-worker npm package

	Updating the angular.json file

	Importing ServiceWorkerModule

	Updating the index.html file

	Adding the Web App Manifest file

	Adding the favicon

	Adding the ngsw-config.json file

	Automatic installation

	The Angular PNG icon set

	Handling the offline status

	Option 1 – the window’s ononline/onoffline events

	Option 2 – the navigator.onLine property

	Downsides of the JavaScript approaches

	Option 3 – the ng-connection-service npm package

	Installing the service

	Updating the AppModule file

	Updating the AppComponent

	Adding the api/heartbeat endpoint

	Introducing Minimal APIs

	Cross-Origin Resource Sharing

	Implementing CORS

	Testing the PWA capabilities

	Compiling the app

	Installing http-server

	Testing out our PWAs

	Installing the PWA

	Summary

	Suggested topics

	References

	Beyond REST – Web API with GraphQL

	Technical requirements

	GraphQL versus REST

	REST

	Guiding constraints

	Drawbacks

	GraphQL

	Advantages over REST

	Limitations

	Implementing GraphQL

	Adding GraphQL to ASP.NET Core

	Installing HotChocolate

	Testing the GraphQL schema

	Adding GraphQL to Angular

	Installing Apollo Angular

	Refactoring CityService

	Refactoring CountryService

	Summary

	Suggested topics

	References

	Real-Time Updates with SignalR

	Technical requirements

	Real-time HTTP and server push

	Introducing SignalR

	Hubs

	Protocols

	Connections, users, and groups

	Implementing SignalR

	Setting up SignalR in ASP.NET Core

	Creating the HealthCheckHub

	Setting up services and middleware

	Adding the broadcast message

	Installing SignalR in Angular

	Adding the npm package

	Implementing the HealthCheckService

	Adding WebSocket support to Angular proxy

	Refactoring the HealthCheckComponent

	Testing it all

	Client-initiated events

	Updating the HealthCheckHub

	Updating the HealthCheckService

	Updating the HealthCheckComponent

	Testing the new feature

	Summary

	Suggested topics

	References

	Windows, Linux, and Azure Deployment

	Technical requirements

	Getting ready for production

	Configuring the endpoints

	Tweaking the HOSTS file

	Other viable alternatives

	ASP.NET Core deployment tips

	The launchSettings.json file

	Runtime environments

	.NET deployment modes

	Angular deployment tips

	ng serve, ng build, and the package.json file

	Differential loading

	The angular.json configuration file(s)

	Updating the environment.ts file(s)

	Automatic deployment

	Windows deployment

	Creating a Windows Server VM on MS Azure

	Accessing the MS Azure portal

	Adding a new Windows VM

	Configuring a DNS name label

	Setting the inbound security rules

	Configuring the Windows VM

	Adding the IIS web server

	Installing the ASP.NET Core Windows hosting bundle

	Publishing healthcheck.client and HealthCheck.Server

	Introducing Visual Studio publish profiles

	Folder publish profile

	FTP publish profile

	Azure Virtual Machine publish profile

	Configuring IIS

	Adding the healthcheck.client website entry

	Adding the HealthCheck.Server website entry

	A note on TLS/SSL certificates

	Configuring the IIS application pool

	Adding the .webmanifest MIME type

	Testing healthcheck.client and HealthCheck.Server

	Testing the app

	Linux deployment

	Creating a Linux VM on MS Azure

	Adding a new Linux VM

	Configuring a DNS name label

	Setting the inbound security rules

	Configuring the Linux VM

	Connecting to the VM

	Installing the ASP.NET Core Runtime

	Installing Nginx

	Opening the 80 and 443 TCP ports

	Publishing worldcities.client and WorldCities.Server

	Building the Angular app

	Building the WorldCities.Server app

	Deploying the files to the Linux VM

	Configuring Kestrel and Nginx

	Testing WorldCities and WorldCities.Server

	Testing the app

	Troubleshooting

	Azure App Service deployment

	Creating the App Service instances

	Adding the healthcheck.client Static Web App

	Adding the HealthCheck.Server Web App

	Adapting our apps for App Service

	Publishing our apps to App Service

	Publishing the Angular app

	Publishing the ASP.NET Core project

	Testing healthcheck.client and HealthCheck.Server

	Summary

	Suggested topics

	References

	Other Books You May Enjoy

	Index

Landmarks

	
Cover

	
Index

Preface

ASP.NET Core is a free, open-source, modular web framework developed by Microsoft. It operates on top of the full .NET Framework on Windows or .NET Core on cross-platform compatibility. Specifically designed for the efficient creation of HTTP services, it caters to a wide array of clients, including web browsers, mobile devices, smart TVs, and web-based home automation tools.

Angular is the successor of AngularJS, a world-renowned development framework born to equip coders with the necessary tools for building reactive, cross-platform web applications optimized for both desktop and mobile environments. It features a structure-rich template approach based on a natural, easily writable, and readable syntax.

Technically, ASP.NET Core and Angular share little in common. ASP.NET Core primarily focuses on server-side web development, while Angular addresses client-side aspects such as the User Interface (UI) and User Experience (UX). However, both frameworks emerged from a shared vision: utilizing the HTTP protocol not just for serving web pages but as a platform for building web-based APIs that efficiently send and receive data. This concept, emerging over the first two decades of the World Wide Web, is now a widely accepted foundation of modern web development.

The compelling reasons behind this shift in perspective are many, but the most important is the intrinsic characteristics of the HTTP protocol. Its simplicity, flexibility, and universality make it suited to the diverse needs of the ever-evolving World Wide Web. Nowadays, almost any platform that we can think of has an HTTP library, so HTTP services can reach a broad range of clients, from browsers and IoT devices to desktop applications and video games.

The main purpose of this book is to bring together the latest versions of ASP.NET Core and Angular into a single development. This combination demonstrates how to create high-performance web applications and services accessible to a wide range of clients, seamlessly blending server and client-side functionalities.

Who this book is for

This book is for intermediate and experienced developers who already know about ASP.NET Core and Angular and are looking to learn more about them and understand how to use them together to create a production-ready Single-Page Application (SPA) or Progressive Web Application (PWA) using SQL Server and Entity Framework Core.

However, the fully documented code samples (also available on GitHub) and the step-by-step implementation tutorials make this book easy to understand even for beginners and developers who are just getting started.

What this book covers

Chapter 1, Introducing ASP.NET and Angular, introduces some of the basic concepts of the frameworks that we are going to use throughout the book, as well as the various kinds of web applications that can be created (SPAs, PWAs, native web apps, and more).

Chapter 2, Getting Ready, explains how to create the ASP.NET Core projects that will be used for the rest of the book using the templates provided by Visual Studio for the back-end (ASP.NET Core Web API) and the front-end (Standalone Angular App).

Chapter 3, Looking Around, is a detailed overview of the various back-end and front-end elements provided by the .NET Core and Angular templates shipped with Visual Studio, backed up with some high-level explanations about how they can work together in a typical HTTP request-response cycle.

Chapter 4, Front-End and Back-End Interactions, provides a comprehensive tutorial for building a sample ASP.NET Core and Angular app that provides diagnostic info to the end user by querying health check middleware using a Bootstrap-based Angular client.

Chapter 5, Data Model with Entity Framework Core, constitutes a journey through Entity Framework Core and its capabilities as an Object-Relational Mapping (ORM) framework, from SQL database deployment (cloud-based and/or local instance) to data model design, including various techniques to read and write data from backend controllers.

Chapter 6, Fetching and Displaying Data, covers how to expose Entity Framework Core data using the ASP.NET Core back-end web API, consume that data with Angular, and then show it to end users using the front-end UI.

Chapter 7, Forms and Data Validation, details how to implement the HTTP PUT and POST methods in back-end web APIs in order to perform insert and update operations with Angular, along with server-side and client-side data validation.

Chapter 8, Code Tweaks and Data Services, explores some useful refactoring and improvements to strengthen your app’s source code and includes an in-depth analysis of Angular’s data services to understand why and how to use them.

Chapter 9, Back-End and Front-End Debugging, looks at how to properly debug the back-end and front-end stacks of a typical web application using the various debugging tools provided by Visual Studio to their full extent.

Chapter 10, ASP.NET Core and Angular Unit Testing, comprises a detailed review of the Test-Driven Development (TDD) and Behavior-Driven Development (BDD) development practices and goes into how to define, implement, and perform back-end and front-end unit tests using xUnit, Jasmine, and Karma.

Chapter 11, Authentication and Authorization, gives you a high-level introduction to the concepts of authentication and authorization and presents a narrow lineup of some of the various techniques, methodologies, and approaches to properly implementing proprietary or third-party user identity systems. A practical example of a working ASP.NET Core and Angular authentication mechanism based upon ASP.NET Identity and IdentityServer4 is included.

Chapter 12, Progressive Web Apps, delves into how to convert an existing SPA into a PWA using service workers, manifest files, and offline caching features.

Chapter 13, Beyond REST – Web API with GraphQL, introduces the concept of the GraphQL query language, explains its pros and cons, and shows how to implement a GraphQL-based API using HotChocolate (for the back-end) and Apollo Angular (for the front-end).

Chapter 14, Real-Time Updates with SignalR, is dedicated to SignalR, a free and open-source library that can be used to send asynchronous notifications to client-side web applications and explains how to implement it in ASP.NET Core and Angular.

Chapter 15, Windows, Linux, and Azure Deployment, teaches you how to deploy the ASP.NET and Angular apps created in the previous chapters and publish them in a cloud-based environment using a Windows Server or a Linux CentOS virtual machine, as well as Azure App Service deployment.

To get the most out of this book

These are the software packages (and relevant version numbers) used to write this book and test the source code:

	Visual Studio 2022 Community Edition 17.8.3 with the optional ASP.NET and web development workload (it can be selected from the Workloads section within the Visual Studio installer app)

	Microsoft .NET 8 SDK 8.0.101

	TypeScript 5.2

	NuGet package manager 6.8.0

	Node.js 20.10.0

	Angular 17.0.3

For deployment on Windows:

	Internet Information Services (IIS) (Windows Server)

	ASP.NET Core Runtime 8 and Windows Hosting Bundle Installer for Win64 (ASP.NET official website)

For deployment on Linux:

	ASP.NET Core Runtime 8 for Linux (YUM package manager)

	.NET 8 CLR for Linux (YUM package manager)

	Nginx HTTP Server (YUM package manager)

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781805129936.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Navigate to the /ClientApp/src/app/cities folder.”

A block of code is set as follows:

<mat-form-field [hidden]="!cities">
<input matInput (keyup)="loadData($event.target.value)"
placeholder="Filter by name (or part of it)...">
</mat-form-field>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

import { FormGroup, FormControl } from '@angular/forms';
class ModelFormComponent implements OnInit {
 form: FormGroup;
ngOnInit() {
 this.form = new FormGroup({
 title: new FormControl()
 });
 }
}

Any command-line input or output is written as follows:

> dotnet new angular -o HealthCheck

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: “Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share your thoughts

Once you’ve read ASP.NET Core 8 and Angular, Sixth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below:

[image: Qr code Description automatically generated]
https://packt.link/free-ebook/9781805129936

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

1

Introducing ASP.NET and Angular

Over the first two chapters of this book, we’ll build the basics of our ASP.NET and Angular journey by mixing theoretical coverage of their most relevant features with a practical approach. More specifically, in the first chapter, we’ll briefly review the recent history of ASP.NET/.NET Core and Angular frameworks, while in the second chapter, we’ll learn how to configure our local development environment so we can assemble, build, and test a sample web application boilerplate.

By the end of these chapters, you’ll have gained knowledge of the path taken by ASP.NET and Angular to improve web development in the last few years and learned how to properly set up an ASP.NET and Angular web application.

Here are the main topics that we are going to cover in this chapter:

	Two players, one goal: How ASP.NET and Angular can be used together to build a modern, feature-rich, and highly versatile web application

	The ASP.NET Core revolution: A brief history of ASP.NET’s most recent achievements

	What’s new in Angular: A recap of the Angular development journey, from its origins to the most recent days

Technical requirements

These are the software packages (and relevant version numbers) used to write this book and test the source code:

	Visual Studio 2022 Community edition 17.8.1 with the optional ASP.NET and web development workload (it can be selected from the Workloads section within the Visual Studio installer app)

	Microsoft .NET 8 SDK 8.0.100

	TypeScript 5.2

	NuGet package manager 6.8.0

	Node.js 20.10.0

	Angular 17.0.3

We strongly suggest using the same version used within this book, or newer, but at your own risk! Jokes aside, if you prefer to use a different version, that’s perfectly fine, as long as you are aware that, in that case, you may need to make some manual changes and adjustments to the source code.

The code files for this book can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular.

Two players, one goal

From the perspective of a fully functional web-based application, we can say that the web API interface provided with the ASP.NET framework is a programmatic set of server-side handlers used by the server to expose a number of hooks and/or endpoints to a defined request-response message system. This is typically expressed in structured markup languages (XML), language-independent data formats (JSON), or query languages for APIs (GraphQL). As we’ve already said, this is achieved by exposing application programming interfaces (APIs) through HTTP and/or HTTPS protocols via a publicly available web server such as IIS, Node.js, Apache, or NGINX.

Similarly, Angular can be described as a modern, feature-rich, client-side framework that pushes the HTML and ECMAScript’s most advanced features, along with the modern browser’s capabilities, to their full extent by binding the input and/or output parts of an HTML web page into a flexible, reusable, and easily testable model.

Can we combine the back-end strengths of ASP.NET and the front-end capabilities of Angular in order to build a modern, feature-rich, and highly versatile web application?

The answer, in short, is yes. In the following sections, we’ll see how we can do that by analyzing all the fundamental aspects of a well-written, properly designed, web-based product, and how the latest versions of ASP.NET and/or Angular can be used to handle each one of them. However, before doing all that, it might be very useful to backtrack a bit and spend some valuable time recollecting what’s happened in the last 8 years in the development history of the two frameworks we’re going to use. It will be very useful to understand the main reasons why we’re still giving them full credit, despite the valuable efforts of their ever-growing competitors.

The ASP.NET Core revolution

To summarize what has happened in the ASP.NET world within the last decade is not an easy task; in short, we can say that we’ve undoubtedly witnessed the most important series of changes in .NET Framework since the year it came to life. This was a revolution that changed the whole Microsoft approach to software development in almost every way. To properly understand what happened in those years, it would be useful to identify some distinctive key frames within a slow, yet constant, journey that allowed a company known (and somewhat loathed) for its proprietary software, licenses, and patents to become a driving force for open source development worldwide.

The first relevant step, at least in my humble opinion, was taken on April 3, 2014, at the annual Microsoft Build conference, which took place at the Moscone Center (West) in San Francisco. It was there, during a memorable keynote speech, that Anders Hejlsberg – father of Delphi and lead architect of C# – publicly released the first version of the .NET Compiler Platform, known as Roslyn, as an open source project. It was also there that Scott Guthrie, executive vice president of the Microsoft Cloud and AI group, announced the official launch of .NET Foundation, a non-profit organization aimed at improving open source software development and collaborative work within the .NET ecosystem.

From that pivotal day, the .NET development team published a constant flow of Microsoft open source projects on the GitHub platform, including Entity Framework Core (May 2014), TypeScript (October 2014), .NET Core (October 2014), CoreFX (November 2014), CoreCLR and RyuJIT (January 2015), MSBuild (March 2015), the .NET Core CLI (October 2015), Visual Studio Code (November 2015), .NET Standard (September 2016), and so on.

ASP.NET Core 1.x

The most important achievement brought by these efforts toward open source development was the public release of ASP.NET Core 1.0, which came out in Q3 2016. It was a complete reimplementation of the ASP.NET framework that we had known since January 2002 and that had evolved, without significant changes in its core architecture, up to version 4.6.2 (August 2016). The brand-new framework united all the previous web application technologies, such as MVC, Web API, and web pages, into a single programming module, formerly known as MVC6. The new framework introduced a fully featured, cross-platform component, also known as .NET Core, shipped with the whole set of open source tools mentioned previously, namely, a compiler platform (Roslyn), a cross-platform runtime (CoreCLR), and an improved x64 Just-In-Time compiler (RyuJIT).

Some of you might remember that ASP.NET Core was originally called ASP.NET 5. As a matter of fact, ASP.NET 5 was no less than the original name of ASP.NET Core until mid-2016, when the Microsoft developer team chose to rename it to emphasize the fact that it was a complete rewrite. The reasons for that, along with the Microsoft vision about the new product, are further explained in the following Scott Hanselman blog post that anticipated the changes on January 16, 2016: http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx.

For those who don’t know, Scott Hanselman has been the outreach and community manager for .NET/ASP.NET/IIS/Azure and Visual Studio since 2007. Additional information regarding the perspective switch is also available in the following article by Jeffrey T. Fritz, program manager for Microsoft and a NuGet team leader: https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/.

As for Web API 2, it was a dedicated framework for building HTTP services that returned pure JSON or XML data instead of web pages. Initially born as an alternative to the MVC platform, it has been merged with the latter into the new, general-purpose web application framework known as MVC6, which is now shipped as a separate module of ASP.NET Core.

The 1.0 final release was shortly followed by ASP.NET Core 1.1 (Q4 2016), which introduced some new features and performance enhancements and also addressed many bugs and compatibility issues affecting the earlier release. These new features include the ability to configure middleware as filters (by adding them to the MVC pipeline rather than the HTTP request pipeline); a built-in, host-independent URL rewrite module, made available through the dedicated Microsoft.AspNetCore.Rewrite NuGet package; view components as tag helpers; view compilation at runtime instead of on-demand; and .NET native compression and caching middleware modules.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core 1.1, check out the following links:

	Release notes: https://github.com/aspnet/AspNetCore/releases/1.1.0

	Commits list: https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md

ASP.NET Core 2.x

Another major step was taken with ASP.NET Core 2.0, which came out in Q2 2017 as a preview and then in Q3 2017 for the final release. The new version featured a wide number of significant interface improvements, mostly aimed at standardizing the shared APIs among .NET Framework, .NET Core, and .NET Standard to make them backward-compatible with .NET Framework. Thanks to these efforts, moving existing .NET Framework projects to .NET Core and/or .NET Standard became a lot easier than before, giving many traditional developers a chance to try and adapt to the new paradigm without losing their existing know-how.

Again, the major version was shortly followed by an improved and refined one: ASP.NET Core 2.1. This was officially released on May 30, 2018, and introduced a series of additional security and performance improvements, as well as a bunch of new features, including SignalR, an open source library that simplifies adding real-time web functionality to .NET Core apps; Razor class libraries; a significant improvement in the Razor SDK that allows developers to build views and pages into reusable class libraries, and/or library projects that could be shipped as NuGet packages; the Identity UI library and scaffolding, to add identity to any app and customize it to meet your needs; HTTPS support enabled by default; built-in General Data Protection Regulation (GDPR) support using privacy-oriented APIs and templates that give users control over their personal data and cookie consent; updated SPA templates for Angular and ReactJS client-side frameworks; and much more.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core 2.1, check out the following links:

	Release notes: https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1

	Commits list: https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md

Wait a minute: did we just say Angular? Yeah, that’s right. As a matter of fact, since its initial release, ASP.NET Core has been specifically designed to seamlessly integrate with popular client-side frameworks such as ReactJS and Angular. It is precisely for this reason that books such as this exist. The major difference introduced in ASP.NET Core 2.1 is that the default Angular and ReactJS templates have been updated to use the standard project structures and build systems for each framework (the Angular CLI and NPX’s create-react-app command) instead of relying on task runners such as Grunt or Gulp, module builders such as webpack, or toolchains such as Babel, which were widely used in the past, although they were quite difficult to install and configure.

Being able to eliminate the need for these tools was a major achievement, which has played a decisive role in revamping the .NET Core usage and growth rate among the developer communities since 2017. If you take a look at the two previous installments of this book – ASP.NET Core and Angular 2, published in mid-2016, and ASP.NET Core 2 and Angular 5, out in late 2017 – and compare their first chapter with this one, you will see the huge difference between having to manually use Gulp, Grunt, or webpack, and relying on the integrated framework-native tools. This is a substantial reduction in complexity that would greatly benefit any developer, especially those less accustomed to working with those tools.

Six months after the release of the 2.1 version, the .NET Foundation came out with a further improvement: ASP.NET Core 2.2 was released on December 4, 2018, with several fixes and new features, including an improved endpoint routing system for better dispatching of requests, updated templates featuring Bootstrap 4 and Angular 6 support, and a new health checks service to monitor the status of deployment environments and their underlying infrastructures, including container orchestration systems such as Kubernetes, built-in HTTP/2 support in Kestrel, and a new SignalR Java client to ease the usage of SignalR within Android apps.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core 2.2, check out the following links:

	Release notes: https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2

	Commits list: https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md

ASP.NET Core 3.x

ASP.NET Core 3 was released in September 2019 and came with another bunch of performance and security improvements and new features, such as:

	Windows desktop application support (Windows only) with advanced importing capabilities for Windows Forms and Windows Presentation Foundation (WPF) applications

	C# 8 support

	.NET Platform-dependent intrinsic access through a new set of built-in APIs that could bring significant performance improvements in certain scenarios

	Single-file executable support via the dotnet publish command using the <PublishSingleFile> XML element in project configuration or through the /p:PublishSingleFile command-line parameter

	New built-in JSON support featuring high performance and low allocation that’s arguably two to three times faster than the JSON.NET third-party library (which became the de facto standard in most ASP.NET web projects)

	TLS 1.3 and OpenSSL 1.1.1 support in Linux

	Some important security improvements in the System.Security.Cryptography namespace, including AES-GCM and AES-CCM cipher support; and so on

A lot of work has also been done to improve the performance and reliability of the framework when used in a containerized environment. The ASP.NET Core development team put a lot of effort into improving the .NET Core Docker experience on .NET Core 3.0. More specifically, this is the first release featuring substantive runtime changes to make CoreCLR more efficient, honor Docker resource limits better (such as memory and CPU) by default, and offer more configuration tweaks. Among the various improvements, we could mention improved memory and GC heap usage by default, and PowerShell Core, a cross-platform version of the famous automation and configuration tool, which is now shipped with the .NET Core SDK Docker container images.

.NET Core 3 also introduced Blazor, a free and open source web framework that enables developers to create web apps using C# and HTML.

Last but not least, it’s worth noting that the new .NET Core SDK is much smaller than the previous installments, mostly thanks to the fact that the development team removed a huge set of unnecessary artifacts included in the various NuGet packages that were used to assemble the previous SDKs (including ASP.NET Core 2.2) from the final build. The size improvements are huge for Linux and macOS versions, while less noticeable on Windows because that SDK also contains the new WPF and Windows Forms set of platform-specific libraries.

For a detailed list of all the new features, improvements, and bug fixes in ASP.NET Core 3.0, check out the following links:

	Release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0

	ASP.NET Core 3.0 releases page: https://github.com/dotnet/core/tree/master/release-notes/3.0

ASP.NET Core 3.1 was released on December 3, 2019. Most of the updates were fixes related to Blazor, such as preventing default actions for events and stopping event propagation in Blazor apps, partial class support for Razor components, and additional Tag Helper Component features; however, much like the other .1 releases, the primary goal of .NET Core 3.1 was to refine and improve the features already delivered in the previous version, with more than 150 performance and stability issues fixed.

A detailed list of the new features, improvements, and bug fixes introduced with ASP.NET Core 3.1 is available at the following URL:

	Release notes: https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-3.1

.NET 5

Just when everyone thought that Microsoft had finally taken a clear path with the naming convention of its upcoming frameworks, the Microsoft developer community was shaken again on May 6, 2019, by the following post by Richard Lander, Program Manager of the .NET team, which appeared on the Microsoft Developer Blog: https://devblogs.microsoft.com/dotnet/introducing-net-5/.

The post got an immediate backup from another article that came out the same day written by Scott Hunter, Program Management Director of the .NET ecosystem: https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/.

The two posts were meant to share the same big news with the readers: .NET Framework 4.x and .NET Core 3.x would converge in the next major installment of .NET Core, which would skip a major version number to properly encapsulate both installments.

The new unified platform would be called .NET 5 and would include everything that had been released so far with uniform capabilities and behaviors: .NET Runtime, JIT, AOT, GC, BCL (Base Class Library), C#, VB.NET, F#, ASP.NET, Entity Framework, ML.NET, WinForms, WPF, and Xamarin.

Microsoft said they wanted to eventually drop the term “Core” from the framework name because .NET 5 would be the main implementation of .NET going forward, thus replacing .NET Framework and .NET Core. However, for the time being, the ASP.NET Core ecosystem is still retaining the name “Core” to avoid confusing it with ASP.NET MVC 5; Entity Framework Core will also keep the name “Core” to avoid confusing it with Entity Framework 5 and 6. For all of these reasons, in this book, we’ll keep using “ASP.NET Core” and “Entity Framework Core” (or “EF Core”) as well.

From Microsoft’s point of view, the reasons behind this bold choice were rather obvious:

	Produce a single .NET runtime and framework that can be used everywhere and that has uniform runtime behaviors and developer experiences

	Expand the capabilities of .NET by taking the best of .NET Core, .NET Framework, Xamarin, and Mono

	Build that product out of a single code base that internal (Microsoft) and external (community) developers can work on and expand together and that improves all scenarios

The new name could reasonably generate some confusion among those developers who still remember the short timeframe (early to mid-2016) in which ASP.NET Core v1 was still called ASP.NET 5 before its final release. Luckily enough, that “working title” was ditched by the Microsoft developer team and the .NET community before it could leave noticeable traces on the web.

.NET 5 was released on General Availability in November 2020, a couple of months after its first Release Candidate, thus respecting the updated .NET schedule that aims to ship a new major version of .NET once a year, every November:

[image:]
Figure 1.1: .NET schedule

In addition to the new name, the .NET 5 framework brought a lot of interesting changes, such as:

	Performance improvements and measurement tools, summarized in this great analysis performed by Stephen Toub (.NET Partner Software Engineer) using the new Benchmark.NET tools: https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/.

	Half Type, a binary floating point that occupies only 16 bits and that can help to save a good amount of storage space where the computed result does not need to be stored with full precision. For additional info, take a look at this post by Prashanth Govindarajan (Senior Engineering Manager at LinkedIn): https://devblogs.microsoft.com/dotnet/introducing-the-half-type/.

	Assembly trimming, a compiler-level option to trim unused assemblies as part of publishing self-contained applications when using the self-contained deployment option, as explained by Sam Spencer (.NET Core team Program Manager) in this post: https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/.

	Various improvements in the new System.Text.Json API, including the ability to ignore default values for value-type properties when serializing (for better serialization performance) and to better deal with circular references.

	C# 9 and F# 5 language support, with a bunch of new features such as Init Only Setters (that allows the creation of immutable objects), function pointers, static anonymous functions, target-typed conditional expressions, covariant return types, and module initializers.

And a lot of other new features and improvements besides.

A detailed list of the new features and improvements and a comprehensive explanation of the reasons behind the release of ASP.NET 5 are available at the following URL:

	Release notes: https://docs.microsoft.com/en-us/dotnet/core/dotnet-five

For additional info about the C# 9.0 new features, take a look at the following URL: https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9.

.NET 6

.NET 6 came out on November 8, 2021, a year after .NET 5, as expected by the .NET schedule. The most notable improvement in this version is the introduction of the Multi-platform Application UI, also known as MAUI: a modern UI toolkit built on top of Xamarin.Forms that was specifically created to eventually replace Xamarin.Forms and become the .NET standard for creating multi-platform applications that can run on Android, iOS, macOS, and Windows from a single code base.

The main difference between MAUI and Xamarin is that the new approach now ships as a core workload, shares the same base class library as other workloads (such as Blazor), and adopts the most recent SDK Style project system introduced with .NET 5, thus allowing a consistent tooling and coding experience for all .NET developers.

In addition to MAUI, .NET 6 introduces a lot of new features and improvements, such as:

	C# 10 language support, with some new features such as null parameter checking, required properties, field keyword, file-scoped namespaces, top-level statements, async main, target-typed new expressions, and more.

	Implicit using directives, a feature that instructs the compiler to automatically import a set of using statements based on the project type, without the need to explicitly include them in each file.

	New project templates, which are much cleaner and simpler since they do implement (and demonstrate) most of the language improvements brought by C# version 9 and 10 (including those we’ve just mentioned).

	Package Validation tooling, an option that allows developers to validate that their packages are consistent and well formed during package development.

	SDK workloads, a feature that leverages the concepts of “workloads” introduced with .NET Core to allow developers to install only necessary SDK components, skipping the parts they don’t need: in other words, it’s basically a “package manager” for the SDKs.

	Inner-loop performance improvements, a family of tweaks dedicated to the performance optimization of the various tools and workflows used by developers (such as CLI, runtime, and MSBuild), thereby aiming to improve their coding and building experience. The most important of them is the hot reload, a feature that allows the project’s source code to be modified while the application is running, without the need to manually pause or hit a breakpoint.

For a comprehensive list of the new C# 10 features, check out the following URL: https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10.

.NET 7

.NET 7 came out on November 8, 2022 and was mostly focused on performance: it was presented by Microsoft as “unified, modern, simple, and fast.” The optimizations include enhancements to the Just-In-Time (JIT) compiler, garbage collector improvements, and runtime updates.

One of the most praised changes was the introduction of on-stack replacement (OSR), a feature that allows the runtime to change the code executed by currently running methods. Thanks to OSR, long-running methods can switch to more optimized versions during their execution, thus improving the overall startup time.

For additional information on how OSR works, check out the official documentation:

https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md

Other improvements include:

	Faster code generation for Arm64 architectures.

	Several optimizations to the Mono runtime.

	New APIs and improvements to the System.Text.RegularExpressions and System.Text.Json libraries.

	New metrics for the IMemoryCache interface (part of Microsoft.Extensions.Caching library) that allow developers to track statistics for one or more memory caches.

	Added support for microseconds and nanoseconds in TimeSpan, TimeOnly, DateTime, and DateTimeOffset types.

	Added a new rate-limiting middleware (Microsoft.AspNetCore.RateLimiting) that allows developers to configure several rate-limiting policies and attach them to the HTTP endpoints using the [EnableRateLimiting] attribute. The built-in rate limiting algorithms include fixed window, sliding window, token bucket, and concurrency.

	HTTP/3 improved support.

	HTTP/2 performance improvements.

.NET 8

Coming out on November 14, 2023, .NET 8 is the successor of .NET 7 and the current long-term support (LTS) release. The new version brings a lot of performance improvements and new features, including:

	A revamp of the serialization and deserialization functionalities provided by the System.Text.Json library, such as built-in support for Half, Int128, and Uint128 numeric types; new naming policies (snake_case and kebab-case); read-only properties deserialization; and several new extension methods

	Many improvements to globalization, including better support for different cultures, UTF8 support, and improved performance for globalization-related operations

On the ASP.NET Core side, the new release adds several new features to authentication and authorization, such as:

	New ASP.NET Core Identity API endpoints — /register and /login — to ease up the implementation of the built-in authentication workflow in JavaScript-based single-page apps (SPAs)

	A new IAuthorizationRequirementData interface that allows to define custom authorization policies with fewer lines of code

A lot of progress has also been made on Blazor, which can now be considered a full-stack web UI framework that can render content at either the component or page level, in a number of ways:

	Static server rendering (SSR), to generate static HTML on the server

	Interactive server rendering (ISR), to generate interactive components with prerendering on the server

	Interactive WebAssembly rendering (CSR), to generate interactive components on the client with prerendering on the server

	Interactive automatic rendering (IAR), to generate content using the server-side ASP.NET Core runtime at startup, and then switching to the .NET WebAssembly runtime on the client after the Blazor bundle is downloaded and the WebAssembly runtime activates

For additional information regarding the Blazor render modes, check out the following article:

https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes

Other valuable improvements include SignalR stateful reconnect, minimal APIs explicit binding to HTTP forms (using the [FromForm] attribute), better antiforgery capabilities, a more comprehensive AOT deployment model, and so on.

This concludes our journey through the recent history of ASP.NET. In the next section, we’ll move our focus to the Angular ecosystem, which experienced a rather similar turn of events.

What’s new in Angular?

If following in the footsteps of Microsoft and the .NET Foundation in recent years has not been an easy task, things were not going to get any better when we turned our eyes to the client-side web framework known as Angular. To understand what happened there, we have to go back 10 years to when JavaScript libraries such as jQuery and MooTools were dominating the client-side scene; the first client-side frameworks, such as Dojo, Backbone.js, and Knockout.js, were struggling to gain popularity and reach wide adoption; and stuff such as React and Vue.js didn’t even exist.

Truth be told, jQuery is still dominating the scene to a huge extent, at least according to BuiltWith (https://trends.builtwith.com/javascript/javascript-library) and w3Techs (https://w3techs.com/technologies/overview/javascript_library/all). However, despite being used by 74.1% of all websites, it’s definitely an option chosen less often by web developers than it was 10 years ago.

GetAngular

The story of AngularJS started in 2009 when Miško Hevery (now senior computer scientist and Agile coach at Google) and Adam Abrons (now director of engineering at Grand Rounds) were working on their side project, an end-to-end (E2E) web development tool that would have offered an online JSON storage service and also a client-side library to build web applications depending on it. To publish their project, they took the GetAngular.com hostname.

During that time, Hevery, who was already working at Google, was assigned to the Google Feedback project with two other developers. Together, they wrote more than 17,000 lines of code in 6 months, slowly sinking into a frustrating scenario of code bloat and testing issues. Given the situation, Hevery asked his manager to rewrite the application using GetAngular (the side project mentioned previously), betting that he could do that alone within 2 weeks. His manager accepted and Hevery lost the bet shortly thereafter, as the whole thing took him 3 weeks instead of 2; however, the new application had only 1,500 lines of code instead of 17,000. This was more than enough to get Google’s interest in the new framework, which was given the name AngularJS shortly thereafter.

To listen to the full story, take a look at the following Miško Hevery keynote speech at ng-conf 2014: https://www.youtube.com/watch?v=r1A1VR0ibIQ.

AngularJS

The first stable release of AngularJS (version 0.9.0, also known as dragon-breath) was released on GitHub in October 2010 under an MIT license; when AngularJS 1.0.0 (also known as temporal domination) came out in June 2012, the framework had already achieved huge popularity within the web development communities worldwide.

The reasons for such extraordinary success can hardly be summarized in a few words, but I’ll try to do that nonetheless by emphasizing some key selling points:

	Dependency injection: AngularJS was the first client-side framework to implement it. This was undeniably a huge advantage over the competitors, including DOM-manipulating libraries such as jQuery. With AngularJS, developers could write loosely coupled and easily testable components, leaving the framework with the task of creating them, resolving their dependencies, and passing them to other components when requested.

	Directives: These can be described as markers on specific DOM items such as elements, attributes, and styles: a powerful feature that could be used to specify custom and reusable HTML-like elements and attributes that define data bindings and/or other specific behaviors of presentation components.

	Two-way data binding: The automatic synchronization of data between model and view components. When data in a model changes, the view reflects the change; when data in the view changes, the model is updated as well. This happens immediately and automatically, which makes sure that the model and the view are updated at all times.

	Single-page approach: AngularJS was the first framework to completely remove the need for page reloads. This provided great benefits on both the server side (fewer and smaller network requests) and client side (smoother transitions, a more responsive experience), and paved the way for the SPA pattern that would also be adopted by React, Vue.js, and the other runner-up frameworks later on.

	Cache-friendly: All the AngularJS magic was meant to happen on the client side, without any server-side effort to generate the UI/UX parts. For this very reason, all AngularJS websites could be cached anywhere and/or made available through a CDN.

For a detailed list of AngularJS features, improvements, and bug fixes from 0.9.0 through 1.7.8, check out the following link:

	AngularJS 1.x Changelog: https://github.com/angular/angular.js/blob/master/CHANGELOG.md

Angular 2

The new release of AngularJS, released on September 14, 2016, and known as Angular 2, was a complete rewrite of the previous one, entirely based upon the new ECMAScript version 6 (officially ECMAScript 2015) specifications. Just like the ASP.NET Core rewrite, the revolution brought such a number of breaking changes at the architectural level and for HTTP pipeline handling, the app life cycle, and state management that porting the old code to the new one was nearly impossible. Despite keeping its former name, the new Angular version was a brand-new framework with little or nothing in common with the previous one.

The choice to not make Angular 2 backward-compatible with AngularJS clearly demonstrated the intention of the author’s team to adopt a completely new approach, not only in the code syntax but also in their way of thinking and designing the client app.

The new Angular was highly modular, component-based, and came with a new and improved dependency injection model and a whole lot of programming patterns its older cousin had never heard of.

Here’s a brief list of the most important improvements introduced with Angular 2:

	Semantic versioning: Angular 2 is the first release to use semantic versioning, also known as SemVer: a universal way of versioning the various software releases to help developers track down what’s going on without having to dig into the changelog details. SemVer is based on three numbers – X.Y.Z, where X stands for a major version, Y stands for a minor version, and Z stands for a patch release. More specifically, the X number, representing the major version, gets incremented when incompatible API changes are made to stable APIs; the Y number, representing the minor version, gets incremented when backward-compatible functionality is added; and the Z number, representing a patch release, gets incremented when a backward-compatible bug is fixed. Such improvements can be easily underestimated, yet it’s a must-have for most modern software development scenarios where continuous delivery (CD) is paramount and new versions are released with great frequency.

	TypeScript: Seasoned developers will probably already know what TypeScript is. Those who don’t won’t need to worry since we’re going to use it a lot during the Angular-related chapters of this book. For now, let’s just say that TypeScript is a Microsoft-made superset of JavaScript that allows the use of all ES2015 features (such as Default, Rest, and Spread parameters; template literals; arrow functions; Promises; and more) and adds powerful type-checking and object-oriented features during development (such as class and type declarations). The TypeScript code can be transpiled into standard JavaScript code that all browsers can understand.

	Server-side rendering (SSR): Angular 2 comes with Angular Universal, an open source technology that allows a back-end server to run Angular applications and serve only the resulting static HTML files to the client. In a nutshell, the server will render a first pass of the page for faster delivery to the client, and then immediately refresh it with client code. SSR has its caveats, such as requiring Node.js to be installed on the host machine to execute the necessary pre-rendering steps, as well as having the whole node_modules folder there, but can greatly increase the app’s response time for a typical internet browser, thus mitigating a known AngularJS performance issue.

	Angular Mobile Toolkit (AMT): A set of tools specifically designed for building high-performance mobile apps.

	Command-line interface (CLI): The new CLI introduced with Angular 2 can be used by developers to generate components, routes, services, and pipes via console/terminal commands, together with simple test shells.

	Components: These are the main building blocks of Angular 2, entirely replacing the controllers and scopes of AngularJS, and also taking on most of the tasks previously covered by the former directives. Application data, business logic, templating, and the styling of an Angular 2 app can all be done using components.

I did my best to explore most of these features in my first book, ASP.NET Core and Angular 2, which was published in October 2016, right after the final release of the two frameworks: https://www.packtpub.com/product/asp-net-core-and-angular-2/9781786465689.

Angular 4

On March 23, 2017, Google released Angular 4: the number 3 version was skipped entirely in order to unify all the major versions of the many Angular components that had been developed separately before that date, such as Angular Router, which already was at version 3.x at the time. Starting with Angular 4, the entire Angular framework was then unified into the same MAJOR.MINOR.PATCH SemVer pattern.

The new major version brought a limited number of breaking changes, such as a new and improved routing system, TypeScript 2.1+ support (and a requirement), and some deprecated interfaces and tags. There were also a good number of improvements, including:

	Ahead-of-time (AOT) compilation: Angular 4 compiles the templates during the build phase and generates JavaScript code accordingly. That’s a huge architectural improvement over the JIT mode used by AngularJS and Angular 2, where the app was compiled at runtime. For example, when the application starts, not only is the app faster since the client doesn’t have to compile anything, but it throws/breaks at build time instead of during runtime for most component errors, thus leading to more secure and stable deployments.

	Animations npm package: All the existing UI animations and effects – as well as new ones – were moved to the @angular/animations dedicated package instead of being part of @angular/core. This was a smart move to give non-animated apps the chance to drop that part of code, thereby being much smaller and arguably faster.

Other notable improvements included a new form validator to check for valid email addresses, a new paramMap interface for URL parameters in the HTTP routing module, and better internalization support.

Angular 5

Released on November 1, 2017, Angular 5 featured TypeScript 2.3 support, another small set of breaking changes, many performance and stability improvements, and a few new features, such as the following:

	New HTTP Client API: Starting from Angular 4.3, the @angular/http module was put aside in favor of a new @angular/common/http package with better JSON support, interceptors, immutable request/response objects, and other stuff. The switch was completed in Angular 5 with the previous module being deprecated and the new one recommended for use in all apps.

	State Transfer API: A new feature that gives the developer the ability to transfer the state of the application between the server and the client.

	A new set of router events for more granular control over the HTTP life cycle: ActivationStart, ActivationEnd, ChildActivationStart, ChildActivationEnd, GuardsCheckStart, GuardsCheckEnd, ResolveStart, and ResolveEnd.

November 2017 was also the release month of my ASP.NET Core 2 and Angular 5 book, which covers most of the aforementioned improvements: https://www.packtpub.com/product/asp-net-core-2-and-angular-5/9781788293600.

In June 2018, that book was made available as a video course: https://www.packtpub.com/product/asp-net-core-2-and-angular-5-video/9781789531442.

Angular 6

Released in April 2018, Angular 6 was mostly a maintenance release, more focused on improving the overall consistency of the framework and its toolchain than adding new features. Therefore, there were no major breaking changes. RxJS 6 supports a new way to register providers, the new providedIn injectable decorator, improved Angular Material support (a component specifically made to implement material design in the Angular client-side UI), more CLI commands/updates, and so on.

Another improvement worth mentioning was the new CLI ng add command, which uses the package manager to download new dependencies and invoke an installation script to update our project with configuration changes, add additional dependencies, and/or scaffold package-specific initialization code.

Last, but not least, the Angular team introduced Ivy, a next-generation Angular rendering engine that aims to increase the speed and decrease the size of the application.

Angular 7

Angular 7 came out in October 2018 and was certainly a major update, as we can easily guess by reading the words written by Stephen Fluin, developer relations lead at Google and prominent Angular spokesman, on the official Angular development blog upon the official release:

"This is a major release spanning the entire platform, including the core framework, Angular Material, and the CLI with synchronized major versions. This release contains new features for our toolchain and has enabled several major partner launches."

Here’s a list of the new features:

	Easy upgrade: Thanks to the groundwork laid by version 6, the Angular team was able to reduce the steps that need to be done to upgrade an existing Angular app from an older version to the most recent one. The detailed procedure can be viewed by visiting https://update.angular.io, an incredibly useful Angular upgrade interactive guide that can be used to quickly recover the required steps, such as CLI commands and package updates.

	CLI update: A new command that attempts to automatically upgrade the Angular application and its dependencies by following the procedure mentioned previously.

	CLI prompts: The Angular CLI has been modified to prompt users when running common commands such as ng new or ng add @angular/material to help developers discover built-in features such as routing and SCSS support.

	Angular Material and CDK: Additional UI elements, such as virtual scrolling; a component that loads and unloads elements from the DOM based on the visible parts of a list, making it possible to build very fast experiences for users with very large scrollable lists; CDK-native drag-and-drop support; and improved drop-down list elements.

	Partner launches: Improved compatibility with a number of third-party community projects, such as Angular Console, a downloadable console for starting and running Angular projects on your local machine; AngularFire, the official Angular package for Firebase integration; Angular for NativeScript, integration between Angular and NativeScript – a framework for building native iOS and Android apps using JavaScript and/or JS-based client frameworks; and some interesting new Angular-specific features for StackBlitz, an online IDE that can be used to create Angular and React projects, such as a tabbed editor and integration with the Angular Language Service.

	Updated dependencies: Added support for TypeScript 3.1, RxJS 6.3, and Node 10, although the previous versions can still be used for backward compatibility.

The Angular Language Service is a way to get completions, errors, hints, and navigation inside Angular templates: think about it as a virtuous mix between a syntax highlighter, IntelliSense, and a real-time syntax error checker. Before Angular 7, which added the support for StackBlitz, such a feature was only available for Visual Studio Code and WebStorm.

For additional information about the Angular Language Service, take a look at the following URL: https://angular.io/guide/language-service.

Angular 8

Angular 7 was quickly followed by Angular 8, which was released on May 29, 2019. The new release is mostly about Ivy, the long-awaited new compiler/runtime of Angular: despite being an ongoing project since Angular 5, version 8 was the first one to officially offer a runtime switch to actually opt into using Ivy, which would become the default runtime starting from Angular 9.

To enable Ivy on Angular 8, the developers had to add an "enableIvy": true property to the angularCompilerOptions section within the app’s tsconfig.json file.

Those who want to know more about Ivy are encouraged to have an extensive look at the following post by Cédric Exbrayat, cofounder and trainer of the Ninja Squad website and now part of the Angular developer team: https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/.

Other notable improvements and new features include:

	Bazel support: Angular 8 was the first version to support Bazel, a free software tool developed and used by Google for the automation of building and testing software. It can be very useful for developers aiming to automate their delivery pipeline as it allows incremental builds and tests, and even the possibility to configure remote builds (and caches) on a build farm.

	Routing: A new syntax was introduced to declare the lazy-loading routes using the import() syntax from TypeScript 2.4+ instead of relying on a string literal. The old syntax was kept for backward compatibility but may be dropped soon.

	Service workers: A new registration strategy was introduced to allow developers to choose when to register their workers instead of doing it automatically at the end of the app’s startup life cycle. It’s also possible to bypass a service worker for a specific HTTP request using the new ngsw-bypass header.

	Workspace API: A new and more convenient way to read and modify the Angular workspace configuration instead of manually modifying the angular.json file.

In client-side development, a service worker is a script that the browser runs in the background to do any kind of stuff that doesn’t require either a user interface or any user interaction. If you’re new to the concept, don’t worry – we’ll extensively talk about them in Chapter 12, Progressive Web Apps, where we’ll build our very own service worker.

The new version also introduced some notable breaking changes – mostly due to Ivy – and removed some long-time deprecated packages such as @angular/http, which was replaced by @angular/common/http in Angular 4.3 and then officially deprecated in 5.0.

A comprehensive list of all the deprecated APIs can be found in the official Angular deprecations guide at the following URL: https://angular.io/guide/deprecations.

Angular 9

Angular 9 was released in February 2020 after a long streak of release candidates through 2019 Q4 and was the most recent version for only 4 months before being replaced by its successor (Angular 10).

The new release brought the following new features:

	JavaScript bundles and performance: An attempt to fix the very large bundle files, one of the most cumbersome issues of the previous versions of Angular, which drastically increased the download time and brought down the overall performance.

	Ivy compiler: The new Angular build and render pipeline, shipped with Angular 8 as an opt-in preview, is now the default rendering engine.

	Selector-less bindings: A useful feature that was available to the previous rendering engine but missing from the Angular 8 Ivy preview, is now available to Ivy as well.

	Internationalization: Another Ivy enhancement that makes use of the Angular CLI to generate most of the standard code necessary to create files for translators and to publish an Angular app in multiple languages, thanks to the new i18n attribute.

The new i18n attribute is a numeronym, which is often used as an alias for internationalization. The number 18 stands for the number of letters between the first i and the last n in the word internationalization. The term seems to have been coined by the Digital Equipment Corporation (DEC) around the 1970s or 1980s, together with l10n for localization, due to the excessive length of the two words.

The long-awaited Ivy compiler deserves a couple more words, being a very important feature for the future of Angular.

As the average Angular developer already knows, the rendering engine plays a major role in the overall performance of any front-end framework since it’s the tool that translates the actions and intents laid out by the presentation logic (in Angular components and templates) into the instructions that will update the DOM. If the renderer is more efficient, it will arguably require fewer instructions, thus increasing the overall performance while decreasing the amount of required JavaScript code at the same time. Since the JavaScript bundles produced by Ivy are much smaller than the previous rendering engine, Angular 9’s overall improvement is relevant in terms of both performance and size.

February 2020 was also the release month of my ASP.NET Core 3 and Angular 9 book, featuring a whole new set of source code snippets and project samples that can also be found in this book: https://www.packtpub.com/product/asp-net-core-3-and-angular-9-third-edition/9781789612165.

Angular 10

Angular 10 was released on June 24, 2020, just a few months after Angular 9. The short timeframe between Angular 9 and 10 was explained by the Angular development team as an attempt to get the framework back on its regular schedule since Angular 9 got delayed by a few weeks.

The new release was mostly focused on fixing issues: more than 700 issues were fixed and over 2,000 were touched on in the process. However, there were still quite a few important updates to be aware of:

	Upgrade to TypeScript 3.9, as well as TSLib 2.0 and TS Lint v6. It’s worth noting that earlier versions of TypeScript are no longer supported because they are not compatible with some potentially breaking changes in the tsconfig.json file structure (see below).

	Angular Material improvements, including a new date range picker.

	Additional warnings when using CommonJS imports, as they can result in both larger and slower applications.

	Optional stricter settings: Developers are now able to create new projects with a strict flag that enables stricter listing rules and bundle sizes, thereby resulting in more efficient tree-shaking (a term commonly used in JavaScript contexts for dead-code elimination using the import and export module syntax).

For additional info about the improved tsconfig.json file structure (namely, “Solution Style” tsconfig.json files), take a look at the following paragraph from the TypeScript 3.9 release notes: https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files.

To find out more about the meaning of the term “tree-shaking,” check out the following guide: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking.

Angular 11

Angular 11 was released on November 11, 2020, the same release day as .NET 5. The new release added the following features:

	Component test harnesses, a set of classes that lets a test interact with a component via a supported API. By using the Harness API, a test insulates itself against updates to the internals of a component, such as changing its DOM structure. This idea comes from the PageObject pattern, which is commonly used for integration testing.

	Updated Hot Module Replacement support: HMR is a mechanism that allows modules to be replaced without a full browser refresh; configuring HMR in Angular 11 is a lot easier, and they also introduced a new --hmr CLI command to enable it.

	TypeScript 4.0 support: While TypeScript 3.9 (and lower) support has been dropped, this important upgrade allows Angular 11 apps to build much faster than previous versions.

	Webpack 5 support, although it is still experimental since the new version has only been released recently and might still not be entirely stable.

	TSLint to ESLint migration: This is one of the most important changes to this version since TSLint and Codelyzer have been officially deprecated, and they will definitely be removed in the next release. To help developers deal with such an update, the Angular team has introduced a three-step method that can be used to seamlessly migrate from TSLint to ESLint using the CLI.

	Dropped support for Internet Explorer 9 and 10, as well as IE mobile.

Other new features included an updated Language Service Preview, new automated migrations and schematics, some service worker improvements, lazy-loading support for named outlets, resolve guard generation via the Angular CLI, stricter types for built-in pipes, and ISO 8601 week-numbering year format support in the formatDate function.

Angular 12

Angular 12 came out on May 12, 2021, after numerous beta releases and release candidates. The major update to this version is the long-announced deprecation of the legacy View Engine compilation and rendering pipeline in favor of the now stable and objectively superior Ivy technology, thus granting faster AOT compilation.

Other notable improvements include:

	Nullish coalescing operator (??) in Angular templates.

	Style improvements, thanks to inline Sass support in Components (within the styles field of the @Component decorator).

	Deprecating support for IE11, which will be removed in Angular 13.

	HTTP improvements, such as human-readable HttpStatusCode names and some new methods for dealing with HTTP parameters and metadata more efficiently.

	Strict mode by default. The Angular strict mode is now enabled by default in the CLI: this flag will enable several source code consistency checks in the TypeScript compiler as well as in Angular. Writing code with strict mode enabled helps developers to catch bugs early, reduce bundle size, avoid allocating unnecessary memory, follow best practices and get better IDE support, thus improving the maintainability of the app.

Angular 13

Angular 13 was released on November 3, 2021, and brought a lot of important changes to the overall architecture, such as:

	FormControlStatus, a new type that will seamlessly include all possible status strings for form controls.

	View Engine, which was already deprecated in Angular 12, has been removed, thus leaving the new Ivy rendering engine as the only choice. View Engine removal also means that IE11 support has been dropped as well.

	Angular Package Format (APF) has been redesigned, removing View Engine-specific metadata, matching the format of ES2020, and adding support for Node Package Exports.

	New Component API, which allows developers to create components with less boilerplate code.

	Persistent build cache support has been enabled by default.

	RxJS dependency version has been updated from 6.x to 7.4.

	TestBed performance improvements that lead to faster, less memory-intensive, less interdependent, and more optimized tests.

Angular 14

Angular 14 came out on June 2, 2022, with a strong focus on CLI enhancements and type safety enforcement measures, including:

	Typed Angular Forms, a new form implementation approach that allows developers to use strict typing for the Angular Reactive Forms package, thus resulting in more safe and secure forms.

	Standalone Components/APIs, which allows developers to add imports directly in the @Component() without having to add an @NgModule().

	Tree-shakeable error messages, which allows the build optimizer to remove readable error messages from production bundles while retaining the error codes.

Angular 15

The 15th release of Angular, released on November 16, 2022, is considered the culmination of the many changes introduced with the previous versions since it contains a lot of performance and stability fixes over the previously added features: Standalone Components/APIs (which now works in HttpClient, Angular Elements, router, and more), NgOptimizedImage, Directive Composition API, and more.

The new version also included better stack traces, revamping several opaque error messages with the goal of improving the stack trace information shown in the browser’s development console.

Angular 16

The 16th version of Angular came out on May 3, 2023, and has been widely acknowledged as the biggest release since the initial rollout of Angular, with a huge set of improvements and new features affecting reactivity, server-side rendering, and tooling. Those worth mentioning include:

	Angular Signals, a new library that allows developers to define reactive values and express dependencies between them.

	Full app non-descructive hydration, a new feature that enables Angular to update only the DOM nodes requiring actual changes instead of re-rendering the full page from scratch, thus reducing content flickering, saving bandwidth, and increasing the speed/performance of the whole app.

	Improved unit testing with Jest and Web Test Runner, which greatly reduces the complexity of the previous, Karma-based testing framework because it doesn’t require a real browser.

	Self-closing tags for components, a small developer experience improvement that improves the readability (and DRYness) of the source code.

	MDC components, a set of web-based components designed together with the Google Material Design Team and based upon the Material Design v3 paradigm.

Angular 17

Last, but not least, we come to Angular 17, which was released on November 8, 2023, and is currently the most recent version.

The new features list includes:

	Deferrable views, which allow developers to defer the rendering of some components (or parts of them) until they are needed, thus improving the overall performance of the app.

	Built-in control flow, a new block template syntax that can be used to control flow, lazy loading, and content deferring using a simple, declarative approach.

	Improved performance, thanks to a 90% faster runtime and several optimizations.

	View Transitions API, which allows developers to set up animations and transitions when switching between pages and components.

This concludes our brief review of the recent history of the ASP.NET Core and Angular ecosystems. In the next sections, we’ll summarize the most important reasons that led us to choose them in 2023-2024.

Reasons for choosing .NET and Angular

As we have seen, both frameworks have gone through many intense years of changes. This led to a whole refoundation of their core and, right after that, a constant strain to get back on top – or at least not lose ground against most modern frameworks that came out after their now-departed golden age. These frameworks are eager to dominate the development scene: Python, Go, and Rust for the server-side part, and React, Vue.js, and Ember.js for the client-side part, not to mention the Node.js and Express ecosystem, and most of the old competitors from the 1990s and 2000s, such as Java, Ruby, and PHP, which are still alive and kicking.

That said, here’s a list of good reasons for picking ASP.NET Core in 2024:

	Performance: The new .NET web stack is considerably fast, especially since .NET Core 3.1, with continuous improvements up to .NET 8.

	Integration: It supports most, if not all, modern client-side frameworks, including Angular, React, and Vue.js.

	Cross-platform approach: .NET web applications can run on Windows, macOS, and Linux in an almost seamless way.

	Hosting: .NET web applications can be hosted almost anywhere: from a Windows machine with IIS to a Linux appliance with Apache or NGINX, from Docker containers to edge-case, self-hosting scenarios using the Kestrel and WebListener HTTP servers.

	Dependency injection: The framework supports a built-in dependency injection design pattern that provides a huge number of advantages during development, such as reduced dependencies, code reusability, readability, and testing.

	Modular HTTP pipeline: ASP.NET middleware grants developers granular control over the HTTP pipeline, which can be reduced to its core (for ultra-lightweight tasks) or enriched with powerful, highly configurable features such as internationalization, third-party authentication/authorization, caching, routing, seamless integration with industry-standard APIs, interfaces, and tools such as SignalR, GraphQL, Swagger, Webhooks, and JWT.

	Open source: The whole .NET stack has been released as open source and is entirely focused on strong community support, thus being reviewed and improved by thousands of developers every day.

	Side-by-side execution: It supports the simultaneous running of multiple versions of an application or component on the same machine. This basically means that it’s possible to have multiple versions of the common language runtime, and multiple versions of applications and components that use a version of the runtime, on the same computer at the same time. This is great for most real-life development scenarios as it gives the development team more control over which versions of a component an application binds to, and more control over which version of the runtime an application uses.

As for the Angular framework, the most important reason we’re picking it over other excellent JavaScript libraries such as React, Vue.js, and Ember.js is the fact that it already comes with a huge pack of features out of the box, making it the most suitable choice, although maybe not as simple to use as other frameworks/libraries.

If we combine that with the consistency benefits brought by the TypeScript language, we can say that Angular, from its 2016 rebirth up to the present day, has embraced the framework approach more convincingly than the others. This has been consistently confirmed in the last few years, with the project undergoing six major versions and gaining a lot in terms of stability, performance, and features, without losing much in terms of backward compatibility, best practices, and overall approach. All these reasons are solid enough to invest in it, hoping it will continue to keep up with these compelling premises.

Now that we have acknowledged the reasons to use these frameworks, let’s ask ourselves the best way to find out more about them: the next chapter should give us the answers we need.

Summary

Before moving on, let’s do a quick recap of what we just talked about in this chapter.

We briefly described our platforms of choice – ASP.NET Core and Angular – and acknowledged their combined potential in the process of building a modern web application. We spent some valuable time recalling what’s happened in these last few years and summarizing the efforts of both development teams to reboot and improve their respective frameworks. These recaps were very useful to enumerate and understand the main reasons why we’re still using them over their ever-growing competitors.

In the next chapter, we will deal with the typical challenges of a full stack developer: define our goals, acquire the proper mindset, set up the environment, and create our first ASP.NET and Angular projects.

Suggested topics

For further information, we recommend the following topics: ASP.NET Core, .NET Core, .NET 8, Angular, Angular 17, tree-shaking, Angular Ivy, tsconfig.json, Roslyn, CoreCLR, RyuJIT, NuGet, npm, ECMAScript 6, JavaScript, TypeScript, webpack, SystemJS, RxJS, cache-control, HTTP headers, .NET middleware, Angular Universal, server-side rendering (SSR), ahead-of-time (AOT) compiler, service workers, web manifest files, and tsconfig.json.

References

	ASP.NET 5 is dead – Introducing ASP.NET Core 1.0 and .NET Core 1.0: http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

	An Update on ASP.NET Core and .NET Core: https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

	ASP.NET Core 1.1.0 release notes: https://github.com/aspnet/AspNetCore/releases/1.1.0

	ASP.NET Core 1.1.0 Commits list: https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md

	ASP.NET Core 2.1.0 release notes: https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1

	ASP.NET Core 2.1.0 Commits list: https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md

	ASP.NET Core 2.2.0 release notes: https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2

	ASP.NET Core 2.2.0 Commits list: https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md

	ASP.NET Core 3.0.0 release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0

	ASP.NET Core 3.0 releases page: https://github.com/dotnet/core/tree/master/release-notes/3.0

	ASP.NET Core 3.1.0 release notes: https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1

	.NET Core is the future of .NET: https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/

	The Evolution from .NET Core to .NET 5: https://docs.microsoft.com/en-us/dotnet/core/dotnet-five

	Introducing .NET 5: https://devblogs.microsoft.com/dotnet/introducing-net-5/

	Performance improvements in .NET 5: https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/

	Introducing the Half Type: https://devblogs.microsoft.com/dotnet/introducing-the-half-type/

	App Trimming in .NET 5: https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/

	What’s new in C# 9.0: https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9

	On Stack Replacement in the CLR: https://github.com/dotnet/runtime/blob/main/docs/design/features/OnStackReplacement.md

	ASP.NET Core Blazor render modes: https://learn.microsoft.com/en-us/aspnet/core/blazor/components/render-modes

	BuiltWith: JavaScript Library Usage Distribution: https://trends.builtwith.com/javascript/javascript-library

	Usage of JavaScript libraries for websites: https://w3techs.com/technologies/overview/javascript_library/all

	Miško Hevery and Brad Green – Keynote – NG-Conf 2014: https://www.youtube.com/watch?v=r1A1VR0ibIQ

	AngularJS 1.7.9 Changelog: https://github.com/angular/angular.js/blob/master/CHANGELOG.md

	ASP.NET Core and Angular 2: https://www.packtpub.com/application-development/aspnet-core-and-angular-2

	ASP.NET Core 2 and Angular 5: https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5

	ASP.NET Core 2 and Angular 5 – Video Course: https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video

	Angular Update Guide: https://update.angular.io

	Angular Language Service: https://angular.io/guide/language-service

	Angular Deprecated APIs and Features: https://angular.io/guide/deprecations

	What is Angular Ivy?: https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/

	Solution Style tsconfig.json files: https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-9.html#support-for-solution-style-tsconfigjson-files

	Tree Shaking: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

2

Getting Ready

In this second chapter, we’ll switch from theory to practice: more specifically, we will choose the kind of web application that we want to build and see how we can do it in accordance with the expectations of a typical product owner.

In the second part of this chapter, we’ll start our development journey by setting up our local development environment and creating our first Angular and ASP.NET Core projects.

Here’s a full breakdown of the topics we’re going to cover:

	A full-stack approach: The importance of being able to learn how to design, assemble, and deliver a complete product.

	Multi-page applications (MPAs), single-page applications (SPAs), native web applications (NWAs), and progressive web applications (PWAs): Key features of and the most important differences between the various types of web applications, as well as how well ASP.NET and Angular could relate to each one of them.

	A sample SPA project: What we’re going to do throughout this book.

	Preparing the workspace: How to set up our workstation to achieve our first goal – implementing a simple Hello World boilerplate that will be further extended in the following chapters.

By the end of the chapter, we’ll have everything we need to start our full-stack development journey.

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_02/HealthCheck.

A full-stack approach

Learning to use ASP.NET Core and Angular together means being able to work with both the front-end (client side) and back-end (server side) of a web application; to put it in other words, it means being able to design, assemble, and deliver a complete product.

Eventually, in order to do that, we’ll need to dig through the following:

	Back-end programming

	Front-end programming

	UI styling and UX design

	Database design, modeling, configuration, and administration

	Web server configuration and administration

	Web application deployment

At first glance, it can seem that this kind of approach goes against common sense; a single developer should not be allowed to do everything by themselves. Every developer knows that the back-end and the front-end require entirely different skills and experience, so why in the world should we do that?

Before answering this question, we should understand what we really mean when we say being able to. We don’t have to become experts on every single layer of the stack; no one expects us to. When we choose to embrace the full-stack approach, what we really need to do is raise our awareness level throughout the whole stack we’re working on; this means that we need to know how the back-end works, and how it can and will be connected to the front-end. We need to know how the data will be stored, retrieved, and then served through the client. We need to acknowledge the interactions we will need to layer out between the various components that our web application is made from, and we need to be aware of security concerns, authentication mechanisms, optimization strategies, load balancing techniques, and so on.

This doesn’t necessarily mean that we have to have strong skills in all these areas; as a matter of fact, we hardly ever will. Nonetheless, if we want to pursue a full-stack approach, we need to understand the meaning, role, and scope of all of them. Furthermore, we should be able to work our way through any of these fields whenever we need to.

MPAs, SPAs, PWAs, and NWAs

In order to demonstrate how ASP.NET and Angular can work together to their full extent, we couldn’t think of anything better than building some small SPA projects with most, if not all, PWA features. The reason for this choice is quite obvious: there is no better approach to demonstrate some of the best features they have to offer nowadays. We’ll have the chance to work with modern interfaces and patterns such as the HTML5 pushState API, webhooks, data-transport-based requests, dynamic web components, UI data bindings, and a stateless, AJAX-driven architecture capable of flawlessly encompassing all of these features. We’ll also make good use of some distinctive PWA features such as service workers and web manifest files.

The AJAX acronym stands for Asynchronous JavaScript And XML and is typically used when referring to a set of web development techniques to send and retrieve data from a server asynchronously. In practice, modern implementations of these techniques – such as Fetch API – utilize JSON instead of XML, thus making the term “AJAX” less precise to describe this type of interaction. Although that noun is still used nowadays for historical reasons, the term “XHR/Fetch” is a more correct way to properly describe these techniques.

If you don’t know the meaning of these definitions and acronyms, don’t worry, we are going to explore these concepts in the next couple of sections, which are dedicated to enumerating the most relevant features of the following types of web applications: MPAs, SPAs, PWAs, and NWAs. While we’re there, we’ll also try to figure out the most common product owner’s expectations for a typical web-based project.

Multi-page applications

Multi-page applications, also known as MPAs, are those web applications that work in a traditional way: each time the user asks for (or submits) data to the server, they render a new page that is sent back to the browser.

This is how all websites used to work during the first 20 years of the World Wide Web, and is still the most widely used approach nowadays due to a number of advantages that MPAs can still provide: excellent SEO performance, a fast and steady learning curve, the ability to manage and customize static and dynamic content, and a lot of great content management systems (CMSes), frameworks, and UI themes – such as WordPress, Joomla, and the like – that can be used to build them from the ground up in a few minutes.

However, MPAs also come with some significant cons: the required server-side roundtrips tend to make them quite expensive in terms of bandwidth; moreover, front-end and back-end development are often tightly coupled, thus making them harder to maintain and update. Luckily enough, most of these issues have been mitigated throughout the years, thanks to various browser features and technology improvements such as CDN, server-side caching, XHR/Fetch requests, and so on. At the same time, such techniques add more complexity to the development and deployment phases; that is, unless we choose to rely upon one of the CMS platforms that we talked about early on, thus giving up on most of the coding aspects – with all that that implies.

Single-page applications

To put it briefly, an SPA is a web-based application that tries to provide the same user experience as a desktop application. If we consider the fact that all SPAs are still served through a web server and thus accessed by web browsers, just like any other standard website, we can easily understand how that desired outcome can only be achieved by changing some of the default patterns commonly used in web development, such as resource loading, DOM management, and UI navigation. In a good SPA, both content and resources – HTML, JavaScript, CSS, and so on – are either retrieved within a single page load or are dynamically fetched when needed. This also means that the page doesn’t reload or refresh; it just changes and adapts in response to user actions, performing the required server-side calls behind the scenes.

These are some of the key features provided by a competitive SPA nowadays:

	No server-side round trips: A competitive SPA can redraw any part of the client UI without requiring a full server-side round trip to retrieve a full HTML page. This is mostly achieved by implementing the separation of concerns (SOC) design principle, which means that the data source, the business logic, and the presentation layer will be separated.

	Efficient routing: A competitive SPA is able to keep track of the user’s current state and location during its whole navigation experience using organized, JavaScript-based routers. We’ll talk more about that in the upcoming chapters when we introduce the concepts of server-side and client-side routing.

	Performance and flexibility: A competitive SPA usually transfers all of its UI to the client, thanks to its JavaScript SDK of choice (Angular, jQuery, Bootstrap, and so on). This is often good for network performance as increasing client-side rendering and offline processing reduces the UI impact over the network. However, the real deal brought by this approach is the flexibility granted to the UI as the developer will be able to completely rewrite the application’s front-end with little or no impact on the server, aside from a few of the static resource files.

This list can easily grow, as these are only some of the major advantages of a properly designed, competitive SPA. These aspects play a major role nowadays, as many business websites and services are switching from their traditional MPA mindset to fully committed or hybrid SPA-based approaches.

Progressive web applications

In 2015, another web development pattern pushed its way into the light when Frances Berriman (a British freelance designer) and Alex Russel (a Google Chrome engineer) used the term PWAs for the first time to refer to those web applications that could take advantage of a couple of new important features supported by modern browsers: service workers and web manifest files. These two important improvements could be successfully used to deliver some functionalities usually only available on mobile apps – push notifications, offline mode, permission-based hardware access, and so on – using standard web-based development tools such as HTML, CSS, and JavaScript.

The rise of PWAs began on March 19, 2018, when Apple implemented support for service workers in Safari 11.1. Since that date, PWAs have been widely adopted throughout the industry thanks to their undeniable advantages over their “non-progressive” counterparts: faster load times, smaller application sizes, higher audience engagement, and so on.

Here are the main technical features of a PWA (according to Google):

	Progressive: Works for every user, regardless of browser choice, using progressive enhancement principles

	Responsive: Fits any form factor: desktop, mobile, tablet, or forms yet to emerge

	Connectivity independent: Service workers allow offline use, or use on low-quality networks

	App-like: Feels like an app to the user with app-style interactions and navigation

	Fresh: Always up to date due to the service worker update process

	Safe: Served via HTTPS to prevent snooping and ensure content hasn’t been tampered with

	Discoverable: Identifiable as an application by a web manifest (manifest.json) file, and a registered service worker, and discoverable by search engines

	Re-engageable: The ability to use push notifications to maintain engagement with the user

	Installable: Provides home screen icons without the use of an app store

	Linkable: Can easily be shared via a URL and does not require complex installation

However, their technical baseline criteria can be restricted to the following subset:

	HTTPS: They must be served from a secure origin, which means over TLS with green padlock displays (no active mixed content)

	Minimal offline mode: They must be able to start even if the device is not connected to the web, with limited functions or at least displaying a custom offline page

	Service workers: They have to register a service worker with a fetch event handler (which is required for minimal offline support, as explained previously)

	Web manifest file: They need to reference a valid manifest.json file with at least four key properties (name, short_name, start_url, and display) and a minimum set of required icons

For those interested in reading about this directly from the source, here’s the original link from the Google Developers website:

https://developers.google.com/web/progressive-web-apps/

In addition, here are two follow-up posts from Alex Russell’s Infrequently Noted blog:

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/

For those who don’t know, Alex Russell has worked as a senior staff software engineer at Google since December 2008.

Although they have some similarities, PWAs and SPAs are two different concepts, have different requirements, and differ in many important aspects. As we can see, none of the PWA requirements mentioned previously refer to SPAs or server-side round trips. A PWA can work within a single HTML page and XHR/Fetch requests (thus also being an SPA), but it could also request other server-rendered (or static) pages and/or perform standard HTTP GET or POST requests, much like an MPA. It’s also the opposite: any SPA can implement any single PWA technical criteria, depending on the product owner’s requirements (more on that later), the server-side and client-side frameworks adopted, and the developer’s ultimate goal.

Native web applications

The first good definition of native web applications (also known as NWAs) available on the web can arguably be found in Sam Johnston’s blog post written on January 16, 2009, which went like this:

"A Native Web Application (NWA) is a web application which is 100% supported out of the box by recent standards-compliant web browsers."

A similar approach was used 6 years later (January 22, 2015) by Henrik Joreteg to describe the defining feature of NWAs:

”The thing these apps all have in common is that they all depend on the native web technologies: HTML, CSS, and JavaScript (arguably, you could add WebGL to that list).”

These definitions help us to understand that we’re dealing with a rather generic term that encompasses SPAs, MPAs, and even PWAs – since they all depend on native web technologies that are supported out of the box by all recent browsers; however, due to the emphasis given to the recent keyword and the existence of the more specific web application types, the term NWA is mostly used to identify those web applications that, although being built using modern web-based technologies, cannot be classified as MPAs, SPAs, or PWAs because they tend to adopt a hybrid approach.

Since we’re going to use Angular, which is all about developing SPAs and has also shipped with a strong and steady service worker implementation since version 5, we are fully entitled to take advantage of the best of both worlds. For this very reason, we’re going to use service workers – along with the benefits of increased reliability and performance they provide – whenever we need to, all while keeping a solid SPA approach. Furthermore, we’re definitely going to implement some strategic HTTP round trips (and/or other redirect-based techniques) whenever we can profitably use a microservice to lift off some workload from our app, just like any good NWA is meant to do.

Are all these features able to respond to modern market needs? Let’s try to find it out.

Product owner expectations

One of the most interesting, yet underrated, concepts brought out by many modern Agile software development frameworks, such as Scrum, is the importance given to the meanings and definitions of roles. Among these roles, there’s nothing as important as the product owner, also known as the customer in the Extreme Programming methodology, or customer representative elsewhere. They’re the ones who bring to the development table the expectations we’ll struggle to satisfy. They will tell us what’s most important to deliver and when they will prioritize our work based on its manifest business value rather than its underlying architectural value. They’ll be empowered by management to make decisions and make tough calls, which is sometimes great, sometimes not.

This will often have a big impact on our development schedule. To cut it short, they’re the ones in charge of the project; that’s why, in order to deliver a web application matching their expectations, we’ll need to understand their vision and feel it as if it were our own.

This is always true, even if the project’s product owner is our dad, wife, or best friend: that’s how it works.

Now that we have made that clear, let’s take a look at some of the most common product owner expectations for a typical web-based SPA project. We ought to see whether the choice of using ASP.NET and Angular will be good enough to fulfill each one of them, as follows:

	Early release(s): No matter what we’re selling, the customer will always want to see what they’re buying. For example, if we plan to use an Agile development framework such as Scrum, we’ll have to release a potentially shippable product at the end of each sprint, or if we are looking to adopt a Waterfall-based approach, we’re going to have milestones. One thing is for sure, the best thing we can do in order to efficiently organize our development efforts will be to adopt an iterative and/or modular-oriented approach. ASP.NET and Angular, along with the strong separation of concerns granted by their underlying MVC- or MVVM-based patterns, will gracefully push us into the mindset needed to do just that.

	GUI over back-end: We’ll often be asked to work on the GUI and front-end functionalities because they will be the only things that are viewable and measurable for the customer. This basically means that we’ll have to mock the data model and start working on the front-end as soon as possible, delaying the back-end implementation as much (and as long) as we can. Note that this kind of approach is not necessarily bad; we just won’t do that just to satisfy the product owner’s expectations.
 On the contrary, the choice of using ASP.NET along with Angular will grant us the chance to easily decouple the presentation layer and the data layer, implementing the first and mocking the latter, which is a great thing to do. We’ll be able to see where we’re going before wasting valuable time or being forced to make potentially wrong decisions. ASP.NET’s web API interface will provide the proper tools to do that by allowing us to create a sample web application skeleton in a matter of seconds using the controller templates available within Visual Studio and in-memory data contexts powered by Entity Framework Core, which we’ll be able to access using Entity models and code first. As soon as we do that, we’ll be able to switch to GUI design using the Angular presentation layer toolbox as much as we want until we reach the desired results. Once we’re satisfied, we’ll just need to properly implement the Web API controller interfaces and hook up the actual data.

	Fast completion: None of the preceding things will work unless we also manage to get everything done in a reasonable time span. This is one of the key reasons to choose to adopt a server-side framework and a client-side framework that work together with ease. ASP.NET and Angular are the tools of choice, not only because they’re both built on solid, consistent ground, but also because they’re meant to do precisely that – get the job done on their respective sides and provide a usable interface to the other partner.

	Adaptability: As stated by the Agile Manifesto, being able to respond to change requests is more important than following a plan. This is especially true in software development where we can even claim that anything that cannot handle change is a failed project. That’s another great reason to embrace the separation of concerns enforced by our two frameworks of choice, as this grants the developer the ability to manage—and even welcome, to some extent—most of the layout or structural changes that will be expected during the development phase.

A few lines ago, we mentioned Scrum, which is one of the most popular Agile software development frameworks out there. Those who don’t know it yet should definitely take a look at what it can offer to any results-driven team leader and/or project manager. Here’s a good place to start:

https://en.wikipedia.org/wiki/Scrum_(software_development)

For those who are curious about the Waterfall model, here’s a good place to learn more about it:

https://en.wikipedia.org/wiki/Waterfall_model

That’s about it. Note that we didn’t cover everything here as it would be impossible without the context of an actual assignment. We just tried to give an extensive answer to the following general question: if we were to build an SPA and/or a PWA, would ASP.NET and Angular be an appropriate choice? The answer is undoubtedly yes, especially when used together.

Does this mean that we’re done already? Not a chance, as we have no intention of taking this assumption for granted. Conversely, it’s time for us to demonstrate this by ceasing to speak in general terms and starting to put things in motion. That’s precisely what we’re going to do in the next section: prepare, build, and test an example SPA project.

An example SPA project

What we need now is to conceive a suitable test case scenario similar to the ones we will eventually have to deal with – an example SPA project with all the core aspects we would expect from a potentially shippable product.

In order to do this, the first thing we need to do is to become our own customer for a minute and come up with an idea, a vision to share with our other self. We’ll then be able to put our developer shoes back on and split our abstract plan into a list of items we’ll need to implement; these items will be the core requirements of our project. Finally, we’ll set up our workstation by getting the required packages, adding the resource files, and configuring both the ASP.NET and Angular frameworks in the Visual Studio IDE.

Not your usual Hello World!

The code we’re going to write within this book won’t be just a shallow demonstration of full-stack development concepts; we won’t throw some working code here and there and expect you to connect the dots. Our objective is to create solid, realistic web applications – with server-side web APIs and client-side UIs – using the frameworks we’ve chosen, and we’re also going to do that following the current development best practices.

Each chapter will be dedicated to a single core aspect. If you feel like you already know your way there, feel free to skip to the next one. Conversely, if you’re willing to follow us through the whole loop, you’ll have a great journey through the most useful aspects of ASP.NET and Angular, as well as how they can work together to deliver the most common and useful web development tasks, from the most trivial ones to the more complex beasts. It’s an investment that will pay dividends as it will leave you with a maintainable, extensible, and well-structured project, plus the knowledge needed to build your own. The following chapters will guide us through this journey. During the trip, we’ll also learn how to take care of some important high-level aspects, such as SEO, security, performance issues, best coding practices, and deployment, as they will become very important if/when our applications are eventually published in a production environment.

To avoid making things too boring, we’ll try to pick enjoyable themes and scenarios that will also have some usefulness in the real world: to better understand what we mean – no spoilers here – you’ll just have to keep reading.

Preparing the workspace

The first thing we have to do is set up our workstation; it won’t be difficult because we only need a small set of essential tools. These include Visual Studio 2022, an updated Node.js runtime, a development web server (such as the built-in IIS Express), and a decent source code control system, such as Git. We will take the latter for granted as we most likely already have it up and running.

In the unlikely case you don’t, you should really make amends before moving on! Stop reading, go to www.github.com, www.bitbucket.com, or whichever online source code management (SCM) service you like the most, create a free account, and spend some time learning how to effectively use these tools; you won’t regret it, that’s for sure.

In the next sections, we’ll set up the web application project, install or upgrade the packages and libraries, and build and eventually test the result of our work. However, before doing that, we’re going to spend a couple of minutes understanding a very important concept that is required to properly use this book without getting (emotionally) hurt, at least in my opinion.

Disclaimer — do (not) try this at home

There’s something very important that we need to understand before proceeding. If you’re a seasoned web developer, you will most likely know about it already; however, since this book is for (almost) everyone, I feel like it’s very important to deal with this matter as soon as possible.

This book will make extensive use of a number of different programming tools, external components, third-party libraries, and so on. Most of them (such as TypeScript, npm, NuGet, most .NET frameworks/packages/runtimes, and so on) are shipped together with Visual Studio 2022, while others (such as Angular, its required JavaScript dependencies, and other third-party server-side and client-side packages) will be fetched from their official repositories. These things are meant to work together in a 100% compatible fashion; however, they are all subject to changes and updates during the inevitable course of time. As time passes by, the chance that these updates might affect the way they interact with each other, and the project’s health, will increase.

The broken code myth

In an attempt to minimize the chances of broken code occurring, this book will always work with fixed versions/builds of any third-party component that can be handled using the configuration files. However, some of them, such as Visual Studio and/or .NET SDK updates, might be out of that scope and might wreak havoc on the project. The source code might cease to work, or Visual Studio could suddenly be unable to properly compile it.

When something like that happens, a less experienced person will always be tempted to put the blame on the book itself. Some of them may even start thinking something like this: There are a lot of compile errors, hence the source code must be broken!

Alternatively, they may think like this: The code sample doesn’t work: the author must have rushed things here and there and forgot to test what he was writing.

It goes without saying that such hypotheses are rarely true, especially considering the amount of time that the authors, editors, and technical reviewers of these books spend in writing, testing, and refining the source code before building it up, making it available on GitHub, and often even publishing working instances of the resulting applications to worldwide public websites.

The GitHub repository for this book can be found here:

https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular

It contains a Visual Studio solution file for each chapter containing source code (Chapter_02.sln, Chapter_03.sln, and so on), as well as an additional solution file (All_Chapters.sln) containing the source code for all the chapters.

Any experienced developer will easily understand that most of these things couldn’t even be done if there was some broken code somewhere; there’s no way this book could even attempt to hit the shelves without coming with a 100% working source code, except for a few possible minor typos that will quickly be reported to the publisher and thus fixed within the GitHub repository in a short while. In the unlikely case that it looks like it doesn’t, such as raising unexpected compile errors, the novice developer should spend a reasonable amount of time trying to understand the root cause.

Here’s a list of questions they should try to answer before anything else:

	Am I using the same development framework, third-party libraries, versions, and builds adopted by the book?

	If I updated something because I felt like I needed to, am I aware of the changes that might affect the source code? Did I read the relevant changelogs? Have I spent a reasonable amount of time looking around for breaking changes and/or known issues that could have had an impact on the source code?

	Is the book’s GitHub repository also affected by this issue? Did I try to compare it with my own code, possibly replacing mine?

If the answer to any of these questions is No, then there’s a good chance that the problem is not ascribable to this book.

Stay hungry, stay foolish, yet be responsible as well

Don’t get me wrong: if you want to use a newer version of Visual Studio, update your TypeScript compiler, or upgrade any third-party library, you are definitely encouraged to do that. This is nothing less than the main scope of this book – making you fully aware of what you’re doing and capable of, way beyond the given code samples.

However, if you feel you’re ready to do that, you will also have to adapt the code accordingly; most of the time, we’re talking about trivial stuff, especially these days when you can Google the issue and/or get the solution on Stack Overflow. Have they changed the name of a property or method? Then you need to load the new spelling. Have they moved the class somewhere else? Then you need to find the new namespace and change it accordingly, and so on.

That’s about it – nothing more, nothing less. The code reflects the passage of time; the developer just needs to keep up with the flow, performing minimum changes to it when required. You can’t possibly get lost and blame someone other than yourself if you update your environment and fail to acknowledge that you have to change a bunch of code lines to make it work again.

Am I implying that the author is not responsible for the source code of this book? It’s the exact opposite; the author is always responsible. They’re supposed to do their best to fix all the reported compatibility issues while keeping the GitHub repository updated. However, you should also have your own level of responsibility; more specifically, you should understand how things work for any development book and the inevitable impact of the passage of time on any given source code. No matter how hard the author works to maintain it, the patches will never be fast or comprehensive enough to make these lines of code always work in any given scenario. That’s why the most important thing you need to understand – even before the book’s topics – is the most valuable concept in modern software development: being able to efficiently deal with the inevitable changes that will always occur. Whoever refuses to understand that is doomed; there’s no way around it.

Now that we’ve clarified these aspects, let’s get back to work.

Setting up the project(s)

Assuming we have already installed Visual Studio 2022 and Node.js (as described in Chapter 1, Introducing ASP.NET and Angular), here’s what we need to do:

	Download and install the .NET 8 SDK.

	Check that the .NET CLI will use that SDK version.

	Install the Angular CLI.

	Create a new .NET and Angular project.

	Check out the newly created project within Visual Studio.

	Update all the packages and libraries to our chosen versions.

Let’s get to work.

Installing the .NET 8 SDK

The .NET 8 SDK can be downloaded from either the official Microsoft URL (https://dotnet.microsoft.com/download/dotnet/8.0) or from the GitHub official release page (https://github.com/dotnet/core/tree/master/release-notes/8.0).

The installation is very straightforward – just follow the wizard until the end to get the job done, as follows:

[image: A screenshot of a computer Description automatically generated]
Figure 2.1: .NET SDK 8.0.100 installer

The whole installation process shouldn’t take more than a couple of minutes.

Checking the SDK version

Once the .NET SDK has been installed, we need to confirm that the new SDK PATH has been properly set and/or that the .NET CLI will actually use it. The fastest way to check that is by opening Command Prompt and typing the following:

> dotnet --version

Be sure that the .NET CLI executes without issue and that the version number is the same as we installed a moment ago.

If the prompt is unable to execute the command, go to Control Panel | System | Advanced System Settings | Environment Variables and check that the C:\Program Files\dotnet\ folder is present within the PATH environment variable; manually add it if needed.

Installing Node.js and the Angular CLI

The next thing we must do is to install the Angular Command-Line Interface – better known as the Angular CLI. In order to do that, we have to install Node.js, so that we can access npm and use it to get the official Angular packages.

If you’re on Windows, we strongly suggest installing Node.js using nvm for Windows – a neat Node.js version manager for the Windows system. The tool can be downloaded from the following URL: https://github.com/coreybutler/nvm-windows/releases.

Once Node.js has been installed, the Angular CLI can be installed using the following command:

npm install -g @angular/cli@17.0.3

After doing that, you should be able to type ng -version and get the Angular CLI ASCII logo containing the installed packages version. If that’s not the case, you might have to add the Node.js and/or npm /bin/ folder to your PATH environment variable.

After our frameworks and all the prerequisites have been installed, we can restart your computer (to ensure that everything will be loaded on startup) and go ahead.

Creating the Angular and ASP.NET Core project

Now we can create our first .NET and Angular project – in other words, our first app.

Visual Studio 2022 gives us two built-in options for doing this:

	Use the Standalone TypeScript Angular Template together with the ASP.NET Core Web API template, an approach introduced with the initial release of Visual Studio 2022 that allows to keep the front-end Angular app and the back-end ASP.NET Core API in two separate projects, although fully able to interoperate with each other.

	Use the new Angular and ASP.NET Core Template, a new approach introduced with Visual Studio 2022 v17.8 that allows to achieve the same results as the standalone template, but with less configuration effort.

The two approaches are very similar, and both of them are viable enough since they enforce the good practice of decoupling the front-end and the back-end architecture (as well as codebases), which is a pivotal concept when dealing with SPAs: being able to deal with this “multi-project approach” will definitely help the reader to better understand the distinct underlying logic of both frameworks, not only during development but also when we’ll have to eventually publish and deploy our app(s).

Furthermore, both of them will generate the boilerplate code of the front-end app using the Angular CLI version installed on the computer, which is great, because it means that our source code will be fully compatible (and up to date) with the Angular version that we have installed.

That said, for the purpose of this book we’re going to use the new Angular and ASP.NET Core Template, which will allow us to achieve optimal results with less effort.

Creating the Angular project

Let’s start with the front-end Angular project, which will also provide the name for our Visual Studio 2022 solution.

For those who don’t know the Visual Studio naming conventions, a solution is basically a collection of one or multiple projects: in our multi-project approach we’ll end up having two projects (the front-end Angular App and the back-end ASP.NET Core Web API) within a single solution.

Launch Visual Studio, then click on the Create a new project button: use the search textbox near the top of the window to look for the Angular and ASP.NET Core project template, just like shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 2.2: Creating a new Standalone TypeScript Angular template

Select that template and click Next to access the Configure your new project screen. In the following screenshot, fill the form with the following values:

	Solution name: HealthCheck

	Location: C:\Projects\

	Create in new folder: Yes (checked)
There’s a good reason for calling our project HealthCheck, as we’re going to see in a short while (no spoilers, remember?).

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 2.3: Standalone TypeScript Angular Project configuration wizard

It goes without saying that these are only suggested choices. However, in this book we’re going to use these names – which will impact our source code in terms of class names, namespaces, and so on – and \Projects\ as our root folder. Inexperienced developers are strongly advised to use the same names and folder.

Choosing a root-level folder with a short name is also advisable to avoid possible errors and/or issues related to path names being too long: Windows 10 has a 260-character limit that can create some issues with some deeply nested npm packages.

When done, click the Next button again to access the third and last section of the wizard: Additional information.

Here, we need to be sure to choose the .NET 8 Framework, then leave the default options as they already are: Configure for HTTPS: checked, Enable OpenAPI support: checked, Do not use top-level statements: unchecked, Use controllers: checked, as shown in the following screenshot.

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 2.4: ASP.NET Core Web API template configuration wizard

Once this is done, hit Create to complete the wizard. As soon as we do that, Visual Studio will start to create and prepare our new project(s): when everything is set and done, the development GUI will appear with the new solution’s file tree clearly visible in the Solution Explorer window, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, computer Descrizione generata automaticamente]
Figure 2.5: Our HealthCheck solution, featuring two distinct projects for client and server

As we can easily expect, our solution is composed of two distinct projects:

	The healthcheck.client project, for the Angular app

	The HealthCheck.Server project, for the ASP.NET Core Web API

Now we have the front-end project and the back-end project ready within the same solution: we just need a few tweaks to their configuration settings to ensure they will be executed together as we want them to do.

Setting up the HTTP and HTTPS ports

From Solution Explorer, open the HealthCheck.Server project node (the ASP.NET one), then open the /Properties/ folder and double-click the launchSettings.json file to open it in the text editor.

Once you’re there, perform the following changes:

	Set all the "launchBrowser" settings to false.

	Replace the random-generated HTTP and HTTPS ports with fixed values. We’re going to use 40080 for HTTP and 40443 for HTTPS.

The reason to use fixed ports is that we’ll have to deal with some framework features (such as internal proxies) that require fixed endpoints. In the unlikely event that these ports end up being busy and/or cannot be used, feel free to change them: just be sure to apply the same changes throughout the whole book to avoid getting HTTP 404 errors.

Here’s what our launchSettings.json file should look like after these changes (updated lines are highlighted):

{
"$schema": "http://json.schemastore.org/launchsettings.json",
"iisSettings": {
"windowsAuthentication": false,
"anonymousAuthentication": true,
"iisExpress": {
 "applicationUrl": "http://localhost:40080",
 "sslPort": 40443
}
},
"profiles": {
"http": {
"commandName": "Project",
"dotnetRunMessages": true,
 "launchBrowser": false,
"launchUrl": "swagger",
 "applicationUrl": "http://localhost:40080",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
}
},
"https": {
"commandName": "Project",
"dotnetRunMessages": true,
 "launchBrowser": false,
"launchUrl": "swagger",
 "applicationUrl": "https://localhost:40443;http://localhost:40080",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
}
},
"IIS Express": {
"commandName": "IISExpress",
 "launchBrowser": false,
"launchUrl": "swagger",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "Microsoft.AspNetCore.SpaProxy"
}
}
}
}

Now we just need to tell Visual Studio how to properly run our projects.

Setting the startup project(s)

Since we are dealing with two projects that need to work together, we need to make good use of one of the most important, yet less-known features introduced with the latest versions of Visual Studio, at least for SPAs: the ability to set up multiple startup projects.

It’s worth noting that, in the latest versions of Visual Studio 2022, the following settings should be already OK, but it’s better to check that this is the case.

From Solution Explorer, right-click on the HealthCheck solution (the top-level node) and select Configure Startup Projects, then perform the following steps:

	In the modal window that opens, ensure that the startup project radio button is set to Multiple startup projects, and that the Action column value is set to Start for both of our projects.

	Ensure that the HealthCheck.Server (ASP.NET) project is placed above the healthcheck.client (Angular) project, so that it will be launched first. If that’s not the case, operate with the two arrows to the right to achieve that result.

Here’s what the Multiple startup project settings should look like after these changes:

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 2.6: Solution ‘HealthCheck’ startup project settings window

Once this is done, we can move to the next (and last) step. Remember when we said that we would be dealing with fixed endpoints? Here’s the first one we need to take care of.

From the HealthCheck project, open the /src/proxy.conf.js file, which is the configuration file for the proxy that will be used by the Angular development server to reach our ASP.NET API project URLs when running our projects in Debug mode. Don’t worry about these concepts for now; we’ll explain them in a short while. For the time being, we just need to ensure that the proxy will route the API requests to the correct URL, including the HTTPS port.

For that reason, change the target URL to match the fixed HTTPS port that we’ve configured in the ASP.NET Core API project, which should be 40433 (unless we chose a different one):

const PROXY_CONFIG = [
 {
 context: [
 "/weatherforecast",
],
 target: "https://localhost:40443",
secure: false
 }
]
module.exports = PROXY_CONFIG;

Let’s take the chance to choose a fixed HTTPS port for the Angular development server as well.

Open the /.vscode/launch.json file and change the default HTTPS port to 4200, as shown in the following highlighted code:

{
"version": "0.2.0",
"configurations": [
{
"type": "edge",
"request": "launch",
"name": "localhost (Edge)",
 "url": "https://localhost:4200",
"webRoot": "${workspaceFolder}"
}
{
"type": "chrome",
"request": "launch",
"name": "localhost (Chrome)",
 "url": "https://localhost:4200",
"webRoot": "${workspaceFolder}"
},
]
}

IMPORTANT: Your launch.json file might be different if you have Chrome and/or MS Edge installed. Just keep the configuration blocks for the browser you have on your system and plan to use to debug your app and remove (or avoid adding) the others, otherwise your project will crash on startup. In this book, we’re going to use Chrome and MS Edge, hence we’ll keep the file as it is.

Now we’re finally ready to launch our project(s) and see how well they work together: this is what the next section is all about.

Performing a test run

The best way to see if our multi-project is working as expected is to perform a quick test run by launching our projects in Debug mode. To do that, hit the Visual Studio Start button or the F5 key to start downloading the required npm dependencies, compiling, and eventually running our app.

After a few seconds, we’ll be asked to trust a self-signed certificate that ASP.NET Core will generate to allow our app to be served through HTTPS (as shown in the following screenshot). Let’s just click Yes to continue.

[image:]
Figure 2.7: Trust ASP.NET Core SSL Certificate popup

If we don’t want to have to authorize the ASP.NET Core self-signed SSL certificates, we can flag the Don’t ask me again checkbox right before hitting Yes.

Right after that, Visual Studio will launch three separate processes:

	The ASP.NET Core Server, a web server that will serve the server-side APIs. This web server will be Kestrel (the default) or IIS Express, depending on the project configuration. Either of them will work for our purposes since we’ve wisely configured both to use the same fixed endpoints and HTTP/HTTPS ports:

[image: Immagine che contiene testo, schermata, software, multimediale Descrizione generata automaticamente]
Figure 2.8: Kestrel web server for the ASP.NET Core Web API project

	The Angular Live Development Server, a console application acting as a web server that will host our Angular application’s files using the ng serve command from the Angular CLI:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 2.9 Angular Live Development Server for the Standalone TypeScript Angular project

	Our favorite web browser, such as MS Edge, Mozilla Firefox, or Google Chrome (we’re going to use MS Edge from now on), which will interact with the Angular Live Development Server through the fixed HTTPS endpoint we configured a while ago:

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 2.10: MS Edge web browser for the Standalone TypeScript Angular project

The page we’re going to see in the web browser shows a basic Angular component performing a simple data fetching retrieval task from the ASP.NET Core Web API project: a tiny, yet good (and fully working) example of what we’ll be doing from now on.

What we just did was an excellent consistency check to ensure that our development system is properly configured. If we see the page shown in the preceding screenshot, it means that we’re ready to move on.

Troubleshooting

In the unlikely case we don’t, it probably means that we’re either missing something or that we’ve got some conflicting software preventing Visual Studio and/or the underlying .NET and Angular CLIs from properly compiling the project. To fix that, we can try to do the following:

	Uninstall/reinstall Node.js, as we possibly have an outdated version installed.

	Uninstall/reinstall Visual Studio, as our current installation might be broken or corrupted. The .NET SDK should come shipped with it already; however, we can try reinstalling it as well.

If everything still fails, we can try to install Visual Studio and the previously mentioned packages in a clean environment (either a physical system or a VM) to overcome any possible issues related to our current operating system configuration.

If none of these attempts work, the best thing we can do is to ask for specific support on the .NET community forums at https://forums.asp.net/default.aspx/7?General+ASP+NET.

Architecture overview

Before moving on to the next chapter, let’s take a couple more minutes to fully understand the underlying logic behind the development environment that we’ve just built.

We’ve already seen that when Visual Studio starts our projects in the development environment, three processes are launched: the standalone Angular project (healthcheck.client), the ASP.NET Core Web API (HealthCheck.Server), and the web browser that will interact with them.

Here’s a simple diagram that summarizes how these three processes work together and interact with each other:

[image:]
Figure 2.11: healthcheck.client (front-end) and HealthCheck.Server (back-end) interaction in the development setup

As we can see from the previous diagram, the web browser will call the Angular Live Development Server (which listens to HTTPS port 4200), which will deal with them in the following way:

	Directly serve all the requests for the Angular pages and static resources.

	Proxy all the API requests to the Kestrel web server hosting the ASP.NET Core Web API (which listens to the HTTPS port 40443).

It’s important to understand that the Angular Live Development Server is only meant for local development, where it will allow the use of most debug tools and greatly speed up the coding experience with features such as hot reload. Whenever we want to deploy our app(s) in production, or in any environment other than local development, we’re going to build our app into production bundles and deploy them to a web server (or a CDN) that will basically take its place in the preceding diagram. We’ll talk about all this extensively in Chapter 15, Windows, Linux, and Azure Deployment, when we’ll learn how to publish our apps.

Summary

So far, so good; we’ve just set up a working skeleton of what’s about to come. Before moving on, let’s do a quick recap of what we just did (and learned) in this chapter.

First of all, we learned the differences between the various approaches that can be adopted to create web apps nowadays: SPAs, MPAs, and PWAs. We also explained that since we’ll be using .NET and Angular, we’ll stick to the SPA approach, but we’ll also implement most PWA features, such as a service worker and a web manifest file. In an attempt to reproduce a realistic production-case scenario, we also went through the most common SPA features, first from a technical point of view, and then putting ourselves in the shoes of a typical product owner while trying to enumerate their expectations.

Last, but not least, we learned how to properly set up our development environment; we chose to do that using the latest Angular SPA template shipped with the .NET SDK, thus adopting the standard ASP.NET Core/.NET 8 approach. Then, we used the built-in Visual Studio Angular and ASP.NET Core project template to create our healthcheck.client (front-end) and HealthCheck.Server (back-end) projects, configured them to be able to work together, and tested the overall result to ensure that everything was working properly. Finally, we spent some valuable time to fully understand how the development architecture that we’ve just built works.

In the next chapter, Chapter 3, Looking Around, we’ll take an extensive look at the app we just created to properly understand how the .NET back-end and the Angular front-end perform their respective tasks and what they can do together.

Suggested topics

For further information, we recommend the following topics: Single-Page Application (SPA), Progressive Web Application (PWA), Native Web Application (NWA), Multi-Page Application (MPA), Scrum, Agile Manifesto, ASP.NET Web API, Angular CLI, Node.js, npm, nvm for Windows, Visual Studio 2022, and Visual Studio project templates.

References

	Native Web Apps, Henrik Joreteg, 2015: https://blog.andyet.com/2015/01/22/native-web-apps/

	Manifesto for Agile Software Development, Kent Beck, Mike Beedle, and many others, 2001: https://agilemanifesto.org/

	Progressive Web Apps: https://developers.google.com/web/progressive-web-apps/

	Progressive Web Apps: Escaping Tabs Without Losing Our Soul: https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

	What, Exactly, Makes Something A Progressive Web App?: https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/

	Scrum (software development): https://en.wikipedia.org/wiki/Scrum_(software_development)

	Waterfall model: https://en.wikipedia.org/wiki/Waterfall_model

	CLI-Based Front-End Project Templates: https://devblogs.microsoft.com/visualstudio/the-new-javascript-typescript-experience-in-vs-2022-preview-3/#cli-based-front-end-project-templates

	NVM for Windows: https://github.com/coreybutler/nvm-windows/releases

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

3

Looking Around

Now that our project has been created, it’s time to take a quick look around and try to understand some of the hard work that the .NET and Angular SPA template has done to make it work.

Hey, wait a minute! Shouldn’t we skip all these setup technicalities and just jump into coding?

As a matter of fact, yes, we’ll definitely be jumping into the coding in a little while. However, before doing so, it’s wise to highlight a couple of aspects of the code that have been put in place already so that we’ll know how to move effectively within our project in advance: that is, where to find the server-side and client-side code, where to put new content, how to change our initialization parameters, and so on. It will also be a good chance to review our basic knowledge of the Visual Studio environment and the packages we will need.

That’s precisely what we’re going to do in this chapter. More specifically, the following are the main topics we’re going to cover:

	Solution overview: A high-level summary of what we’ll be dealing with

	The ASP.NET back-end: An overview of the ASP.NET Core Web API project (HealthCheck.Server) – controllers, configuration files, and so on

	The Angular front-end: An overview of the Angular project (healthcheck.client) – the workspace, the /src/ folder, the Angular initialization cycle, and so on

	Getting the app to work: A series of upgrading, refactoring, and testing tasks to ensure that the back-end and the front-end are able to work together

	Getting to work: Changing the Web API endpoints, adding new Angular components, implementing a basic navigation and routing system, and so on

IMPORTANT! The sample code we’re reviewing here is the code that comes with the default Visual Studio templates shipped by the .NET 8 SDK at the time of writing. In the (likely) event that this sample code is updated in future releases, ensure you get the former source code from the web using this book’s official GitHub repository and use it to replace the contents of your project folder.

Caution: Failing to do this could result in you working with different sample code from the code featured in this book.

Technical requirements

In this chapter, all of the previous technical requirements listed in Chapter 2, Getting Ready, will apply, with no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_03/.

Solution overview

The first thing that catches the eye is that, as we’ve already mentioned, the layout of a standard ASP.NET Core solution is quite different from what it used to be in ASP.NET 5 and earlier versions. The most notable thing is that we have two different projects – one for Angular (healthcheck.client) and one for the ASP.NET Core Web API (HealthCheck.Server) – that start together and need to interact with each other. If you have previous “classic” ASP.NET single-project experience, you may find such an approach quite different from what you are used to working with.

The best thing about the new approach is that we’re instantly able to distinguish the ASP.NET back-end part from the Angular front-end part, which could be troublesome with the previous single-project experience, when the two stacks were often intertwined.

Let’s quickly review their overall structure to better understand how each one of them works.

The ASP.NET back-end

The ASP.NET back-end stack is contained in the following folders:

	The Dependencies virtual folder, which basically replaces the old References folder and contains all the internal, external, and third-party references required to build and run our project. All the references to the NuGet packages that we’ll add to our project will also be put there.

	The /Controllers/ folder, which has been shipped with any MVC-based ASP.NET application since the preceding release of the MVC framework: this folder contains a single controller – WeatherForecastController.cs – which is responsible for serving the sample weather forecast data that we briefly saw in Chapter 2, Getting Ready, during our final test run.

	The root-level files – Program.cs and appsettings.json – which will determine our web application’s configuration, including the modules and middleware, compilation settings, and publishing rules; we’ll address them all in a while.

If you have experience with the ASP.NET MVC framework(s), you might want to know why this template doesn’t contain a /Pages/ or /Views/ folder: where did our Razor Pages and views go?

As a matter of fact, this template doesn’t make use of pages or views. If we think about it, the reason is quite obvious: a Web API project doesn’t need any of them, since its main purpose is to return JSON data.

Configuration files

Let’s start by taking a look at the root-level configuration files and their purpose: Program.cs and appsettings.json. These files contain our web application’s configuration, including the modules and middleware, as well as environment-specific settings and rules.

Those who are already familiar with ASP.NET Core will notice that we’re not mentioning the Startup.cs file, which was a pivotal configuration element along with the Program.cs file. The reason for that is fairly simple: it’s not required anymore. Starting from .NET 6, the framework introduced a new hosting model for ASP.NET Core applications that unifies Startup.cs and Program.cs in a single file experience that takes advantage of the new C# top-level statements feature (which we briefly mentioned in Chapter 1, Introducing ASP.NET and Angular) to reduce the amount of boilerplate code required to get the app up and running; that same approach is still valid in .NET 8.

For additional info regarding this change, check out the Migration to ASP.NET Core in .NET 6 development notes by David Fowler (ASP.NET Team Distinguished Engineer) at the following URL:

https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d

The WeatherForecast.cs file contains a strongly typed class designed to be returned from the Get method of WeatherForecastController: this model will be serialized into JSON by the ASP.NET Core Framework.

Program.cs

The Program.cs file will most likely intrigue most seasoned ASP.NET programmers, as it’s not something we usually see in a web application project. First introduced in ASP.NET Core 1.0, the Program.cs file’s main purpose is to create a builder: a factory object that is used to set up and build the interface that will host our ASP.NET Core web application.

In the first ASP.NET Core versions (up to 2.2), the builder was called WebHostBuilder and the hosting interface was known as IWebHost; in ASP.NET Core 3.0, they became HostBuilder and IHost, respectively, due to the introduction of the generic host, a more versatile host that can support other workloads like worker services, gRPC services, and Windows services.

That’s great to know, but what is a host? In just a few words, it is the execution context of any ASP.NET Core app. In a web-based application, the host must implement the IHost interface, which exposes a collection of web-related features and services that will be used to handle the HTTP requests.

The preceding statement can lead to the assumption that the web host and the web server are the same thing. However, it’s very important to understand that they’re not, as they serve very different purposes. Simply put, the host is responsible for application startup and lifetime management, while the server is responsible for accepting HTTP requests. Part of the host’s responsibility includes ensuring that the application’s services and the server are available and properly configured.

We can think of the host as being a wrapper around the server: the host is configured to use a particular server, while the server is unaware of its host.

For further info regarding the IHost interface, as well as the whole ASP.NET Core initialization stack, check out the following guide: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/.

The generic host approach can still be used, but the recommended way to set up a web application with the latest .NET releases involves the use of the new hosting model that we briefly mentioned a moment ago. The new approach relies upon a new WebApplicationBuilder class with a built-in implementation of IHostBuilder and IHost: this small, yet effective, improvement makes the Program.cs overall logic much simpler for new developers to understand without changing the underlying host-based approach.

If we open the Program.cs file and take a look at the code, we can see what the new minimal template looks like:

var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddControllers();
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();
var app = builder.Build();
app.UseDefaultFiles();
app.UseStaticFiles();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();
app.MapFallbackToFile("/index.html");
app.Run();

If we compare the new Program.cs code with the old Program.cs plus Startup.cs approach, which was the default until .NET 5, we can immediately see a huge difference in terms of overall complexity: the new code is very readable, so we can easily understand what happens on each line of code.

As we can easily see, the new code is mostly about executing the following tasks:

	Instantiate a WebApplicationBuilder (line 1)

	Add some services (lines 5-8)

	Use the builder to create a WebApplication object (line 10)

	Configure the app with the required middleware (lines 13-23)

	Run the app (line 25)

The IHost interface that we’ve just talked about is implemented by the WebApplication object and can be accessed by the Host public property (app.Host).

After instantiating the WebApplication object, the code configures the HTTP request pipeline by loading the required middleware and services that will be used by our web application. More specifically, here’s what happens during that portion of the above code (line 10 and following):

	An if statement that registers a couple of pieces of middleware only if the app is being run in a development environment: this “development” middleware is related to Swagger, which is something that we’ll talk about in a short while.

	Another block of middleware that will be used with any environment: HttpsRedirection, which will handle HTTP-to-HTTPS redirects, and Authorization, which allows access to some API requests to be restricted to authorized users only. Note how these methods are called with no parameters; this just means that their default settings are more than enough for us, so there’s nothing to configure or override here.

	After the environment-specific and always-on middleware, there’s a call to the MapControllers method, which adds the endpoints required by the controller’s action methods to handle the incoming HTTP requests. We’ll extensively talk about that in upcoming chapters, when we deal with server-side routing aspects. For now, let’s just note that the method is called without any parameters, meaning that we’re not specifying any custom route here. This means that we’re just using the default routing rules enforced by the framework’s naming conventions, at least for now.

	Last but not least comes the call to the Run method, which executes the application and blocks the calling thread until the IHost shutdown.

It’s worth noting that middleware and services added to the HTTP pipeline will process incoming requests in registration order, from top to bottom. This means that HttpsRedirection will take priority over Authorization, which will take place before the MapControllers method, and so on. Such behavior is very important and could cause unexpected results if taken lightly, as shown in the following Stack Overflow thread: https://stackoverflow.com/questions/52768852/.

Let’s now move to another important configuration file.

appsettings.json

The appsettings.json file is just a replacement for the good old Web.config file; the XML syntax has been replaced by the more readable and considerably less verbose JSON format. Moreover, the new configuration model is based upon key/value settings that can be retrieved from a wide variety of sources, including, but not limited to, JSON files, using a centralized interface.

Once retrieved, they can be easily accessed within our code using dependency injection via literal strings (using the IConfiguration interface). This can be demonstrated by opening the WeatherForecastController.cs file and modifying the constructor in the following way (new/updated lines are highlighted):

public WeatherForecastController(
 ILogger<WeatherForecastController> logger,
 IConfiguration configuration
)
{
 _logger = logger;
 var defaultLogLevel = configuration["Logging:LogLevel:Default"];
}

If we place a breakpoint by the end of the constructor and run our project in Debug mode, we can check that the defaultLogLevel variable will contain the "Information" string, which is precisely the value specified in the appsettings.json file.

Those who don’t like to deal with string literals to access configuration files could take the chance to define a custom POCO class that will internally read the IConfiguration values and return them as named properties: however, since we won’t need to access those values frequently, for the sake of simplicity, we’re going to avoid implementing such strongly typed logic and just use the literal approach shown above.

appsettings.Development.json

It’s worth noting that there’s also an appsettings.Development.json file nested below the main one. Such a file serves the same purpose as the old Web.Debug.config file, which was widely used during the ASP.NET 4.x period. In a nutshell, these additional files can be used to specify additional configuration key/value pairs (and/or override existing ones) for specific environments.

To better understand the concept, let’s take the chance to slightly modify the default logging behavior of the Development environment.

Open the appsettings.Development.json file and update the following lines:

{
"Logging": {
"LogLevel": {
 "Default": "Debug",
"Microsoft.AspNetCore": "Warning"
}
}
}

After performing this change, every time our Web API project is launched in a Development environment the default log level will be set to Debug instead of Information, which will still be the default log level for the other environments – until we create other appsettings.<EnvironmentName>.json files to override it.

Assuming we have understood everything here, let’s move on to the main players of any ASP.NET Core project: the controllers.

Controllers

Controllers are the backbone of most ASP.NET Core applications since they are required to handle the incoming HTTP requests. More specifically, a controller is used to define a set of actions (or action methods), which are basically the methods that get called by the routing middleware to handle the requests mapped to them through routing rules.

Controllers logically group similar actions together; such aggregation mechanisms allow developers to conveniently define common sets of rules, not only for routing but also for caching, authorization, and other settings that can benefit from being applied collectively.

As per ASP.NET Core convention, each controller class resides in the project’s root-level /Controllers/ folder and is suffixed with the Controller keyword.

In a typical ASP.NET MVC project, controllers are mostly used to serve the views to the client, which contains static or dynamic HTML content. That’s not the case in Web API projects, where their main purpose is to serve JSON output (REST APIs), XML-based responses (SOAP web services), a static or dynamically created resource (JPG, JS, and CSS files), or even a simple HTTP response (such as an HTTP 301 redirect) without the content body.

Moreover, the controllers of a typical ASP.NET MVC project derive from the Controller class, which adds support from views; in Web API projects, since they don’t need to serve views, it’s better to have them extend the ControllerBase class instead, which is more lightweight.

This approach is also followed by the ASP.NET Core Web API project template we’re using: if we look at the WeatherForecastController source code, we can see that it derives from the ControllerBase class.

The only exception to this good practice comes if we plan to use the same controller to serve both views and Web APIs: when that’s the case, deriving it from Controller is the most logical and convenient choice.

WeatherForecastController

By acknowledging all this, we can already infer that the single sample WeatherForecastController contained in the /Controllers/ folder is there to expose a set of Web APIs that will be used by the Angular front-end. To quickly check it out, hit F5 to launch our project(s) in Debug mode and execute the default route by typing the following URL: https://localhost:40443/weatherforecast.

If we remember what we did in the previous chapters, we already know that this is the URL endpoint for the local Kestrel (or IISExpress) web server hosting the Web API projects.

The actual port number may vary, depending on the configuration we did to launch Settings.json file early on. Those who want to use different HTTP and/or HTTPS ports can follow the instructions that we supplied in Chapter 2, Getting Ready.

This will execute the Get() method defined in the WeatherForecastController.cs file. As we can see by looking at the source code, such a method has an IEnumerable<WeatherForecast> return value, meaning that it will return multiple objects of the WeatherForecast type.

If we copy the preceding URL into the browser and execute it, we should see a JSON array of randomly generated data, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 3.1: JSON array of weather data

It’s easy to imagine who’ll be asking for these values: the answer is… our Angular app.

Introducing OpenAPI (Swagger)

Before moving on to the Angular front-end project, there’s another back-end feature we should familiarize ourselves with: OpenAPI, formerly known as Swagger.

Those who have some experience with web services should have already heard the name; in very short terms, the OpenAPI Specification (OAS) is a language-agnostic specification to document and describe REST APIs. Its main role is to allow computers, as well as humans, to univocally understand the capabilities of a REST API without having direct access to the source code.

The OpenAPI Specification was initially known as Swagger since its development (2010). The name was officially changed on January 1, 2016, when the Swagger specification was renamed the OpenAPI Specification (OAS) and was moved to a new GitHub repository, which is still there today.

The OpenAPI Specification GitHub repository is available at the following URL:

https://github.com/OAI/OpenAPI-Specification

Adding OpenAPI support to a RESTful web service project will grant some relevant benefits, such as:

	Minimizing the amount of work needed to connect decoupled services

	Reducing the amount of time needed to accurately document the service

If we consider how important these aspects have become in the last few years, we can easily understand why OpenAPI can be included by default in most Visual Studio API templates; the one we’ve used to create our HealthCheck.Server project is no exception, as we saw in Chapter 2, Getting Ready, and early on in this chapter, when we were looking at the middleware included in the Program.cs file.

More precisely, the default OpenAPI implementation added by our template is called Swashbuckle and is made available with the Swashbuckle.AspNetCore NuGet package. However, since we checked Enable OpenAPI Support when we created our project back in Chapter 2, Getting Ready, we don’t need to explicitly add it; it’s already included in our project.

To check whether the Swashbuckle.AspNetCore NuGet package is already installed, right-click on the HealthCheck.Server project node from Solution Explorer and select Manage NuGet Packages. The package should be clearly visible in the Installed tab, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere, software Descrizione generata automaticamente]
Figure 3.2: Swashbuckle.AspNetCore NuGet package

However, we could take the chance to upgrade the package to the most recent version.

In this book, we’ll use version 6.5.0, which is currently the most recent release. As always, we strongly suggest that you use it as well.

Adding Swashbuckle to our project allows us to use three different components:

	Swashbuckle.AspNetCore.Swagger: Middleware that can be used to expose SwaggerDocument objects as JSON endpoints

	Swashbuckle.AspNetCore.SwaggerGen: A generator that builds SwaggerDocument objects directly from the app’s routes, controllers, and models

	Swashbuckle.AspNetCore.SwaggerUI: A user interface that uses Swagger JSON to create a rich and customizable user experience to visually document the Web API

If we look again at our existing Program.cs source code, we can see that these components are already present in our app’s initialization pipeline; however, SwaggerUI is currently only available in our Development environment – which kind of makes sense, since we don’t know if we want to publish it (yet). Publicly documenting a Web API service might be a good thing if we want third-party services to consume it, but can be a major security, privacy, and/or performance flaw if we want to keep our endpoints (and data) for our eyes only.

As a matter of fact, keeping the SwaggerUI only available during development seems a good idea, at least for now: let’s use this opportunity to take a good look at it.

To do that, hit F5 to launch our project(s) in Debug mode and execute the Swagger UI default endpoint:

https://localhost:40443/swagger

As soon as we hit Enter, the default Swashbuckler Swagger UI should appear in all its glory, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 3.3: Swagger UI for HealthCheck.Server

As we can see, the SwaggerEndpoint that we configured in the Program.cs file is mentioned within a hyperlink right below the main title. If we click on that hyperlink, we’ll be able to see the autogenerated swagger.json file, which contains a comprehensive description of our single (for now) /WeatherForecast action method: accepted HTTP methods, input parameters, return types of the various JSON values, and so on.

We can easily understand how such an auto-documentation feature can be an invaluable resource for other back-end developers who don’t have much experience with the project’s code base – not to mention any third party who wants (or needs) to integrate with our Web API without having access to the source code.

That’s enough for now: we’ll come back to Swagger/OpenAPI in the upcoming chapters when we add more controllers and action methods to our Web API project.

Now that we’re done inspecting the ASP.NET Core back-end part, we can finally move on to the Angular front-end project.

The Angular front-end

The Angular front-end project comprises the following stuff:

	The /src/ folder, which contains the Angular app source code files, as well as some static assets (HTML, CSS, and the like). If we look at the source code files, we can see that they have a .ts extension, which means we’ll be using the TypeScript programming language (we’ll say more about this in a bit).

	A bunch of root files, which contain the Angular configuration settings, the required npm packages to run the app, and the scripts to build the development and production bundles to host it.

The front-end part of the template will probably be seen as more complex to understand, because Angular – just like most client-side frameworks – has evolved at a dramatic pace, thus experiencing many breaking changes in its core architecture, toolchain management, coding syntax, template, and setup.

For this very reason, it’s very important to take our time and understand the roles of the various files shipped with the template. This brief overview will start with root-level configuration files, which will also be updated with the latest versions of the Angular packages (and their dependencies) that we’ll need to use.

The root files

The Angular workspace is the place on the file system containing the Angular files: a collection of application files, libraries, assets, and so on. In earlier ASP.NET Core and Angular project templates, this type of workspace is located within the /ClientApp/ folder; however, since we opted for a multi-project template that decouples the front-end and the back-end, our workspace is located within the project’s root folder.

The workspace is created and initialized by the Angular CLI command used to create the app. Since we’ve used the Visual Studio GUI, we didn’t see that part with our own eyes because it was executed in the background. However, we’re going to fully experience it later on, when we manually create a new app with the Angular CLI.

Any CLI commands operating on the app and/or their libraries (such as adding or updating new packages) will be executed from within the workspace.

angular.json

The most important role within the workspace is played by the angular.json file, created by the CLI in the workspace root. This is the workspace configuration file and contains workspace-wide and project-specific configuration defaults for all build and development tools provided by the Angular CLI.

The first few properties at the top of the file define the workspace and project configuration options:

	version: The configuration file version.

	newProjectRoot: The path where new projects are created, relative to the workspace root folder. We can see that this value is set to the projects folder, which doesn’t even exist (no need to worry about that; we won’t create any new Angular projects anyway).

	projects: A container item that hosts a sub-section for each project in the workspace, containing project-specific configuration options.

It’s worth noting that the angular.json file follows a standard generic-to-specific cascading rule. All configuration values set at the workspace level will be the default values for any project and can be overridden by those set at the project level. These, in turn, can be overridden by command-line values available when using the CLI.

That’s all we need to know, at least for the time being. All the configuration values are already good enough for our scenario; hence, we’ll just leave them as they are for now.

Up to Angular 7, manually modifying the angular.json file was the only way to make changes to the workspace config. This changed with Angular 8 with the introduction of the workspace API, which now allows us to read and modify these configurations much more conveniently. For additional info regarding this new feature, we suggest taking a look at the following page: https://github.com/angular/angular-cli/blob/master/packages/angular_devkit/core/README.md#workspaces.

package.json

The package.json file is the Node Package Manager (npm) configuration file. It basically contains a list of npm packages that the developer wants to be restored before the project starts. Those who already know what npm is and how it works can skip to the next section, while those who don’t should definitely keep reading.

npm started its life as the default package manager for the JavaScript runtime environment known as Node.js. During recent years, though, it has also been used to host a number of independent JavaScript projects, libraries, and frameworks of any kind, including Angular. Eventually, it became the de facto package manager for JavaScript frameworks and tooling. Those who have never used it can think of it as the NuGet of the JavaScript world.

Although npm is mostly a command-line tool, the easiest way to use it from Visual Studio is to properly configure a package.json file containing all the npm packages we want to get, restore, and keep up to date later on. These packages get downloaded in the /node_modules/ folder within our project directory, which is hidden by default within Visual Studio; however, all retrieved packages can be seen from the npm virtual folder. As soon as we add, delete, or update the package.json file, Visual Studio will automatically update that folder accordingly.

In the Angular SPA template we’ve been using, the shipped package.json file contains a huge number of packages – all Angular packages – plus a good bunch of dependencies, tools, and third-party utilities such as Karma (a test runner for JavaScript/TypeScript).

Before moving ahead, let’s take a further look at our package.json file and try to get the most out of it. We can see how all packages are listed within a standard JSON object entirely made up of key-value pairs. The package name is the key, while the value is used to specify the version number. We can either input precise build numbers or use the standard npmJS syntax to specify auto-update rules bound to custom version ranges using supported prefixes, such as the following:

	The tilde (~): A value of "~1.1.4" will match all 1.1.x versions, excluding 1.2.0, 1.0.x, and so on

	The caret (^): A value of "^1.1.4" will match everything above 1.1.4, excluding 2.0.0 and above

This is another scenario where IntelliSense comes in handy, as it will also visually explain the actual meaning of these prefixes.

For an extensive list of available npmJS commands and prefixes, it’s advisable to check out the official npmJS documentation at https://docs.npmjs.com/files/package.json.

Upgrading (or downgrading) Angular

As we can see, the Angular SPA template uses fixed version numbers for all Angular-related packages; this is definitely a wise choice since we have no guarantees that newer versions will seamlessly integrate with our existing code without raising some potentially breaking changes and/or compiler errors. Needless to say, the version number will naturally increase over time because template developers will definitely try to keep their good work up to date.

That said, here are the most important Angular packages and releases that will be used throughout this book (not including a small bunch of additional packages that will be added later on):

 "@angular/animations": "17.0.3",
"@angular/common": "17.0.3",
"@angular/compiler": "17.0.3",
"@angular/core": "17.0.3",
"@angular/forms": "17.0.3",
"@angular/platform-browser": "17.0.3",
"@angular/platform-browser-dynamic": "17.0.3",
"@angular/router": "17.0.3",
"@angular-devkit/build-angular": "17.0.3",
"@angular/cli": "17.0.3",
"@angular/compiler-cli": "17.0.3",

The former group can be found in the dependencies section, while the latter is part of the devDependencies section. As we can see, the version number is mostly the same for all packages and corresponds to the latest Angular final release available at the time of writing; also notice that we even removed the caret (^) in front of each package’s version number, which is present by default on most Angular packages, to ensure that npm will retrieve that exact same version.

The version of Angular that we use in this book was released a few weeks before this book hit the shelves. We did our best to use the latest available (non-beta, non-rc) version to give the reader the best possible experience with the most recent technology available. That said, that freshness will eventually decrease over time and this book’s code will start to become obsolete. When this happens, try not to blame us for that!

If we want to ensure the highest possible level of compatibility between our project and this book’s source code, we should definitely adopt that same release, which, at the time of writing, also corresponds to the latest stable one. We can easily perform the upgrade – or downgrade – by changing the version numbers; as soon as we save the file, Visual Studio should automatically fetch new versions through npm. In the unlikely scenario that it doesn’t, manually deleting the old packages and issuing a full rebuild should be enough to fix the issue.

As always, we’re free to overwrite such behavior and get newer (or older) versions of these packages, assuming that we properly understand the consequences according to the disclaimer in Chapter 2, Getting Ready.

If you encounter problems while updating your package.json file, such as conflicting packages or broken code, ensure that you download the full source code from the official GitHub repository of this book, which includes the same package.json file that has been used to write, review, and test this book. It will definitely ensure a great level of compatibility with the source code you’ll find here.

Upgrading (or downgrading) the other packages

As we might expect, if we upgrade (or downgrade) Angular to the latest available version (at the time of writing), we also need to take care of a series of other npm packages that might need to be updated (or downgraded).

Here’s the full package list (including the Angular packages) we’ll be using in our package.json file throughout the book, split into dependencies and devDependencies sections. The relevant packages are summarized in the following snippet – be sure to triple-check them!

 "dependencies": {
"@angular/animations": "17.0.3",
"@angular/common": "17.0.3",
"@angular/compiler": "17.0.3",
"@angular/core": "17.0.3",
"@angular/forms": "17.0.3",
"@angular/platform-browser": "17.0.3",
"@angular/platform-browser-dynamic": "17.0.3",
"@angular/router": "17.0.3",
"rxjs": "7.8.0",
"tslib": "2.3.0",
"zone.js": "0.14.2",
"jest-editor-support": "*",
"run-script-os": "*"
},
"devDependencies": {
"@angular-devkit/build-angular": "17.0.3",
"@angular/cli": "17.0.3",
"@angular/compiler-cli": "17.0.3",
"@types/jasmine": "5.1.0",
"jasmine-core": "5.1.0",
"karma": "6.4.0",
"karma-chrome-launcher": "3.2.0",
"karma-coverage": "2.2.0",
"karma-jasmine": "5.1.0",
"karma-jasmine-html-reporter": "2.1.0",
"typescript": "5.2.2"
}

It’s advisable to perform a manual command-line npm install from the project’s root folder right after applying these changes to the package.json file in order to trigger a batch update of all the project’s npm packages. Sometimes, Visual Studio doesn’t update the packages automatically, and doing that using the GUI can be tricky.

Those who run into npm and/or ngcc compilation issues after the npm update command can also try to delete the /node_modules/ folder and then perform an npm install from scratch.

Upgrading the Angular code

It’s worth noting that our updated package.json file might not include some of the packages that were present in the Visual Studio default ASP.NET and Angular SPA project template. The reason for that is quite simple: those packages are either deprecated, obsolete, or not required by the code samples we’ll be working with from now on.

tsconfig.json

The tsconfig.json file is the TypeScript configuration file. Again, those who already know what TypeScript is won’t need to read all this, although those who don’t should.

In fewer than 100 words, TypeScript is a free, open source programming language developed and maintained by Microsoft that acts as a JavaScript superset; this means that any JavaScript program is also a valid TypeScript program. TypeScript also compiles to JavaScript, meaning it can seamlessly work on any JavaScript-compatible browser without external components. The main reason for using it is to overcome JavaScript’s syntax limitations and overall shortcomings when developing large-scale applications or complex projects. Simply put, it makes the developer’s life easier when they are forced to deal with non-trivial code.

In this project, we will definitely use TypeScript for a number of good reasons. The most important ones are as follows:

	TypeScript has several advantageous features compared with JavaScript, such as static typing, classes, and interfaces. Using it in Visual Studio also gives us the chance to benefit from the built-in IntelliSense, which is a great benefit and often leads to a remarkable productivity boost.

	For a large client-side project, TypeScript will allow us to produce more robust code, which will also be fully deployable anywhere a plain JavaScript file would run.

Not to mention the fact that the Angular SPA template we chose already uses TypeScript. Hence, we can say that we already have one foot in the water!

Humour aside, we’re not the only ones praising TypeScript; this has been acknowledged by the Angular team itself, considering the fact that the Angular source code has been written using TypeScript since Angular 2, as was proudly announced by Microsoft in the following MDSN blog post in March 2015: https://devblogs.microsoft.com/typescript/angular-2-built-on-typescript/.

This was further emphasized in this great post by Victor Savkin (cofounder of Narwhal Technologies and acknowledged Angular consultant) on his personal blog in October 2016: https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8.

Getting back to the tsconfig.json file, there’s not much to say; the option values used by the Angular template are just what we need to configure both Visual Studio and the TypeScript compiler (TSC) to properly transpile the TypeScript code files included in the /src/ folder, hence there’s no need to change it.

For additional info about the tsconfig.json file and all the available options, visit the following URL: https://angular.io/config/tsconfig.

Other workspace-level files

There are also other notable files created by the CLI in the workspace root. Since we’ll not be changing them, we’ll just briefly mention them in the following list:

	.editorconfig: A workspace-specific configuration for code editors.

	.gitignore: A text file that tells Git – a version-control system you most likely know quite well – which files or folders to ignore in the workspace. These are intentionally untracked files that shouldn’t be added to the version control repository.

	/node_modules/: A (hidden) folder containing all the npm packages for the entire workspace. This folder will be populated with packages defined in the package.json file located on the workspace root; since it’s excluded from the project by default, we can only see it if we click on the Show All Files button at the top of Solution Explorer.

	aspnetcore-https.js: A script that sets up HTTPS for the application using the ASP.NET Core HTTPS certificate. Remember the HTTPS authorization popup that appeared in Chapter 2, Getting Ready, during our first test run? We’ve just found what triggered it.

	karma.conf.js: An application-specific Karma configuration. Karma is a tool used to run Jasmine-based tests. We can safely ignore the whole topic for now, as we’ll get to it later on.

	nuget.config: A NuGet configuration file; we can safely ignore it.

	package-lock.json: Provides version information for all packages installed in the /node_modules/ folder by the npm client. If you plan to replace npm with Yarn, you can safely delete this file (the yarn.lock file will be created instead).

Yarn is a package manager for the JavaScript programming language developed and released by Facebook in October 2016 to address some of the limitations that npm had at the time, and is meant to be a drop-in replacement for npm. For further info, go to: https://yarnpkg.com/.

	README.md: Introductory documentation for the workspace. The .md extension stands for Markdown, a lightweight markup language created by John Gruber and Aaron Swartz in 2004.

	tsconfig.*.json: Project-specific configuration options for various aspects of our app – .app.json for application level, .server.json for server level, and .spec.json for tests. These options will override those set in the generic tsconfig.json file in the workspace root.

Now that we know the basics of various workspace-level files, we can move on to examining Angular’s source code files.

The /src/ folder

It’s time to pay a visit to the Angular app and see how it works by looking at its source code files. Rest assured, we won’t stay for long; we just want to get a glimpse of what’s under the hood.

By expanding the /src/ directory, we can see that there are the following sub-folders:

	The /src/app/ folder, along with all its sub-folders, contains all the TypeScript files related to our Angular app; in other words, the whole client-side application source code is meant to be put here.

	The /src/assets/ folder is meant to store all the application’s images and other asset files. These files will be copied and/or updated as is in the deployment folder whenever the application is built.

There is also a bunch of root-level files:

	favicon.ico: A file containing one or more small icons that will be shown in the web browser’s address bar when we visit the Angular app, as well as near the page’s title in various browser components (tabs, bookmarks, history, and so on).

	index.html: The main HTML page that is served when we access the Angular app. The CLI automatically adds all JavaScript and CSS files when building our app, so we typically don’t need to add any <script> or <link> tags here manually.

	main.ts: The main entry point for our application. Compiles the application with the JIT compiler and bootstraps the application’s root module (AppModule) to run in the browser. We can also use the AOT compiler without changing any code by appending the --aot flag to CLI build and serve commands.

	proxy.conf.ts: The Angular live development server’s proxy configuration settings. We’ve already seen it in Chapter 2, Getting Ready, when we changed the HTTPS port to the single rule currently present, the one that redirects all the HTTP requests to /weatherforecast to the API web server. In short, we’re going to update that rule to make it more generic so that it will redirect all the API HTTP requests to the Web API server.

	styles.css: A list of CSS files that supply styles for a project.

Let’s start our coding review with the /src/app/ folder’s content.

The /src/app/ folder

Our template’s /src/app/ folder follows Angular folder structure best practices and contains our project’s logic and data, thereby including all Angular modules, services, and components, as well as templates and styles. It’s also the only sub-folder worth investigating, at least for the time being.

AppModule

As we briefly anticipated in Chapter 1, Introducing ASP.NET and Angular, the basic building blocks of an Angular application are NgModules, which provide a compilation context for components. The role of NgModules is to collect related code into functional sets; therefore, the whole Angular app is defined by a set of one or more NgModules.

NgModules were introduced in Angular 2 RC5 and are a great, powerful way to organize and bootstrap any Angular application; they help developers consolidate their own set of components, directives, and pipes into reusable blocks. As we said previously, every Angular application since v2 RC5 must have at least one module, which is conventionally called a root module and is thus given the AppModule class name.

Any Angular app requires a root module – conventionally called AppModule – that tells Angular how to assemble the application, thus enabling bootstrapping and starting the initialization life cycle (see the diagram that follows). The remaining modules are known as feature modules and serve a different purpose. The root module also contains a reference list of all available components.

The following is a schema of the standard Angular initialization cycle, which will help us to better visualize how it works:

[image: Immagine che contiene testo, schermata, Carattere, logo Descrizione generata automaticamente]
Figure 3.4: The Angular initialization cycle

As we can see, the main.ts file bootstraps app.module.ts (AppModule), which then loads the app.component.ts file (AppComponent); the latter, as we’ll see in a short while, will then load all the other components whenever the application needs them.

The root module of the sample Angular app created by our template can be found in the /src/app/ folder and is defined within the app.module.ts file. If we look at the source code, we can see that our AppModule is split into two main code blocks:

	A list of import statements, pointing to all the references (in the form of TypeScript files) required by the application.

	The root NgModule block, which is basically a collection of named arrays, each one containing a set of Angular objects that serve a common purpose: directives, components, pipes, modules, providers, and so on. The last one contains the component we want to bootstrap, which, in most scenarios – including ours – is the main application component: the AppComponent.

AppComponent

If NgModules are Angular building blocks, components can be defined as the bricks used to put the app together, to the extent that we can say that an Angular app is basically a tree of components working together.

Components define views, which are sets of screen elements that Angular can choose between and modify according to your program logic and data, and use services, which provide specific functionality not directly related to views. Service providers can also be injected into components as dependencies, thus making the app code modular, reusable, and efficient.

The cornerstone of these components is conventionally called AppComponent, which is also the only component that – according to Angular folder structure conventions – should be placed in the /app/ root folder. All other components should be put in a sub-folder, which will act as a dedicated namespace.

As we can easily notice, AppComponent is also the only component present in our Angular and ASP.NET Core template. This means that the app currently offers a single view only. On top of that, it also lacks a proper menu and navigation system. In other words, it’s literally a single-page application! Don’t worry, though; we’ll soon add other components, as well as perform some UI and UX tweaks to improve its look and feel.

As we can see, our AppComponent consists of four files:

	app.component.ts: Defines the component logic, that is, the component class source code.

	app.component.html: Defines the HTML template associated with the AppComponent. Any Angular component can have an optional HTML file containing its UI layout structure instead of defining it within the component file itself. This is almost always a good practice unless the component comes with a very minimal UI.

	app.component.css: Defines the base CSS style sheet for the component. Just like the .html file, this file is optional, yet it should always be used unless the component doesn’t require UI styling.

	app.component.spec.ts: Contains the unit tests for the app.component.ts source file and can be run using the Jasmine JavaScript test framework through the Karma test runner.

Let’s take a brief look at each one of them.

The TypeScript class file

Let’s start with the app.component.ts file, which will help us to start familiarizing ourselves with the source code of a typical Angular component class:

import { HttpClient } from '@angular/common/http';
import { Component, OnInit } from '@angular/core';
interface WeatherForecast {
 date: string;
 temperatureC: number;
 temperatureF: number;
 summary: string;
}
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent implements OnInit {
 public forecasts: WeatherForecast[] = [];
 constructor(private http: HttpClient) {}
 ngOnInit() {
 this.getForecasts();
 }
 getForecasts() {
 this.http.get<WeatherForecast[]>('/weatherforecast').subscribe(
 (result) => {
 this.forecasts = result;
 },
 (error) => {
 console.error(error);
 }
);
 }
 title = 'HealthCheck';
}

As we can see, the class contains the following coding blocks:

	A list of import statements, much like we’ve seen in the AppModule class.

	An interface to store the weather forecast JSON data coming from the ASP.NET Core Web API in a typed fashion. Ideally, these interfaces should require their own dedicated and separate file – however, for the sake of simplicity, the template we’re using puts it here.

	The @Component decorator, which defines selector, as well as the templateUrl and styleUrls of the component. selector is the most important thing defined there as it tells Angular to instantiate this component wherever it finds the corresponding tag in template HTML. In this case, AppComponent will be instantiated wherever Angular finds the <app-root> tag.

	The TypeScript class for the component, which includes the constructor, local properties, methods, and so on.

Let’s now switch to the HTML template file.

The HTML template file

The /src/app/app.component.html file contains the HTML required to render the component on the browser’s screen. Within these templates, we can use HTML, CSS, and JS code, as well as some special Angular syntax that can be used to add powerful features, such as interpolation, template statements, binding syntax, property binding, directives, and reference variables.

We’ll talk more about these features in Chapter 4, Front-End and Back-End Interactions, when we create a custom component with a table-based template similar to this one.

The StyleSheet file

The /src/app/app.component.css file is meant to contain the set of CSS rules used to control the layout and design of the component. As we can see when opening it, it currently contains a handful of classes that are meant to give some padding and background coloring to the component’s HTML elements. For now, we can just leave it as it is; we’ll come back to this file later on, when we start styling our Angular app.

The spec.ts file

Before continuing further, let’s spend some time taking a better look at the app.component.spec.ts file. Those files, as per the Angular naming convention, are meant to contain unit tests for their corresponding source files and are run using the Jasmine JavaScript test framework through the Karma test runner.

For additional info regarding Jasmine and Karma, check out the following guides:

	Jasmine: https://jasmine.github.io/

	Karma: https://karma-runner.github.io/

	Angular unit testing: https://angular.io/guide/testing

While we’re there, it could be useful to give them a run to see whether the Jasmine + Karma testing framework that has been set up by our template actually works.

Our first test run

Before running the test, it may be useful to understand a little bit more about Jasmine and Karma. If you don’t know anything about them, don’t worry – you will soon. For now, just know that Jasmine is an open source testing framework for JavaScript that can be used to define tests, while Karma is a test runner tool that automatically spawns a web server that will execute JavaScript source code against Jasmine-made tests and output their respective (and combined) results on a command line.

In this quick test, we’ll basically launch Karma to execute the source code of our sample Angular app against the Jasmine tests defined by the template in the app.component.spec.ts file; this is actually a much easier task than it might seem.

Open Command Prompt, navigate to the Angular project root folder, and then execute the following command:

> npm run ng test

This will call the Angular CLI using npm.

Alternatively, since there is a "test: ng test" script in the package.json file, we can type npm test, which in turn will start ng test.

IMPORTANT: Chrome needs to be installed, otherwise the test won’t work.

In the unlikely event that the npm command returns a program not found error, check that the Node.js/npm binary folder is properly set within the PATH variable. If it’s not there, be sure to add it, and then close and re-open the command-line window and try again.

First testing attempt

Right after we hit Enter, a new browser window should open with the Karma console and a list of results for the Jasmine tests, as shown in the following figure:

[image: Immagine che contiene testo, schermata, software, Pagina Web Descrizione generata automaticamente]
Figure 3.5: First run of the Jasmine test

As we can see, we have two successful tests; that’s quite expected, since we’re using template-generated code that should work right off the bat.

If we open the app.component.spec.ts file, we can easily spot the source code that determines the success or failure of those two tests.

Here’s the should create the app test, which – as its name suggests – aims to check if the app has been initialized without issues:

 it('should create the app', () => {
 expect(component).toBeTruthy();
 });

And here’s the should retrieve weather forecasts from the server test, which serves the purpose of verifying that the app is receiving data from the ASP.NET Core back-end:

 it('should retrieve weather forecasts from the server', () => {
 const mockForecasts = [
 { date: '2021-10-01', temperatureC: 20, temperatureF: 68, summary: 'Mild' },
 { date: '2021-10-02', temperatureC: 25, temperatureF: 77, summary: 'Warm' }
];
 component.ngOnInit();
 const req = httpMock.expectOne('/weatherforecast');
 expect(req.request.method).toEqual('GET');
 req.flush(mockForecasts);
 expect(component.forecasts).toEqual(mockForecasts);
 });

The code is quite easy to read thanks to the JS expressive methods made available by Jasmine; it basically makes some assumptions about what we should expect to have available and inspects the various parts of the app (components, request info, HTML content, etc.) to check if they are there.

Don’t worry if you don’t understand something here – we’re just scratching the surface of how this testing framework actually works; we’ll come back to these topics in Chapter 10, ASP.NET Core and Angular Unit Testing.

Getting to work

Now that we’ve got a general picture of our projects, it’s time to do something. Let’s start with two simple exercises that will also come in handy in the future. The first of these will involve the server-side endpoints of our Web API project, while the second will affect the client-side user experience of our Angular app. Both will help us to ensure we have really understood everything there is to know before proceeding to subsequent chapters.

Changing the API endpoints

If we take another look at Angular’s proxy.conf.js file, we can easily see that the only existing rule is explicitly mapping the single action method of our Web API:

const PROXY_CONFIG = [
{
 context: [
 "/weatherforecast",
],
 target: "https://localhost:40443",
 secure: false
}
]
module.exports = PROXY_CONFIG;

This might be OK for our initial testing purposes, but it can become a very impractical approach as soon as we start to add controllers and action methods; we surely don’t want to manually update these rules every time.

The best thing we can do to fix that is to define a single rule that will work for all our API endpoints; this can be done by defining a prefix (such as /api/) that will be used by all of our action methods’ endpoints. Such a change needs to be performed in three files:

	The Angular app.component.ts file (the healthcheck.client project), where the HTTP request is issued

	The Angular proxy configuration file (the healthcheck.client project), where the HTTP request is diverted to the Web API web server

	The WeatherForecastController.cs file (the HealthCheck.Server project), which will respond to the HTTP request with the weather forecast JSON data

Let’s start with the Angular project.

Open the /src/app/app.component.ts file and update the existing '/weatherforecast' value in the following way:

constructor(http: HttpClient) {
 http.get<WeatherForecast[]>('/api/weatherforecast').subscribe(result => {
 this.forecasts = result;
 }, error => console.error(error));
}

Now we need to change the proxy, so the new URL will be properly addressed to the Web API application. Open the /src/proxy.conf.json file and update the existing endpoint in the following way:

const PROXY_CONFIG = [
{
 context: [
 "/api",
],
 target: "https://localhost:40443",
 secure: false
}
]

The Angular aspects of our job are done; now, every HTTP request starting with /api – including the updated /api/weatherforecast – will be diverted to our back-end Web API application.

However, our Web API application doesn’t know it yet; if we now try to run our Angular app by hitting F5, we’d get no more weather forecast data, since the old /weatherforecast endpoint will return an HTTP 404 (Not Found) error. To fix the issue, we simply need to change it to /api/weatherforecast so that the updated rule will affect it.

Switch to the HealthCheck.Server project, open the /Controllers/WeatherForecastController.cs file, and add the api/ prefix to the existing [Route] attribute value (line 6 or so) in the following way:

[Route("api/[controller]")]

Now we can launch our project(s) in Debug mode and see if the Angular app is able to fetch the weather forecast data again.

The good thing about this change is that our Angular proxy now features a generic rule that will be valid for any API endpoint – as long as we include the api/ prefix in the controller’s route – without having to add a new rule every time.

For additional info about the Angular live development server proxy settings, check out the following URL:

https://angular.io/guide/build#proxying-to-a-backend-server

The changes we’ve just applied to our endpoint URLs are good enough when running our app(s) in Development mode since we can rely upon the Angular proxy and they will work great even when publishing our app(s) in a Production environment as long as we can serve the Web API through a proxy using similar techniques.

However, what if our hosting service (or strategy) doesn’t allow that? What if we want to publish our healthcheck.client Angular app and the HealthCheck.Server back-end on two completely different domains without being able to proxy the latter through the /api/ folder of the former one? This is a typical scenario of most modern deployment techniques, for example, if we wanted to host our Angular app on a Content Delivery Network (CDN) instead of using an actual HTTP server.

If we want our app(s) to support such behaviors, the best thing we can do is to implement an additional baseUrl property and use it as a “prefix” for all our API calls; let’s take the chance to do that.

Implementing a baseUrl property

In order to implement a baseUrl property we need to define different named build configurations for our project, such as production and development, with different defaults. Does it ring a bell? It should, because we already met something that fulfills this exact same purpose for our ASP.NET Core back-end early on: the appsettings.*.json files; what we need now is to replicate the same approach for our front-end app.

Luckily, Angular is equipped with a neat feature that does just that, thanks to its application environment files. However, in order to be able to use that feature, we need to use the Angular CLI to generate those files.

Generate the environment files

To generate the environment files, open a command prompt, navigate to the HealthCheck Angular project’s root folder, and type the following command:

> ng generate environments

Which will produce the following output:

[image: Immagine che contiene testo, Carattere, software, schermata Descrizione generata automaticamente]
Figure 3.6: ng generate environments

As we can see by looking at the previous screenshot, the Angular CLI performed three tasks:

	Create the src/environments/environment.ts file, which is meant to contain the settings for the production environment

	Create the src/environments/environment.development.ts file, which will host the settings for the development environment

	Update the angular.json file to use the environment file corresponding to the selected build type

Now we can use those files to define environment-specific settings, which is precisely what we wanted to do.

Adding the baseUrl

As a matter of fact, the environment.*.ts files we have just created are the Angular counterpart of the ASP.NET Core appsettings.*.json files, and they can be used to fulfill the same requirements: set up configuration values that will be automatically overridden depending on the app’s execution environment. Let’s use this new feature to create the environment-specific baseUrl property we wanted to add.

Open the /src/environments/environment.development.ts file and add the production and baseUrl properties to the environment constant in the following way:

export const environment = {
 production: false,
 baseUrl: "/"
};

This is the value that we’re going to use in the Development environment since we can rely upon the Angular proxy.

Let’s now open the /src/environments/environment.ts file and set up the baseUrl property with a slightly different value:

export const environment = {
 production: true,
 baseUrl: "https://localhost:40443/"
};

As we can see, this time we’ve set up a whole URL with a protocol and port. We’ve used localhost for the time being since we don’t have any clue about our Web API’s Production endpoint (yet); however, now that we have the baseUrl variable ready, we’ll easily be able to replace this value with an FQDN as soon as we have it available. As a matter of fact, we’re going to do that in Chapter 15, Windows, Linux, and Azure Deployment, when we learn how to publish our apps in production.

Refactoring the Angular app

The next thing we’re going to do is refactor our current Angular app to make it a bit more versatile and user-friendly. More specifically, here’s what we’re going to do:

	Add two new components, one for the app’s “welcome screen” and another for the existing data-fetching example (where we’ll move the existing weather forecast implementation)

	Add a top-level navigation menu, so that the user will be able to navigate between the new components from the UI

	Implement a client-side routing system, so that each choice selected by the user through the navigation menu will be handled by showing the correct components

Let’s get to work.

Adding HomeComponent

Let’s start by adding HomeComponent, which will host our app’s home page contents. Given our development workspace, there are two main approaches for doing that:

	Use the Angular CLI

	Use the Visual Studio Add New Item feature

The Angular CLI method is considered the most convenient choice since it automatically generates all the required files and references; that’s the reason why we’re going to use it.

Open Command Prompt and navigate to the Angular project’s root folder. It should be /Projects/HealthCheck/healthcheck.client/ if you followed our path naming conventions. Type the following command:

> ng generate component Home

The preceding command will perform the following tasks, as shown in the following screenshot:

	Create a new /src/app/home/ folder to host the new component files

	Generate the component’s .ts, .css, .html, and spec.ts files and fill them with sample data

	Update the app.module.ts file to add a reference to the new component

[image: Immagine che contiene testo, schermata, Carattere, software Descrizione generata automaticamente]
Figure 3.7: Output of the ng generate component’s Home command

Once done, we can move on to the next steps.

From now on, we’ll always create component files using the Angular CLI throughout the rest of the book. However, those who prefer to use the manual approach are free to do that. Just be sure to add the required references to Angular’s AppModule, which will be shown in a short while.

The dry run switch

If we want to see what the preceding ng command does without making any changes, we can use the --dry-run switch in the following way:

> ng generate component Home --dry-run

That switch will prevent the CLI from making any changes to the file system, meaning that we will see what the ng command does without having to create or modify any file. This can be useful whenever we are unsure about what the command might do, since we’ll be able to see what it does without the risk of breaking something in our app.

It’s also worth noting that the --dry-run switch is not limited to the ng generate component; it can be used with any Angular CLI command.

Skipping the spec.ts file

If we want to prevent the creation of the file for the unit tests, we can add the --skip-tests switch to the CLI command in the following way:

> ng generate component Home --skip-tests

This switch will prevent the Angular CLI from creating the spec.ts file for the component. We briefly saw spec.ts files in Chapter 2, Getting Ready, when we performed our first unit test. Since we’re not going to use these files until Chapter 10, ASP.NET Core and Angular Unit Testing, when we talk about client-side and server-side testing, for the sake of simplicity, we’ll just skip them using the --skip-tests switch from now on. For that very reason, if we have already generated the home.component.spec.ts file, we can delete it before going on.

Adding FetchDataComponent

The next thing we’re going to do is to create the FetchDataComponent, where we’ll put the autogenerated data-fetching example that currently resides in AppComponent.

Again, use Command Prompt from within the HealthCheck project root path to issue the following console command:

ng generate component FetchData --skip-tests

Again, the command will add the required files and update AppModule accordingly.

Now we have two (mostly empty) components to play with; however, there’s currently no way for the user to reach them since our Angular app lacks a proper navigation menu, as well as a routing mechanism that allows such navigation to work.

Let’s solve this problem for good.

Adding the navigation menu

In a typical HTML-based user interface, a navigation menu is an element containing several hyperlinks (or buttons, or tabs) that allow the user to navigate between the various website sections, pages, or views.

If we think of it from an Angular perspective, we can easily see how it’s no different than a component, just like Home and FetchData. For that very reason, we’re going to create it with the same technique that we’ve used until now:

ng generate component NavMenu --skip-tests

With this, we can finally start to code!

First of all, open the /src/app/app.module.ts file to acknowledge the (highlighted) changes automatically performed by the Angular CLI:

import { HttpClientModule } from '@angular/common/http';
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppRoutingModule } from './app-routing.module;
import { AppComponent } from './app.component';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';
import { NavMenuComponent } from './nav-menu/nav-menu.component';
@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 FetchDataComponent,
 NavMenuComponent
],
 imports: [
 BrowserModule, HttpClientModule, AppRoutingModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

We don’t need to do anything here, but it can be useful to understand what we should have done if we didn’t use the Angular CLI and chose to create these components manually instead.

Let’s now create our navigation menu. From Visual Studio Solution Explorer, open the HealthCheck project, navigate to the /src/app/nav-menu/ folder, select the nav-menu.component.html file, and fill it with the following HTML code, overwriting the existing content:

<header>
<nav>
<a [routerLink]="['/']">Home
 |
 <a [routerLink]="['/fetch-data']">Fetch Data
</nav>
</header>

As we can see, we didn’t do much: just the minimal amount of HTML code to implement a hyperlink-based navigation mechanism within a standard <header> element.

The only thing worth noting here is that each hyperlink element contains a reference to a RouterLink – an Angular directive that makes that element a link that initiates the navigation to a route. The navigation system that we’re going to build will open the routed components in a dedicated <router-outlet> container present on the page.

Updating the AppComponent

The best place to put that <router-outlet> location is AppComponent, which should also contain the NavMenuComponent; that way, AppComponent will truly become the backbone of our Angular app, containing both the navigation component and the container where the routed components will be shown.

However, before doing that, we need to “move” the current AppComponent behavior – showing the weather forecast data – to the dedicated FetchDataComponent that we added a moment ago. Since the component’s behavior is handled by the source code contained in its TypeScript and HTML files, it means that we need to move the content of those files as well.

For the sake of simplicity, we can ignore the StyleSheet file for now since it’s currently empty.

Open the /src/app/fetch-data/fetch-data.component.ts file and update it in the following way (added/updated code is highlighted):

import { HttpClient } from '@angular/common/http';
import { Component, OnInit } from '@angular/core';
import { environment } from '../../environments/environment';
@Component({
 selector: 'app-fetch-data',
 templateUrl: './fetch-data.component.html',
 styleUrl: './fetch-data.component.css'
})
export class FetchDataComponent {
 public forecasts?: WeatherForecast[];
 constructor(http: HttpClient) {
 http.get<WeatherForecast[]>(environment.baseUrl + 'api/weatherforecast').subscribe(result => {
 this.forecasts = result;
 }, error => console.error(error));
 }
}
interface WeatherForecast {
 date: string;
 temperatureC: number;
 temperatureF: number;
 summary: string;
}

As we can see, all the updated code lines are taken from the app.component.ts file; that was expected since we’re actually transferring the original behavior of AppComponent to this component.

We also took the chance to use the baseUrl property we added earlier on as a prefix for the 'api/weatherforecast' endpoint to make it ready for both Development and Production environments.

The same thing must be done with the /src/app/fetch-data/fetch-data.component.html file, which contains the HTML template for the component. This time, we can just perform a copy and paste from the app.component.html file (replacing the existing code) since we have no class names to preserve. Here’s the updated code:

<h1 id="tableLabel">Weather forecast</h1>
<p>This component demonstrates fetching data from the server.</p>
<p *ngIf="!forecasts">Loading... Please refresh once the ASP.NET backend has started.</p>
<table *ngIf="forecasts">
<thead>
<tr>
<th>Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let forecast of forecasts">
<td>{{ forecast.date }}</td>
<td>{{ forecast.temperatureC }}</td>
<td>{{ forecast.temperatureF }}</td>
<td>{{ forecast.summary }}</td>
</tr>
</tbody>
</table>

Now that we’ve “moved” the data-fetching behavior to FetchDataComponent, we can finally update the AppComponent source code so that it can perform its new “backbone” job.

Here’s the updated /src/app/app.component.ts file:

import { Component } from '@angular/core';
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent {
 title = 'HealthCheck';
}

And here’s the corresponding /src/app/app.component.html modified file:

 <app-nav-menu></app-nav-menu>
<div class="container">
<router-outlet></router-outlet>
</div>

It’s worth noting that in order to add a reference to NavMenuComponent, we have to use the <app-nav-menu> tag, which matches the value of the selector property specified in the nav-menu.component.ts file.

Lastly, we need to move the table-related CSS rules from the /src/app/app.component.css file to the /src/app/fetch-data/fetch-data.component.css file, so that our sample weather forecast listing will preserve its minimalistic (yet relevant) look and feel.

Here are the affected rules:

tr:nth-child(even) {
 background: #F2F2F2;
}
tr:nth-child(odd) {
 background: #FFF;
}
th, td {
 padding-left: 1rem;
 padding-right: 1rem;
}
table {
 margin: 0 auto;
}

As expected, the updated AppComponent is just a container for NavMenuComponent and the <router-outlet> Angular elements.

Updating the test files

Now that we’ve moved the behavior of AppComponent (and the source code) to FetchDataComponent, the test defined in the app.component.spec.ts file that looks for the app’s title will fail; this can be easily tested by running Karma with the ng test command and viewing the outcome.

To fix that, we have two options:

	Remove the /src/app.component.spec.ts file

	Comment out the code for that test since we no longer need it

For the sake of simplicity, we’ll go with the latter option; just open the file, select all the content, and then comment it out using Visual Studio’s “Comment out” command (or the CTRL+K, C hotkey).

With this, all our components are ready. We just need to add the RouterModule to our Angular app to make everything work.

Updating the AppRoutingModule

The Angular RouterModule is an optional service that can be used to show a different component when the client URL changes. The component to display will be instantiated and shown within <router-outlet>, the tag we’ve just added to our HTML template file of AppComponent.

The RouterModule can be implemented within the AppModule or in a separate module; however, since using a dedicated module is considered a best practice (more on that later), the Angular template created by Visual Studio 2022 using the Angular CLI already follows that approach. We already have a RouterModule, which is located within the /src/app/app-routing.module.ts file. We just have to properly update it.

From Solution Explorer, navigate to the /src/app/ folder and open the app-routing.module.ts file. Then, modify it by adding the following highlighted lines of code:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'fetch-data', component: FetchDataComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Thanks to these newly added routes, our NavMenu component should now work as expected.

Finishing touches

We’re finally ready to test our new components, as well as our minimal navigation and routing system. However, before doing that, let’s spend a couple more minutes changing the ultra-minimalistic default HTML template of HomeComponent with a more satisfying welcome message.

Open the /src/app/home/home.component.html file and replace its entire contents with the following:

<h1>Greetings, stranger!</h1>
<p>This is what you get for messing up with ASP.NET and Angular.</p>

Save all the files, run the project in Debug mode, and get ready to see the following:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 3.8: Looking at our new home view

It still looks pretty plain and uninspired, but hey… it’s just the start of the journey, right?

Test run

Now we can perform our final test run to see if our new components – as well as the routing and navigation system – actually work. If we get something similar to what we can see in the previous screenshot, we can already see that the new AppComponent works since it shows NavComponent and HomeComponent.

We just have to click on the Fetch Data link at the top to check whether the navigation and routing system is working as well. If everything has been done properly, we should be able to see our new DataFetchComponent together with the retrieved API data, just like in the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 3.9: Our new FetchDataComponent

That’s about it for now. Rest assured, we can easily do better than that in terms of UI, UX, and overall features; we’ll greatly improve the look and feel of our sample apps in the following chapters, where we’ll start to use StyleSheets (which we haven’t even touched yet!), add new components, and so on. However, at least for the time being, we can be happy with what we did: understanding how easy it is to add components and update their content – and also how rapidly Visual Studio, ASP.NET, and Angular will react to our modifications.

Summary

In this chapter, we spent some valuable time exploring and understanding our sample project’s core components, how they work together, and their distinctive roles. For the sake of simplicity, we split the analysis into two parts: the .NET back-end ecosystem, where we inspected the ASP.NET Core Web API project (HealthCheck.Server), and the Angular front-end architecture, which was dedicated to the Angular project (healthcheck.client). We’ve seen how each project comes with its own configuration files, folder structure, naming conventions, and overall scope.

At the end of the day, we’ve met the end goal of this chapter and learned a fair number of useful things. We know the location and purpose of both server-side and client-side source code files. We are aware of most ASP.NET Core and Angular configuration settings and parameters. We also learned how to change these settings to meet our needs, such as the Web API routing endpoints, and insert new stuff, as we did with the Angular components and routing module.

Part of the chapter was dedicated to the Angular CLI; we’ve spent a good amount of time learning how to create new components following the Angular best practices. Such time was very well spent since now we know how to set up a new ASP.NET Core and Angular project without having to rely on the Visual Studio default templates or use a manual approach.

Last but not least, we also took the time to perform a quick test run to see whether we’re ready to hold our ground against what’s coming in upcoming chapters: setting up an improved request-response cycle, building our own controllers, defining additional routing strategies, and more.

Suggested topics

For further information, we recommend the following topics: separation of concerns, the single responsibility principle, JSON, web hosts, Kestrel, ASP.NET middleware, dependency injection, the Angular workspace, Jasmine, Karma, unit tests, server-side rendering (SSR), TypeScript, Angular architecture, the Angular initialization cycle, and the Angular Router module.

References

	Introduction to ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/

	Migration to ASP.NET Core in .NET 6: https://gist.github.com/davidfowl/0e0372c3c1d895c3ce195ba983b1e03d

	Angular: Setting Up the Local Environment and Workspace: https://angular.io/guide/setup-local

	Angular architecture overview: https://angular.io/guide/architecture

	Angular upgrade guide: https://update.angular.io/

	npmJS: https://docs.npmjs.com/files/package.json

	Yarn package manager: https://yarnpkg.com/

	TypeScript – modules: https://www.typescriptlang.org/docs/handbook/modules.html

	TypeScript – module resolution: https://www.typescriptlang.org/docs/handbook/module-resolution.html

	TypeScript configuration: https://angular.io/config/tsconfig

	TSLint: https://palantir.github.io/tslint/

	Angular AoT compiler: https://angular.io/guide/aot-compiler

	Karma: https://karma-runner.github.io/

	Jasmine: https://jasmine.github.io/

	Angular – testing: https://angular.io/guide/testing

	Strongly Typed Configuration Settings in ASP.NET Core: https://weblog.west-wind.com/posts/2016/may/23/strongly-typed-configuration-settings-in-aspnet-core

	Strongly Typed Configuration Settings in ASP.NET Core without IOptions<T>: https://www.strathweb.com/2016/09/strongly-typed-configuration-in-asp-net-core-without-ioptionst/

	Strongly Typed Configuration Settings in ASP.NET Core Part II: https://rimdev.io/strongly-typed-configuration-settings-in-asp-net-core-part-ii/

	Angular Development Server proxy settings: https://angular.io/guide/build#proxying-to-a-backend-server

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

4

Front-End and Back-End Interactions

Now that we have a minimalistic—yet fully working—Angular web app up and running and connected with our ASP.NET Core API, we can start to build some stuff. In this chapter, we’re going to learn the basics of client-side and server-side interactions: in other words, how the front-end (Angular) can fetch some relevant data from the back-end (ASP.NET Core) and display it on screen, in a readable fashion.

As a matter of fact, we should’ve already got the gist of how it works in Chapter 3, Looking Around, when we worked with Angular’s FetchDataComponent and ASP.NET Core’s WeatherForecastController.cs classes and files. The Angular component (front-end) pulls data from the ASP.NET controller (back-end) and then puts it on the browser screen (UI) for display.

However, controllers aren’t the only way for our ASP.NET Core back-end to serve data to the front-end; we can also serve static files, or use any other middleware designed to handle requests and output a response stream or content of some sort, as long as we add it to our application pipeline. Such a highly modular approach is one of the most relevant concepts of ASP.NET Core. In this chapter, we’ll make use of that by introducing (and playing with) a type of built-in middleware that has little or nothing to do with .NET controllers, although it is able to deal with requests and responses just like they do: HealthChecksMiddleware.

Here’s a quick breakdown of what we’re going to cover:

	Introducing ASP.NET Core health checks: What they are and how we can use them to learn some useful concepts about ASP.NET Core and Angular interactions

	HealthCheckMiddleware: How to properly implement it within our ASP.NET Core back-end, configure it within our web application’s pipeline, and output a JSON-structured message that can be used by our Angular app

	HealthCheckComponent: How to build an Angular component to fetch the HealthCheck structured data from the ASP.NET Core back-end and bring it all to the front-end in a human-readable fashion

	Restyling the UI: How to improve the look and feel of our Angular app using Angular Material, a user interface component library containing a lot of reusable and beautiful UI components

Are you ready? Let’s do this!

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_04/HealthCheck

Introducing ASP.NET Core health checks

We called our first project HealthCheck for a reason: the web app we’re about to build will act as a monitoring and reporting service that will check the health status of a target server—and/or its infrastructure—and show it on screen in real time.

In order to do that, we’re going to make good use of the Microsoft.AspNetCore.Diagnostics.HealthChecks package, a built-in feature of the ASP.NET Core framework first introduced in 2.2, refined and improved for the ASP.NET Core 3 release and still available up to the current .NET version. This package is designed to allow a monitoring service to check the status of another running service—for example, another web server—which is precisely what we’re about to do.

For additional information about ASP.NET Core health checks, we strongly suggest reading the official MS documentation at the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks.

Adding the HealthCheck middleware

The first thing we need to do is add the HealthChecks middleware to our web app. This can be done by opening the Program.cs file and adding the following lines:

var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddHealthChecks();
builder.Services.AddControllers();
// Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
builder.Services.AddSwaggerGen();
var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
app.UseHttpsRedirection();
app.UseAuthorization();
app.UseHealthChecks(new PathString("/api/health"));
app.MapControllers();
app.Run();

The /api/health parameter we passed to the UseHealthChecks middleware will create a server-side route for the health checks. It’s also worth noting that we added that middleware right before MapControllers, ensuring that our new route won’t be overridden by any controller that could share that same route in the future.

We can immediately check out the new route by doing the following:

	Press F5 so that our web application will run in debug mode.

	Navigate to the https://localhost:40443/api/health URL and hit Enter.

As soon as we do that, we should be able to see something like this:

[image: Immagine che contiene schermata, testo, software Descrizione generata automaticamente]
Figure 4.1: Checking our health check

As we can see, our system is Healthy; that’s rather obvious, since we have no checks defined yet.

How about adding one? That’s what we’re going to do in the next section.

Adding an Internet Control Message Protocol (ICMP) check

The first check we’re going to implement is one of the most popular ones: an Internet Control Message Protocol (ICMP) request check to an external host, also known as PING.

As you most likely already know, a PING request is a rather basic way to check the presence—and therefore the availability—of a server that we know we should be able to reach within a local area network (LAN) or wide area network (WAN) connection.

In a nutshell, it works in the following way: the machine that performs the PING sends one or more ICMP echo request packets to the target host and waits for a reply. If it receives one, it reports the round-trip time of the whole task; otherwise, it times out and reports a host not reachable error.

The host not reachable error can be due to a number of possible scenarios, as listed here:

	The target host is not available.

	The target host is available but actively refuses network communications of any kind.

	The target host is available and accepts incoming connections, but it has been configured to explicitly refuse ICMP requests and/or not send ICMP echo replies back.

	The target host is available and properly configured to accept ICMP requests and send echo replies back, but the connection is very slow or hindered by unknown reasons (performance, heavy load, and so on), so the round-trip time takes too long—or even times out.

As we can see, this is an ideal scenario for a health check; if we properly configure the target host to accept the PING and always answer it, we can definitely use it to determine whether the host is in a healthy status or not.

Possible outcomes

Now that we know the common scenarios behind a PING test request, we can put down a list of possible outcomes, as follows:

	Healthy: We can consider the host Healthy whenever the PING succeeds with no errors or timeouts.

	Degraded: We can consider the host Degraded whenever the PING succeeds but the round-trip takes too long.

	Unhealthy: We can consider the host Unhealthy whenever the PING fails—that is, the check times out before any reply.

Now that we’ve identified these three statuses, we just need to properly implement them within our health check.

Creating an ICMPHealthCheck class

The first thing we have to do is create a new ICMPHealthCheck.cs class in our HealthCheck.Server project’s root folder.

Once done, fill it with the following content:

using Microsoft.Extensions.Diagnostics.HealthChecks;
using System.Net.NetworkInformation;
namespace HealthCheck.Server
{
 public class ICMPHealthCheck : IHealthCheck
 {
 private readonly string Host = $"10.0.0.0";
 private readonly int HealthyRoundtripTime = 300;
 public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default)
 {
 try
 {
 using var ping = new Ping();
 var reply = await ping.SendPingAsync(Host);
 switch (reply.Status)
 {
 case IPStatus.Success:
 return (reply.RoundtripTime > HealthyRoundtripTime)
 ? HealthCheckResult.Degraded()
 : HealthCheckResult.Healthy();
 default:
 return HealthCheckResult.Unhealthy();
 }
 }
 catch (Exception e)
 {
 return HealthCheckResult.Unhealthy();
 }
 }
 }
}

As we can see, we implemented the IHealthCheck interface, since it’s the official .NET way to deal with health checks; such an interface requires a single async method—CheckHealthAsync—which we used to determine if the ICMP request was successful or not.

In the preceding code, the ping variable has been declared with the using keyword; this technique is called a using declaration and was introduced in C# version 8 as a convenient replacement for the using statements/blocks, reducing nesting and producing more readable code.

For further info regarding the using declaration feature, take a look at the following URL:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using

Those who want to use it are strongly advised to also read this great post by Steve Gordon (Microsoft MVP) to better understand how using declarations work under the hood:

https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations

Another great way to reduce nesting is using file-scoped namespace declarations, a new feature released with C# version 10, which won’t be covered in this book for reasons of space. For additional info about this enhancement, check out the following link:

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration

The code is very easy to understand and handles the three possible scenarios we defined in the previous section. Let’s go over what the host can be considered to be:

	Healthy, if the PING request gets a successful reply with a round-trip time of 300 ms or less

	Degraded, if the PING request gets a successful reply with a round-trip time greater than 300 ms

	Unhealthy, if the PING request fails or an Exception is thrown

There’s one final notice regarding the single line of code that we used to set the Host value:

private readonly string Host = $"10.0.0.0";

As we can see, we’ve set Host to a non-routable IP address—which might seem rather awkward. We did that for demonstration purposes so that we’ll be able to simulate an “unhealthy” scenario; we’re definitely going to change it later on.

That’s pretty much it. Our health check is ready to be tested—we just need to find a way to load it into our web application’s pipeline.

Adding the ICMPHealthCheck

In order to load our ICMP health check into the web application pipeline, we need to add it to the HealthChecks middleware. To do that, open the Program.cs class again and change the first line we previously added in the following way:

// ...existing code...
builder.Services.AddHealthChecks()
 .AddCheck<ICMPHealthCheck>("ICMP");
// ...existing code...

That’s all there is to it.

The // ...existing code... comment is just a way to tell us to leave the already-existing code as it is, without altering it. We’re going to use that pattern whenever we need to add a few lines of code to an existing block instead of rewriting the unmodified lines.

It’s worth noting that, since we added a reference to the ICMPHealthCheck class, which we’ve just created within the HealthCheck.Server namespace, we must add a reference to that namespace as well. Here, we’ll take the chance to use another handy C# 10 feature called global using; as the name suggests, this feature allows us to define some common using statements that will automatically be available for use within the entire project.

To do that, we just need to add the global keyword before the using statement that we want to make global. Since the HealthCheck.Server happens to be our API project’s namespace, it seems the perfect candidate for that.

Here’s the single line we need to add at the top of the Program.cs file:

global using HealthCheck.Server;

Now, we can hit F5 and try it out. Here’s what we should be able to see when visiting the /api/health endpoint:

[image: Immagine che contiene testo, numero, Carattere, schermata Descrizione generata automaticamente]
Figure 4.2: Checking our health check

As expected, the hardcoded ICMP request to 10.0.0.0 has failed; hence, we get the Unhealthy status. That’s great, right?

Well, actually, it’s not that great. Our health check does indeed work, but it comes with the following three major flaws:

	Hardcoded values: The Host and HealthyRoundtripTime variables should be passed as parameters so that we can set them programmatically.

	Uninformative response: Healthy and Unhealthy are not that great—we should find a way to have a custom (and better) output message instead.

	Untyped output: The current response is sent in plain text—if we want to fetch it with Angular, a JSON content type would definitely be better (and way more usable, as we’ll see in the Health checks in Angular section later on).

Let’s fix these issues, one at a time.

Improving the ICMPHealthCheck class

In this section, we’ll improve our ICMPHealthCheck class by adding the host and healthyRoundtripTime parameters, a custom outcome message for each possible status, and a JSON-structured output.

Adding parameters and response messages

Open the ICMPHealthCheck.cs class file and perform the following changes (added/modified lines are highlighted):

using Microsoft.Extensions.Diagnostics.HealthChecks;
using System.Net.NetworkInformation;
namespace HealthCheck.Server
{
 public class ICMPHealthCheck : IHealthCheck
 {
 private readonly string Host;
 private readonly int HealthyRoundtripTime;
 public ICMPHealthCheck(string host, int healthyRoundtripTime)
 {
 Host = host;
 HealthyRoundtripTime = healthyRoundtripTime;
 }
public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default)
 {
 try
 {
 using var ping = new Ping();
 var reply = await ping.SendPingAsync(Host);
 switch (reply.Status)
 {
 case IPStatus.Success:
 var msg =
 $"ICMP to {Host} took {reply.RoundtripTime} ms.";
 return (reply.RoundtripTime > HealthyRoundtripTime)
 ? HealthCheckResult.Degraded(msg)
 : HealthCheckResult.Healthy(msg);
default:
 var err =
 $"ICMP to {Host} failed: {reply.Status}";
 return HealthCheckResult.Unhealthy(err);
 }
 }
 catch (Exception e)
 {
 var err =
 $"ICMP failed: {e.Message}";
 return HealthCheckResult.Unhealthy(err);
 }
 }
 }
}

As we can see, we changed a couple of things, as follows:

	We added a constructor accepting the two parameters we’d like to set programmatically: host and healthyRoundtripTime. The old hardcoded variables are now set by the constructor upon initialization and then used within the class afterward (such as within the main method).

	We created various outcome messages containing the target host, the PING outcome, and the round-trip duration (or the runtime error), and we added them as parameters to the HealthCheckResult return objects.

In the preceding code, we’ve used string interpolation, a powerful text formatting feature released in C# version 6 to replace the previous string.Format approach. For further info regarding this feature, go to the following URL:

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation

That’s pretty much it. Now, we just need to set the host name and healthyRoundtripTime programmatically, since the old hardcoded defaults are now gone. In order to do that, we have to update our middleware setup in the Program.cs file.

Updating the middleware setup

Open the Program.cs file again and change the existing HealthChecksMiddleware implementation in the following way:

// ...existing code...
builder.Services.AddHealthChecks()
 .AddCheck("ICMP_01",
 new ICMPHealthCheck("www.ryadel.com", 100))
 .AddCheck("ICMP_02",
 new ICMPHealthCheck("www.google.com", 100))
 .AddCheck("ICMP_03",
 new ICMPHealthCheck($"www.{Guid.NewGuid():N}.com", 100));
// ...existing code...

Here we go: as we can see, another advantage of being able to programmatically configure the host is that we can add the ICMP health check multiple times—once for each host we’d like to actually check. In the preceding example, we’re taking the chance to test three different hosts: www.ryadel.com, www.google.com, and the same non-existing host we used before, which allows us to emulate an Unhealthy status as well as the Healthy ones.

Now, we could be tempted to hit F5 and try it out... However, if we were to do that, we would face a rather disappointing outcome, as shown in the following screenshot:

[image: Immagine che contiene testo, numero, Carattere, schermata Descrizione generata automaticamente]
Figure 4.3: Checking our health check

The reason for this is quite obvious: even if we’re running multiple checks, we’re still relying on the default outcome message, which is nothing more than a Boolean sum of the statuses returned by all the checked hosts. For that very reason, if at least one of them is Unhealthy, the whole check will be flagged as Unhealthy as well.

Luckily enough, we can avoid that sum—and get a much more granular output—by dealing with the third flaw of our ICMPHealthCheck: implementing a custom, JSON-structured output message.

Implementing a custom output message

To implement a custom output message, we need to override the HealthCheckOptions class. To do that, add a new CustomHealthCheckOptions.cs file to the project’s root folder and fill it with the following content:

using Microsoft.AspNetCore.Diagnostics.HealthChecks;
using System.Net.Mime;
using System.Text.Json;
namespace HealthCheck.Server
{
 public class CustomHealthCheckOptions : HealthCheckOptions
 {
 public CustomHealthCheckOptions() : base()
 {
 var jsonSerializerOptions = new JsonSerializerOptions()
 {
 WriteIndented = true
 };
 ResponseWriter = async (c, r) =>
 {
 c.Response.ContentType =
 MediaTypeNames.Application.Json;
 c.Response.StatusCode = StatusCodes.Status200OK;
 var result = JsonSerializer.Serialize(new
 {
 checks = r.Entries.Select(e => new
 {
 name = e.Key,
 responseTime =
 e.Value.Duration.TotalMilliseconds,
 status = e.Value.Status.ToString(),
 description = e.Value.Description
 }),
 totalStatus = r.Status,
 totalResponseTime =
 r.TotalDuration.TotalMilliseconds,
 }, jsonSerializerOptions);
 await c.Response.WriteAsync(result);
 };
 }
 }
}

The code is quite self-explanatory: we override the standard class—which outputs the one-word output we want to change—with our own custom class so that we can change its ResponseWriter property, in order to make it output whatever we want.

More specifically, we want to output a custom JSON-structured message containing a lot of useful stuff from each of our checks, listed here:

	name: The identifying string we provided while adding the check to the HealthChecks middleware within the Program.cs file: "ICMP_01", "ICMP_02", and so on

	responseTime: The whole duration of that single check

	status: The individual status of a check, not to be confused with the status of the whole HealthCheck—that is, the Boolean sum of all the inner checks’ statuses

	description: The custom informative message we configured earlier on when we refined the ICMPHealthCheck class

All these values will be properties of the array items contained in the JSON output: one for each check. It’s worth noting that the JSON file, in addition to that array, will also contain the following two additional properties:

	totalStatus: The Boolean sum of all the inner checks’ statuses—Unhealthy if there’s at least an Unhealthy host, Degraded if there’s at least a Degraded host, and Healthy otherwise

	totalResponseTime: The whole duration of all the checks

That’s a lot of useful information, right? We just have to configure our middleware to output them, instead of those one-word responses we’ve seen before.

About health check responses and HTTP status codes

Before going further, it’s worth noting that—in the preceding CustomHealthCheckOptions class—we set ResponseWriter's HTTP status code to a fixed StatusCodes.Status200OK. Is there a reason behind that?

As a matter of fact, there is, and it’s also quite an important one. The HealthChecks middleware’s default behavior returns either HTTP status code 200, if all the checks are OK (Healthy), or HTTP status code 503, if one or more checks are KO (Unhealthy). Since we’ve switched to a JSON-structured output, we don’t need the 503 code anymore, as it would most likely break our front-end client UI logic—unless properly handled. Therefore, for the sake of simplicity, we just forced an HTTP 200 response, regardless of the end result. We’ll find a way to properly emphasize the errors within the upcoming Angular UI.

Configuring the output message

Open the Program.cs file and change the following lines accordingly (the updated code is highlighted):

// ... existing code
app.UseHealthChecks(new PathString("/api/health"),
 new CustomHealthCheckOptions());
// ... existing code

Once done, we can finally hit F5 and properly test it out. This time, we won’t be disappointed by the outcome, as shown in the following screenshot:

[image: Immagine che contiene testo, software, schermo, Icona del computer Descrizione generata automaticamente]
Figure 4.4: A more detailed health check output message

That’s a pretty nice response, isn’t it?

Now, each and every check is properly documented, as well as the total outcome data, in a structured JSON object. This is just what we need to feed some Angular components that we can show on screen in a human-readable (and fashionable) way, which we’re just about to do, starting with the next section.

Health checks in Angular

It’s now time to build an Angular component that is capable of fetching and displaying the structured JSON data we managed to pull off in the previous sections.

As we know from Chapter 3, Looking Around, an Angular component is commonly made of four separate files, as follows:

	The component (.ts) file, written in TypeScript and containing the component class, together with all the module references, functions, variables, and so on

	The template (.html) file, written in HTML and extended with the Angular template syntax, which defines the UI layout architecture

	The style (.css) file, written in CSS and containing the Cascading Style Sheets rules and definitions for styling the UI

	The test (.spec.ts) file, written in TypeScript and containing the tests that will be run by Karma

Although the four-file approach is arguably the most practical one, the only required file is the component one, as both the template and the style files could also be embedded as inline elements within the component file. The choice between using separate files or going inline is a matter of taste; however, since the Angular CLI adopts the four-file approach, we strongly suggest following this good practice. Such an approach will also enforce the separation of concerns embodied within the component/template duality featured by Angular.

Let’s now use the Angular CLI to generate the first three files for a new HealthCheck component (skipping the test file), just like we did in Chapter 3, Looking Around.

Creating the Angular component

Open a command prompt, navigate through the /src/app folder of our Angular project, and type the following command:

> ng generate component HealthCheck --module=app --skip-tests

As always, the CLI will create the component files and add the required references to the AppModule for us.

It’s worth noting that, since our app has multiple modules (AppModule and AppRoutingModule), every time we create a new module, we need to specify which module to add the component’s references to using the --module switch (as explained in Chapter 3, Looking Around).

As soon as the CLI generates the new component files, we can fill them with the following content.

health-check.component.ts

Here’s the /src/app/health-check/health-check.component.ts source code:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from '../../environments/environment';
@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styleUrls: ['./health-check.component.css']
})
export class HealthCheckComponent implements OnInit {
 public result?: Result;
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.http.get<Result>(environment.baseUrl + 'api/health').subscribe(result => {
 this.result = result;
 }, error => console.error(error));
 }
}
interface Result {
 checks: Check[];
 totalStatus: string;
 totalResponseTime: number;
}
interface Check {
 name: string;
 responseTime: number;
 status: string;
 description: string;
}

If you’re curious about what we did there, here’s a breakdown of the most relevant stuff:

	At the start of the file, we made sure to import all the Angular directives, pipes, services, and components—in one word, modules—that we need throughout the whole class.

	In the class declaration, we’ve explicitly implemented the OnInit interface by adding the implements OnInit instruction to add type-safety; this way, we won’t risk typing or spelling mistakes within the ngOnInit lifecycle hook.

	In the component’s constructor, we instantiated the HttpClient service using dependency injection (DI).

	Last but not least, we defined two interfaces to deal with the JSON request we’re expecting to receive from the HealthChecksMiddleware, Result and Check, which we designed to host the whole JSON resultant object and each element of the internal array, respectively.

Before going further, it could be useful to spend some valuable time expanding on some very important topics we’ve just covered when implementing the preceding code, as follows:

	Imports and modules

	Dependency injection

	ngOnInit (and other lifecycle hooks)

	Constructor

	HttpClient

	Observables

	Interfaces

Since we’re going to see them all throughout this book, it’s definitely advisable to review them now.

Imports and modules

The static import statement that we used multiple times in the preceding HealthCheckComponent is used to import bindings that are exported by other JavaScript modules.

The concept of working with modules started with ECMAScript 2015 and has been thoroughly adopted by TypeScript and, therefore, Angular. A module is basically a collection of variables, functions, classes, and so on, grouped within a class; each module is executed within its own scope, not in the global scope, meaning that all the elements declared within it are not visible from the outside unless they are explicitly exported, using the export statement.

Conversely, to consume a variable, function, class, interface, and so on contained (and exported) within a module, that module has to be imported using the import statement. This is quite similar to what we do with namespaces in most programming languages (C# has using statements, for example).

As a matter of fact, all the Angular directives, pipes, services, and components are also packed into collections of JavaScript modules, which we have to import into any TypeScript class whenever we want to use them. These collections are basically libraries of modules; we can easily recognize them, since their name begins with the @angular prefix. Our packages.json file (the NPM package file), which we’ve seen in previous chapters, contains most of them.

To learn more about ECMAScript modules and better understand the module resolution strategy in TypeScript, check out the following URLs:

	TypeScript modules: https://www.typescriptlang.org/docs/handbook/modules.html

	Module resolution: https://www.typescriptlang.org/docs/handbook/module-resolution.html

JavaScript modules should not be confused with Angular’s own modularity system, which is based on the @NgModule decorator. As we already know from previous chapters, Angular’s @NgModule are building blocks—that is, containers for a cohesive block of code dedicated to an application domain, a workflow, or a common feature set. We know from the aforementioned chapters that each Angular app has at least one NgModule class, called the root module, which is conventionally named AppModule and resides in the app.module.ts file in the application root; additional NgModules will be added in the upcoming chapters.

Unfortunately, the JavaScript module system and the Angular NgModule system use a rather similar vocabulary (import versus imports, export versus exports), which might lead to confusion—especially considering that Angular apps require the developer to use both of them at the same time (and often in the same class file). Luckily enough, although being forced to intertwine these two systems might be a bit tricky at first, eventually, we’ll become familiar with the different contexts in which they are used.

Here’s a sample screenshot, taken from our HealthCheck app’s AppModule class file, which should help you distinguish between the two different systems:

[image: Immagine che contiene testo, schermata, Carattere, calligrafia Descrizione generata automaticamente]
Figure 4.5: Inspecting the AppModule class file

For additional information regarding the Angular module system and the NgModule decorator, check out the following URLs:

	NgModule: https://angular.io/guide/ngmodules

	Angular architecture—NgModules and JavaScript modules: https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules

Dependency injection (DI)

We’ve talked about DI a number of times already, and with good reason, because it’s an important application design pattern for both ASP.NET Core and Angular, with both frameworks making extensive use of it to increase their efficiency and modularity.

To explain what DI actually is, we must first talk about what dependencies are in a class; these can be defined as services or objects that a class needs to instantiate into variables or properties, in order to perform one or more tasks.

In a classic coding pattern, those dependencies are instantiated on the fly within the class itself—for example, during its initialization phase, such as within the constructor method. Here’s a typical example of that:

public MyClass() {
 var myElement = new Element();
 myElement.doStuff();
}

In the preceding example, the myElement variable is an object instance of the Element type, and also a (local) dependency of MyClass. As we can see, it gets instantiated in the constructor because we most likely need to use it there. From there, we can either use it as a local variable (and let it die at the end of the constructor’s scope) or assign it to a class property to further extend its life span and scope.

DI is an alternative software design pattern in which a class asks for dependencies from external sources rather than creating them itself. To better understand this concept, let’s try to rewrite the same code as before with a DI approach, like this:

public MyClass(Element myElement) {
 myElement.doStuff();
}

As we can see, there’s no need to instantiate the myElement variable because this task is already handled by the dependency injector—external code that is responsible for creating the injectable objects and injecting them into the classes.

The whole DI coding pattern is based upon the concept of Inversion of Control (IoC), resolving dependencies. Such a concept revolves around the basic idea that, formally, if ObjectA depends on ObjectB, then ObjectA must not create or import ObjectB directly, but provide a way to inject ObjectB instead. In the preceding code block example, ObjectA is obviously MyClass, while ObjectB is the myElement instance.

For additional information about the DI software design pattern, check out the following links:

	DI in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

	DI in Angular: https://angular.io/guide/dependency-injection

In Angular, the DI framework provides declared dependencies to a class when that class is instantiated.

In the preceding HealthCheckComponent class, we used DI in the component’s constructor method to inject an HttpClient service instance; as we can see, we also took the chance to assign the private access modifier to both of them. Thanks to that modifier, those variables will be accessible through the whole component class.

As per Angular conventions, a parameter injected without an access modifier can only be accessed within the constructor; conversely, if it gets an access modifier such as private or public, it will be defined as a class member, hence changing its scope to the class. Such a technique is called variable scoping, and we’re going to use it a lot in our Angular components from now on.

ngOnInit (and other lifecycle hooks)

The ngOnInit method that we used in the HealthCheckComponent class is one of the component’s lifecycle hook methods, in this section, we’ll try to shed some light on them, since we’re going to use them a lot throughout this book.

Each Angular component has a lifecycle, which is managed by Angular. Each time a user visits a view within our app, the Angular framework creates and renders the required components (and directives) along with their children, reacts to their changes whenever the user interacts with them, and eventually destroys and removes them from the Document Object Model (DOM) when the user navigates elsewhere. All these “key moments” trigger some lifecycle hook methods that Angular exposes to the developers so that they can perform something when each one of them actually occurs.

Here’s a list of the available hooks, in order of execution (when possible, since some of them are called multiple times during the component’s lifecycle):

	ngOnChanges(): Responds when Angular (re)sets data-bound input properties. The method receives a SimpleChanges object of current and previous property values. Called before ngOnInit() and whenever one or more data-bound input properties changes.

	ngOnInit(): Initializes the directive/component after Angular first displays the data-bound properties and sets the directive/component’s input properties. Called once, after the first ngOnChanges() method.

	ngDoCheck(): Detects and acts upon changes that Angular can’t, or won’t, detect on its own. Called during every change detection run, immediately after ngOnChanges() and ngOnInit().

	ngAfterContentInit(): Responds after Angular projects external content into the component’s view/the view that a directive is in. Called once after the first ngDoCheck() method.

	ngAfterContentChecked(): Responds after Angular checks the content projected into the directive/component. Called after the ngAfterContentInit() method and every subsequent ngDoCheck() method.

	ngAfterViewInit(): Responds after Angular initializes the component’s views and child views/the view that a directive is in. Called once after the first ngAfterContentChecked() method.

	ngAfterViewChecked(): Responds after Angular checks the component’s views and child views/the view that a directive is in. Called after the ngAfterViewInit() method and every subsequent ngAfterContentChecked() method.

	ngOnDestroy(): Cleans up just before Angular destroys the directive/component. Unsubscribes Observables and detaches the event handlers to avoid memory leaks. Called just before Angular destroys the directive/component.

The preceding lifecycle hook methods are available for all Angular components and directives. To make use of them, we can just add them to our component class—which is precisely what we did in the preceding HealthCheckComponent.

Now that we have understood the role of ngOnInit(), we should take a moment to explain why we put the HttpClient source code in the ngOnInit() lifecycle hook method instead of using the component’s constructor() method; shouldn’t we have used that instead?

The next section should greatly help us to understand the reason for such a choice.

Constructor

As you most likely already know, all TypeScript classes have a constructor() method that will be called whenever we create an instance of that class: since TypeScript is, in every possible way, a superset of JavaScript, any TypeScript constructor() method will be transpiled into a JavaScript constructor() function.

The following code block shows an example of a TypeScript class:

class MyClass() {
 constructor() {
 console.log("MyClass has been instantiated");
 }
}

This will be transpiled into the following JavaScript function:

function MyClass() {
 console.log("MyClass has been instantiated");
}

If we omit the constructor in TypeScript, the JavaScript transpiled function will be empty; however, whenever the framework needs to instantiate it, it will still call it in the following way, regardless of whether it has the constructor or not:

var myClassInstance = new MyClass();

Understanding this is very important because it greatly helps us to understand the difference between the component’s constructor() method and its ngOnInit() lifecycle hook, and it’s a huge difference, at least from the perspective of the component initialization phase.

The whole Angular Bootstrap process can be split into two major (and subsequent) stages:

	Instantiating the components

	Performing change detection

As we can easily guess, the constructor() method is called during the former phase, while all the lifecycle hooks—including the ngOnInit() method—are called throughout the latter.

If we look at these methods from this perspective, it’s pretty easy to understand the following key concepts:

	If we need to create or inject some dependencies into an Angular component, we should use the constructor() method; as a matter of fact, this is also the only way we can do that, since the constructor is the only method that gets called in the context of the Angular injector.

	Conversely, whenever we need to perform any component initialization and/or update task—such as performing an HTTP request or updating the DOM—we should definitely do that by using one of the lifecycle hooks.

The ngOnInit() method, as its name implies, is often a great choice for the component’s initialization tasks, since it happens right after the directive’s and/or component’s input properties are set. That’s why we have used this to implement our HTTP request, using the Angular built-in HttpClient service.

HttpClient

Being able to efficiently send and receive JSON data from our ASP.NET Core controllers is probably the most important requirement for our single-page application (SPA). We chose to do that using the Angular HttpClient service, first introduced in Angular 4.3.0-RC.0, which is among the best resources that the framework can provide to get the job done. For this very reason, we will use it a lot throughout this book; however, before doing that, it might be advisable to properly understand what it is, why it is better than the former implementation, and how to properly implement it.

The new HttpClient service was introduced in July 2017 as an improved version of the former Angular HTTP client API, also known as @angular/http, or, simply, HTTP. Instead of replacing the old version in the @angular/http package, the Angular development team has put the new classes in a separate package—@angular/common/http. They chose to do that to preserve the backward compatibility with the existing code bases, also ensuring a slow, yet steady, migration to the new API.

Those who used the old Angular HTTP service class at least once will most likely remember its main limitations, listed here:

	JSON was not enabled by default, forcing the developers to explicitly set it within the request headers—and JSON.parse/JSON.stringify the data—when working with RESTful APIs.

	There was no easy way to access the HTTP request/response pipeline, thus preventing the developer from intercepting or altering the request and/or response calls after they were issued or received by using some ugly and pattern-breaking hacks. As a matter of fact, extensions and wrapper classes were basically the only way to customize the service, at least on a global scale.

	There was no native strong-typing for request and response objects, although that could be addressed by casting JSON as interfaces as a workaround.

The great news is that the new HttpClient does all of this and much more; other features include testability support and better error handling, via APIs entirely based on Observables.

It’s worth noting that putting the HttpClient service within the component itself is not good practice because it will often lead to unnecessary code repetition among the various components that need to perform HTTP calls and handle their results. This is a known issue that greatly affects production-level apps, which will likely require post-processing of the received data, handling errors, adding retry logic to deal with intermittent connectivity, and so on.

To better deal with those scenarios, it’s strongly advisable to separate the data access logic and the data presentation role by encapsulating the former in a separate service, which can then be injected into all the components that require it, in a standardized and centralized way. We’ll talk more about that in Chapter 8, Code Tweaks and Data Services, where we’ll eventually replace multiple HttpClient implementations and centralize their source code within a couple of data services.

Observables

Observables are a powerful feature for managing async data; they are the backbone of the ReactiveX JavaScript (RxJS) library, which is one of Angular’s required dependencies. Those who are familiar with ES6 Promises can think of them as an improved version of that approach.

An observable can be configured to send literal values, structured values, messages, and events, either synchronously or asynchronously. The values can be received by subscribing to the observable itself using the subscribe method hook, meaning that the whole data flow is handled within it—until we programmatically choose to unsubscribe. The great thing about this approach is that, regardless of the chosen approach (sync or async), streaming frequency, and data type, the programming interface for listening to values and stopping listening is the same.

The great advantages of observables are the reason why Angular makes extensive use of them when dealing with data. If we take a good look at our HealthCheckComponent source code, we can see how we can use them as well when our HttpClient service fetches data from the server and stores the result in the this.result local variable. Such a task is performed by calling two consecutive methods: get<Result>() and subscribe().

Let’s try to summarize what they do, as follows:

	get<Result>(): As the name suggests, this method issues a standard HTTP request to our ASP.NET Core HealthChecks middleware to fetch the resulting JSON response object. This method needs a URL parameter, which we create on the fly by adding the health-check route (the same string that we set early on within the Program.cs file) to the base Web API URL.

	subscribe(): This method invokes the observable returned by the get call, which will execute two very different actions right after a result and/or in case of an error. Needless to say, all this will be done asynchronously, meaning that the app won’t wait for the result and will keep executing the rest of the code.

Those who want to get additional information can take a look at the following URLs, taken from the RxJS official documentation:

	ReactiveX library—Observables guide: http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html

	Angular.io—Observables guide: https://angular.io/guide/observables

It’s very important to understand that we’re only scratching the surface of what an observable can do. However, this is all we need for now; we’ll have the chance to talk more about them later on.

Interfaces

Now that we know how the Angular HttpClient service works, we have every right to ask ourselves a couple of questions: why are we even using these interfaces? Can’t we just use the raw JSON data sent by the ASP.NET Core HealthChecks middleware that we defined early on, consuming them as anonymous JavaScript objects?

Theoretically speaking, we can, just as we can output raw JSON from the controllers, instead of creating all the classes as we did instead. However, in a well-written app, we should always resist the temptation to handle raw JSON data and/or to use anonymous objects, for a number of good reasons:

	We have chosen TypeScript over JavaScript because we want to work with type definitions: Anonymous objects and properties are the exact opposite; they lead to the JavaScript way of doing things, which is something we wanted to avoid in the first place.

	Anonymous objects (and their properties) are not easy to validate: We don’t want our data items to be error-prone or forced to deal with missing properties.

	Anonymous objects are hardly reusable: In other words, they won’t benefit from many handy Angular features—such as object mapping—that require our objects to be actual instances of an interface and/or a type.

The first two arguments are very important, especially if we’re aiming for a production-ready application; no matter how easy our development task might seem at first, we should never think that we can afford to lose that level of control over our application’s source code.

The third reason is also crucial, as long as we want to use Angular to its full extent. If that’s the case, using an undefined array of properties—such as raw JSON data—is basically out of the question; conversely, using a structured TypeScript interface is arguably the most lightweight way to work with structured JSON data in a strongly typed fashion.

It’s worth noting that we’ve not added the export statement to our interface; we did that on purpose, since we’re only going to use this within the HealthCheckComponent class. Should we need to change this behavior in the future—for example, to create an external data service—we’ll have to add this statement (and, arguably, move each one of them into a separate file) to enable us to import these interfaces into other classes.

health-check.component.html

Here’s the /src/app/health-check/health-check.component.html source code:

<h1>Health Check</h1>
<p>Here are the results of our health check:</p>
<p *ngIf="!result">Loading...</p>
<table class='table table-striped' aria-labelledby="tableLabel" *ngIf="result">
<thead>
<tr>
<th>Name</th>
<th>Response Time</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let check of result.checks">
<td>{{ check.name }}</td>
<td>{{ check.responseTime }}</td>
<td class="status {{ check.status }}">{{ check.status }}</td>
<td>{{ check.description }}</td>
</tr>
</tbody>
</table>

As we already know from Chapter 3, Looking Around, the template part of our Angular component is basically an HTML page, containing a table with some Angular directive. Before moving on, let’s have a closer look, as follows:

	ngIf: This is a structural directive that conditionally includes the container HTML element, based on the Boolean expression value specified after the equals (=) sign. When such an expression evaluates to true, Angular renders the element; otherwise, it doesn’t. It can be chained with an else block that—if present—will be shown when the expression evaluates to false or null. In the preceding code block, we use the ngIf directive within the <table> element so that it only appears when the result internal variable (which we defined in the component class earlier on) stops being undefined, which will happen after the data has been fetched from the server.

	ngFor: Another structural directive that renders a template for each item contained in a given collection. The directive is placed on an element, which becomes the parent of the cloned templates. In the preceding code block, we use it inside the main <table> element to create and show a <tr> element (a row) for each check item within the result.checks array.

	{{ check.name }}, {{ check.responseTime }}, and so on: These are called interpolations and can be used to incorporate calculated strings into the text between HTML element tags and/or within attribute assignments. In other words, we can use them as placeholders for our class variables’ property values. As we can see, the interpolation default delimiters are the double curly braces, {{ and }}.

To understand more about ngIf, ngFor, interpolations, and other Angular UI fundamentals, we strongly suggest taking a look at the official documentation:

	Displaying data: https://angular.io/guide/displaying-data

	Template syntax: https://angular.io/guide/template-syntax

	Structural directives: https://angular.io/guide/structural-directives

health-check.component.css

Here’s the /src/app/health-check/health-check.component.css source code:

table {
 margin: 0 auto;
}
.status {
 font-weight: bold;
}
.Healthy {
 color: green;
}
.Degraded {
 color: orange;
}
.Unhealthy {
 color: red;
}

There’s not much to note here—just some vanilla CSS to style out the component template. Notice how we played a bit with the styling of the table cell, which will contain the status of the various checks. It’s strongly advisable to highlight them as much as we can, so we made them bold and with a color matching the status type: green for Healthy, orange for Degraded, and red for Unhealthy.

Due to space limitations, we won’t be able to talk much about CSS styling in this book; we will just take it for granted that the average web programmer knows how to handle the simple definitions, selectors, and styling rules we will use in our examples.

Those who want (or need) to understand more about CSS and CSS3 are encouraged to take a look at this great online tutorial: https://developer.mozilla.org/en-US/docs/Web/CSS.

A word on Angular component styling

As a matter of fact, Angular gives us at least two ways to define custom CSS rules for our components:

	Setting them within a styles property in the component metadata

	Loading styles from external CSS files by adding a styleUrls property in the component metadata

Both of the preceding approaches rely upon properties that need to be added to the component’s @Component decorator; the latter is the one used by the default template we reviewed back in Chapter 3, Looking Around, and is preferable in most cases, since it allows us to separate the HTML structure from the CSS styling.

If we wanted to migrate to the former, here’s how we should set the styles property instead:

@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styles: ['
 .status { font-weight:bold; }
 .Healthy { color: green; }
 .Degraded { color: orange; }
 .Unhealthy { color: red; }
 ']
})

The only real advantage of such an approach is that it doesn’t need the addition of a separate CSS file, which could make it viable enough for small and lightweight components that require little styling: that said, in the vast majority of cases, the styleUrls property is definitely the way to go.

It goes without saying that we’ve only scratched the surface of a huge and complex topic; however, for obvious reasons of space, we won’t go much further than this for the rest of the book.

Those who want to know more about component styling are strongly encouraged to take a look at the Angular official guide: https://angular.io/guide/component-styles.

Now that our component is ready, we need to properly add it to our Angular app.

Adding the component to the Angular app

Since we’ve generated the component using the Angular CLI, we don’t need to update the app.module.ts file; all the required changes have been automatically performed by the CLI.

However, if we want our new component to be reachable to our users within our Angular app, we need to make some minimal changes to the following files:

	app-routing.module.ts

	nav-menu.component.ts

	nav-menu.component.html

Let’s get this done.

AppRoutingModule

Since we have a dedicated AppRoutingModule to handle routing, we need to update it by adding the new routing entry so that our users will be able to navigate to that page.

Open the /src/app/app-routing.module.ts file and add the following highlighted lines:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { FetchDataComponent } from './fetch-data/fetch-data.component';
import { HealthCheckComponent } from './health-check/health-check.component';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'fetch-data', component: FetchDataComponent },
 { path: 'health-check', component: HealthCheckComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

What we did here is not hard to understand: we’ve added a dedicated health-check route that will handle the navigation to our new component. Once done, we just need to add it to our NavMenuComponent so that our users will be able to see and use it within the app’s UI, which is what we’ll do now.

NavMenuComponent

Adding our new component navigation path to RoutingModule was a required step to make sure our users are able to reach it; however, we also need to add a link for our users to click on. Since NavMenuComponent is the component that handles the navigation user interface, we need to perform some stuff there as well.

Open the /src/app/nav-menu/nav-menu.component.html file and add the following highlighted lines:

<header>
<nav>
<a [routerLink]="['/']">Home
 |
 <a [routerLink]="['/fetch-data']">Fetch Data
 |
 <a [routerLink]="['/health-check']">Health Check
</nav>
</header>

Now that our new component has been added to our Angular app, we just need to test it out.

Testing it out

To see our new HealthCheckComponent in all of its glory, we just need to do the following:

	Hit F5 to launch the project in debug mode.

	When the home view is done loading, click on the new Health Check link in the top-left navigation menu.

If we did everything correctly, the browser should load the new Health Check view, which should look just like the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 4.6: Our new HealthCheckComponent

It definitely seems like we did it!

Our health check is up and running, proudly showing us the results of the three ICMP requests we set up within our ASP.NET Core’s HealthChecksMiddleware.

That said, we must admit that the look and feel of the table are not that great. And the rest of the app doesn’t look any better. The fact that we’re barely using any styling is starting to take its toll in terms of the visual experience.

For this reason, before moving forward, it might be useful to spend some valuable time addressing such issues for good. Let’s be clear—we’re not going to turn our “minimalist” HTML templates into a jaw-dropping layout; we’ll just add some minor UI tweaks with the help of a free, open source, and well-known UI component framework.

Restyling the UI

You might think that the framework we’re referring to is Bootstrap, since it’s one of the most used choices when building responsive, mobile-first front-end applications. However, we’re not going to use it; we’ll opt for Angular Material instead, since it natively integrates with most Angular apps, provides a wide set of UI components, and gives a great look and feel, possibly even better than Bootstrap.

Introducing Angular Material

Angular Material is a UI component library that implements Material Design in Angular. As you most likely already know, Material Design is a UI design language that Google developed in 2014, which focuses on using grid-based layouts, responsive animations, transitions, padding, and depth effects such as lighting and shadows.

Material Design was introduced by the Google designer Matías Duarte on June 25, 2014, at the 2014 Google I/O conference. To make UI designers familiarize themselves with its core concepts, he explained that “unlike real paper, our digital material can expand and reform intelligently. Material has physical surfaces and edges. Seams and shadows provide meaning about what you can touch.”

The main purpose of Material Design is to create a new UI language combining principles of good design with technical and scientific innovation, providing a consistent user experience across not only all Google platforms and applications but also any other web applications seeking to adopt such concepts. The language was revamped in 2018, providing more flexibility and advanced customization features based on themes.

Since 2020, Material Design is used on almost all Google web applications and tools—including Gmail, YouTube, Google Drive, Google Docs, Sheets, Slides, Google Maps, and all of the Google Play-branded applications, as well as most Android and Google OS UI elements. Such wide adoption also includes Angular, which has been provided with a dedicated NPM package that can be added to any Angular-based project to implement Material Design into any Angular app; this package is called @angular/material and includes the native UI elements, the Component Dev Kit (CDK), a set of animations, and other useful stuff.

Installing Angular Material

Installing Angular Material is a rather easy process; the best thing is to follow the official instructions from the following URL:

https://material.angular.io/guide/getting-started

Which is what we’ll do right now.

Let’s start by opening a command prompt window; once done, navigate to the Angular project’s root folder—just like we do when we add a new component—and type the following command:

ng add @angular/material@17.0.3

The Angular Material installation wizard will start, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere Descrizione generata automaticamente]
Figure 4.7: Installing Angular Material using the CLI

The Angular CLI will automatically find the most suitable/compatible version, depending on the version of the CLI itself. That said, it’s strongly advisable to use the version used within this book.

The wizard will ask you to do the following:

	Choose a prebuilt theme name: Indigo/Pink

	Set up global Angular Material typography styles? Yes

	Include the Angular animations module? Include and enable animations

As a matter of fact, we’re free to choose any default theme and opt out of the browser animations if we don’t want them; however, adding the global typography styles is highly recommended, since we don’t have any additional CSS frameworks—and the default browser typography is not great.

Here’s what the wizard will do to our Angular app:

	Add the required NPM packages and dependencies to the package.json file: @angular/material and @angular/cdk.

	Add the BrowserAnimationModule to the /src/app/app.module.ts file (if we have enabled browser animations).

	Add the Roboto font and the Material Design icon set to the /src/index.html file.

	Add the mat-typography CSS class to the <body> element of the/src/index.html file.

	Add some basic styling to the /src/style.css files.

Once Angular Material has been installed, we can start restyling our components.

For additional info about Angular Material, its setup process, and a list of supported features, check out the following links:

https://material.angular.io/

https://material.angular.io/guide/getting-started

Adding a MatToolbar

The first component we’ll revamp is the NavMenuComponent, which doesn’t look that great. More precisely, we’ll replace its basic HTML template with an Angular Material native component specifically designed to host navigation menus: the MatToolbar. To install it, we need to perform the following tasks:

	Add the required references to the AppModule class.

	Update the NavMenuComponent's HTML template accordingly.

Let’s do this.

Updating the AppModule

Open the /src/app/app.module.ts file and add the following highlighted lines just below the already existing AppRoutingModule import statement:

import { AppRoutingModule } from './app-routing.module';
import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';

Then, add the following highlighted lines at the end of the @NgModule's imports array:

 imports: [
 BrowserModule,
 HttpClientModule,
 AppRoutingModule,
 BrowserAnimationsModule,
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
]

As we can see, we’ve added three Angular Material modules:

	MatButtonModule, which adds supports for button components

	MatIconModule, which allows the use of material icons

	MatToolbarModule, the main component we want to add

We’re going to use all three of them to revamp our NavMenuComponent template file.

Updating the NavMenuComponent HTML template

Open the /src/app/nav-menu/nav-menu.component.html file and replace all the existing content with the following code:

<header>
<mat-toolbar color="primary">
<button mat-icon-button [routerLink]="['/']">
<mat-icon>
 home
 </mat-icon>
</button>
<a mat-flat-button color="primary" [routerLink]="['/fetch-data']">
 Fetch Data

<a mat-flat-button color="primary" [routerLink]="['/health-check']">
 Health Check

</mat-toolbar>
</header>

As we can see, we’ve replaced our previous hand-made implementation—which was based on a plain <nav> HTML element—with a new one relying upon the three modules we’ve just added:

	The Angular Material module syntax is quite simple to understand; each component has its own tag—for example, the whole toolbar is defined by the <mat-toolbar> tag.

	These components can be styled using standard CSS classes or custom attribute directives, a specific kind of directive specifically designed to change the appearance or behavior of DOM elements and Angular components—for example, the menu links are styled with the mat-flat-button directive, which applies some CSS classes to the <a> element itself to make it look like a button.

The official documentation of the Angular Material modules that we’ve used here are available at the following URLs:

https://material.angular.io/components/button/overview

https://material.angular.io/components/icon/overview

https://material.angular.io/components/toolbar/overview

To read more about Angular’s attribute directives, check out the following URL: https://angular.io/guide/attribute-directives.

First test run

Let’s take a small break from coding and styling to see what we just did. Press F5 to launch our project(s) in debug mode and see if our new top-level navigation menu looks better than before.

If you can’t see the updated Angular app after hitting F5, you can try to manually close all the console windows (including the one where ng serve is running) and then launch the projects again.

If we did everything correctly, we should see something like in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Carattere Descrizione generata automaticamente]
Figure 4.8: Our new top-level navigation menu using Angular Material’s MatToolbar component

Not bad at all! Maybe a bit of padding applied to the content below the menu would make it look even better; let’s quickly add it before moving on.

Open the /src/app/app.component.css file and append the following CSS rule to the existing content:

.container {
 padding: 10px;
}

This will create a small space between the content and the menu, as well as between the content and the external borders of the page.

Now, we can continue styling our other components.

Playing with (S)CSS

The next thing we are about to do is improve the look and feel of our HTML tables; we currently have two of them, one in the DataFetchComponent—which we moved there from AppComponent a while ago—and another one in the HealthCheckComponent.

However, before doing that, we’re going to take the chance to replace our existing CSS files with SCSS files, enabling us to use the extended CSS syntax provided by the powerful Sass preprocessor.

Wait a minute. What is Sass?

If you feel the urge to ask this question, read the following section; if you already know what we’re talking about, you might as well skip it, since you probably already know the story.

Introducing Sass

If you’ve worked with style sheets within the last few years, there’s no chance you haven’t heard of Sass; however, for the sake of those who haven’t, let’s spend a bit of time talking about it.

Before getting to that though, we must briefly introduce the concept of style sheets.

This section is mostly aimed at those who have never used Sass before. If you have some experience with Sass already or feel like you don’t need to know anything else about why we’ll use it, you might as well skip it entirely and jump to the next section: Replacing CSS with Sass.

A brief history of CSS

Style sheet language, also known as style language, is a programming language used to define the presentation layer’s UI design rules of a structured document. We can think of it as a skin or a theme that we can apply to a logical item (the structured document) to change its appearance. For example, we can make it look blue, red, or yellow; we can make the characters bigger or smaller and thinner or wider; we can change the text spacing, alignment, and flow; and so on.

Using dedicated style sheet languages gives developers the chance to separate the presentation layer’s code and structure (respectively, JavaScript and HTML) from the UI design rules, thus enforcing the Separation of Concerns (SoC) principle within the presentation layer itself.

When it comes to web pages, web applications, and anything else that mostly uses HTML, XHTML, XML, and other markup language-based documents, the most important style sheet language undoubtedly is CSS.

It was December 17, 1996, when the World Wide Web Consortium (W3C) released the official W3C CSS recommendation for the style sheet language that would be known as CSS1. CSS2 came less than two years later (May 1998), while its revised version, CSS2.1, took considerably more time (June 2011).

Starting from CSS3, things started to become more complex, since the W3C ditched the single, monolithic specification approach by splitting it into separate documents called modules, each one of them following its very own publishing, acceptance, and recommendation history. Starting in 2012, with four of its modules (media queries, namespaces, selectors, and color) being published as formal recommendations and with full CSS2.1 backward compatibility, CSS3 quickly became the most adopted style sheet language standard for the development of new websites.

CSS code sample

Regardless of its version, each one adding new features while maintaining backward compatibility with the previous one(s), CSS sticks to the following syntax:

<selector> [sub-selector] [sub-sub-selector] {
 <property>: <value>;
 <another-property>: <value>;
 <yet-another-property>: <value>;
 /* ... and so on... */
}

This translates as follows:

.container {
 padding: 5px 10px;
}

We saw this code a short while ago; it’s the container class we just added in the /src/app/app.component.css file to apply some padding to our app’s content.

That class basically says that any HTML element with the container class assigned will have a padding of 5 px (top and bottom) and 10 px (left and right).

To assign a CSS class to an HTML element, we can use the class attribute in the following way:

<div class="container">
 [...some content...]
</div>

If the class attribute is already present, additional CSS classes can be assigned by separating them with a single space:

<div class="container otherClass someOtherClass">
 [...some content...]
</div>

Simple enough, isn’t it?

What is Sass and why use it?

Sass is a Cascading Style Sheets preprocessor; we can think of it as a “syntax enhancer” for CSS files, enabling us to do a number of things that CSS doesn’t support (yet), just like PHP and/or ASP can do for an HTML page.

The following diagram should help us better understand the concept:

[image: Immagine che contiene testo, Carattere, schermata, logo Descrizione generata automaticamente]
Figure 4.9: PHP advantages over static HTML pages

These are the main advantages of using a hypertext preprocessor instead of writing raw HTML pages; here, we’re talking about PHP, but the same goes for ASP.NET Web Forms, Razor, and basically everything else.

The following are the advantages of using Sass instead of writing raw CSS files:

[image:]
Figure 4.10: Sass advantages over standard CSS syntax

As we can see, they serve the exact same purpose in terms of assisting, improving, and enhancing the development effort.

As a matter of fact, Sass also provides other great benefits, such as nested styles—which we are going to use a lot throughout this book.

Making the switch from static style sheets to dynamic style sheets is just as easy as switching from static HTML pages to PHP or ASP dynamic pages; they both feature a nested metalanguage that can extend the base static language in a pure backward-compatible fashion. This means that a valid CSS file is also a valid Sass file, just as a valid HTML file is also a valid PHP or ASP file.

There are also some key differences between hypertext preprocessors and style sheet preprocessors, the most important being how web servers deal with them.

Hypertext preprocessors such as PHP and ASP are compiled by the web server upon each request; the web server compiles them on the fly and then serves the resulting HTML for each request/response flow. Conversely, style sheet preprocessor files are usually compiled into standard CSS files before being published; in other words, the web service doesn’t know about the existence of these files, as it just serves the resulting CSS-compiled result.

This also means that using a stylesheet preprocessor will have no performance impact on the server, unless we choose to install some experimental and still highly inefficient handlers, extensions, modules, or client-side scripts that will compile the source files on the fly.

IMPORTANT NOTE: From now on, we’ll take for granted that you have a decent knowledge of CSS files, syntax, selectors, and their common use within HTML pages. If this is not the case, we strongly suggest that you learn the core CSS and Sass concepts before going further. The following URLs can greatly help newcomers understand the distinctive features of both languages:

CSS: https://www.w3.org/Style/CSS/learning

Sass: https://sass-lang.com/guide

Replacing CSS with Sass

As we know from Chapter 3, Looking Around, the Angular CLI’s default behavior is to generate standard CSS files. To perform the switch from CSS to SCSS, the first thing we need to do is to change such behavior; right after that, we also need to rename all of our existing StyleSheet files by changing their extension from .css to .scss; last, but not least, we’ll also have to rename all the references to these StyleSheet files located within our Angular components.

If we had to manually perform all these tasks, it would be a tedious work; luckily, there is a convenient NPM package called schematics-scss-migrate that can take care of all these changes for us.

To benefit from it, open a command prompt, navigate to the healthcheck.client project’s root folder, and execute the following command:

> ng add schematics-scss-migrate

Doing that will launch a prompt-based wizard that will ask us a few questions, which can be answered in the following way:

	Which stylesheet format are you migrating from? css

	Which stylesheet format are you migrating to? scss

	Which project do you want to migrate? healthcheck.client

After receiving these inputs, the script will automatically perform all the required code change and rename tasks, logging all its activities on screen, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere Descrizione generata automaticamente]
Figure 4.11: Working with the schematics-scss-migrate NPM package

As soon as the script finishes its job, our CSS-to-SCSS migration will be complete; from now on, whenever we use the Angular CLI to generate our components, Sass files (SCSS) will be created instead of the standard CSS files. Furthermore, all our existing StyleSheet files are now proper SCSS files, allowing us to use Sass wherever we want.

Those who prefer to avoid using the schematics-scss-migrate NPM package and perform the CSS-to-SCSS migration manually can check out the GitHub project for this chapter, where all the files have been updated with the proper extension.

IMPORTANT: Be sure to manually close all the console windows and relaunch the projects again after performing the CSS-to-SCSS migration, ensuring that all the updated artifacts will be reloaded from scratch.

Once done, we can finally use Sass syntax (together with CSS syntax) anywhere in our Angular project.

Restyling the tables

Let’s immediately take advantage of the Sass syntax by restyling our existing HTML tables. Since we have two of them, we can define a global table-related rule within our new (renamed) /src/styles.scss files, which hosts our application-wide style sheet rules:

Open that file and append the following highlighted lines to the existing code:

html, body { height: 100%; }
body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif; }
table {
 margin: 0 auto;
 tr:nth-child(even) {
 background: #F2F2F2;
 }
 tr:nth-child(odd) {
 background: #FFF;
 }
 th, td {
 padding-left: 1rem;
 padding-right: 1rem;
 }
}

Right after that, open the /src/app/fetch-data/fetch-data.component.scss file and the /src/app/health-check/health-check.component.scss files and remove all the table-related rules (those related to the table, tr, th, and td selectors), as we have already set them all in the app-wide SCSS file.

Once done, save the files and hit F5 to test the new table styling. To see that, we need to navigate to our FetchDataComponent and our HealthCheckComponent, which can be done using our new Angular Material menu.

If we did everything correctly, we should be able to see the new rules affecting the tables of both components, just like in the following screenshots:

[image: Immagine che contiene testo, Carattere, software, numero Descrizione generata automaticamente]
Figure 4.12: HTML tables styled with Sass

That’s it; our UI is still not perfect, but we can be satisfied with these improvements, at least for now.

It’s worth noting that, instead of restyling our existing HTML tables, we could have used the Angular Material’s MatTable component to entirely replace them; by doing that, we would have gained a lot of powerful features, such as filtering, sorting, paging, and so on.

However, for the sake of simplicity, we have opted for a “faster” approach, which also allowed us to integrate Sass in our Angular project. We will make extensive use of the MatTable component in the next chapters, when we’ll have to deal with more complex (and overly populated) tables.

Now that we’ve learned the basics, we’ll move on to a completely different topic. However, you should already be able (and are strongly encouraged) to further expand this sample project with more sophisticated use case scenarios, such as:

	Creating additional checks using the same approach that we’ve adopted for the ICMPHealthCheck class: a DBMS connection check, read/write permissions on a UNC folder or resources, the presence/absence of watchdog files, internet connectivity, CPU/memory/bandwidth usage, and so on.

	Proactively handling the different states in our application depending on the various health check results: show a message to our users if the application is not working properly, disable the components of the application that are not working, switch to a fallback alternative, send alert email notifications to the administrators, and so on.

	Extending the HealthChecksMiddleware capabilities with LiteXHealthChecks, a lightweight, yet powerful, NuGet package with a number of modular add-ons that allow us to check the status of a component in the application, such as a back-end service, database, or some internal state.

Further improve the look and feel of our Angular app by applying additional styling rules using the CSS and/or Sass syntax.

That said, we’ve just gained some important knowledge regarding Angular Material and Sass, two very useful tools that we’ll definitely use in the upcoming chapters.

Summary

Let’s spend a minute briefly recapping what we learned in this chapter. First of all, we acknowledged that .NET controllers are not the only tool in the shed; as a matter of fact, any middleware is virtually able to deal with the HTTP request and response cycle—as long as it is in our application’s pipeline.

To demonstrate such a concept, we introduced HealthChecksMiddleware, a neat ASP.NET Core built-in feature that can be used to implement status monitoring services, and then we implemented it. We started with the ASP.NET Core back-end, refining our work until we were able to create a JSON-structured output; then, we switched to Angular, where we learned how to properly fetch it with a component and show it on screen through the browser’s HTML-based UI.

Last but not least, we’ve spent some valuable time improving the UI and UX of our Angular app by adding a couple of powerful layout-based features: Angular Material and Sass. Eventually, the final outcome was good enough to reward us for our hard work.

That’s enough for the HealthCheck app, at least for the time being. Starting from the next chapter, we’ll bring back the standard .NET controllers pattern and see how we can leverage it to learn something new.

Suggested topics

For further information, we recommend the following topics: health monitoring, health checks, HealthChecksMiddleware, HealthCheckOptions, HTTP requests, HTTP responses, ICMP, PING, ResponseWriter, JSON, JsonSerializerOptions, components, routing, modules, AppModule, HttpClient, ngIf, ngFor, directives, structural directives, interpolations, NgModule, Angular module system, JavaScript module system (import/export), Angular Material, Cascading Style Sheets (CSS), Sass.

References

	Health checks in ASP.NET Core: https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/health-checks

	Request and response operations in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/request-response

	ASP.NET Core health monitoring: https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/monitor-app-health

	“pattern-based using” and “using declarations”: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using

	File-scoped namespace declaration: https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10#file-scoped-namespace-declaration

	C# 8.0: Understanding Using Declarations: https://www.stevejgordon.co.uk/csharp-8-understanding-using-declarations

	String interpolation in C#: https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation

	TypeScript modules: https://www.typescriptlang.org/docs/handbook/modules.html

	Module resolution: https://www.typescriptlang.org/docs/handbook/module-resolution.html

	Dependency injection in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

	Angular.io—Dependency injection: https://angular.io/guide/dependency-injection

	Angular—Lifecycle hooks: https://angular.io/guide/lifecycle-hooks

	ReactiveX library—Observables: http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html

	Angular.io—Observables guide: https://angular.io/guide/observables

	JavaScript—Import statement: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

	JavaScript—Export statement: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

	Angular—HttpClient: https://angular.io/guide/http#httpclient

	Angular—NgModules: https://angular.io/guide/ngmodules

	Angular—NgModules and JavaScript modules: https://angular.io/guide/architecture-modules#ngmodules-and-javascript-modules

	Angular—Displaying data: https://angular.io/guide/displaying-data

	Angular—Template syntax: https://angular.io/guide/template-syntax

	Angular—Structural directives: https://angular.io/guide/structural-directives

	Angular Material: https://material.angular.io/

	CSS—Cascading Style Sheets: https://developer.mozilla.org/en-US/docs/Web/CSS

	Sass basics: https://sass-lang.com/guide

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

5

Data Model with Entity Framework Core

The HealthCheck sample app that we’ve been playing with since Chapter 2, Getting Ready, is working fine, yet it lacks some important features we would likely make use of in a typical web application; among the most important of them is the ability to read and write data from a Database Management System (DBMS) since this is essential for almost any web-related task: content management, knowledge sharing, instant communication, data storage and/or mining, tracking and statistics, user authentication, system logging, and so on.

Truth be told, even our HealthCheck app could definitely use some of these tasks: tracking the host statuses over time could be a nice feature; user authentication should be a must-have, especially if we plan to publicly release it to the web; system logging is always great to have; and so on. However, since we prefer to keep our projects as simple as possible, we’re going to create a new one and grant some DBMS capabilities to it.

Here’s what we’re going to do in this chapter:

	Create a brand-new .NET and Angular web application project called WorldCities: a database of cities from all over the world

	Choose a suitable data source to fetch a reasonable amount of real data to play with

	Define and implement a data model using Entity Framework Core

	Configure and deploy a DBMS engine that will be used by our project

	Create the database using Entity Framework Core’s Data Migrations feature

	Implement a data seeding strategy to load the data source to the database

	Read and write data with .NET using the Object-Relational Mapping (ORM) techniques provided by Entity Framework Core

Are you ready to get started?

Technical requirements

In this chapter, we’re going to need all of the technical requirements that were listed in the previous chapters, plus the following external libraries:

	Microsoft.EntityFrameworkCore NuGet package

	Microsoft.EntityFrameworkCore.Tools NuGet package

	Microsoft.EntityFrameworkCore.SqlServer NuGet package

	SQL Server 2022 (if we opt for the local SQL instance route)

	Azure subscription (if we opt for the cloud database hosting route)

As always, it’s advisable to avoid installing these straight away. We’re going to bring them in during this chapter so that we can contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_05/WorldCities.

The WorldCities web app

The first thing we’re going to do is create two new projects using the Angular and ASP.NET Core VS2022 template that we used in Chapter 2, Getting Ready. This time we are going to call it “WorldCities,” meaning that the following two projects will be created:

	worldcities.client, which will contain the Angular app

	WorldCities.Server, for the ASP.NET Core web API

In a nutshell, we just need to repeat what we did during the second part of Chapter 2, Getting Ready, where we created the healthcheck.client and HealthCheck.Server projects. The only difference is that this time we’re going to end up with different names.

Creating these two projects from scratch will be a great exercise, and a good chance to put into practice what you’ve learned until now. Let’s see if you’re able to do that without help!

If you have issues, you can check out the book’s GitHub repository for this chapter and compare its content with what you did.

Once we’ve created the two projects, we’ll need to apply the same upgrades and improvements to our new projects that we did on the healthcheck.client and HealthCheck.Server projects in Chapter 2, Getting Ready.

Updating the ASP.NET Core app

Let’s start with the ASP.NET Core app, which only requires some minor changes. Here’s what we need to do:

	In the launchSettings.json file, set all the launchBrowser properties to false, and change HTTP and HTTPS ports to 40080 and 40443.

That’s about it.

Updating the Angular app

Let’s move on to the Angular app. Here’s what we need to do:

	Upgrade (or downgrade) the Angular version in the package.json file.

	Edit the /src/proxy.conf.json file to update the Angular proxy context from /weatherforecast to /api, and change the HTTPS port to 40443 to match the ASP.NET Core app.

	Generate the /environment/ folder and files (using the ng generate environments Angular CLI command or manually).

	Add the baseUrl property to the /src/environments/environment.development.ts and environment.ts files, using the "/" and "https://localhost:40443/" values respectively, as well as setting the production property and value accordingly.

	Add the HomeComponent and the NavMenuComponent using the ng generate Angular CLI command.

	Add the HomeComponent catch-all route to the AppRoutingModule.

	Remove the weather forecast data-fetching features from the AppComponent, so that it will only contain the app-nav-menu and router-outlet elements.

	Delete (or comment out) the app.component.spec.ts file.

As we can see, we didn’t mention the FetchDataComponent: we will not use it in our new worldcities.client Angular app, therefore we can avoid creating it—as well as referencing it in the NavMenuComponent and AppRoutingModule.

While we’re there, we can keep the exercise going by applying the UI improvements that we implemented in the Restyling the UI section of Chapter 4, Front-End and Back-End Interactions:

	Install Angular Material.

	Add the MatToolbar to the NavMenuComponent.

	Migrate from CSS to Sass (using the schematics-scss-migrate NPM package or manually).

	Perform the UI/UX changes that we applied to the HTML and SCSS files of the healthcheck.client Angular app components.

Again, we can skip the HealthCheckComponent and all its references since we don’t need it.

Having to repeat all these steps might seem unpleasant at first, but it’s a good way to confirm that we’ve understood each relevant step. However, if you don’t want to practice you can also copy and paste the updated code from the healthcheck.client Angular app… or directly pull the updated source code from this chapter’s GitHub repository.

After making all these changes, we can check that everything is working by pressing F5 and inspecting the outcome. If everything has been done properly, we should be able to see the following screen:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 5.1: Inspecting our new WorldCities ASP.NET and Angular app

If you get a different outcome (or run into UI or compilation errors), you might want to compare your new worldcities.client project against the one present in the GitHub repository for this chapter to ensure that all the updates and refactoring steps have been applied.

Since we don’t want to read that “Greetings, stranger!” phrase for the rest of this book, let’s take 2 minutes of our time to briefly revamp our new app’s home page.

Minimal UI restyling

Open the web browser and go to www.pexels.com, a neat website that offers free stock photos and videos shared by talented creators from all over the world. Type world map in the search bar and pick a suitable cover image, possibly with landscape proportions.

Here’s a good one, taken from https://www.pexels.com/photo/close-up-of-globe-335393/:

[image: Immagine che contiene mappa, globo, World Descrizione generata automaticamente]
Figure 5.2: World map for our cover image

Many thanks to NastyaSensei for making the preceding image available under Pexel’s free-to-use license: https://www.pexels.com/license/.

You can check out more of her photos here: https://www.pexels.com/@nastyasensei-66707.

Download the photo using the lowest possible resolution available (640x427) and save it within our worldcities.client project using the following path and name:

/src/assets/img/home.jpg

In order to do this, we’ll have to create the /img/ folder, because it isn’t there yet.

Now that we have our own home cover image, let’s update the home view to show it in a proper way; open the /src/app/home/home.component.html file and change its contents in the following way:

<h1>WorldCities</h1>
<p>
 A sample web application to demonstrate
 how to interact with ASP.NET, Angular,
 Entity Framework Core and a SQL Database.
</p>
<img src="/assets/img/home.jpg" alt="WorldCities"
 class="home-cover" />

As we can see from the preceding code, we plan to show our new image using an element that also features a class attribute: this means that now we need to implement that home-cover CSS class using one of the styling component approaches supported by Angular.

As we know from what we’ve experienced in the previous chapters, we could do that by either adding a styles property to the component’s metadata by updating the /src/app/home/home.component.ts TypeScript file:

@Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styles: ['.home-cover { display:block; margin:auto; max-width:100%; }']
})

Or we could use the separate SCSS file and implement the class there. We also know that this latter approach is almost always preferable, as it will allow us to separate the HTML structure from the CSS styling without messing up the component code, hence we’ll do it that way.

From Solution Explorer, open the /src/app/home/home.component.scss file—which should be empty by now—and fill its contents with the following code:

.home-cover {
 display:block;
 margin: auto;
 max-width:100%;
}

Be sure to check that the home.component.scss file is properly referenced in the styleUrls property within the component’s /src/app/home/home.component.ts file in the following way:

@Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styleUrls: ['./home.component.scss']
})

Now that we’ve updated the SCSS file, let’s look at the style sheet rules that we’ve put in the home-cover class. As we can see, we’ve applied some minimal CSS styling to center the image and make it automatically resize so that its base width (640 px) won’t be a hindrance for mobile phones.

Let’s now press F5 and see what our new home view looks like:

[image: Immagine che contiene testo, schermata, software, Software multimediale Descrizione generata automaticamente]
Figure 5.3: Inspecting our cover image

We will never win an award for this layout, but that’s OK for our purposes.

If we reduce our browser width to the minimum amount (or use Microsoft Edge’s Mobile Emulation feature by opening the Developer Tools and then pressing Ctrl + Shift + I), we can also see how it would look on mobile devices:

[image: Immagine che contiene testo, schermata, software, Software multimediale Descrizione generata automaticamente]
Figure 5.4: Mobile devices view of our cover page

Not that bad, is it?

That’s about it: now we have a brand-new .NET and Angular web application to play with. We just need a data source and a data model that can be accessed through a back-end Web API to retrieve some data from: in other words, a data server.

Reasons to use a data server

Before we move on, it would be wise to spend a couple of minutes answering the following question: do we really need a real data server? Can’t we just emulate one somehow? We’re only running code samples, after all.

As a matter of fact, we could definitely avoid doing that and skip this entire chapter: Angular provides a neat in-memory Web API package that replaces the HttpClient module’s HttpBackend and emulates CRUD operations over a RESTful API; the emulation is performed by intercepting the Angular HTTP requests and redirecting them to an in-memory data store under our control.

This package is great and works really well for most test case scenarios, such as the following:

	To simulate operations against data collections that haven’t been implemented on our dev/test server

	To write unit test apps that read and write data without having to intercept multiple HTTP calls and manufacture sequences of responses

	To perform end-to-end tests without messing with the real database, which is great for Continuous Integration (CI) builds

The in-memory Web API service works so well that the entire Angular documentation at https://angular.io/ relies upon it. However, we’re not going to use it for now, for a simple (and rather obvious) reason: this book’s focus is not on Angular, but the client/server interoperability between Angular and .NET; for that very reason, developing a real Web API and connecting it to a real data source through a real data model is part of the game.

We don’t want to simulate the behavior of a RESTful back-end because we need to understand what’s going on there and how to implement it properly: we want to implement it, along with the DBMS that will host and provide the data.

This is the reason why we created the WorldCities.Server project in the first place, and we definitely plan to use it: that’s precisely what we’re going to do, starting from the next section.

Those who want to get additional information about the Angular in-memory Web API service can visit the in-memory-web-api GitHub project page at https://github.com/angular/in-memory-web-api/.

Now it’s time to talk about the source of our data.

The data source

What kind of data will our WorldCities web application need? We already know the answer: a database of cities from all over the world. Does such a repository even exist yet?

As a matter of fact, there are several alternatives we can use to populate our database and then make it available to our end users.

The following is the free world cities database by OpenDataSoft:

	URL: https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/table/

	Format: CSV

	License: Free to use

The following is GeoDataSource’s world cities database (free edition):

	URL: http://www.geodatasource.com/world-cities-database/free

	Format: CSV

	License: Free to use (registration required)

The following is the world cities database by simplemaps:

	URL: https://simplemaps.com/data/world-cities

	Format: CSV, XLSX

	License: Free to use (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

All of these alternatives are good enough to suit our needs: we’ll go with simplemaps.com since it requires no registration and provides a human-readable spreadsheet format.

Open your favorite browser, type in or copy the above URL, and look for the Basic column of the World Cities Database section:

[image: Immagine che contiene testo, elettronica, schermata, software Descrizione generata automaticamente]
Figure 5.5: Downloading a world cities database from simplemaps.com

Click the Download button to retrieve the (huge) ZIP file containing both the .csv and .xlsx files and save it somewhere. That’s it for now; we’ll deal with these files later on.

Starting with the next section, we’ll start the building process of our data model: it’s going to be a long, but also very rewarding, journey.

The data model

Now that we have our raw data source, we need to find a way to make it available to our web application so that our users will be able to retrieve (and maybe alter) the actual data.

For the sake of simplicity, we won’t waste our precious time by introducing the whole data model concept, as well as the various meanings of these two words. Those of you who are seasoned developers will probably be aware of all of the relevant stuff. We’ll just say that when we are talking about a data model, we don’t mean anything more or anything less than a lightweight, definitely typed set of entity classes representing persistent, code-driven data structures that we can use as resources within our Web API code.

The word persistent has been used for a reason; we want our data structure to be stored in a database. That’s rather obvious for any application based on data. The brand-new web application we’re about to create won’t be an exception since we want it to act as a collection—or a repository—of records so that we can read, create, delete, and/or modify according to our needs.

As we can easily guess, all of these tasks will be performed by some back-end business logic (.NET controllers) that’s triggered by a front-end UI (Angular components).

Introducing Entity Framework Core

We will create our database with the help of Entity Framework Core (also known as EF Core), the well-known, open-source Object Relational Mapper (ORM) for .NET that’s developed by Microsoft. The reasons for this choice are as follows:

	Seamless integration with the Visual Studio IDE.

	A conceptual model based upon entity classes (Entity Data Model (EDM)), which will allow us to work with data using domain-specific objects without needing to write data-access code, which is precisely what we’re looking for.

	Easy to deploy, use, and maintain in development and production phases

	Compatible with all of the major open-source and commercial SQL engines, including MSSQL, SQLite, Azure Cosmos DB, PostgreSQL, MySQL/MariaDB, MyCAT, Firebird, Db2/Informix, and Oracle DB, thanks to the official and/or third-party providers and/or connectors available via NuGet.

It’s worth mentioning that Entity Framework Core was previously known as Entity Framework 7 until its latest RC release. The name change follows the ASP.NET 5/ASP.NET Core perspective switch we already talked about as it also emphasizes the Entity Framework Core major rewrite/redesign if we compare it to the previous installments.

You might be wondering why we’re choosing to adopt a SQL-based approach instead of going for a NoSQL alternative; there are many good NoSQL products, such as MongoDB, RavenDB, and CouchDB, that happen to have a C# connector library. What about using one of them instead?

The answer is rather simple: despite being available as third-party providers, they haven’t been included in the official Entity Framework Core Database Providers list (see the link in the following information box). For that very reason, we’re going to stick to the relational database, which may also be a more convenient approach for the simple database schemas we’re going to design within this book.

For those who want to know more about the upcoming release and/or feel bold enough to use it anyway—maybe with a NoSQL database as well—we strongly suggest that you take a look at the following links and docs:

	Project roadmap: https://github.com/aspnet/EntityFramework/wiki/Roadmap

	Source code on GitHub: https://github.com/aspnet/EntityFramework

	Official documentation: https://docs.efproject.net/en/latest/

	Official Entity Framework Core Database Providers list: https://learn.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli

Installing Entity Framework Core

To install Entity Framework Core, we need to add the relevant packages to the dependencies section of our project file. We can easily do this using the visual GUI in the following way:

	Right-click on the WorldCities.Server project.

	Select Manage NuGet Packages.

	Ensure that the Package source drop-down list is set to All.

	Go to the Browse tab and search for the packages containing the Microsoft.EntityFrameworkCore keyword:

[image: Immagine che contiene testo, software, Icona del computer, Pagina Web Descrizione generata automaticamente]
Figure 5.6: Installing Entity Framework Core

Once you’re there, select and install the following packages (the latest at the time of writing):

	Microsoft.EntityFrameworkCore version 8.0.0

	Microsoft.EntityFrameworkCore.Tools version 8.0.0

	Microsoft.EntityFrameworkCore.SqlServer version 8.0.0

These packages will also bring some required dependencies, which we’ll need to install as well, and require the acceptance of their license terms:

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 5.7: Accepting the license

If we want to do this using the NuGet Package Manager command line, we can input the following:

PM> Install-Package Microsoft.EntityFrameworkCore -Version 8.0.0
PM> Install-Package Microsoft.EntityFrameworkCore.Tools -Version 8.0.0
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer -Version 8.0.0

It’s worth noting that the version number, which is the one that’s the most recent at the time of writing, might be subject to change: be sure to triple-check it in this book’s GitHub repository as well!

The SQL Server Data Provider

Among the installed packages, it’s worth noting the presence of Microsoft.EntityFrameworkCore.SqlServer, which is the Microsoft SQL Database Provider for Entity Framework Core. This highly versatile connector provides an interface for the whole Microsoft SQL Server database family, including the latest SQL Server 2022.

DBMS licensing models

Despite having a rather expensive (to say the least) licensing model, there are at least three Microsoft SQL editions that can be used for free, as long as certain requirements are met:

	Evaluation edition is free, but comes with no production use rights, meaning that we can only use it on development servers. Additionally, it can only be used for 180 days. After that, we’ll have to either buy a license or uninstall it (and migrate to a different edition).

	Developer edition is also free and comes with no production use rights. However, it can be used without limitations, providing that we only use it for development and/or testing scenarios.

	Express edition is free and can be used in any environment, meaning that we can use it on development and production servers. However, it has some major performance and size limitations that could hinder the performance of a complex and/or high-traffic web application.

For additional information regarding the various SQL Server editions, including the commercial ones that do require a paid licensing model, check out the following links:

	https://www.microsoft.com/en-us/sql-server/sql-server-2022

	https://www.microsoft.com/en-us/sql-server/sql-server-2022-comparison

As you can see, both the Developer and Express editions can be a great deal for small web applications like those we’re playing with in this book.

What about Linux?

SQL Server 2022 is also available for Linux and officially supported for the following distributions:

	Red Hat Enterprise Linux (RHEL)

	SUSE Enterprise Server

	Ubuntu

Other than that, it can also be set to run on Docker and even provisioned as a virtual machine on Azure, which can often be a great alternative if we don’t want to install a local DMBS instance and save our precious hardware resources.

As for the licensing model, all SQL Server products are licensed the same way for all of these environments: this basically means that we can use our license (including the free ones) on the platform of our choice.

SQL Server alternatives

If you don’t feel like using Microsoft SQL Server, you’re 100% free to pick another DBMS engine, such as MySQL, PostgreSQL, or any other product, as long as it has some kind of Entity Framework Core official (or third-party) support.

Should we make this decision now? This entirely depends on the data modeling approach we want to adopt; for the time being, and for the sake of simplicity, we’re going to stick to the Microsoft SQL Server family, which allows us to install a decent DBMS for free on either our local machine (development and/or production) or Azure (thanks to its €200 cost and 12-month free trial). Don’t worry about this for now—we’ll get there later on.

Data modeling approaches

Now that we have Entity Framework Core installed and we know—more or less—which DBMS we are going to use, we have to choose between one of the two available approaches to model the data structure: Code-First or Database-First. Each one comes with a fair number of advantages and disadvantages, as those of you with experience and those of you who are seasoned .NET developers will almost certainly know. Although we won’t dig too much into these, it would be useful to briefly summarize each before making a choice.

Code-First

This is Entity Framework’s flagship approach since version 4 and also the recommended one: an elegant, highly efficient data model development workflow. The appeal of this approach can be easily found in its premise; the Code-First approach allows developers to define model objects using only standard classes, without needing any design tools, XML mapping files, or cumbersome piles of autogenerated code.

To summarize, we can say that going Code-First means writing the data model entity classes we’ll be using within our project and letting Entity Framework generate the database accordingly:

[image: Immagine che contiene testo, schermata, logo, simbolo Descrizione generata automaticamente]
Figure 5.8: The Code-First approach

The pros and cons are explained in the following sections.

Pros

	There is no need for diagrams and visual tools whatsoever, which can be great for small-to-medium-sized projects as it will save a lot of time

	It has a fluent code API that allows the developer to follow a convention-over-configuration approach so that it can handle the most common scenarios, while also giving them the chance to switch to a custom, attribute-based implementation that overrides the need to customize the database mapping

Cons

	Good knowledge of C# and updated EF conventions is required.

	Maintaining the database can often be tricky, as well as handling updates without suffering data loss. Migration support, which was added in Entity Framework v4.3 to overcome this issue and has been continuously updated since then, greatly mitigates the problem, although it also affects the learning curve in a negative way.

Database-First

If we either have an existing database already or don’t mind building it beforehand, we could consider an alternative approach that goes the other way around: instead of letting EF Core automatically build the database using the SQL commands generated from the model objects, we generate these objects from an existing database using the dotnet ef command-line tool. This code-generation technique is known as model scaffolding and relies upon the following command:

> dotnet ef dbcontext scaffold

For additional info about EF model scaffolding and Database-First, visit the following URL:

https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet#dotnet-ef-dbcontext-scaffold

We can summarize this by saying that going Database-First will mean building the database and letting Entity Framework create/update the rest accordingly:

[image: Immagine che contiene testo, logo, schermata, design Descrizione generata automaticamente]
Figure 5.9: The Database-First approach

The pros and cons are explained in the following sections.

Pros

	If we have an already-existing database in place, this will probably be the way to go as it will spare us the need to recreate it.

	The risk of data loss will be kept to a minimum because any structural change or database model update will always be performed on the database itself.

Cons

	Manually updating the database can be tricky if we’re dealing with clusters, multiple instances, or several development/testing/production environments as we will have to manually keep them in sync instead of relying on code-driven updates/migrations or autogenerated SQL scripts.

	We will have less control over the autogenerated model classes, therefore managing associations, foreign keys, and constraints will be more difficult.

Making a choice

By taking the advantages and disadvantages of these two options into account, there is no such thing as an overall better or best approach; conversely, we can say that each project scenario will likely have a best-suited approach. That said, considering that Code-First is the recommended approach for Entity Framework Core, especially for new applications and/or whenever the database doesn’t exist yet, we have little to no doubt that adopting it will be our best choice.

Truth be told, the Database-First approach has become less and less popular in recent years, and the framework support for this technique dropped as well: as a matter of fact, such an approach is rarely used nowadays, unless there’s an already-existing database structure that can’t be easily updated or needs to be preserved the way it already is because other apps and/or services are already accessing it.

Now that we’ve made our choice, we’ll need to create some entities and find a suitable DBMS to store our data. This is precisely what we’re going to do in the following sections.

Creating the entities

Now that we have a data source, we can leverage one of the major advantages of the Code-First approach we talked about earlier and start writing our entity classes early on, without worrying too much about what database engine we’ll eventually use.

Truth be told, we already know something about what we’ll eventually use. We won’t be adopting a NoSQL solution as they aren’t officially supported by Entity Framework Core yet; we also don’t want to commit ourselves to purchasing expensive license plans, so the commercial editions of Oracle and SQL Server are probably out of the picture as well.

This leaves us with relatively few choices: SQL Server Developer (or Express) edition, MySQL/MariaDB, the community edition of Oracle (known as Oracle XE), or other less well-known solutions such as PostgreSQL. Furthermore, we are still not 100% sure about installing a local DBMS instance on our development machine (and/or on our production server) or relying on a cloud-hosted solution such as Azure.

That being said, adopting Code-First will give us the chance to postpone the call until our data model is ready.

However, to create the entity classes, we need to know what kind of data they are going to contain and how to structure it. That strongly depends on the data source and the database tables that we eventually want to create using Code-First.

In the following sections, we’re going to learn how we can deal with these tasks.

Defining the entities

In Entity Framework Core, as well as in most ORM frameworks, an entity is a class that maps to a given database table. The main purpose of entities is to make us able to work with data in an object-oriented fashion while using strongly typed properties to access table columns (and data relations) for each row. We’re going to use entities to fetch data from the database and serialize them to JSON for the front-end. We will also do the opposite, that is, deserializing them back whenever the front-end issues POST or PUT requests that will require the back-end to perform some permanent changes to the database, such as adding new rows or updating existing ones.

If we try to enlarge our focus and look at the general picture, we will be able to see how the entities play a central role among the whole bi-directional data flow between the DBMS, the back-end, and the front-end parts of our web application.

To understand such a concept, let’s take a look at the following diagram:

[image: Immagine che contiene testo, schermata, diagramma, design Descrizione generata automaticamente]
Figure 5.10: The DBMS data lifecycle

As we can clearly see, the main purpose of Entity Framework Core is to map the database tables to entity classes: that’s precisely what we need to do now.

Unzip the world cities compressed file we downloaded a while ago and open the worldcities.xlsx file: if you don’t have Excel, you can import it on Google Drive using Google Sheets, as shown at the following URL: http://bit.ly/worldcities-xlsx.

Right after importing it, I also took the chance to make some small readability improvements to that file: bolding column names, resizing the columns, changing the background color, freezing on the first row, and so on.

If we open the preceding URL, we will see what the imported spreadsheet looks like:

[image: Immagine che contiene testo, schermata, numero, Carattere Descrizione generata automaticamente]
Figure 5.11: Inspecting the worldcities.xlsx file

By looking at the spreadsheet headers, we can infer at least two database tables we’re going to need:

	Cities: For columns A, B, C, and D (and arguably K, if we want to keep those unique IDs)

	Countries: For columns E, F, and G

This seems to be the most convenient choice in terms of common sense. Alternatively, we could put everything into a single Cities table, but we’re going to have a lot of redundant content, which is something we would arguably want to avoid.

If we’re going to deal with two database tables, this means that we need two entities to map them on and to create them in the first place, since we plan to adopt the Code-First approach.

The City entity

Let’s start with the City entity.

From the project’s Solution Explorer, do the following:

	Create a new /Data/ folder at the root level of the WorldCities.Server project; this will be where all of our Entity Framework-related classes will reside.

	Create a /Data/Models/ folder.

	Right-click on this new folder, then select Add | New item | C# | Class file.

	Name the new file City.cs and click OK to create it.

	Replace the sample code with the following:
 using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
namespace WorldCities.Server.Data.Models
{
 public class City
 {
 #region Properties
/// <summary>
/// The unique id and primary key for this City
/// </summary>
 [Key]
 [Required]
 public int Id { get; set; }
 /// <summary>
/// City name (in UTF8 format)
/// </summary>
public required string Name { get; set; }
 /// <summary>
/// City latitude
/// </summary>
 [Column(TypeName = "decimal(7,4)")]
 public decimal Lat { get; set; }
 /// <summary>
/// City longitude
/// </summary>
 [Column(TypeName = "decimal(7,4)")]
 public decimal Lon { get; set; }
 /// <summary>
/// Country Id (foreign key)
/// </summary>
public int CountryId { get; set; }
 #endregion
 }
}

As we can see, we added a dedicated property for each of the spreadsheet columns we identified early on; we also included a CountryId property, which we’re going to use to map the foreign key for the Country related to the city (more on that later on). We also tried to improve the overall readability of the entity class source code by providing each property with some useful comments that will definitely help us to remember what they are meant for.

As for the Name property, which is the only nullable type in this class, we made good use of the required modifier (available since C# 11) to indicate that it must be initialized by an object initializer.

For additional information regarding the required modifier, check out the C# official docs at the following URL:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required

Last but not least, it’s worth noting that we took the chance to decorate our entity class using some Data Annotations attributes as they are the most convenient way to override the default Code-First conventions. More specifically, we used the following annotations:

	[Required]: This defines the property as a required (non-nullable) field.

	[Key]: This means that the property hosts the primary key of the database table.

	[Column(TypeName="decimal(7,4)"]: This means that the property will require a database column of the specified type and precision. If we don’t provide this information, Entity Framework won’t know which precision to set for the database table columns it will create for those properties and will fall back to its default values. This fallback could result in a loss of precision if our actual data has a greater number of decimals.

Additional Data Annotations attributes will be added later on.

Those of you who have some experience with Entity Framework (and relational databases) will most likely understand what those Data Annotations are there for: they are a convenient way to instruct Entity Framework on how to properly build our database when using the Code-First approach. There’s nothing complex here; we’re just telling Entity Framework that the database columns that were created to host these properties should be set as required and that the primary key should be bound in a one-to-many relationship to other foreign columns in different tables.

In order to use the Data Annotations, we have to add a reference to one or both of the following namespaces, depending on the attributes we’re going to use:

System.ComponentModel.DataAnnotations
System.ComponentModel.DataAnnotations.Schema

If we take a look at the preceding code, we will see that both of these namespaces have been referenced with a using statement for convenience.

We’ll definitely talk more about Data Annotations in this chapter later on. If you want to find out more about Data Annotations in Entity Framework Core, we strongly suggest reading the official documentation, which can be found at the following URL: https://learn.microsoft.com/en-us/ef/core/modeling/.

The Country entity

The next entity will be the one for identifying the countries, which will have a one-to-many relationship with Cities.

This is hardly a surprise. We’re definitely going to expect a single Country for each City and multiple Cities for each given Country; this is what one-to-many relationships are for.

Right-click on the /Data/Models/ folder, add a Country.cs class file, and fill it with the following code:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
namespace WorldCities.Server.Data.Models
{
 public class Country
 {
 #region Properties
/// <summary>
/// The unique id and primary key for this Country
/// </summary>
 [Key]
 [Required]
 public int Id { get; set; }
 /// <summary>
/// Country name (in UTF8 format)
/// </summary>
public required string Name { get; set; }
 /// <summary>
/// Country code (in ISO 3166-1 ALPHA-2 format)
/// </summary>
public required string ISO2 { get; set; }
 /// <summary>
/// Country code (in ISO 3166-1 ALPHA-3 format)
/// </summary>
public required string ISO3 { get; set; }
 #endregion
 }
}

Again, there’s a property for each spreadsheet column with the relevant Data Annotations and comments.

ISO 3166 is a standard that was published by the International Organization for Standardization (ISO) that’s used to define unique codes for the names of countries, dependent territories, provinces, and states. For additional information, check out the following URLs:

	https://en.wikipedia.org/wiki/ISO_3166

	https://www.iso.org/iso-3166-country-codes.html

The part that describes the country codes is the first one (ISO 3166-1), which defines three possible formats: ISO 3166-1 alpha-2 (two-letter country codes), ISO 3166-1 alpha-3 (three-letter country codes), and ISO 3166-1 numeric (three-digit country codes). For additional information about the ISO 3166-1 ALPHA-2 and ISO 3166-1 ALPHA-3 formats, which are the ones that are used in our data source and therefore in this book, check out the following URLs:

	https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

	https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Should we (still) use #region blocks?

If we look at the code samples of the two entity classes we’ve just added, we can see that we’ve used some #region directives: let’s spend a minute talking about them.

As most C# developers already know, regions are preprocessor directives that let the developer specify a block of code that can be expanded or collapsed when using the outlining feature of the code editor.

For additional info about C# regions and common usage samples, read this guide:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region

Regions were introduced with the first versions of C# and were praised during the language’s early years because they were seen as a viable technique to improve code readability, especially in long and complex classes. However, they can also lure the developer into adopting a number of bad practices, such as shoving in unoptimized or repeated code to hide it from view instead of refactoring it, dividing a complex method (or class) into multiple tasks instead of splitting it into multiple methods (or classes), and embedding redundant code instead of making it less redundant.

Since the potential disadvantages of regions vastly exceed their supposed advantages, regions are now considered a bad practice by most C# developers and their usage has declined. This opinion has been enforced by StyleCop, a great open-source static code analysis tool from Microsoft that checks C# code for conformance to the recommended coding styles and design guidelines, which summarizes its judgment regarding regions in its SA1124 rule:

TYPE: SA1124DoNotUseRegions

CAUSE: The C# code contains a region.

DESCRIPTION: A violation of this rule occurs whenever a region is placed anywhere within the code. In many editors, including Visual Studio, the region will appear collapsed by default, hiding the code within the region. It is generally a bad practice to hide code, as this can lead to bad decisions as the code is maintained over time.

HOW TO FIX: To fix a violation of this rule, remove the region from the code.

This kind of settles it; we should never use regions, period.

Those who want to know more about the #regions debate within the C# developer community and the reasons why they are discouraged nowadays might enjoy reading this Stack Overflow thread, which pretty much summarizes it:

https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell

Again, the verdict was (almost) unanimous: region blocks = code smell, and the best thing you can do to avoid such smell is open a window—and throw regions away.

Although I generally agree with such an anti-region approach, I still think that using #regions to group together fields, properties, and so on can be useful in some edge-case scenarios, such as code samples and tutorials (like the classes we’re creating and reviewing in this book), because it allows us to distinguish between different parts of code. For example, we’re going to use them to help the reader tell apart standard properties versus navigation properties within an entity type.

This is why in this book we’re still using them here and there, even if we’re fully aware that good, StyleCop-compliant code won’t need them—not even to group together fields, properties, private methods, constructors, and so on. At the same time, I also recommend not using them (or limiting their usage to a minimum amount) in your actual code.

Defining relationships

Now that we have built our main City and Country entity skeleton, we need to enforce the relationship we know exists between them. We want to be able to do stuff such as retrieving a Country and then browsing all of its related Cities, possibly in a strongly typed fashion.

To do this, we have to add a couple of new entity-related properties, one for each entity class. More specifically, we will be adding the following:

	A Country property in our City entity class, which will contain a single country related to that city (the parent)

	A Cities property in our Country entity class, which will contain a collection of the cities related to that country (the children)

If we take a deeper look and try to visualize the relationship between those entities, we will be able to see how the former property identifies the parent (from each child’s perspective), while the latter will contain the children (from the parent’s perspective). This pattern is precisely what we can expect for a one-to-many relationship like the one we’re dealing with.

In the following sections, we’ll learn how we can implement these two navigation properties.

Adding the Country property to the City entity class

Add the following code lines near the end of the file, near the end of the Properties region (new lines are highlighted):

using System.ComponentModel.DataAnnotations.Schema;
// ...existing code...
/// <summary>
/// Country Id (foreign key)
/// </summary>
[ForeignKey(nameof(Country))]
public int CountryId { get; set; }
#endregion
#region Navigation Properties
/// <summary>
/// The country related to this city.
/// </summary>
public Country? Country { get; set; }
#endregion
// …existing code...

As we can see, other than adding the new Country property, we also decorated the already-existing CountryId property with a new [ForeignKey(nameof(Country))] data annotation. Thanks to that annotation, Entity Framework will know that such a property will host a primary key of a foreign table and that the Country navigation property will be used to host the parent entity.

It’s worth noting that the binding that’s declared using that [ForeignKey] data annotation will also be formally enforced by creating a constraint, as long as the database engine supports such a feature.

It’s also worth noting that we used nameof(Country) instead of a mere "Country" literal string: we did that to increase the type safety of our code, thus making it less prone to typing errors.

As we can see by looking at the first line of the preceding source code, in order to use the [ForeignKey] data annotation we have to add a reference to the System.ComponentModel.DataAnnotations.Schema namespace at the beginning of the class if we haven’t already.

Adding the Cities property to the Country entity class

Let’s now switch to the Country.cs class. Once you’re there, add the following right after the end of the Properties region:

// ...existing code...
#region Navigation Properties
/// <summary>
/// A collection of all the cities related to this country.
/// </summary>
public ICollection<City>? Cities { get; set; }
#endregion
// ...existing code...

That’s it. As we can see, no foreign key properties have been defined for this entity since one-to-many relationships don’t need them from the parent side. Therefore, there’s no need to add a [ForeignKey] data annotation and/or its required namespace.

Entity Framework Core loading pattern

Now that we have a Cities property in the Country entity and a corresponding [ForeignKey] data annotation in the City entity, you may be wondering how we can use these navigation properties to load the related entities. To put this another way: how are we going to populate the Cities property within the Country entity whenever we need to?

Such a question gives us the chance to spend a couple of minutes enumerating the three ORM patterns supported by Entity Framework Core to load these kinds of related data:

	Eager loading: The related data is loaded from the database as part of the initial query.

	Explicit loading: The related data is explicitly loaded from the database at a later time.

	Lazy loading: The related data is transparently loaded from the database when the entity navigation property is accessed for the first time. This is the most complex pattern among the three and might suffer some serious performance penalties when not implemented properly.

It’s important to understand that whenever we want to load an entity’s related data, we need to activate (or implement) one of these patterns. This means that, in our scenario, our Country entity’s Cities property will be set to NULL whenever we fetch one or more countries from the database unless we explicitly tell Entity Framework Core to load the cities as well. This is a very important aspect to consider when dealing with web APIs because it will definitely impact how our .NET back-end will serve their JSON structured data responses to our front-end Angular client.

To understand what we mean, let’s take a look at a couple of examples.

The following is a standard Entity Framework Core query that’s used to retrieve Country from a given Id with the EF Core default behavior (no loading pattern defined or implemented):

var country = await _context.Countries
 .FindAsync(id);
return country; // country.Cities is still set to nulln

As we can see, the country variable is returned to the caller with the Cities property set to null, simply because we didn’t ask for it: for that very reason, if we convert that variable into a JSON object and return it to the client, the JSON object would contain no cities either.

The following is an Entity Framework Core query that retrieves country from a given id using eager loading:

var country = await _context.Countries
 .Include(c => c.Cities)
 .FindAsync(id);
return country; // country.Cities is (eagerly) loaded

Let’s try to understand what is happening here:

	The Include() method that was specified at the start of the query tells Entity Framework Core to activate the eager loading data retrieval pattern

	As for the new pattern, the EF query will fetch the country as well as all of the corresponding cities in a single query

	For all of these reasons, the returned country variable will have the Cities property filled with all the cities related to country (that is, the CountryId value will be equal to that country’s id value)

For the sake of simplicity, we’re only going to use eager loading through this book, using the Include() method whenever we need it; for additional information regarding lazy loading and explicit loading, we strongly suggest that you take a look at the following URL: https://learn.microsoft.com/en-US/ef/core/querying/related-data.

Defining the database table names

The SQL script generated by EF Core using the Code-First approach, as per its default settings, will create a database table for each entity using the entity’s class name: this basically means that we’re going to have a City table containing all the cities and a Country table for the countries. Although there’s nothing wrong with these names, we might as well change this default setting to create the tables in plural form for consistency reasons: Cities for the cities and Countries for the countries.

To force a database table name of our choice for each individual entity, we can add the [Table] data annotation attribute to the entity class in the following way.

For the City entity (the /Data/Models/City.cs file):

[Table("Cities")]
public class City

For the Country entity (the /Data/Models/Country.cs file):

[Table("Countries")]
public class Country

Before going further, let’s perform this simple update to our classes in order to demonstrate how easy it is to achieve additional control over the autogenerated database.

With this, we’re done with the entities, at least for the time being. Now, we just need to get ourselves a DBMS so that we can actually create our database.

Defining indexes

Since we’re going to deal with a dataset featuring tens of thousands of records, it could also be wise to add some indexes to our entities. Such a task can be easily done using the [Index] data annotation attribute in the following way.

For the City entity (the /Data/Models/City.cs file):

[Table("Cities")]
[Index(nameof(Name))]
[Index(nameof(Lat))]
[Index(nameof(Lon))]
public class City

For the Country entity (the /Data/Models/Country.cs file):

[Table("Countries")]
[Index(nameof(Name))]
[Index(nameof(ISO2))]
[Index(nameof(ISO3))]
public class Country

To use the [Index] attribute, we’ll also need to add the following reference in both files:

using Microsoft.EntityFrameworkCore;

When we generate the database using EF Core’s Code-First approach, these property attributes will be used to create SQL indexes for the corresponding table columns—which will greatly improve the performance of any lookup query.

Getting a SQL Server instance

Until now we have always fed our apps with sample data. Let’s close this gap once and for all and provide ourselves with a SQL Server instance. As we have already mentioned, there are two major routes we can take:

	Install a local SQL Server instance (Express or Developer edition) on our development machine

	Set up a SQL database (and/or server) on Azure using one of the several options available on that platform

The former option embodies the classic, cloudless approach that software and web developers have been using since the dawn of time: a local instance is easy to pull off and will provide everything we’re going to need in development and production environments... as long as we don’t care about data redundancy, heavy infrastructure load and possible performance impacts (in the case of high-traffic websites), scaling, and other bottlenecks due to the fact that our server is a single physical entity.

In Azure, things work in a different way: putting our DBMS there gives us the chance to have our SQL Server workloads running as either a hosted infrastructure (Infrastructure as a Service, also known as IaaS) or a hosted service (Platform as a Service, also known as PaaS). The first option is great if we want to handle the database maintenance tasks by ourselves, such as applying patches and taking backups; the second option is preferable if we want to delegate these operations to Azure. However, regardless of the path we choose, we’re going to have a scalable database service with full redundancy and no-single-point-of-failure guarantees, plus a lot of other performance and data security benefits. The downsides, as we can easily guess, are as follows: the additional cost and the fact that we’re going to have our data located elsewhere, which can be a major issue in terms of privacy and data protection in certain scenarios.

In the following section, we’ll quickly summarize how to pull off both of these approaches so that we can make the most convenient choice.

Installing SQL Server 2022

If we want to avoid the cloud and stick to an old-school approach, we can choose to install a SQL Server Express (or Developer) on-premises instance on our development (and later, on our production) machine.

To do that, perform the following steps:

	Download the SQL Server 2022 on-premises installation package (we’re going to use the Windows build here, but the Linux installer is also available) from the following URL: https://www.microsoft.com/en-us/sql-server/sql-server-downloads. Be sure to scroll down the page until you see the specialized editions (Developer and Express), then click on the Download now button to start the download process.

	Double-click on the executable file to start the installation process. When prompted for the installation type, select the BASIC option (unless we need to configure some advanced options to accommodate specific needs, provided that we know what we’re doing).

The installation package will then start downloading the required files. When it’s done, we will access the SQL Server Installation Center window, where we can click New SQL Server standalone installation (the first available option starting from the top, as shown in the following screenshot) to start the actual installation process:

[image: Immagine che contiene testo, elettronica, schermata, software Descrizione generata automaticamente]
Figure 5.12: Installing SQL Server 2022

Accept the license terms and go ahead, keeping all of the default options and performing the required operations (such as opening the Windows Firewall) when asked to.

If we want to keep our disk space consumption to a minimum, we can safely remove the SQL Replication and Machine Learning services from the Feature Selection section and save roughly 500 MB.

Set the Instance Name to SQLExpress and the Instance ID to SQLEXPRESS. Remember that choice: we’re going to need it when we have to write down our connection string.

When we’re asked to choose an Authentication Mode (as we can see in the following screenshot), choose one of the following options:

	Windows authentication mode, if we want to be able to have unrestricted access to the database engine only from the local machine (using our Windows credentials)

	Mixed Mode, to enable the SQL Server system administrator (the sa user) and set a password for it

The former option is great for security, while the latter is much more versatile—especially if we’re going to administer the SQL server remotely using the SQL Server built-in administrative interface, which is the tool we’re going to use to create our database.

Those who need a more comprehensive guide to perform the SQL Server local instance installation can take a look at the following tutorials:

	Installing SQL Server on Windows: https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server

	Installing SQL Server on Linux: https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup

After the SQL Server installation is complete, we can immediately connect to the newly installed instance using a neat management tool provided by Microsoft, which is also free to use: SQL Server Management Studio, also known as SSMS.

In a nutshell, SSMS is a software application that facilitates connecting to a SQL Server database and managing its contents (tables, users, agents, and so on), as well as running queries and scripts. From version 19.x, it also includes Azure Data Studio, a lightweight and multiplatform tool specifically designed to connect to SQL Server databases hosted on Azure.

The main difference between SSMS and Azure Data Studio is that the first one provides a feature-rich experience, with an excellent GUI that allows the developer to perform most tasks without having to write raw SQL code, while the second one has a minimalistic GUI and supports only a subset of basic tasks: connect to the database server, perform SQL queries, retrieve the results, and so on. However, SSMS is only available for Windows, meaning that if you are a Linux or Mac user you will be unable to install it. If that’s the case, you can download and install the stand-alone version of Azure Data Studio.

That said, for the purpose of this book we’re going to use SQL Server Management Studio, since it allows a more graceful learning curve for SQL novices; however, Azure Data Studio might be a great alternative for seasoned SQL developers who prefer to avoid the GUI-based approach and perform everything through SQL queries and scripts as well as for those who are using a developer machine powered by a non-Windows OS.

Installing the database management tool(s)

SQL Server Management Studio can be installed through the SQL Server installation wizard’s additional components (the SQL Server Management tools section) or downloaded as a standalone package from the following URL:

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Azure Data Studio can be downloaded from the following URL:

https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

Before using these tools to connect to our database, we’re going to spend some valuable time talking about the Azure path.

Creating a SQL database on Azure

If you want to get over the DBMS local instances and embrace the cloudful Azure route, our to-do list entirely depends on which of the main approaches provided by the Azure platform we’re going to choose from. The three main options available to end users are, from the least to most expensive, a SQL database, a SQL managed instance, and a SQL virtual machine. We’ll go through each in turn.

SQL Database

This is a fully managed SQL Database engine based on SQL Server Enterprise edition. This option allows us to set up and manage one or more single relational databases hosted in the Azure cloud with a PaaS usage and billing model: more specifically, we can define it as a Database-as-a-Service (DBaaS) approach. This option provides built-in high availability, intelligence, and management, which means it’s great for those who want a versatile solution without the hassle of having to configure, manage, and pay for a whole server host.

SQL Managed Instance

This is a dedicated SQL Managed Instance on Azure. It is a scalable database service that provides near 100% compatibility with a standard SQL Server instance and features an IaaS usage and billing model. This option provides all of the same PaaS benefits as the previous one (SQL Database) but adds some additional features and capabilities, such as linked servers, service brokers, database mail, full Azure Virtual Network support, multiple databases with shared resources, and so on.

SQL virtual machine

This is a fully managed SQL Server consisting of a Windows or Linux virtual machine with a SQL Server instance installed on top of it. This approach, which also adopts an IaaS usage and billing model, offers full administrative control over the whole SQL Server instance and the underlying OS, hence being the most complex and customizable one. The most significant difference from the other two options (SQL Database and SQL Managed Instance) is that SQL Server virtual machines also allow full control over the database engine: we can choose when to start maintenance/patching, change the recovery model, pause/start the service, and so on.

Making a choice

All of these options are good and, although very different in terms of overall costs, can be activated free of charge: SQL Database is arguably the cheapest one because it’s free for 12 months, thanks to the trial subscription plan offered by Azure, as long as we keep its size under 250 GB; both SQL Managed Instance and SQL Virtual Machine are rather expensive, since they both provide a virtualized IaaS, but they can be activated for free (at least for a few weeks) with the €200 provided by that same Azure trial subscription plan.

For more information regarding the pros and cons of the Azure options described in the previous sections, we strongly suggest that you read the following guide: https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas.

In the following sections, we’re going to learn how to set up a SQL database since it is the less expensive approach in the long term: the only downside is that we’ll have to keep its size under 250 GB, which is definitely not an issue, considering that our world cities data source file is less than 1 GB in size.

If you want to opt for an Azure SQL Managed Instance (option #2), here’s a great guide explaining how to do that: https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started.

If you wish to set up SQL Server installed on a virtual machine (option #3), here’s a tutorial covering that topic: https://learn.microsoft.com/en-US/azure/virtual-machines/windows/sql/quickstart-sql-vm-create-portal.

Setting up a SQL database

Let’s start by visiting the following URL: https://azure.microsoft.com/en-us/free/services/sql-database/.

This will bring us to the following web page, which allows us to create an Azure SQL Database instance:

[image: Immagine che contiene testo, computer, schermata, software Descrizione generata automaticamente]
Figure 5.13: Creating a new Azure free account

Click the Start free button and create a new account.

If you already have a valid Microsoft account, you can definitely use it; however, you should only do that if you’re sure that you want to use the free Azure trial on it: if that’s not the case, consider creating a new one.

After a brief registration form (and/or login phase), we’ll be redirected to the Azure portal.

It goes without saying that if the account we’ve logged in with has already used up its free period or has an active paid subscription plan, we’ll be gracefully bounced back:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 5.14: View for users who aren’t new

Eventually, after we’ve sorted everything out, we should be able to access the Azure portal (https://portal.azure.com) in all of its glory:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 5.15: The Azure portal

Once there, do the following:

	Click the Create a resource button to access the Azure Marketplace.

	Search for an entry called Azure SQL.

	Click Create to access the selection page shown in the following screenshot:

IMPORTANT: Be careful that you don’t pick the SQL Managed Instances entry instead, which is the one for creating the SQL Server virtual machine—this is option #2 that we talked about earlier.

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 5.16: Selecting an SQL deployment option

From the preceding selection screen, do the following:

	Select the first option (SQL databases).

	Set the Resource type drop-down list to Single database.

	Click the Create button to start the main setup wizard.

During this process, we’ll also be asked to create our very first Azure tenant (unless we already have one). This is a virtual organization that owns and manages a specific set of Microsoft cloud services. Tenants are identified by unique URLs in the following format: <TenantName>.onmicrosoft.com. Just give it a suitable name and go ahead.

Configuring the instance

As soon as we click the Create button, we’ll be asked to configure our SQL Database instance with a wizard-like interface split into the following tabs:

	Basics: Subscription type, instance name, admin username and password, and so on

	Networking: Network connectivity method and firewall rules

	Security: Security settings

	Additional settings: Collation and time zone

	Tags: A set of name/value pairs that can be applied to logically organize Azure resources into functional categories or groups sharing a common scope (such as Production and Test)

	Review + create: Review and confirm all of the preceding settings

In the Basics tab, we have to insert the database details, such as the database name—which will also be the prefix of the database URL, in the <NAME>.database.windows.net format—and the server we would like to use. If this is our first time coming here, we’re not going to have any available servers. Due to this, we’ll have to create our first one by clicking on the Create new link and filling in the pop-over form that will slide to the rightmost side of the screen. Select the Use SQL Authentication radio button, since this is the method we are going to use. Be sure to set a non-trivial Server admin login (we will use WorldCitiesAdmin in our screenshots) and a complex Password.

It’s important to understand that the Server admin login is not the account that will be used by our web application to access the WorldCities database: we’ll create a dedicated user (with fewer rights) for that. The Server admin login is the global administrator account of the whole Azure SQL Database service instance: we will mostly use it to perform high-level administrative tasks, such as creating the WorldCities database, adding the web application’s dedicated user, and so on.

The following screenshot shows an example of how to configure this part of the wizard:

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 5.17: Configuring our SQL database

The last three options in the Basics tab will ask us for the Workload environment, Compute + storage type, and Backup storage redundancy, and are all related to how much capable we want our database to be in terms of performance, storage size, and redundancy. How to configure these options entirely depends on what we want to do with our app – or, to put it in other words, how much we want (or are allowed) to spend.

For the purpose of this book, we are going to select the Development workload environment, which will automatically configure a serverless database with General Purpose settings (in terms of performance and storage size) at very low costs. However, since we want to spend even less than that, we will change the Compute + storage type from General Purpose to Basic, which is the bare minimum we can obtain in terms of cost, performance, and size (while still being enough for our purposes), as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere, software Descrizione generata automaticamente]
Figure 5.18: Choosing the compute and storage type

However, if we were setting up a production environment (or having to satisfy “bigger” requirements) we should definitely choose a more demanding tier.

It’s also important to keep in mind that most service tiers (except the budget-friendly ones) offers two alternatives in terms of compute resources:

	Provisioned – Compute resources are pre-allocated. The database is billed per hour based on the number of vCores selected/configured.

	Serverless – Compute resources are auto-scaled. The database is billed per second based on vCores actually used.

Both alternatives might be viable, depending on the expected workload of our application, the required size of the database, and the performance level we want to achieve.

If the serverless database option is good enough for your purposes, you can also benefit from a free Azure SQL Database offer, which allows you to create a free serverless database with the first 100,000 vCore seconds, 32 GB of data, and 32 GB of backup storage free per month for the lifetime of the subscription. For additional information, check out the following URL:

https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql

As for the Backup storage redundancy option, the choice here depends on how we want our database backup to be replicated. Again, for the demonstration purposes of this book, we are going to choose the less expensive option: locally redundant backup storage; feel free to change it if you have different needs.

On the Networking tab, be sure to choose a Public endpoint to enable external access from the internet so that we’ll be able to connect to our database from all of our environments. We should also set both the firewall rules to Yes to allow Azure services and resources to access the server and add our current IP address to the allowed IPs whitelist. All the remaining options on this tab can be left to their default value.

Wait a minute: isn’t that a major security issue? What if our databases contain personal or sensitive data?

As a matter of fact, it is: allowing public access from the internet is something we should always avoid unless we’re playing with open data for testing, demonstrative, or tutorial purposes... which is precisely what we’re doing right now.

The Security, Additional settings, and Tags tabs are OK with their default settings. We should only change them if we need to alter some options (such as the collation and the time zone that is most suitable for our language and country) or to activate specific stuff such as the advanced data security—which is completely unnecessary for our current needs.

On the Review + create tab, we’ll have our last chance to review and change our settings (as shown in the following screenshot):

[image: Immagine che contiene testo, schermata, software, Pagina Web Descrizione generata automaticamente]
Figure 5.19: Reviewing our chosen settings

If we’re not sure about them, we have the chance to go back and change them. When we’re 100% sure, we can hit the Create button and have our SQL database deployed in a few seconds.

It’s worth noting that we can also download a template for automation in case we want to save these settings to create additional SQL databases in the future.

That’s it! Now, we can focus on configuring our database.

Configuring the database

Regardless of the path we take—a local instance or Azure—we should be ready to manage our newly created SQL database.

The most practical way to do that is to connect to it using one of the two free SQL Server Management GUIs provided by Microsoft that we talked about early on: SQL Server Management Studio and Azure Data Studio. If you haven’t installed them yet, now is the time to do so.

We’re going to use SQL Server Management Studio in the following examples and screenshots, as well as through the rest of the book.

Once the tool is installed, launch it. On the main dashboard, click on the New Connection link, then fill out the form with your SQL Database data, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 5.20: Connecting to the SQL Server

More specifically, we need to use the Server name, Login, and Password we chose when we installed our local SQL Server instance or created the SQL database on Azure.

As we can see by looking at the URL that we wrote in the Server field, in the preceding screenshot we’re connecting to a typical Azure SQL Database instance. In order to connect to a locally installed SQL Server, we would use localhost\SQLEXPRESS, 127.0.0.1\SQLEXPRESS, or something like that, depending on the instance name that we’ve chosen during the installation process.

By clicking the Connect button, we should be able to log in to our database server. As soon as SSMS connects to the SQL Database server, an Object Explorer window will appear, containing a tree view representing the structure of our SQL Server instance. This is the interface we’ll use to create our database, as well as the user/password that our application will use to access it.

Creating the WorldCities database

If we took the Azure SQL Database route, we should already be able to see the WorldCities database in the Databases folder of the Object Explorer tree to the left:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 5.21: Inspecting the WorldCities folder in the Object Explorer

Alternatively, if we installed our local SQL Server Express or Developer instance, we’ll have to manually create it by doing the following:

	Right-click on the Databases folder.

	Choose Add Database from the contextual menu.

	Type in the WorldCities name, then click on OK to create it.

Once the database has been created, we’ll get the chance to expand its tree node by clicking on the plus (+) sign to the left and visually interacting with all its child objects—tables, stored procedures, users, and so on—through the SSMS GUI. It goes without saying that if we did that now, we would find no tables because we haven’t created them yet.

That’s something that Entity Framework Core will do for us later on. However, before doing that, we’re going to add a login account to make our web application able to connect.

Adding the WorldCities login

The database’s security settings can be configured using two different approaches:

	Using the SSMS GUI, which is only available when the database is hosted on a local (or remote) SQL Server instance, such as SQL Server Express or Developer

	Using raw SQL commands, which is always available—as well as the only available option if we created our SQL database on Azure (or if we’re using Azure Data Studio instead of SSMS)

Let’s start with the first option, which allows us to add and configure login accounts without writing a single line of SQL code.

Using the SSMS GUI

From the SSMS Object Explorer, go back to the top root folder and expand the Security folder, which should be just below it. Once you’re there, do the following:

	Right-click on the Logins subfolder and choose New Login.

	In the modal window that appears, set the login name to WorldCities.

	From the radio button list below the login name, select SQL Server Authentication and set a suitable password with decent strength (such as MyVeryOwn$721—we’re going to use this one for the code samples and screenshots from now on).

	Be sure to disable the User must change the password at next login and Enforce password expiration options (both are checked by default); otherwise, Entity Framework Core will be unable to perform the login later on.

	Set the user’s default database to WorldCities.

	Review all of the options, then click on OK to create the WorldCities account.

If we want a simple password, such as WorldCities or Password, we might have to disable the enforce password policy option. However, we strongly advise against doing that. Choosing a weak password is never a wise choice, especially in a production-ready environment. We suggest that you always use a strong password, even in testing and development environments. Just be sure not to forget it, as we’re going to need it later on.

Using raw SQL commands

If we’re dealing with a SQL database hosted on Azure, we’re using Azure Data Studio, or we prefer to use raw SQL, here’s the script that will create the above user:

CREATE LOGIN WorldCities
 WITH PASSWORD = 'MyVeryOwn$721'
GO

Be sure to execute the above SQL command against the master database, otherwise you will get a User must be in the master database error.

If we want to relax the password policy, we can add the CHECK_POLICY = OFF option to the above query; however, we strongly advise against doing this for the security reasons explained earlier on.

Mapping the login to the database

The next thing we need to do is properly map this login to the WorldCities database we added earlier.

Here’s how to do that using the SSMS GUI:

	Double-click the WorldCities login name from the Security folder to open the same model we used just a few seconds ago.

	From the navigation menu to the left, switch to the User Mapping tab.

	Click on the checkbox to the left of the WorldCities database. The User cell should be automatically filled with the WorldCities value. If it doesn’t, we’ll need to manually type WorldCities into it.

	In the Database role membership for box in the bottom-right panel, assign the db_owner membership role.

All of the preceding steps are depicted in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 5.22: Mapping the login to the WorldCities database

Again, if we need (or prefer) to use raw SQL commands, here’s the script to use (be sure to switch to the WorldCities database before launching it):

CREATE USER WorldCities
 FOR LOGIN WorldCities
 WITH DEFAULT_SCHEMA = dbo
GO
EXEC sp_addrolemember N'db_owner', N'WorldCities'
GO

That’s it! Now, we can go back to our web application project, add the connection string, and create our tables (and data) using the Entity Framework Code-First approach.

Creating the database using Code-First

Before going further, let’s do a quick checklist:

	Are we done with our entities? Yes

	Do we have a DBMS and a WorldCities database available? Yes

	Have we gone through all of the required steps we need to complete to actually create and fill in the aforementioned database using Code-First? No

As a matter of fact, we need to take care of two more things:

	Set up an appropriate Database Context

	Enable Code-First Data Migrations support within our project

Within the following sections, we’re going to fill all of these gaps and eventually fill our WorldCities database.

Setting up the DbContext

To interact with data as objects/entity classes, Entity Framework Core uses the Microsoft.EntityFrameworkCore.DbContext class, also called DbContext or simply Context. This class is in charge of all of the entity objects during runtime, including populating them with data from the database, keeping track of changes, and persisting them to the database during CRUD operations.

We can easily create our very own DbContext class for our project—which we will call ApplicationDbContext—by doing the following:

	From Solution Explorer, right-click on the /Data/ folder we created a while ago and add a new ApplicationDbContext.cs class file.

	Fill it with the following code:
 using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Data
{
 public class ApplicationDbContext : DbContext
 {
 public ApplicationDbContext() : base()
 {
 }
 public ApplicationDbContext(DbContextOptions options)
 : base(options)
 {
 }
 public DbSet<City> Cities => Set<City>();
 public DbSet<Country> Countries => Set<Country>();
 }
}

As we can see, we took the chance to add a DbSet<T> property for each of our entities so that we can easily access them later on.

Entity type configuration methods

Since we chose to adopt the Code-First data modeling approach, we need to make sure that our entities are properly configured from within the code so that the SQL scripts generated by Entity Framework Core will create the database using the names, database types, definitions, and rules that we want.

EF Core provides three methods for configuring various aspects of your model:

	Data Annotations, through attributes applied directly on the entity types

	Fluent API (also known as ModelBuilder API), via custom rules applied by overriding the OnModelCreating method in DbContext

	EntityTypeConfiguration classes, via custom rules applied to separate configuration classes referenced in the DbContext OnModelCreating override method (an alternative take on the Fluent API approach)

All of them are viable for most scenarios. However, in a real project, it is highly advisable to avoid mixing them and just pick one for the sake of consistency.

Let’s briefly review all of them before choosing our pick.

Data annotations

Data Annotations are dedicated attributes that can be applied to entity classes and properties to override the default Code-First conventions and/or to define new rules. The major advantage of Data Annotations is that they allow the developer to manage the data definition within the class code, which is great for code readability and maintainability.

As a matter of fact, we used Data Annotations in our existing entity classes when we added the [Key], [Required], and [ForeignKey] attributes to their database-relevant properties. This means that, if we want to switch to another configuration method, we’ll need to perform some minor refactoring on our code.

Data Annotations are great for applying simple configuration changes, which often makes them ideal for small projects; however, they don’t support the whole set of configuration options made available by EF Core. Whenever we need to gain more control over our entity type settings, we might easily feel the urge to switch to a more powerful method.

Fluent API

In order to use the Fluent API, we need to override the OnModelCreating method in our derived context and use the ModelBuilder API to configure our model.

A great way to understand how we can use the Fluent API might be to see how we can convert our existing Data Annotations into ModelBuilder settings. Here’s how we can do that:

[...]
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);
 modelBuilder.Entity<City>().ToTable("Cities");
 modelBuilder.Entity<City>()
 .HasKey(x => x.Id);
 modelBuilder.Entity<City>()
 .Property(x => x.Id).IsRequired();
 modelBuilder.Entity<City>()
 .Property(x => x.Lat).HasColumnType("decimal(7,4)");
 modelBuilder.Entity<City>()
 .Property(x => x.Lon).HasColumnType("decimal(7,4)");
 modelBuilder.Entity<Country>().ToTable("Countries");
 modelBuilder.Entity<Country>()
 .HasKey(x => x.Id);
 modelBuilder.Entity<Country>()
 .Property(x => x.Id).IsRequired();
 modelBuilder.Entity<City>()
 .HasOne(x => x.Country)
 .WithMany(y => y.Cities)
 .HasForeignKey(x => x.CountryId);
}
[...]

The preceding override method should be added to the ApplicationDbContext class right after the constructors: refer to the source code in the GitHub repository for details.

As we can see, for each data annotation that we’ve used so far there’s a corresponding Fluent API method: ToTable() for [Table], HasKey() for [Key], IsRequired() for [Required], and so on.

The major advantage of the Fluent API is that it allows us to specify the entity configuration without modifying our entity classes; furthermore, Fluent API configurations have the highest precedence, meaning that they will override any existing EF Core convention and/or data annotation applied to entity classes and properties.

Their only real downside is that, despite being fluid, they are quite verbose. In big projects and/or complex entity configuration scenarios, which is also when they really shine, the amount of code they require easily increases a lot as the required settings pile up, thus making the DbContext source code quite hard to read and maintain.

EntityTypeConfiguration classes

EntityTypeConfiguration classes are a pivotal aspect of an advanced coding pattern that aims to overcome the major issues of the Fluent API while retaining all its advantages.

In a nutshell, this technique leverages the ApplyConfigurationsFromAssembly Fluent API method, which allows the definition of external rules within separate configuration files, thus removing the need to stack up all of them within DbContext's OnModelCreating override method, and reduces the required amount of code to a single line.

Again, the best way to understand how this method works is to explain how we could convert our existing data annotation rules into configuration classes.

This time, we need to create two additional files. The first one is called /Data/Models/CityEntityTypeConfiguration.cs:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;
namespace WorldCities.Server.Data.Models
{
 public class CityEntityTypeConfiguration
 : IEntityTypeConfiguration<City>
 {
 public void Configure(EntityTypeBuilder<City> builder)
 {
 builder.ToTable("Cities");
 builder.HasKey(x => x.Id);
 builder.Property(x => x.Id).IsRequired();
 builder
 .HasOne(x => x.Country)
 .WithMany(x => x.Cities)
 .HasForeignKey(x => x.CountryId);
 builder.Property(x => x.Lat).HasColumnType("decimal(7,4)");
 builder.Property(x => x.Lon).HasColumnType("decimal(7,4)");
 }
 }
}

And the second one is called /Data/Models/CountryEntityTypeConfiguration.cs:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;
namespace WorldCities.Server.Data.Models
{
 public class CountryEntityTypeConfiguration
 : IEntityTypeConfiguration<Country>
 {
 public void Configure(EntityTypeBuilder<Country> builder)
 {
 builder.ToTable("Countries");
 builder.HasKey(x => x.Id);
 builder.Property(x => x.Id).IsRequired();
 }
 }
}

Adding these configuration classes to our ApplicationDbContext is as easy as adding this single line within the OnModelCreating method, which we added earlier:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);
 // add the EntityTypeConfiguration classes
 modelBuilder.ApplyConfigurationsFromAssembly(
 typeof(ApplicationDbContext).Assembly
);
}

Not bad, right?

Making a choice

Now that we’ve explored the three alternative ways to configure our entities offered by EF Core, we need to choose which one we use from now on.

It goes without saying that the EntityTypeConfiguration classes method is easily the most preferable approach for large projects because it gives us the chance to organize our settings in a consistent, structured, and readable way. However, since we’ll be dealing with very simple database models that will require a minimal number of configuration settings throughout this book, we’ll keep using the data annotation approach.

The basic implementation of the other two methods that we’ve discussed in this section early on is also available in this chapter’s source code in the GitHub repository so that if you want to adopt a different approach, you can still review them. Both the ApplicationDbContext's OnModelCreating method and the EntityTypeConfiguration classes have been documented with a <summary> explaining that this code is a redundant override of the data annotation rules and meant for educational purposes only. Such redundant code will be removed in Chapter 6, Fetching and Displaying Data, and in the subsequent chapters, which will only feature the Data Annotations.

Database initialization strategies

Creating the database for the first time isn’t the only thing we need to worry about; for example, how can we keep track of the changes that will definitely occur for our data model?

In previous, non-core versions of EF (up to 6.x), we could choose one of the database management patterns (known as database initializers or DbInitializers) offered by the Code-First approach, that is, by picking the appropriate database initialization strategy for our specific needs, from the following:

	CreateDatabaseIfNotExists

	DropCreateDatabaseIfModelChanges

	DropCreateDatabaseAlways

	MigrateDatabaseToLatestVersion

Additionally, should we need to address specific requirements, we can also set up our own custom initializer by extending one of the preceding ones and overriding their core methods.

The major flaw of DbInitializers was that they were not immediate and streamlined enough for the average developer. They were viable yet difficult to handle without extensive knowledge of Entity Framework’s logic.

In Entity Framework Core, this pattern has been greatly simplified; there are no DbInitializers, and automatic data migrations have also been removed. The database initialization aspect is now entirely handled through PowerShell commands, with the sole exception of a small set of commands that can be placed directly on the DbContext implementation constructor to partially automate the process. They are as follows:

	Database.EnsureCreated()

	Database.EnsureDeleted()

	Database.Migrate()

There’s currently no way to create data migrations programmatically; they must be added via PowerShell, as we will see shortly.

Updating the appsettings.json file

From Solution Explorer, open the appsettings.json file and add a new "ConnectionStrings" JSON key section right below the "Logging" section with the following value (new lines are highlighted):

{
"Logging": {
"LogLevel": {
"Default": "Warning"
}
},
"AllowedHosts": "*",
 "ConnectionStrings": {
 "DefaultConnection": "Server=localhost\\SQLEXPRESS;
 Database=WorldCities;
 User Id=WorldCities;Password=MyVeryOwn$721;
 Integrated Security=False;MultipleActiveResultSets=True;TrustServerCertificate=True"
 }
}

Unfortunately, JSON doesn’t support line breaks inside a value, so we’ll need to put the DefaultConnection value on a single line. If you copy and paste the preceding text, ensure that Visual Studio doesn’t automatically add additional double quotes and/or escape characters to these lines; otherwise, your connection string won’t work.

This is the connection string we’ll be referencing in our project’s Program.cs file later on.

IMPORTANT: As we can see, now our appsettings.json file contains our database User Id and Password in clear text, thus posing a non-trivial security issue. While this file currently resides solely on our development machine, it is possible that sooner or later it will be “accidentally” shared or published elsewhere, for example, in a GitHub repository. For that very reason, do not check in your project until you’ve read the next paragraph.

Securing the connection string

Being able to securely store the database password and API keys in web applications while maintaining full efficiency in terms of debugging and testing has always been a challenge for all developers.

Back in the ASP.NET pre-Core days, most ASP.NET developers used to store them in the <connectionStrings> and/or <appSettings> sections of their project’s Web.config file in the following way:

<connectionStrings>
<add name="DefaultConnection" connectionString="[MY CONNECTION STRING]"/>
</connectionStrings>
<appSettings>
<add key="Google_ApiKey" value="[MY API KEY]"/>
<add key="Facebook_Secret" value="[MY FB SECRET]"/>
</appSettings>

This practice is still in use nowadays, with the Web.config file being replaced by the appsettings.json file.

In terms of pure functionality, this behavior works very well, because when we launch our web applications, they will automatically fetch the required credentials whenever they need them even if we run them in Debug mode, just like they would do in a production environment.

This practice has always been very convenient because it also leverages the fact that ASP.NET allows us to define multiple files for different environments. More specifically:

	The Web.config approach can rely on multiple configuration files (Web.Debug.config, Web.Release.config, and so on) that could be easily merged during the publishing phase using a highly configurable XSD transformation feature

	The appsettings.json approach supports multiple configuration files as well (appsettings.Development.json, appsettings.Production.json, and so on) that can be used to add or override the default settings for specific runtime environments using a cascade logic

Unfortunately, none of these places are safe or secure. If we get used to putting our valuable credentials in those plain text files, there’s a high risk that we’ll end up accidentally pushing them into a GitHub repository, with all the other developers being able to see and use them. For that very reason, such a habit is widely considered a bad practice and—if we’re still using it—we should definitely take the chance to get rid of it and start to handle our valuable secrets in a much better (and safer) way.

The question is: how we can do that without losing the effectiveness provided by the “good old” (and insecure) approach?

Introducing Secrets Storage

Starting with .NET Core 2.x and Visual Studio 2019, Microsoft provided their developers with a new feature that can be used to store any secret (database passwords, API keys, and so on) in a secure and effective way: this feature is called Secrets Storage and is well documented in Microsoft’s Safe storage of app secrets in development in ASP.NET Core official guide, available at the following URL: https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets.

In a nutshell, the new feature creates a secrets.json file in the development machine’s user folder (in a typical Windows environment, the \Users\UserName\AppData\Roaming\Microsoft\UserSecrets directory), which can be used to add to or override elements of the standard appsettings.json files using the same syntax they already have.

This is good for a number of reasons, including:

	The secrets.json file cannot be accessed by remote users, such as those who could get the project from a GitHub repository, because it will be created in a local folder

	The secrets.json file cannot be accessed by local users because it will be created in the developer’s very own personal folder (which is inaccessible to other local users)

	The secrets.json file will work right out of the box, basically extending the appsettings.json file without forcing us to write any secrets there

This feature is a great alternative to the environment variables approach, which is another workaround suggested by Microsoft in the preceding guide that I personally don’t like as much (at least for development environments) because it is much less flexible and straightforward.

Now that we’ve chosen our path, let’s see how we can implement it.

Adding the secrets.json file

Among the greatest aspects of the Secrets Storage feature is the fact that it can be used from within the Visual Studio GUI, which is arguably the best way to do it.

All we need to do is to right-click the WorldCities.Server project’s root folder from Solution Explorer and select the Manage User Secrets options, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 5.23: Adding the secrets.json file

As soon as we select that option, Visual Studio will add a UserSecretsId element within a PropertyGroup of the project’s .csproj file, assigning a random GUID value to it:

 <PropertyGroup>
 [...]
 <UserSecretsId>9430de8f-8575-4a47-9d22-a98e491af64c</UserSecretsId>
 </PropertyGroup>

This random UserSecretsId value is then used by Visual Studio to generate an empty secrets.json file in the following folder:

\Users\UserName\AppData\Roaming\Microsoft\UserSecrets\

Right after that, Visual Studio will open that secrets.json file within the GUI in edit mode, so that we can use it to store our secrets.

Sharing the secrets.json file between multiple projects

By default, the inner text of UserSecretsId is a randomly generated GUID; however, this value is arbitrary and can be changed. Using a (random) unique identifier will prevent different projects from having the same secrets.json file; at the same time, choosing the same identifier can be useful if we want to share the same secrets between multiple projects.

In this book’s GitHub repository, we’ve taken advantage of this behavior by defining an arbitrary UserSecretsId for each different project—one for HealthCheck.Server, another one for WorldCities.Server, and so on—and recycling it through all the instances of these projects within the various chapters’ folders. For example, here’s the UserSecretsId value that we’ve used for all the instances of the current project:

<UserSecretsId>WorldCities.Server</UserSecretsId>

In order to manually set that value, we can use the Edit Project File option available in the Visual Studio GUI, which is accessible by right-clicking on Solutions Explorer’s WorldCities.Server project root folder:

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 5.24: Manually setting the UserSecretsId value

Alternatively, we can also edit the WorldCities.csproj file in the project’s root folder using the text editor of our choice (including Windows’ Notepad) and find the relevant line/value to change.

Working with the secrets.json file

Now that we’ve created our secrets.json file, let’s use it.

Open the appsettings.json file and cut out the whole ConnectionStrings block that we added a short while ago:

{
"Logging": {
"LogLevel": {
"Default": "Warning"
}
},
"AllowedHosts": "*"
}

And paste it within the secrets.json file in the following way:

{
"ConnectionStrings": {
"DefaultConnection": "Server=localhost\\SQLEXPRESS;
 Database=WorldCities;
 User Id=WorldCities;Password=MyVeryOwn$721;
 Integrated Security=False;MultipleActiveResultSets=True;TrustServerCertificate=True"
}
}

NOTE: The "DefaultConnection" value must be specified on a single line, otherwise it won’t work.

That’s basically it: the JSON keys defined in the secrets.json file will be added to those already present in the appsettings.json file (replacing them if already present) in a seamless and transparent way, without us having to do anything else.

In the next section, we’ll get a good chance to make use of this handy feature.

Creating the database

Now that we have set up our own DbContext and defined a valid connection string pointing to our WorldCities database, we can easily add the initial migration and create our database.

Updating Program.cs

The first thing we have to do is add the EntityFramework support and our ApplicationDbContext implementation to our application startup class. Open the Program.cs file and add the following new lines right below the last service (it should be SwaggerGen):

// ...existing code...
builder.Services.AddSwaggerGen();
// Add ApplicationDbContext and SQL Server support
builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 builder.Configuration.GetConnectionString("DefaultConnection")
)
);
// ...existing code...

The new code will also require the following namespace references:

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data;

As we can see, we’ve used the GetConnectionString("DefaultConnection") extension method—provided by the IConfiguration interface—which can be used to retrieve the ConnectionStrings:DefaultConnection JSON key from the appsettings.json file.

However, in our scenario, this value will be fetched from the secrets.json file, since we moved the whole ConnectionStrings block there a short while ago.

The GetConnectionString("DefaultConnection") method is basically a shortcut for the Configuration["ConnectionStrings:DefaultConnection"] command: both of them will return the same JSON key value, as long as those keys exist, from the appsettings.json and/or secrets.json files.

Adding the initial migration

To add the initial migration we can either use the dotnet CLI (from the command line) or the Package Manager Console (from within the Visual Studio GUI).

Based on reader feedback, if your development environment went through a number of .NET Core SDK subsequent updates, the Package Manager Console might pick the wrong tooling and fail. With that in mind, I suggest trying the CLI first, then switching to the Package Manager Console in case of issues. If both approaches fail, it might be advisable to uninstall some of the old .NET Core SDKs and try again.

Using the dotnet CLI

Open a Command Prompt and navigate through the project’s root folder, which is as follows in our example:

C:\ThisBook\Chapter_05\WorldCities\WorldCities.Server\

Once there, type the following command to globally install the dotnet-ef command-line tool:

dotnet tool install --global dotnet-ef

Wait until the installation is complete. When we receive the green message output, type in the following command to add the first migration:

dotnet ef migrations add "Initial" -o "Data/Migrations"

The optional -o parameter can be used to change the location where the migration code-generated files will be created. If we don’t specify it, a root-level /Migrations/ folder will be created and used by default. Since we put all of the EntityFrameworkCore classes into the /Data/ folder, it’s advisable to store migrations there as well.

The preceding command will produce the following output:

[image: Immagine che contiene testo, schermata, Carattere Descrizione generata automaticamente]
Figure 5.25: Command-line output after adding the first migration

If we see a Build succeeded and then a Done output, it means that everything went OK: the initial migration has been set up and we’re ready to apply it.

If we go back to Visual Studio and take a look at our project’s Solution Explorer, we will see that there’s a new /Data/Migrations/ folder containing a bunch of code-generated files.

Updating the database

Applying a data migration basically means creating (or updating) the database in order to synchronize its contents (tables structure, constraints, and so on) with the rules that are defined by the overall patterns and definitions within the DbContext, and by the Data Annotations within the various entity classes. More specifically, the first data migration creates the whole database from scratch, while the subsequent ones will update it (creating tables, adding/modifying/removing table fields, and so on).

In our specific scenario, we’re about to execute our first migration. Here’s the one-liner we need to type from the command line (within the project root folder, just like before) to do that:

dotnet ef database update

Once we hit Enter, a bunch of SQL statements will fill the output of our command-line terminal window. When done, if everything is looking good, we can go back to the SSMS tool, refresh the Server Object Explorer tree view, and verify that the WorldCities database has been created, along with all of the relevant tables:

[image: Immagine che contiene testo, schermata, software, Carattere Descrizione generata automaticamente]
Figure 5.26: Checking the Object Explorer

If we see an error here, don’t worry: there are a couple of known issues that we might have to fix before getting the dotnet ef database update command to work as expected.

The “No executable found matching command dotnet-ef” error

At the time of writing, there’s a nasty issue affecting most .NET-based Visual Studio projects that can prevent the dotnet ef command from working properly. More specifically, we may be prompted by the following error message when trying to execute any dotnet ef-based command:

No executable found matching command "dotnet-ef"

If we happen to experience this issue, we can try to check out the following:

	Double-check that we added the Microsoft.EntityFrameworkCore.Tools package library (as explained earlier) properly, as it’s required for the command to work.

	Ensure that we’re issuing the dotnet ef command in the project’s root folder—the same one that also contains the <ProjectName>.csproj file; it won’t work anywhere else.
A lot more can be said regarding this issue but doing so is outside the scope of this book. Those of you who want to know more can take a look at this article I wrote while working on my ASP.NET Core 2 and Angular 5 book at https://goo.gl/Ki6mdb.

The “System.Globalization.CultureNotFoundException” error

Another troublesome issue I encountered at the time of writing involves the following error being given by the dotnet-ef command when trying to update the database:

System.Globalization.CultureNotFoundException: Only the invariant culture is supported in globalization-invariant mode. See https://aka.ms/GlobalizationInvariantMode for more information. (Parameter 'name') en-us is an invalid culture identifier.

This exception is determined by the conflict of two different breaking changes introduced by the .NET development team in the last two years:

	The System.Globalization.CultureNotFoundException exception is thrown if we set the GlobalizationInvariantMode setting to true for our app and then create any culture other than the invariant culture (introduced in .NET 6).

	The GlobalizationInvariantMode setting is set to true in most Visual Studio 2022 17.8+ project templates (introduced with the release of .NET 8).

This “explosive combination” will likely be fixed in the next Visual Studio update by reverting the GlobalizationInvariantMode setting value from true to false (the default). While waiting for this to happen, we can easily fix the issue by opening the WorldCities.Server project file and manually changing that value in the following way (the updated line is highlighted):

 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <InvariantGlobalization>false</InvariantGlobalization>
 <SpaRoot>..\worldcities.client</SpaRoot>
 <SpaProxyLaunchCommand>npm start</SpaProxyLaunchCommand>
 <SpaProxyServerUrl>https://localhost:4200</SpaProxyServerUrl>
 <UserSecretsId>WorldCities.Server</UserSecretsId>
 </PropertyGroup>

After performing this change, we should be able to run the dotnet-ef command again without issues.

For additional information regarding the globalization-invariant mode and its impact on .NET Core applications, check out the following URL:

https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode

Using the Package Manager Console

If we get issues while using the dotnet CLI, we can often prevent nasty headaches by switching to the Package Manager Console provided by the Visual Studio GUI. To activate it, select View > Other Windows > Package Manager Console from Visual Studio’s main topmost menu.

Here’s the full set of Package Manager Console commands that can be used to replace the previously mentioned dotnet ef ones:

Add-Migration Initial -OutputDir "Data/Migrations"
Update-Database

To know more about the dotnet CLI commands and their corresponding Package Manager Console alternatives, check out the following official guides:

	EF Core .NET CLI reference: https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

	EF Core PMC / PowerShell reference: https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

Checking the autogenerated database tables

Regardless of the tool used (dotnet CLI or Package Manager Console), our WorldCities database should now have a couple of autogenerated tables ready to contain our Cities and Countries data. Let’s quickly check them out before proceeding.

Open the SSMS tool and connect to SQL Server like we did a while ago, and open the WorldCities database that we created early on. The Cities and Countries tables generated by the dotnet-ef tool should indeed be there with their columns and keys, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere Descrizione generata automaticamente]
Figure 5.27: The autogenerated Cities table

Before we move on, it would be useful to say a few words explaining what Code-First migrations actually are, and the advantages we gain by using them.

Understanding migrations

Whenever we’re developing an application and defining a data model, we can be sure that it will change a number of times for many good reasons, such as new requirements from the product owner, optimization processes, consolidation phases, and so on. A bunch of properties will be added, deleted, or have their types changed. Chances are, sooner or later, we’ll be adding new entities as well and/or changing their relation pattern according to our ever-changing needs.

Each time we do something like that, we’ll also put our data model out of sync with its underlying, Code-First-generated database. This won’t be a problem when we’re debugging our app within a development environment because that scenario usually allows us to recreate the database from scratch whenever the project changes.

Upon deploying the application into production, we’ll be facing a whole different story: as long as we’re handling real data, dropping and recreating our database won’t be an option anymore. This is what the Code-First migrations feature is meant to address: giving the developer a chance to alter the database schema without having to drop/recreate the whole thing.

We won’t dig deeper into this topic; Entity Framework Core is a world of its own and addressing it in detail is out of the scope of this book. If you want to learn more, we suggest that you start with the official Entity Framework Core documentation at the following link:

https://learn.microsoft.com/en-us/ef/core/

Is data migration required?

Data migration can be very useful, but it’s not a required feature and we are definitely not forced to use it if we don’t want to. As a matter of fact, it can be quite a difficult concept to understand for a lot of developers, especially for those who aren’t much into DBMS design and/or scripting. It can also be very complex to manage in most scenarios, such as in companies where the DBA role is covered by someone who is below the IT development team (such as an external IT consultant or specialist).

Whenever we don’t want to use data migration from the beginning—or we get to a point where we don’t want to use it anymore—we can switch to a Database-First approach and start to manually design, create, and/or modify our tables. Entity Framework Core will work well, as long as the property types that are defined in the entities 100% match the corresponding database table fields. This can definitely be done, including when we put the project samples presented in this book into practice (this also applies to the WorldCities project), as long as we feel that data migration is not needed.

Alternatively, we can give it a try and see how it goes. The choice, as always, is yours.

Populating the database

Now that we have a SQL database available and a DbContext that we can use to read from and write to it, we are finally ready to populate those tables with our world cities data.

To do that, we need to implement a data seeding strategy. We can do this using one of the various Entity Framework Core-supported approaches:

	Model data seed

	Manual migration customization

	Custom initialization logic

These three methods are well explained in the following article, along with their very own sets of pros and cons: https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding.

Since we have to handle a relatively big Excel file, we’re going to adopt the most customizable pattern we can make use of: some custom initialization logic relying upon a dedicated .NET controller that we can execute—manually or even automatically—whenever we need to seed our database.

Implement SeedController

Our custom initialization logic implementation will rely upon a brand-new dedicated controller, which will be called SeedController.

From our project’s Solution Explorer, do the following:

	Open the /Controllers/ folder.

	If the WeatherForecastController is still there, remove it.

	Right-click on the /Controllers/ folder.

	Click on Add | Controller.

	Choose the API Controller – Empty option.

	Give the controller the SeedController name and click Add to create it.

Once you’ve done this, open the newly created /Controllers/SeedController.cs file and take a look at the source code. You’ll see that there’s just an empty class, just as expected for an empty controller! This is great since we need to understand some key concepts and—most importantly—learn how to properly translate them into source code.

Do you remember when we added our ApplicationDbContext class to the Program.cs file? As we should already know from Chapter 2, Getting Ready, this means that we’ve registered the Entity Framework Core-related services and our ApplicationDbContext in the DI container. This means that we can now leverage the dependency injection loading feature provided by ASP.NET Core to inject an instance of that DbContext class within our controllers.

Here’s how we can translate such a concept into source code (the new lines are highlighted):

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using WorldCities.Server.Data;
namespace WorldCities.Server.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class SeedController : ControllerBase
 {
 private readonly ApplicationDbContext _context;
public SeedController(ApplicationDbContext context)
 {
 _context = context;
 }
 }
}

As we can see, we’ve added a _context private variable and used it to store an object instance of the ApplicationDbContext class within the constructor. This instance will be provided by the framework—through its dependency injection feature—within the constructor method of SeedController.

Before making good use of that DbContext instance to insert a bunch of entities into our database, we need to find a way to read those world cities values from the Excel file. How can we do that?

Import the Excel file

Luckily enough, there’s a great third-party library that does precisely what we need: reading (and even writing!) Excel files using the Office Open XML format (xlsx), hence making their content available within any .NET-based application.

The name of this great tool is EPPlus. Its author, Jan Källman, made it freely available on GitHub and NuGet at the following URLs:

	GitHub (source code): https://github.com/JanKallman/EPPlus

	NuGet (.NET package): https://www.nuget.org/packages/EPPlus

As we can see, the project recently changed its licensing model:

	Until version 4.x, it was licensed under the GNU Library General Public License (LGPL) v3.0, meaning that we were allowed to integrate it into our software without limitations, as long as we didn’t modify it.

	From version 5.x and below, it uses a PolyForm Noncommercial and Commercial dual license, which basically means that we can use it only for non-commercial purposes.

For that very reason, in order to avoid any possible license infringement, we’re going to use the (now-deprecated) 4.5.3.3, it being the latest GNU-LGPL version available.

That said, those who want to use the latest EPPlus version with the Noncommercial license can do that by adding the following line in the Program.cs file:

ExcelPackage.LicenseContext = LicenseContext.NonCommercial;

However, v4.x is still viable enough for the purposes of our sample.

For additional info about the new EPPlus PolyForm Noncommercial license, check out the following URL:

https://polyformproject.org/licenses/noncommercial/1.0.0/

To find out more about the EPPlus licensing change, read this:

https://www.epplussoftware.com/Home/LgplToPolyform

The best way to install EPPlus in our WorldCities.Server project is to add the NuGet package using the NuGet Package Manager GUI:

	From the project’s Solution Explorer, right-click on the WorldCities.Server project.

	Select Manage NuGet Packages....

	Use the Browse tab to search for the EPPlus package, choose the version you want to install (4.5.3.3 in our case), and then initiate the task by clicking the Install button at the top right:

[image: Immagine che contiene testo, software, Icona del computer, Pagina Web Descrizione generata automaticamente]
Figure 5.28: Adding the NuGet package using the NuGet Package Manager

Alternatively, type the following command from Visual Studio’s Package Manager Console:

> Install-Package EPPlus -Version 4.5.3.3

Once done, we can go back to the SeedController.cs file and use the awesome features of EPPlus to read the worldcities.xlsx Excel file.

However, before doing that, it could be wise to move that file so that it’s within our sample project’s /Data/ folder so that we’ll be able to read it using the .NET filesystem capabilities provided by the System.IO namespace. While we’re there, let’s create a /Data/Source/ subfolder and put it there to separate it from the other Entity Framework Core files:

[image: Immagine che contiene testo Descrizione generata automaticamente]
Figure 5.29: Creating a separate Source subfolder for the worldcities.xlsx file

Here’s the source code that we need to add to our SeedController.cs file to read the worldcities.xlsx file and store all of the rows in a list of City entities:

using System.Security;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using OfficeOpenXml;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Controllers
{
 [Route("api/[controller]/[action]")]
 [ApiController]
 public class SeedController : ControllerBase
 {
 private readonly ApplicationDbContext _context;
 private readonly IWebHostEnvironment _env;
 public SeedController(
 ApplicationDbContext context,
 IWebHostEnvironment env)
 {
 _context = context;
 _env = env;
 }
 [HttpGet]
 public async Task<ActionResult> Import()
 {
 // prevents non-development environments from running this method
if (!_env.IsDevelopment())
 throw new SecurityException("Not allowed");
 var path = Path.Combine(
 _env.ContentRootPath,
 "Data/Source/worldcities.xlsx");
 using var stream = System.IO.File.OpenRead(path);
 using var excelPackage = new ExcelPackage(stream);
 // get the first worksheet
var worksheet = excelPackage.Workbook.Worksheets[0];
 // define how many rows we want to process
var nEndRow = worksheet.Dimension.End.Row;
 // initialize the record counters
var numberOfCountriesAdded = 0;
 var numberOfCitiesAdded = 0;
 // create a lookup dictionary
// containing all the countries already existing
// into the Database (it will be empty on first run).
var countriesByName = _context.Countries
 .AsNoTracking()
 .ToDictionary(x => x.Name, StringComparer.OrdinalIgnoreCase);
 // iterates through all rows, skipping the first one
for (int nRow = 2; nRow <= nEndRow; nRow++)
 {
 var row = worksheet.Cells[
 nRow, 1, nRow, worksheet.Dimension.End.Column];
 var countryName = row[nRow, 5].GetValue<string>();
 var iso2 = row[nRow, 6].GetValue<string>();
 var iso3 = row[nRow, 7].GetValue<string>();
 // skip this country if it already exists in the database
if (countriesByName.ContainsKey(countryName))
 continue;
 // create the Country entity and fill it with xlsx data
var country = new Country
 {
 Name = countryName,
 ISO2 = iso2,
 ISO3 = iso3
 };
 // add the new country to the DB context
await _context.Countries.AddAsync(country);
 // store the country in our lookup to retrieve its Id later on
 countriesByName.Add(countryName, country);
 // increment the counter
 numberOfCountriesAdded++;
 }
 // save all the countries into the Database
if (numberOfCountriesAdded > 0)
 await _context.SaveChangesAsync();
 // create a lookup dictionary
// containing all the cities already existing
// into the Database (it will be empty on first run).
var cities = _context.Cities
 .AsNoTracking()
 .ToDictionary(x => (
 Name: x.Name,
 Lat: x.Lat,
 Lon: x.Lon,
 CountryId: x.CountryId));
 // iterates through all rows, skipping the first one
for (int nRow = 2; nRow <= nEndRow; nRow++)
 {
 var row = worksheet.Cells[
 nRow, 1, nRow, worksheet.Dimension.End.Column];
 var name = row[nRow, 1].GetValue<string>();
 var lat = row[nRow, 3].GetValue<decimal>();
 var lon = row[nRow, 4].GetValue<decimal>();
 var countryName = row[nRow, 5].GetValue<string>();
 // retrieve country Id by countryName
var countryId = countriesByName[countryName].Id;
 // skip this city if it already exists in the database
if (cities.ContainsKey((
 Name: name,
 Lat: lat,
 Lon: lon,
 CountryId: countryId)))
 continue;
 // create the City entity and fill it with xlsx data
var city = new City
 {
 Name = name,
 Lat = lat,
 Lon = lon,
 CountryId = countryId
 };
 // add the new city to the DB context
 _context.Cities.Add(city);
 // increment the counter
 numberOfCitiesAdded++;
 }
 // save all the cities into the Database
if (numberOfCitiesAdded > 0)
 await _context.SaveChangesAsync();
 return new JsonResult(new
 {
 Cities = numberOfCitiesAdded,
 Countries = numberOfCountriesAdded
 });
 }
 }
}

As we can see, we’re doing a lot of interesting things here. The preceding code features a lot of comments and should be very readable; however, it could be useful to briefly enumerate the most relevant parts:

	We injected an IWebHostEnvironment instance through dependency injection, just like we did for ApplicationDbContext, so that we can retrieve the web application path and read the Excel file.

	We added an Import action method that will use ApplicationDbContext and the EPPlus package to read the Excel file and add Countries and Cities.

	At the start of the Import method’s implementation, we used the IWebHostEnvironment instance to determine if we’re running in a development environment or not. If we aren’t, the code will throw a SecurityException. By acting that way we’ll prevent anyone—including our users—from calling this method in production, thus restricting the whole importing task to developers only.

	Countries are imported first because the City entities require the CountryId foreign key value, which will be returned when the corresponding Country is created in the database as a new record.

	We defined a Dictionary container object to store all existing countries (plus each new Country right after we create it) so that we can directly access each one of them using its CountryId instead of performing a lot of SELECT queries. This logic will also prevent the method from inserting the same country multiple times, should we happen to execute it more than once.

	We defined another Dictionary container object to prevent the insertion of duplicate cities as well.

	Last but not least, we created a JSON object to show the overall results on the screen.
It’s worth noting that we’ve issued our queries using EF Core’s AsNoTracking extension method, which returns a new query where the entities returned will not be cached in the DbContext or ObjectContext if they are modified within the code. This basically means that less data will be cached and tracked, with obvious benefits in terms of memory usage and performance.

For additional info on the AsNoTracking extension method, check out the following URL:

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking

If we want to get a closer look at how the whole importing procedure works, we can put some breakpoints inside the if loops to check it out while it’s running.

To execute the action method, hit F5 to launch the web application in debug mode and then type the following URL into the browser’s address bar: https://localhost:40443/api/Seed/Import.

Be aware that the Import method is designed to import 230+ countries and 12,000+ cities, so this task will likely require some time—between about 10 and 30 seconds on an average development machine, depending on the amount of available RAM, CPU performance, and database connection speed. It’s definitely a major data seed! We’re kind of stressing out the framework here.

If we don’t want to wait, we can always give the nEndRow internal variable a fixed value, such as 1,000, to limit the total number of cities (and countries) that will be read and therefore loaded into the database.

Eventually, we should be able to see the following response in our browser window:

[image: Immagine che contiene testo, schermata, software Descrizione generata automaticamente]
Figure 5.30: Inspecting the data import

The preceding output means that the import has been performed successfully: we did it! Our database is now filled with 44691 cities and 240 countries for us to play with.

Those numbers might slightly change depending on the WorldCities database version. At the time of writing, we’re using v1.76, which was updated on March 2023, but any subsequent version should work as well—as long as the Excel file structure doesn’t change. If you want to use the same exact Excel file that was used to write this book, you can find it in the GitHub project’s /Data/Source/ folder.

In the next section, we’re going to learn how we can read this data as well so that we’ll be able to bring Angular into the loop.

Entity controllers

Now that we have thousands of cities and hundreds of countries in our database, we need to find a way to bring this data to Angular and vice versa. As we already know from Chapter 2, Getting Ready, this role is played by the ASP.NET controllers, so we’re going to create two of them:

	CitiesController, to serve (and receive) the cities data

	CountriesController, to do the same with the countries

Let’s get started.

CitiesController

Let’s start with the cities. Remember what we did when we created SeedController? What we’re going to do now is rather similar, but this time we’ll make good use of Visual Studio’s code-generation features.

From our project’s Solution Explorer, follow these steps:

	Right-click on the /Controllers/ folder.

	Click on Add | Controller.

	Choose the Add API Controller with actions, using Entity Framework option.

	In the model window that appears, choose the City model class and the ApplicationDbContext data context class, as shown in the following screenshot. Name the controller CitiesController and click Add to create it:

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 5.31: Creating CitiesController
The settings we specified during this phase will be used by Visual Studio to analyze our entities (and our DbContext) and autogenerate a whole API controller stuffed with useful methods.

After the CitiesController.cs file has been generated we can open it and see how the code generator did a lot of useful work, while sticking to a pattern that’s similar to the one we followed for our SeedController class.

You can see the generated code in the book’s GitHub repository for this chapter.

Here’s a breakdown of the relevant methods, in order of appearance:

	GetCities() returns a JSON array containing all of the cities in the database

	GetCity(id) returns a JSON object containing a single City

	PutCity(id, city) allows us to modify an existing City

	PostCity(city) allows us to add a new City

	DeleteCity(id) allows us to delete an existing City

It definitely seems that we do have everything we need for our front-end. Before moving on to Angular, let’s do the same for our Countries.

CountriesController

From Solution Explorer, right-click the /Controllers/ folder and perform the same set of tasks we performed to add CitiesController—except for the name, which will obviously be CountriesController.

At the end of the code-generation process, we’ll end up with a CountriesController.cs file stuffed with the Get, Put, Post, and Delete action methods that we need to handle the Countries.

Again, the generated code is available in the book’s GitHub repository for this chapter.

Before going further, let’s spend a couple of minutes examining some methodological considerations regarding using entities in controllers the way we just did.

Should we really use entities?

When we created our CitiesController and CountriesController a short while ago, we selected our existing City and Country as our model classes. From a point of view, this seems like the most logical thing to do. Those classes already contain everything we need to receive from the client, thus they are ideal for use as input parameters for the Put() and Post() action methods that we need.

However, using a model class to return results or accept parameters from the client is hardly a good practice. These model classes are meant to be a full representation of our database tables, not the interface to use to exchange data with the client. A much better approach is to keep the model entities that communicate with the database separated from the Data Transfer Objects (DTOs) that we use for GET, POST, and PUT methods. We’ll talk more about that in Chapter 8, Code Tweaks and Data Services, when we’ll refactor those action methods, replacing those model entities with DTOs, thus enforcing the single responsibility principle between them; however, for the next few chapters, we can benefit from the simplicity resulting from such a non-recommended approach and go ahead.

That concludes our journey through Entity Framework. Now, we need to connect the dots and reap what we’ve sown using our favorite front-end framework.

Testing it out

Now that our controllers are ready, we can perform a quick test to see if they’re working as expected.

Hit F5 to launch our web application in debug mode, then copy the following URL into the browser’s address bar: https://localhost:40443/api/Cities/.

If we made everything properly, we should see something like this:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 5.32: Testing CitiesController

Here come our cities!

While we’re here, let’s check the countries as well with the following URL: https://localhost:40443/api/Countries/.

This is what we should receive from our browser:

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 5.33: Testing CountriesController

Here they are.

Our job here is done. Let’s move on to the next chapter, where we’ll see how to present this data to the front-end.

Summary

We started this chapter by enumerating a number of things that simply cannot be done without a proper data provider. To overcome these limitations, we decided to provide ourselves with a DBMS engine and a persistent database for reading and/or writing data. To avoid messing with what we did in the previous chapters, we created a brand-new web application project to deal with that, which we called WorldCities.

Then, we chose a suitable data source for our new project: a list of world cities and countries that we could download for free in a handy Excel file.

Right after that, we moved on to the data model. Entity Framework Core seemed an obvious choice to get what we wanted, so we added its relevant packages to our project. We briefly enumerated the available data modeling approaches and resorted to using Code-First due to its flexibility. Once done, we created our two entities, City and Country, both of which are based on the data source values we had to store within our database, along with a set of Data Annotations and relationships taking advantage of the renowned Entity Framework Core’s convention-over-configuration approach. Then, we built our ApplicationDbContext class accordingly.

After we created our data model, we evaluated the various options for configuring and deploying our DBMS engine. We reviewed the DMBS local instances and cloud-based solutions such as Azure, and we explained how to implement both of them.

Last but not least, we created our ASP.NET controller classes to deal with the data: SeedController to read the Excel file and seed our database, CitiesController to deal with cities, and CountriesController to handle countries.

After completing all of these tasks, we ran our application in Debug mode to verify that everything was working as intended. Now, we’re ready to mess with the front-end part of our app. In the next chapter, we’ll learn how to properly fetch this data from the server and bring it to the user in a fashionable way.

Angular, here we come!

Suggested topics

For further information, we recommend the following topics: Web API, in-memory Web API, data source, data server, data model, data provider, ADO.NET, ORM, Entity Framework Core, Code-First, Database-First, Model-First, Entity class, Data Annotations, DbContext, CRUD operations, data migration, dependency injection, ORM mapping, JSON, ApiController.

References

	Angular In-Memory Web API: https://github.com/angular/in-memory-web-api/

	C# required modifier: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required

	Wikipedia: ISO 3166: https://en.wikipedia.org/wiki/ISO_3166

	Wikipedia: ISO 3166 alpha-2: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

	Wikipedia: ISO 3166 alpha-3: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

	ISO 3166 country codes: https://www.iso.org/iso-3166-country-codes.html

	SQL Server 2019 official page: https://www.microsoft.com/en-us/sql-server/sql-server-2019

	SQL Server 2019 – compare SQL Server versions: https://www.microsoft.com/en-us/sql-server/sql-server-2019-comparison

	SQL Server 2019 on Linux: https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-overview

	Installing SQL Server on Windows: https://learn.microsoft.com/en-US/sql/database-engine/install-windows/installation-for-sql-server

	Installing SQL Server on Linux: https://learn.microsoft.com/en-US/sql/linux/sql-server-linux-setup

	Download SQL Server Management Studio (SSMS): https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

	Create a SQL Server Database on Azure: https://azure.microsoft.com/en-us/resources/videos/create-sql-database-on-azure/

	Azure free account FAQ: https://azure.microsoft.com/en-in/free/free-account-faq/

	Azure SQL Server Managed Instance: https://azure.microsoft.com/en-us/services/sql-database/

	Azure SQL Database free offer: https://learn.microsoft.com/en-us/azure/azure-sql/database/free-offer?view=azuresql

	Use tags to organize your Azure resources: https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources

	Choose the right deployment option in Azure SQL: https://learn.microsoft.com/en-US/azure/sql-database/sql-database-paas-vs-sql-server-iaas

	Create an Azure SQL Database Managed Instance: https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-get-started

	Entity Framework Core: Loading Related Data: https://learn.microsoft.com/en-US/ef/core/querying/related-data

	Entity Framework Core: Modeling: https://learn.microsoft.com/en-us/ef/core/modeling/

	Entity Framework Core: Data Seeding: https://learn.microsoft.com/en-us/ef/core/modeling/data-seeding

	Entity Framework Core: DbContext: https://www.entityframeworktutorial.net/efcore/entity-framework-core-dbcontext.aspx

	Culture creation and case mapping in globalization-invariant mode: https://learn.microsoft.com/en-us/dotnet/core/compatibility/globalization/6.0/culture-creation-invariant-mode

	EF Core .NET CLI reference: https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

	EF Core PMC/PowerShell reference: https://learn.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

	#region (C# reference): https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region

	Are #regions an antipattern or code smell?: https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell

	PolyForm Noncommercial license: https://polyformproject.org/licenses/noncommercial/1.0.0/

	EPPlus library licensing change: https://www.epplussoftware.com/Home/LgplToPolyform

	DbExtensions.AsNoTracking Method: https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbextensions.asnotracking

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

6

Fetching and Displaying Data

In the previous chapter, we created a new WorldCities solution containing a worldcities.client project (our Angular app) and a WorldCities.Server project (our ASP.NET Web API) and made a considerable effort to empower the latter with a DBMS-based data provider, built upon Entity Framework Core using the Code-First approach. Now that we have data persistence, we’re ready to entrust our users with the ability to interact with our application; this means that we can switch to the Angular app and implement some much-needed stuff, such as the following:

	Fetching data: Querying the data provider from the client side using HTTP requests and getting structured results back from the server side.

	Displaying data: Populating typical client-side components such as tables and lists, thereby ensuring a good user experience for the end user.

	Adding countries to the loop: For the sake of simplicity, we’ll learn how to implement the fetch and display tasks by focusing on the City entity. In the last part of the chapter, we’ll use the knowledge gained to apply the same techniques to the Country entity as well.

In this chapter, we’ll cover the fetch and display topics by adding several client-server interactions handled by standard HTTP request/response chains; it goes without saying that Angular will play a major role here, together with a couple of useful packages that will help us reach our goal.

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in the previous chapters, plus the following external library:

	System.Linq.Dynamic.Core (.NET Core NuGet package) for the WorldCities.Server ASP.NET app

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_06.

Fetching data

As we already know from Chapter 2, Getting Ready, reading data from the database is mostly a matter of having the Angular app (the front-end) send HTTP requests to the ASP.NET app (the back-end) and fetching the corresponding HTTP responses accordingly; these data transfers will be mostly implemented using JavaScript Object Notation (JSON), a lightweight data-interchange format that is natively supported by both frameworks.

In this section, we’ll mostly talk about HTTP requests and responses, see how we can fetch data from the ASP.NET app, and lay out some raw UI examples using Angular components that will be further refined throughout the next sections.

Are you ready? Let’s start!

Requests and responses

Let’s start by taking a look at those HTTP requests and responses we’ll be dealing with. Hit F5 to launch both the worldcities.client and WorldCities.Server projects in debug mode – or right-click the WorldCities.Server project and select Debug > Start New Instance to launch that project alone – and type the following URL in the browser’s address bar: https://localhost:40443/api/Cities/.

If we did everything correctly, we should see a list of cities, each one with a unique id. From that list, we can easily pick the id of each city and add it to our URL to retrieve that specific city only; for example, we can choose to use 12, which, in our specific scenario, corresponds to the city of New York.

[image: Immagine che contiene testo, schermata, software, Carattere Descrizione generata automaticamente]
Figure 6.1: Entry for New York

Important Note: The IDs of the various cities and countries referenced throughout the book might differ from those you see in your own database, depending on various factors: the world cities file version/progress, the starting auto-incrementing id of the [Cities] database table we used to store the data source, and so on. Don’t mind that: all the code samples should still work, regardless of any difference in ID.

JSON conventions and defaults

The JSON data received with the HTTP response is basically a serialization of our City entity, with some built-in conventions such as the following:

	camelCase instead of PascalCase: We have name instead of Name, countryId instead of CountryId, and so on, meaning that all our PascalCase .NET class names and properties will be automatically converted into camelCase when they are serialized to JSON.

	No indentation and no line feed/carriage return (LF/CR): Don’t get fooled by the fact that MS Edge, which is the browser we are using for this book’s screenshots, is showing it with proper indentation, formatting, and even syntax highlighting; that’s a UI/UX rendering feature of the browser. The JSON data we receive from the server is stacked within a single line of text.

To quickly verify the “no indentation” default convention of the source JSON data, right-click on a white spot within the browser’s page and select View page source. Doing this will allow us to see the actual JSON output received by the server – which features no indentation at all:

{"id":12,"name":"New York","lat":40.6943,"lon":-73.9249,"countryId":10,"country":null}

These conventions are the default options set by ASP.NET Core when dealing with JSON outputs. Most of them can be changed by adding some customization options to the MVC middleware. However, we don’t need to do that as they are perfectly supported by Angular, which is what we’re going to use to deal with those strings; we’ll just have to ensure that the Angular interfaces that we’ll create to mirror the entity classes have their names and properties set to camelCase.

Anyone who wants to know why they chose camelCase instead of PascalCase as the default serialization option should check out the following GitHub thread: https://github.com/aspnet/Mvc/issues/4283.

That said, if we want to increase the readability of our JSON output in browsers that don’t support automatic JSON formatting, such as Google Chrome or Mozilla Firefox, we can add some indentation so that we’ll be able to understand more of those outputs.

To do that, open the Program.cs file and add the following options to the builder.Services.AddControllers method (new/updated lines highlighted):

builder.Services.AddControllers()
 .AddJsonOptions(options =>
 {
 options.JsonSerializerOptions.WriteIndented = true;
 });

After saving the file, hit F5 to start the project in Debug mode, then type the previous URL once more. Once the page is loaded, right-click on it and select View page source to see the indentation changes:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 6.2: New JSON file with camelCase and indentation changes

Here we go: as we can see, by enabling this option, the JSON becomes much more readable, with Angular still being able to properly access it. However, such a change will also have a (minor) impact on performance, since all those line feeds and space characters will slightly increase the overall size of all the HTTP responses returned by the server-side API.

If we wanted to switch from camelCase (default) to PascalCase, we could also add the following option:

options.JsonSerializerOptions.PropertyNamingPolicy = null;

That said, for the sake of these sample projects, we prefer to keep the default conventions (no indentation and camelCase). For that very reason, we’ll comment out those two options.

Those who want to uncomment those options are free to do that. Just be aware that if PascalCase is used instead of camelCase, the Angular code samples shown in this chapter – and in the following chapters – will need to be changed accordingly.

A (very) long list

Let’s now move to our Angular app and create a sample component to show a list of Cities. We already created a component in Chapter 4, Front-End and Back-End Interactions, so we know what to do:

	Open Command Prompt.

	Navigate to the /src/app/ folder of the worldcities.client Angular project.

	Type ng generate component Cities --module=app --skip-tests to create the following new files using the Angular CLI:
	/src/app/cities/cities.component.ts

	/src/app/cities/cities.component.html

	/src/app/cities/cities.component.scss

	From Solution Explorer, create an additional city.ts file inside the /src/app/cities/ folder of the worldcities.client Angular project.

Once this is done, fill the new files with the following content.

city.ts

Open the /src/app/cities/city.ts file and add the following:

export interface City {
 id: number;
 name: string;
 lat: number;
 lon: number;
}

This small file contains our city interface, which we’ll be using in our CitiesComponent class file. Since we’re eventually going to use it in other components as well, it’s better to create it within a separate file and decorate it with the export statement so that we’ll be able to use it there as well when the time comes.

cities.component.ts

Open the /src/app/cities/cities.component.ts file and replace its content with the following:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from './../../environments/environment';
import { City } from './city';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public cities!: City[];
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.http.get<City[]>(environment.baseUrl + 'api/Cities')
 .subscribe({
 next: (result) => {
 this.cities = result;
 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we added an import reference to the City interface we created a short while ago. We also used the ngOnInit() life cycle hook method to perform the HTTP request that will retrieve the cities, just like we did in Chapter 4, Front-End and Back-End Interactions, for our previous HealthCheck app.

cities.component.html

Open the /src/app/cities/cities.component.html file and add the following:

<h1>Cities</h1>
<p>Here's a list of cities: feel free to play with it.</p>
<p *ngIf="!cities">Loading...</p>
<table [hidden]="!cities">
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Lat</th>
<th>Lon</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let city of cities">
<td>{{ city.id }}</td>
<td>{{ city.name }}</td>
<td>{{ city.lat }}</td>
<td>{{ city.lon }}</td>
</tr>
</tbody>
</table>

As we can see, the preceding HTML structure has nothing special: it’s just a header, a paragraph, and a table with some standard loading logic to let the user know that we’ll asynchronously load the data in a (hopefully) short while. However, there are at least two attributes that deserve a couple of words.

The [hidden] attribute

If we take a look at the cities.component.html file’s HTML code, we can see that the <table> element features a strange [hidden] attribute. Why is it there, and why is it between square brackets?

As a matter of fact, the hidden attribute is an HTML5-valid content attribute that can be legitimately set on any HTML element. The role it’s supposed to play is very similar to the CSS display: none setting: it indicates to the browser that the element and all of its descendants should not be visible or perceivable to any user. In other words, it’s just another way to hide content from the user.

For additional information regarding the hidden attribute, check out the following URL:

HTML Living Standard (last updated on January 12, 2024): https://html.spec.whatwg.org/multipage/interaction.html#the-hidden-attribute

As for the square brackets, that’s just the Angular syntax used to define a property binding, that is, an HTML property or attribute within the component template (our .html file) that gets its value from a variable, property, or expression defined within the component class (our .ts file). It’s worth noting that such a binding flows in one direction: from the component class (the source) to the HTML element within the component template (the target).

As a direct consequence of what we have just said, every time the source value evaluates to true, the HTML property (or attribute) between square brackets will be set to true as well (and vice versa); this is a great way to deal with a lot of HTML attributes that work with Boolean values because we can dynamically set them through the whole component’s life cycle. That’s precisely what we do with the <table> element in the preceding code block; its hidden attribute will evaluate to true until the cities component variable is filled by the actual cities fetched from the server, which will only happen when the HttpClient module finishes its request/response task. Not bad, right?

Wait a minute: isn’t that the same behavior as the *ngIf structural directive that we already know from Chapter 4, Front-End and Back-End Interactions? Why are we using this [hidden] attribute instead?

This is a very good question that gives us the chance to clarify the difference between these two similar – yet not identical – approaches:

	The *ngIf structural directive adds or removes the element from the Document Object Model (DOM) based on its corresponding condition or expression; this means that the element will be initialized and/or disposed of (together with all its children, events, and so on) every time its status changes.

	The hidden attribute, much like the display: none CSS setting, will only instruct the browser to show the element to or hide the element from the user; this means that the element will still be there, thus being fully available and reachable (for example, by JavaScript or other DOM-manipulating actions).

As we can see by looking at the preceding HTML code, we’re using both of them: the *ngIf structural directive adds or removes the loading <p> element, while the [hidden] attribute binding shows or hides the main <table>. We have chosen to do this for a reason: the <p> element won’t have children or events depending on it, while the <table> attribute will soon become a complex object with a lot of features to initialize and preserve within the DOM. Using the [hidden] attribute for that will also grant better performance than *ngIf when we need to show/hide lots of DOM elements.

cities.component.scss

Before testing our new component, let’s take the chance to apply some styling to our <table> element using our SCSS file.

Open the /src/app/cities/cities.component.scss file and add the following SASS code:

table {
 width: 100%;
 margin-bottom: 1rem;
 color: #212529;
 vertical-align: top;
 border-color: #dee2e6;
 th, td {
 text-align: left;
 }
 tbody > tr:hover {
 background-color: rgba(0, 0, 0, 0.075);
 color: #212529;
 }
}

That’s it, at least for now. Our CitiesComponent is good enough to be shipped; we just need to integrate it within our Angular app.

app-routing.module.ts

As we already know, this component can only be loaded – and can only be reached by Angular client-side routing – if we add it to the app-routing.module.ts file in the following way (new lines are highlighted):

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Here we go: now we need to deal with the UI.

nav-component.html

More specifically, we need to add a reference to the new component route within the app navigator component; otherwise, the user won’t be able to see (and thus reach) it using the UI.

To do that, open the nav-menu-component.html file and add the following (highlighted) lines:

<header>
<mat-toolbar color="primary">
<button mat-icon-button [routerLink]="['/']">
<mat-icon>
 home
 </mat-icon>
</button>
 <a mat-flat-button color="primary" [routerLink]="['/cities']">
 Cities

</mat-toolbar>
</header>

That’s it. Now, we could launch our app, click on the Cities link that will appear in the top-right part of the screen, and experience the following outcome:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.3: Cities table

As we can see by looking at the vertical scrollbar to the right, we would be overwhelmed by a huge HTML table consisting of more than 40,000 rows!

That’s another huge performance stress test for both ASP.NET and Angular – which should pass with flying colors on any average development machine since both frameworks can deal well with their respective tasks.

However, such a UI outcome is definitely a no-go in terms of user experience. We can’t reasonably expect our end users to be happy if we force them to navigate through a ~41k-row HTML table with a browser. They would go mad trying to find the city they’re looking for!

To fix these major usability issues, we need to implement a few important features that are frequently used to deal with fat HTML tables: paging, sorting, and filtering.

Serving data with Angular Material

To implement a table with paging, sorting, and filtering features, we’re going to use Angular Material, the UI component library that we already introduced in Chapter 4, Front-End and Back-End Interactions.

However, before adding new Angular Material components, we’ll take the chance to apply a bit of refactoring to the way we’ve implemented the existing ones.

Adding AngularMaterialModule

From Solution Explorer, navigate to the /src/app/ folder, create a new angular-material.module.ts file, and fill it with the following content:

import { NgModule } from '@angular/core';
import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';
@NgModule({
 imports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
],
 exports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule
]
})
export class AngularMaterialModule { }

This is a brand-new module that we’re going to use for all the Angular Material modules we want to implement within our app. As we can see by looking at the preceding code, we’ve already included every Angular Material component that we’ve learned how to use so far. Putting them here instead of using the app.module.ts file will keep that file smaller, which is great for project manageability.

Needless to say, for this module container to work properly, we need to add it to our existing app.module.ts file. Open that file, remove all references to Mat* modules in the import, imports[], and exports[] sections, and replace them with the following (highlighted) lines:

// ...existing code...
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';
import { AngularMaterialModule } from './angular-material.module';
// ...existing code...
imports: [
 BrowserModule,
 HttpClientModule,
 AppRoutingModule,
 BrowserAnimationsModule,
 AngularMaterialModule
],
// ...existing code...

Here we go: now, everything we’re going to put in the angular-material.module.ts file will also be referenced within our app.

Introducing MatTable

The Angular Material module we’re going to use is MatTable, which provides a Material Design-styled HTML table that can be used to display rows of data. We briefly introduced it back in Chapter 4, Front-End and Back-End Interactions, when we revamped the UI of FetchDataComponent and HealthCheckComponent in our HealthCheck app. Now we’ll learn how to use it properly to replace our plain HTML tables, which will allow us to take advantage of its unique and convenient features.

Updating AngularMaterialModule

Since we’re planning to introduce a new Angular Material module, the first thing we need to do is add its references to our new AngularMaterialModule.

Open the /src/app/angular-material.module.ts file and add the following highlighted lines:

import { NgModule } from '@angular/core';
import { MatButtonModule } from '@angular/material/button';
import { MatIconModule } from '@angular/material/icon';
import { MatToolbarModule } from '@angular/material/toolbar';
import { MatTableModule } from '@angular/material/table';
@NgModule({
 imports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule,
 MatTableModule
],
 exports: [
 MatButtonModule,
 MatIconModule,
 MatToolbarModule,
 MatTableModule
]
})
export class AngularMaterialModule { }

Now we can take advantage of the MatTableModule in all our Angular app’s components.

Updating CitiesComponent

Let’s start with CitiesComponent.

Open the /src/app/cities/cities.component.ts file and add the following (highlighted) lines:

// ...existing code...
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
public cities!: City[];
 constructor(private http: HttpClient) {
 }
}
// ...existing code...

Right after that, open the /src/app/cities/cities.component.html file and replace our previous table implementation with the new MatTable component in the following way (updated code is highlighted):

<h1>Cities</h1>
<p>Here's a list of cities: feel free to play with it.</p>
<p *ngIf="!cities">Loading...</p>
<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities">
 <!-- Id Column -->
 <ng-container matColumnDef="id">
 <th mat-header-cell *matHeaderCellDef>ID</th>
 <td mat-cell *matCellDef="let city">{{city.id}}</td>
 </ng-container>
 <!-- Name Column -->
 <ng-container matColumnDef="name">
 <th mat-header-cell *matHeaderCellDef>Name</th>
 <td mat-cell *matCellDef="let city">{{city.name}}</td>
 </ng-container>
 <!-- Lat Column -->
 <ng-container matColumnDef="lat">
 <th mat-header-cell *matHeaderCellDef>Latitude</th>
 <td mat-cell *matCellDef="let city">{{city.lat}}</td>
 </ng-container>
 <!-- Lon Column -->
 <ng-container matColumnDef="lon">
 <th mat-header-cell *matHeaderCellDef>Longitude</th>
 <td mat-cell *matCellDef="let city">{{city.lon}}</td>
 </ng-container>
 <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
 <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

As we can see, MatTableModule kind of mimics the behavior of a standard HTML table, but with a template-based approach for each column; the template features a series of auxiliary structural directives (applied using the *<directiveName> syntax) that can be used to mark certain template sections and define the template section’s actual role. As we can see, all these directives end with the Def postfix.

Here are the most relevant ones among those used in the preceding code:

	The [hidden] attribute binding is not a surprise as it was already present in the previous table for the exact same purpose: keeping the table hidden until the cities have been loaded.

	The matColumnDef directive identifies a given column with a unique key.

	The matHeaderCellDef directive defines how to display the header for each column.

	The matCellDef directive defines how to display the data cells for each column.

	The matHeaderRowDef directive, which can be found near the end of the preceding code, identifies a configuration element for the table header row and the display order of the header columns. As we can see, we had this directive expression pointing to a component variable called displayedColumns, which we defined in the cities.component.ts file early on; this variable hosts an array containing all the column keys we want to show, which need to be identical to the names specified via the various matColumnDef directives.

Before testing our new MatTable-based implementation, we need to update our component’s styling rules.

Open the /src/app/cities/cities.component.scss file and replace its content with the following:

table.mat-table {
 width: 100%;
}

As we can see, most of the previous CSS rules are gone, since we no longer need to style the HTML table element manually. Angular Material will do most of the styling job for us.

For reference purposes, the previous TypeScript, HTML, and CSS implementation can be found in the GitHub repository – the /Chapter_06/ folder, within the _cities.component_v1.ts, _cities.component_v1.html, and _cities.component_v1.scss files.

Now we can hit F5 and navigate to the Cities view to see what our brand-new table looks like. This can be seen in the following screenshot:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.4: New Cities table implemented using MatTable

OK, Material Design is indeed there, but the table has the same UI/UX problems as before! For one, it’s still very long; let’s fix that by implementing the paging feature.

Adding pagination with MatPaginatorModule

Now that we are using Angular Material, implementing pagination is a rather easy task. The first thing we need to do is add a reference to MatPaginatorModule to the angular-material.module.ts file, just like we did with MatTableModule a short while ago.

Here’s the import statement to add at the end of the already existing ones, right after MatTableModule:

import { MatPaginatorModule } from '@angular/material/paginator';

Remember to also add it to the imports and exports collections of @NgModule.

For reasons of space, we’re not going to show the resulting source code here: however, if you would like to, you can check out the updated angular-material.module.ts on GitHub.

Client-side paging

Now that we’ve referenced the new module, we can open the cities.component.ts file and import the MatPaginator, MatTableDataSource, and ViewChild services in the following way (new and updated lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator } from '@angular/material/paginator';
import { City } from './city';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;
 @ViewChild(MatPaginator) paginator!: MatPaginator;
constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.http.get<City[]>(environment.baseUrl + 'api/Cities')
 .subscribe({
 next: (result) => {
 this.cities = new MatTableDataSource<City>(result);
 this.cities.paginator = this.paginator;
 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we’ve used the @ViewChild decorator to set a static view query and store its result in the paginator variable; let’s spend a couple of minutes on the purpose of such a decorator and why we need it.

In a nutshell, the @ViewChild decorator can be used to get a reference of a DOM template element from within the Angular component, thus making it a very useful feature whenever we need to manipulate the element’s properties. As we can see from the preceding code, the decorator is defined using a selector parameter, which is required to access the DOM element. This selector can be a class name (if the class has either the @Component or @Directive decorator), a template reference variable, a provider defined in the child component tree, and so on.

In our specific scenario, we’ve used the MatPaginator class name, since it does have the @Component decorator.

While we’re at it, it can be useful to know that the @ViewChild decorator also accepts a second parameter, which was required until Angular 8 and became optional since Angular 9: a static flag, which can be either true or false (from Angular 9, it defaults to false). If this flag is explicitly set to true, @ViewChild is retrieved from the template before the change detection phase runs (that is, even before the ngOnInit() life cycle); conversely, the component/element retrieval task is resolved either after the change detection phase if the element is inside a nested view (for example, a view with an *ngIf conditional display directive), or before change detection if it isn’t.

Since we’ve used the [hidden] attribute binding in the template instead of the *ngIf directive, our MatPaginator won’t run into initialization issues, even without having to set that flag to true.

For additional information about the @ViewChild decorator, we suggest you take a look at the Angular docs: https://angular.io/api/core/ViewChild.

Once this is done, open the cities.component.html file and add the following pagination directive (highlighted) right after the </table> closing tag:

<!-- ...existing code... -->
<tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
<tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>
<!-- Pagination directive -->
<mat-paginator [hidden]="!cities"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

As we can see, we used the [hidden] attribute binding again to keep the paginator hidden until the cities were loaded. The other properties that we can see on the <mat-paginator> element configure some of the MatPaginatorModule UI options, such as the default page size and an array of all the page size options that we want to make available to the users.

Now, we can hit F5 and take a look at our efforts:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.5: Cities table with pagination

Now, our table only shows the first 10 cities. It has also got a neat paginator at its bottom-right corner that can be used to navigate through the various pages using arrows. Our end user can even choose how many items per page to display using a neat drop-down list (10, 20, or 50 cities per page, as specified in the [pageSizeOptions] property). It definitely seems like we did it!

However, if we think about it, we can easily acknowledge that we’re not quite there yet. Sure, now our users can browse the table nicely without having to scroll up and down for ages, but it doesn’t take a genius to understand that all those rows are still being transferred to the client browser; we never told the server to actually support a paginated request, so we still fetch all of the cities from our data provider (and through the ASP.NET API controller) just like before. As a matter of fact, they’re just not rendered by the front-end.

This basically means that we still have the same performance impact that we had before on the server side (huge SQL query result, massive JSON) and only a partial performance improvement on the client side. Even if fewer HTML elements are now added to the DOM, there are still lots of HTML rows to show/hide on each paginator action, leading to a page change.

In order to mitigate the aforementioned issues, we need to move from client-side paging to server-side paging – which is precisely what we’ll do in the next section.

Server-side paging

Implementing server-side paging is a bit more complex than its client-side counterpart. Here’s what we need to do (and where):

	WorldCities.Server (ASP.NET project). Change our CitiesController class to make it support paged HTTP GET requests.

	WorldCities.Server (ASP.NET project). Create a new ApiResult class that we can use to improve the JSON response of our ASP.NET controllers.

	worldcities.client (Angular project). Change our cities.controller.ts Angular component – and the current MatPaginatorModule configuration – to make it able to issue the new GET request and deal with the new JSON response.

Let’s do this!

CitiesController

The GetCities method of our CitiesController returns a JSON array of all the ~41,000 cities in our database by default; that’s definitely a no-go in terms of server-side performance, so we need to change it. Ideally, we would like to only return a small number of Cities, which is something we can easily pull off by adding some (required) variables to the method signature, such as pageIndex and pageSize.

Here’s how we could change that to enforce such behavior (updated lines highlighted):

// ...existing code...
[HttpGet]
public async Task<ActionResult<IEnumerable<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10)
{
 return await _context.Cities
 .Skip(pageIndex * pageSize)
 .Take(pageSize)
 .ToListAsync();
}
// ...existing code...

That’s it; we also specified some reasonable default values for those variables in order to avoid huge JSON responses by default.

Let’s quickly test what we just did. Hit F5 and type the following URL in the browser’s address bar: https://localhost:40443/api/Cities/?pageIndex=0&pageSize=10.

Here’s what we should get (using Google Chrome instead of MS Edge to avoid the JSON auto-indentation we talked about earlier on):

[image: Immagine che contiene testo, Carattere, schermata, bianco Descrizione generata automaticamente]
Figure 6.6: A snippet of the JSON array of 10 cities

It definitely seems that our plan is working!

However, there is a major issue we have to deal with: if we just return a JSON array of 10 cities, there will be no way for our Angular app to actually know how many cities are present in our database. Without that information, there is little chance that the paginator would reasonably work the way it did when we implemented the client-side pagination early on.

Long story short, we need to find a way to tell our Angular app some additional information, such as the following:

	The total number of pages (and/or records) available

	The current page

	The number of records on each page

Truth be told, the only required information is the first as the Angular client would then be able to keep track of the other two; however, since we need to implement that one, we might as well return them all, thus making our front-end life a lot easier.

In order to do that, the best thing we can do is create a dedicated response-type class – which we’re going to use a lot from now on.

ApiResult

From Solution Explorer, right-click the Data folder and add a new ApiResult.cs C# class file. Then, fill it up with the following content:

using Microsoft.EntityFrameworkCore;
namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
/// Private constructor called by the CreateAsync method.
/// </summary>
private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize)
 {
 Data = data;
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 }
 #region Methods
/// <summary>
/// Pages a IQueryable source.
/// </summary>
/// <param name="source">An IQueryable source of generic
/// type</param>
/// <param name="pageIndex">Zero-based current page index
/// (0 = first page)</param>
/// <param name="pageSize">The actual size of each
/// page</param>
/// <returns>
/// A object containing the paged result
/// and all the relevant paging navigation info.
/// </returns>
public static async Task<ApiResult<T>> CreateAsync(
 IQueryable<T> source,
 int pageIndex,
 int pageSize)
 {
 var count = await source.CountAsync();
 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);
 var data = await source.ToListAsync();
 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize);
 }
 #endregion
#region Properties
/// <summary>
/// The data result.
/// </summary>
public List<T> Data { get; private set; }
 /// <summary>
/// Zero-based index of current page.
/// </summary>
public int PageIndex { get; private set; }
 /// <summary>
/// Number of items contained in each page.
/// </summary>
public int PageSize { get; private set; }
 /// <summary>
/// Total items count
/// </summary>
public int TotalCount { get; private set; }
 /// <summary>
/// Total pages count
/// </summary>
public int TotalPages { get; private set; }
 /// <summary>
/// TRUE if the current page has a previous page,
/// FALSE otherwise.
/// </summary>
public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }
 }
 /// <summary>
/// TRUE if the current page has a next page, FALSE otherwise.
/// </summary>
public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }
 #endregion
 }
}

This ApiResult class contains some really interesting stuff. Let’s try to summarize the most relevant things:

	Data: A property of the List<T> type that will be used to contain the paged data (it will be translated to a JSON array)

	PageIndex: Returns the zero-based index of the current page (0 for the first page, 1 for the second, and so on)

	PageSize: Returns the total page size (TotalCount/PageSize)

	TotalCount: Returns the total Item count number

	TotalPages: Returns the total number of pages taking into account the total Items count (TotalCount/PageSize)

	HasPreviousPage: Returns True if the current page has a previous page, otherwise False

	HasNextPage: Returns True if the current page has a next page, otherwise False

Those properties are precisely what we were looking for; the underlying logic to calculate their values should be quite easy to understand by looking at the preceding code.

Other than that, the class basically revolves around the static method CreateAsync<T>(IQueryable<T> source, int pageIndex, int pageSize), which can be used to paginate an Entity Framework IQueryable object.

It’s worth noting that the ApiResult class cannot be instantiated from the outside since its constructor has been marked as private; the only way to create it is by using the static CreateAsync factory method. There are good reasons to do that: since it is not possible to define an async constructor, we have resorted to using a static async method that returns a class instance; the constructor has been set to private to prevent developers from directly using it instead of the factory method, since it’s the only reasonable way to instantiate this class.

Here’s how we can make use of our brand-new ApiResult class in the GetCities method of our CitiesController:

// ...existing code...
// GET: api/Cities
// GET: api/Cities/?pageIndex=0&pageSize=10
[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities.AsNoTracking(),
 pageIndex,
 pageSize
);
}
// ...existing code...

Here we go! Now, we should have our 10 cities and all the information we were looking for.

It’s worth noting that, since we’re performing a read-only task, we’ve used the AsNoTracking() extension method, which we introduced in Chapter 5, Data Model with Entity Framework Core, to prevent EF Core from tracking all the entities, thereby avoiding a non-trivial performance impact.

Let’s hit F5 and navigate to the same URL as before to see what’s changed: https://localhost:40443/api/Cities/?pageIndex=0&pageSize=10.

Here’s the updated JSON response:

[image: Immagine che contiene testo, software, Icona del computer, Software multimediale Descrizione generata automaticamente]
Figure 6.7: The updated JSON array containing extra page information

As we can see, the endpoint does not return a JSON array anymore; the new resulting content is a JSON object that contains our previous array (in the data property), as well as the new properties that we need to perform our pagination tasks (scroll down the page to the end to see them).

Let’s now move on to Angular’s CitiesComponent and update it to use this new, optimized way of fetching our cities from the server.

CitiesComponent

The only Angular files we need to change are the following:

	The CitiesComponent TypeScript file, which is where we put all the data retrieval logic that we now need to update

	The CitiesComponent HTML file, to bind a specific event to our MatPaginator element

Let’s do this.

Open the cities.component.ts file and perform the following changes (new/updated lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../ environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { City } from './city';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;
 @ViewChild(MatPaginator) paginator!: MatPaginator;
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = 0;
 pageEvent.pageSize = 10;
 this.getData(pageEvent);
 }
 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString());
 this.http.get<any>(url, { params })
 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

Let’s try to summarize what we did here:

	We removed the HttpClient from the ngOnInit() life cycle hook method and placed the whole data retrieval login in a separate getData() method.

	We changed the data retrieval logic to match our new JSON response object.

	We modified our paginator configuration strategy to manually set the values we get from the server side instead of having it figure them out automatically. Doing that is required; otherwise, it would just take into account (and paginate) the small portion of cities we retrieve upon each HTTP request instead of the full batch.

As for the cities.component.html file, we just need to add a single line to the <mat-paginator> directive to bind the getData() event upon each paging event. Here’s how to do that (the new line is highlighted):

<!-- ...existing code... -->
<!-- Pagination directive -->
<mat-paginator [hidden]="!cities"
 (page)="getData($event)"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

This simple binding plays a very important role: it ensures that the getData() event is called every time the user interacts with the paginator element to perform a page change, asking for the previous/next page, first/last page, changing the number of items to display, and so on. As we can easily understand, such a call is required for server-side pagination since we need to fetch the updated data from the server every time we have to display different rows.

Once this is done, let’s try the new magic by hitting F5 and then navigating to the Cities view. If we did everything properly, we should get the same UI that we could see before:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.8: The same paginated Cities table with better performance

However, this time, we should experience better overall performance and faster response times for the initial page load. That’s because we’re not dealing with thousands of JSON items and HTML table rows under the hood; we’re fetching only a few of them at a time (that is, those we get to see) using our improved server-side logic.

At the same time, navigating between pages can be a bit slower than before, since we are issuing a new HTTP request (and data fetch) for every page instead of getting the in-memory data. However, such a performance drawback is often preferable to downloading the entire dataset in one go, which is what happens when using client-side paging, unless we are working with a rather small dataset. As always when dealing with such performance issues, there is no “better approach”; it all depends on the application requirements, the volume of affected data, and what we want to achieve.

Since we’re done with paging, we can finally deal with sorting.

Adding sorting with MatSortModule

In order to implement sorting, we’re going to use MatSortModule, which can be implemented just like the paginator module.

This time, we won’t make client-side sorting experiments as we did with paging early on; we’re going for the server-side pattern right from the start.

In general terms, whenever we deal with paging and sorting, we should always take the server-side implementation into account, since it will likely improve the overall performance of our apps while often preventing the need to handle that kind of stuff using additional client-side code.

Extending ApiResult

Let’s start with the ASP.NET back-end part – in other words, the WorldCities.Server project.

Do you remember the ApiResult class we created earlier? It’s time to improve its source code to add sorting support.

From Solution Explorer, open the /Data/ApiResult.cs file and update its content accordingly (new/updated lines are highlighted):

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;
namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
/// Private constructor called by the CreateAsync method.
/// </summary>
private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize,
 string? sortColumn,
 string? sortOrder)
 {
 Data = data;
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 SortColumn = sortColumn;
 SortOrder = sortOrder;
 }
 #region Methods
/// <summary>
/// Pages and/or sorts a IQueryable source.
/// </summary>
/// <param name="source">An IQueryable source of generic
/// type</param>
/// <param name="pageIndex">Zero-based current page index
/// (0 = first page)</param>
/// <param name="pageSize">The actual size of each
/// page</param>
 /// <param name="sortColumn">The sorting column name</param>
 /// <param name="sortOrder">The sorting order ("ASC" or
 /// "DESC")</param>
/// <returns>
/// A object containing the IQueryable paged/sorted result
/// and all the relevant paging/sorting navigation info.
/// </returns>
public static async Task<ApiResult<T>> CreateAsync(
 IQueryable<T> source,
 int pageIndex,
 int pageSize,
 string? sortColumn = null,
 string? sortOrder = null)
 {
 var count = await source.CountAsync();
 if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
 {
 sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";
 source = source.OrderBy(
 string.Format(
 "{0} {1}",
 sortColumn,
 sortOrder)
);
 }
 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);

 var data = await source.ToListAsync();

 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
 }
 #endregion
 #region Methods
 /// <summary>
 /// Checks if the given property name exists
 /// to protect against SQL injection attacks
 /// </summary>
 public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
 {
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException(
 string.Format(
 $"ERROR: Property '{propertyName}' does not exist.")
);
 return prop != null;
 }
 #endregion
#region Properties
/// <summary>
/// The data result.
/// </summary>
public List<T> Data { get; private set; }
 /// <summary>
/// Zero-based index of current page.
/// </summary>
public int PageIndex { get; private set; }
 /// <summary>
/// Number of items contained in each page.
/// </summary>
public int PageSize { get; private set; }
 /// <summary>
/// Total items count
/// </summary>
public int TotalCount { get; private set; }
 /// <summary>
/// Total pages count
/// </summary>
public int TotalPages { get; private set; }
 /// <summary>
/// TRUE if the current page has a previous page,
/// FALSE otherwise.
/// </summary>
public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }
 }
 /// <summary>
/// TRUE if the current page has a next page, FALSE otherwise.
/// </summary>
public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }
 /// <summary>
 /// Sorting Column name (or null if none set)
 /// </summary>
 public string? SortColumn { get; set; }
 /// <summary>
 /// Sorting Order ("ASC", "DESC" or null if none set)
 /// </summary>
 public string? SortOrder { get; set; }
#endregion
 }
}

What we did was add two new sortColumn and sortOrder attributes to the main class static method and implement them through the code; while we were there, we also took the opportunity to define two new properties with the same name (in uppercase) so that the sorting details will be part of the JSON response, just like the paging ones.

It’s worth noting that since we’re now assembling our Language-Integrated Query (LINQ)-to-SQL queries with literal data coming from the client, we also added a new IsValidProperty() method that will check that the sortColumn specified does actually exist as a typed property of the generic <T> entity we’re dealing with; as the method comment clearly says, that’s actually a security countermeasure against SQL injection attempts. This is a very important security issue that we’ll be talking about in a short while.

In the unlikely case that you’ve never heard of LINQ, don’t worry: we’ll get there soon.

If we try to build our project right after these changes, we’ll most likely be greeted by some compiler errors, such as the following one:

Error CS0246: The type or namespace name System.Linq.Dynamic could not be found (are you missing a using directive or an assembly reference?).

Don’t worry, it’s perfectly normal; we just need to add a new NuGet package to our project.

Installing System.Linq.Dynamic.Core

The IQueryable<T>.OrderBy() extension method that we used in the improved ApiResult source code to programmatically apply the column sorting is part of the System.Linq.Dynamic.Core namespace. Thanks to this library, it’s possible to write Dynamic LINQ queries (string-based) on an IQueryable, which is just like what we did in the preceding code.

Unfortunately, System.Linq.Dynamic.Core is not part of the ASP.NET stock binaries; therefore, in order to use these features, we need to add them via NuGet.

The fastest way to do that is to open Visual Studio’s Package Manager Console and issue the following command:

> Install-Package System.Linq.Dynamic.Core

IMPORTANT: Be sure to install System.Linq.Dynamic.Core and not System.Linq.Dynamic, which is its .NET Framework 4.0 counterpart; the latter won’t work with our ASP.NET web application project. At the time of writing, the most recent version of the System.Linq.Dynamic.Core package is 1.3.7, which works absolutely fine for our purposes.

For those who want to retrieve additional information regarding this great package, we suggest you take a look at the following resources:

	NuGet website: https://www.nuget.org/packages/System.Linq.Dynamic.Core/

	GitHub project: https://github.com/StefH/System.Linq.Dynamic.Core

What is LINQ?

Before moving forward, let’s spend a couple of minutes talking about LINQ in the unlikely case you have never heard anything about it.

Also known as Language-Integrated Query, LINQ is the code name of a Microsoft .NET Framework set of technologies that adds data query capabilities to .NET languages such as C# and VB.NET. LINQ was first released in 2007 and was one of the major new features of .NET Framework 3.5.

The main purpose of LINQ is to make the developer able to express structured queries against data using a first-class language construct without having to learn different query languages for each type of data source (collection types, SQL, XML, CSV, and so on). For each of these major data source types, there’s a LINQ implementation that provides the same query experience for objects (LINQ to Objects), Entity Framework entities (LINQ to Entities), relational databases (LINQ to SQL), XML (LINQ to XML), and so on.

LINQ structured queries can be expressed using two alternative – yet also complementary – approaches:

	Lambda expressions, such as the following:
 var city = _context.Cities.Where(c => c.Name == "New York").First();

	Query expressions, such as the following:
 var city = (from c in _context.Cities where c.Name == "New York" select c).First();

Both yield the same result with the same performance since query expressions are translated into their lambda expression equivalents before they’re compiled.

For additional information about LINQ, lambda expressions, and query expressions, check out the following links:

	LINQ: https://learn.microsoft.com/en-us/dotnet/csharp/linq/

	LINQ lambda expressions (C# programming guide): https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions

	LINQ query expression basics: https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics

System.Linq.Dynamic.Core pros and cons

Now, since LINQ has been incorporated with .NET Framework since v3.5 and it’s shipped with each subsequent ASP.NET version ever since, what does the System.Linq.Dynamic.Core package actually do and why are we using it?

As we can see from the two preceding examples, both lambda expressions and query expressions work with a strongly typed approach. Whenever we query an object of any type using LINQ, the source type – together with all the properties we want our query to check for – must be known by the compiler. This means that we would be unable to use these techniques with generic objects (object) or types (<T>). That’s where Linq.Dynamic comes to the rescue, allowing the developer to write lambda expressions and query expressions with literal strings and translate them into their strongly typed equivalents using reflection.

Here’s the same query as before, written using System.Linq.Dynamic.Core:

var city = _context.Cities.Where("Name = @1", "New York").First();

We can immediately see the difference – and also the tremendous advantage we can get by using such an approach; we will be able to build our queries dynamically, regardless of whether we’re dealing with strongly typed objects or generic types, just like we did within the source code of ApiResult a short while ago.

However, such an approach will also have a major downside; our code will be less testable and way too error-prone, for at least two important reasons:

	We’ll be just a literal string away from query errors, which will almost always lead to major crashes.

	The risk of unwanted queries (including SQL injection attacks) could increase exponentially, depending on how we build those queries and/or where we get our dynamic strings from.

Those who don’t know what SQL injection is and/or why it is dangerous should definitely take a look at the following guide, written by Tim Sammut and Mike Schiffman from the Cisco Security Intelligence team:

Understanding SQL Injection: https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html

The former issue is bad, but the latter is even worse. Being open to SQL injection attacks could be devastating and therefore is something we should avoid at any cost.

Preventing SQL injection

Luckily, we don’t need to manually take countermeasures against SQL injection threats; although we’re getting two potentially harmful variable strings coming from the client – sortColumn and sortOrder – we have already put in place effective countermeasures for both of them in the preceding source code of ApiResult.

Here’s what we did for sortOrder:

// ...existing code...
sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";
// ...existing code...

As we can see, we’ll convert it into either "ASC" or "DESC" before using it anywhere, thus leaving no openings for SQL injection.

The sortColumn parameter is way more complex to handle because it can theoretically contain any possible column name mapped to any of our entities: id, name, lat, lon, iso2, iso3... If we were to check them all, we would need a very long conditional block! Not to mention the fact that it would also be very hard to maintain whenever we add new entities and/or properties to our project.

For that very reason, we chose a completely different – and arguably better – approach, which relies upon the following IsValidProperty method:

// ...existing code...
public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
{
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException($"ERROR: Property '{propertyName}' does not exist.");
 return prop != null;
}
// ...existing code...

As we can see, this method checks that the given propertyName corresponds to an existing typed Property within our <T> generic entity class. If it does, it returns True; otherwise, it throws a NotSupportedException (or returns False, depending on how we call it). This is a great way to shield our code against SQL injection because there’s absolutely no way that a harmful string would match one of our entity’s properties.

The property name check has been implemented through System.Reflection, a technique that’s used to inspect and/or retrieve metadata on types at runtime. To work with reflection, we need to include the System.Reflection namespace in our class – which is precisely what we did at the beginning of the source code of our improved ApiResult.

For additional information about System.Reflection, check out the following guide: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection.

As we can see by looking back at the ApiResult source code, such a method is being called in the following way:

if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
{
 /// if we are here, sortColumn is safe to use
}

Those curly brackets define our SQL injection safety zone; as long as we deal with sortColumn within them, we have nothing to worry about.

Truth be told, even after implementing this defensive approach, there’s still a minor threat we could be exposed to. If we have some reserved columns/properties that we don’t want the client to interact with (system columns, for example), the preceding countermeasure won’t block it from doing that; although being unable to acknowledge their existence or to read their data, an experienced user could still be able to “order” the table results by them – provided that the user knows their precise name somehow.

If we want to prevent this remote – yet theoretically possible – leak, we can set these properties to private or internal (since we told our IsValidProperty method to only check for public properties) and/or rethink the whole method logic so that it better suits our security needs.

Updating CitiesController

Now that we have improved our ApiResult class, we can implement it within our CitiesController.

Open the /Controllers/CitiesController.cs file and change its contents accordingly (updated lines are highlighted):

// ...existing code...
// GET: api/Cities
// GET: api/Cities/?pageIndex=0&pageSize=10
// GET: api/Cities/?pageIndex=0&pageSize=10&sortColumn=name&
// sortOrder=asc
[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
}
// ...existing code...

Thanks to these two new parameters, our GetCities method will be able to sort the cities the way we want.

We’re done with the back-end part; let’s now move on to the front-end.

Updating the Angular app

As always, we need to change three files:

	The angular-material.module.ts file, where we need to add the new @angular/material module

	The cities.component.ts file, to implement the sorting business logic

	The cities.component.html file, to bind the new variables, methods, and references defined in the .ts file within the UI template

Let’s do that.

angular-material.module.ts

Open the /src/app/angular-material.module.ts file and add the references to MatSortModule:

import { MatSortModule } from '@angular/material/sort';

Don’t forget to update the imports and exports arrays of @NgModule as well.

From now on, we’ll be able to import the MatSortModule-related classes into any Angular component.

cities.component.ts

Once done, open the cities.component.ts file and make the following modifications (updated lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';
import { City } from './city';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;
 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";
@ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;
constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.loadData();
 }
 loadData() {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.getData(pageEvent);
 }
getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);
this.http.get<any>(url, { params })
 .subscribe(result => {
 console.log(result);
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 }, error => console.error(error));
 }
}

Here’s a breakdown of the most relevant changes:

	We imported the MatSort reference from the @angular/material package.

	We added four new class variables to set the paging and sorting default values: defaultPageIndex, defaultPageSize, defaultSortColumn, and defaultSortOrder. Two of them have been defined as public because we need to use them from the HTML template via two-way data binding.

	We moved the initial getData() call from the class constructor to a new centralized loadData() function so that we can bind it to the table (as we’ll see in a short while).

	We added the sortColumn and sortOrder HTTP GET parameters to our HttpParams object so that we can send the sorting information to the server side.

Now we can move to the HTML template file.

cities.component.html

Open the cities.component.html file and make the following modifications (updated lines are highlighted):

<!-- ...existing code... -->
<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">
<!-- Id Column -->
<ng-container matColumnDef="id">
<th mat-header-cell *matHeaderCellDef mat-sort-header>ID</th>
<td mat-cell *matCellDef="let city"> {{city.id}} </td>
</ng-container>
<!-- Name Column -->
<ng-container matColumnDef="name">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
<td mat-cell *matCellDef="let city"> {{city.name}} </td>
</ng-container>
<!-- Lat Column -->
<ng-container matColumnDef="lat">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Latitude
 </th>
<td mat-cell *matCellDef="let city"> {{city.lat}} </td>
</ng-container>
<!-- Lon Column -->
<ng-container matColumnDef="lon">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Longitude
 </th>
<td mat-cell *matCellDef="let city"> {{city.lon}} </td>
</ng-container>
<tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
<tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>
<!-- ...existing code... -->

Here’s what we did in a nutshell:

	We added the following attributes to the <table mat-table> element:
	matSort: A directive we added to the cities.component.ts file early on.

	(matSortChange): An event binding that will execute the sortData() method (also defined in the .ts file earlier) upon each sorting attempt by the user.

	matSortActive and matSortDirection: Two data bindings to the defaultSortColumn and defaultSortOrder variables that we defined in the .ts file early on.

	We added the mat-sort-header attribute to each <th mat-header-cell> element (one for each table column).

Now we can see why we didn’t use the sleek URL we defined early on in our ASP.NET CitiesController and opted for the standard GET parameters instead. This approach allows us to programmatically add an indefinite number of HTTP GET parameters to our request thanks to the HttpParams class from the @angular/common/http package.

Let’s quickly test it out by hitting F5 and navigating to the Cities view. Here’s what we should be able to see:

[image: Immagine che contiene testo, schermata, numero, Carattere Descrizione generata automaticamente]
Figure 6.9: Cities table with pagination and sorting

The cities are now sorted alphabetically in ascending order. If we click on the various column headers, we can change their order as we please. The first click will sort the content in ascending order, while the second will do the opposite.

It’s worth noting how the paging and sorting features are able to coexist without issues; needless to say, whenever we try to change the table sorting, the paging will just roll back to the first page.

Now that the sorting has been implemented, there’s only one missing feature left: filtering.

Adding filtering

If we think that we’ll be able to get away with another component, this time, we’re going to be disappointed. Angular Material does not provide a specific module to be used for filtering purposes. This means that we cannot rely on a standard approach to add filtering to our table; we have to figure out a reasonable approach by ourselves.

In general terms, the best thing to do whenever we need to code a feature by ourselves is to start to visualize what we want it to look like; for example, we can imagine a Search input field lying on top of our table that would trigger our CitiesComponent to reload the cities data from the server – through its getData() method – whenever we type something in it. How does that sound?

Let’s try to lay down an action plan:

	As always, we’ll need to extend our ApiResult class to programmatically handle the filtering task on the server side.

	We’ll also need to change the signature of the GetCities() action method of our .NET CitiesController so we can get the additional information from the client.

	Right after that, we’ll have to implement the filtering logic within our Angular CitiesComponent.

	Eventually, we’ll need to add the input textbox in the CitiesComponent HTML template file and bind an event to it to trigger the data retrieval process upon typing something.

	Before moving further, we’ll take the chance to talk about the performance impact of our filtering feature and how we can address it.

Now that we have made it, let’s do our best to put this plan into action.

Extending ApiResult (again)

It seems like we need to perform another upgrade to our beloved ApiResult class to add filtering support to the already existing paging and sorting logic.

Truth be told, we’re not forced to do everything within the ApiResult class; we could skip that part entirely and just add the following to our existing CitiesController:

// ...existing code...
[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 // first we perform the filtering...
 var cities = _context.Cities;
 if (!string.IsNullOrEmpty(filterColumn)
 && !string.IsNullOrEmpty(filterQuery))
 {
 cities= cities.Where(c => c.Name.StartsWith(filterQuery));
 }
 // ... and then we call the ApiResult
 return await ApiResult<City>.CreateAsync(
 cities,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder);
}
// ...existing code...

That’s definitely a viable approach. As a matter of fact, if we weren’t using the System.Linq.Dynamic.Core package library, this would most likely be the only possible approach; we would have no way to programmatically set a column filter using an external class that works with generic IQueryable<T> objects because such a class would be unaware of the entity type and property names.

Luckily enough, we do have that package, so we can avoid performing the preceding changes (or roll them back, if we have already done that) and modify our /Data/ApiResult.cs class file in the following way instead:

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;
namespace WorldCities.Server.Data
{
 public class ApiResult<T>
 {
 /// <summary>
/// Private constructor called by the CreateAsync method.
/// </summary>
private ApiResult(
 List<T> data,
 int count,
 int pageIndex,
 int pageSize,
 string? sortColumn,
 string? sortOrder,
 string? filterColumn,
 string? filterQuery)
 {
 Data = data;
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = count;
 TotalPages = (int)Math.Ceiling(count / (double)pageSize);
 SortColumn = sortColumn;
 SortOrder = sortOrder;
 FilterColumn = filterColumn;
 FilterQuery = filterQuery;
 }
 #region Methods
/// <summary>
/// Pages, sorts and/or filters a IQueryable source.
/// </summary>
/// <param name="source">An IQueryable source of generic
/// type</param>
/// <param name="pageIndex">Zero-based current page index
/// (0 = first page)</param>
/// <param name="pageSize">The actual size of
/// each page</param>
/// <param name="sortColumn">The sorting column name</param>
/// <param name="sortOrder">The sorting order ("ASC" or
/// "DESC")</param>
 /// <param name="filterColumn">The filtering column
 /// name</param>
 /// <param name="filterQuery">The filtering query (value to
 /// lookup)</param>
/// <returns>
/// A object containing the IQueryable paged/sorted/filtered
/// result
/// and all the relevant paging/sorting/filtering navigation
/// info.
/// </returns>
public static async Task<ApiResult<T>> CreateAsync(
 IQueryable<T> source,
 int pageIndex,
 int pageSize,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
 {
 if (!string.IsNullOrEmpty(filterColumn)
 && !string.IsNullOrEmpty(filterQuery)
 && IsValidProperty(filterColumn))
 {
 source = source.Where(
 string.Format("{0}.StartsWith(@0)",
 filterColumn),
 filterQuery);
 }
var count = await source.CountAsync();
 if (!string.IsNullOrEmpty(sortColumn)
 && IsValidProperty(sortColumn))
 {
 sortOrder = !string.IsNullOrEmpty(sortOrder)
 && sortOrder.ToUpper() == "ASC"
 ? "ASC"
 : "DESC";
 source = source.OrderBy(
 string.Format(
 "{0} {1}",
 sortColumn,
 sortOrder)
);
 }
 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);
 var data = await source.ToListAsync();

 return new ApiResult<T>(
 data,
 count,
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
 }

 /// <summary>
/// Checks if the given property name exists
/// to protect against SQL injection attacks
/// </summary>
public static bool IsValidProperty(
 string propertyName,
 bool throwExceptionIfNotFound = true)
 {
 var prop = typeof(T).GetProperty(
 propertyName,
 BindingFlags.IgnoreCase |
 BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.Instance);
 if (prop == null && throwExceptionIfNotFound)
 throw new NotSupportedException($"ERROR: Property '{propertyName}' does not exist.");
 return prop != null;
 }
 #endregion
#region Properties
/// <summary>
/// IQueryable data result to return.
/// </summary>
public List<T> Data { get; private set; }
 /// <summary>
/// Zero-based index of current page.
/// </summary>
public int PageIndex { get; private set; }
 /// <summary>
/// Number of items contained in each page.
/// </summary>
public int PageSize { get; private set; }
 /// <summary>
/// Total items count
/// </summary>
public int TotalCount { get; private set; }
 /// <summary>
/// Total pages count
/// </summary>
public int TotalPages { get; private set; }
 /// <summary>
/// TRUE if the current page has a previous page,
/// FALSE otherwise.
/// </summary>
public bool HasPreviousPage
 {
 get
 {
 return (PageIndex > 0);
 }
 }
 /// <summary>
/// TRUE if the current page has a next page, FALSE otherwise.
/// </summary>
public bool HasNextPage
 {
 get
 {
 return ((PageIndex +1) < TotalPages);
 }
 }
 /// <summary>
/// Sorting Column name (or null if none set)
/// </summary>
public string? SortColumn { get; set; }
 /// <summary>
/// Sorting Order ("ASC", "DESC" or null if none set)
/// </summary>
public string? SortOrder { get; set; }
 /// <summary>
 /// Filter Column name (or null if none set)
 /// </summary>
 public string? FilterColumn { get; set; }
 /// <summary>
 /// Filter Query string
 /// (to be used within the given FilterColumn)
 /// </summary>
 public string? FilterQuery { get; set; }
#endregion
 }
}

And that’s it. As we can see, we were able to programmatically implement the IQueryable<T>.Where() method – which actually performs the filtering task – thanks to another useful extension method provided by the System.Linq.Dynamic.Core package.

Needless to say, we took the chance to use our IsValidProperty method again to shield our code against possible SQL injection attempts; the filtering-related logic (and dynamic LINQ query) will only be executed if it returns True, that is, if the filterColumn parameter value matches an existing entity’s public property.

While we were there, we also added two additional properties (FilterColumn and FilterQuery), so that we’ll have them on the JSON response object, and modified the constructor method signature accordingly.

CitiesController

Now, we can open our /Controllers/CitiesController.cs file and make the following changes:

[HttpGet]
public async Task<ActionResult<ApiResult<City>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<City>.CreateAsync(
 _context.Cities.AsNoTracking(),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

The preceding code is very similar to the alternative implementation that we assumed in the previous section; as we mentioned earlier, both approaches are viable, depending on our preferences. However, since we’re going to use this same implementation for the countries in a short while, making good use of System.Linq.Dynamic.Core, and centralizing all the IQueryable logic, is arguably a better approach since it keeps our source code as DRY as possible.

Don’t Repeat Yourself (DRY) is a widely implemented principle of software development. Whenever we violate it, we fall into a WET approach, which could mean Write Everything Twice, We Enjoy Typing, or Waste Everyone’s Time, depending on what we like the most.

The .NET part is done; let’s move on to Angular.

CitiesComponent

Open the /src/app/cities/cities.component.ts file and update its content in the following way (modified lines are highlighted):

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from '../../environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';
import { City } from './city';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'lat', 'lon'];
 public cities!: MatTableDataSource<City>;
 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";
 defaultFilterColumn: string = "name";
 filterQuery?:string;
@ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.loadData(null);
 }
 loadData(query?: string) {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.filterQuery = query;
this.getData(pageEvent);
 }
 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Cities';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);
 if (this.filterQuery) {
 params = params
 .set("filterColumn", this.defaultFilterColumn)
 .set("filterQuery", this.filterQuery);
 }
this.http.get<any>(url, { params })
 .subscribe(result => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 }, error => console.error(error));
 }
}

This time, the new code only consists of a few additional lines; we’ve just changed the signature of the loadData() method (with a string? optional type, so that we won’t break anything) and conditionally added a couple of parameters to our HTTP request – that’s it.

CitiesComponent template (HTML) file

Let’s see what we need to add to the /src/app/cities/cities.component.html template file:

<h1>Cities</h1>
<p>Here's a list of cities: feel free to play with it.</p>
<p *ngIf="!cities">Loading...</p>
<mat-form-field [hidden]="!cities">
 <input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>
<table mat-table [dataSource]="cities"
 class="mat-elevation-z8"
 [hidden]="!cities"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">
<!-- ...existing code... -->

As we can see, we just added a <mat-form-field> element with the usual [hidden] attribute binding (to make it appear only after our cities have been loaded) and a (keyup) event binding that will trigger the loadData() method upon each keypress; this call will also contain the input value, which will be handled by our component class by the means we just implemented there.

The only thing worth noting is that we’ve introduced a new Angular feature in the above code: a template reference variable (#filter), which allows us to use data from a single element in another part of the template. We did that so that we could pass the updated value of the MatInput element to our loadData() method.

Theoretically speaking, we could have used $event.target.value instead of relying on a template reference variable; however, we’ll make further use of that #filter in the following chapters, so we took the chance to introduce it now.

For additional info on Angular’s template reference variables, check out the following URL: https://angular.io/guide/template-reference-variables.

CitiesComponent style (SCSS) file

Before testing it out, we need to make a minor change to the /src/app/cities/cities.component.scss file as well:

table.mat-table {
 width: 100%;
}
mat-form-field {
 font-size: 14px;
 width: 100%;
}

This is required to make our new MatInputModule span through the entire available space.

AngularMaterialModule

Wait a minute: did we just say MatInputModule? That’s correct: as a matter of fact, it seems like we have actually used an Angular Material module in our filtering implementation after all – and for good reason, since it looks much better than a vanilla HTML input textbox!

However, since we did that, we need to reference it within our AngularMaterialModule container or we’ll get a compiler error. To do that, open the /src/app/angular-material.module.ts file and add the required import statement…

import { MatInputModule } from '@angular/material/input';

…and the two references in the imports and exports arrays of @NgModule.

That’s it: now, we can hit F5 and navigate to the Cities view to test the new filtering feature. If we did everything properly, we should be able to see something similar to the following screenshot:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.10: Cities table with pagination, sorting, and filtering

Looks pretty good, right?

If we try to type something into the filter textbox, we should see the table and the paginator update accordingly in real time. Look at what happens if we type New York in the filter textbox:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 6.11: Cities table filtered for “New York”

That’s definitely a good real-time filtering feature.

Performance considerations

Before moving further, it would be wise to spend a few minutes talking about the performance impact of the filter we’ve just implemented.

As we can see, the call to the loadData method is directly bound to the HTML input’s keyup event, meaning that will fire upon each user’s keystroke. This is great in terms of user experience because our users will immediately get filtered data as they type; however, this real-time filter also has a serious downside in terms of performance impact: every time the filter text changes (that is, upon each keystroke), Angular fires an HTTP request to the back-end to retrieve the updated list of results. Such behavior is intrinsically resource-intensive and can easily become a huge performance issue, especially if we’re dealing with large tables and/or non-indexed columns.

Are there ways to improve this approach without compromising the results obtained in terms of user experience? As a matter of fact, the answer is yes, but we won’t do that now; we’ll talk more about it in Chapter 7, Forms and Data Validation, when we introduce the concepts of debouncing and throttling.

Adding countries to the loop

Before moving on, how about getting the countries up to speed? Yeah, it would mean redoing everything that we just did a second time; however, now that we know how to do this, we’ll arguably be able to do it in a flash... or maybe not.

Nonetheless, we should definitely spend a reasonable amount of time doing that now because it would be a great way to plant everything we have learned so far in our muscle memory.

Let’s do this now so that we can move on to trying something else. To avoid wasting pages, we’ll just focus on the most relevant steps here, leaving everything else to what we just did with the cities – and to our GitHub repository, which hosts the full source code of what we need to do.

ASP.NET

Let’s start with the ASP.NET part.

CountriesController

We should already have our CountriesController ready from Chapter 5, Data Model with Entity Framework Core, right? Open that file and replace the GetCountries() default action method with the following code:

// ...existing code...
[HttpGet]
public async Task<ActionResult<ApiResult<Country>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking(),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}
// ...existing code...

Luckily enough, our ApiResult class is type-agnostic; therefore, we can use it there with no issues. Also, since we have centralized all the hard work there, the .NET server-side part is already done.

An odd JSON naming issue

Before moving on, let’s quickly test the component. Hit F5 and type the following URL into the browser’s address bar: https://localhost:40443/api/Countries/?pageIndex=0&pageSize=2.

As soon as we hit Enter, we should be able to see the following:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 6.12: JSON array for the countries

It seems like it’s all g... Hey, wait a minute: what’s up with those isO2 and isO3 property names? They shouldn’t be capitalized like that!

In order to understand what happened there, we need to take a step back and acknowledge something we might have underestimated so far: the camelCase conversion that the brand-new System.Text.Json API (introduced with .NET Core 3) automatically does when serializing all our .NET classes to JSON. We talked about this issue earlier on in this chapter, when we saw the .NET CitiesController JSON output for the first time, and we said that it wasn’t a big deal since Angular is also camelCase-oriented – we would just have to define the various interfaces using camelCase as well.

Unfortunately, such automatic camelCase conversion might cause unwanted side effects when dealing with all-uppercase properties such as those two; whenever this happens, we need to adapt our source code to properly deal with that:

	The most obvious thing to do would be to just define them in our Angular interface in the exact same way, that is, using that exact casing; however, this would mean dealing with those isO2 and isO3 variable names throughout our whole Angular code, which is rather ugly and might also be quite misleading.

	If we don’t want to adopt those hideous property names, there is an alternative – and arguably better – workaround we can use: we can decorate our offending properties with the [JsonPropertyName] data annotation, which allows us to force a JSON property name, regardless of the default casing convention (be it camelCase or PascalCase) specified within the Startup class.

The [JsonPropertyName] workaround seems the most reasonable fix we can apply to our specific scenario; let’s just go with it and get rid of this problem for good!

Open the /Data/Models/Country.cs file and add the following lines to the existing code (new lines are highlighted):

// ...existing code...
/// <summary>
/// Country code (in ISO 3166-1 ALPHA-2 format)
/// </summary>
[JsonPropertyName("iso2")]
public string ISO2 { get; set; }
/// <summary>
/// Country code (in ISO 3166-1 ALPHA-3 format)
/// </summary>
[JsonPropertyName("iso3")]
public string ISO3 { get; set; }
// ...existing code...

The [JsonPropertyName] attribute requires the following reference at the top of the file:

using System.Text.Json.Serialization;

Now, we can see whether those properties will respect this behavior by hitting F5 and typing the same URL as before into the browser’s address bar: https://localhost:40443/api/Countries/?pageIndex=0&pageSize=2.

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 6.13: Amended JSON array for countries

It definitely seems like they do; thanks to this unexpected issue, we had the chance to add a powerful new weapon to our ASP.NET arsenal.

Now, we just need to create and configure the Angular component.

Angular

The Angular implementation will be less straightforward than the ASP.NET one since we’ll have to deal with multiple aspects:

	Creating a new CountriesComponent

	Implementing the Countries table, as well as the paging, sorting, and filtering features as we did with the cities

	Updating NavComponent to add the navigation link

We already know what we need to do since we just did it with our CitiesComponent:

	Open Command Prompt.

	Navigate to the /src/app/ folder.

	Type ng generate component Countries --module=app --skip-tests to create the .ts, .html, and .scss files, as well as a new /src/app/countries/ folder.

	From Solution Explorer, create an additional country.ts file inside the /src/app/countries/ folder of the worldcities.client project.

Once that is done, fill the new files with the following content.

country.ts

Here’s the source code for the /src/app/countries/country.ts interface file:

export interface Country {
 id: number;
 name: string;
 iso2: string;
 iso3: string;
}

Nothing new here – the code is very similar to what we did when we created the city.ts interface file.

countries.component.ts

Here’s the source code for the /src/app/countries/countries.component.ts file:

import { Component, OnInit, ViewChild } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';
import { Country } from './country';
@Component({
 selector: 'app-countries',
 templateUrl: './countries.component.html',
 styleUrls: ['./countries.component.scss']
})
export class CountriesComponent implements OnInit {
 public displayedColumns: string[] = ['id', 'name', 'iso2', 'iso3'];
 public countries!: MatTableDataSource<Country>;
 defaultPageIndex: number = 0;
 defaultPageSize: number = 10;
 public defaultSortColumn: string = "name";
 public defaultSortOrder: "asc" | "desc" = "asc";
 defaultFilterColumn: string = "name";
 filterQuery?: string;
 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;
 constructor(private http: HttpClient) {
 }
 ngOnInit() {
 this.loadData();
 }
 loadData(query?: string) {
 var pageEvent = new PageEvent();
 pageEvent.pageIndex = this.defaultPageIndex;
 pageEvent.pageSize = this.defaultPageSize;
 this.filterQuery = query;
 this.getData(pageEvent);
 }
 getData(event: PageEvent) {
 var url = environment.baseUrl + 'api/Countries';
 var params = new HttpParams()
 .set("pageIndex", event.pageIndex.toString())
 .set("pageSize", event.pageSize.toString())
 .set("sortColumn", (this.sort)
 ? this.sort.active
 : this.defaultSortColumn)
 .set("sortOrder", (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder);
 if (this.filterQuery) {
 params = params
 .set("filterColumn", this.defaultFilterColumn)
 .set("filterQuery", this.filterQuery);
 }
 this.http.get<any>(url, { params })
 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.countries = new MatTableDataSource<Country>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

Again, this is basically a mirror of the cities.component.ts file.

countries.component.html

Here’s the source code for the /src/app/countries/countries.component.html file:

<h1>Countries</h1>
<p>Here's a list of countries: feel free to play with it.</p>
<p *ngIf="!countries">Loading...</p>
<mat-form-field [hidden]="!countries">
<input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>
<table mat-table [dataSource]="countries"
 class="mat-elevation-z8"
 [hidden]="!countries"
 matSort (matSortChange)="loadData()"
 [matSortActive]="defaultSortColumn"
 [matSortDirection]="defaultSortOrder">
<!-- Id Column -->
<ng-container matColumnDef="id">
<th mat-header-cell *matHeaderCellDef mat-sort-header>ID</th>
<td mat-cell *matCellDef="let country"> {{country.id}} </td>
</ng-container>
<!-- Name Column -->
<ng-container matColumnDef="name">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
<td mat-cell *matCellDef="let country"> {{country.name}} </td>
</ng-container>
<!-- ISO2 Column -->
<ng-container matColumnDef="iso2">
<th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 2</th>
<td mat-cell *matCellDef="let country"> {{country.iso2}} </td>
</ng-container>
<!-- ISO3 Column -->
<ng-container matColumnDef="iso3">
<th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 3</th>
<td mat-cell *matCellDef="let country"> {{country.iso3}} </td>
</ng-container>
<tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
<tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>
<!-- Pagination directive -->
<mat-paginator [hidden]="!countries"
 (page)="getData($event)"
 [pageSize]="10"
 [pageSizeOptions]="[10, 20, 50]"
 showFirstLastButtons></mat-paginator>

The template, just as expected, is almost identical to the cities.component.html template file.

countries.component.scss

Here’s the source code for the /src/app/countries/countries.component.scss file:

table.mat-table {
 width: 100%;
}
mat-form-field {
 font-size: 14px;
 width: 100%;
}

The preceding file is identical to the cities.component.scss file, to the point that we could even reference it instead of creating a new one; however, dealing with separate files is almost always a better choice, considering that we might need to apply different changes to the Cities and Countries tables later on.

AppModule

Since we’ve created our component using the Angular CLI, we don’t need to perform any change to the AppModule configuration file, since the new component should have been registered automatically. All we need to do is to update the routing module and the navigation component.

AppRoutingModule

The routing rule that we need to add is very similar to the one we added to CitiesComponent a while ago:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';
import { CountriesComponent } from './countries/countries.component';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'countries', component: CountriesComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

The new routing rule will make our new CountriesComponent get served by Angular when the client browser points to the /countries dedicated route. However, our users won’t know that such a route exists if we don’t add a visible link to it within our NavComponent menu; that’s precisely why we’re going to add it next.

NavComponent

Open the /src/app/nav-menu/nav-menu.component.html file and add the following highlighted lines to the existing code:

<header>
<mat-toolbar color="primary">
<button mat-icon-button [routerLink]="['/']">
<mat-icon>
 home
 </mat-icon>
</button>
<a mat-flat-button color="primary" [routerLink]="['/cities']">
 Cities

 <a mat-flat-button color="primary" [routerLink]="['/countries']">
 Countries

</mat-toolbar>
</header>

...and that’s it!

Our CountriesComponent is done, and – if we didn’t make mistakes – it should work in about the same way as our beloved CitiesComponent that took so much time to finalize.

Testing CountriesComponent

It’s time to see the results of our hard work. Hit F5, navigate to the Countries view, and expect to see the following:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 6.14: Countries table with pagination, sorting, and filtering

If you were able to get this same output on your first attempt, it definitely means that you have learned what to do; if you didn’t, don’t worry: you’ll just have to check what you did wrong and fix it. Practice makes perfect.

IMPORTANT: Don’t be fooled by appearances; be sure to check that paging, sorting, and filtering are working properly before going any further.

The browser’s console log can be a very useful tool for debugging server-side and client-side errors; most Angular errors come with well-documented exception text and a contextual link to the corresponding file and source code line, thus making it quite easy for the developer to understand what happens under the hood.

Summary

This chapter was all about reading data from the ASP.NET back-end and finding a way to properly show it to the browser with the Angular front-end.

We started by using our existing CitiesController to fetch a large number of cities with Angular components; although both frameworks are perfectly able to deal with massive data, we quickly understood that we need to improve the whole data request, response, and render flow process to grant our users a decent user experience.

For this very reason, we chose to adopt the System.Linq.Dynamic.Core .NET package to revamp our server-side business logic and the Angular Material npm package to greatly improve our client-side UI. By combining the powerful features of these two packages, we managed to pull off a bunch of interesting features: paging, sorting, and filtering. During our development journey, we also took the chance to identify, address, and mitigate some important security issues, such as a harmful SQL injection risk.

Right after finishing our work with Cities, we moved on to Countries, taking the chance to retrace our steps and cement what we just learned into our muscle memory.

After all our hard work, we can definitely say that we did a great job and fulfilled our goal: being able to read our data from the .NET back-end and gracefully present it through the front-end with Angular, thus making end users fully able to see and interact with it.

We’re now ready to add another layer of complexity to our application: give our users the chance to modify the existing data and/or add new data using HTML forms; these features are a must-have for most interactive web applications such as CMSes, forums, social networks, chat rooms, and the like. In the next chapter, Chapter 7, Forms and Data Validation, we’ll see how we can deal with such tasks using reactive forms, a pivotal Angular module that provides a model-driven approach to handling form inputs whose values change over time.

Suggested topics

For further information, we recommend the following topics: JSON, RESTful conventions, HTTP verbs, HTTP status, life cycle hooks, client-side paging, server-side paging, sorting, filtering, dependency injection, and SQL injection.

ASP.NET

System.Linq, System.Linq.Dynamic.Core, IQueryable, and Entity Framework Core.

Angular

Components, routing, modules, AppModule, HttpClient, ngIf, hidden, data binding, property binding, attribute binding, ngFor, directives, structural directives, interpolations, templates, and template reference variables.

References

	Add sorting, filtering, and paging – ASP.NET MVC with EF Core: https://learn.microsoft.com/en-us/aspnet/core/data/ef-mvc/sort-filter-page

	Bootstrap official website: https://getbootstrap.com

	Angular Material official website: https://material.angular.io/

	Angular Material GitHub repository: https://github.com/angular/components

	Angular Material typography: https://material.angular.io/guide/typography

	Angular BrowserAnimationsModule: https://angular.io/api/platform-browser/animations/BrowserAnimationsModule

	Angular animation system: https://angular.io/guide/animations

	Angular Material – table overview: https://material.angular.io/components/table/overview

	Angular – ViewChild: https://angular.io/api/core/ViewChild

	System.Linq.Dynamic.Core project page on GitHub: https://github.com/StefH/System.Linq.Dynamic.Core

	LINQ overview: https://learn.microsoft.com/en-us/dotnet/csharp/linq/

	LINQ (Language Integrated Query): https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

	LINQ lambda expressions (C# programming guide): https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions

	LINQ Query expression basics: https://learn.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics

	Reflection (C#): https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection

	.NET Core and Entity Framework – set IQueryable<T> Column Names programmatically with Dynamic LINQ: https://www.ryadel.com/en/asp-net-core-set-column-name-programmatically-dynamic-linq-where-iqueryable/

	Understanding SQL injection: https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html

	Angular’s template reference variables: https://angular.io/guide/template-reference-variables

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

7

Forms and Data Validation

In this chapter, we’ll mostly deal with forms, data input, and validation techniques. As we already know, HTML forms are one of the most important and delicate aspects of any business application. Nowadays, forms are used to fulfill almost any task involving user-submitted data, such as registering on or logging in to a website, issuing a payment, reserving a hotel room, ordering a product, performing and retrieving search results, and more.

If we were asked to define a form from a developer’s perspective, we would come out with the statement that a form is a UI-based interface that allows authorized users to enter data that will be sent to a server for processing. The moment we accept this definition, two additional considerations should come to mind:

	Each form should provide a data entry experience good enough to efficiently guide our users through the expected workflow; otherwise, they won’t be able to use it properly.

	Each form, as long as it brings potentially insecure data to the server, could have a major security impact in terms of data integrity, data security, and system security, unless the developer possesses the required know-how to adopt and implement the appropriate countermeasures.

These two considerations provide a good summary of what we’ll do in this chapter: we’ll do our best to guide our users into submitting data in the most appropriate way, and we’ll also learn how to check these input values properly to prevent, avoid, and/or minimize a wide spectrum of integrity and security threats. It’s also important to understand that these two considerations are frequently intertwined with each other; hence, we’ll often deal with them at the same time.

In this chapter, we’ll cover the following topics:

	Exploring Angular forms, where we’ll deal with template-driven forms as well as reactive forms, all while understanding the pros and cons of both approaches and looking at which is the most suitable to use in various common scenarios

	Building our first Reactive Form, where we’ll use the gained knowledge to create a Reactive Form to edit our existing cities, as well as add new ones

	Adding a new city, using our brand-new Reactive Form

	Understanding data validation, where we’ll learn how to double-check our users’ input data in the front-end and also from the back-end, as well as the various techniques to give visual feedback when they send incorrect or invalid values

	Introducing the FormBuilder, where we’ll implement another Reactive Form for our countries using some factory methods instead of manually instantiating the various form model elements

	Improving the filter behavior, where we’ll introduce some throttling and debouncing techniques to improve the overall performance and reduce server load

At the end of each task, we’ll also take some time to verify the result of our work using our web browser.

Technical requirements

In this chapter, we’re going to need all the technical requirements that we mentioned in the previous chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_07/WorldCities

Exploring Angular forms

If we take a look at our current .NET Core with Angular projects, we will see how none of them allow our users to interact with the data:

	For the HealthCheck app, this is expected since there’s simply no data to deal with: this is a monitoring app that doesn’t store anything and requires no input from the user

	The WorldCities app, however, tells a whole different story: we do have a database that we use to return results to our users, who could—at least theoretically—be allowed to make changes

It goes without saying that the WorldCities app would be our best candidate for implementing our forms. In the following sections, we’ll do just that, starting with the Angular project (the front-end) and then moving to the ASP.NET Core Web API project (the back-end).

Forms in Angular

Let’s take a minute to briefly review our WorldCities app in the state we left it in at the end of Chapter 6, Fetching and Displaying Data. If we take a look at the CitiesComponent and CountriesComponent templates, we will see that we actually already have a data input element of some sort: we’re clearly talking about <mat-form-field>, which is the selector of Angular Material’s MatInputModule, which we added to the loop during Chapter 6 to let our users filter the cities and countries by their names.

Here’s the relevant code snippet:

<mat-form-field [hidden]="!cities">
<input matInput #filter (keyup)="loadData(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

This means that we are already accepting some kind of user action – consisting of a single input string – and reacting to it accordingly: such an action and reaction chain is the basis of an interaction between the user and the app, which is basically what the vast majority of forms are all about.

However, if we look at the generated HTML code, we can clearly see that we do not have any actual <form> element. We can test it by right-clicking that view’s input element from our browser window and selecting Inspect element, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.1: Inspecting the HTML of the input element

As we can see, there is no main form, only a single input field that perfectly handles the task we’ve assigned to it. The absence of the form is not missed because we’re not submitting anything using FormData; we’re performing our data fetching using the Angular HttpClient module, which technically does this using an asynchronous XMLHttpRequest (XHR) through JavaScript – in one word, AJAX.

Such an approach does not require a <form> container element and is capable of handling the data encoding and transmission tasks using the following supported methods:

	application/x-www-form-urlencoded

	multipart/form-data

	text/plain

It only needs the actual input elements to get the required values from the user.

For further details regarding the encoding method supported by the HTML <form> element, take a look at the following specifications:

	URL Living Standard – URL-encoded Form Data: https://url.spec.whatwg.org/#concept-urlencoded

	HTML Living Standard, section 4.10.21.8 – Multipart Form Data: https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data

	HTML Living Standard, section 4.10.21.9 – Plain Text Form Data: https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data

Although not required, a form element – or any HTML container for our input elements – might be very useful for a number of important tasks that don’t fall into the data encoding and transmission subjects. Let’s see what they are and why we may need them.

Reasons to use forms

Let’s try to summarize the most blatant shortcomings of our current formless approach:

	We cannot keep track of the global form state since there’s no way we can tell whether the input text is valid or not

	We have no easy way to display an error message to the users to let them know what they have to do to make the form valid

	We don’t verify the input data in any way; we just collect and toss it to the server without thinking twice

That’s absolutely fine in our specific scenario since we’re only dealing with a single text string and we don’t care too much about its length, the input text, and so on. However, if we have to deal with multiple input elements and several value types, such limitations could seriously hinder our work – in terms of either data flow control, data validation, or user experience.

Sure, we could easily work around most of the aforementioned issues by implementing some custom methods within our form-based components; we could throw some errors such as isValid(), isNumber(), and so on here and there, and then hook them up to our template syntax and show/hide the validation messages with the help of structural directives such as *ngIf, *ngFor, and the like. However, it would definitely be a horrible way to address our problem; we didn’t choose a feature-rich client-side framework such as Angular to work that way.

Luckily enough, we have no reason to do that since Angular provides us with a couple of alternative strategies to deal with these common form-related scenarios:

	Template-driven forms

	Model-driven forms, also known as Reactive Forms

Both of them are highly coupled with the framework and thus extremely viable; they both belong to the @angular/forms library and also share a common set of form control classes. However, they also have their own specific sets of features, along with their pros and cons, which could ultimately lead to us choosing one of them.

Let’s try to quickly summarize these differences.

Template-driven forms

If you’ve come from AngularJS, there’s a high chance that the template-driven approach will ring a bell or two. As the name implies, template-driven forms host most of the logic in the template code; working with a template-driven form means:

	Building the form in the .html template file

	Binding data to the various input fields using an ngModel instance

	Using a dedicated ngForm object related to the whole form and containing all the inputs, with each being accessible through their name

These things need to be done in order to perform the required validity checks.

To understand this, here’s what a template-driven form looks like:

<form novalidate autocomplete="off" #form="ngForm"
 (ngSubmit)="onSubmit(form)">
<input type="text" name="name" value="" required
 placeholder="Insert the city name..."
 [(ngModel)]="city.Name" #title="ngModel"
 />
<button type="submit" name="btnSubmit"
 [disabled]="form.invalid">
 Submit
 </button>
</form>

As we can see, we can access any element, including the form itself, using some convenient template reference variables – the attributes with the # sign, which we’ve already seen in Chapter 6, Fetching and Displaying Data – and check for their current states to create our own validation workflow. We’ll talk more about these states later on when we dive into form validation techniques.

This, in a nutshell, is template-driven forms; now that we’ve had an overall look at them, let’s try to summarize the pros and cons of this approach.

The pros

Here are the main advantages of template-driven forms:

	Template-driven forms are very easy to write. We can recycle most of our HTML knowledge (assuming that we have any). On top of that, if we came from AngularJS, we already know how well we can make them work once we’ve mastered the technique.

	They are rather easy to read and understand, at least from an HTML point of view; we have a plain, understandable HTML structure containing all the input fields and validators, one after another. Each element will have a name, a two-way binding with the underlying ngModel, and (possibly) template-driven logic built upon aliases that have been hooked to other elements that we can also see, or to the form itself.

The cons

Here are their weaknesses:

	Template-driven forms require a lot of HTML code, which can be rather difficult to maintain and is generally more error-prone than pure TypeScript.

	For the same reason, these forms cannot be unit tested. We have no way to test their validators or to ensure that the logic we implemented will work, other than running an end-to-end test with our browser, which is hardly ideal for complex forms.

	Their readability will quickly drop as we add more and more validators and input tags. Keeping all their logic within the template might be fine for small forms, but it doesn’t scale well when dealing with complex data items.

Ultimately, we can say that template-driven forms might be the way to go when we need to build small forms with simple data validation rules, where we can benefit more from their simplicity. On top of that, they are quite similar to the typical HTML code we’re already used to (assuming that we do have a plain HTML development background); we just need to learn how to decorate the standard <form> and <input> elements with aliases and throw in some validators handled by structural directives such as the ones we’ve already seen, and we’ll be set in (almost) no time.

For additional information on template-driven forms, we highly recommend that you read the official Angular documentation at https://angular.io/guide/forms.

That being said, the lack of unit testing, the HTML code bloat that they will eventually produce, and the scaling difficulties will eventually lead us toward an alternative approach for any non-trivial form.

Model-driven/Reactive Forms

The model-driven approach was specifically added in Angular 2+ to address the known limitations of template-driven forms. The forms that are implemented with this alternative method are known as model-driven forms or Reactive Forms, which are the exact same thing.

The main difference here is that (almost) nothing happens in the template, which acts as a mere reference to a more complex TypeScript object that gets defined, instantiated, and configured programmatically within the component class: the form model.

To understand the overall concept, let’s try to rewrite the previous form in a model-driven/reactive way (the relevant parts are highlighted). The outcome of doing this is as follows:

<form [formGroup]="form" (ngSubmit)="onSubmit()">
<input formControlName="name" required />
<button type="submit" name="btnSubmit"
 [disabled]="form.invalid">
 Submit
 </button>
</form>

As we can see, the required amount of code is less and more readable.

Here’s the underlying form model that we will define in the component class file (the relevant parts are highlighted in the following code):

import { FormGroup, FormControl } from '@angular/forms';
class ModelFormComponent implements OnInit {
 form: FormGroup;
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl()
 });
 }
}

Let’s try to understand what’s happening here:

	The form property is an instance of FormGroup and represents the form itself.

	FormGroup, as the name suggests, is a container of form controls sharing the same purpose. As we can see, the form itself acts as a FormGroup, which means that we can nest FormGroup objects inside other FormGroup objects (we didn’t do that in our sample, though).

	Each data input element in the form template – in the preceding code, name – is represented by an instance of FormControl.

	Each FormGroup instance encapsulates the state of each child control, meaning that it will only be valid if/when all its children are also valid.

Also, note that we have no way of accessing the FormControl objects directly like we were doing in template-driven forms; we have to retrieve them using the .get() method of the main FormGroup, which is the form itself.

At first glance, the model-driven template doesn’t seem too different from the template-driven one. We still have a <form> element, an <input> element hooked to a validator, and a submit button; on top of that, checking the state of the input elements takes a greater amount of source code since they have no aliases we can use. What’s the real deal, then?

To help us visualize the difference, let’s look at the following diagrams. Here’s a schema depicting how template-driven forms work:

[image: Immagine che contiene testo, schermata, Carattere, diagramma Descrizione generata automaticamente]
Figure 7.2: Template-driven forms schematic

By looking at the arrows, we can easily see that, in template-driven forms, everything happens in the template; the HTML form elements are directly bound to the DataModel component represented by a property filled with an asynchronous HTML request to the web server, much like we did with our cities and country table. That DataModel will be updated as soon as the user changes something – that is, unless a validator prevents them from doing that. If we think about it, we can easily understand how there isn’t a single part of the whole workflow that happens to be under our control; Angular handles everything by itself using the information in the data bindings defined within our template. This is what template-driven actually means: the template is calling the shots.

Now, let’s take a look at the model-driven forms (or Reactive Forms) approach:

[image: Immagine che contiene testo, diagramma, Carattere, schermata Descrizione generata automaticamente]
Figure 7.3: Model-driven/Reactive Forms schematic

As we can see, the arrows depicting the model-driven forms workflow tell a whole different story. They show how the data flows between the DataModel component – which we get from the web server – and a UI-oriented form model that retains the states and the values of the HTML form (and its children input elements) that are presented to the user. This means that we’ll be able to get in between the data and the form control objects and perform a number of tasks firsthand: push and pull data, detect and react to user changes, implement our own validation logic, perform unit tests, and so on.

Instead of being superseded by a template that’s not under our control, we can track and influence the workflow programmatically, since the form model that calls the shots is also a TypeScript class; that’s what model-driven forms are about. This also explains why they are also called Reactive Forms – an explicit reference to the reactive programming style that favors explicit data handling and change management throughout the workflow.

For additional information on model-driven/Reactive Forms, we highly recommend reading the official Angular documentation at https://angular.io/guide/reactive-forms.

Enough with the theory; it’s time to empower our components with some Reactive Forms.

Building our first Reactive Form

In this section, we’ll create our first Reactive Form. More specifically, we’re going to build a CityEditComponent that will give our users the chance to edit an existing city record.

To do that, we’ll do the following:

	Add a reference to the ReactiveFormsModule to our AppModule class

	Create the CityEditComponent TypeScript and template files

Let’s get started.

ReactiveFormsModule

The first thing we have to do to start working with Reactive Forms is to add a reference to the ReactiveFormsModule in the AppModule class.

From Solution Explorer, open the /src/app/app.module.ts file and add the following import statement right after the BrowserModule:

import { ReactiveFormsModule } from '@angular/forms';

As always, remember to also add the ReactiveFormsModule to @NgModule's imports collection.

Now that we’ve added a reference to the ReactiveFormsModule in our app’s AppModule file, we can implement the Angular component that will host the actual form.

CityEditComponent

Since our CityEditComponent is meant to allow our users to modify a city, we’ll need to let it know which city it has to fetch from (and send to) the server. To do that, we need to pass the city id from the city listing to that component: the most effective way to do that is by using a GET parameter, such as the city id, which can then be used by the component to retrieve the city info from the server and show it to the user.

Therefore, we’re going to implement a standard master/detail UI pattern, much like the following one:

[image: Immagine che contiene testo, diagramma, schermata, Parallelo Descrizione generata automaticamente]
Figure 7.4: A master/detail UI pattern

This editing pattern, other than being the most used in the world when dealing with a list of items, is a perfect fit for our scenario. Sounds like a plan: let’s do it!

Let’s start with creating a new CityEditComponent using the Angular CLI from the worldcities.client app’s root folder:

ng generate component cities/CityEdit --flat --module=app --skip-tests

As we can see, this time, we added a cities/ prefix to the component name because we want the new component to be generated within the existing /src/app/cities/ folder – together with the existing CitiesComponents and the City.ts interface.

Furthermore, we added the --flat option, which tells the CLI to generate the new files in the current folder instead of creating a new one: without that option, the component would be created in a new /src/app/cities/city-edit/ dedicated folder, which is not what we want.

Once done, we can start updating the new component’s .ts, .html, and .scss files.

city-edit.component.ts

Open the three new (and empty) files and fill them with the following source code for the /src/app/cities/city-edit.component.ts file:

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';
import { environment } from './../../environments/environment';
import { City } from './city';
@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {
 // the view title
 title?: string;
 // the form model
 form!: FormGroup;
 // the city object to edit
 city?: City;
 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl('')
 });
 this.loadData();
 }
 loadData() {
 // retrieve the ID from the 'id' parameter
var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 var id = idParam ? +idParam : 0;
 // fetch the city from the server
var url = environment.baseUrl + 'api/Cities/' + id;
 this.http.get<City>(url).subscribe({
 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;
 // update the form with the city value
this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }
 onSubmit() {
 var city = this.city;
 if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");
 // go back to cities view
this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 }
}

This is a fair amount of source code: luckily enough, there are a lot of comments that should help us understand the purpose of each relevant step.

Let’s try to summarize what we did here:

	We added some import references to the modules we’re about to use within this class. Among them, we can see a couple of new kids on the block: @angular/router and @angular/form. The former is required to define some internal routing patterns, while the latter contains the FormGroup and FormControl classes that we need in order to build our form.

	Right below the class definition, we created a FormGroup instance within a form variable: that’s our form model.

	The form variable instance contains three FormControl objects that will store the city values we want to allow our users to change: name, lat, and lon. We don’t want to make them change the Id or the CountryId – at least, not for now.

	Right below the form variable, we defined a city variable that will host the actual city when we retrieve it from the database.

	The city retrieval task is handled by the loadData() method, which is rather similar to the one we implemented in the cities.component.ts file: a standard data-fetching task handled by an HttpClient module that’s injected (as usual) through the constructor(). The most relevant difference here is that the method, right after the HTTP request/response cycle, proactively loads the retrieved city data within the form model (by using the form’s patchValue() method) instead of relying on the Angular data-binding feature: that’s hardly a surprise since we’re using the model-driven/reactive approach and not the template-driven one.

	The onSubmit() method is where the update magic takes place: HttpClient plays a major role here as well by issuing a PUT request to the server and sending the city variable properly. Once the Observable subscription has been processed, we use the router instance to redirect the user back to the CitiesComponent (the Master view).

Before moving further, it could be wise to spend a few moments talking about the patchValue() method that we used in the preceding code.

The @angular/forms package gives us two ways to update a Reactive Form’s model: the setValue() method, which sets a new value for each individual control, and the patchValue() method, which will replace any properties that have been defined in the object that have changed in the form model.

The main difference between them is that setValue() performs a strict check of the source object and will throw errors if it doesn’t fully adhere to the model structure (including all nested FormControl elements), while patchValue() will silently fail on those errors.

Therefore, we can say that the former method might be a better choice for complex forms and/or whenever we need to catch nesting errors, while the latter is the way to go when things are simple enough – like in our current samples.

The @angular/router package deserves a special mention because it’s the first time we have seen it in a component TypeScript file, and we’ve only used it twice before:

	In the app-routing.module.ts file, to define our client-side routing rules

	In the nav.component.html file, to implement the aforementioned routing rules and make them appear as navigation links within the web application’s main menu

This time, we had to import it because we needed a way to retrieve the City id parameter from the URL. To do this, we used the ActivatedRoute interface, which allows us to retrieve information about the currently active route, as well as the GET parameter we were looking for.

city-edit.component.html

Here’s the content for the /src/app/cities/city-edit.component.html template file:

<div class="city-edit">
<h1>{{title}}</h1>
<p *ngIf="!city">Loading…</p>
<div [formGroup]="form" (ngSubmit)="onSubmit()">
 <!-- Name -->
 <mat-form-field>
<mat-label>Name:</mat-label>
<input matInput formControlName="name" required
 placeholder="Type a name">
</mat-form-field>
<!-- Lat -->
<mat-form-field>
<mat-label>Latitude:</mat-label>
<input matInput formControlName="lat" required
 placeholder="Insert latitude">
</mat-form-field>
<!-- Lon -->
<mat-form-field>
<mat-label>Longitude:</mat-label>
<input matInput formControlName="lon" required
 placeholder="Insert longitude">
</mat-form-field>
<div>
<button mat-flat-button color="primary"
 type="submit" (click)="onSubmit()">
 Save
 </button>
<button mat-flat-button color="secondary"
 [routerLink]="['/cities']">
 Cancel
 </button>
</div>
</div>
</div>

Wait a minute: where’s our <form> HTML element? Didn’t we say that we were working with form-based approaches because they are way better than placing a bunch of separate <input> fields here and there?

As a matter of fact, we do have a form: we just used a <div> rather than the classic <form> element. As you may have guessed at this point, forms in Angular don’t necessarily have to be created using the <form> HTML element, since we won’t be using its distinctive features. For that very reason, we are free to define them using <div>, <p>, or any HTML block-level element that could reasonably contain <input> fields.

However, using the <form> HTML element has some advantages that we might want to consider, such as:

	We won’t need to explicitly bind the onSubmit() handler to the submit button’s click event, since the form will be automatically submitted when the users click on it

	If our app includes the FormsModule – which is required for the template-driven forms approach – Angular will automatically apply the NgForm directive to every <form> HTML template element

	Using a <form> element to contain a sequence of <input> elements will make our HTML code compliant with the W3C standards and recommendations

For all these reasons, it might be wise to replace that <div> element with a <form> element in the following way:

<form [formGroup]="form" (ngSubmit)="onSubmit()">
<!-- ...existing code... -->
</form>

Right after that, we should also remove the (now redundant) manual bind to the onSubmit() event handler that we have on the submit button:

<button mat-flat-button color="primary"
 type="submit">
 Save
</button>

If we don’t do that, the onSubmit() method will be called twice, which is something that we should definitely avoid.

city-edit.component.scss

Last but not least, here’s our /src/app/cities/city-edit.component.scss content:

mat-form-field {
 display: block;
 margin: 10px 0;
}

Again, nothing fancy here: just the minimum amount of styles to override Angular Material’s form fields default behavior – inline-block, which allows them to stack horizontally – and force a vertical layout instead, with a minimum amount of spacing between fields.

Adding the navigation link

Now that our CityEditComponent is ready, we need to enforce our master/detail pattern by adding a navigation link that will allow our users to navigate from our city listing (master) to the city edit form (detail).

To do that, we need to perform the following tasks:

	Create a new route within the app-routing.module.ts file

	Implement the preceding route in the template code of CitiesComponent

As always, we shouldn’t need to add the references for the city-edit.component.ts file in the app.module.ts file, since the Angular CLI should’ve automatically done that when we generated the component.

Let’s do this!

app-routing.module.ts

The first thing to do is to add a new route to the app-routing.module.ts file with the following source code (new lines are highlighted):

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { HomeComponent } from './home/home.component';
import { CitiesComponent } from './cities/cities.component';
import { CityEditComponent } from './cities/city-edit.component';
import { CountriesComponent } from './countries/countries.component';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent },
 { path: 'countries', component: CountriesComponent },
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

As we can see, we imported the CityEditComponent and defined a new city/:id corresponding to the route. The syntax we used will route any URL composed of city and a parameter that will be registered with the id name.

cities.component.html

Now that we have the navigation route, we need to implement it within the Master view so that the Detail view can be reached.

Open the /src/app/cities/cities.component.html file and change the HTML template code for the city’s Name column in the following way:

<!-- ...existing code... -->
<!-- Name Column -->
<ng-container matColumnDef="name">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
<td mat-cell *matCellDef="let city">
 <a [routerLink]="['/city', city.id]">{{city.name}}
</td>
</ng-container>
<!-- ...existing code... -->

Once you’re done, test it out by hitting F5 and navigating to the Cities view. As shown in the following screenshot, the city names are now clickable links:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.5: Cities table with clickable links

From there, filter the table for Paris and click on the first result to access the CityEditComponent, which we’ll finally be able to see (as shown in the following screenshot):

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.6: The CityEditComponent

As we can see, everything is much as we would expect it to be. We have three textboxes, as well as a Save button and a Cancel button, both of which are ready to perform the task they have been assigned. The Save button will send the modified text to the server for the update and then redirect the user to the Master view, while the Cancel button will redirect the user without performing any changes.

That’s definitely a good start! However, we’re far from done: we still have to add validators, implement error handling, and write a couple of unit tests for the client side and the server side. Let’s get started.

Adding a new city

Before going any further, let’s spend a couple more minutes adding a very useful feature to our CityEditComponent: the chance to add a brand-new City. This is a rather classic requirement of a Detail view with editing capabilities, which can be handled with the same component – as long as we perform some small modifications to enable it to handle a new feature (adding a new city) as well as the existing one (editing an existing city) in a seamless way.

To do that, we’ll have to perform the following steps:

	Extend the functionalities of CityEditComponent to make it able to add new cities, as well as edit existing ones

	Add a new Add City button to our component’s template file and bind it to a new client-side route

	Implement the required functionalities to select a country for the newly added city, which will also be useful in edit mode (it will allow users to change the country for existing cities)

Let’s get to work!

Extending the CityEditComponent

Open the /src/app/cities/city-edit.component.ts file and add the following code (the new/updated lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';
import { environment } from './../../environments/environment';
import { City } from './city';
@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {
 // the view title
 title?: string;
 // the form model
 form!: FormGroup;
 // the city object to edit or create
 city?: City;
 // the city object id, as fetched from the active route:
 // It's NULL when we're adding a new city,
 // and not NULL when we're editing an existing one.
 id?: number;
constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl('')
 });
 this.loadData();
 }
 loadData() {
 // retrieve the ID from the 'id' parameter
var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE
 // fetch the city from the server
 var url = environment.baseUrl + 'api/Cities/' + this.id;
 this.http.get<City>(url).subscribe({
 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;
 // update the form with the city value
 this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE
 this.title = "Create a new City";
 }
 }
 onSubmit() {
 var city = (this.id) ? this.city : <City>{};
if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 if (this.id) {
 // EDIT mode
 var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");
 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
 var url = environment.baseUrl + 'api/Cities';
 this.http
 .post<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + result.id + " has been created.");
 // go back to cities view
 this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 }
 }
}

Thanks to these modifications, our code will now be able to distinguish between the two different user actions (adding a new city or editing an existing one) and properly deal with both of them.

The HTML template file may also perform a minor update to notify the user of the new feature.

Open the /src/app/cities/cities-edit.component.html file and modify it in the following way (the new/updated lines are highlighted).

Add the following highlighted code near the beginning of the file:

<!-- ... existing code ... -->
<p *ngIf="id && !city">Loading...</p>
<!-- ... existing code ... -->

With such an improvement, we’ll ensure that the "Loading..." message won’t appear when we’re adding a new city since the city variable will be empty.

Finally, change the Save button’s fixed text with a dynamic value using Angular’s string interpolation feature, which we’ve already seen various times:

<button mat-flat-button color="primary"
 type="submit">
 {{ this.id ? "Save" : "Create" }}
</button>

This minor yet useful addition will let us know if the form is working as expected: whenever we add a new city (and id evaluates to false), we will see a more appropriate Create button instead of the Save one, which will still be visible in edit mode.

Now, we need to do two things:

	Find a nice way to let our users know that they can add new cities, as well as modify the existing ones

	Make them able to access this new feature

A simple Add a new City button will fix both these issues at once: let’s add it to our CitiesComponent.

Adding the “Add a new City” button

Open the /src/app/cities/cities.component.html file and add the following code right after the Loading… paragraph:

<!-- ... existing code ... -->
<p *ngIf="!cities">Loading...</p>
<button mat-flat-button color="primary"
 class="btn-add" *ngIf="cities" [routerLink]="['/city']">
 Add a new City
</button>
<!-- ... existing code ... -->

There’s nothing new here; we’ve added the usual route-based button within a container and an *ngIf structural directive to make it appear after the Cities array becomes available.

Since we’ve given that button a new .btn-add CSS class, we can take the chance to decorate it with some minimal UI styling by opening the /src/app/cities/cities.component.scss file and adding something like this:

.btn-add {
 float: right;
}

This way, the button will be aligned to the right of the screen.

Adding a new route

Now, we need to define the new route that we referenced for the Add a new City button.

To do that, open the /src/app/app-routing.module.ts file and update the code, as follows:

// ...existing code...
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent },
 { path: 'city', component: CityEditComponent },
 { path: 'countries', component: CountriesComponent },
]),
// ...existing code...

As we can see, the (new) route to add a new city and the (existing) route to edit an existing city are very similar since they both redirect the user to the same component; the only difference is that the latter doesn’t have the id parameter, which is the technique we used to make our component aware of which task it has been called for. If the id is present, the user is editing an existing city; otherwise, they’re adding a new one.

We are doing well... but we’re not quite there yet. If we were to test what we’ve done so far by hitting F5 and trying to add a new city, our HttpClient module would be greeted by an HTTP 500 - Internal Server Error from the server, similar to the one shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.7: HTTP 500 error after trying to add a new city

Here’s the full error text (with the relevant parts highlighted):

---> Microsoft.Data.SqlClient.SqlException (0x80131904): The INSERT statement conflicted with the FOREIGN KEY constraint "FK_Cities_Countries_CountryId". The conflict occurred in database "WorldCities", table "dbo.Countries", column 'Id'.
The statement has been terminated.

It definitely seems like we forgot the CountryId property of the City entity: we did that on purpose when we had to define the Angular city interface because we didn’t need it at that time. We didn’t suffer from its absence when we implemented the city edit mode because that property was silently fetched from the server and then stored within our Angular local variable, which we were sending back to the server while the HTTP PUT request was performing the update. However, now that we do want to create a new city from scratch, such a missing property will eventually take its toll.

To fix this, we need to add the countryId property to the /src/app/cities/city.ts file in the following way (the new lines are highlighted):

export interface City {
 id: number;
 name: string;
 lat: number;
 lon: number;
 countryId: number;
}

However, this won’t be enough: we also need to give our users the chance to assign a specific Country to the new city; otherwise, the countryId property will never see an actual value – unless we define it programmatically with a fixed value, which would be a rather ugly workaround (to say the least).

Let’s fix this in a decent way by adding a list of countries to CityEditComponent so that the user will be able to select one before hitting the Create button. Such a new feature will be very useful – even when the component runs in edit mode – since it will allow our users to change the country for existing cities.

HTML select

The easiest way to allow our users to pick a country from a list of countries would be to use a <select> element and populate it by fetching our data from the .NET back-end via the CountriesController GetCountries() method. Let’s do that now.

Open the /src/app/cities/city-edit.component.ts file and add the following code (the new and updated lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl } from '@angular/forms';
import { environment } from './../../environments/environment';
import { City } from './city';
import { Country } from './../countries/country';
@Component({
 selector: 'app-city-edit',
 templateUrl: './city-edit.component.html',
 styleUrls: ['./city-edit.component.scss']
})
export class CityEditComponent implements OnInit {
 // the view title
 title?: string;
 // the form model
 form!: FormGroup;
 // the city object to edit or create
 city?: City;
 // the city object id, as fetched from the active route:
// It's NULL when we're adding a new city,
// and not NULL when we're editing an existing one.
 id?: number;
 // the countries array for the select
 countries?: Country[];
constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl(''),
 lat: new FormControl(''),
 lon: new FormControl(''),
 countryId: new FormControl('')
 });
 this.loadData();
 }
 loadData() {
 // load countries
 this.loadCountries();
// retrieve the ID from the 'id' parameter
var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE
// fetch the city from the server
var url = environment.baseUrl + 'api/Cities/' + this.id;
 this.http.get<City>(url).subscribe({
 next: (result) => {
 this.city = result;
 this.title = "Edit - " + this.city.name;
 // update the form with the city value
this.form.patchValue(this.city);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE
this.title = "Create a new City";
 }
 }
 loadCountries() {
 // fetch all the countries from the server
 var url = environment.baseUrl + 'api/Countries';
 var params = new HttpParams()
 .set("pageIndex", "0")
 .set("pageSize", "9999")
 .set("sortColumn", "name");
 this.http.get<any>(url, { params }).subscribe({
 next: (result) => {
 this.countries = result.data;
 },
 error: (error) => console.error(error)
 });
 }
 onSubmit() {
 var city = (this.id) ? this.city : <City>{};
 if (city) {
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;
if (this.id) {
 // EDIT mode
var url = environment.baseUrl + 'api/Cities/' + city.id;
 this.http
 .put<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + city!.id + " has been updated.");
 // go back to cities view
this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
var url = environment.baseUrl + 'api/Cities';
 this.http
 .post<City>(url, city)
 .subscribe({
 next: (result) => {
 console.log("City " + result.id + " has been created.");
 // go back to cities view
this.router.navigate(['/cities']);
 },
 error: (error) => console.error(error)
 });
 }
 }
 }
}

What did we do here?

	We added the HttpParams module to the import list of @angular/common/http

	We added a reference to our Country interface since we need to handle countries as well

	We added a countries variable to store our countries

	We added a countryId form control (with a required validator, since it’s a required value) to our form

	We added a loadCountries() method to fetch the countries from the server

	We added a call to the loadCountries() method from the loadData() method so that we’ll asynchronously fetch the countries while we do the rest of the loadData() stuff (such as loading the city and/or setting up the form)

	We updated the city’s countryId so that it matches the one that’s selected in the form in the onSubmit() method; this means that it will be sent to the server for the insert or update task

It’s worth noting how, in the loadCountries() method, we had to set up some GET parameters for the /api/Countries URL to comply with the strict default values that we set in Chapter 6, Fetching and Displaying Data: we don’t need paging here since we need to fetch the entire countries list to populate our select list. More specifically, we set a pageSize of 9999 to ensure that we get all our countries, as well as an appropriate sortColumn to have them ordered by their name.

Now, we can use our brand-new countries variable on our HTML template.

Open the /src/app/cities/city-edit.component.html file and add the following code right below the longitude mat-form-field (the new lines are highlighted):

<!-- ...existing code... -->
<!-- Lon -->
<mat-form-field>
<mat-label>Longitude:</mat-label>
<input matInput formControlName="lon" required
 placeholder="Insert longitude">
</mat-form-field>
<!-- Country -->
<p *ngIf="countries">
 <select id="countryId" formControlName="countryId">
 <option value="">--- Select a country ---</option>
 <option *ngFor="let country of countries" [value]="country.id">
 {{country.name}}
 </option>
 </select>
</p>
<!-- ...existing code... -->

If we press F5 to test our code and navigate to the Create a new City or Edit City view, we’ll see the following output:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.8: The CityEditComponent with a country drop-down list

Now, by clicking the --- Select a country --- drop-down list, our users will be able to pick a country from the ones that are available. That’s not bad, right? However, the layout is not that great: the default, unstyled <select> HTML element does not fill well with Angular Material’s UI.

Luckily enough, we can definitely improve this aspect by replacing our standard HTML select with a more powerful component from the Angular Material package library: MatSelectModule.

Angular Material select (MatSelectModule)

Since we’ve never used MatSelectModule before, we need to add it to the /src/app/angular-material.module.ts file.

Here’s the using reference to add:

import { MatSelectModule } from '@angular/material/select';

As always, remember to also add the module in @NgModule's imports and exports collections.

Right after that, we can replace the <select> HTML element we added to the /src/app/cities/city-edit.component.html file a short while ago in the following way:

<!-- ...existing code... -->
<!-- Country -->
<mat-form-field *ngIf="countries">
<mat-label>Select a Country...</mat-label>
<mat-select id="countryId" formControlName="countryId">
<mat-option *ngFor="let country of countries"
 [value]="country.id">
 {{country.name}}
 </mat-option>
</mat-select>
</mat-form-field>
<!-- ...existing code... -->

And that’s it! We can see the updated result by hitting F5 (see the following screenshot for the output):

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 7.9: The CityEditComponent using MatSelectModule for the country dropdown

The MatSelectModule is definitely prettier than the stock <select> HTML element, all while retaining the same features: we don’t even need to change the underlying component class file since it uses the same binding interface.

Now, we can add our brand-new city to our database. Let’s do this using the following data:

	Name: New Tokyo

	Latitude: 35.685

	Longitude: 139.7514

	Country: Japan

Fill in our Create a new City form with these values and click the Create button. If everything goes well, we should be brought back to the Cities view, where we’ll be able to find our New Tokyo city using the filter (see the following screenshot):

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.10: Cities list after filtering for New Tokyo

Here we go: we successfully added our first city!

Now that our Reactive Form is working properly and we have decent know-how about how it works, we’re ready to spend some time tweaking it by adding something that could be very useful in a production scenario: some error-handling capabilities. We’ll obtain these capabilities by adding some data validators.

Understanding data validation

Adding data validation to a form is hardly an option: it’s a required feature to check the user input in terms of accuracy and completeness to improve the overall data quality by validating the data we want – or need – to collect. It’s also very useful in terms of user experience because the error-handling capabilities it comes with will enable our users to understand why the form doesn’t work and what they can do to fix the issues preventing them from submitting their data.

To understand such a concept, let’s take our current CityEditComponent Reactive Form: it works fine if our users fill out all the required fields; however, there’s no way for them to understand what the required values actually are, or what happens if they forget to fill all of them out... except for a console error message, which is what our source code currently displays whenever our PUT and POST requests end up with a back-end error of any sort.

In this section, we’ll learn how we can validate user input from the front-end UI and display useful validation messages using our current Reactive Form. While we’re there, we’ll also take the chance to create an Edit Country/Add new Country form and learn something new in the process.

Template-driven validation

For the sake of simplicity, we’ve chosen to not mess around with template-driven forms and bring our focus to model-driven/Reactive Forms instead. However, it might be wise to spend a couple of minutes understanding how we can add validation to a template-driven form as well.

The good news about this is that we can use the same standard validation attributes that we would normally use to validate a native HTML form: the Angular framework uses directives to match them with validator functions internally and in a fully transparent way. More specifically, every time the value of a form control changes, Angular will run these functions and generate either a list of validation errors, thus resulting in an invalid status, or null, meaning that the form is valid.

The form’s state – as well as each form control’s state – can be checked/inspected by exporting ngModel to a local template variable. Here’s an example that can help clarify this:

<input id="name" name="name" required minlength="4"
 [(ngModel)]="city.name" #name="ngModel">
<div *ngIf="name.invalid && (name.dirty || name.touched)">
<div *ngIf="name.errors?.required">Name is required.</div>
<div *ngIf="name.errors?.minlength">Name must be at least 4
 characters long.</div>
</div>

The data validation directives are highlighted in bold. As we can see, the preceding form will raise an error – and show a <div> element with an alert style to the user – whenever the city’s name is not present or its character count is smaller than 4 since this is the minimum allowed length for the name input.

It’s worth noting that we’re checking two properties that might sound rather odd: name.dirty and name.touched. Here’s a brief explanation of what they mean and why it’s wise to check for their status:

	The dirty property starts as being false and becomes true whenever the user changes its starting values

	The touched property starts as being false and becomes true whenever the user blurs the form control element – that is, clicks (or taps, or “tabs”) away from it after having it in focus

Now that we know how these properties work, we should be able to understand why we are checking them: we want our data validator error to only be seen if/when the user goes away from the control, leaving it with an invalid value – or no value at all.

That’s it for template-driven validation, at least for the purposes of this book. Those who need additional information should check out the following guide at https://angular.io/guide/forms#template-driven-forms.

Model-driven validation

When dealing with Reactive Forms, the whole validation approach is rather different. In a nutshell, we could say that most of this job has to be done within the component class: instead of adding validators using HTML attributes in the template, we’ll have to add validator functions directly to the form control model in the component class so that Angular will be able to call them whenever the value of the control changes.

Since we’ll mostly be dealing with functions, we’ll also get the option to make them sync or async, thus getting the chance to add synchronous and/or asynchronous validators:

	Sync validators immediately return either a set of validation errors or null. They can be set up using the second argument when we instantiate the FormControl they need to check (the first one being the default value).

	Async validators return a Promise or Observable that’s been configured to emit a set of validation errors or null. They can be set up using the third argument when we instantiate the FormControl they need to check.

It’s important to know that async validators will only be executed/checked after the sync validators, and only if all of them successfully pass. Such an architectural choice has been made for performance reasons.

In the upcoming sections, we’ll create both of them and add them to our form.

Our first validators

Enough with the theory: let’s add our first set of validators in our CityEditComponent form.

Open the /src/app/cities/city-edit.component.ts file and add the following code:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators} from '@angular/forms';
// ...existing code...
''''''''''''''''
ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', Validators.required),
 lon: new FormControl('', Validators.required),
 countryId: new FormControl('', Validators.required)
 });
 this.loadData();
 }
// ...existing code...

As we can see, we added the following:

	An import reference to the Validators class from the @angular/forms package.

	A Validators.required to each of our FormControl elements. As the name suggests, this validator expects a non-null value for these fields; otherwise, it will return an invalid status.

Validators.required is a built-in sync validator among those available from the Validators class. Other built-in validators provided by this class include min, max, requiredTrue, email, minLength, maxLength, pattern, nullValidator, compose, and composeAsync.

For more information regarding Angular’s built-in validators, take a look at the following URL: https://angular.io/api/forms/Validators.

Once you’re done, open the /src/app/cities/city-edit.component.html file and append the following <mat-error> elements at the end of each corresponding mat-form-field existing element, before that element’s closing tag:

<!-- ...existing code... --!/>
<mat-error *ngIf="form.controls['name'].errors?.['required']">
 Name is required.
</mat-error>
<!-- ...existing code... --!/>
<mat-error *ngIf="form.controls['lat'].errors?.['required']">
 Latitude is required.
</mat-error>
<!-- ...existing code... --!/>
<mat-error *ngIf="form.controls['lon'].errors?.['required']">
 Longitude is required.
</mat-error>
<!-- ...existing code... --!/>
<mat-error *ngIf="form.controls['countryId'].errors?.['required']">
 Please select a Country.
</mat-error>
<!-- ...existing code... --!/>

Each one of these new <mat-error> elements will check the corresponding input or select value and return an error if one (or more) of the configured validators fails to validate it.

As we can see, all mat-error elements share the same underlying logic: they will be shown only when the FormControl error.required property is set to true, which happens when the corresponding field’s value is empty (since the required validator has been set for all of them).

It’s worth noting that the mat-error, as per its default behavior, will only be shown when the control is invalid and either the user has interacted with the element (touched) or the parent form has been submitted. This is great for our purposes since it means that we don’t have to add additional checks to the *ngIf directive to handle the touched status as we did early on in this chapter. Furthermore, it’s important to remember that each mat-error element needs to be placed within its corresponding mat-form-field element in order to work.

For additional info on the mat-error default behavior (and how to change it), see the following URL from the Angular Material docs:

https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown

All we need to do now is to properly test these validators. However, before doing that, let’s spend a couple of minutes explaining the meaning of the ? question mark that we’ve used within the *ngIf directives in the TypeScript code above.

The safe navigation operator

Let’s take another look at that code:

*ngIf="form.controls['lon'].errors?.['required']"

That question mark is TypeScript’s safe navigation operator, also known as the Elvis operator, and is very useful for protecting against null and undefined values in property paths. When the safe navigation operator is present, TypeScript stops evaluating the expression when it hits the first null (or undefined) value. In the preceding code, if the errors nullable property happens to be null (which happens whenever the FormControl has no errors), the whole expression would evaluate to false without checking the required property, thus avoiding one of the following null-reference errors:

TypeError: Cannot read property 'required' of null.
Error TS2531: Object is possibly 'null'

In more general terms, the safe navigation operator makes us able to navigate an object path – even when we are not aware of whether such a path exists or not – by returning either the value of the object path (if it exists) or null/undefined. Such behavior is very convenient whenever we need to check for the value of any nullable object: FormControl errors, GET or POST parameters, and a lot of other common scenarios. For this very reason, we’re going to use it a lot from now on.

It’s worth noting that the safe navigation operator has been part of the Angular HTML template language since Angular 2 and was only recently added to TypeScript. This much-needed addition occurred in November 2019, with the release of TypeScript v3.7:

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html

For more information about the Safe Navigation Operator, check out the following URL: https://en.wikipedia.org/wiki/Safe_navigation_operator.

Testing the validators

Let’s quickly check everything we’ve done so far: hit F5, navigate to the Cities view, click on the Add a new City button, and play with the form while trying to trigger the validators.

Here’s what happens when we cycle through the various input values without typing anything:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.11: Testing the CityEditComponent form validators

Not bad, right? The input errors couldn’t be more visible: all of these colored warnings should help our users understand what they’re doing wrong and fix these issues.

However, notice how the form’s Create button is still enabled – even when those validators are showing an error: this is not a good behavior, since it allows the user to submit the form with invalid data. To prevent that, we need to disable the Create button until the form is valid, which can be done by adding a [disabled] attribute to the form’s submit button in the following way:

<button mat-flat-button color="primary"
 type="submit"
 [disabled]="!form.valid">

This will ensure that the Create button will stay disabled until all the validators give a positive (valid) response, thus preventing accidental submissions.

Before ending our data validation journey, there’s still one topic we need to cover: server-side validation, which can often be the only reasonable way to prevent some complex errors.

Server-side validation

Server-side validation is the process of checking for errors (and handling them accordingly) on the server side – that is, after the data has been sent to the back-end. This is a whole different approach from client-side validation, where the data is checked by the front-end – that is, before the data is sent to the server.

Handling errors on the client side has a lot of advantages in terms of speed and performance because the user immediately knows whether the input data is valid or not without having to query the server. However, server-side validation is a required feature of any decent web application because it prevents a lot of potentially harmful scenarios, such as the following:

	Implementation errors of the client-side validation process, which can fail to block badly formatted data

	Client-side hacks performed by experienced users, browser extensions, or plugins that might want to allow the user to send unsupported input values to the back-end

	Request forgery – that is, false HTTP requests containing incorrect or malicious data

All of these techniques are based upon circumventing the client-side validators, which is always possible because we have no way to prevent our users (or hackers) from skipping, altering, or eliminating them; conversely, server-side validators cannot be avoided because they will be performed by the same back-end that will process the input data.

Therefore, in a nutshell, we could reasonably say that client-side validation is an optional and convenient feature, while server-side validation is a requirement for any decent web application that cares about the quality of the input data.

To avoid confusion, it is important to understand that server-side validation, although being implemented on the back-end, also requires a front-end implementation, such as calling the back-end and then showing the validation results to the user. The main difference between client-side validation and server-side validation is that the former only exists on the client side and never calls the back-end, while the latter relies upon a front-end and back-end coordinated effort, thus being more complex to implement and test.

Moreover, there are some scenarios where server-side validation is the only possible way to check for certain conditions or requirements that cannot be verified by client-side validation alone. To explain this concept, let’s look at a quick example.

Launch our WorldCities app in debug mode by hitting F5, go to our Cities view, and type paris into the filter textbox.

You should see the following output:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.12: Cities list after filtering for “paris”

The preceding screenshot tells us the following things:

	There are no less than five cities called Paris in our archive (!)

	Multiple cities can have the same name

That’s not surprising: when we created our database using Entity Framework with the code-first approach, we didn’t make the name field unique since we knew that there was a high chance of homonymous cities. Luckily enough, this isn’t an issue since we can still distinguish between them by looking at the lat, lon, and country values.

If we check some of these cities on Google Maps, we will see that one of them is in France, another one is in Texas (US), a third one is in Tennessee (US), and so on: same name, different cities.

Now, what about adding a validator that could check if the city we are trying to add has the same name, lat, and lon values as a city already present in our database? Such a feature would block our users from inserting the same city multiple times, thus avoiding real duplicates, without blocking the homonyms that have different coordinates.

Unfortunately, there’s no way to do that on the client side only. To fulfill this task, we would need to create an Angular custom validator that could asynchronously check these values against the server and then return an OK (valid) or KO (invalid) result: in other words, a server-side validation task.

Let’s try to do that now.

DupeCityValidator

In this section, we’ll create a custom validator that will perform an asynchronous call to our .NET Core back-end to ensure that the city we’re trying to add doesn’t have the same name, lat, lon, and country as an existing one.

city-edit.component.ts

The first thing we have to do is create the validator itself and bind it to our Reactive Form. To do that, open the /src/app/cities/city-edit.component.ts file and change its contents accordingly (the new/updated lines are highlighted):

// ...existing code...
import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn } from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';
// ...existing code...
ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', Validators.required),
 lon: new FormControl('', Validators.required),
 countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());
 this.loadData();
 }
// ...existing code...
 isDupeCity(): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{ [key: string]: any } | null> => {
 var city = <City>{};
 city.id = (this.id) ? this.id : 0;
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;
 var url = environment.baseUrl + 'api/Cities/IsDupeCity';
 return this.http.post<boolean>(url, city).pipe(map(result => {
 return (result ? { isDupeCity: true } : null);
 }));
 }
 }
}

As we can see, we’ve made some important changes in the preceding code:

	We added some import references (AbstractControl, AsyncValidatorFn, Observable, and map) that we used to implement our new async custom validator. If you don’t get what we need them for, don’t worry: we’ll be talking about this topic later on.

	We created a new isDupeCity() method, which contains the whole implementation of our async custom validator.

	We configured the new validator to be used by the main FormGroup (the one related to the whole form).

As for our custom validator, it seems way more complex than it actually is. Let’s try to summarize what it does:

	The first thing worth mentioning is that the isDupeCity() method returns an AsyncValidatorFn that, in turn, returns an Observable: this means that we’re not returning a value, but a subscriber function instance that will eventually return a value – which will be either a key/value object or null. This value will only be emitted when the observable is executed.

	The inner function creates a temporary city object, fills it with the real-time form data, calls an IsDupeCity back-end URL that we don’t know yet (but we will soon enough), and eventually returns either true or null, depending on the result. It’s worth noting that we’re not subscribing to the HttpClient this time, as we often did in the past; we’re manipulating it using the pipe and map RxJS operators, which we’ll be talking about in a short while.
For more information regarding custom async validators, read the following guide: https://angular.io/guide/form-validation#implementing-a-custom-async-validator.

Since our custom validator relies on an HTTP request being sent to our .NET Core back-end, we need to implement that method as well.

CitiesController

Switch to the WorldCityAPI project, then open the /Controllers/CitiesController.cs file and add the following method at the bottom of the file:

// ...existing code...
private bool CityExists(int id)
{
 return _context.Cities.Any(e => e.Id == id);
}
[HttpPost]
[Route("IsDupeCity")]
public bool IsDupeCity(City city)
{
 return _context.Cities.AsNoTracking().Any(
 e => e.Name == city.Name
 && e.Lat == city.Lat
 && e.Lon == city.Lon
 && e.CountryId == city.CountryId
 && e.Id != city.Id
);
}
// ...existing code...

The .NET method is very straightforward: it checks the data model for a City that has the same Name, Lat, Lon, and CountryId as the one provided by the front-end (as well as a different Id) and returns true or false as the result. The Id check has been added to conditionally disable the dupe check when the user is editing an existing city. If that’s the case, using the same Name, Lat, Lon, and CountryId would be allowed since we’re basically overwriting the same city and not creating a new one. When the user adds a new city, that Id value will always be set to zero, preventing the dupe check from being disabled.

city-edit.component.html

Now that the back-end code is ready, we need to create a suitable error message from the UI. Open the /src/app/cities/city-edit.component.html file and update its content in the following way (the new lines are highlighted):

<div class="city-edit">
<h1>{{title}}</h1>
<p *ngIf="id && !city">Loading...</p>
<form [formGroup]="form" (ngSubmit)="onSubmit()">
 <p>
 <mat-error *ngIf="form.invalid && form.hasError('isDupeCity')">
 ERROR:
 A city with the same <i>name</i>, <i>lat</i>,
 <i>lon</i> and <i>country</i> already exists.
 </mat-error>
 </p>
<!-- ...existing code... -->

As shown in the preceding code, the alert <div> we added will only be shown if the following three conditions are met:

	The form is invalid

	There are errors that are strictly related to the form itself

	The isDupeCity error is returning true

It’s very important to check all of them; otherwise, we risk showing such an alert even when it doesn’t have to be shown.

Testing it out

Now that the component HTML template has been set up, we can test the result of our hard work. Press F5, navigate to the Cities view, click the Add a new City button, and insert the following values:

	Name: New Tokyo

	Latitude: 35.685

	Longitude: 139.7514

	Country: Japan

If we did everything properly, we should be greeted by the following error message:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.13: Testing the duplicate city validator

That’s great! Our custom async validator is working fine and triggers both the front-end and the back-end validation logic.

Observables and RxJS operators

The async logic that’s used to perform the call makes use of the Observable/RxJS pattern: this time, though, instead of relying on the subscribe() method we’ve already used a number of times, we opted for a pipe and map approach. These are two very important RxJS operators that allow us to perform our data manipulation tasks while retaining the Observable status of the returned value, while subscriptions will execute the Observable and return actual data instead.

This concept might be quite difficult to understand. Let’s try to put it in other words:

	We should use the subscribe() method when we want to execute the Observable and get its actual result – for example, a JSON structured response. Such a method returns a subscription that can be canceled but can’t be subscribed to anymore.

	We should use the map() operator when we want to transform/manipulate the data events of the Observable without executing it so that it can be passed to other async actors that will also manipulate (and eventually execute) it. Such a method returns an Observable that can be subscribed to.

As for the pipe(), it’s just a method that composes/chains other RxJS operators (such as map, filter, and so on).

The most important difference between Observable methods and RxJS operators is that the latter always returns Observables, while the former returns a different (and mostly final) object type. Does this ring a bell?

If we think about what we learned back in Chapter 6, Fetching and Displaying Data, when dealing with .NET Entity Framework, it should definitely sound familiar. Remember when we were playing around with the IQueryable<T> interface? The various Where, OrderBy, and CountAsync IQueryable methods that we used when we built our ApiResult class are quite similar to what we can do in Angular by chaining multiple map functions with the pipe operator. Conversely, the subscribe() method strictly resembles the various ToListAsync()/ToArrayAsync() methods that we used in .NET to execute the IQueryable and retrieve its result in a usable object.

Performance issues

Before moving on, let’s try to answer the following question: when will this validator be checked? In other words, can we reasonably expect performance issues, considering the fact that it performs a server-side API call upon each check?

If we recall what we said earlier, the asynchronous validators will only be checked when all the synchronous validators return true. Since isDupeCity is async, it won’t be called until all the Validators.required that we previously set up in all the FormControl elements return true. That’s a piece of great news indeed since there would be no sense in checking for an existing city with name, lat, lon, and/or countryId being null or empty.

Based on what we have just said, we can reasonably expect the isDupeCity validator to be called once or twice for each form submission, which is perfectly fine in terms of performance impact. Everything is fine, then. Let’s move on.

Introducing the FormBuilder

Now that our CityEditComponent has been set up, we might be tempted to reuse the same techniques to create a CountryEditComponent and get the job done, just like we did in Chapter 6, Fetching and Displaying Data, with our CitiesComponent and CountryComponent files. However, we won’t be doing this. Instead, we’ll take the chance to introduce a new tool to our shed that can be very useful when dealing with multiple forms: the FormBuilder service.

In the following sections, we’ll do the following:

	Create our CountryEditComponent with all the required TypeScript, HTML, and SCSS files

	Learn how to use the FormBuilder service to generate form controls in a better way

	Add a new set of Validators (including a brand-new isDupeCountry custom validator) to the new form implementation

	Test our new FormBuilder-based implementation to check that everything works

By the end of this section, we’ll have a fully functional CountryEditComponent that will work in the same way that CityEditComponent does, except it will be based on a slightly different approach.

Creating the CountryEditComponent

Let’s start by creating the Angular component, just like we did with the CityEditComponent early on.

Open a command-line prompt, navigate to our worldcities.client project’s root folder, and then execute the following command:

ng generate component countries/CountryEdit --flat --module=app --skip-tests

Once you’re done, fill the newly created component files with the following content.

country-edit.component.ts

Open the /src/app/countries/country-edit.component.ts file and fill it with the following code. Watch out for the highlighted parts, which are rather different from the previous CityEditComponent; other minor differences (such as country instead of city, countries instead of cities, and the like) are not highlighted, since they’re more than expected:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormBuilder, Validators, AbstractControl, AsyncValidatorFn } from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';
import { environment } from './../../environments/environment';
import { Country } from './country';
@Component({
 selector: 'app-country-edit',
 templateUrl: './country-edit.component.html',
 styleUrls: ['./country-edit.component.scss']
})
export class CountryEditComponent implements OnInit {
 // the view title
 title?: string;
 // the form model
 form!: FormGroup;
 // the country object to edit or create
 country?: Country;
 // the country object id, as fetched from the active route:
// It's NULL when we're adding a new country,
// and not NULL when we're editing an existing one.
 id?: number;
 // the countries array for the select
 countries?: Country[];
 constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 }
 ngOnInit() {
 this.form = this.fb.group({
 name: ['',
 Validators.required,
 this.isDupeField("name")
],
 iso2: ['',
 [
 Validators.required,
 Validators.pattern(/^[a-zA-Z]{2}$/)
],
 this.isDupeField("iso2")
],
 iso3: ['',
 [
 Validators.required,
 Validators.pattern(/^[a-zA-Z]{3}$/)
],
 this.isDupeField("iso3")
]
 });
 this.loadData();
 }
 loadData() {
 // retrieve the ID from the 'id' parameter
var idParam = this.activatedRoute.snapshot.paramMap.get('id');
 this.id = idParam ? +idParam : 0;
 if (this.id) {
 // EDIT MODE
// fetch the country from the server
var url = environment.baseUrl + "api/Countries/" + this.id;
 this.http.get<Country>(url).subscribe({
 next: (result) => {
 this.country = result;
 this.title = "Edit - " + this.country.name;
 // update the form with the country value
this.form.patchValue(this.country);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW MODE
this.title = "Create a new Country";
 }
 }
 onSubmit() {
 var country = (this.id) ? this.country : <Country>{};
 if (country) {
 country.name = this.form.controls['name'].value;
 country.iso2 = this.form.controls['iso2'].value;
 country.iso3 = this.form.controls['iso3'].value;
 if (this.id) {
 // EDIT mode
var url = environment.baseUrl + 'api/Countries/' + country.id;
 this.http
 .put<Country>(url, country)
 .subscribe({
 next: (result) => {
 console.log("Country " + country!.id + " has been updated.");
 // go back to countries view
this.router.navigate(['/countries']);
 },
 error: (error) => console.error(error)
 });
 }
 else {
 // ADD NEW mode
var url = environment.baseUrl + 'api/Countries';
 this.http
 .post<Country>(url, country)
 .subscribe({
 next: (result) => {
 console.log("Country " + result.id + " has been created.");
 // go back to countries view
this.router.navigate(['/countries']);
 },
 error: (error) => console.error(error)
 });
 }
 }
 }
 isDupeField(fieldName: string): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{
 [key: string]: any
 } | null> => {
 var params = new HttpParams()
 .set("countryId", (this.id) ? this.id.toString() : "0")
 .set("fieldName", fieldName)
 .set("fieldValue", control.value);
 var url = environment.baseUrl + 'api/Countries/IsDupeField';
 return this.http.post<boolean>(url, null, { params })
 .pipe(map(result => {
 return (result ? { isDupeField: true } : null);
 }));
 }
 }
}

As we can see, the component’s source code is quite similar to CityEditComponent, except for some limited yet important differences that we’re going to summarize here:

	The FormBuilder service has been added to the @angular/forms import list, replacing the FormControl reference that we don’t need anymore. As a matter of fact, we’re still creating form controls, but we’ll do that via the FormBuilder instead of manually instantiating them, which means we don’t need to explicitly reference them.

	The form variable is now instantiated using a different approach that strongly relies upon the new FormBuilder service.

	The various FormControl elements that get instantiated within the form feature are some validators that we have never seen before.

The FormBuilder service gives us three factory methods so that we can create our form structure: control(), group(), and array(). Each generates an instance of the corresponding FormControl, FormGroup, and FormArray class. In our example, we’re creating a single containing group with three controls, each with its own set of validators.

As for the validators, we can see two new entries:

	Validators.pattern: A built-in validator that requires the control’s value to match a given regular expression (regex) pattern. Since our ISO2 and ISO3 country fields are defined using a strict format, we’re going to use them to ensure that the user will input the correct values.

	isDupeField: This is a custom async validator that we implemented here for the first time. It’s similar to the isDupeCity validator that we created for our CityEditComponent but with some key differences, which we’re going to summarize in the next section.

Those who don’t know much about regular expressions (or regex for short) and want to use the Validators.pattern to its full extent should definitely visit the following websites:

https://regexr.com/

https://regex101.com/

Both of them contain a good number of resources regarding regex and a great online builder and tester with full JavaScript and PHP/PCRE regex support.

The pattern validator is quite self-explanatory, while the isDupeField custom validator deserves some additional explanation.

The isDupeField validator

As we can see by looking at the preceding component’s source code, the isDupeField custom validator is not assigned to the main FormGroup like isDupeCity is; instead, it’s set three times: once for each FormControl it needs to check. The reason for this is simple: compared to isDupeCity, which was meant to check for duplicate cities using a four-field dupe key, isDupeField needs to individually check each field it’s assigned to. We need to do that because we don’t want more than one country having the same name, the same iso2, or the same iso3.

This also explains why we need to specify a fieldName and a corresponding fieldValue instead of passing a Country interface: the isDupeField server-side API will have to perform a different check for each fieldName we’re going to pass, instead of relying on a single general-purpose check as the isDupeCity API does.

As for the countryId parameter, it’s required to prevent the dupe check from raising a validation error when editing an existing country. In the isDupeCity validator, it was passed as a property of the city class. Now, we need to explicitly add it to the POST parameters.

The IsDupeField server-side API

Now, we need to implement our custom validator’s back-end API, just like we did with IsDupeCity() early on. Switch to the WorldCities.Server project, then open the /Controllers/CountriesController.cs file and add the following method at the bottom of the file:

// ...existing code...
private bool CountryExists(int id)
{
 return _context.Countries.Any(e => e.Id == id);
}
[HttpPost]
[Route("IsDupeField")]
public bool IsDupeField(
 int countryId,
 string fieldName,
 string fieldValue)
{
 switch (fieldName)
 {
 case "name":
 return _context.Countries.Any(
 c => c.Name == fieldValue && c.Id != countryId);
 case "iso2":
 return _context.Countries.Any(
 c => c.ISO2 == fieldValue && c.Id != countryId);
 case "iso3":
 return _context.Countries.Any(
 c => c.ISO3 == fieldValue && c.Id != countryId);
 default:
 return false;
 }
}

Although the code resembles the IsDupeCity server-side API, we’re switching the fieldName parameter and performing a different dupe check depending on its value; such logic is implemented with a standard switch/case conditional block with strongly typed LINQ lambda expressions for each field we can reasonably expect. Again, we’re also checking that the countryId is different so that our users can edit an existing country.

If the fieldName that’s received from the client differs from the three supported values, our API will respond with false.

An alternative approach using Linq.Dynamic

Before moving on, we may want to ask ourselves why we’ve implemented the IsDupeField API using strongly typed lambda expressions inside a switch...case block, instead of relying on the System.Linq.Dynamic.Core library.

As a matter of fact, we did that for the sake of simplicity, since the dynamic approach would require us to have to write additional code to protect our method from SQL injection attacks. However, since we already implemented such a task in the IsValidProperty() method of our ApiResult class, maybe we can use it and shrink the preceding code down: after all, we’ve made it public and static so that we can use it anywhere.

Here’s an alternative implementation using the aforementioned tools (the old code is commented, while the new code is highlighted):

using System.Linq.Dynamic.Core;
// ...existing code...
[HttpPost]
[Route("IsDupeField")]
public bool IsDupeField(
 int countryId,
 string fieldName,
 string fieldValue)
{
 // Default approach (using strongly-typed LAMBA expressions)
//switch (fieldName)
//{
// case "name":
// return _context.Countries.Any(c => c.Name == fieldValue);
// case "iso2":
// return _context.Countries.Any(c => c.ISO2 == fieldValue);
// case "iso3":
// return _context.Countries.Any(c => c.ISO3 == fieldValue);
// default:
// return false;
//}
 // Alternative approach (using System.Linq.Dynamic.Core)
 return (ApiResult<Country>.IsValidProperty(fieldName, true))
 ? _context.Countries.Any(
 string.Format("{0} == @0 && Id != @1", fieldName),
 fieldValue,
 countryId)
 : false;
}

Not bad, right?

The alternative dynamic approach definitely looks more DRY and versatile than the default one, all while retaining the same security level against SQL injection attacks. The only downside may be due to the additional overhead brought by the System.Linq.Dynamics.Core library, which will likely have some minor performance impact. Although this shouldn’t be an issue in most scenarios, whenever we want our APIs to respond to HTTP requests as quickly as possible, we should arguably favor the default approach.

country-edit.component.html

It’s time to implement the template of our CountryEditComponent.

Open the /src/app/countries/country-edit.component.html file and fill it with the following code. Once again, pay attention to the highlighted parts, which are rather different from the template of CityEditComponent; other minor differences, such as country instead of city, are not highlighted since they’re more than expected:

<div class="country-edit">
<h1>{{title}}</h1>
<p *ngIf="id && !country">Loading...</p>
<form [formGroup]="form" (ngSubmit)="onSubmit()">
<!-- Name -->
<mat-form-field>
<mat-label>Name:</mat-label>
<input matInput formControlName="name" required
 placeholder="Type a name">
<mat-error *ngIf="form.controls['name'].errors?.['required']">
 Name is required.
 </mat-error>
<mat-error *ngIf="form.controls['name'].errors?.['isDupeField']">
 Name already exists: please choose another.
 </mat-error>
</mat-form-field>
<!-- ISO2 -->
<mat-form-field>
<mat-label>
 ISO 3166-1 ALPHA-2 Country code (2 letters)
 </mat-label>
<input matInput formControlName="iso2" required
 placeholder="Insert the ISO2 Country code">
<mat-error *ngIf="form.controls['iso2'].errors?.['required']">
 ISO 3166-1 ALPHA-2 Country code is required.
 </mat-error>
 <mat-error *ngIf="form.controls['iso2'].errors?.['pattern']">
 ISO 3166-1 ALPHA-2 Country code requires 2 letters.
 </mat-error>
 <mat-error *ngIf="form.controls['iso2'].errors?.['isDupeField']">
 This code already exists: please choose another.
 </mat-error>
</mat-form-field>
<!-- ISO3 -->
<mat-form-field>
<mat-label>
 ISO 3166-1 ALPHA-3 Country code (3 letters)
 </mat-label>
<input matInput formControlName="iso3" required
 placeholder="Insert the ISO3 Country code">
<mat-error *ngIf="form.controls['iso3'].errors?.['required']">
 ISO 3166-1 ALPHA-3 Country code is required.
 </mat-error>
 <mat-error *ngIf="form.controls['iso3'].errors?.['pattern']">
 ISO 3166-1 ALPHA-3 Country code requires 3 letters.
 </mat-error>
 <mat-error *ngIf="form.controls['iso3'].errors?.['isDupeField']">
 This code already exists: please choose another.
 </mat-error>
</mat-form-field>
<div>
<button mat-flat-button color="primary"
 type="submit" [disabled]="!form.valid">
 {{ this.id ? "Save" : "Create" }}
 </button>
<button mat-flat-button color="secondary"
 [routerLink]="['/countries']">
 Cancel
 </button>
</div>
</form>
</div>

As we can see, the most relevant differences are all related to the HTML code that’s required to show the new pattern and isDupeField validators. Now, we have as many as three different validators for our fields, which is pretty awesome: our users won’t be given a chance to input wrong values!

country-edit.component.scss

Last but not least, let’s apply the UI styling.

Open the /src/app/countries/country-edit.component.scss file and fill it with the following code:

mat-form-field {
 display: block;
 margin: 10px 0;
}

No surprises here; the preceding stylesheet code is identical to the one we used for CityEditComponent.

Our component is finally done! Now we just need to reference it in the AppRoutingModule file to implement the client-side navigation routes.

AppRoutingModule

By now, we should know what to do. Open the app-routing.module.ts file and add the following routing rules (new lines are highlighted):

// ...existing code...
import { CountryEditComponent } from './countries/country-edit.component';
// ...existing code...
{ path: 'countries', component: CountriesComponent },
{ path: 'country/:id', component: CountryEditComponent },
{ path: 'country', component: CountryEditComponent }
// ...existing code...

Now that we’ve laid down the two routes so that we can edit and add countries, we just need to implement them in the CountriesComponent template file by adding the route link in the Name column and the Add new Country button, just like we did with the cities.

CountriesComponent

Open the /src/app/countries/countries.component.html file and add the following code (the new and updated lines are highlighted):

<!--existing code... -->
<p *ngIf="!countries">Loading…</p>
<button mat-flat-button color="primary"
 class="btn-add" [routerLink]="['/country']">
 Add a new Country
</button>
<!--existing code... -->
<!--Name Column -->
<ng-container matColumnDef="name">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>
<td mat-cell *matCellDef="let country">
 <a [routerLink]="['/country', country.id]">{{country.name}}
</td>
</ng-container>
<!--existing code... -->

We’re almost done; we just need to add the .add-btn CSS class to the countries.component.scss file, so that the Add new Country button will be aligned to the right…

.btn-add {
 float: right;
}

... And that’s it! Now, we’re ready to test everything out.

Testing the CountryEditComponent

Now, it’s time to press F5 and admire the result of our hard work.

Once the app has been launched in debug mode, navigate to the Countries view to see the Add a new Country button and the edit links on the various country names, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.14: Countries list with the Add a new Country button and edit links

Now, let’s search for Denmark using our filter and click on the name to enter the CountryEditComponent in edit mode. If everything works fine, the name, iso2, and iso3 fields should all be green, meaning that our isDupeField custom validator(s) are not raising errors:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.15: CountryEditComponent for Denmark

Now, let’s try to change the country name to Japan and the ISO 3166-1 ALPHA-2 Country code to IT and see what happens:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.16: Duplicate error messages when trying to edit Denmark

This is a great result: this means that our custom validators are doing their job, positively raising some dupe errors since these values have been reserved for other existing countries (Japan and Italy, respectively).

Now, let’s hit the Cancel button and go back to the Countries view. From there, click the Add a new Country button and try to insert a country with the following values:

	Name: New Japan

	ISO 3166-1 ALPHA-2 Country code: JP

	ISO 3166-1 ALPHA-3 Country code: NJ2

If everything is working fine, we should raise two more validation errors, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.17: Duplicate errors while trying to add a new country

The former error is raised by our isDupeField custom validator and is due to the fact that the ALPHA-2 country code already belongs to an existing country (Japan); the latter one is raised by the built-in Validators.pattern, which we configured with a regular expression, /^[a-zA-Z]{3}$/, that doesn’t allow digits.

Let’s fix these errors by typing in the following values:

	Name: New Japan

	ISO 3166-1 ALPHA-2 Country code: NJ

	ISO 3166-1 ALPHA-3 Country code: NJP

Once you’re done, click Create to create the new country. If everything is working as expected, the view should redirect us to the main Countries view.

From there, we can type New Japan into our text filter to ensure that our brand-new country is actually there:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 7.18: Countries list after filtering for New Japan

Here it is! This means that we’re finally done with CountryEditComponent and ready to move on to new, exciting tasks.

Improving the filter behavior

The real-time filter that we’ve implemented in our Cities and Countries listing views works well and should be very helpful for our users; however, every time the filter text changes (that is, upon each keystroke), Angular fires an HTTP request to the back-end to retrieve the updated list of results. Such behavior is intrinsically resource-intensive and can easily become a huge performance issue, especially if we’re dealing with large tables and/or non-indexed columns.

Are there ways to improve this approach without compromising the results obtained in terms of user experience? As a matter of fact, the answer is yes, as long as we’re willing to implement a couple of widely used techniques specifically meant to improve the performance of code that gets executed repeatedly within a short period of time.

Throttling and debouncing

If we think about it, our everyday life is full of situations where we are forced to do something while our attention is captured by something else: social networks such as X (previously Twitter) and instant messaging apps such as WhatsApp are perfect examples of that, since they flood us with notifications regardless of what we’re doing.

What do we usually do in these cases? Let’s consider the following alternatives:

	Respond to all notifications in real time, which would be great for the requesting party but would compromise what we’re doing

	Take no immediate action and check our messages only once every, let’s say, five minutes

	Take no immediate action and check our messages only when no new notifications have come in for the last five minutes

The first approach is what our app is currently doing; the second is called throttling, while the third is called debouncing. Let’s try to better understand what these terms actually mean.

Definitions

In software development, throttling is used to define a behavior that enforces a maximum number of times a function can be called over time. To put it in other words, it’s a way to say, “Let’s execute this function at most once every N milliseconds.” No matter how many times the user fires the event, that function will be executed only once in a given time interval.

The term debouncing is used to define a technique that prevents a function from being called until a certain amount of time has passed without it being called: in other words, it’s a way to say, “Let’s execute this function only if N milliseconds have passed without it being called.” The concept has some similarities with the throttling technique, with an important difference: no matter how many times the user fires the event, the attached function will be executed only after the specified time once the user stops firing the event.

In a nutshell, we can say that the main difference between throttling and debouncing is that throttling executes the function at a regular interval, while debouncing executes the function only after a cooling period.

Why would we want to throttle or debounce our code?

Let’s cut it short – in information technology, throttling and debouncing are mostly useful for two main reasons: optimization and performance. They are widely used in JavaScript because they can be very helpful to efficiently handle some resource-intensive DOM-related tasks, such as scrolling and resizing HTML components, as well as retrieving data from the server.

In our given scenario, we can think of them as two ways to optimize event handling, thus lifting some work from our server (controller and database): more specifically, we want to find a way to reduce the HTTP requests that Angular currently makes to our server upon each keystroke.

Shall we do that using throttling or debouncing?

If we think about how the filter function works in terms of user experience, we can easily determine the correct answer. Since we’re talking about a textbox that can be used to filter the listing results to those that contain one or more characters typed by the user, we can reasonably conclude that we could defer the HTTP request until the user stops typing, as long as we process it right after it does. Such behavior won’t hinder the user experience granted by the current filter while preventing a good number of unnecessary HTTP calls.

In other words, we need to debounce our calls to the back-end: let’s see how we can do that.

Debouncing calls to the back-end

An easy approach to debouncing with Angular is given by RxJS, the Reactive Extensions for JavaScript library, which allows us to use Observables, which we introduced in Chapter 4, Front-End and Back-End Interactions. Since we’re using an Observable to perform the HTTP call, we’re halfway there: we just need to make use of the handy debounceTime RxJS operator, which will emit a value from the source Observable only after a particular time span has passed without another source emission. While we are there, we can also take the chance to add the distinctUntilChanged operator as well, which emits a value only if it’s different from the last one inserted by the user: this will prevent any HTTP call identical to the previous one, which could happen – for example – if the user writes a sentence, then adds a letter and immediately deletes it.

Updating the CitiesComponent

To implement such logic, open the /src/app/cities/cities.component.ts file and perform the following changes:

// [...]
import { MatSort } from '@angular/material/sort';
import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';
// ...existing code...
 @ViewChild(MatPaginator) paginator!: MatPaginator;
 @ViewChild(MatSort) sort!: MatSort;
 filterTextChanged: Subject<string> = new Subject<string>();
// ...existing code...
 ngOnInit() {
 this.loadData();
 }
 // debounce filter text changes
 onFilterTextChanged(filterText: string) {
 if (!this.filterTextChanged.observed) {
 this.filterTextChanged
 .pipe(debounceTime(1000), distinctUntilChanged())
 .subscribe(query => {
 this.loadData(query);
 });
 }
 this.filterTextChanged.next(filterText);
 }
// ...existing code...

As we can see, we haven’t touched the loadData method at all, so that we won’t mess up anything that we’ve done up to now; we added a new onFilterTextChanged method instead, which will be called by the filter’s input and will transparently handle the debouncing task.

If we take a closer look at the onFilterTextChanged method, we can see that it works with a new filterTextChanged variable that we’ve also added to our component class: this variable hosts a Subject, a special type of Observable that allows values to be multi-casted to many Observers.

In a nutshell, here’s what this new method does every time it gets called by the filter’s input method:

	Checks the filterTextChanged Subject to see if there are Observers listening; if there are no Observers yet, it pipes the debounceTime and distinctUntilChanged operators and adds a new subscription for the loadData method

	Feeds a new value to the Subject, which will be multi-casted to the Observers registered to listen to it

For space reasons, we won’t say any more about Subjects here, but the topic can be further studied by taking a look at the following page from the RxJS official guide: https://rxjs-dev.firebaseapp.com/guide/subject#.

Although we’ve already explained what these operators do, let’s quickly recap their role:

	debounceTime will emit the value after 1,000 milliseconds of no source input coming from the user

	distinctUntilChanged will emit the value only if it’s different from the last inserted one

Now that we’ve implemented the debouncing logic in the Angular class, we just need to update the component’s template file to make the filter’s input call the new onFilterTextChanged method instead of loadData.

Open the /src/app/cities/cities.component.html file and apply the following changes:

<mat-form-field [hidden]="!cities">
<input matInput #filter (keyup)="onFilterTextChanged(filter.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

That’s it!

Updating the CountriesComponent

Before going further, let’s update the CountriesComponent in the exact same way. This can be done by opening the following files:

	/src/app/countries/countries.component.ts

	/src/app/countries/countries.component.html

and applying the same changes that we did on the CitiesComponent files.

For space reasons, we won’t demonstrate how to perform these changes here; however, the updated CountriesComponent source code can be found in the GitHub repository.

Delaying these HTTP requests in these two components will shut out most unnecessary HTTP requests coming from our Angular app, thus preventing our database from being called over and over rapidly.

What about throttling?

As a matter of fact, our worldcities.client Angular app doesn’t have tasks or features that could benefit from throttling. However, it’s worth noting that such a technique can be implemented using the same approach that we’ve used for debouncing, replacing the debounceTime RxJS operator with throttleTime.

For additional info regarding these RxJS operators, refer to the following pages from the RxJS official guide:

https://rxjs-dev.firebaseapp.com/api/operators/debounceTime

https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

Summary

This chapter was entirely dedicated to Angular forms. We started by clarifying what a form actually is and enumerated the features it needs to have in order to fulfill its duties, grouping them into two main requirements: providing a good user experience and properly handling the submitted data.

Then, we turned our focus to the Angular framework and to the two form design models it offers: the template-driven approach, mostly inherited from AngularJS, and the model-driven or Reactive alternative. We took some valuable time to analyze the pros and cons provided by each of them and then we performed a detailed comparison of the underlying logic and workflow. At the end of the day, we chose to embrace the Reactive way of doing things, as it gives the developer more control and enforces a more consistent separation of duties between the data model and the form model.

Right after that, we went from theory to practice by creating a CityEditComponent and used it to implement a fully featured Reactive Form; we also added the client-side and server-side data validation logic by making good use of the Angular template syntax in conjunction with the classes and directives granted by Angular’s ReactiveFormsModule. Once done, we did the same with CountryEditComponent, where we took the chance to try and use a FormBuilder instead of the FormGroup/FormControl instances we used previously.

We then performed a surface test with our browser to check all the built-in and custom validators, ensuring that they worked properly on the front-end as well as on their back-end APIs.

Last but not least, we spent some valuable time analyzing some performance issues of our filter feature and found a way to mitigate them by implementing a debouncing technique: this allowed us to learn how to use some very useful features from the RxJS library: Subject, debounceTime, and distinctUntilChanged.

In the next chapter, we’re going to refine what we’ve done so far by refactoring some rough aspects of our Angular components in a better way. By doing so, we’ll learn how to post-process the data, add decent error handling, implement some retry logic to deal with connection issues, debug our form using the Visual Studio client-side debugger, and – most importantly – perform some unit tests.

Suggested topics

For further information, we recommend the following topics: template-driven forms, model-driven forms, Reactive Forms, JSON, RFC 7578, RFC 1341, URL living standard, HTML living standard, data validation, Angular validators, custom validators, asynchronous validators, regular expressions (regex), Angular pipes, FormBuilder, RxJS, Observables, safe navigation operator (Elvis Operator), RxJS operators, Subject, debounceTime, and throttleTime.

References

	The application/www-form-urlencoded format draft-hoehrmann-urlencoded-01: https://tools.ietf.org/html/draft-hoehrmann-urlencoded-01

	RFC 7578 – Returning Values from Forms: multipart/form-data: https://tools.ietf.org/html/rfc7578

	RFC 1341, section 7.2 – The Multipart Content-Type: https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

	URL Living Standard – URL-encoded Form Data: https://url.spec.whatwg.org/#concept-urlencoded

	HTML Living Standard, section 4.10.21.7 – Multipart form data: https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#multipart-form-data

	HTML Living Standard, section 4.10.21.8 – Plain Text Form Data: https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#plain-text-form-data

	Angular: Template-driven forms: https://angular.io/guide/forms#template-driven-forms

	Angular: Reactive forms: https://angular.io/guide/reactive-forms

	Angular: Form validation: https://angular.io/guide/form-validation

	Angular: Validators: https://angular.io/api/forms/Validators

	Angular: Custom Async Validators: https://angular.io/guide/form-validation#implementing-a-custom-async-validator

	RegExr: Learn, Build, and Test RegEx: https://regexr.com/

	regex101: Build, test, and debug regex: https://regex101.com/

	Angular Material input error messages: https://material.angular.io/components/input/overview#changing-when-error-messages-are-shown

	TypeScript 3.7 Release Notes: https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html

	Safe navigation operator: https://en.wikipedia.org/wiki/Safe_navigation_operator

	RxJS Subject: https://rxjs-dev.firebaseapp.com/guide/subject#

	RxJS debounceTime operator: https://rxjs-dev.firebaseapp.com/api/operators/debounceTime

	RxJS throttleTime operator: https://rxjs-dev.firebaseapp.com/api/operators/throttleTime

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

8

Code Tweaks and Data Services

Our WorldCities web application is now a full-fledged project providing a number of interesting features: we can retrieve a list of all the cities and countries available in our DBMS and browse them through paged tables that we can order and filter; thanks to our master/detail UI pattern, we can also access a detailed view of each city and country, where we can read and/or edit the most relevant fields for both of them; and last, but not least, we can create new cities and countries thanks to the “add new” capabilities of the aforementioned detail view.

Now, before going further, it could be wise to spend some time consolidating what we’ve learned so far and improve the basic patterns we have followed. After all, refining our front-end and back-end, and the overall logic they’re currently relying upon, will definitely make them more versatile and fail-proof for what is yet to come.

This chapter is entirely dedicated to those tasks. Here’s what we’re going to do in the various sections that we’re about to face:

	Optimizations and tweaks, where we’ll implement some high-level source code and UI refinements

	Bug fixes and improvements, where we’ll leverage the preceding tweaks to enhance our app’s consistency and add some new features

	Data services, where we’ll learn how to migrate from our current simplified implementation – where we used the raw HttpClient service directly inside the components – to a more versatile approach that allows us to add features such as post-processing, error handling, retry logic, and more

All these changes will be worth their time because they’ll strengthen our app’s source code and prepare it for the debugging and testing phase that will feature in the next chapter.

All right, then... let’s get to work.

Technical requirements

In this chapter, we’re going to need all the technical requirements that were listed in all the previous chapters, with no additional resources, libraries, or packages.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_08.

Optimizations and tweaks

In computer programming, the term code bloat is commonly used to describe an unnecessarily long, slow, or wasteful amount of source code. Such code is hardly desirable because it inevitably makes our app more vulnerable to human error, regression bugs, logical inconsistencies, wasted resources, and so on. It also makes debugging and testing a lot more difficult and stressful; for all of the aforementioned reasons, we should try to prevent that from happening as much as we can.

The most effective way to counter code bloat is to adopt and adhere to the Don’t Repeat Yourself (DRY) principle, which is something that any developer should try to follow whenever they can. As already stated in Chapter 6, Fetching and Displaying Data, DRY is a widely achieved principle of software development; whenever we violate it, we fall into a WET approach, which could mean Write Everything Twice, We Enjoy Typing, or Waste Everyone’s Time, depending on what we like the most.

In this section, we’ll try to address some rather WET parts of our current code and see how we can make them more DRY; doing that will greatly help our debugging and testing sessions later on.

Template improvements

If we take another look at our CityEditComponent and CountryEditComponent template files, we can definitely see a certain amount of code bloat. More specifically, we have a lot of mat-error elements, sometimes as many as three of them (!) for a single input – such as those for ISO 3166-1 ALPHA-2 and ALPHA-3 country codes. Furthermore, most of these elements are redundant, meaning that they check the same error status for different inputs and – when triggered – return very similar error text.

This approach can have some advantages, especially in small forms: for example, it provides a good level of readability, since those mat-error elements allow us to immediately understand what happens for each specific error. However, when dealing with big forms – or an app with a lot of forms – this approach will eventually produce a considerable amount of source code, which could become hard to maintain. That’s even more true for multi-language apps, where the effort required to handle literal strings grows exponentially with the number of strings. What do we do in those cases? Is there a “better” or “smarter” way to address that?

As a matter of fact, there is: whenever we feel like we’re writing too much code or repeating a complex task too many times, we can create one or more helper methods within our component class in order to centralize the underlying logic. These helper methods will act as shortcuts that we can call instead of repeating the whole validation logic. Let’s try to add them to our form-related Angular components.

Form validation shortcuts

Let’s see how to add form validation shortcuts in the CountryEditComponent class, which ended up with a lot of redundant mat-error elements, since we had to check a lot of possible error statuses for the two ISO 3166-1 country codes.

Open the /src/app/countries/country-edit.component.ts file and add the following code right after the class declaration (new lines are highlighted):

// ... existing code...
export class CountryEditComponent implements OnInit {
getErrors(
 control: AbstractControl,
 displayName: string,
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} is required.`);
 break;
 case 'pattern':
 errors.push(`${displayName} contains invalid characters.`);
 break;
 case 'isDupeField':
 errors.push(`${displayName} already exists: please choose another.`);
 break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
}
// ... existing code...

As we can see, we added a simple getErrors() function that returns an array of error messages corresponding to all the active errors for any given control, or an empty array if there are none; these errors will also be prepended with the displayName parameter, which can be set by the caller to ensure that each control will have its own personalized set of error messages.

The switch statement we’ve set up contains all the validators that we currently use and might want to centralize, including the custom isDupeField validator that we implemented back in Chapter 7, Forms and Data Validation; we’ve even included a default case that returns a generic error, which will act as a catch-all for all the non-supported validators.

That’s precisely what we need: a centralized “shortcut” method that allows us to shrink the HTML template and – most importantly – remove some mat-error elements and redundant literal text.

Let’s see how we can refactor the existing ISO2 mat-form-field component in the country-edit.component.html file, which currently contains three mat-error elements, to take advantage of our new getErrors() function:

<!-- ...existing code... -->
<!-- ISO2 -->
<mat-form-field>
<mat-label>
 ISO 3166-1 ALPHA-2 Country code (2 letters)
 </mat-label>
<input matInput formControlName="iso2" required
 placeholder="Insert the ISO2 Country code">
 <mat-error *ngFor="let error of getErrors(form.get('iso2')!,
 'ISO 3166-1 ALPHA 2 Country code')">
 {{error}}
 </mat-error>
</mat-form-field>
<!-- ...existing code... -->

Much better, right? If we test the component now, we can see that its behavior is still the same, meaning that we have found a way to optimize the template without losing anything.

All we need to do now is to refactor all the other mat-form-field components in the CountryEditComponent template, and then switch to CityEditComponent and perform the same optimization trick there…

...Or not.

Wait a minute: didn’t we just say we would adhere to the DRY pattern as much as we can? How can we reasonably expect to do that if we’re about to copy and paste the same identical variables and methods throughout different classes? What if we had 10 form-based components to patch instead of just 2? That doesn’t sound anything but WET. Now that we’ve found a good way to shrink our template code, we also need to find a decent way to implement those form-related methods without spawning clones everywhere.

Luckily enough, TypeScript provides a great way to handle these kinds of scenarios: class inheritance. Let’s see how we can use these features to our advantage.

Class inheritance

Object-oriented programming (OOP) is usually defined by two core concepts: polymorphism and inheritance. Although both concepts are related, they are not the same. Here’s what they mean in a nutshell:

	Polymorphism allows us to assign multiple interfaces on the same entity (such as a variable, function, object, or type) and/or to assign the same interface on different entities. In other words, it allows entities to have more than one form.

	Inheritance allows us to extend an object or class by deriving it from another object (prototype-based inheritance) or class (class-based inheritance), while retaining a similar implementation; the extended class is commonly called a subclass or child class, while the inherited class takes the name of superclass or base class.

Let’s now focus on inheritance: in TypeScript, as in most class-based, object-oriented languages, a type created through inheritance (a child class) acquires all the properties and behaviors of the parent type, except constructors, destructors, overloaded operators, and private members of the base class.

If we think about it, it’s just what we need in our scenario: if we create a base class and implement all our form-related methods there, we’ll just need to extend our current component class without having to write it more than once.

Let’s see how we can pull this off.

Implementing a BaseFormComponent

We’ve used the ng generate CLI command several times to generate components, but this is the first time we’re going to use it to generate a class.

Open a command prompt, navigate to the worldcities.client app’s root folder, and then type the following command:

ng generate component BaseForm --skip-import --skip-tests --inline-template --inline-style --flat

These settings will prevent the Angular CLI from creating anything other than the TypeScript file, since the component that we want to generate doesn’t need HMTL, tests, and (S)CSS files and doesn’t need to be referenced in the AppModule. The preceding command will just create the /src/app/base-form.component.ts file and nothing else.

This also means that we could even manually create that file instead of using the Angular CLI, should we prefer to do that.

Once the file has been created, open it and replace the existing content with the following code:

import { Component } from '@angular/core';
import { FormGroup, AbstractControl } from '@angular/forms';
@Component({
 template: ''
})
export abstract class BaseFormComponent {
 // the form model
 form!: FormGroup;
 getErrors(
 control: AbstractControl,
 displayName: string,
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} is required.`);
 break;
 case 'pattern':
 errors.push(`${displayName} contains invalid characters.`);
 break;
 case 'isDupeField':
 errors.push(`${displayName} already exists: please choose another.`);
 break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
 }
 constructor() { }
}

As we can see, there’s nothing much there, only the getError() method that we saw a short while ago and the form variable itself. These two members can be moved (and centralized) here instead of declaring them in any component that needs to deal with a form. Also, we’ve purposely added the abstract modifier, since we don’t plan to ever instantiate this class; we only want other classes to derive from it.

From now on, we’ll assume that you understand the logic behind our code samples; consequently, we’re going to present them in a more succinct way to avoid wasting more pages by saying the obvious: please bear with it! If you need to see the full file, you can always find it in the book’s online source code repository on GitHub.

Now, we have a BaseFormComponent superclass that we can use to extend our subclasses; this means that we can update our current CityEditComponent and CountryEditComponent TypeScript files in order to extend their classes accordingly.

Extending CountryEditComponent

Open the /src/app/countries/country-edit.component.ts file, and then add the BaseFormComponent superclass at the end of the import list to the beginning of the file:

// ...existing code...
import { Country } from './country';
import { BaseFormComponent } from '../base-form.component';
// ...existing code...

Now, we need to implement the class inheritance using the extends modifier that is right after the class declaration:

// ...existing code...
export class CountryEditComponent
 extends BaseFormComponent implements OnInit {
// ...existing code...

That’s it: CountryEditComponent has now officially become a child class of the BaseFormComponent superclass.

Last but not least, we need to invoke the superclass constructor by calling super() inside the child class constructor’s implementation:

// ...existing code...
constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient) {
 super();
}
// ...existing code...

Before closing the TypeScript file, we should take the chance to remove the form variable, as well as the getErrors() method that we added earlier, since we have chosen to centralize them in the superclass.

Now, we can finally refactor the remaining mat-form-field components included in the CountryEditComponent's HTML template (name and iso3) using the getErrors() method defined in the base class, since our child class will transparently inherit it from its superclass.

For reasons of space, we won’t show how to refactor them; just keep what we did with the iso2 field early on for reference, changing the form.get and displayName parameters accordingly, or look at the GitHub code for this chapter for the fully updated source code.

Let’s now test what we did by hitting F5 and navigating through CountryEditComponent in both the edit and add new modes. If we did everything correctly, we should see no issues: everything should work just like it was, with a considerably smaller amount of source code.

When performing the test, be sure to check out all the validators, since what we did affects them the most; if the form validators are still working and show their errors when triggered, this means that the child class is able to inherit and use the required method for its base class, thereby proving that our brand-new superclass/subclass implementation is working fine.

As soon as we’re sure that everything is working fine, we can finally switch to the CityEditComponent and perform the same optimization tweak there.

Extending CityEditComponent

CityEditComponent can be extended just like we did with the TypeScript file for CountryEditComponent: adding the import statement for the BaseFormComponent class, using the extends keyword in the class declaration, and finally, adding the super() function within the constructor.

We’re not going to show the source code changes here because the required steps are almost identical to what we’ve just seen; if you’ve got any doubts, you can refer to this chapter’s source code on the GitHub repository.

Once this is done, we can remove the now-redundant form variable, just like we did with the CountryEditComponent class a minute ago.

Right after that, we can move to the CityEditComponent's HTML template and refactor all the mat-form-field components so that each one of them will have a single mat-error element using the getErrors() method.

At the end of the day, the only mat-error element that won’t be touched by our refactoring task will be the one triggered by the isDupeCity validator (the first one in order of appearance); as a matter of fact, centralizing this code doesn’t make much sense, since we will hardly ever (re)use it outside CityEditComponent.

That’s a perfect example of context-specific, non-reusable code that should just be kept there, as moving it to a superclass won’t make our code base any DRYer.

Now that we’ve optimized and refactored our components’ TypeScript and HTML code, let’s see what we can do to improve our app’s user experience.

Bug fixes and improvements

Let’s be honest: although we did a decent job of building up our master/detail UI pattern, and we assembled both views using the most relevant city and country fields, our app is still lacking something that our users might want to see. More specifically, the following detail is missing:

	Our City Detail view doesn’t validate the lat and lon input values properly: For example, we are allowed to type letters instead of numbers, which utterly crashes the form

	Our Countries view doesn’t show the number of cities that each country actually contains

	Our Cities view doesn’t show the country name for each listed city

Let’s do our best to fix all of these issues for good.

Validating lat and lon

Let’s start with the only real bug: a form that can be broken from the front-end is something that we should always avoid, even if those input types are implicitly checked in the back-end by our ASP.NET Core API.

Luckily enough, we already know how to fix those kinds of errors: we need to add some pattern-based validators to the lat and lon FormControls for CityEditComponent, just like we did with the iso2 and iso3 controls in the CountryEditComponent files. As we already know, we’ll need to update the CityEditComponent class file to implement the validators and define a validation pattern based on a regex.

city-edit.component.ts

Open the /src/app/cities/city-edit.component.ts file and update its content accordingly (new/updated lines are highlighted):

// ...existing code...
ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 lon: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());
 this.loadData();
 }
// ...existing code...

Here we go. As we already know from Chapter 7, Forms and Data Validation, this form’s implementation is still based on the manually instantiated FormGroup and FormControl objects, instead of using FormBuilder; however, there’s no reason to change it now, since we were still able to implement Validators.pattern without any issues.

Let’s spend a couple of minutes explaining the regex that we’ve used there:

	^ defines the start of the user input string that we need to check

	[-]? allows the presence of an optional minus sign, which is required when dealing with negative coordinates

	[0-9]+ expects one or more numbers between 0 and 9

	(\.[0-9]{1,4})? defines an optional group (thanks to ? at the end), which, if present, needs to respect the following rules:
	\.: requires the input to start with a single dot (the decimal sign). The dot is escaped because it’s a reserved regex character, which, when unescaped, means any character.

	[0-9]{1,4} expects one to four numbers between 0 and 9 (since we want between one and four decimal values after the dot).

	$ defines the end of the user input string

We could’ve used \d (any digit) as an alternative to [0-9], which is a slightly more succinct syntax; however, we have chosen to stick with [0-9] for better readability. Feel free to replace it with \d at any time.

Now that the pattern validators have been set in place, everything should automatically work; the corresponding error message will already be handled by our centralized getErrors() function, which already contains a proper message to return when the pattern validator raises an error.

However, the message is still rather generic:

{displayName} contains invalid characters.

This warning will make our users aware of the fact that they have typed something wrong, but it won’t tell them what characters they should use instead. What if we want to provide them with these additional details? We can hardly fix that by simply rewriting it, since this message is used for ISO2 and ISO3, which require only letters, as well as for LAT and LON, which only want numbers.

As a matter of fact, we only have two options:

	Avoid using the getErrors() centralized function for these fields, using some manual mat-error elements instead

	Improve the getErrors() centralized function so that it can (optionally) accept custom messages for one (or more) validator error types

Both approaches are viable. However, since we don’t want to discard the hard work we just did, we might as well go for the latter and improve our getErrors() method.

Luckily enough, that won’t be hard.

base-form.component.ts

Open the /src/app/base-form.component.ts file and change the existing code of the getErrors() function in the following way (updated code has been highlighted):

// ... existing code...
getErrors(
 control: AbstractControl,
 displayName: string,
 customMessages: { [key: string] : string } | null = null
): string[] {
 var errors: string[] = [];
 Object.keys(control.errors || {}).forEach((key) => {
 switch (key) {
 case 'required':
 errors.push(`${displayName} ${customMessages?.[key] ?? "is required."}`);
break;
 case 'pattern':
 errors.push(`${displayName} ${customMessages?.[key] ?? "contains invalid characters."}`);
break;
 case 'isDupeField':
 errors.push(`${displayName} ${customMessages?.[key] ?? "already exists: please choose another."}`);
break;
 default:
 errors.push(`${displayName} is invalid.`);
 break;
 }
 });
 return errors;
}
// ... existing code...

Here we go. As we can see, we’ve added an optional third parameter that we can now use to specify optional customMessages whenever we don’t want to use the generic message, and we can do that for any validator, not just for the pattern one.

It’s worth noting that, since the new customMessages parameter is optional, the getErrors() refactoring that we just did is backward-compatible, meaning that our existing code will still work – even if we don’t implement the new feature in any of our HTML templates.

Let’s see how we can implement the new feature, starting with the HTML template file of CityEditComponent.

city-edit.component.html

Open the /src/app/cities/city-edit.component.html file and change the existing implementation for the LAT and LON fields in the following way (updates have been highlighted):

<!-- ... existing code... -->
<!--Lat -->
<mat-form-field>
<mat-label>Latitude:</mat-label>
<input matInput formControlName="lat" required
 placeholder="Insert latitude">
 <mat-error *ngFor="let error of getErrors(form.get('lat')!,
 'Latitude',
 { 'pattern' : 'requires a positive or negative number with 0-4 decimal values' })">
 {{error}}
 </mat-error>
</mat-form-field>
<!--Lon -->
<mat-form-field>
<mat-label>Longitude:</mat-label>
<input matInput formControlName="lon" required
 placeholder="Insert longitude">
 <mat-error *ngFor="let error of getErrors(form.get('lon')!,
 'Longitude',
 { 'pattern' : 'requires a positive or negative number with 0-4 decimal values' })">
 {{error}}
 </mat-error>
</mat-form-field>
<!-- ... existing code... -->

Once this is done, do the same in the ISO2 and ISO3 fields of the /src/app/country-edit.component.html file, using a slightly different custom error message for ISO2:

{ 'pattern' : 'requires 2 letters' }

…And for ISO3:

{ 'pattern' : 'requires 3 letters' }

Let’s quickly test what we have done so far:

	Hit F5 to start the app in debug mode.

	Navigate through the Cities view.

	Filter the list to find Madrid.

	Type some invalid characters in the City latitude and City longitude input fields.

If the new feature has been implemented properly, we should see our error messages appear in all their glory and the Save button disabled, just like in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 8.1: Error messages when inputting invalid latitude and longitude

That’s it. Now, we can repeat the same test for CountryEditController to ensure that everything works there as well.

Now that we have fixed our first UI bug, let’s move on to the next task.

Adding the number of cities

What we need to do now is find a way to show an additional column in the Countries view that will allow users to instantly see the number of cities for each listed country. In order to do that, we definitely need to improve our back-end web API because we know that there’s currently no way to retrieve such info from the server.

Well, technically speaking, there is a way: we could use the GetCities() method of CitiesController with a huge pageSize parameter (99,999 or so) and a suitable filter to retrieve the whole set of cities for each country, and then count that collection and output the number.

However, doing this would indeed have a huge performance impact: not only would we have to retrieve all the cities for all the listed countries, but we would have to do that by issuing a separate HTTP request for each table row. That’s definitely not what we want if we are aiming to fulfill our task smartly and efficiently.

Here’s what we’re going to do instead:

	Find a smart and efficient way to count the number of cities for each listed country from the back-end

	Add a TotCities property to our Country Angular interface to store that same number on the client

Let’s do this.

CountriesController

Let’s start with the back-end part. Finding a smart and efficient way to count the number of cities for each country might be harder than it seems.

If we want to retrieve this value in a single shot, that is, without making additional API requests with Angular, there’s no doubt that we need to improve our current GetCountries() method of CountriesController, which is what we’re currently using to fetch the countries data.

Let’s open our /Controllers/CountriesController.cs file and see how ASP.NET Core and Entity Framework Core (EF Core) can help us to do what we want.

Here’s the GetCountries() method that we need to update:

public async Task<ActionResult<ApiResult<Country>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking(),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As we can see, there’s no trace of Cities. Although we know that our Country entity contains a Cities property that is meant to store a list of cities, we also remember (from Chapter 5, Data Model with Entity Framework Core) that this property is set to null, since we’ve never told EF Core to load the entity’s related data.

What if we do it now? We could be tempted to solve our issue by activating the Eager Loading ORM pattern (as discussed in Chapter 5, Data Model with Entity Framework Core) and filling our Cities property with actual values with which to feed our Angular client. Here’s how we could do that:

return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Include(c => c.Cities),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

However, it doesn’t take a genius to understand that such a workaround is hardly smart and efficient: a country entity might have lots of cities, sometimes hundreds of them. Do we really think it would be acceptable for our back-end to retrieve them all from the DBMS? Are we really going to flood our Angular front-end with those huge JSON arrays?

That’s definitely a no-go: we can do better than that, especially considering that, after all, we don’t need to retrieve all the city data for each country to fulfill our goal; we just need to know the number of cities.

Here’s how we can do that (updated code is highlighted):

[HttpGet]
public async Task<ActionResult<ApiResult<CountryDTO>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CountryDTO>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new CountryDTO()
 {
 Id = c.Id,
 Name = c.Name,
 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As we can see, we went for a totally different approach: the Include() method is out of the way; now, instead of eagerly loading the cities, we’re using the Select() method to project our resulting countries into a brand-new CountryDTO object that contains exactly the same properties as its source, plus a new TotCities variable. That way, we never get the cities; we only fetch their number.

It’s also worth noting that, since we switched out our Country entity class for a new CountryDTO class, we had to change the ApiResult generic type (from ApiResult<Country> to ApiResult<CountryDTO>) in the method’s return type.

Although this method is a bit more complex to pull off, it’s definitely a smart and efficient way to deal with our task; the only downside is that we need to create the CountryDTO class, which doesn’t exist yet.

Creating the CountryDTO class

From Solution Explorer, right-click on the /Data/ folder, and then add a new CountryDTO.cs file, open it, and fill it with the following content:

using System.Text.Json.Serialization;
namespace WorldCities.Server.Data
{
 public class CountryDTO
 {
 #region Properties
public int Id { get; set; }
 public string Name { get; set; } = null!;
 [JsonPropertyName("iso2")]
 public string ISO2 { get; set; } = null!;
 [JsonPropertyName("iso3")]
 public string ISO3 { get; set; } = null!;
 public int? TotCities { get; set; } = null!;
#endregion
 }
}

As we can see, the CountryDTO class contains most of the properties that are already provided by the Country entity class, without the Cities property – which we know we won’t need here – and a single, additional TotCities property. It’s a Data Transfer Object (DTO) class that only serves the purpose of feeding the client with (just) the data that we need to send.

As the name implies, a DTO is an object that carries data between processes. It’s a widely used concept when developing web services and microservices, where each HTTP call is an expensive operation that should always be cut to the bare minimum amount of required data.

The difference between DTOs and business objects and/or data access objects (such as DataSets, DataTables, DataRows, IQueryables, and Entities) is that a DTO should only store, serialize, and deserialize its own data.

It’s worth noting that we had to use the [JsonPropertyName] attributes here as well, since this class will be converted to JSON and the ISO2 and ISO3 properties won’t be converted in the way that we expect (as we saw in Chapter 6, Fetching and Displaying Data).

Angular front-end updates

It is time to switch to Angular and update the front-end accordingly, with the new changes applied to the back-end.

Follow these steps:

	Open the /src/app/countries/country.ts file to add the TotCities property to the Country interface in the following way:
 export interface Country {
 id: number;
 name: string;
 iso2: string;
 iso3: string;
 totCities: number;
}

	Right after that, open the /src/app/countries/countries.component.ts file and update the displayedColumns inner variable in the following way:
 // ...existing code...
public displayedColumns: string[] = ['id', 'name', 'iso2',
 'iso3', 'totCities'];
// ...existing code...

	Once done, open the /src/app/countries/countries.component.html file and add the TotCities column to Angular Material’s MatTable template in the following way (updated lines are highlighted):
 <!-- ...existing code... -->
<!-- ISO3 Column -->
<ng-container matColumnDef="iso3">
<th mat-header-cell *matHeaderCellDef mat-sort-header>ISO 3</th>
<td mat-cell *matCellDef="let country"> {{country.iso3}} </td>
</ng-container>
<!-- TotCities Column -->
<ng-container matColumnDef="totCities">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Tot. Cities</th>
 <td mat-cell *matCellDef="let country"> {{country.totCities}} </td>
</ng-container>
<!-- ...existing code... -->

	Now, we can finally hit F5 and see the results of our hard work. If we did everything correctly, we should be able to see the new Tot. Cities column, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 8.2: Countries table with the Tot. Cities column

Not bad at all: on top of that, the new column will also be sortable, meaning that we can order our countries by the number of listed cities in ascending or descending order using one or two clicks. Thanks to this new feature, we can learn that India and the United States are the countries with the most listed cities, while New Japan, the imaginary country that we created back in Chapter 7, Forms and Data Validation, still has zero.

While we’re here, let’s quickly fix this by going to the Cities view, using it to edit New Tokyo, and changing its country to New Japan.

After hitting the Save button to apply the changes, go to the Countries view and search for New Japan; that country should now show a single city in the Tot. Cities column, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 8.3: Filtering the Countries list for New Japan

Now that we’ve successfully shown the number of cities for each country in our Countries views – and bound New Japan together with New Tokyo in the process – we’re ready to move on to the third improvement.

However, before doing that, it would be useful to spend some time thinking about that DTO class that we had to create to fulfill our latest task.

DTO classes – should we really use them?

Now that we’ve seen how similar the Country entity class and the CountryDTO class actually are, we should be asking ourselves whether we could do something better than that. For example, we could inherit the Country entity class in the CountryDTO class, thus preventing the repetition of four properties; alternatively, we could entirely omit the CountryDTO class and just add the TotCities property to the Country entity instead.

Well, the answer is yes: we definitely could’ve used those workarounds, thereby obviating the need to create additional properties (or classes) and keeping the code undeniably more DRY. Why didn’t we do that?

The answer is rather simple: because both of the previous workarounds come with some relevant design and security flaws. Let’s do our best to address them and understand why they should be avoided whenever we can.

Separation of concerns

As a general rule of thumb, entity classes shouldn’t be burdened with properties that only exist to fulfill our client-side needs: whenever we need to create them, it’s wise to create an intermediate class, and then we separate the entity from the output object that we send to the client through the web APIs.

If you’ve worked with the ASP.NET MVC framework, you can relate this separation of concerns with the one that distinguishes the Model from the ViewModel in the Model-View-ViewModel (MVVM) presentation pattern. The scenario is basically the same: both are simple classes with attributes, but they have different audiences – the controller and the view. In our scenario, the view is our Angular client.

Now, it goes without saying that putting a TotCities property within an entity class would break that separation of concerns. There’s no TotCities column in our Countries database table; that property would only be there to send some additional data to the front-end.

On top of that, there would be no relations between the TotCities property and the already existing Cities property. If we do activate the EF Core Eager Loading pattern and fill the Cities property, the TotCities property will still be set to 0 (and vice versa); such misleading behavior would be a bad design choice and could even result in implementation errors for those who reasonably expect our entity classes to be a C# version of our data source.

Security considerations

Keeping entity classes separate from the client-side API output classes is often a good choice, even for security purposes. Now that we’re dealing with cities and countries, we don’t really suffer from it, but what if we were to handle a users table with personal and/or login data? If we think about it, there are a lot of possible scenarios where it wouldn’t be wise to just pull all the fields from the database and send them to the client in the JSON format. The default methods created by ASP.NET Core web API controllers when we add them from the Visual Studio interface – which is what we did in Chapter 5, Data Model with Entity Framework Core – don’t care about that, which is perfectly fine for code samples and even simple API-based projects. However, when things become more complex, it’s recommended to feed the client with limited data and in a controlled way.

That said, the most effective way to do that in .NET is to create and serve thinner, and more secure, DTO classes instead of the main entities; this is precisely what we did with the CountryDTO class in the preceding sections.

DTO classes versus anonymous types

The only acceptable alternative to the aforementioned DTO classes would be using the Select() method to project the main entity classes to anonymous types, serving them, instead.

Here’s another version of the previous GetCountries() method of CountriesController, using an anonymous type instead of the CountryDTO class (relevant changes are highlighted in the following code):

[HttpGet]
public async Task<ActionResult<ApiResult<object>>> GetCountries(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<object>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new
 {
 id = c.Id,
 name = c.Name,
 iso2 = c.ISO2,
 iso3 = c.ISO3,
 totCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As expected, we had to change our ApiResult generic type to object in the code, and also in the method’s return value; other than that, the preceding method seems to be fine, and it will definitely work just like the previous one.

For additional info on the anonymous types in C#, read the following document: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types.

What should we use, then? DTO classes or anonymous types?

Truth be told, both methods can be viable or not, depending on what we want to achieve. Anonymous types can often be a great option, especially when we need to quickly define JSON return types; however, there are some specific scenarios (such as unit testing, as we’re going to see later on) where we would prefer to deal with named types instead. The choice, as always, depends on the situation. In our current scenario, we’ll stick to the CountryDTO class, but we’re going to use anonymous types as well in the near future.

Securing entities

If we don’t want to use DTO classes, and anonymous types aren’t our cup of tea, there’s a third viable alternative that we might want to consider: securing our entities to prevent them from either giving incorrect instructions (such as creating wrong columns) to EF Core, or sending too much data through our RESTful APIs. If we manage to do that, we could just continue to use them and keep our web API code DRY.

We can achieve this result by decorating our entities’ properties with some specific data annotation attributes, such as the following:

	[NotMapped]: Prevents EF Core from creating a database column for that property

	[JsonIgnore]: Prevents a property from being serialized or deserialized

	[JsonPropertyName("name")]: Allows us to override the property name upon the JSON class’s serialization and deserialization, overriding the property name and any naming policy that is specified by the JsonNamingPolicy settings within the Program.cs file

The first attribute requires the Microsoft.EntityFrameworkCore namespace, while the others are part of the System.Text.Json.Serialization namespace.

We’ve already used the [JsonPropertyName] attribute, back in Chapter 6, Fetching and Displaying Data, where we had to specify a JSON property name for the ISO2 and ISO3 properties of the Country entity. Let’s now implement the other two as well.

[NotMapped] and [JsonIgnore] attributes

Open the /Data/Models/Country.cs file and update the existing code at the end of the file as follows (new/updated lines are highlighted):

#region Client-side properties
/// <summary>
/// The number of cities related to this country.
/// </summary>
[NotMapped]
public int TotCities
{
 get
 {
 return (Cities != null)
 ? Cities.Count
 : _TotCities;
 }
 set { _TotCities = value; }
}
private int _TotCities = 0;
#endregion
#region Navigation Properties
/// <summary>
/// A list containing all the cities related to this country.
/// </summary>
[JsonIgnore]
public ICollection<City>? Cities { get; set; } = null!;
#endregion

Here’s what we’ve done, in a nutshell:

	We have implemented the TotCities property in the entity code and decorated it with the [NotMapped] attribute so that EF Core won’t create its corresponding database column upon any migration and/or update task.

	While we were there, we took the chance to write some additional logic to link this property to the Cities property value (only when it’s not null). That way, our Entity won’t give misleading info, such as having 20+ cities in the Cities list property and a TotCities value of 0 at the same time.

	Last but not least, we added the [JsonIgnore] attribute to the Cities properties, thus preventing this info from being sent to the client (regardless of its value, even when null).
The [NotMapped] attribute, which we’ve never used before, helps mitigate the fact that we’re using an entity to store the properties that are required by the front-end and are, therefore, completely unrelated to the data model. In a nutshell, this attribute will tell EF Core that we do not want to create a database column for that property in the database.

Since we’ve created our database using EF Core’s code-first approach (see Chapter 5, Data Model with Entity Framework Core), and we’re using migrations to keep the database structure updated, we need to use that attribute each and every time we want to create an extra property on our entity classes. Whenever we forget to do that, we will definitely end up with unwanted database fields.

Using [JsonIgnore] to prevent the server from sending away the Cities property might seem like overkill: why would we even want to skip this value, since it’s currently null?

As a matter of fact, we’ve taken this decision as a precaution. Since we’re using entities directly, instead of relying upon DTO classes or anonymous types, we want to implement a restrictive approach with our data. Whenever we don’t need it, it’s wise to apply [JsonIgnore] to be sure we won’t be disclosing anything more than we need to; we could call it a data protection by default approach, which will hopefully help us to keep our web API under control and prevent it from sharing too much. After all, we can always remove that attribute whenever we need to.

It goes without saying that if we want to adopt the secured entities approach, we won’t need the CountryDTO.cs class anymore; therefore, we could revert the changes we recently made to the /Controllers/CountriesController.cs file’s GetCountries() method and put the Country reference back where it was:

return await ApiResult<Country>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Include(c => c.Cities)
 .Select(c => new Country()
 {
 Id = c.Id,
 Name = c.Name,
 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

However, before doing all that, we should spend a couple of minutes carefully evaluating the downsides of this securing entities approach.

The downsides of Swiss Army knives

The Securing Entities approach that we’ve just discussed might sound like a valid DTO alternative: it gives us the chance to write less code by “shrinking” all the logic within the entity class, making it a “jack of all trades.” But is it really as good as it looks?

Unfortunately, the answer is no. Although this method will work, it exposes our code base to several downsides that we should want to avoid.

Here’s a list of reasons that should lead us to avoid this method:

	Entity classes are meant to be object wrappers for database tables and views; directly using them to “configure” the JSON data output for our client-side app will break the Single Responsibility Principle (SRP), which states that every module, class, or function in a computer program should be responsible for a single part of that program’s functionality.

	Entities can contain a lot of data that the user and/or the client-side app should never be able to see, such as password hashes and personal data. Hiding these properties with [JsonIgnore] attributes will continuously force the developer to over-complicate their source code, which will eventually lead to a confusing code base.

	Entity classes will likely evolve over the course of time. For example, in the database table, they are meant to “wrap” changes; all developers working on the project will have to be aware of the fact that all new properties will be served by the API response, unless it’s not properly secured: a single missing [JsonIgnore] attribute could cause a dangerous leak.

	Last but not least, populating the TotCities field forced us to load the whole Cities property using the Include(c => c.Cities) method, which means transferring a lot of data from the DBMS to the back-end. This behavior, known as over-fetching, would have a significant performance impact and is widely considered a bad practice, and hence should be avoided at any cost.

All of this considered, this approach will eventually expose our database’s data to potential leaks due to an increased chance of developer mistakes, with the only real advantage being having fewer (useful) classes to deal with. Is it worth it?

Honestly, we don’t think so. We don’t need a few Swiss Army knives but, instead, several well-made and readable classes that can deal with their required tasks in the best (and most efficient) possible way.

A Swiss Army knife, sometimes also known as a kitchen sink, is a name that most developers give to excessively complex class interfaces explicitly designed to meet all possible needs; this approach often overcomplicates things instead of simplifying them, thus ending up in a futile attempt that negates most of their premises. For this very reason, it is almost always considered a bad practice.

Enough with theory crafting; it’s now time to conclude this topic.

Final thoughts

All three alternative implementations of the GetCountries() method that have been discussed in this section – CountryDTO, anonymous types, and Country – could be viable or not, depending on our specific scenario – as soon as we are aware of their pros and cons.

The DTO approach is what we’ll use for this book’s samples, while the other two have been included for reference only. You are encouraged to implement them at will until you find the most suitable approach for your programming style. That said, we strongly suggest taking our advice into consideration in order to make the most responsible choice.

That’s it. Now, we can finally move on to our third and final task.

Adding the country name

Now, we need to find a way to add a Country column to the Cities view so that our users will be able to see the country name for each listed city. Considering what we just did with the countries, this should be a rather straightforward task.

CitiesController

As always, let’s start with the web API. Follow these steps:

	Open the /Controllers/CitiesController.cs file and change the GetCities() method in the following way:
 // ...existing code...
[HttpGet]
public async Task<ActionResult<ApiResult<CityDTO>>> GetCities(
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CityDTO>.CreateAsync(
 _context.Cities.AsNoTracking()
 .Select(c => new CityDTO()
 {
 Id = c.Id,
 Name = c.Name,
 Lat = c.Lat,
 Lon = c.Lon,
 CountryId = c.Country!.Id,
 CountryName = c.Country!.Name
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}
// ...existing code...

As we can see, we’re sticking to the DTO-based pattern, meaning that we’ll have to create an additional CityDTO class.

	Use the Visual Studio Solution Explorer to add a new /Data/CityDTO.cs file and fill it with the following content:
 namespace WorldCities.Server.Data
{
 public class CityDTO
 {
 public int Id { get; set; }
 public string Name { get; set; } = null!;
 public decimal Lat { get; set; }
 public decimal Lon { get; set; }
 public int CountryId { get; set; }
 public string? CountryName { get; set; } = null!;
 }
}

That’s it. It goes without saying that, as we saw when working with the GetCountries() method of CountriesController early on, we could have implemented the web API by using anonymous types, or with a secured City entity, thus avoiding having to write the CityDTO class. However, we intentionally went for the DTO approach because of the security and performance considerations that we mentioned earlier.

Our web API is ready, so let’s move on to Angular.

Angular front-end updates

Let’s start with the /src/app/cities/city.ts interface, where we need to add the countryName property. Open that file and update its content as follows:

export interface City {
 id: number;
 name: string;
 lat: number;
 lon: number;
 countryId: number;
 countryName: string;
}

Once done, open the /src/app/cities/cities.component.ts class, where we need to add the countryName column definition:

// ...existing code...
public displayedColumns: string[] = ['id', 'name', 'lat', 'lon', 'countryName'];
// ...existing code...

Then, open the /src/app/cities/cities.component.html class and add a new <ng-container> accordingly:

<!-- ...existing code... -->
<!-- Lon Column -->
<ng-container matColumnDef="lon">
<th mat-header-cell *matHeaderCellDef mat-sort-header>Longitude</th>
<td mat-cell *matCellDef="let city">{{city.lon}}</td>
</ng-container>
<!-- CountryName Column -->
<ng-container matColumnDef="countryName">
 <th mat-header-cell *matHeaderCellDef mat-sort-header>Country</th>
 <td mat-cell *matCellDef="let city">
 <a [routerLink]="['/country', city.countryId]">{{city.countryName}}
 </td>
</ng-container>
<!-- ...existing code... -->

As we can see, we wrapped countryName within routerLink, pointing to the Edit Country view, so that our users will be able to use it as a navigation element.

Let’s test what we’ve done. Hit F5 to launch the app in debug mode, and then go to the Cities view. If we did everything properly, we should be welcomed by the following result:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 8.4: Cities list with an added Country column

Not bad, right?

From there, if we click on a country name, we should be brought to the Edit Country view. That’s awesome, right?

This brings us to the end of the minor code improvements and UI tweaks. In the next section, we’ll face a more demanding task, which will require a code refactoring of all the Angular components that we’ve created so far.

In software development, code refactoring is the process of restructuring existing source code without changing its external behavior. There could be multiple reasons to perform refactoring activities, such as improving the code’s readability, extensibility, or performance, making it more secure, or reducing its complexity.

For additional information regarding the high-level concept of code refactoring, check out the following URL: https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio

It’s now time to move on to a whole different topic, which will provide another major improvement to our Angular app.

Data services

The two web applications that we have created so far – HealthCheck and WorldCities – both feature front-end to back-end communication between their two projects over the HTTP(S) protocol, and in order to establish such communication, we made good use of the HttpClient class, a built-in Angular HTTP API client shipped with the @angular/common/http package that rests on the XMLHttpRequest interface.

Angular’s HttpClient class has a lot of benefits, including testability features, request and response typed objects, request and response interception, Observable APIs, and streamlined error handling. It can even be used without a data server thanks to the in-memory web API package, which emulates CRUD operations over a RESTful API. We briefly talked about that at the beginning of Chapter 5, Data Model with Entity Framework Core, when we asked ourselves if we really needed a data server or not (the answer was no; therefore, we didn’t use it).

For all of these reasons, making good use of the HttpClient class is arguably the most logical choice for anyone who wants to develop a front-end web app using the Angular framework; that said, there are multiple ways to implement it, depending on how much we want to take advantage of its valuable features.

In this section, after a brief look at the alternatives, we’ll see how to refactor our app to replace our current HttpClient implementation with a more versatile approach, based upon a dedicated HTTP data service.

XMLHttpRequest versus Fetch (versus HttpClient)

As we said a moment ago, Angular’s HttpClient class is based on XMLHttpRequest (XHR), an API consisting of an object that is provided by the browser through its JavaScript engine, which can be used to transfer data between a web browser and a web server asynchronously, without you having to reload the whole page. This technique, which recently celebrated its 20-year anniversary, was basically the only option until 2017, when the Fetch API finally came out.

The Fetch API is another interface for fetching resources that aims to be a modern alternative to the XMLHttpRequest API, providing a more powerful and flexible feature set; in the next section, we’ll quickly review both of them and discuss their pros and cons.

XMLHttpRequest

The concept behind this made its first appearance back in 1999, when Microsoft released the first version of Outlook Web Access (OWA) for Exchange Server 2000.

Here’s an excerpt of a very old post written by Alex Hopmann, one of the developers who created it:

“XMLHTTP actually began its life out of the Exchange 2000 team. I had joined Microsoft in November 1996 and moved to Redmond in the spring of 1997, working initially on some internet Standards stuff as related to the future of Outlook. I was specifically doing some work on meta-data for websites including an early proposal called ‘Web Collections’. During this time period, Thomas Reardon one day dragged me down the hall to introduce me to this guy named Jean Paoli that had just joined the company. Jean was working on this new thing called XML that some people suspected would be very big someday (for some unclear reason at the time).”

 – Alex Hopmann, The story of XMLHTTP.

The quote comes from a post on his blog, which unfortunately doesn’t seem to be online anymore: http://www.alexhopmann.com/xmlhttp.htm.

However, there’s an archived copy here: http://archive.is/7i5l.

Those people were right; a few months later, his team released an interface called IXMLHTTPRequest, which was implemented in the second version of the Microsoft XML Core Services (MSXML) library. That version was then shipped with Internet Explorer 5.0 in March 1999, which arguably was the first browser that was able to access that interface (through ActiveX).

Soon after that, the Mozilla project developed an interface called nsIXMLHttpRequest and implemented it in their Gecko layout engine. This was very similar to the Microsoft interface, but it also came with a wrapper that allowed it to be used through JavaScript, thanks to an object that was returned by the browser. The object, which was made accessible on Gecko v0.6 on December 6, 2000, was called XMLHttpRequest.

In the following years, the XMLHttpRequest object became a de facto standard in all major browsers, being implemented in Safari 1.2 (February 2004), Opera 8.0 (April 2005), iCab 3.0b352 (September 2005), and Internet Explorer 7 (October 2006). These early adoptions allowed Google engineers to develop and release Gmail (2004) and Google Maps (2005), two pioneering web applications, which were entirely based on the XMLHttpRequest API. A single look at these apps was enough to demonstrate that web development had entered a new era.

The only thing missing from this exciting technology was a name, which was found on February 18, 2005, when Jesse James Garrett wrote an iconic article called AJAX: A New Approach to Web Applications.

This was the first known appearance of the term AJAX, the acronym for Asynchronous JavaScript + XML, a set of web development techniques that can be used to create asynchronous web applications from the client side, where the XMLHttpRequest object played a pivotal role.

On April 5, 2006, the World Wide Web Consortium (W3C) released the first draft specification for the XMLHttpRequest object in an attempt to create an official web standard.

The latest draft of the XMLHttpRequest object was published on October 6, 2016, and is available at the following URL: https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/.

The W3C draft paved the way for the wide adoption of AJAX development. However, the first implementations were rather difficult for most web developers, due to some differences between the various browsers’ implementation of the involved APIs. Luckily, things became a lot easier thanks to the many cross-browser JavaScript libraries – such as jQuery, Axios, and MooTools – that were smart enough to add it to their available set of tools. This allowed developers to use the underlying XMLHttpRequest object functionality indirectly, through a standardized set of high-level methods.

Over time, the XHR data format quickly switched from XML to JSON, HTML, and plain text, which were more suited to work with the DOM page, without changing the overall approach. Also, when the Reactive Extensions for JavaScript (RxJS) library came out, the XMLHttpRequest object could be easily put behind Observable, thus gaining a lot of advantages (such as being able to mix and match it with other Observables, subscribe/unsubscribe, and pipe/map).

This is the main idea behind Angular’s HttpClient class, which can be described as the Angular way to deal with XMLHttpRequest: a very convenient wrapper that allows developers to effectively use it through the Observable pattern.

Fetch

During its early years, using the raw XMLHttpRequest object was rather difficult for most web developers, and it could easily lead to a large amount of JavaScript source code that was often difficult to read and understand; these issues were eventually solved by the superstructures that were provided by libraries such as jQuery, but at the cost of some inevitable code (and resource) overheads.

The Fetch API was released to address such issues more cleanly, using a built-in, Promise-based approach, which could be used to perform the same asynchronous server requests easily, without requiring third-party libraries.

Here’s an example of an HTTP request using XHR:

var oReq = new XMLHttpRequest();
oReq.onload = function() {
 // success
var jsonData = JSON.parse(this.responseText);
};
oReq.onerror = function() {
 // error
 console.error(err);
};
oReq.open('get', './api/myCmd', true);
oReq.send();

And here’s the same request performed using fetch:

fetch('./api/myCmd')
 .then((response) => {
 response.json().then((jsonData) => {
 // success
 });
 })
 .catch((err) => {
 // error
 console.error(err);
 });

As we can see, the fetch-based code is definitely more readable. Its generic interfaces provide better consistency, the native JSON capabilities make the code more DRY, and the Promises it returns permit easier chaining and async/await tasks without having to define callbacks.

Long story short, it doesn’t take a genius to see that if we compare the raw XHR implementation with the brand-new fetch() API, the latter clearly wins.

HttpClient

Thanks to Angular’s HttpClient class, using raw XHR is out of the question; what we’ll use is the built-in abstraction that is provided by the client, which allows us to write the previous code in the following way:

this.http.get('./api/myCmd')
 .subscribe(jsonData => {
 // success
 },
 error => {
 // error
 console.error(error));
 };

As we can see, the Observable-based code of HttpClient in the previous code provides similar benefits to the fetch-based code that we saw before: we get a consistent interface, native JSON capabilities, chaining, and async/await tasks.

On top of that, Observables can also be converted into Promises, meaning that we could even do the following:

this.http.get('./api/myCmd')
 .toPromise()
 .then((response) => {
 response.json().then((jsonData) => {
 // success
 });
 })
 .catch((err) => {
 // error
 console.error(err);
 });

At the same time, it’s true that Promises can also be converted to Observables using the RxJS library.

All in all, both the JavaScript-native Fetch API and the Angular-native HttpClient class are perfectly viable, and either of them can be effectively used in an Angular app.

Here are the major advantages of using Fetch:

	It’s the newest industry standard that can be used to handle HTTP requests and responses

	It’s JavaScript-native; therefore, it can be used not only on Angular, but also on any other JavaScript-based front-end framework (such as React and Vue)

	It simplifies working with service workers, as the request and response objects are the same as the ones we use in our normal code

	It’s built around the norm that HTTP requests have single return values, thus returning a Promise instead of a stream-like type, like the Observable is (this can be an advantage in most scenarios, but it can also become a disadvantage)

Here are the most relevant advantages of using HttpClient:

	It’s Angular-native and, therefore, widely supported and constantly updated by the framework (and will most likely be in the future as well)

	It allows easy mixing and matching of multiple Observables

	Its abstraction level allows us to easily implement some HTTP magic (such as defining auto-retry attempts in case of request failures)

	Observables are arguably more versatile and feature-rich than Promises, which can be useful in some complex scenarios, such as performing sequencing calls and being able to cancel HTTP requests after they have been sent

	It can be injected and, therefore, used to write unit tests for various scenarios

	It allows us to use HttpInterceptors to transparently handle HTTP headers, bearer tokens, and more HTTP-based tasks, as we’ll see in Chapter 11, Authentication and Authorization

For all of these reasons, after careful consideration, we genuinely think that adopting HttpClient in Angular might be a better choice, and therefore, we’ll be sticking to it for the rest of the book. That said, since the Fetch API is almost as viable in most scenarios, you can definitely try both approaches and see which one is the most fitting for any given task.

For the sake of simplicity, we’re not going any further with these topics. Those who want to know more about XMLHttpRequest, the Fetch API, Observables, and Promises are encouraged to check out the following URIs:

XMLHttpRequest Living Standard (September 27, 2023): https://xhr.spec.whatwg.org/

Fetch API – Concepts and usage: https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

RxJS – Observable: https://angular.io/guide/observables

MDN – Promise: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Now that we know the advantage of the Angular HttpClient, we can see how to further improve the way we use it in our code.

Building a data service

Since we’ve chosen to stick with Angular’s HttpClient class, which we’ve already used everywhere, this means we’re good, right?

Well, as a matter of fact, no. Although using HttpClient is definitely a good choice, we have implemented it using an oversimplified approach. If we look at our Angular source code, we can see how the actual HTTP calls are placed inside the components, which could be acceptable for small-scale sample apps, but it’s definitely not the best way of doing it in real-life scenarios. What if we want to handle the HTTP errors in a more complex way (for example, sending them all to a remote server for statistical purposes)? What if we need to cache and/or post-process the data that we fetch through the back-end API? Not to mention the fact that we would definitely implement some retry logic in order to deal with potential connectivity issues, which is a typical requirement of any progressive web app.

Shall we implement all of the previous stuff within each component’s set of methods? That’s definitely not an option if we want to stick to the DRY pattern; maybe we could define a superclass, provide it with HTTP capabilities, and adapt our subclasses’ source code to perform everything, by calling the super methods with a bunch of highly customized parameters. Such a workaround could work for small tasks, but it could easily become a mess once things become more complex.

As a general rule, we should try our best to prevent our TypeScript classes – be they standard, super, or sub – from being cluttered with huge amounts of data access code. As soon as we fall into that trap, our components will become much more difficult to understand, and we will have a hard time whenever we want to upgrade, standardize, and/or test them. In order to avoid such an outcome, it’s highly advisable to separate the data access layer from the data presentation logic, which can be done by encapsulating the former in a separate service and then injecting that service into the component itself.

This is precisely what we’re about to do.

Creating the BaseService

Since we’re dealing with multiple component classes that handle different tasks depending on their context (that is, the data source that they need to access), it’s highly advisable to create multiple services, one for each context.

More specifically, we’ll need the following:

	CityService, to deal with the city-related Angular components and ASP.NET Core web APIs

	CountryService, to deal with the country-related Angular components and ASP.NET Core web APIs

Also, assuming that they will most likely have some relevant things in common, it might be useful to provide each of them with a superclass that will act as a common interface. Let’s do it.

To create the BaseService, we can either run the following CLI command from the worldcities.client project’s root folder:

ng generate service Base --flat --skip-tests

Or we can simply create a new /src/app/base.service.ts file using Visual Studio’s Solution Explorer.

Once the new file has been created, open it and fill it with the following code:

import { HttpClient } from '@angular/common/http';
export abstract class BaseService {
 constructor(
 protected http: HttpClient) {
 }
}

The preceding source code (minus the abstract and protected highlighted modifiers) is also the core of a typical HTTP data service; we’re going to use it as a base class with which to extend our service classes. More precisely, we’ll have a single superclass (BaseService) containing a common interface for the two different subclasses (CityService and CountryService) that will be injected into our components.

As for the two highlighted modifiers, let’s try to shed some light on them:

	abstract: We used this modifier in the BaseFormComponent class earlier on. While we’re here, let’s talk a bit more about it. In TypeScript, an abstract class is a class that may have some unimplemented methods; these methods are called abstract methods. Abstract classes can’t be created as instances, but other classes can extend the abstract class and, therefore, reuse its constructor and members.

	protected: The HttpClient class will be required by all the service subclasses. Therefore, it’s the first member that we’re going to make available to them (and also the only one, at least for now). In order to do that, we need to use an access modifier that allows the subclasses to use it. In our sample, we’ve used protected, but we could have used public as well.

Before going any further, it might be useful to briefly recap how many access modifiers are supported by TypeScript and how they actually work. If we already know them from C# or other object-oriented programming languages, it’ll be a familiar story for the most part.

TypeScript access modifiers

Access modifiers are a TypeScript concept that allows developers to declare methods and properties as public, private, protected, or read-only. If no modifier is provided, then the method or property is assumed to be public, meaning that it can be accessed internally and externally without issues. Conversely, if it is marked as private, that method or property will only be accessible within the class, not including its subclasses (if any). protected implies that the method or property is accessible only internally within the class and all its subclasses, that is, any class that extends it, but not externally. Finally, read-only will cause the TypeScript compiler to throw an error if the value of the property is changed after its initial assignment in the class constructor.

For the sake of completeness, it’s worth noting that access modifiers work in a slightly different way when assigned to constructor parameters. If no modifier is provided there, the variable will only be available within the constructor’s scope; conversely, if we assign a modifier to that variable, it will be accessible within the whole class following the modifier rules that we described earlier, just like how it was declared as a separate member.

However, it’s important to keep in mind that these access modifiers will be enforced only at compile time. The TypeScript transpiler will warn us about all inappropriate uses, but it won’t be able to stop inappropriate usage at runtime.

Adding the common interface methods

Let’s now expand our BaseService common interface with some high-level methods that correspond to what we’ll need to do in our subclasses. Since the components we’re refactoring are already there, the best way to define these common interface methods is by reviewing their source code and acting accordingly.

Here’s a good start:

import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';
import { environment } from '../environments/environment';
export abstract class BaseService<T> {
 constructor(
 protected http: HttpClient) {
 }
 abstract getData(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null): Observable<ApiResult<T>>;
 abstract get(id: number): Observable<T>;
 abstract put(item: T): Observable<T>;
 abstract post(item: T): Observable<T>;
 protected getUrl(url: string) {
 return environment.baseUrl + url;
 }
}
export interface ApiResult<T> {
 data: T[];
 pageIndex: number;
 pageSize: number;
 totalCount: number;
 totalPages: number;
 sortColumn: string;
 sortOrder: string;
 filterColumn: string;
 filterQuery: string;
}

Let’s briefly review each one of the preceding abstract methods:

	getData(): The updates are meant to replace our current implementation for methods in our CitiesComponent and CountriesComponent TypeScript files to retrieve the cities and countries lists. As we can see, we took the chance to specify a new strongly typed interface – ApiResult<T> – that will be populated with the structured JSON output that we already receive from the GetCities and GetCountries ASP.NET Core web APIs.

	get(): This will replace our current implementation for the loadData() methods of our CityEditComponent and CountryEditComponent TypeScript files.

	put() and post(): These methods will replace our current implementations for the submit() methods of our CityEditComponent and CountryEditComponent TypeScript files.

	getUrl(): This helper method will centralize the required tasks to build the URL for the API endpoints, thus avoiding the compulsive usage of the environment.baseUrl property for each HTTP request.

Since we’re using a good number of generic-type variables, it may be useful to briefly recap what they are and how they can help us define our common interfaces.

Type variables and generic types – <T> and <any>

It’s worth noting that for the GET, PUT, and POST methods, we didn’t use a strongly typed interface, and we went for a type variable instead. We were kind of forced to do that because these methods will return either a City or a Country interface, depending on the derived class that will implement them.

Taking that into account, we will choose to use <T> instead of <any> so that we won’t lose the information about what that type was when the function returns. The <T> generic type allows us to defer the specification of the returned variable type until the class or method is declared and instantiated by the client code, meaning that we’ll be able to capture the type of the given argument whenever we implement the method in the derived class (that is, when we know what is being returned).

The type <T> variable is a great way to deal with unknown types in an interface, to the point that we’ve also used it in the preceding ApiResult Angular interface, just like we did in the /Data/ApiResult.cs C# file in the .NET back-end.

These concepts are nothing new, since we’ve already used them in our back-end code; it’s just great that we can also use them on the Angular front-end, thanks to the TypeScript programming language.

Why return Observables and not JSON?

Before moving on, it could be wise to briefly explain why we’ve chosen to return Observable types instead of the actual JSON-based interfaces that we already have, such as City, Country, and ApiResult. Wouldn’t it be a more practical choice?

The reason is simple: the Observable type is the most convenient way to deal with API responses that come in asynchronously – thus being the reason why it is the default return type for most of the HttpClient methods. Although we could pipe / map the Observable to return a JSON result, doing that would leave us with extremely limited options, preventing us from leveraging the feature-rich Observable collections that we’ve talked about a number of times since Chapter 4, Front-End and Back-End Interactions.

Creating CityService

Let’s now create our first derived service, that is, the first derived class (or subclass) of BaseService.

From Solution Explorer, browse to the /src/app/cities/ folder, right-click to create a new city.service.ts file, and fill it with the following code:

import { Injectable} from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { BaseService, ApiResult } from '../base.service';
import { Observable } from 'rxjs';
import { City } from './city';
@Injectable({
 providedIn: 'root',
})
export class CityService
 extends BaseService<City> {
 constructor(
 http: HttpClient) {
 super(http);
 }
 getData(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<City>> {
 var url = this.getUrl("api/Cities");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);
 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }
 return this.http.get<ApiResult<City>>(url, { params });
 }
 get(id: number): Observable<City> {
 var url = this.getUrl("api/Cities/" + id);
 return this.http.get<City>(url);
 }
 put(item: City): Observable<City> {
 var url = this.getUrl("api/Cities/" + item.id);
 return this.http.put<City>(url, item);
 }
 post(item: City): Observable<City> {
 var url = this.getUrl("api/Cities");
 return this.http.post<City>(url, item);
 }
}

The most relevant aspect of the preceding source code is the providedIn property in the service’s @Injectable() decorator, which we’ve set to root. This will tell Angular to provide this injectable in the application root, thus making it a singleton service.

A singleton service is a service for which only one instance exists in an app. In other words, Angular will create only one instance of that service, which will be shared with all the components that will use it (through dependency injection) in our application. Although Angular services are not required to be singletons, this technique makes efficient use of memory and provides good performance, thereby making it the most frequently used implementation approach.

For additional info about singleton services, check out the following URL: https://angular.io/guide/singleton-services.

Other than that, there’s nothing new in the preceding code: we just copied (and slightly adapted) the implementation that already exists in our CitiesComponent and CityEditComponent TypeScript files. The main difference is that we’re now using HttpClient here, meaning that we can remove it from the component classes and abstract its usage with CityService instead.

Implementing CityService

Let’s now refactor our Angular components to use our brand-new CityService instead of the raw HttpClient. As we’ll be able to see in a short while, the new singleton services pattern that we used (and talked about) earlier will make things slightly easier than before.

AppModule

In Angular versions prior to 6.0, the only way to make a singleton service available throughout the app would have been to reference it within the AppModule file in the following way:

// ...existing code...
import { CityService } from './cities/city.service';
// ...existing code...
 providers: [CityService],
// ...existing code...

As we can see, we should have added the import statement for the new service at the beginning of the AppModule file, and we also registered the service itself in the existing (albeit still empty) providers: [] section.

Luckily enough, since we’ve used the providedIn: root approach that was introduced with Angular 6.0, the previous technique is no longer required – although it is still supported as a viable alternative.

As a matter of fact, the providedIn: root approach is preferable because it makes our service tree-shakable. Tree shaking is a method of optimizing the JavaScript-compiled code bundles by eliminating any code from the final file that isn’t actually being used.

For additional info about tree shaking in JavaScript, take a look at the following URL: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking.

Long story short, thanks to the new approach, we no longer have to update the AppModule file; we just need to refactor the components that will use the service.

CitiesComponent

From Solution Explorer, open the /src/app/cities/cities.component.ts file and update its content as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
// import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';
import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';
import { City } from './city';
import { CityService } from './city.service';
import { ApiResult } from '../base.service';
@Component({
 selector: 'app-cities',
 templateUrl: './cities.component.html',
 styleUrls: ['./cities.component.scss']
})
export class CitiesComponent implements OnInit {
// ...existing code...
constructor(
 private cityService: CityService) {
 }
// ...existing code...
 getData(event: PageEvent) {

 var sortColumn = (this.sort)
 ? this.sort.active
 : this.defaultSortColumn;
 var sortOrder = (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder;
 var filterColumn = (this.filterQuery)
 ? this.defaultFilterColumn
 : null;
 var filterQuery = (this.filterQuery)
 ? this.filterQuery
 : null;
 this.cityService.getData(
 event.pageIndex,
 event.pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery)
 .subscribe({
 next: (result) => {
 this.paginator.length = result.totalCount;
 this.paginator.pageIndex = result.pageIndex;
 this.paginator.pageSize = result.pageSize;
 this.cities = new MatTableDataSource<City>(result.data);
 },
 error: (error) => console.error(error)
 });
 }
}

As we can see, we just had to perform some minor updates:

	In the import section, we added some references to our new files

	In the constructor, we switched the existing http variable of the HttpClient type with a brand-new cityService variable of the CityService type

	Last but not least, we changed the getData() method’s existing implementation—based upon the HttpClient – for a new one that relies upon the new CityService

It’s worth noting that we have commented out all the import references from the @angular/common/http package simply because we no longer need them, now that we’re not directly using that stuff in this class.

CityEditComponent

Implementing CityService in CityEditComponent is going to be just as easy as it was for CitiesComponents.

From Solution Explorer, open the /src/app/cities/city-edit.component.ts file and update its content as follows:

import { Component, OnInit } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn } from '@angular/forms';
import { Observable } from 'rxjs';
import { map } from 'rxjs/operators';
import { environment } from './../../environments/environment;
import { City } from './city';
import { Country } from './../countries/country';
import { BaseFormComponent } from '../base-form.component';
import { CityService } from './city.service';
// ...existing code...
constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private http: HttpClient,
 private cityService: CityService) {
 super();
 }
// ...existing code...
onSubmit() {
 // ...existing code...
if (this.id) {
 // EDIT mode
 this.cityService
 .put(city)
 .subscribe({
 // ...existing code...
 });
 }
 else {
 // ADD NEW mode
 this.cityService
 .post(city)
 .subscribe({
 // ...existing code...
 });
 }
 }
// ...existing code...

As we can see, this time we weren’t able to get rid of the @angular/common/http package reference because we still need HttpClient to perform some specific tasks – loadCountries() and isDupeCity() – that we can’t handle with our current service. In order to fix these issues, it definitely seems like we need to implement two more methods in CityService.

Let’s do this!

Implementing loadCountries and isDupeCity in CityService

From Solution Explorer, open the /src/app/cities/city.service.ts file and add the following methods at the end of the file, just before the last curly bracket:

// ...existing code...
getCountries(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<Country>> {
 var url = this.getUrl("api/Countries");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);
 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }
 return this.http.get<ApiResult<Country>>(url, { params });
}
isDupeCity(item: City): Observable<boolean> {
 var url = this.getUrl("api/Cities/IsDupeCity");
 return this.http.post<boolean>(url, item);
}

Since this code contains a reference to the Country interface, we also need to add the following import statement (we can put that right below the City interface):

import { Country } from './../countries/country';

Now that we have these methods, we can patch our CityEditComponent class file as follows:

import { Component, OnInit } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
// ...existing code...
// import { environment } from './../../environments/environment';
// ...existing code...
constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private cityService: CityService) {
 super();
 }
// ...existing code...
loadData() {
 // ...existing code...
// fetch the city from the server
 this.cityService.get(this.id).subscribe({
// ...existing code...
 }
 loadCountries() {
 // fetch all the countries from the server
 this.cityService.getCountries(
 0,
 9999,
 "name",
 "asc",
 null,
 null).subscribe({
 next: (result) => {
 this.countries = result.data;
 },
 error: (error) => console.error(error)
 });
 }
// ...existing code...
 isDupeCity(): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{ [key: string]:
 any } | null> => {
 var city = <City>{};
 city.id = (this.id) ? this.id : 0;
 city.name = this.form.controls['name'].value;
 city.lat = +this.form.controls['lat'].value;
 city.lon = +this.form.controls['lon'].value;
 city.countryId = +this.form.controls['countryId'].value;
 return this.cityService.isDupeCity(city)
 .pipe(map(result => {
 return (result ? { isDupeCity: true } : null);
 }));
 }
 }
}

And that’s it! As soon as we delegated all the retrieval tasks to our CityService, we were eventually able to remove the @angular/common/http references and HttpClient from our CityEditComponent code.

Before going further, it would be wise to check what we have done so far by hitting F5 and ensuring that everything still works as before. If we did everything correctly, we should see no differences; our new CityService should be able to transparently perform all the tasks that were previously handled by HttpClient. That’s expected, since we’re still using it under the hood!

In the next section, we’ll do the same with the country-related components.

Creating CountryService

It’s now time to create CountryService, which will be the second – and last – derived class (or subclass) of BaseService.

Just like we did with CityService early on, create a new /src/app/countries/country.service.ts file using the ng generate Angular CLI command (or Solution Explorer) and fill it with the following code:

import { Injectable } from '@angular/core';
import { HttpClient, HttpParams } from '@angular/common/http';
import { BaseService, ApiResult } from '../base.service';
import { Observable } from 'rxjs';
import { Country } from './country';
@Injectable({
 providedIn: 'root',
})
export class CountryService
 extends BaseService<Country> {
 constructor(
 http: HttpClient) {
 super(http);
 }
 getData (
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<Country>> {
 var url = this.getUrl("api/Countries");
 var params = new HttpParams()
 .set("pageIndex", pageIndex.toString())
 .set("pageSize", pageSize.toString())
 .set("sortColumn", sortColumn)
 .set("sortOrder", sortOrder);
 if (filterColumn && filterQuery) {
 params = params
 .set("filterColumn", filterColumn)
 .set("filterQuery", filterQuery);
 }
 return this.http.get<ApiResult<Country>>(url, { params });
 }
 get(id: number): Observable<Country> {
 var url = this.getUrl("api/Countries/" + id);
 return this.http.get<Country>(url);
 }
 put(item: Country): Observable<Country> {
 var url = this.getUrl("api/Countries/" + item.id);
 return this.http.put<Country>(url, item);
 }
 post(item: Country): Observable<Country> {
 var url = this.getUrl("api/Countries");
 return this.http.post<Country>(url, item);
 }
 isDupeField(countryId: number, fieldName: string, fieldValue: string): Observable<boolean> {
 var params = new HttpParams()
 .set("countryId", countryId)
 .set("fieldName", fieldName)
 .set("fieldValue", fieldValue);
 var url = this.getUrl("api/Countries/IsDupeField");
 return this.http.post<boolean>(url, null, { params });
 }
}

As we can see, this time we took the chance to directly add the isDupeField() method in advance, since we’re definitely going to need it to refactor the validator of our CountryEditComponent in a short while.

As always, now that we have created the service, we need to implement it within our app. Luckily, as we explained earlier on, we don’t have to reference it in our AppModule file; we just need to properly implement it in our country-related components.

CountriesComponent

From Solution Explorer, open the /src/app/countries/countries.component.ts file and update its content as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
// import { environment } from './../../environments/environment';
import { MatTableDataSource } from '@angular/material/table';
import { MatPaginator, PageEvent } from '@angular/material/paginator';
import { MatSort } from '@angular/material/sort';
import { Subject } from 'rxjs';
import { debounceTime, distinctUntilChanged } from 'rxjs/operators';
import { Country } from './country';
import { CountryService } from './country.service';
// ...existing code...
constructor(
 private countryService: CountryService) {
 }
 // ...existing code...
getData(event: PageEvent) {
 var sortColumn = (this.sort)
 ? this.sort.active
 : this.defaultSortColumn;
 var sortOrder = (this.sort)
 ? this.sort.direction
 : this.defaultSortOrder;
 var filterColumn = (this.filterQuery)
 ? this.defaultFilterColumn
 : null;
 var filterQuery = (this.filterQuery)
 ? this.filterQuery
 : null;
 this.countryService.getData(
 event.pageIndex,
 event.pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery)
 .subscribe({
 // ...existing code...
 });
 }
}

Nothing new here; we just repeated what we did with CitiesComponent a short while ago.

CountryEditComponent

From Solution Explorer, open the /src/app/countries/country-edit.component.ts file and change its content as follows:

import { Component, OnInit } from '@angular/core';
// import { HttpClient, HttpParams } from '@angular/common/http';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormBuilder, Validators, AbstractControl, AsyncValidatorFn } from '@angular/forms';
import { map } from 'rxjs/operators';
import { Observable } from 'rxjs';
// import { environment } from './../../environments/environment';
import { Country } from './country';
import { BaseFormComponent } from '../base-form.component';
import { CountryService } from './country.service';
// ...existing code...
constructor(
 private fb: FormBuilder,
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private countryService: CountryService) {
 super();
 }

// ...existing code...
loadData() {
 // ...existing code...
// fetch the country from the server
 this.countryService.get(this.id).subscribe({
 // ...existing code...
 });
 }
 else {
 // ADD NEW MODE
this.title = "Create a new Country";
 }
 }
 onSubmit() {
 // ...existing code...
if (this.id) {
 // EDIT mode
 this.countryService
 .put(country)
 .subscribe({
 // ...existing code...
 });
 }
 else {
 // ADD NEW mode
 this.countryService
 .post(country)
 .subscribe({
 // ...existing code...
 });
 }
 }
 isDupeField(fieldName: string): AsyncValidatorFn {
 return (control: AbstractControl): Observable<{ [key: string]:
 any } | null> => {
 return this.countryService.isDupeField(
 this.id ?? 0,
 fieldName,
 control.value)
 .pipe(map(result => {
 return (result ? { isDupeField: true } : null);
 }));
 }
 }
}

As we can see, the code changes that we applied here are very similar to what we did in CityEditComponent. Since we took the chance to preventively add the isDupeField() method in our CountryService class, this time we were able to get rid of the @angular/common/http package in a single shot.

That’s it, at least for now. In the next chapter, we’ll make good use of these new services. However, before going further, you are strongly advised to perform some debug runs (by hitting F5) to ensure that everything still works.

If it doesn’t, refer to the Bug fixes and improvements section earlier in this chapter.

Summary

In this chapter, we have spent some valuable time consolidating the existing source code of our worldcities.client Angular app. We successfully implemented some optimizations and tweaks by making good use of the TypeScript class inheritance features, and we learned how to create base classes (superclasses) and derived classes (subclasses), thus making our source code more maintainable and DRY. At the same time, we took the chance to perform some bug fixing and add a couple of new features to our app’s UI.

Right after that, we refined the data fetching capabilities of our Angular app by switching from direct usage of Angular’s HttpClient class in our components to a more versatile service-based approach. Eventually, we created CityService and CountryService – both extending a BaseService abstract class – to deal with all the HTTP requests, thus paving the way for post-processing, error handling, retry logic, and more interesting stuff that will be introduced in the upcoming chapter.

Suggested topics

For further information, we recommend the following topics: object-oriented programming, polymorphism, inheritance, AJAX, XMLHttpRequest, Fetch API, Angular HttpClient, Angular services, RxJS, Observables, Promises, tree shaking, singleton services, TypeScript access modifiers, TypeScript generic types, base classes and their derived classes, superclasses and subclasses, and access modifiers.

References

	Jesse James Garrett – AJAX: A New Approach to Web Applications: https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php

	The XMLHttpRequest Object – W3C First Working Draft (April 5, 2006): https://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/

	Alex Hopmann talks about XMLHttpRequest (currently offline): http://www.alexhopmann.com/xmlhttp.htm

	Alex Hopmann talks about XMLHttpRequest (archived copy): http://archive.is/7i5l

	XMLHttpRequest Level 1 – W3C Latest Draft (October 6, 2016): https://www.w3.org/TR/2016/NOTE-XMLHttpRequest-20161006/

	XMLHttpRequest Living Standard (September 24, 2019): https://xhr.spec.whatwg.org/

	Fetch API – Concepts and usage: https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

	RxJS – Observables: https://angular.io/guide/observables

	MDN – Promises: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

	Angular – Singleton services: https://angular.io/guide/singleton-services

	Tree shaking in JavaScript: https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking

	TypeScript: Access modifiers: http://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers

	TypeScript: Generic types: https://www.typescriptlang.org/docs/handbook/generics.html

	Anonymous types in C#: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types

	Create Data Transfer Objects (DTOs): https://learn.microsoft.com/en-us/aspnet/web-api/overview/data/using-web-api-with-entity-framework/part-5

	Pros and Cons of Data Transfer Objects: https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/brownfield/pros-and-cons-of-data-transfer-objects

	Microsoft.EntityFrameworkCore namespace: https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore

	System.Text.Json.Serialization namespace: https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization

	Refactoring code: https://learn.microsoft.com/en-us/visualstudio/ide/refactoring-in-visual-studio

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

9

Back-End and Front-End Debugging

One of the most relevant features of all programming languages (such as C#), and most scripting languages (such as JavaScript), is the debugging capabilities they offer to developers.

”If debugging is the process of removing software bugs, then programming must be the process of putting them in.”

— E. W. Dijkstra

The term debugging universally refers to the process of finding and resolving the issues and/or problems, commonly called bugs, that prevent a program or an application from working as expected. In a nutshell, we can say that the debugging process allows the developer to better understand how the source code is being executed under the hood and why it produces the result that it does.

Debugging is a very important skill for any developer, arguably as much as programming itself; it’s a skill that all developers have to learn with theory, practice, and experience, just like coding.

The best way to fulfill these tasks is by making use of a debugger—a tool that allows running the target program under controlled conditions. This enables the developer to track its operations in real time, halting them using breakpoints, executing them step by step, viewing the values of the underlying type, and so on. Advanced debugger features also allow the developer to access the memory contents, CPU registers, storage device activities, and so on, viewing or altering their values to reproduce specific conditions that might be causing the addressed issues.

Luckily enough, Visual Studio provides a set of debuggers that can be used to track any .NET application. Although most of its features have been designed to debug the managed code portion of our app (for example, our C# files), some of them—when configured properly—can be very useful for tracking the client-side code as well.

Throughout this chapter, we’ll learn how to use them, as well as the various debugging tools built into some web browsers such as Chrome, Firefox, and Edge to constantly monitor and keep under control the whole HTTP workflow of our WorldCities app.

For practical reasons, the debugging process has been split into two separate sections:

	The backend, where the debug tasks are mostly being handled using the Visual Studio and .NET tools

	The frontend, where both Visual Studio and the web browser play a major role

The last section of the chapter is dedicated to backend logging using the .NET logging API and a third-party logging provider (Serilog).

By the end of this chapter, we’ll have learned how to properly debug our web application’s Web API, as well as our Angular components, using the various debugging and logging tools provided by Visual Studio and ASP.NET Core to their full extent.

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in the previous chapters, plus the following external libraries:

	The EFCore.BulkExtensions NuGet package

	The Serilog.AspNetCore NuGet package

	The Serilog.Settings.Configuration NuGet package

	The Serilog.Sinks.MSSqlServer NuGet package

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_09/.

Backend debugging

In this section, we’ll learn how to make use of the debug features offered by the Visual Studio environment to take a look at the server-side life cycle of our web application and understand how we can properly troubleshoot some potential flaws.

However, before doing that, let’s spend a couple of minutes seeing how it works for the various operating systems available.

Windows or Linux?

For the sake of simplicity, we’ll take for granted that we’re using the Visual Studio Community, Professional, or Enterprise edition for Windows operating systems. However, since .NET and ASP.NET Core have been designed to be cross-platform, there are at least two options for those who want to debug in other environments, such as Linux or macOS:

	Using Visual Studio Code, a lightweight and open source alternative to Visual Studio available for Windows, Linux, and macOS with full debug support

	Using Visual Studio, thanks to the Docker container tools available since Visual Studio 2017 and built into Visual Studio since version 2019 (16.3)

Visual Studio Code can be downloaded for free (under the MIT license) from the following URL: https://code.visualstudio.com/download.

Visual Studio Docker container tools require Docker Desktop, which can be installed from the following URL: https://docs.docker.com/desktop/windows/install/.

The container tools usage information is available here: https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker.

For additional information about the .NET Core debugging features under Linux and macOS, check out the following URL: https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio.

In this book, for the sake of simplicity, we’ll stick to the Windows environment, thus making use of the Visual Studio set of debuggers available for Windows.

The basics

We’ll take for granted that everyone who is reading this book already knows all the basic debugging features offered by Visual Studio, such as the following:

	Debug versus Release build configuration modes

	Breakpoints and how to set and use them

	Stepping in and out of a program

	The Watch, Call Stack, Locals, and Immediate windows

For those who don’t know (or remember) them well enough, here’s a great tutorial that can be useful if you want a quick recap: https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp.

In the following section, we’ll briefly introduce some advanced debug options that can be useful in our specific scenarios.

Conditional breakpoints

The conditional breakpoint is a useful debugging feature that is often unknown to (or underutilized by) most developers; it acts just like a normal breakpoint, but it only triggers when certain conditions are met.

To set a conditional breakpoint, we have two options:

	Place a standard breakpoint, then right-click on it and select Conditions…

	Right-click on the column when we typically set a standard breakpoint, then select Insert Conditional Breakpoint

The two approaches are shown in the following screenshot:

[image: Immagine che contiene testo, schermata, linea, Carattere Descrizione generata automaticamente]
Figure 9.1: Creating a conditional breakpoint

As soon as we do that, a panel will appear at the bottom of the window showing a number of possible conditional settings that we can configure for that breakpoint:

[image: Immagine che contiene testo, software, Carattere, numero Descrizione generata automaticamente]
Figure 9.2: Conditional breakpoint settings panel

As we can see, there are a number of possible settings available (Conditions, Actions, and so on). Let’s see how we can use them.

Conditions

If we check the Conditions checkbox, we’ll be able to define the code condition that will trigger the breakpoint.

To better explain how it works, let’s perform a quick debugging test:

	From Solution Explorer, choose the WorldCities.Server ASP.NET Core project and open the /Controllers/CitiesController.cs file.

	Set a breakpoint on the last line of the GetCity() method (the one that returns the city to the client once it has been found—see the following screenshot for details).

	Click the Settings icon to access the Breakpoint Settings panel.

	Activate the Conditions checkbox.

	Select Conditional Expression and Is true in the two drop-down lists.

	Type the following condition into the textbox to the right: city.Name == "Moscow".

Once done, our Breakpoint Settings panel should look like the following screenshot:

[image: Immagine che contiene testo, schermata, software, Pagina Web Descrizione generata automaticamente]
Figure 9.3: Activating the Conditions checkbox

As we can see, our condition has been created; the interface lets us add other conditions, as well as perform certain Actions by activating the checkbox below it.

Actions

The Actions feature can be used to show a custom message in the Output window (such as, Hey, we’re currently editing Moscow from our Angular app!) and/or choose whether the code execution should continue or not. If no Action is specified, the breakpoint will behave normally, without emitting messages and halting the code execution.

While we’re here, let’s take the chance to test the Actions feature as well. Activate the checkbox, then type the message in the previous paragraph into the rightmost textbox. Once done, our Breakpoint Settings panel should look like the following screenshot:

[image: Immagine che contiene testo, schermata, software, Carattere Descrizione generata automaticamente]
Figure 9.4: Activating the Actions checkbox

We’ve just created our first conditional breakpoint; let’s quickly test it to see how it works.

Testing the conditional breakpoint

To test what happens when the breakpoint is hit, run the WorldCities app in debug mode (by hitting F5), navigate to the Cities view, filter the table to locate the city of Moscow, and click on its name to enter edit mode.

If everything has been done properly, our conditional breakpoint should trigger and behave in the following way:

[image: Immagine che contiene testo, schermata, schermo, software Descrizione generata automaticamente]
Figure 9.5: Outcome after triggering the conditional breakpoint

As we can see, the Output window has been populated with our custom message as well. If we now repeat the same test with any other city with a different name (for example, Rome, Prague, or New York), that same breakpoint won’t trigger at all; nothing will happen.

It’s worth mentioning that there are two cities called Moscow in our WorldCities database: the Russian capital city and a city in Idaho, USA. It goes without saying that our conditional breakpoint will trigger on both of them because it only checks for the Name property. If we wanted to limit its scope to the Russian city only, we should refine the conditional expression to also match CityId, CountryId, or any other suitable property.

All good so far; let’s move on.

The Output window

In the previous section, we talked about the Visual Studio Output window, which we used to write a custom message whenever our conditional breakpoint was hit.

If you have some experience with the Visual Studio debugger, you’ll know about the utmost importance of this window for understanding what happens behind the curtain. The Output window shows the status messages for various features in the IDE, meaning that most .NET middlewares, libraries, and packages write their relevant information there, just like we did with our conditional breakpoint.

To open the Output window, either choose View | Output from the main menu bar or press Ctrl + Alt + O.

If we take a look at what happened in the Output window during the test we have just performed, we can see some interesting stuff:

[image: Immagine che contiene testo, software, Pagina Web, Icona del computer Descrizione generata automaticamente]
Figure 9.6: The Visual Studio Output window

The Output window is full of info coming from EntityFrameworkCore, including the actual SQL queries used to map the City entity properties and the database content; however, we don’t have info from any other source. Why are we only tracking the status messages coming from the Microsoft.EntityFrameworkCore namespace?

The reason for such behavior is pretty simple: it all depends on the LogLevel that we’ve set for the various namespaces (or namespace prefixes) in the appsettings.json file.

If we open the appsettings.Development.json files of our WorldCities.Server project, we can see that our current LogLevel settings for the Microsoft.AspNetCore namespace prefix is currently set to Warning:

 "Logging": {
"LogLevel": {
"Default": "Information",
 "Microsoft.AspNetCore": "Warning"
}
}

We’ve briefly seen those LogLevel settings back in Chapter 3, Looking Around, when we talked about the appsettings.json and appsettings.<Environment>.json files. However, we haven’t spent time explaining how such settings actually work and how can we use them to influence the Output window – and any other logging provider we might want to use: let’s do it now.

LogLevel types

The LogLevel settings specify the minimum level to log for any given namespace (or namespace prefix). This level corresponds to one of the seven possible values supported by the framework, each one having a distinctive name and a corresponding incremental number: Trace (0), Debug (1), Information (2), Warning (3), Error (4), Critical (5), and None (6).

Here’s a quick breakdown for each one of them:

	Trace: The application’s internal activities and values – typically useful only for debugging low-level operations. It is a rarely used LogLevel because it often contains confidential data, such as the control of encryption keys or other “sensitive” information that should not be memorized or viewed. For that reason, using it in production is highly discouraged and might lead to severe security issues.

	Debug: Interactive analysis and debugging info. These are logs that should be disabled in production environments as they may contain information that should not be disclosed.

	Information: Information messages; that is, they describe events relating to the normal behavior of the system.

	Warning: Abnormal or unexpected behaviors, but ones that do not cause the application to stop running.

	Error: Info captured when the current execution flow is interrupted due to an error: this means that they are error messages related to the current activity, not to be confused with application-wide runtime errors (see Critical).

	Critical: Events that describe an irreversible application crash.

	None: A placeholder value that we can use if we want to entirely disable logging (“don’t log anything”).

All events and/or status messages produced by any ASP.NET Core library fall in one of the seven categories above: the LogLevel settings allow us to choose what to “capture” and what to ignore.

It’s important to understand that the value present in the LogLevel setting specifies the minimum level to log: for example, if we set the LogLevel to Warning, the system will log Warning, Error, and Critical events and status messages.

Now that we understand how the LogLevel settings work, let’s take another look at our appsettings.Development.json's LogLevel settings and give meaning to these values:

	The Default namespace is set to Information, meaning that we want to see all Information, Warning, Error, and Critical events and status messages for all namespaces that don’t have more specific rules.

	The Microsoft.AspNetCore namespace is set to Warning, meaning that we want to see all Warning, Error, and Critical events and status messages for everything related to a namespace that starts with Microsoft.AspNetCore.

It’s worth noting that the specialized Microsoft.AspNetCore key will override the value of the generic Default key, which acts as a catch-all for any unspecified namespace. If we consider that we’ve almost only used built-in middlewares and services that belong to the Microsoft.AspNetCore namespace, we can now easily understand why we don’t see any of them in the Output window: we have explicitly told our app to not show them.

At the same time, the Microsoft.EntityFrameworkCore namespaces start with a different prefix. For this very reason, they will fall back to the Default behavior and therefore get the Information settings, and this is why we do see them and all their informative events and status messages (in addition to the Warning, Error, and Critical ones).

Testing the LogLevel

To quickly demonstrate how the LogLevel settings work, let’s perform a quick test.

Open the appsettings.Development.json file and add Microsoft.EntityFrameworkCore to the LogLevel JSON key using the same settings as the Microsoft.AspNetCore namespace, in the following way:

 "Logging": {
"LogLevel": {
"Default": "Debug",
 "Microsoft.AspNetCore": "Warning",
 "Microsoft.EntityFrameworkCore": "Warning"
}
}

Right after that, launch our project(s) again and perform the same identical steps until they trigger the “Moscow” conditional breakpoint that we set earlier.

This time, the Output window will be more succinct than before, as shown in the following screenshot:

[image: Immagine che contiene testo, software, Pagina Web, Icona del computer Descrizione generata automaticamente]
Figure 9.7: The Visual Studio Output window with the Microsoft.EntityFrameworkCore’s new LogLevel settings

Now, let’s configure all LogLevel settings to Information in the following way:

 "Logging": {
"LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Information"
}
}

Once done, run the project again and perform another test up to the “Moscow” conditional breakpoint, then take another look at the Output window:

[image: Immagine che contiene testo, elettronica, schermata, software Descrizione generata automaticamente]
Figure 9.8: Visual Studio Output window

As we can see, now there are pieces of information coming out from a number of different sources, including the following:

	Microsoft.AspNetCore.Hosting.Diagnostics: The ASP.NET Core middleware dedicated to exception handling, exception display pages, and diagnostics information. It handles developer exception page middleware, exception handler middleware, runtime information middleware, status code page middleware, and welcome page middleware. In a nutshell, it’s the king of the Output window when debugging web applications.

	Microsoft.AspNetCore.Mvc.Infrastructure: The namespace that handles (and tracks) the controller’s actions and responds to the ASP.NET Core MVC middleware.

	Microsoft.AspNetCore.Routing: The ASP.NET Core middleware that handles static and dynamic routing, such as all our web application’s URI endpoints.

	Microsoft.EntityFrameworkCore: The ASP.NET Core middleware that handles the connections to the data source; for example, our SQL server, which we extensively talked about in Chapter 5, Data Model with Entity Framework Core.

All this information is basically a sequential log of everything that happens during our web application’s execution. We can learn a lot from the ASP.NET Core life cycle just by performing a user-driven action and reading it.

Configuring the Output window

Needless to say, the Visual Studio interface allows us to filter the output and/or choose the level of detail of the captured information.

To configure what to show and what to hide, select Debug | Options from the main menu, then navigate to Output Window from the tree menu item to the right. From that panel, we can select (or deselect) a number of output messages: Exception Messages, Module Load Messages/Module Unload Messages, Process Exit Messages, Step Filtering Messages, and so on:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 9.9: Output window configuration

Now that we’ve got the gist of the backend debugging output, let’s move our focus to one of the middlewares that arguably requires special attention: Entity Framework (EF) Core.

Debugging EF Core

If we take a look at the Output window right after one of our web applications runs in debug mode, we should be able to see a bunch of SQL queries written in plain text. These are the SQL queries generated by EF Core from our lambda expressions, query expressions, IQueryable objects, and expression trees into valid T-SQL queries.

Here’s the output information line emitted by the Microsoft.EntityFrameworkCore middleware containing the SQL query used to retrieve the city of Moscow (the actual SQL query is highlighted):

Microsoft.EntityFrameworkCore.Database.Command: Information: Executed DbCommand (1ms) [Parameters=[@__p_0='?' (DbType = Int32)], CommandType='Text', CommandTimeout='30']
SELECT TOP(1) [c].[Id], [c].[CountryId], [c].[Lat], [c].[Lon], [c].[Name]
FROM [Cities] AS [c]
WHERE [c].[Id] = @__p_0

Not bad, right? These SQL queries in clear text might be very useful to determine whether EF Core does a good job or not when converting our lambda or LINQ query expressions to SQL in terms of performance.

The GetCountries() SQL query

Let’s try to use this same technique to retrieve the SQL query that corresponds to the CountriesController's GetCountries() method implementation, which we refined during Chapter 8, Code Tweaks and Data Services, to include the cities count.

Here’s the source code snippet:

return await ApiResult<CountryDTO>.CreateAsync(
 _context.Countries.AsNoTracking()
 .Select(c => new CountryDTO()
 {
 Id = c.Id,
 Name = c.Name,
 ISO2 = c.ISO2,
 ISO3 = c.ISO3,
 TotCities = c.Cities!.Count
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);

To see how it was converted into T-SQL, do the following:

	Hit F5 to run the web app in debug mode.

	Navigate to the Countries view.

	Take a look at the resulting Output window (searching for TotCities will help there).

Here’s the SQL query that we should find there:

SELECT [c].[Id], [c].[Name], [c].[ISO2], [c].[ISO3], (
 SELECT COUNT(*)
 FROM [Cities] AS [c0]
 WHERE [c].[Id] = [c0].[CountryId]) AS [TotCities]
FROM [Countries] AS [c]
ORDER BY [c].[Name]
OFFSET @__p_0 ROWS FETCH NEXT @__p_1 ROWS ONLY

That’s not bad; EF Core converted our LINQ expression to SQL using a subquery, which is a good choice in terms of performance. The OFFSET part of the SQL query, together with the DBCommand parameters mentioned in the preceding code snippet, handles the pagination and ensures that we’re only getting the rows we’ve been asking for.

However, the Visual Studio Output window is not the only way to take a look at those SQL queries—we can provide ourselves with an even better alternative by adding another great third-party NuGet package, as we’re going to see in the following sections.

Getting the SQL code programmatically

The Output window is good enough for most scenarios, but what if we want to retrieve the SQL code from an IQueryable<T> programmatically? Such an option might be very useful to debug (or conditionally debug) some parts of our app, especially if we want to automatically save these SQL queries outside the Output window (for example, a log file or a log aggregator service).

To achieve such a result, we can do one of the following:

	Create a dedicated function that will be able to do that using System.Reflection, the .NET namespace containing types that can be used to retrieve information about assemblies, modules, members, parameters, and other entities in managed code by examining their metadata

	Install a third-party NuGet package that already does that

Sometimes, it can be useful (and instructive) to manually code something instead of relying on an existing library; however, when it comes to System.Reflection tasks, that’s often not the case since the practice of extracting info from non-public members can easily lead to unstable code workarounds, which is often also very hard to maintain.

For that very reason, instead of reinventing the wheel, let’s install the EFCore.BulkExtensions NuGet package to our WorldCities.Server ASP.NET Core project. As always, we can do that using Visual Studio’s GUI (Manage NuGet Packages) or the Package Manager Console interface in the following way:

PM> Install-Package EFCore.BulkExtensions

In this book we’re going to use version 8.0.1, which is the latest at the time of writing and provides full support for Entity Framework Core 8.

Once the package has been installed, we’ll be able to use the new ToParametrizedSql() extension method from any of our existing IQueryable<T> objects, simply by adding a reference to the EFCore.BulkExtensions.IqueryableExtensions namespace to the class.

Such a namespace provides several extension methods for the IQueryable<T> type: a very convenient approach to extend the functionality of that type without creating a new derived type, modifying the original type, or creating a static function that will explicitly require it as a reference parameter.

For those who have never heard of them, C# extension methods are static methods that can be called as if they were instance methods on the extended type. For further information, take a look at the following URL from the Microsoft C# programming guide: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods.

Let’s see how we can implement the ToParametrizedSql() extension method in our ApiResult.cs class, which is the place where most of our IQueryable<T> objects get executed.

Implementing the ToParametrizedSql() method

From Solution Explorer, select the /Data/ApiResult.cs file, open it for editing, and add the following lines to the existing CreateAsync method implementation (the new lines are highlighted):

using Microsoft.EntityFrameworkCore;
using System.Linq.Dynamic.Core;
using System.Reflection;
using EFCore.BulkExtensions;
// ...existing code...
 source = source
 .Skip(pageIndex * pageSize)
 .Take(pageSize);
 // retrieve the SQL query (for debug purposes)
 var sql = source.ToParametrizedSql();
var data = await source.ToListAsync();
// ...existing code...

As we can see, we added a single variable to store the results of the ToParametrizedSql method immediately before calling the ToListAsync() method, which requires the execution of the resulting SQL query.

Let’s quickly test it out to see how it works. Put a breakpoint on the line of the ApiResult.cs class, immediately below the new lines we added earlier on. Once done, hit F5 to run the web application in debug mode, then navigate to the Countries view. Wait for the breakpoint to hit, then move the mouse cursor over the sql variable and click the magnifier lens icon.

After doing all that, we should be able to see the SQL query in the Text Visualizer window, as shown in the following screenshot.

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 9.10: Seeing the SQL query when the breakpoint is triggered

Now, we know how to quickly view the SQL queries produced by EF Core from our IQueryable<T> objects.

Using the #if preprocessor directive

If we are worried about the performance hit of the ToParametrizedSql() method task, we can definitely tweak the previous code using the #if preprocessor directive in the following way:

#if DEBUG
 // retrieve the SQL query (for debug purposes)
var sql = source.ToParametrizedSql();
 // TODO: do something with the sql string
#endif

As we can see, we have wrapped the ToParametrizedSql() method call in an #if preprocessor directive block. When the C# compiler encounters these directives, it will compile the code between them only if the specified symbol is defined. More specifically, the DEBUG symbol that we used in the previous code will prevent that wrapped code from being compiled unless the web application is being run in debug mode, thus avoiding any performance loss in release/production builds.

For additional information regarding the C# preprocessor directives, take a look at the following URLs:

	C# preprocessor directives: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/.

	#if preprocessor directives: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if.

There is still a lot to say about the backend debugging features offered by Visual Studio and .NET; however, for our purposes, it’s better to stop here for the time being and move on to the frontend.

Frontend debugging

In this section, we’ll briefly review the various frontend debugging options we have available (Visual Studio or the browser’s developer tools). Right after that, we’ll take a look at some Angular features that we can leverage to increase our awareness of the various tasks performed by our client-side application under the hood and debug them.

Visual Studio JavaScript debugging

Frontend debugging works just like backend debugging, thanks to the JavaScript debugging feature of Visual Studio. The JavaScript debugger is not enabled by default, but the Visual Studio IDE will automatically ask whether to activate it or not the first time we put a breakpoint on a JavaScript (or TypeScript) file and run our app in debug mode.

As of the time of writing, client-side debugging support is only provided for Chrome and Microsoft Edge. On top of that, since we’re using TypeScript and not JavaScript directly, the use of source maps is required if we want to set and hit breakpoints in the TypeScript file (our Angular component class file) and not in the JavaScript-transpiled file.

Luckily enough, the Angular template we’re using already provides source map support, as we can see by taking a look at the sourceMap parameter value in the /tsconfig.json file of our worldcities.client Angular project:

[...]
"sourceMap": true
[...]

This means that we can do the following:

	Open the /src/app/countries/countries.component.ts file.

	Place a breakpoint inside the subscription to the Observable returned by the countryService (see the following screenshot for details).

	Hit F5 to launch the web application in debug mode.

If we do everything correctly, the runtime environment will stop the program execution as soon as we navigate to the Countries view.

Since this is likely the first time we’re using the JavaScript debugging feature for this project, Visual Studio could ask us whether we want to enable the JavaScript debugging feature. If it does, be sure to enable it.

Once the breakpoint is hit, we’ll be able to inspect the various members of the Angular component class, such as the result object returned by the getData() method and containing the countries data, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 9.11: Inspecting the Angular Component class

That’s pretty cool, right? We can even define conditional breakpoints and use the Watch, Call Stack, Locals, and Immediate windows without significant flaws.

For additional information about debugging a TypeScript or JavaScript app in Visual Studio, take a look at the following URL: https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs.

In the next section, we’re going to introduce another important frontend debugging resource: JavaScript source maps.

JavaScript source maps

For those who don’t know what source maps actually are, let’s try to briefly summarize the concept.

Technically speaking, a source map is a file that maps the code within a compressed, combined, minified, and/or transpiled file back to its original position in a source file. Thanks to these mappings, we can debug our applications even after our assets have been optimized.

Minification, also known as minimisation or minimization, is the process of removing all unnecessary characters from the source code of interpreted programming languages or markup languages without changing its functionality; this includes white spaces, new line/carriage returns, comments, and everything that is not required for the code to be executed. Minification is good for a production environment because it will reduce the size of the source code, thus making its transmission more efficient in terms of bandwidth.

As we saw a moment ago, source maps are extensively used by the Visual Studio JavaScript debugger to enable us to set breakpoints within the TypeScript source code, and they are also supported by the Google Chrome, Mozilla Firefox, and Microsoft Edge developer tools, thus allowing these browsers’ built-in debuggers to display the unminified and uncombined source to the developer, even when dealing with compressed and minified files.

For additional information about JavaScript source maps, check out the following URL:

An Introduction to Source Maps, Matt West: https://blog.teamtreehouse.com/introduction-source-maps

However, given our specific scenario, the debugging capabilities of the aforementioned browsers might not be ideal; in the next section, we’ll do our best to explain why.

Browser developer tools

As we can easily guess, the Visual Studio JavaScript debugging feature is not the only way we can debug our TypeScript files. A good alternative is the built-in debugger provided available by most browser developer tools, such as Google Chrome, Mozilla Firefox, and MS Edge.

As a matter of fact, those debuggers don’t directly access our TypeScript files: they read (and execute) a huge, main.js file containing all our Angular app’s source code transpiled from TypeScript to vanilla JavaScript (ECMAScript 2022) using the settings specified in the root-level tsconfig.json file, which we’ve briefly talked about in Chapter 3, Looking Around.

To quickly demonstrate it, hit F5 to launch our app in Debug mode, then navigate to the Countries page, activate the MS Edge developer tools, and go to the Sources tab; you’ll immediately see the main.js file we’re talking about:

[image: Immagine che contiene testo, software, schermata, numero Descrizione generata automaticamente]
Figure 9.12: the main.js file shown in MS Edge developer tools

As we can see, the CountriesComponent class (which is currently less than 100 lines long) makes its appearance around line 900 of that main.js file (the actual line number might vary).

However, the main.js file comes with an auto-generated main.js.map source map file (main.js.map), which allows the browser not only to identify the original TypeScript file, but even to access it.

To quickly demonstrate this, let’s see what happens if we place a breakpoint in the same source code line as before – inside the subscription returned by the countryService. As soon as we click on that line to set a breakpoint there, the corresponding TypeScript file will also become accessible, just like in Visual Studio:

[image: Immagine che contiene testo, schermata, software, numero Descrizione generata automaticamente]
Figure 9.13: The countries.components.ts TypeScript file shows up

If we look at the folder tree to the left, we can see that the TypeScript file is located within a /src/app/ folder, which contains all the TypeScript files of our whole Angular app! How is such a thing possible? Didn’t we just say that the browser doesn’t directly access those TypeScript classes?

As a matter of fact, it doesn’t; however, the TypeScript source code is mapped from the main.js file thanks to the main.js.map source map file. Now, since we’re running the app in an Angular Live Development Server (as explained in Chapter 2, Getting Ready), the browser can follow that source map to reach the underlying TypeScript files.

If we set the breakpoint on the TypeScript page, as soon as we make it trigger, we should be brought back to Visual Studio, where we can debug the CountriesComponent TypeScript file just like we did when we put the breakpoint there.

Angular form debugging

In this section, we’re going to spend some valuable time understanding some key concepts related to form debugging.

As we mentioned in Chapter 7, Forms and Data Validation, one of the advantages granted by the model-driven approach is the fact that it allows us to have granular control over our form elements. How can we use these features to our advantage and translate them into writing more robust code?

In the following sections, we’ll try to address this question by showing some useful techniques that can be used to gain more control over our forms.

A look at the Form Model

We talked a lot about the Form Model in Chapter 7, Forms and Data Validation, yet we’ve never seen it up close. It would greatly help to have it on screen while developing the form templates, especially if it can be updated in real time as we play with the form inputs and controls.

Here’s a convenient HTML snippet containing the template syntax required to let it happen:

<!-- Form debug info panel -->
<div class="info">
<div class="info-header">Form Debug Info</div>
<div class="info-body">
<div class="info-label">
 Form Value:
 </div>
<div class="info-value">
 {{ form.value | json }}
 </div>
<hr />
<div class="info-label">
 Form Status:
 </div>
<div class="info-value">
 {{ form.status | json }}
 </div>
</div>
</div>

And here’s its SCSS styling:

.info {
 margin-top: 20px;
 background-color: #efefef;
 border: 1px solid #cdcdcd;
 border-radius: 10px;
 .info-header {
 font-weight: 500;
 padding: 10px 20px;
 border-bottom: 1px solid #cdcdcd;
 }
 .info-body {
 background-color: #fafafa;
 padding: 10px 20px;
 border-radius: 0 0 10px 10px;
 .info-label {
 }
 .info-value {
 padding: 2px 0;
 font-size: 0.8em;
 }
 hr {
 border: 0;
 border-top: 1px solid #cdcdcd;
 }
 }
}

Append the first snippet to the CityEditComponent HTML file and the second to the CityEditComponent SCSS file to obtain the following result:

[image: Immagine che contiene testo, schermata, software, Icona del computer Descrizione generata automaticamente]
Figure 9.14: The Form Debug Info window while editing Tokyo

Pretty useful, right? If we play with the form a bit, we can see how the values contained in the Form Debug Info panel will change as we change the input controls; something like that will definitely come in handy when dealing with complex forms.

The pipe operator

By looking at the new HTML snippet that we added to the CityEditComponent HTML file, we can see how we used the pipe operator (|), which is another useful tool coming from the Angular template syntax.

To quickly summarize what it does, we can say the following: the pipe operator allows the use of some transformation functions that can be used to perform various tasks such as format strings, join array elements into a string, uppercase/lowercase text, and sort a list.

Here are the pipes built into Angular:

	DatePipe

	UpperCasePipe

	LowerCasePipe

	CurrencyPipe

	PercentPipe

	JsonPipe

These are all pipe operators available for use in any template. Needless to say, we used the last pipe in the preceding script to transform the form.value and form.status objects into readable JSON strings.

It’s worth noting that we can also chain multiple pipes and define custom pipes; however, we don’t need to do that for the time being, and talking about such a topic would take us far away from the scope of this chapter. Those who want to know more about pipes should take a look at the official Angular documentation at https://angular.io/guide/pipes.

Reacting to changes

One of the reasons we chose the Reactive approach was to be able to react to the changes issued by the user. We can do that by subscribing to the valueChanges property exposed by the FormGroup and FormControl classes, which returns an RxJS Observable that emits the latest values.

We’ve been using Observables since Chapter 4, Front-End and Back-End Interactions, when we subscribed to the get() method of HttpClient to handle the HTTP response received by the web server for the first time. We used them again in Chapter 7, Forms and Data Validation, when we had to implement support for the put() and post() methods as well.

Last but not least, we extensively talked about them in Chapter 8, Code Tweaks and Data Services, when we explained their pros and cons against promises, learned about some of their most relevant features, and integrated them into our CityService and CountryService. As a matter of fact, we’ll likely keep using them wherever and whenever we need to fetch the JSON data that feeds our Data Model interfaces and Form Model objects.

In the following section, we’re going to use them to demonstrate how we can perform some arbitrary operations whenever the user changes something within a form. More precisely, we’ll try to observe the observable by implementing a custom activity log.

The activity log

Once again, CityEditComponent will be our lab rat.

Open the /src/app/cities/city-edit.component.ts class file and update its code with the following highlighted lines:

// ...existing code...
 // Activity Log (for debugging purposes)
 activityLog: string = '';
constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private cityService: CityService) {
 super();
 }
 ngOnInit() {
 this.form = new FormGroup({
 name: new FormControl('', Validators.required),
 lat: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 lon: new FormControl('', [
 Validators.required,
 Validators.pattern(/^[-]?[0-9]+(\.[0-9]{1,4})?$/)
]),
 countryId: new FormControl('', Validators.required)
 }, null, this.isDupeCity());
 // react to form changes
 this.form.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });
this.loadData();
 }
 log(str: string) {
 this.activityLog += "["
 + new Date().toLocaleString()
 + "] " + str + "
";
 }
// ...existing code...

In the preceding code, we provided our Form Model with a simple, yet effective, logging feature that will register any change activity performed by the framework and/or by the user.

As we can see, all the logic has been put within the ngOnInit because this is where the component class gets initialized, along with the observable we need to monitor. The log() function is just a shortcut to append a basic timestamp to the log activity string and add it to the activityLog local variable in a centralized way.

In order to enjoy our new logging feature to the fullest, we have to find a way to put the activityLog on screen.

To do that, open the /src/app/cities/city-edit.component.html template file and append the following HTML code snippet at the end of the file, right below the previous Form Debug Info panel:

<!-- Form activity log panel -->
<div class="info">
<div class="info-header">Form Activity Log</div>
<div class="info-body">
<div class="info-value">
<span *ngIf="activityLog"
 [innerHTML]="activityLog">

</div>
</div>
</div>

That’s it; now, the activity log will be shown in real time, meaning in a truly reactive way.

It’s worth noting that we didn’t use the double curly braces of interpolation here—we went straight for the [innerHTML] directive instead. The reason for that is very simple. The interpolation strips the HTML tags from the source string; hence, we would’ve lost the
 tag that we used in the log() function to separate all log lines with a line feed. If not for that, we would have used the {{ activityLog }} syntax instead.

Testing the activity log

All we need to do now is test our new activity log.

To do so, run the project in debug mode, go straight to CityEditComponent by editing an already-existing city (for example, Prague), play with the form fields, and see what happens in the Form Activity Log panel:

[image: Immagine che contiene testo, Carattere, schermata Descrizione generata automaticamente]
Figure 9.15: Testing the activity log

The first log line should trigger automatically as soon as the HttpClient retrieves the city JSON from the backend Web API and the Form Model gets updated. Then, the form will log any updates performed by the user; all we can do is change the various input fields, yet that’s more than enough for our humble reactivity test to complete successfully.

Extending the activity log

Reacting to the Form Model changes is not the only thing we can do; we can extend our subscriptions to observe any form control as well. Let’s perform a further upgrade on our current activity log implementation to demonstrate that.

Open the /src/app/cities/city-edit.component.ts class file and update the code in the ngOnInit method with the following highlighted lines:

// ...existing code...
// react to form changes
this.form.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });
// react to changes in the form.name control
this.form.get("name")!.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 });
// ...existing code...

The preceding code will add further log lines within the Form Activity Log, all related to the changes occurring in the name form control, which contains the city name, as follows:

[image: Immagine che contiene testo, schermata, Carattere Descrizione generata automaticamente]
Figure 9.16: Inspecting the Form Activity Log for changes in the name form control

What we just did here is more than enough to demonstrate the wonders of the valueChanges observable property; let’s move on to the next topic.

We can definitely keep the Form Debug Info and Form Activity Log panels in the CityEditComponent template for further reference, yet there’s no need to copy/paste it within the other form-based components’ templates or anywhere else. After all, this logging info will be unnecessary for the average user and shouldn’t be visible in the application user interface, for demonstration purposes.

Client-side debugging

Another great advantage of Observables is that we can use them to debug a good part of the whole Reactive workflow by placing breakpoints within our subscription source code. To quickly demonstrate this, just add a Visual Studio breakpoint to our latest subscription, as follows:

[image: Immagine che contiene testo, schermata, Carattere, software Descrizione generata automaticamente]
Figure 9.17: Adding a Visual Studio breakpoint

Once done, run the project in debug mode and navigate to CityEditComponent; the breakpoint will be hit as soon as the Form Model is loaded, since the name control will be updated as well, and also every time we make a change to that control. Whenever this happens, we’ll be able to use all the Visual Studio JavaScript debugging tools and features that are available on client-side debugging, such as Watch, Locals, Autos, Immediate, and Call Stack.

For additional information about client-side debugging with Google Chrome, we strongly suggest reading the following post on the official MSDN blog: https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/.

Unsubscribing the Observables

Observables are a great way to monitor our client-side app’s behavior. Once we subscribe to them, we can be sure that our event handlers will be called when a new value is emitted. However, with great power comes great responsibility: whenever we subscribe to an Observable, such subscription will live until that Observable completes its job, unless we proactively unsubscribe. However, most Observables (such as our previously mentioned valueChanges) are not meant to be completed; if we subscribe to those “infinite Observables” and don’t unsubscribe from them, those subscriptions will live on indefinitely, even when the component that originated them is destroyed, thus ending up with a memory leak until the whole Angular app is removed from memory—such as when we navigate away to a different site.

In order to avoid such behavior, we need to learn how to properly deal with them: in a word, unsubscribe. Let’s briefly introduce some ways to do that using imperative, declarative, and automatic approaches.

The unsubscribe() method

The first approach we should consider is to collect all the subscriptions that we can declare within our CityEditComponent class in a single Subscription instance in the following way:

// ... existing code...
import { Observable, Subscription } from 'rxjs';
// ... existing code...
private subscriptions: Subscription = new Subscription();

And then use it to store all our existing subscriptions:

// ...existing code...
// react to form changes
this.subscriptions.add(this.form.valueChanges
 .subscribe(val => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 }));
// react to changes in the form.name control
this.subscriptions.add(this.form.get("name")!.valueChanges
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 }));
// ...existing code...

If we do that, we can then unsubscribe all the “collected” subscriptions in the ngOnDestroy life cycle hook, which gets called when the component is destroyed:

ngOnDestroy() {
 this.subscriptions.unsubscribe();
}

That’s it: in the preceding code, we make good use of a neat built-in mechanism provided by the Subscription class that does most of the unsubscribe job for us; we just have to “wrap up” all the subscriptions that we want to get rid of and implement the ngOnDestroy method.

The takeUntil() operator

If we prefer to use a declarative approach, we can use another fancy mechanism provided by the RxJS library: the takeUntil operator.

Here’s how we can implement it in the CityEditComponent class, replacing the previous unsubscribe() approach (new/updated lines are highlighted):

// ...existing code...
import { Observable, Subject } from 'rxjs';
import { map, takeUntil } from 'rxjs/operators';
// ...existing code...
private destroySubject = new Subject();
// ...existing code...
// react to form changes
this.form.valueChanges
 .pipe(takeUntil(this.destroySubject))
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Form Model has been loaded.");
 }
 else {
 this.log("Form was updated by the user.");
 }
 });
 // react to changes in the form.name control
this.form.get("name")!.valueChanges
 .pipe(takeUntil(this.destroySubject))
 .subscribe(() => {
 if (!this.form.dirty) {
 this.log("Name has been loaded with initial values.");
 }
 else {
 this.log("Name was updated by the user.");
 }
 });
// ...existing code...
ngOnDestroy() {
 // emit a value with the takeUntil notifier
 this.destroySubject.next(true);
 // complete the subject
 this.destroySubject.complete();
}

In a nutshell, here’s what we’ve done:

	We’ve added a destroySubject internal variable of type Subject, a special type of Observable introduced in Chapter 8, Code Tweaks and Data Services, which allows values to be multi-casted to many observers

	We’ve piped the takeUntil() operator to all our observable chains; the operator will register destroySubject as a notifier, meaning that it will emit the values emitted by the source observable until destroySubject emits

	We’ve implemented the ngOnDestroy life cycle hook where our notifier emits a value (thus stopping all the subscriptions) and marks itself as completed; by completing the subject, all existing subscriptions will be unsubscribed

As we can see, this method allows us to declare our observable chain beforehand with everything that it needs to accommodate for the whole life cycle from start to end: a viable alternative to the unsubscribe() method, as long as we don’t forget to implement the ngOnDestroy interface! To help us remember it, we could acquire the (good) habit of explicitly declaring the OnDestroy interface in all our component classes:

import { Component, OnInit, OnDestroy } from '@angular/core';
// ... existing code...
export class CityEditComponent
extends BaseFormComponent implements OnInit, OnDestroy {

For the time being, let’s do this in our CityEditComponent and move on.

In order to give a proper source code reference to the reader, we’ve implemented the takeUntil() method—as well as the OnDestroy explicit declaration—in CityEditComponent: the code can be found in the book’s GitHub repository for this chapter.

Other viable alternatives

There are many other ways of unsubscribing from Observables, most of them being even more efficient and concise for some specific scenarios.

For example, if we only need a single result to be emitted, we can use the first() or take(1) operators: these operators can be “piped” before the subscription just like the takeUntil() operator and will automatically complete after receiving the first result, without having to create a destroySubject notifier; if we want to unsubscribe from the source stream once the emitted value no longer matches a certain condition, we can use the takeWhile() operator.

A great advantage of all these RxJS operators is that they will automatically unsubscribe, without having to perform it manually (thus removing the risk of forgetting about it). However, if not used correctly they could still cause memory leaks: for example, if we use a first() operator and the component is destroyed before the source observable emits for the first time, that operator won’t come into play and the subscription will keep on living. For that very reason, even when using those operators, it’s highly recommended to adopt some disposal techniques such as the takeUntil(destroy) pattern or the subscription object explained previously.

Furthermore, whenever we use a subscription to feed data to our templates, we can use the Angular async pipe, which subscribes and unsubscribes automatically when the component is destroyed. This basically means that, in our CityEditComponent TypeScript class file, instead of doing this:

// ...
// the countries array for the select
countries?: Country[];
// ...
loadCountries() {
 // fetch all the countries from the server
this.cityService.getCountries(
 0,
 9999,
 "name",
 null,
 null,
 null,
).subscribe(result => {
 this.countries = result.data;
 }, error => console.error(error));
}

We could do this:

// ...
// the countries observable for the select (using async pipe)
countries?: Observable<Country[]>;
// ...
loadCountries() {
 // fetch all the countries from the server
 this.countries = this.cityService
 .getCountries(
 0,
 9999,
 "name",
 "asc",
 null,
 null)
 .pipe(map(x => x.data));
}

Then we can handle the updated countries variable (which is now an observable) by modifying the city-edit.component.html template file in the following way:

<!-- ... -->
<mat-form-field *ngIf="countries | async as result">
<mat-label>Select a Country...</mat-label>
<mat-select formControlName="countryId">
<mat-option *ngFor="let country of result" [value]="country.id">
 {{country.name}}
 </mat-option>
</mat-select>
</mat-form-field>
<!-- ... -->

Now the async pipe will automatically subscribe to the observable, return the latest value, and then unsubscribe from it when the component is destroyed, thus avoiding memory leaks.

Let’s quickly implement this valuable sample in our CityEditComponent (TypeScript and HTML files) and move on; as always, those who encounter issues while trying to do that can find the full source code reference in the GitHub repository.

For reasons of space, we won’t have the chance to talk much more about these techniques within this book; however, the reader can learn how to use them by taking a look at the following posts:

	No need to unsubscribe – RxJS operators will help you out, by Wojciech Trawiński: https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a.

	Async Pipe all the Things!, by Joaquin Cid: https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732.

Should we always unsubscribe?

As a matter of fact, no; however, in order to determine when we should unsubscribe, we need to understand where our “enemy” actually hides.

In a nutshell, the memory leaks that we would like to avoid occur when we destroy and recreate our components without cleaning up existing subscriptions. If those components are re-created, which will likely happen if the user keeps browsing around the app, they will spawn more and more subscriptions, and so on, thus producing the leak.

This brief analysis should be more than enough to help you understand when we should use the unsubscribe method(s) explained previously. As a general rule, we should do it for the Observables that get subscribed in components that are meant to be instantiated and destroyed multiple times, such as the components hosting the views.

Conversely, any component that gets instantiated only once during the application startup won’t have the chance to generate multiple “endless subscriptions” and therefore doesn’t require any “unsubscription” logic. AppComponent, as well as most of the services, are good examples: they are meant to live for the whole duration of the application’s lifetime and won’t produce any memory leaks while the app is running.

For additional info regarding this topic, we strongly suggest reading the following articles by Tomas Trajan and Maciej Treder:

	https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0

	https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy

Now that we’ve dealt with unsubscribing and we know how to properly debug our backend code, let’s switch to a slightly different topic.

Application logging

As all developers most likely know, the term logging—when used in any IT context, from programming languages to computer science—is mostly used to define the process of recording application actions and states to a secondary channel. To better understand this definition, we need to grasp the difference between a primary and secondary channel.

All applications are meant to communicate with their users through a dedicated interface, which is often called the user interface, or UI:

	Desktop applications, for example, use the Graphical User Interface (GUI) provided by the Windows (or other operating systems) libraries

	Console applications rely upon the operating system terminal

	Web applications display their data through the web browser

… and so on. In all the preceding examples, the user interface is the main output mechanism used by the software to communicate with users, thus being the application’s primary channel.

At the same time, it’s often very useful for an application to keep track of the various actions it performs while it works: state changes, access to internal resources, event handlers that trigger in response to user interactions, and so on. We made something like that in Angular early on in this chapter, when we implemented the activity log.

Now, that level of info is often neglectable for the average user, as long as the application works as expected; not to mention the fact that such low-level details could easily disclose some internal mechanics and/or behaviors of our web application that shouldn’t be made available to the public for obvious security reasons.

At the same time, these logs might become extremely useful for developers and system administrators whenever the app hangs or behaves in an unexpected way, because they could greatly help them understand what is going wrong and how to fix it. Truth be told, any experienced developer knows that logging is a must-have feature for any application, as it is necessary for detecting, investigating, and debugging issues.

This brings us to the main question: if the primary channel is not an option, where should we put such info? The answer lies in the definition of logging that we stated a short while ago: in a secondary channel that only developers, system administrators, and other interested (and authorized) parties will be able to access.

If we think of a client-side framework, such as Angular, the best secondary channel we have available is the browser’s console log, which can be accessed using the console.log and/or debug.log JavaScript commands; ideally, that’s the place where we should move all our activity log’s output, thus keeping the user interface—the primary channel—as clear as possible.

Doing this would be simple, and we should just change a couple of things:

	Remove the Form Activity Log panel (up to the root <div> element)

	Remove the this.activityLog variable (in the city-edit.component.ts file)

	Modify the CityEditComponent's log method in the following way:
 log(str: string) {
 console.log("["
 + new Date().toLocaleString()
 + "] " + str);
 }

That’s it for the client side.

The previous “on-screen” implementation will be kept in the book’s GitHub source code for reference purposes; however, the reader is strongly encouraged to rely upon console.log for most real-case scenarios.

What about server-side logging? We’ve previously seen that we have the Output window, but that’s only available when we’re running our app from Visual Studio, right?

Or is it not?

Introducing ASP.NET Core logging

.NET provides support for a standardized, general-purpose logging API through the Microsoft.Extensions.Logging NuGet package, which is implicitly included when building an ASP.NET Core application; this API can be used to collect, display, and/or store logs using a default interface (ILogger) that has been implemented by a variety of built-in and third-party logging providers.

In a typical ASP.NET Core web application, the built-in logging providers are automatically added to our web application by the Program.cs file’s CreateDefaultBuilder helper method, which we saw back in Chapter 3, Looking Around. More precisely, the following providers are enabled:

	Console, which logs output to the console

	Debug, which writes log output by using the System.Diagnostics.Debug class

	Event Source, which writes to a cross-platform event source with the name Microsoft-Extensions-Logging

	EventLog, which sends log output to the Windows event log (Windows operating system only)

As a matter of fact, the content that we see within Visual Studio’s Output window entirely comes from the Debug built-in provider. This also means that, if we want to add additional logging features, all we need to do is to find more providers that can write these logs whenever we want to.

Database Management System (DBMS) structured logging with Serilog

As we can see, there are no native logging providers that can be used to have these logs stored within a DBMS, which would certainly be very useful as it would allow us to review our logs using a structured approach. As a matter of fact, structured logging would definitely be a great way to produce readable, filterable, indexed, and exportable logs.

Luckily enough, we can achieve this using one of the many third-party logging providers that implement the ILogger interface available on NuGet: its name is Serilog and it’s pretty awesome.

In the following sections, we’ll see how we can implement it within our WorldCities.Server ASP.NET Core project to save its logs in a dedicated SQL Server database in a structured way.

Installing the NuGet packages

The first thing we must do is add the following NuGet packages to our WorldCities.Server ASP.NET Core project:

	Serilog.AspNetCore

	Serilog.Settings.Configuration

	Serilog.Sinks.MSSqlServer

As always, these packages can be installed using Visual Studio’s GUI (Manage NuGet Packages) or the Package Manager Console interface in the following way:

PM> Install-Package Serilog.AspNetCore
PM> Install-Package Serilog.Settings.Configuration
PM> Install-Package Serilog.Sinks.MSSqlServer

Serilog.Sinks.MSSqlServer is required in our scenario since we’re using an MS SQL Server; however, there are many other connectors (“sinks”) available for MySQL, MariaDB, PostgreSQL, and even NoSQL databases, such as RavenDB and MongoDB.

Configuring Serilog

Once the required NuGet packages have been installed, we can configure Serilog using our web application’s configuration files. More precisely, we’re going to update the Program.cs file, where the IHostBuilder is created with its set of built-in logging providers.

From Solution Explorer, open the Program.cs file and add the following code (new lines highlighted):

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data;
using Serilog;
using Serilog.Events;
using Serilog.Sinks.MSSqlServer;
var builder = WebApplication.CreateBuilder(args);
// Adds Serilog support
builder.Host.UseSerilog((ctx, lc) => lc
 .ReadFrom.Configuration(ctx.Configuration)
 .WriteTo.MSSqlServer(connectionString:
 ctx.Configuration.GetConnectionString("DefaultConnection"),
 restrictedToMinimumLevel: LogEventLevel.Information,
 sinkOptions: new MSSqlServerSinkOptions
 {
 TableName = "LogEvents",
 AutoCreateSqlTable = true
 }
)
 .WriteTo.Console()
);
// ...existing code...

As we can see, we’ve performed several different tasks here:

	We added the required references to the various Serilog namespaces.

	We added Serilog support to the IHostBuilder that will be eventually used to build the ASP.NET Core app.

	We told Serilog to read its configuration settings from the context’s IConfiguration, which stores the values declared and/or overridden in the appsettings.json, appsettings.<Environment>.json, and secrets.json combined files.

	We configured Serilog to write logs to SQL Server, using our existing connection string, and to the console.

The Serilog SQL Server sink that we are using here writes the logs to a dedicated [LogEvents] table, creating that table if it doesn’t exist already. Now, since we’ve used the same connection string that we used to instantiate our ApplicationDbContext in Chapter 5, Data Model with Entity Framework Core, such a table will be created within our existing WorldCities database.

Automatically creating the [LogEvents] table is OK in our scenario, since we don’t have an existing [LogEvents] table that we want to preserve: if we had that, we could either change the Serilog default log table name or disable the “create if it does not exist” default behavior of the MSSQLServer sink using the TableName and AutoCreateSqlTable options.

All the Serilog configuration settings that we’ve added from within the code could’ve been defined in the appsettings.json file(s) within a "Serilog" key.

For additional info on how to do that and regarding the settings syntax, read the MSSqlServer sink official docs on GitHub: https://github.com/serilog/serilog-sinks-mssqlserver.

Before we test our implementation, let’s spend a minute adding another useful logging feature to our application: the SerilogRequestLogging middleware.

Logging HTTP requests

Another great feature of Serilog is that we can use it to log incoming HTTP requests. Once implemented, this feature will produce the following log message:

HTTP GET /cities responded 200 in 1348.6188 ms

In order to do that, we need to add the UseSerilogRequestLogging middleware to our Program.cs file in the following way:

// ... existing code...
var app = builder.Build();
app.UseSerilogRequestLogging();
// ... existing code...

Let’s do that.

Now that everything is set, we just have to perform a quick test to confirm that our new Serilog-based logging provider actually works.

Accessing the logs

Since we’ve told Serilog to auto-create the LogEvents table if it doesn’t exist yet, we just have to launch our project in debug mode by hitting F5 and see what happens to the database.

As soon as the web app is fully loaded, open SQL Server Management Studio and access the WorldCities database following the instructions given in Chapter 5, Data Model with Entity Framework Core.

If we did everything as expected, we should be able to see the new LogEvents table and a bunch of initialization logs, just as shown in the following screenshot:

[image: Immagine che contiene testo, software, Pagina Web, Icona del computer Descrizione generata automaticamente]
Figure 9.18: Viewing our new LogEvents table

Now we can conveniently access our log in a structured way using SQL queries.

Furthermore, we can use this new feature to log whatever we want using the convenient Serilog.Log static entry point provided by the library.

Here’s how we can do that from a controller:

public class SampleController : Controller
{
 public SampleController()
 {
 Serilog.Log.Information("SampleController initialized.");
 }
}

And here’s how to call it within a view:

@Serilog.Log.Information("SampleView shown to the user");

If we don’t like the Serilog.Log static entry point, we can still use the standard ILogger interface using dependency injection and achieve the same result, since it will also use the new Serilog outputs/sinks.

Here’s how to implement the ILogger interface in a controller:

using Microsoft.Extensions.Logging;
[...]
public class SampleController : Controller
{
 public ILogger<SampleController> Logger { get; set; }
 public SampleController(ILogger<SampleController> logger)
 {
 Logger = logger;
 Logger.LogInformation("SampleController initialized.");
 }
}

And here’s the same approach within a view:

@using Microsoft.Extensions.Logging
@inject ILogger<_Views_Dress_Edit> logger
@logger.LogInformation("SampleView shown to the user");

The Serilog.Log static entry point is great and provides a lot of additional features; that said, the standard ILogger interface is often the most advisable approach because it will make it easier to connect our app with other MS-based telemetry and monitoring tools (such as Application Insights on MS Azure).

Those who want to know more about Serilog and all the available settings can check out the following URL: https://serilog.net/.

It’s important to understand that we’ve only scratched the surface of Serilog here, just to demonstrate how easy it is to set it up to write logs to a DBMS of our choice; for example, we could’ve used a different database within the same SQL Server instance—or even a different DBMS engine; we could’ve modified the default EventLog table name and/or column names, as well as adding additional columns; and so on.

Summary

Throughout this chapter, we talked about a number of debugging features and techniques that can be very useful during development. Let’s try to quickly summarize what we’ve learned so far.

We started our journey with the Visual Studio server-side debugging features. These are a set of runtime debugging features that can be used to prevent most compiler errors on our Web API and allow us to track the whole backend application life cycle: from the middleware initialization, through to the whole HTTP request/response pipeline, down to the controllers, entities, and IQueryable objects.

Right after that, we moved to the Visual Studio client-side debugging feature. This is a neat JavaScript debugger that, thanks to the source maps created by the TypeScript transpiler, allows us to directly debug our TypeScript classes and access variables, subscriptions, and initializers in a truly efficient way.

Furthermore, we designed and implemented a real-time activity log. This is a quick and effective way to exploit the Reactive features of the various Observables exposed by the Angular modules to keep track of what happens to our components; not to mention the fact that the Visual Studio TypeScript transpiler (and IntelliSense) will hopefully shield us from most syntax, semantic, and logical programming errors, freeing us from the pests of script-based programming, at least for the most part.

Last but not least, we saw how to implement a handy third-party library (Serilog) to store our application logs in the database, so that we’ll be able to access them in a structured way.

However, what if we want to test our forms against some specific use cases? Is there a way we can mock our backend ASP.NET Core controllers’ behaviors, as well as those of our frontend Angular components, and perform unit tests?

The answer is yes. As a matter of fact, our two frameworks of choice provide various open source testing tools to perform unit tests. In the next chapter, we’ll learn how to use them to improve the quality of our code and prevent bugs during refactoring, regression, and new implementation processes.

Suggested topics

For further information, we recommend the following topics: Visual Studio Code, debugger, server-side debugging, client-side debugging, extension methods, C# preprocessor directives, JavaScript source maps, Angular pipes, Observable, Subject, unsubscribe, RxJS operators, async pipe, ILogger, and Serilog.

References

	Visual Studio Code: https://code.visualstudio.com/

	Visual Studio Container Tools with ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker

	Offroad Debugging of .NET Core on Linux OSX from Visual Studio: https://github.com/Microsoft/MIEngine/wiki/Offroad-Debugging-of-.NET-Core-on-Linux---OSX-from-Visual-Studio

	Debug an application using Visual Studio: https://learn.microsoft.com/en-US/dotnet/core/tutorials/debugging-with-visual-studio?tabs=csharp

	Extension Methods: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

	Microsoft.EntityFrameworkCore Namespace: https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore

	C# Preprocessor Directives: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/

	The #IF preprocessor directive in C#: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-if

	Debug a JavaScript or TypeScript app in Visual Studio: https://learn.microsoft.com/en-US/visualstudio/javascript/debug-nodejs

	An Introduction to Source Maps: https://blog.teamtreehouse.com/introduction-source-maps

	Angular Pipes: https://angular.io/guide/pipes

	No need to unsubscribe – RxJS operators will help you out: https://medium.com/javascript-everyday/no-need-to-unsubscribe-rxjs-operators-will-help-you-out-f8b8ce7bf26a

	Async Pipe all the Things!: https://medium.com/@joaqcid/async-pipe-all-the-things-2607a7bc6732

	Client-side debugging of ASP.NET projects in Google Chrome: https://blogs.msdn.microsoft.com/webdev/2016/11/21/client-side-debugging-of-asp-net-projects-in-google-chrome/

	Angular Debugging: https://blog.angular-university.io/angular-debugging/

	The best way to unsubscribe RxJS Observables in Angular: https://medium.com/angular-in-depth/the-best-way-to-unsubscribe-rxjs-observable-in-the-angular-applications-d8f9aa42f6a0

	Preventing Memory Leaks in Angular Observables with ngOnDestroy: https://www.twilio.com/blog/prevent-memory-leaks-angular-observable-ngondestroy

	Serilog: https://serilog.net

	Serilog MSSqlServer sink: https://github.com/serilog/serilog-sinks-mssqlserver

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

10

ASP.NET Core and Angular Unit Testing

Unit testing is the name given to a method of software testing that helps to determine whether the isolated modules of a program (units) are working correctly. After the various units have been verified, they can be merged together and tested as a whole (integration testing and system testing) and/or released in production.

Given this definition, it’s pretty easy to understand the importance of properly defining and isolating the various units. These are the smallest testable parts of our software, featuring a few inputs and a single output. In Object-Oriented Programming (OOP), where the program’s source code is split into classes, a unit is often a method of a super, abstract, or derived class, yet it can also be a static function of a helper class.

Although they’ve become a de facto standard for high-quality projects, unit tests are often underestimated by most developers and project managers who are eager to speed up the whole development process and, therefore, reduce its overall cost. As a matter of fact, creating several unit tests alongside development might become a hindrance for small-scale projects with low profit margins, since such an approach undeniably requires some additional work. However, it’s very important to understand their huge benefits for medium to big projects and enterprise solutions, especially if they require the coordinated effort of a large number of developers.

This chapter is entirely dedicated to unit tests. More precisely, we’ll learn how to define, implement, and perform the following:

	Back-end unit tests in ASP.NET Core, using the xUnit.net testing tool

	Front-end unit tests in Angular, using the Jasmine testing framework and the Karma test runner that we briefly saw in Chapter 3, Looking Around

We’ll also get the opportunity to briefly introduce some widely used testing practices that can help us get the most out of our tests, such as Test-Driven Development (TDD) and Behavior-Driven Development (BDD). By the end of this chapter, we’ll have learned how to properly design and implement back-end and front-end unit tests following these practices.

For the sake of simplicity, we’re going to perform our unit test in our existing worldcities.client Angular app. However, to do this, we’re going to add some new packages to our project.

Technical requirements

In this chapter, we’re going to need all of the technical requirements listed in previous chapters, with the following additional packages:

	Microsoft.NET.Test.Sdk

	xunit

	xunit.runner.visualstudio

	Moq

	Microsoft.EntityFrameworkCore.InMemory

As always, it’s advisable to avoid installing them straight away. We’re going to bring them in during this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_10/WorldCities

ASP.NET Core unit tests

In this section, we’ll learn how to build an ASP.NET Core unit test project using xUnit.net, a free, open-source, community-focused unit testing tool for .NET created by Brad Wilson, who also developed NUnit v2. We’ve chosen this tool because it’s arguably one of the most powerful and easy-to-use unit testing tools available today. It’s part of the .NET Foundation, hence operating under their code of conduct, and is licensed under the Apache License, version 2.

Before moving on, we’ll also take the opportunity to talk about TDD and BDD in the following sections. These are two widely used testing approaches that have a number of similarities and differences that are worth exploring.

Creating the WorldCities.Server.Tests project

The first thing to do is to add a third project to our WorldCities solution, which currently hosts the worldcities.client Angular app and the WorldCities.Server ASP.NET Core Web API.

If you created the solution in a dedicated folder, as we suggested in Chapter 2, Getting Ready —leaving the Place solution and project in the same directory flag set to OFF—the task is rather easy; just open a command-line prompt, navigate to the solution folder—such as C:/Projects/WorldCities/—and type the following command:

> dotnet new xunit -o WorldCities.Server.Tests

The .NET CLI should create a new project for us and process some post-creation actions. Once done, a message will inform us that the restore task has been completed (Restore succeeded). If we have done everything correctly, a new WorldCities.Server.Tests project should be present at the same folder level as the existing worldcities.client and WorldCities.Server projects.

Immediately after this, we can add our new WorldCities.Server.Tests project to our main solution in the following way:

	From Solution Explorer, right-click on the root solution’s node and select Add Existing Project.

	Navigate inside the /WorldCities.Server.Tests/ folder and select the WorldCities.Server.Tests.proj file.

The new WorldCities.Server.Tests project will be loaded in the existing solution, right below the existing WorldCities.Server project, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 10.1: The new WorldCities.Server.Tests project

Alternatively, we could add the new project to the solution file directly from the CLI with the following command: dotnet sln add WorldCities.Server.Tests.

Let’s delete the existing UnitTest1.cs file since we won’t need it. We’ll create our own unit testing classes in a short while.

The new WorldCities.Server.Tests project should already have the following NuGet package references:

	Microsoft.NET.Test.Sdk (version 17.8.0 or later)

	xunit (version 2.6.2 or later)

	xunit.runner.visualstudio (version 2.5.4 or later)

The preceding packages’ version numbers are the latest at the time of writing, and the ones that we’re going to use in this book. If you run into issues by using different versions, be sure to upgrade or downgrade them accordingly.

Furthermore, we need to install two additional NuGet packages: Moq and Microsoft.EntityFrameworkCore.InMemory. Let’s see what they are meant for and how to add them in the following sections.

Moq

Moq is arguably the most popular and friendly mocking framework for .NET. To better understand why we need it, we need to introduce the concept of mocking.

Mocking is a convenient feature that we can use in unit testing whenever the unit that we want to test has external dependencies that cannot be easily created within the testing project. The main purpose of a mocking framework is to create replacement objects that simulate the behavior of real ones. Moq is a minimalistic framework that will do just that.

To install it, do the following:

	From Solution Explorer, right-click on the WorldCities.Server.Tests project and choose Manage NuGet Packages.

	Search for the Moq keyword.

	Find and install the Moq NuGet package.

Alternatively, just type the following command in Visual Studio’s Package Manager Console (setting WorldCities.Server.Tests as the default project):

> Install-Package Moq

At the time of writing, we’re using Moq 4.20.70, this being the latest stable version. To be sure that you are using this version as well, just add -version 4.20.70 to the preceding command.

The latest Moq NuGet package, as well as all of the previous versions, are available here: https://www.nuget.org/packages/moq/

IMPORTANT: Before installing Moq, be sure to read this post from BleepingComputer.com that explains a non-trivial privacy concern regarding this Nuget package that was discovered on August 9, 2023:

https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/

… And also the enlightening take of Tomáš Herceg, .NET & Microsoft technologies expert, regarding that same matter:

https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg

Those who don’t want to install Moq after reading the whole story can use the Nsubstitute NuGet package instead, which is a great alternative to Moq and can be used to achieve the same results.

That’s it! We now need to install another NuGet package.

Microsoft.EntityFrameworkCore.InMemory

Microsoft.EntityFrameworkCore.InMemory is an in-memory database provider for Entity Framework Core that can be used for testing purposes. This is basically the same concept as the Angular in-memory Web API that we talked about in Chapter 5, Data Model with Entity Framework Core. In a nutshell, we can think of it as a convenient database mock.

To install it, do the following:

	From Solution Explorer, right-click on the WorldCities.Server.Tests project and choose Manage NuGet Packages.

	Search for the Microsoft.EntityFrameworkCore.InMemory keyword.

	Find and install the Microsoft.EntityFrameworkCore.InMemory NuGet package.

Alternatively, just type the following command in Visual Studio’s Package Manager Console:

> Install-Package Microsoft.EntityFrameworkCore.InMemory

At the time of writing, we’re using Microsoft.EntityFrameworkCore.InMemory 8.0.1, this being the latest stable version. To be sure that you are using this version as well, just add -version 8.0.1 to the preceding command.

The latest Microsoft.EntityFrameworkCore.InMemory NuGet package, as well as all of the previous versions, are available here: https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/

With this, we’re done with the external packages.

Adding the WorldCities dependency reference

The next thing we need to do is to add a reference to the API project in our new WorldCities.Server.Tests project’s dependencies so that we’ll be able to import the required classes and types.

To do that, right-click on the Dependencies node of the new project to add a new project reference to the WorldCities.Server ASP.NET Core project, as shown in the following screenshot, and press OK:

[image: Immagine che contiene testo, schermata, software, schermo Descrizione generata automaticamente]
Figure 10.2: Adding a new project reference

By doing this, our test project will be able to access (and hence test) the whole WorldCities.Server code.

We’re now ready to learn how xUnit actually works. As always, the best way to do this is to create our first unit test.

Our first test

In standard testing development practice, which we’re going to call STD from now on, unit tests are often used to ensure that our existing code is working properly. Once ready, those units will be protected against regression bugs and breaking changes.

Since our back-end code is a Web API, the first thing we cover with our unit tests should be the individual controllers’ methods. However, instantiating our controllers outside our web application’s life cycle is not that simple, since they have at least two important dependencies: HttpContext and ApplicationDbContext. Is there a way to instantiate them too in our WorldCities.Server.Tests project?

Thanks to Microsoft.EntityFrameworkCore.InMemory, this can be a rather easy task... as soon as we understand how to use it.

From Solution Explorer, open the WorldCities.Server.Tests project. Create a new CitiesController_Test.cs file in the project’s root and fill it with the following content:

using Microsoft.EntityFrameworkCore;
using System.Threading.Tasks;
using WorldCities.Server.Controllers;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
using Xunit;
namespace WorldCities.Server.Tests
{
 public class CitiesController_Tests
 {
 /// <summary>
/// Test the GetCity() method
/// </summary>
 [Fact]
 public async Task GetCity()
 {
 // Arrange
 // todo: define the required assets
 // Act
 // todo: invoke the test
 // Assert
 // todo: verify that conditions are met.
 }
 }
}

As we can see by looking at the highlighted comments, we have split the unit test into three code blocks, or phases:

	Arrange: Defines the assets required to run the test

	Act: Invokes the testing subject’s behavior

	Assert: Verifies that the expected conditions are met by evaluating the behavior’s return value, or measuring it against some user-defined rules

Such an approach is known as the Arrange, Act, Assert pattern. This is a typical way to describe the various phases of software testing in TDD. However, there are also alternative names used to describe these same test phases; for example, BDD frameworks usually refer to them as Given, When, and Then.

TDD and BDD are two development practices that enforce a different coding approach when compared to STD. We’ll talk more about these soon enough.

Regardless of the names, the important thing here is to understand the following key concepts:

	Separating the three phases increases the readability of the test

	Executing the three phases in the proper order makes the test easier to understand

Let’s now take a look at how we have implemented the three phases.

Arrange

The Arrange phase is the place where we define the assets required to run the test. In our scenario, since we’re going to test the functionality of the GetCity() method of CitiesController, we need to provide our controller with a suitable ApplicationDbContext.

However, since we’re not testing ApplicationDbContext itself, instantiating the real thing wouldn’t be advisable, at least for now. We don’t want our test to fail just because the database is unavailable or the database connection is incorrect, because these are different units and, therefore, should be checked by different unit tests. Moreover, we definitely can’t allow our unit tests to operate against our actual data source: what if we want to test an update or a delete task?

The best thing we can do to test our Web API controllers is to find a way to provide them with a replacement object that can behave just like our real ApplicationDbContext—in other words, a mock. This is where the Microsoft.EntityFrameworkCore.InMemory NuGet package that we installed earlier might come in handy.

Here’s how we can use it to properly implement the Arrange phase:

// ...existing code...
// Arrange
var options = new DbContextOptionsBuilder<ApplicationDbContext>()
 .UseInMemoryDatabase(databaseName: "WorldCities")
 .Options;
using var context = new ApplicationDbContext(options);
context.Add(new City()
{
 Id = 1,
 CountryId = 1,
 Lat = 1,
 Lon = 1,
 Name = "TestCity1"
});
context.SaveChanges();
var controller = new CitiesController(context);
City? city_existing = null;
City? city_notExisting = null;
// ...existing code...

As we can see, we’ve used the UseInMemoryDatabase extension method provided by the Microsoft.EntityFrameworkCore.InMemory package to create a suitable DbContextOptionsBuilder. Once we have it, we can use it to instantiate an ApplicationDbContext session with an in-memory database, instead of the SQL Server used by the WorldCities.Server project: it’s worth noting that we’ve instantiated it using a using statement so that the ApplicationDbContext will be automatically disposed of at the end of the test method.

Starting from C# 8, the using statement can be used without setting an explicit scope, thus allowing for a more convenient syntax as we did in the above code. For additional info about such a convenient feature, read the official docs at the following URL:

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

Once created, that context can be populated by creating new cities, which is what we did in the preceding code, creating TestCity1 with some random data. This will allow our GetCity() method of CitiesController to actually retrieve something, provided that we pass a city id.

Other than that, we have created a CitiesController instance using the in-memory context and defined two City objects that will contain the two specimens for this test.

Act

The Act phase is where the test takes place. It often consists of a single instruction that corresponds to the behavior of the unit that we want to check.

Here’s the Act phase implementation:

// ...existing code...
// Act
city_existing = (await controller.GetCity(1)).Value;
city_notExisting = (await controller.GetCity(2)).Value;
// ...existing code...

The above code is quite self-explanatory. We are using the previously created controller instance to execute the GetCity() method two times:

	The first occasion is to retrieve an existing city (using the same Id that we used to populate our in-memory database)

	The second occasion is to retrieve a non-existing city (using a different Id)

The two return values are then stored in the city_existing and city_notExisting variables. Ideally, the first one should contain TestCity1, which we created in the Arrange phase, while the latter should be null.

Assert

The purpose of the Assert phase is to verify that the conditions that we expect are properly met by the values retrieved by the Act phase. To do this, we’ll make use of the Assert class provided by xUnit, which contains various static methods that can be used to verify that these conditions are met.

Here’s the Assert phase implementation:

// ...existing code...
// Assert
Assert.NotNull(city_existing);
Assert.Null(city_notExisting);
// ...existing code...

As we can see, we’re just checking the values of the two variables that contain the return values of the two GetCity() method calls of CitiesController made in the Act phase. We reasonably expect city_existing not to be null, while city_notExisting should definitely be null.

Our test is now ready, so let’s see how we can execute it.

Executing the test

Each unit test can be executed in two ways:

	From the command line, using the .NET CLI

	From the Visual Studio GUI, using Visual Studio’s built-in test runner (Test Explorer)

Let’s quickly try both of these approaches.

Using the CLI

To execute our test unit(s) by using the .NET CLI, perform the following steps:

	Open Command Prompt.

	Navigate to the WorldCities.Server.Tests project root folder.

	Execute the following command:
 > dotnet test

If we have done everything correctly, we should see something like this:

[image: A computer screen shot of a black screen Description automatically generated]
Figure 10.3: Command Prompt output after executing the test

That’s it. Our test is working and it passes, meaning that the GetCity() method of CitiesController is behaving as expected.

Using the Visual Studio Test Explorer

Being able to run our tests from the command line can be a great feature if we want to automate these kinds of tasks. However, in most cases, we’ll instead want to be able to run these tests directly from within the Visual Studio GUI.

Luckily enough, this is definitely possible thanks to the Test Explorer window, which can be activated by pressing Ctrl + E, T or from Menu | View, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 10.4: Navigating to Test Explorer in Visual Studio

Once activated, the Test Explorer window should appear, either undocked in the middle of the screen or in the rightmost part of the Visual Studio GUI, just below the Solution Explorer window. From there, we can either run all tests or just the current test by pressing the first two green play icons placed in the top-left part of the panel, called Run All and Run, respectively (refer to the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 10.5: The Test Explorer window

Since we only have a single test, for now, either command will do the same thing: run our unit test and show the results using either a green check (success) or a red cross (failure).

As we can see in the preceding screenshot, those green and/or red icons will be used to determine the combined results of the testing class, the namespace, and the whole assembly.

Before moving further, we should spend another couple of minutes learning how to debug these unit tests.

Debugging tests

If we click on the arrow handle next to the second Run icon in the top-left part of the Test Explorer window, we can see that there are a number of other possible commands we can give to our tests, including Debug, Debug All Tests In View, and Debug Last Run (refer to the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 10.6: Viewing the test run and debug options

Alternatively, we can use the Debug Tests command that is shown when we right-click on the WorldCities.Server.Tests project node from the Solution Explorer window:

[image: A screenshot of a computer Description automatically generated]
Figure 10.7: Viewing the Debug Tests option

Both commands will execute our test in debug mode, meaning that we can set breakpoints (or conditional breakpoints) and evaluate the results.

To quickly test it, set a breakpoint on the first line of the Assert region, then execute the preceding Debug Tests command, and wait for the hit:

[image: A screenshot of a computer Description automatically generated]
Figure 10.8: Hitting the breakpoint

There we go. Now, we know how to debug our unit tests. This can be very useful during the adoption phase when we still don’t know how to properly use them and/or we’re still learning the various xUnit.net commands.

Those readers who want to know more about xUnit.net for .NET and the unique unit test classes and methods provided by this package are strongly encouraged to check out the following URL: https://xunit.net/docs/getting-started/netcore/cmdline.

Before switching to the front-end, it is worth spending a couple of minutes familiarizing ourselves with the concepts of TDD and BDD, since this is something that could greatly help us to create useful and relevant tests.

Test-driven development

TDD is more of a programming practice than a testing approach, and it can be a very good practice, at least for certain scenarios.

In a nutshell, a software developer that adopts the TDD methodology will convert all of the software requirements into specific test cases and then write the new code, or improve the existing code, so that the tests will pass.

Let’s try to visualize the actual life cycle of these programming practices with the help of a small diagram:

[image: A diagram of a diagram of a process Description automatically generated with medium confidence]
Figure 10.9: Test-driven development life cycle

As we can see, TDD is mostly a way of designing the code that requires developers to start writing test cases that express what they intend the code to do before writing any actual code (RED). Once done, it asks them to only write the code required to make the test cases pass (GREEN). Eventually, when all of the test cases pass, the existing code can be improved (REFACTOR) until more test cases appear. This short development cycle is conventionally called RED-GREEN-REFACTOR and is the backbone of the TDD practice. It’s worth noting that RED is always the initial step of any cycle since the tests will always fail at the start because the code that could allow them to pass is yet to be written.

Such a practice is very different from the STD practice, where we first generate the code and then (maybe) the tests. In other words, our source code can be (and, therefore, usually is) written before (or even without) test cases. The main difference between the two approaches is that, in TDD, tests are the requirement conditions that we need to fulfill, while in STD, as we have already said a short while ago, they are mostly proof that our existing code is working.

In the next chapter, when dealing with authentication and authorization, we’ll try to create a couple of back-end unit tests using the TDD approach; after all, since the TDD practice requires the creation of test cases only when we have to implement additional requirements, the best way to use it is when we have some new features to add.

Behavior-driven development

BDD is an Agile software development process that shares the same test-first approach as TDD but emphasizes results from the end user’s perspective instead of focusing on implementation.

To better understand the key differences between TDD and BDD, we can ask ourselves the following question:

What are we testing for?

That’s a great question to ask when we’re about to write some unit tests.

If we want to test the actual implementation of our methods/units, TDD might be the appropriate way to go. However, if we aim to figure out the end-user behavior of our application under specific circumstances, TDD might give us false positives, especially if the system evolves (as Agile-driven projects often do). More specifically, we could encounter a scenario where one or more units are passing their tests despite failing to deliver the expected end-user outcome.

In more general terms, we can say the following:

	TDD is meant to enforce developers’ control over the source code they write

	BDD aims to satisfy both the developer and the end-user (or customer)

Therefore, we can easily see how BDD supersedes TDD instead of replacing it.

Let’s try to wrap up these concepts in a diagram:

[image: A diagram of a process Description automatically generated]
Figure 10.10: Behavior-driven development life cycle

As we can see, BDD acts just like an extension of TDD. Instead of writing the test cases, we start by writing a behavior. As soon as we do that, we will develop the required code for our application to be able to perform it (arguably using TDD), and then move on to define additional behaviors or refactor existing ones.

Since these behaviors are aimed at the end-user, they must also be written using understandable terms. For that very reason, BDD tests are usually defined using a semi-formal format that is borrowed from Agile’s user stories, with a strong narrative and explicit contextualization. These user stories are generally meant to comply with the following structure:

	Title: An explicit title, such as Editing an Existing City

	Narrative: A descriptive section that uses the Role / Feature / Benefit pattern from Agile user stories, such as As a user, I want to edit an existing City, so that I can change its values

	Acceptance criteria: A description of the three test phases, using the Given / When / Then model, which is basically a more understandable version of the Arrange / Act / Assert cycle used in TDD, such as Given a world cities database containing one or more cities; When the user selects a City; Then the app must retrieve it from the DB and display it on the front-end

As we can see, we just tried to describe the unit test we created a while ago using a typical BDD approach. Although it mostly works, it’s evident that a single behavior might require multiple back-end and front-end unit tests. This lets us understand another distinctive feature of the BDD practice. Emphasizing the utmost importance of the front-end testing phase is the best way to test user behavior rather than an implementation specification.

All in all, BDD can be a great way to extend a standard TDD approach to design our tests in a way that means their results can address a wider audience—provided we’re able to properly design not only the required back-end test (using ASP.NET Core) but also the front-end tests (using Angular).

In this section, we’ve learned how to handle the back-end part of the story; in the next section, we’re going to expand our knowledge to the front-end.

Angular unit tests

Luckily enough, this time, we won’t need to install anything since the ASP.NET Core and Angular Visual Studio template that we used to create our WorldCities project already contains everything we need to write app tests for our Angular application.

More specifically, we can already count on the following packages, which we briefly introduced in Chapter 3, Looking Around:

	Jasmine: A JavaScript testing framework that fully supports the BDD approach that we talked about earlier

	Karma: A tool that lets us spawn browsers and run our Jasmine tests inside them (and show their results) from the command line

	Protractor: An end-to-end test framework that runs tests against Angular applications from within a real browser, interacting with it as if it were a real user

For additional information, check out the following guides:

Karma: https://karma-runner.github.io/

Jasmine: https://jasmine.github.io/

Protractor: https://www.protractortest.org/

Angular unit test: https://angular.io/guide/testing

In the following sections, we’re going to do the following:

	Review the testing configuration files still present in our worldcities.client Angular app

	Introduce the TestBed interface, one of the most important concepts of Angular testing

	Explore Jasmine and Karma to understand how they actually work

	Create some .spec.ts files to test our existing components

	Set up and configure some tests for our Angular app

Let’s get started!

General concepts

In contrast to what we did in ASP.NET Core, where we created our unit tests in separate WorldCities.Server.Tests projects, all our front-end tests will be written in the same project that hosts our Angular app.

As a matter of fact, we’ve already seen one of these tests in Chapter 3, Looking Around, when we explored the /src/app/ Angular folder of our healthcheck.client app for the first time. The test was written in the app.component.spec.ts file, and we played with it just before refactoring that component.

Now we’ve switched to the worldcities.client app; however, we should still have the /src/karma.conf.js file: this is the application-specific Karma configuration file, containing information about the reporters, the browser to use, the TCP port, and so on.

Since we’ve created all our components using the Angular CLI’s ng generate command with the --skip-tests option, we should only have a single .spec.ts file in our Angular project: the app.component.spec.ts file (unless we deleted it). This means that if we want to create some tests for our components, we need to manually create them.

However, before doing that, it would be wise to spend a bit longer explaining how Angular testing actually works.

Introducing the TestBed interface

The TestBed interface is one of the most important concepts of the Angular testing approach. In a nutshell, TestBed is a dynamically constructed Angular test module that emulates the behavior of an Angular @NgModule.

The TestBed concept was first introduced with Angular 2 as a convenient way to test a component with a real DOM behind it. The TestBed interface significantly assists in this regard thanks to its support for injecting services (either real or mock) into our components, as well as automatically binding components and templates.

To better understand how TestBed actually works and how we can use it, let’s take a look at the TestBed implementation of the app.component.spec.ts file that we modified back in Chapter 3, Looking Around:

await TestBed.configureTestingModule({
 declarations: [
 AppComponent
],
 imports: [
 HttpClientTestingModule
],
}).compileComponents();

In the preceding code, we can see how TestBed reproduces the behavior of a minimalistic AppModule file—the bootstrap @NgModule of an Angular app—with the sole purpose of compiling the components that we need to test: more specifically, it uses the Angular module system to declare and compile the AppComponent so that we can use its source code in our tests.

Testing with Jasmine

Jasmine tests are usually constructed using the following three main APIs:

	describe(): A wrapping context used to create a group of tests (also called a test suite)

	it(): The declaration of a single test

	expect(): The expected result of a test

These APIs are already available within the *.spec.ts files generated by the Angular CLI, thanks to the built-in Angular integration with the Jasmine testing framework; if we quickly check our app.component.spec.ts file, we can easily confirm that.

Keeping this in mind, let’s create our first testing class file for our Angular app.

Our first Angular test suite

Let’s now create our own test suite, and a corresponding TestBed, for one of our existing Angular components. We’ll use CitiesComponent since we know it very well.

Unfortunately, the Angular CLI doesn’t (yet) provide a way to automatically generate spec.ts files for existing component classes. However, there are a number of third-party libraries that generate specs.ts files based on Angular CLI spec presets.

The most popular (and widely used) package that does that is called ngx-spec and is available on GitHub at the following URL: https://github.com/smnbbrv/ngx-spec.

However, we’re not going to use it in our specific scenario: we’ll create and implement our spec.ts files manually so that we can better understand how they work.

From Solution Explorer, create a new /src/app/cities/cities.component.spec.ts file and open it. Since we’re going to write a fair amount of source code, it would be wise to separate it into multiple blocks.

The import section

Let’s start by defining the required import statements:

import { ComponentFixture, TestBed } from '@angular/core/testing';
import { BrowserAnimationsModule } from '@angular/platform-browser/animations';
import { AngularMaterialModule } from '../angular-material.module';
import { RouterTestingModule } from '@angular/router/testing';
import { of } from 'rxjs';
import { CitiesComponent } from './cities.component';
import { City } from './city';
import { CityService } from './city.service';
import { ApiResult } from '../base.service';
// ... to be continued ...

As we can see, we added a bunch of modules that we already used in our AppModule and CitiesComponent classes. This is certainly anticipated since our TestBed will need to reproduce a suitable @NgModule for our tests to run.

The describe and beforeEach sections

Now that we have got all of our required references, let’s see how we can use the describe() API to lay out our testing suite:

// ...existing code...
describe('CitiesComponent', () => {
 let component: CitiesComponent;
 let fixture: ComponentFixture<CitiesComponent>;
 beforeEach(async () => {
 // TODO: declare & initialize required providers
await TestBed.configureTestingModule({
 declarations: [CitiesComponent],
 imports: [
 BrowserAnimationsModule,
 AngularMaterialModule,
 RouterTestingModule
],
 providers: [
 // TODO: reference required providers
]
 })
 .compileComponents();
 });
 beforeEach(() => {
 fixture = TestBed.createComponent(CitiesComponent);
 component = fixture.componentInstance;
 // TODO: configure fixture/component/children/etc.
 fixture.detectChanges();
 });
 it('should create', () => {
 expect(component).toBeTruthy();
 });
 // TODO: implement some other tests
});

As we can see by looking at the preceding code, everything happens within a single describe() wrapping context, which represents our CitiesComponent test suite. All of the tests related to our CitiesComponent class will be implemented inside this suite.

It’s worth noting that the above cities.component.spec.ts source code is almost identical to the one generated by the Angular CLI when running the ng generate component command without using the --skip-tests option. Such boilerplate is a great way to start writing tests since it already contains the TestBed, the component references, and a basic sample test.

The first thing we have done in the test suite is define two important variables that will play a pivotal role in all tests:

	fixture: This property hosts a fixed state of CitiesComponent for running tests; we can use this fixture to interact with the instantiated component and its child elements

	component: This property contains the CitiesComponent instance created from the preceding fixture

Immediately after this, we have two consecutive beforeEach() method calls:

	An asynchronous beforeEach(), where TestBed is created and initialized

	A synchronous beforeEach(), where fixtures and components are instantiated and configured

Inside the first (asynchronous) beforeEach(), we have defined a TestBed for our CitiesComponent, which imports the required modules for the tests we want to add: BrowserAnimationModule, AngularMaterialModule, and RouterTestingModule. As we can see from the two todo comments we’ve placed here, this is also the place where we’re going to declare, initialize, and reference our providers (such as CityService); otherwise, CitiesComponent won’t be able to inject them. We’ll do that in a short while.

Inside the second (synchronous) beforeEach(), we have instantiated our fixture and component variables. Since we’ll likely have to properly set them up and/or configure some of our component’s child elements, we’ve left a third todo comment there as well.

At the end of the file, we can find our first test, which basically checks that the component has been created without errors: such a test mimics the “default” test created by the Angular CLI when using the ng generate component command without the --skip-tests option.

That first test is followed by a fourth todo comment; this is where we’ll get to implement our additional tests using the it() and expect() APIs provided by the Jasmine framework.

Adding a mock CityService

Now, we’re going to replace our first and second todos by implementing a mock CityService so that we can reference it within our TestBed.

As we already know from the previous sections, a mock is a replacement object that simulates the behavior of a real one.

Just like ASP.NET Core and xUnit, Jasmine provides multiple ways to set up mock objects. In the following sections, we’ll briefly review some of the most frequently used approaches.

Fake service class

We can create a fake CityService, which just returns whatever we want for our test. Once done, we can import it in the .spec.ts class and add it to TestBed’s providers list so that it will be called by our component just like the real one.

Extending and overriding

Instead of creating a whole double class, we can just extend the real service and then override the methods we need in order to perform our tests. Once done, we can set up an instance of the extended class in our TestBed using @NgModule's useValue feature.

Interface instance

Instead of creating a new double or extended class, we can just instantiate the interface of our service, implementing just the method that we need for our tests. Once done, we can set up that instance in our TestBed using @NgModule's useValue feature.

Spy

This approach relies upon a Jasmine-specific feature called a spy, which lets us take an existing class, function, or object and mock it so that we can control its return values. Since the real method won’t be executed, a spy method will work just like an override, without having to create an extended class.

We can use such a feature to create a real instance of our service, spy the method that we want to override, and then set up that specific instance in our TestBed using @NgModule's useValue feature. Alternatively, we can use the jasmine.createSpyObj() static function to create a mock object with multiple spy methods that we can then configure in various ways.

Implementing the mock CityService

Which route should we take? Unfortunately, there’s no one best answer for all scenarios, since the best approach often depends on the complexity of the features we want to test and/or how we want to structure our test suite.

Theoretically speaking, creating a whole fake service class is arguably the safest and most versatile choice since we can fully customize our mock service return values. However, it can also be time-consuming and often unnecessary when we’re dealing with simple services and/or small-scale tests. Conversely, the extend and override, interface, and spy approaches are often a great way to address the basic requirements of most tests, yet they might give unexpected results in complex testing scenarios unless we pay close attention to overriding/spying all of the required methods.

Everything considered, since our CityService is quite small and features a simple implementation with a small number of methods, we’re going to use the spy approach, which seems to be the most apt approach for our given scenario.

Let’s go back to the /src/cities/cities.components.spec.ts file. Once there, the following line of code needs to be replaced:

 // TODO: declare & initialize required providers

The preceding line of code has to be replaced with the following code:

// Create a mock cityService object with a mock 'getData' method
let cityService = jasmine.createSpyObj<CityService>('CityService', ['getData']);
// Configure the 'getData' spy method
cityService.getData.and.returnValue(
 // return an Observable with some test data
of<ApiResult<City>>(<ApiResult<City>>{
 data: [
 <City>{
 name: 'TestCity1',
 id: 1, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 },
 <City>{
 name: 'TestCity2',
 id: 2, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 },
 <City>{
 name: 'TestCity3',
 id: 3, lat: 1, lon: 1,
 countryId: 1, countryName: 'TestCountry1'
 }
],
 totalCount: 3,
 pageIndex: 0,
 pageSize: 10
 }));

That’s it. Now, we can add our new mock CityService to the TestBed configuration, replacing the second todo:

// TODO: reference required providers

This is replaced with the highlighted lines of the following code:

// ...existing code...
await TestBed.configureTestingModule({
 declarations: [CitiesComponent],
 imports: [
 BrowserAnimationsModule,
 AngularMaterialModule,
 RouterTestingModule
],
 providers: [
 {
 provide: CityService,
 useValue: cityService
 }
]
})
 .compileComponents();
// ...existing code...

That mock CityService will now be injected into CitiesComponent, thereby making us able to control the data returned for each test.

Alternative implementation using the interface approach

Here’s how we could have implemented the mock CityService using the interface approach:

 // Create a mock cityService object with a mock 'getData' method
let cityService = <CityService>{
 put: (): Observable<City> => { /* todo */ },
 post: (): Observable<City> => { /* todo */ },
 // todo
 };

As we can see, implementing the interface would require a lot of additional code if we want to maintain the <CityService> type assertion. That’s why we’ve used the spy approach instead.

Configuring the fixture and the component

It’s now time to remove the third todo in our /src/cities/cities.components.spec.ts class:

// todo: configure fixture/component/children/etc.

This needs to be replaced with the following highlighted lines:

// ...existing code...
beforeEach(() => {
 fixture = TestBed.createComponent(CitiesComponent);
 component = fixture.componentInstance;
 component.paginator = jasmine.createSpyObj(
 "MatPaginator", ["length", "pageIndex", "pageSize"]
);
 fixture.detectChanges();
 });
// ...existing code...

The preceding code will perform the following steps directly before each test:

	Create a mock MatPaginator object instance

	Trigger a change detection run on our component

As we might easily surmise, change detection isn’t done automatically there: it must be triggered by calling the detectChanges method on our fixture. Such a call will make our ngOnInit() method fire and populate the table with the cities. Since we’re testing the component behavior, that’s definitely something to do before running our tests.

Now, we’re finally ready to create our first test.

Creating the title test

The last remaining todo line in our /src/cities/cities.components.spec.ts class needs to be replaced:

// TODO: implement some other tests

The preceding line of code needs to be replaced as follows:

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities');
});

As we can see, we’re finally using the it() and expect() Jasmine methods. The former declares the meaning of our test, while the latter evaluates the component’s behavior against the expected one and determines the test result.

In this first test, we want to check that the component displays a Cities title to the user. Since we know that our component’s template holds the title inside an <H1> HTML element, we can check it by performing a DOM query against fixture.nativeElement, the root component element that contains all of the rendered HTML content.

Once we get the title element, we check its textContent property to see whether it’s what we expect (Cities). This is what will make the test pass or fail.

Creating the cities tests

Before running our test suite, let’s add another test.

Open the /src/cities/cities.components.spec.ts file again and add the following lines right below the previous test:

// ...existing code...
it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');
 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(0);
});
// ...existing code...

This time, we’re checking the table that contains the list of cities. More precisely, we’re counting the table body rows to ensure that the resulting number is greater than zero, meaning that the table has been filled with at least one city. To perform such a count, we’re using the CSS classes that Angular Material assigns to its MatTable component by default.

To better understand this, take a look at the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 10.11: Inspecting rows of our Cities list

As we can see, the mat-mdc-row CSS class is only applied to the table body rows, while the table header rows have the mat-mdc-header-row class. Therefore, if the test passes, it definitely means that the component created at least one row within the table.

It goes without saying that relying on CSS classes applied by a third-party package to define our tests is not a good practice. We’re doing this just to demonstrate what we can do with our current implementation. A safer approach for such DOM-based tests would arguably require defining custom CSS classes and checking for their presence instead.

Running the test suite

It’s now time to run our test suite and see what we’ve got.

To do this, perform the following steps:

	Open Command Prompt.

	Navigate to the root folder of the worldcities.client Angular project.

	Execute the following command:
 > ng test

This will launch the Karma test runner, which will open a dedicated browser in which to run the tests. If we have done everything correctly, we should be able to see the following results:

[image: A screenshot of a computer Description automatically generated]
Figure 10.12: Results of our test

That’s it; all three tests designed for CitiesComponent have passed. To be 100% certain that we did everything properly, let’s now try to make them fail.

Open the /src/cities/cities.components.spec.ts file again and modify the test’s source code in the following way (the updated lines are highlighted):

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities!!!');
});
it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');
 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(3);
});

Now, our first test will expect an incorrect title value, and the second will look for more than three rows, which won’t be the case since our mock CityService has been configured to serve three of them.

As soon as we save the file, the Karma test runner should automatically reload the testing page and show the updated results (refer to the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 10.13: Results showing the test has failed

There we go. Now, we are experiencing two failures, just as expected. The Jasmine framework is also telling us what’s wrong so that we can address the issues promptly.

Let’s do this. Open the /src/cities/cities.components.spec.ts file and revert the test’s source code to how it was before:

it('should display a "Cities" title', () => {
 let title = fixture.nativeElement
 .querySelector('h1');
 expect(title.textContent).toEqual('Cities');
});
it('should contain a table with a list of one or more cities', () => {
 let table = fixture.nativeElement
 .querySelector('table.mat-mdc-table');
 let tableRows = table
 .querySelectorAll('tr.mat-mdc-row');
 expect(tableRows.length).toBeGreaterThan(0);
});

That’s it. Now that we have tested our test suite, we can close the test runner by pressing Ctrl + C on the ng test terminal window and then choosing Y (and hitting Enter) to terminate the batch job.

With this, we’ve concluded our learning journey through front-end testing.

Summary

This chapter was entirely dedicated to the concepts of testing and unit testing. After a brief introduction, where we explained the meaning of these concepts and the various testing practices available, we spent some valuable time learning how to implement them properly.

We started focusing on back-end testing with the help of the xUnit.net testing tool. Such an approach required us to create a new test project, where we implemented our first back-end unit tests. While working on it, we learned about the importance of some test-related concepts, such as mocking, which we used to emulate the behavior of our ApplicationDbContext class to provide some in-memory data instead of using our SQL Server data source.

The back-end testing approach greatly helped us to understand the meaning of TDD and its similarities and differences vis-à-vis the BDD approach, which is a distinctive front-end testing practice.

Such a comparison guided us to Angular, where we used the Jasmine testing framework and the Karma test runner to develop some front-end tests. Here, we got the opportunity to learn about some good testing practices as well as other important concepts strictly related to the Jasmine framework, such as TestBed, test suites, and the spy method. Eventually, we successfully saw our tests in action in our worldcities.client app.

In the next chapter, we’ll try to design some more tests when dealing with the authorization and authentication topics. The concepts that we learned here will definitely be very useful when implementing the registration and login workflows.

Suggested topics

For further information, we recommend the following topics: unit testing, xUnit, Moq, TDD, BDD, mock, stub, fixture, Jasmine, Karma, Protractor, Spy, test suite, and TestBed.

References

	Getting Started with xUnit.net: https://xunit.net/docs/getting-started/netcore/cmdline

	Unit testing in .NET: https://learn.microsoft.com/en-US/dotnet/core/testing/

	Unit test controller logic in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

	Popular open source project Moq criticized for quietly collecting data: https://www.bleepingcomputer.com/news/security/popular-open-source-project-moq-criticized-for-quietly-collecting-data/

	Microsoft.EntityFrameworkCore.InMemory NuGet package: https://www.linkedin.com/pulse/my-take-open-source-recent-drama-around-moq-tomáš-herceg

	My take on open-source and the recent “drama” around Moq: https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory/

	The using statement (C#): https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/keywords/using-statement

	xUnit.net – Using ASP.NET Core with the .NET SDK command line: https://xunit.net/docs/getting-started/netcore/cmdline

	Angular – Testing: https://angular.io/guide/testing

	Protractor: End-to-end testing for Angular: https://www.protractortest.org/

	Jasmine: Behavior-Driven JavaScript: https://jasmine.github.io/

	Karma: Spectacular Test Runner for JavaScript: https://karma-runner.github.io/latest/index.html

	Angular Testing: ComponentFixture: https://angular.io/api/core/testing/ComponentFixture

	Angular References: ngAfterViewInit: https://ngrefs.com/latest/core/ng-after-view-init

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

11

Authentication and Authorization

Generally, the term authentication refers to any process of verification that determines whether someone, be it a human being or an automated system, is who (or what) they claim to be. This is also true within the context of the World Wide Web (WWW), where that same word is mostly used to denote any technique used by a website or service to collect a set of login information from a user agent, typically a web browser, and authenticate them using a membership and/or identity service.

Authentication should never be confused with authorization, as this is a different process and is in charge of a very different task. To give a quick definition, we can say that the purpose of authorization is to confirm that the requesting user is allowed to have access to the action they want to perform. In other words, while authentication is about who they are, authorization is about what they’re allowed to do.

To better understand the difference between these two, apparently, similar concepts, we can think of two real-world scenarios:

	A free, yet registered, account trying to gain access to a paid or premium-only service or feature. This is a common example of authenticated, yet not authorized, access; we know who they are, yet they’re not allowed to go there.

	An anonymous user trying to gain access to a publicly available page or file; this is an example of non-authenticated, yet authorized, access; we don’t know who they are, yet they can access public resources just like everyone else.

Authentication and authorization will be the main topics of this chapter, which we’ll try to address from both theoretical and practical points of view, and we’ll also show some possible implementation approaches, for demonstration purposes only.

More precisely, we’re going to talk about the following topics:

	To auth, or not to auth? Here, we discuss some typical scenarios where authentication and authorization could either be required or not, ensuring we properly understand the meaning of such terms and how they can be implemented in a typical web application context.

	Proprietary auth with .NET Core: Introduces ASP.NET Core Identity, a modern membership system that allows developers to add login functionality to their applications, as well as JwtBearerMiddleware, a middleware designed to add JWT authentication support to any ASP.NET Core application; furthermore, we’ll implement ASP.NET Core Identity and JwtBearerMiddleware to add login functionalities to our existing WorldCities app.

	Updating the database: Focuses on updating our existing WorldCities database to create the auth-related tables and add a couple of test users to test the login.

	Implementing authentication in Angular: This is where we’ll refactor our Angular app to make it able to interact with the ASP.NET Core Identity system, introducing some new Angular features, such as HttpInterceptors and Route Guards, that will handle the whole authentication and authorization flow.

Let’s go!

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in the previous chapters, with the following additional packages:

	Microsoft.AspNetCore.Identity.EntityFrameworkCore

	Microsoft.AspNetCore.Authentication.JwtBearer

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during the chapter to better contextualize their purposes within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_11/

To auth, or not to auth?

As a matter of fact, implementing authentication and/or authorization logic isn’t mandatory for most web-based applications or services; there are a number of websites that still don’t do that, mostly because they serve content that can be accessed by anyone at any time. This used to be pretty common among most corporate, marketing, and informative websites until some years ago; that was before their owners learned how important it is to build a network of registered users and how much these “loyal” contacts are worth nowadays.

We don’t need to be experienced developers to acknowledge how much the WWW has changed in the last few years; each and every website, regardless of its purpose, has an increasing and more or less legitimate interest in tracking its users nowadays, giving users the chance to customize their navigation experience, interact with their social networks, collect email addresses, and so on. None of the preceding can be done without an authentication mechanism of some sort.

There are billions of websites and services that require authentication to work properly, as most of their content and/or intentions depend upon the actions of registered users: forums, blogs, shopping carts, subscription-based services, and even collaborative tools such as wikis.

Long story short, the answer is yes; as long as we want to have users performing Create, Read, Update, and Delete (CRUD) operations within our client app, there is no doubt that we should implement some kind of authentication and authorization procedure. If we’re aiming for a production-ready Single-Page Application (SPA) featuring some user interactions of any kind, we definitely want to know who our users are in terms of names and email addresses. It is the only way to determine who will be able to view, add, update, or delete our records, not to mention perform administrative-level tasks, keep track of our users, and so on.

Authentication

Since the origin of the WWW, the vast majority of authentication techniques rely upon HTTP/HTTPS implementation standards, and all of them work more or less in the following way:

	A non-authenticated user agent asks for content that cannot be accessed without some kind of permission.

	The web application returns an authentication request, usually in the form of an HTML page containing an empty web form to complete.

	The user fills in the web form with their credentials, usually a username and a password, and then sends it back with a POST command, which is most likely issued by a click on a Submit button.

	The web application receives the POST data and calls the aforementioned server-side implementation, which will try to authenticate the user with the given input and return an appropriate result.

	If the result is successful, the web application will authenticate the user and store the relevant data somewhere, depending on the chosen authentication method; this may include sessions/cookies, tokens, signatures, and so on (we’ll talk about these later on). Conversely, the result will be presented to the user as a readable outcome on an error page, possibly asking them to try again, contact an administrator, or something else.

This is still the most common approach nowadays. Almost all websites we can think of use it, albeit with a number of big or small differences regarding security layers, state management, JSON Web Tokens (JWTs) or other RESTful tokens, basic or digest access, single sign-on properties, and more. Before moving forward, let’s spend a bit of time explaining the most relevant of them.

Authentication methods

As we most certainly know, the HTTP protocol is stateless, meaning that whatever we do during a request/response cycle will be lost before the subsequent request, including the authentication result. The only way we can overcome this is to store that result somewhere, along with all its relevant data, such as the user ID, login date/time, and last request time. In the following sections, we’ll briefly discuss some methods to store that data.

Sessions/cookies

Up until a few years ago, the most common and traditional method to do this was to store the data on the server using either a memory-based, disk-based, or external session manager. Each session could be retrieved using a unique ID that the client received with the authentication response, usually inside a session cookie, which was transmitted to the server on each subsequent request.

Here’s a diagram outlining the Session-Based Authentication Flow:

[image: A diagram of a process flow Description automatically generated]
Figure 11.1: Session-based authentication flow

This is still a very common technique used by most web applications. There’s nothing wrong with adopting this approach, as long as we are okay with its widely acknowledged downsides, such as the following:

	Memory issues: Whenever there are many authenticated users, the web server will consume more and more memory. Even if we use a file-based or external session provider, there will nonetheless be an intensive I/O, TCP, or socket overhead.

	Scalability issues: Replicating a session provider in a scalable architecture (IIS web farm, load-balanced cluster, and the like) might not be an easy task, and will often lead to bottlenecks or wasted resources.

	Cross-domain issues: Session cookies behave just like standard cookies, so they cannot be easily shared between different origins/domains. These kinds of problems can often be solved with some workarounds, yet they will often lead to insecure scenarios to make things work.

	Security issues: There is a wide range of detailed literature on security-related issues involving sessions and session cookies: for instance, Cross-Site Request Forgery (CSRF) attacks, and a number of other threats that won’t be covered here for the sake of simplicity. Most of them can be mitigated by some countermeasures, yet they can be difficult to handle for junior or novice developers.

As these issues have arisen over the years, there’s no doubt that most analysts and developers have put a lot of effort into figuring out different approaches, as well as mitigating them.

A pivotal improvement regarding mitigation was achieved in 2016 with the SameSite cookies draft, which suggested an HTTP security policy that was then improved by the Cookies HTTP State Management Mechanism (April 2019) and the Incrementally Better Cookies (May 2019) drafts.

These drafts are linked here, should you wish to read them yourself:

https://tools.ietf.org/html/draft-west-first-party-cookies-07

https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

Now that most browsers have adopted the SameSite cookie specification, cookie-based authentication is a lot safer than before.

Tokens

Token-based authentication has been increasingly adopted by SPAs and mobile apps in the last few years for several undeniably good reasons, which we’ll try to briefly summarize here.

The most important difference between session-based authentication and token-based authentication is that the latter is stateless, meaning that we won’t be storing any user-specific information on the server memory, database, session provider, or other data containers of any sort.

This single aspect solves most of the downsides that we pointed out earlier for session-based authentication. We won’t have sessions, so there won’t be an increasing overhead; we won’t need a session provider, so scaling will be much easier. Also, for browsers supporting LocalStorage, we won’t even be using cookies, so we won’t get blocked by cross-origin restrictive policies, and hopefully, we’ll get around most security issues.

Here’s a typical Token-Based Authentication Flow:

[image: A diagram of a computer Description automatically generated]
Figure 11.2: Token-based authentication flow

In terms of client-server interaction, these steps don’t seem that different from the session-based authentication flow diagram; apparently, the only difference is that we’ll be issuing and checking tokens instead of creating and retrieving sessions. However, the real deal is happening (or not happening) on the server side. We can immediately see that the token-based authentication flow does not rely on a stateful session-state server, service, or manager. This will easily translate into a considerable boost in terms of performance and scalability.

Signatures

This is a method used by most modern API-based cloud computing and storage services, including Microsoft Azure and Amazon Web Services (AWS). In contrast to session-based and token-based approaches, which rely on a transport layer that can theoretically be accessed by or exposed to a third-party attacker, signature-based authentication performs a hash of the whole request using a previously shared private key. This ensures that no intruder or man-in-the-middle can ever act as the requesting user, as they won’t be able to sign the request.

Two-factor

This is the standard authentication method used by most banking and financial accounts, being arguably the most secure one.

The implementation may vary, but it always relies on the following base workflow:

	The user performs a standard login with a username and password

	The server identifies the user and prompts them with an additional, user-specific request that can only be satisfied by something obtained or obtainable through a different channel: for example, an OTP password sent by SMS, a unique authentication card with a number of answer codes, or a dynamic PIN generated by a proprietary device or a mobile app

	If the user gives the correct answer, they are authenticated using a standard session-based or token-based method

Two-Factor Authentication (2FA) has been supported by ASP.NET Core since its 1.0 release, which implemented it using SMS verification (SMS 2FA). However, starting with ASP.NET Core 2, the SMS 2FA approach was deprecated in favor of a Time-Based One-Time Password (TOTP) algorithm, which became the industry-recommended approach to implement 2FA in web applications.

For additional information about SMS 2FA, check out the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa

For additional information about TOTP 2FA, take a look at the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes

After reviewing all these authentication methods, we can definitely say that the token-based authentication approach seems to be a viable choice for our specific scenario; for that very reason, in the upcoming sections, we’re going to follow this route.

Third-party authentication

Regardless of the authentication method that a web application chooses to adopt, being forced to have a potentially different username and password for each website visit can be frustrating, and it can also require users to develop custom password storage techniques that might lead to security risks. In order to overcome this issue, a large number of IT developers started to look around for an alternative way to authenticate users that could replace the standard authentication technique, based on usernames and passwords, with an authentication protocol based on trusted third-party providers.

The rise and fall of OpenID

Among the first successful attempts to implement a third-party authentication mechanism was the first release of OpenID, an open and decentralized authentication protocol promoted by the non-profit OpenID Foundation. Available since 2005, it was quickly and enthusiastically adopted by some big players such as Google and Stack Overflow, who originally based their authentication providers on it.

Here’s how it works in a few words:

	Whenever our application receives an OpenID authentication request, it opens a transparent connection interface through the requesting user and a trusted third-party authentication provider (for example, the Google identity provider); the interface can be a popup, an AJAX-populated modal window, populated modal windows, or an API call, depending on the implementation.

	The user sends their username and password to the aforementioned third-party provider, who performs the authentication accordingly and communicates the result to our application, by redirecting the user to where they came from, along with a security token that can be used to retrieve the authentication result.

	Our application consumes the token to check the authentication result, authenticating the user in the event of success or sending an error response in the event of failure.

Despite the great enthusiasm for OpenID between 2005 and 2009, with a good number of relevant companies publicly declaring their support for OpenID and even joining the foundation, including PayPal and Facebook, the original protocol didn’t live up to its great expectations. Legal controversies, security issues, and, most importantly, the massive popularity surge of the social networks with their improper—yet working—OAuth-based social logins in the 2009–2012 period basically killed it.

For those who don’t know what OAuth is, have patience; we’ll get there soon enough.

OpenID Connect

In a desperate attempt to keep their flag flying after the takeover of the OAuth/OAuth 2 social logins, the OpenID Foundation released the third generation of the OpenID technology in February 2014; this was called OpenID Connect (OIDC).

Despite the name, the new installment of OIDC has little to nothing to do with its ancestor; it’s merely an authentication layer built upon the OAuth 2 authorization protocol. In other words, it’s little more than a standardized interface to help developers use OAuth 2 as an authentication framework in a less improper way, which is kind of funny, considering that OAuth 2 played a major role in replacing OpenID 2.0 in the first place.

The choice of giving up on OpenID in favor of OIDC was highly criticized in 2014; however, after all these years, we can definitely say that OIDC can still provide a useful, standardized way to obtain user identities. It allows developers to request and receive information about authenticated users and sessions using a convenient, RESTful-based JSON interface; it features an extensible specification that also supports some promising optional features, such as encryption of identity data, auto-discovery of OpenID providers, and even session management. In short, it’s still useful enough to be used instead of relying on pure OAuth 2.

For additional information about OpenID, we strongly suggest reading the following specifications from the OpenID Foundation official website:

	OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html

	OpenID 2.0 to OIDC migration guide: http://openid.net/specs/openid-connect-migration-1_0.html

Authorization

In most standard implementations, including those featured by ASP.NET, the authorization phase kicks in right after authentication, and it’s mostly based on permissions or roles; any authenticated user might have their own set of permissions and/or belong to one or more roles and, thus, be granted access to a specific set of resources. These role-based checks are usually set by the developer in a declarative fashion within the application source code and/or configuration files.

Authorization, as we said, shouldn’t be confused with authentication, despite the fact that it can be easily exploited to perform an implicit authentication as well, especially when it’s delegated to a third-party actor.

Proprietary authorization

Most development frameworks provide a built-in authorization model, which can be used to implement permission-based, role-based, and/or claims-based policies. ASP.NET Core makes no exception, since it ships with a simple, declarative API. In a nutshell, authorization is expressed in requirements, intended as required claims to access a given resource or perform a specific task; these requirements are checked by handlers that evaluate the user’s claims against them.

Using a proprietary authorization model is often a good choice, providing that the developers have the required skills and know-how to properly implement it and handle the level of complexity inevitably bound to such an approach.

Third-party authorization

The best-known third-party authorization protocol nowadays is the 2.0 release of OAuth, also known as OAuth 2, which supersedes the former release (OAuth 1, or simply OAuth) originally developed by Blaine Cook and Chris Messina in 2006.

We have already talked about it a lot, for good reason: OAuth 2 has quickly become the industry-standard protocol for authorization and is currently used by a gigantic number of community-based websites and social networks, including Google, Facebook, and X (formerly known as Twitter). It basically works like this:

	Whenever an existing user requests a set of permissions to our application via OAuth, we open a transparent connection interface between them and a third-party authorization provider that is trusted by our application (for example, Facebook).

	The provider acknowledges the user and, if they have the proper rights, responds by entrusting them with a temporary, specific access key.

	The user agent presents the access key to our application and will be granted access.

We can clearly see how easy it is to exploit this authorization logic for authentication purposes as well; after all, if Facebook says I can do something, shouldn’t it also imply that I am who I claim to be? Isn’t that enough?

The short answer is no. It might be the case for Facebook because their OAuth 2 implementation implies that subscribers receiving the authorization must have authenticated themselves to Facebook first; however, this assurance is not written anywhere. Considering how many websites use the platform for authentication purposes, we can assume that Facebook won’t likely change their actual behavior, yet we have no guarantees of this.

Theoretically speaking, these websites can split their authorization system from their authentication protocol at any time, thus leading our application’s authentication logic to an unrecoverable state of inconsistency. More generally, we can say that presuming something from something else is almost always a bad practice, unless that assumption lies upon very solid, well-documented, and (most importantly) highly guaranteed grounds.

Proprietary versus third-party

Theoretically speaking, it’s possible to entirely delegate the authentication and/or authorization tasks to existing external, third-party providers such as those we mentioned before; there are a lot of web and mobile applications that proudly follow this route nowadays. There are a number of undeniable advantages to using such an approach, including the following:

	No user-specific database tables/data models, just some provider-based identifiers to use here and there as reference keys.

	Immediate registration, since there’s no need to fill in a registration form and wait for a confirmation email—no username, no password. This will be appreciated by most users and will probably increase our conversion rates as well.

	Few or no privacy issues, as there’s no personal or sensitive data on the application server.

	No need to handle usernames and passwords and implement automatic recovery processes.

	Fewer security-related issues, such as form-based hacking attempts or brute-force login attempts.

Of course, there are also some downsides:

	There won’t be an actual user base, so it will be difficult to get an overview of active users, get their email addresses, analyze statistics, and so on

	The login phase might be resource-intensive, since it will always require an external, back-and-forth secure connection with a third-party server

	All users will need to have (or open) an account with the chosen third-party provider(s) in order to log in

	All users will need to trust our application because the third-party provider will ask them to authorize it to access their data

	We will have to register our application with the provider in order to be able to perform a number of required or optional tasks, such as receiving our public and secret keys, authorizing one or more URI initiators, and choosing the information we want to collect

Taking all these pros and cons into account, we can say that relying on third-party providers might be a great time-saving choice for small-scale apps, including ours; however, building our own account management system seems to be the only way to overcome the aforementioned governance and control-based flaws undeniably brought by that approach.

Therefore, in this chapter, we’ll explore the proprietary option; more specifically, we’ll create an internal membership provider that will handle authentication and provide its very own set of authorization rules.

Proprietary auth with ASP.NET Core

The authentication patterns made available by ASP.NET Core are basically the same as those supported by the previous versions of ASP.NET:

	No authentication, if we don’t feel like implementing anything, or if we want to use (or develop) a self-made auth interface without relying upon the ASP.NET Core Identity system

	Individual user accounts, when we set up an internal database to store user data using the standard ASP.NET Core Identity interface

	Microsoft Entra ID (formerly known as Azure Active Directory), which implies using a token-based set of API calls handled by the Azure AD Authentication Library (ADAL)

	Windows authentication, which is only viable for local-scope applications within Windows domains or AD trees

However, the implementation patterns introduced by the ASP.NET Core team over the past few years are constantly evolving in order to match the latest security practices available.

All the aforementioned approaches—excluding the first one—are handled by the ASP.NET Core Identity system, a membership system that allows us to add authentication and authorization functionalities to our application.

For additional info about the ASP.NET Core Identity APIs, check out the following URL:

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity

Starting with ASP.NET Core 3.0, ASP.NET Core Identity has been integrated with a third-party authorization mechanism to handle authentication in SPAs; this new feature is based on IdentityServer, a piece of open source OIDC and OAuth 2.0 middleware that has been part of the .NET Foundation since ASP.NET Core 3.0.

Further information about IdentityServer can be retrieved from the official documentation website, which is available at the following URL:

https://identityserver4.readthedocs.io/en/latest/

However, on October 1, 2020, the IdentityServer team made an announcement, saying that the license model would be changed to a reciprocal public license. In a nutshell, this means that the product will be still open source for testing, learning, and non-commercial use, but if used for commercial purposes and an organization makes more than 1M USD/year, then a paid license must be purchased.

The full IdentityServer team announcement can be read at the following URL: https://leastprivilege.com/2020/10/01/the-future-of-identityserver/

Following this change in the IdentityServer license model, the ASP.NET development team made its own announcement on May 7, 2021, saying that they will continue to ship IdentityServer in .NET 6 templates, but they will be looking for an alternative to .NET 7 and beyond, since they want to provide a built-in identity system for any purpose.

The full ASP.NET development team announcement can be read at the following URL: https://devblogs.microsoft.com/dotnet/asp-net-core-6-and-authentication-servers/

The “built-in alternative” eventually came out in 2023, with the release of .NET 8, in the form of a new feature called Identity API endpoints: although it looks promising, the new feature has several shortcomings that make it difficult to effectively use it in a production environment (as we’ll see by the end of this chapter, where we will deal with it in a dedicated section).

All that said, for the purposes of this book, we’re not going to use IdentityServer or Identity API endpoints; instead, we’ll implement a login mechanism that will allow our users to create an account and log in with a username and a password, using the services and middlewares natively provided by ASP.NET Core.

More specifically, we’ll implement an authentication mechanism based upon JWTs, a JSON-based open standard explicitly designed for native web applications, available in multiple languages, such as .NET, Python, Java, PHP, Ruby, JavaScript/Node.js, and Perl. We’ve chosen it because it’s becoming a de facto standard for token authentication, as it’s natively supported by most technologies.

For additional information about JSON web tokens, check out the following URL: https://jwt.io/

In this section, we’re going to do the following:

	Introduce the ASP.NET Core Identity model, the framework provided by ASP.NET Core to manage and store user accounts

	Set up an ASP.NET Core Identity implementation by installing the required NuGet packages in our existing WorldCities app

Setting up ASP.NET Core Identity will require the following steps:

	Add the required NuGet packages for the services and middlewares we’re going to use.

	Create the ApplicationUser entity to handle registered users.

	Extend the ApplicationDbContext using the Individual User Accounts authentication type.

	Configure the ASP.NET Core Identity Service in our application’s Program class based upon the ApplicationUser and ApplicationDbContext classes.

	Implement a new AccountController with a Login action method to validate login attempts from the Angular client and return a valid JWT token if there is success.

	Configure the JwtBearerMiddleware in our application’s Program class to validate the JWT tokens that will be sent by the Angular client within the HTTP requests (when we implement the auth capabilities).

	Update the existing SeedController by adding a method to create our default users with the .NET Identity API providers.

	Secure the Action Methods with the [Authorize] attribute whenever we want to restrict their usage to authorized users only.

Right after that, we’ll take the opportunity to say a couple of words about the ASP.NET Core Task Asynchronous Programming (TAP) model, and then we’ll switch to Angular to implement the client-side part of the job.

The ASP.NET Core Identity model

ASP.NET Core provides a unified framework to manage and store user accounts that can be easily used in any .NET application (even non-web ones); this framework is called ASP.NET Core Identity and provides a set of APIs that allows developers to handle the following tasks:

	Design, set up, and implement user registration and login functionalities

	Manage users, passwords, profile data, roles, claims, tokens, email confirmations, and so on

	Support external (third-party) login providers such as Facebook, Google, Microsoft accounts, Twitter, and more

The ASP.NET Core Identity source code is open source and available on GitHub at https://github.com/aspnet/AspNetCore/tree/master/src/Identity.

It goes without saying that ASP.NET Core Identity requires a persistent data source to store (and retrieve) identity data (e.g., usernames, password-hashes, and profile data), such as a SQL Server database; for that very reason, it features built-in integration mechanisms with Entity Framework Core.

This means that, in order to implement our very own identity system, we’ll basically extend what we did in Chapter 5, Data Model with Entity Framework Core; more specifically, we’ll update our existing ApplicationDbContext to support the additional entity classes required to handle users, roles, and so on.

Entity types

The ASP.NET Core Identity platform strongly relies upon the following entity types, each one of them representing a specific set of records:

	User: The users of our application

	Role: The roles that we can assign to each user

	UserClaim: The claims that a user possesses

	UserToken: The authentication token that a user might use to perform auth-based tasks

	UserLogin: The login account associated with each user

	RoleClaim: The claims that are granted to all users within a given role

	UserRole: The lookup table to store the relationship between users and their assigned roles

These entity types are related to each other in the following ways:

	Each User can have many UserClaim, UserLogin, and UserToken entities (one-to-many)

	Each Role can have many associated RoleClaim entities (one-to-many)

	Each User can have many associated Role entities, and each Role can be associated with many User entities (many-to-many)

The many-to-many relationship requires a join table in the database, which is represented by the UserRole entity.

Luckily enough, we won’t have to manually implement all these entities from scratch because ASP.NET Core Identity provides some default Common Language Runtime (CLR) types for each one of them:

	IdentityUser

	IdentityRole

	IdentityUserClaim

	IdentityUserToken

	IdentityUserLogin

	IdentityRoleClaim

	IdentityUserRole

These types can be used as base classes for our own implementation, whenever we need to explicitly define an identity-related entity model. Moreover, most of them don’t have to be implemented in most common authentication scenarios, since their functionalities can be handled at a higher level thanks to the ASP.NET Core Identity sets of APIs, which can be accessed from the following classes:

	RoleManager<TRole>: Provides the APIs for managing roles

	SignInManager<TUser>: Provides the APIs for signing users in and out (login and logout)

	UserManager<TUser>: Provides the APIs for managing users

Once the ASP.NET Core Identity service has been properly configured and set up, these providers can be injected into our ASP.NET Core controllers using Dependency Injection (DI), just like we did with ApplicationDbContext; in the following section, we’ll see how we can do that.

Setting up ASP.NET Core Identity

In Chapter 2, Getting Ready, and Chapter 5, Data Model with Entity Framework Core, when we created our HealthCheckAPI and WorldCities.Server ASP.NET Core projects, respectively, we always chose to go with an empty project featuring no authentication. That was because we didn’t want Visual Studio to install ASP.NET Core Identity within our application’s startup files right from the start. However, now that we’re using it, we need to manually perform the required setup steps.

Adding the NuGet packages

Enough with the theory; let’s put the plan into action.

From Solution Explorer, right-click on the WorldCities.Server tree node, and then select Manage NuGet Packages. Look for the following two packages and install them:

	Microsoft.AspNetCore.Identity.EntityFrameworkCore

	Microsoft.AspNetCore.Authentication.JwtBearer

Alternatively, open Package Manager Console and install them with the following commands:

> Install-Package Microsoft.AspNetCore.Identity.EntityFrameworkCore
> Install-Package Microsoft.AspNetCore.Authentication.JwtBearer

At the time of writing, the latest version for both of them is 8.0.1; as always, we are free to install a newer version, as long as we know how to adapt our code accordingly to fix potential compatibility issues.

Creating ApplicationUser

Now that we have installed the required identity libraries, we need to create a new ApplicationUser entity class with all the features required by the ASP.NET Core Identity service to use it for auth purposes. Luckily enough, the package comes with a built-in IdentityUser base class that can be used to extend our own implementation, thus granting it everything that we need.

From Solution Explorer, navigate to the /Data/Models/ folder, create a new ApplicationUser.cs class, and fill its content with the following code:

using Microsoft.AspNetCore.Identity;
namespace WorldCities.Server.Data.Models
{
 public class ApplicationUser : IdentityUser
 {
 }
}

As we can see, we don’t need to implement anything there, at least not for the time being; we’ll just extend the IdentityUser base class, which already contains everything we need for now.

Extending ApplicationDbContext

In order to support the ASP.NET Core authentication mechanism, our existing ApplicationDbContext needs to be extended from a different database abstraction base class that supports ASP.NET Core Identity.

Open the /Data/ApplicationDbContext.cs file and update its contents accordingly (updated lines are highlighted):

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Options;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Data
{
 public class ApplicationDbContext
 : IdentityDbContext<ApplicationUser>
 {
// ... existing code...

As we can see from the preceding code, we replaced the current DbContext base class with the new IdentityDbContext base class; the new class strongly relies on the ASP.NET Core Identity service we’re about to add.

Configuring the ASP.NET Core Identity service

Now that we’re done with all the prerequisites, we can open the Program.cs file and add the following highlighted lines to set up the services required by the ASP.NET Core Identity system:

// ...existing code...
using WorldCities.Server.Data.Models;
using Microsoft.AspNetCore.Identity;
// ...existing code...
// Add ApplicationDbContext and SQL Server support
builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 builder.Configuration.GetConnectionString("DefaultConnection")
)
);
// ...existing code...
// Add ASP.NET Core Identity support
builder.Services.AddIdentity<ApplicationUser, IdentityRole>(options =>
{
 options.SignIn.RequireConfirmedAccount = true;
 options.Password.RequireDigit = true;
 options.Password.RequireLowercase = true;
 options.Password.RequireUppercase = true;
 options.Password.RequireNonAlphanumeric = true;
 options.Password.RequiredLength = 8;
})
 .AddEntityFrameworkStores<ApplicationDbContext>();
// ...existing code...

The preceding code loosely resembles the default ASP.NET Core Identity implementation used by most Visual Studio ASP.NET Core templates. In a nutshell, we’re adding the ASP.NET Identify service for the specified User and Role types. While there, we took the chance to override some of the default password policy settings to demonstrate how we can configure the Identity service to better suit our needs.

Let’s take another look at the preceding code, emphasizing the changes (highlighted lines):

options.SignIn.RequireConfirmedAccount = true;
options.Password.RequireLowercase = true;
options.Password.RequireUppercase = true;
options.Password.RequireDigit = true;
options.Password.RequireNonAlphanumeric = true;
options.Password.RequiredLength = 8;

These changes don’t alter the RequireConfirmedAccount default settings, which would require a confirmed user account (verified through email) to sign in. What we did instead was explicitly set our password strength requirements so that all our users’ passwords would need to have the following:

	At least one lowercase letter

	At least one uppercase letter

	At least one digit character

	At least one non-alphanumeric character

	A minimum length of eight characters

That will grant our app a decent level of authentication security, should we ever want to make it publicly accessible on the web. Needless to say, we can change these settings depending on our specific needs; a development sample could probably live with more relaxed settings, as long as we don’t make it available to the public.

It’s worth noting that the preceding code will also require some using references to the new identity-related packages that we installed a moment ago, and to the namespace that we used for our data models, since we’re now referencing the ApplicationUser class.

Now that we have properly set up the ASP.NET Core Identity service in our Program class, we can add the required code to deal with actual login attempts coming from our Angular client.

Implementing AccountController

Based on what we’ve learned in the previous chapters, we already know that our Angular app will handle the end user authentication attempts using a login form; such a form will likely issue an HTTP POST request to our ASP.NET Core Web API, containing the end user’s username and password. Since we are implementing a JWT-based authentication mechanism, we need to perform the following server-side steps:

	Validate the username and password against the internal user database.

	Create a JWT if the given credentials are valid.

	Return a JSON result containing the JWT or a client-readable error, depending on the login attempt result.

These tasks can be done with a dedicated controller that we need to add to our current WorldCities.Server project. However, before adding that controller, we need to create some utility classes that will serve as prerequisites for those tasks.

LoginRequest

The first class we’re going to add is a Data Transfer Object (DTO) that we will use to receive the user’s credentials from the client. We already know why we need a DTO to better deal with this kind of task, from Chapter 9, Back-End and Front-End Debugging, right? We already did that for our City and Country entities, and now ApplicationUser needs it as well. However, since we’re only going to use this class to handle login requests, calling it ApplicationUserDTO would be rather confusing; for that very reason, we’ll just call it LoginRequest, which best represents our limited purpose.

Create a new file in the /Data/ folder, call it ApiLoginRequest.cs, and fill it with the following code:

using System.ComponentModel.DataAnnotations;
namespace WorldCities.Server.Data
{
 public class ApiLoginRequest
 {
 [Required(ErrorMessage = "Email is required.")]
 Public required string Email { get; set; }
 [Required(ErrorMessage = "Password is required.")]
 public required string Password { get; set; }
 }
}

The preceding code should be self-explanatory by now, so let’s move on.

ApiLoginResult

The next thing to do is to create a strongly typed result class to inform our client of the login attempt result, sending it the JWT if successful; we’ll call it ApiLoginResult, since that’s precisely what it is.

It’s worth noting that we can’t use our existing ApiResult class for this purpose, since it’s meant to store an array of results.

Create a new file in the /Data/ folder, call it ApiLoginResult.cs, and fill it with the following code:

namespace WorldCities.Server.Data
{
 public class ApiLoginResult
 {
 /// <summary>
/// TRUE if the login attempt is successful, FALSE otherwise.
/// </summary>
public bool Success { get; set; }
 /// <summary>
/// Login attempt result message
/// </summary>
public required string Message { get; set; }
 /// <summary>
/// The JWT token if the login attempt is successful, or NULL if not
/// </summary>
public string? Token { get; set; }
 }
}

Again, there’s not much to say about this class; the comments provided should explain everything.

Now, we just need to generate our JWT.

JwtSettings

To securely generate a JWT, we need to know some information in advance, such as:

	The security key to sign the token

	The identity of the issuer (the server that generates the token) and the audience (the clients who will receive and use it)

	The token expiration time

Most of these settings must be configured at runtime; however, since they contain some security-sensitive information, instead of hardcoding them in our source code, we should define them in the appsettings.json configuration file(s), just like we did with our database connection strings back in Chapter 5, Data Model with Entity Framework Core. Such good practice will also allow us to define environment-specific settings, as well as to protect that data using the User Secrets technique that we explained in that same chapter.

For the sake of simplicity, for now, let’s just add some sample settings at the end of our appsettings.json file:

// ...existing code...
"JwtSettings": {
"SecurityKey": "1234567890-MyVeryOwnSecurityKey-1234567890",
"Issuer": "MyVeryOwnIssuer",
"Audience": "https://localhost:4200",
"ExpirationTimeInMinutes": 30
},
// ...existing code...

It’s worth noting that we’re going to use these settings not only to generate the JWT but also to validate it.

JwtHandler

Now, we can finally create the service class that will generate the JWT.

Create a new file in the /Data/ folder, call it JwtHandler.cs, and fill it with the following code:

using Microsoft.AspNetCore.Identity;
using Microsoft.IdentityModel.Tokens;
using System.IdentityModel.Tokens.Jwt;
using System.Security.Claims;
using System.Text;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Data
{
 public class JwtHandler
 {
 private readonly IConfiguration _configuration;
 private readonly UserManager<ApplicationUser> _userManager;
 public JwtHandler(
 IConfiguration configuration,
 UserManager<ApplicationUser> userManager
)
 {
 _configuration = configuration;
 _userManager = userManager;
 }
 public async Task<JwtSecurityToken> GetTokenAsync(ApplicationUser user)
 {
 var jwt = new JwtSecurityToken(
 issuer: _configuration["JwtSettings:Issuer"],
 audience: _configuration["JwtSettings:Audience"],
 claims: await GetClaimsAsync(user),
 expires: DateTime.Now.AddMinutes(Convert.ToDouble(
 _configuration["JwtSettings:ExpirationTimeInMinutes"])),
 signingCredentials: GetSigningCredentials());
 return jwt;
 }
 private SigningCredentials GetSigningCredentials()
 {
 var key = Encoding.UTF8.GetBytes(
 _configuration["JwtSettings:SecurityKey"]!);
 var secret = new SymmetricSecurityKey(key);
 return new SigningCredentials(secret,
 SecurityAlgorithms.HmacSha256);
 }
 private async Task<List<Claim>> GetClaimsAsync(
 ApplicationUser user)
 {
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, user.Email!)
 };
 foreach (var role in await _userManager.GetRolesAsync(user))
 {
 claims.Add(new Claim(ClaimTypes.Role, role));
 }
 return claims;
 }
 }
}

As we can see, this class hosts a public GetTokenAsync method, which can be used to generate the JWT, and a couple of private methods used internally to retrieve the security key, algorithm, and digest to digitally sign the token, as well as the claims to add – the user’s Email, and all their Roles.

It’s worth noting that, to retrieve the app’s configuration settings and the user’s roles, we’ve injected the IConfiguration object that hosts the appsettings.json values and the UserManager<TUser> provider that we talked about early on; we did that using DI, just like we did with ApplicationDbContext and IWebHostEnvironment back in Chapter 5, Data Model with Entity Framework Core.

The JwtHandler class is the first ASP.NET Core service that we create; since we’re going to use it through DI, we need to add it to the app’s DI container by adding the following highlighted line to the Program.cs file, just before building the app:

// ...existing code...
builder.Services.AddScoped<JwtHandler>();
var app = builder.Build();
// ...existing code...

As we can see, we’re adding it using the AddScoped method, meaning that the service will be registered with the Scoped registration option. Before going further, it might be worth saying a few words to explain what these registration options are and how they impact the service’s lifetime.

DI registration options

We already know from Chapter 2, Getting Ready Bullet list? that ASP.NET Core supports the DI software design pattern, a technique for achieving Inversion of Control (IoC) between classes and their dependencies.

In a typical ASP.NET Core app, such dependencies are registered in the built-in service container (IServiceProvider) within the Program.cs file. Whenever we register a service in the DI container, we can choose a registration option, which will determine how that service’s instances will be provided during the app and/or the request life cycle.

The following registration options are available:

	Transient: A new instance of the service is provided every time it’s requested, regardless of the HTTP scope. This basically means that we’ll always have a brand-new object, thus without the risk of having concurrency issues.

	Scoped: A new instance of the service is provided for each different HTTP request. However, the same instance is provided within the scope of any single HTTP request.

	Singleton: A single instance of the service will be created upon the first request and then provided to all subsequent requests until the application stops.

The Transient option is great for lightweight services with little or no state; however, it uses more memory and resources, thus having a negative impact on performance, especially if a website must deal with a lot of simultaneous HTTP requests.

The Scoped option is the framework default and is often the best approach whenever we need to maintain state within HTTP requests, assuming that we don’t need to recreate the service every time we inject it.

The Singleton option is the most efficient in terms of memory and performance, since the service is created once and reused everywhere within the app’s life cycle; on top of that, it can also be useful to preserve a “global,” request-independent state. However, the fact that the service (and its state) is shared with all requests strongly limits its scope and, if used improperly, might lead to vulnerabilities, memory leaks, or other security or performance issues.

Since our JwtHandler service is very lightweight and doesn’t have specific state requirements, any registration option would work without issues. That said, we’ve opted for the Scoped approach so that each instance will follow the same life cycle of the login HTTP request that makes use of it.

Now, we’re finally ready to implement our AccountController.

AccountController

Create a new file in the /Controllers/ folder, call it AccountController.cs, and fill it with the following code:

using System.IdentityModel.Tokens.Jwt;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class AccountController : ControllerBase
 {
 private readonly ApplicationDbContext _context;
 private readonly UserManager<ApplicationUser> _userManager;
 private readonly JwtHandler _jwtHandler;
 public AccountController(
 ApplicationDbContext context,
 UserManager<ApplicationUser> userManager,
 JwtHandler jwtHandler)
 {
 _context = context;
 _userManager = userManager;
 _jwtHandler = jwtHandler;
 }
 [HttpPost("Login")]
 public async Task<IActionResult> Login(ApiLoginRequest loginRequest)
 {
 var user = await _userManager.FindByNameAsync(loginRequest.Email);
 if (user == null
 || !await _userManager.CheckPasswordAsync(user, loginRequest.Password))
 return Unauthorized(new ApiLoginResult() {
 Success = false,
 Message = "Invalid Email or Password."
 });
 var secToken = await _jwtHandler.GetTokenAsync(user);
 var jwt = new JwtSecurityTokenHandler().WriteToken(secToken);
 return Ok(new ApiLoginResult() {
 Success = true, Message = "Login successful", Token = jwt
 });
 }
 }
}

As we can see, the Login action method makes good use of all the classes we’ve implemented so far. More specifically, it does the following:

	Accepts the ApiLoginRequest object containing the user’s credentials

	Validates them using the UserManager API that we injected in the controller using DI

	Creates a JWT using our JwtHandler class if the given credentials are valid; otherwise, it emits an error message

	Sends the overall result to the client, using the ApiLoginResult POCO class we added a short while ago

Now, our ASP.NET Core Web API can authenticate a login request and return a JWT. However, we’re still unable to properly verify those tokens and confirm they’re valid. To do that, we need to set up JwtBearerMiddleware with the same configuration settings we use to generate them.

Configuring JwtBearerMiddleware

To properly set up the JwtBearerMiddleware, we need to append the following lines to the Program.cs file, just below the ASP.NET Core Identity settings that we added a while ago:

// ...existing code...
// Add Authentication services & middlewares
builder.Services.AddAuthentication(opt =>
{
 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
}).AddJwtBearer(options =>
{
 options.TokenValidationParameters = new TokenValidationParameters
 {
 RequireExpirationTime = true,
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,
 ValidIssuer = builder.Configuration["JwtSettings:Issuer"],
 ValidAudience = builder.Configuration["JwtSettings:Audience"],
 IssuerSigningKey = new SymmetricSecurityKey(System.Text.Encoding.UTF8.GetBytes(builder.Configuration["JwtSettings:SecurityKey"]!))
 };
});
// ...existing code...

The preceding code will register JwtBearerMiddleware, which will extract any JWT from the Authorization request header and validate it, using the configuration settings defined in the appsettings.json file.

It’s worth noting that, since we’re now using the authentication services, we also need to add AuthenticationMiddleware to the request pipeline in the Program.cs file. We can do that just before AuthorizationMiddleware, in the following way (the new line is highlighted):

// ...existing code...
app.UseAuthentication();
app.UseAuthorization();
// ...existing code...

All we need to do now is create some users to authenticate.

Updating SeedController

The best way to create a new user from scratch would be from SeedController, which implements the seeding mechanism that we set up in Chapter 5, Data Model with Entity Framework Core; however, in order to interact with the ASP.NET Core Identity APIs required to do that, we need to inject them using DI, just like we already did with ApplicationDbContext.

Adding RoleManager and UserManager through DI

From Solution Explorer, open the /Controllers/SeedController.cs file of the WorldCities project and update its content accordingly with the following code (new/updated lines are highlighted):

using Microsoft.AspNetCore.Identity;
// ...existing code...
public class SeedController : ControllerBase
{
 private readonly ApplicationDbContext _context;
 private readonly RoleManager<IdentityRole> _roleManager;
 private readonly UserManager<ApplicationUser> _userManager;
private readonly IWebHostEnvironment _env;
 private readonly IConfiguration _configuration;
public SeedController(
 ApplicationDbContext context,
 RoleManager<IdentityRole> roleManager,
 UserManager<ApplicationUser> userManager,
 IWebHostEnvironment env,
 IConfiguration configuration)
 {
 _context = context;
 _roleManager = roleManager;
 _userManager = userManager;
 _env = env;
 _configuration = configuration;
 }
// ...existing code...

Again, we added the RoleManager<TRole> and UserManager<TUser> providers using DI. We’ll see how we can use these providers to create our users and roles soon enough.

While we were there, we also took the opportunity to inject an IConfiguration instance that we’ll use to retrieve the default passwords for our users. We can define these passwords in our secrets.json file in the following way:

{
"ConnectionStrings": {
// ...
},
 "DefaultPasswords": {
 "RegisteredUser": "Sampl3Pa$$_User",
 "Administrator": "Sampl3Pa$$_Admin"
 },
// ...

Let’s do this now so that we’ll have them ready later.

Now, let’s define the following method at the end of the /Controllers/SeedController.cs file, right below the existing Import() method:

// ...existing code...
[HttpGet]
public async Task<ActionResult> CreateDefaultUsers()
{
 throw new NotImplementedException();
}
// ...existing code...

In a typical ApiController, adding another action method with the [HttpGet] attribute would create an ambiguous route that will conflict with the original method accepting HTTP GET requests (the Import() method); this code will not run when you hit the endpoint. However, since our SeedController has been configured to take the action names into account thanks to the [Route("api/[controller]/[action]")] routing rule that we placed above the class constructor back in Chapter 5, Data Model with Entity Framework Core, we’re entitled to add this method without creating a conflict.

Opposite to what we usually do, we’re not going to implement this method straight away; we’ll take this chance to embrace the Test-Driven Development (TDD) approach, which means that we’ll start by creating a (failing) unit test.

Defining the CreateDefaultUsers() unit test

If we want to emulate the “add new user” process within a test, we’re going to need a UserManager instance (to add users) and a RoleManager instance (to give them a role). For that very reason, before creating the actual test method, it could be useful to provide our WorldCities.Server.Tests project with a helper class that we can use to create these instances. Let’s do this.

Adding the IdentityHelper static class

From Solution Explorer, create a new IdentityHelper.cs file in the WorldCities.Server.Tests project. Once done, fill its content with the following code:

using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;
using Moq;
using System;
using System.Collections.Generic;
using System.Text;
namespace WorldCities.Server.Tests
{
 public static class IdentityHelper
 {
 public static RoleManager<TIdentityRole>
 GetRoleManager<TIdentityRole>(
 IRoleStore<TIdentityRole> roleStore) where TIdentityRole :
 IdentityRole
 {
 return new RoleManager<TIdentityRole>(
 roleStore,
 new IRoleValidator<TIdentityRole>[0],
 new UpperInvariantLookupNormalizer(),
 new Mock<IdentityErrorDescriber>().Object,
 new Mock<ILogger<RoleManager<TIdentityRole>>>(
).Object);
 }
 public static UserManager<TIDentityUser>
 GetUserManager<TIDentityUser>(
 IUserStore<TIDentityUser> userStore) where TIDentityUser :
 IdentityUser
 {
 return new UserManager<TIDentityUser>(
 userStore,
 new Mock<IOptions<IdentityOptions>>().Object,
 new Mock<IPasswordHasher<TIDentityUser>>().Object,
 new IUserValidator<TIDentityUser>[0],
 new IPasswordValidator<TIDentityUser>[0],
 new UpperInvariantLookupNormalizer(),
 new Mock<IdentityErrorDescriber>().Object,
 new Mock<IServiceProvider>().Object,
 new Mock<ILogger<UserManager<TIDentityUser>>>(
).Object);
 }
 }
}

As we can see, we created two methods—GetRoleManager and GetUserManager—which we can use to create these providers for other tests. It’s worth noting that we are creating real instances (not mocks) of the RoleManager and UserManager providers, since we’ll need them to perform some read/write operations to the in-memory database, which we will provide to the ApplicationDbContext that will be instantiated for the test. This basically means that these providers will perform their job for real, but everything will be done on the in-memory database instead of the SQL Server data source, just like we did with our previous tests.

That said, we still made good use of the Moq package library to create a number of mocks to emulate the number of parameters required to instantiate RoleManager and UserManager. Luckily enough, most of them are internal objects that won’t be needed to perform our current tests; for those that are required, we had to create a real instance.

For example, for both providers, we were forced to create a real instance of UpperInvariantLookupNormalizer—which implements the ILookupNormalizer interface—because it’s being used internally by RoleManager (to look up existing roles) as well as UserManager (to look up existing usernames); if we had mocked it instead, we would’ve hit some nasty runtime errors while trying to make these tests pass.

Now that we have these two helper methods, we can create a test that will make good use of them.

Adding the SeedController_Test class

From Solution Explorer, create a new /SeedController_Tests.cs file in the WorldCities.Server.Tests project. Once done, fill its content with the following code:

using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Moq;
using System.Threading.Tasks;
using WorldCities.Server.Controllers;
using WorldCities.Server.Data;
using WorldCities.Server.Data.Models;
using Xunit;
namespace WorldCities.Server.Tests
{
 public class SeedController_Tests
 {
 /// <summary>
/// Test the CreateDefaultUsers() method
/// </summary>
 [Fact]
 public async Task CreateDefaultUsers()
 {
 // Arrange
// create the option instances required by the
// ApplicationDbContext
var options = new
 DbContextOptionsBuilder<ApplicationDbContext>()
 .UseInMemoryDatabase(databaseName: "WorldCities")
 .Options;
 // create a IWebHost environment mock instance
var mockEnv = Mock.Of<IWebHostEnvironment>();
 // create a IConfiguration mock instance
var mockConfiguration = new Mock<IConfiguration>();
 mockConfiguration.SetupGet(x => x[It.Is<string>(s => s == "DefaultPasswords:RegisteredUser")]).Returns("M0ckP$$word");
 mockConfiguration.SetupGet(x => x[It.Is<string>(s => s == "DefaultPasswords:Administrator")]).Returns("M0ckP$$word");
 // create a ApplicationDbContext instance using the
// in-memory DB
using var context = new ApplicationDbContext(options);
 // create a RoleManager instance
var roleManager = IdentityHelper.GetRoleManager(
 new RoleStore<IdentityRole>(context));
 // create a UserManager instance
var userManager = IdentityHelper.GetUserManager(
 new UserStore<ApplicationUser>(context));
 // create a SeedController instance
var controller = new SeedController(
 context,
 roleManager,
 userManager,
 mockEnv,
 mockConfiguration.Object
);
 // define the variables for the users we want to test
 ApplicationUser user_Admin = null!;
 ApplicationUser user_User = null!;
 ApplicationUser user_NotExisting = null!;
 // Act
// execute the SeedController's CreateDefaultUsers()
// method to create the default users (and roles)
await controller.CreateDefaultUsers();
 // retrieve the users
 user_Admin = await userManager.FindByEmailAsync(
 "admin@email.com");
 user_User = await userManager.FindByEmailAsync(
 "user@email.com");
 user_NotExisting = await userManager.FindByEmailAsync(
 "notexisting@email.com");
 // Assert
 Assert.NotNull(user_Admin);
 Assert.NotNull(user_User);
 Assert.Null(user_NotExisting);
 }
 }
}

The above code is quite long but should be easily understandable by now. Here, in a nutshell, is what we are doing there:

	In the Arrange phase, we create the mock (and non-mock) instances required to perform the actual test

	In the Act phase, we execute the test and attempt to retrieve the resulting (created) users to confirm the result

	In the Assert phase, we evaluate the expected outcome

With this, our unit test is ready; we just need to execute it to see it fail.

To do that, right-click the WorldCities.Server.Test node from Solution Explorer and select Run Tests.

Alternatively, just switch to the Test Explorer window and use the topmost buttons to run the tests from there.

If we did everything correctly, we should be able to see our CreateDefaultUsers() test failing, just like in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 11.3: Failure of our CreateDefaultUsers() test

That’s it; all we have to do now is implement the CreateDefaultUsers() method in our SeedController to make the preceding test pass.

Implementing the CreateDefaultUsers() method

Open the /Controllers/SeedController.cs file again, scroll down to the CreateDefaultUsers action method, and replace NotImplementedException with the following code:

// ...existing code...
[HttpGet]
public async Task<ActionResult> CreateDefaultUsers()
{
 // setup the default role names
string role_RegisteredUser = "RegisteredUser";
 string role_Administrator = "Administrator";
 // create the default roles (if they don't exist yet)
if (await _roleManager.FindByNameAsync(role_RegisteredUser) == null)
 await _roleManager.CreateAsync(new
 IdentityRole(role_RegisteredUser));
 if (await _roleManager.FindByNameAsync(role_Administrator) == null)
 await _roleManager.CreateAsync(new
 IdentityRole(role_Administrator));
 // create a list to track the newly added users
var addedUserList = new List<ApplicationUser>();
 // check if the admin user already exists
var email_Admin = "admin@email.com";
 if (await _userManager.FindByNameAsync(email_Admin) == null)
 {
 // create a new admin ApplicationUser account
var user_Admin = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = email_Admin,
 Email = email_Admin,
 };
 // insert the admin user into the DB
await _userManager.CreateAsync(user_Admin, _configuration["DefaultPasswords:Administrator"]);
 // assign the "RegisteredUser" and "Administrator" roles
await _userManager.AddToRoleAsync(user_Admin,
 role_RegisteredUser);
 await _userManager.AddToRoleAsync(user_Admin,
 role_Administrator);
 // confirm the e-mail and remove lockout
 user_Admin.EmailConfirmed = true;
 user_Admin.LockoutEnabled = false;
 // add the admin user to the added users list
 addedUserList.Add(user_Admin);
 }
 // check if the standard user already exists
var email_User = "user@email.com";
 if (await _userManager.FindByNameAsync(email_User) == null)
 {
 // create a new standard ApplicationUser account
var user_User = new ApplicationUser()
 {
 SecurityStamp = Guid.NewGuid().ToString(),
 UserName = email_User,
 Email = email_User
 };
 // insert the standard user into the DB
await _userManager.CreateAsync(user_User, _configuration["DefaultPasswords:RegisteredUser"]);
 // assign the "RegisteredUser" role
await _userManager.AddToRoleAsync(user_User,
 role_RegisteredUser);
 // confirm the e-mail and remove lockout
 user_User.EmailConfirmed = true;
 user_User.LockoutEnabled = false;
 // add the standard user to the added users list
 addedUserList.Add(user_User);
 }
 // if we added at least one user, persist the changes into the DB
if (addedUserList.Count > 0)
 await _context.SaveChangesAsync();
 return new JsonResult(new
 {
 Count = addedUserList.Count,
 Users = addedUserList
 });
}
// ...existing code...

The code is quite self-explanatory, and it has a lot of comments explaining the various steps; however, here’s a convenient summary of what we just did:

	We started by defining some default role names (RegisteredUsers for the standard registered users, Administrator for the administrative-level ones).

	We created logic to check whether these roles already exist. If they don’t exist, we create them. As expected, both tasks are performed using RoleManager.

	We defined a user list local variable to track the newly added users so that we can output it to the user in the JSON object we’ll return at the end of the action method.

	We created logic to check whether a user with the admin@email.com username already exists. If it doesn’t, we create it and assign it both the RegisteredUser and Administrator roles, since it will be a standard user and also the administrative account of our app.

	We created logic to check whether a user with the user@email.com username already exists; if it doesn’t, we create it and assign it the RegisteredUser role.

	At the end of the action method, we configured the JSON object that we’ll return to the caller; this object contains a count of the added users and a list containing them, which will be serialized into a JSON object that will show their entity values.

The Administrator and RegisteredUser roles we just implemented here will be the core of our authorization mechanism; all of our users will be assigned to at least one of them. Note how we assigned both of them to the Admin user to make them able to do everything a standard user can do, plus more; all the other users only have the latter role, so they’ll be unable to perform any administrative-level tasks (as long as they’re not assigned the Administrator role).

Before moving on, it’s worth noting that we’re using the user’s email address for both the Email and UserName fields. We did that on purpose because those two fields in the ASP.NET Core Identity system are used interchangeably by default; whenever we add a user using the default APIs, the Email provided is saved in the UserName field as well, even if they are two separate fields in the AspNetUsers database table. Although this behavior can be changed, we’re going to stick to the default settings so that we’ll be able to use them without changing them throughout the whole ASP.NET Core Identity system.

Rerunning the unit test

Now that we have implemented the test, we can rerun the CreateDefaultUsers() test and see whether it passes. As usual, we can do that by right-clicking the WorldCities.Server.Test root node from Solution Explorer and selecting Run Tests, or from within the Test Explorer panel.

If we did everything correctly, we should see something like this:

[image: A screenshot of a computer Description automatically generated]
Figure 11.4: CreateDefaultUsers() test passed

Now that our unit test has passed, we can move to on the next topic.

Securing the action methods

The main purpose of what we’re doing in this chapter is restricting the usage of some of our Web API to authorized users only. That’s the reason we’re adding the ASP.NET Identity system, creating a couple of registered users and roles, and implementing a process to authenticate them.

However, we still have to tell our ASP.NET Core app what we want to restrict to registered users only; as a matter of fact, all our controllers and action methods are currently available to everyone, regardless of whether the HTTP request comes from a registered user (determined by the presence of a valid JWT, or not). What’s the point of authenticating these requests if we don’t “close” some of these doors?

To perform such a task, we can use AuthorizeAttribute, included with the Microsoft.AspNetCore.Authorization namespace. This attribute can be used to restrict access to controllers and/or action methods to authorized users only; on top of that, it also allows us to specify one or more Roles to authorize, which is precisely what we need to implement a granular authorization scheme.

The first thing we must do is to identify the action methods we want to protect; in our current scenario, it could be wise to restrict the access to all the PUT and POST methods of CitiesController and CountriesController to registered users only, meaning that anonymous users won’t be able to perform updates to our database. An even more restrictive policy should be applied to the DELETE methods of those controllers and the whole SeedController, since they are meant to perform critical changes to our data. Those actions should be accessible to administrators only.

Let’s see how we can use AuthorizeAttribute to do this.

Securing CitiesController

Open the /Controllers/CitiesController.cs file, and add the following using statement to the top of the file:

using Microsoft.AspNetCore.Authorization;

Once done, add the following attribute above the PutCity and PostCity methods:

[Authorize(Roles = "RegisteredUser")]

Last but not least, add the following attribute above the DeleteCity method:

[Authorize(Roles = "Administrator")]

That’s it. Let’s do the same with CountriesController.

Securing CountriesController

Open the /Controllers/CountriesController.cs file, and add the following using statement to the top of the file:

using Microsoft.AspNetCore.Authorization;

Once done, add the following attribute above the PutCountry and PostCountry methods:

[Authorize(Roles = "RegisteredUser")]

Last but not least, add the following attribute above the DeleteCountry method:

[Authorize(Roles = "Administrator")]

Now, we can switch to SeedController.

Securing SeedController

SeedController requires a more radical approach, since we want to secure all of its action methods, not just some of them.

To do that, after adding the usual using reference to the Microsoft.AspNetCore.Authorization namespace at the top of the file, put the following attribute above the SeedController class declaration:

[Authorize(Roles = "Administrator")]

When placed at the class declaration level, AuthorizeAttribute will be applied to all the controller’s action methods, which is precisely what we want.

Now, all these action methods are protected against unauthorized access, as they will accept only requests coming from registered and logged-in users; those who don’t have access will receive a 401 Unauthorized HTTP error response.

That’s it; now, we’re finally done updating our project’s classes. However, before switching to Angular, let’s take a couple of minutes to better understand a fundamental ASP.NET Core architectural concept that we’ve been using for quite a while.

A word on async tasks, awaits, and deadlocks

As we can see by looking at what we did so far, all the ASP.NET Core Identity system API’s relevant methods are asynchronous, meaning that they return an async task rather than a given return value. For that very reason, since we need to execute these various tasks one after another, we had to prepend all of them with the await keyword.

Here’s an example of await usage taken from the preceding code:

await _userManager.AddToRoleAsync(user_Admin, role_RegisteredUser);

The await keyword, as the name implies, awaits the completion of the async task before going forward. It’s worth noting that such an expression does not block the thread on which it is executing; instead, it causes the compiler to sign up the rest of the async method as a continuation of the awaited task, thus returning the thread control to the caller. Eventually, when the task completes, it invokes its continuation, thus resuming the execution of the async method where it left off.

That’s the reason why the await keyword can only be used within async methods. As a matter of fact, the preceding logic requires the caller to be async as well; otherwise, it wouldn’t work.

Alternatively, we could have used the Wait() method, in the following way:

_userManager.AddToRoleAsync(user_Admin, role_RegisteredUser).Wait();

However, we didn’t do that for good reason. In constrast to the await keyword, which tells the compiler to asynchronously wait for the async task to complete, the parameterless Wait() method will block the calling thread until the async task has been completed. Therefore, the calling thread will unconditionally wait until the task completes.

To better explain how such techniques impact our ASP.NET Core application, we should spend a little time better understanding the concept of async tasks, as they are a pivotal part of the ASP.NET Core TAP model.

One of the first things we should learn when working with sync methods invoking async tasks in legacy ASP.NET is that when the top-level method awaits a task, its current execution context gets blocked until the task completes. This won’t be a problem unless that context allows only one thread to run at a time, which is precisely the case with AspNetSynchronizationContext. If we combine these two things, we can easily see that blocking an async method (that is, a method returning an async task) will expose our application to a high risk of deadlock.

A deadlock, from a software development perspective, is a dreadful situation that occurs whenever a process or thread enters a waiting state indefinitely, usually because the resource it’s waiting for is held by another waiting process. In any legacy ASP.NET web application, we would face a deadlock every time we block a task, simply because that task, in order to complete, would require the same execution context as the invoking method, which is kept blocked by that method until the task completes!

Luckily enough, we’re not using legacy ASP.NET here; we’re using ASP.NET Core, where the legacy ASP.NET pattern based upon SynchronizationContext has been replaced by a contextless approach, layered upon a versatile, deadlock-resilient thread pool.

This basically means that blocking the calling thread using the Wait() method is no longer that problematic. Therefore, if we switched our await keywords with it, our method would still run and complete just fine. However, by doing so, we would basically use synchronous code to perform asynchronous operations, which is generally considered a bad practice; moreover, we would lose all the benefits brought by asynchronous programming, such as performance and scalability.

For all those reasons, the await approach is definitely the way to go here.

For additional information regarding threads, async task awaits, and asynchronous programming in ASP.NET, we highly recommend checking out the outstanding articles written by Stephen Cleary on the topic, which will greatly help in understanding some of the most tricky and complex scenarios that we could face when developing with these technologies. Some of them were written a while ago, yet they never really age:

	https://blog.stephencleary.com/2012/02/async-and-await.html

	https://devblogs.microsoft.com/pfxteam/asyncawait-faq/

	http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html

	https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming

	https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html

Also, we strongly suggest checking out this excellent article about asynchronous programming with async and await at the following link:

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index

Now that we’ve updated our project’s classes and acknowledged the importance of async tasks, we should switch to our database and do what it takes to bring it up to speed with our brand-new, identity-powered Data Model.

Updating the database

It’s now time to create a new migration, and reflect the code changes to the database, by taking advantage of the code-first approach we adopted in Chapter 5, Data Model with Entity Framework Core.

Here’s a list of what we’re going to do in this section:

	Add the identity migration using the dotnet-ef command, just like we did in Chapter 5, Data Model with Entity Framework Core

	Apply the migration to the database, updating it without altering the existing data or performing a drop and recreate

	Seed the data, using the CreateDefaultUsers() method of SeedController that we implemented earlier on

Let’s get to work.

Adding identity migration

The first thing we need to do is to add a new migration to our data model to reflect the changes that we have implemented, by extending the ApplicationDbContext class.

To do that, open a command line or PowerShell prompt, go to our WorldCities.Server project’s root folder, and then write the following:

dotnet ef migrations add "Identity" -o "Data/Migrations"

A new migration should then be added to the project, as shown in the following screenshot:

[image: A black and white screen Description automatically generated]
Figure 11.5: Adding a new migration

The new migration files will be autogenerated in the \Data\Migrations\ folder.

Those who experience issues while creating migrations can try to clear the \Data\Migrations\ folder before running the preceding dotnet-ef command.

For additional information regarding Entity Framework Core migrations and how to troubleshoot them, check out the following guide:

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/

Applying the migration

The next thing to do is apply the new migration to our database. We can choose between two options:

	Updating the existing data model schema while keeping all its data as it is

	Dropping and recreating the database from scratch

As a matter of fact, the whole purpose of the EF Core migration feature is to provide a way to incrementally update the database schema while preserving the existing data in the database; for that very reason, we’re going to follow the former path.

Before applying migrations, it’s always advisable to perform a full database backup; this advice is particularly important when dealing with production environments. For small databases such as the one currently used by our WorldCities.Server web app, backup would take a few seconds.

For additional information about how to perform a full backup of a SQL Server database, read the following guide:

https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server

Updating the existing data model

To apply the migration to the existing database schema without losing the existing data, run the following command from our WorldCities.Server project’s root folder:

dotnet ef database update

The dotnet ef tool will then apply the necessary updates to our SQL database schema and output the relevant information, as well as the actual SQL queries, in the console buffer.

Once the task has been completed, we should connect to our database using the SQL Server Management Studio tool that we installed back in Chapter 5, Data Model with Entity Framework Core, and check for the presence of the new identity-related tables.

If everything went well, we should be able to see the new identity tables together with our existing Cities and Countries tables:

[image: A screenshot of a computer Description automatically generated]
Figure 11.6: Viewing the new identity tables in SSMS Object Explorer

As we can easily guess, these tables are still empty. To populate them, we’ll have to run the CreateDefaultUsers() method of SeedController, which is something that we’re going to do shortly.

Dropping and recreating the data model from scratch

For completeness, let’s spend a little time looking at how to recreate our data model and database schema (DB schema) from scratch. Needless to say, if we opt for that route, we will lose all our existing data. However, we could always reload everything using the Import() method of SeedController; hence, it wouldn’t be a great loss. As a matter of fact, we would only lose what we did during our CRUD-based tests in Chapter 5, Data Model with Entity Framework Core.

Although performing a database drop and recreation is not the suggested approach, especially considering that we’ve adopted the migration pattern precisely to avoid such a scenario, it can be a decent workaround whenever we lose control of our migrations, provided that we entirely back up the data before doing that and, most importantly, know how to restore everything afterward.

Although it might seem like a horrible way to fix things, that’s definitely not the case. We’re still in the development phase; hence, we can definitely allow a full database refresh.

Should we choose to take this route, here are the dotnet-ef console commands to use:

> dotnet ef database drop
> dotnet ef database update

The drop command should ask for a Y/N confirmation before proceeding. When it does, hit the Y key and let it happen. When the drop and update tasks are both done, we can run our project in Debug mode and pay a visit to the Import() method of SeedController. Once done, we should have an updated database with ASP.NET Core Identity support.

Seeding the data

Regardless of the option we chose to update the database, we now have to repopulate it.

To do that, open the /Controllers/SeedController.cs file and (temporarily) comment out the AuthorizeAttribute that we added a moment ago to restrict its usage to Administrators, ensuring that we’ll (temporarily) be able to use it.

As a matter of fact, we need to do that because we currently have no way to authenticate ourselves as administrators, since our Angular app doesn’t have a login form (yet). Don’t worry, though; we’ll close this gap soon enough!

Once done, hit F5 to run the project in Debug mode, and then manually input the following URL in the browser’s address bar: https://localhost:40443/api/Seed/CreateDefaultUsers

Then, let the CreateDefaultUsers() method of SeedController work its magic.

We should then be able to see the following JSON response:

 [image: A screenshot of a computer Description automatically generated]
Figure 11.7: The CreateDefaultUsers() JSON response

This output already tells us that our first two users have been created and stored in our data model. However, we can also confirm that by connecting to our database, using the SQL Server Management Studio tool, and taking a look at the dbo.AspNetUsers table (see the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 11.8: Querying the [AspNetUsers] and [AspNetRoles] tables

As we can see, we used the following T-SQL queries to check for the existing users and roles:

SELECT *
FROM [WorldCities].[dbo].[AspNetUsers];
SELECT *
FROM [WorldCities].[dbo].[AspNetRoles];

Now that we’ve confirmed that the users and roles are there, we can uncomment the AuthorizeAttribute of SeedController to protect it from unauthorized access.

We’re finally done with the back-end part; our ASP.NET Core Identity system implementation is up and running and fully integrated with our data model and database. Now, we just need to implement it within our components and hook it up with our Angular client app.

Implementing authentication in Angular

In order to handle JWT-based token authentication, we need to set up our ASP.NET back-end and our Angular front-end to handle all the required tasks.

In the previous sections, we spent a good amount of time configuring the ASP.NET Core Identity services and middlewares, meaning that we’re halfway done; as a matter of fact, we’re almost done with the server-side tasks. At the same time, we did nothing at the front-end level; the sample users that we created in the previous section—admin@email.com and user@email.com—have no way to log in, and there isn’t a registration form to create new users.

However, if we think about what we did during the previous chapters, we should already know what to do to fill such a gap: implementing an interactive login (and possibly a registration) form, using the same techniques adopted for CityEditComponent and CountryEditComponent.

More specifically, here’s a list of our upcoming tasks:

	Adding the LoginRequest and LoginResult interfaces to communicate with the ASP.NET Core Web API

	Implementing a new AuthService that will perform the HTTP requests and receive the login challenge result

	Creating a LoginComponent that will host the login form and allow the users that own an account to initiate the login attempt

	Updating the NavMenuComponent to allow users to access the LoginComponent, make them aware of their logged-in status, and perform the logout

	Adding some additional control mechanisms to better deal with the authentication status and authorization permissions, such as HttpInterceptor and Route Guards

	Testing the new implementation to see if everything works up to this point

By the end of the section, we should be able to log in and log out, using the users that we created with SeedController earlier on.

Adding the LoginRequest interface

Let’s start by creating a new /src/app/auth/ folder in our worldcities.client Angular project, where we’ll put everything that we’re going to add.

Once done, create a new login-request.ts file in that folder, and fill it with the following content:

export interface LoginRequest {
 email: string;
 password: string;
}

As we can see, the interface strictly resembles the ApiLoginRequest class used by our ASP.NET Core Web API. That shouldn’t be a surprise, since it will be used by the HTTP request that will call the Login action method of AccountController.

Adding the LoginResult interface

Now, we need the interface that will handle the login action method’s JSON response.

Create a new login-result.ts file in the /src/app/auth/ folder, and fill it with the following content:

export interface LoginResult {
 success: boolean;
 message: string;
 token?: string;
}

Again, the interface strictly resembles the ApiLoginResult POCO class of our ASP.NET Core Web API.

Implementing AuthService

Now that we have the required interfaces to initiate our requests (and receive the responses), we can implement the Angular service that will perform them.

Create a new auth.service.ts file in the /src/app/auth/ folder, and fill it with the following content:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';
import { environment } from './../../environments/environment';
import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';
@Injectable({
 providedIn: 'root',
})
export class AuthService {
 constructor(
 protected http: HttpClient) {
 }
 public tokenKey: string = "token";
 isAuthenticated() : boolean {
 return this.getToken() !== null;
 }
 getToken() : string | null {
 return localStorage.getItem(this.tokenKey);
 }
 login(item: LoginRequest): Observable<LoginResult> {
 var url = environment.baseUrl + "api/Account/Login";
 return this.http.post<LoginResult>(url, item)
 .pipe(tap(loginResult => {
 if (loginResult.success && loginResult.token) {
 localStorage.setItem(this.tokenKey, loginResult.token);
 }
 }));
 }
}

The preceding code shouldn’t be a surprise. We’re just doing the same tasks we already did in the previous Angular services we implemented back in Chapter 8, Code Tweaks and Data Services. The only new concept there is introduced by the following line, when the successful token is stored in localStorage:

localStorage.setItem(this.authService.tokenKey, result.token);

The above line makes use of the Web Storage API, a JavaScript feature that provides a storage mechanism that browsers can use to securely store key/value pairs. The API provides two mechanisms to store data:

	sessionStorage, which is available for the duration of the page session as long as the browser is open (including page reloads and restores)

	localStorage, which persists even when the browser is closed and then reopened; the data stored that way has no expiration date and must be manually cleared (through JavaScript or by clearing the browser’s cache or Locally Stored Data)

In our code sample, we’re using localStorage because we want to keep the JWT token until we manually invalidate it when it expires. However, both mechanisms are viable enough, depending on the given usage scenario and desired outcome.

Creating LoginComponent

Let’s now create the LoginComponent file, which will allow our users to perform the login attempt.

Open Command Prompt, navigate to the worldcities.client Angular project’s root folder, and type the following:

> ng generate component auth/Login --flat --module=app --skip-tests

The above command will create the LoginComponent files within the auth folder.

login.component.ts

Once done, open the login.component.ts file, and update its content in the following way:

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Router } from '@angular/router';
import { FormGroup, FormControl, Validators, AbstractControl, AsyncValidatorFn } from '@angular/forms';
import { BaseFormComponent } from '../base-form.component';
import { AuthService } from './auth.service';
import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';
@Component({
 selector: 'app-login',
 templateUrl: './login.component.html',
 styleUrls: ['./login.component.scss']
})
export class LoginComponent
extends BaseFormComponent implements OnInit {
 title?: string;
 loginResult?: LoginResult;
 constructor(
 private activatedRoute: ActivatedRoute,
 private router: Router,
 private authService: AuthService) {
 super();
 }
 ngOnInit() {
 this.form = new FormGroup({
 email: new FormControl('', Validators.required),
 password: new FormControl('', Validators.required)
 });
 }
 onSubmit() {
 var loginRequest = <LoginRequest>{};
 loginRequest.email = this.form.controls['email'].value;
 loginRequest.password = this.form.controls['password'].value;
 this.authService
 .login(loginRequest)
 .subscribe({
 next: (result) => {
 console.log(result);
 this.loginResult = result;
 },
 error: (error) => {
 console.log(error);
 if (error.status == 401) {
 this.loginResult = error.error;
 }
 }
 });
 }
}

For the sake of simplicity, we’ll not review the preceding code, since we should already be able to fully understand everything it does.

login.component.html

Let’s now open the login.component.html file and provide our LoginComponent with a suitable UI:

<div class="login">
<h1>Login</h1>
<form [formGroup]="form" (ngSubmit)="onSubmit()">
<p>
<mat-error *ngIf="loginResult && !loginResult.success">
ERROR: {{loginResult.message}}
 </mat-error>
</p>
<!-- Name -->
<mat-form-field>
<mat-label>Email:</mat-label>
<input matInput formControlName="email" required
 placeholder="Insert email">
<mat-error *ngFor="let error of getErrors(form.get('email')!,
 'Email')">
 {{error}}
 </mat-error>
</mat-form-field>
<!-- Lat -->
<mat-form-field>
<mat-label>Password:</mat-label>
<input matInput type="password" formControlName="password" required
 placeholder="Insert Password">
<mat-error *ngFor="let error of getErrors(form.get('password')!,
 'Password')">
 {{error}}
 </mat-error>
</mat-form-field>
<div>
<button mat-flat-button color="primary"
 type="submit">
 Login
 </button>
<button mat-flat-button color="secondary"
 [routerLink]="['/']">
 Cancel
 </button>
</div>
</form>
</div>

Again, nothing new here—just a plain Reactive Form featuring Angular Material components, created using the same techniques as our good old CityEditComponent. The only real difference is type="password", which we used in matInput for the password field, which will mask the input text when we type it.

As we can see, we used a global mat-error component to handle the error message of LoginResult coming with a failed login attempt, and we added the usual required validator checks to the two form fields we need to use: email and password.

login.component.scss

Last but not least, let’s insert some minimal content into the login.component.scss file:

mat-form-field {
 display: block;
 margin: 10px 0;
}

And that’s it! Our LoginComponent is ready; we just need to add the client-side route and update our NavMenuComponent so that our users will be able to reach it.

Updating AppRoutingModule

Open the app-routing.module.ts file, and add the following line after the last import statement:

import { LoginComponent } from './auth/login.component';

And add the following line after the last route:

 { path: 'login', component: LoginComponent }

Now, our users will be able to access LoginComponent using the /login route.

Updating NavMenuComponent

However, we definitely don’t want our users having to manually type the login page URL in their browser’s address bar.

For that very reason, open the nav-menu.component.html file, and add the following highlighted lines right below the existing Countries button:

<!-- ...existing code... -->
<a mat-flat-button color="primary" [routerLink]="['/countries']">
 Countries

<a mat-flat-button color="primary" [routerLink]="['/login']">
 Login

<!-- ...existing code... -->

As we can see, this time we didn’t just add a new Login button; we also took the chance to add a separator element between the new button and the previous ones to enforce a different UI behavior. More precisely, we want our login button to be aligned to the right side of our navigation menu, instead of being stacked on the left with the other ones.

To make this happen, we need to open the nav-menu.component.scss file and add the following class:

.separator {
 flex: 1 1 auto;
}

That’s it. Now, we can finally test what we have done so far.

Testing LoginComponent

To test our new LoginComponent, hit F5 to run the projects in Debug mode, and then click on the Login navigation link that should appear to the right side of our top menu. If we did everything properly, we should see the login form.

Let’s test the error message first. Fill the form with invalid data, and click the Login button. If we did everything properly, we should see mat-error displaying an error message, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 11.9: Angular LoginComponent showing an error

Now, we can test the actual login using the user@email.com address that we created with our SeedController earlier on (and its password). If everything works as it should, we should be able to receive a valid token in the browser’s console log, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 11.10: Angular LoginComponent performing a successful login

Not bad. Furthermore, if we check our browser’s Local Storage (Application > Local Storage for chromium-based browsers), we should also find our token stored there.

While we are here, let’s take the chance to call the router.navigate method to bring the authorized user back to the home view if the login attempt is successful, adding the following highlighted lines to the login method:

// ...existing code...
this.authService
 .login(loginRequest)
 .subscribe({
 next: (result) => {
 console.log(result);
 this.loginResult = result;
 if (result.success) {
 this.router.navigate(["/"]);
 }
 },
// ...existing code...

Now, we need to update our app’s UI to let our users know that they are logged in, as well as perform a logout. Let’s do this.

Adding the authStatus observable

A great way to let our Angular app know that a valid token has been retrieved, and therefore that the user has been successfully authenticated, is to set up a dedicated Observable in AuthService.

Open the auth.service.ts file, and add the following highlighted lines to the existing code:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { BehaviorSubject, Observable, tap } from 'rxjs';
import { LoginRequest } from './login-request';
import { LoginResult } from './login-result';
import { environment } from './../../environments/environment';
@Injectable({
 providedIn: 'root',
})
export class AuthService {
 private tokenKey: string = "token";

 private _authStatus = new BehaviorSubject<boolean>(false);
 public authStatus = this._authStatus.asObservable();
constructor(
 protected http: HttpClient) {
 }
 isAuthenticated() : boolean {
 return this.getToken() !== null;
 }
 getToken() : string | null {
 return localStorage.getItem(this.tokenKey);
 }
 init() : void {
 if (this.isAuthenticated())
 this.setAuthStatus(true);
 }
 login(item: LoginRequest): Observable<LoginResult> {
 var url = environment.baseUrl + "api/Account/Login";
 return this.http.post<LoginResult>(url, item)
 .pipe(tap(loginResult => {
 if (loginResult.success && loginResult.token) {
 localStorage.setItem(this.tokenKey, loginResult.token);
 this.setAuthStatus(true);
 }
 }));
 }
 logout() {
 localStorage.removeItem(this.tokenKey);
 this.setAuthStatus(false);
 }
 private setAuthStatus(isAuthenticated: boolean): void {
 this._authStatus.next(isAuthenticated);
 }
}

The authStatus observable we’ve just added to the AuthService class will notify all the subscribed components regarding the authentication status (true or false, depending on the login challenge result). The status can be updated using the setAuthStatus method, which we’ll have to call three times:

	When the user logs in, passing a true parameter

	When the user logs out, passing a false parameter

	When the app starts, passing a true parameter if the user is already authenticated

We’ve already implemented the first two scenarios in the AuthService class; the third and final one can be implemented in the AppComponent class, which is something that we will do in a short while.

Now, we just need to subscribe to the authStatus observable wherever we need it.

Updating the UI

The first component that comes to mind is NavMenuComponent, since we want to update the app’s top navigation menu according to the user login status.

However, since we’ve used localStorage, and therefore plan to preserve the token between browser sessions, we also need to update the AppComponent to notify the authStatus subscribers of the token presence when the app starts up.

NavMenuComponent

Let’s start with NavMenuComponent. Open the nav-menu.component.ts file, and add the following highlighted lines:

import { Component, OnInit, OnDestroy } from '@angular/core';
import { Router } from '@angular/router';
import { Subject, takeUntil } from 'rxjs';
import { AuthService } from '../auth/auth.service';
@Component({
 selector: 'app-nav-menu',
 templateUrl: './nav-menu.component.html',
 styleUrls: ['./nav-menu.component.scss']
})
export class NavMenuComponent implements OnInit, OnDestroy {
 private destroySubject = new Subject();
 isLoggedIn: boolean = false;
 constructor(private authService: AuthService,
 private router: Router) {
 this.authService.authStatus
 .pipe(takeUntil(this.destroySubject))
 .subscribe(result => {
 this.isLoggedIn = result;
 })
 }
 onLogout(): void {
 this.authService.logout();
 this.router.navigate(["/"]);
 }
 ngOnInit(): void {
 this.isLoggedIn = this.authService.isAuthenticated();
 }
 ngOnDestroy() {
 this.destroySubject.next(true);
 this.destroySubject.complete();
 }
}

As we can see, we subscribed to the authStatus observable to change the value of our isLoggedIn variable, which we can use to update the UI.

Technically speaking, manually updating the isLoggedIn local variable during the ngOnInit() is not necessary, since we have subscribed to a BehaviorSubject and initialized it with false. Since we call authService.init from the App component, it would automatically update the BehaviorSubject and notify subscribers.

The cool thing about the BehaviorSubject is that it also emits its current value to new subscribers – meaning that components that subscribe after authService.init was called will also be notified of the fact that authStatus is already true.

We’ve also added a local onLogout() method that we can use to handle a Logout action; when the user performs a logout, that method will call the logout() method of AuthService, which will remove the token and notify the subscribers. Right after that, the onLogout() method will bring the user back to the home view, using the Router service that we injected into the constructor.

Furthermore, we also took the opportunity to implement the takeUntil() method that we saw in Chapter 9, Back-End and Front-End Debugging, to unsubscribe it when the component is destroyed. This measure wasn’t strictly necessary in this specific case, as NavMenuComponent is typically meant to be instantiated once, but getting used to it won’t hurt.

Let’s now make use of these new local members. Open the nav-menu.component.html file, and update its content by adding the following highlighted lines:

<!-- ...existing code... -->

<a *ngIf="!isLoggedIn" mat-flat-button color="primary"
 [routerLink]="['/login']">
 Login

<a *ngIf="isLoggedIn" mat-flat-button color="primary"
 (click)="onLogout()">
 Logout

<!-- ...existing code... -->

That’s it.

AppComponent

Let’s now move on to AppComponent. Open the app.component.ts file, and change the existing code accordingly with the following highlighted lines:

import { Component, OnInit } from '@angular/core';
import { AuthService } from './auth/auth.service';
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.scss']
})
export class AppComponent implements OnInit {
 title = 'WorldCities';
 constructor(private authService: AuthService) { }
 ngOnInit(): void {
 this.authService.init();
 }
}

Now, the authStatus subscribers will be notified of the token presence when the app starts up and act accordingly. In our scenario, this will allow NavMenuComponent to show a Login or Logout link, according to the user’s status.

Testing the observable

Now, we can run the same test we did a short while ago again and see the result of our work. If we did everything correctly, we should be able to see the Logout button in the navigation menu (as shown in the following screenshot), which can be used to bring the user back to the initial, non-logged-in status:

[image: A screenshot of a computer Description automatically generated]
Figure 11.11: Angular LoginComponent with the Logout button

That’s great, right? However, our authentication puzzle still has two very important missing pieces:

	We need to add that token to the header of all our HTTP requests so that the Web API will be able to check it and authenticate our calls

	We need to restrict some routes of our Angular app so that unauthorized users won’t be able to navigate to the components they’re not allowed to reach, see, and/or interact with

Luckily enough, the Angular framework provides two powerful interfaces that allow us to do all that: HttpInterceptors and Route Guards. In the next section, we’ll learn what they are meant for and how we can use them to fulfill our tasks.

HttpInterceptors

The Angular HttpInterceptor interface provides a standardized mechanism to intercept and/or transform outgoing HTTP requests and/or incoming HTTP responses. Interceptors are quite similar to the ASP.NET middlewares that we introduced in Chapter 3, Looking Around, and then played with so far, except that they work at the front-end level.

Interceptors are a major feature of Angular, since they can be used for a number of different tasks: they can inspect and/or log our app’s HTTP traffic, modify the requests, cache the responses, and so on; they are a convenient way to centralize all these tasks so that we don’t have to implement them explicitly on our data services and/or within the various HttpClient-based method calls. Moreover, they can also be chained, meaning that we can have multiple interceptors working together in a forward-and-backward chain of request/response handlers.

For additional information about HttpInterceptors, take a look at the following URLs:

	https://angular.io/api/common/http/HttpInterceptor

	https://angular.io/api/common/http/HTTP_INTERCEPTORS

The best way to understand how an HttpInterceptor works is to implement one.

Implementing AuthInterceptor

Create a new auth.interceptor.ts file in the /src/app/auth/ folder and fill its content in the following way:

import { Injectable } from '@angular/core';
import { HttpInterceptor, HttpRequest, HttpHandler, HttpEvent, HttpErrorResponse } from '@angular/common/http';
import { Router } from '@angular/router';
import { catchError, Observable, throwError } from 'rxjs';
import { AuthService } from './auth.service';
@Injectable({
 providedIn: 'root'
})
export class AuthInterceptor implements HttpInterceptor {
 constructor(
 private authService: AuthService,
 private router: Router) { }
 intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 // get the auth token
var token = this.authService.getToken();
 // if the token is present, clone the request
// replacing the original headers with the authorization
if (token) {
 req = req.clone({
 setHeaders: {
 Authorization: `Bearer ${token}`
 }
 });
 }
 // send the request to the next handler
return next.handle(req).pipe(
 catchError((error) => {
 // Perform logout on 401 – Unauthorized HTTP response errors
if (error instanceof HttpErrorResponse && error.status === 401) {
 this.authService.logout();
 this.router.navigate(['login']);
 }
 return throwError(() => error);
 })
);
 }
}

As we can see, AuthInterceptor implements the HttpInterceptor interface by defining an intercept() method. This method carries out two main tasks:

	Intercepting all the outgoing HTTP requests and adding the token to their HTTP headers (if present), ensuring that the ASP.NET Core’s JwtBearerMiddleware will be able to validate it and authenticate our calls

	Intercepting all HTTP errors and, in case of a 401 – Unauthorized response status code, performing the logout() method of AuthService and bringing the user back to the Login view

Calling the logout() method after a 401 error will ensure that the token will be removed from localStorage whenever the back-end discovers it is no longer valid (such as when it expires), thus allowing our users to log in again.

Removing the token when it expires – and consequently logging out our users – is an implementation choice that we made to keep things simple; most production apps provide a better alternative by adopting a refresh token mechanism, which can be rather complex to implement within the scope of this book. See the Finishing touches section at the end of this chapter for further details on that.

Now, we have an AuthInterceptor that can make good use of our token throughout the whole HTTP request/response cycle; we just need to tell our Angular app to use it.

Updating AppModule

Just like any other Angular class, AuthInterceptor needs to be properly configured within the root-level AppModule. This requires the addition of the following highlighted references:

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';
import { AuthInterceptor } from './auth/auth.interceptor';

And add the AuthInterceptor in the providers collection, in the following way:

providers: [
 { provide: HTTP_INTERCEPTORS,
 useClass: AuthInterceptor,
 multi: true }
]

AuthInterceptor is now ready to “intercept” all the outgoing HTTP requests and add the token (if present) so that our ASP.NET Core Web API will be able to fetch it and authorize us accordingly.

The multi: true property that we can see in the preceding code is a required setting because HTTP_INTERCEPTORS is a multi-provider token that expects to inject an array of multiple values, rather than just one.

Before moving on to the next topic, let’s spend a moment checking that AuthInterceptor works fine.

Testing HttpInterceptor

Hit F5 to run our app in Debug mode. Click the Login link on the navigation menu, and perform the login using one of our test users, just like we did for our previous tests.

Once logged in, navigate to the Countries view, and then click on a country of your choice to access the Edit Country view; once there, try to edit the country and save your work. If the HttpInterceptor works properly, we should be brought back to the Countries view and see the updated country’s data, as the HTTP request was sent to the Web API with a valid token.

Right after that, click the Logout link on the navigation menu and try to perform the same identical steps. If HttpInterceptor works properly, we should now see a 401 – Unauthorized HTTP error message in the browser’s console log when trying to save our country. That’s the expected behavior, since the token was removed from localStorage right after the logout, and therefore the HTTP request was sent without a valid authorization header, thus was blocked by the Web API’s AuthorizeAttribute.

Let’s now move on to the next feature: Route Guards.

Route Guards

As we learned in Chapter 3, Looking Around, the Angular router is the service that allows our users to navigate through the various views of our app; each view updates the front-end and (possibly) calls the back-end to retrieve content.

If we think about it, we can see how the Angular router is the front-end counterpart of the ASP.NET Core routing interface, which is responsible for mapping request URIs to back-end endpoints and dispatching incoming requests to those endpoints. Since both of these modules share the same behavior, they also have similar requirements that we have to take care of when we implement an authentication and authorization mechanism in our app.

Throughout the previous chapters, we’ve defined a lot of routes on the back-end as well as on the front-end, granting our users access to the various ASP.NET Core action methods and Angular views that we’ve implemented. If we think about it, we can see how all of these routes share a common feature: anyone can access them. To put it in other words, any user is free to go anywhere within our web app. They can edit cities and countries, for example… Or at least they will think they can, until the AuthorizeAttribute that we implemented on our back-end controllers earlier on prevents them from doing that. The fact that the Web API will actively block their attempt is great for protecting our data, and we should never get rid of such a feature, but it’s not that great in terms of user experience, since it will still leave our users in the dark:

Why does the app tell me I can edit such an item if I am not allowed to?

It goes without saying that such behavior, although acceptable in development, is highly undesirable in any production scenario; when the app goes live, we would definitely want to protect some of these routes by restricting them to authorized users only—in other words, to guard them.

Route Guards are a mechanism to properly enforce such a requirement; they can be added to our route configuration to return values that can control the router’s behavior in the following way:

	If a Route Guard returns true, the navigation process continues

	If it returns false, the navigation process stops

	If it returns UrlTree, the navigation process is canceled and replaced by a new navigation to the given UrlTree

When implemented properly, Route Guards will prevent our users from seeing odd client-side behaviors and asking questions like the one above.

Available guards

The following Route Guards are currently available in Angular:

	CanActivate: Mediates navigation to a given route

	CanActivateChild: Mediates navigation to a given child route

	CanDeactivate: Mediates navigation away from the current route

	Resolve: Performs some arbitrary operations (such as custom data retrieval tasks) before activating the route

	CanMatch: Mediates navigation to a given asynchronous module

Until Angular 14, each Route Guard was available through a superclass that acted as a common interface; whenever we wanted to create our own guard, we’d have to extend the corresponding superclass and implement the relevant method(s). However, starting from Angular 15, class-based Route Guards have been deprecated in favour of functional guards, which is the approach we are going to use in this book.

The decision to deprecate class-based Guards and Resolvers has sparked a lot of discussions among Angular developers; most of them have seen the dismissal of these interfaces as a regression that leads to potential misuse and bad practices. For additional information regarding this topic, take a look at the following GitHub issue on the official Angular repository, which offers some deep insights into the matter: https://github.com/angular/angular/issues/50234

Any route can be configured with multiple guards: CanDeactivate and CanActivateChild guards will be checked first, from the deepest child route to the top; right after that, the router will check CanActivate guards from the top down to the deepest child route. Once done, CanMatch routes will be checked for asynchronous modules. If any of these guards returns false, the navigation will be stopped, and all pending guards will be canceled.

For further information about Route Guards and their role in the Angular routing workflow, check out the following link: https://angular.io/guide/router#preventing-unauthorized-access

Enough with the theory; let’s add our own AuthGuard.

Implementing AuthGuard

Create a new auth.guard.ts file in the /src/app/auth/ folder, and fill its content in the following way:

import { inject } from '@angular/core';
import {
 ActivatedRouteSnapshot,
 CanActivateFn,
 Router,
 RouterStateSnapshot } from '@angular/router';
import { AuthService } from './auth.service';
export const AuthGuard: CanActivateFn = (
 next: ActivatedRouteSnapshot,
 state: RouterStateSnapshot
) => {
 const authService:AuthService = inject(AuthService);
 const router:Router = inject(Router);
 // If the user is authenticated, return true...
if (authService.isAuthenticated()) {
 return true;
 }
 // ... otherwise, redirects to the login page
return router.createUrlTree(['/login'], {
 queryParams: {
 returnUrl: state.url
 }
 });
};

As we can see, our guard (which extends the CanActivateFn signature) enforces a different behavior, depending on the return value of the isAuthenticated() method of our AuthService (which is injected within the function body), thus conditionally allowing or blocking the navigation based on it; no wonder its name is AuthGuard.

It’s worth noting that we added a returnUrl query string parameter, which can be useful to automatically redirect the client to the desired “auth-restricted” page after a successful login. We won’t do that for reasons of space, but readers should not have issues in implementing this behavior within the AuthService.

Once they have been created, guards can be bound to the various routes from within the route configuration itself, which provides a property for each guard type. Let’s add the canActivate property to the relevant routes within our AppRoutingModule.

Updating AppRoutingModule

Open the app-routing.module.ts file, and update its content accordingly with the following highlighted lines:

// ...existing code...
import { AuthGuard } from './auth/auth.guard';
const routes: Routes = [
 { path: '', component: HomeComponent, pathMatch: 'full' },
 { path: 'cities', component: CitiesComponent },
 { path: 'city/:id', component: CityEditComponent, canActivate: [AuthGuard] },
 { path: 'city', component: CityEditComponent, canActivate: [AuthGuard] },
 { path: 'countries', component: CountriesComponent },
 { path: 'country/:id', component: CountryEditComponent, canActivate: [AuthGuard] },
 { path: 'country', component: CountryEditComponent, canActivate: [AuthGuard] },
 { path: 'login', component: LoginComponent }
];
// ...existing code...

That’s it. Our AuthGuard will now prevent non-registered users from accessing CityEditComponent and CountryEditComponent, taking them to the LoginComponent instead.

Testing AuthGuard

Let’s now test our AuthGuard to see whether it returns the expected results.

Hit F5 to run our app in Debug mode. Click the Login link on the navigation menu, and perform the login using one of our test users, just like we did for our previous tests.

Once logged in, navigate to the Countries view, and then click on a country of your choice to access the Edit Country view. If AuthGuard works properly, we should be able to reach the view, since our logged-in status allows us to activate that route.

Once done, click the Logout link on the navigation menu, and try to perform the same steps again. If AuthGuard works properly, clicking on the country name or the Add new country button should bring us to the Login view, since our not logged in status prevents unregistered users from activating those routes.

That’s it. Now, our Angular app’s behavior will be consistent with the auth policies that we set up in our Web API.

Finishing touches

Our hard work has finally come to an end. However, our app still lacks some additional finishing touches that would further improve what we have done so far.

More specifically, here’s a list of “minor” and major UI, UX, and functional issues that we should address if we aim to release our app in production:

	Hide the “Add New City” and “Add new Country” buttons from unregistered users, using the *ngIf preprocessor directive and the isAuthenticated() method of AuthService.

	Implement a RegisterComponent to allow users to create an account. Needless to say, this feature will also require the addition of new client-side routes, new interfaces, new validators for email addresses and passwords, new action methods in AccountController, and so on.

	Add a refresh token mechanism to allow the client to automatically retrieve a new token after the previous one expires, instead of deleting the expired one and redirecting our users to the login page. Implementing this feature will require a refactor of our AuthInterceptor class, a dedicated database table to store the refresh tokens (the AspNetUserTokens created by our Identity migration can be used to do that, at least to some extent), additional back-end endpoints, and more.

The first two features can be easily implemented with what we’ve learned so far; however, the refresh token mechanism can be rather complex to implement and goes way beyond the sample implementation that we’ve pulled off in this chapter, which is intended to be for demonstration purposes only.

Luckily enough, there are many third-party packages, including but not limited to the IdentityServer package that we talked about at the start of this chapter, which will allow us to skip most of the heavy lifting.

Before moving on to the next chapter, it would be useful to spend some valuable time exploring a new feature introduced by .NET 8 that we could have used to deal with the server-side authentication tasks, instead of relying on our JWT-based code: Identity API Endpoints.

Identity API endpoints

In this section, we’ll talk about one of the most anticipated features of .NET 8: a convenient set of helpers that can be used by developers to add identity-related, REST-based endpoints to any ASP.NET Core app with (very) few lines of code. These endpoints have been specifically designed to be called by SPAs, providing them with access tokens that can be used to grant authentication and authorization rights.

On paper, we could say that these endpoints definitely seem a good fit for our scenario; we do have an SPA app that requires authentication and authorization rights, and finding a way to provide those access tokens is what we did throughout the first half of this chapter. Why did we do all this if there was a convenient built-in feature that could relieve us from all that work?

To properly answer this question, we are going to take a look at this new feature with the aim of understanding its pros and cons; as always, the best way to do that from a developer perspective is to dig into its implementation details. More specifically, in the next sections, we will add these API endpoints to our WorldCities.Server app and compare them with our JWT-based approach.

Activating the Identity API endpoints

The first thing we need to do is to activate these endpoints; as expected from a built-in feature, this can be seamlessly done by adding a convenient helper method to our existing ASP.NET Core Identity implementation.

To do that, open the Program.cs file of our WorldCities.Server app, scroll down to the identity-related block, and add the following highlighted line:

// …existing code
builder.Services.AddIdentity<ApplicationUser, IdentityRole>(options =>
{
 // …existing code
})
 .AddApiEndpoints()
 .AddEntityFrameworkStores<ApplicationDbContext>();
// …existing code

The AddApiEndpoints helper method adds the services required for the new feature, but it doesn’t add the necessary authentication scheme. To do that, we must manually add the following line to the authentication builder, also located in the Program.cs file, in the following way:

// …existing code
builder.Services.AddAuthentication(opt =>
{
 // …existing code
}).AddJwtBearer(options =>
{
 // …existing code
}).AddBearerToken(IdentityConstants.BearerScheme);
// …existing code

Now, we just need to map the endpoints, which can be done by adding the following line of code down below the Program.cs file, just before the call to MapControllers():

// …existing code
app.MapIdentityApi<IdentityUser>();
app.MapControllers();
// …existing code

That’s it.

Testing the endpoints

To quickly test what we did, hit F5 to launch our app in Debug mode and navigate to the following URL:

https://localhost:40443/swagger

This is the endpoint of the Swashbuckler Swagger UI, which we briefly introduced in Chapter 3, Looking Around. If everything went well with our current implementation, we should be able to see a whole bunch of newly available endpoints, all located within a new WorldCities.Server group:

[image: A screenshot of a computer Description automatically generated]
Figure 11.12: The new Identity API endpoints

As we can see, we have just provided our WorldCities.Server app with a new set of APIs that can be used to perform all the required identity-related tasks: not only login but also register, change email address, reset password, and even refresh the Bearer Token, which was one of the missing features of our JWT-based implementation.

If we’re up for it, we can use the interactive capabilities provided by the Swagger UI to test these new endpoints; to give it a try, expand the panel corresponding to the /login endpoint using the arrow handle to the right, click the Try it out button to the right, and fill in the form and the request body in the following way:

	useCookies: false

	useSessionCookies: false

As for the Request body text area, fill it in the following way, replacing the <password> placeholder with the password we chose for the user@email.com user when we created it:

{
"email": "user@email.com",
"password": "<password>"
}

After clicking the Execute button, we should receive the following JSON payload:

{
"tokenType": "Bearer",
"accessToken": "<accessToken>",
"expiresIn": 3600,
"refreshToken": "<refreshToken>"
}

The above output proves that the Identity API endpoints work properly.

For additional information regarding Identity API endpoints and how to implement them to secure a Web API backend for SPAs, refer to the following official guide: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization

If we wanted, we could easily refactor the auth-related code of our Angular app to implement the Identity API endpoints instead of our JWT-based implementation, right?

That’s right; however, there are several good reasons why we shouldn’t do that, at least for now.

Should we use the Identity API endpoints?

The Identity API endpoints were one of the most anticipated features of .NET 8 and received a lot of attention during its preview releases, for good reasons: every seasoned ASP.NET Core developer knows the importance of having a built-in interface to handle auth-based requests, and how much the community was asking for that.

Unfortunately, this first implementation, despite working well from a functional point of view, comes with huge extensibility and configurability issues, to the point of being practically unusable in a production environment.

The most relevant downsides can be summarized in the following key points:

	Endpoints cannot be removed: For example, if we wanted to prevent our users from registering, we couldn’t do that, unless we adopt URL rewriting or URL blocking techniques using a reverse proxy or something like that.

	Endpoints’ default URLs cannot be changed: Whether we like them or not, we are forced to stick with the default paths. Again, this can be fixed somehow with URL rewriting techniques (and a reverse proxy), but it can be very inconvenient, and it might even lead to non-trivial security issues if we make mistakes with these rewrite rules.

	Endpoints cannot be customized: Ideally, we might want to override how the auth endpoints work, for example, to implement some custom behavior, collect additional claims, integrate new 2FA/MFA flows, and so on; unfortunately, the Identity API endpoints currently provide no ways to do that.

	We can’t add other authentication schemes: We are forced to deal with cookies, Bearer Tokens, and/or the 2FA providers natively supported by ASP.NET Core Identity.

As we can see, we are mostly talking about configurability and/or extensibility shortcomings, most likely due to the fact that this is a first release. We are pretty sure that many, if not all, of these issues will be addressed in the next release of the framework, possibly even in one of the upcoming .NET 8 updates. However, at the time of writing, we can’t be sure of when the fix will occur, and that’s the reason why we don’t suggest using it – unless it’s for experimental, non-production scenarios.

That said, now the WorldCities.Server app has now been configured to fully support the Identity API endpoints. Those who want to try their hand at refactoring the worldcities.client Angular app are encouraged to do that; it will be a great exercise to practice the topics discussed in this chapter.

Now that we’ve briefly reviewed the .NET 8 Identity API endpoints, and explained the reasons why we are not using them, we’re ready to move on to the next topic, progressive web apps, which will keep us busy throughout the next chapter.

Summary

At the start of this chapter, we introduced the concepts of authentication and authorization, acknowledging the fact that most applications, including ours, do require a mechanism to properly handle authenticated and non-authenticated clients as well as authorized and unauthorized requests.

We took some time to properly understand the similarities and differences between authentication and authorization, as well as the pros and cons of handling these tasks using our own internal provider or delegating them to third-party providers, such as Google, Facebook, and Twitter. Then, we briefly enumerated the various web-based authentication methods available nowadays: sessions, tokens, signatures, and two-factor strategies of various sorts. After careful consideration, we chose to stick with the token-based approach using JWT, this being a solid and well-known standard for any front-end framework.

To be able to use it, we added the required packages to our project and did what was needed to properly configure them, such as performing some updates in our Program and ApplicationDbContext classes and creating a new ApplicationUser entity. After implementing all the required back-end changes, as well as adding some new controllers and services, we created a new Entity Framework Core migration to update our database accordingly.

Right after that, we switched to our Angular project, where we had to deal with the front-end part of the job. While doing that, we spent some valuable time reviewing the new Angular features we used to perform the various tasks, such as HttpInterceptors and Route Guards, and we learned how to use them to protect some of our application views, routes, and APIs from unauthorized access.

Last but not least, we reviewed the Identity API endpoints, a new set of auth-related endpoints introduced with .NET 8 that can be used by SPAs to obtain the access tokens required to grant authentication and authorization rights—a feature that looks promising but still too lacking to be used in production.

Suggested topics

For further information, we recommend the following topics: Authentication, authorization, HTTP protocol, secure socket layer, session state management, indirection, single sign-on, Azure AD Authentication Library (ADAL), ASP.NET Core Identity, IdentityServer, OpenID, OpenID Connect (OIDC), OAuth, OAuth 2, Two-Factor Authentication (2FA), SMS 2FA, Time-Based One-Time Password Algorithm (TOTP), TOTP 2FA, IdentityUser, stateless, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Angular HttpClient, Route Guard, Http Interceptor, LocalStorage, Web Storage API, server-side prerendering, Angular Universal, browser types, Generic Types, JWTs, Claims, and AuthorizeAttribute.

References

	OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html

	OpenID 2.0 to OIDC migration guide: http://openid.net/specs/openid-connect-migration-1_0.html

	Introduction to Identity on ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity

	IdentityServer documentation: https://identityserver4.readthedocs.io/en/latest/

	Authentication and authorization for SPAs: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization

	RoleManager<TRole> Class: https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.identity.rolemanager-1

	Identity model customization in ASP.NET Core: https://learn.microsoft.com/en-US/aspnet/core/security/authentication/customize-identity-model

	Overview of ASP.NET Core security: https://learn.microsoft.com/en-us/aspnet/core/security/

	Async and await: https://blog.stephencleary.com/2012/02/async-and-await.html

	Async/await FAQ: https://devblogs.microsoft.com/pfxteam/asyncawait-faq/

	Don’t Block on Async Code: http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html

	Async/await – Best practices in asynchronous programming: https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming

	ASP.NET Core SynchronizationContext: https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html

	Asynchronous programming with async and await: https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index

	EF Core migrations: https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/

	SQL Server: Create a full database backup: https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/create-a-full-database-backup-sql-server

	Two-factor authentication with SMS in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/2fa

	Enable QR code generation for TOTP authenticator apps in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes

	Angular: Router guards: https://angular.io/guide/router#preventing-unauthorized-access

	Routing in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing

	Introduction to authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authorization/introduction

	Simple authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authorization/simple

	Authorize with a specific scheme in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme

	Scaffold identity in ASP.NET Core projects: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity

	ASP.NET Core Identity: Create a full identity UI source: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity#full

	Create reusable UI using the Razor class library project in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/razor-pages/ui-class

	Angular: HttpInterceptor: https://angular.io/api/common/http/HttpInterceptor

	Role-based authorization in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authorization/roles

	Account confirmation and password recovery in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/accconfirm

	How to use Identity to secure a Web API backend for SPAs: https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity-api-authorization

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

12

Progressive Web Apps

In this chapter, we’ll focus on a topic that we just briefly mentioned back in Chapter 2, Getting Ready, when we first talked about the different development patterns for web applications available nowadays: Progressive Web Apps (PWAs).

As a matter of fact, both our HealthCheck and WorldCities apps currently stick to the Single-Page Application (SPA) model, at least for the most part; in the following sections, we’ll see how we can turn them into PWAs by implementing several well-established capabilities required by such a development approach.

As we learned in Chapter 2, Getting Ready, a PWA is a web application that uses a modern web browser’s capabilities to deliver an app-like experience to users. To achieve this, the PWA needs to meet some technical requirements, including a Web App Manifest file and a service worker to allow it to work in offline mode and behave just like a mobile app.

More precisely, here’s what we’re going to talk about:

	PWA distinctive features, where we’ll summarize the main characteristics of a PWA and identify the technical requirements of a PWA by following its known specifications.

	Implementing the PWA requirements on our existing HealthCheck and WorldCities apps to turn them into PWAs. More precisely, we’ll do that using two different approaches: manually performing all the required steps for the HealthCheck app, and then using the PWA automatic setup offered by the Angular CLI for the WorldCities app.

	Handling the offline status, where we’ll update our components to behave differently when the app is offline – such as limiting their features and/or showing an offline status informative message.

	Testing the new PWA capabilities, where we’ll ensure that our implementation will properly work with both of our apps.

By the end of this chapter, we’ll have learned how to successfully convert an existing SPA into a PWA.

Technical requirements

In this chapter, we’re going to need all previous technical requirements listed in previous chapters, with the following additional packages:

	@angular/service-worker (npm package)

	ng-connection-service (npm package)

	Microsoft.AspNetCore.Cors (NuGet package)

	WebEssentials.AspNetCore.ServiceWorker (NuGet package, optional)

	http-server (npm package)

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during this chapter to better contextualize their purposes within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_12/.

PWA distinctive features

Let’s start by summarizing the main distinctive characteristics of a PWA:

	Progressive: A PWA should work for every user, regardless of the platform and/or browser used.

	Responsive: They must adapt well to any form factor: desktop, mobile, tablet, and so on.

	Connectivity-independent: They must be able to work offline—at least to some extent, such as informing the user that some features might not work in offline mode—or on low-quality networks.

	App-like: They need to provide the same navigation and interaction mechanics as mobile apps. This includes tap support, gesture-based scrolling, and so on.

	Safe: They must provide HTTPS support for better security, such as preventing snooping and ensuring that their content has not been tampered with.

	Discoverable: They have to be identifiable as web applications using a W3C manifest file and a service worker registration scope so that search engines will be able to find, identify, and categorize them.

	Re-engageable: They should make re-engagement easy through features such as push notifications.

	Installable: They should allow users to install and keep them on their desktop and/or mobile home screen, just like any standard mobile app, yet without the hassle of having to download and install them from an app store.

	Linkable: They should be easily shared through a URL, without requiring complex installation.

The preceding characteristics can be inferred from the following articles written by the Google developers and engineers who spent their efforts on introducing the PWA concept and defining its core specs:

https://developers.google.com/web/progressive-web-apps

https://developers.google.com/web/fundamentals

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

These high-level requirements can be translated into specific technical tasks that we have to implement. The best way to do that is by starting with the technical baseline criteria described by Alex Russell, the Google Chrome engineer who coined the term PWA together with the designer Frances Berriman back in 2015:

	Originate from a secure origin: In other words, there’s full HTTPS support with no mixed content (green padlock display)

	Load while offline, even if it’s just an offline information page: This clearly implies that we need to implement a service worker

	Reference a Web App Manifest with at least the four key properties: name, short_name, stat_url, and display (with either a standalone or fullscreen value)

	A 144 × 144 icon in PNG format: Other sizes are supported, but the 144 x 144 one is the minimum requirement

	Use vector graphics, as they can scale indefinitely and require smaller file sizes

Each one of these technical requirements can be translated into a specific technical task that we have to implement. In the following sections, we’ll see how we can implement them.

Secure origin

Implementing the secure origin feature basically means serving our app through an HTTPS certificate. Such a requirement is rather easy to fulfill nowadays: TLS certificates are quite cheap thanks to the many resellers available. A PositiveSSL certificate issued by Comodo Inc. can be purchased online for $10/year or so and is immediately available for download.

If we don’t want to spend money, there’s also a free alternative provided by Let’s Encrypt: a free, automated, open Certificate Authority that can be used to obtain a TLS certificate without costs. However, the method they use to release the certificate requires shell access (also known as SSH access) to the deployment web host.

For additional information about Let’s Encrypt and how to obtain an HTTPS certificate for free, check out the official site: https://letsencrypt.org/.

For the sake of simplicity, we’ll not cover the HTTPS certificate release and installation part; we’ll take for granted that you will be able to properly install it, thanks to the many how-to guides available from the various resellers’ websites (including Let’s Encrypt).

Offline loading

Connection independency is one of the most important capabilities of PWAs; to properly implement it, we need to introduce—and implement—a concept that we’ve just barely mentioned until now: service workers. What are they, and how can they help our app to work while offline?

The best way to figure out what a service worker is would be to think of it as a script that runs inside the web browser and handles a specific task for the application that registered it: such tasks can include caching support and push notifications.

When properly implemented and registered, service workers will enhance the user experience (UX) provided by standard websites by delivering a UX similar to what can be achieved by native mobile apps; technically, their role is to intercept any ongoing HTTP request made by the user and—whenever it’s directed to the web application they are registered for—check for the web application’s availability and act accordingly. To put it in other words, we could say that they act as an HTTP proxy with fallback capabilities when the application is unable to handle the request.

Such a fallback can be configured by the developer to behave in many ways, such as the following:

	Caching service (also known as offline mode): The service worker will deliver a cached response by querying an internal (local) cache previously built from the app (when it was online)

	Offline warning: Whenever no cached content is available (or if we didn’t implement a caching mechanism), the service worker can serve an offline status informative text, warning the user that the app is unable to work

Those who are familiar with forward cache services might prefer to imagine service workers as reverse proxies (or CDN edges) installed in the end user’s web browser instead.

The caching service feature is great for web applications that provide static content, such as HTML5-based gaming apps and Angular apps that don’t require any back-end interaction. Unfortunately, it’s not ideal for our two apps: both HealthCheck and WorldCities strongly rely upon the back-end Web API provided by ASP.NET. Conversely, these apps can definitely benefit from an offline warning, so that their users will be informed that an internet connection is required—instead of getting a connection error, a 404 - Not Found message, or any other message.

Service workers versus HttpInterceptors

If we remember the various Angular features that we introduced in Chapter 11, Authentication and Authorization, we can see how the aforementioned behavior reminds us of the role performed by HttpInterceptors.

However, since interceptors are part of the Angular app script bundle, they always cease to work whenever the user closes the browser tab that contains the web app. Furthermore, interceptors are only able to intercept calls made with Angular’s HttpClient: they won’t be able to handle browser requests issued to load scripts, stylesheets, images, and so on.

Conversely, service workers need to be preserved after the user closes the tab so that they can intercept the browser requests before connecting to the app.

Enough with the theory, let’s now see how we can implement an offline mode, Web App Manifest, and PNG icons in our existing apps.

Introducing @angular/service-worker

Starting with version 5.0.0, Angular provides a fully featured service worker implementation that can be easily integrated into any app without needing to code against low-level APIs. Such an implementation is handled by the @angular/service-worker npm package and relies upon a manifest file that is loaded from the server that describes the resources to cache and will be used as an index by the service worker, which behaves in the following way:

	When the app is online, each indexed resource will be checked to detect changes; if the source has changed, the service worker will update or rebuild the cache

	When the app is offline, the cached version will be served instead

The aforementioned manifest file is generated from a CLI-generated configuration file called ngsw-config.json, which we’ll have to create and set up accordingly.

It’s worth mentioning that web browsers will always ignore service workers if the website that tries to register them is served over an unsecured (non-HTTPS) connection. The reason for that is quite simple to understand: since service workers’ defining role is to proxy their source web application and potentially serve alternative content, malicious parties could be interested in tampering with them; therefore, allowing their registration to secure websites only will provide an additional security layer to the whole mechanism.

Here’s an example of a manifest file similar to the one we need (and that we’ll add in a short while):

{
"name": "My Sample App",
"short_name": " MySampleApp ",
"start_url": ".",
"display": "standalone",
"background_color": "#fff",
"description": "A simply readable Hacker News app.",
"icons": [{
"src": "images/touch/homescreen48.png",
"sizes": "48x48",
"type": "image/png"
}, {
"src": "images/touch/homescreen72.png",
"sizes": "72x72",
"type": "image/png"
}, {
... multiple icon definitions ...
 }],
"related_applications": [{
"platform": "play",
"url": "https://play.google.com/store/apps/details?id=my.sample.app "
}]
}

In the following section, we’ll learn how to implement the @angular/service-worker package in our existing Angular apps following two very different—yet equally rewarding—approaches.

Implementing the PWA requirements

To perform the required implementation steps that we’ve focused on in the previous section, we have two choices:

	Perform a manual update of our app’s source code

	Use the automatic installation feature provided by the Angular CLI

To learn the most from the experience, both of these paths should be taken at least once. Luckily enough, we have two existing Angular apps to experiment with. Therefore, we’ll take the manual route for our HealthCheck app first, then we’ll experience the automatic CLI setup for the WorldCities app.

Manual installation

In this section, we’ll see how to manually implement the required technical steps we’re still missing to make our HealthCheck app fully compliant with the PWA requirements.

Let’s briefly recap them:

	Add the @angular/service-worker npm package (package.json)

	Enable service worker support in the Angular CLI configuration file (angular.json)

	Import and register ServiceWorkerModule in the AppModule class (app.module.ts)

	Update the main app’s HTML template file (index.html)

	Add a suitable icon file (favicon.ico)

	Add the manifest file (manifest.webmanifest)

	Add the service worker configuration file (ngsw-config.json)

For each step, we’ve mentioned the relevant file that we’ll have to update in parentheses.

Adding the @angular/service-worker npm package

The first thing to do is to add the @angular/service-worker npm package to our package.json file. As we can easily guess, such a package contains Angular’s service worker implementation that we were talking about a moment ago.

Open the package.json file and add the following package reference to the "dependencies" section, right below the @angular/router package:

// ...
"@angular/router": "17.0.3",
"@angular/service-worker": "17.0.3",
// ...

As soon as we save the file, the npm package should be downloaded and installed automatically by Visual Studio; if that’s not the case, run npm install manually to force the packages to update.

Updating the angular.json file

Open the angular.json configuration file and add the "serviceWorker" key to the end of the projects | healthcheck.client | architect | build | configuration | production section (the new line is highlighted):

// ...
"outputHashing": "all",
 "serviceWorker": "ngsw-config.json"
// ...

As always, whenever we have issues while applying these changes, we can check out the source code available in this book’s GitHub repository.

The "serviceWorker" value that we’ve just set up will cause the production build to include a couple of extra files in the output folder:

	ngsw-worker.js: The main service worker file

	ngsw.json: The Angular service worker’s runtime configuration

Both of these files are required for our service worker to perform its job.

Importing ServiceWorkerModule

ServiceWorkerModule provided by the @angular/service-worker npm package library will take care of registering the service worker as well as providing a few services we can use to interact with it.

To install it on our HealthCheck app, open the /src/app/app.module.ts file and add the following lines (the new lines are highlighted):

// ...
import { ServiceWorkerModule } from '@angular/service-worker';
import { environment } from '../environments/environment';
// ...
imports: [
 // ...
 ServiceWorkerModule.register('ngsw-worker.js', {
 enabled: environment.production,
 // Register the ServiceWorker as soon as the app is stable
 // or after 30 seconds (whichever comes first).
 registrationStrategy: 'registerWhenStable:30000'
 })
],
// ...

As we said earlier, the ngsw-worker.js file referenced in the preceding code is the main service worker file, which will be auto-generated by the Angular CLI when building the app.

When implemented in this way, the service worker will be enabled only when our Angular app runs in a production environment, which is precisely what we want.

For additional information regarding the service worker registration options and the various registrationStrategy settings, visit the following URL: https://angular.io/api/service-worker/SwRegistrationOptions.

Updating the index.html file

The /src/index.html file is the main entry point for our Angular app(s). It contains the <app-root> element, which will be replaced by our app’s GUI at the end of the Bootstrap phase, as well as some resource references and meta tags that describe our application’s behavior and configuration settings.

Open that file and add the following code at the end of the <head> element (the updated lines are highlighted):

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>HealthCheck</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
 <!-- PWA required files -->
 <link rel="manifest" href="manifest.webmanifest">
 <meta name="theme-color" content="#1976d2">
</head>
<body class="mat-typography">
<app-root></app-root>
</body>
</html>

The highlighted lines configure the app’s theme-color, and—most importantly—the link to the manifest.webmanifest file, which—as its name clearly implies—is the app’s manifest file, one of the key requirements for any PWA.

That’s great to hear, except it doesn’t exist in our app yet: let’s fix this gap now.

Adding the Web App Manifest file

Instead of manually creating a Web App Manifest file from scratch, we can generate it automatically using one of the various Web App Manifest generators available online.

For the purpose of this book, we’re going to use the Web App Manifest Generator by Samson Amaugo: https://github.com/sammychinedu2ky/Web-App-Manifest-Generator.

And more specifically, we’ll use the instance hosted by Netlify at the following URL: https://manifest-gen.netlify.app/.

This handy tool will also generate all of the required PNG icon files for us, hence saving us a lot of time. However, we’ll require a 512 x 512 image source. If we don’t have one, we can easily create one using the DummyImage website, another useful free tool that can be used to generate placeholder images of any size, which is available at https://dummyimage.com/.

Here’s a generated PNG file that we can use to feed the preceding Firebase Web App Manifest Generator tool:

[image: A white letters on a purple background Description automatically generated]
Figure 12.1: PNG file generated by DummyImage

As we can easily guess, HC stands for HealthCheck; we won’t likely win a graphic design contest with this image, but it will work just fine for our current task.

The preceding PNG file can be downloaded from: https://dummyimage.com/512x512/361f47/fff.png&text=HC.

You are free to either use it, create another file using that same tool, or provide another image.

The 512 x 512 icon will be used by the Web App Manifest Generator online tool to create all the required icons for our PWA.

As per Google’s recommendations, a valid PWA manifest file will need at least two icons with a respective size of 192 x 192 and 512 x 512 pixels: https://web.dev/installable-manifest/#recommendations.

The online generator will vastly exceed the minimum requirements by creating eight different icons to accommodate most of the major formats used by different devices.

Once done, go back to the Web App Manifest Generator online tool and configure it using the following parameters:

	App Name: HealthCheck

	Short Name: HealthCheck

	Theme Color: #2196f3

	Background Color: #2196f3

	Display Mode: Standalone

	Orientation: Any

	Application Scope: /

	Start Url: /

Then, click to the right of the SUBMIT button at the bottom and select the HC image that we generated a moment ago, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere, software Descrizione generata automaticamente]
Figure 12.2: Web App Manifest Generator

Generate the archive file by clicking on the SUBMIT button, unpack it, and copy the included files in the following way:

	The manifest.json file in the /src/ folder

	The /icons/ folder, with all of its content, in the /src/assets/ folder, so that the actual PNG files will be placed in the /src/assets/icons/ folder

Once done, we need to perform the following changes to the manifest.json file:

	Change all of the icon starting paths from images/icons/ to assets/icons/

	Rename it from manifest.json to manifest.webmanifest, since that’s the name defined by the Web App Manifest W3C specs

As a matter of fact, the .json and .webmanifest extensions will both work; however, since most web servers do not natively support the .webmanifest extension, opting for the .json choice would arguably make things easier. On the other hand, .json files are typically served using the application/json content type, which differs from the application/manifest+json content type recommended by the Web App Manifest W3C specifications.

That said, since we do want our PWAs to adhere to the Web App Manifest W3C specs, we’re going to perform the above renaming and use the .webmanifest extension for our sample apps. This decision will require us to perform some additional tasks when we deploy our PWAs in production, such as manually adding that extension (and its application/manifest+json MIME type) to the list of supported file types in several web servers —as we’ll see in Chapter 15, Windows, Linux, and Azure Deployment.

Those who want to take a look at the Web App Manifest W3C Working Draft 29 November 2023 can visit the following URL: https://www.w3.org/TR/appmanifest/.

To find out more about the .json versus .webmanifest extension debate, take a look at this interesting discussion in the Web App Manifest GitHub repository: https://github.com/w3c/manifest/issues/689.

Now that we have made the necessary changes to the web app manifest file, we need to ensure it will be included in the Angular publishing bundle.

Publishing the Web App Manifest file

To have our /src/manifest.webmanifest file published together with the rest of our HealthCheck Angular app files, we need to add it to the /angular.json CLI configuration file.

Open that file and locate all of the following entries:

"assets": [
"src/favicon.ico",
"src/assets"
],

For each of them, add the manifest file to the existing assets in the following way:

"assets": [
"src/favicon.ico",
"src/assets",
 "src/manifest.webmanifest"
],

There should be two "assets" key entries in the angular.json file:

	projects > healthcheck.client > architect > build > options

	projects > healthcheck.client > architect > test > options

Both of them need to be modified as explained in the preceding code.

With this update, the manifest.webmanifest file will be published to the output folder whenever we build the Angular app.

Adding the favicon

A favicon (also known as a favorite icon, shortcut icon, website icon, tab icon, URL icon, or bookmark icon) is a file containing one or more small icons that can be used to identify a specific website; whenever we see a small icon in a browser’s address bar, history, and/or tab containing a given website, we’re looking at that website’s favicon.

Favicons can be generated manually, but if we’re not graphic designers, we might want to use one of the various favicon generators available online, especially considering that most of them are entirely free to use; the only thing that we need is a suitable image, which needs to be provided manually (and uploaded to the service).

Here’s a couple of recommended favicon online generators available nowadays:

favicon.io (https://favicon.io/)

Real Favicon Generator (https://realfavicongenerator.net/)

Alternatively, we can download one of the many royalty-free favicon sets available online.

Here are some websites that offer free favicons to download:

Icons8 (https://icons8.com/icons/set/favicon)

FreeFavicon (https://www.freefavicon.com/freefavicons/icons/)

As a matter of fact, the ASP.NET Core and Angular Visual Studio template that we used to create our HealthCheck project already provided us with a favicon: we can find it in our project’s /wwwroot/ folder.

Honestly speaking, this favicon is not that bad, as we can see from the following screenshot:

[image: A screenshot of a computer screen Description automatically generated]
Figure 12.3: The default favicon provided by our template

Keeping the above favicon won’t prevent our app from becoming a PWA; that said, if we want to replace it with a custom one, we’re free to do that using one of the aforementioned websites.

Adding the ngsw-config.json file

From Solution Explorer, create a new ngsw-config.json file in the healthcheck.client project’s root folder, and replace the content with the following:

{
 "$schema": "./node_modules/@angular/service-worker/config/schema.json",
 "index": "/index.html",
 "assetGroups": [
 {
 "name": "app",
 "installMode": "prefetch",
 "resources": {
 "files": [
 "/favicon.ico",
 "/index.html",
 "/manifest.webmanifest",
 "/*.css",
 "/*.js"
]
 }
 },
 {
 "name": "assets",
 "installMode": "lazy",
 "updateMode": "prefetch",
 "resources": {
 "files": [
 "/assets/**",
 "/*.(eot|svg|cur|jpg|png|webp|gif|otf|ttf|woff|woff2|ani)"
]
 }
 }
]
}

As we can see by looking at the assetGroups > app section, the preceding file tells Angular to cache the favicon.ico file and the manifest.webmanifest file, which we created a short while ago, as well as the main index.html file and all of the CSS and JavaScript bundles—in other words, our application’s static asset files. Right after that, there is an additional assetGroup > assets section, which defines the image files to cache.

The main difference between these two sections is the installMode parameter value, which determines how these resources are initially cached:

	prefetch tells the service worker to fetch those resources while it’s caching the current version of the app; in other words, it will put all of those contents in the cache as soon as they become available, that is, the first time the browser visits the online app. We might call this an up-front caching strategy.

	lazy tells the service worker to only cache those resources when the browsers explicitly request them for the first time. This could be called an on-demand caching strategy.

The preceding settings can be good for generic Angular apps that only rely on the front-end (no back-end required calls) since these files basically contain the whole app; more specifically, an Angular app hosting an HTML5 game—which arguably relies upon a lot of image files—might think about moving some of its image files (or even all of them) from the assets section to the app section, so that the whole application—including the icons, the sprites, and all of the image resources—will be cached upfront and be entirely available even when the app is offline.

However, such a caching strategy would not be enough for our healthcheck.client and worldcities.client apps; even if we tell our service worker to cache the whole app files, all of our apps’ HTTP calls would still fail whenever the browser is offline, without letting the user know anything about it. As a matter of fact, our back-end availability requirement forces us to do some additional work for both of our apps.

However, before doing that, let’s bring our worldcities.client app up to speed.

Automatic installation

All of the steps that we performed manually in the previous section to enable Service Worker support for our healthcheck.client app can be done automatically by using the following CLI command:

> ng add @angular/pwa@17.0.3

Let’s adopt this alternative technique for our worldcities.client app.

Open Command Prompt and navigate to the worldcities.client app’s root folder, then execute the preceding command; the Angular CLI will automatically configure our app by adding the @angular/service-worker package and performing the other required steps.

The most relevant information for the whole operation will be written in the console output, as shown in the following screenshot:

[image: A screenshot of a computer program Description automatically generated]
Figure 12.4: Enabling service worker support via Command Prompt

As we can see from the logs, the automatic process performs the same steps that we just applied to the healthcheck.client app.

The Angular PNG icon set

The PWA automatic setup feature will also provide some PNG icons of various sizes in the /src/assets/icons/ folder. If we open them with a graphics application, we can see that they all reproduce the same Angular logo featured in the built-in favicon.ico file that we saw a moment ago, as shown in the following figure:

[image: A logo with a hexagon and a letter Description automatically generated]
Figure 12.5: The Angular logo provided by the PWA automatic setup

Whenever we want to make our app available to the public, we will likely want to change these icons. However, they are more than enough, at least for the time being; let’s keep these files as they are and move on to the last remaining task to transform our SPAs into PWAs.

Handling the offline status

Now that we have configured a service worker in both of our apps, we can think of a way to handle the offline status message, so that each one of our components will be able to behave in a different way when the app is offline—such as limiting their features and showing an offline status informative message to our users.

To implement these conditional behaviors, we need to find a way to properly determine the browser connectivity status, that is, whether it’s online or not; in the following sections, we’ll briefly review several different approaches that we can use to do that to make the (arguably) best possible choice. These approaches are:

	The window’s ononline/onoffline events

	The navigator.onLine property

	A third-party package that determines the online/offline status in Angular

We will go into each of these in the following sections.

Option 1 – the window’s ononline/onoffline events

If we’re willing to accept a pure JavaScript way to handle this, such a task can be easily achieved using the window.ononline and window.onoffline JavaScript events, which are directly accessible from any Angular class.

Here’s how we can use them:

window.addEventListener("online", function(e) {
 alert("online");
}, false);
window.addEventListener("offline", function(e) {
 alert("offline");
}, false);

However, if we’re willing to adopt a pure JavaScript approach, there’s an even better way to implement it.

Option 2 – the navigator.onLine property

Since we don’t want to track the network status changes and are just looking for a simple way to determine whether the browser is online or not, we can make things even simpler by just checking the window.navigator.onLine property:

if (navigator.onLine) {
 alert("online");
}
else {
 alert("offline");
}

As we can easily guess from its name, this property returns the online status of the browser. The property returns a Boolean value, with true meaning online and false meaning offline, and is updated whenever the browser’s ability to connect to the network changes.

Thanks to this property, our Angular implementation could be reduced to this:

ngOnInit() {
 this.isOnline = navigator.onLine;
}

Then, we can use the isOnline local variable within our component’s template file so that we can show different content to our users using the ngIf structural directive. That would be pretty easy, right?

Unfortunately, things are never that simple; let’s try to understand why.

Downsides of the JavaScript approaches

Both of the JavaScript-based approaches we’ve mentioned suffer from a serious drawback caused by the fact that modern browsers implement the navigator.onLine property (as well as the window.ononline and window.onoffline events) in different ways.

More specifically, Chrome and Safari – as well as the new Chromium-based Microsoft Edge – will set that property to true whenever the browser can connect to a LAN or a router. This can easily produce a false positive since most home and business connections are connected to the internet through a LAN, which will probably stay up even when the actual internet access is down.

For additional information regarding the navigator.onLine property and its drawbacks, check out the following URL: https://developer.mozilla.org/en-US/docs/Web/API/Navigator/onLine.

All things considered, this basically means that we cannot use the convenient approaches described earlier to check our browser’s online status, so in order to seriously deal with this matter, we need to find a better way to do it.

Option 3 – the ng-connection-service npm package

Luckily enough, there’s a neat npm package that does precisely what we need: its name is ng-connection-service and it’s basically an internet connection monitoring service that can detect whether the browser has an active internet connection or not.

The online detection task is performed using a (configurable) heartbeat mechanism, which will periodically issue HTTP HEAD requests to a (configurable) URL to determine the internet connection status.

Needless to say, with it being an Angular service, we’ll be able to configure it in a centralized way and then inject it whenever we need to without having to manually configure it every time: that almost seems too good to be true!

Let’s see how we can implement it.

Installing the service

To do that, open the package.json file of the healthcheck.client project and add the following line right below the @angular/service-worker package that we added a moment ago:

// ...
"@angular/service-worker": "17.0.3",
"ng-connection-service": "15.0.0",
// ...

Once that is done, open Command Prompt and execute npm install to update the packages: right after that, we can implement the service within our app(s).

The package version we specified in the above code (the latest at the time of writing) explicitly grants supports for Angular from v8 to v15, but happens to be fully compatible with Angular’s latest version as well.

After ensuring that our NPM packages have been updated, we can configure the new service.

Updating the AppModule file

The first thing to do is to add the package module to our AppModule file. To do that, open the healthcheck.client project’s app.module.ts file and add the following highlighted lines:

// ...
import { ConnectionServiceModule } from 'ng-connection-service';
@NgModule({
// ...
imports: [
// ...
 ConnectionServiceModule
],
// ...

We didn’t do much here – just the usual module added to the loop. The main part of the job will be performed on the AppComponent.

Updating the AppComponent

The whole point of what we’re doing right now is to make our users aware of the app being offline with an offline status informative message. To be effective, this message should be displayed:

	As soon as possible, so that our users will know the app’s connectivity status before navigating somewhere

	Everywhere, so that they will be warned about it even if they’re visiting some internal views

Therefore, a good place to implement it would be the AppComponent class, which contains all of our components, regardless of the front-end route picked by the user.

app.component.ts

Let’s start with the TypeScript file.

Open the /src/app/app.component.ts file and modify its class file accordingly (the updated lines are highlighted):

import { Component } from '@angular/core';
import { ConnectionService, ConnectionServiceOptions, ConnectionState } from 'ng-connection-service';
import { Observable, map } from 'rxjs';
import { environment } from '../environments/environment';
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.scss']
})
export class AppComponent {
 title = 'HealthCheck';
 public isOffline: Observable<boolean>;
 constructor(private connectionService: ConnectionService) {
 const options: ConnectionServiceOptions = {
 enableHeartbeat: true,
 heartbeatUrl: environment.baseUrl + 'api/heartbeat',
 heartbeatInterval: 10000
 };
 this.isOffline = this.connectionService.monitor(options)
 .pipe(map(state => !state.hasNetworkConnection || state.hasInternetAccess));
 }
}

The above code should be quite easy to understand at this point: we’ve set up some local variables and subscribed to the connectionService – instantiated in the component’s constructor using dependency injection (DI) – to periodically update them. We’ve also added an isOffline observable that can be used to determine the app’s online status.

Furthermore, we took the chance to define the service settings using ConnectionServiceOptions, a convenient configuration object that can be used to change the service default values. More specifically, we made three changes:

	enableHeartbeat: Enables or disables the internet connectivity heartbeat system. The default value is true, but we chose to explicitly set it to improve the code readability (and to make it easier to disable it, in case we need to do that).

	heartbeatUrl: The URL that will be used to check internet connectivity by periodically issuing HTTP HEAD requests (see heartbeatInterval). The default value is a third-party URL //internethealthtest.org, which we changed to a local endpoint served by our HealthCheck.Server app that doesn’t exist yet (but we’ll implement it soon enough).

	heartbeatInterval: The interval (in milliseconds) used to retry internet connectivity checks when an error is detected. The default value is 1000 (1 second). We raised it to 10000 (10 seconds) to avoid issuing too many requests.

The other default values are already OK, so we are not going to change them.

It’s worth noting that we took the decision to change the heartbeatUrl for several good reasons, the most important of them being the following:

	To avoid being a nuisance to those third-party hosts

	To receive a more relevant result, since we need to know not only if our app can reach the internet but also if it can connect to the domain hosting our Web API back-end – and even if the back-end is working or not!

	To avoid Cross-Origin Resource Sharing (CORS) issues against third-party resources (more on that later)

That said, since we have set the heartbeatUrl to a local endpoint that doesn’t exist yet, we will need to create it within our HealthCheck.Server ASP.NET Core project. However, before switching there, let’s put the finishing touches to our Angular app.

app.component.html

Now that we know that the isOffline observable is available, we can modify the template file of AppComponent to show the informative “offline status” message to our users whenever it becomes true.

Open the /src/app/app.component.html file and update its content with the following highlighted lines:

<app-nav-menu></app-nav-menu>
<div class="alert alert-warning" *ngIf="isOffline | async">
 WARNING: the app is currently <i>offline</i>:
 some features that rely upon the back-end might not work as
 expected. This message will automatically disappear as soon
 as the internet connection becomes available again.
</div>
<div class="container">
<router-outlet></router-outlet>
</div>

That’s it: since our app’s Home view doesn’t directly require a back-end HTTP request, we’ve chosen to just show a warning message to inform the user that some of our app’s features might not work while offline. Conversely, we could’ve entirely shut down the app by putting an additional ngIf="isOffline | async" structural directive to the other elements, so that the offline status message would be the only visible output.

app.component.scss

Now we just need to style our new offline status alert.

Open the /src/app/app.component.scss file and append the following lines to the existing content:

.alert {
 position: relative;
 padding: .75rem 1.25rem;
 margin-bottom: 1rem;
 border: 1px solid transparent;
 border-radius: .25rem;
 &.alert-warning {
 color: #856404;
 background-color: #fff3cd;
 border-color: #ffeeba;
 }
}

That’s it: with this, we’re done with our Angular tasks.

Before switching to ASP.NET Core, let’s perform a quick test of what we’ve done so far: hit F5 to run the project in Debug mode and press Ctrl + Shift + J to show the console window.

If we did everything correctly, the AppComponent should subscribe to the new service, which should hit an HTTP 404 while trying to check for the api/heartbeat endpoint, which doesn’t exist yet. As a result, the isOffline local variable should return true, thus causing the alert to show up, as in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 12.6: The offline alert message showing up

Now we need to ensure that the api/heartbeat endpoint will be found: to do that, we need to switch to the HealthCheck.Server project and perform some updates there as well.

However, before switching to the ASP.NET Core Web API project, let’s take the chance to apply all the Angular changes to the worldcities.client project as well. We don’t do that here for reasons of space, but the GitHub project repository for this chapter contains all the required updates for both projects and is a good reference for those who need help to replicate the steps we have taken so far.

Adding the api/heartbeat endpoint

To create a new API endpoint in our ASP.NET Core app, we might be tempted to add a new Controller, just like we did in all previous chapters, or maybe we can create a new action method in an existing controller?

As a matter of fact, both options would work just fine; however, the HealthCheck.Server project has just a single controller, and creating a new one just to handle a heartbeat HEAD request might be overkill. As for the WorldCities.Server project, the existing controllers are meant to serve a specific purpose: what would a heartbeat action method have to do with controllers returning cities and countries data?

If controllers were the only way to handle such a task, we would definitely have to create a new controller in both of our Web API projects. However, we can take this chance to introduce an alternative method to deal with HTTP requests that we’ve never used until now; this method is called Minimal APIs and it was introduced with ASP.NET Core 6.

Introducing Minimal APIs

Explaining Minimal APIs in few words is not an easy task. However, for the sake of simplicity, let’s try to briefly summarize the concepts of this new ASP.NET Core feature.

In a nutshell, Minimal APIs are a set of helper methods introduced to allow developers to handle HTTP requests with minimal dependencies, files, and source code. This new approach can be used together with standard controllers, as well as to entirely replace them, depending on the given scenario: ideally, they are best suited for microservices and lightweight APIs, or to handle very simple requests – just like the api/heartbeat endpoint that we need to add.

Without further ado, let’s open the Program.cs file and implement our very first Minimal API, right below the existing app.MapControllers() method:

//...
app.MapControllers();
app.MapMethods("/api/heartbeat", new[] { "HEAD" },
 () => Results.Ok());
//...

As we can see, the newly added method is rather minimalistic, yet very readable: we are handling incoming HTTP requests pointing to the api/heartbeat endpoint (HEAD requests only), returning a standard 200 – OK HTTP response without content. That’s a lot swifter than creating a dedicated controller, right?

As for the empty content, we just did that because we don’t need any: the content for a HEAD request is quite irrelevant, the ng-connection-service just needs to check the status code of our response to determine our app’s online status.

To test what we just did, we can run our HealthCheck project again: this time the alert shouldn’t be visible anymore, meaning that our new api/heartbeat endpoint can be reached by the Angular app and causes the AppComponent's isOffline local variable to return false.

Now we just need to perform the same tasks in our WorldCities.Server project, then we can move to the next step.

Cross-Origin Resource Sharing

Now that we’ve added the api/heartbeat endpoint to our ASP.NET Web API project, let’s spend some valuable time understanding the concept of Cross-Request Resource Sharing, better known as CORS.

As we said earlier, the latest version of ng-connection-service allows us to perform a HEAD request over a defined amount of time (“heartbeat”) to determine whether we’re online or not. However, we have chosen to change the third-party website that was set in the service’s default values to a dedicated Web API endpoint under our control (api/heartbeat) that we’ve just added for that specific purpose.

Why did we do that? What’s wrong with periodically issuing a HEAD request against a third-party website?

The first reason is rather simple to understand: we don’t want to be a nuisance to those websites since they’re definitely not meant for us to check their online status. If their system administrators see our requests in their log, they could ban us or take some countermeasures that could prevent our heartbeat check from working or—even worse—compromise its reliability status.

Another reason is that the reliability of a third-party site/service could be very different from our Web API: what if such a website is reachable while the production environment of our WorldCities.Server project is not? It’s rather obvious that we should check our heartbeat, not a different website’s one.

However, there’s yet another important reason for avoiding such a practice.

Allowing our app to issue HTTP requests to external websites might violate the default CORS policy settings of those websites; while we’re here, it could be useful to take a bit of time to better understand this concept.

As we might already know, modern browsers have built-in security settings that prevent a web page from making JavaScript requests to a different domain than the one that served the web page: such a restriction is called a same-origin policy and is introduced to prevent a malicious third-party website from reading data from another site.

However, most websites might want (or need) to issue some external requests to other websites: for example, the default heartbeatUrl configured in ng-connection-service would have told our app to issue a HEAD request to the third-party service to check its online status.

These requirements, which are rather common in most apps, are called CORS. To allow them, the browser expects to receive from the receiving server—the one that hosts the required resources—a suitable CORS policy that will allow them to pass. If this policy doesn’t come—or doesn’t include the requesting origin—the HTTP request will be blocked. Since this heartbeat-based mechanism is now a critical part of our app, we can’t take the risk of being blocked by third-party CORS restrictions. Therefore, we’ve replaced that troublesome external reference with a more secure URL pointing to an internal resource under our control.

At the time of writing, the third-party service defined in the default value of the heartbeatUrl configuration parameter is accepting all origins, headers, and HTTP methods, thus posing no CORS issues. However, we have no guarantees that such a no-restrictions approach will be maintained in the future.

That said, since our Web API is playing the role of the external server, we might still want to configure such a policy to allow our app to be able to call the api/heartbeat endpoint – as well as any other endpoint – even from a non-local origin. This is not required now that we’re testing our app in our localhost environment, but could definitely be the case when we publish our project in production.

For additional information about CORS and its settings, visit the following URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

Enough with the theory: let’s see how we can implement CORS in our HealthCheck.Server ASP.NET Core project and allow all of its endpoints – including the api/heartbeat one – to be called from external servers.

Implementing CORS

Configuring CORS in ASP.NET Core requires adding the CORS services and the CORS middleware, part of the Microsoft.AspNetCore.Cors namespace, to the Program.cs file.

However, before doing that, we need to provide our app with a configuration setting that we can use to specify the origin that we want to allow: a suitable place to do that is the appsettings.json file.

Adding the AllowedCORS configuration setting

Open the HealthCheck.Server’s appsettings.json file and add a new AllowedCORS key right below the AllowedHosts key, as shown below:

// ...
"AllowedHosts": "*",
"AllowedCORS": "*"
// ...

The "*" wildcard value will relax the CORS policy for any endpoint, which will be good for our testing purposes. We’ll restrict such permissive behavior in Chapter 15, Windows, Linux, and Azure Deployment, when we’ll deploy our app(s) in production.

As we can see, we didn’t use the existing AllowedHosts key because it serves a different purpose – which we will not deal with for reasons of space. If you’re interested in learning more about it, check out the following URL:https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/host-filtering.

Right after saving the HealthCheck.Server’s appsettings.json file, open the WorldCities.Server’s appsettings.json file and add the AllowedCORS key there as well before moving on.

Now that the AllowedCORS configuration setting is available, we can update our Program.cs file.

Updating the Program.cs file

Open the HealthCheck.Server’s Program.cs file and add the required highlighted lines of code:

using Microsoft.AspNetCore.Cors;
// ...
builder.Services.AddSwaggerGen();
builder.Services.AddCors(options =>
 options.AddPolicy(name: "AngularPolicy",
 cfg => {
 cfg.AllowAnyHeader();
 cfg.AllowAnyMethod();
 cfg.WithOrigins(builder.Configuration["AllowedCORS"]);
 }));
// ...
app.UseAuthorization();
app.UseCors("AngularPolicy");
// ...

The above code shouldn’t be too hard to understand:

	We’ve added the CORS services (AddCors) and configured a CORS policy that – when applied – relaxes CORS for any HTTP header and method for the AllowedCORS endpoints specified in the appsettings.json file.

	Down below, we added the CORS middleware (UseCors) just below the UseAuthorization() method: it’s very important to place it before the middleware that handles the various endpoints (Controllers, HealthChecks, Minimal APIs, and so on), so that our CORS policy will be applied to all of them.

With this, we’ve successfully implemented all the required PWA features. Again, be sure to also apply the above CORS settings to the WorldCities.Server project before moving on.

Let’s now find a way to properly test out what we did; it won’t be easy to do that from within Visual Studio due to the distinctive features of PWAs, but there are some workarounds we can use to pull it off.

Testing the PWA capabilities

In this section, we’ll try to test the service worker registration for our healthcheck.client app. Unfortunately, doing it from a Visual Studio development environment is a rather complex task for several reasons, including the following:

	ng serve, the Angular CLI command that pre-installs the packages and starts the app whenever we run our app in debug mode, doesn’t support service workers

	The service worker registration tasks that we put in the AppModule class a while ago only works when the app is running in a production environment

	The required static files generated by the Angular CLI using the angular.json configuration file that we modified earlier on will only be available in production environments

However, we can easily work around these limitations by compiling our Angular app for production and then running the generated files with a separate, dedicated HTTP server.

In the following sections, we are going to see how we can do all that.

Compiling the app

Here’s how we can publish our app using the Angular CLI. Open Command Prompt, navigate to the project’s root folder, and type the following command:

ng build

The CLI will compile our Angular app within a new /dist/ folder that will contain all the generated files. It’s worth noting that we are going to use this folder (and all its content) to test our service worker only, deleting it afterward.

As an alternative, we could also exclude it from version control by adding the folder path to the .gitignore file – which is what we did in the GitHub repository for this book.

Now we just need to install a separate HTTP server that can support our service worker. To this end, we’re going to use the http-server npm package: a simple, zero-configuration command-line static HTTP server that is also recommended by the official Angular documentation for service workers.

It’s important to understand that http-service is not meant to be used for production usage. However, its overall simplicity makes it perfect to use for testing, local development, and learning.

Installing http-server

http-server can be either installed using npm or directly launched using npx, a tool shipped with Node.js that can be used to execute npm package binaries without installing them.

If we want to globally install it before launching it, we can do so with the following commands:

> npm install http-server -g
> http-server -p 8080 -c-1 dist/healthcheck.client/browser/

If we just want to test out our service worker, we can use the following command instead:

> npx http-server -p 8080 -c-1 dist/healthcheck.client/browser/

Both commands will launch http-server and serve our healthcheck.client app to the local 8080 TCP port, as shown in the following screenshot:

[image: A screen shot of a computer Description automatically generated]
Figure 12.7: Launching http-server and serving the HealthCheck app

As soon as we do that, we can connect to it by opening a browser and typing the following URL in the address bar: http://localhost:8080.

We can check out the PWA capabilities of our apps just like we did with Visual Studio and IIS Express earlier; however, we won’t be able to test the back-end HTTP requests since http-server doesn’t natively support ASP.NET Core. Luckily enough, we don’t need the back-end to run these tests.

Testing out our PWAs

For the sake of simplicity, the following screenshots will be all related to healthcheck.client, but the same checks could be applied to the worldcities.client app as well since we configured it using the same implementation patterns.

It’s strongly advisable to perform the following tests with a Chromium-based browser, such as Google Chrome or Microsoft Edge, since such engines come with some neat built-in tools to check for the presence of a Web App Manifest and a service worker.

Let’s start our test by stopping all our projects and closing all the windows to ensure we have no running or active processes. Right after that, launch the http-server – as explained in the previous section – and open a browser to the following URL: http://localhost:8080.

If we did everything correctly we should see the app’s Home view with the yellow offline alert visible on screen. The reason for that is quite simple: our Web API is not launched (yet), hence the Angular app is unable to reach the api/heartbeat endpoint.

We can easily check out this behavior by pressing Ctrl + Shift + J to open the Chrome Developer Tools and then look at the Console tab, as shown in the following screenshot:

[image: Immagine che contiene testo Descrizione generata automaticamente]
Figure 12.8: Chrome Developer Tools

Now we can hit F5 to start our healthcheck.client and HealthCheck.Server projects, which should make the offline alert message disappear within a few seconds. Once you’re done, we can proceed with the following test.

Keeping the Chrome Developer Tools window open, navigate to the Application tab, where we can see that our Web App Manifest file has been properly loaded. If we scroll down the Application | Manifest panel, we’ll be able to see our PNG icons as well.

NOTE: It can take a while (10–20 seconds on a typical development machine) before the service worker actually shows up on the first installation.

The next thing we can check is the Application | Service Workers panel, which should strongly resemble the one shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 12.9: The Service workers panel

The service worker JavaScript file should be clearly visible, as well as its registration date and current up-and-running status.

Let’s now try to put our web browser offline. To do that, activate the Offline checkbox in the top-left section of the Chrome Developer Tools’ Application tab and see what happens:

[image: A screenshot of a computer Description automatically generated]
Figure 12.10: View after putting the web browser offline

Our offline warning info message should immediately kick in, thanks to our angular-connected-service implementation. If we move to the Network tab, we can see that the api/heartbeat endpoint isn’t reachable anymore, meaning that the isOffline local variable of AppComponent is now returning true.

Now, we can resume the connectivity (by de-selecting the Offline checkbox) and check out two more things: the linkable and installable PWA capabilities. Both of them are clearly shown on the rightmost part of the browser’s address bar, as we can see in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 12.11: Checking the linkable and installable icons

If we go over those two icons with the mouse pointer, we should be able to see the contextual messages asking us to create a QR code for the app (which will include the shareable URL) and install it on the desktop. The actual implementation of these buttons may vary depending on the browser; however, their core purpose remains the same.

Installing the PWA

Let’s now click the install button (the one with the plus sign inscribed in a circle) and confirm that we want to locally install the HealthCheck PWA.

Within seconds, we should be able to see the Home view of our newly installed app in a desktop app-like window, as shown in the following screenshot:

[image: A screenshot of a health check Description automatically generated]
Figure 12.12: HealthCheck PWA in a desktop app-like window

From there, do the following:

	Press Ctrl + Shift + J to open the Google Chrome Developer Tools again.

	Navigate to the Application | Service workers panel.

	Click on the Offline checkbox to check/activate it again.

The app should, again, show the offline warning information message.

Needless to say, we won’t be able to see our health check results table while our app is offline, since that data is fetched in real time and we currently have no offline caching mechanism that will save it in local storage and make it available when the internet connection is unavailable. However, the offline warning information message is enough to make our users aware of the fact that the app is offline.

That’s it: we have successfully turned our SPAs into PWAs. As a matter of fact, we have just scratched the surface of the many possibilities offered by such a promising deployment approach. However, we’ve successfully demonstrated that our front-end and back-end frameworks are fully able to handle their main requirements properly and consistently.

Summary

This chapter was all about PWAs. We spent some valuable time better understanding the high-level distinctive features of this modern web development pattern and how to translate them into technical specifications. Right after that, we started implementing them, taking into account the various available options offered by our front-end and back-end frameworks.

As for the implementation, we chose to take the manual route for our healthcheck.client app first, then to experience the automatic installation feature powered by the Angular CLI for the worldcities.client app. In both scenarios, we made good use of the @angular/service-worker npm package, a module available since Angular 5 that provides a fully featured service worker implementation that can be easily integrated into our apps.

Next, we took some time to understand how to handle the offline status of our app, evaluating various strategies and eventually choosing a heartbeat-based solution using the ng-connection-service npm package and a dedicated Web API endpoint. While dealing with these tasks, we took the chance to learn about and implement some convenient ASP.NET Core features, such as Minimal APIs and Cross-Origin Resource Sharing.

After we did that, we manually ran some consistency tests to check the brand-new PWA capabilities of our apps using Google Chrome (or MS Edge) and its developer tools.

At the end of this chapter, we finally saw our service worker in action, as well as the Web App Manifest file being able to serve the PNG icons and provide the installing and linking features to our apps.

The various concepts that we learned about throughout this chapter have also helped us to focus on some very important issues regarding the differences between development and production environments, hence making us ready to properly face the final part of our journey: Windows, Linux, and Azure deployment, which will be the main topics of Chapter 15, Windows, Linux, and Azure Deployment. However, before we get to that point, there are still a couple of topics that we need to address in the next two chapters.

Suggested topics

For further information, we recommend the following topics: Progressive Web Apps (PWAs), @angular/service-worker, secure origin, HTTPS, TLS, Let’s Encrypt, service workers, HTTPInterceptors, favicons, Web App Manifest file, Microsoft.AspNetCore.Cors, Cross-Origin Resource Sharing (CORS), offline status, window.navigator, ng-connection-service, IIS Express, and http-server.

References

	Progressive Web Apps: https://developers.google.com/web/progressive-web-apps

	Web Fundamentals: https://developers.google.com/web/fundamentals

	Progressive Web Apps: Escaping Tabs Without Losing Our Soul: https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

	Let’s Encrypt: https://letsencrypt.org/

	The Web App Manifest: https://developers.google.com/web/fundamentals/web-app-manifest

	Angular Service Workers: https://angular.io/guide/service-worker-getting-started

	Service worker configuration: https://angular.io/guide/service-worker-config

	Service Workers – Practical Guided Introduction (several examples): https://blog.angular-university.io/service-workers/

	Angular University: Service Worker step-by-step guide: https://blog.angular-university.io/angular-service-worker/

	favicon.io: https://favicon.io/

	Real Favicon Generator: https://realfavicongenerator.net/

	Icons8: https://icons8.com/icons/set/favicon

	FreeFavicon: https://www.freefavicon.com/freefavicons/icons/

	Firebase Web App Manifest Generator: https://app-manifest.firebaseapp.com

	DummyImage – Placeholder Image Generator: https://dummyimage.com/

	Google Developers recommendation for installability requirements: https://web.dev/installable-manifest/#recommendations

	Web App Manifest – W3C Working Draft 09 December 2019: https://www.w3.org/TR/appmanifest/

	Enable Cross-Origin Requests (CORS) in ASP.NET Core: https://learn.microsoft.com/en-us/aspnet/core/security/cors

	http-server: https://www.npmjs.com/package/http-server

	npx - execute npm package binaries: https://www.npmjs.com/package/npx

	ng-serve: https://angular.io/cli/serve

	ng-connection-service: https://github.com/Ryadel/angular-connection-service

	Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment: https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/visual-studio-publish-profiles

	Angular – Service Worker registration options: https://angular.io/api/service-worker/SwRegistrationOptions

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

13

Beyond REST – Web API with GraphQL

Up until this point, we have always assumed that the ASP.NET Web APIs used to feed data to our Angular app would do their job using the Representational State Transfer (REST) architectural style. Such an assumption is fully justified by the fact that REST has been the most popular option for accessing web services for decades, having imposed itself on all previous alternatives (such as SOAP) thanks to its undeniable advantages in terms of reliability, performance, and bandwidth usage.

However, despite having become the de facto standard for most data retrieval tasks, the REST approach is not always ideal in all circumstances and might suffer from some undeniable shortcomings, such as being unable to keep up with the rapidly changing requirements of the clients.

In this chapter, we’re going to introduce a modern query language created with the specific aim of providing a more efficient and flexible alternative to the traditional REST API architecture: the name of this language is GraphQL and it’s reportedly already being used by thousands of companies in their tech stacks, including Facebook, Shopify, Instagram, GitHub, X (formerly known as Twitter), PayPal, Airbnb, Atlassian, Pinterest, and many more.

More specifically, here’s what we’ll do:

	Introduce GraphQL, explaining its distinctive features and its advantages over a traditional REST architecture

	Add GraphQL support to our ASP.NET Core Web API using a third-party NuGet package

	Add GraphQL support to our Angular app using a third-party GraphQL client

	Perform some integration tests to see how the new GraphQL architecture works and how we can use it to improve our existing app

Are we ready? Let’s start!

Technical requirements

In this chapter, we’re going to need all the previous technical requirements listed in previous chapters, along with the following additional ASP.NET Core NuGet packages:

	HotChocolate.AspNetCore

	HotChocolate.Data.EntityFramework

And the following Angular npm packages:

	@apollo/client

	apollo-angular

	graphql

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_13/.

GraphQL versus REST

As we said early on, GraphQL is an open source data query and manipulation language that provides a set of rules and standards to create efficient and flexible Web APIs. The language was developed by Facebook in 2012 as an internal project before being released to the public in 2015, immediately getting the attention of many developers due to its innovative approach.

Comparing GraphQL with REST is almost inevitable since the former has been developed with the precise goal of solving some of the most notable REST drawbacks: for that very reason, the best thing we can do to understand the pros and cons of these two approaches is to briefly summarize the distinctive features of each one of them, starting with the technology that came first.

REST

Representational State Transfer, better known as REST, is an architectural style specifically designed for network-based applications that use the standard HTTP get, post, put, and delete request methods to access and manipulate data.

Those HTTP methods have been defined in RFC 2616 (June 1999), which contains the specifications for the HTTP/1.1 protocol: https://www.w3.org/Protocols/rfc2616/rfc2616.html.

The REST concept was first introduced and defined in 2000 by Roy Thomas Fielding (co-founder of the Apache HTTP Server project and one of the principal authors of the HTTP specification) in his doctoral dissertation Architectural Styles and the Design of Network-based Software Architectures.

As opposed to what many believe, in that dissertation, Fielding didn’t introduce a new set of methodologies to build Web APIs: he mostly summarized the core architectural principles used to design the HTTP protocol and specifications, which he had contributed to (HTTP/1.0) and co-authored (HTTP/1.1). As a matter of fact, the REST architectural style is nothing more than the distillation of these principles, which (he thought) could be used as guidelines to implement any distributed application over the web, including, but not limited to, those services specifically built to exchange data between clients and servers that we now call Web APIs.

The fact that Fielding’s intuition was right is proven by the millions of RESTful web services created in the last 20 years to handle a wide variety of tasks: websites, desktop and mobile apps, online games, operating systems, IoT devices, and so on.

Our HealthCheck.Server and WorldCities.Server ASP.NET Core apps are also part of that list since they have been developed with a REST-based approach.

If we consider that one of the most important functions of the internet is to exchange data, then we can acknowledge the importance of this architecture, since most of the information is currently transmitted using REST.

Guiding constraints

The HTTP core architectural principles identified by Fielding define six REST guiding constraints that, when properly implemented, provide the system with a set of desirable non-functional properties, including performance, scalability, simplicity, modifiability, visibility, portability, and reliability.

Here’s a brief list of these six guiding constraints and the properties they allow us to achieve:

	Client-server architecture. RESTful APIs should enforce the Separation of Concerns principle, thus separating the UI from data storage. Keeping these concerns apart improves the API’s portability, as well as the simplicity, scalability, and modifiability of the whole system.

	Statelessness. The server should handle all communication between clients without retaining data from previous calls. This basically means that the server shouldn’t keep a session state containing context-related info (such as authentication keys). This implies that, if clients need to authenticate and/or authorize themselves, the server should provide them with the means to do that upon each call. A perfect example of that would be the JWT that we talked about in Chapter 11, Authentication and Authorization, which is stored in the client’s local storage and authenticated by the server without the need to retain any additional info. The statelessness approach helps to reduce the overhead of each request on the server, which can significantly improve the performance and scalability of the whole system, especially under heavy load.

	Cacheability. Servers and clients should make use of the caching capabilities natively provided by the HTTP protocol. This basically means that all HTTP responses should include the appropriate caching (or non-caching) headers to reduce the size of the data being transferred, as well as minimize the risk of serving stale or outdated content. A good caching strategy can have a huge impact on the scalability and performance of the whole system.

	Layered system. The server, instead of being accessed directly, should be put behind one or more intermediary HTTP services or filters (NATs, proxies, load balancers, and the like). Intermediating the incoming calls will not only improve the overall security aspects of a Web API but also strengthen its performance, scalability, and reliability properties.

	Code on demand. The server should provide the clients with executable code or scripts that can be used to adopt custom behavior. This is the only REST optional constraint and is rarely used nowadays since it poses obvious security issues if not implemented properly. Furthermore, the usage scenario is kind of limited: one possible application example might be distributed computing, where the server might want to delegate to its clients part of its job, or remote evaluation techniques, where the server needs the client to perform some local checks, such as verifying whether some applications or drivers are installed. In these edge case scenarios, code on demand will likely improve the performance and scalability of the system: however, it might also reduce its overall visibility.

	Uniform interface. This constraint defines four fundamental requirements that a RESTful interface needs to implement to decouple the client requirements (data exchange) from the underlying implementation (such as data retrieval, update, and deletion). These features are:
	Identification of resources. Each resource must be univocally identified through a unique URI.

	Manipulation of resources through representations. Clients must be able to perform basic operations on resources using the resource URI and the corresponding HTTP method without the need for additional info.

	Self-descriptive messages. Each sender’s message must include all the information required by the recipient to properly understand and process it. Such a requirement is easy to implement with the HTTP protocol thanks to the HTTP headers that can be included in both requests and responses.

	Hypermedia As The Engine Of Application State (HATEOAS). The server should provide clients with usage information through a standardized set of hyperlinks and URIs. Such a requirement decouples the server from its clients and allows the server to evolve independently, reducing the risks of creating backward compatibility issues.

When a web service implements all the above constraints, it’s conventionally called RESTful.

Drawbacks

Despite its undeniable success, the REST approach is intrinsically affected by some known limitations that might have little or no impact in most scenarios but can become troublesome when dealing with non-trivial data retrieval tasks. Let’s try to acknowledge them by looking at the REST API provided by our WorldCities.Server app and used by our current Angular client to interact with the underlying WorldCities database.

Whenever our client wants to retrieve a Country, it must call the following API endpoint: /api/Countries/{id}.

That call also allows the client to retrieve the number of cities, thanks to the TotCities property that we added back in Chapter 8, Code Tweaks and Data Services.

However, we are currently unable to retrieve some properties of these cities, such as their name or ID. That endpoint is unable to do that. Moreover, we don’t currently have any endpoint returning a list of cities for a given CountryId. The only endpoint that returns a list of cities, /api/Cities, won’t accept such a filter.

This basically means that, if we wanted to do that, we should do one of the following things:

	Update the existing /api/Countries/{id} endpoint, adding an additional Cities property to the resulting CountryDTO containing a list of all the cities belonging to that country, with all the properties we might possibly need

	Update the existing /api/Cities endpoint, making it accept a CountryId parameter (or filter)

	Implement a new endpoint, such as /api/Countries/{countryId}/Cities or something similar

We can easily see how all the above alternatives have their drawbacks:

	Updating the /api/Countries/{id} endpoint to make it return a list of cities will greatly increase the size of the HTTP response, which could have non-trivial performance impacts; moreover, the update might produce some unexpected regression bugs and/or could require changing its interface, thus forcing us to update the Angular app. Furthermore, we’ll ultimately end up with a lot of Cities data that we don’t need for our purposes – an undesirable phenomenon commonly known as over-fetching. To avoid over-fetching, we could think of only returning a list of city IDs: however, doing so will force us to perform an additional roundtrip (a new HTTP request) to retrieve the data we need for each city – a performance issue commonly known as the N+1 problem.

	Updating the existing /api/Cities method might mitigate the over-fetching issue, but only to a certain extent – we will still be forced to retrieve every city field from the server, even if we don’t need all of them; furthermore, it won’t minimize the risks of regression bugs.

	Adding an additional endpoint, customizing it to suit our precise needs and to only fetch the data we need, would protect us from over-fetching and regression bugs, but would likely impact the back-end development time and add complexity to our API.

The above example allows us to identify some important shortcomings of the REST architectural style: the risk of over-fetching and the frequent need for multiple roundtrips, both due to the lack of flexibility of such approaches. As for regression bugs, although they aren’t a drawback specific to REST, the risk of hitting them is often increased by the inevitable refactoring required whenever a new change request arises: what if we need to only retrieve cities within a certain lat/lon range? Or, countries with more (or less) than N cities? And so on.

As we can easily understand, overcoming such issues might be not that simple, especially if we need a high level of versatility in terms of client-side data fetching requirements.

GraphQL

After 15 years of undisputed supremacy – and millions of RESTful web services developed around the world – the REST architectural style was challenged by a newcomer. On September 14, 2015, Facebook decided to release the specifications of its internal query language to the public, followed by a wide set of implementation tools for the most popular programming languages, including JavaScript, Go, PHP, Java, Python, Ruby, and more.

The GraphQL release allowed the developer community to take advantage of the distinctive features of the new language, which allowed clients to send and retrieve data in a very different way than REST. More precisely, instead of having to perform multiple HTTP requests to different endpoints and receive multiple HTTP responses containing different datasets, clients could ask for what they needed with a single request to a single endpoint and receive precisely what they need in a single, dynamically structured response.

Advantages over REST

The main differences between REST and GraphQL can be visualized by looking at the following schema:

[image:]
Figure 13.1: REST versus GraphQL

As we can see, with REST, we have to deal with multiple API endpoints, each one of them retrieving data from our DBMS using its own implementation strategy (which might be standardized, specific, or a mix of both). Adding more endpoints will reduce the risks of over-fetching and regression bugs, but will inevitably require multiple roundtrips, as well as adding complexity and increasing the development time.

Conversely, GraphQL gives us the chance to deal with a single endpoint that will accept our data retrieval query, execute it against our DBMS (or any other data source), and return a “merged” set of JSON data, without over-fetching and avoiding multiple roundtrips. It’s worth noting that both the query and the resulting data will have the same JSON structure, built using the standards given by the GraphQL specs, that will be processed by a dedicated server-side runtime.

Limitations

While GraphQL has some undeniable advantages over traditional REST APIs, it comes with several key disadvantages as well. Let’s briefly discuss the most relevant ones:

	GraphQL requires a client-side module to build queries and a server-side runtime to execute those queries (or make a compatible ORM able to process them). These requirements will inevitably add some complexity to clients and servers and/or increase the development time.

	GraphQL queries often return an HTTP status code of 200, regardless of whether that query was successful. More precisely, if the query fails, the JSON response will have a top-level errors key with the error message(s). This will make error handling more difficult for the client and might also lead to additional complexity for logging and monitoring tasks. However, such a limitation is mostly due to the fact that the tools we typically use for these tasks are meant to receive and process HTTP-based responses, while GraphQL has been designed to sit on top of that protocol.

	GraphQL comes with no built-in caching support. As opposed to REST APIs, which can leverage native HTTP caching thanks to their multiple endpoints returning the same data for the same requests, GraphQL requires the developer to implement custom (and often non-RESTful) caching support or to adopt a client library supporting such a feature.

	GraphQL queries are definitely more complex to implement than REST endpoints. This is true at the client level when we need to assemble the query, and even more true on the server side, where we have to execute the query against the DBMS.

The above limitations are the main reason why GraphQL is currently unable to defeat REST, at least as of today. As a matter of fact, whenever we have to deal with simple datasets and/or with data that is relatively consistent over time, the REST approach is still the most effective and convenient way to go. Conversely, if we need to handle complex scenarios with rapidly changing data, GraphQL might solve some painful REST drawbacks and help us create a more robust, efficient, and maintainable app.

For the purpose of this book, considering the overall simplicity of our sample HealthCheck.Server and WorldCities.Server projects (and the underlying DBMS), we can say that REST APIs are definitely the way to go. That said, in the next section, we’ll briefly see how we can implement a fully-featured GraphQL API on top of our existing code base.

Implementing GraphQL

Providing GraphQL support to the WorldCities app requires some back-end and front-end level work. Here are the tasks we’re going to address in this section:

	Add GraphQL support to ASP.NET Core with the HotChocolate third-party library

	Add GraphQL support to Angular using the Apollo Angular GraphQL client

	Test the server-side and client-side integration with Visual Studio

Let’s put this plan into action.

Adding GraphQL to ASP.NET Core

If we want to provide our existing ASP.NET Core app with GraphQL support, we need to add a GraphQL layer to the HTTP pipeline that can perform the following tasks:

	Expose an API endpoint that clients will use to send their GraphQL queries

	Process the incoming queries using our existing data model

	Retrieve the requested data from the underlying DBMS

	Provide the response with the resulting data in JSON format

Implementing these features from scratch would require a considerable amount of work, even for our limited database schema.

Luckily enough, we don’t need to do that thanks to the existence of several ASP.NET Core client libraries designed to do most of the job for us, such as GraphQL.NET and HotChocolate, both available on GitHub under the MIT license.

GraphQL.NET is available at the following URL: https://github.com/graphql-dotnet/graphql-dotnet/.

And here’s the URL for HotChocolate: https://github.com/ChilliCream/hotchocolate.

In this chapter, we’re going to use HotChocolate, a comprehensive .NET GraphQL platform that can help us achieve the above goal with minimal effort.

Installing HotChocolate

The HotChocolate components that we need are available in two convenient NuGet packages, which we can install from the Visual Studio GUI (using the NuGet Package Manager) or using the Package Manager console with the following command:

PM> Install-Package HotChocolate.AspNetCore -Version 13.7.0
PM> Install-Package HotChocolate.AspNetCore.Authorization -Version 13.7.0
PM> Install-Package HotChocolate.Data.EntityFramework -Version 13.7.0

The suggested version, the latest at the time of writing, is fully compatible with our WorldCities.Server project.

As always, we’re free to opt for a different version if we think we’re able to deal with the required updates.

The first NuGet package contains HotChocolate's GraphQL services and middlewares and is the only one required. The second and third packages contain some useful (yet optional) extensions that will allow us to seamlessly integrate the ASP.NET Core authorization model and Entity Framework Core into HotChocolate, which will greatly speed up our development time: that’s the reason why we’re going to use this library.

Right after installing HotChocolate, we can start to set up the GraphQL schema, which defines how we want to expose data to our client and the CRUD operations we want to allow. Such a schema can be configured using three root types:

	Query, which exposes all the possible queries clients can use, thereby allowing them to retrieve data in a read-only manner. We can think of it as a centralized view of all our entities, with a number of methods corresponding to the various ways to retrieve them.

	Mutation, which can be used by clients to perform write operations such as inserting, updating, and deleting entities.

	Subscription, which allows clients to subscribe to events and be notified in real time of their occurrence.

In the following subsections, we’re going to implement the Query and Mutation types, which will allow our clients to perform the same read, add, update, and delete operations that we’ve implemented over the preceding chapters using REST.

Query

Using Solution Explorer, create a new /Data/GraphQL/ folder in the WorldCities.Server project. Once done, add a new Query.cs file within it and fill its content with the following lines:

using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Data.GraphQL
{
 public class Query
 {
 /// <summary>
/// Gets all Cities.
/// </summary>
 [Serial]
 [UsePaging]
 [UseFiltering]
 [UseSorting]
 public IQueryable<City> GetCities(
 [Service] ApplicationDbContext context)
 => context.Cities;
 /// <summary>
/// Gets all Countries.
/// </summary>
 [Serial]
 [UsePaging]
 [UseFiltering]
 [UseSorting]
 public IQueryable<Country> GetCountries(
 [Service] ApplicationDbContext context)
 => context.Countries;
 }
}

As we can see, the preceding Query type features two methods that use Entity Framework to return IQueryable objects.

The most important thing worth noting here is those data annotation attributes that we’ve added above the two methods to enable paging, filtering, and sorting. As we can easily guess, those attributes allow us to transparently use some powerful built-in features of HotChocolate.

More specifically:

	Serial. This attribute will tell HotChocolate to execute certain tasks in serial rather than parallel mode, thus making it compatible with our current ApplicationDbContext implementation. It’s worth noting that this option will have a non-trivial impact on performances; however, we’re going to use that – at least for this sample scenario – to avoid refactoring our app (see below for additional info).

	UsePaging. This attribute will add a pagination middleware that allows GraphQL clients to paginate results using the Cursor Connections Specification, a standardized way to allow clients to consistently handle pagination best practices with support for related metadata.

	UseFiltering. This attribute will add a Filtering Middleware that allows GraphQL clients to use filters, which will be translated to native database queries. The available filters will be automatically inferred by HotChocolate by looking at the IQueryable entity types.

	UseSorting. This attribute will add a Sorting Middleware that allows GraphQL clients to sort results using a sorting argument, which will be translated by HotChocolate to a LINQ query, and eventually, thanks to EF Core, to native database queries.

The Serial attribute, and the reason we’re using it, is a rather complex topic that deserves some additional explanation. When we use services.AddDbContext<T> to register a DbContext as a scoped service, one instance of this DbContext is created and used for the entirety of a GraphQL request. This is an issue since HotChocolate executes the query resolvers in parallel for performance reasons. If two resolvers are executed in parallel and both try to perform an operation using the same DbContext, we might see one of the following exceptions being thrown:

	A second operation started in this context before a previous operation was completed

	Cannot access a disposed object

Both of them are concurrency exceptions caused by the fact that, in a nutshell, our DbContext is not thread-safe. This issue can be fixed by either using the Serial attribute, thus forcing HotChocolate to work in serial mode, or by implementing the AddDbContextFactory extension method – first introduced in .NET 5 – that allows us to register a factory instead of a single DbContext instance.

To keep things simple, we’re going to use the [Serial] attribute workaround for our current implementation scenario. That said, the AddDbContextFactory approach is the way to go for production-level apps.

Let’s switch to the other attributes: UsePaging, UseFiltering, and UseSorting. If we think about that for a second, we can see how they handle the same requirements that we’ve implemented in Chapter 6, Fetching and Displaying Data, with our ApiResult class, without the need to write a single line of code. These powerful built-in features are part of the reason why we’re using HotChocolate with the integration package for EF Core.

To learn more about the above concepts, take a look at the following links from the GraphQL official docs:

https://chillicream.com/docs/hotchocolate/integrations/entity-framework#serial-execution

https://chillicream.com/docs/hotchocolate/fetching-data/pagination

https://chillicream.com/docs/hotchocolate/fetching-data/filtering

https://chillicream.com/docs/hotchocolate/fetching-data/sorting

This minimal Query type is all that we need to fulfill our read-only requirements. Let’s now move to the writing part of the story.

Mutation

Add a new Mutation.cs file within it and fill its content with the following lines:

using HotChocolate.Authorization;
using Microsoft.EntityFrameworkCore;
using WorldCities.Server.Data.Models;
namespace WorldCities.Server.Data.GraphQL
{
 public class Mutation
 {
 /// <summary>
/// Add a new City
/// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<City> AddCity(
 [Service] ApplicationDbContext context, CityDTO cityDTO)
 {
 var city = new City() {
 Name = cityDTO.Name,
 Lat = cityDTO.Lat,
 Lon = cityDTO.Lon,
 CountryId = cityDTO.CountryId
 };
 context.Cities.Add(city);
 await context.SaveChangesAsync();
 return city;
 }
 /// <summary>
/// Update an existing City
/// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<City> UpdateCity(
 [Service] ApplicationDbContext context, CityDTO cityDTO)
 {
 var city = await context.Cities
 .Where(c => c.Id == cityDTO.Id)
 .FirstOrDefaultAsync();
 if (city == null)
 // todo: handle errors
throw new NotSupportedException();
 city.Name = cityDTO.Name;
 city.Lat = cityDTO.Lat;
 city.Lon = cityDTO.Lon;
 city.CountryId = cityDTO.CountryId;
 context.Cities.Update(city);
 await context.SaveChangesAsync();
 return city;
 }
 /// <summary>
/// Delete a City
/// </summary>
 [Serial]
 [Authorize(Roles = ["Administrator"])]
 public async Task DeleteCity(
 [Service] ApplicationDbContext context, int id)
 {
 var city = await context.Cities
 .Where(c => c.Id == id)
 .FirstOrDefaultAsync();
 if (city != null)
 {
 context.Cities.Remove(city);
 await context.SaveChangesAsync();
 }
 }
 /// <summary>
/// Add a new Country
/// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<Country> AddCountry(
 [Service] ApplicationDbContext context, CountryDTO countryDTO)
 {
 var country = new Country() {
 Name = countryDTO.Name,
 ISO2 = countryDTO.ISO2,
 ISO3 = countryDTO.ISO3
 };
 context.Countries.Add(country);
 await context.SaveChangesAsync();
 return country;
 }
 /// <summary>
/// Update an existing Country
/// </summary>
 [Serial]
 [Authorize(Roles = ["RegisteredUser"])]
 public async Task<Country> UpdateCountry(
 [Service] ApplicationDbContext context, CountryDTO countryDTO)
 {
 var country = await context.Countries
 .Where(c => c.Id == countryDTO.Id)
 .FirstOrDefaultAsync();
 if (country == null)
 // todo: handle errors
throw new NotSupportedException();
 country.Name = countryDTO.Name;
 country.ISO2 = countryDTO.ISO2;
 country.ISO3 = countryDTO.ISO3;
 context.Countries.Update(country);
 await context.SaveChangesAsync();
 return country;
 }
 /// <summary>
/// Delete a Country
/// </summary>
 [Serial]
 [Authorize(Roles = ["Administrator"])]
 public async Task DeleteCountry(
 [Service] ApplicationDbContext context, int id)
 {
 var country = await context.Countries
 .Where(c => c.Id == id)
 .FirstOrDefaultAsync();
 if (country != null)
 {
 context.Countries.Remove(country);
 await context.SaveChangesAsync();
 }
 }
 }
}

As we can see, we’ve set up six methods that will allow clients to add, update, and delete our Cities and Countries entities using Entity Framework.

It’s worth noting that, in the add and update methods implementation, we’ve used the CityDTO and CountryDTO Data Transfer Object classes that we have set up in Chapter 8, Code Tweaks and Data Services, mapping them to the corresponding City and Country entities.

We’ve also applied the [Authorize] attribute provided by the HotChocolate.Authorization package to those methods to restrict access to authorized users (roles) only. This is basically the same approach we’ve used in CitiesController and CountriesController, with one important difference: that time we made use of a different [Authorize] attribute, provided by the Microsoft.AspNetCore.Authorization namespace, which won’t work here.

The two attributes share the same name but, luckily enough, they accept a different Roles parameter type. Microsoft’s attribute wants a string, while HotChocolate requires a string array. This difference can help us to distinguish between them.

Be sure to add the correct namespace reference on the top of the file, just like we did in the preceding code.

Program.cs

Now that our GraphQL schema is ready, we just need to add the required services and middleware to our Program.cs file.

Let’s start with the service. Open the Program.cs file and add the following highlighted lines right below the JwtHandler service that we added in Chapter 11, Authentication and Authorization:

// ...
using WorldCities.Server.Data.GraphQL;
// ...
builder.Services.AddScoped<JwtHandler>();
builder.Services.AddGraphQLServer()
 .AddAuthorization()
 .AddQueryType<Query>()
 .AddMutationType<Mutation>()
 .AddFiltering()
 .AddSorting();
// ...

The service comes with a lot of helper methods that can be used to configure its various settings. However, we don’t need to do anything now, since the default values are good enough for us. We just need to add the Query and Mutation types that we’ve implemented early on and enable filtering and sorting.

Let’s now switch to middleware. Scroll down a bit and add the following highlighted lines right below the MapControllers() method:

// ...
app.MapControllers();
app.MapGraphQL("/api/graphql");
// ...

Again, the middleware accepts various configuration settings. In our scenario, we just had to configure the GraphQL endpoint (the default is "/graphql") to make it compatible with the Angular proxy rule that we already have in the proxy.conf.js file of our Angular app.

Now we can finally test what we have done so far.

Testing the GraphQL schema

Another great feature of HotChocolate is that it comes with a built-in GraphQL web-based client that can be used to test our GraphQL service using a convenient visual interface. That’s great for our purposes since we still have to deal with our Angular app.

The name of this client is Banana Cake Pop (BCP), and it can be accessed using the default endpoint (/api/graphql). To access it, launch the app by hitting F5 and then navigate to the following URL: https://localhost:40443/api/graphql.

If we did everything correctly, we should be able to see the BCP welcome screen, as shown in the following screenshot:

[image: A computer screen shot of a logo Description automatically generated]
Figure 13.2: Banana Cake Pop home page

From there, click on the Create Document button (or hit Ctrl + Alt + T) to open a new tab and then type the following sample query:

query {
 cities(order: { id: ASC }, first:3) {
 nodes {
 id
 name
 }
 }
}

We will receive the following result:

{
"data": {
"cities": {
"nodes": [
{
"id": 1,
"name": "Tokyo"
},
{
"id": 2,
"name": "Jakarta"
},
{
"id": 3,
"name": "Delhi"
}
]
}
}
}

If we can see the above results, this means that our server-side implementation using HotChocolate works!

With this first query, we’ve already tested the sorting middleware. To test the filter middleware, we can alter the query in the following way:

query {
 cities(
 order: { id: ASC }
 first:3
 where: { name: { endsWith: "tokyo" } }
)
 {
 nodes {
 id
 name
 }
 }
}

This restricts our results to the only two cities ending with "tokyo": Tokyo and New Tokyo, the city that we added back in Chapter 7, Forms and Data Validation.

All good so far. Now is the time to switch to Angular and connect to our new server-side GraphQL service with our client.

Adding GraphQL to Angular

To consume our new GraphQL endpoint in Angular, we have two options:

	Manually implement a GraphQL client, taking care of the underlying HTTP connection as well as the various fetching, caching, and optimization tasks

	Add a third-party package that (hopefully) already does all that

As odd as it might sound, implementing a minimal GraphQL client wouldn’t be that hard. Now that we know how Angular’s HttpClient works, we can put that knowledge into action and implement an observable-based service using the superclass/subclass pattern we used back in Chapter 8, Code Tweaks and Data Services, with our existing BaseService, CountryService, and CityService types.

However, for the sake of simplicity, we’ll opt for the third-party package. More specifically, we’re going to use Apollo Angular, a flexible, community-driven GraphQL client for Angular, JavaScript, and native platforms. The main advantage of such a client is given by the fact that it is incredibly easy to configure and set up, which allows us to just drop it into our existing Angular app within minutes.

Here’s what we’ll do in the upcoming sections:

	Install Apollo Angular in our worldcities.client project, together with all its dependencies

	Update our CityService by refactoring a sample method so that it will use GraphQL instead of the existing REST endpoints

	Test it to see whether the new implementation works as expected

	Improve the implementation by refactoring other REST methods

	Extend the changes by applying them to CountryService as well

Are we ready? Let’s go!

Installing Apollo Angular

Starting from version 2, Apollo Angular supports the ng-add command, meaning that we can install it with a one-line command from the Angular CLI in the following way:

> ng add apollo-angular

The above command will launch a console-based configuration wizard that allows us to configure some basic settings. Here’s how we should set them:

	Url to your GraphQL API: api/graphql

	Version of GraphQL: 16

After doing that, the wizard will perform its tasks.

[image: A screenshot of a computer program Description automatically generated]
Figure 13.3: Apollo Angular command-line installer

More specifically, the wizard will add the following npm packages to the package.json file:

	@apollo/client

	apollo-angular

	graphql

It will also create a new GraphQLModule, containing the Apollo Angular configuration settings, and reference it within the AppModule.

After the wizard completes its job, the first thing we need to do is review (and update) the package’s versions. Open the package.json file and replace the version of the installed packages in the following way:

 "apollo-angular": "6.0.0",
"@apollo/client": "3.8.8",
"graphql": "16.8.1"

The specified versions are the latest at the time of writing and are also fully compatible with the book’s code base.

As always, those who want to change/update them are free to do that, assuming they will be able to handle any compatibility issue with other packages/dependencies that such a choice might entail.

The apollo/client package is the core GraphQL client, while apollo-angular is just a bridge to make it compatible with Angular. Similar bridges are available for React, Vue, Svelte, and many other frameworks. The graphql package is the official JS implementation for GraphQL.

As soon as the npm packages have been installed, we can start to configure the client within our app.

Updating GraphQLModule

During the installation process, the configuration wizard created a graphql.module.ts file in the /src/app/ folder of our Angular app, containing Apollo Angular’s default configuration settings. Let’s take the chance to briefly review the default configuration settings and change some values.

Open the /src/app/graphql.module.ts file and update the following highlighted lines:

// ...
import { environment } from '../environments/environment';
// ...
const uri = environment.baseUrl + 'api/graphql';
export function createApollo(httpLink: HttpLink): ApolloClientOptions<any> {
 return {
 link: httpLink.create({ uri }),
 cache: new InMemoryCache({ addTypename: false }),
 defaultOptions: {
 watchQuery: { fetchPolicy: 'no-cache' },
 query: { fetchPolicy: 'no-cache' }
 }
 };
}
// ...

As we can see, we performed the following changes:

	We added the environment.baseUrl prefix to the GraphQL API URL so that Apollo Angular will be able to connect to the GraphQL endpoint that we’ve set on our ASP.NET Core application in all our supported environments.

	We disabled the Apollo Angular’s in-memory cache built-in feature.

The reason why we disable the cache feature is pretty simple to explain: the objects put in Apollo Angular’s caching store become immutable, which is something that poses some non-trivial issues in our current implementation. For the sake of simplicity, instead of having to refactor our app to avoid these kinds of issues, we chose to explicitly disable such a feature using the fetchPolicy configuration setting.

Since we chose to disable caching, we have also set the addTypename option to false, thus preventing Apollo Angular from adding a __typename field to all the JSON objects (which would be used as part of the cache ID).

Those who want to know more about Apollo Angular’s cache feature (and the issues it might pose to existing code) can visit the following URL for the Apollo Angular official docs:

https://apollo-angular.com/docs/caching/configuration/

Now we’re ready to replace our existing REST implementation with GraphQL.

Refactoring CityService

Let’s start with a simple drop-in replacement of the get(id) method of CityService, which we currently use to retrieve a single City.

Here’s the existing REST-based code:

 get(id: number): Observable<City> {
 var url = this.getUrl("api/Cities/" + id);
 return this.http.get<City>(url);
 }

And here’s the replacement code for GraphQL:

// ...
import { Observable, map } from 'rxjs';
import { Apollo, gql } from 'apollo-angular';
// ...
constructor(
 http: HttpClient,
 private apollo: Apollo) {
 super(http);
 }
// ...
get(id: number): Observable<City> {
 return this.apollo
 .query({
 query: gql`
 query GetCityById($id: Int!) {
 cities(where: { id: { eq: $id } }) {
 nodes {
 id
 name
 lat
 lon
 countryId
 }
 }
 }
 `,
 variables: {
 id
 }
 })
 .pipe(map((result: any) =>
 result.data.cities.nodes[0]));
 }
// ...

Here we go. Take a closer look at what we did there:

	We’ve replaced our HttpClient with the Apollo client, thus adding the required import references.

	We’ve used the query method to send a GraphQL query not much different from those we’ve used to test the GraphQL server-side implementation early on in this chapter. This time, instead of returning a collection of cities, we’re getting just one of them – the one corresponding to the id variable we’re using inside the query.

	We’ve mapped the query method return type to the resulting node that contains the properties of the resulting City.

Here’s the underlying GraphQL query that the above method will use to retrieve a given City, let’s say with an id value of 1:

query {
 cities(where: { id: { eq: 1 } })
 {
 nodes {
 id
 name
 lat
 lon
 countryId
 }
 }
}

And here’s the corresponding GraphQL server-side JSON response:

{
"data": {
"cities": {
"nodes": [
{
"id": 1,
"name": "Tokyo",
"lat": 35.6897,
"lon": 139.6922,
"countryId": 1
}
]
}
}
}

If we want to perform a quick test now, we can run our worldcities.client and WorldCities.Server apps and check whether we can still edit a City without issues. If we did everything correctly, we should see no issues – everything should be working as it was when we had the REST implementation up. This means that the drop-in replacement of the get(id) method went fine.

Let’s do the same with the getData<ApiResult> method, which poses some additional issues. This method returns an ApiResult, the POCO class that we added back in Chapter 6, Fetching and Displaying Data, to support features such as sorting, filtering, and paging.

As a matter of fact, we know that the HotChocolate and Entity Framework Core implementation that we set up early on natively support these features; however, the HotChocolate paging – which follows the GraphQL Cursor Connections Specification – works in a rather different way, and refactoring our app to comply with those specs will require a lot of frontend work, as well as some non-straightforward changes to our UI.

To learn more about the GraphQL Cursor Connections Specification, visit the following URL: https://relay.dev/graphql/connections.htm.

For that very reason, in order to preserve our existing work, we’ll approach it from the other direction: work at the server-side level to make the GraphQL query return the same object (and data) that we’re already set up to receive.

Improving the GraphQL query

Let’s switch back to our ASP.NET Core’s WorldCities.Server project. Open the /Data/GraphQL/Query.cs file and add the following GetCitiesApiResult method, right below the existing ones:

/// <summary>
/// Gets all Cities (with ApiResult and DTO support).
/// </summary>
[Serial]
public async Task<ApiResult<CityDTO>> GetCitiesApiResult(
 [Service] ApplicationDbContext context,
 int pageIndex = 0,
 int pageSize = 10,
 string? sortColumn = null,
 string? sortOrder = null,
 string? filterColumn = null,
 string? filterQuery = null)
{
 return await ApiResult<CityDTO>.CreateAsync(
 context.Cities.AsNoTracking()
 .Select(c => new CityDTO()
 {
 Id = c.Id,
 Name = c.Name,
 Lat = c.Lat,
 Lon = c.Lon,
 CountryId = c.Country!.Id,
 CountryName = c.Country!.Name
 }),
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery);
}

As we can see, there’s nothing new here; it’s the same approach that we’ve used in our CitiesController to receive the paging, filtering, and sorting parameters from the client and return ApiResult objects containing the resulting data. This workaround is hardly the best GraphQL approach we can take, but it’s a great way to show how versatile it can be when we need to comply with an existing scenario.

If we had more time (and pages), we might as well take the other route, replacing our existing client-side pagination (and UI components) to implement the cursor-based GraphQL pagination, which would allow us to use the Cities method of Query instead of the newly added one.

Now that we can conveniently count on the new GetCitiesApiResult method, we just need to consume it from our client.

Back to Angular

Switch back to the worldcities.client Angular app, open the city.service.ts file, and replace the existing GetData method with the following:

 getData(
 pageIndex: number,
 pageSize: number,
 sortColumn: string,
 sortOrder: string,
 filterColumn: string | null,
 filterQuery: string | null
): Observable<ApiResult<City>> {
 return this.apollo
 .query({
 query: gql`
 query GetCitiesApiResult(
 $pageIndex: Int!,
 $pageSize: Int!,
 $sortColumn: String,
 $sortOrder: String,
 $filterColumn: String,
 $filterQuery: String) {
 citiesApiResult(
 pageIndex: $pageIndex
 pageSize: $pageSize
 sortColumn: $sortColumn
 sortOrder: $sortOrder
 filterColumn: $filterColumn
 filterQuery: $filterQuery
) {
 data {
 id
 name
 lat
 lon
 countryId
 countryName
 },
 pageIndex
 pageSize
 totalCount
 totalPages
 sortColumn
 sortOrder
 filterColumn
 filterQuery
 }
 }
 `,
 variables: {
 pageIndex,
 pageSize,
 sortColumn,
 sortOrder,
 filterColumn,
 filterQuery
 }
 })
 .pipe(map((result: any) =>
 result.data.citiesApiResult));
 }

As we can see, we wrote a long, parametrized GraphQL query using the various values fetched from the UI, and then used the new GetCitiesApiResult server-side method (and mapped its result) to return the same Observable<ApiResult> as before.

In the above code, we have also used the variables parameter, a JSON object that can be used to send one or more variables to the GraphQL engine. Those variables can be used in the preceding query parameter, prepending them with the $ character, just like we did.

Using variables is often a convenient way to put dynamic data in the GraphQL query without having to resort to JS or TS string manipulation techniques or other not-so-clean workarounds.

To test what we did, we can launch our two projects and navigate to the Cities list. If we did everything correctly, we should see no differences.

Now we just need to replace the put, post, getCountries, and isDupeCity methods. The last two methods are quite straightforward now that we know how to read GraphQL data. The actual challenge comes with the first two since they perform write operations to the server-side data.

Querying the mutation

Refactoring the put and post methods of CityService means that we’ll finally have to use ASP.NET Core’s Mutation.cs file, which we implemented a while ago and haven’t used hitherto.

Before getting back to Angular, it might be useful to launch our WorldCities.Server project and navigate to the Banana Cake Pop UI of HotChocolate to see what our Mutation type looks like.

Open the browser and navigate to the following URL:

https://localhost:40443/api/graphql/

Once there, click on the Browse Schema button, then select the Schema Reference tab, and finally, click on Mutation from the Types menu located to the far right, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 13.4: Schema Reference for the mutation type

As we can see, we have four mutations that we can use to do what we need to do: addCity, addCountry, updateCity, and updateCountry.

With that knowledge, we can now open the city.service.ts file and replace the existing put and post methods with the following code:

put(input: City): Observable<City> {
 return this.apollo
 .mutate({
 mutation: gql`
 mutation UpdateCity($city: CityDTOInput!) {
 updateCity(cityDTO: $city) {
 id
 name
 lat
 lon
 countryId
 }
 }
 `,
 variables: {
 city: input
 }
 }).pipe(map((result: any) =>
 result.data.updateCity));
}
post(item: City): Observable<City> {
 return this.apollo
 .mutate({
 mutation: gql`
 mutation AddCity($city: CityDTOInput!) {
 addCity(cityDTO: $city) {
 id
 name
 lat
 lon
 countryId
 }
 }
 `,
 variables: {
 city: item
 }
 }).pipe(map((result: any) =>
 result.data.addCity));
}

That’s it. The preceding code should be quite easy to understand since we’re just executing the GraphQL method specified in the Mutation.cs class.

As always, we can test the new implementation by launching our apps and trying to update an existing city and/or add a new city. If we did everything correctly, we should still be able to do that without issues.

With that, we’re done with CityService.

Refactoring CountryService

In this section, we’ll quickly recap what we need to do to refactor CountryService to use GraphQL instead of REST for its most relevant data retrieval and update methods, just like we did for CityService.

For reasons of space, we’re not going to show all the source code updates. They can be found in the GitHub repository for this chapter. However, trying to carry out updates to CountryService without looking at the GitHub code might be a great exercise for you, and you are strongly encouraged to do that.

Here’s a list of the relevant steps:

	Refactor the get(id) method, which is the easiest to update since we can use the default GetCountries() method of the GraphQL Query type.

	Refactor the getData method, which will be slightly more complex since it will also require adding a new GetCountriesApiResult method in the Country.cs file of the ASP.NET Core app (which can be found in the GitHub repository for reference).

	Refactor the put and post methods, which will leverage the existing updateCountry and addCountry methods of the Mutation type.

CityService can be a great reference for all the above tasks since the underlying entities are quite similar. It all comes down to replacing some class and property names.

Summary

This chapter was entirely dedicated to GraphQL, an open source data query and manipulation language aiming to be a great alternative to the REST architectural style for some specific scenarios, as it allows the mitigation of some known REST limitations, such as over-fetching and the risks of regression bugs.

Following a quick review of the pros and cons of both approaches, we started to implement GraphQL in our WorldCities ASP.NET Core project. We did that using HotChocolate, a comprehensive third-party .NET GraphQL platform that helped us to do that with minimal effort, mostly thanks to the fact that it provides great support to Entity Framework Core through its extension package.

Installing and configuring HotChocolate gave us the chance to familiarize ourselves with several GraphQL-related concepts such as queries and mutations, all part of the overall GraphQL schema. Upon completing the setup, we also took the opportunity to practice with some actual queries during the first server-side tests.

Then we switched to Angular. Again, we have chosen to use a third-party package to lift most of the hard work. The choice fell on Apollo Angular, a flexible, community-driven GraphQL client for Angular that could be used as a drop-in replacement for our existing REST implementation with minimal changes to the code base.

After installing Apollo Angular, we spent some valuable time refactoring most of the data retrieval and update methods of our existing CityService to use GraphQL instead of the REST endpoints. Then we tested the knowledge acquired by performing the same changes on the CountryService class.

In the next chapter we will introduce SignalR, a free and open-source software library that allows server-side code to send asynchronous notifications to the front-end client

Suggested topics

For further information, we recommend the following topics: GraphQL, REST, GraphQL Schema, query, mutation, subscription, HotChocolate, Banana Cake Pop, and Apollo Angular.

References

	GraphQL adopters: https://graphql.org/users/

	RFC 2616 (HTTP/1.1): https://www.w3.org/Protocols/rfc2616/rfc2616.html

	Architectural Styles and the Design of Network-based Software Architectures (Roy Thomas Fielding): https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

	GraphQL specifications: https://github.com/graphql/graphql-spec

	HotChocolate – Entity Framework integration: https://chillicream.com/docs/hotchocolate/integrations/entity-framework

	HotChocolate – Pagination: https://chillicream.com/docs/hotchocolate/fetching-data/pagination

	HotChocolate – Filtering: https://chillicream.com/docs/hotchocolate/fetching-data/filtering

	HotChocolate – Sorting: https://chillicream.com/docs/hotchocolate/fetching-data/sorting

	Apollo Angular: https://apollo-angular.com/

	Apollo Angular Caching: https://apollo-angular.com/docs/caching/configuration/

	GraphQL Cursor Connections specification: https://relay.dev/graphql/connections.htm

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

14

Real-Time Updates with SignalR

In this chapter, we’ll talk about ASP.NET Core SignalR, an open-source library that allows us to add real-time functionality to web applications by enabling server-side code to push content to clients instantly.

Such a requirement might have little or no use in most general-purpose apps, including the WorldCities app we’ve been working on since Chapter 5, Data Model with Entity Framework Core; however, it can be very useful for some specific scenarios, such as:

	Online games, especially if they need to support multiple players acting simultaneously in a common or shared environment

	Social networks, assuming they need some kind of notification system

	Collaborative apps such as blogs, CMSes, whiteboards, team meetings, file-sharing services, and the like

	Dashboard and monitoring apps, including our HealthCheck app

As we can easily guess, the HealthCheck app will be the perfect candidate to explore such a topic. With that in mind, here’s what we’ll do in the following sections:

	Review the various techniques and workarounds to implement real-time capabilities in web applications using server push technologies since the introduction of HTTP/1.0

	Introduce SignalR, an open-source library that allows us to add real-time web functionality to apps leveraging the above techniques

	Implement SignalR at the server-side level in our HealthCheck.Server ASP.NET Core app

	Add SignalR capabilities at the client-side level to our Angular app

Are we ready? Let’s go!

Technical requirements

In this chapter, we’re going to need all the technical requirements listed in previous chapters, with the following additional packages:

	Microsoft.AspNetCore.SignalR

	@microsoft/signalr

The Microsoft.AspNetCore.SignalR package comes with the Microsoft.AspNetCore.App framework, meaning that our ASP.NET Core apps already have it.

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in during this chapter to better contextualize their purpose within our project.

The code files for this chapter can be found at https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/master/Chapter_14/.

Real-time HTTP and server push

Providing real-time functionalities to a web application was a very complex task for the first two decades of the internet, mostly due to the fact that the HTTP protocol was never meant for it. As we learned in Chapter 13, Beyond REST – Web API and GraphQL, when we briefly reviewed the REST principles and constraints distilled from the HTTP/1.0 and 1.1 specifications, there were no references to real-time communications, streaming protocols, server-initiated calls, or any other technique that might lead to something different from the pull-based request/response cycle initiated by a client request and handled by the server with a corresponding (and terminating) response.

For that very reason, for most of the 1990s, the most effective ways to implement real-time behaviors in a web application were:

	Using Java, Flash/ActionScript, or other “embeddable” content that could (A) support a suitable technology to achieve such behavior (socket, streaming, push/pub) and (B) interact with the DOM via JavaScript, a browser plug-in, a VM, a runtime component, or any other viable technique

	“Emulating” real-time behavior, performing frequent content updates via full-page refresh, iframe-based refresh, Ajax-based (XMLHttpRequest) polls, or other workarounds that could be used to keep the data up to date

The above techniques were rather common in stock exchange and chat-based websites: however, they weren’t widely used since they were difficult to maintain and often led to compatibility issues among the various browsers—it was the “cross-browser compatibility hell” period, after all.

However, RFC 2616 (HTTP/1.1, 1999) introduced a significant difference in promoting persistent connections to the default behavior of any HTTP connection; this basically meant that, unless otherwise indicated, the client SHOULD assume that the server will maintain a persistent connection, even after error responses from the server.

Such a statement, although not strictly related to streaming or real-time communication, has led many developers to look for an alternative way to establish a connection between the client and server that could allow the two-way exchange of information in real time. Such experiments, over the course of almost 20 years, led to pushlets, long polling, Server-Sent Events (SSEs), and—eventually—HTTP/2-based alternatives such as Web Push, gRPC, and WebRTC: however, it was only after the introduction and adoption of the WebSocket protocol (RFC 6455, December 2011) that the presence of real-time capabilities in web applications began to spread widely.

Introducing SignalR

What does all this have to do with SignalR? As a matter of fact, the ASP.NET Core approach to handling real-time requirements for web applications is an abstraction of most of the techniques we’ve just mentioned.

More specifically, SignalR takes advantage of the following transport methods (in order of fallback):

	WebSockets

	SSE

	HTTP long polling

The best technology supported by the client and server is used by SignalR to initiate the connection and fulfill its tasks, which are mostly handled through hubs and data exchange protocols.

Hubs

Hubs are a pivotal concept in SignalR, as they are used to communicate between clients and servers: the Hub type is defined within the Microsoft.AspNetCore.SignalR namespace and is part of the Microsoft.AspNetCore.SignalR NuGet package.

We can think of hubs as high-level dispatchers that allow the client and the server to call methods on each other using a standardized API—the SignalR Hubs API.

Protocols

The data between the client and the server is transmitted using serialization and deserialization techniques based upon two data exchange protocols: a JSON-based text protocol and a binary protocol based on MessagePack, a lesser-known data interchange format.

For more information regarding the SignalR data exchange protocols, check out the official docs:

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md

A Hub is exposed by the server through a dedicated route, which can be used by clients to connect and receive events in the form of messages, which are dispatched to the subscribed users and groups.

Connections, users, and groups

Connections, users, and groups are the three fundamental concepts used by the server to transmit real-time messages to clients using SignalR. Each of them has peculiar characteristics and serves a specific purpose:

	Connections: In SignalR, each client has a unique connection to the server; when a client connects to a hub, SignalR generates a unique identifier that is known only by the interested parties, meaning that each client connection has its own identifier.

	Users: A user is seen by SignalR as a subscribed individual, which is handled as part of a group. Users shouldn’t be confused with connections or clients, since a single user can connect from multiple client applications. For example, the same user might connect from a web browser and a mobile phone at the same time, thus receiving messages on both of them.

	Groups: Groups are collections of one or more connections and are the main mechanism used by SignalR to transmit real-time data to clients. Any group has a given name that acts as its unique identifier; this name will be used by SignalR to send real-time messages. When these messages are dispatched to a group, all the group members (the connections that are part of that group) are notified.

Enough with the theory: the best way to understand these concepts is to see SignalR in action, which is what we’re going to do in the upcoming sections.

Implementing SignalR

Let’s briefly recap how our healthcheck.client and HealthCheck.Server projects currently work:

	The healthcheck.client Angular app features a component—the HealthCheckComponent—that, right after being loaded, performs a call to the server-side /health endpoint.

	The above endpoint is handled by the HealthCheckMiddleware: when called, the HealthCheck.Server ASP.NET Core Web API is configured to launch various ICMP health checks, each one configured to ping a hostname or IP address and return its status (healthy or unhealthy).

	The health checks’ statuses are wrapped together by the HealthCheckMiddleware and sent in a single JSON response.

	The Angular app fetches the JSON response and uses it to create an HTML table, thus showing the result in a readable format.

As we can see, the only interaction between the two projects is a single HTTP call issued to the /health endpoint: right after the first health check result is received, the on-screen result will not change unless we manually refresh the browser’s page, thus “rebooting” the HealthCheckComponent and forcing a new HTTP call. Until we do that, the data shown by the HTML table is nothing more than a static, possibly outdated, snapshot from the past.

Rest assured, we could easily implement a timer (using a JS interval function or something like that) to automatically force a page refresh every few minutes or seconds, thus ensuring that the HTML data will always be fresh: that’s the “real-time emulation” strategy we talked about at the beginning of the chapter, where a frequent polling technique is used to work around the fact that the data-update task is always initiated by the client (pull) and never by the server (push).

However, such a workaround would have a lot of disadvantages:

	Performance impact: A lot of potentially unnecessary (and non-cached) HTTP requests, not to mention the ICMP calls issued by the server each time it’s asked to show the updated result.

	Over-fetching: Frequently polling the health check will inevitably lead to a lot of useless calls—more precisely, any HTTP request receiving a JSON response with the same result as the previous one can be considered “wasted.”

	Inefficient: No matter how frequently we configure the polling, there will always be a certain amount of “lag” between a health check change and the corresponding UI update; if we plan to use that HTML table as a monitor to promptly react whenever a check fails, our reaction time would be hindered by that lag.

	Self-limited: Whenever the data update task can only be initiated at the client level, each client will always work as a separate, independent peer. This means that there will be no way to update that data from a different source, such as the server, a third-party service, another client, and so on.

SignalR can help us to improve the current behavior of the HealthCheck app without hitting the above downsides; more precisely, we can use it to implement a data update strategy initiated by the server using a broadcast message simultaneously sent to all connected clients, which will trigger a refresh.

Here’s a breakdown of the required tasks to achieve such a result:

	Set up and configure SignalR in ASP.NET Core using the required services and middleware, as well as the required CORS configuration settings to allow connections from external sources

	Update the HealthCheck.Server project to implement SignalR at the server-side level

	Install and configure SignalR in Angular using the @microsoft/signalr npm package

	Update the healthcheck.client project to implement SignalR in our Angular app

	Test everything to ensure that our implementation is working as expected

As always, let’s start with the server-side tasks.

Setting up SignalR in ASP.NET Core

To enable the SignalR services in the HealthCheck.Server project, the first thing we need to do is to create a hub. Then, we will set up the required services and middleware, and finally, we’ll implement the broadcast message to issue the client update.

Creating the HealthCheckHub

Create a new HealthCheckHub.cs file in the HealthCheck.Server project’s root folder and fill it with the following content:

using Microsoft.AspNetCore.SignalR;
namespace HealthCheck.Server
{
 public class HealthCheckHub : Hub
 {
 }
}

The class is intentionally empty since we don’t need to add any method (yet); however, the important thing was to have it derived from the Hub base class, which is a requirement for any SignalR hub.

Setting up services and middleware

Now that we have a hub, we can add the SignalR services and middleware to our app’s configuration class. Open the Program.cs file and add the following line right below the CORS settings:

// ...
builder.Services.AddCors(options =>
 options.AddPolicy(name: "AngularPolicy",
 cfg => {
 cfg.AllowAnyHeader();
 cfg.AllowAnyMethod();
 cfg.WithOrigins(builder.Configuration["AllowedCORS"]);
 }));
builder.Services.AddSignalR();
// ...

Once done, scroll down to the end of the file and add the following line right below the Minimal API that handles the heartbeat that we added back in Chapter 12, Progressive Web Apps:

// ...
app.MapMethods("/api/heartbeat", new[] { "HEAD" },
 () => Results.Ok());
app.MapHub<HealthCheckHub>("/api/health-hub");
// ...

The /api/health-hub endpoint will allow our client to connect to the hub and receive the broadcast message; now we just need to find a way to send it.

Adding the broadcast message

The best thing we can do to implement a SignalR broadcast message in a way that we can send it on-demand is to add a dedicated route that does just that. This will allow us to issue the message by executing a given URL, which is great for testing since it allows us to emulate not only a server-side task but also something initiated by a third party.

Using a controller

If we want to handle such a route using a controller, we can do that by adding a new BroadcastController.cs file in the /Controllers/ folder and fill it with the following code:

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.SignalR;
namespace HealthCheck.Server.Controllers
{
 [ApiController]
 [Route("api/[controller]/[action]")]
 public class BroadcastController : ControllerBase
 {
 private IHubContext<HealthCheckHub> _hub;
 public BroadcastController(
 IHubContext<HealthCheckHub> hub
)
 {
 _hub = hub;
 }
 [HttpGet]
 public async Task<IActionResult> Update()
 {
 await _hub.Clients.All.SendAsync("Update", "test");
 return Ok("Update message sent.");
 }
 }
}

The above code should be quite easy to understand: we’ve just injected our Hub in the controller’s constructor using DI and then used it within the Update action method to broadcast an "Update" message to all connected clients.

This basically means that the broadcast message will be fired upon executing the /api/broadcast/update endpoint.

Using the Minimal API

However, using a controller is not the only way to fulfill our task: since .NET 6, we can also opt for a Minimal API to achieve the same result with a considerably smaller amount of source code.

Let’s take the chance to implement this alternative as well. Open the Program.cs file and add the following highlighted lines right below the SignalR middleware:

using Microsoft.AspNetCore.SignalR;
// ...
app.MapHub<HealthCheckHub>("/api/health-hub");
app.MapGet("/api/broadcast/update2", async (IHubContext<HealthCheckHub> hub) =>
{
 await hub.Clients.All.SendAsync("Update", "test");
 return Results.Text("Update message sent.");
});
// ...

As we can see, we’ve used a different route to distinguish the two approaches since we want to support both of them. Now the broadcast message will be fired upon executing either the /api/broadcast/update endpoint (handled by the BroadcastController) or the /api/broadcast/update2 endpoint (handled by the Minimal API method above).

It’s worth noting that having a controller and a Minimal API method performing the same task is something we should always avoid in real-world apps: we’re doing this here for sample purposes only. The important thing to understand here is how these two approaches can be used together in the same web application, ideally to handle different tasks.

Now we can finally switch to Angular.

Installing SignalR in Angular

To install SignalR in Angular we’re going to use @microsoft/signalr, an npm package released by Microsoft containing the required JavaScript and TypeScript clients. Once done, we will create a HealthCheckService to perform the required tasks and replace the current HttpClient implementation within the HealthCheckComponent.

Adding the npm package

Let’s start with the @microsoft/signalr npm package. Open a command-line console, navigate to the healthcheck.client app’s root folder, and type the following command:

> npm install @microsoft/signalr@7.0.14

Or, if you prefer, just add the package reference in the project’s package.json file and then perform an npm install.

IMPORTANT: As things are now, using a more recent version of @microsoft/signalr (such as 8.0.0 and above) will create some non-trivial issues due to the following known bug:

https://github.com/dotnet/aspnetcore/issues/52082

As always, the suggested version is fully compatible with the current book’s code base; those who want to change/update it are free to do that, assuming they will be able to handle any compatibility issues with other packages/dependencies that such a choice might cause.

Now we can create our new service.

Implementing the HealthCheckService

The healthcheck.client app doesn’t have any services yet; as a matter of fact, we never felt the urge to create one, since it performs a minimal amount of HTTP calls. However, now that we need to add some SignalR-related tasks, it’s better to refactor the whole HTTP connection and retrieval logic in a dedicated class.

From Visual Studio’s Solution Explorer, navigate to the /src/app/health-check/ folder, create a new health-check.service.ts file, and fill it with the following code:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import * as signalR from "@microsoft/signalr";
import { environment } from './../../environments/environment';
import { Observable, Subject, tap } from 'rxjs';
@Injectable({
 providedIn: 'root'
})
export class HealthCheckService {
 private hubConnection!: signalR.HubConnection;
 private _result: Subject<Result> = new Subject<Result>();
 public result = this._result.asObservable();
 constructor(private http: HttpClient) {
 }
 public startConnection() {
 this.hubConnection = new signalR.HubConnectionBuilder()
 .configureLogging(signalR.LogLevel.Information)
 .withUrl(environment.baseUrl + 'api/health-hub', { withCredentials: false })
 .build();
 console.log("Starting connection...");
 this.hubConnection
 .start()
 .then(() => console.log("Connection started."))
 .catch((err : any) => console.log(err));
 this.updateData();
 }
 public addDataListeners() {
 this.hubConnection.on('Update', (msg) => {
 console.log("Update issued by server for the following reason: " + msg);
 this.updateData();
 });
 }
 public updateData() {
 console.log("Fetching data...");
 this.http.get<Result>(environment.baseUrl + 'api/health')
 .subscribe(result => {
 this._result.next(result);
 console.log(result);
 });
 }
}
export interface Result {
 checks: Check[];
 totalStatus: string;
 totalResponseTime: number;
}
interface Check {
 name: string;
 responseTime: number;
 status: string;
 description: string;
}

The above code might not be simple to understand at first glance; however, there are some useful console.log calls that can be used to understand what’s going on.

As we can see, the important tasks are handled by three methods:

	startConnection: This method instantiates the hubConnection, a persistent connection to the SignalR endpoint that we’ve configured in our ASP.NET Core app so that our client will be able to listen to the Hub events and act accordingly. It also executes the updateData method once to retrieve the initial data to display.

	addDataListeners: This method is meant to be executed right after the above one, since it requires an already-existing hubConnection, and registers a handler to the "Update" event. Such a handler basically logs the received message and executes the updateData method to “refresh” the data shown by the UI.

	updateData: This method, as the name implies, performs a standard HTTP call to the HealthCheckMiddleware API endpoint to retrieve the health check data and emit a new value to the private _result subject, thus notifying all the subscribers of the public result observable that encapsulates it.

As we can see, we’re using the same observable-based logic that we adopted for the worldcities.client app’s AuthService in Chapter 11, Authentication and Authorization: the result observable will notify all the subscribed components about any updated SignalR result so that they can act accordingly.

Moreover, since all the HTTP work is being performed here, we took the chance to move the Result and Check interfaces in this file (they are currently in the health-check.component.ts file). We’ve also added the export keyword to the Result interface since we’re going to use it in the HealthCheckComponent—as we’ll see in a short while.

Adding WebSocket support to Angular proxy

The SignalR library uses WebSocket whenever possible, a communication protocol that enables full-duplex interaction between a web browser and the web server and includes a lot of useful features such as connection management, automatic reconnections, support for different transport protocols, and so on.

The SignalR services and middleware that we have added to our ASP.NET Core app come with full WebSocket support, but the Angular proxy that we are currently using in our development environment to connect our Angular app to our back-end API does not.

For that reason, if we want our Angular SignalR library to connect to our ASP.NET Core app using WebSocket, we need to add WebSocket support to the Angular proxy: let’s do this.

We first introduced the Angular proxy in Chapter 3, Looking Around, when we changed the API endpoints to allow our Angular app to connect to the ASP.NET Core back-end; if you forgot that part by any chance, be sure to check it out!

Open the /src/proxy.conf.js file and add the following highlighted line to the existing JSON:

const PROXY_CONFIG = [
 {
 context: [
 "/api",
],
 target: "https://localhost:40443",
 secure: false,
 ws: true
 }
]
module.exports = PROXY_CONFIG;

This will allow our local Angular proxy to correctly handle WebSocket connections. If we didn’t make the above change, we would likely get the following errors in the console.log of our Angular app when trying to connect:

Error: Failed to start the connection.
Error: There was an error with the transport.

Let’s move on to the next steps.

Refactoring the HealthCheckComponent

Now that we have the HealthCheckService performing the heavy lifting, we need to refactor the HealthCheckComponent, replacing the current HttpClient implementation with the service’s methods.

Let’s start with the TypeScript file.

health-check.component.ts

Open the /src/app/health-check/health-check.component.ts file and replace the existing content with the following code (relevant new lines are highlighted):

import { Component, OnInit } from '@angular/core';
import { Observable } from 'rxjs';
import { HealthCheckService, Result } from './health-check.service';
@Component({
 selector: 'app-health-check',
 templateUrl: './health-check.component.html',
 styleUrls: ['./health-check.component.scss']
})
export class HealthCheckComponent implements OnInit {
 public result: Observable<Result | null>;
constructor(
 public service: HealthCheckService) {
 this.result = this.service.result;
 }
 ngOnInit() {
 this.service.startConnection();
 this.service.addDataListeners();
 }
}

If we compare the new code with the old one, we can acknowledge how the new implementation is much swifter and easier to read now that all the data-retrieval logic has been put away: that’s what services are meant for.

It’s worth noting that the approach used to refactor the HealthCheckComponent is quite similar to what we did in the NavMenuComponent of our worldcities.client app, since we need to fulfill the same task: updating the UI whenever new/fresh data is received from a dependency service. The only difference is that we’ve used an async pipe instead of a Subject, just like we did in Chapter 9, Back-End and Front-End Debugging.

Now we can move on to the template file.

health-check.component.html

The component’s template file requires only minimal updates, mostly due to the fact that we’re using HealthCheckService's result member instead of the previous local variable.

Open the /src/app/health-check/health-check.component.html file and perform the following changes (updated code is highlighted):

<h1>Health Check</h1>
<p>Here are the results of our health check:</p>
<p *ngIf="!(result | async)">Loading...</p>
<table *ngIf="result | async as res">
<thead>
<tr>
<th>Name</th>
<th>Response Time</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let check of res.checks">
<td>{{ check.name }}</td>
<td>{{ check.responseTime }}</td>
<td class="status {{ check.status }}">{{ check.status }}</td>
<td>{{ check.description }}</td>
</tr>
</tbody>
</table>

That’s it: the style sheet file doesn’t require changes, meaning that we’re done.

Testing it all

It’s finally time to test all we have done so far.

Launch the two projects in Debug mode and, from the Angular app, navigate to the HealthCheckComponent. We should see no UI differences up to this point since we’re still performing the initial HTTP call to fetch the health check data. However, if we take a look at the browser’s console, we can already see the console.log entries showing that the connection with the Hub has been established successfully, as shown in the following screenshot:

[image: A red and blue lines Description automatically generated]
Figure 14.1: SignalR connection started

That wss:// prefix at the beginning of the URL indicates that the Angular SignalR library established the connection using the WebSocket protocol, meaning that the changes we made to our Angular proxy are working as expected.

Now we can test that the server-initiated update works as expected. To do that, open a different browser (or tab) and navigate to the following URLs:

https://localhost:40443/api/broadcast/update

https://localhost:40443/api/broadcast/update2

As we already know, the former endpoint is handled by the BroadcastController, and the latter using the Minimal API. However, both of them should produce the same outcome: upon each request, the HealthCheckComponent should refresh the health check data.

The refresh can be verified by looking at the Response Time values, in milliseconds (which will likely have a different value upon each update), and in the browser’s console, where we should be able to see the server update request messages and the new data received by the subsequent HTTP call:

[image: A screenshot of a computer Description automatically generated]
Figure 14.2: Console logs showing the server-initiated updates

Our basic implementation seems to be working.

Client-initiated events

However, we’ve only worked on a server-to-client broadcast: what if we want to send something from our client to the server? It’s true that we have a URL endpoint to test our update message, but could we send it from the hubConnection instead?

As a matter of fact, we can, and it’s actually quite simple to implement since we already did most of the required groundwork.

More precisely, here’s what we need to do:

	Update the HealthCheckHub at the server-side level, to give clients the chance to invoke an Update method

	Update the HealthCheckComponent at the client-side level, to actually invoke the method

	Test it to see if everything works as expected

Let’s do this.

Updating the HealthCheckHub

As we already know, the SignalR Hub allows a bi-directional data exchange, meaning that clients can send data through it; however, if we want to allow such behavior, we need to implement the necessary methods within the Hub itself.

To do that, open the HealthCheckHub.cs file and add the following Update method:

using Microsoft.AspNetCore.SignalR;
namespace HealthCheck.Server
{
 public class HealthCheckHub : Hub
 {
 public async Task ClientUpdate(string message) =>
 await Clients.All.SendAsync("ClientUpdate", message);
 }
}

The above code closely resembles what we’ve used in the BroadcastController and the Minimal API; however, this time, we’ve used a different broadcast event so that we’ll be able to distinguish it from the server-initiated one. Furthermore, we took the chance to allow a custom message that clients might want to send, which will be transmitted together with the event.

Updating the HealthCheckService

Now that our Hub has an Update method, we just need to invoke it from our client.

Switch back to our Angular app, open the /src/app/health-check/health-check.service.ts file, and add the following method just below the existing updateData method, right before the end of the class:

// ...
public sendClientUpdate() {
 this.hubConnection.invoke('ClientUpdate', 'client test')
 .catch(err => console.error(err));
 }
// ...

Since we’re using a new event, we also need to add a new event handler for when we receive it. Scroll up on that same file and append the following code to the existing addDataListeners method (new lines highlighted):

// ...
public addDataListeners() {
 this.hubConnection.on('Update', (msg) => {
 console.log("Update issued by server for the following reason: " + msg);
 this.updateData();
 });
 this.hubConnection.on('ClientUpdate', (msg) => {
 console.log("Update issued by client for the following reason: " + msg);
 this.updateData();
 });
}
// ...

Now we just need to execute the sendClientUpdate method from the client. The best place to do that is the HealthCheckComponent.

Updating the HealthCheckComponent

Since we just need to execute a public method, a simple HTML button in the HealthCheckComponent's template file, like the following one, would be enough to do the trick:

<button (click)="service.sendClientUpdate()">
 Refresh
</button>

However, since we don’t want to directly call that service’s method through the component’s HTML template, let’s create a local method for that.

Open the /src/app/health-check/health-check.component.ts file and append the following method at the end of the file, right below the ngOnInit() existing method:

onRefresh() {
 this.service.sendClientUpdate();
}

Once done, open the /src/app/health-check/health-check.component.html file and append the following lines to the existing code to call the method we’ve just added:

<hr />
<button (click)="onRefresh()">
 Refresh
</button>

That’s it: now we can test what we did.

Testing the new feature

To test the new feature, run the two projects in Debug mode, then use the Angular app to navigate to the HealthCheckComponent. Once there, click the refresh button and let the magic happen: if we did everything correctly, we’ll be able to see the Response Time values, in milliseconds, vary upon each refresh, as well as see the client update messages in the browser’s console, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 14.3: Client update test

With that, our ASP.NET Core SignalR overview is over.

Rest assured, we’ve only scratched the surface of the library’s many built-in features and usage examples, but now that we’ve learned how to set up the Hub connection and send data from the server to clients and vice versa, we can definitely use it to bring real-time update capabilities to our projects.

Summary

This chapter was entirely dedicated to SignalR, an open-source library developed by Microsoft and shipped with ASP.NET Core that allows us to add real-time functionality to web applications.

We spent the first part of the chapter understanding the concepts of real-time HTTP and server-side push, reviewing the various techniques and workarounds used since the beginning of the internet to achieve or emulate such capabilities; then we quickly reviewed the main features of SignalR, which leverages most of these techniques to provide an abstraction layer accessible through a proprietary API and built around concepts such as hubs, protocols, connections, users, and groups.

Right after that, we put our hand to code and implemented SignalR in ASP.NET Core and Angular, as well as setting up and configuring the required Microsoft NuGet and npm packages. More specifically, we started with implementing a server-initiated broadcast event that could be issued by executing a dedicated route; while we were there, we took the chance to implement such a route using either a dedicated controller or the Minimal API alternative approach introduced with .NET 6. Once done, we added a client-initiated event to see how the Hub connection that we implemented early on could be used the other way around.

Now we’re ready to move on to the next—and final—topic of this book: app deployment.

Suggested topics

For further information, we recommend the following topics: SignalR, HTTP/1.0, HTTP/1.1, RFC 2616, server push, HTTP long polling, gRPC, WebRTC, WebSocket API, RFC 6455, Server-Sent Events (SSEs), MessagePack, and BlazorPack.

References

	SignalR Hub Protocol: https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md

	ASP.NET SignalR GitHub repository: https://github.com/SignalR/SignalR

	@microsoft/signalr npm package: https://www.npmjs.com/package/@microsoft/signalr

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

15

Windows, Linux, and Azure Deployment

Our valuable journey through ASP.NET Core and Angular development is coming to an end. The two projects we’ve been working on since Chapter 1, Introducing ASP.NET and Angular—HealthCheck and WorldCities—are now potentially shippable products and are mostly ready to be published in a suitable environment for evaluation purposes.

In this chapter, we’ll deal with the following topics:

	Preparing our app for production, where we’ll learn some useful optimization strategies to move our app into a production folder

	Windows deployment, where we’ll see how we can deploy our HealthCheck web application to a Windows Server virtual machine and publish it over the web using Internet Information Services (IIS) with the new in-process hosting model

	Linux deployment, where we’ll deploy our WorldCities web application to a Linux virtual machine and publish it over the web using the Kestrel web server over an Nginx-based proxy

	Azure App Service deployment, where we’ll deploy our HealthCheck web application to an MS Azure web app fully managed instance without the need to set up a VM-based infrastructure

The ultimate goal of this long and ambitious chapter is to learn the requisite tools and techniques to deploy an ASP.NET Core and Angular app on a production Windows and/or Linux hosting server, as well as within a cloud-based environment. Let’s embark upon this final effort!

Technical requirements

In this chapter, we’re going to need all the previous technical requirements listed in Chapters 1-14, together with the following additional packages.

For Windows deployment:

	IIS (Windows Server)

	ASP.NET Core 8.0 Runtime (and the Windows Hosting Bundle installer for Win64 (Microsoft .NET official website))

For Linux deployment:

	ASP.NET Core 8.0 Runtime for Linux (YUM package manager)

	.NET 8 CLR for Linux (YUM package manager)

	Nginx HTTP server (YUM package manager)

As always, it’s advisable to avoid installing them straight away; we’re going to bring them in over the course of the chapter to better contextualize their purpose within our project.

The code files for this chapter can be found here: https://github.com/PacktPublishing/ASP.NET-Core-8-and-Angular/tree/main/Chapter_15.

Getting ready for production

In this section, we’ll see how we can further refine our apps’ source code in order to get them ready for production usage. We’ll mostly deal with server-side and client-side caching, environment configuration, and so on. While we’re there, we’ll take the chance to learn some useful production optimization tips offered by our front-end and back-end frameworks.

More specifically, we’re going to cover the following:

	Configuring the endpoints, where we’ll see how we will set up the production endpoints (host names, aliases, and IP addresses) and SSL certificates throughout the chapter

	ASP.NET Core deployment tips, where we’ll learn how our back-end has been optimized for production usage

	Angular deployment tips, where we’ll review some strategies used by the Visual Studio template to optimize the front-end production-building phase

Let’s get to work!

Configuring the endpoints

When a web application is published in a production environment, it needs a public endpoint (URL) so that its users will be able to access it. Such an endpoint is typically a dedicated domain name (www.myapp.com), a third-level domain name (myapp.someapps.com), a path within a shared domain name (www.someapps.com/myapp/), or an IP address (20.103.255.220).

Sometimes these endpoints are also configured to use non-standard TCP ports (www.myapp.com:8080), just like the 40433 and 40080 ports we’ve used to locally host our projects during the development phase; however, this approach is rarely used in production, since it could easily cause compatibility issues, site reputation penalties, SEO drawbacks, and so on.

In our specific scenario, we’re going to need several endpoints, since we’re aiming to publish no less than four apps—healthcheck.client, HealthCheck.Server, worldcities.client, and WorldCities.Server—in multiple places. To address such a requirement without having to use non-standard TCP ports, rely upon subpaths, or purchase multiple domains, we suggest choosing between the following two routes:

	Use third-level domain names from a single domain under our possession, and map them to the production server’s public IP address using the public DNS settings for that domain

	Use “fake” domain names, and map them to the production server’s public IP address using the local machine’s HOSTS file

Throughout this chapter, we’re going to take the first route, creating the following third-level domain names:

	healthcheck-2023.ryadel.com—for the healthcheck.client Angular app

	healthcheck-api-2023.ryadel.com—for the HealthCheck.Server Web API

	worldcities-2023.ryadel.com—for the worldcities.client Angular app

	worldcities-api-2023.ryadel.com—for the WorldCities.Server Web API

This convenient choice allows us to use a single domain and a single wildcard SSL certificate (*.ryadel.com) for all our needs, with considerable economic savings.

Those who don’t have (or want to purchase) a domain and a wildcard SSL certificate can take the alternative route, creating some mappings between the public IP address assigned to the servers we’re going to create and use and some “fake” hostnames, using the above names or even more elegant alternatives, such as healthcheck.io, healthcheck-api.io, and the like. We’re free to choose any name we like, since they will only exist in our local environment. In the next section, we’ll briefly explain how to create these mappings using the operating system’s HOSTS file.

Tweaking the HOSTS file

The easiest and most effective way to map a hostname to a given IP address on any Windows, Linux, and macOS operating system is by editing the HOSTS file, which is used by the OS to ultimately map hostnames to IP addresses before (and instead of) resolving them through the DNS lookup.

For additional information about the Windows HOSTS file, check out the following URL: https://en.wikipedia.org/wiki/Hosts_(file).

On Windows systems, the HOSTS file is located at the following filesystem path:

C:\Windows\System32\drivers\etc\hosts

On Linux and macOS systems, the HOSTS file is located at the following filesystem path:

/etc/hosts

Such a file can be edited with a text editor in the following way:

<IP.ADDRESS.0.1> healthcheck.io
<IP.ADDRESS.0.2> healthcheck-api.io
<IP.ADDRESS.0.3> worldcities.io
<IP.ADDRESS.0.4> worldcities-api.io

We don’t have to do this now, since we don’t know those IP addresses yet; we’re going to add the above entries throughout this chapter, replacing the various <IP.ADDRESS.0.N> entries with the public IP address of the virtual machine or app service we’re going to use.

In order to edit the Windows HOSTS file, we’ll need administrative privileges for it; otherwise, we won’t be able to permanently change it on disk.

As a matter of fact, creating these “overrides” within the local machine’s HOSTS file is an easy and effective way to test our web apps in production using a “real” hostname (instead of a mere IP address) without having to actually purchase any domain or SSL certificate. However, such a choice comes with some obvious downsides, including:

	Unreachability: No one else will be able to reach these apps, unless they tweak the HOSTS file just like we’re doing

	TLS/SSL issues: We likely won’t have a valid TLS/SSL certificate for these “fake” domains, meaning that we’ll have to live with browser warning pages, security exceptions, antivirus warnings, service worker registration failures, and so on—even if we use the MS Azure tenant certificate or a self-signed TLS/SSL certificate (more on that later on)

If you want to take the HOSTS file route, be sure to understand the full extent of these drawbacks.

Other viable alternatives

Those who don’t want to follow our suggested routes are free to use any suitable alternative—owned domain names, additional IP addresses, DNS entries provided by third parties, and so on—as long as you know how to properly handle them.

The same goes for TLS/SSL certificates, which can be obtained free of charge using some dedicated services (such as ZeroSSL) or non-profit certificate authorities (such as Let’s Encrypt) instead of having to purchase them.

To find out more about ZeroSSL, check out the following URL: https://zerossl.com/.

For additional info regarding Let’s Encrypt, check out the following URL: https://letsencrypt.org/.

And here’s a guide explaining how to use the above services to generate and configure a free TLS/SSL certificate for an MS Azure Windows virtual machine: https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/.

Furthermore, if we plan to host our app using Azure App Service (see the Azure App Service deployment section below), we can use the App Service Managed Certificate feature to create a free TLS/SSL certificate managed by Azure, which is actually very easy to pull off.

For further info about this technique, refer to the following guide from the Microsoft docs:

https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate

That said, for the sake of simplicity, in this chapter, we’re going to use (and assume the use of) some third-level domains with a wildcard SSL certificate. Those who want to use one of the above alternatives can replace this technique with their preferred approach; just remember to change the ASP.NET Core projects’ appsettings.json files and/or the Angular projects’ /environments/environment.ts files accordingly.

ASP.NET Core deployment tips

As you most likely already know, ASP.NET Core allows developers to adjust an application’s behavior across many environments. The most common of these are development, staging, and production environments. The currently active environment is identified at runtime by checking an environment variable that can be configured and modified from the project’s configuration files.

This variable is called ASPNETCORE_ENVIRONMENT and, while we’re running our project on Visual Studio, it can be set by using the /Properties/launchSettings.json file, which controls various settings that will be applied to our local development machine upon our web application’s launch.

The launchSettings.json file

If we take a look at the launchSettings.json file, we can see that it contains some specific settings for each execution profile of our project. To see a quick example of this, here are the contents of the HealthCheck.Server project’s /Properties/launchSettings.json file:

{
"$schema": "https://json.schemastore.org/launchsettings.json",
"iisSettings": {
"windowsAuthentication": false,
"anonymousAuthentication": true,
"iisExpress": {
"applicationUrl": "http://localhost:40080",
"sslPort": 40443
}
},
"profiles": {
"HealthCheck.Server": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": false,
"launchUrl": "swagger",
"applicationUrl": "https://localhost:40443;http://localhost:40080",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
},
"IIS Express": {
"commandName": "IISExpress",
"launchBrowser": false,
"launchUrl": "swagger",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
}
}
}

As we can see, there are two execution profiles currently set:

	The IIS Express profile, which is related to the IIS Express HTTP server.

	The HealthCheck.Server profile, which is related to the application itself (hosted using Kestrel). This profile will be used whenever we launch our project using the .NET Core CLI—in other words, the dotnet run console command—and is also the default profile being used when we launch our project in debug mode from Visual Studio.

For both of them, the ASPNETCORE_ENVIRONMENT variable is currently set to the Development value, meaning that we’re always going to run our apps in development mode from Visual Studio, unless we change these values.

How do different environments affect our web application’s behavior? In the next section, we’ll shed some light on that.

Runtime environments

Let’s start by briefly explaining what happens at runtime.

Right after our web application starts, ASP.NET Core reads the ASPNETCORE_ENVIRONMENT environment variable and stores its value in the EnvironmentName property of our app’s IWebHostEnvironment instance, which, as its name suggests, provides information about the web hosting environment our application is running in. Once set, this variable can be used programmatically—either directly or with some helper methods—to determine our app’s behavior at any moment of our back-end life cycle.

We’ve already seen these methods in action in the Program class of our ASP.NET Core applications—for example, here’s what we can find in HealthCheck.Server's Program.cs source code:

// ... existing code...
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
// ... existing code...

In the preceding lines, we’re telling our app to register the Swagger and SwaggerUI middleware only if the app is running in a development environment. This condition, which is part of most Visual Studio web application templates, is there for a reason; it’s a precautionary measure to prevent us from accidentally disclosing our OpenAPI documentation to the public—unless we explicitly choose to do that by rewriting that if block.

Given our current scenario, since our HealthCheck.Server project’s sole purpose is to interact with our healthcheck.client Angular project, there’s no reason to release our Swagger JSON file or a UI that will make it more human-readable. For that very reason, we can just leave things like that. The same logic can be applied to the WorldCities.Server project as well.

The story would’ve been different if we were dealing with a Web API meant to be consumed from some third-party services or arbitrary clients. In those circumstances, providing detailed API documentation would have probably been a wise choice, provided that the necessary security measures were considered.

While we’re here, we can take the chance to further improve the Program.cs file’s configuration settings for the staging and production environments by using the ExceptionHandler middleware instead of the default DeveloperExceptionPage. However, before doing that, it could be wise to take a step back and briefly introduce the concept of error handling in ASP.NET Core to better understand the underlying context.

Error handling techniques

As per its default settings, all ASP.NET Core web applications show detailed stack traces for server errors using the DeveloperExceptionPageMiddleware. This middleware is inserted early in the middleware pipeline and can catch any unhandled exceptions thrown by any subsequent middleware, thus being very useful during the development phase; however, exception information and stack traces shouldn’t be shown when the project is made available to the public.

For that very reason, a common security practice is to replace it with the UseExceptionHandlerMiddleware when the project runs in a non-development environment. Such middleware will still be able to catch (and potentially log) exceptions, but instead of printing all the relevant info within a dedicated error page, it can be configured to redirect the request to a customizable “error” route, which can be handled using a controller’s action method, a Minimal API method, or anything else.

Now that we know all that, we can set up the UseExceptionHandlerMiddleware by slightly updating that “conditional” part of the Program.cs file in the following way (new lines are highlighted):

// ... existing code...
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
else
{
 app.UseExceptionHandler("/Error");
 app.MapGet("/Error", () => Results.Problem());
}
// ... existing code...

As we can see by looking at the above code, we’ve configured the exception handler middleware to redirect errors to the /Error route, and we’ve also added a simple MinimalAPI method to handle it.

The Results.Problem() we’re returning produces a ProblemDetails response, a JSON-formatted, machine-readable response message for specifying errors in HTTP APIs based on https://tools.ietf.org/html/rfc7807.

With such modifications applied, whenever our ASP.NET Core app crashes, its error page will conditionally show the following messages:

	Development environment: A low-level/detailed error message, such as the exception info and the stack trace (for developers only)

	Staging or production environment: A high-level/generic unavailability message (for all end-users)

The developer exception page includes a detailed series of useful information about the exception and the request, such as exceptions and inner exceptions, stack traces, query string parameters, cookies, and HTTP headers.

For additional information about this, and error handling in ASP.NET Core in general, visit the following URL: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling.

While we’re here, we can add other middleware to further increase the security posture of our non-development environments, HSTSMiddleware, which adds the HTTP Strict Transport Security (HSTS) max age header value to all our responses.

Here’s how we can do that (new code is highlighted):

// ... existing code...
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
else
{
 app.UseExceptionHandler("/Error");
 app.MapGet("/Error", () => Results.Problem());
 app.UseHsts();
}
// ... existing code...

The HSTS header complies with some good HTTP security practices and is therefore highly desirable for any app that is publicly facing the web; however, it is basically useless (and can be a hindrance) during debugging, which is the reason why we are only setting it for non-development environments, just like the custom error page.

Before moving on, let’s copy all the updates we’ve done to the HealthCheck.Server's Program.cs file to the WorldCities.Server's Program.cs file, so that both our apps will benefit from these convenient settings.

Rule(s) of thumb

Now that we’ve seen how to programmatically determine our web app’s execution environment and make our HTTP pipeline act accordingly, we should learn how to properly adopt, and adapt, these conditional practices to best suit those environments.

Since the development environment is only available to developers, it should always favor debugging capabilities over performance. Therefore, it should avoid caching, use in-memory loading strategies to quickly respond to changes, and emit as much diagnostic information as possible (logs, exceptions, and so on) to help developers promptly understand what’s happening.

If you remember what was said in Chapter 10, ASP.NET Core and Angular Unit Testing, regarding Test-Driven Development (TDD), you should easily understand how the development environment is where the TDD practice shines the most.

Conversely, while addressing a production environment, a good way to make these decisions is by applying the following rules of thumb:

	Turn on caching whenever possible in order to save resources and increase performance

	Ensure that all the client-side resources (JavaScript, CSS files, and so on) are bundled, minified, and potentially served from a Content Delivery Network (CDN)

	Turn off diagnostic error pages and/or replace them with friendly, human-readable error pages instead

	Enable production logging and monitoring using application performance management tools or other real-time monitoring, auditing, and watchdog strategies

	Implement the best security practices made available by the frameworks

	Implement Open Web Application Security Project (OWASP) methodologies for software development, as well as network, firewall, and server configurations

These are the general guidelines (or good practices) that we should always take into serious consideration while refining the back-end part of our web applications for production usage.

What about the staging environment? It’s mostly used as a preproduction environment where we can perform (or make some testers perform) our front-end testing before giving the OK for production deployment. Ideally, its physical characteristics should mirror that of production, so that any issues that may arise in production occur first in the staging environment, where they can be addressed without impacting users.

Again, if we think back to our behavior-driven development analysis back in Chapter 10, ASP.NET Core and Angular Unit Testing, we can definitely acknowledge that the staging environment would be the perfect place to test for the expected behavior of any newly added features of our apps before releasing them into production.

Let’s continue our learning path through the ASP.NET Core environments with another important question: how can we set the proper environment when we deploy our app(s)?

Setting the environment in production

When we deploy our app using one of the available Visual Studio publish profiles—which is something we’re going to do later on in this chapter—the launchSettings.json file will be excluded from the published files. That is certainly to be expected, since it’s only meant to be used by Visual Studio and other local development tools.

Whenever we host the app on a production server, we’ll have to manually set that value using one of the following approaches:

	A dedicated environment variable with the same name

	Specific platform settings

	A command-line switch

These methods strongly depend on the server’s operating system. In the upcoming sections, we’ll see how we can perform them on Windows and Linux servers.

It’s important to remember that the environment, once set, can’t be changed while the web app is running.

If no environment-related setting is found, the web app will always use the production value as the default, this being the most conservative choice for performance and security, since most debugging features and diagnostic messages will be disabled.

Conversely, if the environment is set multiple times (such as by the environment variable and then a command-line switch), the app will use the last environment setting read, thereby following a cascading rule.

Updating the appsettings.Production.json file(s)

We already know from Chapter 3, Looking Around, that the configuration settings contained in the appsettings.json file of our ASP.NET Core projects can be overridden for specific runtime environments using environment-specific files—such as appsettings.Development.json and appsettings.Production.json. Now that we’re about to deploy our apps in production, we should take the chance to briefly review those file(s) and see if we need to change some of these settings.

HealthCheck.Server

Let’s start with the HealthCheck.Server project. As a matter of fact, this project doesn’t use connection strings, secret keys, or anything that could require an override for a production environment—except for the AllowedCORS key that we added in Chapter 12, Progressive Web Apps.

If we want to make our Web API only be accessible from the healthcheck.client Angular app’s host name, we’ll need to create a new appsettings.Production.json file to override this key using the following command:

{
"AllowedCORS": "https://healthcheck-2023.ryadel.com"
}

Needless to say, the above value would be OK only for our specific scenario, since we’re using third-level domain names of the ryadel.com domain. Those who are using different domains (or any alternative approach) should set that value according to their specific choice.

The above appsettings.Production.json file has been added to the GitHub repository for this chapter for reference purposes only. However, putting that file under the same source control of the app is widely considered bad practice, even if it does not contain personal or sensitive info, since it could be inadvertently deployed in production and therefore override the file already present on the server, which could be subject to code-independent changes over time. To minimize this risk, it’s better to have it stored in a separate location and manually copy it on the server whenever we need to.

If we don’t want to restrict the CORS policy for our production app, we can avoid creating the appsettings.Production.json file for the HealthCheck.Server project.

Let’s now move on to the WorldCities.Server project.

WorldCities.Server

The situation for our WorldCities.Server is slightly more complex, since we have several keys we might want to override in production: the connection string to access our SQL database and the whole JwtSetting block.

Here’s what a suitable appsettings.Production.json file would look like (relevant settings are highlighted):

{
"ConnectionStrings": {
"DefaultConnection": "PUT-YOUR-PRODUCTION-CONNECTION-STRING-HERE"
},
"JwtSettings": {
"Audience": "https://worldcities-2023.ryadel.com"
},
"AllowedCORS": "https://worldcities-2023.ryadel.com"
}

Be sure to replace the ConnectionStrings:DefaultConnection value with your actual connection string; moreover, set the JwtSettings:Audience and AllowedCORS values to match the Angular app’s production endpoint that you plan to use.

Again, a sample appsettings.Production.json file for the WorldCities.Server project with the above values has been added to the GitHub repository for this chapter, for reference purposes only; what we should actually do is create and/or update it on the production server (or service) after we’ve deployed our app.

We’re now ready to proceed to the next steps: deploying our app in a Production environment on Windows, Linux, and Azure. However, before doing that, let’s take a moment to discuss the deployment modes available to us.

.NET deployment modes

The .NET deployment mode is a very important configuration feature that we definitely need to understand in order to make the right choice whenever we have to deploy our application for production usage.

Let’s now try to shed some light on the three different types of deployments available from Visual Studio for .NET applications:

	Framework-dependent deployment (FDD): As the name implies, such a deployment mode requires the presence of the .NET runtime, which must be installed and available on the target system; in other words, we’ll build a portable .NET application as long as the hosting server supports it.

	Self-contained deployment (SCD): This deployment mode doesn’t rely on the presence of .NET components on the target system. All components, including the .NET libraries and runtime, will be included in the production build. If the hosting server supports .NET, the app will run in isolated mode, separating itself from other .NET applications. SCD builds will include an executable file (a .exe file on Windows platforms) as well as a .dll file containing the application’s runtime.

	Framework-dependent executable (FDE): This deployment mode will produce an executable file that will run on the hosting server, which must have the .NET and ASP.NET Core runtimes installed. Therefore, such a mode is rather similar to FDD since both of them are framework-dependent.

Let’s now try to understand the pros and cons of each deployment mode.

Framework-dependent deployment

Using the FDD mode grants the developer a number of advantages, including the following:

	Platform independence: There’s no need to define the target operating system since the .NET runtime installed on the hosting server will seamlessly handle the app’s execution, regardless of its platform.

	Small package size: The deployment bundle will be small since it will only contain the app’s runtime and the third-party dependencies. .NET itself won’t be there since we expect it to already be present on the target machine by design.

	Latest version: As per its default settings, FDD will always use the latest serviced runtime installed on the target system, with all the latest security patches.

	Better performance in multihosting scenarios: If the hosting server has multiple .NET apps installed, the shared resources will enable us to save some storage space and, most importantly, obtain reduced memory usage.

However, this deployment mode also has a number of weaknesses, including the following:

	Reduced compatibility: Our app will require a .NET runtime with a version compatible with the one used by our app (or later). If the hosting server is stuck to a previous version, our app won’t be able to run.

	Stability issues: If the .NET runtime and/or libraries were to change their behavior (in other words, if they had breaking changes or reduced compatibility for security or licensing reasons), our app would potentially be impacted by these changes as well.

Self-contained deployment

Using the SCD mode has two big advantages that could easily outweigh the disadvantages regarding some specific scenarios:

	Full control over the published .NET version, regardless of what is installed on the hosting server (or what will happen to it in the future)

	No compatibility issues, since all the requisite libraries are provided within the bundle

Unfortunately, there are also some relevant disadvantages:

	Platform dependency: Providing the runtime with the production package requires the developer to select the target building platforms in advance.

	Increased bundle size: The additional presence of the runtime resources will definitely take its toll in terms of disk space requirements. This can be a heavy hit if we plan to deploy multiple SCD .NET Core apps to a single hosting server, as each of them will require a significant amount of disk space.

The self-contained deployment bundle size issue was addressed in .NET Core 3.0 with the introduction of the app trimming feature (also called assembly linker), which basically trims the unused assemblies. This approach has been further improved in the subsequent .NET versions, where assemblies get “cracked open” and purged of the types and members not used by the application, further reducing the size.

For further info about the .NET app trimming feature, check out the following post by Sam Spencer (Program Manager, .NET Core team): https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/.

Framework-dependent executable

The FDE deployment mode was introduced in .NET Core 2.2 and, starting from version 3.0, is the default mode for the basic dotnet publish command (if no options are specified). This new approach has the following advantages:

	Small package size, latest version, and better performance in multihosting scenarios, just like FDD mode

	Easy to run: The deployed executable can be directly launched and executed, without having to invoke the dotnet CLI

This approach also has some disadvantages:

	Reduced compatibility: Just like FDD, the app requires an ASP.NET Core Runtime with a version compatible with the one used by our app (or later)

	Stability issues: Again, if the ASP.NET Core Runtime and/or libraries were to change their behavior, those changes could break the app or alter its behavior

	Platform dependency: As the app is an executable file, it must be published for each different target platform

As we can easily guess, all of these three deployment modes can either be good or bad, depending on a number of factors, such as how much control we have over the deployment server, how many ASP.NET Core apps we plan to publish, and the target system’s hardware and software capabilities.

As a general rule, as long as we have the rights to install and update system packages on the deployment server, the FDD modes should work well; conversely, if we host our apps on a cloud-hosting provider that doesn’t have our desired .NET runtime, SCD would arguably be the most logical choice. The available disk space and memory size will also play a major role, especially if we plan to publish multiple apps.

As a matter of fact, the requirement of being able to manually install and update the packages on the server should no longer be a hindrance since all .NET updates will now be released through the regular Microsoft Update channel, as explained in the following post by Jamshed Damkewala (Principal Engineering Manager, .NET): https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/.

That said, we’re going to use the FDD (default) deployment mode, since our current scenario requires the publication of two different apps that share the same ASP.NET Core Runtime version on the same server.

Angular deployment tips

Let’s now turn our gaze to the front-end to properly understand how the Visual Studio template that we’ve used to build our two apps handles Angular’s production deployment tasks.

It goes without saying that the same good practices we’ve determined for the back-end retain their value at the front-end as well, as we’ll see in a short while. In other words, performance and security will still be the principal goals in this regard.

Let’s now try to understand how the Angular CLI handles our applications’ publishing and deployment tasks.

ng serve, ng build, and the package.json file

As we should already know, whenever we run one of our Angular projects in Visual Studio, the actual app is served using an in-memory instance of the Angular CLI server. This server is launched by Visual Studio using the ng serve command, as we can see by looking at the console window that is automatically opened during the launch to host that process.

If we take a look at that window, we can see this clearly, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.1: Visual Studio output window during the initial debug phase

Conversely, whenever we want to compile our app for production, as we learned in Chapter 12, Progressive Web Apps, we need to use the ng build CLI command instead:

> ng build

The above command creates the Angular bundle with several optimization features meant for production deployment, including the following:

	Ahead-of-time (AOT) compilation: This converts the HTML and TypeScript code into efficient JavaScript code in order to provide faster rendering in the browser; the default mode (used for ng serve), called just-in-time (JIT) compilation, compiles the app in the browser at runtime and is, therefore, a much slower and less-optimized alternative.

	Production mode: This makes the app run faster by disabling some development-specific checks, such as the dual change detection cycles.

	Bundling: This concatenates the various app and third-party files (npm packages) into a few bundles.

	Minification: This removes whitespaces, comments, optional tokens, and any unnecessary characters and artifacts to HTML, JavaScript, and CSS files.

	Uglification: This internally rewrites the JavaScript code to shorten the variable and function names; this will also make our published code less readable, which is often a good thing since it will shield our app against malicious reverse-engineering attempts.

	Dead code purging: This removes any unreferenced modules and/or unused code files, snippets, or sections.

As we can see, all of the preceding features aim to increase the performance and security capabilities of our production build.

Differential loading

Another nice feature worth mentioning is differential loading, which was introduced in Angular 8 and enabled by default when using the ng build command.

Differential loading is Angular’s way of overcoming the compatibility issues between various browsers, especially the older ones; in other words, those that are still based on older versions of JavaScript.

As we can see by looking at the tsconfig.json file placed at the root of our Angular projects, our TypeScript code will be transpiled and bundled into ES2022, also known as ECMAScript 2022, a JavaScript syntax that is compatible with the vast majority of modern browsers. However, there is still a number of users with older clients, such as old desktop, laptop, and/or mobile devices, that are bound to ES5 and earlier versions.

To work around this, previous versions of Angular, as well as most other front-end frameworks, provided a number of support libraries (known as polyfills) that would have conditionally implemented the missing features for those browsers that didn’t natively support them. Unfortunately, such a workaround massively increased the production bundle, thereby resulting in a performance hit for all users, including those using modern browsers that didn’t need those polyfills to begin with.

Differential loading solves this issue by generating two separate bundle sets during the build phase:

	The first bundle contains the app’s code, which has been transpiled, minified, and uglified using a modern ECMAScript syntax. This bundle ships fewer polyfills and therefore results in a much smaller size.

	The second bundle contains the same code transpiled in the old ES5 syntax, along with all the necessary polyfills. Needless to say, this bundle is much bigger than the first one in terms of file size, but properly supports older browsers.

The differential loading feature can be configured by altering two files:

	The .browserlistrc file, which lists the minimum browsers supported by our application

	The tsconfig.json file, which determines the ECMAScript target version that the code is compiled to

By taking both of these settings into consideration, the Angular CLI will automatically determine whether or not to enable the differential loading functionality.

This strategy is very effective since it will allow our Angular apps to support multiple browsers without forcing our modern users to retrieve all the unnecessary bundles.

The angular.json configuration file(s)

The most important difference between ng serve and ng build is that the latter is the only command that actually writes the build-generated artifacts to the output folder. Those files are built using the webpack build tool, which can be configured using the angular.json configuration file.

The output folder is also set within that file, more precisely, in the projects | [projectName] | architect | build | options | outputPath section. In our sample apps, it’s the dist/[projectName]/browser folder, meaning that all the build-generated artifacts will be deployed in the /dist/healthcheck.client/browser and /dist/worldcities.client/browser folders.

Updating the environment.ts file(s)

Another file we need to remember is the /environments/environment.ts file of the healthcheck.client and worldcities.client Angular apps, where we must replace the baseUrl key value—currently set to https://localhost:40443/—with the actual endpoints that our HealthCheck.Server and WorldCities.Server apps will respond to.

In our specific scenario, since we’re using third-level domain names of the ryadel.com domain, we need to change them in the following way:

	https://healthcheck-api-2023.ryadel.com/

	https://worldcities-api-2023.ryadel.com/

Those who used different domains (or any alternative approach) should update the above values according to their specific choice.

Automatic deployment

Angular 8.3.0 introduced the new ng deploy command, which can be used to deploy the Angular app to one of the available production platforms thanks to some third-party builders that can be installed using ng add.

Here’s a list of the supported builders at the time of writing:

	@angular/fire (Firebase)

	@azure/ng-deploy (MS Azure)

	@zeit/ng-deploy (ZEIT Now)

	@netlify-builder/deploy (Netlify)

	angular-cli-ghpages (GitHub Pages)

	ngx-deploy-npm (NPM)

Although the ng deploy CLI option is not yet supported by Visual Studio, it can be very useful to instantly deploy our app using some presets that can be configured in the deploy section of the angular.json file. Such a section isn’t available in the angular.json file of our projects, but it will be automatically added as soon as one of the preceding builders is installed using the ng add CLI command (with its corresponding default settings).

With this, we are ready to begin the actual deployment phase.

Windows deployment

In this section, we’ll learn how to deploy our HealthCheck web application on a Windows 2019 Datacenter Edition server hosted on MS Azure.

Here’s what we’re going to do:

	Create a new VM on MS Azure using the Windows 2022 Datacenter Edition template and configure it to accept inbound calls to TCP ports 3389 (for Remote Desktop), 80 (for HTTP), 443 (for HTTPS), and 22 (for SSH)

	Configure the VM by downloading and/or installing all the necessary services and runtimes to host the HealthCheck app

	Publish the HealthCheck app to the web server we’ve just set up

	Configure IIS to serve the app in the proper way

	Test the HealthCheck app from a remote client

Let’s get to work!

In this deployment example, we’re going to set up a brand-new VM on the MS Azure platform, which requires some additional work; those users who already have a production-ready Windows server should skip the sections related to the VM setup and go directly to the publishing topics.

Creating a Windows Server VM on MS Azure

If we remember our journey through MS Azure in Chapter 5, Data Model and Entity Framework Core, when we deployed a SQL database there, we should already be prepared for what we’re going to do:

	Access the MS Azure portal.

	Add and configure a new VM.

	Set the inbound security rules to access the VM from the internet.

Let’s do this.

Accessing the MS Azure portal

As usual, let’s start by visiting the following URL, which will bring us to the MS Azure website: https://azure.microsoft.com/.

Again, we can either log in using an already-existing MS Azure account or create a new one (possibly taking the chance to use the free 30-day trial, if we haven’t used it already).

Refer to Chapter 5, Data Model and Entity Framework Core, for additional information on creating a free MS Azure account.

As soon as we have created the account, we can go to https://portal.azure.com/ to access the MS Azure administration portal, where we can create our new VM.

Adding a new Windows VM

Once logged in, click on the Virtual machines icon (refer to the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 15.2: Clicking on the Virtual machines icon

From the next page, click Add (near the top-left corner of the page) to access the Create a virtual machine panel.

The Create a virtual machine panel is basically a detailed wizard that allows us to configure a new VM from scratch. The various configuration settings are split into a number of panels, each one dedicated to a specific set of capabilities, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.3: The Create a virtual machine panel

It’s worth noting that the MS Azure settings we’re going to review, as well as the look and feel of the various screenshots, might vary in the future, as Microsoft is continuously adding new features, control switches, and other UI/UX goodies to their wizards.

That said, here’s a brief summary of the main settings panels:

	Basics: Subscription type, VM name, deployment region, image, login credentials, and so on

	Disks: The number and capacity of HDDs/SDDs to provide the VM with

	Networking: Network-related configuration settings

	Management: Microsoft Defender for Cloud, Identity, auto-shutdown capabilities, backup, and more

	Monitoring: Alerts, Diagnostics, and Health monitoring features

	Advanced: Additional configuration, agents, scripts, extensions, and the like

	Tags: These allow some name-value pairs that can be useful in categorizing the various MS Azure resources to be set

In our current scenario, we just have to slightly modify the first four tabs, leaving the remaining ones as their default settings.

In the Basics tab, we have the following:

	Resource group: Use the same resource group used for the SQL database (or create a new one).

	Virtual machine name: Use NET8-Angular-Windows, HealthCheck, or any other suitable name.

	Region: Choose the region closest to our geographical position.

	Availability options: No infrastructure redundancy required.

	Security type: Trusted launch virtual machines.

	Image: In our example, we’re going to use the Windows Server 2022 Datacenter default image; feel free to use it as well or pick another one.

	Run with Azure Spot discount: Check this flag if you want to create the VM using the Azure Spot feature, which allows us to take advantage of Azure’s unused capacity at a significant cost saving. However, since these VMs can be evicted at any point in time when Azure needs the capacity back, we should only use this feature for short-term testing purposes; if we want to create a permanent, production-like VM, we should definitely leave this flag unchecked and create a standard pay-as-you-go machine.

	Size: Standard B1ms (1 vCPU, 2 GiB memory). Feel free to choose a different size if you’re willing to spend more. B1ms is an entry-level machine featuring a very limited set of resources that will suffice for this deployment sample but won’t perform well in production.

	Administrator account: Select the Password authentication type, and then create a suitable username and password set. Remember to write these down in a secure place, since we’ll definitely need these credentials to access our machine in a while.

In the Disk tab, we have the following:

	OS disk type: Select Premium SSD (locally-redundant storage) for optimal performance, or Standard HDD if you want the cheapest available choice

	Data disks: We do not need to create additional data disks for our current purposes

In the Networking tab, we have the following:

	Virtual Network: If you created a SQL database hosted on Azure in Chapter 5, Data Model and Entity Framework Core, select the same VNet used for it; otherwise, create a new one

	NIC network security group: Basic

	Public inbound ports: Choose Allow selected ports, then select the following ports from the list: HTTP (80), HTTPS (443), SSH (22), and RDP (3389)

	Load balancing options: None

In the Monitoring tab, we have the following:

	Boot diagnostics: Disable

Leave all the other settings as their defaults.

For further info regarding the Azure Spot feature, read the following article: https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms.

Once done, click the Review + create button to review our configuration settings and initiate the VM deployment process.

At the end of the process, we should see a screen like the following:

[image: A screenshot of a computer Description automatically generated]
Figure 15.4: Deployment complete screen

From there, we can click the Go to resource button to access the VM’s Overview panel.

Configuring a DNS name label

Now we have the chance to add a DNS name label to our VM, which will be used to generate a unique fifth-level domain name in addition to its unique numeric IP address.

To do this, locate the DNS name label in the virtual machine’s Overview panel and click on the Not configured link next to it, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.5: Configuring a DNS name label

Once generated, the DNS name will look like this: your-chosen-name.westeurope.cloudapp.azure.com.

The DNS name label is basically an A record that will grant a “human-readable” public endpoint to your VM server. It goes without saying that the DNS name must be unique within the chosen Azure region.

In our example, we’re going to use the following DNS name:

healthcheck-2023.westeurope.cloudapp.azure.com

Configuring the DNS name label and getting the DNS name can be useful if we want to access our web application from the web without having to configure anything on our end (such as a host mapping to the VM’s IP address or something like that). We could even use it to replace one of the “fake” hostnames that we plan to put within our local machine’s HOSTS file for our healthcheck.client and HealthCheck.Server apps—healthcheck.io or healthcheck-api.io—if we want to.

Before leaving the Overview tab, be sure to take note of the virtual machine’s IP address and DNS name, since we’re going to need them in a short while.

Setting the inbound security rules

Go to the Settings | Networking tab and ensure that the Inbound port rules tab contains the routes for the public inbound ports we specified when we created the VM: HTTP (80), HTTPS (443), SSH (22), and RDP (3389). In the unlikely case that they are not here, we need to manually set them.

While we’re here, we can also take the chance to restrict access to some of these rules instead of leaving them open to the public, depending on our specific needs; for example, it’s strongly advisable to restrict access to the SSH and RDP inbound rules to a secure source IP address (or address range), which can be set to either our static IP address or our ISP’s IP mask. Such a setting will ensure that no third parties will be able to attempt Remote Desktop access or visit our web application.

IMPORTANT: For reasons of space, we will not go into any more detail on the security aspects related to connections with MS Azure and the virtual machines hosted therein. Opening port 3389 and/or 22 to a single IP address is a simple solution that works well for our testing purposes, but for a production environment, we should definitely switch to safer and stronger access protocols, such as JIT access, Azure Bastion, and/or secure SSH tunnels.

For additional info on these security best practices, read the following guides:

https://docs.microsoft.com/en-us/azure/security-center/just-in-time-explained

https://docs.microsoft.com/en-us/azure/bastion/

Regardless of how we will eventually set these inbound rules, we assume that we leave the RDP port 3389 open for our local machine, so that we can connect to our VM using Remote Desktop Connection.

Configuring the Windows VM

With TCP port 3389 open, we can launch the Remote Desktop Connection built-in tool from our local Windows-based development machine. Type in the public IP address (or the DNS name) of the Azure VM and click Connect to initiate an RDC session with our remote host:

[image: A screenshot of a computer Description automatically generated]
Figure 15.6: The Remote Desktop Connection tool

If the inbound security rule has been properly configured, we should be able to connect to our new VM’s desktop and set up our VM for serving our ASP.NET Core and Angular HealthCheck web application. Doing this requires a series of configuration tasks that will be described in the next sections.

The first step, which we’ll be dealing with in the following section, will be installing IIS, a flexible, secure, and manageable HTTP server that we’ll use to host our ASP.NET Core and Angular application over the web.

For reasons of space, we’re not going to talk about IIS or explore its functionalities. We’ll just use the minimum amount of settings required to host our apps. For additional information regarding IIS, check out the following URL: https://www.iis.net/overview.

Adding the IIS web server

Once connected via Remote Desktop, we can access Control Panel | Program and Features | Turn Windows features on and off (or the Add Roles and Features Wizard from the Server Manager dashboard) to install IIS on the VM, as shown in the following screenshot:

[image: A screenshot of a dashboard Description automatically generated]
Figure 15.7: The Add Roles and Features Wizard

From the various roles available, select Web Server (IIS), as shown in the following screenshot. Be sure that the Include management tools checkbox is checked, and then click Add Features to start installing it:

[image: A screenshot of a computer Description automatically generated]
Figure 15.8: Selecting Web Server (IIS)

Select Next on the next two windows to reach the Role Services panel. Once there, expand the Application Development node and select WebSocket Protocol to ensure it will be installed. As we learned in Chapter 14, Real-Time Updates with SignalR, this will allow SignalR to connect using the best-supported protocol.

[image: A screenshot of a computer Description automatically generated]
Figure 15.9: Adding support for WebSocket Protocol

Once done, click Next again and then Install to launch the installation process.

Installing the ASP.NET Core Windows hosting bundle

Once IIS has been installed, we can proceed with downloading and installing the ASP.NET Core Runtime.

It’s strongly advisable to install the .NET runtime after installing IIS because the package bundle will perform some modifications to the IIS default configuration settings.

To download the .NET runtime, visit the following URL: https://dotnet.microsoft.com/en-us/download/dotnet/8.0.

Be sure to pick the ASP.NET Core 8.0.1 Runtime – Windows Hosting Bundle installer package for Windows x64, as shown in the following screenshot:

[image: Immagine che contiene testo, schermata, Carattere, numero Descrizione generata automaticamente]
Figure 15.10: Picking the Windows Hosting Bundle installer package

The bundle includes the .NET runtime, the ASP.NET Core Runtime, and the ASP.NET Core IIS module – everything we need to run our ASP.NET Core and Angular app from our VM.

Restarting IIS following ASP.NET Core Runtime installation

Once the ASP.NET Core Runtime installation process is complete, it’s advisable to issue a stop/start command to restart the IIS service.

To do this, open a Command Prompt window with administrative rights and execute the following console commands:

> net stop w3svc /y
> net start w3svc

These commands will allow IIS to pick up a change to the system path made by the Windows Hosting Bundle installer.

Publishing healthcheck.client and HealthCheck.Server

Now, we must find a way to publish the healthcheck.client Angular app and HealthCheck.Server Web API and deploy them to our server.

As for the Angular app, we already know how to perform the first step, from Chapter 12, Progressive Web Apps: we need to open a Command Prompt, navigate to the project’s root path, and run the ng build command. We just need a way to copy the generated Angular application bundle to our new VM.

A simple way to do this is by using the Remote Desktop resource-sharing feature, which allows our local HDD to be accessed from a remote instance… or even a simple cut and paste. We can use one of these features to copy the whole content of our development machine’s /build/healthcheck.client/browser/ folder into a new C:/inetpub/healthcheck.client/ folder created on the remote VM.

As for the ASP.NET Core app, there are several alternative options to perform the publishing and deployment task, all accessible from the publish profiles feature.

Introducing Visual Studio publish profiles

Visual Studio’s publish profiles feature allows us to build, publish, and sometimes even deploy a web application directly from the GUI, thus greatly simplifying the publishing process.

To create a publish profile, choose one of the following paths:

	Right-click the API project in Solution Explorer and select Publish

	Select Publish {PROJECT NAME} from the Build menu

Once we do that, we’ll be asked to select one from several available publish targets, including:

	Azure

	Docker Container Registry

	Folder

	FTP/FTPS Server

	Web Server (IIS)

	Import Profile

Given our specific scenario, we should take one of the following routes:

	Create a Folder publish profile to publish our app to a local folder of our development machine, and then copy the files to the web server somehow

	Install an FTP/FTPS server on our web server and then set up an FTP publish profile

	Use Visual Studio’s Azure Virtual Machine publish profile

	Use Visual Studio’s Web Server (IIS) publish profile

All the above options are viable. The last two require installing some additional components (Web Deploy) on the VM server; however, once we do that, they will work in an almost fully automated fashion (one-click deploy).

That said, in the following sections, we’ll briefly review all of them.

Folder publish profile

Here’s what we need to do to create a new Folder publish profile:

	Select the Folder option.

	Specify the path of the folder that will contain the published application.

	Click the Create Profile button to create the profile.

	Click the Publish button to deploy our HealthCheck.Server back-end to the chosen local folder. Visual Studio will suggest a path located within the application’s /bin/Release/ subfolder, such as /bin/Release/net8.0/publish/; we can either use this or choose another folder of our choice.

When the publishing task is complete, we can use the RDP resource-sharing feature to copy the whole content of our development machine’s /bin/Release/net8.0/publish/ folder into a new C:/inetpub/HealthCheck.Server/ folder—just like we did with our Angular app.

FTP publish profile

If our web server can accept FTP (or FTPS) connections, then a suitable alternative way of publishing our project is to create an FTP-based publish profile that will automatically upload our web project to our web server using the FTP/FTPS protocol.

If we don’t want to use the built-in FTP server provided by Windows Server, we can install a third-party FTP server, such as FileZilla FTP Server, a great open-source alternative that comes with full FTPS support. You can find FileZilla FTP Server at the following URL: https://filezilla-project.org/download.php?type=server.

To make use of the FTP publish profile, we’ll also need to open our VM’s TCP port 21 (or another non-default port) by adding another inbound security rule, just like we did with ports 22, 80, 443, and 3389.

All we need to do is link the FTP destination folder to a new website project using IIS, and we’ll be able to publish/update our website in a real-time fashion, as everything will be put online as soon as the publishing task is complete.

As we said earlier, we’re doing all this assuming that we have a web server accessible through FTP or that we’re willing to install an FTP server. If that’s not the case, you might as well skip this section and use a different publishing profile, such as Azure Virtual Machine or Folder.

To set up the FTP publishing profile, select IIS, FTP, and the other icons, wait for the wizard-like modal window to appear, and then select the following options:

	Publish method: Select FTP.

	Server: Specify the FTP server URL (IP address or domain name).

	Site path: Insert the target folder from the FTP server root, such as /HealthCheck.Server/.

	Passive Mode, Username, Password: Set these values according to our FTP server settings and given credentials. Activate Save Password if you want to let Visual Studio store it, so we won’t have to write it with each publishing attempt.

	Destination URL: This URL will be automatically launched as soon as the publishing task successfully ends using the default browser. It’s often wise to set it to our web application’s base domain, such as www.our-website-url.com, or to leave it empty.

Once done, click on the Validate Connection button to check the preceding settings and ensure that you’re able to reach the server through FTP. If you aren’t, it might be wise to perform a full-scale network check, looking for firewalls, proxies, antivirus, or other software that could prevent the FTP connection from being established.

Azure Virtual Machine publish profile

The Azure Virtual Machine publish profile is a great way to enforce the continuous integration and continuous delivery (CI/CD) DevOps pattern because it will act as either a build system (for producing packages and other build artifacts) or a release management system to deploy our changes.

To use this, select the Azure Virtual Machine option, click Browse, and then select the VM that we created a moment ago (see the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 15.11: Selecting the newly created VM

However, in order to do this, we need to perform some additional configuration changes on our VM, including the following:

	Install the Web Deploy Windows feature (just like we did with IIS early on).

	Open the 8172 TCP port, just like we did with 22, 80, 443, and 3389 a while ago.

	Set up a globally unique DNS name for the VM (as explained in the Configuring a DNS name label section previously).

Once we’re done with these settings, we should be able to publish our web application to the VM in a seamless and transparent manner.

Configuring IIS

Regardless of the publishing technique we’ve used, by now our remote VM server should have the following folders:

	C:/inetpub/healthcheck.client/—with our Angular app bundled files

	C:/inetpub/HealthCheck.Server/—with our ASP.NET Core Web API published files

Now is a good chance to create (or edit) our HealthCheck.Server app’s appsettings.Production.json file, following the guidelines we explained early on.

As for the appsettings.Development.json file, we can just delete it, since we likely won’t ever need to execute our app in a development environment on this VM server.

If we want to never have to worry about deleting the development file, and minimize the risk of overwriting the production file, we can even configure our Visual Studio publish profile(s) to exclude them both using the following guide:

https://weblog.west-wind.com/posts/2020/Jul/25/Excluding-Files-and-Folders-in-Visual-Studio-Web-Site-Project

After doing that, we need to configure IIS to make these two apps available on the World Wide Web. To do that, we need to add two IIS website entries:

	Healthcheck.client, for the Angular app

	HealthCheck.Server, for the ASP.NET Core app

Let’s start with the Angular app.

Adding the healthcheck.client website entry

From the IIS Manager main page, expand the root node to show the Sites folder, then right-click it and select the Add Website option to create a new website.

Fill out the Add Website modal window, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.12: Add Website modal window

Here’s a summary of the most relevant settings (and how we recommend they are set for our specific purpose):

	Site name: The name you want to give to your website; in our example, we are using healthcheck.client.

	Physical path: C:\inetpub\healthcheck.client (the path where we’ve copied the Angular app’s bundled files).

	Binding | Type: https.

	IP address: All Unassigned.

	Port: 443.

	Host name: This is the endpoint the Angular app will respond to: in other words, the main entry point of our end-users. In the above screenshot, we’ve used healthcheck-2023.ryadel.com, but you obviously need to use your actual hostname instead.

	Require Server Name Indication: Yes.

	SSL certificate: In our given scenario, we’re using our TLS/SSL wildcard certificate. If you don’t have one, you can select the TenantEncryptionCert provided by Azure or use a self-signed TLS/SSL certificate (see below).

	Start Website immediately: Yes.

Once done, click OK to add the new website. A new entry will appear in the tree view on the right within the Sites folder.

Adding the HealthCheck.Server website entry

Right-click again on the Sites folder, then right-click it and select the Add Website option to create another website.

Repeat the same steps as before, with the following differences:

	Site name: In our example, we’re using HealthCheck.Server.

	Physical path: C:\inetpub\HealthCheck.Server (the path where we’ve copied the published files of our ASP.NET Core app).

	Host name: This is the endpoint the ASP.NET Core Web API will respond to – in other words, the endpoint we need to put in the Angular app’s environment.ts file. Put your chosen hostname there.

Once done, click OK to add the new website. Now we should have two website entries within the Sites folder, healthcheck.client and HealthCheck.Server, each one configured to handle a different domain name.

Before going further, it might be wise to spend a couple of words on SSL certificates.

A note on TLS/SSL certificates

Since our apps are meant to be served using HTTPS, when we created the IIS website entries, we had to specify a TLS/SSL certificate for both of them. For the sake of simplicity, we assumed that we already have a valid TLS/SSL certificate compatible with the hostnames we’ve used. If we don’t have them, we can either:

	Purchase and install a TLS/SSL certificate from a third-party reseller

	Get a free TLS/SSL certificate using a non-profit certificate authority such as Let’s Encrypt

	Use the MS Azure tenant certificate autogenerated by MS Azure when we created our VM

	Create a self-signed certificate using the guide below

The first two routes will likely be the ways to go for any non-testing scenario. The other alternatives should be OK when performing the initial deployment tests, because they provide a faster (and cost-free) alternative to achieve our goal; that’s why we’re going to use them in our sample scenario.

However, an Azure-generated or self-signed certificate has the following downsides:

	All browsers (and antiviruses with web protection filters) will raise the typical SSL warnings and “unsecure website” messages, which we’ll have to manually confirm/accept/skip

	We won’t be able to properly test most of the PWA features of our app, because the service worker registration will fail

As we’ve seen in Chapter 12, Progressive Web Apps, a trusted HTTPS connection is one of the requirements for PWAs; unfortunately, a self-signed SSL certificate won’t do the trick, unless we create a CA certificate, register it in our Chromium browser, and then use it to sign our own SSL certificate.

Those who want to try that route can follow the instructions explained in this Stack Overflow answer by JellicleCat: https://stackoverflow.com/a/60516812/1233379.

Or, check other alternative methods discussed in that thread.

In the next section, we’ll briefly see how we can create a self-signed SSL certificate that can be used instead of the MS Azure ones.

Creating a self-signed SSL certificate

To create a self-signed SSL certificate, connect to the VM using Remote Desktop and perform the following steps:

	Open the IIS Manager desktop app, select the root node from the tree view on the left, and then double-click the Server Certificates icon, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.13: Accessing the IIS Manager’s Server Certificates feature

	Once in the Server Certificates panel, click the Create Self-Signed Certificate link in the Actions column on the right.

	A modal window will appear (see the following screenshot), where we’ll be asked to specify a friendly name for the certificate. Choose a friendly name for the certificate, select the Personal certificate store, and then click OK to create the self-signed certificate:

[image: A screenshot of a computer Description automatically generated]
Figure 15.14: Create Self-Signed Certificate modal window

In the above example, we’re using the healthcheck.io friendly name for the certificate, but we’re free to use any name we like: we’re not using a specific domain name, since we’re likely going to use that certificate for all the websites and services that can’t rely upon a CA-signed certificate.

Once done, we’ll be able to assign our new self-signed SSL certificate to all our website entries, replacing the MS Azure one.

Configuring the IIS application pool

As you may already know, the IIS service runs the various configured websites under one or more application pools. Each application pool configured will spawn a dedicated w3wp.exe Windows process that will be used to serve all the websites that have been configured to use it.

Depending on the publishing requirements of the various websites we need to host, we could run all websites in a few application pools (or even a single one) or each one with its own application pool. Needless to say, all the websites that share the same application pool will also share their various settings, such as memory usage, pipeline mode, identity, and idle timeout.

In our specific scenario, when we created our healthcheck.client and HealthCheck.Server websites in the previous section, we chose to create a dedicated application pool with that same name—which is also the IIS default behavior. Therefore, in order to configure the website’s application pool settings, we need to click on the Application Pools folder from the tree view on the left and then double-click each website entry from the Application Pools list panel, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.15: The Edit Application Pool modal window

In the Edit Application Pool modal window, choose the following settings, as shown in the preceding screenshot:

	.NET CLR version: No Managed Code

	Managed pipeline mode: Integrated

You might be wondering why we’re also choosing No Managed Code for the API application pool, since we’re clearly using the ASP.NET Core CLR. The answer is simple: since ASP.NET Core runs in a separate IIS process, there’s no need to set any .NET CLR version on IIS.

For additional information regarding the ASP.NET Core hosting model on IIS, including the various differences between the in-process and out-of-process hosting models, check out the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/

The IIS configuration is almost done. However, before being able to test what we did, we need to perform a last task: add the .webmanifest file extension to the list of the IIS-supported MIME types.

Adding the .webmanifest MIME type

As per its default settings, IIS does not serve any files with an extension that does not have a MIME map associated with it. Unfortunately, the .webmanifest extension—which we used in Chapter 12, Progressive Web Apps, for our PWA manifest file—is not associated with a MIME map, meaning that this file won’t be sent to the browser.

To fix this issue, we need to perform the following tasks from the IIS Manager tool:

	From the tree view on the left, select either the server’s root node or the healthcheck.client website, depending on whether we want to add the new mapping to all the websites or to our Angular app’s website only. In our scenario, both options will work, but we suggest adding the mapping to all the websites since it won’t pose significant security issues.

	Select MIME Types from the options listed in the right part of the window.

	Once there, select Add from the menu to the right.

	In the dialog box that opens, type .webmanifest in the File name extension, and application/manifest+json in the MIME type box, as shown in the screenshot below:

[image: A screenshot of a computer Description automatically generated]
Figure 15.16: Mapping the .webmanifest file extension to the application/manifest+json MIME type

That’s it: now we’re ready to check our healthcheck.client Angular app and HealthCheck.Server ASP.NET Core Web API and see if they are still able to work together like they did on our development machine.

Testing healthcheck.client and HealthCheck.Server

Our web application should now be ready to receive HTTP requests; we only need to ensure that remote clients will be able to access it, including the machine we want to use to perform our first connection test.

More specifically, what we need to do depends on how we have configured the host name of our IIS websites:

	If we have used real domain names (or IP addresses, or DNS names), we just have to set the new DNS records and/or wait for them to propagate

	If we have used some “fake” hostnames, we need to map them to the remote VM server’s IP address within the local machine’s HOSTS file, as explained in the Tweaking the HOSTS file section above

Once both our websites’ endpoints are reachable from our machine, we can proceed with the test.

Testing the app

Now, we can finally launch our favorite Chromium-based web browser and call the Angular app’s endpoint that we configured earlier on.

A Chromium-based browser, such as Google Chrome or Microsoft Edge, will make us able to immediately check out the Web App Manifest file and the service worker, just like we did with the “local” publishing test that we performed in Chapter 12, Progressive Web Apps.

If we did everything correctly, we should be able to see our healthcheck.client Angular application (with full back-end support provided by HealthCheck.Server) in all its glory:

[image: A screenshot of a computer Description automatically generated]
Figure 15.17: Launching our HealthCheck web application

Other than seeing the home view, we should also be able to see the following:

	The app manifest file (with all the HC icons) in the Application | Manifest panel of the browser’s development console

	The service worker properly registered in the Application | Service Workers panel of the browser’s development console

	The send this page and install icons in the rightmost part of the browser’s address bar

In order to see those panels, remember to press Shift + Ctrl + J to bring the development console into view.

From there, we can now install the app and check/uncheck its offline status to test the service worker’s behavior, just like we did in Chapter 12, Progressive Web Apps, when we tested our published app from a standard Visual Studio debug run; if we did everything properly, everything should work and behave in the same way.

Last but not least, check the SignalR functionalities by navigating to the Health Check page and hitting the Refresh button. If everything works as expected, you should be able to see the Response Time value changing upon each refresh, just like we did in Chapter 14, Real-Time Updates with SignalR.

With this, we’ve completed our Windows deployment journey; our healthcheck.client and HealthCheck.Server web apps have achieved their ultimate goal.

In the next section, we’ll see how we can deploy our worldcities.client and WorldCities.Server web apps to a completely different machine.

Linux deployment

Throughout this section, we’ll learn how to deploy our WorldCities web application on a Linux Ubuntu server hosted on MS Azure.

More precisely, here’s what we’re going to do:

	Create a new VM on MS Azure using the Ubuntu Server 22.04 template

	Configure the VM to accept inbound calls to TCP ports 22 (for SSH), 80 (for HTTP), and 443 (for HTTPS), as well as setting up the Nginx + Kestrel edge-origin hosting model

	Publish the WorldCities app to the web server we’ve just set up

	Test the WorldCities app from a remote client

Let’s get to work!

It’s worth noting that the Ubuntu Server template that we’re going to use in this deployment sample can be easily replaced—with minor variations—with any other Linux VM template available on MS Azure. As a matter of fact, the ASP.NET Core Linux runtime works well with most Debian-based and RPM-based Linux distributions, with a few minor differences mostly related to their package management systems.

Needless to say, those who already have a production-ready Linux server could probably skip the sections related to the VM setup and go directly to the subsequent publishing topics.

Creating a Linux VM on MS Azure

Once again, we need to perform the following steps:

	Access the MS Azure portal

	Add and configure a new VM

	Set the inbound security rules to access the VM from the internet

However, since we already explained the MS Azure VM creation process with Windows Server earlier on in this chapter, we’re going to briefly summarize all the common tasks and avoid resubmitting the same screenshots.

Those who require additional explanations regarding the various required steps can check out the Creating a Windows Server VM on MS Azure section.

Let’s go back to MS Azure once more!

Adding a new Linux VM

Once again, we need to log in to MS Azure using our (existing or new) account and access the MS Azure portal administration dashboard.

Right after that, we can click on the Virtual Machine icon and click Add to access the Create a virtual machine panel and enter the following settings.

In the Basics tab:

	Resource group: Use the same resource group used for the SQL database (this is mandatory unless our database is not there).

	Virtual machine name: Use NET8-Angular-Linux, WorldCities, or any other suitable name.

	Region: Choose the region closest to your geographical position.

	Availability options: No infrastructure redundancy required.

	Security type: Trusted launch virtual machines.

	Image: In our example, we’re going to use the Ubuntu Server 22.04 LTS – x64 image, which is provided free of cost; alternatively, you can choose any other Linux-based VM template as long as you’re willing, and able, to adapt the following instructions according to the (arguably minor) differences between different Linux distributions.

	Azure Spot instance: Again, select Yes for an Azure Spot instance, or No for a standard pay-as-you-go instance.

	Size: Standard B1ms (1 vcpu, 2 GiB memory): Feel free to choose a different size if you’re willing to spend more; B1ms is an entry-level machine featuring a very limited set of resources that will suffice for this deployment sample, but won’t perform well in production.

	Administrator account: Select the Password authentication type, and then create a suitable username and password set. Remember to write these down in a secure place, since we’ll definitely need these credentials to access our machine in a while.

In the Disk tab:

	OS disk type: Select Standard SSD for performance, or Standard HDD to save money

	Data disks: Azure Linux VMs come with a temporary disk and an OS disk, which are good enough for our sample purposes; again, those who want to set up a production environment can (and should) add additional storage here

In the Network tab:

	Virtual Network: Select the same VNet used for the SQL database (or create a new one)

	Public inbound ports: If the wizard allows this (depending on the chosen OS image), choose Allow selected ports, then select the following ports from the list: HTTP (80), HTTPS (443), and SSH (22)

In the Monitoring tab:

	Boot diagnostics: Disable

Once done, click the Review + create button to review our configuration settings and initiate the VM deployment process.

Once deployment is complete, we can click the Go to Resource button to access the Virtual Machine overview panel.

Configuring a DNS name label

Again, we have the chance to add a DNS name label to our VM and generate a unique fifth-level domain name to conveniently access it. If we choose to do this, we need to locate the DNS Name label in the virtual machine’s Overview panel, click on the Configure link next to it, and perform the steps already explained for the Windows VM.

In our example, we’re going to use the following DNS name:

worldcities-2023.westeurope.cloudapp.azure.com

Before proceeding, take note of both the DNS name and the machine’s IP address, as we’ll likely need them later on.

Setting the inbound security rules

Go to the Settings | Networking tab and take note of the machine’s public IP address. Then, check for the existence of the following inbound security rules, adding them if they’re not already present:

	TCP port 22, so that we’ll be able to access the machine using the Secure Shell protocol (also known as SSH)

	TCP ports 80 and 443, to access the HTTP server (and our WorldCities web app) from the internet using SSL

Again, if you want to increase the security posture of the VM, be sure to restrict access to these inbound rules to a secure source IP address (or address range), which can be set to either our static IP address or our ISP’s IP mask.

Configuring the Linux VM

Now, we can use the SSH protocol to access our new Linux VM and perform two different (yet both required) sets of tasks:

	Set up and configure the VM by installing the various required packages (the ASP.NET Core Runtime, the Nginx HTTP server, and the like)

	Build, publish, and deploy the worldcities.client and WorldCities.Server projects using the Angular CLI and the Visual Studio publish profile, just like we did for the Windows VM

For the first set of tasks, we’re going to use PuTTY, a free SSH client for Windows that can be used to remotely access a Linux machine’s console. As for the deployment tasks, we’ll handle them using Secure Copy (aka SCP), a Windows command-line tool that allows files to be copied from a (local) Windows system to a remote Linux machine.

PuTTY can be downloaded and installed from the following URL: https://www.putty.org/.

The SCP command-line tool is already shipped with most Windows versions, including Windows 10; for additional information on it, visit the following URL: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp.

Connecting to the VM

Once installed, launch PuTTY and insert the VM’s public IP address (or DNS name), as shown in the following screenshot:

[image:]
Figure 15.18: PuTTY Configuration window

Once done, click Open to launch the remote connection.

We’ll be asked to accept the public SSH key. Once accepted, we’ll be able to authenticate ourselves with the username and password specified a short time ago in the MS Azure portal’s virtual machine setup wizard:

[image: A screenshot of a computer Description automatically generated]
Figure 15.19: Accessing the Linux Terminal via SSH using PuTTY

Once connected, we’ll be able to issue terminal commands on the remote VM to set up and configure it according to our needs.

The configuration steps explained in the following sections are OK for the time being, but could change in the future following the release of new versions of .NET and/or Ubuntu Server. For up-to-date info, check out the following guide:

https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204

Installing the ASP.NET Core Runtime

Once we’ve successfully logged in to the Linux VM terminal, we can start to configure the remote system to enable it to run (and host) ASP.NET Core applications. To achieve this, the first thing to do is to download and install the ASP.NET Core Runtime.

However, before we can do that, we need to execute the following required steps:

	Download the Microsoft signing key and repository.

	Register the product repository.

	Install the ASP.NET Core Runtime.

These steps need to be done once per Linux machine.

Downloading Microsoft signing key and repository

Type the following command using the SSH terminal window provided by PuTTY:

$ wget https://packages.microsoft.com/config/ubuntu/22.04/packages-microsoft-prod.deb -O packages-microsoft-prod.deb

Once done, we can move to the next step.

Registering the product repository

Here’s the command to register the Microsoft signing key and the package repository we just downloaded:

$ sudo dpkg -i packages-microsoft-prod.deb

Once done, we can clean up the package:

$ rm packages-microsoft-prod.deb

And perform a package update:

$ sudo apt update

Now we can finally install the runtime.

Installing the ASP.NET Core Runtime

To do that, type the following terminal command:

$ sudo apt -y install aspnetcore-runtime-8.0

The -y option command will allow us to skip a couple of confirmation prompts.

Alternatively, if we don’t want to install the ASP.NET Core Runtime on the Linux server, we could publish the app as a Self-Contained Deployment (SCD), as explained in the first section of this chapter.

Once done, we can proceed to the next step: installing the web server.

Installing Nginx

The next thing we have to do involves installing the Nginx server package. For those that don’t know it, Nginx is a free and open-source high-performance HTTP server, load balancer, and reverse proxy used by millions. This is the HTTP server we’re going to use in Linux to serve our web application by reverse-proxying the Kestrel service.

In February 2020, Netcraft estimated that Nginx served 36.48 percent of all active websites ranked, ranking it first, above Apache, at 24.51 percent; however, according to W3Techs, Apache was ranked first at 40.1 percent and Nginx second at 31.8 percent around that same period. That said, we’re going to use Nginx because it features a modular, event-driven, asynchronous, single-threaded architecture that scales well on generic server hardware and across multiprocessor systems, thus being an ideal partner for an ASP.NET Core web application hosted on Linux.

To install Nginx, type the following command:

$ sudo apt -y install nginx

For additional information about installing an ASP.NET Core web application on Linux with Nginx, check out the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx.

Now we need to configure Nginx to start automatically whenever the VM is started (or restarted).

Starting up Nginx

When we install IIS on Windows, the service will start automatically and will be configured with an automatic startup type by default. Conversely, Nginx does not start on its own and won’t be executed automatically upon startup.

To start Nginx, execute the following command:

$ sudo systemctl start nginx

To set Nginx to run automatically on system startup, use the following command:

$ sudo systemctl enable nginx

After applying these settings, it would be wise to reboot the Linux machine to be sure that all the configured settings will be applied upon reboot. The reboot can be done with the following command:

$ sudo reboot

Now we can configure the machine’s TCP and HTTP layers.

Checking the HTTP connection

The MS Azure VM template that we’ve used in this deployment scenario doesn’t come with a local firewall rule blocking TCP ports 80 and/or 443. Therefore, as soon as Nginx is up and running, we should be able to connect to it properly by typing the VM’s public IP address (or DNS name) in the browser’s address bar from our development machine.

If we did everything correctly, we should see the Nginx welcome page, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.20: Connecting to the VM’s Nginx HTTP server

If we can see the preceding response, it means that we likely have no firewall to worry about, therefore we can skip the following section and move on to the next. Conversely, if the connection cannot be established, we might have to perform some additional steps to open the VM’s 80 and 443 TCP ports.

Before altering the VM firewall rules, it might be wise to carefully check for the TCP 80 and 443 inbound security rules that we should have set on the MS Azure portal administration site, as explained in the Setting the inbound security rules section.

Opening the 80 and 443 TCP ports

Depending on the Linux template chosen, it could be necessary to change the local firewall settings to allow incoming traffic for the 80 and 443 TCP ports. The commands required to do this might vary, depending on the built-in firewall abstraction layer shipped with Linux distributions.

In Linux, the kernel-based firewall is controlled by iptables; however, most modern distributions commonly use either the firewalld (CentOS or RHEL) or ufw (Ubuntu) abstraction layers to configure iptables settings.

In a nutshell, both firewalld and ufw are firewall management tools that can be used by system administrators to configure the firewall features using a managed approach. We can think of them as front-ends for the Linux kernel’s networking internals.

In most Ubuntu templates provided by MS Azure, ufw is present, but it’s usually disabled (although it can be started and/or enabled to have it automatically run on each startup); however, if we’re using a different template/VM/Linux distribution, it might be useful to spend a couple of minutes learning how we can properly configure these tools.

ufw

Here’s the command to check whether ufw is running:

$ sudo ufw status

If the preceding command returns something other than command not found, this means that the tool is installed. Its current status (active or inactive) should be clearly understandable from the resulting prompt.

If it is reported to be active, here are the ufw required terminal commands to open TCP ports 80 and 443:

$ sudo ufw allow 80/tcp
$ sudo ufw allow 443/tcp

After executing these commands, we should be able to connect the Nginx HTTP server from our developer machine and receive the response page shown in the previous screenshot.

firewalld

Here’s the command to check whether firewalld is installed:

$ sudo firewall-cmd --state

If the command returns something other than not running or command not found, this means that the tool is installed and active. Therefore, we need to execute the following firewalld commands to open TCP ports 80 and 443:

$ sudo firewall-cmd --permanent --add-port=80/tcp
$ sudo firewall-cmd --permanent --add-port=443/tcp
$ sudo firewall-cmd --reload

The --reload command is required to immediately apply the firewalld settings without having to issue a reboot.

Publishing worldcities.client and WorldCities.Server

Now we can publish the worldcities.client and WorldCities.Server projects and deploy them to the Linux VM server.

Building the Angular app

As for the Angular app, we can generate the production bundle in the /dist/ folder using the ng build command of the Angular CLI, just like we did with the healthcheck.client app early on.

Before doing that, be sure to check the /environments/environment.cs file to ensure that the baseUrl key is set to the public endpoint that we plan to use for our WorldCities.Server ASP.NET Core Web API. In our current scenario, we’re going to use the following URL:

export const environment = {
 production: true,
 baseUrl: "https://worldcities-api-2023.ryadel.com/"
};

Again, be sure to adapt the above value depending on the chosen approach to define the public endpoints.

That’s it for the worldcities.client Angular app; conversely, its WorldCities.Server counterpart deserves some additional work.

Building the WorldCities.Server app

To publish the WorldCities.Server web app, we need to create another Visual Studio publish profile and then execute it to build the production files in the /bin/Release/net8.0/publish/ folder that we’ll have to upload to the VM server, just like we did with the HealthCheck.Server early on.

However, before doing that, we need to ensure that our web application is properly configured to be served through a reverse proxy and will be able to access the production database.

In order to do the former, we need to use the Forwarded Headers Middleware from the Microsoft.AspNetCore.HttpOverrides package.

When HTTPS requests are proxied over HTTP using an edge-origin technique, such as the one we’re pulling off with Kestrel and Nginx, the originating client IP address, as well as the original scheme (HTTPS), is lost between the two actors. Therefore, we must find a way to forward this information. If we don’t do this, we could run into various issues while performing routing redirects, authentication, IP-based restrictions or grants, and so on.

The most convenient way to forward this data is to use the HTTP headers: more specifically, using X-Forwarded-For (client IP), X-Forwarded-Proto (originating scheme), and X-Forwarded-Host (host header field value). The built-in Forwarded Headers Middleware provided by ASP.NET Core performs this task by reading these headers and filling in the corresponding fields on the web application’s HttpContext.

For additional information regarding Forwarded Headers Middleware and its most common usage scenarios, check out the following URL: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer.

While we’re there, we also need to properly check the connection string to the SQL database that we set up in Chapter 5, Data Model and Entity Framework Core, to ensure that it will still be reachable by the Linux VM (or change it accordingly). In the following two sections, we will deal with both of these issues.

Adding the Forwarded Headers Middleware

To add the Forwarded Headers Middleware, open WorldCities.Server's Program.cs file and add the following highlighted lines to the existing code:

using Microsoft.AspNetCore.HttpOverrides;
// ...
app.UseHttpsRedirection();
// Invoke the UseForwardedHeaders middleware and configure it
// to forward the X-Forwarded-For and X-Forwarded-Proto headers.
// NOTE: This must be put BEFORE calling UseAuthentication
// and other authentication scheme middlewares.
app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.XForwardedFor
 | ForwardedHeaders.XForwardedProto
});
app.UseAuthentication();
app.UseAuthorization();
// ...

As we can see, we’re telling the middleware to forward the X-Forwarded-For and X-Forwarded-Proto headers, thereby ensuring that redirected URIs and other security policies will work properly.

IMPORTANT: As written in the comments, this middleware must be put before calling UseAuthentication or other authentication scheme middleware.

Now, we can move on to the following step: adding a connection string that lets us connect to the production database.

Checking the database connection string

From Solution Explorer, open the secrets.json file and check out the connection string that we set up in Chapter 5, Data Model and Entity Framework Core, which has worked flawlessly for our development machine since then. We need to be sure that such a connection string will work on our Linux VM as well.

If the SQL database is hosted on MS Azure or a publicly accessible server, we can use the same connection string; however, in the case where we’ve used a local SQL database instance installed on our development machine, we’ll need to choose one of the following available options:

	Move and/or copy the WorldCities SQL database to MS Azure

	Install a local SQL Server Express (or Development) instance on the Ubuntu VM right after creating it

	Configure an inbound rule to the custom local (or remote) SQL Server Express (or Development) instance that we set up in Chapter 5, Data Model and Entity Framework Core, possibly restricting external access to the new VM’s public IP address only

For option #1, right-click the local SQL Database instance and select Tasks | Deploy Database to MS Azure SQL Database; check out Chapter 5, Data Model and Entity Framework Core, for additional details.

For option #2, take a look at the following SQL Server Linux installation guide: https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup.

For option #3, check out the following URL: https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access.

Regardless of the option we choose to adopt, we’ll eventually end up with a connection string that will allow us to connect to the production database. We can then create a new appsettings.Production.json file on the VM server and add the connection string there, together with the JwtSettings and the AllowedCORS keys, as explained earlier on in this chapter, in the Updating the appsettings.Production.json file(s) section.

A sample appsettings.Production.json file for the WorldCities.Server has been added—for reference purposes only—in the GitHub repository for this chapter. Be sure not to do that in your non-sample projects and/or when dealing with actual database credentials, as doing that would negate the whole purpose of the Visual Studio user secrets feature, which we introduced back in Chapter 5, Data Model and Entity Framework Core: keeping our credentials away from source control repositories.

It’s worth noting that creating and setting up the appsettings.Production.json file is not a Linux-specific task; if we had published the WorldCities.Server app on a Windows server, we would have had to do the exact same thing.

As soon as we have built the production bundles for our worldcities.client and WorldCities.Server apps, together with the required configuration files, we can finally deploy them to our VM server.

Deploying the files to the Linux VM

Copying the production bundles from our development machine to the Linux VM server is a task that can be fulfilled in many ways, including:

	Using a Folder publish profile and then copying the files to the web server using the SCP command-line tool

	Using a Folder publish profile and then copying the files to the web server using a GUI-based SFTP Windows client, such as:
	Using WinSCP: A free SFTP, SCP, S3, and FTP client for Windows: https://winscp.net/

	Using FileZilla FTP Client: Another free, open-source FTP client with FTP over TLS (FTPS) and SFTP support: https://filezilla-project.org/

	Installing an FTP/FTPS server on our web server and then setting up an FTP publish profile

	Using Visual Studio’s Azure Virtual Machine publish profile

In this deployment scenario, we’ll go with the first option, which is arguably the easiest one to achieve; as for the other available alternatives, we’ve already talked about them in the previous section (Windows deployment), so we won’t repeat anything here.

Creating the /var/www folder

The first thing we need to do is create a suitable folder to store our application’s published files on the Linux VM. For this deployment scenario, we’re going to use the /var/www/<AppName> folder, thereby following a typical Linux convention; needless to say, since we’re going to publish two apps, we’re going to create two folders.

The Azure Ubuntu template should already come with an existing /var/www folder. If it doesn’t, we need to create it by executing the following command from the Linux VM console:

$ sudo mkdir /var/www

This /var/www/ folder will be our Linux equivalent of the Windows C:\inetpub\ folder, the directory that will contain the files of our web applications.

After making sure the /var/www/ folder exists, we can create two new subfolders there by means of the following command:

$ sudo mkdir /var/www/worldcities.client
$ sudo mkdir /var/www/WorldCities.Server

These two folders will contain our application’s published files.

Setting permissions

Now, we need to configure the access permissions to the folders we just created for Nginx—or, more precisely, for the Nginx user.

In this deployment scenario, we’re taking for granted the fact that the Nginx instance is running with its default nginx user and nginx group. In other Linux environments, the username and/or group might vary—for example, in some Linux distributions, the Nginx group is called www or www-data.

To determine which user Nginx is running in, use the following command:

$ ps -eo pid,comm,euser,supgrp | grep nginx

To list all available Linux users and/or groups, use the following commands:

$ getent passwd
$ getent group

Once we retrieve the user and group, we can use them to change the /var/www folder permissions. Assuming the default values (www-data user and www-data group), this can be done in the following way:

$ sudo chown -R www-data:www-data /var/www
$ sudo chmod -R 550 /var/www

This will make both the nginx user and its corresponding nginx group able to access all of /var/www/ and all its content—including the two folders we created early on—in read and execute mode, while blocking any access to every other user/group.

Before moving on, there’s still one thing to do. If we aim to publish our app using FTP, FTPS, or SFTP, the above permissions won’t be enough; we need to be sure to set them accordingly with our FTP server requirements and/or the account that we plan to use to perform the upload task.

Publishing permissions

The most common way to set up publishing permissions is to use the Linux setfacl command to grant read and write permissions to the /var/www folder for the publishing account.

The Azure VM template we are using doesn’t come with the ACL feature available, hence the first thing we need to do is to install it using the following command:

$ sudo apt -y install acl

Once done, we can publish the app using WinSCP.

Deploying the app using WinSCP

If we plan to publish our app with the user account that we set up in MS Azure, we can do that in the following way:

$ sudo setfacl -R -m u:<USERNAME>:rwx /var/www

Be sure to replace the preceding <USERNAME> placeholder with the username that we previously set up on the Azure VM (the same one we used to log in to the VM terminal).

Setting the permissions as explained previously should be enough for most scenarios; however, the server could require additional tweaking depending on the Linux distribution and version, system configuration, and other settings.

Now we can finally copy the files.

Copying the WorldCities publish folders

Once the /var/www/worldcities.client and /var/www/WorldCities.Server folders have been properly set up on the Linux VM, we can open the command prompt to our local development machine and initiate the copy.

Let’s start with the worldcities.client Angular app. Using the command prompt, navigate to the app’s root folder and issue the following SCP command to copy the production bundles built using the ng build command to the remote VM:

> scp -r dist/worldcities.client/browser/* <USERNAME>@<VM.IP.ADDRESS>:/var/www/worldcities.client

Remember to replace the <USERNAME> and <VM.IP.ADDRESS> placeholders with the actual values.

The SCP command will then ask us whether we want to connect to the remote folder, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.21: Authorizing the connection to the remote folder

Type yes to authorize the connection, and then repeat the command to copy the source folder to its destination. The SCP command will start to copy all the files from the local development machine to the VM folder, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.22: Copying all files from the local development machine to the VM folder

Right after that, we can do the same for the WorldCities.Server app—assuming we’ve already published it locally using a Folder publish profile.

To do that, navigate to the WorldCities.Server project’s root folder and then launch the following SCP command:

> scp -r bin/Release/net8.0/publish/* <USERNAME>@<VM.IP.ADDRESS>:/var/www/WorldCities.Server

If we’ve created the appsettings.Production.json file within the project (bad practice), it will be deployed within the rest of the app, meaning that we’ll need to manually edit it from the VM server; if we have created it separately (good practice), now we can take the chance to either create it locally and then upload it using the SCP tool, or directly create it in the VM server using a text editor such as nano or vim. Be sure to do that before proceeding.

Now that our worldcities.client and WorldCities.Server apps’ files have been copied to the Linux VM, we just need to configure the Kestrel service (to internally host the ASP.NET Core app) and then the Nginx reverse proxy (to serve both of them for public access).

Configuring Kestrel and Nginx

Before starting, we will quickly explain how the Kestrel service and the Nginx HTTP server will interact with each other.

The high-level architecture is quite similar to the Windows out-of-process hosting model that has been used since ASP.NET Core 2.2:

	The Kestrel service will serve our web app on TCP port 5000 (or any other TCP port; 5000 is just the default one)

	The Nginx HTTP server will act as a reverse proxy, forwarding all the incoming requests to the Kestrel web server

This pattern is called the edge-origin proxy, and can briefly be summarized by the following diagram:

[image: A diagram of a globe and a server Description automatically generated]
Figure 15.23: The edge-origin proxy

Now that we’ve understood the general picture, let’s do our best to pull it off.

Since our app will be served using HTTPS, we need to either purchase and install a TLS/SSL certificate from a third-party reseller or create a self-signed one.

For this specific scenario, we’ll assume that we have a valid certificate, just like we did with Windows; however, to benefit those who don’t have one, we’ll briefly explain how to create a self-signed certificate on Linux using the OpenSSL command-line tool.

Creating the self-signed SSL certificate

If you already have a valid TLS/SSL certificate, you can skip the following guide and continue to the next section. We just need to copy the certificate files to the /var/www/ssl folder of the VM server machine, which can be done with SCP just like we did with the app’s production files.

If you need to create a self-signed certificate, here’s what you need to do:

	Create the /var/www/ssl folder with sudo mkdir /var/www/ssl.

	Create the self-signed SSL certificate (worldcities.crt) and the private key file (worldcities.key) with the following command:
 $ sudo openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout /var/www/ssl/worldcities.key -out /var/www/ssl/worldcities.crt -subj "/CN=worldcities.io" -days 3650

	Once done, merge the certificate and the private key into a single worldcities.pfx file:
 $ sudo openssl pkcs12 -export -out /var/www/ssl/worldcities.pfx -inkey /var/www/ssl/worldcities.key -in /var/www/ssl/worldcities.crt

When asked for the PFX file password, enter a random password and remember this as “the certificate password” for later use.

Setting the SSL folder permissions

Regardless of how we obtained it, now we should have a TLS/SSL certificate in the /var/www/ssl folder. This means that, now, we need to set the proper permissions to that folder to make it accessible from both Nginx and the app, just like we did with the /var/www folder early on:

$ sudo chown -R www-data:www-data /var/www/ssl
$ sudo chmod -R 550 /var/www/ssl

Now we have a valid self-signed TLS/SSL certificate that can be accessed (and used) by Nginx.

Additional task for SELinux-protected kernels

If the Linux kernel we are using is protected by Security-Enhanced Linux (SELinux), we must perform an additional step. More precisely, we need to change the security context of the /var/www/ssl folder (and all its containing files) so that Nginx will be able to access it:

$ sudo chcon -R -v --type=httpd_sys_content_t /var/www/ssl

Without the above command, SELinux would prevent httpd daemons from accessing the /var/www/ssl folder, causing unwanted “permission denied” errors during the Nginx startup phase. It goes without saying that if our Linux system is not running SELinux, or we have permanently disabled it (see below), the preceding command can be skipped. At the time of writing, the MS Azure Ubuntu VM template we are suggesting to use doesn’t have it enabled.

SELinux is an access control (MAC) security mechanism implemented in some Linux kernels. It is quite similar to the Windows UAC mechanism and has strong default values that can be relaxed in the case of specific requirements.

To temporarily disable it, run the sudo setenforce 0 terminal command. Doing this can be useful when we run into permission issues to determine whether the problem is related to SELinux.

For additional information regarding SELinux and its default security settings, check out the following URLs:

https://wiki.centos.org/HowTos/SELinux

https://wiki.centos.org/TipsAndTricks(2f)SelinuxBooleans.html

For additional information regarding the OpenSSL tool, check out the following URL:

https://www.openssl.org/docs/manmaster/man1/openssl.html

Now we can proceed with the next step.

Configuring the systemd service

Now that we have a TLS/SSL certificate and we’ve set the proper permissions to the /var/www/ssl folder, we can create a systemd entry to register the WorldCities.Server as a service. The worldcities.client Angular app doesn’t need Kestrel and therefore will require much less work, since it’s all about serving static files.

Let’s start by creating the service definition file in the /etc/systemd/system/ folder.

To do that, we’ll use nano, an open-source text editor for Linux that can be used from a command-line interface (similar to vim, but much easier to use). Let’s go through the following steps:

	Execute the following command to create a new /etc/systemd/system/kestrel-WorldCities.Server.service file:
 $ sudo nano /etc/systemd/system/kestrel-WorldCities.Server.service

	Once done, fill the newly created file with the following content:
 [Unit]
Description=WorldCities.Server
[Service]
WorkingDirectory=/var/www/WorldCities.Server
ExecStart=/usr/local/bin/dotnet /var/www/WorldCities.Server/WorldCities.Server.dll
Restart=always
Restart service after 10 seconds if the dotnet service crashes:
RestartSec=10
KillSignal=SIGINT
SyslogIdentifier=WorldCities.Server
User=www-data
Environment=ASPNETCORE_ENVIRONMENT=Production
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false
Environment=ASPNETCORE_URLS=http://localhost:5000
How many seconds to wait for the app to shut down after it receives the initial interrupt signal.
If the app doesn't shut down in this period, SIGKILL is issued to terminate the app.
The default timeout for most distributions is 90 seconds.
TimeoutStopSec=90
[Install]
WantedBy=multi-user.target

	Once done, press Ctrl + X to exit and then Y to save the file on disk.

The kestrel-WorldCities.Server.service file is available in the /_LinuxVM_ConfigFiles/ folder of this book’s GitHub repository.

Depending on the Linux distribution, the dotnet executable might be located in different folders than usr/bin, such as /usr/share/bin, /usr/local/bin, or /usr/share/dotnet; be sure to check it out.

As we can see, this file’s contents will be used by systemd to start the WorldCities.Server project with our app’s production values, such as the ASPNETCORE_ENVIRONMENT variable, which we talked about earlier on, and the TCP port, which will be used to internally serve the app.

The preceding settings are OK for our current deployment scenario; however, they should be changed to comply with different usernames, folder names, TCP ports used, the web app’s main DLL name, and so on. When hosting a different web application, be sure to update them accordingly.

Now that we have configured the service, we just need to start it, which can be done using the following command:

$ sudo systemctl start kestrel-WorldCities.Server.service

If you also want to make the service automatically run on each VM reboot, add the following command:

$ sudo systemctl enable kestrel-WorldCities.Server.service

Immediately after this, it would be wise to run the following command to check whether the service is running without issues:

$ sudo systemctl status kestrel-WorldCities.Server.service

If we see a green active (running) message, such as the one in the following screenshot, this most likely means that our Kestrel web service is up and running:

[image: A computer screen with white text Description automatically generated]
Figure 15.24: Seeing the green active (running) message

If the status command shows that something’s off (red lines or advice), we can troubleshoot the issue by looking at the detailed ASP.NET Core application error log with the following command:

$ sudo journalctl -u kestrel-WorldCities.Server

The -u parameter will only return messages coming from the kestrel-WorldCities.Server service, filtering out everything else.

Since the journalctl log could easily become very long, even with the preceding filter, it could also be advisable to restrict its timeframe using the --since parameter in the following way:

$ sudo journalctl -u kestrel-WorldCities.Server --since "yyyy-MM-dd HH:mm:ss"

Be sure to replace the yyyy-MM-dd HH:mm:ss placeholders with a suitable date-time value.

Last but not least, we can just output the last-logged error with the -xe switch:

$ sudo journalctl -xe

These commands should be very useful in troubleshooting most error scenarios on Linux in an effective manner.

For additional information regarding the journalctl tool, check out the following URL: https://www.freedesktop.org/software/systemd/man/journalctl.html.

If the kestrel-WorldCities.service is up and running, our job here is done; we’ve successfully configured systemd to start the WorldCities.Server project as a service, which is hosted by ASP.NET Core using the Kestrel web server. Now we just need to set up Nginx to reverse proxy Kestrel and we’re done.

However, before doing that, it might be wise to spend a minute understanding why we need to build such an edge-origin pattern in the first place.

Why are we not serving the web app with Kestrel directly?

We could be tempted to just configure the Kestrel web service on TCP port 443 (instead of TCP 5000) and get the job done now, without having to deal with Nginx, and skipping the whole reverse proxy part.

Despite being 100% possible, we strongly advise against doing this for the same reasons as stated by Microsoft here:

 Kestrel is great for serving dynamic content from ASP.NET Core. However, the web serving capabilities aren’t as feature-rich as servers such as IIS, Apache, or Nginx. A reverse proxy server can offload work such as serving static content, caching requests, compressing requests, and SSL termination from the HTTP server. A reverse proxy server may reside on a dedicated machine or may be deployed alongside an HTTP server.

[Source: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx]

In short, Kestrel is not intended to be used on the frontline, at least for the time being; therefore, the correct thing to do is to definitely keep it far from the edge and leave such a task to Nginx.

Configuring Nginx for WorldCities.Server

The last thing we need to do is to configure the Nginx HTTP server to act as a reverse proxy for our Kestrel service. Take the following steps:

	Type the following command to create a dedicated Nginx configuration file for this job:
 $ sudo nano /etc/nginx/sites-enabled/nginx-WorldCities.Server.conf

	Then, fill the new file’s content with the following configuration settings:
 server {
 listen 80;
 listen [::]:80;
 server_name worldcities-api-2023.ryadel.com;
 return 301 https://worldcities-api-2023.ryadel.com$request_uri;
}
server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;
 ssl_certificate /var/www/ssl/star_ryadel_com.crt;
 ssl_certificate_key /var/www/ssl/star_ryadel_com.key;
 server_name worldcities-api-2023.ryadel.com;
 root /var/www/WorldCities.Server/;
 index index.html;
 autoindex off;
 location / {
 proxy_pass http://localhost:5000;
 proxy_http_version 1.1;
 proxy_cache_bypass $http_upgrade;
 proxy_set_header Connection $http_connection;
 proxy_set_header Host $host;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $host:$server_port;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Forwarded-Server $host;
 }
}

	Once done, press Ctrl + X to exit and then Y to save the file.

If SELinux is active, we also need to execute the following command to authorize the Nginx service to connect to the network:

$ sudo setsebool -P httpd_can_network_connect 1

The preceding command will change the SELinux default settings, which prevents all httpd daemons (such as Nginx) from accessing the local network and, hence, the Kestrel service. Needless to say, if our Linux system is not running SELinux—or we have permanently disabled it—we don’t need to do anything.

While we’re here, we can take the chance to configure Nginx to serve the worldcities.client Angular app as well.

Configuring Nginx for worldcities.client

The Angular app is not served locally by Kestrel, hence there’s no need to proxy it. Nginx just needs to serve its static files, thus acting like a standard web server.

To configure it to behave that way, create a new Nginx configuration file in the following way:

$ sudo nano /etc/nginx/sites-enabled/nginx-worldcities.client.conf

And fill it with the following content:

server {
 listen 80;
 listen [::]:80;
 server_name worldcities-2023.ryadel.com;
 return 301 https://worldcities-2023.ryadel.com$request_uri;
}
server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;
 ssl_certificate /var/www/ssl/star_ryadel_com.crt;
 ssl_certificate_key /var/www/ssl/star_ryadel_com.key;
 server_name worldcities-2023.ryadel.com;
 root /var/www/worldcities.client/;
 index index.html;
 autoindex off;
}

As we can see, this time we’re dealing with a much simpler configuration file, since we don’t have to proxy anything.

The nginx-WorldCities.Server.conf and nginx-worldcities.client.conf configuration files are available in the /_LinuxVM_ConfigFiles/ folder of this book’s GitHub repository.

Let’s now see how we can instruct Nginx to read these new configuration files upon startup.

Updating the nginx.conf file

Since we have put the Nginx configuration files in Nginx’s /sites-enabled/ default folder, we don’t need to explicitly instruct Nginx to read them—they will be automatically parsed and executed on startup.

However, we still need to edit the Nginx main configuration file to perform a minor update in the default settings.

To do this, edit the /etc/nginx/nginx.conf file with the following command:

$ sudo nano /etc/nginx/nginx.conf

Then, add the following highlighted line near the end of the file, at the beginning of the http block:

...existing code...
http {
 ##
Basic Settings
##
 server_names_hash_bucket_size 128;
...existing code...

Increasing the server_names_hash_bucket_size default value (64) to 128 like we just did allows Nginx to handle longer hostnames such as those used in our scenario.

All the required deployment tasks on Linux have been completed. Now, we just have to properly test the worldcities.client and WorldCities.Server web applications to see whether they work.

Testing WorldCities and WorldCities.Server

The testing phase will be very similar to what we did at the end of the Windows deployment section. Observe the following steps:

	Before leaving the Linux VM terminal, it would be wise to restart the Kestrel services and the Nginx service in the following way:
 $ sudo systemctl restart kestrel-WorldCities.Server
$ sudo systemctl restart nginx

	Immediately after this, check for their statuses with the following commands to ensure that they’re up and running:
 $ sudo systemctl status kestrel-WorldCities.Server
$ sudo systemctl status nginx

In production environments, it is advisable to test the updated Nginx configuration before restarting Nginx using the following command:

sudo nginx -t

That way, the production site won’t go down if Nginx fails to load due to a configuration error of any kind.

Now, we’re ready to switch to our local development machine and start the test.

Testing the app

Again, we’re going to perform these tests using a Chromium-based browser (Google Chrome or Microsoft Edge) because of their built-in development tools that conveniently allow us to check for web app manifest and service worker presence.

Launch Google Chrome and write the Angular app’s public URL in the browser’s address bar:

https://worldcities-2023.ryadel.com

If we have done everything correctly, we should be able to see the worldcities.client Angular app’s home view:

[image: A screenshot of a computer Description automatically generated]
Figure 15.25: The WorldCities home view

From there, we should check for the presence/availability of the following goodies:

	The app manifest file (with all the HC icons) in the Application | Manifest panel of the browser’s development console

	The service worker properly registered in the Application | Service Workers panel of the browser’s development console

	The send this page and install icons in the rightmost part of the browser’s address bar

	The service worker’s behavior when checking and unchecking the offline status to test the service worker’s behavior

	Access to the SQL database

	The Edit City and Edit Country reactive forms

	The login and registration workflows

If everything works as expected, we can say that our Linux deployment journey is over as well. In the next section, we’ll see how to deal with some typical ASP.NET Core error messages so we can understand potential issues that may arise during or after the deployment phase—and properly address them.

Troubleshooting

If the web application encounters a runtime error, the production environment won’t show any detailed information about the exception to the end-user. For this reason, we won’t be able to know anything useful about the issue unless we switch to Development Mode (refer to the following screenshot):

[image: A screenshot of a computer Description automatically generated]
Figure 15.26: Error message in the production environment

This can be done in the following way:

	Change the ASPNETCORE_ENVIRONMENT variable value to Development in the WorldCities.Server service settings file related to the app.

	Restart the service (and regenerate the dependency tree afterward) with the following commands:
 $ sudo systemctl restart kestrel-WorldCities.Server
$ sudo systemctl daemon-reload

However, you are strongly advised to never do this in real production environments and to inspect the WorldCities.Server service’s journal logs with the following journalctl commands instead, as we suggested early on:

$ sudo journalctl -u kestrel-WorldCities.Server --since "yyyy-MM-dd HH:mm:ss"
$ sudo journalctl -xe

Such an approach will give us the same level of information without exposing our errors to the public.

Now that we’re done with Linux, we’re ready to explore our last—but not least—deployment alternative: Azure App Service.

Azure App Service deployment

Throughout this section, we’ll learn how to deploy our healthcheck.client and HealthCheck.Server web applications on MS Azure App Service, a fully managed platform for building, deploying, and scaling web apps.

As we’ll be able to see, this deployment is considerably easier and faster than the previous ones, because we won’t need to deploy a virtual machine; App Service’s fully managed approach grants a deployment experience similar to the one we experienced back in Chapter 5, Data Model and Entity Framework Core, when we created an MS Azure database; we’ll just get what we need to publish our app, without the need to perform any hardware and/or software setup. This approach can be a tremendous advantage for most projects, as long as we don’t need to perform complex low-level infrastructure configuration tasks.

Here’s what we’ll do in detail:

	Create two web app instances on MS Azure for our healthcheck.client and HealthCheck.Server apps, using the free-tier (F1) pricing plan

	Adapt our apps to make both of them work with the App Service public URLs

	Publish our apps to Azure App Service using FTPS (for the Angular app) and Visual Studio (for the ASP.NET Core app)

	Test our new App Service instances to ensure they work as expected

This is going to be our last set of tasks; let’s get them done!

Creating the App Service instances

Go to https://portal.azure.com/ and log in with your account. Once done, input app service in the search bar and select the App Services feature. From there, we need to create two new entries. Let’s start with the healthcheck.client Angular app.

Adding the healthcheck.client Static Web App

From the App Services main page, click on the Add button in the topmost menu, then select the Create Static Web App option to access the form depicted in the following screenshot:

[image: A screenshot of a web application Description automatically generated]
Figure 15.27: The Create Static Web App form

Fill out the required fields in the following way:

	Subscription: Select your MS Azure subscription and resource group.

	Name: This will be our web app instance’s unique name, which will also be used as the public URL’s subdomain. In the preceding screenshot, we’ve used HealthCheck-2023, but any suitable name will do.

	Plan type: Pick the free plan for testing and demonstration purposes, or the standard plan for production scenarios.

	Region for Azure Functions API and staging environments: Choose the region closest to your geographical position.

	Source: Static web apps support direct deployment from several SCM sources, such as GitHub and Azure DevOps. For our demonstration purposes, we’re going to choose Other, since we won’t be using either of those.

Once done, click the Review + Create button at the bottom left of the page to access the review page. From there, click the Create button to start the deployment process. The whole operation will take a few seconds, after which we’ll be able to go to our newly created resource:

[image: A screenshot of a computer Description automatically generated]
Figure 15.28: Deployment complete screen

If we click on the Go to resource button, we’ll be taken to the web app instance’s configuration panel, which has a bunch of available options:

[image: A screenshot of a computer Description automatically generated]
Figure 15.29: HealthCheck-2023 configuration panel

As we can see by looking at the above screenshot, our app has been given an auto-generated URL in the https://<randomName>.azurestaticapps.net/ format; more precisely, it’s https://delightful-coast-0dc5c6003.4.azurestaticapps.net. This is one of the (few) major limitations of static web apps: they come with a random, auto-generated default URL that can only be changed with a custom domain (owned by us).

Although it can be perfectly fine for demonstration purposes—and can be changed with custom domain names—we might think that it would have been better to have a better URL right from the start. If we wanted to achieve such a result, we would have to create a web app instead of a static web app, because they don’t have this kind of limitation (as of the time of writing).

However, it’s important to understand that web apps and static web apps have several other differences—and distinctive features—worth considering when having to choose between them. For additional information about these two services, and an in-depth comparison between them, check out the following blog post from April Edwards:

https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/

For additional knowledge regarding static web apps, check out the dedicated documentation:

https://learn.microsoft.com/en-us/azure/static-web-apps/

Take note of that auto-generated URL, since we’re going to need it in a short while. If we navigate to it, we’ll see a welcome screen informing us that the managed instance is ready to host our web app and asking us to deploy our code, which is precisely what we’re going to do in a short while—after creating another App Service instance for our HealthCheck.Server ASP.NET Core app.

Adding the HealthCheck.Server Web App

To add another App Service instance for our HealthCheck.Server ASP.NET Core app, we have to repeat the same steps that we just did to create the previous one, with an important exception; this time, we will create a web app instead of a static web app. The reason for that is rather obvious: our ASP.NET Core back-end is definitely not “static,” as it requires the .NET 8 runtime environment in order to work.

Here are the key differences in what we need to do:

	Choose Create Web App instead of Create Static Web App.

	Use a different instance Name, such as HealthCheck-API-2023.

	Select a Runtime stack (.NET 8 LTS) and an Operating System (Windows will be fine for our sample scenario, since we optimized our HealthCheck.Server app for a Windows OS to deploy at the beginning of this chapter).

	Choose a Pricing Plan. Select Free F1 (Shared infrastructure) for testing and demonstration purposes, or one of the paid plans (depending on your expected workload) for production scenarios.

After the HealthCheck-API-2023 instance has been created, the first thing we must do is configure its CORS settings, since these settings will override any CORS policies applied at the ASP.NET Core level.

Navigate to the CORS page using the left menu tree view and add the public URL of the HealthCheck-2023 App Service instance that we created earlier on to the list of Allowed Origins, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.30: Azure App Service CORS setup

Once done, go back to the instance’s Overview page and take note of the public URL, which should be something like the following: https://healthcheck-api-2023.azurewebsites.net/.

As we can see, this time the variable part of the URL was not automatically generated using random numbers and words, but retains the name we gave to the web app.

Now that we know the public URLs of our App Service instances, we can adapt our healthcheck.client and HealthCheck.Server apps to work with them.

Adapting our apps for App Service

If we want our healthcheck.client Angular app to properly work with the HealthCheck.Server Web API, we need to change the baseUrl value in the /environments/environment.ts file, replacing the existing value.

Here’s how we can do that (updated value is highlighted):

export const environment = {
 production: true,
 baseUrl: "https://healthcheck-api-2023.azurewebsites.net/"
};

In the GitHub repository for this chapter, instead of replacing the previous value, we’ve added three baseUrl-related keys:

	baseUrl_v1, containing the previous value (custom hostname)

	baseUrl_v2, containing the new value (App Service)

	baseUrl, containing the value to use

Needless to say, the first two keys won’t have any effect—they are meant for reference purposes only. The only URL that will be fetched (and used) by Angular is the one provided by the baseUrl property, which we will set according to our needs.

As for the HealthCheck.Server app, there’s nothing we need to do; we don’t even have to change the AllowedCORS value in the appsettings.Production.json file, since the CORS headers are managed by Azure App Service.

That said, if we want to change them anyway to reflect the Angular app’s location, here’s how we can do that (updated value is highlighted):

{
"AllowedCORS": "https://delightful-coast-0dc5c6003.4.azurestaticapps.net"
}

Again, in the GitHub repository for this chapter, we have added three keys, AllowedCORS_v1, AllowedCORS_v2, and AllowedCORS, so that the reader will be able to easily switch between them.

Now we can move on to the publishing tasks.

Publishing our apps to App Service

In this section, we’ll see how we can publish our healthcheck.client and HealthCheck.Server apps to the App Service instance that we created a short while ago.

Publishing the Angular app

Let’s start with our healthcheck.client Angular app.

Since the Azure App Service type we chose for this project is static web app, the deployment methods are quite limited—we can only use GitHub, Azure DevOps, and a neat alternative that we’re going to use for our demonstration purposes.

The first thing to do is to rebuild it using the ng build command, so that the Angular bundle will be updated with the latest changes that we made.

Once done, type the following command to install the Azure Static Web Apps CLI, an open-source command-line tool that streamlines local development and deployment for Azure Static Web Apps:

> npm install -g @azure/static-web-apps-cli

After the installation is complete, use the command prompt to navigate to the healthcheck.client project’s root folder, then type the following command:

> swa deploy dist/healcheck.client/browser/ --env production

The above command will start a wizard that will allow us to publish our Angular app to the HealthCheck-2023 Azure static web app through a series of steps. More precisely, we will be asked to log in to MS Azure, choose the subscription, and select the static web app project where the deployment will take place, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.31: HealthCheck-2023 deployment using swa deploy

Once done, we will be able to navigate to the static web app URL and we should be able to see the welcome screen of our healthcheck.client Angular app.

For additional information on the Azure Static Web Apps CLI, guides, and examples, check out the following URL:

https://azure.github.io/static-web-apps-cli/

Needless to say, the app will be unable to connect to the API back-end, since the baseUrl property now points to the public URL of the HealthCheck-API-2023 website hosted on Azure App Service, which is still empty.

Let’s fill this gap by deploying the HealthCheck.Server ASP.NET Core project there.

Publishing the ASP.NET Core project

To publish our HealthCheck.Server ASP.NET Core project, we have several available options, since web apps (unlike static web apps) come with the Deployment Center menu section, which is entirely dedicated to the deployment task(s).

If we access it (using the left menu), we will see that we can choose between the following main approaches:

	Connect a Source Control Provider (SCP), such as GitHub, Bitbucket, a locally hosted Git, Azure Repos, or an externally hosted Git

	Set up an FTPS connection, with a fixed (auto-generated) endpoint and configurable FTP username and password

	Download a publish profile that can be imported into Visual Studio (or other compatible clients) to handle the deployment from there

As always, the choice is ours. For reasons of space, we won’t cover the SCP and FTPS alternatives, since they are quite simple to activate—it’s just a matter of setting up the required parameters and following the on-screen instructions provided by MS Azure.

For additional information regarding Azure Web Apps deployment options, check out the following guide:

https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app

To use the publish profile option, log in to the HealthCheck-API-2023 web app page on the MS Azure portal, navigate to the Deployment Center section using the left menu, and click the Manage publish profile button to access the download option, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.32: Downloading the Visual Studio publish profile from MS Azure

Once we have downloaded the file, we can switch back to Visual Studio and import it.

To do that, right-click the HealthCheck.Server project in Solution Explorer, then choose Publish to make the Publish pane appear, just like we’ve done several times already. From there, click Create new profile, and then select the option to import a profile, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.33: Importing a publish profile in Visual Studio

Click Next to access another window, where we can select the publish profile file we downloaded from MS Azure early on, then follow the on-screen instructions to the end.

If everything goes well, Visual Studio will create three new publish profiles ready to be used: FTP, Web Deploy, and Zip Deploy. We just have to pick one of them and hit the Publish button to deploy our HealthCheck.Server app to MS Azure and get the job done!

Since these publish profiles contain sensitive data, they are not included in the GitHub repository; however, the reader can easily generate them using MS Azure and Visual Studio.

Needless to say, those who want to manually create their publish profile(s) instead of downloading them from MS Azure are free to do that; if we have added our Microsoft account to Visual Studio, the Publish interface will automatically fetch the available web apps and/or static web apps from MS Azure and allow us to set them up without us having to download anything.

Regardless of which publish profile we use, as soon as the publishing process completes, we’ll finally be ready to perform our final test.

Testing healthcheck.client and HealthCheck.Server

To test our new App Service instances, we just need to connect (again) to the HealthCheck-2023 public URL—which, in our demonstration scenario, is:

https://delightful-coast-0dc5c6003.4.azurestaticapps.net/

If we did everything correctly, we should be able to see our healthcheck.client Angular app publicly available on the web and fully capable of connecting to the HealthCheck.Server ASP.NET Core app:

[image: A screenshot of a computer Description automatically generated]
Figure 15.34: Our HealthCheck app hosted on Azure App Service

As we can see in the preceding screenshot, the app is served in HTTPS thanks to the built-in wildcard certificate provided by MS Azure, meaning that we’ll also be able to test our service worker without having to purchase an SSL certificate on our own.

There is only one (minor) issue left, which we can easily spot if we access the Health Check page of our app. All our health checks are flagged as Unhealthy, as shown in the following screenshot:

[image: A screenshot of a computer Description automatically generated]
Figure 15.35: All health checks are unhealthy

If we remember how our HealthCheck app works, we know that the third check is meant to be unhealthy, as it points to a non-existing hostname… However, what about the other two? Why is the ASP.NET Core back-end unable to ping www.ryadel.com and www.google.com, which should be publicly available and reachable from anywhere?

As a matter of fact, this behavior is due to the fact that, on Azure App Service, tools such as ping, nslookup, and tracert won’t work due to security constraints. The reason for that is quite simple: Azure web apps run in a secure environment (sandbox), isolating their execution from other instances on the same machine. In this environment, the only way an application can be accessed via the internet is through the already-exposed HTTP (80) and HTTPS (443) TCP ports; this basically means that these apps are unable to listen on other ports for packets arriving from the internet, hence they can’t receive the ping result.

For additional info regarding the Web App sandbox (and its implications in app development), check out the following article:

https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening

For reasons of space, we will not publish a fix for this ICMP issue. Readers are encouraged to find a suitable solution on their own. We’ll just provide a small hint toward what could be the right direction: try to check the availability of those websites using something that operates through the already-exposed TCP port (80 and 443).

That’s it. Our ASP.NET Core and Angular deployment tasks have come to an end. We sincerely hope you’ve enjoyed reading the book as much as we’ve enjoyed writing it.

Summary

Finally, our journey through ASP.NET Core and Angular has come to an end. Our final task involved getting our SPAs—now empowered with the most relevant features of PWAs—ready to be published in a suitable production environment.

The first thing we did was explore some pivotal deployment tips for our back-end and front-end frameworks. Since the Visual Studio template already implements the most important optimization tweaks, we took some valuable time to properly learn and understand the various techniques that can be used to increase our web application’s performance and security when we need to publish it over the web.

Right after that, we went through Windows deployment with a step-by-step approach. We created a Windows Server VM on the MS Azure portal, and then we installed the IIS service and properly configured it in order to publish our existing healthcheck.client and HealthCheck.Server apps over the web.

Then, we switched to Linux, where we learned how to deploy our worldcities.client and WorldCities.Server apps on an Ubuntu Server VM. After configuring it properly, we took the opportunity to implement the out-of-process hosting model using Kestrel and Nginx, which is the standard approach for serving ASP.NET Core web applications on Linux-based platforms. To achieve this, we had to change some of our WorldCities.Server app’s back-end settings to ensure that they would be properly served behind a reverse proxy.

For both of the above scenarios, we used real domain names and SSL certificates, which allowed us to properly test the service workers; however, we also learned how to create self-signed certificates and host-mapping techniques, which can be useful for handling testing or non-production deployment tasks in a cost-effective way.

We’ve also thoroughly tested the result of our deployment efforts with a web browser from our development machine.

The last thing we did was deploy our HealthCheck app to MS Azure App Service, a fully managed platform that can be a great fit for most projects that don’t require complex low-level configuration settings.

Our adventure with ASP.NET Core and Angular has finally ended. This is such a rich topic that we could have spent even more time discussing the frameworks and perfecting our projects than we did; that said, you should be satisfied with the results obtained and the lessons learned.

We hope you enjoyed this book. Many thanks for reading it!

Suggested topics

For further information, we recommend the following topics: HTTPS, Secure Socket Layer (SSL), ASP.NET Core deploy, HTTP Strict Transport Security (HSTS), General Data Protection Regulation (GDPR), Content Delivery Network (CDN) MS Azure, Open Web Application Security Project (OWASP), SQL Server, SQL Server Management Studio (SSMS), Windows Server, IIS, FTP server, publish profiles, ASP.NET Core in-process hosting model, ASP.NET Core out-of-process hosting model, Ubuntu Server, Kestrel, Nginx, reverse proxy, Forwarded Headers Middleware, SCP, FileZilla FTP Client, WinSCP, journalctl, nano, HOST mapping, self-signed SSL certificate, OpenSSL, Security-Enhanced Linux (SELinux), Azure App Service, Static Web Apps.

References

	ZeroSSL: https://zerossl.com/

	Let’s Encrypt: https://letsencrypt.org/

	Generating and Configuring Free SSL Certs for Azure Windows IaaS Virtual Machines: https://blog.kloud.com.au/2019/04/27/generating-and-configuring-free-ssl-certs-for-azure-windows-iaas-virtual-machines/

	Host and deploy ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/

	Host ASP.NET Core on Windows with IIS: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/

	ASP.NET Core Performance Best Practices: https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices

	Use multiple environments in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

	Handle errors in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling

	Enforce HTTPS in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl

	.NET application publishing overview: https://docs.microsoft.com/en-us/dotnet/core/deploying/

	.NET Core 2.1, 3.1, and .NET 5.0 updates are coming to Microsoft Update: https://devblogs.microsoft.com/dotnet/net-core-updates-coming-to-microsoft-update/

	App Trimming in .NET 5: https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/

	Angular – Deployment guide: https://angular.io/guide/deployment

	Enable cross-origin resource sharing: https://enable-cors.org/

	Angular: The Ahead-of-Time (AOT) compiler: https://angular.io/guide/aot-compiler

	Get publish settings from IIS and import into Visual Studio : https://docs.microsoft.com/en-us/visualstudio/deployment/tutorial-import-publish-settings-iis

	Use Spot VMs in Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms

	Quick Reference : IIS Application Pool: https://blogs.msdn.microsoft.com/rohithrajan/2017/10/08/quick-reference-iis-application-pool/

	Configure the Windows Firewall to allow SQL Server access: https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access

	Configure ASP.NET Core to work with proxy servers and load balancers: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer

	Host ASP.NET Core on Linux with Nginx: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx

	PuTTY: A free SSH and Telnet client for Windows: https://www.putty.org/

	Use SCP to move files to and from a VM: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/copy-files-to-linux-vm-using-scp

	Install the .NET SDK or the .NET Runtime on Ubuntu: https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu-2204

	Installation guidance for SQL Server on Linux: https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup

	journalctl – Query the systemd journal: https://www.freedesktop.org/software/systemd/man/journalctl.html

	openssl – OpenSSL command-line tool: https://www.openssl.org/docs/manmaster/man1/openssl.html

	Comparing Azure Static Web Apps vs Azure WebApps vs Azure Blob Storage Static Sites: https://devblogs.microsoft.com/devops/comparing-azure-static-web-apps-vs-azure-webapps-vs-azure-blob-storage-static-sites/

	Azure Static Web Apps documentation: https://learn.microsoft.com/en-us/azure/static-web-apps/

	Deployment choices for your web app to Azure: https://learn.microsoft.com/en-us/azure/developer/javascript/how-to/deploy-web-app

	Azure Web App sandbox: https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox#network-endpoint-listening

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/aspdotnet8angular

[image:]

[image:]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Fully searchable for easy access to vital information

	Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

[image:]

Architecting ASP.NET Core Applications - Third Edition

Carl-Hugo Marcotte

ISBN: 9781805123385

	Apply the SOLID principles for building flexible and maintainable software

	Test your apps effectively with automated tests, including black-box testing

	Enter the path of ASP.NET Core dependency injection mastery

	Work with GoF design patterns such as strategy, decorator, facade, and composite

	Design REST APIs using Minimal APIs and MVC

	Discover layering techniques and the tenets of clean architecture

	Use feature-oriented techniques as an alternative to layering

	Explore microservices, CQRS, REPL, vertical slice architecture, and many more patterns

[image:]

Angular for Enterprise Applications - Third Edition

Doguhan Uluca

ISBN: 9781805127123

	Minimalist, value-first approach to delivering web apps

	How standalone components, services, providers, modules, lazy loading, and directives work in Angular

	Manage your app’s data reactivity using Signals or RxJS

	State management for your Angular apps with NgRx

	Angular ecosystem to build and deliver enterprise applications

	Automated testing and CI/CD to deliver high quality apps

	Authentication and authorization

	Building role-based access control with REST and GraphQL

[image:]

Apps and Services with .NET 8 - Second Edition

Mark J. Price

ISBN: 9781837637133

	Familiarize yourself with a variety of technologies to implement services, such as gRPC and GraphQL

	Store and manage data locally and cloud-natively with SQL Server and Cosmos DB

	Use ADO.NET SqlClient to implement web services with native AOT publish support

	Leverage Dapper for improved performance over EF Core

	Implement popular third-party libraries such as Serilog, FluentValidation, Humanizer, and Noda Time

	Explore the new unified hosting model of Blazor Full Stack

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you’ve finished ASP.NET Core 8 and Angular, Sixth Edition, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Index

Symbols

80 and 443 TCP ports 707

firewalld 708

ufw 708

@angular/service-worker npm package 575

adding 577

#if preprocessor directives

reference link 437

.NET 151

.NET 5 7-9

.NET 6 9

features and improvements 9, 10

.NET 7 10

improvements 10, 11

.NET 8 11

download link 686

improvements and features 11

.NET console application, debugging using Visual Studio

reference link 423

.NET deployment modes 671

framework-dependent deployment (FDD) 671

framework-dependent executable (FDE) 671, 673

self-contained deployment (SCD) 671, 672

.NET SDK/.NET Runtime, installing on Ubuntu 22.04

reference link 704

 RxJS Subject

reference link 358

/src/app/ folder 73

AppComponent 75

AppModule 73, 74

/src/ folder 73

.webmanifest MIME type

adding 697

A

access modifiers 401

AccountController 520, 521

ApiLoginResult 515, 516

implementing 514

JwtHandler 517, 518

JwtSettings 516, 517

LoginRequest 515

action methods

CitiesController, securing 534

CountriesController, securing 534

securing 533

SeedController, securing 534

Act phase 473, 474, 528

addDataListeners 649

Admin user 532

ahead-of-time (AOT) compilation 674

Angular 2, 12

GraphQL, adding to 625

selecting, reasons 23

upgrading/downgrading 68, 69

used, for building web application 2

Angular 2 13

Angular 2, improvements

Angular Mobile Toolkit (AMT) 14

command-line interface (CLI) 14

components 14

semantic versioning 14

server-side rendering (SSR) 14

TypeScript 14

Angular 4 15

improvements 15

Angular 5 15

features 15

Angular 6 16

Angular 7 16

features 16, 17

Angular 8 17, 18

improvements and features 17

Angular 9 18, 19

features 18

Angular 10 19

Angular 11 20

features 20

Angular 12 20

improvements 20, 21

Angular 13 21

Angular 14 21

Angular 15 22

Angular 16 22

Angular 17 22

features 22

Angular app

AppComponent, updating 87-90

AppRoutingModule, updating 90, 91

building 708, 709

FetchDataComponent, adding 85

HomeComponent, adding 84

HomeComponent, modifying 91, 92

navigation menu, adding 85-87

publishing 732, 733

refactoring 83

test files of AppComponent, updating 90

test, running 92, 93

updating 143, 144

Angular app component

adding 122

AppRoutingModule 122

NavMenuComponent 123

testing 123, 124

Angular app, updating

angular-material.module.ts 261

cities.component.html 263-265

cities.component.ts 261-263

performing 261

Angular architecture

reference link 113

Angular CLI 39

Angular code

upgrading 71

Angular component 109, 282, 283

AppModule 287

AppRoutingModule 287

countries.component.html 285, 286

countries.component.scss 286

CountriesComponent, testing 288, 289

countries.component.ts 283-285

country.ts 283

creating 110

health-check.component.css 120, 121

health-check.component.html 119, 120

NavComponent 287

styling 121, 122

Angular component files

.css file 109

.html file 109

.spec.ts file 109

.ts file 109

health-check.component.ts 110, 111

Angular deployment tips 673, 674

angular.json configuration file(s) 676

automatic deployment 676, 677

differential loading 675, 676

environment.ts file(s), updating 676

ng build 674, 675

ng serve 674, 675

package.json file 674, 675

Angular form debugging 441

activity log 445, 446

activity log, extending 447, 448

activity log, testing 447

Form Model, viewing 441-443

pipe operator 444

user, reacting to changes 444

Angular forms 295, 296

exploring 294

Angular front-end 66

/src/ folder 73

root files 66, 67

test, running 77-79

Angular health checks 110

Angular component, creating 110

Angular initialization cycle 74

Angular.io

reference link 118

AngularJS 12

cache-friendly 13

dependency injection 13

directives 13

single-page approach 13

two-way data binding 13

angular.json file

updating 577

Angular Language Service

reference link 17

Angular Live Development Server 50

Angular Material 125

AngularMaterialModule, adding 233, 234

data, serving with 232

filtering, adding 265

installing 125, 126

MatTable 234

pagination, adding with MatPaginatorModule 237

reference link 126

sorting, adding with MatSortModule 251

AngularMaterialModule

adding 233, 234

updating 234, 235

Angular Material select 324-326

Angular packages 68

upgrading/downgrading 69, 70

Angular PNG icon set 586

Angular project

creating 40-44

Angular test suite 483

cities tests, creating 491, 492

describe and beforeEach sections 484-486

executing 492-495

fixture and component, configuring 489, 490

import section 484

mock CityService, adding 486

mock CityService, implementing 487-489

title test, creating 490

Angular unit tests 481, 482

general concepts 482

suite 483

TestBed interface 482

testing, with Jasmine 483

anonymous types

versus DTO classes 384, 385

API endpoints

modifying 80-82

api/heartbeat endpoint

adding 593

Minimal APIs 594

ApiResult

extending 251-255

Apollo Angular 625

installing 625-627

AppComponent 75

app.component.html 591, 592

app.component.scss 592, 593

app.component.ts 590, 591

files 75

HTML template file 77

spec.ts file 77

StyleSheet file 77

TypeScript class file 75, 76

updating 590

application logging 456, 457

application programming interfaces (APIs) 2

AppModule 73, 74

AppModule file

updating 589

AppRoutingModule 122

App Service

apps, adapting for 731, 732

apps, publishing to 732

App Service instances

creating 727

App Service Managed Certificate 663

appsettings.Development.json file 61

appsettings.json file 60

updating 193

appsettings.Production.json file(s)

HealthCheck.Server 669, 670

updating 669

WorldCities.Server 670, 671

app trimming feature 672

Arrange, Act, Assert pattern 471

Arrange phase 472, 473, 528

ASP.NET 279

CountriesController 279, 280

used, for building web application 2

ASP.NET 5 3

reference link 9

ASP.NET back-end 56

configuration files 57

controllers 61, 62

OpenAPI (Swagger) 63-66

ASP.NET Core

GraphQL, adding to 614

selecting, reasons 23

ASP.NET Core 1.x 3, 4

ASP.NET Core 2.1

references 4

ASP.NET Core 2.2

references 5

ASP.NET Core 2.x 4, 5

ASP.NET Core 3.0

references 6

ASP.NET Core 3.1

reference link 7

ASP.NET Core 3.x 5, 6

ASP.NET Core app

updating 143

ASP.NET Core, configuring to work with proxy servers and load balancers

reference link 709

ASP.NET Core deployment tips 663

launchSettings.json file 663, 664

runtime environments 665

ASP.NET Core fundamentals overview

reference link 58

ASP.NET Core health checks 98

HealthChecks middleware, adding 98, 99

Internet Control Message Protocol (ICMP) request check, adding 99, 100

ASP.NET Core, hosting on Linux with Nginx

reference link 706

ASP.NET Core, hosting on Windows with IIS

reference link 696

ASP.NET Core Identity

AccountController, implementing 514

action methods, securing 533

ApplicationDbContext, extending 512, 513

ApplicationUser, creating 512

configuring 513, 514

JwtBearerMiddleware, configuring 521, 522

NuGet packages, adding 511, 512

SeedController, updating 522

setting up 511

ASP.NET Core Identity APIs

reference link 508

ASP.NET Core Identity model 510

entity types 510, 511

ASP.NET Core Identity system 508

ASP.NET Core logging 457

ASP.NET Core project

publishing 733-735

ASP.NET Core revolution 2

ASP.NET Core Runtime 686

installing 704, 705

Microsoft signing key and repository, downloading 705

ASP.NET Core Runtime installation

IIS service, restarting 687

ASP.NET Core Server 49

ASP.NET Core SignalR 639

ASP.NET Core solution

overview 56

ASP.NET Core unit tests 466

Act phase 473, 474

Arrange phase 472, 473

Assert phase 474

behavior-driven development 479-481

debugging 476-478

executing 474

executing, with CLI 474, 475

executing, with Visual Studio Test Explorer 475, 476

first test, creating 470-472

test-driven development 478, 479

WorldCities.Server.Tests project, creating 466, 467

ASP.NET Core Windows hosting bundle

installing 686, 687

assembly linker 672

Assert phase 474, 528

Asynchronous JavaScript + XML (AJAX) 29, 395

Asynchronous programming scenarios

reference link 536

async tasks 535, 536

async validators 328

authentication 497, 499

third-party authentication 504

authentication, in Angular

AuthService, implementing 542, 543

HttpInterceptors 555

implementing 541

LoginComponent, creating 544

LoginRequest interface adding 542

LoginResult interface, adding 542

Route Guards 558, 559

authentication methods 499

signatures 503

tokens 501, 502

Two-Factor Authentication (2FA) 503

AuthGuard

implementing 560, 561

testing 562

authorization 497, 505

proprietary authorization 505

third-party authorization 506

AuthService

implementing 542, 543

authStatus observable

creating 550, 551

testing 554, 555

UI, updating 551

awaits 535, 536

Azure Active Directory 507

Azure App Service deployment 727

Azure Bastion documentation

reference link 683

Azure Data Studio 183

download link 173

Azure Spot feature

reference link 681

Azure SQL

reference link 174

Azure SQL Database for free

reference link 181

Azure SQL Managed Instance

reference link 174

Azure tenant 177

Azure Virtual Machine publish profile 690, 691

Azure Web Apps deployment options

reference link 734

B

backend debugging 422

basics 423

conditional breakpoint 423, 424

Entity Framework (EF) Core 432, 433

working, on Windows/Linux 422, 423

backend server, proxying

reference link 81

Banana Cake Pop (BCP) 622

BaseFormComponent

implementing 367, 368

baseUrl property

adding 83

environment files, generating 82

implementing 82

behavior-driven development (BDD) 465, 479-481

Blazor render modes

reference link 11

broadcast message

adding 644

controller, using 645

Minimal API, using 645

browser developer tools 439-441

bugs 421

bundling 674

C

C# 10 features

reference link 10

Cache, configuring

reference link 628

calls, debouncing to back-end 357

CitiesComponent, updating 357-359

CountriesComponent, updating 359

child class 367

CitiesComponent

updating 235-237

Cities, list 226

[hidden] attribute 229

app-routing.module.ts 230, 231

cities.component.html 228

cities.component.scss 230

cities.component.ts 227, 228

city.ts 227

nav-component.html 231, 232

city

Add a new City button, adding 316

adding 312

CityEditComponent, extending 313-316

route, adding for Add a new City button 317-319

CityEditComponent

extending 370, 371

CityEditComponent, Reactive Forms 302, 303

city-edit.component.html 307-309

city-edit.component.scss 309

city-edit.component.ts 304-307

CityService

Angular app, using 632-634

mutation, querying 634-636

refactoring 628-630

class inheritance 366, 367

CLI

used, for executing test 474

client-initiated events 653

feature, testing 656

HealthCheckComponent, updating 655

HealthCheckHub, updating 653

HealthCheckService, updating 654

client-side debugging 448, 449

client-side paging 238-241

client-side validation 333

code

debouncing 356

throttling 356

code bloat 364

Code-First approach 155

cons 156

pros 156

used, for creating database 187

Common Language Runtime (CLR) 511

Component Dev Kit (CDK) 125

components 75

conditional breakpoint 423, 424

Actions feature 425, 426

Conditions checkbox 425

setting, options 424

testing 426, 427

configuration files 57

appsettings.json 60

Program.cs 57-60

connection string

securing 194

console applications 456

constructor 116

Content Delivery Network (CDN) 81, 668

content management systems (CMSes) 29

continuous integration and continuous delivery (CI/CD) 690

Continuous Integration (CI) 149

controllers 61, 62

CORS policy 595

countries, adding to loop 279

Angular 282

ASP.NET 279

CountriesController 279, 280

odd JSON naming issue 280-282

CountryEditComponent

AppRoutingModule 350

CountriesComponent 351

country-edit.component.html 348-350

country-edit.component.scss 350

country-edit.component.ts 341-345

creating 341

extending 369, 370

IsDupeField server-side API 346, 347

isDupeField validator 346

testing 352-355

CountryService

refactoring 636

C# preprocessor directives

reference link 165, 437

CreateDefaultUsers() unit test

defining 524

IdentityHelper static class, adding 524-526

SeedController_Test class, adding 526-529

Create, Read, Update, and Delete (CRUD) 148, 499

Cross-Origin Resource Sharing (CORS) 594-596

AllowedCORS configuration setting, adding 596

implementing 596

Program.cs file, updating 597

CSS

replacing, with Sass 133, 134

CSS code sample 130, 131

CSS history 130

custom async validator

reference link 336

C# version 9

reference link 9

D

data

fetching 224

Data Annotations 162, 188

database

autogenerated database tables, checking 204

configuring 183, 184

creating 199

creating, with Code-First approach 187

data, seeding 539-541

dotnet CLI, using 200

Excel file, importing 207-214

identity migration, adding 537

initial migration, adding 200

login, mapping to 186, 187

migration, applying to 537

migrations 205

Package Manager Console, using 203, 204

populating 205, 206

Program.cs, updating 199, 200

SeedController, implementing 206, 207

updating 536, 537

WorldCities database, creating 184, 185

Database-as-a-Service (DBaaS) approach 173

database connection string

checking 710, 711

Database-First approach 156

cons 157

pros 157

database initialization strategies 192, 193

database initializers/DbInitializers 192

Database Management System (DBMS) 141

database management tool(s)

installing 173

database schema (DB schema) 539

database table names

defining 169

data interchange format 641

data migration 205

data model 151

DataModel 300

data modeling approaches 155

Code-First approach 155, 156

Database-First approach 156, 157

options, selecting 158

data seeding

reference link 206

data seeding strategy 206

data server

using, reasons 148, 149

data services 394

building 399

Fetch 396, 397

HttpClient 397, 398

XMLHttpRequest 394-396

data source 149, 150

Data Transfer Object (DTO) 216, 380

data validation 326, 327

model-driven validation 328

server-side validation 333-335

template-driven validation 327, 328

DbContext

setting up 187, 188

DbExtensions.AsNoTracking Method

reference link 213

DBMS licensing models 154

Developer edition 154

Evaluation edition 154

Express edition 154

DBMS structured logging, with Serilog 458

HTTP requests, logging 460

logs, accessing 460-462

NuGet packages, installing 458

Serilog, configuring 458-460

dead code purging 675

deadlocks 535, 536

debounceTime

reference link 359

debouncing 356

Debug built-in provider 457

debugger 421

debugging 421

dependency injection (DI) 113, 114, 511

deprecated APIs and features

reference link 18

desktop applications 456

development environment 665

differential loading 675, 676

Digital Equipment Corporation (DEC) 19

DI in Angular

reference link 114

DI in ASP.NET Core

reference link 114

DI registration options 519, 520

Document Object Model (DOM) 115, 229

Don’t Repeat Yourself (DRY) principle 364

dotnet CLI

database, updating 201, 202

No executable found matching command dotnet-ef error 202

System.Globalization.CultureNotFoundException error 203

using 200

dotnet-ef console commands 539

dragon-breath 12

DTO classes 383, 384

security considerations 384

separation of concerns 384

versus anonymous types 384, 385

DupeCityValidator, server-side validation 335

CitiesController 337

city-edit.component.html 337, 338

city-edit.component.ts 335, 336

Observable methods 339, 340

performance issues 340

RxJS operators 339, 340

testing 338, 339

E

eager loading 168

ECMAScript 2022 675

edge-origin proxy 716

EF Core .NET CLI

reference link 204

EF Core PMC / PowerShell

reference link 204

Elvis operator 331

endpoints

alternatives 662, 663

configuring 660, 661

HOSTS file, tweaking 661, 662

end-to-end (E2E) web development tool 12

entities

#region blocks, using 164-166

City entity 160-163

Country entity 163, 164

creating 158

defining 159, 160

securing 386

entity controllers 214

CitiesController 215, 216

CountriesController 216

testing 217, 218

usage, considering 216

Entity Data Model (EDM) 151

Entity Framework 7 151

Entity Framework Core Database Providers list 152

Entity Framework Core (EF Core) 151, 152, 377

debugging 432, 433

installing 152, 153

reference link 205, 617

Entity Framework Core loading pattern 168

entity type configuration methods 188

Data Annotations 188

EntityTypeConfiguration classes 188-191

Fluent API 188-190

options, selecting 192

entity types 510, 511

error handling in ASP.NET Core

reference link 667

error handling techniques 666, 667

Excel file

importing 207-214

explicit loading 168

F

favicon

adding 583, 584

download link 583

favicon online generators

references 583

feature modules 74

Fetch 394-397

advantages 398

files

deploying, to Linux VM 711, 712

FileZilla

URL 712

FileZilla FTP Server

reference link 689

filter behavior

debouncing 356

improving 355

throttling 356

filtering

adding 265

AngularMaterialModule 276-278

ApiResult, extending 266-272

CitiesComponent 273-275

CitiesComponent style (SCSS) file 276

CitiesComponent template (HTML) file 275

CitiesController 272, 273

performance considerations 278

reference link 617

Fluent API 188-190

Folder publish profile

creating 688

FormBuilder 340

CountryEditComponent, creating 341

CountryEditComponent, testing 352-355

forms

using, reasons 296, 297

Forwarded Headers Middleware 709

adding 710

framework-dependent deployment (FDD) 671

advantages 671

disadvantages 672

framework-dependent executable (FDE) 671, 673

advantages 673

disadvantages 673

frontend debugging 437

Angular form debugging 441

browser developer tools 439-441

client-side debugging 448, 449

Observables, unsubscribing 449

Visual Studio JavaScript debugging 437, 438

FTP publish profile 689, 690

Full Database Backup

reference link 538

full-stack approach 28

G

General Data Protection Regulation (GDPR) 4

generic types 403

GetAngular 12

GetCountries() SQL query 433, 434

#if preprocessor directive, using 436, 437

SQL code, obtaining programmatically 434, 435

ToParametrizedSql() method, implementing 435, 436

globalization-invariant mode

reference link 203

Google identity provider 504

GraphQL 607, 612

adding, to Angular 625

adding, to ASP.NET Core 614

advantages over REST 612, 613

CityService, refactoring 628-630

CountryService, refactoring 636

disadvantages 613

implementing 613

versus REST 608

GraphQL Cursor Connections Specification

reference link 630

GraphQLModule

updating 627

GraphQL query

improving 631, 632

GraphQL schema

testing 622-625

H

healthcheck.client

publishing 687

testing 698, 736, 737

healthcheck.client app 482

healthcheck.client Static Web App

adding 728-730

health-check.component.css 120, 121

health-check.component.ts 110, 111

constructor 116

dependency injection (DI) 113, 114

HttpClient 117

imports and modules 112

interfaces 118, 119

ngOnInit method 114, 115

observables 118

HealthCheck (HC) 580

health check responses 108

HealthCheck.Server

publishing 687

testing 698, 736, 737

HealthCheck.Server App Service

adding 730, 731

HealthCheck web application

testing 698, 699

HomeComponent, Angular app

dry run switch 84

spec.ts file, skipping 85

HOSTS file

tweaking 661, 662

HotChocolate

installing 614

mutation 615, 617-621

Program.cs 621, 622

query 615

Serial attribute 616

subscription 615

UseFiltering attribute 616

UsePaging attribute 616

UseSorting attribute 616

HTML Living Standard 229

HTML select 319-324

HTTP/1.1 protocol

reference link 608

HttpClient 117, 397, 398

advantages 398

HTTP/HTTPS implementation standards 499

HttpInterceptors 556, 574

AppModule, updating 558

AuthInterceptor, implementing 556, 557

reference link 556

testing 558

HTTP port

setting up 45, 46

HTTP requests 224

logging 460

HTTP responses 224

HTTPS port

setting up 45, 46

HTTP status codes 108

HTTP Strict Transport Security (HSTS) 667

I

ICMPHealthCheck class

custom output message, implementing 106, 107

improving 104

middleware setup, updating 105, 106

output message, configuring 108

parameters and response messages, adding 104, 105

Identity API endpoints 508, 563

activating 563, 564

disadvantages 566, 567

testing 564-566

identity migration

adding 537

IdentityServer

reference link 508

IIS application pool

configuring 695, 696

IIS Manager tool 697

indexes

defining 169, 170

index.html file

updating 578

Infrastructure as a Service (IaaS) 170

inheritance 367

in-memory Web API package 148

Interactive Automatic rendering (IAR) 11

Interactive Server rendering (ISR) 11

Interactive WebAssembly rendering (CSR) 11

interfaces 118, 119

internal membership provider 507

International Organization for Standardization (ISO) 164

Internet Control Message Protocol (ICMP) request check 99

ICMPHealthCheck class, creating 100-102

ICMPHealthCheck middleware, adding 102, 103

outcomes 100

Internet Information Services (IIS)

configuring 691

healthcheck.client website entry, adding 691-693

HealthCheck.Server website entry, adding 693

reference link 684

TLS/SSL certificates 693, 694

Inversion of Control (IoC) 114, 519

ISO 3166 164

references 164

ISO 3166-1 alpha-2 164

reference link 164

ISO 3166-1 alpha-3 164

reference link 164

ISO 3166-1 numeric 164

J

Jasmine 481

testing with 483

Jasmine testing framework 465

JavaScript approaches

downsides 588

JavaScript Library Usage Distribution

references 12

JavaScript Object Notation (JSON) 224

conventions 225, 226

defaults 226

JavaScript source maps 439

journalctl

reference link 720

JSON Web Tokens (JWTs) 499, 509

URL 509

Just-In-Time (JIT) compiler 10, 674

just-in-time (JIT) VM access

reference link 683

K

Karma 68, 481

Kestrel

configuring 715, 716

kitchen sink 389

L

launchSettings.json file 663, 664

lazy loading 168

Let’s Encrypt 573

reference link 663

LGPL to Polyform Noncommercial

reference link 208

LINQ 256, 257

Linq.Dynamic

alternative approach with 347, 348

Linux 154

Linux deployment 699

Linux VM

/var/www folder, creating 712

app, deploying with WinSCP 713

configuring 702

files, deploying to 711, 712

permissions, publishing 713

permissions, setting 712, 713

WorldCities publish folders, copying 714, 715

Linux VM on MS Azure

creating 700

DNS name label, adding 701

inbound security rules, setting 702

Linux VM, adding 700, 701

LiteXHealthChecks 137

Loading Related Data

reference link 169

local area network (LAN) 100

login

mapping, to database 186, 187

LoginComponent

AppRoutingModule, updating 547

creating 544

login.component.html 545-547

login.component.scss 547

login.component.ts 544, 545

NavMenuComponent, updating 547

testing 548, 549

LoginRequest interface

adding 542

LoginResult interface

adding 542

logs

accessing 460-462

M

managed cloud database

reference link 174

master/detail UI pattern 302

mat-error default behavior

reference link 330

MatPaginatorModule

pagination, adding with 237

MatTable 234

MatTable component 136

MatToolbar

adding 127

AppModule, updating 127

NavMenuComponent HTML template, updating 127, 128

test run 128, 129

Microsoft signing key and repository

downloading 705

Microsoft XML Core Services (MSXML) library 395

migration

applying, to database 537

data model, dropping 539

data model, recreating 539

existing data model, updating 538, 539

reference link 537

minification 439, 675

Minimal APIs 594

minimisation/minimization 439

mock CityService

adding 486, 487

alternative implementation, using interface approach 489

extending and overriding 487

fake service class 487

implementing 487-489

interface instance 487

spy 487

mocking 468

Model 384

ModelBuilder API 188

Model, creating and configuring

reference link 163

model-driven forms 298-301

model-driven validation 328

safe navigation operator 331

validators, adding in form 328-331

validators, testing 331, 332

model scaffolding 156

Model-View-ViewModel (MVVM) 384

module resolution

reference link 112

Moq 468, 469

multi-page applications (MPAs) 28, 29

Multi-platform Application UI (MAUI) 9

multiple projects

secrets.json file, sharing between 197, 198

MVC6 3

N

N+1 problem 611

native web applications (NWAs) 28, 32

navigation link

adding 309

app-routing.module.ts 310

cities.component.html 310-312

navigator.onLine property 587

JavaScript approaches, downsides 588

NavMenuComponent 123

ng-connection-service npm package 588

AppComponent, updating 590

AppModule file, updating 589

service, installing 589

Nginx

configuring 715, 716

configuring, for worldcities.client 722, 723

configuring, for WorldCities.Server 721, 722

HTTP connection, checking 706, 707

installing 705

starting up 706

nginx.conf file

updating 723, 724

NgModules 73, 74

reference link 113

ngOnInit method 114, 115

ngsw-config.json file

adding 584, 585

Node.js 68

Node Package Manager (npm) configuration file 67, 78

non-development environment 666

npmJS syntax 68

Nsubstitute NuGet package 468

NuGet packages

installing 458

O

OAuth 2 506

OAuth-based social login 504

Object-Oriented Programming (OOP) 367, 465

Object Relational Mapper (ORM) 151

Observables 118

alternatives methods, for unsubscribing 452-454

takeUntil() operator 451, 452

unsubscribe, determining 455

unsubscribe() method 449, 450

unsubscribing 449

offline loading 574

offline mode 574

on-demand caching strategy 585

On-stack Replacement (OSR) 10

OpenAPI 63-66

OpenAPI Specification (OAS) 63

OpenID 504

working 504

OpenID Connect (OIDC) 504, 505

references 505

OpenSSL tool

reference link 717

Open Web Application Security Project (OWASP) 668

Oracle XE 158

Outlook Web Access (OWA) 394

output window, backend debugging 427, 428

configuring 432

LogLevel, testing 429-432

LogLevel types 428, 429

over-fetching 611

P

package.json

reference link 68

Package Manager Console 256

pagination

adding, with MatPaginatorModule 237

client-side paging 238-241

reference link 617

server-side paging 241

PING 99

pipes, using to transform data

reference link 444

Platform as a Service (PaaS) 170

polyfills 675

PolyForm Noncommercial License 1.0.0

reference link 208

polymorphism 367

production

app, preparing 660

production environments 665

production mode 674

product owner expectations 32, 33

adaptability 34

early releases 33

fast completion 33

GUI over back-end 33

product repository

registering 705

Program.cs file 57-60

Progressive Web Apps (PWAs) 28, 30, 571

capabilities, testing 598

distinctive features 572, 573

installing 602, 603

offline status, handling 587

technical baseline criteria 31

technical features 30

testing out 599-602

Progressive Web Apps (PWAs), capabilities

app, compiling 598

http-server, installing 598, 599

Progressive Web Apps (PWAs), distinctive features

@angular/service-worker 575

offline loading 574

secure origin feature, implementing 573

service workers versus HttpInterceptors 574

proprietary

versus third-party providers 506, 507

proprietary authorization 505

Proprietary auth with ASP.NET Core 507-509

Protractor 481

PuTTY 702

URL 702

PWA, offline status

api/heartbeat endpoint, adding 593

Cross-Origin Resource Sharing (CORS) 594-596

navigator.onLine property 587

ng-connection-service npm package 588

window’s ononline/onoffline event 587

PWA requirements

automatic installation 585, 586

implementing 576

manual installation 576

PWA requirements, automatic installation

Angular PNG icon set 586

PWA requirements, manual installation

@angular/service-worker npm package, adding 577

angular.json file, updating 577

favicon, adding 583, 584

index.html file, updating 578

ngsw-config.json file, adding 584, 585

ServiceWorkerModule, importing 578

Web App Manifest file, adding 579-582

R

Reactive Extensions for JavaScript (RxJS) library 118, 396

reference link 118

Reactive Forms 298, 301

building 301

navigation link, adding 309

ReactiveFormsModule 302

reference link 301

real-time HTTP 640, 641

RED-GREEN-REFACTOR 479

RegExr

URL 345

regression bugs 611

relationships

Cities property, adding to Country entity class 167

Country property, adding to City entity class 166, 167

defining 166

Representational State Transfer (REST) 607-609

constraints, guiding 609, 610

drawbacks 610, 611

versus GraphQL 608

required modifier

reference link 162

Response Time values 653, 656

RESTful 610

root files 66, 67

angular.json 67

package.json 67, 68

tsconfig.json 71

workspace-level files 72

root module 74

Roslyn 3

Route Guards 558, 559

AppRoutingModule, updating 561

AuthGuard, implementing 560, 561

availability in Angular 559, 560

runtime environments 665

appsettings.Production.json file(s), updating 669

environment, setting in production 669

error handling techniques 666, 667

rule(s) of thumb 668, 669

S

safe navigation operator 331

reference link 331

Safe storage of app secrets in development in ASP.NET Core

reference link 195

same-origin policy 595

SameSite cookie specification 501

Sass 129, 130

CSS code sample 130, 131

CSS history 130

need for 131, 132

SCP, using to move files to and from VM

reference link 702

Scrum

reference link 34

secrets.json file

adding 195-197

sharing, between multiple projects 197, 198

working with 198, 199

Secrets Storage 195

Secure Copy (SCP) 702

secure origin feature

implementing 573

Security-Enhanced Linux (SELinux) 717

references 717

SeedController

CreateDefaultUsers() method, implementing 529-532

CreateDefaultUsers() unit test, defining 524

implementing 206, 207

RoleManager, adding through DI 522

unit test, rerunning 532, 533

updating 522

UserManager, adding through DI 522, 523

self-contained deployment (SCD) 671, 672

advantages 672

disadvantages 672

self-signed SSL certificate

creating 694, 695, 716

SELinux-protected kernels

task for 717

semantic versioning (SemVer) 14

Separation of Concerns (SoC) 130, 384

Serilog

configuring 458-460

reference link 462

server push 640, 641

server-side paging 241

ApiResult 243-247

CitiesComponent 247-250

CitiesController 241, 242

server-side validation 333-335

ServiceWorkerModule

importing 578

Session-Based Authentication Flow 500

session cookies

disadvantages 500, 501

SignalR 641

connections 642

disadvantages 643

groups 642

Hubs 641

implementing 642

projects, testing 652, 653

protocols 641

tasks, to achieve result 643

user 642

SignalR, in Angular

health-check.component.html 651, 652

HealthCheckComponent, refactoring 650

health-check.component.ts 650, 651

HealthCheckService, implementing 647-649

installing 646

npm package, adding 646

WebSocket support, adding to Angular proxy 649, 650

SignalR, in ASP.NET Core

broadcast message, adding 644

HealthCheckHub, creating 643

middleware, setting up 644

services, setting up 644

setting up 643

signature-based authentication 503

Single-Page Application (SPA) 28, 29, 117, 499, 571

key features 30

Single Responsibility Principle (SRP) 389

sorting

adding 251

reference link 617

sorting, with MatSortModule 251

Angular app, updating 261

ApiResult, extending 251, 255

CitiesController, updating 260, 261

System.Linq.Dynamic.Core, installing 256

Source Code Management (SCM) 35

source IP address 683

SPA project

example 34, 35

SQL database 173, 174

setting up 174-177

WorldCities login, adding 185

SQL Database instance

configuring 178-182

SQL database on Azure

creating 173

SQL injection

preventing 258, 259

SQL Managed Instance 173, 174

SQL Server

download link 171

SQL Server 2022

installing 171-173

SQL Server alternatives 154

SQL Server Data Provider 153

DBMS licensing models 154

for Linux 154

SQL Server Express 171

SQL Server instance

database management tool(s), installing 173

obtaining 170, 171

SQL Server Linux installation guide

reference link 711

SQL Server Management Studio (SSMS) 172, 183, 538

download link 173

SQL Server on Linux

installation link 172

SQL Server on Windows

installation link 172

SQL Server on Windows virtual machine

reference link 174

SQL virtual machine 174

SSH 702

SSH access 573

SSL folder permissions

setting 717

Stack Overflow

reference link 60

staging 665

staging environment 668

standard testing development (STD) 470

startConnection 649

startup project

setting up 46-48

Static Server rendering (SSR) 11

static web apps

reference link 730

StyleCop 165

subclass 367

Swagger 59, 63

Swashbuckle 64

Swashbuckle.AspNetCore NuGet package 64

Swashbuckle.AspNetCore.Swagger 64

Swashbuckle.AspNetCore.SwaggerGen 64

Swashbuckle.AspNetCore.SwaggerUI 64

Swiss Army knives

downsides 388, 389

sync validators 328

systemd service

configuring 718-720

System.Linq.Dynamic.Core

benefits 257

drawbacks 257

installing 256

T

tables

restyling 135, 136

template-driven forms 297-300

advantages 298

disadvantages 298

reference link 298

template-driven validation 327, 328

reference link 328

temporal domination 12

TestBed interface 482

Test-Driven Development (TDD) 465, 478, 479, 524, 668

test run

performing 48

troubleshooting 51

third-party authentication 504

OpenID 504

OpenID Connect (OIDC) 504, 505

OpenID, working 504

third-party authorization 506

third-party providers

versus proprietary 506, 507

throttleTime

reference link 359

throttling 356, 359

Time-Based One-Time Password (TOTP) algorithm 503

reference link 503

TLS/SSL certificates 693, 694

TLS/SSL certificates in Azure App Service

reference link 663

token-based authentication 501, 502

tree-shaking

reference link 20

tsconfig.json file structure

reference link 20

Two-Factor Authentication (2FA) 503

reference link 503

TypeScript 66

TypeScript 3.7

reference link 331

TypeScript compiler (TSC) 71

TypeScript configuration

reference link 72

TypeScript modules

reference link 112

type variables 403

U

uglification 675

UI, authStatus observable

AppComponent 554

NavMenuComponent 552, 553

updating 551

UI component framework

Angular Material 125

MatToolbar, adding 127

restyling 124

Sass 129

unauthorized access prevention

reference link 560

unit testing 465

Unsubscribe RxJS Observables In Angular Applications

reference link 455

updateData 649

up-front caching strategy 585

user experience (UX) 574

user interface (UI) 456

V

validators

reference link 329

variable scoping 114

ViewModel 384

virtual machine (VM)

connecting to 703, 704

Visual Studio JavaScript debugging 437, 438

Visual Studio publish profiles 688

Visual Studio Test Explorer

used, for executing test 475, 476

W

waterfall model

reference link 34

WeatherForecastController 62, 63

Web API backend for SPAs, securing

reference link 566

web app 456

serving, avoidance with Kestrel directly 720, 721

web application project

.NET 8 SDK, installing 38

Angular CLI, installing 39

Angular project, creating 39

architecture overview 51, 52

ASP.NET Core project, creating 39

broken code 36

Node.js, installing 39

problem solving 37

SDK version, checking 39

setting up 37, 38

test run, performing 48

Web App Manifest file

adding 579-582

publishing 582

web browser 50, 51

web server 300, 301

wide area network (WAN) 100

Windows deployment 677

Windows Firewall, configuring to allow SQL Server access

reference link 711

Windows HOSTS file

reference link 661

window’s ononline/onoffline event 587

Windows Presentation Foundation (WPF) 5

Windows Server VM on MS Azure

creating 677

DNS name label, configuring 682

inbound security rules, setting 682, 683

MS Azure portal, accessing 677

Windows VM, adding 678-681

Windows VM

ASP.NET Core Windows hosting bundle, installing 686, 687

configuring 683, 684

IIS web server, adding 684-686

WinSCP

reference link 712

workspace API 67

WorldCities

testing 724, 725

troubleshooting 726

worldcities.client

Nginx, configuring for 722, 723

publishing 708

worldcities.client app 482

WorldCities database

creating 184, 185

WorldCities login

adding 185

raw SQL commands, using 185

SSMS GUI, using 185

WorldCities.Server

Nginx, configuring for 721, 722

publishing 708

testing 724, 725

troubleshooting 726

WorldCities.Server app

building 709

database connection string, checking 710, 711

Forwarded Headers Middleware, adding 710

WorldCities.Server project 149

WorldCities.Server.Tests project

creating 466, 467

dependency reference, adding 469

Microsoft.EntityFrameworkCore.InMemory 469

Moq 468, 469

WorldCities web application 142, 363

[JsonIgnore] attribute 386-388

[NotMapped] attribute 386-388

Angular app, updating 143, 144

Angular front-end updates 380-383, 391-393

AppModule 405, 406

ASP.NET Core app, updating 143

BaseFormComponent, implementing 367, 368

base-form.component.ts 373, 374

BaseService, creating 400, 401

bug fixes and improvements 371

CitiesComponent 406-408

CitiesController 390, 391

CityEditComponent 408, 409

CityEditComponent, extending 370, 371

city-edit.component.html 374-376

city-edit.component.ts 371-373

CityService, creating 403-405

CityService, implementing 405

common interface methods, adding 401, 402

CountriesComponent 414

CountriesController 377-379

CountryDTO class, creating 379, 380

CountryEditComponent 416-418

CountryEditComponent, extending 369, 370

country name, adding 390

CountryService, creating 412-414

data server, using reasons 148, 149

DTO classes 383, 384

form validation shortcuts 365, 366

lat and lon, validating 371

loadCountries and isDupeCity, implementing in CityService 410-412

minimal UI restyling 144-148

number of cities, adding 376, 377

template improvements 364

World Wide Web Consortium (W3C) 130, 395

World Wide Web (WWW) 497

X

XMLHttpRequest (XHR) 295, 394-396

xUnit.net testing tool 465

Y

Yarn 72

URL 72

Z

ZeroSSL

reference link 663

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below:

[image: Qr code Description automatically generated]
https://packt.link/free-ebook/9781805129936

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

OEBPS/Images/B19879_04_11.png
i Using package manager: npm
7 Found compatible package version: schematics-scss-migrate@2.3.17.
7 Package information loaded.

The package schematics—scss-migrate@2.2.17 will be installed and executed
Would you like to proceed? Ves

7 Packages successfully installed.

2 Which stylesheet format are you migrating from? css

? Which stylesheet format are you migrating to? scss

2 Which project do you want to migrate? healthcheck.client

RENAME
RENAME
RENAME
RENAME
RENAME
RENAME
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

src/styles.css => src/styles.scss

src/app/app. component .css => src/app/app. component . scss
src/app/fetch-data/fetch-data. component .css => src/app/fetch-data/fetch-data.component . scss
src/app/health-check/health-check. conponent .css => src/app/health-check/health-check.component . scss
src/app/hone/home . conponent .css => src/app/home/hone . conponent . scss
src/app/nav-menu/nav-menu. component .css => src/app/nav-menu/nav-menu. component . scss
angular. json (2773 bytes)

src/app/app. conponent .ts (216 bytes

src/app/fetch-data/fetch-data. conponent. ts (689 bytes)
src/app/health-check/health-check.component . ts (799 bytes:

src/app/home/home . component .ts (192 bytes)

src/app/nav-menu/nav-menu. component .ts (207 bytes)

OEBPS/Images/B19879_06_11.png
2 @ D | % Worktescient x [
& C O htpsylocahostd200/cities A b e @ B - O
A Cities
Cities
Here's a list of cities: feel free to play with it.
New York
) Name + Latitude Longitude
2 New York 406943 739249

lems perpage: | 10~ 1-10f1

OEBPS/Images/B19879_02_03.png
Configure your new project

Angular and ASP.NET Core Typescript

Solution name

web

[Featncre

Location

==

[] create in new foider

Solution will be created in “C:\Projects\HealthCheck\"

OEBPS/Images/B19879_04_03.png
& G @ httpsy//localhost:40443/api/health

Unhealthy

OEBPS/Images/B19879_06_03.png
12) WordciesClient

€ C Aw Dot e R - O

Cities

) hitps:/localhost4200/cites

Here's a list of cities: eel free to play with it

D Name Lat Lon
1 Tokyo. 35,6897 139.6922
2 Jakarta 6175 106.8275
3 Delhi 2861 77.23

4 Guangzhou 213 1326

5 Mumbai 19.0761 728775
6 Manila 145058 1200772
7 ‘Shanghai 311667 1214667
8 Séo Paulo 2355 46,6333
B Seoul 37.56 126.99
10 Mexico City 19.4333 99.1333
n Cairo 30,0444 312358
12 New York 40,6943 73.9249
13 Dhaka 237639 90.3889
u Beljing. 39.904 116.4075

15 Kolkita 22,5675 88.37 v

OEBPS/Images/B19879_10_08.png
40
41
w2’
43
4y
45
46
u7

1

// hssert

Assert.Null(city_notExistin «

@ city_existing | {WorldCities.Server.Data.Models.City} -5
& Country null
{

& Countryld 1
&id o 1 ﬂ
Flat 1

Flon 1
& Name QUi ~ “TestCity1"

OEBPS/Images/B19879_12_08.png
Lex @

D |) Hesceacions x [-
€ G O bahosn R X
I e
A FetchData Health Check QWY o Detoklews® 86
e e o s,) :
WARNING:the s curenty ffinesomefstrss tha el pon th backerd might o wrk. @ e s eilKtstas: s S22 © O
25 expected. This message vl auomatialy disappear a 5501 2 th ntenet comecion 8 ey Tiotor)
becomes svaableagan O e o o 2 ©
SN et S S :
) © 41680 e ol s i et b ENTERDE 23 © O
Greetings, stranger! ety T
o vumnn ez @
Thi s wht gt fo messing up it ASPNET and Angolar. Sfp s s s, T Gty Tl o/
© e s oolbrt i o WS © 0
o omn a

stz s
P Cibcrecsocsyopiammsartossc b Fatse, -} .

OEBPS/Images/B19879_02_11.png
Web Browser

|

https://localhost:4200

. : [. =]
ps://localhost:40443

S ————

=]

Angular Live ASP.NET Core Server
Development Server (Kestrel or lISExpress)

OEBPS/Images/B19879_08_03.png
1Y WorldcitiesClent

& C O hips/focalhost4200/countries @ AW Dot e B - O

A Cities Countries

Countries

Here's alist of countries: feel free to play with it.

New Japan
D Name 1502 1503
242 New Japan N NP 1

Items per page: | 10 1-10f1 Ko<

OEBPS/Images/B19879_15_34.png
HealthcheckClient

« C @ https//delightful-coast-0dc5c6003 4.azurestaticapp... 5 A v M = @ R

A Fetch Data Health Check

Greetings, stranger!

This is what you get for messing up with ASPNET and Angular.

) (D lemens Console Soures Perormance Nework Application X Securiy > + g3 &£ @ 1 X

X a
Service workers
O offine O Update on reload () Bypass for network
hitps://delightful-coast-Odc5c6003.4.azurestaticapps.net/ MNetwork requests Update ~ Unregister
Storage
> B Localstorage Source. nosweorkerjs
» [Session storage. Received 12/10/2023, 12:35:06 AM
B indexedos
B websat Status @ #169 activated and is running stop
» @ cookies v
« C— > Clients _hitps://delightful-coast-0dc5c6003 4 azurestaticapps.net/ focus v

OEBPS/Images/B19879_05_21.png
s; Microsoft SQL Server Management Studio
File Edit View Tools Window Help

~O|B-a-UE P By BRIQRD| X T |

| | b Execute | |

Connect~ ¥ ¥ ¢ »

=] En worldcities-db-2023.database.windows.net (SQL Server 12.0.2000.8 - WorldCitiesAdmin)
= 17 Databases
1 System Databases
]
1 Integration Services Catalogs

OEBPS/Images/Marcotte.jpg
Architecting
ASP.NET Core
Applications

Ao dusign poern gt NETS.
e

OEBPS/Images/B19879_07_13.png
_

€ C O nups/flocalhost4200/city

Nome®
New Tokyo

Create a new City

ERROR: A city with the same name,lt, lon and country already exists

»

oMo @ R

- @

Lottuderr
35.685

Longitude:
129.7514

Selecta Country..+
Japan

Creste Cancel

OEBPS/Images/B19879_09_13.png
R o ——

€ G 6 nesmhoumes
Moy piion sy

Countries
R pchrrmt

Here o counries: e e o loy it

Sty + i ity
S e

Fiter by nme (o prtof) oo et

© o Nemet 1502 1503 ot s 5 [
© S i
5 A " #6 ® RS .. e e e e
> Dowrnes b T e e e e
W s ~ x5 » g — H ket S ———
[aarer 4 OIS —
- 5w
R, o oo w 3 e A

OEBPS/Images/B19879_15_18.png
ﬂ PuTTY Configuration

Category.

(=) Session
Logging
(=) Teminal
Keyboard
Bell
Features
=+ Window
Appearance
Behaviour
- Translation
Selection
Colours
(=)~ Connection
- Data
Proxy
Telnet
Rlogin
SSH
Serial

Basic options for your PuTTY session

Specify the destination you want to connect to

About Help

Host Name (or IP address)

| Port
22

O Raw

Saved Sessions

O IemeNH

Load, save or delete a stored session \/|\] pub"c

O Serial

Default Settings

Load
Save

Delete

Close window on exit:
OAways (O Never

©Only on clean exit

Cancel

IP address

OEBPS/Images/B19879_01_01.png
.NET Schedule

Ty

July 2019 Sept 2019 Nov 2019 Nov 2020 Nov 2021 Nov 2022 Nov 2023
NETCore30 -NETCore3.0 .NET Core3.1 NET 5.0 NET6.0 NET7.0 NET 80
RC GA LTS GA LTS GA LTS

« .NET Core 3.0 release in September

« .NET Core 3.1 = Long Term Support (LTS)

« .NET 5.0 release in November 2020

« Major releases every year, LTS for even numbered releases
« Predictable schedule, minor releases if needed

OEBPS/Images/B19879_03_01.png
<« C

PPN

& @ D | Healicheck

() httpsy//localhost:40443/weatherforecast

“date”: "2023-11-28",
“temperatureC”: 1
Izemperaturer”; 55,
“Summary": "Scorching’

“date”: "2023-11-29",
“temperatureC”: -20,
Izemperaturet”: 3,
“Summary”: "Freezing"

D locahostavssmenthertorecst x

n

+ B O L~ Q

OEBPS/Images/B19879_11_06.png
= @ WorldCities

17 Database Diagrams

& 1 Tables

[1 System Tables

@ 1 FileTables

[¥ External Tables
1 Graph Tables
[dbo._EFMigrationsHistory
B8 dbo AspNetRoleClaims
EH dbo.AspNetRoles
) B8 dbo.AspNetUserClaims
EH dbo.AspNetUserLogins
ER dbo.AspNetUserRoles
BR dbo.AspNetUsers
R dbo.AspNetUserTokens
B dbo.Cities
R dbo.Countries
[dbo.LogEvents

®

=

BEEEEE®

)

@

®

OEBPS/Images/B19879_15_22.png
D CAWINDOWS\system32\emd. X+

drag-events.njs
drag-parent.njs
drag-ref.mjs
drag-utils.mjs
drop-list-ref.mjs

index.njs

public-api.mjs
drop-list-sort-strategy.njs
single-axis-sort-strategy.njs
index.njs

index.njs

keycodes.njs
leycodes_public_index.mjs
nodifiers.mjs
public-api.mjs
breakpoints-observer.njs

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

6327 195.
1768 57.
185K8 1.
7409 226.
83KB 1.
854 28.
2845 91
2775 89.
53KB 939.
838 27.
854 25.
15KB 42,
515 16.
2033 65.
961 31.
16KB 420.

8KB/s
6KB/s
8MB/s
1KB/s
2MB/s
OKB/s

.1KB/s

LKB/s
8KB/s
2KB/s
5KB/s
5KB/s
8KB/5
OKB/s
3KB/s
THB/s

OEBPS/Images/B19879_05_13.png
- o x

L D 52 Create Your Azure Free Account X |+
& G O nhtpss/anremicrosoftcomen-us/iree/sq-database/ P 5 - O
BE Azure Oplore. Products. Soltions. Pring . Porner - Bssources sowch O | toam suppon Comctsales ggmi

Create a managed cloud database
with your Azure free account

Get started with 12 months of free services

OEBPS/Images/B19879_07_01.png
1 Worciiescent

€ G O htps//localhost4200/cities A v m @ B - O
4 QG Wekome femens comce >+ ps £ B P X

€G3V C4aTTEERTIRRG o Tasia-Tocus-overasy Ng-Tns-CES |

A Cities Countries

Cities
inputémat-input-0.mat-mdc-inpu
telementng-tns-c1798928316-0. 44457 <24 lay with t.
mat mdc-form-field-inpu...

1o Name % Latitude Longitude - <input _ngcontent-ng-cé67437771 matinput placeholder="Fi
Xter by name (or part of it)..." classs"st-nde-input-el

et ng-tne-c17SE528316-0 m-ndc-fora- Fiald-nput-cont
9105 919207 940476 o e rers-rieto_impus cosers-tisierssotiinmonio y
< inputématinput Omat mdec.np 798328316 Ot e o ld >
25 R0 €0 68 Syles Computed Layout EventLsteners DOM Breskpaints Properties 3>
iter v s 4 B o@ 4
8215 Affin 36,5083 368692]
v
)
19072 ‘Ajabshir 374831 4589 nde-text-Fiald--no-labelinot(nde-taxt-Field--textaras) mstonde- Cstyle>

Fora-Flald-input-control mde-Sext-Fleld_input, mst-ndé-Sext-
Felduurapper mat-nde-forn-fisld- input-zortrol

A 900517 Nt
0t -nde-ora- Flaldinot(.mat-fora-leld-ro-aninstions) ede-text- <styier
et ¢
1586 Aman 25413 55,4456 Cransition: b opacity 156ms ons Wesbic-berier(a.d, §, 0.2, 13
)
nde-texe-Field--Liedinox(mde-toxt-Feld-disabled) mde-terts styier
15582 ‘Akko 320278 350817 Field_input {

color: W
b}
N34 ‘Alavicheh 22 n8oR 510808 ¥ ndc-text-field--

e Fil1ed-text-Field-fnput-text-colon);

i

411ed:n0t(.mdc-text-Field--disabled) .mdc-text- cstvier ¥

OEBPS/Images/B19879_15_06.png
& Remote Desktop Connection =

&/ Remote Desktop
»¢9 Connection

Computer: lhealﬂ1d1eck2023.westeurope.doudapp.azure.c v

Username: None specified

You will be asked for credentials when you connect.

=/ Show Options Connect Help

OEBPS/Images/B19879_05_28.png
Bowse Insulled Updes

e o[SYm[ow—

NuGet Package Manager: WorldCities Server

ke e [moeion | @

EPPIus © s s . B o

]

EPPIus.Core b o i o v
P Core s n il poet e (P ey o NET Gt
T packsgevrsion s deprecatd.

EPPlusinterfaces © by 7is tocs 899 dovriod
g Oecpton

EPPlusSystem.Drawing © oy iyt rving, 803 o
Facageoescipion

EPPlus Core.Extensions s yin FEADIN, 708K doric.
A xensions oy for£s pactge o g3 manpte el e sy

A

BEeruse B ey
Vo833 e[e

A Deprcaed

s kg een deratd s gy and o oger manined

 optons

oescipton
authorts_an ks

OEBPS/Images/B19879_09_01.png
= 11 GT: apl/citias/s 5 11 GET: api/cities/s
H [H sty

o e e e v 0 [5 b o s 10
H : H

5 | [T —— : P ——
el ¢ ety = > el ¢ ety =

< i s i

Feturn NotfoundQ); Feturn NotFound();

@ insert Tacepoint
© st TemporayBreskpoi.
© insert Dependent Brekpoint
BbLAC async TaskeTActionResult> PUECiEyCint 1d, City

ies/s
overposting attacks, see

ity 1d)

OEBPS/Images/B19879_05_01.png
D

73\ WorldcitiesClient x (5

& https//localhost:4200 @A &Y m ¢

Greetings, stranger!

This is what you get for messing up with ASP.NET and Angular.

OEBPS/Images/B19879_12_01.png
HC

OEBPS/Images/B19879_14_01.png
Angular is running in development mode.

[292312-67763:16:38.3762] Information: Normalizing */api/health-hub’ to "https://localhost:4200/ani /healthehu'

corin s rm—————
(oo s 1) et e s e e e e

[29023-12-07703:16:38..9652] Information: sTng TowPrateesl TTeom
nesisl

Connsetion started. neck.service. 52131

OEBPS/Images/B19879_10_01.png
4

B3 Chapter_10
b+ worldcities.client
> + &1 WorldCities.Server

4 + T WorldCities Server.Tests

> &8 Dependencies
+C# GlobalUsings.cs
b+ C# ynitTest1.cs

OEBPS/Images/B19879_03_08.png
@ @ | 72 HealthCheck x |
C

o
e
& (& https://localhost:1200 Ay m = B

Home | Fetch Data

Greetings, stranger!

This is what you get for messing up with ASPNET and Angular.

OEBPS/Images/B19879_11_03.png
Discovering tests: Found 3 tests

8-

-

Test
> D healthcheck.client (2)
> ® worldcities.client (3)
4 @ WorldCities.Server Tests (3)
4 @ WorldCities.Server.Tests (3)
4 @ citiesController_Tests (2)
© Getcity
@ Getcity
4 @ seedController_Tests (1)
Q® CreateDefaultUsers

Duration Traits

11,3 min
11,3 min
11,3 min
11,3 min
350 ms.
100 ms
100 ms

Group Summary
WorldCities.Server.Tests
Tests in group: 3
(© Total Duration: 11,3 min
Outcomes

@ 2Passed
@ 1Failed

OEBPS/Images/B19879_05_16.png
Hame > Create a resource > Marketplace > Azure SQL >

Select SQL deployment op

7 pesdbock

How do you plan to use the service?

(O Lowr, i pricinfor L Ontabse Hyprcl st o 15hof Db 202 ekt

[By [y soumerer o G ot viwstmacines
Bt o modern o sppcatons Hypercle sod st o st igrnions ot e L st or it and aicatonsreqig 05
S apions e e, P et accss, - i e
Resoura e Resoua e ima ©
S dabase < Snge e <

[~ —— [~ J—

Grue | showdot (] Wgh by

OEBPS/Images/B19879_13_02.png
1 Banana Cake Pop x
G O hipsilocalnostaoss3api/graphall 0B A Y DR R - O

© B D

@
&

 Onine ®000 A0 = 0

OEBPS/Images/B19879_05_33.png
[localhost40443/api/Countries/ X

R R)

OEBPS/Images/B19879_10_04.png
0Q Fie Edit
©-o@

View | Git Project Build Debug Test Analyze Tools Extensions
R Solution Explorer Ctri+W, S » sort - D
Git Changes Ctrl+0, Ctrl+G
Git Repository Ctrl+0, Ctrl+R
Team Explorer Ctri+\, Ctrl+M

Server Explorer Ctrl+W, L
SQL Server Object Explorer Ctrl+\, Ctrl+S
Test Explorer Ctrl+E, T
GitHub Copilot chat Ctrl+W, |

Call Hierarchy Ctrl+W, K
Class View Ctrl+W, C

OEBPS/Images/B19879_06_07.png
7,
73 e

it s,
8 “country”: null
82 }

82 [Tpagerndex: o,
pagesize”: 10,

86 TotelCount: dacen,
87 | rtotalea 4470,

88 hasvrev:wsvlse false,
85 sNextPage”: tri

OEBPS/Images/B19879_05_24.png
Blo-s08 || »£=
[Search Solution Explorer (Ctri+é) A
[R solution 'All_Chapters' (8 of 8 projects)

> B3 Chapter_02

> B Chapter_02
3
4

B3 Chapter_04
[E3 Chapter_05
> worldcities.client

Build
Rebuild

Clean

View >
Analyze and Code Cleanup »
Pack.

& Ppublish...

Upgrade
C# Progral
P C# Weath

& World

*? Configure Application Insights...
Overview
B Collapse All Descendants Ctrl+Left Arrow
Scope to This
3 New Solution Explorer View
Eile Nesli »
@ Edit Project File

Buld Dependencies »

OEBPS/Images/B19879_02_07.png
Trust ASP.NET Core SSL Certificate X

This project is configured to use SSL. To avoid SSL warnings in the browser you
can choose to trust the self-signed certificate that ASP.NET Core has generated.

Would you like to trust the ASP.NET Core SSL certificate?

(7] Don't ask me again

Yes No

OEBPS/Images/B19879_09_16.png
Form Activity Log

[12/1/2023, 8:47:04 AM] Name has been loaded with initial values.
[12/1/2023, 8:47:04 AM] Form Model has been loaded.
[12/1/2023, 8:47:13 AM] Name was updated by the user.
[12/1/2023, 8:47:13 AM] Form was updated by the user.
[12/1/2023, 8:47:16 AM] Name was updated by the user.
[12/1/2023, 8:47:16 AM] Form was updated by the user.

OEBPS/Images/B19879_07_17.png
Work

& G O hipss/localhost4200/country FANRA SN (i I S)

Countries

Create a new Country

Name:+
New Japan

150 3166-1 ALPHA2 Country code (2 letters) *
JP

“This code aready exists: please choose another.

150 3166-1 ALPHA3 Country code (3 ltters) *
NJ2

150 3166-1 ALPHA3 Country code requires 3 letters.

OEBPS/Images/B19879_15_03.png
Create a virtual machine

Basics Disks Networking

Management ~ Monitoring ~ Advanced Tags Review + create

Create a virtual machine that runs Linux or Windows. Select an image from Azure marketplace or use your own customized
image. Complete the Basics tab then Review + create to provision a virtual machine with default parameters or review each tab

for full customization. Learn more &

Project details

Select the subscription to manage deployed resources and costs. Use resource groups

your resources.
Subscription * @

" Resource group* @

Instance details

Virtual machine name * @
Region* ©
Aualabity options @

Security type ©

Image * ©

VM architecture ©

Run with Azure Spot discount ©

Size* @

Enable Hibernation (preview) ©

Administrator account

Username * ©
password * ©

Confirm password * @

e folders to organize and manage all

[icrosoft MvP v]
[[packtpub M
Create new

[[NET-Angular-Windows V]
[(€urope) West Europe v
[E—— <)

[[Trusted launch virtual machines M
Configure security features

[I8 Windows Server 2022 Datacenter: Azure Edition - x64 Gen? M
See allimages | Configure VM generation

O ames

© x64

@ Ams4 is not supported with the selected image.

(]

'Standard_81ms - 1 vepu, 2 GiB memory (18,93 €/month) ~
See all sizes

O

@ Toenable Hibemation, you must register your subscription. Learn more ¢

OEBPS/Images/B19879_07_08.png
< G O httpsy//localhost4200/city Ay m = @ R

Create a new City

Name:*

Latitude:*

Longitude:*

O cancel

OEBPS/Images/B19879_10_12.png
WK Karma x o+ hd - (=) X

> C @ localhost:9876/7id=89188270 2 % 0O &

‘ Chrome is being controlled by automated test software. X

Chrome 119.0.0.0 (Windows 10) is idle

@vasmine 450

Tures, randomized with seed 91965

citiescomponent
+ should display a "Cities" title
« should create
+ should contain a table with a 1ist of one or more cities

OEBPS/Images/B19879_15_29.png
[y HealthCheck-2023 = x

web Ao

 Search © I Viewsppinbrouser [Delete B Mansge dplayment oken 77 Senus your feedback
B oweven ko 1 uing Azt i A e hve ey ot Yot e e, I e check he s o your 1 Acon s

5 s contrl (A1) —

@ oo Resource oroup (nove) PackePu
& Disgnose and sove provems Subscription (nove) : Microsoft M.
Setings Subscripion D He26382-3008-4028-0386-C3087724430
. Locaton Global
11! Contiguraion
™ e
9 Appiaton nsghts
Toge iy ndatoge

=2 Custom domains

OEBPS/Images/info.png

OEBPS/Images/B19879_05_05.png
& D | B WordCities Database | Simplem X | + -

& G O hitpsy/simplemaps.com/data/worid-cities QA @Y O ¢t @ B

Uscies Z Cantes Nagwancos VoraCus i

World Cities Database

We'e proud to offer a simple, accurate and up-o-date database of the world's
cities and towns. We've built it from the ground up using authoritative sources

uch s the NGIA, US Geological Survey, US Gorsus Bureau, and NASA caiigis ZUSGS

Our database is:

& Up-to-date: Itwas lastrefreshed on March 31, 2023,

& Comprehensive: Over 4 milion unique ciles and towns from every country n the world.

& Aceurate: Cleaned and aggregated from offcial sources. Includes laitude and longtude coordinates.
& Simple: A single GSV fil, concise fiekd names, only one entry per Gity.

Databases Basic Pro Comprehensive
Commercial use Allowed Allowed Alowed
File format CSV, Excel CSV, SQL (too large for Excel) CSV or SQL (too large for Excel)
Type of cities Prominent cites (large, capitals Most cities and towns Al populated places.
etc)
Number of entries About 43 thousand About 1.9 million About 4.4 millon
Future updates Not guaranteed Included for 12 months. Included for 24 months.
Data last updated 2023 2023 2023
Attribution Required Not required Not required
License Creative Commons Atiibution Permissive, no redistribution Permissive, no redistribution
40
Refund policy NA 30.day guarantee 30-day guarantee
One-time fee Free 199

Download

OEBPS/Images/B19879_12_05.png

OEBPS/Images/B19879_09_05.png
65
Qe R GIE] - 1100100 e

Location iiesControllecs,ine 6, Characer 13, Must match source
[¥] Condiitions.
Conditons Epression + s rue -
Add condion

(7] Actions.
‘Show a message in the Output Window: Hey, we're currently editing Moscow from our Angular app! X Saved

] contnue code execution
] Disable breskpoint once it
] Only enable when th fllowing breskpoin i it

[100% 8.9 © Noissuesfound <«) e chia sC cRiF

B e — T T

Hey, we're currently editing Hoscow from our Angular app! -

OEBPS/Images/B19879_15_31.png
S

€\Projects\ASP. HET-Core-8-and-Angular\Chapter_15\HealthCheck\heaT theheck. client>swa deploy dist/heatheheck.client fbrowser ——eny production
Welcame to Azure Static Web Apps CLI (1.1.6)

Deploying Front-end Files from folder:
€:\Projacts\ASP NET-Core--and-Angular\Chapter_15\HealehCheck\healtheheck. cliant\dise\healthchack cliant\browser

Consider providing api-language and version using —-api-language and —spi-version Flags,
otherwise default values apilanguage: node and apiVersion: 16 will apply
Checking Azure session

< Successfully Togged into Azure!

Checking project
Fhoose Jour Static b App » Pacheput Hentahchack
+ Successfully setup project

Deploying to enviroment: production

Deploying project to Azure Static leb Apps. .
|'Status? Tnproaress. Tine: 0,075481(s)

OEBPS/Images/B19879_07_10.png
@ DO 2 WorldctiesClient x B

& G @ nttpsy/localhost4200/cities A

A Cities Countries

Cities

Here's a list of cties: feel free to play with it

Add a new City

New Tokyo
o Name Latitude Longitude
44603 New Tokyo 35685 1207514

tems perpage: | 10~ 1-t0f1

OEBPS/Images/B19879_15_14.png
S

Connoctions

Q-id |18
W stenpoge
95 NETE Anguiar-Wi (NETS-Anguiar-Wi
2 Application Pools
> 5 stes

Create SelfSigned Certfcate

Specify Friendly Name.

‘Specity a fil name for the certicate request. Ths inormation can be sent o a certiicate authoriy for
signing

Specity a rendly name for the certtcate:

[reathereciia

Select a certfcate store fo the new certfcate:

Personal V]

Cancel

OEBPS/Images/B19879_08_02.png
‘WorldctiesClient

& C O hitps//localhost4200/countries @ A % 0 = @ R L]

A Cities Countries

Countries

Here's a list of countries: feel free to play with it.

Filter by name (or part of t)..

XY Name 1502 1503 Tot. Cities
1 Japan P PN 1254
‘ 2 Indonesia [0} 1N 264

3 India N IND. 5933

OEBPS/Images/B19879_05_02.png

OEBPS/Images/B19879_15_15.png
g internet nformarion senvices (15) Manager
2 NETeAnguiarWi » Appiication Pools

Fle View Help

e

e-Hiaie

@ statrage
v 63 NETB-Angular-Wi (NET8-Angular-WiMyAdrin)
23 Applcation Pools
> 8l sites

‘ﬂ Application Pools

“Ths page lets you view and manage the st of application pools on theserver. Applicaion pools are asociated

with worker processes, ontain one or

e
Name
D0etautapproct

hestcheckclient
[——

-y

Status
Staried
Started
Started

applcations.

Edit Application Pool X

NET CLR vrsion:

NoManaged Code. El
Managed pipeline mode:

Integrated 7]

[start application pool immediately

Cancel

Content View

OEBPS/Images/B19879_04_04.png
[localhost40443/api/health

& CG O hitps//localhost40443/api/health A Mo BB
ol

+ 80 28

esponseTine™: 79.2047,
18 status”: "Unhealthy",

13 “description”: null

20 } -

“totalstatus”: o, (a)
“totalResponseTine": 88.8776

OEBPS/Images/B19879_07_12.png
€ G O nupssocalhost4200/cites Al Do @ R

Cities.

Herds als of cites:feel fee o play with L.

» Name & Latude Longiude
@ pais ans7 20822
2092 pais 6688 9554
a7 pais 253 03065
anse pais 206 sazme
a2 pats 96148 7603

e[~

OEBPS/Images/B19879_15_25.png
€« C

@ e

Appication
(3 Manifest

welcome

stoage
> & Lo stonge
>) Sesion sonoge
5 tndoedon
B websa
» (& Cookies

— >

D D oo x|+

@ https://worldcities-2023.ryadel.com

WorldCities

A sample web application to demonstrate how 1o interact with ASPNET, Angular. Entity Framework Core and a SOL Database.

Eements Console Sources Performance Network _Applcation X _ Security
Service workers
I O oftine 0 Updateon reiosd 0] Bypas for network
hitps/fworidltes2023.ryadelcom
Source ngswvorkeris
Recaived 12/972023, 42957 AM
Sttus @ #168 ctvated and s umning stop

Clnts htpsworideiies 2023 yaceicom/ focs

t oo & B 1 X

-

Ughthouse 5 Overview &

Networkrequests Update Unregister I

OEBPS/Images/B19879_05_12.png
% SQL Server Istallation Center

Planning
Installation
Maintenance
Tools

Resources

Options.

Microsoft SQL Server 2022

- =] R

% New SQU Server standalone installation or add features to an existing installation

Launch a wizard to install SQL Server 2022 in a non-clustered environment or to add
features to an existing SQL Server 2022 instance.

Install SQL Server Reporting Services

Launch a download page that provides a ink to install SQL Server Reporting Services. An
internet connection is required to install SSRS.

Install SQL Server Management Tools
Launch a download page that provides a link to install SQL Server Management Studio,
SQL Server command-line utilities (SQLCMD and BCP), SQL Server PowerShell provider,
SQL Server Profiler and Database Tuning Advisor. An interet connection is required to
install these tools.

iz Install SQL Server Data Tools

Launch a download page that provides a link to install SQL Server Data Tools (SSDT). SSDT
provides Visual Studio integration including project system support for Microsoft Azure
SQL Database, the SQL Server Database Engine, Reporting Services, Analysis Services and
Integration Services. An internet connection s required to install SSDT.

ﬁ Upgrade from a previous version of SQL Server
Launch a wizard to upgrade a previous version of SQL Server to SQL Server 2022.

Click here to first view Upgrade Documentation

OEBPS/Images/B19879_06_04.png
< C

1) WordctiesClient

@ https//localhost4200/cities

Tokyo,

Jakarta

Delhi

‘Guangzhou

Mumbai

Manila

‘Shanghai

3o Paulo

Cities

Here's a list o cities: el free to play with it

s

v om e] O

Latitude

35,6897

6175

2861

2313

19.0761

14,5958

311667

2355

.

Longitude

1396922

106.8275

7728

11326

728775

1209772

121.4667

466333

OEBPS/Images/B19879_11_07.png
[localhost40443/api/seed/Create X

& G O nhitpsy/localhost40443/api/Seed/CreateDefaultUsers A Dot @ B /)
1
2 e o, @
2"
H
H
H
H
B con”,
H ADMENGENATL.CON",
1 true,
A AQMAATAAY ag MAAENprRo1 achX\V/BSQAS REVXMAYATKYSLSFCCohR pneGL/438uln/HCFL/FeliA=
12 "43ILLKCX6F2225RNOBN34UMYLUYQHSWB" ,
1 S Fhcas-06e7-dach-bb7a- aceatesoacs”,
i o,
15 ":heneuumerwfimd false,
i B eactortnabied-1 false,
v “TockoutEnas noil,
1 TockoutEnabied:
15 “accessFailedcoun
2 »
1
% S0 “eeS6lba1-dap1-4001-2042-0fbTBREED4E",
23 useriane” ; “userdenail.con”,
g: norml'xedllserl{me B U.S :R@EMAIL . COM",
% SERetuaTL con
z
4 oAVl TS ARSI S L0
29 ZVSRVDEJHOFH!CPSIMPDW
5 PRI s b
3 Shonehumber= nu
32 omeNombarcantimmade: false,
33 ‘tNoF-(torEnlb]ed‘. false,
1 Tockoutend': nell,
35 lo:kmltinﬂb]&' false,
36 “accessFailedCount”: @
H)
3

OEBPS/Images/9781805129936.png
EXPERT INSIGHT

ASP.NET Core 8
and Angular

Full-stack web development with ASP.NET

- Z
Y Z~,
a7z

7%
z 7z /
Core 8 and Angular Y
Y AL
S 774

77T
T I
e AL TS
22277 FAA T
L7
77

277752
Z7
Y,

'o
)
o‘:
!

il

lm

0"0“0
[/
"

<>
RS
A i
--’#\
e —
e A S

";2;;;/;;;;;7/‘////////
",// / /
=

f

7

7
i
i
i
IV
i
'0. .'0"

f
0
[
/|
i
\

\

{/
‘:o
i
:

7
7/

/ /'}?"
i
NM'O
liHe
i
i

i i
it
.
N

;4
7
i
/

/2
]

Sixth Edition

Valerio De Sanctis packd

OEBPS/Images/B19879_07_04.png
Master

Name

Rome
Paris
Berlin
Oslo
Helsinki
Madrid

Prague

Lat Lon
10 10
20 20
15 18
12 16
12 16
2 16
12 16

Detail

—~ Edit City

Name

Lat
Ea—
Lon
E—

(\'\E

/ A
Save & Refurn /

Cancel & Return

OEBPS/Images/B19879_15_33.png
Publish

Where are you publishing today?

Target

A

Azure
Host your application to the Microsoft cloud

Docker Container Registry
Publish your application to any supported Container Registry that works with Docker images

Folder
Publish your application to a local folder o file share

FTP/FTPS Server
Publish your application to an FTP/FTPS server

Web Server (Ils)
Publish your application to IIS using Web Deploy or Web Deploy Package

Import Profile
Import your publish settings o deploy your app

| [ver [] [corce

OEBPS/Images/cover.png
EXPERT INSIGHT

ASP.NET Core 8
and Angular

Full-stack web development with ASP.NET W=
Core 8 and Angular -

v/
22777 74 777
= 77 22y 7,
S TS I AA
AT
L L A o
#

A e e 727
= 27 TS LTSI S 5%
LT
v
)
i

=
=

Sixth Edition

Valerio De Sanctis

OEBPS/Images/New_Packt_Logo1.png
<packn

OEBPS/Images/B19879_05_30.png
[localhost40443/api/Seed/Import X

& C O nhitpsy/localhostd0443/api/Seed/import A 1y

{
“cities": 44691,
“countries”: 248

¥

OEBPS/Images/B19879_15_05.png
= meoetawe) |

&3 NET8-Angular-Windows # #

o < ey b v T e D) vee © e 1 openmmooie 2 recomer B /1>
L 2
pr—
& navayiog
L s g () - ik T e—————
o ol 00 s g soe S i 14,260 mereey

@1
P —

comnet

comact

OEBPS/Images/B19879_15_21.png
5] CAWINDOWS\system32\cmd. X SRR = =]

C:\Projects\ASP.NET-Core-8-and-Angular\Chapter_15\WorldCities\worldcities.client>scp
-r dist/WorldCities/browser/ * Myadmin@u.180.5.183:/var/www/worldcities.client

The authenticity of host '4.180.5.183 (4.180.5.183)' can't be established.

ED25519 key fingerprint is SHA256:qsIGDuTp2fL9sXHLZH85GNCIMrOtCnfLBEZK6Z+tFhA.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])?

OEBPS/Images/B19879_07_09.png
€ C O httpsy/flocalhost4200/city A om e g - O
f o Countries
Create a new City
Name:*
Latitude:*
Longitude:*
Select a Country... =

OEBPS/Images/B19879_09_09.png
Options

Search Options (Ctrl+E)

b Source Control

b Work ltems

» Text Editor

4 Debugging
General
NET/ G+ Hot Reload
Co+ Expression Evaluator
Just-in-Time

Symbols
XAML Hot Reload

© inteliTrace:

b Performance Tools

b INET Core Debugging vith WL

b Azure Senice Authenication

 Container Tools

b Cross Platform

» Database Tools

b F# Tools

© Github

> inelicode

 Live Share

 Live Unit Testing

© NuGet Package Manager

£ [General Output Settings
Al debug output
Exception Meszoges
Module Load Messages
Module Symbol Search Messages
Module Unload Messages
Natvis diagnostic messages (C++ onb)
Process Ext Messages
Step Fitering Messages
Thread Exit Messages
' WPF Trace Settings
Animation
Data Binding
Dependency Properties
Documents
Freezsble
HWND hosting
Merkup
Name Scope
Resource Dictionaries
Routed Events

All debug output

application.

£]

22888888

Determines whether debug output i wiitten to the output window. Turning

i off affects alltracing from the

OEBPS/Images/B19879_09_14.png
72 Worldctiesclient

Name:*

Tokyo

&« G O nttpsy/localhost4200/city/1

Aw Do e R @

Edit - Tokyo

Latitude:+
35.6897

Longitude:+
139.6922

Selecta County..+
Japan

Form Debug Info

Form Value:
{“name" Tokyo', "t 35,6897, lon' 139.6922, ‘countryld: 1}

Form Status:
Va0

OEBPS/Images/B19879_12_09.png
Application

Storage.

Storage

» @B Local storage

» BB Session storage
B Indexedds
B websat

» & Cookies
B private state tokens
5 Interest groups

» 3 Shared storage

» B Cache storage

Service workers.

O offline) Update on reload () Bypass for network

http://localhost:8080/

Source

‘ngsw-worketjs
Received 12/3/2023, 103223 PM

Status

push

sync

Periodic Sync

® #160 activated and

running stop
Test push message from Devools.
test-tag-From-devtools

test-tag-fron-devtools

Push
Sync

Periodic Sync

OEBPS/Images/B19879_04_10.png
- Static content - Dynamic content

- Verbose - Concise
- Enforces code repetitions - Enforces code reuse
- No variables - Can define variables

- No loops/cycles - Allows loops/cycles

OEBPS/Images/B19879_10_09.png
2.,

WRITE (ONLY) THE CODE
TO MAKE THEM PASS

1 TDD

TRANSFORM
CEW) 2
REQUREMENTS d
NTO TEST CASES IMPROVE THE
(EXISTNG) CODE
WITHOUT CHANGING

(TS BEHAVIOUR

OEBPS/Images/B19879_15_19.png
#P MyAdmin@NET8-Angular-Linux: ~

Expanded Security Maintenance for Applications is not enabled.

3 updates can be applied immediately.
[To see these additional updates run: apt list —upgradable

Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

[The list of available updates is more than a week old.
To check for new updates run: sudo apt update

Last login: Sat Dec 9 01:36:28 2023 from 84.221.178.82
MyAdmin@NET8-Angular-Linux $I

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/B19879_03_02.png
Browse Installed Updates

[search i+ B[] © [include prerelease [] show only vuinerable

(~) Top-level packages (1)

g Swashbuckle.AspNetCore by swashbuckle AspNetCore 640
Swagger tools for documenting APIs built on ASP.NET Core 650

OEBPS/Images/B19879_02_06.png
Solution "All_Chapters' Property Pages

Configuration: N/A

4 Common Properties.
Startup Project
Project Dependencies
Code Analysis Settings
Debug Source Files

b Configuration Properties.

Platform:

O Current selection
O single startup project
HealthCheck Server

O Multiple startup projects:

N/A

Configuration Manager.

Project
HealthCheck Server
healthcheck.client

Action

oK Annulla

Applica

OEBPS/Images/B19879_05_27.png
= @ WorldCities
[1 Database Diagrams
= ¥ Tables

@ 1 System Tables

1 FileTables

11 External Tables

¥ Graph Tables

ER dbo._EFMigrationsHistory

= dbo.cities

BEE®

8

M

es
1 Columns
Id (PK, int, not null)
Name (nvarchar(450), not null)
Lat (decimal(74), not null)
Lon (decimal(7,4), not null)
Countryld (FK, int, not null)
= 1 Keys

w0 PK Cities

©= FK Cities_Countries_Countryld

§ mmom 3

OEBPS/Images/B19879_15_10.png
ASP.NET Core Runtime 8.0.1

The ASP.NET Core Runtime enables you to run existing web/server applications. On
Windows, we recommend installing the Hosting Bundle, which includes the .NET
Runtime and IIS support.

11S runtime support (ASP.NET Core Module v2)

18.0.23334.1

os Installers Binaries

Linux Package manager instructions Arm32 | Arm32 Alpine | Armé4 |
Arm64 Alpine | x64 | x64 Alpine

macos Armé4 | x64

Windows | Hosting Bundle | x64 | x86 | Arm64 | x64 | x86

Wingetmstructions

OEBPS/Images/B19879_06_10.png
Filter by name (or part of it)...

Cities

Here's a lst of cities: feel free to play with it.

9105

24654

18215

19072

223

1586

15582

30364

32914

23821

Name

“Abasan al Kabirah

‘adra

“Aiin

i

‘Ajmn

‘Akko

“Alavicheh

“Alem T'éna

Al Shahr

Latitude
313237
336
365083
37.4831
323325
25.4136
329278
33.0528
83

289306

Items perpage: | 10 1-100f 44691

Longitude

34.3476

36515

36.8692

4589

357517

55.4156.

350817

510825

3895

51.0689

OEBPS/Images/B19879_09_15.png
Form Activity Log

[12/1/2023, 8:34:13 AM] Form Model has been loaded.
[12/1/2023, 8:34:16 AM] Form was updated by the user.
[12/1/2023, 8:34:17 AM] Form was updated by the user.

OEBPS/Images/B19879_07_16.png
W_

& G O htpsi/localhost4200/country/99 A D e 8 - O

A Cities Countries

Edit - Denmark

Name:+
Japan

Nam alrcady exists: plcasc chaose another.

150 3166-1 ALPHA2 Country Gode (2 letters) *
m

This code already exists: please choose another.

1S0 3166-1 ALPHA-3 Country code (3 letters) *
DNK

OEBPS/Images/B19879_10_11.png
Ao 0 e @@ -0

« o
we Name. [Longude oy i
1 Toe 3see97 ez dsoan I
ot e dee 12 4552 o5 1068275 Indenein

ek rowag st rerted

B [o e cxon -
© () o e o o ok tomues ey i Soot o itowion B+ o & B ix
et TR v e o i 8 A TRt Y ore T
S e s e « - . IU—— o 0
G e €
T e et e] [}
e Y a—

R
»

@ cuts oty o

fRoferamabrinsnt: it sasitee T e e iy e o s,
s e e e e_comen oG o TN TN S C01 ok o reer- oLty oot baste o, ¥

OEBPS/Images/B19879_03_07.png
CAWINDOWS\system32iemd. X+ v - o

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_03\HealthCheck\healthcheck.client>ng generate component Home
CREATE src/app/home/home . component .html (19 bytes)

CREATE src/app/home/home . component . spec . ts (587 bytes)

CREATE src/app/home/home . component .ts (191 bytes)

CREATE src/app/home/home . component .css (0 bytes)

UPDATE src/app/app.module.ts (542 bytes)

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_63\HealthCheck\healthcheck.client>

OEBPS/Images/B19879_15_11.png
Publish

Select existing Azure Virtual Machine

Subscription name

Target
[icrosoft ave 9
Specific target
Aaure Vintual Machine | S¢2rh bd + Createnew [E O
4 [PACKTPUB
LN

Back

Il

Next

|] [cance

OEBPS/Images/B19879_09_08.png
B o e— T P
e e rfroirestrs Eora T m ey e L s -
AT it Sty (e e s ue s sy
‘CommandTimeout="'30"]
SELECT COUNT(*)
FROM [Countries] As [c]
e et e v et bt ecomme] o et et ottt Lot oo
@_p. ?' (DbType = Int32)], (o-undwp-g fext', CommandTimeout='3@']
SELECT wun‘!(‘)
FROM [Cities] As [ce]
WHERE [c].[Id] = [ce].[CountryId]) AS [TotCities]
FROM [Countries] AS [c]
Ciltccnsr il
o (s
B O e e o
R o Pt oot ey R ot
e O S, S V0 S s
Pltsricl s it e o st ool i,
T R e T S e e) EN I e - i (i S
B A —
M e e e e s s Pl et R
e
B e T i
FROM [Cities] AS [c]
WHERE [c].[1d] = é_p e
M L0 8520 e ren e g oo

mes2)],

OEBPS/Images/B19879_12_04.png
B cawmpowswystemacmd. X+ v

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_12\lorldCities\worldcities.client>ng add @angular/pwa@l7..3
© Using package manager: npn
/ Package information loaded.

The package @angular/pwa@l7.6.3 will be installed and executed.
Vould you like to proceed? Yes

I Packages successfully installed.

CREATE ngsw-config.json (637 bytes)

CREATE sTc/manifest.webmanifest (1369 bytes)

CREATE src/assets/icons/icon-128x128.png (2875 bytes)
CREATE src/assets/icons/icon-14ux1ut._png (3077 bytes)
CREATE src/assets/icons/icon-152x152.png (3293 bytes)
CREATE src/assets/icons/icon-192x192.png (4306 bytes)
CREATE src/assets/icons/icon-38Ux38U.png (11028 bytes)
CREATE src/assets/icons/icon-512x512.png (16332 bytes)
CREATE src/assets/icons/icon-72x72.png (1995 bytes)
CREATE src/assets/icons/icon-96x96.png (240U bytes)
UPDATE angular. json (3010 bytes)

UPDATE package. json (1638 bytes)

UPDATE src/app/app.module. ts (1934 bytes)

UPDATE src/index.html (712 bytes)

I Packages installed successfully.

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_12\liorldCities\worldcities. client>|

OEBPS/Images/B19879_05_17.png
Home > Create a resource > Marketplace > Azure SQL > Select SQL deployment option > Create SQL Database >

Create SQL Database

Microsoft

Basics Networking Security Additional settings ~ Tags Review + create

Create a SQL database with your preferred configurations. Complete the Basics tab then go to Review + Create to
provision with smart defaults, or visit each tab to customize. Learn more o'

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * © [Microsoft Mve
Resource group * © [Packtpub
Create new

Database details

Enter required settings for this database, including picking a logical server and configuring the compute and storage
resources

Database name * [worldcities
Server * © [(new) worldcities-db-2023 (West Europe)
Create new

Want to use SQL elastic pool? @ O Yes (® No

OEBPS/Images/B19879_14_03.png
2 @ D eomieicien x|+
€ G 6 nosmammRnmen ek
o fen
Health Check
[————
Nome RespomseTime Staus Descpion
GO 8 ety M o wmuryadecom ook oms.
WPz I Mty ICPowmmugoogiocomtook 4ms
Y

= -

B oA o

) ety your s ot ke cpen s e Vil s Codeand sy honges.

[T
QP
B QwmT B e

Weare G _Couole Souces Network >

et s 87

[CEE Y
s X
+ 01 £ B 1 x
2hiten

(385313-67188:2:459782) Snfrman: ke convactod o st LIS, BESIEAST
R,

[e—

71 Toormtion tring maprstocst e

Comacsion starta, [t
e 111nd 7 e for e FThong v cire e [ST———
R [ew————
BT e e———

OEBPS/Images/B19879_02_01.png
8 Microsoft NET SDK 8.0.100 (x64) Installer

Microsoft .NET SDK 8.0.100

NET

.NET SDK

The .NET SDK is used to build, run, and test .NET applications. You can choose from
multiple languages, editors, and developer tools, and take advantage of a large
ecosystem of libraries to build apps for web, mobile, desktop, gaming, and loT. We.
hope you enjoy it!

If you plan to use .NET 8.0 with Visual Studio, Visual Studio 2022 17.7.0 or newer is
required. Learn more.

By clicking Install, you agree to the following terms:

Privacy Statement
Telemetry collection and opt-out

Licensing Information for .NET

W install Close

OEBPS/Images/B19879_07_05.png
1) WorldctiesClient

& G @ nitpsy/localhost4200/cities

Countries

Cities
Here's a list of cities: feel free to play with it.

Filter by name (or part of i)

XS Neme Latitude Longitude ‘
: Toho ss007 150022 ‘
f soans s 10575 ‘
s 261 s ‘
4 Guangzhou 23.13 113.26
s Mumbai 19,0761 720775

OEBPS/Images/B19879_09_04.png
65
66

Location: CitiesControllercs Line: 66, Character: 13, Must match source.

[] conditions
Conditional Expression ~Istrue
Add condition

- cityName == "Moscow X

Show a message in the Output Window:

Hey, we're currently editing Moscow from our Angular app! X Saved

Elestmsebezatn
[] Disable breakpoint once hit
[_] Only enable when the following breakpoint is ht:

OEBPS/Images/B19879_15_26.png
tps://tools. ietf.org/html/rfcoll0#section-15.6
n error occurred while processing your request.

OEBPS/Images/B19879_05_23.png
2

o-s00|

[search Solution Explorer (Ctri+e)

AT

> B3 Chapter 02
b B3 Chapter_03
> B3 Chapter 04
4 B3 Chapter 05

> & worldcities.client

£ Solution ‘All_Chapters' (8 of 8 projects)

@ Connect
b & Depend
4 37 properti
@ taun
> B3 Controll
b Bl pata
4 [appsetti
[app:
b C# progra
b C# Weathes
&F Worlddil

WorldCities Server

&

L _Manage Client:Side |ibiaries.

Build

Rebuild

Clean

View

Analyze and Code Cleanup
Pack

Publish.

Upgrade

Configure Application Insights...
Overview

Collapse All Descendants
Scope to This

New Solution Explorer View
File Nesting

Edit Project File

Build Dependencies

Add

Manage NuGet Packages..

Manage User Secrets

Remove Unused References...
Sync Namespaces

Ctrl+Left Arrow

OEBPS/Images/B19879_12_10.png
G) (D Wekome EHements Console Soures Performance _Applkation X

Health Check 0

Applicaton Serice workers

0 Updateon reoad 0 Bypass fornetwork

mes avalable again. hitpifiocalhost080/

Source. ngswworteris
Greetings, stranger! Received 12/3/2023, 103223 M
“This is what you get for messing up with ASPNET and Angular. Status @ #160 actvated and is rnning stop.
[———
Push | Test push sessage from OwvTcas.
P ——

Sackground snvices i e sast-tag-from-daveoos
B sackiforvard cache
T Background fetch UpdoteCycle version Update Aty Timeine

OEBPS/Images/B19879_04_09.png
- Static content - Dynamic content

- Verbose - Concise
- Enforces code repetitions - Enforces code reusage
- No variables - Can define variables

- No loops/cycles - Allows loops/cycles

OEBPS/Images/B19879_11_02.png
Token-Based Authentication Flow

Authentication Request

user + pass
login request

A

) —
auth check
o
| OK
O e
Server ——— create token —

Client login OK response
with signed token

—— OK --—

Subsequent Requests

request with
given token

A
Client

e

Server

user-specific
response

——#— token check
—— OK 4:]

OEBPS/Images/B19879_05_06.png
[—1

i [SySrw—

ey

Mot T p—
Rty e et b ot ot

entyframeworkCore Absrac

sty ramworkCore Ansyars © et 5 i
sy

MicrosafEiyrameworkCoreDesig . e i
ettt A e

MrosofL ey rameorkCoreSServe 9 by it 40 o

e
v S e, ot S ot S R s DL . g o s s e o

T p—

NuGet Package Manager: WordCisSever
-
[l MicrosofEntiyframenorkCore © B oo ||

P ———

oo
et 16 g

e . o 1 AV

OEBPS/Images/B19879_15_09.png
Select role services

Before You Begin
Installation Type
Server Selection
Server Roles
Features

Web Server Role (I5)

Confirmation

Results

Select the role services to install for Wet

Role services

[1P and Domain Restrictior
(] URL Authorization

[] Windows Authentication
Application Development
[J NET Extensibility 3.5

] .NET Extensibility 4.8

[Application Initialization
[Asp

(] ASP.NET 35

(] ASPNET 48

O cal

[I5API Extensions

(] 1SAPI Filters.

[] server Side Includes

4 [J FTPServer
[FTP Service

b Server (IIS)

L 15 I G ISR B AT A

s

DESTINATION SERVER
NETS-Angular-Wi

Description

115 10.0 and ASP.NET 4.8 support
wiiting server applications that
communicate over the WebSocket
Protocol

<Previous | [Next>

Install Cancel

OEBPS/Images/B19879_10_05.png
el p-HEDO G- T
Discovering tests: Found 2 tests

Test Duration | Test Detail Summary

» ® healthcheck client (2) @ WorldCities.Server.Tests.CitiesController_Tests.GetCity

4 @ WorldCities.Server.Tests m 295ms E Source: CitiesController Tests.cslinel7

@ WorldCities Server Tests (1) 295 ms. (© Duration: 295 ms
4 @ citiesController_Tests (1) 295 ms
@ GetCity 295 ms.

OEBPS/Images/B19879_06_14.png
Countries.

Filter by name (o partof).

Countries

Herdsa s of countries: fee ree to play with .

» Name &
s Aghanistan

149 Abaria

u Aoeria

w7 mercan Samos
198 Andorra

2 ngola

20 Anguila

199 Anigua and Barbuda
14 Agenina

2 Amenia

1502

ems per page:

6

e

oza

s

s

a6

ro

AR

w o a-weae >

OEBPS/Images/B19879_09_10.png
R Pyl et . i)
er

Skip(pagendex + pagesize)
TakeCpagesize);

1/ retrieve the SOL query (for debug purposes)
Var sql = seurce. ToparanetrizedsqlO);

return new ApiesuleT>C

FilterColimn,
Filcerquery)}
)

11 <summsry>
711 Checks 1¢ the given property nase exists
777 to protect against SGL injection attacks
111 <Isumnary>

2 10 anges 10,0 hg
BUic static bool TevatidpropertyC

string propertyNane,

Tet Visualizer

= e

[R——

e

). [tase]
ORFSET &_Lp. RO FETOH NEXT 6_p_1 ROHS Oy

SELECT [c].[1a), (c]. [tane], [<):(1502), [€].(3503], (
SeLecT cont(

Word iap

OEBPS/Images/B19879_13_01.png
REST

es/id)

cties cities/fid) countries countri
Cities Countres
ia]
Name. Name.
Lt 1502
Lon 1503
Counteyd Tocites
CountryName

GraphQL

{cities, countries }

|

GraphQL

runtime

Cites Countries
@ @
Name Name
Gt 1502
Lon 1503
Countyld TotCites

CountyName

OEBPS/Images/B19879_03_03.png
S @ B @ swagserut x |+

& G O bhttps/localhostd04d3/swagger/indexhtml A vy D = @ ® - @

Swagger solcta detnion

HealthCheckAP| ® =

hitps://localhost:40443/swagger/v1/swaggerjson

WeatherForecast ~
GET /WeatherForecast \/‘
Schemas A

WeatherForecast >

OEBPS/Images/B19879_05_11.png
Mexio City
caro

New York
Dhaka
Beiing
Kolkita

Shenzhen
Moscow
Buenos Aires
Logos
Itanbul

35,6897
5175
2860
190761
15956
311687
2355
756
194333

0943
2,763

25675
137525
253
55,7558
34,3097
655
410130

o 3
country.
139,6922 Japan
1068275 Indonesia
77,23 India
113,26 China
728775 India
1209772 Phlippines
121,466 China
46,6333 prasl
126,99 South Korea
99,1333 Mexico
31,2358 gyt
73,9249 United states
90,3889 Bangladesh
16,4075 China
8837 India
100,4942 Thailand
114,054 China
37,6178 Russia
58,3810 Avgentina
33841 Nigeria
28,955 Turkey

H 1
‘admin_name. capial
Tokyo primary
Jakarta primary
oelhi admin
Gusngdong admin
Mahrishira admin
Manila primary
shanghai admin
Siopaulo admin
seoul primary
Cludad de México primary
AlQshirah primary
New vork

ohaka primary
eeijng primary
West Bengal admin
Krung Thep Maha Naklprimary
Guangdong minor
Moskva primary
Buenos Aires, iudad Aprimary
Lagos minor

Itanbul

LS

sseas7e

OEBPS/Images/B19879_15_24.png
B -t Nerfnw WordCite Senvr

o kestrel-WorldCities.Server.service - WorldCities.Server

Loaded nd/system/kestrel-WorldCities.Server.service; enabled; vendor preset: enabled)
Aetive| active (running) bince Wed 2034-03-14 17:21:31 UTC, 21nin ago

16 (Limi

75.0m

2,625

CGroup: /system.slice/kestrel-WorldCities.Server.service
L975 /usr/bin/dotnet /var/mm/VorldCities.Server/WorldCities.Server.dll

OEBPS/Images/B19879_15_32.png
g HealthCheck-API-2023 | Deployment Center s

7 seach

@ ovenien

& acitylog

B Acces conteol (AW

© nos

PR —
© Wcroso Dot fo loue
7 s preien)
Deployment

7 Doplaymentsots

X dicard 3 tcowse]) anage pubisnprotie
Manage publ

Settings Logs FTPS credentils

‘App Servicesupports mulipetechnalagies tosccess, publich snd ma
be scoped o the appliction or the user.

F195 endpoint e s

e
Application scope

Applcation scope credentssar auto-generated and provide accss
credential can be used with FT7, Loca! Gt and WebDeploy. They car

anytime. Learm more

FT95 Username HealthCheck-API-2023\S Healthched

profile

Download publishprofe |) Reset pubish profle

Import the publish profto VisulStudio orother lents 0 connect and push
deployment to your WebADp.

OEBPS/Images/B19879_05_03.png
& @ O 1 worditiesClient x |SiF
< C

& hitps://localhost:4200

WorldCities

A sample web application to demonstrate how to interact with ASPNET, Angular, Entity Framework Core and a SQL Database.

OEBPS/Images/B19879_11_08.png
SseLscr -
FRoN (vorlacities). dbo] . (AspNetusers];

Connect~ ¥ *¥ G

© 8 WordCies

@ 4 Daabas Dlagams Ssauscr +

o i Tabes PRt [vorlacities]. (dbo). (AsphetRoles)
© 5 SptemTabes
o Fieables
@ 8 el Tols -
@ 5 Goph Tobes:
© I dbo._EMigrtionsistory 0 Rests g Mesages
© B dbospherRotciims] Uatone Nomalzsd
9 B dbospheiles 6T 0T SHLORSRG53435 | sr@emaicom USERGEMALCOM wsremalcom USERGEMALCOM
9 I dbosphetsercins D cob0-4175 052 52060 admin@eicom ADMINGEWALCOM adin@ensicom ADMINGEMALCOM
@ dbosphetsetogins
B dbonsphetseioes
© B dbonspretsrs] Nome Nomotzodtame Concrenciamp

@ Columns 59755 o3 4G5 acc SIAIGATY | Admiiator SOMINSTRATOR NULL
2

e 5%-4044-950-4023080%ee04 RegiteredUser REGSTEREOUSER NULL

o Tiggers
© W Indexes

OEBPS/Images/B19879_09_11.png
‘this.countryService.getData(
event.pagelndex,
event.pagesize,
sortColumn,
sortorder,

#ilterColumn,
FilterQuery)
+subscribe({

next: (result) => {

4 @result | (data: Array(10), pagelndex: 0, pageSize: 10, totalCount: 241, totalPages: 25, ..} -5

this.paginator + & data

Loy

this.paginator| |,
this.countries 0
1 r 21
error: (error) = | ° 92
n; 23
» Q4
* @5
» 26
Q7
» 28
» 29

& length
» & [[Prototype]]
» & [[Prototype]]

totCities: 69)
‘AL, totCities:38)

(207, name: ‘American Samoa, iso;
{ic: 198, name: 'Andorra’, iso2: 'AD!, iso3: ‘AND), totCities: 7}

{id: 199, name: ‘Antigua and Barbuda’, iso2: 'AG, iso3: ‘ATG, totCit
{id: 14, name: 'Argentina’, iso2: 'AR’, is03: "ARG), totCities: 467}

{id: 112, name: ‘Armenia’, iso2: ‘AM, iso3: ‘ARM:, totCities: 37}

10

Array(0)

Object

OEBPS/Images/blockquote-top.png

OEBPS/Images/B19879_07_11.png
Create a new City

Name:*

Name is required.

Latitude:*

Latitude is required.

Longitude:*

Longitude is required.

Select a Country...* .

Please select a Country.

OEBPS/Images/B19879_15_08.png
fia Server Manager

@\ v Server Manager * Dashboard

WELCOME TO SERVER MANAGER

Local Server P Add Rolesand Features Wizard

i Allservers

W File anastorage semvices | Salact server roles

NeTs Angr
x
Sclectone or morerles o nstalontheselected server,
foles Description
Actve Diectory Dommain Services Web Server 15 provides reliable,
Actie DirectoryFeeraion Services manageable and scalable Web>
‘Active Directory Lightweiaht Directory Services _____applicaion nffastructure. |
Active DiectoryRghts| ., Add Rolesand Features Wizard x
Device HealthAtesar
OHCP Sever
ONS Sever Add features that are required for Web Server (I5)?
o Servr
Fileand Storage Senvice The following tools are required o manage this feture, but do ot
Host Guardian Service | e to b instlledon th same srver.
Hyper-v
Network Contoler < Webserverin)
NetworkPolcyand Acc | 4 Management Tools
Pintand Document S| oo S Management Console
Remote Access
Remte Desktop Sevi|
Volume Actvation Serv
i Servr 1}
Windows Deployment

Windows Server Updt

V] Include management tools(F applicablel

AddFeatures | | cancel

OEBPS/Images/B19879_07_03.png
Model-Driven Forms
ts class file r.html template file

Web Server) ———>— DataModeI <form>

3
l‘mnevlym 6

1= ‘.,.a\ <val|dator #1>
S
Fi'w'fl',\m"fwdﬁ'(fe= | o o sinput 2>
. nm‘“ <validator #2>
new FormControl { .}, | W'““’
2
o new FormControll) (.-), | o onicoinamel_— <iNPUt #N>
new FormControl(){ ..}, 4—_—‘>| <validator #N>

onSubmlt() 4— SUBMIT.

J L

<|nput #1>

OEBPS/Images/B19879_09_03.png
o

65
66

Location: CitiesController.cs, Line: 66, Character: 13, Must match source
Condiions.

Conditional Expression ~ s true - cityName

“Moscow” X Saved

‘Add condition

[] Actions
] isabe breakpoint onc hit
] only enable when the ollowing breakpoints it

OEBPS/Images/B19879_15_16.png
C‘;! MIME Types

Use this feature to manage the list of file name extensions and associated content types that are served as static
files by the Web server.

Groupby: NoGrouping ~

Extension MIME Type Entry Type
323
Add MIME Type ? X
392
39p File name extensiol
3gp2
39pp
.aac MIME type:
.aaf |applicaliun/manifest1 json|
aca
acedb
e conce
.accdt
aacx application/intern... Local

adt sudinfund dina adte 1 acal Y

OEBPS/Images/B19879_06_05.png
_

& C O hupsyocalhostazo0fites A I] o
Cities
Here's st of cites: e e o play withit.

m Name Latude Longitde

1 Tokgo 356897 30,6922

2 Jakarta 175 1066275

3 Oelhi 256 72

0 Guangzhou 213 326

s Murmbai 190761 726775

o Morita 45950 209772

7 Shanghai 1667 20,4667

5 SioPadlo 2355 466353

B Seoul a5 12699

0 Mexico iy 194533 99133

femsperpase: | 10 1= 100t 4t >

OEBPS/Images/Uluca.jpg
[“

Angular for Enterprise
Applications

OEBPS/Images/Free_PDF_QR.png

OEBPS/Images/B19879_04_05.png
inport { HetpClientModule } #ron '@angular/comon/http';
inport { Nighodule } from 'gangular/core’;
inport { Browsertodule } fron '@angular/platforn-bronser';

inport { AppRoutinghodule } fron *./app-routing.module’;
Anport { AppConponent } £rom . /app.component ;

import. { HomeComponent } fron *./home/home. component;

inport { FetchbataCosponent } Fron '/fetch-data/fetch-data. conponent ' ;
inport. { NavHlenuConponent } Fron ' ./nav-menu/nav-menu. conponent "

$0port { HeaLthCheekComponent } ££or *./heatn-check/nealen-check. conponent;

Seorodute(l
= declarations: [
AppConponent,
HomeComponent
FetchbataComponent,
NavHenuComponent,
HealthheckConponent
1
<(Cimports: T
Srowserodule, HEGpCLienthodule,
AppRoutingodute

ProvigersT 1T,
bootstrap: [AppComponent]
)

export class Approdute T T

TNASCRIPT
MODULE SYSTEM

import {...}

ANGULAR
MODULE SYSTEM

@NgModule({...});

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B19879_02_05.png
HAlo-sa0

e

[search Solution Explorer (Ctrl+¢)

[Solution 'HealthCheck' (2 of 2 projects)

4 B healthcheck client

o0 npm

B3 vscode

B3 src

D) editorconfig

[gitignore

[angularjson

JS aspnetcore-https.js
Js karma.confjs

&) nuget.config

[@ package.json

) README.md

[0) tsconfig.appjson
[tsconfigjson

[@ tsconfig.specjson

4 &1 HealthCheck Server

vvvvw

@ Connected Services

8 Dependencies

R properties

E3 Controllers

[) appsettingsjson

&7 HealthCheck Server http
C# Program.cs

C# WeatherForecast.cs

OEBPS/Images/B19879_05_26.png
C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_05\WorldCities\WorldCities Server>dotnet of database update [ERIIE
Build started o= § ¥ 5 T O
Build succeeded.
£nfo: Microsoft EntityFraneworkCore Database.Connand (201611
Exccuted DbConnand (ns) (Parancters=(], ComnandType='Text", CommandTincout='30']
SELECT 1
“0fe: Microseft. CntityFransuorkCore Database Connand[20101]
Executed DbConnand (5ns) (Paraneters=[], ConnandType='Text, CommandTineout
SELECT OBJECT_TO(N' [__EFMigrationsHistory]");
i0f0: Microsoft.EntityFranaworkCore Database, Connand [20101]
Exccuted DbConnand (ns) [Paraneters=[], ConnandType='Text", ComsandTineout='30']
SELECT 1
info: Microsoft.EntityFraneworkCore Database. Connand [20161]
Exceutid DbCummand (5us) (Paramelers-[], ComnandType-"Texl", ComandTineout-"30']
CREATE TABLE [__EFigrationshistory] (
[MigrationTd) nvarchar(150) NOT HULL,
[ProductVersion] nvarchar(32) HOT NULL,
CONSTRATNT [PK__EFMigrationshistory] PRIMARY KEY ([Migrationld])

8 PRORSCLDOAES QL Seme 1601

301

info: Microsoft.EntityFraneworkCore Database. Connand [20161]
Exccuted ObConnand (ons) (Paraneters=(], ComnandType="Text", Commandrineout='30']
SELECT 1

info: Microsoft EntityFraneworkCore Database. Connand (201611
Exccuted DbConnand (ins) (Paraneters=[], ConmandType='Text", ComsandTincout='30']
SELECT OBJECT_ION' [__EFMigrationsHistory]");

info: icrosoft EntityFrancworkCore. Database. Connand[20101)
Exccuted DbConnand (10s) [Paracters=(], CommandTyps
SELECT (magrationia], [productversion]
FRON [_EFigrationshiistory]
ORDER BY [MigrationTd];

info: Microsoft. EntityFranaworkCore Migrations[20402)
Applying migration '20231127212819_Tnitial’

Applying migration '20231127212819. Initial

Text!, ComsandTincout

OEBPS/Images/B19879_15_04.png
&, CreateVm-MicrosoftWindowsServer. WindowsServer-202-20231208003158 | Overview 2

Deployment
2 sear

& Overview
5 Inputs

2= Outputs

3 Template

[Delete () Cance! (1) Redeploy & Download () Refresh

@ Your deployment is complete

I Depoymentname: Creteim MicosoftWindovsSeverindouse. Sorime: 811212023 04740
Subscription: Microsoft MVP Corelaton ID: 38290302-2260-dabe-a9ee-ba2265¢5fbb8|
Resource group: PackiPub

- Deployment d
A Nextsteps

Setup auto-shutdoun Recommended
Monitor VM health,performance and network dependencies Recommended

Run a scriptnside the irtual machine. Recommended

momrn

Give feedback

Tellus about your experience with deployment

OEBPS/Images/Price.jpg
Apps and Ser
with .NET 8

s et it B, NETHAUL P,
e ek aina il

?fﬁi;

— a

Mark . price <packt

OEBPS/Images/B19879_05_31.png
Add API Controller with actions, using Entity Framework

Model class [city oworldcities server.Data.Models) -
DbContext class [ApplicationDbContext (WorldCites Server.Data) - | + ‘
Database provider ‘Lo\mqwcd from the selected DbContext ‘

Controller name [CitiesController |

OEBPS/Images/B19879_05_15.png
5 Searchresourcessevices, and docs G+

& & -

Azure services
— <
+ L =) X
oes Ve Sepiow ot Sangs e eiow Mookwe T Mowsmies
- . — " i
Navigate
J— o

P Jr—

Tools

W Microsoft Leamc?
Leom Azure vith e onine

ainingfom Mictosft

Useful links
TechnicalDocumentation
Saure Migration oo

) s rups

e Cost Mansgement
nayze and optimize your

Aaure Monitor [i
Moritr your apps and Secureyourapps and
infastroctore infostrscure oud spend o free
Azure mobile app
Azure Senices Recent e Updates
Quidsan Center

find an Aaure expert

OEBPS/Images/B19879_09_07.png
o e —— |

Angular is running in development mode.
Hey, we're currently editing Moscow from our Angular app!

atch 1 | Error List s | Exception Settings

OEBPS/Images/B19879_12_03.png
A
>
48x48, 32 bit,
BMP

A

32x32, 32 bit,
BMP

f;\

16x16, 32 bit,
BMP

OEBPS/Images/B19879_07_15.png
_

& C O bups/locahost4200/country/o9 A Do e R - O

~

Edit - Denmark

Name:t
Denmark

15031661 ALPHA2 Country codle (2 etters) *
DK

15031661 ALPHAS Country code (3 etters) *
DNK

e

OEBPS/Images/B19879_14_02.png
)

Name
Iowp.02
iowpoa

pre—— x| D waresissmosian. x | +

g ocabost 4200 et check

Data Health C

Health Check

Hersar thereult of cur hsith chckc

ResponseTime Status Descipon
am Hestny 1M o wanwyageLcom ook 14 me.
22217 Healthy 1CMP 10w googie.com took 13 ms.
2028 Unhesithy

@ ®

© Qe @ e
305213.078318:38. 6821 Enormation Grin Mprstsel

% R
BEA:]
s @
oo sy o
[PE———

OEBPS/Images/B19879_05_07.png
License Acceptance X

The following package(s) require that you accept their license terms before
installing.

Microsoft.CodeAnalysis.Analyzers Author(s): Microsoft -
MIT

Microsoft.EntityFrameworkCore.Design Author(s): Microsoft
MIT

Microsoft.CodeAnalysis.CSharp.Workspaces Author(s): Microsoft
MIT

Microsoft.CodeAnalysis.Common Author(s): Microsoft
MIT

Microsoft.EntityFrameworkCore.Tools Author(s): Microsoft
MIT

Microsoft.CodeAnalysis.CSharp Author(s): Microsoft
MIT

Microsoft.CodeAnalysis.Workspaces.Common Author(s): Microsoft

By clicking "I Accept," you agree to the license terms for the package(s) listed
above. If you do not agree to the license terms, click "I Decline.”

OEBPS/Images/B19879_02_09.png
D ngsemesimbeenCavse X+ v o
> health-checkg0.0.0 prestart

> node aspnetcore-https

A valid HTTPS certificate is already present.

> health-checkg0.0.0 start

> run-seript-os

> health-checkg0.0.0 start:windons
> ng serve —ssl —ssl-cert "XAPPDATAR\ASP.NET\ttps\tnpn_package_nane.pen"
ackage_nane%.key" —host=127.0.0.1

ssl-key "SAPPDATAR\ASP.NET\ttps\knpa_p

Initial Chunk Files | Names | Raw Size
polyFills.js | polyfills | 82.71 ko
nain. js | main | 7.0 ke
styles.css | styles | 95 bytes

Initial Total | 89.90 k8

Application bundle generation complete. [1.159 seconds]
Watch mode enabled. Vatching for file changes...

~ Local: https://127.0.0.1:4200/
|

OEBPS/Images/B19879_12_11.png
HealthcheckClient

C @ localhost:8080

M Fetch Data Health Check

OEBPS/Images/B19879_15_12.png
9 Internet Information Services (IS) Manager

=

S @ NeTeanguarwi b sies

View

File Help

Conn

e - %
5 Start Page
5 NETE-Angular-Wi (NETS- Angul:
2 Application Pools
v sites
> €D Default Web Site

WitmyAd

Add Wet ?
ite name: Application pool
[Pestiaheckatent heatincheckel e
Content Directory
Physical path:
[Cunetpub heatthcheckient .
Pass-through authentication
Connectas... | | Test Settings...
Type: 1P address: Port:
hitps. <! [AUnassigned Rz
Host name:
[Peatthcheck 2023 yadelcon]]
[Require Server Name Indication
[pisable TLS 1.3 over TP (] pisable Quic
(] pisable Legacy TLs [Disable HTTP/2
[] Disable OCSP Stapling
SSL certificate:
ryadel.com v select.. View...

2 start Website immediately

Cancel

OEBPS/Images/B19879_13_04.png
@ s - Eamcaterop X

€« C @ htipsy/localhost:40443/api/graphal/
ﬁ‘n..-«u x 4 m -
[o Someasemain
al™ B e v | s

Mutation

The Mutaon type i 3 specil type thts uid o modiyseversidedots st ikein || B
Kind of pe:Obiect

e
) can also contain multiple fields. However,unlke queres, mutation ildsrun inseres, " e
e - @
Objects: @
dCi ¥ ity Mo desciption Salos o
- - °
‘addCountry.: Country! Nodescrption ot Objcts @
& countryDIO: CountryDTOInputt
Doenctime a
@ updateCity(: City! No description

OEBPS/Images/B19879_15_20.png
& O D weconewongn < I

<« C A\ Not secure | worldcities-2023.westeurope.cloudapp.azure.com A [0)]

Welcome to nginx!

If you see this page, the nginx web server is successfuly installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at ngi

Thank you for using nginx.

OEBPS/Images/B19879_11_12.png
WorldCities.Server

- Y]
o v
= e vl
[IresendConfirnationEnail v‘
[v
o P v
o e v
[s vl
[ot S M

OEBPS/Images/B19879_04_08.png
S @ @ |7 Healthcheckclient < | - o x

< C () https//localhost4200 & A 1Yy m v R - o

A FetchData Health Check

Greetings, stranger!

This is what you get for messing up with ASP.NET and Angular.

OEBPS/Images/B19879_06_13.png
[focalhost-40443/api/Counties/7; X

& C @ https//localhost40443/api/Countries/?pagelndex=08pagesize=2 A ¢ N = @ B [/}
@

27 “FilterQuery
}

OEBPS/Images/B19879_05_18.png
Home > Create a resource > Marketplace > Azure SQL > Select SQL deployment option >

Configure

A Foedback

Service and compute tier

Select from the avalbleters based on the needs of your workioad. The vCore model provides a wide range of configuraton controls
and offers Hyperscale and Serverlss o automaticlly sale your database based on your workload needs. Alernately the DTU model -
provides se pricefperfonmance packages chosse from for cosy onifguraton. Lears o ¢ m

@ Lover,simpied pricngfor S DotaboseHypercal sats o 15 f December 2023 Lean e

Servie tier Bosic (For esa demanding workioads) ~
Compare senvice tiers & Cost summary
Compare o7 opions oasie i)
DTUs Sompaeeromiensd Costper oMU 0K 092
5 (Basic) DU seced x5
EsTMATED cosT/ MowTH 4580

Data max size (GB)

OEBPS/Images/B19879_10_06.png
»>-Co|v|[E:]01]@0]0:] B -4

Dis

» Run Cul+R, T

> Run All Tests In View Ctrl+R, V

"® Run Failed Tests Ctrl+R, F
Run Not Run Tests CtlR N
Run Passed Tests Ctrl+R, P

@' Repeat Last Run Ctrl+R, L
Run Until Failure Ctrl+R, U
Debug Ctrl+R, Ctrl+T
Debug All Tests In View Ctrl+R, CtrlsV/
Debug Last Run Ctrl+R, D
Clear Test Results Del
Clear All Test Results In View Shift+Del

Analyze Code Coverage for Al Tests

il Summary
rldCities Server.Tests CitiesController_Tests. GetCity

Source: CitiesController Tests.cslinel7
Duration: 295 ms

OEBPS/Images/B19879_09_18.png
52 S0Lueny2sql - PYROS\SOLEXPRESS.WordCies (PYROS\DarkAngel(73) - Micosot SQL Servr Management Stucio

Fle Gt View Projst Took Wndow

©-0[8-u-UHP Bwan BIRAR| LD
| Woric | b Eete

-l@l - ClmrED-

B Fents G s

PR Moo Terise e
1 (1] Nowtaongan: epscaboscits Howtsurngen: bt Homsten
e Honiserngen lsddes) Homston
33 opkatonatd Fes CClo it Sl ot e 1o ko, Homaten
&1 o e Doeegeant” [— o,
55 Contr oot TP ASPNET o A oG9\t Vo Sr” oot s ot Homsten
66 1 SPAdokoment seernenin s fcshos 20 fund o 5P dvlpmert semer gt oo Wl
77 SPAdevpmrt severnenn e oot 200 9 vt v o s 4 it
8 e aatng WTTP/L" GET T/ 200"y s pgeindnelpagSae0.. et ot (Pt) (Schane /s o
59 Buneng o VikiCnes Sever ot Crtsorie G ok Sevr” oA p—— e
1010 Fode s weh“ocon » GetCh”crter Chs) vt cortlacion i .. Rt e FteDt). B icber icmson

"

OEBPS/Images/B19879_06_09.png
9105

24654

18215

19072

4223

1586

15582

30364

32914

23821

Cities

Here's a list of cities: feel free to play with it.

e 4

‘Abasan al Kabirah
‘Adra

“Afrin

“Ajab Shir

“Ajlan

‘Ajman

“Akko

“Alay

eh

‘Alem T'éna

“Ali Shahr

Latitude

31.3237

336

36.5083

37.4831

323325

254136

329278

33.0528

83

28.9306.

Longitude

34.3476

36.515

36.8692

4589

357517

55.4456

35.0817

51.0825

38.95

51.0689

OEBPS/Images/B19879_05_22.png
B 50LQuenyaql- PYROS\SQLEPRESS maste (PYROS\DarkAngel (5" - Microsoh SO Server Management Studi.
Fe B Vew Pojet Toon Window Hep
10-0(8- -G P Awaey BR22R| LD

RV R

S
FRssapeness

Comnctn

Repct
= Managenent
o [et protier

OEBPS/Images/B19879_07_06.png
m

& G O htpsy/localhost4200/city/37 An Do @ s - O

A Cities Countries

Edit - Paris

Name:*
Paris

Latitude:
48.8567

Longitude:*
2.3522

OEBPS/Images/B19879_08_01.png
2\ WorldcitiesClient

« C () httpsy//localhost:4200/city/89 @ A v M @ 8 ~ O

A Cities Countries

Edit - Madrid

Name:*
Madrid

Latitude:*
WRONG!

Latitude requires a positive or negative number with 0-4 decimal values

Longitude:
AALSO WRONG!

Longitude requires a positive or negative number with 0-4 decimal values.

Select a Country..*
Spain

Save Cancel

OEBPS/Images/B19879_02_02.png
Create a new project

Recent project templates
Angular and

O N rowe st
Standalone

© Typescript Anguiar Tpescrt

Project
8 ASP.NET Core Web API

i Class Library

&

g5 ASPNET Core Web App
(Razor Pages)

5 ASPNET Core Web App
(Model-View-Controller)

B Console App.

o

o

o

o

o

(=

sogular x[| Clsral

3 © Allplatiorms ~ Al project types -

No exact matches found

Other result based on your search

Standalone Typescript Angular roject

A Typescript Anglat projcttemplte wich is bootsrapped by unning your lobal
install of ng and npm

Tpescript Wb

Angular and ASP.NET Core:

Afull-stack application with a frontend Angular project and a backend ASP.NET Core:
project

Tescript Wb

Not finding what you're looking for?
Install more tools and features

OEBPS/Images/B19879_03_06.png
) CAWINDOWS\system32\md. X+ v

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_63\HealthCheck\healthcheck.client>ng generate environments
CREATE src/environments/environment.ts (31 bytes)

CREATE src/environments/environment.development.ts (31 bytes)
UPDATE angular.json (3336 bytes)

C:\Projects\ASP.NET-Core-8-and-Angular\Chapter_03\HealthCheck\healthcheck.client>

OEBPS/Images/B19879_04_01.png
HealthcheckClient [localhost40443/apihealth X

<« C @ https://localhost:40443/api/health Ay

Healthy

OEBPS/Images/B19879_15_27.png
Create Static Web App

Basics Tags Review + create

App Service Static Web Apps i a streamlined, highly efficient solution to take your static app from source code to global
high availabilty. Pre-rendered content s distributed globally with no web servers required. Learn more ¢/

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * © Microsoft MVP ~
Resource Group * @ PacktPub
Create new
Static Web App details
Name * HealthCheck-2023 v
Hosting plan

The hosting plan dictates your bandwidth, custom domain, storage, and other available features. Compare plans

Plan type (®) Free: For hobby or personal projects
(O standard: For general purpose production apps.

Azure Functions and staging details

Region for Azure Functions APl and [west europe
staging environments *

Deployment details
Source O GitHub () Azure Devops (®) Other

OEBPS/Images/B19879_10_10.png
1.

WRITE (NEW) REPEAT 1.0R MORE TES
BEHAVIORS
AsreLE BEHAIOR
CFTENREQURES
BDD R
2
TMPROVE THE

(EXISTING) BEHAVIOURS

OEBPS/Images/B19879_11_01.png
Session-Based Authentication Fl

Authentication Request

#- auth check ‘

user + pass)
login request e OK -
o
A Server [createsession — =

H N [+——— OK --——
Client login OK response
+ create session cookie

ow

Session-State

Service/Server/Manager

Subsequent Requests

___ requestwith o
session cookie
o
A Server

[~ retrieve session —m-

[———— OK -——

Session-State

Client - user-specific Service/Server/Manager

response

OEBPS/Images/B19879_15_01.png
El»ssl--ssl-certc:\Use X + v = o

> healthcheck.client@0.0.0 start:windows
ng serve |——ssl —-ssl-cert "%APPDATA%\ASP.NET\https\%npm_package_name%.pem"
——ssl-key "%APPDATA%\ASP.NET\https\%npm_package_name%.key" -—host=127.0.0.1

Initial Chunk Files | Names | Raw Size

styles.css | styles | 90.78 kB |
polyfills.js | polyfills | 82.71 kB |
main.js | main | 21.80 kB |

Initial Total | 195.29 kB

Application bundle generation complete. [2.611 seconds]
Watch mode enabled. Watching for file changes. ..
- Local: https://127.0.0.1:4200/

OEBPS/Images/B19879_09_02.png
65

66

Location: CitiesControllercs, Line: 66, Character: 13, Must match source.

[Conitional Expression] [srue] [amplex

‘Add condition
] Actions

[] isable breakpoint once hit
[] only enable when the following breakpoint is hit:

OEBPS/Images/B19879_05_29.png
4 +{&] WorldCitiesAPI
b &> Connected Services
b @& Dependencies
b 887 Properties
> 6] Controllers
4 Data
b] Migrations
> 8 3 Models
4 65 Source

+EE worldcities.xlsx

P +c#= ApplicationDbContext.cs
b +[() appsettingsjson
b +C# Program.cs
b +C# WeatherForecast.cs

OEBPS/Images/B19879_07_02.png
Template-Driven Forms

ts class file html template file j
Web Server _> DataModel (<form> |
lnput #1>
Ry

DataModel.Propertyl —> (<validator #1> < |

ngModel
(— <input #2> ﬁ—
| <validator #2> -

DataModel.Property2 P

|
(— <input #N>
<validator ml'__il'

] [——SUBMIT—==]

<'o
7\ DataModel.PropertyN —
mgiode

onSubmit() —=&

OEBPS/Images/B19879_15_07.png
Server Manager » Dashboard

'WELCOME TO SERVER MANAGER

T Local Server s Add Rolesand Features Wizard - o x
Al servers

. ; oestuATONStveR
& File and Storage Senvices »| | - Splect installation type NETB Aot i
P, Selctthenstallation type. You cannstll oles and features on arunning physical computer o virtual
Deorionteo machine,or on an offine virtalhard disk (VHD)
[

© Role-based or feature-based instalation
Configure. singleserver by adding roles,rle sevices,and features.

Server Selection
Server Roles
Features Remote Desktop Services installation

Install eqired role srvice or Virtual Desktop Infrastructure (VDI) o reate avirtual machine-based

Confirmation orsesson-based desktop deployment.

Results

OEBPS/Images/B19879_06_02.png
® 0O | I 0 X | [3 view-sourcenttps/ X

AroD o e R -0

OEBPS/Images/B19879_05_20.png
¥ Connect to Server

SQL Server

Server type:

Server name:

Authentication:
Login:

Password:

Database Engine v
|worIdcities»db-2023.database.windows.net v |
SQL Server Authentication v

]

| WorldCitiesAdmin

@ Remember password

Cancel Help

Options >>

OEBPS/Images/B19879_06_12.png
< C

@ httpsi//localhost:40443/api/Countries/?pagelndex=08&pageSi

"dn::": [
rid'i 1, N
"is02": "IV,
"is03": "JPN",
I3 :
A
rid'i 2, .
"is02": "I0",
“is03": "IDN",
, -
Lhagerndex: o,
frarattiag
“totalCount g
“Sotalbages-

120
“hasPreviousPage”: false,

OEBPS/Images/B19879_15_17.png
_

€ G O hups//heolthcheck 2023 yadelcom B AN O @ R o
A hData Health Check
Greetings, stranger!
s what youget for messing upwith ASP.NET and Angular.

@ (D Wekome Eements Conole Sources Peformance Network Appl X seurity Ughthouse > + gose & B i X
wsxmn o Seniceworkers N
> [mantet

S Seieeutan | 00 O Upsteonrsons O b forneonk

© storage.

[re————— [—

source ngawworkeris
Received 12872023, 31149 AW

St @ 8167 athatd and s munning stop.

Chents Bt /mesticheck 2023 yadelcom/hesth-check focus

OEBPS/Images/B19879_02_04.png
Additional information

Angular and ASP.NET Core typescript Wb

Framework @

[T porg oo

onfigur for HTTPS ©

nable OpenAP! support ®
[o not use toprlevel statements ©
Use contrllers @

OEBPS/Images/B19879_03_04.png
Angular Initialization Cycle

app.component.ts

all other components

OEBPS/Images/B19879_05_04.png
@ @ | 1) Worlitiesclient x |+
& C O hitpsylocalhost4200 A m @ 8 - O
Dimensions; Phone 1210 Y 330 x 844 00%Y Notvon B i G) (3 Comole femens » + g4 & @ i X
B Qtwp¥ B Fiter Default level 2 hidden £53
Angular is running in developsent mods. core.nis:deess
EE

WorldCities

A sample web application to demonstrate how to interact
with ASPNET, Angular, Entity Framework Core and a SQL
Database.

OEBPS/Images/B19879_10_07.png
NI 4

B3 Chapter_07

B3 Chapter 08

B3 Chapter_09

B3 Chapter_10

> & worldcities.client
> &1 WorldCities.Server

> £ WorldCities.Server.Tests

B

Build

Rebuild

Clean

Analyze and Code Cleanup 4
Pack

Publish...

Upgrade

Run Tests

Debug Tests

Show in Test Explorer
Live Unit Testing >

Collapse All Descendants Ctrl+Left Arrow

OEBPS/Images/B19879_12_07.png
[&] http-server X + v - (=) X

C:\Projects\ASP.NET-Core-8-and-Angular\Chapter_12\HealthCheck\healthcheck.client>
npx http-server -p 8080 -c-1 dist/healthcheck.client/brouser/
Starting up http-server, serving dist/healthcheck.client/browser/

http-server version: 14.1.1

http-server settings:

CORS: disabled

Cache: -1 seconds

Connection Timeout: 120 seconds
Directory Listings: visible
AutoIndex: visible

Serve GZIP Files: false

Serve Brotli Files: false
Default File Extension: none

Available on:
http://192.168.56.1:8080
http://192.168.1.152:8080
http://127.0.0.1:8080

Hit CTRL-C to stop the server

OEBPS/Images/tip.png

OEBPS/Images/B19879_08_04.png
& @ B 1 wodtescien |+
€ G @ hitpsy/flocalhost4200/cities AN Dt R - @

A Cities Countries

Cities
Here's alist of cities: feel free to play with t.

ilter by name (or part of it)...

e Name Lattude Longtude Country
1 Tokyo 356897 1396922 Jspan

2 Jakarta -6.175 106.8275 Indonesia
3 Delhi 28.61 77.23

4 Guangzhoy 2313 113.26 China

5 Mumbai 19.0761 728775

6 Manila 145958 1209772 Philippines

OEBPS/Images/QR_Code20500124521899944296.png
5

OEBPS/Images/B19879_09_12.png
PR g e———

Countes
st e v oy

[rrre—

PR * w0
[, x o
o e w2 s
P— s ™

P

OEBPS/Images/B19879_04_12.png

OEBPS/Images/B19879_15_35.png
© | 1) Hesticheckcient x |+

<« C @ httpsy/delightful-coast-0dc5c6003.4.azurestaticapps.nethealth-check (15

A FetchData Health Check

Health Check

Here are the results of our health check:

Name ResponseTime Status Description

1CMP_01 37.1464 Unhealthy
1CMP_02 46254 Unhealthy
ICMP_03 1.4139 Unhealthy

Refresh

OEBPS/Images/B19879_05_09.png
Database

o)
—
¥

Entity Framework

Domain Classes

Visual
Designer

OEBPS/Images/B19879_10_13.png
Chrome s being controlled by automated test software.

Chrome 119.0.0.0 (Windows 10)is idle

@Jasmine +.6.0

2 failures, randomized with seed 94368 Finished in 0.106s

Cities title

Expectad ‘cities’ to aqual ‘citiest!
at Usercontext.apply (hetp://localhost :9876/_karma_webpack_/webpack: /src/app/cities/cities. componantt. spec. 5:82:31)
at _zonedeTegate.invoke (http://localhost:9876/ karna_webpack_/webpack: /node_modules,/zone. s/ Fesn2015 /zone. 15:368:26)
at proxyzonespec.ontnvoke (htep: //localhost:9876/ Karna_webpack_/nebpack: /node_modules,/zone. 3/ Fess2015 /zone-testing. 127
at _zonenelegate.nvoke (htep://localhost:9876/_karna_webpack_fuebpack: /node_modules /zone. s/ Fesn201s /zone. 15:367:52)

Expected 3 to be greater than 3.

| at usercontext apply (htep://lacalhost 9876/ _karma_webpack _/wehpack: /sre/app/eitias/citias companantt spee ts:90:30)
T eneoagite ke it oot 476t on_ sk /o b6/ RS 2o 11368126
= Pranyaaipe. ik, (e oot 8764 arme s s /e 14/ o, 4/ oL -S43 10, 3552738
2 Sonestages: ket TocaThar 878/ aras_vaoach/nsosck/ o mmbe1s e 1/ esn01S 2o 5367133

OEBPS/Images/B19879_10_02.png
“

B3 Chapter_10
b+ worldcities client
> +&1 WorldCities Server
4+ 53 WorldCities Server Tests

P &8 Dependencies

Reference Manager - WorldCities.Server Tests

4 Projects

Solution
Search Results.

b Shared Projects
b coMm

> Browse

Name

‘worldcities.client (Chapter_10Wworldcities.cli...

WorldCities Server (Chapter_10\WorldCities.

? X
[aporo x[]

Path Name:

C\Projects\ASP.NET-... WorldCities Server (Chapter_10
C\Projects\ASP.NET-... \WorldCities Server)

OEBPS/Images/B19879_03_09.png
[]
>
<«

©® O
C

7Y HealthCheck x S

() https;//localhost:4200/fetch-data A m o @

Home | Fetch Data

Weather forecast

This component demonstrates fetching data from the server.

Date Temp. (C) Temp. (F) Summary
2023-11-25 50 121 Freezing
2023-11-26 29 84 Cool
2023-11-27 27 80 Scorching
2023-11-28 51 123 Chilly

2023-11-29 -5 24 Bracing

OEBPS/Images/B19879_06_06.png
eoul”,"lat":37.5600, " lon" :126.9900, "countryId”:7, "country” :null},
Mexico City","lat":19.4333,"lon":-99.1333,"countryId":8,"country”:null}]

OEBPS/Images/B19879_11_10.png
FUIEEEE
& C @& nttpsy/localhostd200/login
.
" Countries

sere.ssaors

2R D@] -0
Bements Comole Soures Nework peformance » + gs & 8 i X
Login [N P Y tn
R ——.
Login sesin o558
o
user@email.com ool et
o1
passuora

o001 UL ORSCCTSTABRVCIS. oy odh LS 2Ny SCER LT WLADY 29936 BYDALL A ZLNEHSSS

OEBPS/Images/B19879_07_14.png
_

& > G O hupssocaosta00/countries A Do e R - O

A Cities Countries

Countries

Here's alist of countries: el free to play withit.

» Name 1502 1503 ‘
45 Afghanistan AR A6 ‘
149 Albania A AB
48 Algeria 0z ozA ‘
207 American Samoa as ASM
198 Andorra 0 AND ‘

25 Angola »0 GO

OEBPS/Images/B19879_15_23.png
User #1

World Wide Web

TCP 80/443 &= Tcpso0 &
; ;

Reverse Proxy Web Server
(NGINX) (Kestrel)

OEBPS/Images/B19879_05_14.png
& D | 5 s sonw x|+

&€ G O hups/sgupanrecomsign

rosoft

You're not eligible for an Azure free
account

The Asurefre account i ony avaable t nev custorers. You've previously signed up vith tis

emailaddress,but you can kep going with pay-a5-you-go pricng.

Sign up for Azure with pay-as-you-go pricing

OEBPS/Images/B19879_04_06.png
& @ M 72 Healthchecklient x |+

<« G @ https://localhost:4200/health-check A m

Home | Fetch Data | Health Check

Health Check

Here are the results of our health check:

Name Response Time ~Status Description
ICMP_ 01 187856 Healthy ICMP to wwiw.ryadel.com took 14 ms.
ICMP 02 200525 Healthy ICMP to www.google.com took 12 ms.
ICMP_03 17.6457 Unhealthy ICMP failed: An exception occurred during a Ping request.

w
=)
3
[~

OEBPS/Images/B19879_11_05.png
D Command rompt ~ 1 - o x

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_11\WorldCities\WorldCities. Server>dotnet of migrations add "Identity" -o
Build started

Build succeeded.

Done. To undo this action, use 'ef migrations remove’

ata/Migrations”

€:\Projects\ASP.NET-Core-8-and-Angular\Chapter_11\WorldCities\WorldCities. Servers}

OEBPS/Images/B19879_05_32.png
).

A

1
ame":” "Tokyo",
at": 35.6897,
on": 1356923,
countryId": 1,
country": null

‘country”: i

[localhost:40443/api/Cities/

A

OEBPS/Images/B19879_02_10.png
@ O 72 HealthCheck x |+ -

[3
-
&« C) https/localhost4200 A % m = 2

Weather forecast

This component demonstrates fetching data from the server.

Date Temp. (C) Temp. (F) Summary
2023-11-24 15 58 Sweltering
2023-11-25 -18 0 Cool
2023-11-26 36 96 Warm
2023-11-27 -8 18 Sweltering

2023-11-28 54 129 Bracing

OEBPS/Images/B19879_02_08.png
info:

info:

info:

info:

CAProjectsASPNET-Core-8-¢ X+ v o

Now Listening on: https://Localhost:4odu3

Microsoft Hosting. Lifetine[14]

Now listening on: http://localhost: 0080

Microsoft.Hosting. Lifetine[0]

Application started. Press Ctrl+C to shut down.

Microsoft.Hosting. Lifetine[0]

Hosting environment: Development

Microsoft.Hosting.Lifetine[0]

Content root path: C:\Projects\ASP.NET-Core-8-and-Angular\Chapter_62\Heal thCheck\HealthCheckAPT

OEBPS/Images/B19879_07_07.png
W

& G O hups/flocalhosta200/city A omoe e R - O
@ D Wekome fements Console » | 0zps & @B i X
olclEaiiola. =0 el
Angular i3 rumning in development node. sore.nisszoons
i © PPOST https://localnost:a200/api/Cities city-edit.component.ts:102 © Q
Create a new City o irvaress Seven roery
LR city-edit. conponent.ts:110 O
Name:+ o tptrrotasporse (bsders: itpheadrs, stats? 580, SKateatot: Trtenat
SomeNewCity — - 202 filse, -} @
T m,u.a...m..m.. [soror occurrea
el temy e
mestage: Wity Sasiure respanse for nitps:),Locainest:s100/sps/Cties: 590
Lotituders
10
“Internal server Ervor
 “https://localhost:4200/api Cities”
» [rrocotypel): necpesponsesase
Longiude: N
10

OEBPS/Images/B19879_10_03.png
ommand
+\Projects \ASP. NET-Core-8-and-Angular\Chapter_10\KorldCities\HorldCities.server. Tests>dotnet test

Deternining projects to restore. ..

ALl projects are up-to-date for restore.

WorldCities.server -> C:\Projects\ASP.NET-Core-g-and-Angular\Chapter 10\WorldCities\Horldcities.Server\bin\Debug\nets

~@\WorldCities. Server.d1l
worldcities. Server.Tests -> C:\Projects\ASP.NET-Core-8-and-Angular\Chapter_10\WorldCities\orldCities. server. Tests\bi

n\Debug\netd. e\Worldcities. Server. Tests.d11
Projects\ASP..NET-Core-8-and-Angular\Chapter_10\worldCities\HorldCities.Server. Tests\bin\Debug\nets.o\WorldCitie:
server. Tests.d11 (.NETCoreApp, Version=v.e)

wicrosoft (R) Test Execution Command Line Tool Version 17.8. (x64)

opyright (c) Microsoft Corporation. ALl rights reserved.

Starting test execution, please wait.
A total of 1 test files matched the specified pattern.

passed! - Failed 6, passed: 1, Skipped: L Total: 1, Duration: ¢ 1 ms - Worldcities,Server,Tests.dll (nets.a)

Projects\ASP.NET-Core-8-and-Angular\Chapter 10\WorldCities\WorldCities.Server.Tests>

OEBPS/Images/B19879_04_07.png
1 Using package manager: npm
| Package information loaded.

The package @angular/material@17.0.1 will be installed and executed.
Vould you Llike to proceed? Yes

/ Packages successfully installed.

? Choose a prebuilt theme name, or "custom" for a custom theme: Indigo/Pink [Preview:
https://material.angular.io?theme=indigo-pink]

7 Set up global Angular Material typography styles? Yes

7 Include the Angular animations module? Include and enable animations
UPDATE package.json (1555 bytes)

/ Packages installed successfully.

UPDATE src/app/app.module.ts (939 bytes)

UPDATE angular.json (3508 bytes)

UPDATE src/index.html (526 bytes)

UPDATE src/styles.css (181 bytes)

OEBPS/Images/B19879_12_02.png
Web App Manifest Generator

‘Web App Manifest is a JSON document that provides application metadata

manifestjson
for The Progressive Web Apps. Use the form below to generate the JSON

file and optionally upload an app icon. {

“nane”: "Healthcheck”,

R o short_nane”: “HealthCheck”,
“theme_colon”: "#2196f3",

- “background_color”: "#2196€3"
219663 219613
Standalone -y -
Generate Icons
, , The Web App Manifes allows speciying consof vaying sze. Upload a 5126512 mage fo the

icon by clcking on th fied below and wel generate the remaining sizes.

Upload Icon

CLICK TO FORK ON GITHUE

OEBPS/Images/B19879_11_11.png
- o x

2 ® DO 7 wotdiecien x|+
& G O hups/ocalhostazo 2 v DR R -0
4D veome e conce soues >+ 0s & B 1 X
A Cities Countries B Qwpv o e Oetaultevels v 94 Aridden 83
[Ty T Rp——— Soresizsss

WorldCities

sorin.cons
SEsczonL A 210}

A sample web application to demonstrate how to interact with ASPNET,
‘Angular,Entity Framework Core and a SQL Database.

axotyped]s Object)

OEBPS/Images/B19879_15_02.png
Azure services

—|— m m Virtual machines * [ﬁ]

Create a Virtual Resource
resource machines groups
+ create v View

OEBPS/Images/B19879_15_28.png
& Microsoft.Web-StaticApp-Portal-482fd8b4-9163 | Overview =

Deployment
P Search « lij Delete () Cancel " Redeploy I Download () Refresh
& Overview .
- @ Your deployment is complete

Inputs.
N Deployment name : Microsoft.Web-StaticApp-Portal-482fd8b4-9163
%= Outputs Subscription : Microsoft MVP
[Template Resource group : PacktPub

> Deployment details

v Nextsteps

Go to resource

OEBPS/Images/B19879_11_04.png
Test discovery fnished: 2 Tests found in 6.2 sec

Test

® @ healthcheckclient (2)

> ® worldcities lient (3)

4 © Worldciies Server Tests (3)
© WorldCities ServerTests (3)
©© CitiesController_Tests (2)

4 @ SeedController_Tests (1)
© CreateDefaultusers

Duration

113 min
1.3 min
113 min
410ms
a10ms

Test Detall summary

@ Worldities Server Tests SeedController_Tests CreateDefaultUsers
(5] Source: SeedController Tests.csline 21
(®Duration: 410 ns

OEBPS/Images/B19879_05_08.png
Domain Classes

Entity Framework

OEBPS/Images/B19879_13_03.png
E CAWINDOWS\system32icmd. X v o x

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_13\WiorldCities\worldcities.client>ng add apollo-angular
© Using package manager: npm

7 Found compatible package version: apollo-angular@6.6.0.

/ Package information loaded.

The package apollo-angular@s.0.6 will be installed and executed.
Vould you Like to proceed? Yes

I Packages successfully installed.

7 Url to your GraphQL API api/graphql

7 Version of GraphQL 16

CREATE src/app/graphgl.module.ts (657 bytes)

UPDATE package. json (1763 bytes)

UPDATE tsconfig. json (871 bytes)

UPDATE src/app/app.module. ts (2044 bytes)

I Packages installed successfully.

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_13\WorldCities\worldcities.client>

OEBPS/Images/B19879_05_25.png
) cumoowsisemszans. X+ v - o x

€:\Projects\ASP. NET-Core-8-and-Angular\Chapter_05\WorldCities\WorldCities. Serversdotnet of migrations add "Initial" -o "Data/Migrations"

Build started...
Build succeeded.
Done. To undo this action, use 'ef migrations remove’

C:\Projects\ASP. NET-Core-8-and-Angular\Chapter_05\WorldCities\WorldCities. Servers|

OEBPS/Images/B19879_12_12.png
HealthCheck - HealthcheckClient

A FetchData Health Check

Health Check

Here are the results of our health check:

ICMP_01 81.6389 Healthy ICMP to www.ryadel.com took 14 ms.
ICMP_02 34.3424 Healthy ICMP to www.google.com took 14 ms.

\
Name Response Time Status Description
ICMP_03 145.9595

OEBPS/Images/B19879_07_18.png
S @ D 1 workdtesClent x &R
& C O hipssocahosta00/countries A om o a8 - O

A Cities Countries

Countries

Here's a list of countries: feel free to play withit.

New Japan
D Name 4 1502 1503
242 New Japan NS NoP

ltems perpage: | 10 v 1-10f1

OEBPS/Images/B19879_15_30.png
) HealthCheck-API-2023 | CORS

e op.
[search
= consoe
IS Advanced Tools

< app senice Eitor revien)

extensions

ann

AP Management

29 dafintion
@ CoRs.

Monitoring
o ers
i et
togs

@ Adsor ecommendatons

swe X discord

@ e

ross-Origin Resource Sharing (CORS)alows JavaScript code runring in browser on an esteral host to interact with your backend. Specify the
orains that should be allowed to make cros-origin call fr example:htp:/example.con:12345) To alow al use ™ and remove al other oiains

romthe st Sashes are not allowed as part of domain or after TLD. Lesrn more

Allowed Origins

[pesigt s cses00 4 mresaicoppiret

-

OEBPS/Images/B19879_09_17.png
71
72
73
k0
75
76
77
78
79
80
81
82
83

—C — 1 —

1

// react to changes in the form.name control
this. form.get("name")! .valueChanges
-subscribe(Q) => {
form.dirty)[R8
this.log("Name has been loaded with initial values.
}
else {
this.log("Name was updated by the user.

;i

this.loadData();

OEBPS/Images/B19879_12_06.png
@ B | 1) Heatcheckclent x |+

< C (ﬁ Ittps:/localhost:4200)

A Fetch Data Health Check

WARNING: the app is currently offline: some features that rely upon the back-end might not work as expected. This message
will automatically disappear as soon as the internet connection becomes available again.

Greetings, stranger!

This is what you get for messing up with ASPNET and Angular.

OEBPS/Images/B19879_03_05.png
K Karma x4+

C @ localhost:9876/%id=18168157

Chrome 119.0.0.0 (Windows 10) is idle

Appcomponent
* chould retrieve weather forecasts from the server

+ should create the app.

OEBPS/Images/B19879_15_13.png
0’ NET8-Angular-Wi Home

i - TG - GShowAl | Grovpby: Ares

OEBPS/Images/B19879_06_01.png
[localhost:40443/api/cities/12 X

© https://localhost:40443/api/cities/12 A

: 12,
“New York”,
“40.6943,
-73.9249,

“countryId”: 16,
“country”: null

OEBPS/Images/B19879_09_06.png
Show output from: [Debug S @O
Angular is running in development mode.

Hicrosoft . EntityFraneworkCore. Database. Connand: Information: Executed DbCommand (21s) [Parameters=[], CommandTypes'Text',
CommanaTimacut-'30"]

SELECT CONT(*)

FROM [Countries] AS [c]

Microsoft. Enti tyFraneworkCore .Database .Connand: Information: Executed DbCommand (3nms) [Parameterss(@_p_0s'2' (DbType = Int32)],
‘30"

ComnandType='Text", CommandTimeout

SELECT T0P(1) [c].[1d], [c]-[CountryTd], [c].[Lat], [c].[Lon], [c].[Name]
FROM [Cities) As [c]

WHERE [c].[1d) = €_p_o

[vite] connected.

Hey, we're currently editing Moscow from our Angular app!

Watch 1 Error List ocals | Exception Setting

OEBPS/Images/B19879_11_09.png
1Y Wordiescient

€ C O nps/localhost4200/iogin A oo e 8 - 0
@ (0 Wekome Gements Comol Souces Newok Pefomaxe > + @188 & @ i X
Cities Counwies Login [SRCRESINENE Dl ® 05 stigten 3
[rrr—pw——— soresisonss
Login ©ratied to 1ont it o seatus of 401) wilccomtionins) Q.
ERROR: Invalid Email or Pagoword.. ¥ tpErraraspenss B - —

rror: {succass: false, messaga: “Invalid Email or passnord.’, token: null)

 heders: _ptpnasdars {rormolizediones: Hap(), lyipdote: noLL, LesyInit:)
eml message: iiep atlure rasponse fon heeps.//Localnost. 4200/sp/Account/Login: 401 Unauthorizes”
test@example.com -
StatusTent: “Unsuthorszed®
Passmore url: hteps:/Locaihost 4269/apd Account/Login”

¥ [Prototypad]: Hetphesponsesase

Cancel

OEBPS/Images/B19879_04_02.png
& G @ httpsy//localhost:40443/api/health

Unhealthy

OEBPS/Images/B19879_05_19.png
Home > Create a resource > Marketplace > Azure SQL > Select SQL deployment option >

Create SQL Database

Micosoft

Basics Networking ~ Security Additional settings Tags Review + create
Product detals

SQL database Estimated costper month

by Microsoft aspER

Terms of use | Prvacy policy

Terms

By cicking Create”, | () agree o the legalterms and privacy statement() associated with the Marketplace ofering(s)
listed above; (b) authorize Microsoft o bill my current payment method for the fees associated with the offering(s) it
the same biing frequency as my Azure subscription; and (0 agree that Microsoft may share my contact, usage and
ransactonsl information with the provider(s) o the offerng(s) for support, biling and other transactional activies

Microsoft doss ot provide rights for third-party offrings. For addiional detailssee Azure Marketplace Torms.

Subscrption
Resource group
Region

Database name.

Server

Authentication method
Server adrmin login

Compute + storage

Backup storage redundancy

Networking
Allow Azure services and resources to
access thisserver

A currnt clint 1P addrocs
422117882

private endpoint
Minimum TLS version
Connection Policy

Mictosoft MVP
Pacapub

West Europe

WorldCities

(new) worldcities-b-2023
SQL authenticaion
WorldCitesadmin

Basic:2GB storage

Locally.redundant backup storage

Yes
e

None.
12
Default

Cost summary

Basic sl
Costper TV 208
D s

092
x5

458cn

OEBPS/Images/B19879_05_10.png
DBMS Data Lifecycle

From Database to Front-End

> «—> “«>
Countries | «—> «>

DBMS Server Database DB Tables ORM Framework Entities
(SQL Server on Azure) (WorldCities) (EF Core) (C# Classes)
@ «———JSON——> @
Front-end Back-end
(Angular Components) (NET Controllers)

1

(REST, GraphQl, etc.)

Web Browsers Web Services
(User Clients)

HTML

