
www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

MCSD CERTIFICATION TOOLKIT
(EXAM 70-483)

INTRODUCTION .xxvii

ChApTER 1 Introducing the Programming C# Certification . 1

ChApTER 2 Basic Program Structure .19

ChApTER 3 Working with the Type System . 59

ChApTER 4 Using Types . 113

ChApTER 5 Creating and Implementing Class Hierarchies . 161

ChApTER 6 Working with Delegates, Events, and Exceptions 207

ChApTER 7 Multithreading and Asynchronous Processing . 265

ChApTER 8 Creating and Using Types with Reflection, Custom Attributes,

the CodeDOM, and Lambda Expressions . 319

ChApTER 9 Working with Data . 361

ChApTER 10 Working with Language Integrated Query (LINQ) 431

ChApTER 11 Input Validation, Debugging, and Instrumentation 469

ChApTER 12 Using Encryption and Managing Assemblies . 527

AppENDIX Answers to Sample Test Questions . 571

INDEX . 587

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

MCSD Certification Toolkit (Exam 70-483)

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

MCSD Certification Toolkit (Exam 70-483):
PROGRAMMING IN C#

Tiberiu Covaci
Gerry O’Brien
Rod Stephens
Vince Varallo

www.EBooksWorld.ir

www.EBooksWorld.ir

MCSD Certification Toolkit (Exam 70-483): Programming in C#

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 9781118612095
ISBN: 978-1-118-61206-4 (ebk)
ISBN: 978-1-118-72950-2 (ebk)
ISBN: 978-1-118-72929-8 (ebk)
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013933931

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To Lia for her patience and understanding during the

writing process. All my love.

—Gerry O’Brien

For Maki.

—Rod Stephens

To Renee, Madison, and Courtney.

—Vince Varallo

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

ABOUT ThE AUThORS

TIBERIU COVACI is an Independent trainer and mentor teaching C# and .NET in general, and
ASP.NET and parallel computing in particular. He works closely with Microsoft Learning helping
them develop new courses, conducting beta classes and doing technology reviews for the upcoming
courses. He was part of the Microsoft Certified Trainer Advisory Council between 2010 and 2012.

Tiberiu is a popular speaker at industry conferences and user groups around the world. His sessions
and workshops get good reviews from both the attendees and the organizers.

Tiberiu is a Microsoft Certified Trainer and holds almost all .NET certification from .NET 2.0 and
forward. He is as well an IASA certified trainer, an ASP.NET Insider, and a Telerik Insider. He is an
INETA Speaker Bureau member and IASA Speaker. For his dedication and passion, Microsoft and
Telerik presented Tibi with the MVP Award.

Tiberiu is the husband of lovely Nicoleta and the proud father of Anna and Disa.

GERRY O’BRIEN currently works at Microsoft as a program manager in Microsoft Learning where
he manages internal tools and platforms working with teams of developers and testers. Prior to the
program manager role, Gerry worked as the Certification Product Planner for the developer and
SQL Server audiences at Microsoft Learning. In that role, he planned the exam portfolio for these
audiences, working with industry experts to define the exam content and manage the exam from
envisioning through development, beta, and release. Prior to working at Microsoft, Gerry worked as
a software development consultant and trainer.

ROD STEphENS started out as a mathematician, but, while studying at MIT, discovered how much
fun programming is and has been programming professionally ever since. During his career, he has
worked on an eclectic assortment of applications in such fields as telephone switching, billing, repair
dispatching, tax processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and has taught introductory
programming at ITT Technical Institute. He has written more than two dozen books that have been
translated into languages from all over the world, and more than 250 magazine articles covering
Visual Basic, C#, Visual Basic for Applications, Delphi, and Java.

Rod’s popular VB Helper website (www.vb-helper.com) receives several million hits per month and
contains thousands of pages of tips, tricks, and example programs for Visual Basic programmers, as
well as example code for this book. His C# Helper website (www.csharphelper.com) contains simi-
lar material for C# programmers.

You can contact Rod at RodStephens@csharphelper.com or RodStephens@vb-helper.com.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.vb-helper.com
http://www.csharphelper.com
mailto:RodStephens@csharphelper.com

VINCE VARALLO has been developing applications using Microsoft technologies for the past 17
years. He began his career as a Visual Basic 3 developer and has worked with VB 4, 5, and 6 until
the .NET Framework 1.0 was released. He was an early adopter of ASP.NET and C#, and has con-
centrated on line-of-business applications throughout his entire career. He is currently the director
of Technology Solutions at a digital marketing agency where he works with a wide variety of tech-
nologies. He previously authored ASP.NET 3.5 Enterprise Application Development with Visual
Studio 2008 and contributed as an author for Professional Visual Basic 6: The 2003 Programmer’s
Resource.

www.EBooksWorld.ir

www.EBooksWorld.ir

ABOUT ThE TEChNICAL EDITOR

ANDERS BRATLAND combines his two passions, programming and teaching other people how to
program, by working as a freelance consultant, which gives him the chance to work both as a
Microsoft Certified Trainer and as a developer.

Anders is a well-known speaker at conferences like TechDays, Scandinavian Developer Conference,
and Developer Summit. Anders is also active as speaker in different user groups, such as
DotnetForum, and also as one of the organizers in the largest Swedish user group, Swenug.

Anders has a strong commitment to techniques and methods that can help projects to be successful,
especially by adopting agile values and disciplines.

Anders is a Microsoft ASP.NET MVP and a member of the Swedish Microsoft Extended Expert
Team, MEET.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

CREDITS

EXECUTIVE EDITOR
Robert Elliott

pROJECT EDITOR
Jennifer Lynn

TEChNICAL EDITOR
Anders Bratland

pRODUCTION EDITOR
Daniel Scribner

COpY EDITOR
San Dee Phillips

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

pRODUCTION MANAGER
Tim Tate

VICE pRESIDENT AND EXECUTIVE GROUp
pUBLIShER
Richard Swadley

VICE pRESIDENT AND EXECUTIVE pUBLIShER
Neil Edde

ASSOCIATE pUBLIShER
Jim Minatel

pROJECT COORDINATOR, COVER
Katie Crocker

COMpOSITOR
Jeff Lytle, Happenstance Type-O-Rama

pROOFREADER
James Saturnio, Word One

INDEXER
Ron Strauss

COVER DESIGNER
Wiley

COVER IMAGE
iStockphoto/microstocker

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

ACKNOWLEDGMENTS

I would like to thank my lovely wife Nicoleta and my daughters, Anna and Disa, for supporting me
and putting up with me for the past three years. I know this was a long process, and I know you
might have not liked it at times, but now that is done I hope that people will find it educational and
then all of it was worth it.

I want to thank Bob Elliott for believing in me even when I didn’t. I want to thank Jennifer Lynn
and Rosemarie Graham for their help in making this book happen. I would like to thank Anders
Bratland for lending his expertise and making sure that this book is technologically accurate. I
would like to thank my co-authors Gerry O’Brien, Rod Stephens, and Vince Varallo for their hard
work and devotion.

I would also like to thank Sergiu Damian for his help reviewing my chapters, Catalin Pop for
helping me with his expertise on encryption, and Susan Ibach and Christopher Harrison for
recommending me as author.

Last but not least I would like to thank my parents for making me who I am.

—Tiberiu Covaci

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

CONTENTS

INTRODUCTION xxvii

ChApTER 1: INTRODUCING ThE pROGRAMMING C# CERTIFICATION 1

Getting Certified 1
Why Get Certified? 2
What Is MS Certification? 4

Certification Changes 5
The Initial Certifications (Version One) 5
A New Generation of Certifications (Version 2) 6
The Current Microsoft Certifications (Version 3) 6
Other Microsoft Certifications: The MTA 7

Things to Know About the Test 8
How the Test Is Created 8
How Questions Are Written 9

How to Study for the Exam Using This Book 11
Prep Guide 11
Functional Groups 11
Practice Questions 12
Preparation 12

The 70-483 Objectives 12
Manage Program Flow (25 Percent) 12

Implement Multithreading and Asynchronous Processing 13
Manage Multithreading 13
Implement Program Flow 13
Create and Implement Events and Callbacks 13
Implement Exception Handling 13

Create and Use Types (24 Percent) 13
Create Types 13
Consume Types 14
Enforce Encapsulation 14
Create and Implement a Class Hierarchy 14
Find, Execute, and Create Types at Runtime Using Reflection 14
Manage the Object Life Cycle 14
Manipulate Strings 14

Debug Applications and Implement Security (25 Percent) 14
Validate Application Input 15
Perform Symmetric and Asymmetric Encryption 15
Manage Assemblies 15

www.EBooksWorld.ir

www.EBooksWorld.ir

xviii

CONTENTS

Debug an Application 15
Implement Diagnostics in an Application 15

Implement Data Access (26 Percent) 15
Perform I/O Operations 15
Consume Data 16
Query and Manipulate Data and Objects by Using LINQ 16
Serialize and Deserialize Data 16
Store Data in and Retrieve Data from Collections 16

Summary 16
Additional Reading and Resources 17

ChApTER 2: BASIC pROGRAM STRUCTURE 19

Writing Your First Program 20
Exploring the Structure of the Program 21
Understanding Simple Statements 21
Understanding Complex Statements 23

Controlling Program Flow 24
Conditional Instructions 25
Boolean Expressions 28

Making Decisions in Code 29
if Statements 30
Beyond Basic if Statements 35
switch statements 36

Using Loops 38
for statements 39
Nested for Loops 42
foreach statements 43
while statements 45
do-while statements 46

Summary 51
Test Questions 51
Additional Reading and Resources 53
Cheat Sheet 54
Review of Key Terms 56

ChApTER 3: WORKING WITh ThE TYpE SYSTEM 59

Creating Value Types 61
Understanding Predefined Value Types 61
Working with Data Structures 66
Working with Enumerations 72

Creating Reference Types 76
Understanding Modifiers 77

www.EBooksWorld.ir

www.EBooksWorld.ir

xix

CONTENTS

Defining Fields 79
Using Constructors 81
Defining Methods 82

Overloaded Methods 88
Abstract and Overridden Methods 90
Extension Methods 92
Optional and Named Parameters 94

Understanding Encapsulation 95
Properties 96
Enforced Encapsulation by Using Properties 97
Indexed Properties 101

Understanding Generic Types and Generic Methods 102
Defining Generic Types 103
Using Generic Types 103
Defining Generic Methods 103
Using Generic Methods 104

Summary 105
Chapter Test Questions 106
Additional Reading and Resources 108
Cheat Sheet 109
Review of Key Terms 111

ChApTER 4: USING TYpES 113

Converting Between Types 114
Using Widening and Narrowing Conversions 114
Using Implicit and Explicit Conversions 116
Casting 117

The is Operator 118
The as Operator 118
Casting Arrays 119

Converting Values 122
Parsing Methods 122
System .Convert 127
System .BitConverter 128

Boxing and Unboxing Value Types 128
Ensuring Interoperability with Unmanaged Code 130
Handling Dynamic Types 133

Manipulating Strings 137
Behind the Strings 138
String Constructors 138
String Fields and Properties 139
String Methods 140

www.EBooksWorld.ir

www.EBooksWorld.ir

xx

CONTENTS

Additional String Classes 144
StringBuilder 145
StringWriter 147
StringReader 147

Formatting Values 149
ToString 150
String .Format 150
Formatting Strings 151

Summary 153
Test Questions 154
Additional Reading and Resources 156
Cheat Sheet 157
Review of Key Terms 158

ChApTER 5: CREATING AND IMpLEMENTING CLASS hIERARChIES 161

Inheriting from a Base Class 162
Calling Parent Class Constructors 164
Calling Same Class Constructors 165

Designing and Implementing Interfaces 171
Defining Interfaces 173
Implementing Interfaces 174
Delegating Interfaces 175

Implementing Common Interfaces 176
IComparable 177
IComparer 179
IEquatable 182
ICloneable 183
IEnumerable 185

Managing Object Life Cycle 190
Implementing the IDisposable Interface 190
Providing Destructors 191
Using the using Statement 197

Summary 199
Test Questions 199
Additional Reading and Resources 202
Cheat Sheet 203
Review of Key Terms 205

ChApTER 6: WORKING WITh DELEGATES,
EVENTS, AND EXCEpTIONS 207

Working with Delegates 208
Delegates 208

www.EBooksWorld.ir

www.EBooksWorld.ir

xxi

CONTENTS

Delegate Details 211
Static and Instance Methods 212
Covariance and Contravariance 214

Built-in Delegate Types 215
Action Delegates 216
Func Delegates 216

Anonymous Methods 217
Lambda Expressions 218

Expression Lambdas 218
Statement Lambdas 221
Async Lambdas 222

Working with Events 223
Publishing Events 224

Predefined Event Types 225
Event Best Practices 225
Event Inheritance 227

Subscribing and Unsubscribing to Events 230
Using Code to Subscribe to an Event 230
Using Designer to Subscribe to an Event 231

Exception Handling 234
Error Checking and Exception Handling 234
try-catch-finally Blocks 235
Unhandled Exceptions 238
Common Exception Types 240

SQL Exceptions 242
Overflow Exceptions 244

Exception Properties 246
Throwing and Rethrowing Exceptions 248

Using Exceptions and Return Values 248
Catching, Throwing, and Rethrowing Exceptions 249
Creating Custom Exceptions 251
Making Assertions 252

Summary 253
Chapter Test Questions 253
Additional Reading and Resources 258
Cheat Sheet 259
Review of Key Terms 262

ChApTER 7: MULTIThREADING AND
ASYNChRONOUS pROCESSING 265

Creating Responsive Applications 266
Working with Threads 267

www.EBooksWorld.ir

www.EBooksWorld.ir

xxii

CONTENTS

Spawning New Threads by Using ThreadPool 273
Unblocking the UI 276

BackgroundWorker Class 276
Multithreaded Windows Forms Applications 279
Multithreaded WPF Applications 280

Working with the Task Parallel Library 281
Introducing Task 282

Creating Tasks 284
Working with the Scheduler 288

Using the Parallel Class 288
Working with Continuations 291
Programming Asynchronous Applications with C# 5 .0 293

Exploring Advanced Multithreading
Programming Topics 297

Synchronizing Resources 298
Synchronization Events 298
Barriers 302

Using Locking Mechanisms 304
Monitors 305
Lock-Free Alternatives 306

Working with Concurrent Collections 308
Working with Cancellations 309

Summary 311
Chapter Test Questions 312
Additional Reading and Resources 314
Cheat Sheet 315
Review of Key Terms 316

ChApTER 8: CREATING AND USING TYpES
WITh REFLECTION, CUSTOM ATTRIBUTES,
ThE CODEDOM, AND LAMBDA EXpRESSIONS 319

Using the System.Reflection Namespace 320
Assembly Class 321
The System .Type Class 325

GetArrayRank 328
GetConstructors 328
GetEnumName, GetEnumNames, and GetEnumValues 329
GetField and GetFields 330
GetProperty and GetProperties 332
GetMethod and GetMethods 332

Read and Create Custom Attributes 335
Read Attributes 335
Create Attributes 337

www.EBooksWorld.ir

www.EBooksWorld.ir

xxiii

CONTENTS

Generate Code Using the CodeDOM Namespace 340
CodeCompileUnit 344
CodeNamespace and CodeNamespaceImport 344
CodeTypeDeclaration 345
CodeMemberField 345
CodeMemberProperty 345
CodeMemberMethod 347
CodeParameterDeclarationExpression
and CodeMethodInvokeExpression 348
CodeDOMProvider 348

Lambda Expressions 349
Delegates 349
Anonymous Methods 351
Lambda Expressions 351

Summary 352
Chapter Test Questions 353
Additional Reading and Resources 357
Cheat Sheet 358
Review of Key Terms 359

ChApTER 9: WORKING WITh DATA 361

Working with Data Collections 362
Arrays 362
Collections 365

System .Collections 365
System .Collections .Generic 371
Custom Collections 374

Consuming Data 377
Working with ADO .NET 377

Connection 377
Command 379
DataSet, DataTable, and DataAdapter 384

Working with the ADO .NET Entity Framework 388
Create an Entity Framework Model 388
Select Records 391
Insert Records 392
Update Records 393
Delete Records 393
Call a Stored Procedure 393

Creating WCF Data Services 394
Create a WCF Data Service 395

www.EBooksWorld.ir

www.EBooksWorld.ir

xxiv

CONTENTS

Create a Client Application That Uses WCF Data Services 400
Request Data as JSON in a Client Application 403

Performing I/O Operations 404
Files and Directories 405
Streams 408
Readers and Writers 410
Asynchronous I/O Operations 414

Understanding Serialization 416
Binary Serialization 416
XML Serialization 417
JSON Serialization 418
Custom Serialization 419

Summary 421
Chapter Test Questions 422
Additional Reading and Resources 427
Cheat Sheet 428
Review of Key Terms 429

ChApTER 10: WORKING WITh
LANGUAGE INTEGRATED QUERY (LINQ) 431

Understanding Query Expressions 432
Filtering 434
Ordering 436
Projection 437
Joining 438
Grouping 443

Understanding Method-Based LINQ Queries 445
Filtering 445
Ordering 446
Projection 446
Joining 449
Grouping 454
Aggregate Functions 455
first and last 456
Concatenation 457
Skip and Take 459
Distinct 459

Utilizing LINQ to XML 461
Summary 462
Chapter Test Questions 463
Additional Reading and Resources 465
Review of Key Terms 467

www.EBooksWorld.ir

www.EBooksWorld.ir

xxv

CONTENTS

ChApTER 11: INpUT VALIDATION, DEBUGGING,
AND INSTRUMENTATION 469

Input Validation 470
Avoiding Validation 470
Triggering Validations 471
Validating Data 472

Using Built-in Functions 473
Using String Methods 474
Using Regular Expressions 475
Using Sanity Checks 483

Managing Data Integrity 494
Using Database Validations 494
Using Assertions 494

Debugging 497
Preprocessor Directives 498

#define and #undef 498
#if, #elif, #else, and #endif 498
#warning and #error 500
#line 500
#region and #endregion 500
#pragma warning 501
#pragma checksum 503

Predefined Compiler Constants 503
Debug and Trace 504

Debug and Trace Objects 505
Listeners 506

Programming Database Files 508
Instrumenting Applications 509

Tracing 509
Logging and Event Logs 509
Profiling 511

Using a Profiler 511
Profiling by Hand 513
Using Performance Counters 514

Summary 517
Chapter Test Questions 518
Additional Reading and Resources 521
Cheat Sheet 522
Review of Key Terms 525

www.EBooksWorld.ir

www.EBooksWorld.ir

xxvi

CONTENTS

ChApTER 12: USING ENCRYpTION AND
MANAGING ASSEMBLIES 527

Using Encryption 528
Choosing an Appropriate Encryption Algorithm 529

Symmetric Encryption 529
Asymmetric Encryption 534
Stream Encryption 536

Hashing Data 538
Managing and Creating Certificates 542
Implementing Key Management 547
Choosing When to Use Which 548

Managing Assemblies 551
What Is an Assembly? 551
Understanding Assembly Versions 552
Signing Assemblies Using Strong Names 555
Implementing Side-by-Side Versioning 558
Adding Assemblies to the Global Assembly Cache 562

Summary 564
Chapter Test Questions 564
Additional Reading and Resources 567
Cheat Sheet 568
Review of Key Terms 569

AppENDIX: ANSWERS TO SAMpLE TEST QUESTIONS 571

Chapter 1: Introducing the Programming in C# Certification 571
Chapter 2: Basic Program Structure 571
Chapter 3: Working with the Type System 572
Chapter 4: Using Types 573
Chapter 5: Creating and Implementing Class Hierarchies 574
Chapter 6: Working with Delegates, Events, and Exceptions 575
Chapter 7: Multithreading and Asynchronous Processing 577
Chapter 8: Creating and Using Types with Reflection,
Custom Attributes, the CodeDOM, and Lambda Expressions 578
Chapter 9: Working with Data 580
Chapter 10: Working with Language Integrated Query (LINQ) 582
Chapter 11: Input Validation, Debugging, and Instrumentation 584
Chapter 12: Using Encryption and Managing Assemblies 585

INDEX 587

www.EBooksWorld.ir

www.EBooksWorld.ir

INTRODUCTION

WhEN WE FIRST TALKED ABOUT WRITING ThIS BOOK, our idea was to offer a way to our readers to
learn to program using C#, and the byproduct of this process was for you to pass the 70-483 certifica-
tion exam given by Microsoft. Being certified on specific technologies helps you in many ways. First, it
helps you understand which parts are considered by the specialists to be important. Second, it helps you
to understand a new technology by having a goal. Finally, it helps you in your career because certifica-
tions are recognized by employers, and this can give you advantage over other applicants.

WhO ThIS BOOK IS FOR

Microsoft recommends that you have at least 1 year of experience programming in C# before
attempting to take Exam 70-483. In addition, we recommend that you have some experience with
other programming languages, although it is not necessary. If you are an experienced programmer,
we recommend you to skim the chapters you are familiar with and read in detail those chapters
you are not so confident about. If you are a novice programmer, we recommend you read the entire
book, and make sure you understand all the chapter test questions and the study the Cheat Sheet at
the end of every chapter.

WhAT ThIS BOOK COVERS

This book covers C# language version 5.0 and .NET Framework version 4.5. We tried to cover all
the skills measured by Exam 70-483, with each chapter focusing on specific key objectives. We
provide, as well, many representative sample test questions that are similar to the ones used by
Microsoft. You can find these questions at the end of every chapter.

hOW ThIS BOOK IS STRUCTURED

Instead of following the test objectives as they were specified by Microsoft, this book follows a more
natural approach to learning, where the knowledge base is built gradually.

In every chapter in this book you can find the following parts:

➤➤ A table showing how each chapter correlates to the test objectives

➤➤ Real-world case scenarios and code labs with solutions

➤➤ Advice, warnings, best practices, common mistakes, notes, and sidebars to point out impor-
tant material

➤➤ Chapter test questions structured similar to how you will see questions on the exam

➤➤ Additional reading and resources

www.EBooksWorld.ir

www.EBooksWorld.ir

xxviii

INTRODUCTION

➤➤ Cheat Sheets

➤➤ Review of key terms

NOTE The chapter test questions and answers, the Cheat Sheet, and Review of
Key Terms are also available on the website for you to download and print.

Following is a breakdown of each chapter’s focuses:

Chapter 1, “Introducing the Programming C# Certification Test”: This chapter introduces you
to the Microsoft certification process and to the specifics of the 70-483 Programming in C#
certification.

Chapter 2, “Basic Program Structure”: This chapter covers the topics necessary for you to be suc-
cessful in understanding core functionality in the C# programming language. Key topics enable
you to learn about statements in C#, both simple and complex. At the end of this chapter, you will
understand how to create basic programs in C#.

Chapter 3, “Working with the Type System”: This chapter covers the type system in C#. You learn
about value and reference types, how to define them, and how to use them. You also learn the basic
concepts of object-oriented programming.

Chapter 4, “Using Types”: This chapter talks about how to work with types, convert between data
types, and work with dynamic types. After that you explore different ways to work with strings.

Chapter 5, “Creating and Implementing Class Hierarchies”: This chapter continues the discussion
about object-oriented programming (started in Chapter 3), and describes how to create class hierar-
chies and classes that implement common .NET interfaces. It also covers the object’s life cycle and
how to handle unmanaged resources.

Chapter 6, “Working with Delegates, Events, and Exceptions”: This chapter continues the discus-
sion started in Chapter 3 about the type system and talks about two special data types: exceptions
and delegates. After that, it discusses how to work with delegates to create and use events.

Chapter 7, “Multithreading and Asynchronous Processing”: This chapter shows you how to improve
the performance of your application by using threads, tasks, and the new asynchronous program-
ming paradigm introduced in C# 5.0.

Chapter 8, “Creating and Using Types with Reflection, Custom Attributes, the CodeDOM, and
Lambda Expressions”: Reflection is the capability to analyze code dynamically, read, modify,
and even invoke behavior dynamically. You learn how to define metadata for your code by using
Attribute classes. You also learn how to create code generators using the CodeDOM. Finally, you
learn how to query sets of data using expression- and method-based lambda expressions.

Chapter 9, “Working with Data”: This chapter looks at different ways to work with data sets. It dis-
cusses arrays, collections, and technologies such as ADO.NET, ADO.NET Entity Framework, and
WCF Data Services and how to work with the I/O system.

www.EBooksWorld.ir

www.EBooksWorld.ir

xxix

INTRODUCTION

Chapter 10, “Working with Language Integrated Query (LINQ)”: This chapter covers ways to query
data by using the Language Integrated Query.

Chapter 11, “Input Validation, Debugging, and Instrumentation”: This chapter starts by talking
about different ways to validate data input. After that it continues to talk about ways to debug and
instrument applications to minimize the errors.

Chapter 12, “Using Encryption and Managing Assemblies”: This chapter covers two apparently
unrelated technologies. First, you cover encryption to understand how to ensure data integrity and
privacy. After that you cover ways to manage assemblies as deployment units.

WhAT YOU NEED TO USE ThIS BOOK

To run the samples in the book, you need the following:

➤➤ A computer running Windows 7 or above

➤➤ Visual Studio 2012 Professional Edition or above. If you don’t have this version, you
can download a 90-day trial version from Microsoft (see http://www.microsoft.com/
visualstudio/eng/downloads).

The source code for the samples is available for download from the Wrox website at www.wrox.com/
remtitle.cgi?isbn=1118612094.

CONVENTIONS

To help you get the most from the text and keep track of what's happening, we’ve used a number of
conventions throughout the book.

REAL-WORLD CASE SCENARIO Sample Scenario

The Real-World Case Scenario is an exercise similar to what may appear on the test. You should work
through problems, following the text in the book.

Solution

After each Real-World Case Scenario, the example is explained in detail.

CODE LAB Sample Code Lab

The Code Lab focuses on code highlights discussed earlier. You must understand how and why this code
is used for the purpose shown to pass the test.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.microsoft.com/
http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/remtitle.cgi?isbn=1118612094

xxx

INTRODUCTION

Solution

After each Code Lab, the code and what it does is explained in detail.

COMMON MISTAKES

These boxes highlight mistakes you have made or seen others make. Here, you get a
chance to learn from others’ hard-learned lessons.

BEST pRACTICES

You are reading this book primarily to pass the MCSD Certification test. This fea-
ture covers topics highlighted because they are important for the test but also for
common work practices.

ADVICE FROM ThE EXpERTS

In these boxes you can find advice from the authors. We’ve been there before, and
we want you to learn from what we’ve learned.

EXAM TIpS AND TRICKS

Here, you can find information that focuses on the Microsoft certification test or
test-taking skills in general.

WARNING Warnings hold important, not-to-be-forgotten information directly rel-
evant to the surrounding text.

NOTE Notes point out important facts for you to remember.

www.EBooksWorld.ir

www.EBooksWorld.ir

xxxi

INTRODUCTION

As for styles in the text:

➤➤ We highlight new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl+A.

➤➤ We show filenames, URLs, and code within the text like so: persistence.properties

➤➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

STUDY MATERIAL AND CODE ON ThE WEBSITE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifically for this book, the code download is on the
Download Code tab at www.wrox.com/remtitle.cgi?isbn=1118612094.

You can also search for the book at www.wrox.com to find the code. Alternatively, you can go to
the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see the
code available for this book and all other Wrox books.

At the beginning of each chapter, you can find the location of the major code files for the chapter.
Throughout each chapter, you can also find references to the names of code files as needed in listing
titles and text.

Most of the code on www.wrox.com is compressed in a ZIP, RAR archive, or similar archive format
appropriate to the platform. After you download the code, just decompress it with an appropriate
compression tool.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-61209-5.

In addition to the code, on the website you will also find the sample test questions and answers
included in this book, as well as additional sample test questions and answers not included in this
book to help you practice for the 70-483 certification exam.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time, you can help us provide even higher quality
information.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

xxxii

INTRODUCTION

To find the errata page for this book, go to www.wrox.com/remtitle.cgi?isbn=1118612094 and
click the Errata link. On this page you can view all errata that has been submitted for this book and
posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information,
and if appropriate post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p .WROX .COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a web-
based system for you to post messages relating to Wrox books and related technologies and interact
with other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you can find a number of different forums that can help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1 . Go to http://p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join and any optional information you want to
provide, and click Submit.

 4 . You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/contact/techsupport
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

Introducing the Programming C#
Certification

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Getting certified

➤➤ Understanding Microsoft certifications

➤➤ Understanding Microsoft certification exams

➤➤ Studying for the exam

This chapter is an introduction to Microsoft certifications in general and the Programming C#
certification more specifically. In this chapter, you learn about the world of Microsoft certifi-
cations and why you might consider taking this exam and getting certified. The chapter also
presents information on how exam questions are considered and written for Microsoft exams
and describes how you can use this book to study for Exam 70-483.

A complete list of the topic areas that are covered on Exam 70-483 is also included to help you
understand what to expect for objectives of each exam as you work toward your MCPD certi-
fication using the C# programming language.

Due to the nature of the content of Chapter 1, there are no code downloads for this chapter.

GETTING CERTIFIED

Certifications have been around for many years. Hardware manufacturers certify components,
car dealers provide certified used cars, developers certify software to run on specific operating
systems—and that’s just to name a few.

1

www.EBooksWorld.ir

www.EBooksWorld.ir

2 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

What this basically means is that the term certification can have many different definitions depend-
ing on the context in which it is used. In this book, certification refers to Microsoft certifications.
(Specifics about Microsoft certification are presented in the section “What Is MS Certification?”
later in this chapter.) Like many other large companies in the IT industry, Microsoft has established
and maintains a certification program to show developers’ aptitude in designing and developing pro-
grams using Microsoft’s products.

Although each organization, including Microsoft, has its own certification program, benefits, and
requirements, there are still a lot of similarities among certifications. For example, most, if not all
organizations, deliver their certification exams through an exam delivery partner (EDP). This has
typically been through EDPs such as Prometric, Pearson Vue, and Certiport.

Each program requires that the candidate register in the program and take specific exams and
meet certain requirements before the participant is awarded a certification. Some programs require
one exam for a certification credential, and others require multiple exams. For example, Cisco,
Microsoft, Adobe, Novell, and Oracle all have certifications you can earn by taking one knowledge-
based exam. Some certifications are more difficult than others.

The more complex, multi-exam scenarios are found in the high-end certifications such as the
Microsoft Certified Master (MCM), which is changing to Microsoft Certified Solutions Master
(MCSM), or Cisco Certified Internetworking Expert (CCIE) certifications. These certifications and
exams require much more than just a knowledge-based exam. These certifications require a candi-
date to complete lab-based portions, meaning that the participant performs actual tasks in either a
real or emulated environment.

For the Cisco exam, you visit the testing center and configure the necessary network switches, rout-
ers, and firewalls according to a specification. The exam team then introduces bugs, or essentially
breaks your configuration, and you have to troubleshoot the issues and fix it.

The MCM program has different requirements depending on the certification you are seeking.
For most of the MCM certifications, you attend classroom training, take knowledge-based exams,
and take a final lab-based exam over a 21-day period—that is, 21 days straight with no breaks in
between. Some of the MCM programs permit the candidate to take training at different institutions
and then take the requisite knowledge-based exams with a final performance-based lab-style exam
at the end, hosted by Prometric.

Obviously, the more stringent the requirements for a certification, the more credibility the certifica-
tion holds in the industry. It also means a higher cost, but with that rigorous certification in hand,
you can also demand—and usually get—more money for consulting fees or a higher salary. But that
is getting into the next section: why you should get certified.

Why Get Certified?
Obviously, if you purchased this book, you have already decided to get a certification, or at least
take a certification exam. Of course you may also be just borrowing the book because you are curi-
ous about what might be involved in getting certified. Either way, this section describes some of the
reasons why you might consider getting certified.

www.EBooksWorld.ir

www.EBooksWorld.ir

Getting Certified ❘ 3

Having spent a lot of time pursuing certifications in the past, plus working as a Certification Product
Planner, the reasons I have come across are varied and many. For the most part, to the reasons are
summarized and rationalized for why certifications are good and why you may want to pursue them.

In the IT industry, especially in the realm of the developer world, most of the programmers who
have been in the industry for some time came through academia and hold university degrees, typi-
cally in computer science. When you think about it, a Bachelor or Master’s degree is a certification
from a certain perspective. The degree shows the world that the person whose name is indicated on
the degree certificate has met the requirements as set forth by a board of some sort, usually the uni-
versity faculty and a governing body.

Not every programmer, database developer, database administrator, or other IT professional, how-
ever, has attended a four-year degree program at a university. Many have instead taken classes at
two-year certificate programs. Whatever the institution or schooling background, upon successfully
completing the program, students acquire a diploma, certificate, degree, or other named piece of
documentation that indicates they have achieved some specific level of knowledge.

One of the problems that graduates face after completing these programs is that the knowledge
they gained during the course of their schooling is actually outdated to a certain extent. You might
think computer science concepts don’t change at their core, and to a great extent, you are correct.
But what does change are the technology and tools IT professionals use every day in their pursuit
of the computer science career upon which they have embarked. A good example of this is how the
Internet and the World Wide Web have changed your concept of what an application is. Just in the
short lifespan of the web, you have seen the technology change from static pages with hyperlinks to
pages supporting Cascading Style Sheets, JavaScript, ActiveX controls, server-side programming,
state-management, and so on. None of these technologies or concepts were taught just a short time
ago, yet they are relevant and important today.

Employers looking to hire programmers for developing websites that contain these technologies
require some way to identify who has those skills. The Bachelor of Science document certainly
doesn’t indicate this. Actually, there isn’t any way for an employer to know what courses a holder
of a degree has actually taken unless the student provides a transcript. There isn’t any way to show
an employer what knowledge and skills were gained after attending a university either outside of a
resume or perhaps a portfolio.

Industry certifications are a way to address some of these issues. When properly implemented, secured,
and executed on, industry certifications are an effective way to show existing and potential employers
some important information. Certifications can provide the person who holds the credential, the fol-
lowing benefits:

➤➤ Validation of knowledge

➤➤ Validation of skills

➤➤ A way to show continuing education

➤➤ A means to prove a commitment to maintaining skills

Whatever your reasons for pursuing a certification, you must understand the value of the certifica-
tion you intend to acquire and perhaps even the process by which the certifications are developed

www.EBooksWorld.ir

www.EBooksWorld.ir

4 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

and maintained. The next few sections present an insight into Microsoft certifications, including
what certifications Microsoft makes available, how they fit into the overall certification portfolio for
Microsoft, and an insider’s view of how the certifications are planned, created, and delivered.

EXAM pIRACY AND BRAIN DUMpS

Many opponents to certifications cite reasons such as exam piracy and brain dumps
for their opposition. Some indicate that employers don’t value certifications, and
therefore they aren’t worth the money you would spend on them. Others, such as
programmers, tell you that they don’t work in a world of multiple choices, so a
multiple-choice test isn’t representative of their skills and knowledge.

Microsoft is not the only company affected by exam piracy and brain dumps. Any
certification program is subject to these same issues. Although there are certain
methods in existence to help deal with these problems, they can never be totally
eradicated.

Microsoft is actively taking steps to counter some of these issues by performing
exam analysis, in the form of statistical forensics, to help identify cheaters and exam
centers that are at the heart of the problem. Over the past few years, it has been suc-
cessful in shutting down testing centers that participate in exam piracy and websites
that contribute to brain-dump activities. Because of the way the Internet works,
however, it is impossible to completely stop all the brain-dump sites.

One of the best ways to help combat these issues is through the use of education
and cooperation with certified professionals. Any time someone asks you for a brain
dump or a way to cheat on a Microsoft exam, ensure that you explain the benefit of
achieving the certification honestly and report any cheating activity to Microsoft.
You can help drive the acceptance of your certifications and help to improve the
reputation of these exams by helping to reduce exam piracy and cheating.

What Is MS Certification?
Microsoft certifications have evolved over the years. The exams have changed in their content,
and the process for creating the exams has changed somewhat as well. Like most certification pro-
grams, the changes are based on customer feedback, changes in the industry, and standards board
certifications.

Microsoft certifications are most commonly known as MCP certifications. MCP stands for Microsoft
Certified Professional. To understand the Microsoft certification landscape, look at some terminology,
what certifications are available from Microsoft, and how to obtain them.

Throughout this chapter, the terms certification and credential are used interchangeably. A certifica-
tion is defined as a “title” that candidates can use after they complete the requirements set forth for
that certification. Credential is another word for a certification. Again, it is a title that candidates
can use after completing the requirements for that credential.

www.EBooksWorld.ir

www.EBooksWorld.ir

Getting Certified ❘ 5

An example of a certification would be Microsoft Certified Solutions Associate (MCSA),
Microsoft Certified Solutions Developer (MCSD), Microsoft Certified Solutions Expert (MCSE),
or Microsoft Certified Solutions Master (MCSM). The following sections describe each of these
designations.

Certification Changes
The MCSD and older Microsoft Certified Systems Engineer (MCSE) certifications served the indus-
try well for many years. Like all programs, changes and improvements were a necessity. Some of
these changes were brought about by the need to streamline requirements and simplify the program,
whereas other driving reasons were employers and hiring managers.

As technology changes, IT professionals either keep their skills up to date or they do not. This can
create a bit of an issue for hiring managers trying to discern qualifications from resumes submitted.
For example, programmers could indicate that they hold an MCSD certification, but don’t tell the
hiring manager what programming language was used to achieve the credential. If the hiring man-
ager is looking for a developer who could program using C++, the certification didn’t actually tell
them that. Also, what elective exam did candidates use? How much web experience did they have as
opposed to Windows development experience?

Both candidates and hiring managers provided feedback to Microsoft, telling them that it was not
easy to determine just what the certification name meant or what requirements were needed for a
certification. The elective system made it difficult to determine qualifications. Other feedback indi-
cated that one certification didn’t necessarily map to the way the industry thought about job roles
and skills qualifications.

As a result of this feedback and industry research, Microsoft made changes to the program and cre-
ated new certifications and new exams to help address these issues and needs. It termed this new
program the New Generation of Certifications and labeled the old system as Legacy Certifications.
Then, just a few short years following that change, Microsoft introduced the current version of cer-
tifications, which is the third iteration of the certification, or cert, program. These changes are not
designed to confuse you, but instead are intended to help ensure that your credentials have validity
and meaning in the workforce.

The Initial Certifications (Version One)
The first iteration of the Microsoft certification program created a base credential known as MCP.
This was the starting point for any of the higher certifications that consisted of:

➤➤ MCSE

➤➤ MCSD

➤➤ MCDBA (Microsoft Database Administrator)

These were the mainstream certifications that existed in version one of the Microsoft certification
programs. They served Microsoft well for a number of years, and these three credentials became
well known in the industry.

www.EBooksWorld.ir

www.EBooksWorld.ir

6 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

A New Generation of Certifications (Version 2)
As with any program, there is the potential not to meet the needs of every concerned party. Feedback
to, and research by, Microsoft Learning resulted in some changes to the certification program. The
changes were designed to address a couple of key areas: job roles and knowledge validation.

Both of these areas have some commonality. Hiring managers needed a way to identify which spe-
cific technologies a potential job candidate might have, and they needed a way to map the certifica-
tions to job roles. Only developer certifications are covered here.

Microsoft Certified Technology Specialist (MCTS)
For validating knowledge on a technical subject, Microsoft created the Microsoft Certified Technology
Specialist (MCTS) credential. The MCTS certification is not considered to be an entry-level certifica-
tion but is aimed at candidates who want to prove their knowledge and skills on a specific Microsoft
technology.

To achieve an MCTS certification, the candidate would have to pass one or more exams. The MCTS
certifications and exams also allowed Microsoft to provide a more valid way of testing candidates’
knowledge and skills on a technology by permitting them to include more complete coverage of that
technology. To explain this a little better, consider how the older MCSD certification focused on
either web or Windows development, which is not bad, except that these two platforms encompass a
lot of different programming skill sets.

By using the MCTS exam focus and the different technologies that Microsoft was releasing, ade-
quate coverage of each different technology could now be included in a separate exam. This allowed
Microsoft to provide sufficient coverage of a technology on an exam and also clearly state what that
technology is. Candidates passing that exam would have proven their knowledge and skills on that
technology. Hiring managers now had a way to determine what the job candidate was certified on.

Microsoft Certified Professional Developer (MCPD)
Microsoft also created another layer of certification known as the professional level. This credential
is titled Microsoft Certified Professional Developer (MCPD). To achieve an MCPD credential, the
candidate must pass any prerequisite MCTS certifications along with the MCPD exam.

The MCPD exams are designed to test a candidate’s ability to work as a team lead or development
lead and make decisions around application designs. There are also not as many MCPD credentials
as there are MCTS credentials, and this is to support the fact that they are intended to focus on a
job role as opposed to a breadth of technologies.

The Current Microsoft Certifications (Version 3)
The current version of Microsoft certifications changes the focus a bit more by looking at credentials
such as Specialist and Solutions Experts or Solutions Developers. The changes made for the current
set of credentials were designed to do the following:

➤➤ Reduce the number of entry points

➤➤ Reduce the number of certifications

➤➤ Clarify certification paths

www.EBooksWorld.ir

www.EBooksWorld.ir

Getting Certified ❘ 7

➤➤ Enable single base certification to lead to multiple advanced certifications

➤➤ Streamline the program into a seamless process

Again, the reasons for changing the certification program were in response to industry feedback and
research. As noted in the preceding list, the previous generations of certifications were still confus-
ing due to the number of entry points into the program, with multiple paths and many different cer-
tifications and exams. The current program focuses on three levels of certification.

There are three main tiers in the latest certification program:

➤➤ Solutions Associate level: Designed to be the foundation for certifications in Microsoft prov-
ing technical skills.

➤➤ Solutions Expert level: Expands on the knowledge of those at the Associate level and requires
more rigor in the exams and knowledge tested. Candidates at this level should be able to
build solutions using multiple technologies including cloud computing.

➤➤ Solutions Master level: The top of the Microsoft certification program. Consists of certifica-
tions that require knowledge-based exams along with performance-based testing. Those who
hold a Masters certification demand higher salaries.

Other Microsoft Certifications: The MTA
All the preceding certifications can be thought of as the technical certifications. Think of technical
certifications as a set of exams and credentials intended to validate skills. There is another set of cre-
dentials that fall under the acronym MTA (Microsoft Technology Associate).

Actually, Microsoft is careful not to actually refer to the MTA as a certification. It is more of a cer-
tificate. The MTA is aimed at high school students and post-secondary institutions that offer two-
year certificate programs; although, four-year universities can certainly deliver them as well.

Although the exams are technical in nature, they are designed to be entry level, and 80 percent of
the content is intended to be knowledge level as opposed to implementation-specific. What that
means is the questions are designed to test candidates on their understanding of the concepts, such
as the following:

➤➤ What is a class in object-oriented programming(OOP)?

➤➤ What is a tuple in a database?

The MTA exams are used by some schools to augment their existing tests, and sometimes to replace
them, for determining a student’s knowledge of a subject area. These exams are also designed to
serve a few more purposes, the most pertinent being that they provide students with a sense of
achievement, helping them to realize their progression in their learning. Plus, they provide a means
to introduce students to the world of certifications by exposing them to a Microsoft exam environ-
ment. If they pass the exam, they get access to the Microsoft Certified Professional community,
where they can start preparing for the more technical certifications with the help of the MCP com-
munity and resources available there. The MTA has been well received by the academic community.

www.EBooksWorld.ir

www.EBooksWorld.ir

8 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

ThINGS TO KNOW ABOUT ThE TEST

For most developers and IT professionals outside of Microsoft, or even Microsoft Learning, the exam
development process is a black box. For a developer, it’s analogous to a Windows Communication
Foundation (WCF) service. You know how to call it and get a result back, but you have no real insight
into the algorithms that make it work. You can guess at it, but you’re never quite certain.

It’s always an eye-opening experience when someone steps into the process for the first time and sees
what it takes to create these exams. The next section describes how the exam questions are written,
but first it can help you to understand how an exam is created.

how the Test Is Created
At one time, Microsoft certification exams focused on product features. After all, it was the features
of the product that developers were using to create their applications, and it was the features of the
product that customers asked for, so it stood to reason that the features of the product were the
important aspects to be testing on. Or does that logic make sense?

The history of these exams has shown that this methodology doesn’t quite present a good test-
ing experience, nor does it provide any validation that a candidate can actually use the features. It
merely shows that developers can memorize what a feature is or does. The current process has been
put in place to overcome these issues and to address some others as well. Psychometrics has been
added to the certification exams. Psychometrics is a field of study dealing with the theories and
techniques used to validate knowledge and skills through a measurement process. In this case, this
measurement is a test. Before getting into how psychometrics is involved, first look at how the exam
envisioning and design has changed to better address industry needs.

Microsoft releases new versions of software, on average, about every two years. A Product Manager
and a Product Planner in Microsoft Learning work together to evaluate the changes in the next ver-
sion of the product and how it will impact the industry. For example, a careful evaluation was made
of all the technologies that make up Microsoft’s .NET Framework to determine how the new fea-
tures will be applied by developers in creating Windows or web-based applications. How have the
data access mechanisms changed? What is new in WCF services?

After this information is evaluated, the Product Manager and Product Planner start to seek out
developers in the industry who use these new technologies in their organization. As you can imag-
ine, these developers will typically be early adopters who partner with Microsoft to gain access to
early builds of the software. They also consist of Microsoft Most Valuable Professionals (MVPs)
and Microsoft Certified Trainers (MCT). The criteria are clear. These developers must use the new
software in real-world scenarios, and can describe how the new features are used and will be used
by the industry.

Microsoft then hosts focus group sessions, typically in Redmond, Washington, with these industry
experts to determine how the technologies are used. These sessions do not focus on features only.
The sessions are designed to extract product-usage scenarios from these experts on how they use the
technology, regardless of feature sets, in the real world. Obviously, there must be a focus on the new
aspects of the software, or the exam becomes a rehash of the previous version.

www.EBooksWorld.ir

www.EBooksWorld.ir

Things to Know About the Test ❘ 9

The exam prep guide is the output of this focus group—well, sort of. The prep guide structure is
explained a bit later in the section that details the objectives that this exam will test on, but for
now, just know that the prep guide is the result of the focus group. The information taken from
the focus group is formulated into the exam design document that gets a further validation pass by
more industry experts. This validation step is known as a blueprinting process, where other indus-
try experts who have never seen the list before and who did not participate in the focus group can
look at each outlined objective and rate it based on relevancy, importance, and frequency. These
values are fed into a spreadsheet that executes some magical psychometric formulas that spit out
the number of required exam questions for each objective to appropriately measure the candidate’s
knowledge on the test. After the blueprinting is complete and the data is assembled, the exam ques-
tion writing can begin. Note that as of the writing of this book, the exam questions are still in mul-
tiple choice or true/false format. Some newer items are being tested that consist of drag-and-drop or
choosing code segments, but the bulk of the questions are multiple choice.

NOTE Microsoft is committed to moving to a performance-based testing envi-
ronment for all its certifications at some point. There are many hurdles to over-
come before it is a reality, but that will change the face of Microsoft certifications
considerably.

how Questions Are Written
Just how do the questions get written? Microsoft Learning works with various partners to create
the content for the exams in a clear process that is guided and overseen by the Product Planners, the
Content Development Managers, and the Project Managers at Microsoft.

Taking the exam design document and the blueprint values, a team of item writers is assembled
to begin the process. These item writers must be industry experts as well, who work with the
technology on a daily basis. They receive training on effective exam question writing.

This might sound a little strange at first. You may be saying to yourself, “Why would you need
to have training on how to write a test question? If you know the technology, you can write a test
question on it.”

Although there is some truth to that thought, writing an effective exam question is not always an
easy task. Here are the reasons why:

➤➤ The question must test the objective it maps to.

➤➤ The question must be worded in a technically accurate and correct form.

➤➤ Slang or nicknames cannot be used. (An example of this is in the IT world where in North
America the acronym DMZ has been used to represent the perimeter network for security
purposes. In certain other countries, DMZ has negative connotations.)

➤➤ Wording and terms must take into account translation into other languages.

www.EBooksWorld.ir

www.EBooksWorld.ir

10 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

➤➤ Each question must be legally defensible. That is to say, if the question is asking for one answer,
there can be only one correct answer among the available answer choices. All other answers
must be 100 percent incorrect.

➤➤ The writer cannot make up technologies or answers that do not exist in the product just to
provide a wrong answer.

➤➤ Questions cannot be tricky with subtle wording that hides clues.

➤➤ Questions cannot be simply recall questions where a candidate would normally look up the
answer in MSDN or use IntelliSense. An example would be writing a question that tests the
order of parameters for a method call for a class in the base class library.

➤➤ One question on the exam cannot give away the answer to another question on the exam.

➤➤ Questions must be written to the correct cognitive level.

As you can see, there are quite a few rules involved in the acceptance criteria for the questions. Most
writers think they will turn out their questions with minimal trouble because they know the technology
so well, but they soon find out that good exam questions take hard work and careful thought.

After the questions have been written, the next formal part of the process is to hold an Alpha ses-
sion. The Alpha session typically involves the lead item writer plus six to eight more subject matter
experts who go over each written question. The original item writers are not involved in this process
so that nobody’s feelings get hurt when the questions are critically reviewed. It also helps the subject
matter experts in the room to focus on being honest about the question’s merits.

Any problematic questions either get fixed or completely rewritten during this five-day session. The
output of this session is the set of questions included in the beta version of the exam. The beta version is
where as many as 500 sets of eyes have a chance to evaluate the questions. Each beta candidate has the
opportunity to provide comments and feedback on the items at the end of the exam. The feedback and
comments are reviewed after the beta has completed, and a post-beta session is held where even more
subject matter experts are involved. The task this time is to validate the comments and feedback, and
then to set the passing score for the exam. At this stage, any questions that did not perform well on the
exam or have technical issues are deleted from the final pool of exam questions.

This entire process can take anywhere from six to nine months from the design phase to release of
an exam. The exam’s planning process starts much sooner than that, of course, but the actual exam
design, development, testing, and release portion can take this long.

EXAM TIpS AND TRICKS

Not every process is perfect, and even with this many subject matter experts looking
at exam questions, some minor issues can escape notice. When you take the exam,
remember there is a comment period at the end where you can submit your feedback
on the exam or on individual questions. Don’t be afraid to be brutally honest. At the
same time, ensure that you provide usable feedback. Responses such as “This question
stinks” are not actionable and do not identify issues with the question. The feedback
can go a long way to help improve the quality of the exam questions.

www.EBooksWorld.ir

www.EBooksWorld.ir

How to Study for the Exam Using This Book ❘ 11

hOW TO STUDY FOR ThE EXAM USING ThIS BOOK

And now you come back to the reason why you bought this book. Your objective is to study for and
pass the exam, and you purchased this book to help you do that. Outside of the great information
presented in this book, you gain advice on how you can use the book more effectively to help in
your exam preparation.

Although there are many ways to start preparing for an exam, only a structured method helps to ensure
success. Typically, when looking at exam preparation, a candidate faces a situation similar to an author
staring at the first blank page for a book he is writing. Where do you start? Not only that, but you
may also be thinking that preparing is going to be hard because you don’t know what you don’t know.
You’re not sure you want to study everything because you should already know most of the content that
will be covered, but how do you know what to focus on? The following sections can help you determine
just that.

prep Guide
The first thing you should do is to focus on the exam prep guide that lists the objectives for the exam.
(The objectives are included at the end of this chapter for your convenience, but you can also find them
at www.microsoft.com/learning/en/us/exam.aspx?ID=70-483.) These objectives provide you with
an idea as to what could be covered on the exam. There is a caveat that comes with the prep guides,
however. You may notice the following wording under each objective that states,

“This objective may include but is not limited to….”

This text is an indication that the listed items after this text are the identified areas of coverage from
the exam design sessions. The list is typically not complete for various reasons, such as not all topics
were thought of during the design or complete coverage may not be possible.

Regardless of the reasons that there may not be complete coverage, the items are just indicators of
what you may see a question written on. The other issue is that the exam designers and the item writ-
ers are, for the most part, different people. This means that the person writing the exam question was
not present during the exam design and therefore was not privy to the conversations around this topic.
They also have their own experiences that they bring to the process for what they will draw upon for
writing the questions they have been assigned.

This doesn’t mean there is a disconnect in the process or it is flawed. It is similar to the exams you
took in school. You were expected to understand the subject to the extent that you could answer
any question on the subject. You were not given explicit topic coverage on those exams either. These
exams are similar in the prep guides in that they offer a little more information as to what may be
covered, but as long as you fully understand the subject, you should be able to answer any question
related to it.

Functional Groups
So step one is complete; you have reviewed the prep guide and evaluated the objectives, and now you
have an idea what the exam questions will test on. Before you spend time studying topics, you should
rate what you think your knowledge is for each of these objectives. Don’t worry too much about the

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.microsoft.com/learning/en/us/exam.aspx?ID=70-483

12 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

bolded items in the objectives listed here (the ones with the percentage ratings in parentheses). Those
items are known as Functional Groups, and they are a convenient way to group related objectives. The
percentage listed gives you an idea of how much of the exam a particular Functional Group will take
up. You can use this value to determine where to focus your time studying if you want.

practice Questions
After you have the objectives rated, turn your attention to practice questions. Practice test questions
are a great way to evaluate your knowledge against what you think you know, and against reality.
They are also a great way to focus your mind on how the exams are written and what the experi-
ence may be like when you take the actual exam. The other advantage you gain from the practice
questions is the ability to identify your weak areas, allowing you to focus your study and maximiz-
ing your investment in preparation.

preparation
The preparation part is primarily where this book comes in. The chapters of this book map directly
to the exam objectives. This means that the book is focused training for the exam. This doesn’t
mean that it is a cheat sheet or a brain dump. To gain the most benefit, you need to read and under-
stand the content of the chapters. You also then get to apply that understanding through the code
labs in each chapter. These labs are designed to reinforce the theory presented in the chapter. Each
chapter will also contain practice questions, Cheat Sheets, and Key Terms to help you focus on the
right content.

The prep guide found on the Microsoft Learning Web site will help you to identify the key aspects
of the exam itself along with the skills measured, a list of preparation materials such as courses or
books, as well as a community section designed to provide resources from your fellow exam candi-
dates and developers. The community can be a great study resource as well.

The authors of the book have done their best to evaluate the exam objectives and to provide you
with material designed to help you prepare for the exam. Your study habits and how well you under-
stand the content presented here will be factors in your success. The more experience you gain with
the technology and the more you practice the labs in this book, the greater your chances to success-
fully pass the exam.

ThE 70-483 OBJECTIVES

The following section lists the objectives for Exam 70-483, the topic of this book. The objectives are
taken directly from the prep guides that you can find online at www.microsoft.com/learning under
the Certifications tab.

Manage program Flow (25 percent)
Under this category, you will find topics that deal with threading, program flow, events, callbacks,
and exception handling—all are important to managing how your application is executed.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.microsoft.com/learning

The 70-483 Objectives ❘ 13

Implement Multithreading and Asynchronous Processing
This objective may include but is not limited to use the Task Parallel library (ParallelFor, Plinq, and
Tasks); create continuation tasks; spawn threads by using ThreadPool; unblock the UI; use async
and await keywords; and manage data by using concurrent collections.

See Chapter 7, “Multithreading and Asynchronous Processing.”

Manage Multithreading
This objective may include but is not limited to synchronize resources; implement locking; cancel a
long-running task; and implement thread-safe methods to handle race conditions.

See Chapter 7, “Multithreading and Asynchronous Processing.”

Implement Program Flow
This objective may include but is not limited to iterate across collection and array items; program
decisions by using switch statements, if/then, and operators; and evaluate expressions.

See Chapter 2, “Basic Program Structure.”

Create and Implement Events and Callbacks
This objective may include but is not limited to create event handlers; subscribe to and unsubscribe
from events; use built-in delegate types to create events; create delegates; lambda expressions; and
anonymous methods.

See Chapter 6, “Working with Delegates, Events, and Exceptions.”

Implement Exception Handling
This objective may include but is not limited to handle exception types (SQL exceptions, network
exceptions, communication exceptions, and network timeout exceptions); catch typed versus base
exceptions; implement try-catch-finally blocks; throw exceptions; determine when to rethrow
versus throw; and create custom exceptions.

See Chapter 6, “Working with Delegates, Events, and Exceptions.”

Create and Use Types (24 percent)
Creating and using types will take you into the world of C# data. It covers the built-in types that
C# provides such as int and string but also delves into the more complex types such as structs,
enums, and classes.

Create Types
This objective may include but is not limited to create value types (structs, enum), reference types,
generic types, constructors, static variables, methods, classes, extension methods, optional and
named parameters, and indexed properties; and create overloaded and overridden methods.

See Chapter 3, “Working with the Type System.”

www.EBooksWorld.ir

www.EBooksWorld.ir

14 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

Consume Types
This objective may include but is not limited to box or unbox to convert between value types; cast
types, convert types, and handle dynamic types; and ensure interoperability with unmanaged code,
for example, dynamic keyword.

See Chapter 4, “Using Types.”

Enforce Encapsulation
This objective may include but is not limited to enforce encapsulation by using properties, by using
accessors (public, private, and protected), and by using explicit interface implementation.

See Chapter 3, “Working with the Type System.”

Create and Implement a Class Hierarchy
This objective may include but is not limited to design and implement an interface; inherit from a
base class; and create and implement classes based on IComparable, IEnumerable, IDisposable,
and IUnknown interfaces.

See Chapter 5, “Creating and Implementing Class Hierarchies.”

Find, Execute, and Create Types at Runtime Using Reflection
This objective may include but is not limited to create and apply attributes; read attributes; gener-
ate code at run time by using CodeDom and lambda expressions; and use types from the System.
Reflection namespace (Assembly, PropertyInfo, MethodInfo, and Type).

See Chapter 8, “Creating and Using Types with Reflection, Custom Attributes, the CodeDOM,
and Lambda Expressions.”

Manage the Object Life Cycle
This objective may include but is not limited to manage unmanaged resources; implement IDisposable,
including interaction with finalization; manage IDisposable by using the Using statement; and manage
finalization and garbage collection.

See Chapter 5, “Creating and Implementing Class Hierarchies.”

Manipulate Strings
This objective may include but is not limited to manipulate strings by using the StringBuilder,
StringWriter, and StringReader classes; search strings; enumerate string methods; and format
strings.

See Chapter 4, “Using Types.”

Debug Applications and Implement Security (25 percent)
This section focuses on aspects for understanding how you work with the tools and features of the
.NET Framework to debug your applications and for implementing security in your code for encryp-
tion and validation.

www.EBooksWorld.ir

www.EBooksWorld.ir

The 70-483 Objectives ❘ 15

Validate Application Input
This objective may include but is not limited to validate JSON data; data collection types; manage
data integrity; evaluate a regular expression to validate the input format; use built-in functions to
validate data type and content out of scope; and writing regular expressions.

See Chapter 11, “Input Validation, Debugging, and Instrumentation.”

Perform Symmetric and Asymmetric Encryption
This objective may include but is not limited to choose an appropriate encryption algorithm; man-
age and create certificates; implement key management; implement the System.Security namespace;
hashing data; and encrypt streams.

See Chapter 12, “Using Encryption and Managing Assemblies.”

Manage Assemblies
This objective may include but is not limited to version assemblies; sign assemblies using strong
names; implement side-by-side hosting; put an assembly in the global assembly cache; and create a
WinMD assembly.

See Chapter 12, “Using Encryption and Managing Assemblies.”

Debug an Application
This objective may include but is not limited to create and manage compiler directives; choose an
appropriate build type; and manage programming database files and symbols.

See Chapter 11, “Input Validation, Debugging, and Instrumentation.”

Implement Diagnostics in an Application
This objective may include but is not limited to implement logging and tracing; profiling applica-
tions; create and monitor performance counters; and write to the event log.

See Chapter 11, “Input Validation, Debugging, and Instrumentation.”

Implement Data Access (26 percent)
Most applications work with data in some form or another. Data may be stored in database systems,
or it may be stored in flat files. Flat files may be text files, comma-separated value (CSV) files, or
XML files. Knowing how to access this data for reading and writing is crucial for developers.

Perform I/O Operations
This objective may include but is not limited to read-and-write files and streams; read and write
from the network by using classes in the System.Net namespace; and implement asynchronous
I/O operations.

See Chapter 9, “Working with Data.”

www.EBooksWorld.ir

www.EBooksWorld.ir

16 ❘ ChApTER 1 IntroducIng the ProgrammIng c# certIfIcatIon

Consume Data
This objective may include but is not limited to retrieve data from a database; update data in a data-
base; consume JSON and XML data; and retrieve data by using web services.

See Chapter 9, “Working with Data.”

Query and Manipulate Data and Objects by Using LINQ
This objective may include but is not limited to query data by using operators (projection, join,
group, take, skip, and aggregate); create method-based LINQ queries; query data by using query
comprehension syntax; select data by using anonymous types; force execution of a query; and read,
filter, create, and modify data structures by using LINQ to XML.

See Chapter 10, “Working with Language Integrated Query (LINQ).”

Serialize and Deserialize Data
This objective may include but is not limited to serialize and deserialize data by using binary serial-
ization, custom serialization, XML Serializer, JSON Serializer, and Data Contract Serializer.

See Chapter 9, “Working with Data.”

Store Data in and Retrieve Data from Collections
This objective may include but is not limited to store and retrieve data by using dictionaries, arrays,
lists, sets, and queues; choose a collection type; initialize a collection; add and remove items from a
collection; use typed versus nontyped collections; implement custom collections; and implement col-
lection interfaces.

See Chapter 9, “Working with Data.”

SUMMARY

This chapter provided an overview of the Microsoft certification program and what to expect from
this book in preparing for the 70-483 Exam, which focuses on Windows Store applications develop-
ment using C#.

This chapter explained the history of Microsoft certifications, how they have changed over the years,
and why those changes were made. This will help you understand how the certification program is posi-
tioned in the industry, and what you can expect as a result of achieving a Microsoft certification.

The process of creating certifications and exams is a complex task that involves many participants,
lots of research and planning, and an orchestrated set of procedures to create exams that are rel-
evant in the industry and provide a good balance of feature and usage scenario coverage.

The list of objectives for the exam that you will take on your way to the MCSD certification will
help you focus on key areas of coverage for your studies.

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 17

ADDITIONAL READING AND RESOURCES

Following are some additional useful resources to help you understand the topics presented in
this chapter:

Training and certification resources and information
http://www.microsoft.com/learning

Industry trends related to Microsoft developer tools and technologies
http://msdn.microsoft.com/en-us/aa497440

NOTE As most developers who focus on the Microsoft tools and platforms are
aware, the ultimate resource for news and information on developing on the
Microsoft platform is MSDN. MSDN documentation can be installed on your local
computer when you install Visual Studio. You can also get the latest developer
documentation directly on the web at http://msdn.microsoft.com/en-us/.
Microsoft categorizes developer topics into developer centers that focus on
Visual Studio, Windows, Windows Phone, Windows Azure, and Office. All are
reachable through the MSDN website.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for each chapter can be printed off to
help you study. You can find these files in the ZIP file for each chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab. Due to the
nature of the content in this chapter, no Cheat Sheet or Review of Key Terms is
included.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.microsoft.com/learning
http://msdn.microsoft.com/en-us/aa497440
http://msdn.microsoft.com/en-us/
http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Basic Program Structure

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding C# simple statements

➤➤ Exploring C# complex statements

➤➤ Using boolean expressions

➤➤ Creating if-then-else statements

➤➤ Using switch statements

➤➤ Constructing for statements

➤➤ Using foreach statements

➤➤ Understanding while statements

➤➤ Using do-while statements

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle.cgi?isbn=
1118612094 on the Download Code tab. The code is in the chapter 02 download and indi-
vidually named according to the names throughout the chapter.

Computer programming has certain foundational aspects that any programming language must
incorporate. C# is no exception. Programming has basic concepts such as repetition structures
that help you repeat certain tasks and decision structures that allow your code to execute a dif-
ferent branch of statements based on the outcome of comparisons. This chapter introduces you
to the basics of programming in C# and covers the topics necessary for you to understand core

2

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/remtitle.cgi?isbn=1118612094

20 ❘ ChApTER 2 BasIc Program structure

functionality in the C# programming language so that you can successfully take the exam. These key
topics enable you to learn about statements in C#, both simple and complex, and how they are used in a
C# application to perform the actions necessary to complete the tasks your code is intended to perform.
You will learn what statements are and how to construct them your code.

The chapter then focuses on giving you an understanding of some core programming structures that
you can use to form the logic of your program code. As you develop applications, you can focus on
writing algorithms. These algorithms are formed through logical program flow based on decisions
and repetition.

Table 2-1 introduces you to the exam objectives covered in this chapter.

TABLE 2-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Implement Program Flow Iterate across collections. This includes using looping structures such
as for, while, and do-while loops for the iterations .

Program using switch statements. This includes switch statement syn-
tax describing the data types permitted as well as how to handle condi-
tions in switch statements .

Program using if/then. This includes using the decision structure to con-
trol program flow based on one or more conditions .

Use operators. This includes using operators such as mathematical
operators to perform math functions, assignment operators to assign-
ing values to variables and comparison operators for use in decision
structures .

Evaluate expressions. This includes understanding how code behaves
when boolean expressions are used .

WRITING YOUR FIRST pROGRAM

Most programming books that focus on teaching computer programming start with a simple appli-
cation called Hello World. This book assumes you know the basic programming concepts and
instead will focus on getting your knowledge on C# to the right level so that you can be successful
on the exam. That’s not to say this book provides you with explicit and focused information that
guarantees a pass on the exam, but rather that it focuses on the knowledge while providing you with
the opportunity to understand the concepts. Only through understanding can you be effective in
applying the concepts learned. Microsoft will test you on the fundamentals of programming and the
C# Language so you need to have a fresh understanding of the concepts.

You might be an experienced C# programmer looking to test on the latest certification exam, or you
might be coming from another programming language and learning C#. In either case, a review of
the fundamental language concepts is never a waste of time.

www.EBooksWorld.ir

www.EBooksWorld.ir

Writing Your First Program ❘ 21

NOTE C# was designed and developed at Microsoft to be an object-oriented
programming language for the .NET platform. The concepts that you learn in
this chapter are not new and are part of most other programming languages.
This chapter will help you understand the concepts from the C# perspective.

ADVICE FROM ThE EXpERTS: Don’t Skip This Chapter

If you have been programming in C# for some time, you may consider skipping this
chapter. The exams are written by programmers that have years of programming
experience and, as such, they typically write questions that will test your under-
standing of these core concepts, not just knowing what they are. Ensure you under-
stand these concepts as opposed to just memorizing syntax. Remember, IntelliSense
isn’t available to you on the exam.

Exploring the Structure of the program
Although the sections on C# statement types do not have a direct relationship to a section or objec-
tive on the exam, the concepts covered here are important in helping you understand the basic struc-
ture of a program in the C# language. As you start to learn the C# language and prepare for the
exam, this foundational information can be helpful in understanding why the other aspects of the
language, such as decision and repetition structures, work the way they do.

The remaining sections provide you with an understanding of the basic C# program structure
that you can use in your applications. You can gain an understanding of controlling your pro-
gram flow using repetition and decision structures. These are the core building blocks of an
application written in C#, whether the application is a console-based app or one written with
new Windows 8–style user interface (UI).

C# code is written using a series of statements. The language divides statements into two basic
types: simple and complex. The following two sections provide you with an understanding of these
statement types, enabling you to read C# code better and understand how to use the statement types
in your own programs.

Understanding Simple Statements
In any programming language, statements are the code constructs that cause the application to perform
an action. C# uses the concept of simple statements and complex statements. In C#, simple statements
are those that end with a semicolon (;) and are typically used for program actions such as the following:

➤➤ Declaring variables (declaration statements)

➤➤ Assigning values to variables (assignment statements)

➤➤ Calling method in your code

➤➤ Branching statements that change program flow

www.EBooksWorld.ir

www.EBooksWorld.ir

22 ❘ ChApTER 2 BasIc Program structure

NOTE Even a simple statement such as assigning a value to a variable can
equate into many actual instructions to the CPU in the computer after the
code is compiled.

As a result of the rule that all statements end in a semicolon, you might come to the conclusion that
simple statements will exist only on a single line. Although most do take up only a single line in
your development editor because of the short length, you may find it necessary to continue a long
statement on multiple lines for readability or screen resolution limits. In this case, the statement is
still considered a simple statement, but it merely stretches across multiple lines. Only one semicolon
is used at the end of the statement.

An example of simple statements follows. Don’t worry about the data types such as int, float, and
so on in these examples. Chapter 3, “Working with the Type System,” introduces these and focuses
on types.

//variable declaration statements
int counter;
float distance;
string firstName;

// assignment statements
counter = 0;
distance = 4.5;
firstName = "Bill";

// jump statements
break;
return;

// the empty statement consists of a single semicolon on a line by itself
// the statement does nothing and is merely a placeholder where a code
// statement is required but you don't want an action to take place.
// A good example of this is in a looping statement used in a delayed
// processing scenario

void SomeFunction()
{
 while (DoSomething())
 ;
}

Note that the last simple statement in the preceding code shows an empty statement. This is interest-
ing in that it’s not something you will use on a regular basis, but it demonstrates that C# recognizes
a statement that contains no keywords but because the semicolon is present, C# recognizes it as a
statement.

The comment section (a code line that starts with the // characters and is a way of helping to docu-
ment the code) in the preceding code indicates that it might be used in a delayed processing scenario,
but realistically, with the performance of computers today, delayed processing in this manner isn’t

www.EBooksWorld.ir

www.EBooksWorld.ir

Writing Your First Program ❘ 23

that effective. Instead, you can use timer functions built into programming languages. This sample
is just intended to show that you can use an empty statement to essentially take the place of one that
might perform an action.

Understanding Complex Statements
C# also has complex statements. Complex statements are those that can or will enclose one or more
simple statements into a code block surrounded by curly braces: {}. Typical complex statements are
those that are covered in the section on loops and decision structures, such as foreach(), if(),
switch, do(), and so on.

An example of using a complex statement might be iteration over an array of values and taking some
action within the code using various statements. An example of such a use is shown here:

// check to see how many values in an array are even numbers
int[] numbers = {5, 24, 36, 19, 45, 60, 78};
int evenNums = 0;

foreach(int num in numbers)
{
 Console.Writeline(num);

 if(num % 2 == 0)
 {
 evenNums++;
 }
}

In this code sample, the first line declares an array, or collection, of integers. (Arrays are covered
in Chapter 9, “Working with Data.”) Arrays are merely a collection of similar types of data, in this
case integers.

A variable called num is declared to be of type int so that you can use it in the foreach loop. (The
foreach loop is covered in the “Using Loops” section later in this chapter, so don’t worry too much
about syntax right now.) The array declaration in line 1 and the variable declaration in line 2 are
considered simple statements. (A declaration is used to create a variable in code.) The complex state-
ment is the entire foreach loop that starts with the keyword foreach and ends with the final curly
brace: }. Note that you actually have another complex statement within this complex statement. The
if statement is another example of a complex statement.

The foreach loop looks at the array, and for every integer value it finds (for each), it writes the value
to the console window. The if statement performs the mathematical modulus function on the value
to see if it is an even number by checking for remainder after dividing by 2. If the result is 0, the
number is even and the evenNums variable is incremented (increased by a certain value) by one.

Note that within each of these complex statements are simple statements. Console.Writeline(num);
is a simple statement as is evenNums++;. So you might also say that complex statements are formed
using multiple simple statements, but a structure is still required to contain the simple statements. With
the exception of a few, complex statements do not end with a semicolon.

www.EBooksWorld.ir

www.EBooksWorld.ir

24 ❘ ChApTER 2 BasIc Program structure

CONTROLLING pROGRAM FLOW

All applications require some program flow options. If you take a trip back in history and look at
structured programming, you would notice that program flow was typically done in a top-down
fashion with execution starting at the first line of code and continuing one line at a time until the
end of the code sequence.

Often, this top-down approach didn’t work well in helping to solve real-world problems that weren’t
computing-specific. In the real world, you iterate over a series of steps, but at some point, you might
need to do something different depending on the outcome of some other action.

Consider a scenario in your code where a user is attempting to log in to a secure website. Your code will
direct the user to the requested page in the site if they provide the correct username and password com-
bination, or let the user know the login was not successful and offer them a chance to log in again.

This would equate to code branching. Code branching can be thought of as program flow moving to
a different location in the code listing and then coming back to where it left off, or repeating lines of
code to complete a set of tasks over and over.

Early attempts at program flow control used statements such as goto where labels were used in code
and program flow was directed to code in a labeled section. In the days of BASIC, subroutines were
commonly used, and the keyword GOSUB was a part of BASIC to provide code flow as well.

These code branching statements created spaghetti code, making it hard to debug and maintain
application code because it forced the programmer to jump from one code location to another and
back again to try to make sense of the logic often getting lost in the process. Why spaghetti? Next
time you have a plate of spaghetti in front of you, try to follow one single noodle from one end to
the other without pulling it out from the rest. You’ll get the idea.

More detail on how these issues were overcome will be discussed in the book when functions are
covered. The remainder of this chapter focuses on the various program components and aspects that
enable you to make decisions in your program and control program flow based on those decisions.
You might execute a piece of code, or do nothing. This chapter also takes a look at the components
of C# that you use to repeat actions in code where necessary.

These sections can help you understand the exam objective “Implement Program Flow.” The objec-
tive covers topics such as iterating over collections and arrays, making program decisions with
switch statements, and if/then constructs. You can also gain an understanding of the operators
used in evaluating expressions.

EXAM TIpS AND TRICKS: Understanding the Difference Between Exam
Design and Question Writing

Exam design and exam question writing are two separate processes. The design
session sets up the topic coverage, which is where the objectives come from. The
authors who write the exam questions are typically not involved in the design ses-
sion. As a result, you must understand all the concepts covered in an exam objective
because you have no idea what an author has chosen to write the question about.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 25

Conditional Instructions
Conditional instructions in C# are those that evaluate a condition and then execute an action, take
no action, or choose between available actions to execute. To evaluate conditions, C# provides the
following:

➤➤ Relational operators

➤➤ Boolean expressions

➤➤ Logical operators

➤➤ A conditional operator (ternary operator)

Conditions in your C# program enable you to compare values, typically held in variables but also
constants and literals. A variable is a named location in memory that enables you to store a value
for later use. It is called a variable because you can change the content in it whenever you want. A
constant is like a variable in that it is a named memory location used to store a value, but you can-
not change the value at will. It accepts a value when you declare it and keeps that value throughout
the life of your program’s execution time. Literals are values that, well, literally are what they are.
Examples of literals are 1, 25, ‘c’, and “strings”. You can’t and don’t assign other items to liter-
als; you can assign literals only to variables of constants.

Your program execution can be controlled based on these comparisons. To effectively use these con-
cepts in your programs, you need to understand the available comparison logical operators (opera-
tors perform an operation on values). These operators are listed in the Tables 2-2 and 2-3. Examples
are included following each table.

TABLE 2-2: Relational Operators

OpERATOR MEANING SAMpLE

< Less than expr1 < expr2

> Greater than expr1 > expr2

<= Less than or equal expr1 <= expr2

>= Greater than or equal expr1 >= expr2

== Equality expr1 == expr2

!= Not equal expr1 != expr2

Now look at some examples to help clarify the meaning of these operators. The relational opera-
tors should be self-explanatory, but some simple examples help to solidify your understanding. An
expression is an activity or code statement that returns a result.

The expression 2 < 3 checks to see if the value on the left is less than the value on the right. In this
case, is 2 less than 3? If so, the evaluation returns true, which in this case it does.

The expression 2 > 3 checks to see if the left operand is greater than the right operand. In this case,
2 is not greater than 3, and the expression returns false.

www.EBooksWorld.ir

www.EBooksWorld.ir

26 ❘ CHAPTER 2 Basic Program structure

The operators <= and >= check to see if the left operand is less than or equal to the right operand
for the former and the opposite for the latter. For example, 2 < = 3 and 3 <= 3 both return true
because 2 is less than 3, and in the second comparison, 3 is equal to 3. However 2 >= 3 would
return false because 2 is neither greater than nor equal to 3.

Anytime time you see the = operator in C#, be certain you remember that it is an assignment opera-
tor and not a comparison operator. C# uses two = signs together (==) to denote equality. Therefore
2 = 2 is not the same as 2 == 2. The former is actually not legal in C# because it attempts to assign
a literal to a literal, which is not possible. A literal in C# is an actual value as opposed to a variable.
However, 2 == 2 is valid in C# and is evaluating whether the literal 2 is equal to the literal 2. In
this case it is, and the result is a value of true for the comparison.

The final relational operator is the != operator, which means not equal. The expression 2 != 3
would return true because the literal value 2 is not equal to the literal value 3.

TABLE 2-3: Boolean (Boolean and Bitwise) Operators

OPERATOR MEANING SAMPLE

& Unary variant returns the address of its operand. Binary
variant is the bitwise AND of two operands.

& expr1

expr1 & expr2

| The binary OR operator. True if one or both operand is
true, false if both operands are false.

expr1 | expr2

^ The bitwise exclusive OR. Returns true if, and only if,
one of the operands is true.

expr1 ^ expr2

! Unary logical negation operator. Returns false if oper-
and is true or vice versa.

! expr

~ The bitwise complement operator. ~expr

&& Conditional AND that performs a logical AND opera-
tion on the bool operands. Capable of short circuit
logic wherein the second operand is evaluated only if
necessary.

expr && expr2

|| Conditional OR that performs a logical OR on the bool
operands. Evaluates Only second operand if necessary.

expr1 || expr2

true Used as a bool operator to indicate truth in an
expression.

bool success = true;

false Used as a bool operator to indicated untruth in an
expression.

bool success = false;

For the boolean operators, you look only at samples of the most common operators that you can use
in your decision making code. These are the and (&&), the or (||), and the bool values of true and
false. (A boolean is a value that is represented as either true or false.)

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 27

The && operator is used to evaluate multiple conditions. The most common use is to check if one
value is true AND another value is true. True is returned only if both conditions are true. For exam-
ple, if you are 21 years of age or older and you have ID to prove it, you can purchase alcohol:

if(age >= 21 && hasID == true)

The && operator is also optimized for what is known as short-circuit evaluation. That is to say,
because the expression returns only true if both conditions are true, you can also say that if the first
condition is false, there is no need to evaluate the second condition. This is the short-circuit func-
tionality, and although providing a small improvement in performance, it nevertheless eliminates
some code work on the computer side.

To understand why requires that you know how the computer does comparisons. For each compari-
son that is made, the CPU must do the following:

 1 . Fetch the instruction and load it into memory.

 2 . Increment the instruction pointer.

 3 . Visit memory to get the first value and store that in a register.

 4 . Access memory for the second value and store that in a CPU register.

 5 . Perform the comparison and store the result in a CPU register.

 6 . Pop the stack for the instruction pointer to get back to where the code was executing before
the comparison.

 7 . Return the value of the comparison to the code.

 8 . Continue execution at the next instruction.

For today’s computers with fast CPUs, fast memory, various caching techniques, and hardware opti-
mization, these small things can seem inconsequential, but enough of them combined can help make
your programs more efficient.

The next boolean operator is the or (||) operator. This enables you to state that you want to know if
one or the other condition is true. If so, the expression returns true; otherwise it returns false.

if(temperature < 60 || reaction == shivering)
 turn on heat

The values of true and false are considered to be of type bool in C#. To use these in code, you
declare a variable of type bool and then assign the result of a comparison to that variable, for
example:

 // bool samples
 bool result = true; // always a good practice to assign
 // a value to variables prior to using them
 result = 2 < 3; // result will contain the value true
 result = 2 > 3; // result will contain the value false

www.EBooksWorld.ir

www.EBooksWorld.ir

28 ❘ ChApTER 2 BasIc Program structure

You can also flip the bool value through the use of the unary logical negation operator !. This can
actually create some confusing code, but is also a unique way of “flipping” a bool:

 // logical negation sample
 bool result = true; // result has the value true
 result = !result; // result has the value false

The final operator that C# offers for conditional logic is the conditional operator, also known as the
ternary operator. This operator returns one of the two values included in the operator based on the
evaluation of the boolean expression:

// example of using conditional operator
Random rnd = new Random();
int num = 0;
num = rnd.Next(100); // generate a random number between 1 and 100
// and assign to num

// if the value in num mod 2 is equal to zero, the operator will return
// the string even indicating an even number, otherwise it will return
// the string false
string type = num % 2 == 0 ? "even" : "odd";

The preceding sample uses some of the C# built-in functionality for generating random numbers.
Random is a class in .NET that is used here to generate a random number between 1 and 100. You
assign that random number to the variable num.

The code then performs a little mathematical function known as modulus. Modulus returns the
remainder of an integer division. For example, 5 divided by 2 is not an even number or an integer
because it has a fractional part. The result is 2.5 in floating point math, but modulus works with
integers (whole numbers with no decimals) so the value returned is actually 1 as far as modulus is
concerned. Only even numbers divide by 2 will return a remainder of 0. As a result, the ternary
operator checks for this by using the modulus operator in the condition portion. If 0 is returned,
that means the number is an even number and the ternary operator returns a string indicating that,
otherwise it returns the string value of odd.

The syntax of the ternary operator is:

condition ? value if true : value if false

Boolean Expressions
You have already seen an example of boolean operators in the previous section. This section
describes what boolean expressions are and provides more detail on their use.

In the simplest of terms, a boolean expression in C# is an expression that results in a value of type
bool being returned. In C#, the keyword bool is an alias for the System.Boolean type. System
.Boolean has many methods but you are mostly concerned with the types that it uses. These are
simply true and false. As a simple example, if you were asked whether or not 2 and 2 were the same
number, you would likely reply yes, or you would say that is true. However, 2 and 3 are not the
same number, and you would say that comparison is false.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 29

In the past, programming languages that didn’t implement a bool type used numeric values to represent
boolean results such as 1 for true and 0 for false. They also used any non-zero value as true. This had
the side-effect of causing confusion if programmers used more than one programming language. One
application might be written in BASIC and another application written in COBOL. Programmers could
forget which language implemented boolean values in which way and introduce subtle bugs in their
code without knowing. Thankfully, you can use actual words with clear meaning in C#.

In C#, you form boolean expressions by comparison. These comparisons are made using the rela-
tional and boolean operators listed in the previous tables. The following code lab shows some uses
of comparisons in boolean expressions in C#.

CODE LAB Demonstrate the use of bool [Use of Bool Code Lab.txt]

// create a variable of type bool called result and assign it an initial
// value of false

bool result = false;

// check a simple comparison and assign the value to variable result
// in this case, we check if the literal 2 is equal to the literal 2
// the result of this comparison is true and the variable result will
// now contain the bool value true

result = 2 == 2;
Console.Writeline(result); // will output the value true

Code Lab Analysis

The line result = 2 == 2 might be a little foreign to you or perhaps hard to decipher at first glance.
Although this book doesn’t go into much detail on order or precedence, a small introduction here can help.

C# has a specific order of precedence. This determines what portions of a statement get evaluated first,
then second, and so on. If you consider precedence in math, you know that multiplication and division
have higher precedence than addition or subtraction. If the addition and subtraction are in the same
expression, the one on the left is evaluated first.

In this code sample, comparison has a higher precedence than assignment, so the expression 2 == 2 is
evaluated first. This results in a boolean, which in this case is true. That boolean is then assigned to the
variable result. As a side note, you can change the precedence in C# as you can in math, through the
use of parentheses.

Making Decisions in Code
Life involves decisions on a daily basis. What time do you set the alarm for waking in the morning?
Do you buy milk and bread tonight or wait until tomorrow? If the light turns yellow, will you stop
or should you race through the intersection before the light changes to red?

www.EBooksWorld.ir

www.EBooksWorld.ir

30 ❘ ChApTER 2 BasIc Program structure

Programming is no different in this respect. Your code can execute simple tasks without the need
for decisions, but at some point, your code needs to evaluate a condition and take an appropriate
action based on the result of that condition. It might be the result of input by the user. It might stem
from the fact that a disc is not in the drive when reading or writing files. You might need to check
the presence of a network connection before sending requests to a server. All these scenarios require
decision making in your program code, and C# provides the keywords and foundation for working
with decisions in your code.

ADVICE FROM ThE EXpERTS: Implementing Decision Types

As you go through these different decision types that follow, ensure you not only
understand the syntax and how to use them, but also ensure you have gained the
understanding of why one would be used over another. The exam tests your knowl-
edge of how to implement these, but understanding when to use a specific decision
structure can serve you well in your career as a programmer.

if Statements
The C# language provides the programmer with the ability to program decisions through the use of
various decision structures. The first of these that you will look at is the if statement:

// single if statement syntax
if(condition)
 statement;
remaining code statements;

The if statement includes a conditional portion, in parentheses, and a statement or series of state-
ments to execute. The if statement evaluates a boolean condition that is enclosed in the parenthe-
ses. If the boolean condition is true, the code immediately following the if statement is executed.
If the return value is false, code execution skips the statement in the if clause and executes the
remaining code statements following the if clause.

Note the indentation in the preceding code sample where statement is indented more than the rest
of the code. Without this indentation it is difficult to know for certain which statements will execute
as a part of the if statement. In the code sample, statement; executes only if the condition is true.
The remaining code statements; executes regardless of the outcome of the if statement.

When coding if statements, it is recommended that you use curly braces to enclose the statements
for each section of the if statement even when the structure includes only one statement. If you have
multiple statements that need to be executed when the condition is true, you must use a statement
block that is delineated with curly braces to include the set of statements that need to be executed.
You cannot execute multiple statements for an if condition without using the statement block. The
following sample uses the same statements as earlier with the exception of using curly braces to
denote a statement block. Now it is clear which statements execute.

// single if statement syntax with a statement block
if(condition)

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 31

{
 statement;
}
remaining code statements;

So far you have seen only a single if statement, but you can also use nested if statements to help
you deal with more complex decisions. For example, what happens if you want a piece of code to
execute but only if another condition is also true? There are a couple of ways to do this, and the
following sample shows two possible ways to accomplish this:

// nested if statement
if(condition1)
{
 if(condition2)
 {
 statement;
 }
 outer statement;
}
remaining code statements;

// if statement with logical operator
if(condition1 && condition2)
{
 statement;
}

In the first example, condition1 is evaluated in the outer if statement. If the condition returns
true, the inner if statement will execute and condition2 will be evaluated. If condition1 evaluates
to false, condition2 is never reached. Regardless of the evaluations in either of the if statements,
the line with remaining code statements; will execute.

The second example depicts the use of the binary AND operator, &&. It simply states that if
condition1 is true AND condition2 is true, then execute the statement. If either condition1 or
condition2 is false, statement; will not be executed.

There is a subtle difference between these two uses. In the first example, the nested if, you check
condition1 and if true, you check condition2. Regardless of the outcome of condition2, outer
statement; will execute. In other words, you can have multiple statements execute depending on
a more complex set of evaluations in the nested if than you can with the second example where
the conditions are evaluated in a single if statement. This is part of the reason why nested if state-
ments can become confusing rather quickly.

You can nest if statements as deep as you want to, but it can quickly get unwieldy and become dif-
ficult to keep track of. Not to mention it is difficult to read when you nest deeper than even a low
number of levels.

To help you gain a better understanding of each type presented so far, you create a small application
that can help you understand the different if statements covered up to this point, as well as allow-
ing you to see first-hand how the nested statements work.

www.EBooksWorld.ir

www.EBooksWorld.ir

32 ❘ ChApTER 2 BasIc Program structure

CODE LAB Using if Statements [using_if_statements]

Open Visual Studio on your computer, and create a new project using the C# template for a Console
application. Name your application using_if_statements, or a name of your own choosing.

After the IDE loads the project, copy and paste, or type, the following code into the editor window. Note
that Visual Studio creates some code for you automatically, such as the using statements, namespace,
class, and main components, so you can either replace the entire code in your project with this code, or
you can choose to include only the code within the static void main(string[] args) function.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace using_if_statements
{
 class Program
 {
 static void Main(string[] args)
 {
 // declare some variables for use in the code and assign initial values
 int first = 2;
 int second = 0;

 // use a single if statement to evaluate a condition and output
 // some text
 // indicating the results

 Console.WriteLine("Single if statement");

 if (first == 2)
 {
 Console.WriteLine("The if statement evaluated to true");
 }
 Console.WriteLine("This line outputs regardless of the if condition");

 Console.WriteLine();

 // create an if statement that evaluates two conditions and executes
 // statements only if both are true
 Console.WriteLine("An if statement using && operator.");

 if (first == 2 && second == 0)
 {
 Console.WriteLine("The if statement evaluated to true");
 }
 Console.WriteLine("This line outputs regardless of the if condition");

 Console.WriteLine();

 // create nested if statements

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 33

 Console.WriteLine("Nested if statements.");

 if (first == 2)
 {
 if (second == 0)
 {
 Console.WriteLine("Both outer and inner conditions are true.");
 }
 Console.WriteLine("Outer condition is true, inner may be true.");
 }
 Console.WriteLine("This line outputs regardless of the if condition");

 Console.WriteLine();
 }
 }
}

Code Lab Analysis

After you have entered this code into your application, press Ctrl+F5, or choose Start Without Debugging
from the Debug menu. This results in the code executing and generating output to the screen, as shown in
Figure 2-1. Note that if you just press F5 and start the application without debugging, the output displays
but the console window disappears as soon as the code finishes executing. By starting without debugging,
the console windows remains open enabling you to view the output and then waiting for you press a key
before stopping program execution.

FIGURE 2-1: Output of code lab

In this initial setup, you have ensured that all paths return true, and as a result, all lines are output to
the console window. Start changing the values of the two variables, and experiment with the results to
see which lines get output based on the condition evaluations when both true and false are returned.
Evaluate all possible values for each condition to ensure you understand how these if statements function.

www.EBooksWorld.ir

www.EBooksWorld.ir

34 ❘ ChApTER 2 BasIc Program structure

As mentioned earlier, when executing an if statement, you evaluate a condition and then take action
if that condition is true. If false, the code continues after the if statement. But what happens if you
want to execute one set of code statements when the condition is true or another set of code state-
ments if the condition is false, and then continue executing remaining code statements regardless of
the outcome? You can use the if-else statement:

// if-else statement syntax
if (condition)
{
 statement1;
}
else
{
 statement2;
}
remaining code statements;

In this example, statement1 is executed if the condition is true, otherwise the else clause will be
entered and statement2 will be executed. Regardless of the condition, the remaining code state-
ments will execute after either the if or the else clause is executed.

You also saw an example of nested if statements for executing code only if the current and previous
conditions evaluate to true. You can also choose to execute a code path based on multiple conditions
by using the if, else if statement:

// if-else if statement syntax
if (condition1)
{
 statement1;
}
else if (condition2)
{
 statement2;
}
else if (condition3)
{
 statement3;
}
...
else
{
 statement4;
}
remaining code statements;

The ellipsis (...) in the preceding sample, just above the else statement, indicates that you can have
as many else if portions as you want. Note that the else clause is also optional, as it is in the
single if statement. What this code demonstrates is that you check condition1 and if that is true
you execute statement1. If condition1 is not true, you skip statement1 and check condition2.
In this instance, statement2 is executed if condition2 is true; otherwise, you check condition3
and so on. It’s important to note that as soon as one condition evaluates to true, the statements for
that condition are executed and the if statement then exits. None of the other conditions are evalu-
ated, and the remaining code statements then get executed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 35

Beyond Basic if Statements
Now look at a simple application that demonstrates the use of these if statements. Copy and paste
this code into Visual Studio in a C# console application. Change the values of the condition vari-
ables and execute the code to see how it affects the outcome. Again, run the code using different
values for the boolean variables and watch how the output changes.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace beyond_basic_if_statements
{
 class Program
 {
 static void Main(string[] args)
 {
 bool condition1;
 bool condition2;
 bool condition3;

 // single if statement
 condition1 = true;
 if (condition1)
 {
 Console.WriteLine("This statement prints if condition is true");
 }
 Console.WriteLine("This statement executes regardless of condition.");

 Console.WriteLine();

 //nested if statement
 condition1 = true;
 condition2 = true;
 if (condition1)
 {
 if (condition2)
 {
 Console.WriteLine("This only prints if both conditions
 are true.");
 }
 }

 Console.WriteLine();

 // if statement with logical operator
 condition1 = true;
 condition2 = true;
 if (condition1 && condition2)
 {
 Console.WriteLine("This only prints if both conditions are true.");

www.EBooksWorld.ir

www.EBooksWorld.ir

36 ❘ ChApTER 2 BasIc Program structure

 }

 Console.WriteLine();

 // if-else statement
 condition1 = true;
 if (condition1)
 {
 Console.WriteLine("This statement prints if condition is true.");
 }
 else
 {
 Console.WriteLine("This statement prints if condition is false.");
 }
 Console.WriteLine("This statement executes regardless of condition.");

 Console.WriteLine();

 // if-else if statement
 condition1 = true;
 condition2 = false;
 condition3 = false;

 if (condition1)
 {
 Console.WriteLine("This statement prints if condition1 is true.");
 }
 else if (condition2)
 {
 Console.WriteLine("This statement prints if condition2 is true.");
 }
 else if (condition3)
 {
 Console.WriteLine("This statement prints if condition3 is true.");
 }
 else
 {
 Console.WriteLine("This statement prints if previous conditions
 are false.");
 }
 Console.WriteLine("This statement executes regardless of condition.");

 Console.WriteLine();
 }
 }
}

switch statements
In the preceding section, you saw examples of nested if statements and if, else if statements. Both
of those sets of statements are hard to read when the number of nesting or if-else statements exceeds
a certain number. C#, like other C-based programming languages, provides the switch statement
to enable you to make multiple comparisons, executing code based on the condition, or conditions

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 37

that return true. It is a much cleaner code construct than multiple if-else or nested if statements.
Consider the following:

// switch statement syntax
switch (condition)
{
 case 1:
 statement1;
 break;

 case 2:
 statement2;
 break;

 case 3:
 statement3;
 break;

 default:
 defaultStatement;
 break;
}

The condition in a switch statement in previous languages, such as C, had to be of type int. C#
allows you to compare any simple data type such as int, string, float, and even enumerations.

In the switch statement, the condition to evaluate is the value included in the opening switch
phrase. The code then begins executing at the first case statement looking for a match. The code in
the case statement that matches the condition is executed. Finally, the break statement causes the
code to branch out of the switch statement and continue execution after the closing curly brace of
the switch statement.

You can include as many case statements as you want, but keep in mind that no two case state-
ments can include the same value. There is also an optional default: statement in the switch. If
none of the case statements matches, the default statement is selected, if present. A sample follows:

// sample switch statement using a string comparison
string condition = "Hello";

switch (condition)
{
 case "Good Morning":
 Console.WriteLine("Good morning to you");
 break;

 case "Hello":
 Console.WriteLine("Hello");
 break;

 case "Good Evening":
 Console.WriteLine("Wonderful evening");
 break;

 default:

www.EBooksWorld.ir

www.EBooksWorld.ir

38 ❘ ChApTER 2 BasIc Program structure

 Console.WriteLine("So long");
 break;
}

Another key feature of switch statements is that you can perform a single action in code, based on
multiple conditions. To handle multiple conditions with a single action, you simply eliminate the
break statements in each case section of the switch statement containing the conditions you want
handled. A sample follows showing how you can do this:

// switch handling multiple conditions with a single action
int number;

switch (number)
{
 case 0:
 case 1:
 case 2:
 Console.Writeline ("Contained in the set of whole numbers.");
 break;
 case -1:
 case -10:
 Console.WriteLine ("Contained in the set of Integers.");
 break;
}

In the preceding example, the code checks to see if the value of number is either 0, 1, or 2. If so, it
writes to the console that these values are contained in the mathematical set known as whole numbers.
The break statement only comes after case 2, which means that the code will execute sequentially
comparing number to 0, 1, or 2 allowing either condition to be true. If the value of number is either
one of these numerical values, the statement is printed and then the switch statement is exited.

If the value of number is not 0, 1, 2, the switch statement continues to evaluate number to see if it is
either -1 or -10. If so, it prints out the fact that these numbers are included in the mathematical set
known as integers.

COMMON MISTAKES: Math Versus programming Integer Types

Don’t confuse the mathematical integer with the programming language integer
data type. Programming language integer types have a specific range of values based
on their size (16, 32, or 64 bit) whereas mathematical integers go from negative
infinity to positive infinity, including zero.

Using Loops
Using looping structures in your code allows your applications to repeat a series of instructions
to accomplish a task. (A loop is a repetition structure that repeats instructions.) You might need

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 39

to calculate the average for a series of grades that are stored in a data structure such as an array,
or you might need to iterate over a collection of items such as a dataset that stores records from a
database.

C# provides four looping structures:

➤➤ for statements

➤➤ foreach statements

➤➤ while statements

➤➤ do-while statements

Deciding which one to use depends on your requirements, but ultimately, these structures all pro-
vide repetition functionality. The first looping structure you look at is the basic for structure.

for statements
The for statement looping structure in C# enables you to repeat a statement, or series of statements,
until a specified condition is met. The for statement contains initializer, condition, and incre-
ment (iterator) components (an iterator is a portion of a loop that changes a value):

// for statement syntax
for(initializer; condition; iterator)
{
 statement(s);
}

In the preceding example, the for statement includes the components in parentheses that control the
statement itself. The initializer is used to declare and/or initialize (set a starting value) a variable
(counter) that will be used in the loop. The condition is used to determine what will cause the loop
to stop, and the iterator portion is used to modify the counter variable. Note that each compo-
nent is separated by a semicolon. An example follows:

// Count up to 10 in increments of 2
for(int counter = 0; counter <= 10; counter += 2)
{
 Console.WriteLine(counter);
}

In this example, the for statement initializes a loop counter variable conveniently named counter. You
can use any variable name you choose for this portion of the for loop but keep the following in mind:

➤➤ You cannot use keywords for variable names.

➤➤ The variable declared here should not have the same name as a variable that you use for
another purpose in the for loop.

➤➤ The variable used as the initializer can be used in the for loop. As you can see in the
example, you output the value of counter.

➤➤ You cannot use this variable outside of the for loop due to variable scope.

www.EBooksWorld.ir

www.EBooksWorld.ir

40 ❘ CHAPTER 2 Basic Program structure

The for statement then checks the condition to see if counter is less than or equal to 10. Because
the loop hasn’t executed yet, and you initialized counter to 0, this condition returns true and the
loop statement Console.Writeline(counter); is executed.

The increment routine hasn’t been forgotten. The increment portion will increment counter by 2 as
a result of the += operator, but it executes only after the loop iterates over the statement block. You
can use different aspects of counter modification in your for loops such as increment and decrement
operators like ++, --, +=, *=, and so on. Following is an explanation of the for loop execution.

To give you a better idea on this, you can visualize what happens by using the debugger and break-
points in Visual Studio. The following screenshots show how the for loop functions.

In Figure 2-2, the code has just started the execution of the for loop, and counter has been ini-
tialized to zero. The image shows the code window with the breakpoint set and also shows the
watch window where you can see the value counter. Note it is set at 0 and the highlight is on the
Console.WriteLine(counter); line.

FIGURE 2-2: Counter Initialization

Figure 2-3 has stepped through the code to output the value to the console window, which is not
shown here. Notice that the loop has executed the statement inside the curly braces, but now,
Figure 2-3 shows the increment statement as highlighted. This is key to understanding how the for
loop functions. The increment portion happens after the loop statements execute. However, because
you haven’t stepped into the next line, the value of counter in the watch window is still 0 indicating
that the increment hasn’t happened just yet.

FIGURE 2-3: Counter prior to increment portion of loop

Figure 2-4 shows what happens when you step into the next line of code. The watch window
shows that counter is now equal to 1, and the highlighted portion of the code shows the condition

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 41

evaluation. In this way, you can see that the variable is incremented before the condition is next
checked, but the initialization component is not performed again.

FIGURE 2-4: Counter has incremented .

The initialize portion happens only once; the first time the loop is executed. The condition portion is
checked for each iteration of the loop including the first iteration. It happens prior to the increment and
after the initialize. The loop statement block then executes, and finally the counter variable is acted on.

On each subsequent iteration of the loop, the condition is checked, and if it returns true, the loop
executes the statement block and then increments the counter variable. After the condition returns
false, the loop stops execution. The statements in the block are no longer executed, and the counter
is not acted on any longer. Execution now continues at the next line after the for statement.

You should make use of the debugging features built into Visual Studio and use breakpoints through-
out your code to see how these aspects of the C# language function. A picture truly is worth a thou-
sand words here.

COMMON MISTAKES: Creating Infinite Loops

When writing your loop, ensure you have an exit condition for the loop. Failing to
do so will result in an infinite loop. This is a loop that doesn’t exit. Not only is this
embarrassing, but also it can quickly lock up a computer by consuming memory and
CPU resources depending on what the statements in the loop are doing. Unless of
course you intend to create an infinite loop on purpose.

C# enables you to create an infinite loop if you choose to do so by simply creating the for loop without
any of the values in the parentheses. You might decide to use an infinite loop in real-time applications
where you want a continuous polling of inputs, or perhaps you want to stress test an application or
server. Just ensure that you is a means to exit the loop, which is sometimes simply closing the applica-
tion. Here is an example where there is no initializer, no condition, and no increment:

// infinite for loop in C#
for(;;)
{
 statement;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

42 ❘ CHAPTER 2 Basic Program structure

Another consideration when creating for loops is that your loop doesn’t have to do anything. An
empty statement block means that no code executes during the loop. The loop simply iterates until
the condition is true:

// empty for loop
for(int counter = 0; counter >= 10; counter++)
{
 ;
}

Thus far, you have seen only the for loop iterator as counting up. You can use any of the C# incre-
ment operators in this portion of the for loop, which means you can increment or decrement (to
decrease by a certain value). The following operators are all legal for use in your for loop iterator
section:

➤➤ ++ is the increment operator where values are incremented by one.

➤➤ -- is the decrement operator where values are decremented by one.

➤➤ += is the operator that can be used with literals to change the step such as += 2, which incre-
ments by a value of 2 each time.

➤➤ -= is the decrement of the above operator.

➤➤ *= is the increment by a multiplication factor.

➤➤ /= is the decrement by a division factor.

Nested for Loops
As one final discussion topic on for loops, it’s also important to note that you can nest for loops as
well. This allows you to create more complex looping constructs that you might find useful in vari-
ous applications. One that comes to mind immediately would be the lottery.

REAL-WORLD CASE SCENARIO Nested Loops for a Lottery Program

Where I grew up, we had a lottery that was called 6/49. You could select six numbers from the range 1 to
49. My brother-in-law asked me to write a program for him to predict the winning numbers. Of course,
I told him that wasn’t possible because if it were, programmers much smarter than myself would be bil-
lionaires today. However, to appease him, I did create a small application that allowed him to randomly
pick his numbers. Try to create this same application on your own. Take note that this code sample
doesn’t need to include logic to prevent duplicates.

Solution (lottery_program)

Here is the solution:

 static void Main(string[] args)
 {
 // used to set up a range of values to choose from
 int[] range = new int[49];

 // used to simulate lottery numbers chosen

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 43

 int[] picked = new int[6];

 // set up a random number generator
 Random rnd = new Random();

 // populate the range with values from 1 to 49
 for (int i = 0; i < 49; i++)
 {
 range[i] = i + 1;
 }

 // pick 6 random numbers
 for (int limit = 0; limit < 49; limit++)
 {
 for (int select = 0; select < 6; select++)
 {
 picked[select] = range[rnd.Next(49)];
 }

 }
 Console.WriteLine("Your lotto numbers are:");
 for (int j = 0; j < 6; j++)
 {
 Console.Write(" " + picked[j] + " ");
 }
 Console.WriteLine();
 }

In this code, two arrays are set up to contain the values for the range (49) that can be chosen from and
the count of values for a ticket (6). The random number generator is used to start a random sequence
for choosing a random number from the 1 to 49 range. The first loop populates the range[] array with
values from 1 to 49. The i + 1 is used because as you recall, arrays in C# start at 0, but 0 is not a valid
number in the ticket choices.

The nested loop sets up the outer portion to iterate over all 49 possible values and pick a random value
in the inner loop six times. This is not the cleanest possible method of doing this, but it serves to show
a nesting example.

foreach statements
The for loop can be considered a sentinel controlled loop, one in which you determine when the
loop terminates through the use of a counter. Typically, it’s used when you know how you want
to end the loop because you set up the condition in the loop. But what happens when you don’t
know how many iterations you need to loop over? This situation can arise when working with
collections of items in your code where the quantity is not known at run time, such as dynamic
allocations based on user input.

C# provides the foreach statement for iterating over collections of items. Collections are typi-
cally arrays but also other .NET objects that have implemented the IEnumerable interfaces.
(IEnumerable is a code component in C# that supports iteration.)

www.EBooksWorld.ir

www.EBooksWorld.ir

44 ❘ ChApTER 2 BasIc Program structure

You may have an array or collection that contains a known or unknown number of values. Although
you can use the standard for loop for these collection types with known number of values, it’s almost
impossible to know how many values will be in a collection in all instances. For example, you might
create a character array out of the individual characters of a text string entered by a user at run time.
Other possibilities might be a dataset created after accessing a database. In both cases, you will not
know the number of values at the time you write the code. Consider the following:

// foreach syntax
foreach(type in collection)
{
 statement;
}

In the this syntax example, type is a data type that the collection will contain. A simple example
can demonstrate this. Assume you have an array that stores integer values for grades that a teacher
may want to average, as shown in the following Code Lab.

CODE LAB Using a foreach Loop [average_grades]

// foreach loop to average grades in an array
// set up an integer array and assign some values
int[] arrGrades = new int[] {78, 89, 90, 76, 98, 65};

// create three variables to hold the sum, number of grades, and the average
int total = 0;
int gradeCount = 0;
double average = 0.0;

// loop to iterate over each integer value in the array
// foreach doesn't need to know the size initially as it is determined
// at the time the array is accessed.
foreach(int grade in arrGrades)
{
 total = total + grade; // add each grade value to total
 gradeCount++; // increment counter for use in average
}

average = total / gradeCount; // calculate average of grades
Console.WriteLine(average);

Code Lab Analysis

In the preceding code sample, you know how many grades are in the array because you created the array
at design time, but this is to simplify the example. You might have a scenario in which the user would
enter grades, and you would dynamically create an array in your code.

You create three other variables:

➤➤ total is used to add the values of the grades

➤➤ gradeCount is used to keep track of how many grades were in the array, so you can calculate the
average.

➤➤ average is declared as a double in the event you end up with a fractional value for the average.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 45

The foreach loop declares an integer variable called grade. You have used an integer variable because
the values in the array are integers. It’s important to ensure that your variable in the foreach loop
matches the data types expected in the collection. The variable grade is then used to iterate over each
value in the array. The statements in the foreach loop then add the value in each integer in the array to
the total variable.

You increment the gradeCount variable by one each time so that you can use the value in the average cal-
culation. After the loop is finished, the average calculation is completed and output to the console window.

The foreach loop makes it easy for programmers to set up a means to iterate over the items in a collec-
tion without having to worry about knowing the number of items in advance.

while statements
The while statement acts in a similar fashion to the for statement in that it enables you to perform
a statement or set of statements repeatedly until a condition is met (returns false). The easiest way to
think of the while statement is to state it as, “while the condition remains true, execute the loop.”

// while statement syntax
while(condition)
{
 statement;
}

The while statement starts with the keyword while, enclosed in parentheses is the condition to
test. If the condition returns true, the statement or statements enclosed in the curly braces executes.
When the condition returns false, the execution will fall to the line of code following the closing
curly brace of the while statement. An example helps to demonstrate this concept:

// while statement example
int someValue = 0;

while(someValue < 10)
{
 Console.WriteLine(someValue);
 someValue++;
}

The preceding code sample sets the variable someValue to 0. The while loop tests a condition to see
if someValue is less than 10. In this case 0 is less than 10, so the while loop executes and outputs
the value of someValue to the console window. It then increments someValue by 1. The loop condi-
tion is checked again, and the loop executes because someValue is now equal to 1, which is still less
than 10. Figure 2-5 provides a sample output from this code.

After someValue is incremented to the value of 10, the loop condition fails, and execution continues
after the closing brace of the while loop. The value 10 is not printed due to the condition returning
false. Some programmers new to the concept might think that the values up to and including 10
will be printed, but that is not the case.

www.EBooksWorld.ir

www.EBooksWorld.ir

46 ❘ ChApTER 2 BasIc Program structure

FIGURE 2-5: Output of while loop

Note the differences between the while and for loops. The for loop sets up a variable, a condition,
and an increment all within the for loop parentheses. The while loop relies on previously set vari-
ables and requires the increment to take place within the loop. Failure to increment in the loop could
create an infinite loop here as well.

do-while statements
The last repetition structure to look at is the do-while loop. This looping structure operates in a
similar fashion as the while loop with two distinct exceptions. First, the do-while loop executes
the statement block at least once regardless of the condition. The reason for this comes from the sec-
ond distinction, which is where the condition is evaluated in each structure. Second, the while loop
checks the condition at the beginning, whereas the do-while loop checks the condition at the end.

// do-while loop syntax
do
{
 statement;
} while (condition);

As you can see from the preceding syntax, statement; will get executed first; then the condition is
checked at the end in the while portion. Also important to note is the use of a semicolon at the end
of the while portion even though it follows the closing brace. Forgetting this semicolon is consid-
ered a syntax error and results in the compiler generating an error with the message ; expected.

EXAM TIpS AND TRICKS: Knowing the Difference Between Loops

Exam writers like to test your knowledge of the difference between loops. Ensure
you watch for subtle things like the semicolon or where conditions are evaluated
when reading the exam questions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 47

Take a moment to look at the previous while loop sample, converted to a do-while loop:

// do-while statement example
int someValue = 0;

do
{
 Console.WriteLine(someValue);
 someValue++;
} while (someValue < 10);

The preceding code sample produces the same output as the previous while statement (see
Figure 2-6).

FIGURE 2-6: do-while execution

As a result, this sample doesn’t actually depict the fact that these two loops behave differently, so
you’ll modify the code a bit to show how the do loop differs from the while loop:

// do-while statement example
int someValue = 10;

do
{
 Console.WriteLine(someValue);
 someValue++;
} while (someValue < 10);

What you have changed in this code sample is the initial value for the variable someValue. It is now
set to 10. As a result, you might think that because the while condition tests for values less than
10, this loop will not execute the statements in the curly braces. However, the do-while loop will
execute at least once, and as a result, Figure 2-7 shows the output from running this code sample.

www.EBooksWorld.ir

www.EBooksWorld.ir

48 ❘ ChApTER 2 BasIc Program structure

FIGURE 2-7: do-while after setting variable to 10

The output shows only a single value, 10. This was the initial value set in the variable, and it was
output to the screen showing that the do-while executes the statement block at least once. When
the condition is checked at the end of the loop, it returns false because someValue is not less than
10, and the loop no longer executes.

So why would you choose a do-while over a while? There could be many reasons for choosing one
over the other, but a typical scenario is when you are expecting input from the user and need to ensure
that input is taken in the loop as opposed to outside of the loop. An example helps to demonstrate:

// while statement example
char someValue;

do
{
 someValue = (char) Console.Read();
 Console.WriteLine(someValue);
} while (someValue != 'q');

This sample introduces some code you may not be familiar with yet, so don’t fret too much over it. The
variable declaration declares someValue to be of type char, which represents a single character. Inside
the do loop, you set someValue equal to a character entered by the user when the program runs. The
Console.Read() line is a method for the Console class that reads a single character from the con-
sole input. The (char) is merely an explicit cast that converts the input to a char value for use in the
program.

The value input from the user is then echoed to the screen through the Console.WriteLine method.
The while condition checks to see if the value entered by the user is the letter q. If so, the loop quits;
otherwise, it continues until q is entered at the console. This type of loop control is known as a sen-
tinel. The sentinel value causes the loop to stop. An example of the output is shown in Figure 2-8.

At this point, you might be anxious to try out some of these looping structures in code, so you can
set up a sample that walks you through these different looping structures.

www.EBooksWorld.ir

www.EBooksWorld.ir

Controlling Program Flow ❘ 49

FIGURE 2-8: Using a sentinel to end a loop

CODE LAB Working with Loops

Start a new C# console application in Visual Studio called Loops. After the code window opens for
program.cs, paste or type this code into the main function:

 // using a for loop to count up by one
 Console.WriteLine("Count up by one");

 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine();

 // using a for loop to count down by one
 Console.WriteLine("Count down by one");

 for (int i = 10; i > 0; i--)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine();

 // using a for loop to count up by 2
 Console.WriteLine("Count up by two");

 for (int i = 0; i < 10; i += 2)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine();

 // using a for loop to increment by multiples of 5
 Console.WriteLine("Count up by multiples of 5");

 for (int i = 5; i < 1000; i *= 5)
 {

www.EBooksWorld.ir

www.EBooksWorld.ir

50 ❘ ChApTER 2 BasIc Program structure

 Console.WriteLine(i);
 }
 Console.WriteLine();

 // using a foreach loop with integers
 Console.WriteLine("foeach over an array of integers");

 int[] arrInts = new int[] { 1, 2, 3, 4, 5 };
 foreach (int number in arrInts)
 {
 Console.WriteLine(number);
 }
 Console.WriteLine();

 // using a foreach loop with strings
 Console.WriteLine("foreach over an array of strings");

 string[] arrStrings = new string[] { "First", "Second", "Third",
 "Fourth", "Fifth" };
 foreach (string text in arrStrings)
 {
 Console.WriteLine(text);
 }
 Console.WriteLine();

 // using a while loop
 int whileCounter = 0;

 Console.WriteLine("Counting up by one using a while loop");
 while (whileCounter < 10)
 {
 Console.WriteLine(whileCounter);
 whileCounter++;
 }
 Console.WriteLine();

 // using a do-while loop
 int doCounter = 0;

 Console.WriteLine("Counting up using a do-while loop");
 do
 {
 Console.WriteLine(doCounter);
 doCounter++;
 } while (doCounter < 10);
 Console.WriteLine();

Code Lab Analysis

This code sample can provide you with the opportunity to check out the different loop structures that
were introduced in this chapter. You can use commenting to allow you to focus on individual sections
and also make use of the debugging features in Visual Studio to place breakpoints in the code and step
through the code to see how it operates.

www.EBooksWorld.ir

www.EBooksWorld.ir

Test Questions ❘ 51

SUMMARY

In this chapter you have learned some of the core foundational aspects of the C# programming
language. C# enables you to build applications from statements. The language supports simple and
complex statements. Simple statements are those that provide basic code functionality such as vari-
able declarations, whereas complex statements include more structure around the components of the
statement. Examples of complex statements are the for loop and the switch statement. All simple
statements end with a semicolon; although, this is not a requirement for complex statements.

This chapter also looked at controlling program flow and how that is accomplished in C#. Program
flow refers to the control of executing code within the program and allows you, the programmer, to
determine which code or segment of code gets executed at any point in your program.

C# provides various program flow statements such as decision and repetition structures that allow
the programmer to make decisions based on conditions and to iterate or repeat over code to accom-
plish necessary tasks.

Decision structures such as the if statement and the switch statement permit the programmer to
compare values and direct code execution based on the result. These comparisons are typically the
result of a true or false value returned using conditional operators such as less than (<), greater
than (>), equal to (==), and so on.

Repetition in code enables you to iterate over collections or arrays to act on the items contained in
those structures. Repetition also enables you to perform the same code statement or set of state-
ments to perform various other actions until a certain condition is met. The for, foreach, while,
and do loops all provide the repetition necessary in a C# program.

These foundational concepts can help you understand how to structure your C# code to achieve
the output or program goal that you want. They are core to C# programming and will be found
throughout the .NET Framework.

TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Sample Test Questions.”

 1 . You want to declare an integer variable called myVar and assign it the value 0. How can you
accomplish this?

 a . declare myVar as 0;

 b . myVar = 0;

 c . int myVar = 0

 d . int myVar = 0;

 2 . You need to make a logical comparison where two values must return true in order for your
code to execute the correct statement. Which logical operator enables you to achieve this?

 a . AND

 b . |

www.EBooksWorld.ir

www.EBooksWorld.ir

52 ❘ ChApTER 2 BasIc Program structure

 c . &

 d . &&

 3 . What kind of result is returned in the condition portion of an if statement?

 a . Boolean

 b . Integer

 c . Double

 d . String

 4 . What are the keywords supported in an if statement?

 a . if, else, else-if, return

 b . if, else, else if

 c . if, else, else if, break

 d . if, else, default

 5 . In the following code sample, will the second if structure be evaluated?

bool condition = true;

if(condition)
 if(5 < 10)
 Console.WriteLine("5 is less than 10);

 a . Yes

 b . No

 6 . If you want to iterate over the values in an array of integers called arrNumbers to perform an
action on them, which loop statement enables you to do this?

 a . foreach (int number in arrNumbers)
{
}

 b . for each (int number in arrNumbers)
{
}

 c . for (int i; each i in arrNumbers; i++)
{
}

 d . foreach (number in arrNumbers)
{
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 53

 7 . What is the purpose of break; in a switch statement?

 a . It causes the program to exit.

 b . It causes the code to exit the switch statement.

 c . It causes the program to pause.

 d . It causes the code to stop executing until the user presses a key on the keyboard.

 8 . What are the four basic repetition structures in C#?

 a . for, foreach, loop, while

 b . loop, while, do-for, for-each

 c . for, foreach, while, do-while

 d . do-each, while, for, do

 9 . How many times will this loop execute?

int value = 0;
do
{
 Console.WriteLine (value);
} while value > 10;

 a . 10 times

 b . 1 time

 c . 0 times

 d . 9 times

ADDITIONAL READING AND RESOURCES

Following are some additional useful resources to help you understand the topics presented in this
chapter:

C# keywords
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

C# Programming Guide
http://msdn.microsoft.com/en-us/library/kx37x362.aspx

Developer Code Samples
http://code.msdn.microsoft.com/

C# Corner
http://www.c-sharpcorner.com/

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://code.msdn.microsoft.com/
http://www.c-sharpcorner.com/

54 ❘ ChApTER 2 BasIc Program structure

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Simple statements

➤➤ Will end with a semicolon.

➤➤ They typically exist on one line but may extend to more than one line.

➤➤ Commonly used for variable declarations.

➤➤ They are also used for assignment statements.

➤➤ Typical usage scenarios are to perform a simple task.

Complex statements

➤➤ May or may not end with a semicolon with the do-while loop being an example of ending
with a semicolon.

➤➤ Typically contain simple statements within the curly braces.

➤➤ Complex statements use curly braces to enclose other statements.

➤➤ They have structures, such as parentheses, that support their function.

Boolean expressions

➤➤ These are used in comparisons.

➤➤ C# uses the bool values true and false rather than 1 and 0 as in some other languages.

➤➤ They can be considered logical operators.

➤➤ They can exist in both unary and binary forms.

➤➤ Unary operates on a single operand, such as logical negation !.

➤➤ Binary operates on two operands, such as && and ||.

if-then-else statements

➤➤ Used for decision making.

➤➤ Will execute a code path depending on condition.

➤➤ Returns either true or false from the condition check.

➤➤ Doesn’t require curly braces but use is recommended to help clarify what is included in the
statement.

➤➤ Can be nested within other if-then-else statements.

➤➤ The else clause is used to choose alternative path for a false condition.

➤➤ The else if clause is used to choose alternative path for a true condition.

www.EBooksWorld.ir

www.EBooksWorld.ir

Cheat Sheet ❘ 55

switch statements

➤➤ Can check various data types in the condition in contrast to if statements.

➤➤ Uses case statements for each value to test against the condition.

➤➤ Switch statements are a cleaner code choice than nested if statements for code readability.

➤➤ Can use a default case when none of the cases return true.

➤➤ The break statement is used to end switch evaluation in a true case.

➤➤ They handle multiple conditions with a single set of instructions by removing the break from
each case statement that holds the conditions to match.

for statements

➤➤ Create a simple repetition structure.

➤➤ Uses an initialize component, a condition, and iterator in parentheses.

➤➤ Makes use of a statement block to contain one or more statements for execution enclosed in
curly braces.

➤➤ Can be nested to create more complex looping structures.

➤➤ The initialization portion executes only at the start of the loop and not for each iteration.

➤➤ The condition portion is checked at each iteration.

➤➤ The increment portion happens only after the statements are executed in each iteration.

➤➤ This loop does not end with a semicolon.

foreach statements

➤➤ They can be used for iterating over collections of items.

➤➤ They are best used when the number of values in collection is not known at design time.

➤➤ They work with any collection that implements IEnumerable.

➤➤ The declaration statement must use data types that are in the collection.

while statements

➤➤ These execute similar to a for loop.

➤➤ The initialization is not part of the while loop; it takes place before the loop.

➤➤ The condition is evaluated at the start and on each iteration.

➤➤ The increment is accomplished within the loop.

➤➤ These are more intuitive than the for loop in terms of readability.

www.EBooksWorld.ir

www.EBooksWorld.ir

56 ❘ ChApTER 2 BasIc Program structure

do-while statements

➤➤ Similar to the while loop, requires initialization outside of the loop structure.

➤➤ The condition is evaluated at the end of the loop.

➤➤ The increment is accomplished within the loop.

➤➤ The loop will execute at least once, regardless of condition.

➤➤ This loop style does end with a semicolon.

REVIEW OF KEY TERMS

assignment Providing a value for a variable.

Boolean A value that is represented as either true or false.

branching Refers to changing code execution to a different path.

condition An evaluation of operands using logical operators.

conditional instructions Instructions that evaluate Boolean expressions and take action based on the
outcome of the evaluation.

comment A code line that starts with the // characters and is a way of helping to document the code
so that programmers can understand what the different code segments are intended to do.

complex statement A statement that can enclose one or more simple statements into a code block
surrounded by curly braces {}. Typical complex statements are those used for repetition and decision
structures such as foreach(), if(), switch, do() and so on.

constant A named value that is assigned at time of declaration and cannot be changed in code later.

declaration Used to create a variable in code.

decrement To decrease by a certain value.

expression An activity or code statement that returns a result.

IEnumerable A code component in C# that supports iteration.

increment To increase by a certain value.

initialize To set a starting value.

iterator A portion of loop that changes a value.

literal A notation used to indicate fixed values in code. Not the same as a constant. You cannot
assign a value to a literal.

loop A repetition structure that repeats instructions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 57

modulus Remainder of integer division

operator Performs an operation on values.

program flow The logical execution of code.

sentinel A value used to signal the end for execution on a loop

simple statement A statement that ends with a semicolon and is typically used for program actions
such as declaring variables, assigning values to variables, method calls, and code branching.

spaghetti code A term used to describe code that is complicated to follow and understand due to
branching.

statement The code construct of the C# programming language that causes the application to per-
form an action.

ternary operator An operator that takes three arguments, a condition, a value for true, and a value
for false.

variables Named values that can be changed in code.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed off to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Type System

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Using C# value types

➤➤ Understanding data structures

➤➤ Using enumerations

➤➤ Understanding C# reference types

➤➤ Working with reference types properties

➤➤ Understanding encapsulation

➤➤ Using generics

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter03
download and individually named according to the names throughout the chapter.

This chapter introduces you to the type system in C#, which provides the infrastructure neces-
sary to model objects and handle the different types of data and information within a program.
As a result, the exam tests your abilities to create and consume types in the C# language.

To help you gain this understanding, you explore types in a sequenced and logical manner.
Value types are the simplest types in C#, and the chapter starts there. Not only are they the
basic core types you need to store values and data in your code, but they are also used to
maintain properties, which are components of C# classes. Class properties define characteris-
tics of the classes you create.

Next, you look at reference types, which Microsoft defines as types that “store references to
the actual data.” Another term for reference types is classes.

3

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094
http://www.wrox.com/remtitle.cgi?isbn=1118612094

60 ❘ ChApTER 3 WorkIng WIth the tyPe system

The key to working with reference types such as a C# class is the concept of encapsulation.
Encapsulation enables a developer to create functionality in a class that is hidden from other develop-
ers who might use that class.

Table 3-1 introduces you to the exam objectives covered in this chapter.

TABLE 3-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Create types Create value types . This focuses on creating and using the standard C#
value type variables in your code .

Create reference types . This includes creating and using class files in C# .
Coverage of the components of the class files are covered in subsequent
sections .

Create generic types . This includes creating and using generic types in
your code to represent unknown types at code creation time .

Constructors. This includes defining constructors and how they are used in
class files .

Methods. This focuses on creating and using methods for the functionality
in your code and class files .

Classes. This includes defining and using class files in your code to repre-
sent real-world objects .

Extension methods. This focuses on an understanding of how you can
extend the functionality of existing classes without recompiling the class .

Optional and named parameters. This includes discussion on the proper
use of optional and named parameters in your methods .

Indexed properties. This includes using indexed properties in a class to
support enumerating the properties .

Overloaded methods. This focuses on creating multiple methods with the
same name that accept differing parameters and functionality depending
on the need .

Overridden methods. This discusses how to override virtual methods and
to change the functionality of inherited methods in your classes .

Enforce encapsulation Properties. This focuses on enforcing encapsulation of your class files
through the use of properties to hide the member variables and provide a
means to validate the values supplied to modify the member variables .

Accessor methods . This topic focuses on the methods used to
access member variables in your class files that are hidden through
encapsulation .

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 61

CREATING VALUE TYpES

Exam 70-483 has an objective titled “Create types.” Creating and consuming value types in
C# is a core and fundamental skillset. Value types are the basis of all data types that you use
in your C# programs.

C# divides value types into two distinct categories known as structs and enumerations. Structs are
further divided into subcategories called numeric types (integral types, floating-point types, and
decimals), Boolean types (bool), and user-defined structs. Enumerations, or enums, are formed as
a set of types declared using the keyword enum. (More on enums later in the section on “Working
with Enumerations.”)

Understanding predefined Value Types
Developer documentation from Microsoft refers to value types as intrinsic, simple, or built-in types.
Value types identify specific values of data. This is a rather simple statement, but it is accurate. C#
includes intrinsic data types that are present in many other programming languages and are used
to store simple values. C# intrinsic data types have direct mappings to .NET Framework types that
follow under the System namespace. The names listed in the type column in the following table are
known as aliases for the .NET Types. All value types derive from System.ValueType.

Table 3-2 lists the basic value types that C# supports including the range of the data values that
they support.

TABLE 3-2: C# Data Types

TYpE VALUES SIZE .NET TYpE

bool true, false 1 byte System.Boolean

Byte 0–255 1 byte System.Byte

char 0000–FFFF Unicode 16-bit System.Char

decimal ±1 .0 × 10−28 to ±7 .9 × 1028 28–29 significant digits System.Decimal

double ±5 .0 × 10−324 to ±1 .7 × 10308 15–16 digits System.Double

enum User-defined set of name
constants

float ±1 .5 × 10−45 to ±3 .4 × 1038 7 digits System.Single

int –2,147,483,648 to 2,147,483,647 Signed 32-bit System.Int32

long 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit System.Int64

sbyte –128 to 127 Signed 8-bit System.SByte

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

62 ❘ ChApTER 3 WorkIng WIth the tyPe system

TYpE VALUES SIZE .NET TYpE

short –32,768 to 32,767 Signed 16-bit System.Int16

struct Includes the numeric types
listed in this table as well as
bool and user-defined structs

uint 0 to 4,294,967,295 Unsigned 32-bit System.UInt32

ulong 0 to 18,446,744,073,709,551,615 Unsigned 64-bit System.UInt64

ushort 0 to 65,535 Unsigned 16-bit System.Uint16

To work with these data types, you declare a variable to be of the specific date type. After a vari-
able is declared, you can store the value directly in that variable through an assignment statement.
Assignment can be included as part of the declaration as well. For example, the following code
demonstrates both options:

// declare an integer variable
int myInt;

// and assign a value to it
myInt = 3;

// use declaration and assignment in one statement
int mySecondInt = 50;

The keyword int is used to indicate that the variable will be of type int, the alias for the System.Int32
type. As a result, it can contain any value from negative 2,147,482,648 to positive 2,147,482,647.

ADVICE FROM ThE EXpERTS: Don’t Confuse C# Data Types

Do not confuse C# data types with similar names found in mathematical concepts.
For example, the data type int, which is short for integer, is not the same as the
mathematical integer concept. Integers in math can contain values from minus infin-
ity to positive infinity. However, data types on C# are dependent on the number of
bits used to contain the data type. In this case, int is 32-bits signed; 2 raised to the
power of 32 provides you with a maximum of 4,294,967,296. Take away 1 bit to use
for the signed portion, and you find the values listed in the preceding table for int.

You should be aware of a couple of restrictions with value types. You cannot derive a new type from
a value type, and value types cannot contain a null value. Now, here is where the use of the alias for a
value type and the .NET System type differ. Trying to use an alias with an unassigned variable in code

TABLE 3-2 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 63

will result in Visual Studio generating an error about the use of an unassigned variable. As mentioned,
each value type has a corresponding .NET type in the System namespace, and you can use an unas-
signed version of this type. This is possible because the System types are essentially classes (reference
types), are created through use of the new operator, and contain a default value. The following Code
Lab shows an example of this.

CODE LAB Comparison of value types and their alias [value_type_alias]

// create a variable to hold a value type using the alias form
// but don't assign a variable
int myInt;
int myNewInt = new int();

// create a variable to hold a .NET value type
// this type is the .NET version of the alias form int
// note the use of the keyword new, we are creating an object from
// the System.Int32 class
System.Int32 myInt32 = new System.Int32();

// you will need to comment out this first Console.WriteLine statement
// as Visual Studio will generate an error about using an unassigned
// variable. This is to prevent using a value that was stored in the
// memory location prior to the creation of this variable
Console.WriteLine(myInt);

// print out the default value assigned to an int variable
// that had no value assigned previously
Console.WriteLine(myNewInt);

// this statement will work fine and will print out the default value for
// this type, which in this case is 0
Console.WriteLine(myInt32);

Code Lab Analysis

In the previous code sample, the myInt32 variable is created as a new object based on the System.Int32
.NET type. A value isn’t provided in the statement System.Int32 myInt32 = new System.Int32();.
As a result, Visual Studio calls the default constructor for this object and assigns the default value. (You
learn more about constructors and their purposes later in this chapter under the section titled “Using
Constructors” in “Creating Reference Types.”)

A variable was created called myNewInt by using the keyword new. The .NET Framework recognizes
this form of variable declaration as being the same as using the System.Int32 style of variable.
Although the declaration of int myInt; does not allow you to output the value of this variable if it
has not been assigned, the declaration of int myNewInt = new int(); does allow you to output the
unassigned variable. This second version is not often used when dealing with simple types, however,
but nothing is stopping you from using it.

www.EBooksWorld.ir

www.EBooksWorld.ir

64 ❘ ChApTER 3 WorkIng WIth the tyPe system

The .NET Framework provides default values for all System value types created in this way. The
default values for all the numeric types are equivalent to the value zero (0). Any of the floating point
types such as decimal, double, or float will be 0.0. The default value for bool is false, char is
'\0', enums are (E)0, and structs are set to null.

Another important aspect to understand about value types is in the way the values are managed.
The .NET Framework stores value types on the stack rather than on the heap, in computer mem-
ory. The result of these types storing the value directly and being stored on the stack is that if you
assign one value type to another, it will copy the value from the first to the second. Reference types
copy a reference (memory address) as opposed to the actual values, which are discussed later in the
section “Creating Reference Types.” The following sample code shows the creation of two integer
variables. A value is assigned to one of the variables and then one variable is assigned to another.

// assigning one value type to another
int myInt;
int secondInt;

// myInt will be assigned the value of 2
myInt = 2;

// secondInt will contain the value 2 after this statement executes
secondInt = myInt;

// output the value of the variables
Console.WriteLine(myInt);
Console.WriteLine(secondInt);
Console.WriteLine();

Although in the previous samples you have shown only the integer data type, you work with the
other simple value types in a similar manner. Copy and paste, or type, this code into a new Console
application in Visual Studio to see how to work with other value types.

CODE LAB Using value types [using_value_types]

// declare some numeric data types
int myInt;
double myDouble;
byte myByte;
char myChar;
decimal myDecimal;
float myFloat;
long myLong;
short myShort;
bool myBool;

// assign values to these types and then
// print them out to the console window
// also use the sizeOf operator to determine
// the number of bytes taken up be each type

myInt = 5000;
Console.WriteLine("Integer");
Console.WriteLine(myInt);

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 65

Console.WriteLine(myInt.GetType());
Console.WriteLine(sizeof (int));
Console.WriteLine();

myDouble = 5000.0;
Console.WriteLine("Double");
Console.WriteLine(myDouble);
Console.WriteLine(myDouble.GetType());
Console.WriteLine(sizeof(double));
Console.WriteLine();

myByte = 254;
Console.WriteLine("Byte");
Console.WriteLine(myByte);
Console.WriteLine(myByte.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myChar = 'r';
Console.WriteLine("Char");
Console.WriteLine(myChar);
Console.WriteLine(myChar.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myDecimal = 20987.89756M;
Console.WriteLine("Decimal");
Console.WriteLine(myDecimal);
Console.WriteLine(myDecimal.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myFloat = 254.09F;
Console.WriteLine("Float");
Console.WriteLine(myFloat);
Console.WriteLine(myFloat.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myLong = 2544567538754;
Console.WriteLine("Long");
Console.WriteLine(myLong);
Console.WriteLine(myLong.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myShort = 3276;
Console.WriteLine("Short");
Console.WriteLine(myShort);
Console.WriteLine(myShort.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

myBool = true;
Console.WriteLine("Boolean");
Console.WriteLine(myBool);

www.EBooksWorld.ir

www.EBooksWorld.ir

66 ❘ ChApTER 3 WorkIng WIth the tyPe system

Console.WriteLine(myBool.GetType());
Console.WriteLine(sizeof(byte));
Console.WriteLine();

Code Lab Analysis

This lab declares variables of various values types that are intrinsic to C#. Then each variable is used in a
repeating set of code statements that:

➤➤ Assigns a value to the variable

➤➤ Outputs a line to the console indicating the value type

➤➤ Outputs the value that was assigned

➤➤ Outputs the System type associated with the value type

➤➤ Outputs the size of the value type in bytes

To gain a thorough understanding of these types, change the values in the assignment statements to dif-
ferent types or outside the range and see what the compiler returns for error messages.

An understanding of these simple types is necessary to represent the data that your applications will
use to represent real-world problems. They also form the basis for the properties that you will create
in your classes as you move into the next section on reference types.

BEST pRACTICES: Code Efficiency

Developers writing code today spend less and less time thinking about efficiency of
code and the data types used, mostly due to the power and storage capacity of com-
puters that are in use today. In the early days of the personal computer, thinking
back to the Commodore VIC-20 era, memory was at a premium, and all code writ-
ten was done in a way to conserve memory usage of the application.

Understanding the data sizes helps you to choose the proper data type for your stor-
age needs. Too large a data type can waste resources, while too small a data type
range can cause overflow issues and sometimes wrap-around issues where incre-
menting an int value that is signed might go from 32,767 to –32,767, causing bugs
that are hard to locate.

Working with Data Structures
Data structures, or simply structs, are value types that you can use for storing related sets of variables.
Structs share some similarities with classes, but they also have certain restrictions.

The C# language provides numerous mechanisms for storing related data such as structs, classes,
arrays, collections, and so on. Each has a specific set of requirements and restrictions that dictate

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 67

how or where you can use them. Arrays and collections are covered in Chapter 9, “Working With
Data,” and classes will be covered later in this chapter in the section “Creating Reference Types.”
For now, you’ll focus on an understanding of structs.

Consider some common uses of a struct to help better understand where you might use one, leading
to the creation of structs and how to use them in code. If you consider an object in real-life that has
a set of characteristics, you can understand how to model this object using a struct.

For a simple example, consider a student as a real-world object you want to model in your code. Yes,
you could consider using a class for this, and realistically you would in all likelihood, but for this
example, you will create a simple struct to model the student. To do so, think about the characteristics
that you want to model. To put it into perspective, consider how you want to use the Student struct
in your code. For this simple example, consider using the Student struct as a means to help a teacher
calculate the student’s average grade across a number of tests. Here are the characteristics to consider:

➤➤ First Name

➤➤ Middle Initial

➤➤ Last Name

➤➤ Test1 Score

➤➤ Test2 Score

➤➤ Test3 Score

➤➤ Test4 Score

➤➤ Test5 Score

➤➤ Average

Use a relatively simple set of characteristics where you limit the number of tests to only 5, provide
a field to store the average of all tests, and fields for the Student’s name. (A field is a variable that
stores characteristic data for a class.) You could have used an array for the grades here as well but
in the lab portion of this section, you get a chance to do so. For now, create this struct in code:

 public struct Student
 {
 public string firstName;
 public string lastname;
 public char initial;
 public double score1;
 public double score2;
 public double score3;
 public double score4;
 public double score5;
 public double average;
 }

The Student struct created includes a set of properties represented by variables of simple value
types. As you can see, a struct is a value type, but it is a complex value type because it can hold
multiple differing value types as properties.

www.EBooksWorld.ir

www.EBooksWorld.ir

68 ❘ ChApTER 3 WorkIng WIth the tyPe system

To use this struct in your code, you need to create a new instance of it. You cannot simply use
Student as a new type in your code. The following code shows how to create a new instance of
the Student struct in your code:

// create a new instance of the Student struct in code
Student myStudent = new Student();

// create a new instance of the Student struct without the new keyword
Student myOtherStudent;

After you create a new instance of the struct, you can then begin to assign or read values from
the properties declared in the struct. The following code demonstrates creating a new struct of
type Student, assigning values to the properties, and reading the values from the properties. It
also demonstrates a small piece of code that attempts to use Student directly in code.

// create a new instance of the Student struct
Student myStudent = new Student();

// assign some values to the properties of myStudent
myStudent.firstName = "Fred";
myStudent.lastName = "Jones";
myStudent.score1 = 89;
myStudent.score2 = 95;

Console.Write("Student " + myStudent.firstName + " " + myStudent.lastName);
Console.Write(" scored " + myStudent.score1 + " on his/her first test. ");

// illegal statement, cannot use the type directly
// Visual Studio will indicate that an object reference is required
Student.firstName = "Fail";

Structs can contain more than just properties. They can include functions, constructors, constants,
indexers, operators, events, and nested types and can implement interfaces. You must understand
the use of constructors in structs because they differ slightly from classes. The following points
about constructors in structs are worth noting:

➤➤ Constructors are optional, but if included they must contain parameters. No default
constructors are allowed.

➤➤ Fields cannot be initialized in a struct body.

➤➤ Fields can be initialized only by using the constructor or after the struct is declared.

➤➤ Private members can be initialized using only the constructor.

➤➤ Creating a new struct type without the new operator will not result in a call to a constructor
if one is present.

➤➤ If your struct contains a reference type (class) as one of its members, you must call the
reference type’s constructor explicitly.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 69

The following code expands on the previous Student struct by adding a constructor that sets the
Student's name when the object is created:

// create a Student struct that uses a constructor
 public struct Student
 {
 public string firstName;
 public string lastname;
 private string courseName;

 public Student(string first, string last,string course)
 {
 this.firstName = first;
 this.lastName = last;
 this.courseName = course;
 }
 }

In the preceding sample code, the struct is simplified just to show the use of the constructor. You
have only two fields for first and last name, and use the constructor to supply those values to the
fields when the object is created with the keyword new.

The next sample code snippet shows an illegal use of a constructor in a struct. The reason is that in
a struct if you create a constructor, you must provide for each member field in the struct; otherwise,
Visual Studio throws and error.

public struct Student
{
 public string firstName;
 public string lastName;
 public char initial;
 public double score1;
 public double score2;
 public double score3;
 public double score4;
 public double score5;
 public double average;

 public Student(string first, string last)
 {
 this.firstName = first;
 this.lastName = last;
 }
}

As stated before, a struct can contain functions as well. You would create functions or methods in
your struct to allow it to perform some action on the data members it contains, or for other pur-
poses you deem necessary. The following code snippet shows an example of the previous Student
struct with a method added to calculate the Student average. The constructor code has been
removed to keep the sample clean.

// Student struct that contains a method to calculate the Student average
public struct Student
{

www.EBooksWorld.ir

www.EBooksWorld.ir

70 ❘ ChApTER 3 WorkIng WIth the tyPe system

 public string firstName;
 public string lastname;
 public char initial;
 public double score1;
 public double score2;
 public double score3;
 public double score4;
 public double score5;
 public double average;

 public void calcAverage()
 {
 double avg = ((score1 + score2 + score3 + score4 + score5) / 5);
 this.average = avg;
 }
}

Coming from the perspective of efficient code, a programmer should always consider how best to
use the available data structures in a language. To that end, you should consider whether a struct or
a class is required when deciding how to store your application objects.

In the preceding sample code, the Student struct is simple and should be created as a struct to avoid
the overhead necessary with class files. However, evaluate the scenario where you want to store a num-
ber of student objects in a collection, such as an array. Knowing that value types are passed by value,
your memory consumption can grow rather quickly if you start passing around an array of Student
structs. Remember, these are passed on the stack. Instead, consider using a class for the student, in
which case an array of student objects will be filled with pointers (references) to the student objects
rather than the whole student data structure.

Now that you have covered the core concepts of structs, get some practice in creating them in code.

REAL-WORLD CASE SCENARIO Creating structs

Open Visual Studio and create a C# console-based application, naming it bookStruct. The book struct
will contain the following properties:

➤➤ Title

➤➤ Category

➤➤ Author

➤➤ Number of pages

➤➤ Current page

➤➤ ISBN

➤➤ Cover style

➤➤ Methods to turn pages, called nextPage and prevPage

Implement the code based on the knowledge you have gained so far about structs. Use a constructor to
initialize the properties. Using the main method in your console application, create a new struct for a

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 71

book you know about, such as this one, and assign the properties in the constructor. Using the Console
.WriteLine method, output each property to the console window, and then call the next and previous
page methods. These methods need to take into consideration only the current page, and then increment
or decrement that based on the method called.

Solution

The complete code is provided here:

public struct Book
{
 public string title;
 public string category;
 public string author;
 public int numPages;
 public int currentPage;
 public double ISBN;
 public string coverStyle;

 public Book(string title, string category, string author, int numPages, int
 currentPage, double isbn, string cover)
 {
 this.title = title;
 this.category = category;
 this.author = author;
 this.numPages = numPages;
 this.currentPage = currentPage;
 this.ISBN = isbn;
 this.coverStyle = cover;
 }

 public void nextPage()
 {
 if (currentPage != numPages)
 {
 currentPage++;
 Console.WriteLine("Current page is now: " + this.currentPage);
 }
 else
 {
 Console.WriteLine("At end of book.");
 }
 }

 public void prevPage()
 {
 if (currentPage != 1)
 {
 currentPage--;
 Console.WriteLine("Current page is now: " + this.currentPage);
 }
 else
 {
 Console.WriteLine("At the beginning of the book.");

www.EBooksWorld.ir

www.EBooksWorld.ir

72 ❘ ChApTER 3 WorkIng WIth the tyPe system

 }
 }
}

static void Main(string[] args)
{
 Book myBook = new Book("MCSD Certification Toolkit (Exam 70-483)",
 "Certification", "Covaci, Tiberiu", 648, 1, 81118612095, "Soft Cover");

 Console.WriteLine(myBook.title);
 Console.WriteLine(myBook.category);
 Console.WriteLine(myBook.author);
 Console.WriteLine(myBook.numPages);
 Console.WriteLine(myBook.currentPage);
 Console.WriteLine(myBook.ISBN);
 Console.WriteLine(myBook.coverStyle);

 myBook.nextPage();
 myBook.prevPage();
}

This sample application enables you to see how structs can be used in an application by enabling you
to create a struct using properties and methods. It shows you how to instantiate a struct in code and
access its data members and methods.

You might notice that in the struct shown in the Real-World Case Scenario, the methods and proper-
ties were declared as public. Structs share a similar trait to classes for accessibility of the members of
the struct. Public means that code has access to the members directly and can assign values and read
values as well as call the methods. At times, you want to control access to your members. To do so,
you can declare them as private instead of public. This allows you to create accessor methods for
the properties.

Accessor methods are methods that are public and provide an interface to your struct. By using
accessor methods, you can set your data member fields as private, which prevents writing or reading
them directly. Instead, users of your struct must go through the accessor methods. In these methods,
you can include code to check the validity of the data entered. For example, what happens if other
developers use your struct in their code and attempt to input a string value for the ISBN number?
This would result in a bug in the code. Instead, your code inside the struct could perform validation
on the input value and return an error to the calling code if the value is not correct.

You can leave structs for now and move onto discussing enumerations; however, more on acces-
sibility of data fields will be covered in the section on reference types. In that section, you learn to
use accessor functions and can apply that knowledge to structs as well.

Working with Enumerations
Microsoft defines enumerations as “a distinct type that consists of a set of named constants called the
enumerator list.” Now break this down so you can make sense of the definition. First, an enumeration
is known as a type. A distinct type means that it will be declared as a type in your code, and no other
type can have that same name and be declared as an enum. Each enum in your code needs to be distinct.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 73

A set of named constants merely indicates that the enum is a set, which is to say a grouping of like
values. The values contained in the enumeration are given names, so you can easily identify them,
and they are constants, meaning you cannot change the names or the values after the enumeration
is created.

Even though you assign names to the members of the enum list, the compiler actually assigns integer
values to the members of the list starting with 0 and incrementing by one for each successive member
in the enum. This is the default behavior. You can initialize members with your own value to override
the default behavior. (To override is to extend or modify the abstract or virtual implementation of an
inherited method, property, indexer, or event.) A common example used to demonstrate enumerations
is to use the months of the year as named constants. The following sample code demonstrates using an
enum called Months that contains the 12 months of the year. The first sample uses the default starting
point of 0, whereas the second changes that to start at 1.

// enum called Months, using default initializer
enum Months {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct, Nov, Dec};

// enum call Months, using an overidden initializer
enum Months {Jan = 1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct, Nov, Dec};

BEST pRACTICES: Enumerator Names

Much like variable names, the names of your enumerators cannot contain spaces.
If you want to use names that might require a space, consider using CamelCase
notation or an underscore.

In the previous examples, the first sample uses the default initializer of 0 and therefore the values in
the enum contain the values 0 through 11; Jan = 0, Feb = 1, Mar = 2, and so on. For the most
part, you know the months as Jan = 1, Feb = 2, Mar = 2, and so on. To better maintain that
numeric representation, you can choose the second sample in the preceding code and start the enum
at 1 with each subsequent month containing the correct numeric representation.

By default, and in the sample code shown, the enum uses an underlying data type of int to represent
the list values. You can choose to change that default underlying type if you want by following the
name of the enum with a colon and the data type as the below code demonstrates.

// using a non-default data type for an enum
enum Months : byte {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct, Nov, Dec};

You can use only certain data types for the underlying types on enums. The allowable value types are

➤➤ byte

➤➤ sbyte

➤➤ short

➤➤ ushort

➤➤ int

www.EBooksWorld.ir

www.EBooksWorld.ir

74 ❘ ChApTER 3 WorkIng WIth the tyPe system

➤➤ uint

➤➤ long

➤➤ ulong

All these types are numeric types. So why would you want to choose a different underlying type
than the default? It depends on your requirements for you enumeration values. For example, if you
are truly concerned about memory conservation in your application, you might elect to use the byte
type as previously shown for the Months enumeration to save on memory requirements. After all,
an int is a 32-bit value, which means 4 bytes when compared with using the byte type for a single
byte. It doesn’t amount to a large savings in this one instance, but little bits can add up.

You do not need to rely on the incremental assignment of values either. You can assign each enu-
merator its own nonsequential value. For example, aircraft pilots deal with different air speeds to
help them know when they can safely lower the landing gear and the flaps, or when they are about
to aerodynamically stall the airplane. You can represent specific air speeds by their letter designators
and then assign the proper airspeeds to those designators by using an enumeration.

// enumeration to depict airspeeds for aircraft
enum AirSpeeds
{
 Vx = 55,
 Vy = 65,
 Vs0 = 50,
 Vs1 = 40,
 Vne = 120
{

In this sample enumeration, you have established five enumerators to represent different airspeeds in
an airplane. Vx is the best angle of climb speed; Vy is the best rate of climb; Vs0 is the stall speed in a
clean configuration; Vs1 is the stall speed with flaps and gear extended; and Vne is the never exceed
speed. As you can see, if you were to write code that used only the numeric values, the code would
be hard to read because you couldn’t easily decipher the meaning of the values. However, with an
enumeration, programmers writing an application to handle air speeds would understand the named
constants when encountered in code—assuming they knew the different airspeed designators that is.

In addition to making your code easier to read when using these constants, enumerations have a
couple other distinct advantages, such as enabling other developers using your enumeration to know
clearly what the allowable values are for that enumeration, and feeding the IntelliSense engine of
Visual Studio. When you declare an enumeration and then create a new type that uses your enumera-
tion, IntelliSense displays the allowable values, as shown in Figure 3-1.

Earlier you learned that each value type had its own equivalent System type, such as System.Int32
or System.Byte. The enum type is no different because it is an instance of the System.Enum type.
System.Enum contains a number of methods that you can use with your own enums. Refer to the
MSDN documentation for a complete list of these methods, but following is some sample code that
shows a couple of the methods available to you when working with your enumerations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Value Types ❘ 75

FIGURE 3-1: IntelliSense displaying enumeration list

CODE LAB Using an enum [using_enums]

class Program
{
 enum Months { Jan = 1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept,
 Oct, Nov, Dec };

 static void Main(string[] args)
 {
 string name = Enum.GetName(typeof(Months), 8);
 Console.WriteLine("The 8th month in the enum is " + name);

 Console.WriteLine("The underlying values of the Months enum:");
 foreach (int values in Enum.GetValues(typeof(Months)))
 {
 Console.WriteLine(values);
 }
 }
}

Code Lab Analysis

The preceding code sample created an enumeration called Months that starts the values at 1 and incre-
ments the default value of 1 for each subsequent month. In the method main, you create a string variable
called name and then used the GetName() method of System.Enum to get the eighth value from the enu-
meration, assign it to the variable name, and then output it to the console window.

Next, the code uses the fact that enumerations implicitly implement IEnumerable, and as such, you can
iterate over them using foreach. The foreach loop uses the GetValues() method of the System.Enum
class to pull the underlying values for the enumeration and print them to the console window.

www.EBooksWorld.ir

www.EBooksWorld.ir

76 ❘ ChApTER 3 WorkIng WIth the tyPe system

This section has discussed the various value types that you can use in your code when building C#
applications. Value types form the basis for the data that you can store in your application and are
the simple data types that all programs use at some point. Understanding them and how to use them
in your code gives you a solid foundation for moving onto the next section on reference types.

CREATING REFERENCE TYpES

In the previous section, you were introduced to value types, which represent the most basic data types
you use in your applications. Early applications were actually written using only these basic data
types. Although you can write a complete application with only these basic data types, attempting to
create sophisticated applications that help users solve their real-world problems is incredibly complex.
Object-oriented programming (OOP) was conceived to help developers deal with this complexity.

OOP enables the developer to model real-world objects in their code through the use of classes.
Consider creating an application that might be used in a banking ATM. Your application would
need to deal with objects such as customers, accounts, deposits, withdrawals, balances, and so on.
It’s much easier to write code to model these objects by creating a representation of such objects in
your code and then assigning these code objects the same characteristics and functionality as the
real-world objects. This is where class files come into play. A class file is a file that contains all the
code necessary to model the real-world object. You create a class to act as a template for objects
that will be created in code.

C# refers to classes as reference types. (Also included in the reference type category are interfaces
and delegates. Interfaces are covered in Chapter 5, “Creating and Implementing Class Hierarchies”
while delegates are found in Chapter 6, “Working with Delegates, Events, and Exceptions.”) The
reason these types are referred to as reference types is that the variable declared for the type holds
only a reference to the actual object. A brief explanation of how C# deals with data types helps to
clarify what this means.

In .NET code, there are two distinct, logical sections of computer memory used. They are called the
stack and the heap. The stack is an area of memory reserved by the operating system for the execut-
ing application. This stack is where .NET stores simple data types. It is a relatively small amount of
memory used for code execution. Mostly the simple data types will typically be created and destroyed
rather quickly as the application executes, and therefore the stack can be kept somewhat clean during
execution of the code. It is also the reason why you will receive out-of-memory exceptions if you have
an infinite loop executing that is storing values on the stack.

The heap is a much larger area of memory that the .NET Framework uses to store the objects you
create in your code based on classes. An object created from a class can require large amounts of
memory depending on the size of the class. Classes contain simple data types to hold the values
pertaining to the characteristics of the objects you are modeling. They also contain methods that
provide the functionality that an object exhibits. An example might be a method for a game char-
acter to stand up, run, or talk.

As a result of an object potentially taking up a large amount of memory, the .NET Framework uses
the reference for the object, which is its memory address. In this way, if the code requires copying
or assigning the object to another variable, for example, memory is conserved because the compiler

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 77

copies only the memory address and not the object itself. Classes are created with a specific syntax
as shown here:

class MyClass
{
 // fields

 // properties

 // methods

 // events

 // delegates

 // nested classes
}

The preceding example doesn’t dictate the order of the components of the class, but merely lists the
items that a class can contain. Also, the listed items are not mandatory. The fields portion is where
you would list the characteristics of the objects. If you were modeling a car, fields might consist
of the model, make, color, year, number of doors, and so on. Fields are also commonly known as
members, data members, and data fields.

Properties are directly related to the fields. Properties are used to allow controlled access to the fields
in your class. Why this is important will be discussed more in the section on encapsulation, so you
can leave the concept of properties for later.

Methods are used to provide the functionality for your objects. Real-world objects have functional-
ity that needs to be modeled. Sticking with the car analogy, you know that a car can have the engine
turned on or off and it can accelerate, slow down, stop, and so on. These are examples of methods
that you might create within a car class.

Events are also functionality in your code, but in a different way. Think of events as things that hap-
pen as the result of some outside influence. For example, if a sensor in a car detects a problem, it raises
an event and the computer in the car “hears” the event getting triggered. It can then take action or
generate a warning about the issue. Essentially, events are a mechanism for objects to notify other
objects when something happens. The object that raised the event is the event publisher, and the object
that receives the event is the event subscriber.

Microsoft defines a delegate as “a type that references a method.” Think of a delegate in terms of a
political scenario, and you can gain an understanding of how a delegate functions. For example, a polit-
ical delegate is someone who has been chosen to represent one or more other people. In C#, a delegate
can be associated with any method that has a similar signature (argument types).

Nested classes are exactly what they sound like—one class file nested inside another class file. This
book doesn’t delve into nested classes too much because they are not necessary for passing the exam.

Understanding Modifiers
Before creating classes, you must understand the use of modifiers in C#. Modifiers are used in the
declaration of types and the data members of your reference types. Table 3-3 lists the modifiers
available in C# along with a description of what the modifiers do.

www.EBooksWorld.ir

www.EBooksWorld.ir

78 ❘ ChApTER 3 WorkIng WIth the tyPe system

TABLE 3-3: C# Modifiers

MODIFIER DESCRIpTION

public An access modifier that declares the accessibility of the type it is assigned to .
This is the most permissive level . Access outside the class body or struct is per-
mitted . Reference and value types can be declared public . Methods can also be
declared public .

private An access modifier that declares the accessibility of the type it is assigned
to . The least permissive, it enables access only with the body of the class or
struct . Reference and value types can be declared private . Methods can also be
declared private .

internal An access modifier that declares the accessibility of the type it is assigned to .
Allows access only within files in the same .NET assembly .

protected A member access modifier . Members declared protected are accessible only
from within the class and in derived classes .

abstract Used for classes to indicate that this class cannot be instantiated but that it serves
as a base class for other classes in an inheritance hierarchy .

async Sets up the method or lambda expression it is applied to as an asynchronous
method . This allows the methods to call long-running processes without blocking
the calling code .

const Applying this to a field indicates that field cannot be modified . Constants must be
initialized at the time they are created .

event Used to declare events in your code .

extern Used to indicate that the method has been declared and implemented externally .
You might use this with imported DLLs or external assemblies .

new When used with class members, this modifier hides inherited members from the
base class members . You would do this if you have inherited a member from
a base class but your derived class needs to use its own version of that member .

override Used when inheriting functionality from a base class that you want to change .
Overriding is covered later in the chapter in the section “Abstract and Overriden
Methods .”

partial Class files can exist across multiple files in the same assembly . This modifier tells
the compiler that the class exists in another file or files in the assembly .

readonly Read-only members can be assigned only during declaration or in a class construc-
tor . No other means of changing or assigning a value to that member are permitted .

sealed Applied to classes . Sealed classes cannot be inherited .

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 79

MODIFIER DESCRIpTION

static When applied to a class member, it means that the member belongs to the class
only and not to specific objects created from the class . The .NET Framework has
many examples of this such as the Math class or the String class .

unsafe C# is managed code, which means that memory operations are handled in a
protected manner . Using the unsafe keyword declares a context that is not safe
in terms of memory management . C++ pointers are examples of unsafe memory
operations . To use pointers in C#, you need to declare an unsafe context .

virtual If you create a class and want to allow the method to be overridden in a derived
class, you can use the virtual modifier .

volatile When this modifier is applied to a field, the field can be modified by components
other than your code . Examples might be the operating system .

When you look at encapsulation later in the section titled “Understanding Encapsulation,” you start
to apply some of the access modifiers to enforce encapsulation on your classes. You also explore
some of the other modifiers as you look at creating and consuming classes.

Defining Fields
As discussed earlier in the section on reference types, you use fields to store the data that describes
the characteristics of your classes. Fields are declared as variables within the class and can be any
type including value and reference types.

Fields come in two basic types, instance and static, and a class can contain either or both. An
instance field is one that you will use most often in your classes. Instance fields are those that are
contained within each object you create from the class definition. Each instance field contains data
specific to the object that it is assigned to. As an example, create a simple class file in code and then
create two instances of the class file, setting different values for the fields in the class.

CODE LAB Student class depicting instance fields [student_class]

// create a class called Student
class Student
{
 public static int StudentCount;
 public string firstName;
 public string lastName;
 public string grade;
}

class Program
{
 static void Main(string[] args)
 {
 Student firstStudent = new Student();

www.EBooksWorld.ir

www.EBooksWorld.ir

80 ❘ ChApTER 3 WorkIng WIth the tyPe system

 Student.StudentCount++;
 Student secondStudent = new Student();
 Student.StudentCount++;

 firstStudent.firstName = "John";
 firstStudent.lastName = "Smith";
 firstStudent.grade = "six";

 secondStudent.firstName = "Tom";
 secondStudent.lastName = "Thumb";
 secondStudent.grade = "two";

 Console.WriteLine(firstStudent.firstName);
 Console.WriteLine(secondStudent.firstName);
 Console.WriteLine(Student.StudentCount);
 }
}

Code Lab Analysis

This example is a simple example of creating and using a class, but it demonstrates some key points. The
first portion of the code creates a simple class called Student. In this class, you create four variables.
One is declared as a static variable of type int and is called StudentCount. You use this variable to keep
track of how many Students you have created. Because it is static, it is a variable that is assigned to the
class, not to an instance. (You see how this differs in the code later.)

Each of the remaining variables are instance variables and will be assigned values in each object
(instance) of this class that you create. Again, these are just simple for the purpose of demonstration.
You will get into more complex classes later when you start creating private fields, properties, and so on.

Inside your main method, you can create two instances of the Student class: one called firstStudent
and one called secondStudent. You can do so by first indicating the type for the variable that you will
use. In the same way that you created value types, use the type name followed by the variable name. In
this case, the variable name is actually the name of an object of the class type that you create in code.
The keyword new tells the compiler that you want to create a new instance of the class type Student.
The new keyword is an instruction to the compiler to look at the class Student, identify the members
and their data types, and then reserve enough memory to store the object and all its data requirements.

After you create each object, use the static variable in the Student class and increment it by one. This
variable is only available in the class and not in the instance objects, so you must use the name of the
class, Student, to access this variable.

After you have your instances created, like the structs earlier in the chapter, you can now assign val-
ues to the members. You must use the name of each instance to assign a value to the members of that
instance. This is where the differentiation comes in for static and instance variables. After the assign-
ments are done, you output values to the console window. In this case, you output only the first names
of each Student instance just to show that the values actually are unique for each instance. You also
output the count of Student objects using the class name as opposed to an instance name, again
because StudentCount is a static class variable and not an instance variable.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 81

Using Constructors
The previous section showed an example of creating a simple class and instantiating some objects
of that class. The class was simple because it included only four data fields. Each of the data fields
was assigned values after the class was instantiated in code. There is another way, and preferred by
some, to assign values to the members of an object. This is through the use of a constructor.

A constructor is a method called whenever an object is instantiated. You can use constructors in
your class files to allow you, or other programmers, to set initial values for some or all the data
members in the objects you create from the class definition. In the previous code example, you didn’t
use a constructor because C# enables you to create your own constructor. If you don’t provide a
constructor of your own, C# creates a default constructor. The default constructor sets the values of
each member variable to its default value. The default values were discussed earlier in the chapter.

Constructors have a specific syntax, as shown here:

// constructor syntax
public ClassName()
{
 optional initializing statements;
}

// constructor for the Student class
class Student
{
 public static int StudentCount;
 public string firstName;
 public string lastName;
 public string grade;

 public Student(string first, string last, string grade)
 {
 this.firstName = first;
 this.lastName = last;
 this.grade = grade;
 }

 public Student()
 {

 }
}

There are two constructors listed in the previous sample code. The top of the code listing shows
the syntax for a constructor. Constructors use the public modifier because they must be accessible
outside of the class. This is necessary to allow the object to be initialized when it is created. The
constructor takes the same name as the class. Within the enclosing braces, the initialization state-
ments are optional. A constructor is a method but includes no return type, not even void. To include
a return type in a constructor is improper syntax and will generate a compiler warning.

In the Student class code, there are two constructors provided. One is a nondefault constructor that
accepts three string values and uses them to initialize the member variables. The second is a default

www.EBooksWorld.ir

www.EBooksWorld.ir

82 ❘ ChApTER 3 WorkIng WIth the tyPe system

constructor that includes no statements and takes no arguments. This is the type of constructor that
the compiler generates if no other constructors are created by the developer. This constructor initial-
izes the member variables with their default values.

The compiler deals with constructors when there are multiple constructors in a class. When you cre-
ate a new object from a constructor, you have the option of using any of the available constructors
declared in the class, or none at all. In the previous Student class example, you can call the nonde-
fault constructor, passing in the values for first and last names as well as the grade. If you don’t pro-
vide any values, the default constructor will be called. Also, you cannot call the previous nondefault
constructor with only some of the values. It’s all or nothing.

NOTE Default constructors are used only when no other constructor is called or
none exist.

Defining Methods
Methods are the components in an application that enable you to break up the computing require-
ments of your application into smaller pieces of functionality. Good programming practice dictates
that you create methods to perform discrete pieces of functionality in your code and that the method
performs only that which is necessary to achieve the wanted outcome. Some argue that coding in
this manner results in code that takes up more resources due to the need for the operating system to
maintain instruction pointers and references for all the function calls, but it makes your code much
easier to read and to maintain. If your program is generating errors, it’s much easier to track down
the method providing the offending functionality and debug that small piece of code.

In essence, a method is a construct in code that contains a name, a signature, a statement block
enclosing a statement or set of statements, and an optional return statement. The syntax for a
method follows:

// method syntax
modifier return type name(optional arguments)
{
 statements;
}

In the preceding syntax example, the modifier is one of the previously mentioned modifiers
such as public, private, and so on. The return type can be any valid C# type (value or reference)
but can also be the keyword void, which indicates the method does not return any value to the
caller. The name is used to identify the method in code and is used when calling the method. The
parentheses enclose optional arguments for the method. A method can have 0 or more arguments
depending on the requirements of the method. Within the enclosing braces is where the functional-
ity exists for the method in the form of statements. These statements can be any legal C# statement
and can also include an optional return statement. The return statement is used only if the method
declares a return type.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 83

NOTE It is illegal to include a return statement in a method that declares the
return type void. Also, a compiler warning will be generated if you omit a return
statement or a method that indicates a return type other than void.

Now look at some examples of methods that you might write to perform simple functionality in code.
Continue to use the Student class example and create two simple methods in the code. One method
retrieves the Student first and last name, concatenates them, and returns the name to the calling
method. The calling method does not return a value but prints out the name to the console window.

CODE LAB Methods in a class [student_class_with_methods]

class Student
{
 public static int StudentCount;
 public string firstName;
 public string lastName;
 public string grade;

 public string concatenateName()
 {
 string fullName = this.firstName + " " + this.lastName;
 return fullName;
 }

 public void displayName()
 {
 string name = concatenateName();
 Console.WriteLine(name);
 }
}

class Program
{
 static void Main(string[] args)
 {
 Student firstStudent = new Student();
 Student.StudentCount++;
 Student secondStudent = new Student();
 Student.StudentCount++;

 firstStudent.firstName = "John";
 firstStudent.lastName = "Smith";
 firstStudent.grade = "six";

 secondStudent.firstName = "Tom";
 secondStudent.lastName = "Thumb";
 secondStudent.grade = "two";

 firstStudent.displayName();
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

84 ❘ ChApTER 3 WorkIng WIth the tyPe system

Code Lab Analysis

This example demonstrates the use of methods both within the class and in the main method of the appli-
cation. In the Student class, you added two methods. The first method is called concatenateName() and
returns a string value. You have used the public modifier, listed the return type as string, named the
method, and included a return statement. The method takes no parameters but simply declares a variable
called fullName of type string. It then uses the string concatenation functionality in C# and combines
the firstName variable with a space and the lastName variable to create the full name for the Student.
It assigns this to the fullName variable and then you send it back to the calling function with the return
statement.

The calling function for concatenateName() is another simple method that you created, called
displayName(). Note that displayName() uses the return type void, which means it does not
return a value and does not have a return statement in the statement block. It declares a string
variable called name and uses the return value from the called method concatenateName() to
assign to the name variable. It then writes the value to the console window.

Here is how this code functions. In the main method of the application, you added a new statement
to the end of the method, firstStudent.displayName();. This statement uses the firstStudent
object that you created in code and calls its public method displayName(). Execution shifts to this
method in the object’s code. The method creates a variable, and then in the assignment statement, it
calls the concatenateName() method of the same object. Execution now passes to this method where
the fullName variable is created and used in an assignment statement to be assigned the concatenated
values of first and last name.

Because the statement string name = concatenateName(); was responsible for calling this
method, the compiler has kept track of this on the memory stack and knows where the return value
needs to go. The return statement of concatenateName() ends that method and returns the value to
the calling method where the value of the concatenated name is assigned to the name variable. The
displayName() method can now output the full name to the console window.

One further aspect of methods not covered yet is the capability of the method to accept incoming
values. This is possible through the use of parameters and arguments. The method signature that
accepts values looks like this:

// method syntax for accepting values
modifier return type name (parameters)
{
 statements;
}

Unfortunately, the use of the terms parameters and arguments have been misused somewhat among
programmers and even authors. When dealing with methods, the term parameter is used to identify
the placeholders in the method signature, whereas the term arguments are the actual values that you
pass in to the method. Now look at a method signature and a call to that method to put these terms
in better focus:

// sample method signature to accept values
public int sum(int num1, int num2)

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 85

{
 return num1 + num2;
}

int sumValue = sum(2, 3);

In the preceding example, the method sum is public and returns an integer value. But what you are
interested in is how it accepts values. Within the parentheses you see int num1, int num2. These
are correctly known as parameters to the method. You must indicate the type of data that will be
expected in these parameters. This helps the compiler catch invalid assignments when the method is
called. The names num1 and num2 are the actual parameters.

The last line in the sample code calls the sum method and passes in two values. These two values are
correctly called the arguments of the method call. You can see now where confusion can come from
and why these two terms are used interchangeably at times. To keep it straight, think of the param-
eters as the placeholders in the method signature, and the arguments as the values that are passed in
to these placeholders.

The preceding example is also simple and passes in only value types. Methods support the ability to
pass objects as well. An important distinction, however, is when passing value types, a copy of the
value is passed to the method, but when passing reference types, a reference (memory address) to
that type is passed and not the entire object. Remember, that could take up considerable memory if
you passed an entire object to a method.

This brings up a unique characteristic of method calls and how they act on the arguments that are
passed in. When using value types, the method acts only on a local copy of the variable and doesn’t
change the original value. When acting on a reference type being passed in, it does affect the original
value. Another code example can demonstrate this.

CODE LAB Passing value types to methods [value_type_passing]

class Student
 {
 public string firstName;
 public string lastName;
 public string grade;
 }

 class Program
 {
 static void Main(string[] args)
 {
 int num1 = 2;
 int num2 = 3;
 int result;

 Student firstStudent = new Student();

 firstStudent.firstName = "John";
 firstStudent.lastName = "Smith";
 firstStudent.grade = "six";

www.EBooksWorld.ir

www.EBooksWorld.ir

86 ❘ ChApTER 3 WorkIng WIth the tyPe system

 result = sum(num1, num2);
 Console.Write("Sum is: ");
 Console.WriteLine(result); // outputs 5
 Console.WriteLine();

 changeValues(num1, num2);
 Console.WriteLine();
 Console.WriteLine("Back from changeValues()");
 Console.WriteLine(num1); // outputs 2
 Console.WriteLine(num2); // outputs 3

 Console.WriteLine();
 Console.WriteLine("First name for firstStudent is " +
 firstStudent.firstName);
 changeName(firstStudent);
 Console.WriteLine();
 Console.WriteLine("First name for firstStudent is " +
 firstStudent.firstName);

 }

 static int sum(int value1, int value2)
 {
 Console.WriteLine("In method sum()");
 return value1 + value2;
 }

 static void changeValues(int value1, int value2)
 {
 Console.WriteLine("In changeValues()");
 Console.WriteLine("value1 is " + value1); // outputs 2
 Console.WriteLine("value2 is " + value2); // outputs 3
 Console.WriteLine();
 Console.WriteLine("Changing values");

 value1--;
 value2 += 5;

 Console.WriteLine();
 Console.WriteLine("value1 is now " + value1); // outputs 1
 Console.WriteLine("value2 is now " + value2); // outputs 8
 }

 static void changeName(Student refValue)
 {
 Console.WriteLine();
 Console.WriteLine("In changeName()");
 refValue.firstName = "George";
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 87

Code Lab Analysis

There is a lot going on here. The Student class is simplified for this example, and you have only three
member fields. In the main method of the program, you declare four variables, three of type int and one
of type Student. You assign values to num1, num2, and the members of the Student object called first-
Student. The variable result will get assigned later in the code.

The first method you call is the sum method. You pass in num1 and num2 as arguments to the method.
Inside sum(), write out a message to indicate that you are inside this method. This helps you keep track
of where you are. Next, add the two values and return the result back to the caller where it is assigned
to the variable result. Then output that to the window to show that the sum() method did indeed add
the two values.

Next, show an example of how method calling with value types uses copies of the values. Call the
changeValues() method passing in num1 and num2 again. Inside the method output the fact that you
are inside changeValues() and you output the numeric values of the two parameters value1 and
value2. This is to show that you indeed did pass in the same values for num1 and num2. Then indicate
that you will change these values and decrement value1 by 1 and increment value2 by 5. Before leav-
ing changeValues(), output the new values for value1 and value2. The method then ends.

Back in main, output the values for num1 and num2 again to show that these variables have not been
changed by the changeValues() method. Only the local copies were changed, not the original values.
This is how value types work in method calls.

To show how reference types are affected in method calls, now output the first name of the
firstStudent object you created to show that its value is Fred, the value assigned to it early in
the code. Then call another method called changeName(), which takes a reference variable of type
Student, and pass firstStudent as the reference type to this method. Inside this method, change
the first name of firstStudent to George. After returning from the method, output the first name
of firstStudent and notice that it has indeed changed. This clearly shows that passing a refer-
ence variable to a method results in changing the original value—quite different from passing value
types. Figure 3-2 shows the output from the previous code.

FIGURE 3-2: Output of value_type_passing

www.EBooksWorld.ir

www.EBooksWorld.ir

88 ❘ ChApTER 3 WorkIng WIth the tyPe system

Overloaded Methods
Methods are defined by the modifier, return type, name, and number and type of arguments. But
a method also has a signature. The signature is what uniquely identifies the method from any other
method with the same name. When you call a method in your code, the compiler looks for a method
with the correct signature. The signature actually consists of the method name plus the data type
and kind of the parameters in the method. You already know what the data types represent, but the
kind or parameter in a method may be a value type, a reference type, or an output parameter. The
return type is not a unique component of a method signature.

You might ask why you would want to create more than one method with the same name in your
code. Wouldn’t that surely introduce complications and make your code hard to read? To answer
that question, consider that you might need to have a method name the same based on the action you
want to take, but which performs its internal functionality differently depending on the data sent to
method. Think about some simple mathematics as an example. You can calculate the area of various
geometric shapes with each having a specific formula. Following are two sample methods to calculate
the area of a circle and a rectangle:

// calculate the area of a circle
public double calcArea(double radius)
{
 double area = Math.Pi * (r*r);
 return area;
}

// calculate the area of a rectangle
public double calcArea(double length, double width)
{
 double area = length * width;
 return area;
}

Here you have two methods with the same name calcArea. The name explains the purpose of the
method, to calculate the area. The difference between the two methods is in the signature. In the
first, you set up the method to accept a single double type to represent the radius of a circle. The
method then performs the correct calculation to determine the area of the circle whose radius is
passed in. The second method is also called calcArea() but accepts two arguments for the length
and width of a rectangle and performs the appropriate calculation to determine the area of a
rectangle.

This is an example of overloaded methods. Overloading essentially means that you create multiple
methods with the same name but with each having a different signature, intended to perform some
action specific to the functionality wanted.

Another common use of overloaded methods is in constructors for classes. The overloading provides
you the opportunity to initialize member variables selectively. Remember, a constructor is just a
method without a return type. As a way of reinforcing overloaded methods, create the Student class
again, this time with multiple constructors designed to initialize different member variables.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 89

REAL-WORLD CASE SCENARIO Overloading constructors

Oftentimes when working with classes in a program, you will need to provide multiple ways to initialize
the class. The rationale is that at creation time in a program, you want to provide some flexibility to the
users of the program and only require known information. An example would be completing a form in an
application to establish new students in a system. At the time, the instructor may not know the student’s
class or the student will not necessarily have a grade. Overloading the constructor is the preferred mecha-
nism to provide this functionality.

Start Visual Studio and create a C# console-based application. Create the Student class with the fol-
lowing member variables:

➤➤ firstName of type string

➤➤ lastName of type string

➤➤ Grade of type int

➤➤ schoolName of type string

In the Student class, create three constructors that will be overloaded. Create a default constructor
that takes no arguments and doesn’t initialize any member variables. Create a second constructor that
accepts values for the Students’ first and last names. Assign these to the member variables in the con-
structor. Use the last constructor to accept values for all the member variables and assign them in the
constructor.

After you have the class created, using the main method in your console application, create three new
Student objects. Call a different constructor on each Student object, watching the IntelliSense in
Visual Studio to see how the different constructors are listed there. Provide the necessary values for
each Student object to set the member values using the constructors.

Solution

Here is the solution:

 class Student
 {
 public string firstName;
 public string lastName;
 public int grade;
 public string schoolName;

 public Student()
 {
 }

 public Student(string first, string last)
 {
 this.firstName = first;
 this.lastName = last;
 }

 public Student(string first, string last, int grade, string school)

www.EBooksWorld.ir

www.EBooksWorld.ir

90 ❘ ChApTER 3 WorkIng WIth the tyPe system

 {
 this.firstName = first;
 this.lastName = last;
 this.grade = grade;
 this.schoolName = school;
 }

 }

 class Program
 {
 static void Main(string[] args)
 {
 Student Student1 = new Student();

 Student Student2 = new Student("Tom", "Jones");

 Student Student3 = new Student("Mike", "Myers", 5, "My School");

 }
 }

As you can see from the preceding code, method overloading enables you to achieve some specific
functionality in the constructors of your class. The constructor has three different versions. Each
version is differentiated by the number of parameters in the constructor. This provides a fair bit of
flexibility in how you create out objects in code by allowing you to assign values at the time you cre-
ate an object, or defer the assignments until later.

Abstract and Overridden Methods
So far, you have taken a look at simple methods and at overloaded methods discussing the ratio-
nale for each and how to use them. Another key aspect in OOP is the use of abstract and overrid-
den methods. First, take a look at abstract methods; then review overriding methods. The two are
almost related.

If you look up the definition of abstract, you can find something such as, “not relating to concrete
objects but expressing something that [can] be appreciated [only] intellectually.” Bing.com’s online
dictionary gives you one more definition that is closer to what you will see when dealing with
abstract methods in programming: “nonrepresentational: aiming not to depict an object but com-
posed with the focus on internal structure and form.”

In OOP concepts, an abstract method is one that declares a method signature but no implementa-
tion. It is also known as a virtual method, which means it isn’t considered a real method because it
has no implementation. So, how does it become useful if there is no implementation? Quite simply,
it means that derived classes must implement the functionality in their code. This is also where over-
ridden methods come into the picture. A derived class must override abstract classes through the
implementation.

// an abstract method inside a class
public abstract class Student
{

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 91

 public abstract void outputDetails();
}

As you can see from this simple example, the method is declared with the abstract keyword and
ends with a semicolon. It contains no implementation details. In other words, developers who derive
a class from this Student base class must provide their own implementation of how to output the
details for the Student objects they create.

WARNING You cannot include an abstract method declaration in a
nonabstract class.

You won’t get to class inheritance until Chapter 5, but to understand abstract and overridden meth-
ods, you need to see an example here showing an abstract base class along with a derived class
including the overridden method. The following code sample uses the same abstract Student class
and method done previously, but shows the use of a derived class overriding the abstract method:

// an abstract method inside a class
public abstract class Student
{
 public abstract void outputDetails();
}

public class CollegeStudent: Student
{
 public string firstName;
 public string lastName;
 public string major;
 public double GPA;

 public override void outputDetails()
 {
 Console.WriteLine("Student " + firstName + " " + lastName +
 " enrolled in " + major + " is has a GPA of " + GPA);
 }
}

Again, keep in mind that these examples are kept simple to demonstrate the concepts without add-
ing too much complexity around the actual implementations. In this example, the Student class
becomes an abstract class that serves as the base class for other Student type classes. In this case,
you create a new class to represent a college Student. The college Student class declaration names
the class and follows it with : Student, which indicates that the CollegeStudent class inherits
from the Student class. (Again, this is covered in Chapter 5 in more detail for inheritance.)

Inherited classes take on the characteristics of their base classes, but in this instance, you provided only
an abstract method in the base class. This means that collegeStudent must implement that function-
ality by overriding this abstract method. The method simply concatenates the member variables into an
output string to the console. Again, this isn’t complex, but it does serve to illustrate the point of abstract
methods. By creating an abstract class with abstract methods, you can enforce a specific structure on
classes that are derived from the abstract base class but leave the implementation details to each derived

www.EBooksWorld.ir

www.EBooksWorld.ir

92 ❘ ChApTER 3 WorkIng WIth the tyPe system

class. That means that each derived class is free to implement this outputDetails() method in the way
that makes the most sense for that class.

WARNING You cannot create an instance of an abstract class. If you attempt
to do so, Visual Studio generates an error and your code does not compile.
Abstract classes are meant to be base classes only.

Extension Methods
Extension methods provide you the opportunity to extend an existing class or type by adding a new
method or methods without modifying the original class or type and without recompiling that class
or type. The reason you might want to do this is to add functionality to an existing type without
extending the entire class or type. Prior to .NET 3.5 this was the only way to add functionality to
existing types.

Extension methods can be applied to your own types or even existing types in .NET. An example
might be adding some functionality to the Math class that .NET already includes. Yes, the existing
Math class already provides quite a bit of functionality, but it doesn’t cover all the mathematical
functions or procedures you might want in your application. There is no need to create a new Math
class, nor is there a need to inherit from the existing Math class just to add the functionality you
want. You can use extension methods. In this section, you won’t add extension methods to the Math
class but rather extend the .NET int type to include a method for squaring numbers.

If your programmer wheels are churning around this, you might be thinking that you can just create
your own lightweight class that has the methods you need and call those in your code. You might
say that there is actually no need to create extension methods as a result because your own class can
do what you need. And that would be correct as well, and you can certainly not even bother with
extension methods if you don’t want. However, .NET uses extension methods for the LINQ standard
query operators to add functionality to existing types such as IEnumerable. This doesn’t mean you
need to use them, but understanding them can go a long way to helping you work with LINQ in your
C# code as well—not to mention that the exam also covers them.

So, exactly how do you create extension methods? First, you need to include the extension method
in a public static class, so first you must create that class. After the class is created, you define
the method inside that class and make the method an extension method with the simple addition
of the keyword this. Remember the keyword this refers to the specific instance of the class in
which it appears. The following code example demonstrates how you might create an extension
method to the .NET int type:

public static class MyExtendedMethods
 {
 public static int square(this int num)
 {
 int result = 0;
 result = num * num;
 return result;
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Reference Types ❘ 93

The method must also be static. If you don’t declare it as static, it does not display in the
code IntelliSense window and is not available for you to call. Figure 3-3 shows an example of not
declaring the method static, whereas Figure 3-4 shows the correctly implemented method and the
IntelliSense result.

FIGURE 3-3: Built-in methods FIGURE 3-4: Extension method added

Note that absence of the static keyword and the square method in Figure 3-3. Figure 3-4 shows
that the static keyword has been added to the method. And in the Main method call, you can
now see the method square added to the IntelliSense window indicating that you have indeed
extended the int type to include a method for squaring integers.

ADVICE FROM ThE EXpERTS: Naming Extension Methods

If you create an extension method for a type, but that type already has a method
with the same name as your extension method, the compiler will use only the type’s
method and not your extension method. Name your extension methods carefully.

WARNING Creating extension methods on the type Object results in the exten-
sion method being available for every type in the framework. Your implementa-
tion must be carefully thought out and allow for correct operation on the different
types it might be applied to.

www.EBooksWorld.ir

www.EBooksWorld.ir

94 ❘ ChApTER 3 WorkIng WIth the tyPe system

Optional and Named Parameters
Typically, when calling a method that contains multiple parameters, you must pass in the arguments
to the parameters in the order in which the parameters exist. The parameters are known as positional.
IntelliSense aids greatly in this effort and enables you to see the method signature from the perspective
of the parameters and the order. However, not all programmers use Visual Studio for their coding so
IntelliSense may not be an option for them.

Named arguments enable you to explicitly indicate which parameter the argument is intended
to be used for. Named arguments go hand-in-hand with named parameters. In other words, the
parameter must be named first; then the argument you pass in can use that parameter name. But
wait, your parameters are all named regardless, so one-half of the solution is already present.

As an example, consider calculating the area of a rectangle. The method includes parameters for the
length and width of the rectangle. It performs the area calculation and returns the result. The call to
the method uses named arguments.

 class Program
 {
 static void Main(string[] args)
 {
 double area = rectArea(length: 35.0, width: 25.5);
 Console.WriteLine(area);
 }

 public static double rectArea(double length, double width)
 {
 return length * width;
 }
 }

In the call to the rectArea() method, you can pass in the two arguments required, but use the
named arguments length: and width:. Failure to add the colon at the end of the argument name
results in a compiler warning. The warning is not intuitive, unfortunately, and merely indicates the
requirement for a closing parenthesis. This is simply because the compiler isn’t quite sure what your
intentions are for the label without the colon.

Another key advantage to using named arguments is in the readability of your code. Looking at the
code sample, you can tell precisely which value is the length and which is the width of the rectangle
you want to calculate the area of. This is also a quick-and-dirty form of debugging because it helps
you to ensure you pass in the proper values. Bugs that result from these types of errors are known
as logic errors and are often difficult to debug.

WARNING Named arguments can follow positional arguments, but positional
arguments cannot follow named arguments.

Optional parameters are a feature of methods that enables you to require only some arguments be
passed in to a method while making others optional. Calling a method with optional parameters
means that the caller must provide required parameters but can omit the optional parameters.
Required parameters are those that are not declared optional.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Encapsulation ❘ 95

Optional parameters are permitted in methods, constructors, indexers, and delegates. Each optional
parameter also includes a default value to be used in the event a value is not provided in a call to
that method. Default values can be

➤➤ A constant expression

➤➤ Value types including creating new types with the new keyword

Optional parameters are placed at the end of the parameter list in the method signature. All
required parameters must be listed first in the method signature. Also, if you provide a value for
an optional parameter, any optional parameters that precede this optional parameter must also
be provided with a value.

// sample method with optional parameters
public void displayName(string first, string initial = "", string last = "")
{
 Console.WriteLine(first + " " + initial + " " + last);
}

In this simple example, you can create a method that outputs a name to the console window. It uses
two optional parameters for the middle initial and last name. They are optional parameters because
of the default values assigned to them. These default values are an empty string because you don’t
want to output arbitrary characters or strings if the caller chooses not to supply values for these. In
this example, the caller must provide a value for the first parameter but can exclude the initial and
last. However, if the caller provides a value for last, it must also provide a value for the initial. If
a value for the initial is passed, a value for the last name is still optional, however.

WARNING Required parameters cannot exist after an optional parameter in a
method signature.

UNDERSTANDING ENCApSULATION

In OOP, the term encapsulation is used to describe the concept of packaging the properties, methods,
and any other members into a package called the class. But it does more than just package these com-
ponents. Encapsulation is also used to refer to the “hiding” of the implementation details of the class
functionality and also the protection of the class characteristics.

To get a better understanding of this, consider your MP3 player. When you look at the device, you
see certain external characteristics such as the color, shape, size and so on. But there are other char-
acteristics internally such as the amount and type of storage used along with the functionality such
as playlists, play, pause, stop, shuffle, and such. You have no idea how the device functions internally,
and you don’t need to know that to use the MP3 player. You are provided a specific set of controls to
operate the device. These controls are essentially the interface for interacting with the device.

Now take this to the class concept. If you create a class for a digital music player, you create certain
characteristics for your software player in the form of member variables. You also provide some
functionality in the class to open song files, display song information, shuffle the song lists, create

www.EBooksWorld.ir

www.EBooksWorld.ir

96 ❘ ChApTER 3 WorkIng WIth the tyPe system

playlists, play the song, pause, stop, add, delete, and more. This class defines your software version
of a music player, and it might be a class that you want other developers to use in their code.

To ensure that the music player class can be used by other developers with minimal effort, and to
ensure that the other developers do not get bogged down in the details of how your various methods
work, you use encapsulation. The methods of your class merely expose the method signature for the
class methods. As you know, the signature includes the method name, any return type, and required
or optional parameters. Use of the class methods is limited to calling the method and accepting any
return value back. The implementation details of how the play method works are not important to
someone using the class. They need to provide only the arguments to the play method, which would
likely be a song filename. Internally, the play method would have functionality to locate the song
file provided, open a handle to that file, start playing the song, and perhaps call other methods to
display the song details. The caller of this method could care less about how the method does these
tasks; they simply want the song to play.

The “hiding” aspect of encapsulation comes into being when you explore the use of properties in
a class. Your classes contain member variables to store the class characteristics. As mentioned ear-
lier in the chapter, you can set access modifiers on these variables. So far, you have used the public
access modifier to make all the member variables available outside the class. This was for ease of
use. However, this style of class programming leads to a situation that can result in your application
becoming unsafe or crashing more than you had hoped.

The reason for these mentioned issues is due to the way developers might use your classes. Allowing
a member variable to be modified directly means that you have little to no control over validation of
the value assigned to that member variable. This means that you might inadvertently assign a string
value to a variable intended to hold only a numeric value. The compiler catches this at compile-time—
maybe—and if not, it can result in your application crashing at run time, in a nongraceful manner.
Another more serious consideration is in the form of hacking attempts such as SQL injection attacks
where hackers take advantage of nonsecure code such as this to include characters in a SQL query
string that you didn’t anticipate.

The way to avoid these issues is to make your member variables private and expose them only
through properties. The next section introduces you to properties, what they are, and how to use
them in your classes.

properties
Properties are public methods that you use for access to the private member variables. Making
the member variables private means they cannot be accessed directly from outside of the class. So
how do you access the values or set the values of these variables if they are private? You can do
so through the use of the properties. Remember that public access means that the methods can
be accessed outside of the class. Also, because the properties are members of the class, they have
access to the private members of the class.

Properties can be modified by using access modifiers as well. You can assign the public, private,
protected, internal, or protected internal access modifiers to a property. Properties can also
be declared with the static keyword, which means that they can be called on the class without
having to instantiate a new object.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Encapsulation ❘ 97

Just like methods in a base class, you can also choose to make a property virtual, which enables
derived classes to override the behavior code in the property to better suit the needs of the derived
class. You may also use the abstract keyword when declaring a property, and it acts just like an
abstract method, which requires an implementation in the derived class.

Even though properties can be considered as components of a class that represent object characteris-
tics, they are not the characteristics by themselves. Properties rely on two key methods to access and
modify the member variables. The first method is known as the get method. get is used to access the
member variable the property represents. The second method is called set. As you might expect, this
method is used to modify (set) the data of a member variable it represents. The syntax of a property
for a class follows:

// sample propety syntax
class Student
{
 private firstName;

 public string FirstName
 {
 get {return firstName;}

 set { firstName = value;}
 }
}

Note the specific characteristics of the property syntax. First, in the class you declare the firstName
property as private. The property follows including a return type and uses a name identical to the
member variable except that it starts with an uppercase letter. This is not a strict syntax require-
ment, but is more of a recommended form of coding. The name should be as close as possible to the
name of the member variable that it is intended to modify for code readability. Some developers pre-
fer to also include the word Property in the name but this also is not a requirement.

Inside the property you see two methods called get and set. As you might expect, the get method
returns the value from the corresponding member variable, and set is responsible for modifying the
associated member variable. The set method uses a parameter called value. This is a component of
the property method set and contains the value passed in to the method call.

You can create read-only properties and write-only properties by simply omitting either the get or
set, respectively, in your property code. A write-only property is rare; however, and the most com-
mon are either read/write or read-only.

The two property methods enable you to control the values assigned or returned from your class. In
this way, you can validate the data passed in to a property before assignment, and you can transform
values being read prior to passing them to the caller, if necessary. The following section discusses how
to enforce encapsulation through the use of properties.

Enforced Encapsulation by Using properties
As stated earlier, encapsulation in OOP involves hiding data and implementation. Now see an example
of this as you modify your Student class to take advantage of encapsulation through properties.

www.EBooksWorld.ir

www.EBooksWorld.ir

98 ❘ ChApTER 3 WorkIng WIth the tyPe system

You create a Student class that contains numerous member variables but declare them as
private. You permit access to them only through properties. Start Visual Studio and create
a new console-based application, or use an existing Student class example if you have created
one from earlier in this chapter. Add the following code to your application to create the
Student class.

CODE LAB Using properties [using_properties]

 public class Student
 {
 private string firstName;
 private char middleInitial;
 private string lastName;
 private int age;
 private string program;
 private double gpa;

 public Student(string first, string last)
 {
 this.firstName = first;
 this.lastName = last;
 }

 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }

 public char MiddleInitial
 {
 get { return middleInitial; }
 set { middleInitial = value; }
 }

 public int Age
 {
 get { return age; }
 set
 {
 if (value > 6)
 {
 age = value;
 }
 else
 {
 Console.WriteLine("Student age must be greater than 6");

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Encapsulation ❘ 99

 }
 }
 }

 public string Program
 {
 get { return program; }
 set { program = value; }
 }

 public double GPA
 {
 get { return gpa; }
 set
 {
 if (value <= 4.0)
 {
 gpa = value;
 }
 else
 {
 Console.WriteLine("GPA cannot be greater than 4.0");
 }
 }
 }
 public void displayDetails()
 {
Console.WriteLine(this.FirstName + " " + this.MiddleInitial + " " + this.LastName);
 Console.WriteLine("Has a GPA of " + this.GPA);
 }
 }

Code Lab Analysis

In this class, you declared a number of private data members. These are no longer accessible outside of
this class unless the caller goes through the properties or the constructor. That’s right; if you look at the
code for the Student class, you can notice that the constructor can still directly access the private mem-
ber variables. The constructor is part of the class, so it has access to the private members. Note that the
constructor makes use of the keyword this to ensure that the values are applied to the instance variables
of the instantiated class.

After the constructor, you start to create some properties for this class—one property for each private
member variable. This is how your code can now access the member variables. Unlike standard methods,
properties do not enclose parameters in parentheses. That is because you accept only one value for the
property or return only one value. The parameter for a property is known as the value, as shown in
the set portions of these properties.

You could have included substantially more code in each property for validation, such as including a
check for length of values passed in to the name properties or ensuring the middle initial is only a single
character. To keep the code simple while you gain an understanding of working with properties, you
include only validation logic for the age and GPA values. But this is an example of how properties enable
you to validate data prior to assigning it to a member variable.

www.EBooksWorld.ir

www.EBooksWorld.ir

100 ❘ ChApTER 3 WorkIng WIth the tyPe system

The final piece of code in the Student class is a method called displayDetails(). In this method
simply concatenate the name components and then include a text message about the Student’s GPA.
When code calls this method, it has no idea how the details are assembled to be output to the console
window. In this way, you can change the implementation of this method at any time you want, as long
as you don’t change the signature, and callers of this method still function correctly and the details are
still output.

Now, use the Student class in your program to see how the properties have now become the inter-
face for the member variables. Before you enter the code to use the Student class, take note of the
IntelliSense displayed in Figure 3-5, which shows the property names and not those of the member
variables. This is due to the access modifiers used on the member variables making them private.
The properties are public.

FIGURE 3-5: IntelliSense displaying the properties

Enter the following code in your application to make use of the Student class you created and
access the properties by assigning values to them. After you have the code entered and working,
change the values of the age and GPA to values outside the range and see the behavior.

CODE LAB Accessing properties [accessing_properties]

 class Program
 {
 static void Main(string[] args)
 {
 Student myStudent = new Student("Tom", "Thumb");
 myStudent.MiddleInitial = 'R';
 myStudent.Age = 15;
 myStudent.GPA = 3.5;
 myStudent.displayDetails();
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Encapsulation ❘ 101

Code Lab Analysis

In this sample code for using the Student class, you rely on the constructor to set the first and last
names. Then you call on the properties to set the middle initial, age, and GPA values. Then you out-
put the values to the console window to validate that they did indeed get set correctly.

Indexed properties
Indexed properties, or indexers, behave a little differently from standard properties. The primary
purpose of indexed properties is to allow “array-like access to groups of items,” according to MSDN
documentation. In other words, if you have classes that make use of arrays or other collection types,
you should consider using indexers for accessing the values of these internal collections. The standard
properties discussed so far are used to access single values in classes, whereas an indexed property
will be used to encapsulate a set of values.

To demonstrate indexed properties, you need a simple example that illustrates the use of these types
of properties in a class. One example might be for an application that deals with network addresses
in an IP subnetting scenario. If you aren’t familiar with TCP/IP v4 addressing, a brief explanation
follows. For those who understand it, feel free to skip this portion.

IP addresses in version 4 of TCP/IP are 32-bit addresses. The bits can be set to either a 0 or a 1,
giving you a total of 2 raised to the power of 32, which is the number of addresses available for use.
You might want to create a class that contains an array of 32 values to store these addresses. Each
array could represent a specific IP address by setting the array elements to either a 1 or a 0 and then
used to represent an IP address. Now create an address class and create an indexed property inside
the class to store the array of bits that will be used for the IP address.

 public class IPAddress
 {
 private int[] ip;

 public int this[int index]
 {
 get
 {
 return ip[index];
 }
 set
 {
 if (value == 0 || value == 1)
 ip[index] = value;
 else
 throw new Exception("Invalid value");
 }
 }
 }

 class Program

www.EBooksWorld.ir

www.EBooksWorld.ir

102 ❘ ChApTER 3 WorkIng WIth the tyPe system

 {
 static void Main(string[] args)
 {
 IPAddress myIP = new IPAddress();

 // initialize the IP address to all zeros
 for (int i = 0; i < 32; i++)
 {
 myIP[i] = 0;
 }

 }
 }

Again, you created simple code samples to focus on the core principles. This class contains only one
property, which is an indexed property to store the 32 bits of an IP address. The key differentiator that
makes this an indexed property is the use of the keyword this in the property. Notice also that the
property appears to accept a parameter, but in reality it is accepting an index for the value parameter.

Place this code into a C# console application and execute it as-is to populate the int array property
in IPAddress with all zeros. To try out the code sample even further, add your own code to update
the values of arbitrary index values and inspect the array through debugging to see how the values
have been applied.

Here are some key points to keep in mind for indexed properties:

➤➤ They accept an index value in place of the standard property value parameter.

➤➤ They are identified through the use of the keyword this.

➤➤ Indexed properties can be created in classes or structs.

➤➤ Only one indexed property can exist in a single class or struct.

➤➤ They can contain get and set methods just like other properties.

UNDERSTANDING GENERIC TYpES AND GENERIC METhODS

Generics didn’t always exist in C#; they were added only in version 2.0 of the C# language. The ben-
efit of using generics is that you can now design your classes and the methods in those classes without
specifying the types until declaration and instantiation. The advantage to doing so is a reduction in
type casting or boxing and unboxing at run time. Generics work for both value types and reference
types. Other advantages of generics can be found in code reuse, type safety, and efficiency.

Consider using different collection types in your code that act on objects. For example, consider
the Queue class. You can store objects in the queue class using the Enqueue() method and remove
them using the Dequeue() method. However, what happens if your queue is used to store items of
different types such as int or char? Because the .NET Queue object is designed to hold reference
types, you need to use boxing and unboxing for value types. If you are storing objects in the queue,
you need to use explicit casts for those reference types when dequeuing. This can result in error-
prone code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Generic Types and Generic Methods ❘ 103

Instead of dealing with the performance hit of converting types, you can use generic classes with a
generic parameter that accepts a class type at run time. This also saves the need to create multiple
classes that implement the same functionality for each type you need to support.

Defining Generic Types
Defining generic types is done through the use a generic type parameter enclosed in angle brackets, <T>.
T is just the standard representation for generic types that is used in most documentation concerning
generics. You can use the letter of your own choosing. An example of a generic Queue class follows:

// example of a generic style Queue
public class GenericQueue<T>
{
 public void Enqueue(T obj);
 public T DeQueue();
}

Although a class is demonstrated here called GenericQueue<T> to differentiate a queue from the
.NET Queue class, you should look at the System.Collection.Generic namespace to determine if
the .NET Framework already contains a generic class. Always reuse existing code where possible.

Your generic types act just like other reference types and can include constructors, member vari-
ables, and methods. The methods, including the constructor, can include type parameters as well.

Using Generic Types
Creating the GenericQueue class allows you to pass in the type of object that this class can store in
the queue when you instantiate the object. An example of instantiating a GenericQueue object to
store Student objects follows:

// generic queue that will be used to store Student objects
GenericQueue<Student> StudentQueue = new GenericQueue<Student>();

Student myStudent = new Student("Tom", "Thumb");

// store the myStudent object in the StudentQueue
StudentQueue.Enqueue(myStudent);

// retrieve the myStudent object from the StudentQueue
StudentQueue.Dequeue();

By using generics, this queue class can add and remove Student objects in the queue without the
need for explicit casting because the reference type is specified during the instantiation.

Defining Generic Methods
Much as you might expect, generic methods will be declared with type parameters as well. This means
that like the class signature, the method signature will use a placeholder for the type that will be
passed in to the method. In the same way that generic classes are type-safe and don’t require boxing/
unboxing or explicit casts, generic methods also share this same characteristic. One of the simplest

www.EBooksWorld.ir

www.EBooksWorld.ir

104 ❘ ChApTER 3 WorkIng WIth the tyPe system

examples that exists on MSDN and in various other documentation samples is using a swap method.
Swapping is a commonly used function in simple sorting algorithms. An example of a generic swap
method follows:

// example of generic method with type parameters
public void Swap<T>(ref T valueOne, ref T valueTwo)
{
 T temp = valueOne;
 valueOne = valueTwo;
 valueTwo = temp;
}

Now take a moment to dissect this method to understand how it is designed. In the signature of the
method, you still use access modifiers and return types. In this case, make this method public and
set the return type as void. Then name the function as Swap, and similar to the generic class, use the
angle brackets and a type placeholder <T>.

Here is where the generic method differs slightly from the nongeneric version. The parameters use the
keyword ref and the type placeholder. The ref keyword means that the arguments passed in will be
passed by reference. The method acts on the actual values passed in through the reference to the mem-
ory address for the arguments. The T placeholder means that the arguments will be of type T, based on
the type used at the time the method is called. This can be value types or reference types.

Also notice that the local variable in the swap method called temp is also declared with type T.
Thinking about this, it makes perfect sense because you need to use the same types during the swap
process, and temp is just a local variable that can be used to temporarily store one value before
assigning it to the second variable.

Using Generic Methods
When using generic methods, you simply pass the correct type into the method call, replacing the T
parameter with the type you use for the swap. For this example, assume you have an array of values
and want to call the swap method to help with sorting the array. The array can be of almost any
type, but ideally if you are sorting, you would want it to be of types that can actually have a sorting
value. The example here is designed to sort integer values:

 class Program
 {
 static void Main(string[] args)
 {
 int[] arrInts = new int[] {2, 5, 4, 7, 6, 7, 1, 3, 9, 8};
 char[] arrChar = new char[] { 'f', 'a', 'r', 'c', 'h' };

 // Sorting: integer Sort
 for (int i = 0; i < arrInts.Length; i++)
 {
 for (int j = i + 1; j < arrInts.Length; j++)
 {
 if (arrInts[i] > arrInts[j])
 {
 swap<int>(ref arrInts[i], ref arrInts[j]);

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary ❘ 105

 }
 }
 }

 // Sorting: character Sort
 for (int i = 0; i < arrChar.Length; i++)
 {
 for (int j = i + 1; j < arrChar.Length; j++)
 {
 if (arrChar[i] > arrChar[j])
 {
 swap<char>(ref arrChar[i], ref arrChar[j]);
 }
 }
 }
 }

 static void swap<T>(ref T valueOne, ref T valueTwo)
 {
 T temp = valueOne;
 valueOne = valueTwo;
 valueTwo = temp;
 }
 }

You could certainly have written the swap functionality within the nested for loop because the swap
is relatively simple. However, in this instance you want to demonstrate how you can use a type-safe,
generic method that will accept any type of object where you can compare for greater or less than.

The first array consists of integers and the bubble sort works fine when you call the swap method
and pass it in the int type. The second array consists of characters of the type char. When you call
the swap method this time, pass in the char type as the type that will be acted on.

Okay, so you cheated a little bit because ultimately char values are compared using their numeric
codes, which enable you to determine which character comes before another. But again, without
complicating the concepts, it demonstrates how you can use generic methods with different types.

SUMMARY

The type system in C# is the foundation for the data that your application will work with. At the basic
level are the value types providing the data structures for supporting basic data types for numeric and
character data. To model real-world objects, the .NET platform provides object-oriented programming
support in the form of classes.

Value types are the simplest to work with and can be used to store simple data or complex data
through the use of structs and enumerations. Structs are similar to lightweight class files, whereas
enumerations make code more readable through the use of named constants for related data.

Through the OOP principle of encapsulation, you can create class files that hide the details of the
implementation for the methods that make up the class. Encapsulation means that a class can act
similar to a black box. In other words, a public accessible interface exposes only the signatures

www.EBooksWorld.ir

www.EBooksWorld.ir

106 ❘ ChApTER 3 WorkIng WIth the tyPe system

of the methods with required and optional parameters while not exposing the details of how the
class or methods perform their functions. This makes class files easier to use because the coding of
objects based on these classes do not get written around the class implementation details.

With the inclusion of generics in C#, the platform supports the creation of classes with operations
not specific to any particular data type. Generics include more than just classes because they also
extend to interfaces, methods, and delegates. Generics provide the developer with the convenience
creating type-safe classes and methods resulting in less error-prone code, but also in better perform-
ing code by taking away the need to do conversion on data types through boxing and boxing of
value types.

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . What is the maximum value you can store in an int data type?

 a . Positive infinity

 b . 32,167

 c . 65,536

 d . 4,294,967,296

 2 . True or false: double and float data types can store values with decimals.

 3 . Which declaration can assign the default value to an int type?

 a . new int();

 b . int myInt = new int();

 c . int myInt;

 d . int myInt = new int(default);

 4 . True or false: structs can contain methods.

 5 . What is the correct way to access the firstName property of a struct named Student?

 a . string name = Student.firstName;

 b . string name = Student.firstName();

 c . string name = Student(firstName);

 d . string name = Student.(firstName);

 6 . In the following enumeration, what will be the underlying value of Wed?

enum Days {Mon = 1, Tue, Wed, Thur, Fri, Sat, Sun};

 a . 2

 b . 3

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 107

 c . 4

 d . It has no numeric value.

 7 . What are two methods with the same name but with different parameters?

 a . Overloading

 b . Overriding

 c . Duplexing

 d . Duplicate

 8 . What is the parameter in this method known as?

public void displayAbsoluteValue(int value = 1)

 a . Modified

 b . Optional

 c . Named

 d . Default

 9 . When you create an abstract method, how do you use that method in a derived class?

 a . You must overload the method in your derived class.

 b . You must override the method in your derived class.

 c . Abstract methods cannot be used in derived classes.

 d . You need to declare the method as virtual in your derived class.

 10 . How do you enforce encapsulation on the data members of your class?

 a . Create private data members.

 b . Create private methods.

 c . Use public properties.

 d . Use private properties.

 e . Use the protected access modifier on methods, properties, and member variables.

 11 . Boxing refers to:

 a . Encapsulation

 b . Converting a value type to a reference type

 c . Converting a reference type to a value type

 d . Creating a class to wrap functionality in a single entity

www.EBooksWorld.ir

www.EBooksWorld.ir

108 ❘ ChApTER 3 WorkIng WIth the tyPe system

 12 . What is one advantage of using named parameters?

 a . You can pass the arguments in to the method in any order using the parameter
names.

 b . You can pass in optional arguments as long as you use the parameter names in your
arguments.

 c . Named parameters make compiling much faster.

 d . Name parameters do not affect compile time.

 13 . What is an advantage of using generics in .NET?

 a . Generics enable you to create classes that span types.

 b . Generics enable you to create classes that accept the type at creation time.

 c . Generics perform better than nongeneric classes.

 d . Generics do not use optional parameters.

 14 . What does the <T> designator indicate in a generic class?

 a . It is the parameter for all arguments passed in to the class constructor.

 b . It is the parameter designator for the default method of the class.

 c . It is a placeholder that will contain the object type used.

 d . It is a placeholder that will serve as the class name.

 15 . How are the values passed in generic methods?

 a . They are passed by value.

 b . They are passed by reference.

 c . They must be encapsulated in a property.

 d . They are passed during class instantiation.

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this
chapter:

C# keywords
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

The C# Programming Guide
http://msdn.microsoft.com/en-us/library/kx37x362.aspx

MSDN Code Gallery
http://code.msdn.microsoft.com

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://code.msdn.microsoft.com

Cheat Sheet ❘ 109

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Value types

➤➤ Store the values directly.

➤➤ Are an alias for System types such as int for System.Int32.

➤➤ Are passed as a copy to methods.

➤➤ Framework includes standard data types most commonly required.

➤➤ Legal values are based on number of bits used to store the type.

Data structures

➤➤ Data structures involved structs, enumerations, and classes.

➤➤ Structs are lightweight data structures.

➤➤ Structs can contain member variables and methods.

➤➤ Structs are passed by value unlike reference types, which are passed by reference.

Enumerations

➤➤ Enumerations contain a list of named constants.

➤➤ They make code more readable.

➤➤ They use an underlying value for the named constant.

➤➤ Underlying values of type int start at 0 and increment by one unless otherwise indicated in
the declaration.

Reference types

➤➤ Reference types are also commonly referred to as classes.

➤➤ Classes contain member variables to store characteristics.

➤➤ Classes contain member functions to provide functionality.

➤➤ Class files encompass data and functionality in one package.

Modifiers

➤➤ Modifiers are used to determine access for classes and class members.

➤➤ See Table 3-3 for a complete list of modifiers.

➤➤ Modifiers are listed first in declarations.

Fields

➤➤ Fields contain the data for classes.

➤➤ Fields are also known as member variables.

➤➤ They describe characteristics of the class.

➤➤ They should be marked private to avoid unwanted modification.

www.EBooksWorld.ir

www.EBooksWorld.ir

110 ❘ ChApTER 3 WorkIng WIth the tyPe system

Constructors

➤➤ Use to initialize classes.

➤➤ Do not include a return type.

➤➤ Use the same name as the class.

➤➤ May contain no parameters (default constructor).

➤➤ If no constructor is defined, compiler generates a default constructor.

Methods

➤➤ Provide functionality for a class

➤➤ Can be used with modifiers

➤➤ Can return values or not (return type void)

➤➤ Can accept arguments through parameters in the signature

➤➤ Can use optional and named parameters

Overloaded methods

➤➤ Same method name with multiple instances for different functionality

➤➤ Defined by the signature (name, types, and kinds of parameters)

Abstract methods

➤➤ Do not define an implementation

➤➤ Can be declared in abstract classes only

➤➤ End with a semicolon

Overridden methods

➤➤ Hide the implementation of a method of the same name in the base class

➤➤ Provide a means to change method behavior in derived class

➤➤ Used for virtual and abstract methods in base class

Extension methods

➤➤ Can be applied to your own types or even existing types in .NET

➤➤ Extend existing classes by adding methods without recompiling

Optional parameters

➤➤ Enable you to choose which parameters are required in a method.

➤➤ Defined as optional by including a default value.

➤➤ The default value is used if none is passed by caller.

➤➤ Must exist after required parameters.

➤➤ If multiple optional parameters exist and a value is specified for one, all preceding optional
parameters must also be supplied values.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 111

Named parameters

➤➤ Allow for giving parameters in a method a name

➤➤ Increase code readability

➤➤ Enable you to pass arguments to a method in an order other than in the method signature

Encapsulation

➤➤ Also known as data hiding.

➤➤ Involves making member variable private.

➤➤ Data exposed through properties.

➤➤ Functionality and data are all enclosed as part of the class.

➤➤ Creates a “black box” concept.

properties

➤➤ Present the public interface to your class

➤➤ Enforce encapsulation

➤➤ May be read/write, read-only, or write-only

➤➤ Can be used to perform data validation on incoming and outgoing data values

Indexed properties

➤➤ Allow array-like access to groups of items

➤➤ Must be access using an index in the same manner as arrays

Generic types

➤➤ Design classes without specifying the types at definition stage

➤➤ Design methods without specifying the types for parameters at definition stage

➤➤ Use a placeholder at definition stage that will be replaced by type during instantiation

➤➤ Enable type-safe coding

➤➤ Increases performance due to reduction in conversions, boxing/unboxing

REVIEW OF KEY TERMS

abstract method Indicates that the thing modified has a missing or incomplete implementation. The
abstract modifier can be used with classes, methods, properties, indexers, and events. Use the abstract
modifier in a class declaration to indicate that a class is intended to be only a base class of other classes.

accessor methods Methods used to access hidden member variables.

class files File that contain a C# class. Classes encapsulate data and functionality into one unit of code.

classes Coding components that enable you to create custom types that group together characteristics,
methods, and events.

www.EBooksWorld.ir

www.EBooksWorld.ir

112 ❘ ChApTER 3 WorkIng WIth the tyPe system

constructors Class methods executed when an object of a given type is created.

data structures Components in code that are used to store data within the program.

encapsulation The hiding of details around the implementation of an object so there are no external
dependencies on the particular implementation.

enumerations A distinct type consisting of a set of named constants.

event publisher The object in code that will raise the event for the listener or subscriber.

event subscriber The object that listens for an event to be raised

fields Variables that store characteristic data for a class.

heap An area of memory used by the .NET compiler to store reference type variables

instance fields The same as fields but are known as instance fields because they relate to an instance
of an object. In other words, their values are not shared among objects of the same class.

memory address An addressable location in computer memory that is used to store and retrieve
values stored there.

methods Provide the functionality for a class.

modifiers Modify declarations of types and type members.

overloaded methods Methods with identical names for procedures that operate on different data types.

override To extend or modify the abstract or virtual implementation of an inherited method, property,
indexer, or event.

properties Members that provide a flexible mechanism to read, write, or compute the values of
private fields.

reference types Class files or other objects represented as references to the actual data (memory
addresses).

signature In this case, a method signature. It is the unique identifying components of the method
such as return type, name, and parameters.

stack An area of memory used by the .NET compiler to store value types during program execution.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed
off to help you study. You can find these files in the ZIP file for this chapter at
www.wrox.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Using Types

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Converting values from one data type to another

➤➤ Widening, narrowing, implicit, and explicit conversions

➤➤ Casting

➤➤ Converting values with help methods and classes

➤➤ Manipulating strings

➤➤ Formatting values

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle.cgi?isbn=
1118612094 on the Download Code tab. The code is in the chapter 04 download and indi-
vidually named according to the names throughout the chapter.

Chapter 3, “Working with the Type System,” introduces the C# type system. It explains how
to create value types (data structures and enumerations) and reference types (classes). It also
explains encapsulation, and generic types and methods. This chapter continues the discus-
sion of types by explaining how to convert between different types, such as converting an int
or float into a string for display to the user. It explains how to use types to interact with
unmanaged code. It also explains how to manipulate strings to perform such operations as
determining whether a string begins with a given prefix and extracting substrings.

Table 4-1 introduces you to the exam objectives covered in this chapter.

4

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

114 ❘ ChApTER 4 usIng tyPes

TABLE 4-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Create and Use Types Create types. This includes boxing and unboxing value types, converting
and casting between value types, handling dynamic types, and ensuring
interoperability with unmanaged code .

Manipulate strings. This includes understanding string methods, search-
ing strings, formatting strings, and manipulating strings by using the
StringBuilder, StringWriter, and StringReader classes .

CONVERTING BETWEEN TYpES

Many programs must convert data from one type to another. For example, a graphing program
might use the Math.Sin and Math.Cos functions to calculate values for a graph, and then use the
Graphics object’s DrawLines method to draw the graph. However, Math.Sin and Math.Cos return
values as doubles, and DrawLines represents points as floats or ints. At some point the program
must convert the double values into floats or ints.

In addition to converting one data type into another, a program may need to convert text entered by the
user into other data types such as ints, floats, or DateTimes so that it can manipulate those values.

The following sections discuss various ways a C# program can convert one data type to another:

➤➤ Casting

➤➤ Using the as operator

➤➤ Parsing

➤➤ Using System.Convert

➤➤ Using System.BitConverter

Using Widening and Narrowing Conversions
You can categorize conversions as either widening or narrowing. The code that performs a conver-
sion can also be implicit or explicit.

In a widening conversion, the destination data type can hold any value provided by the source data
type. In a narrowing conversion, the destination data type cannot hold all possible values held by
the source data type.

For example, an int variable can hold integer values between –2,147,483,648 and 2,147,483,647.
A short variable can hold integer values only between –32,768 and 32,767. That means converting
from a short to an int is a widening conversion because an int can hold any value that a short
can hold. A widening conversion always succeeds.

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 115

In contrast, converting from an int to a short is a narrowing conversion because a short cannot
hold every possible value in an int. That doesn’t mean a narrowing conversion from an int to a
short will always fail, however. If an int variable happens to hold a value that can fit in a short,
such as 100 or –13,000, the conversion succeeds. If the int holds a value that won’t fit in a short,
such as 70,000, the conversion fails.

By default, C# does not throw an exception if a narrowing conversion results in an error for integer
or floating point types. For integers, it truncates the result and continues merrily along as if nothing
had gone wrong. For floating point types, the program sets the result variable’s value to Infinity if
the value doesn’t fit and again continues executing.

You can make C# throw an exception for invalid narrowing integer conversions in a couple ways.
First, you can use a checked block as shown in the following code. (The cast operator (short) is
described in the section “Casting” later in this chapter.)

checked
{
 int big = 1000000;
 short small = (short)big;
}

Within the checked block, the program throws an OverflowException if the conversion from the
int big to the short small fails.

NOTE A checked block does not protect code inside methods called within
the block. For example, suppose the code inside a checked block calls the
CalculateTaxes method. In that case the checked block does not pro-
tect the CalculateTaxes method if it performs a narrowing conversion. If
CalculateTaxes tries to make a narrowing conversion that fails, the program
does not throw an exception.

You can also make a program throw exceptions
for invalid integer conversions by opening the
project’s Properties page, selecting the Build tab,
and clicking the Advanced button to display the
Advanced Build Settings dialog (see Figure 4-1).
Make sure the Check For Arithmetic Overflow/
Underflow box is checked, and click OK.

The checked block and Check for Arithmetic
Overflow/Underflow setting throw exceptions
only for integer operations. If a program saves
a double precision value into a float vari-
able, the code must explicitly check the result
to see if it is set to Infinity to detect an over-
flow. The code should probably also check
for NegativeInfinity to catch underflow
conditions.

FIGURE 4-1: Use the Advanced Build Settings dialog
to make the program check for integer overflow and
underflow .

www.EBooksWorld.ir

www.EBooksWorld.ir

116 ❘ ChApTER 4 usIng tyPes

COMMON MISTAKES: performing Narrowing Conversions That Result in
Integer Overflows

Beginning programmers often don’t realize that the program won’t complain if it
performs a narrowing conversion that results in an integer overflow or underflow.
To avoid confusing bugs, make the program throw an exception in those cases.

The following code uses the float type’s IsInfinity method to determine whether the narrowing
conversion caused an overflow or underflow:

double big = -1E40;
float small = (float)big;
if (float.IsInfinity(small)) throw new OverflowException();

COMMON MISTAKES: performing Floating point Conversions That Result in
Overflows

Beginning programmers often don’t realize that the program will continue running
if a floating point conversion or calculation results in an overflow or underflow. To
avoid bugs, check the result for Infinity and NegativeInfinity.

Using Implicit and Explicit Conversions
An implicit conversion is one in which the program automatically converts a value from one data
type to another without any extra statements to tell it to make the conversion. In contrast, an
explicit conversion uses an additional operator or method such as a cast operator (described in the
next section) or a parsing method (described in the section “Parsing Methods”) to explicitly tell the
program how to make the conversion.

Because narrowing conversions may result in a loss of data, a C# program won’t perform a narrow-
ing conversion automatically, so it won’t enable an implicit narrowing conversion. The code must
explicitly use some sort of conversion operator or method to make it clear that you intend to per-
form the conversion, possibly resulting in loss of data.

In contrast, a widening conversion always succeeds, so a C# program can make widening conver-
sions implicitly without using an explicit conversion operator or method. You can use a conversion
operator, but you are not required to do so.

The following code shows examples of implicit and explicit conversions:

// Narrowing conversion so explicit conversion is required.
double value1 = 10;
float value2 = (float)value1;

// Widening conversion so implicit conversion is allowed.
int value3 = 10;
long value4 = value3;

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 117

For reference types, converting to a direct or indirect ancestor class or interface is a widening con-
version, so a program can make the conversion implicitly. The following section includes more about
converting reference types.

Casting
A cast operator explicitly tells the compiler that you want to convert a value into a particular data
type. To cast a variable into a particular type, place the type surrounded by parentheses in front of
the value that you want to convert.

For example, the following code initializes the double variable value1, casts it into the float data
type, and then saves the new float value in variable value2.

double value1 = 10;
float value2 = (float)value1;

NOTE Casting a floating point value into an integer data type causes the value
to be truncated. For example, the statement (int)10.9 returns the integer value
10. If you want to round the value to the nearest integer instead of truncating
it, use the System.Convert class’s ToInt32 method (described in the section
“System.Convert” later in this chapter) or the Math.Round method.

As the previous section mentioned, converting a reference type to a direct or indirect ancestor class
or interface is a widening conversion, so a program can make the conversion implicitly. For example,
if the Employee class is derived from the Person class, you can convert an Employee object into a
Person object:

Employee employee1 = new Employee();
Person person1 = employee1;

Converting a reference value to an ancestor class or interface does not actually change the value; it
just makes it act as if it were of the new type. In the previous example, person1 is a Person vari-
able, but it references an Employee object. The code can use the variable person1 to treat the object
as a Person, but it is still an Employee.

Because person1 is actually an Employee, you can convert it back to an Employee variable:

Employee employee1 = new Employee();
Person person1 = employee1;
Person person2 = new Employee();

// Allowed because person1 is actually an Employee.
Employee employee2 = (Employee)person1;

Converting from Person to Employee is a narrowing conversion, so the code needs the (Employee)
cast operator.

This kind of cast operator enables the code to compile, but the program throws an
InvalidCastException at run time if the value is not actually of the appropriate type.

www.EBooksWorld.ir

www.EBooksWorld.ir

118 ❘ ChApTER 4 usIng tyPes

For example, the following code throws an exception when it tries to cast a true Person
object into an Employee:

Person person2 = new Person();

// Not allowed because person2 is a Person but not an Employee.
Employee employee3 = (Employee)person2;

Because programs often need to cast reference data from one class to a compatible class, as shown in
the previous code, C# provides two operators to make that kind of casting easier: is and as.

The is Operator
The is operator determines whether an object is compatible with a particular type. For exam-
ple, suppose the Employee class is derived from Person, and the Manager class is derived from
Employee. Now suppose the program has a variable named user and it must take special action if
that variable refers to an Employee but not to a Person. The following code uses the is operator to
determine whether the Person variable refers to an Employee and takes a special action:

if (user is Employee)
{
 // Do something with the Employee...
 ...
}

If the is operator returns true, indicating the variable user refers to an Employee, the code takes
whatever action is necessary.

The is operator returns true if the object is compatible with the indicated type, not just if the
object actually is of that type. The previous code returns true if user refers to an Employee, but
also returns true if user refers to a Manager because a Manager is a type of Employee. (Manager
was derived from Employee.)

The as Operator
The previous code takes special action if the variable user refers to an object that has a type compatible
with the Employee class. (In this example, that means user is an Employee or Manager.) Often the next
step is to convert the variable into a more specific class before treating the object as if it were of that
class. The following code casts user into an Employee, so it can treat it as an Employee:

if (user is Employee)
{
 // The user is an Employee. Treat is like one.
 Employee emp = (Employee)user;

 // Do something with the Employee...
 ...
}

The as keyword makes this conversion slightly easier. The statement object as Class returns the
object converted into the indicated class if the object is compatible with that class. If the object is
not compatible with the class, the statement returns null.

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 119

The following code shows the previous example rewritten to use the as operator:

Employee emp = user as Employee;
if (emp != null)
{
 // Do something with the Employee...
 ...
}

NOTE Whether you use the earlier version that uses is, or this version that uses
as, is largely a matter of personal preference.

One situation in which the as operator is particularly useful is when you know a variable refers
to an object of a specific type. For example, consider the following RadioButton control’s
CheckedChanged event handler:

// Make the selected RadioButton red.
private void MenuRadioButton_CheckedChanged(object sender, EventArgs e)
{
 RadioButton rad = sender as RadioButton;
 if (rad.Checked) rad.ForeColor = Color.Red;
 else rad.ForeColor = SystemColors.ControlText;
}

This event handler is assigned to several RadioButtons’ CheckedChanged events, but no matter
which control is clicked, you know that the sender parameter refers to a RadioButton. The code
uses the as operator to convert sender into a RadioButton, so it can then use the RadioButton’s
Checked and ForeColor properties.

Casting Arrays
As the previous sections explained, casting enables you to convert data on one type to another com-
patible type. If the conversion is widening, you don’t need to explicitly provide a cast operator such
as (int). If the conversion is narrowing, you must provide a cast operator. These rules hold for value
types (such as converting between int and long) and reference types (such as converting between
Person and Employee).

These rules also hold for arrays of reference values. Even the is and as operators work for arrays of
reference values.

Suppose the Employee class is derived from the Person class, and the Manager class is derived from
the Employee class. The CastingArrays example program uses the following code to demonstrate
the casting rules for arrays of these classes:

// Declare and initialize an array of Employees.
Employee[] employees = new Employee[10];
for (int id = 0; id < employees.Length; id++)
 employees[id] = new Employee(id);

// Implicit cast to an array of Persons.
// (An Employee is a type of Person.)
Person[] persons = employees;

// Explicit cast back to an array of Employees.

www.EBooksWorld.ir

www.EBooksWorld.ir

120 ❘ ChApTER 4 usIng tyPes

// (The Persons in the array happen to be Employees.)
employees = (Employee[])persons;

// Use the is operator.
if (persons is Employee[])
{
 // Treat them as Employees.
 ...
}

// Use the as operator.
employees = persons as Employee[];

// After this as statement, managers is null.
Manager[] managers = persons as Manager[];

// Use the is operator again, this time to see
// if persons is compatible with Manager[].
if (persons is Manager[])
{
 // Treat them as Managers.
 //...
}

// This cast fails at run time because the array
// holds Employees not Managers.
managers = (Manager[])persons;

This code follows the previous discussion of casting in a reasonably intuitive way. The code first
declares and initializes an array of Employee objects named employees.

It then defines an array of Person objects named persons and sets it equal to employees. Because
Employee and Person are compatible types (one is a descendant of the other), this cast is potentially
valid. Because it is a widening conversion (Employee is a type of Person), this can be an implicit
cast, so no cast operator is needed and the cast will succeed.

Next, the code casts the persons array back to the type Employee[] and saves the result in
employees. Again these are compatible types, so the cast is potentially valid. This is a narrowing
conversion (Employees are Persons but not all Persons are Employees) so this must be an explicit
conversion and the (Employee[]) cast operator is required.

The code then uses the is operator to determine whether the persons array is compatible with the
type Employee[]. In this example, persons holds a reference to an array of Employee objects, so it
is compatible and the program executes whatever code is inside the if statement. (This makes sense
now but there’s a counterintuitive aspect to this that is discussed shortly.)

Next, the program uses the as operator to convert persons into the Employee[] array employees.
Because persons can be converted into an array of Employees, this conversion works as expected.

The code then uses the as operator again to convert persons into the Manager[] array managers.
Because persons holds Employees, which cannot be converted into Managers, this conversion fails,
so the variable managers is left equal to null.

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 121

The program then uses the is operator to see if persons can be converted into an array of
Managers. Again that conversion won’t work, so the code inside this if block is skipped.

Similarly, the explicit cast that tries to convert persons into an array of Managers fails. When it
tries to execute this statement, the program throws an InvalidCastException.

COMMON MISTAKES: Casting Doesn’t Make a New Array

All of this makes sense and fits well with the earlier discussion of casting and implicit
and explicit conversions. However, there is one counterintuitive issue related to casting
arrays. When you cast an array to a new array type, the new array variable is actually a
reference to the existing array not a completely new array.

That is consistent with the way C# works when you set two array variables equal to
each other for value types. For example, the following code makes two integer array
variables refer to the same array:

int[] array1, array2;
array1 = new int[10];
array2 = array1;

This code declares two array variables, initializes array1, and then makes array2
refer to the same array. If you change a value in one of the arrays, the other array
contains the same change because array1 and array2 refer to the same array.

This can cause confusion if you’re not careful. If you want to make a new array
instead of just a new way to refer to an existing array, use Array.Copy or some
other method to copy the array.

Now back to arrays of references. When the
code sets the persons array equal to the
employees array, persons refers to the
same array as employees. It treats the
objects inside the array as Persons instead
of Employees, but it is not a new array.

You can see this in Figure 4-2 where
IntelliSense is showing the values in the
persons array right after setting persons
equal to employees. At the top level,
IntelliSense shows that persons is equal
to CastingArrays.Form1.Employee[10],
which is an array of 10 Employee objects.
When persons is expanded, IntelliSense
treats each of its members as if they were Person objects. That is possible because an Employee is a
type of Person so, even though the array holds Employees, the persons array can treat them as if
they were Persons.

FIGURE 4-2: When you cast an array of reference values,
the new variable still refers to the original array .

www.EBooksWorld.ir

www.EBooksWorld.ir

122 ❘ ChApTER 4 usIng tyPes

Knowing that persons is actually a disguised reference to an array of Employee objects, it makes
sense that the following statement fails:

persons[0] = new Person(0);

This code tries to save a new Person object in the persons array. The persons array is declared as
Person[] so you might think this should work but actually persons currently refers to an array of
Employee. You cannot store a Person in an array of Employee (because a Person is not a type of
Employee), so this statement throws an ArrayTypeMismatchException at run time.

COMMON MISTAKES: Casting Reference Arrays into a New Type

Remember that a reference array cast into a new type doesn’t actually have that new
type. You can just treat the objects it holds as if they are of the new type.

In summary, you can cast arrays of references in a reasonably intuitive way. Just keep in mind that
the underlying values still have their original types even if you’re treating them as something else, as
this example treats Employee objects as Person objects.

Converting Values
Casting enables a program to convert a value from one type to another compatible type, but some-
times you may want to convert a value from one type to an incompatible type. For example, you
may want to convert the string value 10 to the int value 10, or you might want to convert the
string value True to the bool value true. In cases such as these, casting won’t work.

To convert a value from one type to an incompatible type, you must use some sort of helper class.
The .NET Framework provides three main methods for these kinds of conversions:

➤➤ Parsing methods

➤➤ System.Convert

➤➤ System.BitConverter

Each of these methods is described in more detail in the following sections.

Parsing Methods
Each of the primitive C# data types (int, bool, double, and so forth) has a Parse method that
converts a string representation of a value into that data type. For example, bool.Parse takes as an
argument a string representing a boolean value such as true and returns the corresponding bool
value true.

These parsing methods throw exceptions if their input is in an unrecognized format. For example,
the statement bool.Parse("yes") throws a FormatException because that method understands
only the values true and false.

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 123

When you use these methods to parse user input, you must be aware that they can throw excep-
tions if the user enters values with an invalid format. If the user enters ten in a TextBox where
the program expects an int, the int.Parse method throws a FormatException. If the user
enters 1E3 or 100000 where the program expects a short, the short.Parse method throws an
OverflowException.

You can use a try-catch block to protect the program from these exceptions, but to make value
checking even easier, each of these classes also provides a TryParse method. This method attempts
to parse a string and returns true if it succeeds or false if it fails. If it succeeds, the method also
saves the parsed value in an output variable that you pass to the method.

Table 4-2 lists the most common data types that provide Parse and TryParse methods.

TABLE 4-2: Data Types That Provide Parse and TryParse Methods

bool byte

char DateTime

decimal double

float int

long sbyte

short TimeSpan

uint ulong

ushort

The following code shows two ways a program can parse integer values that are entered in
TextBoxes:

int quantity;
try
{
 quantity = int.Parse(quantityTextBox.Text);
}
catch
{
 quantity = 1;
}

int weight;
if (!int.TryParse(weightTextBox.Text, out weight)) weight = 10;

The code declares the variable quantity. Inside a try-catch block, the code uses int.Parse to try
to convert the text in the quantityTextBox control into an integer. If the conversion fails, the code
sets quantity to the default value 1.

www.EBooksWorld.ir

www.EBooksWorld.ir

124 ❘ ChApTER 4 usIng tyPes

Next, the code declares the variable weight. It then uses int.TryParse to attempt to parse the text in
the weightTextBox control. If the attempt succeeds, the variable weight holds the parsed value the user
entered. If the attempt fails, TryParse returns false, and the code sets weight to the default value 10.

BEST pRACTICES: Avoid parsing When possible

Sometimes, you can avoid parsing numeric values and dealing with invalid inputs
such as ten by using a control to let the user select a value instead of entering one.
For example, you could use a NumericUpDown control to let the user select the quan-
tity instead of entering it in a TextBox.

Usually, the parsing methods work fairly well if their input makes sense. For example, the statement
int.Parse("645") returns the value 645 with no confusion.

Even the DateTime data type’s Parse method can make sense out of most reasonable inputs. For
example, in U.S. English the following statements all parse to 3:45 PM April 1, 2014.

DateTime.Parse("3:45 PM April 1, 2014").ToString()
DateTime.Parse("1 apr 2014 15:45").ToString()
DateTime.Parse("15:45 4/1/14").ToString()
DateTime.Parse("3:45pm 4.1.14").ToString()

By default, however, parsing methods do not handle currency values well. For example, the follow-
ing code throws a FormatException (in the U.S. English locale):

decimal amount = decimal.Parse("$123,456.78");

The reason this code fails is that, by default, the decimal.Parse method enables thousands and
decimal separators but not currency symbols.

You can make decimal.Parse enable currency symbols by adding another parameter that is a combi-
nation of values defined by the System.Globalization.NumberStyles enumeration. This enumera-
tion enables you to indicate special characters that should be allowed such as the currency symbols, a
leading sign, and parentheses.

Table 4-3 shows the values defined by the NumberStyles enumeration.

TABLE 4-3: NumberStyles Enumeration Values

STYLE DESCRIpTION

None Enables no special characters . The value must be a decimal integer .

AllowLeadingWhite Enables leading whitespace .

AllowTrailingWhite Enables trailing whitespace .

AllowLeadingSign Enables a leading sign character . Valid characters are given by
the NumberFormatInfo.PositiveSign and NumberFormatInfo
.NegativeSign properties .

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 125

STYLE DESCRIpTION

AllowTrailingSign Enables a trailing sign character . Valid characters are given by
the NumberFormatInfo.PositiveSign and NumberFormatInfo
.NegativeSign properties .

AllowParentheses Enables the value to be surrounded by parentheses to indicate a nega-
tive value .

AllowDecimalPoint Enables the value to contain a decimal point . If AllowCurrencySymbol
is also specified, the allowed currency symbol is given by the
NumberFormatInfo.CurrencyDecimalSeparator property . If
AllowCurrencySymbol is not specified, the allowed currency symbol
is given by the NumberFormatInfo.NumberDecimalSeparator .

AllowThousands Enables thousands separators . If AllowCurrencySymbol is also
specified, the separator is given by the NumberFormatInfo
.CurrencyGroupSeparator property and the number of digits per
group is given by the NumberFormatInfo.CurrencyGroupSizes
property . If AllowCurrencySymbol is not specified, the separator is
given by the NumberFormatInfo.NumberGroupSeparator property
and the number of digits per group is given by the NumberFormatInfo
.NumberGroupSizes property .

AllowExponent Enables the exponent symbol e or E optionally followed by a positive or
negative sign .

AllowCurrencySymbol Enables a currency symbol . The allowed currency symbols are given by
the NumberFormatInfo.CurrencySymbol property .

AllowHexSpecifier Indicates that the value is in hexadecimal . This does not mean the input
string can begin with a hexadecimal specifier such as 0x or &H . The value
must include only hexadecimal digits .

Integer This is a composite style that includes AllowLeadingWhite,
AllowTrailingWhite, and AllowLeadingSign .

HexNumber This is a composite style that includes AllowLeadingWhite,
AllowTrailingWhite, and AllowHexSpecifier .

Number This is a composite style that includes AllowLeadingWhite,
AllowTrailingWhite, AllowLeadingSign, AllowTrailingSign,
AllowDecimalPoint, and AllowThousands .

Float This is a composite style that includes AllowLeadingWhite,
AllowTrailingWhite, AllowLeadingSign, AllowDecimalPoint,
and AllowExponent .

Currency This is a composite style that includes all styles except AllowExponent
and AllowHexSpecifier .

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

126 ❘ ChApTER 4 usIng tyPes

STYLE DESCRIpTION

Any This is a composite style that includes all styles except
AllowHexSpecifier .

If you provide any NumberStyles values, any default values are removed. For example, by default
decimal.Parse enables thousands and decimal separators. If you pass the value NumberStyles
.AllowCurrencySymbol to the method, it no longer enables thousands and decimal separators. To
allow all three, you need to pass the method all three values as in the following code:

decimal amount = decimal.Parse("$123,456.78",
 NumberStyles.AllowCurrencySymbol |
 NumberStyles.AllowThousands |
 NumberStyles.AllowDecimalPoint);

Alternatively, you can pass the method the composite style Currency, as shown in the following code:

decimal amount = decimal.Parse("$123,456.78",
 NumberStyles.AllowCurrencySymbol);

LOCALE-AWARE pARSING

Parsing methods are locale-aware, so they try to interpret their inputs for the locale
in which the program is running. You can see that in the descriptions in Table 4-3
that mention the NumberFormatInfo class. For example, the allowed currency sym-
bol is defined by the NumberFormatInfo.CurrencySymbol property, and that prop-
erty will have different values depending on the computer’s locale.

If the computer is localized for French as spoken in France, DateTime.Parse under-
stands the French-style date “1 mars 2020,” but doesn’t understand the German
version “1. März 2020.” (It understands the English version “March 1, 2020” in
either the French or German locale.)

Similarly, if the computer’s locale is French, the int.Parse method can parse the
text “123 456,78” but cannot parse the German-style value “123.456,78.”

All literal values within C# code should use U.S. English formats. For example, no
matter what locale the computer uses, a C# program would use a double variable to
“0.05” not “0,05” inside its code.

COMMON MISTAKES: parsing Currency Values

Many beginning programmers don’t realize they can parse currency values. If a
TextBox should hold currency values, parse it correctly so that the user isn’t told
“$1.25” has an invalid numeric format.

TABLE 4-3 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 127

System.Convert
The System.Convert class provides more than 300 methods (including overloaded versions) for
converting one data type to another. For example, the ToInt32 method converts a value into a
32-bit integer (an int). Different overloaded versions of the methods take parameters of different
types such as bools, bytes, DateTimes, doubles, strings, and so forth.

Table 4-4 lists the most useful data type conversion methods provided by the System.Convert class.

TABLE 4-4: Basic System .Convert Data Conversion Methods

ToBoolean ToByte

ToChar ToDateTime

ToDecimal ToDouble

ToInt16 ToInt32

ToInt64 ToSByte

ToSingle ToString

ToUInt16 ToUInt32

ToUInt64

BANKER’S ROUNDING

The methods that convert to integral types (ToByte, ToIntXX, and ToUIntXX) use
“banker’s rounding,” which means values are rounded to the nearest integer, but if
there’s a tie, with the value ending in exactly .5, the value is rounded to the nearest
even integer. For example, ToInt16(9.5) and ToInt16(10.5) both return 10.

All these methods throw an exception if their result is outside of the range of allowed
values. For example, ToByte(255.5) returns 256, which is too big to fit in a byte,
and ToUInt32(–3.3) returns 3, which is less than zero, so it won’t fit in an unsigned
integer.

The Math.Round method uses banker’s rounding by default but also enables you to
use parameters to indicate if it should round toward 0 instead. This method returns
a result that is either a decimal or a double, so often code must use a cast to convert
the result into an integral data type as in the following code:

float total = 100;
int numItems = 7;
int average = (int)Math.Round(total / numItems);

The System.Convert class also provides a ChangeType method that converts a value into a new
type determined by a parameter at run time. For example, (int)Convert.ChangeType(5.5,
typeof(int)) returns the integer 6. Often it is easier to use one of the more specific methods such
as ToInt32 instead of ChangeType.

www.EBooksWorld.ir

www.EBooksWorld.ir

128 ❘ ChApTER 4 usIng tyPes

System.BitConverter
The System.BitConverter class provides methods to convert values to and from arrays of bytes.
The GetBytes method returns an array of bytes representing the value that you pass to it. For exam-
ple, if you pass an int (which takes up 4 bytes of memory) into the method, it returns an array of 4
bytes representing the value.

The System.BitConverter class also provides methods such as ToInt32 and ToSingle to convert
byte values stored in arrays back into specific data types.

For example, suppose an API function returns two 16-bit values packed into the left and right halves
of a 32-bit integer. You could use the following code to unpack the two values:

int packedValue;

// The API function call sets packedValue here.
...

// Convert the packed value into an array of bytes.
byte[] valueBytes = BitConverter.GetBytes(packedValue);

'// Unpack the two values.
short value1, value2;
value1 = BitConverter.ToInt16(valueBytes, 0);
value2 = BitConverter.ToInt16(valueBytes, 2);

After the API function sets the value of packedValue, the code uses the BitConverter class’s
GetBytes method to convert the value into an array of 4 bytes. The order of the bytes depends on
whether the computer’s architecture is big-endian or little-endian. (You can use the BitConverter’s
IsLittleEndian field to determine whether the value is big-endian or little-endian.)

The BitConverter class’s methods are quite specialized, so they are not described further here.
For more information, see "BitConverter Class" at http://msdn.microsoft.com/
library/3kftcaf9.aspx.

Boxing and Unboxing Value Types
Boxing is the process of converting a value type such as an int or bool into an object or an inter-
face that is supported by the value’s type. Unboxing is the processing of converting a boxed value
back into its original value.

For example, the following code creates an integer variable and then makes an object that refers to
its value:

// Declare and initialize integer i.
int i = 10;

// Box i.
object iObject = i;

After this code executes, variable iObject is an object that refers to the value 10.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/

Converting Between Types ❘ 129

Boxing and unboxing take significantly more time than simply assigning one value type variable
equal to another, so you should avoid boxing and unboxing whenever possible. If that’s true, why
would you ever do it?

Usually boxing and unboxing occur automatically without taking any special action. Often this
happens when you invoke a method that expects an object as a parameter but you pass it a value.
For example, consider the following code:

int i = 1337;
Console.WriteLine(string.Format("i is: {0}", i));

The version of the string class’s Format method used here takes as parameters a format string
and a sequence of objects that it should print. The method examines the objects and prints them
appropriately.

The code passes the value variable i into the Format method. That method expects an object as a
parameter, so the program automatically boxes the value.

Ideally, you could avoid this by making the Format method take an int as a parameter instead of
an object, but then what would you do if you wanted to pass the method a double, DateTime, or
Person object? Even if you made overloaded versions of the Format method to handle all the basic
data types (int, double, string, DateTime, bool, and so on), you couldn’t handle all the possible
combinations that might occur in a long list of parameters.

The solution is to make Format take nonspecific objects as parameters and then use reflection to
figure out how to print them.

Similarly, you could use nonspecific objects for parameters to the methods that you write and then
use reflection to figure out what to do with the objects. For more information on reflection, see
Chapter 8, “Using Reflection.”

Usually, you’ll get better performance if you can use a more specific data type, interface, or generic
type for parameters. For more information on generic types and methods, see Chapter 3.

Even if you’re willing to live with the performance hit, boxing and unboxing has a subtle side-effect
that can lead to some confusing code. Consider again the following code:

// Declare and initialize integer i.
int i = 10;

// Box i.
object iObject = i;

After this code executes, variable iObject is an object that refers to the value 10, but it’s not the
same value 10 stored in the variable i. That means if the code changes one of the values, the other
does not also change. For example, take a look at the following code, which adds some statements
to the previous version:

// Declare and initialize integer i.
int i = 10;

// Box i.

www.EBooksWorld.ir

www.EBooksWorld.ir

130 ❘ ChApTER 4 usIng tyPes

object iObject = i;

// Change the values.
i = 1;
iObject = 2;

// Display the values.
Console.WriteLine(i);
Console.WriteLine(iObject);

This code creates an integer variable i and boxes it with the variable iObject. It then sets i equal to
1 and iObject equal to 2. When the code executes the Console.WriteLine statements, the follow-
ing results appear in the Output window:

1
2

The variable iObject seems to refer to the variable i but they are actually two separate values.

Incidentally, the Console.WriteLine method has many overloaded versions including one that takes
an int as a parameter, so the first WriteLine statement in the previous code does not require boxing
or unboxing. The second WriteLine statement must unbox iObject to get its current value 2.

The moral of the story is that you should avoid boxing and unboxing if possible by not storing ref-
erences to value types in objects. If the program automatically boxes and unboxes a value as the
string.Format method does, there’s usually not too much you can do about it. Finally, you should
not declare method parameters or other variables to have the nonspecific type object unless you
have no other choice.

Ensuring Interoperability with Unmanaged Code
Interoperability enables a C# program to use classes provided by unmanaged code that was not
written under the control of the Common Language Runtime (CLR), the runtime environment that
executes C# programs. ActiveX components and the Win32 API are examples of unmanaged code
that you can invoke from a C# program.

The two most common techniques for allowing managed programs to use unmanaged code are
COM Interop and Platform invoke (P/invoke). COM Interop is discussed briefly in the following sec-
tion. This section deals with P/invoke.

To use P/invoke to access an unmanaged resource such as an API call, a program first includes a
DllImport attribute to define the unmanaged methods that will be used by the managed program.
The DllImport attribute is part of the System.Runtime.InteropServices namespace, so many
programs add that namespace in a using statement to make using the attribute easier.

The DllImport attribute takes parameters that tell the managed program about an unmanaged
method. The parameters indicate such things as the DLL that contains the method, the character set
used by the method (Unicode or ANSI), and the entry point in the DLL used by the method. (If you
omit this, the default is the name of the method.)

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 131

The program applies the attribute to a static extern method declaration. The declaration includes
whatever parameters the method requires and defines the method’s return type. This declaration
should be inside a class such as the class containing the code that uses the method.

For example, the following code fragment shows where the using statement and DllImport attri-
bute are placed in the ShortPathNames example program (which is described shortly in greater
detail). The DllImport statement is highlighted.

using System;
using System.Collections.Generic;
... Other standard "using" statements ...
using System.Runtime.InteropServices;

namespace ShortPathNames
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 [DllImport("kernel32.dll", CharSet = CharSet.Auto,
 SetLastError = true)]
 static extern uint GetShortPathName(string lpszLongPath,
 char[] lpszShortPath, int cchBuffer);

 ... Application-specific code ...
 }
}

The DllImport statement indicates that the method is in the kernel32.dll library, that the program
should automatically determine whether it should use the Unicode or ANSI character set, and that
the method should call SetLastError if there is a problem. If there is an error, the program can use
GetLastWin32Error to see what went wrong.

The method’s declaration indicates that the program will use the GetShortPathName method, which
converts a full path to a file into a short path that can be recognized by Windows. (If the method
uses the Unicode character set, the method’s name usually ends with a “W” for “wide characters”
as in GetShortPathNameW.) This method returns a uint and takes as parameters a string, char
array, and int.

NOTE Often the prefixes on the parameter names give you hints about the pur-
poses of those parameters. In this example, lpsz means “long pointer to string
that’s zero-terminated” and cch means “count of characters.” If you read the
online help for the GetShortPathName API function, you’ll find that those prefixes
make sense.

www.EBooksWorld.ir

www.EBooksWorld.ir

132 ❘ ChApTER 4 usIng tyPes

The first parameter is the file path that you want to convert to a short path. When you call the
method, P/Invoke automatically converts it into a null-terminated string. The second parameter
should be a pre-allocated buffer where GetShortPathName can store its results. The third parameter
gives the length of the buffer that you allocated, so GetShortPathName knows how much room it
has to work with.

The method returns a uint indicating the length of the string that the method deposited in the
lpszLongPath buffer.

You can figure out the syntax for this DllImport statement by staring at the method’s signature in the
online help, in this case at http://msdn.microsoft.com/library/windows/desktop/aa364989
.aspx. A much easier option, however, is to look up the method at http://www.pinvoke.net. This
website contains DllImport statements for a huge number of Win32 API functions. It even sometimes
includes examples, discussion, and links to the methods’ online documentation. When you need to use
a Win32 API function, this is a great place to start.

Having declared the method, the program can now use it. The ShortPathNames example program,
which is available for download on the book’s website, uses the method in the following code:

// Get the long file name.
string longName = fileTextBox.Text;

// Allocate a buffer to hold the result.
char[] buffer = new char[1024];
long length = GetShortPathName(
 longName, buffer,
 buffer.Length);

// Get the short name.
string shortName = new string(buffer);
shortNameTextBox.Text = shortName.Substring(0, (int)length);

This code gets a long file path entered by the user in the fileTextBox control and allocates a buf-
fer of 1024 chars to hold the short path. It then calls the GetShortPathName method, passing it the
long file path, the buffer, and the length of the buffer.

After the method returns, the program uses the buffer to initialize a new string. It uses the
Substring method and the length returned by GetShortPathName to truncate the string to its
proper length and displays the result.

Usually, the kind of DllImport statement shown earlier is good enough to get the job done. If you
need more control over how values are converted between managed and unmanaged code, you can
add the MarshalAs attribute to the method’s parameters or return value.

The following code shows a new version of the DllImport statement for the GetShortPathName
method that uses MarshalAs attributes:

[DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError=true)]
static extern uint GetShortPathName(
 [MarshalAs(UnmanagedType.LPTStr)] string lpszLongPath,
 [MarshalAs(UnmanagedType.LPTStr)] StringBuilder lpszShortPath,
 uint cchBuffer);

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/windows/desktop/aa364989.aspx
http://www.pinvoke.net

Converting Between Types ❘ 133

The first MarshalAs attribute indicates that the first parameter is an LPTStr data type in the
unmanaged code and should be treated as a string in the managed code.

The second MarshalAs attribute indicates that the second parameter is an LPTStr data type in the
unmanaged code and should be treated as a StringBuilder in the managed code.

Of course, if you use this declaration, you need to change the code to use a StringBuilder for a
buffer instead of an array of char.

handling Dynamic Types
The DllImport and MarshalAs attributes described in the previous section enable you to tell the
program where to find an unmanaged method, and what data types it uses for parameters and a
return type. This enables the program to invoke unmanaged methods through P/invoke.

COM Interop provides another way a managed program can interact with unmanaged code. To
use COM Interop, you need to give your program a reference to an appropriate library. To do
that, look in the Solution Explorer, right-click the References entry, and select Add Reference.
Find the reference that you want to add in the COM tab’s Type Libraries section (for example,
Microsoft Excel 14.0 Object Library), check the box next to the entry, and click OK.

Adding the library reference tells your program (and Visual Studio) a lot about the unmanaged
COM application. If you open the View menu and select Object Browser, you can use the Object
Browser to search through the objects and types defined by the library. (For the Excel library men-
tioned earlier, look in the Microsoft.Office.Interop.Excel assembly.)

The library gives Visual Studio enough information for it to provide IntelliSense about some of the
library’s members, but Visual Studio may still not understand all the types used by the library. C#
4.0 and later provide a special data type called dynamic that you can use in this situation. This is
a static data type, but its true type isn’t evaluated until run time. At design and compile time, C#
doesn’t evaluate the dynamic item’s type, so it doesn’t flag syntax errors for problems such as type
mismatches because it hasn’t evaluated the dynamic type yet. This can be useful if you can’t provide
complete information about an item’s type to the compiler.

C# considers objects defined by the unmanaged COM Interop code to have the dynamic type, so it
doesn’t care at compile time what their actual types are. It skips checking the objects’ syntax and
waits until run time to see if the code makes sense.

The ExcelInterop example program, which is available for download on the book’s website, uses the
following code to make Microsoft Excel create a workbook:

// Open the Excel application.
Excel._Application excelApp = new Excel.Application();

// Add a workbook.
Excel.Workbook workbook = excelApp.Workbooks.Add();
Excel.Worksheet sheet = workbook.Worksheets[1];

// Display Excel.
excelApp.Visible = true;

// Display some column headers.

www.EBooksWorld.ir

www.EBooksWorld.ir

134 ❘ ChApTER 4 usIng tyPes

sheet.Cells[1, 1].Value = "Value";
sheet.Cells[1, 2].Value = "Value Squared";

// Display the first 10 squares.
for (int i = 1; i <= 10; i++)
{
 sheet.Cells[i + 1, 1].Value = i;
 sheet.Cells[i + 1, 2].Value = (i * i).ToString();
}

// Autofit the columns.
sheet.Columns[1].AutoFit();
sheet.Columns[2].AutoFit();

In this code the dynamic data type is used implicitly in a couple of places. Visual Studio doesn’t actually
understand the data type of sheet.Cells[1, 1], so it defers type checking for that value. That lets
the program refer to this entity’s Value property even though the program doesn’t know whether the
cell has such a property. Actually, you could try to set sheet.Cells[1, 1].Whatever = i and Visual
Studio won’t complain until run time when it tries to access the Whatever property and finds that it
doesn’t exist.

Similarly, Visual Studio treats sheet.Columns[1] as having type dynamic, so it doesn’t know that
the AutoFit method exists until run time.

For an example that’s more C#-specific, consider the following code, which is demonstrated by the
CloneArray example program available for download on the book’s website:

// Make an array of numbers.
int[] array1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// This doesn't work because array1.Clone is an object.
//int[] array2 = array1.Clone();

// This works.
int[] array3 = (int[])array1.Clone();
array3[5] = 55;

// This also works.
dynamic array4 = array1.Clone();
array4[6] = 66;

array4[7] = "This won't work";

This code initializes an array of integers. The commented out code tries to use the array’s Clone
method to make a copy of the array. Unfortunately, the Clone method returns a nonspecific object,
so the code cannot save it in a variable that refers to an array of int. The next statement correctly
casts the object into an int[] so that it works. The code then stores a new integer value in the array.

Next, the code declares array4 to have the type dynamic. The program clones the array and saves
the clone in variable array4. At run time the program can tell that the clone is actually an int[10]
so that is the data type it assigns to array4.

www.EBooksWorld.ir

www.EBooksWorld.ir

Converting Between Types ❘ 135

The final statement tries to save a string in array4[7]. At design and compile time, Visual Studio
doesn’t try to validate this statement because array4 was declared dynamic. At run time, however,
this fails because array4 is actually an int[] and cannot hold a string.

The dynamic data type enables you to avoid syntax errors when you do not know (or cannot know)
the type of an object at compile time. Unfortunately, not understanding an object’s type at design
time also means Visual Studio cannot provide type checking or IntelliSense. That means you need to
ensure that the methods you invoke actually exist, that you can assign specific values to a dynamic
variable or property, and that you don’t try to save a dynamic value in an incompatible variable. The
program will complain about any mistakes at run time, but you won’t get much help at design and
compile time.

To prevent these kinds of errors at run time, you should avoid the dynamic data type and use more
specific data types whenever possible.

REAL-WORLD CASE SCENARIO Order Entry Forms

Order entry forms similar to the one shown in Figure 4-3 are common in order processing applications.
In this Real-World Case Scenario, you build a form similar to this one. You can make it a Windows
Forms application, a Metro-style application, or even a Windows Phone application if you prefer.

FIGURE 4-3: This order entry form parses numeric
and currency values entered by the user .

When the user clicks the OK button, validate the form and calculate and display the appropriate values.
(Don’t worry about formatting output fields as currency. Just use the variables’ ToString methods to
display the text. You learn how to format values as currency in the section “Formatting Values.”)

If all the values entered by the user are valid, display a message box telling the user that the order is
okay and asking whether the program should continue. If the user clicks Yes on the message box, or if
the user clicks the form’s Cancel button, close the form.

www.EBooksWorld.ir

www.EBooksWorld.ir

136 ❘ ChApTER 4 usIng tyPes

Make the following validations:

➤➤ If any of the fields in a row is nonblank, then all the fields in that row must be nonblank.

➤➤ Quantity is an integer between 1 and 100.

➤➤ Price Each is a decimal between $0.01 and $100,000.00. (Be sure to allow values with a currency
format.)

➤➤ Tax rate is a decimal between 0.00 and 0.20. (Don’t worry about percentage values such as 7
percent now. You add that feature later after you learn about manipulating strings in the section
“Manipulating Strings.”)

Hint: Don’t forget to add a using System.Globalization statement to make using NumberStyles
easier.

As a follow-up question, can you improve the user interface to reduce the amount of data validation
required?

Solution

Here is the solution:

 1 . There are several ways you can structure the program’s code to make it easier to use and maintain.
This isn’t the focus of this chapter, however, so they aren’t covered in detail here. You can down-
load the chapter’s code and look at the Ch04RealWorldScenario01 program for details. Briefly,
however, you may want to consider writing the following methods:

 a . DisplayErrorMessage displays a standard error message and sets the focus to a TextBox
that has a missing or invalid value.

 b . ValidateRequiredTextBox verifies that a particular TextBox has a nonblank value.

 c . ValidateRow validates a row of input consisting of Description, Quantity, and Price Each
TextBoxes.

 2 . To see if a TextBox has a blank value, compare its Text property to the empty string "" or to
string.Empty.

 3 . To get a value from a TextBox, use the appropriate TryParse method. For example, the following
code shows how the program might read a Price Each value:

// Try to parse priceEach.
if (!decimal.TryParse(priceEachTextBox.Text, NumberStyles.Currency,
 null, out priceEach))
{
 // Complain.
 DisplayErrorMessage(
 "Invalid format. Price Each must be an currency value.",
 "Invalid Format", priceEachTextBox);
 return true;
}

This code uses NumberStyles.Currency to enable currency values.

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 137

 4 . Use if statements to determine whether values fall within their expected bounds. The following
code shows how the program might validate a Price Each value:

// Make sure priceEach is between $0.01 and $100,000.00.
if ((priceEach < 0.01m) || (priceEach > 100000.00m))
{
 // Complain.
 DisplayErrorMessage(
 "Invalid Price Each. Price Each must be between $0.01 and $100,000.00",
 "Invalid Quantity", priceEachTextBox);
 return true;
}

 5 . Calculate and display the Extended Price, Subtotal, Sales Tax, and Grand Total values. The follow-
ing code shows how the example solution processes the order form’s first row:

subtotal = 0;
if (ValidateRow(descr1TextBox, quantity1TextBox, priceEach1TextBox,
 out quantity, out priceEach)) return;
extendedPrice = quantity * priceEach;
if (extendedPrice == 0m) extendedPrice1TextBox.Clear();
else extendedPrice1TextBox.Text = extendedPrice.ToString();
subtotal += extendedPrice;

This code calls the ValidateRow method to validate and get the first row’s Description, Quantity,
and Price Each values. If that method indicates an error by returning true, the code returns. If the
row does not contain an error, the code calculates extendedPrice and displays its value in the
appropriate TextBox. It then adds the row’s extended price to the running subtotal value and
continues to process the other rows.

Download the example solution to see the complete code.

Follow-up question: One obvious way to improve the user interface would be to remove the Quantity
TextBoxes and replace them with NumericUpDown controls. Then the user can select a value within
minimum and maximum allowed values. The user couldn’t type in garbage and couldn’t select values
outside of the allowed range.

You can even use a NumericUpDown control for the Tax Rate by setting its properties Minimum = 0,
Maximum = 0.2, Increment = 0.05, and DecimalPlaces = 2.

You could also use NumericUpDown controls for the Price Each fields but that control makes entering
monetary values awkward.

In general it’s better to let users select a value instead of entering one in a TextBox so that they can’t
enter invalid values.

MANIpULATING STRINGS

Strings are different from other data types. Programs usually treat them as if they were any other
value-type piece of data but behind the scenes the string class is remarkably complex. You can
ignore the extra complexity in most day-to-day programming, but it is important to understand how

www.EBooksWorld.ir

www.EBooksWorld.ir

138 ❘ ChApTER 4 usIng tyPes

strings work so that you can handle special situations when they arise. For example, if you under-
stand how strings are stored, you will know when it would be better to use the StringBuilder
class instead of simply concatenating strings together.

NOTE In C# the keyword string is an alias for System.String, so when you
create a string variable, you are actually creating a String object. Stylistically
most C# programmers prefer to use string, but the following sections use
String to emphasize that these are objects and not the simple value types they
may appear to be.

Behind the Strings
The .NET Framework represents characters as Unicode version UTF-16, a format that uses 16 bits
to store each character. That enables a Unicode character to represent far more characters than are
provided on a standard American keyboard. (The latest version of Unicode defines values for more
than 110,000 characters in more than 100 scripts.)

A String is an object that uses a series of Unicode characters to represent some text. One of the more
unusual features of Strings is that they are immutable. That means a String’s content cannot be
changed after the String has been created. Instead, methods that seem to modify a String’s value,
such as Replace and ToUpper, actually return a new String object that contains the modified value.

To conserve memory, the CLR maintains a table called the intern pool that holds a single reference
to each unique text value used by a program. Any String variable that refers to a particular piece of
text is actually a reference into the intern pool. Multiple Strings that represent the same value refer
to the same entry in the intern pool.

All this requires some overhead, so working with Strings is not quite as fast as working with value
types. If a program must perform a large number of concatenations, each one creates a new String
instance that must be interned and that takes time. In that case, using the StringBuilder class might
give better performance. The StringBuilder class is described further in the section “StringBuilder.”

String Constructors
Three of the most common ways to initialize a String variable are to:

➤➤ Set it equal to a string literal.

➤➤ Set it equal to text entered by the user in a control such as a TextBox or ComboBox.

➤➤ Set it equal to the result of a string calculation.

The last of these includes methods that format a variable to produce a String such as using the
ToString method or the String.Format method. These techniques are described in the section
“Formatting Values.”

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 139

In addition to these methods, the String class provides several constructors that can sometimes
be useful:

➤➤ One constructor initializes the String from an array of char.

➤➤ A second constructor uses only part of an array of char, taking as parameters the array, a
start position, and the length of characters to use.

➤➤ A third constructor takes as a parameter a character and the number of times you want to
repeat that character in the new String. This can be particularly useful if you want to indent
a string by a certain number of spaces or tab characters. For example, the following code
displays the numbers 1 through 10 on separate lines with each line indented four more spaces
than the one before:

for (int i = 1; i <= 10; i++)
{
 string indent = new string(' ', 4 * i);
 Console.WriteLine(indent + i.ToString());
}

Most String values are created by string literals, text entered by the user, or the results of calcula-
tions, but String constructors can sometimes be useful.

String Fields and properties
The String class provides only three fields and properties: Empty, Length, and a read-only indexer.

The Empty field returns an object that represents an empty string. You can use this value to set a
String’s value or to see if a String holds an empty value. (Alternatively, you can use the empty
string literal "".)

The Length property returns the number of characters in the string.

The read-only indexer returns the chars in the String. Because it is an indexer, you can get its
values by adding an index to a String variable’s name. For example, the statement username[4]
returns character number 4 in the string username.

The indexer is read-only, so you can’t set one of the String’s characters with a statement such
as username[4] = 'x'. If you need to do something like that, you can use the String methods
described in the next section.

If it would be easier to treat the String as if it were a read/write array of characters, you can use the
ToCharArray method to convert the String into an array of characters, manipulate them, and then
create a new String passing the constructor the modified array. For example, the following code
uses an array to make a string’s characters alternate between uppercase and lowercase:

char[] characters = text.ToCharArray();
for (int i = 0; i < characters.Length; i++)
 if (i % 2 == 0) characters[i] = char.ToUpper(characters[i]);
 else characters[i] = char.ToLower(characters[i]);
text = new string(characters);

www.EBooksWorld.ir

www.EBooksWorld.ir

140 ❘ ChApTER 4 usIng tyPes

You can also use the indexer as a source of iteration in a foreach loop:

string text = "The quick brown fox jumps over the lazy dog.";

int[] counts = new int[26];
text = text.ToUpper();
foreach (char ch in text)
{
 if (char.IsLetter(ch))
 {
 int index = (int)ch - (int)'A';
 counts[index]++;
 }
}

This code makes a String object named text. It creates a counts array to hold counts for the 26 let-
ters A to Z used in the string. Before processing the string, the code then converts text into uppercase.

Next, the code uses a foreach statement to loop over the characters in the string. For each character,
the code uses the char class’s IsLetter method to decide whether the character is a letter and not a
space or punctuation mark. If the character is a letter, the code converts it into an integer and subtracts
the value of “A” converted into an integer from it to get an index into the counts array. The letter A has
index 0, B has index 1, and so forth. The code then increments the count for that index. When the code
finishes, the counts array holds the number of times each character occurs in the string.

String Methods
The String class provides lots of methods that enable you work with strings. Table 4-5 describes
the most useful static methods provided by the String class. Because these are static methods, a
program uses the String class to invoke these methods. For example, to use the Compare method,
the program uses a statement similar to if (String.Compare(value1, value2) > 0)

TABLE 4-5: Useful Static String Methods

METhOD DESCRIpTION

Compare Compares two Strings and returns –1, 0, or 1 to indicate that the first
String should be considered before, equal to, or after the second
String in the sort order . Overloaded versions of this method enable you
to specify string comparison rules, whether to ignore case, and which
culture’s comparison rules to use .

Concat Takes as a parameter an array of Strings or other objects and returns
a String holding the concatenation of the objects . An overloaded ver-
sion enables you to pass any number of arguments as parameters and
returns the arguments concatenated . See also Join .

Copy Returns a copy of the String . See also the Clone instance method in
Table 4-6 .

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 141

METhOD DESCRIpTION

Equals Returns true if two Strings have the same value . See also the Equals
instance method in Table 4-6 .

Format Uses a format string and a series of objects to generate a formatted text
string . See the “String .Format” section for more information .

IsNullOrEmpty Returns true if the String holds a blank string "" or the String vari-
able refers to null . The following code sets two variables equal to an
empty string and a third variable to null:

string value1 = "";
string value2 = String.Empty;
string value3 = null;

There is a difference between an empty string and null . The
IsNullOrEmpty method makes it easier to treat both values in
the same way .

IsNullOrWhiteSpace Returns true if the String variable holds a blank string, refers to null,
or holds only whitespace characters . Whitespace characters are those
for which Char.IsWhiteSpace returns true .

Join Joins the values in an array of strings or other objects separated by a
separator string . For example, the following code sets the variable
allDays to hold the days of the week separated by commas:

string[] weekdays =
{
 "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday",
 "Sunday"
};
string allDays = string.Join(",", weekdays);

Table 4-6 describes the most useful instance methods provided by the String class. Because these
are instance methods, a program must use an instance of the String class to invoke these meth-
ods. For example, to use the CompareTo method, the program would use a statement similar to if
(value1.CompareTo(value2) > 0)

TABLE 4-6: Useful String Instance Methods

METhOD DESCRIpTION

Clone Returns a new reference to the String . The behavior is a bit different from the
Clone methods provided by most other classes because Strings are immuta-
ble . For this class, the new reference refers to the same value in the intern pool
as the original String . Refer also to the static Copy method in Table 4-5 .

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

142 ❘ ChApTER 4 usIng tyPes

METhOD DESCRIpTION

CompareTo Compares the String to another String and returns –1, 0, or 1 to indicate
that this String should be considered before, equal to, or after the other
String in the sort order . If you want to specify string comparison rules, whether
to ignore case, and which culture’s comparison rules to use, use the static
Compare method .

Contains Returns true if the String contains a specified substring .

CopyTo Copies a specified number of characters from a specified start position into a
char array .

EndsWith Returns true if the String ends with a specified substring . Overloaded versions
enable you to specify string comparison type, whether to ignore case, and culture .

Equals Returns true if this String has the same value as another String . Refer also
to the static Equals method in Table 4-5 .

IndexOf Returns the index of the first occurrence of a character or substring within the
String . Parameters enable you to specify the position in the String where the
search should begin and end, and string comparison options .

IndexOfAny Returns the index of the first occurrence of any character in an array within the
String . Parameters enable you to specify the position in the String where the
search should begin and end .

Insert Inserts a String at a specific position within this String and returns the result .

LastIndexOf Returns the index of the last occurrence of a character or substring within the
String . Parameters enable you to specify the position in the String where the
search should begin and end, and comparison options .

LastIndexOfAny Returns the index of the last occurrence of any character in an array within the
String . Parameters enable you to specify the position in the String where the
search should begin and end .

PadLeft Returns the String padded to a certain length by adding spaces or a specified
character on the left . This makes it easier to align text in columns with a fixed-
width font .

PadRight Returns the String padded to a certain length by adding spaces or a specified
character on the right . This makes it easier to align text in columns with a fixed-
width font .

TABLE 4-6 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 143

METhOD DESCRIpTION

Remove Removes the characters starting at a specified position either to the end of the
String or for a certain number of characters and returns the result .

Replace Replaces all instances of a character or string with another character or string
and returns the result .

Split Returns an array holding the String’s pieces as delimited by characters in an
array . Overloaded versions enable you to indicate the maximum number of
pieces to return and split options such as whether to remove empty entries . For
example, the following code splits a series of numbers separated by commas
and dashes, removing any entries that are empty:

char[] delimiters = { ',', '-' };
string values = "12-21,,33-17,929";
string[] fields = values.Split(delimiters,
 StringSplitOptions.RemoveEmptyEntries);

StartsWith Returns true if the String starts with a specified substring . Overloaded versions
enable you to specify comparison type, whether to ignore case, and culture .

Substring Returns a new String containing a substring of this String specified by a start
position and length .

ToCharArray Returns an array of char representing some or all the String’s characters .

ToLower Returns a copy of the String converted to lowercase .

ToString Returns the String . Normally, you don’t need to do this, but if you’re treating
the String as an object, for example if it is in a list or array of objects, it’s useful
to know that this object has a ToString method .

ToUpper Returns a copy of the String converted to uppercase .

Trim Returns a copy of the String with leading and trailing whitespace characters
removed . An overloaded version enables you to specify which characters
should be removed .

TrimEnd Returns a copy of the String with trailing whitespace characters removed .

TrimStart Returns a copy of the String with leading whitespace characters removed .

The String class’s methods let a program perform all sorts of string manipulations such as parsing
user input to get the pieces of an address, phone number, or other pieces of formatted information.
Chapter 11, "Input Validation, Debugging and Instrumentation," has more about parsing and vali-
dating user input by using the String class’s methods.

www.EBooksWorld.ir

www.EBooksWorld.ir

144 ❘ ChApTER 4 usIng tyPes

REAL-WORLD CASE SCENARIO Handling Percentage Values

Modify the order entry form that you built for this chapter’s first Real-World Case Scenario so that it can
handle Tax Rate specified as a percentage. If the value entered by the user contains a % character, parse
the value and divide it by 100.

Solution

The decimal.TryParse method cannot parse a string that contains the % character. To parse the value,
the program must remove the % character if it is present, use TryParse to convert the result into a deci-
mal value, and then divide by 100 if the original text contained the % character.

The following code snippet shows one way the program can do this:

// Get the tax rate as a string.
string taxRateString = taxRateTextBox.Text;

// Remove the % character if it is present.
taxRateString = taxRateString.Replace("%", "");

// Parse the tax rate.
decimal taxRate;
if (!decimal.TryParse(taxRateString, out taxRate))
{
 // Complain.
 DisplayErrorMessage(
 "Invalid format. Tax Rate must be a decimal value.",
 "Invalid Format", taxRateTextBox);
 return;
}

// If the original string contains the % character, divide by 100.
if (taxRateTextBox.Text.Contains("%")) taxRate /= 100;

Additional String Classes
The String class is intuitive and easy to use. You can use its meth-
ods to easily examine Strings, remove sections from Strings, trim a
String’s start or end, and extract substrings.

The unusual way Strings are interned, however, makes them ineffi-
cient for some purposes. Figure 4-4 shows the permutations example
program, which is available for download on the book’s website.
This program displays a big String holding all the permutations of a
set of letters. In Figure 4-4, the program is showing permutations of
the letters A through H.

There are 8! (or 5040 permutations of those eight letters) so the
result is 5040 Strings concatenated together. To make matters
worse, the program builds each permutation one character at a time,
so each permutation requires building eight smaller Strings. That

FIGURE 4-4: The permutations
example program displays
the permutations of a set of
letters .

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 145

means the program builds 8 × 5040 = 40,320 Strings in all, each of which must be interned. As a
result, the program is quite slow, taking approximately 23 seconds to produce these 5,040 permuta-
tions by using String concatenation.

For special cases such as this, when the String class is particularly inefficient, a program may get
better performance by using the specialized string processing classes:

➤➤ StringBuilder

➤➤ StringWriter

➤➤ StringReader

Referring to Figure 4-4, you can see that the program took only 0.05 seconds to build the permuta-
tions when it used a StringBuilder instead of String concatenations. Each of these string process-
ing classes is described in the following sections.

StringBuilder
The StringBuilder class represents a mutable, noninterned string. It stores character data in an
array and can add, remove, replace, and append characters without creating a new String object or
using the intern pool.

Normally, a program uses a StringBuilder to build a string in a long series of steps and then calls
the StringBuilder’s ToString method to convert the result into a normal String.

For example, the following code uses a StringBuilder to build a string holding a series of employee
names on separate lines:

string[] employeeNames =
{
 "Able",
 "Baker",
 "Charley",
 "Davis",
};
StringBuilder allNames = new StringBuilder();
foreach (string name in employeeNames)
{
 allNames.Append("[" + name + "]" + Environment.NewLine);
}
employeeTextBox.Text = allNames.ToString();

The code starts by defining an array of employee names. It then creates a StringBuilder and loops
over the names in the EmployeeNames array. For each name the code calls the StringBuilder’s
Append method to add the name surrounded by brackets to the string. After it has processed all the
names, the code calls the StringBuilder’s ToString method to convert it into a normal String
and displays the result in the employeeTextBox control.

Table 4-7 describes the StringBuilder class’s most useful properties.

www.EBooksWorld.ir

www.EBooksWorld.ir

146 ❘ ChApTER 4 usIng tyPes

TABLE 4-7: Useful StringBuilder Properties

pROpERTY DESCRIpTION

Capacity Gets or sets the number of characters that can be held by the StringBuilder . If
the amount of text stored in the StringBuilder exceeds this amount, the object
allocates more space . If you know the StringBuilder needs to hold at least a cer-
tain number of characters, you can use this property to make the object pre-allocate
memory instead of allocating memory incrementally . Some overloaded versions of
the class’s constructor let you specify an initial capacity .

Length Gets or sets the current number of the characters stored in the StringBuilder . If
you set this value to less than the current length, the text in the StringBuilder is
truncated .

The StringBuilder’s indexer returns the characters stored in the object. A program can use the
indexer to get and set character values. For example, the statement allNames[10] = 'X' sets char-
acter number 10 to X.

Table 4-8 describes the StringBuilder class’s most useful methods.

TABLE 4-8: Useful StringBuilder Methods

METhOD DESCRIpTION

Append Appends a string representation of an object to the end of the
StringBuilder’s text

AppendFormat Formats a series of objects and appends the result to the end of the
StringBuilder’s text

EnsureCapacity Ensures that the StringBuilder has at least a given capacity

Insert Inserts a string representation of an object at a given position in the
StringBuilder’s text

Remove Removes a range of characters from the StringBuilder’s text

Replace Replaces all instances of a character or string with a new character or string

ToString Returns a normal String representation of the StringBuilder’s text

The StringBuilder class does add some overhead to a program and sometimes makes the code
harder to read, so you should generally use it only if you perform a large number of string opera-
tions. In one set of tests, simple String concatenation was faster than creating and using a
StringBuilder for fewer than approximately seven concatenations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Manipulating Strings ❘ 147

Also keep in mind that the times involved for a few String operations are small. Using a
StringBuilder to concatenate 10 strings may be slightly faster than performing 10 simple
String concatenations, but the total amount of time saved is measured in milliseconds.
Unless the program repeats that operation many times or makes much longer concatenations,
it may be better to sacrifice a few milliseconds to keep the code easier to understand.

StringWriter
The StringWriter class provides an interface that makes it easier in some cases to build a string
on an underlying StringBuilder. The StringWriter class provides methods that make it easier to
sequentially write values into a string.

Table 4-9 describes the StringWriter’s most useful methods.

TABLE 4-9: Useful StringWriter Methods

METhOD DESCRIpTION

Flush Flushes any buffered data into the underlying StringWriter .

ToString Returns the object’s current contents as a String .

Write Appends an item to the string data . Overloaded versions append char, string,
int, double, and many other data types .

WriteAsync Asynchronously appends a char, string, or array of char to the end of the
string data .

WriteLine Appends an item to the string data much as Write does and then adds a new line .

StringWriter can be useful when you want to append values only to a string. StringWriter also
implements a TextWriter interface, so it can be useful when other classes require a TextWriter
to produce output and you want to store that output in a string. For example, the XmlSerializer
class’s Serialize method sends output to a TextWriter. If you want to serialize into a string, you
can send the output to a StringWriter and then use the StringWriter’s ToString method to get
the result. If you need to manipulate the underlying string data in other ways, such as removing or
replacing characters, StringBuilder provides more flexibility.

StringReader
The StringReader class provides a TextReader implementation that reads pieces of data taken
from an underlying StringBuilder. It provides methods that make it easier to sequentially read
pieces of text from a string.

Table 4-10 describes the StringReader’s most useful methods.

www.EBooksWorld.ir

www.EBooksWorld.ir

148 ❘ ChApTER 4 usIng tyPes

TABLE 4-10: Useful StringReader Methods

METhOD DESCRIpTION

Peek Returns the next character in the data but does not advance to the following
character .

Read Returns the next character in the data and advances to the following character .
An overloaded version can read a block of characters .

ReadAsync Asynchronously reads characters from the StringReader into a buffer .

ReadBlock Reads up to a maximum number of characters from the StringReader into a
buffer beginning at a specified index .

ReadBlockAsync Asynchronously reads up to a maximum number of characters from the
StringReader into a buffer beginning at a specified index .

ReadLine Reads characters from the StringReader until it encounters the end of the
line .

ReadLineAsync Asynchronously reads characters from the StringReader until it encounters
the end of the line .

ReadToEnd Returns the remaining text from the StringReader as a String .

ReadToEndAsync Asynchronously returns the remaining text from the StringReader as a
String .

The StringReader class provides access to a StringBuilder’s data at a relatively low level. Often
a program uses a StringReader only because it needs to pass information to a predefined method
that requires a StringReader or TextReader as a parameter.

REAL-WORLD CASE SCENARIO Using StringBuilder

Using only StringBuilders (no Strings), write a program that displays all the initial subsequences of
the letters of the alphabet A, AB, ABC, and so forth in a TextBox, as shown in Figure 4-5.

Solution

The following code does the job:

private void Form1_Load(object sender, EventArgs e)
{
 // Make a StringBuilder holding the ABCs.
 StringBuilder letters =
 new StringBuilder("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

 // This one holds the next line of letters.

www.EBooksWorld.ir

www.EBooksWorld.ir

Formatting Values ❘ 149

 StringBuilder line = new StringBuilder();

 // Create the result StringBuilder.
 StringBuilder result = new StringBuilder();

 // Loop over the letters.
 for (int i = 0; i < 26; i++)
 {
 // Add the next letter to line.
 line.Append(letters[i]);

 // Add line to the result.
 result.AppendLine(line.ToString());
 }

 // Display the result.
 stringBuilderTextBox.Text = result.ToString();
 stringBuilderTextBox.Select(0, 0);
}

The code first builds a StringBuilder holding the letters of the
alphabet. It makes a second StringBuilder to hold a line of out-
put and a third to hold the final result.

Next, the code loops over the numbers 0 through 25. For each
value of i, the code appends the ith character in letters to the
value in line. It then appends the new value of line to the result,
following it with a new line.

When the code finishes its loop, it displays the result.

In this example it’s not clear whether using StringBuilder is
faster than using simple String concatenations. In one test that
executed this code and similar code that performed String concat-
enations 100,000 times, the StringBuilder version took approxi-
mately 54 percent as long, so there is a time-savings, but the result
for a single execution is negligible.

FORMATTING VALUES

Formatting a value for display is a particularly important type conversion. Until you convert a
DateTime, decimal, or double into some sort of String, you can’t display it to the user.

Two of the most useful methods for formatting values as strings are the ToString and String.
Format methods described in the next two sections. Both of those methods use formatting strings,
which are described in the section after those.

FIGURE 4-5: This program
uses StringBuilders to list initial
sequences of the alphabet .

www.EBooksWorld.ir

www.EBooksWorld.ir

150 ❘ ChApTER 4 usIng tyPes

ToString
The object class provides a ToString method that every other class inherits. By default this method
returns an object’s type name as a String, but most classes for which it makes sense override this
method to return the object’s value as a String.

For example, if a float variable holds the value 1.23, its ToString method returns the value
“1.23” as a string. In contrast, if you define an Employee class, by default its ToString method
returns the name of the class, which is similar to WindowsFormsApplication1.Employee.

If you use a variable’s ToString method without parameters, you get a default representation of its
value.

The ToString method can also take as parameters a format provider, a formatting string, or both.
By using the formatting string, you can customize the resulting text. For example, if the variable
cost is a float, the statement cost.ToString("0.00") produces a string holding the value of cost
displayed to 2 decimal places.

String .Format
The ToString method enables you to convert a single variable’s value into a String. The String
class’s static Format method enables you to build a String that may contain the values of many
variables formatted in different ways.

The String.Format method has a few overloaded versions, but the most common takes as param-
eters a formatting string and one or more arguments that are used to fill in items within the format-
ting string.

Each format item in the formatting string has the following composite format syntax:

{index[,length][:formatString]}

Here, index is the zero-based index of a parameter that follows the formatting string that should be
used for this item; length is the minimum length of the result for the item; and formatString is a
standard or custom format string for the item. If length is negative, the value is left-aligned within
its length.

Stating this formally makes it sound confusing but it’s actually not too bad. The following code
shows a simple example.

int i = 163;
Console.WriteLine(string.Format("{0} = {1,4} or 0x{2:X}", (char)i, i, i));

The code defines an int variable named i and sets it equal to 163. It then uses string.Format to
format a line that it writes to the Output window.

The format string is {0} = {1,4} or 0x{2:X}. This string has three format items that mean:

➤➤ {0} displays argument 0 with default formatting

➤➤ {1,4} displays argument 1 in a field at least four characters wide

➤➤ {2:X} displays argument 2 with format string X (which displays an integer in hexadecimal)

www.EBooksWorld.ir

www.EBooksWorld.ir

Formatting Values ❘ 151

The other characters inside the formatting string (=, and or 0x) are included in the output as they
appear in the formatting string.

The parameters that come after the formatting string are the arguments that should be used with
the formatting string. The first argument casts the integer i into a char. The second and third argu-
ments are simply the variable i.

The result is that this line displays the value 163 converted into a character, then as a decimal value,
and then in hexadecimal. The following shows the result:

£ = 163 or 0xA3

An argument does not need to be used in the formatting string. Arguments can also be used in any
order and may be used repeatedly, so the following statement is valid:

string text = string.Format("{1} {4} {2} {1} {3}",
 "who", "I", "therefore", "am", "think");

Whether you use String.Format or concatenate a series of statements together to produce output is
largely a matter of personal preference.

Formatting Strings
Both the ToString and String.Format methods can take formatting strings as parameters to tell
them how to format a value. For String.Format this refers to the formatting string within format
items. For example, in the statement string.Format("0x{0:X}", 90), the formatting string is the
X inside the braces.

Formatting strings fall into two broad categories:

➤➤ Standard formatting strings enable you to determine how you want a value displayed at a
high level. The standard formatting strings are locale-aware, so they let the program produce
an output that is appropriate for the computer’s locale. For example, the “d” date format
string indicates a short date pattern and produces a result similar to 3/14/2014 in the United
States or 14/03/2014 in France.

➤➤ Custom formatting strings enable you to build formats that are not provided by the standard
formatting strings. For example, the following statement produces a result similar to It is
now 14 o’clock.

Console.WriteLine(string.Format("It is now {0:HH} o'clock", DateTime.Now));

You can use custom formatting strings to produce results that are similar to those produced by the
standard strings, but you should use the standard strings whenever possible so that you get appro-
priate changes if your program runs on a computer that is configured for a different locale.

The ToString and String.Format methods understand hundreds of standard and custom format-
ting strings. Some are so seldom used that listing them all here would waste a lot of space. The
following two tables list the most useful standard formatting strings for numeric and DateTime val-
ues. For complete lists of the allowed standard and custom formatting strings, see the URLs in the
“Additional Reading and Resources” section.

www.EBooksWorld.ir

www.EBooksWorld.ir

152 ❘ ChApTER 4 usIng tyPes

Tables 4-11 describes the most useful standard numeric formatting strings.

TABLE 4-11: Standard Numeric Format Strings

FORMAT DESCRIpTION EXAMpLE

C or c Currency $12,345.67

D or d Decimal (integer types only) 12345

E or e Scientific notation 1.234567E+004

F or f Fixed-point 12345.67

G or g General (fixed-point or scientific, whichever is shorter) 12345.67

N or n Number (with decimal and thousands separators) 12,345.67

P or p Percent (multiplied by 100 and % added) 0.12 becomes 12.00 %

X or x Hexadecimal (integer types only) 3039

Some of these formats can take an optional precision specifier that controls the number of digits
displayed. For most of these types, the precision specifier indicates the number of digits to display
after the decimal point. For example, if value is 12345.67 then value.ToString("C4") produces
$12,345.6700.

For scientific notation the precision specifier indicates the number of digits after the decimal point in the
mantissa. For example, if value is 12345.67, then value.ToString("E2") produces 1.23E+004.

Tables 4-12 describes the most useful standard DateTime formatting strings.

TABLE 4-12: Standard DateTime Format Strings

FORMAT DESCRIpTION EXAMpLE

d Short date 3/14/2014

D Long date Friday, March 14, 2012

f “Full” with short time Friday, March 14, 2012 2:15 PM

F “Full” with long time Friday, March 14, 2012 2:15:16

PM

g “General” with short time 3/14/2014 2:15 PM

G “General” with long time 3/14/2014 2:15:16 PM

m or M Month/day March 14

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary ❘ 153

FORMAT DESCRIpTION EXAMpLE

t Short time 2:15 PM

T Long time 2:15:16 PM

y or Y Year/month March, 2014

In addition to these standard formats, the DateTime structure provides four methods that produce
output similar to the d, D, t, and T format specifiers. These methods are ToShortDateString,
ToLongDateString, ToShortTimeString, and ToLongTimeString.

For more information on these and other formatting strings, see the URLs in the “Additional
Reading and Resources” section.

REAL-WORLD CASE SCENARIO Displaying Currency Values

Modify the order entry form that you built for this chapter’s second Real-World Case Scenario (Handling
Percentage Values) so it displays Extended Price, Subtotal, Sales Tax, and Grand Total in currency format.

Solution

The program already uses the ToString method to display those values. The only change needed is to
pass the currency formatting string “C” to those calls to ToString. For example, the following code
shows how the program displays the Grand Total in currency format:

grandTotalTextBox.Text = grandTotal.ToString("C");

SUMMARY

This chapter explained how to work with types. It explained how to convert from one type to
another using both implicit and explicit conversions. It explained how to use classes such as
System.Convert and System.BitConverter to perform more specialized data type conversions.

This chapter also explained how to use the String class to manipulate strings, and how to use the
String.Format and ToString methods to convert values into text for display.

One of the many kinds of type conversion a program can make is between classes. For example, if
the Employee class is derived from the Person class, then you can implicitly convert an Employee
into a Person and, in some cases you can explicitly cast a Person into an Employee. The next chap-
ter explains how you can build the class hierarchies that enable these sorts of conversions.

www.EBooksWorld.ir

www.EBooksWorld.ir

154 ❘ ChApTER 4 usIng tyPes

TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . To parse a string that might contain a currency value such as $1,234.56, you should pass
the Parse or TryParse method which of the following values?

 a . NumberStyles.AllowCurrencySymbol

 b . NumberStyles.AllowThousands

 c . NumberStyles.Currency

 d . A combination of all NumberStyles values

 2 . Which of the following statements is true for widening conversions?

 a . Any value in the source type can fit into the destination type.

 b . The conversion will not result in loss of magnitude but may result is some loss of
precision.

 c . An explicit cast is optional.

 d . All of the above.

 3 . Which of the following statements is true for narrowing conversions?

 a . The conversion will not result in loss of magnitude but may result is some loss of
precision.

 b . The source and destination types must be compatible.

 c . An explicit cast is optional.

 d . A cast can convert a string into an int if the string holds numeric text.

 4 . Assuming total is a decimal variable holding the value 1234.56, which of the following
statements displays total with the currency format $1,234.56?

 a . Console.WriteLine(total.ToString());

 b . Console.WriteLine(total.ToCurrencyString());

 c . Console.WriteLine(total.ToString("c"));

 d . Console.WriteLine(Format("{0:C}", total);

 5 . Which of the following statements generates a string containing the text "Veni, vidi,
vici"?

 a . String.Format("{0}, {1}, {2}", Veni, vidi, vici)

 b . String.Format("{1}, {2}, {3}", "Veni", "vidi", "vici")

 c . String.Format("{2}, {0}, {3}", "vidi", "Venti", "Veni", "vici")

 d . String.Format("{Veni, vidi, vici}")

www.EBooksWorld.ir

www.EBooksWorld.ir

Test Questions ❘ 155

 6 . If i is an int and l is a long, which of the following statements is true?

 a . i = (int)l is a narrowing conversion.

 b . l = (long)i is a narrowing conversion.

 c . l = (long)i could cause an integer overflow.

 d . The correct way to copy i’s value into l is l = long.Parse(i).

 7 . Which of the following methods is the best way to store an integer value typed by the user in
a variable?

 a . ToString

 b . Convert

 c . ParseInt

 d . TryParse

 8 . The statement object obj = 72 is an example of which of the following?

 a . Explicit conversion

 b . Immutable conversion

 c . Boxing

 d . Unboxing

 9 . If Employee inherits from Person and Manager inherits from Employee, which of the follow-
ing statements is valid?

 a . Person alice = new Employee();

 b . Employee bob = new Person();

 c . Manager cindy = new Employee();

 d . Manager dan = (Manager)(new Employee());

 10 . Which of the following is not a String method?

 a . IndexOf

 b . StartsWith

 c . StopsWith

 d . Trim

 11 . Which of the following techniques does not create a String containing 10 spaces?

 a . Set a String variable equal to a literal containing 10 spaces.

 b . Use a String constructor passing it an array of 10 space characters.

 c . Use a String constructor passing it the space character and 10 as the number of
times it should be repeated.

 d . Use the String class’s Space method passing it 10 as the number of spaces the string
should contain.

www.EBooksWorld.ir

www.EBooksWorld.ir

156 ❘ ChApTER 4 usIng tyPes

 12 . Which of the following statements can you use to catch integer overflow and underflow errors?

 a . checked

 b . overflow

 c . watch

 d . try

 13 . Which of the following techniques should you use to watch for floating point operations that
cause overflow or underflow?

 a . Use a checked block.

 b . Use a try-catch block.

 c . Check the result for the value Infinity or NegativeInfinity.

 d . Check the result for Error.

ADDITIONAL READING AND RESOURCES

Following are some additional useful resources to help you understand the topics presented in
this chapter:

Explanation of Big Endian and Little Endian Architecture
http://support.microsoft.com/kb/102025

Convert Class
http://msdn.microsoft.com/library/system.convert.aspx

BitConverter Class
http://msdn.microsoft.com/library/3kftcaf9.aspx.)

Standard Date and Time Format Strings
http://msdn.microsoft.com/library/az4se3k1.aspx

Custom Date and Time Format Strings
http://msdn.microsoft.com/library/8kb3ddd4.aspx

Standard Numeric Format Strings
http://msdn.microsoft.com/library/dwhawy9k.aspx

Custom Numeric Format Strings
http://msdn.microsoft.com/library/0c899ak8.aspx

Standard TimeSpan Format Strings
http://msdn.microsoft.com/library/ee372286.aspx

Custom TimeSpan Format Strings
http://msdn.microsoft.com/library/ee372287.aspx

Enumeration Format Strings
http://msdn.microsoft.com/library/c3s1ez6e.aspx

Understanding the Dynamic Keyword in C# 4
http://msdn.microsoft.com/en-us/magazine/gg598922.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://support.microsoft.com/kb/102025
http://msdn.microsoft.com/library/system.convert.aspx
http://msdn.microsoft.com/library/3kftcaf9.aspx
http://msdn.microsoft.com/library/az4se3k1.aspx
http://msdn.microsoft.com/library/8kb3ddd4.aspx
http://msdn.microsoft.com/library/dwhawy9k.aspx
http://msdn.microsoft.com/library/0c899ak8.aspx
http://msdn.microsoft.com/library/ee372286.aspx
http://msdn.microsoft.com/library/ee372287.aspx
http://msdn.microsoft.com/library/c3s1ez6e.aspx
http://msdn.microsoft.com/en-us/magazine/gg598922.aspx

Cheat Sheet ❘ 157

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Conversion Basics

➤➤ Implicit conversion doesn’t use a cast operator.

➤➤ Explicit conversion uses a cast operator.

➤➤ Widening conversions always succeed and a cast is optional. Magnitude is never lost
but precision may be.

➤➤ Narrowing conversions do not always succeed, and a cast or other conversion
method is required.

➤➤ Integer operations (including casting) that result in overflow or underflow are ignored
unless you use a checked block or the Advanced Builds Settings dialog.

➤➤ Floating point operations that result in overflow or underflow are ignored. Check the
result for the value Infinity or NegativeInfinity to see if overflow or underflow
has occurred.

➤➤ You can cast arrays of references but be aware that the new array refers to the same
array and not a new one.

The is and as Operators

➤➤ Use the is operator to determine if a variable is compatible with a certain type.

➤➤ Use the as operator to convert an object into a compatible type (or null if the object
isn’t compatible with the type).

➤➤ The as operator is particularly useful if you know an object’s type, for example in an
event handler.

parsing

➤➤ Use the Parse method to parse text into a value. You must protect Parse method
calls with try-catch blocks.

➤➤ Use the TryParse method to attempt to parse text and see if there is an error.
TryParse returns true if it succeeds and false if there is an error.

➤➤ Use the System.Globalization.NumberStyles enumeration to allow Parse and
TryParse to understand special symbols such as thousands separators, decimal
points, and currency symbols.

➤➤ Some useful NumberStyles values include Integer, HexNumber, Number, Float,
Currency, and Any.

Specialized Conversions

➤➤ The System.Convert class provides methods that convert from one data type to
another.

www.EBooksWorld.ir

www.EBooksWorld.ir

158 ❘ ChApTER 4 usIng tyPes

➤➤ System.Convert methods include ToBoolean, ToDouble, ToSingle, ToByte,
ToInt16, ToString, ToChar, ToInt32, ToUInt16, ToDateTime, ToInt64,
ToUInt32, ToDecimal, ToSByte, and ToUInt64.

➤➤ The System.BitConverter class converts data to and from arrays of bytes.

➤➤ Boxing occurs when you convert a value type into a reference type as in object obj
= 72. This is slow, so you should avoid it if possible.

➤➤ Unboxing occurs when you convert a reference type back into a value type.

➤➤ The dynamic type is a static type, but its value isn’t evaluated until run time.

Strings

➤➤ Strings are immutable.

➤➤ The intern pool holds an instance of every unique String.

➤➤ StringBuilders are mutable and can be more efficient than Strings for performing
a long series of concatenations.

➤➤ The StringWriter and StringReader classes provide methods for writing and read-
ing characters and lines with an underlying StringBuilder object.

Formatting

➤➤ The ToString and String.Format methods convert values into strings.

➤➤ String.Format uses composite format strings that can specify argument numbers,
field widths, alignments, and format strings. Field indexes start at 0.

➤➤ Standard format strings are locale-aware so you should use them whenever possible.

➤➤ Useful standard numeric formatting strings include C/c (currency), D/d (decimal),
E/e (exponential), F/f (fixed point), G/g (the shorter of E or F), N/n (number, as in
1,234.56), P/p (percent), and X/x (hexadecimal).

➤➤ Useful standard DateTime formatting strings include d (short date), D (long date), f
(“full” with short time), F (“full” with long time), g (“general” with short time), G
(“general” with long time), M or m (month/day), t (short time), T (long time), and Y
or y (year/month).

REVIEW OF KEY TERMS

boxing Boxing is the process of converting a value type such as int or bool into an object or an
interface supported by the value’s type. This enables a program to treat a simple value as if it were an
object. See also unboxing.

Common Language Runtime (CLR) A virtual machine that manages execution of C# (and other
.NET) programs.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 159

composite format A format item used by String.Format to indicate how an argument should be
formatted. The basic syntax is {index[,length][:formatString]}.

custom formatting string Enable you to build formats that are not provided by the standard format-
ting strings.

explicit conversion In an explicit conversion, the code uses an operator (such as a cast) or method
(such as int.Parse) to explicitly tell the program how to convert a value from one type to another.

immutable A data type is immutable if its value cannot be changed after it has been created. The
String class is immutable. String methods that seem to modify a String, such as Replace and
ToUpper, actually replace the String with a new value containing the modified contents.

implicit conversion In an implicit conversion, the program automatically converts a value from one
data type to another without any extra statements to tell it to make the conversion.

intern pool The CLR maintains a table called “intern pool” that contains a single reference to every
unique string used by the program.

interoperability Interoperability enables managed code (such as a C# program) to use classes pro-
vided by unmanaged code that was not written under the control of the CLR.

narrowing conversion A narrowing conversion is a data type conversion where the destination type
cannot hold every possible value provided by the source data type. Converting from a long to an int
is a narrowing conversion because a long can hold values such as 4,000,000,000 that cannot fit in an
int. Narrowing conversions must be explicit.

standard formatting string Enables you to determine how you want a value displayed at a high level.

unboxing Unboxing is the processing of converting a boxed value back into its original value type
value. See also boxing.

Unicode Unicode is a standard for encoding characters used by scripts in various locales around the
world. It enables a program to display English, Chinese, Kanji, Arabic, Cyrillic, and other character
sets. The .NET Framework uses the UTF-16 encoding, which uses 16 bits to represent each character.

widening conversion A widening conversion is a data type conversion where the destination type
can hold any value provided by the source data type; although, some loss of precision may occur. For
example, converting from an int to a long is a widening conversion.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed off to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating and Implementing
Class Hierarchies

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Deriving one class from another

➤➤ Calling base class constructors

➤➤ Defining and implementing interfaces

➤➤ Using important interfaces such as IComparable, IEquatable, and
IEnumerable

➤➤ Managing resources by implementing IDisposable and providing
destructors

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle.cgi?isbn=
1118612094 on the Download Code tab. The code is in the chapter05 download and individu-
ally named according to the names throughout the chapter.

Chapter 4, “Using Types,” explains how you can convert data between various data types.
Some of the conversions are between primitive types such as converting a float value into an
int or converting a DateTime value into a string.

Some of the most interesting type conversions, however, are between one object type and another.
For example, if the Employee class inherits from the Person class, you can convert a reference to
an Employee into a reference to a Person because an Employee is a kind of Person.

This chapter explains how you can build hierarchies of classes such as the Person-Employee
hierarchy. It also explains how to create and use interfaces, which provide another form of
inheritance. Finally, this chapter explains how to manage an object’s resources when the object
is destroyed.

5

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

162 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

Table 5-1 introduces you to the exam objectives covered in this chapter.

TABLE 5-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Create and implement
a class hierarchy

Inherit from a base class . This includes invoking constructors from a
derived class’s or the same class’s constructors .

Create and implement interfaces . This includes defining and using inter-
faces, and using standard interfaces such as IComparable, IEquatable,
and IEnumerable .

Manage the Object
Lifecycle

Implementing IDisposable . This includes working with managed and
unmanaged resouirces, providing destructors, and using the using
statement .

INhERITING FROM A BASE CLASS

The section “Creating Reference Types” in Chapter 3, “Working with the Type System,” explains
how to create classes. The following code shows the definition of a simple Person class and should
be familiar to you:

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Person(string firstName, string lastName)
 {
 // Validate the first and last names.
 if ((firstName == null) || (firstName.Length < 1))
 throw new ArgumentOutOfRangeException(
 "firstName", firstName,
 "FirstName must not be null or blank.");
 if ((lastName == null) || (lastName.Length < 1))
 throw new ArgumentOutOfRangeException(
 "lastName", lastName,
 "LastName must not be null or blank.");

 // Save the first and last names.
 FirstName = firstName;
 LastName = lastName;
 }
}

The Person class contains two auto-implemented string properties: FirstName and LastName. (A
class used by a real application would probably have a lot more properties to hold information such
as postal address, phone numbers, and e-mail addresses.) Its constructor takes first and last names as
parameters, performs some validation, and saves the values in the FirstName and LastName properties.

www.EBooksWorld.ir

www.EBooksWorld.ir

Inheriting from a Base Class ❘ 163

Now suppose you want to create an Employee class that has FirstName, LastName, and
DepartmentName properties. You could build this class from scratch, but it needs the same
properties as the Person class and would need the same validations, so building it from
scratch would require you to repeat all of that code.

A better solution is to derive the Employee class from the Person class so that it inherits that class’s
fields, properties, methods, and events. That makes sense logically, too. An employee is a kind of
person, so it makes sense that an Employee should be a kind of Person. If an Employee is a kind of
Person, there’s no reason why the same code inside the Person class that works for Person objects
shouldn’t also work for Employee objects.

CLASS TERMINOLOGY

There is a lot of terminology surrounding class hierarchies.

When you derive one class from another class, the new class inherits all the code
included in the original class. In this case, the original class is called the parent
class, base class, or superclass. The new class is called the derived class, child class,
or subclass. Deriving one class from another is called subclassing.

Some of the terminology of family trees also applies to inheritance hierarchies. For
example, a parent class’s children, their children, and so on are the parent class’s
descendants. Similarly a class’s parent, the parent’s parent, and so on are the class’s
ancestors. You can even define sibling classes to be classes that have a common parent.

To derive a class from another class, simply follow the class’s name with a colon and then the name
of the parent class. The following code shows an Employee class that is derived from the Person
class.

public class Employee : Person
{
 public string DepartmentName { get; set; }
}

In this example, the Employee class inherits any fields, properties, methods, and events defined by
the Person class. It also adds a new property, DepartmentName. Although a child class inherits most
of the code in its parent class, it doesn’t inherit the class’s constructor.

At this point, a program could use the following code to create an Employee object without initial-
izing its FirstName and LastName properties:

Employee employee = new Employee();

Because this code doesn’t initialize the Employee’s FirstName and LastName properties, they have
the values null, which defeats the purpose of the Person class’s constructor. The solution is to give
the child class constructors that call the parent class’s constructors.

www.EBooksWorld.ir

www.EBooksWorld.ir

164 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

Calling parent Class Constructors
To ensure that the Person class’s constructor is called so it can validate the Employee’s first and last
names, you need to give the Employee class a constructor, so you begin by creating a constructor
for the Employee class. Then you follow the constructor’s argument list with a colon, the keyword
base, and any parameters that you want to pass to the base class’s constructor.

In this example, the Employee constructor should pass the first and last names that it receives to the
Person class’s constructor. The highlighted code shows where the constructor calls the base class’s
constructor.

public class Employee : Person
{
 public string DepartmentName { get; set; }
 public Employee(string firstName, string lastName,
 string departmentName)
 : base(firstName, lastName)
 {
 // Validate the department name.
 if ((departmentName == null) || (departmentName.Length < 1))
 throw new ArgumentOutOfRangeException(
 "departmentName", departmentName,
 "DepartmentName must not be null or blank.");

 // Save the department name.
 DepartmentName = departmentName;
 }
}

If the base class has multiple constructors, the child class can use the base keyword to invoke any of
them. The program uses the arguments that follow the base keyword to figure out which construc-
tor to use.

NOTE When a constructor uses the base keyword to invoke a base class con-
structor, the base class’s constructor executes before the body of the child
class’s constructor executes.

If both the parent and child class have constructors, the child class’s constructor must invoke
one of the parent class’s constructors. That means the highlighted base statement in the previ-
ous code snippet is required. If you remove that code, Visual Studio displays the error message
“PersonHierarchy.Person Does Not Contain a Constructor That Takes 0 Arguments.” (Here,
PersonHierarchy is the namespace that contains the Person class.) The Employee class’s construc-
tor is implicitly trying to access a Person constructor that takes no parameters and it can’t find one.

One oddity to this system is that you can make an Employee class with no constructors even though
that allows the program to create an instance of the Employee class without invoking a Person class
constructor. That means the following definition for the Employee class is legal:

public class Employee : Person

www.EBooksWorld.ir

www.EBooksWorld.ir

Inheriting from a Base Class ❘ 165

{
 public string DepartmentName { get; set; }
}

If you want to prevent the program from circumventing the parent class’s constructors, you should
give the child class at least one constructor.

Calling Same Class Constructors
Often, it’s convenient to give a class multiple constructors to perform different kinds of initialization
depending on what parameters are passed into the constructor. In that case, multiple constructors
may need to perform the same tasks.

For example, suppose the Person class has FirstName and LastName properties, and you want to
allow the program to create a Person object by specifying either first name only or both first and
last names. The following code shows one way you could write the class with two constructors to
handle these two options:

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // Constructor with first name.
 public Person(string firstName)
 {
 FirstName = firstName;
 }

 // Constructor with first and last name.
 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
}

The first constructor takes a first name as a parameter and stores it in the FirstName property.
The second constructor takes both first and last names as parameters and saves their values in the
FirstName and LastName properties.

In this code, the second constructor begins by performing the same work that the first constructor
does when it saves the first name. In this simple example, that’s no big deal. In a more complicated
scenario in which the constructors perform more difficult tasks, this repetition of code would be a
problem. It would mean multiple copies of the same code for you to implement, debug, and maintain
over time.

One way to avoid this duplication of code is to make one constructor call another. In this case you
could rewrite the second constructor to make it call the first constructor so that it can handle the
first name parameter.

www.EBooksWorld.ir

www.EBooksWorld.ir

166 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

You make one constructor invoke a second constructor much as you invoke a base class construc-
tor except you use the this keyword instead of the base keyword. The following code shows how
the Person class’s second constructor can invoke its first constructor. The code that invokes the first
constructor is highlighted.

// Constructor with first and last name.
public Person(string firstName, string lastName)
 : this(firstName)
{
 LastName = lastName;
}

NOTE When a constructor uses the this keyword to invoke a second construc-
tor in the same class, the second constructor executes before the body of the
first constructor executes.

To take things one step farther, suppose you derive the Employee class from the Person class and
the Employee class adds a DepartmentName property. You might want different Employee construc-
tors that can take as parameters a first name, first and last names, or first and last name and depart-
ment name.

Those constructors can use the same technique shown in this version
of the Person class to make more complicated constructors invoke
simpler ones. The Employee constructors can also use the base key-
word described in the previous section to invoke the Person class
constructors.

For example, the Employee(firstName, lastName,
departmentName) constructor can use this to invoke the
Employee(firstName, lastName) constructor and that construc-
tor can use base to invoke the Person(firstName, lastName)
constructor.

Figure 5-1 shows the ThisAndBase example program, which is avail-
able for download on the book’s website. This program creates sev-
eral Person and Employee objects and displays messages indicating
when various constructors execute.

The following code shows the main form’s Load event handler, which
creates the Person and Employee objects.

CODE LAB Demonstrating Constructors That Invoke Other Constructors
[ThisAndBase]

public static string Results = "";

private void Form1_Load(object sender, EventArgs e)
{
 // Make some Persons.

FIGURE 5-1: The ThisAndBase
example program demon-
strates constructors that
invoke other constructors .

www.EBooksWorld.ir

www.EBooksWorld.ir

Inheriting from a Base Class ❘ 167

 Results += "Making Person(Bea)" + Environment.NewLine;
 Person bea = new Person("Bea");
 Results += Environment.NewLine;

 Results += "Making Person(Al, Able)" + Environment.NewLine;
 Person al = new Person("Al", "Able");
 Results += Environment.NewLine;

 // Make some Employees.
 Results += "Making Employee(Carl)" + Environment.NewLine;
 Person carl = new Employee("Carl");
 Results += Environment.NewLine;

 Results += "Making Employee(Deb, Dart)" + Environment.NewLine;
 Person deb = new Employee("Deb", "Dart");
 Results += Environment.NewLine;

 Results += "Making Employee(Ed, Eager, IT)" + Environment.NewLine;
 Person ed = new Employee("Ed", "Eager", "IT");
 Results += Environment.NewLine;

 // Display the results.
 resultsTextBox.Text = Results;
 resultsTextBox.Select(0, 0);
}

Code Lab Analysis

This code first defines a static string named Results that other parts of the program can write into to keep
a log of what is happening. The event handler then creates a series of Person and Employee objects to
demonstrate the classes’ constructors. It adds a message to the Results string explaining what it is doing
before it creates each object. After it finishes creating the objects, the code displays the Results string in
the form’s TextBox.

The following code shows the ThisAndBase program’s Person class:

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // Constructor with first name.
 public Person(string firstName)
 {
 Form1.Results += " Person(" + firstName + ")" +
 Environment.NewLine;
 FirstName = firstName;
 }

 // Constructor with first and last name.

www.EBooksWorld.ir

www.EBooksWorld.ir

168 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

 public Person(string firstName, string lastName)
 : this(firstName)
 {
 Form1.Results += " Person(" + firstName + ", " +
 lastName + ")" + Environment.NewLine;
 LastName = lastName;
 }
}

This class first defines FirstName and LastName properties. Its first constructor adds a message to
Form1.Results to keep track of what’s happening. The second constructor uses the this keyword
to invoke the first constructor and then adds its own message to Form1.Results.

The following code shows the program’s Employee class:

class Employee : Person
{
 public string DepartmentName { get; set; }

 // Constructor with first name.
 public Employee(string firstName)
 : base(firstName)
 {
 Form1.Results += " Employee(" + firstName + ")" +
 Environment.NewLine;
 }

 // Constructor with first and last name.
 public Employee(string firstName, string lastName)
 : base(firstName, lastName)
 {
 Form1.Results += " Employee(" + firstName + ", " +
 lastName + ")" + Environment.NewLine;
 }

 // Constructor with first name, last name, and department name.
 public Employee(string firstName, string lastName,
 string departmentName)
 : this(firstName, lastName)
 {
 Form1.Results += " Employee(" + firstName + ", " +
 lastName + ", " + departmentName + ")" + Environment.NewLine;
 DepartmentName = departmentName;
 }
}

The class’s first and second constructors take the same parameters used by Person class construc-
tors, so they simply use the base keyword to invoke the corresponding Person constructors and
they do nothing else (other than recording messages). The third constructor uses the this keyword
to invoke the Employee constructor that takes first and last names as parameters and then saves the
DepartmentName value.

www.EBooksWorld.ir

www.EBooksWorld.ir

Inheriting from a Base Class ❘ 169

If you look closely at Figure 5-1, you see that an invoked constructor executes before the constructor
that invokes it. You can also follow the chain of invocation for each object’s creation. For example,
when the program creates the Employee Ed Eager, the sequence of constructor calls is:

 1 . Employee(Ed, Eager, IT-12a) uses this to invoke.

 2 . Employee(Ed, Eager) uses base to invoke.

 3 . Person(Ed, Eager) uses this to invoke.

 4 . Person(Ed).

A constructor can directly invoke only one base class constructor or one same class constructor.
However, a different same class constructor must invoke a base class constructor, so when you use
this to invoke a same class constructor, you’re indirectly invoking a base class constructor anyway.
For example, the Employee(firstName, lastName) constructor invokes the Person(firstName,
lastName) constructor.

BEST pRACTICES: Creative Constructors

If you want to invoke multiple constructors, you can move their code into sepa-
rate methods and invoke those instead. For example, suppose you want the
Customer class to have the constructors Customer(email), Customer(address),
and Customer(email, address) where the email parameter is a string and the
address parameter is an Address structure holding address information. In that
case you might like to build the constructors using code similar to the following:

public Customer(string email)
{
 // Store the email address.
 ...
}

public Customer(Address address)
{
 // Store the postal address.
 ...
}

public Customer(string email, Address address)
 : this(email), this(address)
{
}

The prohibition against invoking multiple constructors prevents this. Fortunately,
you can work around it by moving the interesting code into methods and then call-
ing them instead:

public Customer(string email)
{
 StoreEmail(email);
}

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

170 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

public Customer(Address address)
{
 StoreAddress(address);
}
public Customer(string email, Address address)
{
 StoreEmail(email);
 StoreAddress(address);
}

// Store the email address.
private void StoreEmail(string email)
{
 ...
}

// Store the postal address.
private void StoreAddress(Address address)
{
 ...
}

continued

REAL-WORLD CASE SCENARIO Ellipses and Circles

Make an Ellipse class that represents an ellipse. It should store the ellipse’s size and position in a
Location property of type RectangleF (defined in the System.Drawing namespace). Give it two con-
structors: one that takes a RectangleF as a parameter and one that takes X position, Y position, width,
and height as parameters. Make the second constructor invoke the first, and make the constructors
throw an exception if width or height is less than or equal to 0.

Then make a Circle class that inherits from Ellipse. Make its constructors invoke the appropriate
base class constructors, and make them verify that width = height. (Hint: You should need to verify
only height = width in one place.)

Don’t worry about any other code that the classes would provide in an actual program such as methods
to draw ellipses and circles.

Solution

The following Ellipse and Circle classes work:

class Ellipse
{
 public RectangleF Location { get; set; }

 // Constructor that takes a RectangleF as a parameter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Designing and Implementing Interfaces ❘ 171

 public Ellipse(RectangleF rect)
 {
 // Validate width and height.
 if (rect.Width <= 0)
 throw new ArgumentOutOfRangeException(
 "width",
 "Ellipse width must be greater than 0.");
 if (rect.Height <= 0)
 throw new ArgumentOutOfRangeException(
 "height",
 "Ellipse height must be greater than 0.");

 // Save the location.
 Location = rect;
 }

 // Constructor that takes x, y, width, and height as parameters.
 public Ellipse(float x, float y, float width, float height)
 : this(new RectangleF(x, y, width, height))
 {
 }
}

class Circle : Ellipse
{
 // Constructor that takes a RectangleF as a parameter.
 public Circle(RectangleF rect)
 : base(rect)
 {
 // Validate width and height.
 if (rect.Width != rect.Height)
 throw new ArgumentOutOfRangeException(
 "width and height",
 "Circle width and height must be the same.");
 }

 // Constructor that takes x, y, width, and height as parameters.
 public Circle(float x, float y, float width, float height)
 : this(new RectangleF(x, y, width, height))
 {
 }
}

DESIGNING AND IMpLEMENTING INTERFACES

Now that you know how to derive a child class from a parent class, you can build diagrams that
use arrows to show the relationships among different classes. C# enables a class to have at most one
parent class, so the result is a tree-like hierarchy. For example, Figure 5-2 shows a small hierarchy
designed to model airline customers and personnel.

www.EBooksWorld.ir

www.EBooksWorld.ir

172 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

Person

Customer Employee

FirstClass
Passenger

Coach
Passenger

Cargo
Customer

Ground
Crew

Flight
Crew

Baggage
Handler

Ticket
Agent

Gate
Agent

Flight
Attendant Pilot

FIGURE 5-2: By deriving classes from each other, you can build class
hierarchies .

Class hierarchies are sufficient for a wide variety of
modeling problems, but occasionally it would be con-
venient to allow a class to inherit from multiple parent
classes. For example, suppose you’re writing an appli-
cation to manage a university’s students and personnel.
Two important classes are Student, which represents
people who take classes, and Faculty, which repre-
sents people who teach classes.

The problem arises when you try to add a Teaching
Assistant class to represent teaching assistants who are
students who also teach classes. Ideally, you would like
to use multiple inheritance, where a class has more than
one parent class, to make this class inherit from both the
Student and Faculty classes, so it can take advantage of
their code as shown in Figure 5-3. Unfortunately, C# does
not allow multiple inheritance, so this isn’t possible.

Although you can’t use multiple inheritance in C#, you
can use interfaces to simulate multiple inheritance, as
described next.

NOTE An interface requires a class to provide certain features much as a parent
class does, except the interface doesn’t provide an implementation. Because this
is somewhat similar to inheritance without the implementation, it is sometimes
called interface inheritance. A class can inherit from at most one parent class,
but it can implement any number of interfaces.

Person

Customer Employee

Faculty Staff

Teaching
Assistant

FIGURE 5-3: C# does not enable a class
such as TeachingAssistant to inherit from
more than one parent class .

www.EBooksWorld.ir

www.EBooksWorld.ir

Designing and Implementing Interfaces ❘ 173

Defining Interfaces
An interface is similar to a class that specifies properties, methods, and events, but it doesn’t pro-
vide any code to implement them. It forms a contract specifying features that other classes can
implement.

If a class implements an interface, it agrees to provide the features defined by the interface. That tells
other parts of the program that the class has those features, so the code can invoke them.

This provides a kind of polymorphism that is similar to the way classes let a program treat an object
as if it were of another class. For example, suppose the Employee class inherits from the Person
class and implements the ICloneable interface. In that case a program could treat an Employee
object as if it were an Employee, Person, or ICloneable object.

This may all seem a bit abstract, but an example should make it easier to understand. The following
code shows a simple interface named IStudent that defines the features of a student:

public interface IStudent
{
 // The student's list of current courses.
 List<string> Courses { get; set; }

 // Print the student's current grades.
 void PrintGrades();
}

This interface defines a property named Courses that is of type List<string> and a method named
PrintGrades. (In a real application, the interface would probably be more complicated and define
many other features.)

NOTE By convention, interface names begin with a capital letter I as in
IStudent, IComparable, and ICloneable.

The following code shows the Student class:

public class Student : Person, IStudent
{
 // Implement IStudent.Courses.
 // The student's list of current courses.
 public List<string> Courses { get; set; }

 // Implement IStudent.PrintGrades.
 // Print the student's current grades.
 public void PrintGrades()
 {
 // Do whatever is necessary...
 }
}

This class inherits from the Person class, which provides the FirstName and LastName proper-
ties. It also implements the IStudent interface. The code inside the Student class must provide

www.EBooksWorld.ir

www.EBooksWorld.ir

174 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

implementations for the features defined by the IStudent interface. In this example, it provides the
Courses property as an auto-implemented property, and it includes code (which isn’t shown here) to
implement the PrintGrades method.

The following code shows the TeachingAssistant class. (Assume for now that the other classes
shown in Figure 5-3 such as Employee, Faculty, and Staff have been defined.)

public class TeachingAssistant : Faculty, IStudent
{
 // Implement IStudent.Courses.
 // The student's list of current courses.
 public List<string> Courses { get; set; }

 // Implement IStudent.PrintGrades.
 // Print the student's current grades.
 public void PrintGrades()
 {
 // Do whatever is necessary...
 }
}

This class inherits from the Faculty class and implements the IStudent interface. Now the pro-
gram can create a TeachingAssistant object and treat it as either a Faculty object or an object
that implements IStudent.

Implementing Interfaces
Sometimes writing all the methods defined by an interface can be a lot of work. Unless the interface is
well documented, even figuring out what properties, methods, and events are necessary can be hard.

Fortunately, Visual Studio provides a tool that creates code to implement an interface for you. To
use the tool, write the class’s declaration and specify the interface:

public class TeachingAssistant : Faculty, IStudent
{
}

At this point, Visual Studio knows you have not implemented the interface. Right-click the inter-
face’s declaration to display a context menu (in this example, IStudent in the class statement). Open
the Implement Interface item, and select either Implement Interface or Implement Interface Explicitly
to make Visual Studio insert code stubs that satisfy the interface.

The following code shows the result produced by this tool for the TeachingAssistant class if you
pick the Implement Interface Explicitly item:

// Explicit implementation.
public class TeachingAssistant : Faculty, IStudent
{
 List<string> IStudent.Courses
 {
 get
 {
 throw new NotImplementedException();
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Designing and Implementing Interfaces ❘ 175

 set
 {
 throw new NotImplementedException();
 }
 }

 void IStudent.PrintGrades()
 {
 throw new NotImplementedException();
 }
}

If you select Implement Interface, the code doesn’t include the IStudent. parts, shown highlighted
in the previous code.

The new pieces of code simply throw exceptions when they are called. You need to edit the code to
replace the default code with code that provides the needed features.

Aside from the difference in syntax, there is a functional difference between implicit and explicit
interface implementation. If a class implements an interface explicitly, the program cannot access the
interface’s members through a class instance. Instead it must use an instance of the interface.

For example, suppose the TeachingAssistant implements the IStudent interface explicitly. Then
the following code shows incorrect and correct way to call the PrintGrades method:

TeachingAssistant ta = new TeachingAssistant();

// The following causes a design time error.
ta.PrintGrades();

// The following code works.
IStudent student = ta;
student.PrintGrades();

If a class implements an interface implicitly, the program can access the interface members through
either a class instance or an interface instance.

Delegating Interfaces
The Student and TeachingAssistant classes shown earlier both implement the IStudent inter-
face, so they both include code to provide the interface’s features.

BEST pRACTICES: Avoiding Dangerous Duplication

Seeing that duplicated code should have given you a bad feeling because it’s never
a good idea for a program to contain duplicated pieces of code. Duplicated code
means you need to write and debug the code twice. Even worse, it means that you
need to maintain the code in parallel over time. If you update the code in one place
but forget to update it in another, you could hide bugs and the program may pro-
duce inconsistent results depending on which piece of code is executed.

www.EBooksWorld.ir

www.EBooksWorld.ir

176 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

You can avoid duplicating this code by delegating the work of implementing the interface to a
Student object inside the TeachingAssistant class. Simply place a Student object inside the
TeachingAssistant class. Whenever the TeachingAssistant object needs to perform some task
specified by the IStudent interface, it makes its Student object do the work.

The following code shows the TeachingAssistant class delegating to a Student object:

// Delegate IStudent to a Student object.
public class TeachingAssistant : Faculty, IStudent
{
 // A Student object to handle IStudent.
 private Student MyStudent = new Student();

 public List<string> Courses
 {
 get
 {
 return MyStudent.Courses;
 }
 set
 {
 MyStudent.Courses = value;
 }
 }

 public void PrintGrades()
 {
 MyStudent.PrintGrades();
 }
}

The class defines a private instance of the Student class named MyStudent. To implement the
Courses property, the class uses the MyStudent object’s Courses property. To implement the
PrintGrades method, the class calls the MyStudent object’s PrintGrades method.

This may seem like extra work, but it lets you keep all the code to implement the interface in the
Student class. Now if you need to change the code, you can do it in that one place.

IMpLEMENTING COMMON INTERFACES

The .NET Framework includes many interfaces that help Framework classes do their jobs. For
example, if one of your classes implements the IComparable interface, the Array.Sort method can
sort an array of that class.

The following sections explain how you can implement some of the most useful interfaces defined by
the .NET Framework.

NOTE The IDisposable interface is another useful interface defined by the
.NET Framework. It is described in the section “Implementing the IDisposable
Interface.”

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 177

IComparable
If a class implements IComparable, it provides a CompareTo method that enables a program to
compare two instances of the class and determine which belongs before the other in sorted order.
For example, suppose you want to make a Car class to keep track of your favorite cars and you
want to sort Car objects by their names. In that case you can make the Car class implement the
IComparable interface, and then use Array.Sort to sort an array of Car objects.

The IComparable interface comes in two versions: a plain version and a generic version.

If you use the plain version, the CompareTo method takes two nonspecific objects as parameters,
and the code must convert them into Car objects before comparing their names. The following code
shows the Car class with this type of CompareTo method:

class Car : IComparable
{
 public string Name { get; set; }
 public int MaxMph { get; set; }
 public int Horsepower { get; set; }
 public decimal Price { get; set; }

 // Compare Cars alphabetically by Name.
 public int CompareTo(object obj)
 {
 if (!(obj is Car))
 throw new ArgumentException("Object is not a Car");

 Car other = obj as Car;
 return Name.CompareTo(other.Name);
 }
}

The CompareTo method first checks whether the obj parameter is a Car object and throws an excep-
tion if it is not. If obj is a Car, the method creates a Car variable to work with it and then compares
the current object’s Name property to the other Car’s Name property.

The following code shows the Car class implementing the generic version of the IComparable
interface:

class Car : IComparable<Car>
{
 public string Name { get; set; }
 public int MaxMph { get; set; }
 public int Horsepower { get; set; }
 public decimal Price { get; set; }

 // Compare Cars alphabetically by Name.
 public int CompareTo(Car other)
 {
 return this.Name.CompareTo(other.Name);
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

178 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

In this version, the interface name is followed by a generic parameter telling the kind of object to
which the class can compare itself, in this case Car. The CompareTo method’s parameter is an object
of that type, so CompareTo doesn’t need to verify that the object is a Car and it doesn’t need to con-
vert the object into a Car.

COMMON MISTAKES: The Generic Version of IComparable

The generic version of IComparable is simpler than the nongeneric version and
provides strong type checking, so you should use it. The nongeneric version is pro-
vided for compatibility with older versions of the .NET Framework. The strong type
checking provided by the generic version prevents you from making the mistake of
trying to compare objects of the wrong type. If you use the generic version, Visual
Studio will flag the error at design time.

The IComparableCars example program, which is available for download on the book’s website,
uses this version of the Car class to display an array of Cars. The program uses the following code to
display the array of Cars twice, first unsorted and then sorted:

CODE LAB Comparing Cars [IComparableCars]

private void Form1_Load(object sender, EventArgs e)
{
 // Make some data.
 Car[] cars =
 {
 new Car() { Name="SSC Ultimate Aero", MaxMph=257,
 Horsepower=1183, Price=654400m},
 new Car() { Name="Bugatti Veyron", MaxMph=253,
 Horsepower=1001, Price=1700000m},
 ...
 };

 // Display the cars unsorted.
 DisplayCars(cars, unsortedListView);

 // Sort the array of cars.
 Array.Sort(cars);

 // Display the cars sorted.
 DisplayCars(cars, sortedListView);
}

Code Lab Analysis

After creating the cars array, the code calls the DisplayCars method, described shortly, to display
the Cars in the ListView control named unsortedListView. It then calls Array.Sort to sort the
cars array and calls DisplayCars again to display the sorted array in the ListView control named
sortedListView.

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 179

The following code shows the DisplayCars method:

// Display the cars in the ListView control.
private void DisplayCars(Car[] cars, ListView listView)
{
 listView.Items.Clear();
 foreach (Car car in cars)
 {
 ListViewItem item = listView.Items.Add(car.Name);
 item.SubItems.Add(car.MaxMph.ToString());
 item.SubItems.Add(car.Horsepower.ToString());
 item.SubItems.Add(car.Price.ToString("C"));
 }
 foreach (ColumnHeader header in listView.Columns)
 {
 header.Width = -2;
 }
}

This method clears the items in the ListView control and then loops through the cars array. For each
Car object, the code creates a ListViewItem displaying the Car’s Name property. It then gives that item
subitems that display the Car’s MaxMph, Horsepower, and Price properties.

The method finishes by setting each ListView column’s Width property to –2, which makes it size itself
to fit its data.

Figure 5-4 shows the IComparableCars example program displaying its unsorted and sorted lists
of cars.

FIGURE 5-4: The IComparableCars example program displays a list of Car objects unsorted
on the left and sorted on the right .

IComparer
The IComparableCars example program described in the previous section used a Car class that
implements IComparable, so it can sort an array of Car objects by their names, but what if you
want to sort the Cars by maximum speed, horsepower, or price? The CompareTo method can sort on
only one field at a time, so there isn’t a good way to make the Car class sort on different properties.

www.EBooksWorld.ir

www.EBooksWorld.ir

180 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

The IComparer interface provides a solution. A class that implements the IComparer interface
must provide a Compare method that compares two objects. For example, you could create a
CarPriceComparer class that implements IComparer and that has a Compare method that com-
pares Car objects by Price. You could then pass a CarPriceComparer object to the Array.Sort
method, and it can use that object to sort an array of Car objects.

ADVICE FROM ThE EXpERTS: Using the Generic Version of IComparer

Like the IComparable interface, IComparer has generic and nongeneric versions. The
generic version is simpler and provides strong type checking so you should use it.

The CarPriceComparer class takes care of sorting by Price but still leaves the problem of sort-
ing by maximum speed or other Car properties. You could make multiple Car comparer classes but
there’s an easier solution.

Make a single CarComparer class and give it a field that the program can set to tell it which Car field
to use when comparing Car objects. The following code shows a CarComparer class that demon-
strates this approach:

class CarComparer : IComparer<Car>
{
 // The field to compare.
 public enum CompareField
 {
 Name,
 MaxMph,
 Horsepower,
 Price,
 }
 public CompareField SortBy = CompareField.Name;

 public int Compare(Car x, Car y)
 {
 switch (SortBy)
 {
 case CompareField.Name:
 return x.Name.CompareTo(y.Name);
 case CompareField.MaxMph:
 return x.MaxMph.CompareTo(y.MaxMph);
 case CompareField.Horsepower:
 return x.Horsepower.CompareTo(y.Horsepower);
 case CompareField.Price:
 return x.Price.CompareTo(y.Price);
 }
 return x.Name.CompareTo(y.Name);
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 181

The class begins with an enumeration that defines
the kinds of sorting that this class can provide. Its
SortBy field indicates the Car field that the class
should use when sorting.

The Compare method examines the SortBy value
and compares two Car objects appropriately.

The IComparerCars example program, which is
shown in Figure 5-5 and available for download on
the book’s website, uses this CarComparer class to
sort Car objects by Name, MaxMph, Horsepower, or
Price.

The IComparerCars example program uses the fol-
lowing code to display its Car objects:

// Display the cars in the ListView control.
private void DisplayCars()
{
 if (Cars == null) return;

 // Make the appropriate comparer.
 CarComparer comparer = new CarComparer();
 if (sortByComboBox.Text == "Name")
 comparer.SortBy = CarComparer.CompareField.Name;
 else if (sortByComboBox.Text == "Max MPH")
 comparer.SortBy = CarComparer.CompareField.MaxMph;
 else if (sortByComboBox.Text == "Horsepower")
 comparer.SortBy = CarComparer.CompareField.Horsepower;
 else
 comparer.SortBy = CarComparer.CompareField.Price;

 // Sort.
 Array.Sort(Cars, comparer);

 // If we're not sorting by name, reverse the array.
 if (sortByComboBox.Text != "Name") Array.Reverse(Cars);

 carListView.Items.Clear();
 foreach (Car car in Cars)
 {
 ListViewItem item = carListView.Items.Add(car.Name);
 item.SubItems.Add(car.MaxMph.ToString());
 item.SubItems.Add(car.Horsepower.ToString());
 item.SubItems.Add(car.Price.ToString("C"));
 }
 foreach (ColumnHeader header in carListView.Columns)
 {
 header.Width = -2;
 }
}

FIGURE 5-5: The IComparerCars example pro-
gram displays a list of Car objects sorted by Name,
MaxMph, Horsepower, or Price .

www.EBooksWorld.ir

www.EBooksWorld.ir

182 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

This method creates a CarComparer object and sets its SortBy value according to the value selected
in the program’s sortByComboBox control. It then calls Array.Sort passing it the array of Car
objects and the CarComparer. To display the numeric Car values (MaxMph, Horsepower, and Price)
in descending order, the program calls Array.Reverse if it is sorting by one of those values. Finally,
the method displays the sorted Car data in a ListView control much as the previous example did.

IEquatable
If a class implements the IComparable interface, it provides a CompareTo method that enables
you to determine how two objects should be ordered. Sometimes, you may not need to know how
two objects should be ordered, but you need to know instead whether the objects are equal. The
IEquatable interface provides that capability by requiring a class to provide an Equals method.

For example, the IEquatablePerson example program, which is available for download on the book’s
website, enables you to build a list of Person objects. If you try to create a Person with the same
first and last name as a previously created Person, the program displays an error message.

The following code shows the program’s Person class:

class Person : IEquatable<Person>
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public bool Equals(Person other)
 {
 return ((FirstName == other.FirstName) &&
 (LastName == other.LastName));
 }
}

This class has two properties, FirstName and LastName, and a simple Equals method that returns
true if the two Person objects have the same names.

The following code shows how the program adds a new Person to its list when you enter a first and
last name in the TextBoxes and then click Add:

// The List of Persons.
private List<Person> People = new List<Person>();

// Add a Person to the List.
private void btnAdd_Click(object sender, EventArgs e)
{
 // Make the new Person.
 Person person = new Person()
 {
 FirstName = firstNameTextBox.Text,
 LastName = lastNameTextBox.Text
 };

 if (People.Contains(person))
 {
 MessageBox.Show("The list already contains this person.");
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 183

 else
 {
 People.Add(person);
 firstNameTextBox.Clear();
 lastNameTextBox.Clear();
 firstNameTextBox.Focus();
 }
}

The btnAdd_Click event handler uses the value entered in the TextBoxes to create a new Person
object. It then uses the list’s Contains method to see if the Person is already in the list. If the Person is
already in the list, the program displays a message. If the Person is not in the list, the program adds it.

The list’s Contains method uses the fact that the Person class implements IEquatable to decide
whether two objects are the same. If you comment out the : IEquatable part of the Person class’s
declaration, the class no longer implements IEquatable, so the list treats two different objects as
different even if they happen to have the same first and last name values. (You don’t even need to
remove the Equals method from the Person class. If the class doesn’t implement IEquatable, the
Contains method won’t use Equals.)

BEST pRACTICES: provide Equatable

Generic collection classes such as List, Dictionary, Stack, and Queue provide
Contains and other methods that compare objects for equality. Microsoft recom-
mends that any class that you are likely to place in one of these generic collections
should implement IEquatable.

ICloneable
A class that implements the ICloneable interface must provide a Clone method that returns a
copy of the object for which it is called. For example, the following code shows a simple, cloneable
Person class:

class Person : ICloneable
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Person Manager { get; set; }

 // Return a clone of this person.
 public object Clone()
 {
 Person person = new Person();
 person.FirstName = FirstName;
 person.LastName = LastName;
 person.Manager = Manager;
 return person;
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

184 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

This class’s Clone method simply creates a new Person object with the same FirstName, LastName,
and Manager properties as the original and then returns the new object. Notice that the Clone
method returns a nonspecific object, not a Person, so the calling code must cast the result into a
Person.

The following code shows how the ICloneablePerson example program, which is available for
download on the book’s website, creates two Person objects and then clones one of them:

Person ann = new Person()
{
 FirstName = "Ann",
 LastName = "Archer",
 Manager = null
};
Person bob = new Person()
{
 FirstName = "Bob",
 LastName = "Baker",
 Manager = ann
};
Person bob2 = (Person)bob.Clone();

This code creates a Person named Ann Archer and another named Bob Baker. It then clones the
Bob Baker Person to make a third Person object.

CLEVER CLONES

There are two kinds of clones: shallow clones and deep clones.

In a shallow clone, any reference values in the copy refer to the same objects as
those in the original object. The Person.Clone method class described in this sec-
tion is a shallow clone because it sets the clone’s Manager property equal to the
Manager property of the original object.

In a deep clone, the new object’s reference values are set to new objects. The follow-
ing code shows how the Person class could provide deep clones:

public object Clone()
{
 Person person = new Person();
 person.FirstName = FirstName;
 person.LastName = LastName;
 person.Manager = Manager;
 if (Manager != null)
 person.Manager = (Person)Manager.Clone();
 return person;
}

The ICloneable interface doesn’t specify whether the Clone method should return
a shallow or deep clone, so you must do what makes the most sense for your
application. If you like, you can also make a second Clone method that takes as a
parameter a boolean value that indicates whether the copy should be a deep clone.

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 185

IEnumerable
A class that implements the IEnumerable interface provides a method for a program to enumer-
ate the items that the class contains. Its GetEnumerator method returns an object that implements
IEnumerator.

The IEnumerator object provides a Current property that returns
the current object in the enumeration. It also provides a MoveNext
method that moves the enumerator to the next object in the enumera-
tion and a Reset method that resets the enumerator to just before
the beginning of the enumeration. Finally, the enumerator provides a
Dispose method that lets it clean up any resources it is using when it
is no longer needed.

The IEnumerableTree example program, which is shown in Figure 5-6
and available for download on the book’s website, builds a tree and
then enumerates over the nodes it contains.

The following code shows the TreeNode class that holds information
for a node in a tree.

CODE LAB Enumerating Tree Nodes [IEnumerableTree]

class TreeNode : IEnumerable<TreeNode>
{
 public int Depth = 0;
 public string Text = "";
 public List<TreeNode> Children = new List<TreeNode>();
 public TreeNode(string text)
 {
 Text = text;
 }

 // Add and create children.
 public TreeNode AddChild(string text)
 {
 TreeNode child = new TreeNode(text);
 child.Depth = Depth + 1;
 Children.Add(child);
 return child;
 }

 // Return the tree's nodes in an preorder traversal.
 public List<TreeNode> Preorder()
 {
 // Make the result list.
 List<TreeNode> nodes = new List<TreeNode>();

 // Traverse this node's subtree.
 TraversePreorder(nodes);

 // Return the result.

FIGURE 5-6: The
IEnumerableTree example
program enumerates over the
nodes in a tree .

www.EBooksWorld.ir

www.EBooksWorld.ir

186 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

 return nodes;
 }
 private void TraversePreorder(List<TreeNode> nodes)
 {
 // Traverse this node.
 nodes.Add(this);

 // Traverse the children.
 foreach (TreeNode child in Children)
 child.TraversePreorder(nodes);
 }

 public IEnumerator<TreeNode> GetEnumerator()
 {
 return new TreeEnumerator(this);
 }
 IEnumerator IEnumerable.GetEnumerator()
 {
 return new TreeEnumerator(this);
 }
}

Code Lab Analysis

The class begins by defining the node’s Depth in the tree and the Text value that the node holds. The
Children field holds a list of the TreeNode objects that are the node’s children in the tree. The class pro-
vides a single constructor that initializes the node’s text.

To make building a tree easier, the AddChild method adds a new child to the node’s Children list and
returns the new child.

The Preorder method returns the tree’s nodes in a preorder traversal. In a preorder traversal, each
node displays before its children. The Preorder method builds a list of TreeNode objects to hold
the traversal and then calls the TraversePreorder method to perform the actual traversal. The
TraversePreorder method adds the current node to the list of nodes and then recursively calls each of
the child nodes’ TraversePreorder methods, so they can add themselves to the list. Figure 5-6 shows
the preorder traversal for the tree built by the example program.

The rest of the TreeNode class’s code is part of the IEnumerable interface. The two GetEnumerator
methods, both of which are required, return an enumerator object. In this program, the object is of the
type TreeEnumerator, a class that is described next.

The TreeEnumerator class defines objects that can enumerate over a tree made of TreeNode objects:

class TreeEnumerator : IEnumerator<TreeNode>
{
 // The tree's nodes in their proper order.
 private List<TreeNode> Nodes;

 // The index of the current node.
 private int CurrentIndex;

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 187

 // Constructor.
 public TreeEnumerator(TreeNode root)
 {
 Nodes = root.Preorder();
 Reset();
 }

 public TreeNode Current
 {
 get { return GetCurrent(); }
 }
 object IEnumerator.Current
 {
 get { return GetCurrent(); }
 }
 private TreeNode GetCurrent()
 {
 if (CurrentIndex < 0)
 throw new InvalidOperationException();
 if (CurrentIndex >= Nodes.Count)
 throw new InvalidOperationException();
 return Nodes[CurrentIndex];
 }

 public bool MoveNext()
 {
 CurrentIndex++;
 return (CurrentIndex < Nodes.Count);
 }

 public void Reset()
 {
 CurrentIndex = -1;
 }

 public void Dispose()
 {
 }
}

The class begins with a list that holds the nodes in the traversal over which the TreeEnumerator can
enumerate. The CurrentIndex field keeps track of the index of current TreeNode in the traversal.

The TreeEnumerator’s constructor takes a TreeNode as a parameter, uses its Preorder method to get
a traversal of the tree rooted at the TreeNode, and saves the result in the Nodes list. It then calls Reset
(described shortly) to reset the enumerator to the beginning of the traversal.

The two Current methods return a reference to the current TreeNode object in the enumeration. Both
of these methods call the GetCurrent method to get the object in position CurrentIndex in the list of
TreeNode objects.

www.EBooksWorld.ir

www.EBooksWorld.ir

188 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

The MoveNext method simply adds 1 to CurrentIndex. If the new value of CurrentIndex is within the
range of the Nodes list, MoveNext returns true to indicate that the current item exists and the enumera-
tor hasn’t finished enumerating all the items.

The Reset method sets CurrentIndex to –1. By convention the enumeration should begin (and reset to)
one position before the first item, so the program must call MoveNext before using the first item.

The class finishes with the Dispose method. In this example, method doesn’t need to do anything. See
the section “Implementing the IDisposable Interface” for more information on the Dispose method
and the IDisposable interface.

With the TreeNode class implementing IEnumerable and the TreeEnumerator class implementing
IEnumerator, the main program can create and use enumerators to enumerate over a TreeNode’s tree.
The following code shows how the main example program builds and displays its tree:

// Build and display a tree.
private void Form1_Load(object sender, EventArgs e)
{
 // Build the tree.
 TreeNode president = new TreeNode("President");
 TreeNode sales = president.AddChild("VP Sales");
 sales.AddChild("Domestic Sales");
 sales.AddChild("International Sales");
 // Other tree-building code omitted.
 ...

 // Display the tree.
 string text = "";
 IEnumerator<TreeNode> enumerator = president.GetEnumerator();
 while (enumerator.MoveNext())
 text += new string(' ', 4 * enumerator.Current.Depth) +
 enumerator.Current.Text +
 Environment.NewLine;
 text = text.Substring(0, text.Length - Environment.NewLine.Length);
 treeTextBox.Text = text;
 treeTextBox.Select(0, 0);
}

The code starts by building a tree. It then uses the root node’s GetEnumerator method to get an
enumerator.

The code then enters a while loop that executes as long as the enumerator’s MoveNext method returns
true to indicate that there is a valid current record. Inside the loop, the code gets the enumerator’s cur-
rent TreeNode object and uses its Depth and Text fields to add the object to the text the program is
building.

After the loop finishes, the code removes the new line at the end of the text and displays the result in a
TextBox.

www.EBooksWorld.ir

www.EBooksWorld.ir

Implementing Common Interfaces ❘ 189

BEST pRACTICES: Making Enumerations Easy

Implementing the IEnumerable interface is a lot of work, requiring you to imple-
ment several methods plus making an IEnumerator helper class. If all the program
wants to do is loop over a series of objects, there’s an easier approach.

Give the class a method that returns an object of type IEnumerable<class> where
class is the class you’re working with. Have the method find the objects that
should be in the enumeration and call yield return to place each in the enumera-
tion. Make the method return or call yield break when it finishes building the
enumeration.

The following code shows how the TreeNode class creates an enumeration in the
TreeEnumerator example program, which is available for download on the book’s
website:

// Return an enumerator.
public IEnumerable<TreeNode> GetTraversal()
{
 // Get the preorder traversal.
 List<TreeNode> traversal = Preorder();

 // Yield the nodes in the traversal.
 foreach (TreeNode node in traversal) yield return node;
 yield break;
}

The code calls the Preorder method described earlier to get a list containing the
tree’s nodes. It then loops over the nodes in the list calling yield return to add
each to the enumeration. It finishes the enumeration by calling yield break.

The following code shows how the main program uses the enumeration:

string text = "";
foreach (TreeNode node in president.GetTraversal())
{
 text += new string(' ', 4 * node.Depth) +
 node.Text +
 Environment.NewLine;
}

This code loops over the enumeration returned by the GetTraversal method to
build a result string in the same way the previous version of the program did.

If you just want to use foreach to iterate over some items, using the yield keyword
is a lot easier than implementing IEnumerable.

www.EBooksWorld.ir

www.EBooksWorld.ir

190 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

MANAGING OBJECT LIFE CYCLE

When a C# program instantiates a class, it creates an object. The program manipulates the object
for a while, and at some point the object may no longer be needed. When the program loses its last
reference to the object, either because all the references to it have been set to null or have gone out
of scope, that object is no longer accessible to the program and becomes a candidate for garbage col-
lection (the process of running the garbage collector to reclaim memory that is no longer accessible
to the program).

At some later point, the garbage collector (GC) may decide the program is running low on
memory and decide to start garbage collection. The GC marks all the memory that has been
used by the program as currently unreachable. It then goes through all the references accessible
to the program and marks the memory to which they refer as reachable. If a reference refers to
an object that has its own references, the GC follows those references until it has visited every
object that the program can reach.

When it finishes checking references, the GC examines any objects still marked as unreach-
able. If an object has a Finalize method (described in greater detail in the section “Providing
Destructors” later in this chapter), the GC calls it to let the object perform any necessary cleanup
chores. After calling Finalize, the GC at long last recycles the object’s memory and makes it
available for future use.

The process of calling an object’s Finalize method is called finalization. Because you can’t
tell when the GC will call an object’s Finalize method, this process is called nondeterministic
finalization.

This process is reasonably straightforward for simple objects, but can become more complicated
when an object has access to a resource that must be cleaned up somehow. For example, suppose
a program creates an object that locks a file for writing, perhaps to log events. When the object
goes out of scope, the object is a candidate for finalization, but you can’t tell when the GC will get
around to finalizing it. Meanwhile the file remains locked, possibly for a long time. Actually, if the
program doesn’t use too much memory, the GC might not run at all while the program executes, so
it might not release the file until the program ends.

You can take two steps to help objects free their resources: implementing the IDisposable interface
and providing destructors.

Implementing the IDisposable Interface
A class that implements the IDisposable interface must provide a Dispose method that cleans up
any resources used by the class. The program should call the Dispose method (or use the using
statement described in the section “Using the using Statement” later in this chapter) when an object
is no longer needed so it can perform this cleanup.

The Dispose method’s main purpose is to clean up unmanaged resources, but it can also clean up
managed resources. If an object uses references to other objects that implement the IDisposable
interface, it can call those objects’ Dispose methods.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Object Life Cycle ❘ 191

NOTE Managed resources are those under the control of the Common
Language Runtime (CLR), the runtime environment that executes C# programs.

Unmanaged resources are those outside of the control of the CLR. Unmanaged
resources include such things as handles to windows, files, pens, brushes, and
other objects the program is manipulating through API calls.

For example, suppose a Shape object represents a drawn shape and has properties that are refer-
ences to Brush and Pen objects. The Brush and Pen classes are managed classes, and they imple-
ment IDisposable, so the Shape class’s Dispose method should call their Dispose methods to free
their resources.

For another example, suppose the ImageTransformer class uses unmanaged code to manipulate bit-
maps. It uses API calls to get a handle to a bitmap (HBITMAP) and other API calls to get a device
context (DC) and to manipulate the bitmap. Because these handles were obtained by using API calls,
they represent unmanaged resources. If an ImageTransformer object is destroyed without using
other API calls to free those handles, their memory is lost. The ImageTransformer class’s Dispose
method should use the appropriate API calls to free those resources when they are no longer needed.

BEST pRACTICES: Reusing Objects

Microsoft recommends that a class provide Close and Open methods if a program
might want to later reopen the object’s resources. In contrast the Dispose method
should be called only if the object will not be needed again later. Trying to use an
object after its Dispose method has been called usually causes an exception.

By convention it should be safe to call an object’s Dispose method more than once. You can give
the class a boolean variable to indicate whether the method has been called before and make the
method do nothing if it has already executed.

Unfortunately IDisposable is only half of the story. Before you see code for a class that implements
IDisposable, you should learn about the rest of the solution for freeing resources: destructors.

providing Destructors
The Dispose method frees resources if the program calls it, but if the program doesn’t call Dispose,
the resources are not freed. When the GC eventually gets around to destroying the object, it frees
any managed resources, but unmanaged resources are not freed and are lost to the program. To han-
dle this situation, you can give the class a destructor to free resources when the object is destroyed.

A destructor is a method with no return type and a name that includes the class’s name prefixed by
~. The GC executes an object’s destructor before permanently destroying it.

For example, the following code shows an empty destructor for the class named DisposableClass:

~DisposableClass()
{
}

www.EBooksWorld.ir

www.EBooksWorld.ir

192 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

Several rules apply to destructors that do not apply to other methods. The following list summarizes
these rules:

➤➤ Destructors can be defined in classes only, not structures.

➤➤ A class can have at most one destructor.

➤➤ Destructors cannot be inherited or overloaded.

➤➤ Destructors cannot be called directly.

➤➤ Destructors cannot have modifiers or parameters.

DESTRUCTOR TO FINALIZER

The GC actually calls an object’s finalizer, not its destructor. The destructor is con-
verted into an override version of the Finalize method that executes the destruc-
tor’s code and then calls the base class’s Finalize method. For example, suppose
the Person class includes the following destructor:

~Person()
{
 // Free unmanaged resources here.
 ...
}

This destructor is converted into the following Finalize method:

protected override void Finalize()
{
 try
 {
 // Free unmanaged resources here.
 ...
 }
 finally
 {
 base.Finalize();
 }
}

You cannot explicitly override the Finalize method in C# code. That’s just as well
because your code cannot call the base class’s Finalize method directly. (See the
preceding list of destructor rules.)

The GC calls the destructor before it permanently destroys the object so you have one last chance to
clean up the object’s mess.

When the destructor executes, the GC is probably in the process of destroying other objects, so
the destructor’s code cannot depend on other objects existing. For example, suppose the Person
class contains a reference to a Company object. The Person class’s destructor cannot assume that

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Object Life Cycle ❘ 193

its Company object exists because it may have already been destroyed by the GC. That means the
Person class’s destructor cannot call the Company object’s Dispose method (if it has one).

There’s one final twist to the resource management saga. If an object has a destructor, it must
pass through a finalization queue (a queue of objects that are ready to be finalized) before it is
destroyed, and that takes extra time. If the Dispose method has already freed all the object’s
resources, there’s no need to run the object’s destructor. In that case, the Dispose method can
call GC.SuppressFinalize to tell the GC not to call the object’s finalizer (destructor) and to let
the object skip the finalization queue.

The following list summarizes the resource management rules and concepts:

➤➤ If a class contains no managed resources and no unmanaged resources, it doesn’t need to
implement IDisposable or have a destructor.

➤➤ If the class has only managed resources, it should implement IDisposable but it doesn’t
need a destructor. (When the destructor executes, you can’t be sure managed objects still
exist, so you can’t call their Dispose methods anyway.)

➤➤ If the class has only unmanaged resources, it needs to implement IDisposable and needs a
destructor in case the program doesn’t call Dispose.

➤➤ The Dispose method must be safe to run more than once. You can achieve that by using a
variable to keep track of whether it has been run before.

➤➤ The Dispose method should free both managed and unmanaged resources.

➤➤ The destructor should free only unmanaged resources. (When the destructor executes, you
can’t be sure managed objects still exist, so you can’t call their Dispose methods anyway.)

➤➤ After freeing resources, the destructor should call GC.SuppressFinalize, so the object can
skip the finalization queue.

COMMON MISTAKES: Using Managed Versus Unmanaged Resources

To avoid confusion, a class should ideally not include both managed and unman-
aged resources. If the class has unmanaged resources, it should manage only one
resource.

The IDisposableClass example program, which is available for download, uses the following class to
demonstrate the IDisposable interface and destructors:

class DisposableClass : IDisposable
{
 // A name to keep track of the object.
 public string Name = "";

 // Free managed and unmanaged resources.
 public void Dispose()
 {

www.EBooksWorld.ir

www.EBooksWorld.ir

194 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

 FreeResources(true);
 }

 // Destructor to clean up unmanaged resources
 // but not managed resources.
 ~DisposableClass()
 {
 FreeResources(false);
 }

 // Keep track if whether resources are already freed.
 private bool ResourcesAreFreed = false;

 // Free resources.
 private void FreeResources(bool freeManagedResources)
 {
 Console.WriteLine(Name + ": FreeResources");
 if (!ResourcesAreFreed)
 {
 // Dispose of managed resources if appropriate.
 if (freeManagedResources)
 {
 // Dispose of managed resources here.
 Console.WriteLine(Name + ": Dispose of managed resources");
 }

 // Dispose of unmanaged resources here.
 Console.WriteLine(Name + ": Dispose of unmanaged resources");

 // Remember that we have disposed of resources.
 ResourcesAreFreed = true;

 // We don't need the destructor because
 // our resources are already freed.
 GC.SuppressFinalize(this);
 }
 }
}

The class starts by defining a string property called Name. The example program uses Name to keep
track of the objects that it creates. (You probably won’t need this field in your classes.)

The Dispose method calls the FreeResources method described shortly to do all the work. It
passes the method the value true to indicate that FreeResources should free managed resources.

The destructor also calls FreeResources to do the interesting work. It passes that method the value
false to indicate that FreeResources should not free managed resources. Remember that man-
aged objects may have already been destroyed when the destructor executes, so the FreeResources
method should not try to do anything with them.

Next, the class declares the variable ResourcesAreFreed and sets it to false to indicate that the
resources have not yet been freed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Object Life Cycle ❘ 195

The FreeResources method first writes a message in the Console window and then checks the vari-
able ResourcesAreFreed to see if the resources have already been freed. If the resources have been
freed, the method does nothing.

If the resources have not yet been freed, the FreeResources method checks its freeManaged
Resources parameter to see if it should free managed resources. If freeManagedResources is
true, the method frees its managed resources. (In this example, the code simply writes a message
to the Console window, so you can see what’s happening.)

Next, the FreeResources method frees the object’s unmanaged resources. (In this example, the
code writes another message to the Console window, so you can see what’s happening.)

The code then sets ResourcesAreFreed to true so it knows the resources have been freed. That
way if the program calls Dispose again later, the method doesn’t do anything, so it’s safe to call
Dispose more than once.

Finally, the method calls GC.SuppressFinalize to let the object skip the finalization queue when it
is destroyed.

The IDisposableClass example program has three buttons: one labeled Create & Dispose, a second
labeled Create, and a third labeled Collect Garbage.

When you click the first button, the following code executes:

// Used to give objects different names.
private int ObjectNumber = 1;

// Create an object and dispose of it.
private void createAndDisposeButton_Click(object sender, EventArgs e)
{
 // Make an object.
 DisposableClass obj = new DisposableClass();
 obj.Name = "CreateAndDispose " + ObjectNumber.ToString();
 ObjectNumber++;

 // Dispose of the object.
 obj.Dispose();
}

This code creates a DisposableClass object, sets its Name property, and increments the variable
ObjectNumber used to give the objects different names. It then calls the object’s Dispose method
to free its resources. In this example, the Dispose method merely displays messages in the Console
window.

If you click the Create button, the following code executes:

// Create an object and do not dispose of it.
private void createButton_Click(object sender, EventArgs e)
{
 // Make an object.
 DisposableClass obj = new DisposableClass();
 obj.Name = "Create " + ObjectNumber.ToString();
 ObjectNumber++;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

196 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

This is similar to the other button’s code except it doesn’t call the object’s Dispose method.

You can use these two buttons to see when the objects you have created free their resources. For
example, suppose you click the buttons in the following sequence and then close the program:

 1 . Create & Dispose

 2 . Create

 3 . Create

 4 . Create & Dispose

When you first click Create & Dispose, you see the following messages in the Console window:

CreateAndDispose 1: FreeResources
CreateAndDispose 1: Dispose of managed resources
CreateAndDispose 1: Dispose of unmanaged resources

When you then click Create twice, you do not see any new messages in the Console window because
those objects have not been destroyed yet. The variables that refer to them are out of scope, so the
objects are eligible for finalization but the GC has not destroyed them.

When you click Create & Dispose again, you see the following messages in the Console window as
the program creates and disposes of another object:

CreateAndDispose 4: FreeResources
CreateAndDispose 4: Dispose of managed resources
CreateAndDispose 4: Dispose of unmanaged resources

Finally, when you close the program, you see the following messages in the Console window:

Create 3: FreeResources
Create 3: Dispose of unmanaged resources
Create 2: FreeResources
Create 2: Dispose of unmanaged resources

Notice that the final two objects aren’t destroyed until the program ends and that their destructors
are called in reverse order. In general you cannot assume that one object will be destroyed before
another one.

Notice also that FreeResources was not called again for the first and fourth objects. Their Dispose
methods were already called, so the call to GC.SuppressFinalize prevented their destructors from
being called.

If you click the IDisposableClass program’s Collect Garbage button, the following code forces the
GC to immediately perform garbage collection:

// Force garbage collection.
private void collectGarbageButton_Click(object sender, EventArgs e)
{
 GC.Collect();
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Object Life Cycle ❘ 197

You can use the GC.Collect statement to test garbage collection and destructors, but you should
not use it in the final program because it interferes with the GC’s normal scheduling algorithm and
may decrease performance.

Using the using Statement
If an object has a Dispose method, a program using it should call it when it is done using the
object to free its resources. This is important but easy to forget. To make it easier to ensure that the
Dispose method is called, C# provides the using statement.

The using statement begins a block of code that is tied to an object that implements IDisposable.
When the block ends, the program automatically calls the object’s Dispose method for you.

For example, the following code shows how the IDisposableClass example program described in the
previous section could use using to allocate and dispose of an object:

using (DisposableClass obj = new DisposableClass())
{
 obj.Name = "CreateAndDispose " + ObjectNumber.ToString();
 ObjectNumber++;
}

The using block calls Dispose when it ends, even if the code inside it throws an exception. That
makes the previous code equivalent to the following:

{
 DisposableClass obj = new DisposableClass();
 try
 {
 obj.Name = "CreateAndDispose " + ObjectNumber.ToString();
 ObjectNumber++;
 }
 finally
 {
 if (obj != null) obj.Dispose();
 }
}

The using statement has three syntactic forms:

// Version 1.
using (DisposableClass obj1 = new DisposableClass())
{
}

// Version 2.
DisposableClass obj2 = new DisposableClass();
using (obj2)
{
}

// Version 3.
DisposableClass obj3;

www.EBooksWorld.ir

www.EBooksWorld.ir

198 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

using (obj3 = new DisposableClass())
{
}

In the first version, the object that the using block disposes is declared and initialized inside paren-
theses after the using keyword. This method is preferred because it keeps the variable declaration
and assignment together, and because it restricts the variable’s scope to the using block.

The second and third methods both declare their variable outside of the using block, so the vari-
able has scope that extends beyond the block. After the using block ends, however, the variable has
already been disposed, so it probably can’t be used unless it is reinitialized to another object.

REAL-WORLD CASE SCENARIO Shape Resources

Suppose the Shape class has the properties FillBrush (of type Brush) and OutlinePen (of type Pen).
The Brush and Pen classes are defined in the System.Drawing namespace and are managed classes.
How would you manage the Shape class’s FillBrush and OutlinePen resources? (Don’t worry about
any other code that the class should provide, such as methods to draw a shape.)

Solution

Because the FillBrush and OutlinePen properties are managed resources, the Shape class should
implement IDisposable and not have a destructor. The following Shape class works:

class Shape : IDisposable, IComparable<Shape>
{
 // The FillBrush and OutlinePen properties.
 public Brush FillBrush { get; set; }
 public Pen OutlinePen { get; set; }

 // Remember whether we've already run Dispose.
 private bool IsDisposed = false;

 // Clean up managed resources.
 public void Dispose()
 {
 // If we've already run Dispose, do nothing.
 if (IsDisposed) return;

 // Dispose of FillBrush and OutlinePen.
 FillBrush.Dispose();
 OutlinePen.Dispose();

 // Remember that we ran Dispose.
 IsDisposed = true;
 }
}

The class implements the IDisposable interface. Its Dispose method calls the Dispose methods for its
two managed resources, FillBrush and OutlinePen. It also sets the boolean variable IsDisposed to
true, so it knows that the Dispose method has executed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Test Questions ❘ 199

This class does not need a destructor because it has no unmanaged resources. It doesn’t need to call
GC.SuppressFinalize because it has no destructor and therefore won’t be put in the finalization
queue anyway.

SUMMARY

This chapter explained how to work with classes and interfaces. It explained how to derive one class
from another and how to define and implement interfaces.

It also explained how to implement some of the most useful interfaces defined by the .NET Framework:
IComparable, IComparer, IEquatable, ICloneable, and IEnumerable. It explained how to use
the yield return statement to make enumerations more easily than you can with the IEnumerable
interface.

Finally, this chapter explained garbage collection and how to manage resources as objects that are
created and destroyed. It explained how to use the IDisposable interface to free managed and
unmanaged resources, and it explained how to use destructors to free unmanaged resources.

An interface specifies properties, methods, and events that a class must provide to implement the
interface. A delegate is a bit like an interface in the sense that it specifies the characteristics of a
method. It specifies the parameters that a method takes and the type of result it returns, if any. The
next chapter explains delegates. It also explains events, which use delegates, and exceptions, which
are useful in any program.

TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . Which the following statements about the base keyword is false?

 a . A constructor can use at most one base statement.

 b . A constructor cannot use both a base statement and a this statement.

 c . The base keyword lets a constructor invoke a different constructor in the same class.

 d . If a constructor uses a base statement, its code is executed after the invoked con-
structor is executed.

 2 . Which the following statements about the this keyword is false?

 a . A constructor can use at most one this statement.

 b . A constructor can use a this statement and a base statement if the base statement
comes first.

 c . The this keyword lets a constructor invoke a different constructor in the same class.

www.EBooksWorld.ir

www.EBooksWorld.ir

200 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

 d . If a constructor uses a this statement, its code is executed after the invoked con-
structor is executed.

 3 . Suppose you have defined the House and Boat classes and you want to make a HouseBoat class
that inherits from both House and Boat. Which of the following approaches would not work?

 a . Make HouseBoat inherit from both House and Boat.

 b . Make HouseBoat inherit from House and implement an IBoat interface.

 c . Make HouseBoat inherit from Boat and implement an IHouse interface.

 d . Make HouseBoat implement both IHouse and IBoat interfaces.

 4 . Suppose the HouseBoat class implements the IHouse interface implicitly and the IBoat inter-
face explicitly. Which of the following statements is false?

 a . The code can use a HouseBoat object to access its IHouse members.

 b . The code can use a HouseBoat object to access its IBoat members.

 c . The code can treat a HouseBoat object as an IHouse to access its IHouse members.

 d . The code can treat a HouseBoat object as an IBoat to access its IBoat members.

 5 . Which of the following is not a good use of interfaces?

 a . To simulate multiple inheritance.

 b . To allow the code to treat objects that implement the interface polymorphically as if
they were of the interface’s “class.”

 c . To allow the program to treat objects from unrelated classes in a uniform way.

 d . To reuse the code defined by the interface.

 6 . Suppose you want to make a Recipe class to store cooking recipes and you want to sort the
Recipes by the MainIngredient property. In that case, which of the following interfaces
would probably be most useful?

 a . IDisposable

 b . IComparable

 c . IComparer

 d . ISortable

 7 . Suppose you want to sort the Recipe class in question 6 by any of the properties
MainIngredient, TotalTime, or CostPerPerson. In that case, which of the
following interfaces would probably be most useful?

 a . IDisposable

 b . IComparable

 c . IComparer

 d . ISortable

www.EBooksWorld.ir

www.EBooksWorld.ir

Test Questions ❘ 201

 8 . Which of the following statements is true?

 a . A class can inherit from at most one class and implement at most one interface.

 b . A class can inherit from any number classes and implement any number of interfaces.

 c . A class can inherit from at most one class and implement any number of interfaces.

 d . A class can inherit from any number of classes and implement at most one interface.

 9 . A program can use the IEnumerable and IEnumerator interfaces to do which of the following?

 a . Use MoveNext and Reset to move through a list of objects.

 b . Use foreach to move through a list of objects.

 c . Move through a list of objects by index.

 d . Use the yield return statement to make a list of objects for iteration.

 10 . Which of the following statements about garbage collection is false?

 a . In general, you can’t tell when the GC will perform garbage collection.

 b . It is possible for a program to run without ever performing garbage collection.

 c . An object’s Dispose method can call GC.SuppressFinalize to prevent the GC from
calling the object’s destructor.

 d . Before destroying an object, the GC calls its Dispose method.

 11 . Which of the following statements about destructors is false?

 a . Destructors are called automatically.

 b . Destructors cannot assume that other managed objects exist while they are executing.

 c . Destructors are inherited.

 d . Destructors cannot be overloaded.

 12 . If a class implements IDisposable, its Dispose method should do which of the following?

 a . Free managed resources.

 b . Free unmanaged resources.

 c . Call GC.SuppressFinalize.

 d . All of the above.

 13 . If a class has managed resources and no unmanaged resources, it should do which of the
following?

 a . Implement IDisposable and provide a destructor.

 b . Implement IDisposable and not provide a destructor.

 c . Not implement IDisposable and provide a destructor.

 d . Not implement IDisposable and not provide a destructor.

www.EBooksWorld.ir

www.EBooksWorld.ir

202 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

 14 . If a class has unmanaged resources and no managed resources, it should do which of the
following?

 a . Implement IDisposable and provide a destructor.

 b . Implement IDisposable and not provide a destructor.

 c . Not implement IDisposable and provide a destructor.

 d . Not implement IDisposable and not provide a destructor.

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this
chapter:

IEnumerable Interface
http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx

Using IEnumerator and IEnumerable in the .NET Framework
http://www.codeproject.com/Articles/4074/

Using-IEnumerator-and-IEnumerable-in-the-NET-Frame

yield (C# Reference)
http://msdn.microsoft.com/library/vstudio/9k7k7cf0.aspx

Garbage Collector Basics and Performance Hints
http://msdn.microsoft.com/library/ms973837.aspx

Garbage Collection: Automatic Memory Management in the Microsoft .NET Framework
http://msdn.microsoft.com/magazine/bb985010.aspx

Finalize Methods and Destructors
http://msdn.microsoft.com/library/0s71x931.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx
http://www.codeproject.com/Articles/4074/Using-IEnumerator-and-IEnumerable-in-the-NET-Frame
http://msdn.microsoft.com/library/vstudio/9k7k7cf0.aspx
http://msdn.microsoft.com/library/ms973837.aspx
http://msdn.microsoft.com/magazine/bb985010.aspx
http://msdn.microsoft.com/library/0s71x931.aspx

Cheat Sheet ❘ 203

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Inheritance

➤➤ C# does not enable multiple inheritance.

➤➤ Use the base keyword to make a constructor invoke a parent class constructor as in the fol-
lowing code:

public class Employee : Person
{
 public Employee(string firstName, string lastName)
 : base(firstName, lastName)
 {
 ...
 }
}

➤➤ Use the this keyword to make a constructor invoke another constructor in the same class as
in the following code:

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Person(string firstName)
 {
 FirstName = firstName;
 }

 public Person(string firstName, string lastName)
 : this(firstName)
 {
 LastName = lastName;
 }
}

➤➤ A constructor can invoke at most one base class constructor or one same class constructor.

➤➤ If a parent class has constructors, a child class’s constructors must invoke them directly or
indirectly.

Interfaces

➤➤ By convention, interface names begin with I as in IComparable.

➤➤ A class can inherit from at most one parent class but can implement any number of
interfaces.

➤➤ Implementing an interface is sometimes called interface inheritance.

➤➤ If a class implements an interface explicitly, the code cannot use an object reference to access
the interface’s members. Instead it must use an interface instance.

www.EBooksWorld.ir

www.EBooksWorld.ir

204 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

➤➤ If a class implements an interface implicitly, the code can use a class instance or an interface
instance to access the interface’s members.

➤➤ An IComparable class provides a CompareTo method that determines the order of objects.

➤➤ An IComparer class provides a Compare method that compares two objects and determines
their ordering.

➤➤ An IEquatable class provides an Equals method that determines whether an object is equal
to another object.

➤➤ An ICloneable class provides a Clone method that returns a copy of an object.

➤➤ An IEnumerable class provides a GetEnumerator method that returns an IEnumerator
object that has MoveNext and Reset methods for moving through a list of objects.

➤➤ A method can use the yield return statement to add objects to an IEnumerator result.

Destructors

➤➤ Destructors can be defined in classes only, not structures.

➤➤ A class can have at most one destructor.

➤➤ Destructors cannot be inherited or overloaded.

➤➤ Destructors cannot be called directly.

➤➤ Destructors cannot have modifiers or parameters.

➤➤ The destructor is converted into an override version of the Finalize method. You cannot
override Finalize or call it directly.

Resource Management

➤➤ If a class contains no managed resources and no unmanaged resources, it doesn’t need to
implement IDisposable or have a destructor.

➤➤ If the class has only managed resources, it should implement IDisposable but it doesn’t
need a destructor. (When the destructor executes, you can’t be sure managed objects still
exist, so you can’t call their Dispose methods anyway.)

➤➤ If the class has only unmanaged resources, it needs to implement IDisposable and it needs a
destructor in case the program doesn’t call Dispose.

➤➤ The Dispose method must be safe to run more than once. You can achieve that by keeping
track of whether it has been run before.

➤➤ The Dispose method should free managed and unmanaged resources.

➤➤ The destructor should free only unmanaged resources. (When the destructor executes, you
can’t be sure managed objects still exist, so you can’t call their Dispose methods anyway.)

➤➤ After freeing resources, the Dispose method should call GC.SuppressFinalize to prevent the
GC from running the object’s destructor and to keep the object out of the finalization queue.

➤➤ The using statement lets a program automatically call an object’s Dispose method, so you
can’t forget to do it. If you declare and initialize the object in the using statement, this also
limits the object’s scope to the using block.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 205

REVIEW OF KEY TERMS

ancestor class A class’s parent, the parent’s parent, and so on.

base class A class from which another class is derived through inheritance. Also known as a parent
class or superclass.

child class A class derived from a parent class.

Common Language Runtime (CLR) A virtual machine that manages execution of C# (and other
.NET) programs.

deep clone A copy of an object where reference fields refer to new instances of objects, not to the
same objects referred to by the original object’s fields.

derive To create one class based on another through inheritance.

derived class A child class derived from a parent class through inheritance.

descendant class A class’s child classes, their child classes, and so on.

destructor A method with no return type and a name that includes the class’s name prefixed by
~. The destructor is converted into a Finalize method that the GC executes before permanently
destroying the object.

finalization The process of the GC calling an object’s Finalize method.

finalization queue A queue through which objects with finalizers must pass before being destroyed.
This takes some time, so you should not give a class a finalizer (destructor) unless it needs one.

garbage collection The process of running the GC to reclaim memory that is no longer accessible to
the program.

garbage collector (GC) A process that executes periodically to reclaim memory that is no longer
accessible to the program.

inherit A derived class inherits the properties, methods, events, and other code of its base class.

interface inheritance Using an interface to require a class to provide certain features much as inheri-
tance does (except the interface doesn’t provide an implementation).

managed resources Resources that are under the control of the CLR.

multiple inheritance Allowing a child class to have more than one parent class. C# does not allow
multiple inheritance.

nondeterministic finalization Because you can’t tell when the GC will call an object’s Finalize
method, the process is called nondeterministic finalization.

parent class A base class. Also known as a superclass.

reachable During garbage collection, an object is reachable if the program has a path of references
that let it access the object.

shallow clone A copy of an object where reference fields refer to the same objects as the original
object’s fields.

www.EBooksWorld.ir

www.EBooksWorld.ir

206 ❘ ChApTER 5 creatIng and ImPlementIng class hIerarchIes

sibling classes Classes that have the same parent class.

subclass A derived class.

subclassing The process of deriving a subclass from a base class through inheritance.

superclass A base class. Also known as a parent class.

unmanaged resources Resources that are not under the control of the CLR.

unreachable During garbage collection, an object is unreachable if the program has no path of refer-
ences that let it access the object.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed off to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Working with Delegates, Events,
and Exceptions

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding delegates and predefined delegate types

➤➤ Using anonymous methods including lambda expressions

➤➤ Publishing and subscribing to events

➤➤ Allowing derived classes to raise base class events

➤➤ Catching, throwing, and rethrowing exceptions

➤➤ Creating custom exceptions

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter11
download and individually named according to the names throughout the chapter.

Chapter 3, “Working with the Type System,” explained data types including predefined types
(such as int and string), data structures, and enumerations. For example, the following code
snippet defines a Person structure that groups a person’s name and address information:

struct Person
{
 public string FirstName, LastName, Street, City, State, ZIP;
}

6

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

208 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

This chapter explains delegates, data types that define kinds of methods. It also explains events
(which use delegates), exceptions, and error handling.

Table 6-1 introduces you to the exam objectives covered in this chapter.

TABLE 6-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Manage program flow Create and implement events and callbacks. This includes creating
event handlers, subscribing and unsubscribing from events, using built-
in delegate types to create events, creating delegates, using lambda
expressions, and using anonymous methods .

Implement exception handling. This includes handling different excep-
tion types, catching exceptions of specific and base types, implement-
ing try-catch-finally blocks, throwing exceptions, creating custom
exceptions, and determining when to throw or rethrow exceptions .

WORKING WITh DELEGATES

As you saw in the introduction to this chapter, a delegate is a data type that defines kinds of methods
and explains events (which use delegates), exceptions, and error handling. A delegate is a data type
much as a class or structure is. Those types define the properties, methods, and events provided by
a class or structure. In contrast, a delegate is a type that defines the parameters and return value of a
method. The following sections explain how you can define and use delegates.

Delegates
The following code shows how you can define a delegate type.

[accessibility] delegate returnType DelegateName([parameters]);

Here’s a breakdown of that code:

➤➤ accessibility: An accessibility for the delegate type such as public or private.

➤➤ delegate: The delegate keyword.

➤➤ returnType: The data type that a method of this delegate type returns such as void, int, or
string.

➤➤ delegateName: The name that you want to give the delegate type.

➤➤ parameters: The parameter list that a method of this delegate type should take.

For example, the following code defines a delegate type named FunctionDelegate.

private delegate float FunctionDelegate(float x);

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 209

BEST pRACTICES: Naming Delegate Types

Some programmers end the names of delegate types with the word Delegate as in
FunctionDelegate. This is common but not universal.

If a delegate is used as a callback method to be invoked when a piece of code fin-
ishes a task, most developers end the delegate type’s name with Callback as in
InvoiceGeneratedCallback.

This type represents methods that take a float as a parameter and returns an integer.

After you define a delegate type, you can create a variable of that type. The following code declares
a variable named TheFunction that has the FunctionDelegate type:

private FunctionDelegate TheFunction;

ADVICE FROM ThE EXpERTS: Store Delegate Values in Variables

You can store delegate values in variables much as you can store any other kind of
value. For example, you can declare a single variable to be of a delegate type; you
can make a struct that has properties or fields that are of a delegate type; and
you can make an array of variables of a delegate type.

You can even make a List of values of the type. For example, the follow-
ing code makes a List that can hold references to methods that match the
FunctionDelegate type.

List<FunctionDelegate> functions = new List<FunctionDelegate>();

Later you can set the variable equal to a method that has the appropriate parameters and return
type. The following code defines a method named Function1. The form’s Load event handler then
sets the variable TheFunction equal to this method.

// y = 12 * Sin(3 * x) / (1 + |x|)
private static float Function1(float x)
{
 return (float)(12 * Math.Sin(3 * x) / (1 + Math.Abs(x)));
}

// Initialize TheFunction.
private void Form1_Load(object sender, EventArgs e)
{
 TheFunction = Function1;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

210 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

After the variable TheFunction is initialized, the program can use it as if it were the method itself. For
example, the following code snippet sets the variable y equal to the value returned by TheFunction
with parameter 1.23.

float y = TheFunction(1.23f);

At this point, you don’t actually know which method is referred to by TheFunction. The variable
could refer to Function1 or some other method, as long as that method has a signature that matches
the FunctionDelegate type.

CODE LAB Using delegate variables [GraphFunction]

The GraphFunction example program, which is shown in Figure 6-1 and which is available for download
on the book’s website, uses delegates to graph one of three functions. When you select a function from
the ComboBox, the program draws it.

FIGURE 6-1: The GraphFunction
example program uses a delegate
variable to store the function that
it should graph .

When you select a function from the program’s ComboBox, the following code makes the program graph
the selected function.

// Select the appropriate function and redraw.
private void equationComboBox_SelectedIndexChanged(
 object sender, EventArgs e)
{
 switch (equationComboBox.SelectedIndex)
 {
 case 0:
 TheFunction = Function1;
 break;
 case 1:
 TheFunction = Function2;

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 211

 break;
 case 2:
 TheFunction = Function3;
 break;
 }
 graphPictureBox.Refresh();
}

Code Lab Analysis

This code sets the variable TheFunction to one of three methods. It then refreshes the graphPictureBox
control to make it repaint itself.

The graphPictureBox control’s Paint event handler contains a lot of graphics code that isn’t relevant
to this discussion, so it isn’t shown here. The following code shows the key part of the event handler
that uses TheFunction:

// Generate points on the curve.
List<PointF> points = new List<PointF>();
for (float x = wxmin; x <= wxmax; x += dx)
 points.Add(new PointF(x, TheFunction(x)));

This code uses TheFunction to make a List<PointF>. It then loops over X-coordinate values and
uses TheFunction to get the corresponding Y value for each X value. The code doesn’t know which
function TheFunction is at this point and it doesn’t care. It simply uses TheFunction to get the
appropriate Y coordinate value, makes a PointF representing the point, and saves it in the list.

After it has built the list, the program uses the list’s ToArray method to convert the list into an array
and then draws lines to connect the points. Download the example program to see the details.

To summarize, you can use a delegate much as you use any other type. First, use the delegate keyword
to define the delegate type. Next, create variables of the delegate type, and set them equal to methods
that match the delegate’s parameters and return type. Finally, write code to invoke the variable, which
calls the method referred to by the variable.

Delegate Details
Using a delegate is similar to using any other data type. The only confusing issue is that the values
being manipulated are references to methods rather than some more concrete data type such as an
int or string.

Addition and subtraction are even defined on delegate variables. Suppose Method1 and Method2 are
two methods that take no parameters and return void, and consider the following code:

Action del1 = Method1;
Action del2 = Method2;
Action del3 = del1 + del2 + del1;

This makes del3 a delegate variable that includes a series of other delegate variables. Now if you invoke
the del3 delegate variable, the program executes Method1 followed by Method2 followed by Method1.

www.EBooksWorld.ir

www.EBooksWorld.ir

212 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

You can even use subtraction to remove one of the delegates from the series. For example, if you execute
the statement del3 -= del1 and then invoke del3, the program executes Method1 and then Method2.

There are also a few issues that are unique to delegates. The following sections describe differences
between delegates that use static and instance methods, and the two concepts of covariance and
contravariance.

Static and Instance Methods
If you set a delegate variable equal to a static method, it’s clear what happens when you invoke the
variable’s method. There is only one method shared by all the instances of the class that defines it,
so that is the method that is called.

If you set a delegate variable equal to an instance method, the results is a bit more confusing. When
you invoke the variable’s method, it executes in the instance that you used to set the variable’s value.

CODE LAB Using static and instance delegates [StaticAndInstanceDelegates]

The StaticAndInstanceDelegates example program, which is available for download on the book’s web-
site, demonstrates setting delegate variables equal to static and instance methods. The following example
defines the following Person class:

class Person
{
 public string Name;

 // A method that returns a string.
 public delegate string GetStringDelegate();

 // A static method.
 public static string StaticName()
 {
 return "Static";
 }

 // Return this instance's Name.
 public string GetName()
 {
 return Name;
 }

 // Variables to hold GetStringDelegates.
 public GetStringDelegate StaticMethod;
 public GetStringDelegate InstanceMethod;
}

Code Lab Analysis

This class defines a public Name variable, so you can tell objects apart. It then declares the
GetStringDelegate delegate type to be a method that takes no parameters and returns a string.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 213

The class then defines two methods. The static method StaticName simply returns the string “Static.”
The GetName instance method returns the name of the instance on which it is running.

Finally, the class declares two variables of the GetStringDelegate type: StaticMethod and
InstanceMethod.

When the program starts, the following Load event handler executes to demonstrate the delegates.

private void Form1_Load(object sender, EventArgs e)
{
 // Make some Persons.
 Person alice = new Person() { Name = "Alice" };
 Person bob = new Person() { Name = "Bob" };

 // Make Alice's InstanceMethod variable refer to her own GetName method.
 alice.InstanceMethod = alice.GetName;
 alice.StaticMethod = Person.StaticName;

 // Make Bob's InstanceMethod variable refer to Alice's GetName method.
 bob.InstanceMethod = alice.GetName;
 bob.StaticMethod = Person.StaticName;

 // Demonstrate the methods.
 string result = "";
 result += "Alice's InstanceMethod returns: " + alice.InstanceMethod() +
 Environment.NewLine;
 result += "Bob's InstanceMethod returns: " + bob.InstanceMethod() +
 Environment.NewLine;
 result += "Alice's StaticMethod returns: " + alice.StaticMethod() +
 Environment.NewLine;
 result += "Bob's StaticMethod returns: " + bob.StaticMethod();
 resultsTextBox.Text = result;
 resultsTextBox.Select(0, 0);
}

This code creates two Person objects named alice and bob. It sets alice’s InstanceMethod variable
equal to alice’s GetName method and sets alice’s StaticMethod variable equal to the Person class’s
static StaticName method.

The code then sets bob’s GetName and StaticMethod variables equal to the same values.

Next, the code executes the methods stored in the delegate variables. The alice object’s InstanceMethod
variable invokes that object’s GetName method and returns “Alice.”

The bob object’s InstanceMethod variable also refers to alice’s instance of the GetName method, so it
also returns “Alice.”

Both objects’ StaticMethod variables refer to the class’s StaticName method, so both execute it,
returning the value “Static.”

Figure 6-2 shows the program’s output.

www.EBooksWorld.ir

www.EBooksWorld.ir

214 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

FIGURE 6-2: The StaticAndInstance-
Delegates example program
demonstrates delegates set to
static and instance methods .

Covariance and Contravariance
Covariance and contravariance give you some flexibility when assigning methods to delegate variables.
They basically let you treat the return type and parameters of a delegate polymorphically.

Covariance lets a method return a value from a subclass of the result expected by a delegate. For exam-
ple, suppose the Employee class is derived from the Person class and the ReturnPersonDelegate type
represents methods that return a Person object. Then you could set a ReturnPersonDelegate variable
equal to a method that returns an Employee because Employee is a subclass of Person. This makes
sense because the method should return a Person, and an Employee is a kind of Person. (A variable is
called covariant if it enables covariance.)

Contravariance lets a method take parameters that are from a superclass of the type expected by a
delegate. For example, suppose the EmployeeParameterDelegate type represents methods that take
an Employee object as a parameter. Then you could set an EmployeeParameterDelegate variable
equal to a method that takes a Person as a parameter because Person is a superclass of Employee.
When you invoke the delegate variable’s method, you will pass it an Employee (because the delegate
requires that the method take an Employee parameter) and an Employee is a kind of Person, so the
method can handle it. (A variable is called contravariant if it enables contravariance.)

CODE LAB Understanding covariance and contravariance
[CovarianceAndContravariance]

The CovarianceAndContravariance example program, which is available for download on the book’s
website, uses Person and Employee classes to demonstrate covariance and contravariance. The follow-
ing code shows how the program’s Load event handler demonstrates covariance and contravariance:

// A delegate that returns a Person.
private delegate Person ReturnPersonDelegate();
private ReturnPersonDelegate ReturnPersonMethod;

// A method that returns an Employee.
private Employee ReturnEmployee()

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 215

{
 return new Employee();
}

// A delegate that takes an Employee as a parameter.
private delegate void EmployeeParameterDelegate(Employee employee);
private EmployeeParameterDelegate EmployeeParameterMethod;

// A method that takes a Person as a parameter.
private void PersonParameter(Person person)
{
}

// Initialize delegate variables.
private void Form1_Load(object sender, EventArgs e)
{
 // Use covariance to set ReturnPersonMethod = ReturnEmployee.
 ReturnPersonMethod = ReturnEmployee;

 // Use contravariance to set EmployeeParameterMethod = PersonParameter.
 EmployeeParameterMethod = PersonParameter;
}

Code Lab Analysis

The program defines the ReturnPersonDelegate type to represent methods that take no parameters
and return a Person object. It then defines a variable of that type named ReturnPersonMethod.

The program then defines the ReturnEmployee method, which returns a new Employee object.

Next, the program defines the EmployeeParameterDelegate type to represent methods that
take an Employee as a parameter and return void. It then defines a variable of that type named
EmployeeParameterMethod.

The program then defines the PersonParameter method, which takes a Person as a parameter and
returns void.

The form’s Load event handler demonstrates covariance and contravariance. It sets ReturnPersonMethod
equal to ReturnEmployee. The method referred to by ReturnPersonMethod returns a Person. The
ReturnEmployee method returns an Employee, which is a kind of Person, so covariance allows this.

The Load event handler sets EmployeeParameterMethod equal to PersonParameter. The method
referred to by EmployeeParameterMethod takes an Employee as a parameter. The PersonParameter
method takes a Person as a parameter. Person is a superclass of Employee, so contravariance allows this.

Built-in Delegate Types
The .NET Framework defines two generic delegate types that you can use to avoid defining your
own delegates in many cases: Action and Func.

www.EBooksWorld.ir

www.EBooksWorld.ir

216 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Action Delegates
The generic Action delegate represents a method that returns void. Different versions of Action take
between 0 and 18 input parameters. The following code shows the definition of the Action delegate
that takes two parameters:

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2)

The keyword in within the generic parameter list indicates that the T1 and T2 type parameters are
contravariant.

Unless you need to define a delegate that takes more than 18 parameters, you can use the Action
instead of creating your own delegates. For example, the code in the previous section defined an
EmployeeParameterDelegate type that takes an Employee object as a parameter and returns void.
The following code shows two ways you could declare variables of that type:

// Method 1.
private delegate void EmployeeParameterDelegate(Employee employee);
private EmployeeParameterDelegate EmployeeParameterMethod1;

// Method 2.
private Action<Employee> EmployeeParameterMethod2;

This code’s first statement defines the EmployeeParameterDelegate type. The statement after the
first comment declares a variable of that type. The statement after the second comment declares a
comparable variable of type Action<Employee>.

Func Delegates
The generic Func delegate represents a method that returns a value. As is the case with Action, differ-
ent versions of Func take between 0 and 18 input parameters. The following code shows the definition
of the Func delegate that takes two parameters:

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2)

The three types defined by the generic delegate represent the types of the two parameters and the
return value.

The code in the previous section defined a ReturnPersonDelegate type that takes no parameters and
returns a Person object. The following code shows two ways you could declare variables of that type:

// Method 1.
private delegate Person ReturnPersonDelegate();
private ReturnPersonDelegate ReturnPersonMethod1;

// Method 2.
private Func<Person> ReturnPersonMethod2;

This code’s first statement defines the ReturnPersonDelegate type. The statement after the first
comment declares a variable of that type. The statement after the second comment declares a com-
parable variable of type Func<Person>.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 217

Anonymous Methods
An anonymous method is basically a method that doesn’t have a name. Instead of creating a method
as you usually do, you create a delegate that refers to the code that the method should contain. You
can then use that delegate as if it were a delegate variable holding a reference to the method.

The following shows the syntax for creating an anonymous method.

delegate([parameters]) { code... }

Here’s a breakdown of that code:

➤➤ delegate: The delegate keyword.

➤➤ parameters: Any parameters that you want the method to take.

➤➤ code: Whatever code you want the method to execute. The code can use a return statement
if the method should return some value.

The following code stores an anonymous method in a variable of a delegate type.

private Func<float, float> Function = delegate(float x) { return x * x; };

This code declares a variable named Function of the type defined by the built-in Func delegate that
takes a float as a parameter and that returns a float. It sets the variable Function equal to a method
that returns its parameter squared.

The program cannot refer to this method by name because it’s anonymous, but it can use the variable
Function to invoke the method.

BEST pRACTICES: For One-time Use

Usually anonymous methods are used when a program needs a relatively simple
piece of code in a single place. If the method is long or will be invoked in several
places, most programmers make it a normal named method.

The previous line of code shows how you can make a delegate variable refer to an anonymous
method. Two other places where programmers often use anonymous methods are defining simple
event handlers and executing simple tasks on separate threads.

The following code adds an event handler to a form’s Paint event:

private void Form1_Load(object sender, EventArgs e)
{
 this.Paint += delegate(object obj, PaintEventArgs args)
 {
 args.Graphics.DrawEllipse(Pens.Red, 10, 10, 200, 100);
 };
}

www.EBooksWorld.ir

www.EBooksWorld.ir

218 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

When the form receives a Paint event, the anonymous method draws a red ellipse.

The following code executes an anonymous method on a separate thread:

private void Form1_Load(object sender, EventArgs e)
{
 System.Threading.Thread thread = new System.Threading.Thread(
 delegate() { MessageBox.Show("Hello World"); }
);
 thread.Start();
}

This code creates a new Thread object, passing it a reference to the anonymous method. When the
thread starts, it executes that method, in this case displaying a message box.

Lambda Expressions
Anonymous methods give you a shortcut for creating a short method that will be used in only one
place. In case that isn’t short enough, lambda methods provide a shorthand notation for creating
those shortcuts. A lambda expression uses a concise syntax to create an anonymous method.

NOTE The examples here store lambda expressions in delegate variables because
they are easy to describe that way. In many applications, lambda expressions are
added to an event’s event handler list, passed into methods that take delegates as
parameters, or are used in LINQ expressions. Chapter 10, “Working with Language
Integrated Query (LINQ),” discusses LINQ in detail.

Lambda expressions come in a few formats and several variations. To make discussing them a little
easier, the following sections group lambda expressions into three categories: expression lambdas,
statement lambdas, and async lambdas. Each of these has several variations, which are covered on
the next section about expression lambdas.

Expression Lambdas
The following text shows an expression lambda’s simplest form:

() => expression;

Here, expression is a single C# statement that should be executed by the delegate. The fact that this
lambda expression has a single expression on the right side is what makes it an expression lambda.

The empty parentheses represent the empty parameter list taken by the anonymous method. The =>
characters indicate that this is a lambda statement.

The following code snippet shows how you could use this kind of lambda expression:

Action note;
note = () => MessageBox.Show("Hi");
note();

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 219

BREAKpOINTS AND ANONYMOUS NAMES

You can set a breakpoint inside a lambda expression and execution stops at that
point when the lambda expression’s anonymous method runs. This can be rather
confusing, however, so if you expect to spend a lot of time debugging a piece of
code, you might want to use a named method instead.

If you pause execution inside an anonymous method, the Call Stack window enables
you to discover its name. The following code shows the ungainly name that was given
to one anonymous method that took a string as a parameter. (It appears on one line in
the Call Stack window but is broken here to fit the page better.)

AnonymousMethods.exe!AnonymousMethods.
 Form1..ctor.AnonymousMethod__0(string m)

This code’s first statement creates a variable named note of type Action, which the section “Built-in
Delegate Types” earlier in this chapter explained is a delegate type representing methods that take
no parameters and that return void.

The second statement sets note equal to the anonymous method created by a lambda expression.
This expression executes the single statement MessageBox.Show("Hi").

The code’s final statement invokes the anonymous method referred to by the note variable.

BEST pRACTICES: Declare and Initialize

In this example, you could combine the first two lines in a single statement as in
the following:

Action note = () => MessageBox.Show("Hi");

The previous example kept the lines separate to make them a little easier to read.

The previous example demonstrates the simplest kind of lambda expression, which takes no
parameters and executes a single statement. You can also add parameters to lambda expressions
as in the following example:

Action<string> note = (message) => MessageBox.Show(message);

This example creates an anonymous method that takes a string as a parameter and then displays
that string in a message box.

www.EBooksWorld.ir

www.EBooksWorld.ir

220 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

NOTE If a lambda expression has exactly one parameter, you can omit the
parentheses around it as in the following code.

Action<string> note = message => MessageBox.Show(message);

Including the parentheses makes the code slightly more readable, and lambda
expressions are confusing enough already, so many programmers include them
even though they are not required.

Usually, Visual Studio can infer the data type of a lambda expression’s parameters. In the previous
code, for example, the note variable is declared to be of type Action<string>, so the parameter
must be a string.

If Visual Studio cannot infer the parameters’ data types, or if you want to make the code more
explicit, you can include the parameters’ data types as in the following version:

Action<string> note = (string message) => MessageBox.Show(message);

You can add as many parameters as you like to a lambda expression. The following example uses a
lambda expression that takes four parameters:

Action<string, string, MessageBoxButtons, MessageBoxIcon> note;

note = (message, caption, buttons, icon) =>
 MessageBox.Show(message, caption, buttons, icon);

note("Invalid input", "Alert", MessageBoxButtons.OK,
 MessageBoxIcon.Asterisk);

In this code, the delegate type takes four parameters: two strings, a
MessageBoxButtons enum value, and a MessageBoxIcon enum value.

This lambda expression uses the parameters to display a message box with a
message and caption, displaying the indicated buttons and icon.

The last line of code displays a message box with message parameter
"Invalid input" with caption parameter "Alert". The message box
displays the OK button and the asterisk icon, as shown in Figure 6-3.

In the examples shown up to now, the lambda expressions have
returned void, but there’s no reason why a lambda expression cannot
return a value. An expression lambda can return a value by simply
creating that value.

The following code shows a lambda expression that takes a float as a parameter and returns that
value squared.

Func<float, float> square = (float x) => x * x;
float y = square(13);

The part of the expression on the right, x * x, creates the return value.

FIGURE 6-3: Lambda
expressions can
take any number of
parameters .

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Delegates ❘ 221

NOTE The fact that this type of the lambda expression returns the value defined by
the statement on the right is what gives this form the name “expression lambda.”

For a more complicated example, the GraphFunction program shown in Figure 6-1 uses delegates
to graph one of three functions. The following code shows a key switch statement that sets the
delegate variable TheFunction equal to the function that the program should graph:

switch (equationComboBox.SelectedIndex)
{
 case 0:
 TheFunction = Function1;
 break;
 case 1:
 TheFunction = Function2;
 break;
 case 2:
 TheFunction = Function3;
 break;
}

Instead of setting TheFunction equal to a named method, the code could set it equal to an anony-
mous method created by a lambda expression. The following code shows the first case statement
rewritten to use a lambda expression:

case 0:
 TheFunction = x => (float)(12 * Math.Sin(3 * x) / (1 + Math.Abs(x)));
 break;

This expression is about as complicated as you should probably get with an expression lambda. If it
were much more complicated, reading it would be confusing.

Statement lambdas provide one way to make complicated lambda expressions a bit easier to read.

Statement Lambdas
A statement lambda is similar to an expression lambda except it encloses its code in braces. That
makes it a bit easier to separate complicated lambda expressions from the code around them. It also
enables you to include more than one statement in an anonymous method.

In addition to the braces, the other way in which statement lambdas differ from expression lambdas
is that a statement lambda must use a return statement to return a value.

Figure 6-4 shows the AnonymousGraph example program, which is available for download on the
book’s website, graphing the function Ax6 + Bx5 + Cx4 + Dx3 + Ex2 + Fx + G for constants A, B, C,
D, E, F, and G. (This program is similar to the GraphFunction example program described earlier
except it uses anonymous methods instead of named methods for its functions.)

www.EBooksWorld.ir

www.EBooksWorld.ir

222 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

FIGURE 6-4: The equation for the
GraphFunction program’s third
function shown here is easier to
read in a statement lambda than
in an expression lambda .

The function graphed in Figure 6-4 is a simple polynomial but it’s long and would be messy if written
out in an expression lambda. The following code shows how the program uses a statement lambda to
save a reference to an anonymous method that evaluates this function:

TheFunction = (float x) =>
 {
 const float A = -0.0003f;
 const float B = -0.0024f;
 const float C = 0.02f;
 const float D = 0.09f;
 const float E = -0.5f;
 const float F = 0.3f;
 const float G = 3f;
 return (((((A * x + B) * x + C) * x + D) * x + E) * x + F) * x + G;
 };

Note the use of the braces and the return statement.

Async Lambdas
Chapter 7, “Multithreading and Asynchronous Processing,” explains asynchronous processing and
multithreading, but this topic is worth discussing briefly here in the context of lambda expressions.

Basically, you can use the keyword async to indicate that a method can be run asynchronously. You
can then use the await keyword to make a piece of code call an asynchronous method and wait for
it to return. Usually an asynchronous method is named, but you can use the async keyword to make
lambda expressions asynchronous, too.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 223

CODE LAB Asynchronous lambdas [AsyncLambda]

The AsyncLambda example program, which is available for download on the book’s website, uses the
following code to demonstrate async lambdas.

// The number of times we have run DoSomethingAsync.
private int Trials = 0;

// Create an event handler for the button.
private void Form1_Load(object sender, EventArgs e)
{
 runAsyncButton.Click += async (button, buttonArgs) =>
 {
 int trial = ++Trials;
 statusLabel.Text = "Running trial " + trial.ToString() + "...";
 await DoSomethingAsync();
 statusLabel.Text = "Done with trial " + trial.ToString();
 };
}

// Do something time consuming.
async Task DoSomethingAsync()
{
 // In this example, just waste some time.
 await Task.Delay(3000);
}

Code Lab Analysis

This code starts by defining the variable Trials to keep track of the number of times the code executes.

When the form loads, its Load event handler installs an event handler for Run Async button’s Click event.
The event handler is defined by a statement lambda that begins with the keyword async to indicate that
the anonymous method runs asynchronously.

The event handler’s code increments Trials, displays a status message, and then calls
the DoSomethingAsync method to perform some task. It uses the await keyword when it
calls DoSomethingAsync, so the event handler’s code blocks at that point until the call to
DoSomethingAsync returns. Then the event handler continues to display another status message.

The example’s DoSomethingAsync method simply pauses for 3 seconds. Note that the method’s declara-
tion begins with the async keyword, indicating that it also runs asynchronously. (In a real application,
the DoSomethingAsync method would do something more useful, such as downloading a file from the
Internet or generating a time-consuming report.)

WORKING WITh EVENTS

Events enable objects to communicate with a program to tell it when something interesting has hap-
pened. For example, an e-mail object could raise an event to tell the program that it has received
a new message; a file transfer object could raise an event to tell the program that a download has

www.EBooksWorld.ir

www.EBooksWorld.ir

224 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

completed, and a button object could raise an event to tell the program that the user clicked the but-
ton’s graphical representation on the screen.

The object that raises an event is called the event’s publisher. The class that catches an event is called
its subscriber. Note that a given event may have many subscribers or no subscribers.

The following sections describe the code that is necessary to publish and subscribe to events.

publishing Events
Before an object can raise an event, it must declare the event so that subscribers know what the
event is called and what parameters it includes. The following shows the basic syntax for declaring
an event:

accessibility event delegate EventName;

Here’s a breakdown of that code:

➤➤ accessibility : The event’s accessibility as in public or private.

➤➤ event: The event keyword.

➤➤ delegate: A delegate type that defines the kind of method that can act as an event handler
for the event.

➤➤ EventName : The name that the class is giving the event.

For example, the BankAccount class might use the following code to define the Overdrawn event:

public delegate void OverdrawnEventHandler();
public event OverdrawnEventHandler Overdrawn;

The first line declares the OverdrawnEventHandler delegate, which represents methods that take no
parameters and that return void.

The second line declares an event named Overdrawn that has the type OverdrawnEventHandler.
That means subscribers must use a method that matches the OverdrawnEventHandler delegate to
catch the event.

Later a BankAccount object can raise the event as necessary. For example, consider the following
simple but complete BankAccount class:

class BankAccount
{
 public delegate void OverdrawnEventHandler();
 public event OverdrawnEventHandler Overdrawn;

 // The account balance.
 public decimal Balance { get; set; }

 // Add money to the account.
 public void Credit(decimal amount)
 {
 Balance += amount;

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 225

 }

 // Remove money from the account.
 public void Debit(decimal amount)
 {
 // See if there is this much money in the account.
 if (Balance >= amount)
 {
 // Remove the money.
 Balance -= amount;
 }
 else
 {
 // Raise the Overdrawn event.
 if (Overdrawn != null) Overdrawn();
 }
 }
}

The class defines the OverdrawnEventHandler delegate and declares the Overdrawn event to be of
that type. It then defines the auto-implemented Balance property.

Next, the class defines two methods, Credit and Debit, to add and remove money from the account.
The Credit method simply adds an amount to the balance.

The Debit method first checks the account’s Balance to see if there is enough money in the account.
If Balance >= amount, the method simply removes the money from the account.

If there is not enough money in the account, the method raises the Overdrawn event. To raise the
event, the code first checks whether the event has any subscribers. If the event has no subscribers,
then the “event” appears to be null to the code. If the event isn’t null, the code invokes it to notify
its subscribers.

Predefined Event Types
The previous example used the following code to define an event delegate and create an event of
that type:

public delegate void OverdrawnEventHandler();
public event OverdrawnEventHandler Overdrawn;

This delegate represents methods that take no parameters and that return void. The section “Built-in
Delegate Types” earlier in this chapter described that the predefined Action delegate represents the
same kind of method. That means you can simplify the previous code to the following:

public event Action Overdrawn;

Event Best Practices
Microsoft recommends that all events provide two parameters: the object that is raising the event
and another object that gives arguments that are relevant to the event. The second object should be
of a class derived from the EventArgs class.

www.EBooksWorld.ir

www.EBooksWorld.ir

226 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

For example, if a program uses several of the BankAccount objects described in the previous section,
then the first parameter to the event handler can help the program figure out which account raised
the Overdrawn event.

The fact that the event was raised tells the program that the account doesn’t hold enough money to
perform a debit, but it doesn’t tell the program how large the debit is. The program can examine the
BankAccount object to figure out the current balance, but it can’t figure out how big the debit was.
You can use the second parameter to the event handler to give the program that information.

To pass the information in the event handler’s second parameter, derive a class from the EventArgs
class to hold the information. By convention, this type’s name should begin with the name of the
event and end in EventArgs.

For example, the following code shows an OverdrawnEventArgs class that can pass information to
the Overdrawn event handler:

class OverdrawnEventArgs : EventArgs
{
 public decimal CurrentBalance, DebitAmount;

 public OverdrawnEventArgs(decimal currentBalance, decimal debitAmount)
 {
 CurrentBalance = currentBalance;
 DebitAmount = debitAmount;
 }
}

This class holds a BankAccount’s current balance and a debit amount. It provides a constructor to
make initializing a new object a bit easier.

Now the program can pass the Overdrawn event the object raising the event and an
OverdrawnEventArgs object to give the program additional information about the event.

Because the event handler now takes two parameters, you need to revise the event declaration, so the
delegate it uses reflects those parameters. You could create a new delegate but the .NET Framework
defines a generic EventHandler delegate that makes this easier. Simply use the EventHandler type
and include the data type of the second parameter, OverdrawnEventArgs in this example, as the
generic delegate’s type parameter.

The following code shows the revised event declaration:

public event EventHandler<OverdrawnEventArgs> Overdrawn;

This indicates that the Overdrawn event takes two parameters. The first is assumed to be the object
that is raising the event, and the second is an object of type OverdrawnEventArgs.

The following code shows the Debit method revised to use the new event type:

// Remove money from the account.
public void Debit(decimal amount)
{
 // See if there is this much money in the account.
 if (Balance >= amount)

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 227

 {
 // Remove the money.
 Balance -= amount;
 }
 else
 {
 // Raise the Overdrawn event.
 if (Overdrawn != null)
 Overdrawn(this, new OverdrawnEventArgs(Balance, amount));
 }
}

When the code raises the Overdrawn event, it passes the event the arguments this as the object
raising the event and a new OverdrawnEventArgs object giving further information.

The BankAccount example program, which is available for download on the book’s website, dem-
onstrates this version of the BankAccount class.

Event Inheritance
While building Windows Forms classes and classes in the.NET Framework, Microsoft found that
simple events such as those described so far don’t work well with derived classes. The problem is
that an event can be raised only from within the class that declared it, so a subclass cannot raise
the base class’s events.

The solution that Microsoft uses in the .NET Framework and many other class hierarchies is to give
the base class a protected method that raises the event. Then a derived class can call that method to
raise the event. By convention, this method’s name should begin with On and end with the name of
the event, as in OnOverdrawn.

For example, consider the BankAccount class described in the previous section. Its Debit method
raises the Overdrawn event if the program tries to remove more money than the account holds.
To follow the new event pattern, the class should move the code that raises the event into a new
OnOverdrawn method and then call it from the Debit method, as shown in the following code:

// Raise the Overdrawn event.
protected virtual void OnOverdrawn(OverdrawnEventArgs args)
{
 if (Overdrawn != null) Overdrawn(this, args);
}

// Remove money from the account.
public void Debit(decimal amount)
{
 // See if there is this much money in the account.
 if (Balance >= amount)
 {
 // Remove the money.
 Balance -= amount;
 }
 else
 {
 // Raise the Overdrawn event.

www.EBooksWorld.ir

www.EBooksWorld.ir

228 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 OnOverdrawn(new OverdrawnEventArgs(Balance, amount));
 }
}

Now suppose you want to add a new MoneyMarketAccount class derived from the BankAccount class.
When its code needs to raise the Overdrawn event, it invokes the base class’s OnOverdrawn method.

The following code shows the MoneyMarketAccount class:

class MoneyMarketAccount : BankAccount
{
 public void DebitFee(decimal amount)
 {
 // See if there is this much money in the account.
 if (Balance >= amount)
 {
 // Remove the money.
 Balance -= amount;
 }
 else
 {
 // Raise the Overdrawn event.
 OnOverdrawn(new OverdrawnEventArgs(Balance, amount));
 }
 }
}

The new DebitFee method subtracts a fee from the account. If the balance is smaller than the amount
to be subtracted, the code calls the base class’s OnOverdrawn method to raise the Overdrawn event.

REAL-WORLD CASE SCNEARIO Overdraft account

Make an OverdraftAccount class that inherits from the
BankAccount class. Give this class a SavingsAccount property
that is a reference to another BankAccount object.

When the program tries to remove money from an
OverdraftAccount object, if the object doesn’t have a large
enough balance, it can take additional money from the
SavingsAccount.

If the OverdraftAccount and its SavingsAccount don’t
hold enough money between them for a debit, raise the
OverdraftAccount object’s Overdrawn event.

Build an interface similar to the one shown in Figure 6-5 so that
you can test the new class.

Be sure to catch the Overdrawn events for both
the OverdraftAccount object and its associated
SavingsAccount object.

FIGURE 6-5: An OverdraftAccount
object can remove money from its
associated SavingsAccount object
if necessary .

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 229

Solution

The following code shows the OverdraftAccount class:

class OverdraftAccount : BankAccount
{
 // The associated savings account.
 public BankAccount SavingsAccount { get; set; }

 // Remove money from the account.
 public new void Debit(decimal amount)
 {
 // See if there is this much money in the account.
 if (Balance + SavingsAccount.Balance < amount)
 {
 // Raise the Overdrawn event.
 OnOverdrawn(new OverdrawnEventArgs(Balance, amount));
 }
 else
 {
 // Remove the money we can from the overdraft account.
 if (Balance >= amount) Balance -= amount;
 else
 {
 amount -= Balance;
 Balance = 0m;

 // If there's still an unpaid amount, take it from savings.
 if (amount > 0m) SavingsAccount.Balance -= amount;
 }
 }
 }
}

The class inherits from the BankAccount class. It defines the new SavingsAccount property.

The new class can inherit the Balance property and the Credit method from the BankAccount
class, but it needs to replace the Debit method with a new version so that it can take money from the
SavingsAccount object if necessary. The OverdraftAccount’s Debit method is declared with the new
keyword to indicate that this version should replace the one defined by the BankAccount class.

The new version checks the money available in the overdraft account and its savings account. If there
isn’t enough money in both accounts to cover the debit, the code calls the inherited OnOverdrawn
method to raise the Overdrawn event.

If there is enough money in the overdraft account to cover the debit, the code subtracts the money from
that account.

If the overdraft account doesn’t hold enough money to cover the debit, then the code subtracts what it
can from that account and subtracts the rest from the associated savings account.

www.EBooksWorld.ir

www.EBooksWorld.ir

230 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Subscribing and Unsubscribing to Events
There are several ways you can subscribe and unsubscribe to events depending on whether you
want to do so in code or with a form or window designer. The following sections describe those
two approaches.

Using Code to Subscribe to an Event
You can use code similar to the following to subscribe to an event:

processOrderButton.Click += processOrderButton_Click;

This adds the method named processOrderButton_Click as an event handler for the
processOrderButton control’s Click event.

NOTE The following code shows an alternative syntax for subscribing to
an event:

processOrderButton.Click +=
 new System.EventHandler(processOrderButton_Click);

This is an older syntax but it is still supported. You probably shouldn’t use it in
your code because it makes your code longer and more cluttered, but you should
understand it if you see it.

The following code shows an empty processOrderButton_Click event handler:

void processOrderButton_Click(object sender, EventArgs e)
{
}

The parameter list used by the event handler must match the parameters required by the event. In this
case, the event handler must take two parameters, a nonspecific object and an EventArgs object.

You can write an event handler, or you can let Visual Studio’s code editor generate one for you.
If you enter the text processOrderButton.Click +=, the code editor displays the message shown
in Figure 6-6. (This message is for a Windows Forms project, but you get a similar message if you
write a XAML application.)

FIGURE 6-6: Visual Studio’s code editor can insert the
default event handler name for you .

If you press the Tab key, the code editor inserts the default name for the button, which
consists of the button’s name followed by an underscore and then the event’s name, as in
processOrderButton_Click.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 231

At that point, if you have not already defined the event handler, the code editor displays the mes-
sage shown in Figure 6-7. If you press the Tab key, the code editor creates an event handler similar
to the following:

FIGURE 6-7: Visual Studio’s code editor can generate an event handler
for you .

void processOrderButton_Click(object sender, EventArgs e)
{
 throw new NotImplementedException();
}

This initial event handler simply throws an exception to remind you to implement it later. You
should delete that statement and insert whatever code you need the event handler to execute.

The following code shows how a program can unsubscribe from an event:

processOrderButton.Click -= processOrderButton_Click;

COMMON MISTAKES: Oversubscribed

If you subscribe to an event more than once, the event handler is called more than
once. For example, if the program executes the statement processOrderButton
.Click += processOrderButton_Click three times, when the user clicks the but-
ton, the processOrderButton_Click event handler executes three times.

Each time you unsubscribe from an event, the event handler is removed from
the list of subscribers once. For example, if the program executes the statement
processOrderButton.Click += processOrderButton_Click three times and
the statement processOrderButton.Click -= processOrderButton_Click
once, if the user clicks the button, the event handler executes two times.

If you unsubscribe an event handler that is not subscribed for an event, nothing
happens and there is no error. For example, if a program executes the statement
processOrderButton.Click -= processOrderButton_Click but that event han-
dler has not been subscribed to the event, the program continues running normally.

Using Designer to Subscribe to an Event
If you write a Windows Forms application and the event publisher is a control or component that
you have added to a form, you can use the form designer to attach an event handler to the event.
Open the form in the form designer and select a control. In the Properties window, click the Events
button (which looks like a lightning bolt) to see the control’s events. Figure 6-8 shows the Properties
window displaying a Form object’s events.

www.EBooksWorld.ir

www.EBooksWorld.ir

232 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

FIGURE 6-8: Visual Studio’s Properties
window enables you to select or create
event handlers .

To subscribe an existing event handler to an event, click the event in the Properties window, open
the drop-down to its right, and select the event handler.

To create a new empty event handler for an event, double-click the event in the Properties window.

To use the Properties window to unsubscribe from an event, right-click the event’s name and
select Reset.

The process for subscribing and unsubscribing events by using the Window Designer in a XAML
application is similar to the process for a Windows Forms application. Some of the details are
slightly different but the basic approach is the same.

One difference between Windows Forms and XAML applications is where the code is placed to sub-
scribe the event. In a Windows Forms application, that code is normal C# code placed in the form’s
designer file, for example, Form1.Designer.cs.

In a XAML application, a Click element is inserted into the XAML code file. The following
code snippet shows the definition of a button in a XAML file. The Click element subscribes the
processOrderButton_Click event handler to the button’s Click event:

<Button x:Name="processOrderButton" Content="Process Order"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" Click="processOrderButton_Click" />

The previous sections dealt with events. Events trigger some sort of action and, no matter how care-
fully you write an application, an action can lead to errors. The sections that follow explain how
you can use exception handling to catch errors so the program can take reasonable action instead of
crashing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Events ❘ 233

COMMON MISTAKES: Undersubscribed

If you delete an event handler that was subscribed to an event by the Properties win-
dow, Visual Studio complains loudly. It won’t let you run the application, and if you
try to open the form in the form designer, you see an error similar to the one shown
in Figure 6-9.

FIGURE 6-9: The form designer won’t display a form if a subscribed event
handler is missing .

To fix this problem, click the link on the form designer or double-click the error
message in the Errors window to find the incorrect line in the designer’s code file. If
the form’s name is Form1, this file is called Form1.Designer.cs.

The line causing the problem should be highlighted in the form designer’s code, as
shown in Figure 6-10. Delete the line that subscribes the missing event handler, and
the form should be ready to run again.

FIGURE 6-10: Delete the line that subscribes the missing event handler
to fix the form .

www.EBooksWorld.ir

www.EBooksWorld.ir

234 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

EXCEpTION hANDLING

No matter how well you design an application, problems are still inevitable. Users will enter invalid
values, indispensable files will be deleted, and critical network connections will fail. To avoid and
recover from these sorts of problems, a program must perform error checking and exception handling.

Error Checking and Exception handling
Error checking is the process of anticipating errors, checking to see if they will occur, and working
around them. For example, if the user must enter an integer in a text box, eventually someone will
enter a non-numeric value. If the program tries to parse the value as if it were an integer, it will crash.

Instead of crashing, the program should validate the text to see if it makes sense before trying to
parse it. The int.TryParse method does both, attempting to parse a text value and returning an
error indicator if it fails.

ADVICE FROM ThE EXpERTS: Make Mistakes Impossible

You can reduce the need for this kind of error checking by removing opportunities for
the user to enter invalid values. For example, if the program uses a NumericUpDown or
TrackBar control instead of a TextBox, the user cannot enter an invalid integer such
as “ten” or “1.2.”

Similarly, before opening a file or downloading a file across a network, the program can verify that
the file exists and the network connection is present. If the program detects this kind of error, it can
tell the user and cancel whatever operation it was attempting.

In contrast to error checking, exception handling is the process of protecting the application when
an unexpected error occurs. For example, suppose the program starts downloading a file over a
network and then the network disappears. There is no way the program can anticipate this problem
because the network was present when the download started.

Even if you validate every value entered by the user and check every possible condition, unexpected
exceptions can arise. A file may become corrupted; a network connection that was present may fail;
the system may run out of memory; or a code library that you are using and over which you have no
control may throw an exception.

If you can, it is generally better to proactively look for trouble before it occurs, rather than react to
it after it happens. For example, it is better to check whether a file exists before opening it, rather
than just trying to open it and handling an error if the file isn’t there.

If you can spot a problem before it occurs, you usually have a better idea of what the problem is, so
you can be more specific when you tell the user what’s wrong. If you look for a file and it’s missing,
you can tell the user so. If you try to open a file and fail, you don’t know whether the file is missing,
corrupted, locked by another process, or unavailable for some other reason.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 235

Generating exception information also adds some extra overhead to the program, so you’ll usually
get better performance if you anticipate errors before they happen.

Even if you validate user input, look for needed files and network connections, and check for every
other error you can think of, the program may still encounter unexpected situations. In those cases,
a program can protect itself by using try-catch-finally blocks.

try-catch-finally Blocks
The try-catch-finally block allows a program to catch unexpected errors and handle them. This
block actually consists of three sections: a try section, one or more catch sections, and a finally
section. The try section is required, and you must include at least one catch or finally section.
Although, you don’t need to include both, and you don’t need to include any code inside the catch
or finally section.

The try section contains the statements that might throw an exception. You can include as many
statements as you like in this section. You can even nest other try-catch-finally sequences inside
a try section to catch errors without leaving the original try section.

The following code shows the syntax for a try section:

try
{
 // Statements that might throw an exception.
 ...
}

The following shows the syntax for a catch section:

catch [(ExceptionType [variable])]
{
 Statements to execute...
}

If an exception occurs in the try section, the program looks through its list of catch sections in the
order in which they appear in the code. The program compares the exception that occurred to each
catch section’s ExceptionType until it finds an exception that matches.

The exception matches if it can be considered to be of the ExceptionType class. For example, the
DivideByZeroException class is derived from the ArithmeticException class, which is derived
from the SystemException class, which is derived from the Exception class. If a program throws
a DivideByZeroException, then a catch section could match the exception with any of the classes
DivideByZeroException, ArithmeticException, SystemException, or Exception. All exception
classes inherit directly or indirectly from Exception, so a catch section where ExceptionType is
Exception will catch any exception.

When it finds a matching ExceptionType, the program executes that catch section’s statements and
then skips any remaining catch sections.

www.EBooksWorld.ir

www.EBooksWorld.ir

236 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

ADVICE FROM ThE EXpERTS: Sort Exceptions

Because the program considers catch sections in the order in which they appear in
the code, be sure to list them in order from most specific (or most derived) to least spe-
cific. For example, the FormatException class inherits from the SystemException
class, which in turn inherits from the Exception class. Consider the following list of
catch statements:

try
{
 Statements...
}
catch (SystemException ex)
{
 Statements...
}
catch (FormatException ex)
{
 Statements...
}
catch (Exception ex)
{
 Statements...
}

The FormatException class is more specific than the SystemException class, but
its catch section comes after the one for SystemException. If a FormatException
does occur, the first catch section will handle it because a FormatException is a
type of SystemException. That means the second catch section will never execute.

The final catch section handles the Exception class, which is the ancestor of all
exception classes. If any exception gets past the other catch sections, the final catch
section will handle it.

If you omit the ExceptionType, the catch section catches every kind of exception. For example,
consider the following code:

int quantity;
try
{
 quantity = int.Parse(quantityTextBox.Text);
}
catch
{
 MessageBox.Show("The quantity must be an integer.");
}

This code tries to parse the value in a TextBox. If the value isn’t an integer, the int.Parse statement
throws an exception, and the catch section displays a message box. In this case only one message is
appropriate no matter what exception was thrown.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 237

If you include the ExceptionType, then variable is a variable of the class ExceptionType that
gives information about the exception. All exception classes provide a Message property that gives
textual information about the exception. Sometimes you can display that message to the user, but
often the message is technical enough that it might be confusing to users.

If you include the ExceptionType but omit variable, then the catch section executes for matching
exception types, but the code doesn’t have a variable that can give information about the exception.

The finally section executes its statements when the try and catch sections are finished no matter
how the code leaves those sections. The finally section always executes, even if the program leaves
the try and catch sections because of any of the following reasons:

➤➤ The code in the try section executes successfully and no catch sections execute.

➤➤ The code in the try section throws an exception and a catch section handles it.

➤➤ The code in the try section throws an exception and that exception is not caught by any
catch section.

➤➤ The code in the try section uses a return statement to exit the method.

➤➤ The code in a catch section uses a return statement to exit the method.

➤➤ The code in a catch section throws an exception.

USING ThE USING STATEMENT

The using statement actually behaves as a special-purpose try-finally sequence
that calls the object’s Dispose method in its finally section. For example, consider
the following code:

using (Pen pen = new Pen(Color.Red, 10))
{
 // Use the pen to draw...
}

This is roughly equivalent to the following try-finally sequence:

Pen pen;
try
{
 pen = new Pen(Color.Red, 10);
 // Use the pen to draw...
}
finally
{
 if (pen != null) pen.Dispose();
}

This means the program calls the pen’s Dispose method no matter how it leaves
the using block. For example, if the statements within the block execute a return
statement or throw an exception, the Dispose method is still called.

www.EBooksWorld.ir

www.EBooksWorld.ir

238 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Note that only the code in the try section of a try-catch-finally block is protected by the block.
If an exception occurs inside a catch or finally section, the exception is not caught by the block.

You can nest another try-catch-finally block inside a catch or finally section to protect the pro-
gram from errors in those places. That can make the code rather cluttered, however, so in some cases it
may be better to move the risky code into another method that includes its own error handling.

EXpECTED EXCEpTIONS

One common method for building catch lists for try-catch-finally blocks is to
start with a series of catch statements that handle the exceptions you expect. Add a
final catch section that looks for the Exception class, and set a breakpoint in that
section. Now test the program thoroughly, causing as many exceptions as you can.
Each time the code stops in the final catch section, add a specific catch section to
the block. After you test the code thoroughly, you should look for a fairly compre-
hensive list of exceptions.

Leave the final catch block in the code, however, just in case you missed something.

Unhandled Exceptions
An unhandled exception occurs when an exception is thrown and the program is not protected by a
try-catch-finally block. This can happen in two ways. First, the statement that throws the error
might not be inside a try section of a try-catch-finally block. Second, the statement might be inside
a try section, but none of the try-catch-finally block’s catch sections may match the exception.

When a program encounters an unhandled exception, control moves up the call stack to the method
that called the code that threw the exception. If that method is executing inside the try section of
a try-catch-finally block, its catch sections try to match the exception. If the calling method
is not inside the try section of a try-catch-finally block or if no catch section can match the
exception, control again moves up the call stack to the method that called this method.

Control continues moving up the call stack until one of two things happens. First, the program may
find a method with an active try-catch-finally block that has a catch section that can handle
the exception. In that case, the catch section executes its code, and the program continues running
from that point.

The second thing that can happen is control pops off the top of the stack and the program crashes. If
you are running inside the Visual Studio environment, the program stops at the statement that caused
the unhandled exception, and you see an error message similar to the one shown in Figure 6-11.

If a program is running outside of Visual Studio and encounters an unhandled exception, control
unwinds up the call stack and a message similar to the one shown in Figure 6-12 appears.

Normally a program spends most of its time doing nothing while it waits for an event to occur.
When an event occurs, for example if the user clicks a button or selects a menu item, the program
takes some action. If that action causes an unhandled exception, the user sees the message shown in
Figure 6-12.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 239

FIGURE 6-11: If a program running inside Visual Studio encounters
an unhandled exception, execution stops at the statement that
threw the exception and this message box appears .

FIGURE 6-12: If a program running outside of Visual
Studio encounters an unhandled exception, this
message box appears .

If the user clicks Quit, the program ends. If the user clicks Continue, the program attempts to continue
running. Normally that means it goes back to doing nothing while it waits for another event to occur.

ADVICE FROM ThE EXpERTS: Bulletproofing

To protect the program from any possible exception, you need to put all the code
inside every event handler inside a try-catch-finally block. In practice many
programmers protect only code that they think might throw exceptions, regard
other code as “safe,” and rely on testing to flush out any unexpected exceptions
that might occur.

www.EBooksWorld.ir

www.EBooksWorld.ir

240 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Common Exception Types
The .NET Framework defines hundreds of exception classes to represent different error conditions.
Figure 6-13 shows the hierarchy of some of the most common and useful exception classes defined
in the System namespace. Table 6-2 describes the classes.

Object

System.Exception

SystemException

ArgumentException

ArgumentNullException

ArgumentOutOfRangeException

ArithmeticException

DivideByZeroException

OverflowException

NotFiniteNumberException

ArrayTypeMismatchException

FormatException

IndexOutOfRangeException

InvalidCastException

InvalidOperationException

IO.IOException

IO.DirectoryNotFoundException

IO.DriveNotFoundException

IO.EndOfStreamException

IO.FileLoadException

IO.FileNotFoundException

IO.PathTooLongException

NotImplementedException

NotSupportedException

NullReferenceException

OutOfMemoryException

RankException

Security.SecurityException

Security.VerificationException

UnauthorizedAccessException

FIGURE 6-13: All of the exception classes in this hierarchy are descendants
of the System .Exception class .

TABLE 6-2: Useful Exception Classes

CLASS DESCRIpTION

Object This class is the ancestor of all classes .

System.Exception This is the ancestor class of all exception classes . It repre-
sents errors at a high level .

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 241

CLASS DESCRIpTION

SystemException This is the base class for exceptions defined in the System
namespace .

ArgumentException One of a method’s arguments is invalid .

ArgumentNullException An argument was null but null is not allowed .

ArgumentOutOfRangeException An argument was outside of the allowed range of values .

ArithmeticException An arithmetic, casting, or conversion error occurred .

DivideByZeroException The program tried to divide an integral or decimal value
by 0 . This exception is not thrown for floating point opera-
tions . If a program divides a floating point value by zero,
the result is the special value Infinity .

OverflowException A checked arithmetic, casting, or conversion operation
results in an overflow .

NotFiniteNumberException A floating point operation gave a result that was infinity,
negative infinity, or NaN (not a number) .

ArrayTypeMismatchException The program tried to store the wrong kind of item in an
array .

FormatException An argument has an incorrect format .

IndexOutOfRangeException The program tried to access an array element with an
index that is outside of the array .

InvalidCastException A cast or conversion was invalid .

InvalidOperationException A method call was invalid for an object’s current state .

IO.IOException An input/output error occurred .

IO.DirectoryNotFoundException A part of a file or directory path was not found .

IO.DriveNotFoundException The program tried to access a drive or network share that
is not available .

IO.EndOfStreamException The program tried to read past the end of a stream .

IO.FileLoadException The program tried to load an assembly that is present but
could not be loaded .

IO.FileNotFoundException The program tried to access a file that could not be found .

IO.PathTooLongException The program tried to use a path or filename that is
too long .

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

242 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

CLASS DESCRIpTION

NotImplementedException The program tried to access a feature that is not imple-
mented . You can throw this exception to act as a place-
holder for features that you have not yet implemented .

NotSupportedException The program tried to invoke a method that is not sup-
ported . You can throw this exception to indicate a method
that has been removed in recent versions of a library .

NullReferenceException The program tried to access an object through a null
reference .

OutOfMemoryException There is not enough memory for the program to continue .
It is hard to recover from this exception because there may
not be enough memory to do anything useful .

RankException The program passed an array with the wrong number of
dimensions to a method .

Security.SecurityException The program detected a security error .

Security.VerificationException Security policy requires code to be type safe, and the
code could not be verified as type safe .

UnauthorizedAccessException The operating system denied access because of an input/
output or security error .

In addition to these basic exceptions, the .NET Framework defines several other exception classes
that have more specialized use. For example, SQL exceptions can occur when a program works with
SQL Server databases.

The following sections describe some of the more common and useful of these specialized excep-
tion classes.

SQL Exceptions
SQL Server uses the single class System.Data.SqlClient.SqlException to represent all errors and
exceptions. You can use the SqlException object’s properties to determine what has gone wrong
and how severe it is.

Table 6-3 describes some of the most useful SqlException class properties.

TABLE 6-2 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 243

TABLE 6-3: Useful SqlException Properties

pROpERTY DESCRIpTION

Class A number between 0 and 25 giving the type of error . Values 20 through 25 are
fatal and the database connection closes . The values indicate

0–10: Information messages rather than errors .

11–16: User problems that can be fixed by the user .

17: SQL Server has run out of a configurable resource such as locks . The DBA may
fix this .

18: A nonfatal internal software problem .

19: SQL Server has exceeded a nonconfigurable resource limit .

20: A problem occurred in a statement issued by the current process .

21: SQL Server encountered a problem that affects all processes in a database .

22: A table or index has been damaged .

23: The database is suspect .

24: Hardware problem .

25: System error .

LineNumber Returns the line number within the T-SQL command batch or stored procedure
that caused the error .

Message Returns a message describing the problem .

Number Returns the error number .

Procedure Returns the name of the stored procedure or remote procedure call that caused
the error .

The System.Data.Common.DbException class is the parent class of SqlException and three other
classes that return similar information for other database types. The following list summarizes the
three other child DbException child classes:

➤➤ System.Data.Odbc.OdbcException: Errors in ODBC databases

➤➤ System.Data.OleDb.OleDbException: Errors in OLE DB databases

➤➤ System.Data.OracleClient.OracleException: Errors in Oracle databases

All these classes provide a Message property that gives information about the exception, although
they do not provide the Class, LineNumber, Number, and Procedure properties provided by the
SqlException class.

www.EBooksWorld.ir

www.EBooksWorld.ir

244 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Overflow Exceptions
By default, a C# program does not throw an exception if an arithmetic operation causes an integer
overflow. If the operands are integral or decimal, the program discards any extra bits, returns a
truncated result, and continues running as if nothing had gone wrong. In that case you might not be
aware that the result is gibberish.

You can make the program throw an OverflowException either by using a checked block or by
using the Advanced Build Settings dialog. For more information, see the section “Using Widening
and Narrowing Conversions” in Chapter 4, “Using Types.”

A C# program also doesn’t throw an exception if a floating point operation causes an overflow or
underflow, or if it produces the special value NaN (which stands for “not a number”).

The floating point types define static properties PositiveInfinity, NegativeInfinity, and NaN.
You can compare a floating point variable to the PositiveInfinity and NegativeInfinity values.
However, if you compare a variable to NaN, the result is always false. (Even float.NaN == float.
NaN returns false.)

Instead of trying to compare results to the special values, it is better to use the type’s methods to
determine whether a variable holds one of these special values. Table 6-4 describes these methods.

TABLE 6-4: Floating Point Special Value Methods

METhOD DESCRIpTION

IsInfinity Returns true if the value is PositiveInfinity or NegativeInfinity

IsNaN Returns true if the value is NaN

IsNegativeInfinity Returns true if the value is NegativeInfinity

IsPositiveInfinity Returns true if the value is PositiveInfinity

Using the special value methods listed in Table 6-4 makes code easier to understand and protects the
code in case the special values such as PositiveInfinity change in some later version of .NET, for
example if the float data type moves to 64 bits.

REAL-WORLD CASE SCENARIO Factorials

The factorial of a number N is written N! and is defined by N! = 1 × 2 × 3 × ... × N. Write a Factorial
method that uses long integers to calculate a number’s factorial. Watch for the following errors:

➤➤ N isn’t an integer

➤➤ N < 0

➤➤ Overflow

➤➤ Other unexpected problems

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 245

Solution

The following code shows the basic Factorial method:

// Calculate a number's factorial.
private long Factorial(long n)
{
 long result = 1;
 for (long i = 2; i <= n; i++) result *= i;
 return result;
}

This code could have problems if it causes an integer overflow, which would not be detected by default,
or if the input parameter n is less than 0. The following code shows the improved Factorial method:

// Calculate a number's factorial.
private long Factorial(long n)
{
 // Make sure n >= 0.
 if (n < 0) throw new ArgumentOutOfRangeException(
 "n", "The number n must be at least 0 to calculate n!");

 checked
 {
 long result = 1;
 for (long i = 2; i <= n; i++) result *= i;
 return result;
 }
}

Now if the input parameter is less than zero, the method throws an ArgumentOutOfRangeException.

The checked block makes the code throw an OverflowException if there is an integer overflow. Notice
that this method does not catch that exception. The calling code should catch it. This method could
catch the exception and throw a new one, but it couldn’t actually add any meaningful new information
beyond that an overflow occurred, so there’s little point in doing that.

The following code shows how the program calls the Factorial method:

// Calculate the number's factorial.
private void calculateButton_Click(object sender, EventArgs e)
{
 resultTextBox.Clear();

 try
 {
 long n;
 if (!long.TryParse(nTextBox.Text, out n))
 {
 MessageBox.Show("The number must be an integer.");
 return;
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

246 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 resultTextBox.Text = Factorial(n).ToString();
 }
 catch (ArgumentOutOfRangeException)
 {
 MessageBox.Show("The number must be at least 0.");
 }
 catch (OverflowException)
 {
 MessageBox.Show("This number is too big to calculate its factorial.");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

The code immediately enters a try-catch-finally block to protect itself against errors. Its first real
statement clears the result TextBox, so it is cleared even if the following TryParse statement makes the
event handler exit.

Next, it tries to parse the user’s input value. If TryParse indicates that the user’s input cannot be parsed,
the event handler displays an error message and returns.

The program then calls the Factorial method and displays the result.

If any of that code throws an exception, control jumps to a catch section. If the exception is
ArgumentOutOfRangeException or OverflowException, the program displays an appropriate error
message.

If the program encounters some other kind of exception, it uses the exception’s ToString method to
display information about the unanticipated error. You can look at this information to determine what
kind of exception this is so that you can add an appropriate catch section to the code.

Exception properties
The System.Exception class, which is an ancestor of all other exception classes, defines several
properties that a program can use to try to determine what is happening and to tell the user about
the problem. Table 6-5 describes those properties.

TABLE 6-5: Exception Class Properties

pROpERTY DESCRIpTION

Data A collection of key/value pairs that give extra information about
the exception .

HelpLink A link to a help file associated with the exception .

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 247

pROpERTY DESCRIpTION

HResult A numeric code describing the exception .

InnerException An Exception object that gives more information about the exception . Some
libraries catch exceptions and wrap them in new exception objects to provide
information that is more relevant to the library . In that case, they may include a
reference to the original exception in the InnerException property .

Message A message describing the exception in general terms .

Source The name of the application or object that caused the exception .

StackTrace A string representation of the program’s stack trace when the
exception occurred .

TargetSite Information about the method that threw the exception .

The Message property doesn’t tell exactly where the error occurred, but tells in general terms
what went wrong. For example, an OverflowException object’s Message property is Arithmetic
Operation Resulted in an Overflow.

Many programs simply display an exception’s Message to the user and let the user try to determine
what went wrong. Although an exception’s Message is correct, it isn’t user-friendly and doesn’t tell
the user what calculation caused the exception or how to fix it. A better solution is for the program
to catch the exception and display a more meaningful message to the user.

For example, suppose a program processes an order form and catches an OverflowException
while multiplying quantity by price per unit for the third item on the form. Instead of telling the
user, Arithmetic Operation Resulted in an Overflow, it would be better to say something like,
“Quantity Times Price Is Too Large for Item Number 3. Please Enter Smaller Values for Those
Amounts.” (It would be even better to validate the quantity and price separately so that you could
display a message such as Quantity Must Be Between 1 and 100.)

An exception’s Message isn’t quite specific enough to show a user, but it is sometimes enough to
show developers during debugging. The Exception class’s ToString method, however, provides
even more useful information for developers. It includes the name of the exception’s class, the
Message property, and a stack trace. For example, an OverflowException object’s ToString
method might return the following text:

System.OverflowException: Arithmetic operation resulted in an overflow.
 at OrderProcessor.OrderForm.CalculateSubtotal() in
 d:\Support\Apps\OrderProcessor\OrderForm.cs:line 166

Using the class name included in this information, you can add a new catch section to the try-catch-
block to look specifically for this exception and display a more user-friendly error message.

www.EBooksWorld.ir

www.EBooksWorld.ir

248 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Throwing and Rethrowing Exceptions
A method can use a try-catch-finally block to catch exceptions. If that method interacts with
the user, it can display a message to tell the user about the problem.

However, often a method should not interact directly with the user. For example, if you’re writing
a library of tools that will be called by other methods, your methods probably shouldn’t interact
directly with the user. Instead those methods should throw exceptions of their own to tell the call-
ing code what went wrong, and then let that code deal with the problem. That code might display a
message to the user, or it might handle the problem without bothering the user.

The question then becomes, “What exceptions should your method catch, what exceptions should
it ignore, and what exceptions should it throw?” The following sections discuss some of the issues
involved in catching, throwing, and rethrowing exceptions.

Using Exceptions and Return Values
A method can take some action and then return information to the calling code through a return
value or through output parameters. Exceptions give a method one more way to communicate with
the calling code. An exception tells the program that something exceptional has happened and that
the method may not have finished whatever task it was performing.

There is some discussion on the Internet about when a method should return information through
a return value or parameters, and when it should return information through an exception. Most
developers agree that normal status information should be returned through a return value and
that exceptions should be used only when there’s an error.

The best way to decide whether to use an exception is to ask if the calling code should be allowed
to ignore the method’s status. If a method returns status information through its return value, the
calling code can ignore it. If the method throws an exception, the calling code must include a try-
catch-block to handle the exception explicitly.

For example, consider the following method that returns the factorial of a number:

// Calculate a number's factorial.
private long Factorial(long n)
{
 // Make sure n >= 0.
 if (n < 0) return 0;

 checked
 {
 try
 {
 long result = 1;
 for (long i = 2; i <= n; i++) result *= i;
 return result;
 }
 catch
 {
 return 0;
 }
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 249

If the parameter is less than zero or if the calculation causes an integer overflow, the method returns
the value 0. Because 0 is not a valid value for the factorial function, the calling code can detect that
something went wrong.

There are two problems with this approach. First, the calling code could ignore the error and treat the
value 0 as a number’s factorial, giving an incorrect result. If the value is used in a complex calculation,
the error might become embedded in the calculation. The program would produce an incorrect result
that might be hard to notice and fix later.

The second problem is that the calling code cannot tell what went wrong. The return value 0 doesn’t
indicate whether the input parameter was less than 0 or whether there was an integer overflow. You
could use multiple return values, so 0 means the parameter was less than 0, and –1 means an integer
overflow, but that just creates more status values that the calling code can ignore.

A better solution is to throw appropriate exceptions when appropriate. The following version of the
Factorial method, which was shown earlier in this chapter, uses exceptions:

// Calculate a number's factorial.
private long Factorial(long n)
{
 // Make sure n >= 0.
 if (n < 0) throw new ArgumentOutOfRangeException(
 "n", "The number n must be at least 0 to calculate n!");

 checked
 {
 long result = 1;
 for (long i = 2; i <= n; i++) result *= i;
 return result;
 }
}

If the parameter is less than zero, the code throws an exception. Because the calculations are enclosed
in a checked block, if they cause an integer overflow, they will throw an OverflowException.

In contrast to the Factorial method, suppose the SendInvoice method sends an invoice to a
customer. Depending on the customer’s preferences, the method might send e-mail, send a fax, or
print an invoice for mailing.

As long as this method sends an invoice, the calling code can probably ignore it. In that case the
method could return a status value to indicate which method it used.

However, if the method failed to send an invoice for any reason, it should throw an exception, so
the calling code knows the customer will not receive an invoice.

Catching, Throwing, and Rethrowing Exceptions
If a method can explain why an exception occurred rather than merely reporting that an exception
did occur, or if it can add new information to make an exception more specific, then it should catch
the exception and throw a new one that includes the new information.

For example, suppose a mapping program reads different files with obscure names such as D:\mparam
.na.wv.map depending on which part of the world it needs to map. If a file is missing, the method

www.EBooksWorld.ir

www.EBooksWorld.ir

250 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

receives a FileNotFoundException that includes the name of the file that is missing, but passing that
name back to the calling code probably won’t be helpful to the user. In this case it would make sense to
catch the exception and throw a new FileNotFoundException with the message, “Could Not Find the
Map File for West Virginia.”

If you throw a new exception in this manner, it is good practice to include the original exception
in the new exception’s InnerException property so that the calling code has access to the original
information if that would be helpful.

If a method cannot add any information to an exception, it should usually not catch it. Instead, it
should let the exception move up the call stack and let the calling code handle it.

For example, if the LoadParameters method tries to load settings from file C\parameters.txt and
receives a FileNotFoundException, there’s no reason for it to catch the exception. The calling code
knows which file wasn’t found, so the method can’t actually add any new information to the exception.

One time when you might want to break this rule is when you want the method to take some “private”
action before allowing the exception to move up the call stack. For example, suppose you’re writing a
library of tools for other programmers to use. When a method encounters an exception, you may want
it to save information about the exception in a log file so that you can fix the problem later. In that
case, you might want the method to catch an exception, log the error, and then rethrow the exception
so that it can move up the call stack normally.

To rethrow the current exception, use the throw statement without passing it an exception. The
following code snippet demonstrates this technique:

try
{
 // Do something dangerous.
 ...
}
catch (Exception)
{
 // Log the error.
 ...

 // Re-throw the exception.
 throw;
}

Contrast this code with the following version:

try
{
 // Do something dangerous.
 ...
}
catch (Exception ex)
{
 // Log the error.
 ...

 // Re-throw the exception.
 throw ex;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Exception Handling ❘ 251

The new version explicitly throws the same exception object that the try-catch-finally block
caught. When the code throws an exception in this way, the exception’s call stack is reset to the cur-
rent location so that it refers to the line of code that contains the throw statement. That may mislead
any programmers who try to locate a problem by making them look at the wrong line of code. The
situation is even worse if the line of code that threw the exception was inside another method called by
this one. If you rethrow the exception in this way, the fact that the error is in another method is lost.

In all cases a method should clean up as much as possible before throwing or rethrowing an exception.
If the method opens a file or connects to a database, it should close the file or database connection
before throwing an exception, leaving the calling code with as few side effects as possible.

ADVICE FROM ThE EXpERTS: Throwing Away the Call Stack

There are still a few situations in which you might want to rethrow an exception like
this to reset the call stack information. For example, if the method is in a library and
you want to hide the details of the library from the calling code, you don’t necessarily
want the call stack to include information about private methods within the library. In
that case, you could catch exceptions in the library’s public methods and then rethrow
them so that the call stack begins at those public methods.

Creating Custom Exceptions
When your code encounters a problem, it can throw an exception to tell the calling code about it.
If possible, you should throw one of the exception classes defined by the .NET Framework. The
predefined exception classes have specific meanings so, if you use one, other developers will have a
good idea what the exception represents.

Sometimes, however, you may not find a predefined exception class that fits your situation well. In
that case, you can create your own exception class.

Derive the new class from the Exception class. End the new class’s name with the word Exception.

To make the new class as useful as possible, give it constructors that match those defined by the
Exception class. The following code shows a simple InvalidException class that provides four con-
structors that take parameters similar to those used by the constructors defined in the Exception class:

[Serializable]
class InvalidProjectionException : Exception
{
 public InvalidProjectionException()
 : base() { }

 public InvalidProjectionException(string message)
 : base(message) { }

 public InvalidProjectionException(string message,
 Exception innerException)
 : base(message, innerException) { }

www.EBooksWorld.ir

www.EBooksWorld.ir

252 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 protected InvalidProjectionException(SerializationInfo info,
 StreamingContext context)
 : base(info, context) { }
}

Each of the constructors simply passes its parameters to the base class’s constructors. The
SerializationInfo and StreamingContext types are defined in the System.Runtime
.Serialization namespace.

BEST pRACTICES: Serialization Required

An exception must be serialized and deserialized to cross AppDomain boundaries. To
make the class as useful as possible, give it the Serializable attribute.

If the custom exception class provides specialized information, add the appropriate
properties to the class, and add additional constructors if you like.

ADVICE FROM ThE EXpERTS: Derive from Exception

Microsoft used to recommend that you derive new exception classes from
ApplicationException, but it later decided that this just adds another level to
the exception hierarchy without providing any actual benefit.

It doesn’t matter whether you derive new exception classes from Exception or
ApplicationException, but it’s probably worth using Exception to be consistent
with other developers who follow Microsoft’s recommendations.

Making Assertions
The System.Diagnostics.Debug class provides an Assert method that is often used to validate
data as it passes through a method. This method takes a boolean value as its first parameter and
throws an exception if that value is false. Other parameters let you specify other messages to display
to give you more information about where the assertion failed.

In a debug build, the Assert method halts execution and displays a stack trace. In a release build,
the program skips the call to Assert, so it continues running even if the assertion is false.

A method can use Assert to verify that its data makes sense. For example, suppose the PrintInvoice
method takes as a parameter an array of OrderItem objects named items and prints an invoice for
those items. The method might begin with the following Assert statement to verify that the items
array contains no more than 100 items:

Debug.Assert(items.Length <= 100)

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 253

If an order contains more than 100 items, the Assert statement halts execution, so you can examine
the code to decide whether this is a bug or just an unusual order. If this is a valid but unusual order,
you can change the statement to look for orders that contain more than 150 items.

In a release build, this Assert statement is ignored, so the program must be prepared to handle orders
that contain many items, even if the Assert statement would not allow that in a debug build.

If a piece of data is invalid and the program cannot continue, throw an exception. If a piece of data
is unusual and may indicate a bug but the program can meaningfully continue, use Debug.Assert
to detect the unusual value during testing.

SUMMARY

This chapter described two methods that different parts of a program can use to communicate:
events and exceptions.

Events enable an object to notify other parts of the application when some interesting event occurs.
To define and raise an event, a program must use delegates, so this chapter explained delegates. It also
explained anonymous methods and lambda expressions, which enable you to make methods that have
no names but that can be stored in delegate variables and that can be used as event handlers.

Exceptions let a method tell the calling code that it has encountered a critical problem. This chapter
explained how to use the try-catch-block to catch and handle exceptions. It also explained how and
when your code can throw exceptions. It described some of the more useful predefined exception classes
and explained how you can define new custom exception classes when none of the predefined classes fit
your needs.

There are three kinds of lambda expressions: expression lambdas, statement lambdas, and async
lambdas. This chapter described all three but only briefly mentioned async lambdas, which let a
program indicate that the lamba expression will run asynchronously.

Chapter 7 explains asynchronous processing and multithreading in greater detail. It explains
how a program can run processes on different threads to improve responsiveness and how to use
asynchronous code such as that defined by async lambdas.

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . Which of the following is a valid delegate definition?

 a . private delegate float MyDelegate(float);

 b . private delegate MyDelegate(x);

 c . private delegate MyDelegate(float x);

 d . private delegate void MyDelegate(float x);

www.EBooksWorld.ir

www.EBooksWorld.ir

254 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 2 . Which of the following statements is not true of delegate variables?

 a . You need to use a cast operator to execute the method to which a delegate variable
refers.

 b . A struct or class can contain fields that are delegate variables.

 c . You can make an array or list of delegate variables.

 d . You can use addition to combine delegate variables into a series of methods and use
subtraction to remove a method from a series.

 3 . If the Employee class inherits from the Person class, covariance lets you do which of
the following?

 a . Store a method that returns a Person in a delegate that represents methods that
return an Employee.

 b . Store a method that returns an Employee in a delegate that represents methods that
return a Person.

 c . Store a method that takes a Person as a parameter in a delegate that represents
methods that take an Employee as a parameter.

 d . Store a method that takes an Employee as a parameter in a delegate that represents
methods that take a Person as a parameter.

 4 . If the Employee class inherits from the Person class, contravariance lets you do which of
the following?

 a . Store a method that returns a Person in a delegate that represents methods that
return an Employee.

 b . Store a method that returns an Employee in a delegate that represents methods that
return a Person.

 c . Store a method that takes a Person as a parameter in a delegate that represents
methods that take an Employee as a parameter.

 d . Store a method that takes an Employee as a parameter in a delegate that represents
methods that take a Person as a parameter.

 5 . In the variable declaration Action<Order> processor, the variable processor represents
which of the following?

 a . Methods that take no parameters and return an Order object.

 b . Methods that take an Order object as a parameter and return void.

 c . Methods that take an Order object as a parameter and return an Order object.

 d . Methods provided by the Action class that take no parameters and return void.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 255

 6 . In the variable declaration Func<Order> processor, the variable processor represents
which of the following?

 a . Methods that take no parameters and return an Order object.

 b . Methods that take an Order object as a parameter and return void.

 c . Methods that take an Order object as a parameter and return an Order object.

 d . Methods provided by the Action class that take no parameters and return void.

 7 . Suppose F is declared by the statement Func<float, float> F. Then which of the following
correctly initializes F to an anonymous method?

 a . F = (float x) { return x * x; };

 b . F = delegate { return x * x; };

 c . F = float Func(float x) { return x * x; };

 d . F = delegate(float x) { return x * x; };

 8 . Suppose the variable note is declared by the statement Action note. Then which of the
following correctly initializes note to an expression lambda?

 a . note = { return x * x; };

 b . note = () { return x * x; };

 c . note = () => MessageBox.Show("Hi");

 d . note = MessageBox.Show("Hi");

 9 . Suppose the variable result is declared by the statement Func<float, float> result.
Which of the following correctly initializes result to an expression lambda?

 a . result = (float x) => x * x;

 b . result = (x) => return x * x;

 c . result = x => x * x;

 d . Both a and c are correct.

 10 . Which of the following statements about statement lambdas is false?

 a . A statement lambda can include more than one statement.

 b . A statement lambda cannot return a value.

 c . A statement lambda must use braces, { }.

 d . If a statement lambda returns a value, it must use a return statement.

www.EBooksWorld.ir

www.EBooksWorld.ir

256 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 11 . Suppose the MovedEventHandler delegate is defined by the statement delegate void
MovedEventHandler(). Which of the following correctly declares the Moved event?

 a . public MovedEventHandler MovedEvent;

 b . public event MovedEventHandler MovedEvent;

 c . public event Action MovedEvent;

 d . Both b and c are correct.

 12 . Suppose the Employee class is derived from the Person class and the Person class defines
an AddressChanged event. Which of the following should you not do to allow an Employee
object to raise this event?

 a . Create an OnAddressChanged method in the Person class that raises the event.

 b . Create an OnAddressChanged method in the Employee class that raises the event.

 c . Make the Employee class call OnAddressChanged as needed.

 d . Make the code in the Person class that used to raise the event call the
OnAddressChanged method instead.

 13 . Which of the following statements subscribes the myButton_Click event handler to catch the
myButton control’s Click event?

 a . myButton.Click += myButton_Click;

 b . myButton_Click += myButton.Click;

 c . myButton_Click handles myButton.Click;

 d . myButton.Click = myButton_Click;

 14 . Suppose the Car class provides a Stopped event that takes as parameters sender
and StoppedArgs objects. Suppose also that the code has already created an appropriate
StoppedArgs object named args. Then which of the following code snippets correctly
raises the event?

 a . if (!Stopped.IsEmpty) Stopped(this, args);

 b . if (Stopped) Stopped(this, args);

 c . if (Stopped != null) Stopped(this, args);

 d . raise Stopped(this, args);

 15 . Which of the following statements about events is false?

 a . If an object subscribes to an event twice, its event handler executes twice when the
event is raised.

 b . If an object subscribes to an event twice and then unsubscribes once, its event handler
executes once when the event is raised.

 c . If an object subscribes to an event once and then unsubscribes twice, its event handler
throws an exception when the event is raised.

 d . In a Windows Forms application, you can use the Properties window to subscribe
and unsubscribe events, and to create empty event handlers.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 257

 16 . Which of the following statements about inheritance and events is false?

 a . A derived class can raise a base class event by using code similar to the following:

if (base.EventName != null) base.EventName(this, args);

 b . A derived class cannot raise an event defined in an ancestor class.

 c . A class can define an OnEventName method that raises an event to allow derived
classes to raise that event.

 d . A derived class inherits the definition of the base class’s events, so a program can
subscribe to a derived object’s event.

 17 . Which of the following statements about exception handling is true?

 a . You can nest a try-catch-finally block inside a try, catch, or finally section.

 b . A try-catch-finally block must include at least one catch section and one
finally section.

 c . An exception is handled by the catch section that has the most specific matching
exception type.

 d . The code in a finally section executes if the code finishes without an error or if a
catch section handles an exception but not if the code executes a return statement.

 18 . Which of the following methods can you use to catch integer overflow exceptions?

 a . Use a try-catch-finally block.

 b . Use a checked block and a try-catch-finally block.

 c . Check the Advanced Build Settings dialog’s overflow/underflow box, and use a
try-catch-finally block.

 d . Either b or c.

 19 . Which of the following returns true if variable result holds the value
float.PositiveInfinity?

 a . result == float.PositiveInfinity

 b . float.IsInfinity(result)

 c . float.IsPositiveInfinity(result)

 d . All of the above.

 20 . Which of the following statements about throwing exceptions is false?

 a . If you catch an exception and throw a new one to add more information, you should
include the original exception in the new one’s InnerException property.

 b . If you rethrow the exception ex with the statement throw, the exception’s call stack
is reset to start at the current line of code.

 c . If you rethrow the exception ex with the statement throw ex, the exception’s call
stack is reset to start at the current line of code.

 d . Before a method throws an exception, it should clean up as much as possible, so the
calling code has to deal with the fewest possible side effects.

www.EBooksWorld.ir

www.EBooksWorld.ir

258 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

 21 . Which of the following should you not do when building a custom exception class?

 a . Derive it from the System.Exception class, and end its name with Exception.

 b . Give it event handlers with parameters that match those defined by the
System.Exception class.

 c . Make it implement IDisposable.

 d . Give it the Serializable attribute.

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in
this chapter:

Delegates (C# Programming Guide)
http://msdn.microsoft.com/library/ms173171.aspx

Anonymous Methods (C# Programming Guide)
http://msdn.microsoft.com/library/0yw3tz5k.aspx

Lambda Expressions (C# Programming Guide)
http://msdn.microsoft.com/library/bb397687.aspx

Events (C# Programming Guide)
http://msdn.microsoft.com/library/awbftdfh.aspx

How to: Raise Base Class Events in Derived Classes (C# Programming Guide)
http://msdn.microsoft.com/library/hy3sefw3.aspx

Best Practices for Handling Exceptions
http://msdn.microsoft.com/library/seyhszts.aspx

Exception Handling Best Practices in .NET
http://www.codeproject.com/Articles/9538/

Exception-Handling-Best-Practices-in-NET

SqlException Class
http://msdn.microsoft.com/library/system.data.sqlclient.sqlexception.aspx

SystemException Class inheritance hierarchy
http://msdn.microsoft.com/library/system.systemexception

.aspx#inheritanceContinued

AppDomain Class
http://msdn.microsoft.com/library/system.appdomain.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/ms173171.aspx
http://msdn.microsoft.com/library/0yw3tz5k.aspx
http://msdn.microsoft.com/library/bb397687.aspx
http://msdn.microsoft.com/library/awbftdfh.aspx
http://msdn.microsoft.com/library/hy3sefw3.aspx
http://msdn.microsoft.com/library/seyhszts.aspx
http://www.codeproject.com/Articles/9538/Exception-Handling-Best-Practices-in-NET
http://msdn.microsoft.com/library/system.data.sqlclient.sqlexception.aspx
http://msdn.microsoft.com/library/system.systemexception
http://msdn.microsoft.com/library/system.appdomain.aspx

Cheat Sheet ❘ 259

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Working with delegates

➤➤ A delegate is a type that represents a kind of method. It defines the method’s parameters and
return type.

➤➤ Often the name of a delegate type ends with Delegate or Callback.

➤➤ You can use + and – to combine delegate variables. For example, if a program executes the state-
ment del3 = del1 + del2, then del3 will execute the methods referred to by del1 and del2.

➤➤ If a delegate variable refers to an instance method, it executes with the object on whose
instance it was assigned.

➤➤ Covariance lets a method return a value from a subclass of the result expected by a delegate.

➤➤ Contravariance lets a method take parameters that are from a superclass of the type expected
by a delegate.

➤➤ The .NET Framework defines two built-in delegate types that you can use in many cases:
Action and Func. The following code shows the declarations for Action and Func delegates
that take two parameters:

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2)
public delegate TResult Func<in T1, in T2, out TResult>
(T1 arg1, T2 arg2)

➤➤ An anonymous method is a method with no name. The following code saves a reference to
an anonymous method in variable function:

Func<float, float> function = delegate(float x) { return x * x; };

➤➤ A lambda expression uses a concise syntax to create an anonymous method. The following
code shows examples of lambda expressions:

Action note1 = () => MessageBox.Show("Hi");
Action<string> note2 = message => MessageBox.Show(message);
Action<string> note3 = (message) => MessageBox.Show(message);
Action<string> note4 = (string message) => MessageBox.Show(message);
Func<float, float> square = (float x) => x * x;

➤➤ An expression lambda evaluates a single expression whose value is returned by the anony-
mous method.

➤➤ A statement lambda executes a series of statements. It must use a return statement to return
a value.

➤➤ An async lambda is a lambda expression that includes the async keyword.

www.EBooksWorld.ir

www.EBooksWorld.ir

260 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

Working with events

➤➤ Events have publishers and subscribers. A given event may have many subscribers or no
subscribers.

➤➤ Use a delegate type to define an event, as in the following code:

public delegate void OverdrawnEventHandler();
public event OverdrawnEventHandler Overdrawn;

➤➤ You can use the predefined Action delegate type to define events, as in the following code:

public event Action Overdrawn;

➤➤ Microsoft best practice: Make the event’s first parameter a sender object and the second an
object that gives more information about the event. Derive the type of the object from the
EventArgs class, and end its name with Args as in OverdrawnEventArgs.

➤➤ You can use the predefined EventHandler delegate type to define an event that takes an
object named sender as a first parameter and an event data object as a second parameter,
as shown in the following code:

public event EventHandler<OverdrawnEventArgs> Overdrawn;

➤➤ Raise an event, as in the following code:

if (EventName != null) EventName(arguments...);

➤➤ Classes cannot inherit events. To make it possible for derived classes to raise base class
events, give the base class an OnEventName method that raises the event.

➤➤ A program can use += and -= to subscribe and unsubscribe from events.

➤➤ If a program subscribes to an event more than once, the event handler is called multiple
times.

➤➤ If a program unsubscribes from an event more times than it was subscribed, nothing bad
happens.

Exception handling

➤➤ Error checking is the process of proactively anticipating errors and looking for them.
Exception handling is the process of protecting a program from unexpected errors. Error
checking is usually more efficient than exception handling.

➤➤ A try-catch-finally block must have at least one catch section or a finally section.

➤➤ The finally section always executes no matter how the program leaves a try-catch-
finally block.

➤➤ The most-specific (most-derived) catch sections must come first in a try-catch-finally block.

www.EBooksWorld.ir

www.EBooksWorld.ir

Cheat Sheet ❘ 261

➤➤ You can include only an exception type and omit the exception variable in a catch section if
you don’t need to do anything with the exception.

➤➤ The Exception class is an ancestor of all exception classes, so catch (Exception) catches
all exceptions.

➤➤ A catch section with no exception type catches all exceptions.

➤➤ A using statement is equivalent to a try-catch-finally block with a finally section that
disposes of the object.

➤➤ If an exception is not handled, control moves up the call stack until either a try-catch-
finally block handles it or the program crashes.

➤➤ An exception object’s Message property gives information about the exception. Its ToString
method includes the Message plus additional information including a stack trace.

➤➤ The SqlException class represents all SQL Server exceptions. Properties such as Class and
Message give additional information about the error.

➤➤ By default, integer operations do not throw OverflowExceptions. Use a checked block or
the Advanced Build Settings dialog to make overflows throw this exception.

➤➤ Floating point operations do not cause overflow. Instead they set the result to
PositiveInfinity, NegativeInfinity, or NaN.

➤➤ Use the floating point methods IsInfinity, IsInfinity, IsInfinity, and IsNaN to deter-
mine whether a result is one of these special values.

➤➤ To rethrow the current exception, use the throw statement without passing it an exception
object. To rethrow the exception ex while resetting its stack trace, use throw ex.

➤➤ To return noncritical status information, a method should return a status value. To prevent a
program from ignoring a critical issue, a method should throw an exception.

➤➤ If a method cannot add useful information to an exception, it should not catch and rethrow
it. Instead it should let it propagate up to the calling code.

➤➤ To create a custom exception, derive it from the System.Exception class and end its name
with Exception. Mark it serializable and give it constructors that match those defined by the
Exception class.

➤➤ You can use Debug.Assert to throw an exception in a debug build to find suspicious data.
The statement is ignored in release builds, so the program must continue even if Debug.Assert
would stop the program in a debug build.

➤➤ If you catch an exception and throw a new one to add extra information, include a reference
to the original exception in the new one’s InnerException property.

➤➤ Clean up as much as possible before throwing or rethrowing an exception so that the calling
code faces as few side effects as possible.

www.EBooksWorld.ir

www.EBooksWorld.ir

262 ❘ ChApTER 6 WorkIng WIth delegates, events, and excePtIons

REVIEW OF KEY TERMS

checked By default, a program doesn’t throw OverflowExceptions when an arithmetic operation
causes an overflow. A program can use a checked block to make arithmetic expressions throw those
exceptions.

contravariance A feature of C# that enables a method to take parameters that are from a superclass of
the type expected by a delegate. For example, suppose the Employee class is derived from the Person
class and the EmployeeParameterDelegate type represents methods that take an Employee object as a
parameter. Then you could set an EmployeeParameterDelegate variable equal to a method that takes
a Person as a parameter because Person is a superclass of Employee. When you invoke the delegate
variable’s method, you will pass it an Employee (because the delegate requires that the method take an
Employee parameter) and an Employee is a kind of Person, so the method can handle it.

contravariant A variable is contravariant if it enables contravariance.

covariance A feature of C# that enables a method to return a value from a subclass of the result
expected by a delegate. For example, suppose the Employee class is derived from the Person class
and the CreatePersonDelegate type indicates a method that returns a Person object. Then you
could set a CreatePersonDelegate variable equal to a method that returns an Employee because
an Employee is a kind of Person.

delegate A data type that defines a method with given parameters and return value.

error checking The process to anticipate errors, check to see if they occur, and work around them,
for example, validating an integer entered by the user in a TextBox instead of simply trying to parse
it and failing if the value is not an integer. See also exception handling.

exception handling The process to protect the application when an unexpected error occurs, for exam-
ple, protecting the code in case a file downloads fails when it is halfway done. See also error checking.

expression lambda A lambda expression that has a single expression on the right side.

lambda expression A concise syntax for defining anonymous methods.

publisher An object that raises an event.

statement lambda Similar to an expression lambda except it encloses its code in braces and it can
execute more than one statement. If it should return a value, it must use a return statement.

subscriber An object that receives an event.

try-catch-finally block The program structure used to catch exceptions. The try section contains the
code that might throw an exception, catch sections catch different exception types, and the finally
section contains code to be executed when the try and catch sections finish executing.

unhandled exception Occurs when an exception is thrown and the program is not protected by a
try-catch-finally block, either because the code isn’t inside a try section or because there is no
catch section that matches the exception.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 263

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed off to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Multithreading and
Asynchronous Processing

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding threads and thread pool

➤➤ Using the Task Parallel Library

➤➤ Using concurrent collections

➤➤ Implementing asynchronous methods

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter07
download and individually named according to the names throughout the chapter.

In 1967, Gordon Moore observed that the numbers of transistors that can be fit on the same
surface on a silicon chip is doubling every other year. Today, this doubling happens every one-
and-a-half years. Until 2005, this translated into several improvements such as doubling the
frequency and processing speed, doubling the capacity, cutting the size of the chip in half, and
so on. In 2005, the frequency a CPU could operate at reached a plateau. Although the hardware
manufacturers could still follow Moore’s law, the frequency could not be increased without
major implications, mainly because of the huge heat that got generated by the processor, and
that heat needed to be taken care of. So to still benefit from technological advancement outlined
by Moore’s law, the hardware manufacturer started to deliver more processing units per proces-
sor, known as cores, instead of increasing the speed. Developers now face the biggest challenge
of their careers because many are used to thinking and developing applications for machines
that have only one core. Fortunately, Microsoft realized that already, so it created new libraries
and introduced new paradigms into C# so life can be easier.

7

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

266 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

In this chapter, you will explore different options you have to improve the performance of your applica-
tion. This chapter starts by discussing threads and the thread pool, then continues with a discussion
about the BackgroundWorker class and how you can use it in WPF and Windows Forms applications.
Next, you will look at the Task Parallel Library (TPL), as well as some applications of the TPL, like the
Parallel class. After that the chapter covers the new asynchronous programming paradigm introduced
by C# 5.0. The chapter then continues the discussion by describing synchronizing access to resources to
ensure the correctness of your application and working with concurrent collections. Finally, the chapter
by describes cancellations in .NET Framework.

Table 7-1 introduces you to the exam objectives covered in this chapter.

TABLE 7-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Implement multithread-
ing and asynchronous
processing

Task Parallel Library (ParallelFor, Plinq, Tasks). This includes creat-
ing new tasks and using them to increase the performance of your
application .

Create continuation tasks. This includes discussing techniques to
work with task continuations .

Spawn threads by using ThreadPool. This includes creating Thread
objects and using threads from the thread pool .

Unblock the UI. This includes using the BackgroundWorker class in
order to create responsive applications .

Use async and await keywords. This includes using the new async
and await keywords to create responsive applications .

Manage data by using concurrent collections. This includes using the
classes from the System.Concurrent.Collections .

Manage multithreading Synchronize resources. This includes using ManualResetEvent and
AutoResetEvent classes .

Implement locking. This includes discussing the Monitor, Mutex, and
Semaphore classes .

Cancel a long-running task. This includes using
CancellationTokenSource and CancellationToken .

Implement thread-safe methods to handle race conditions.

CREATING RESpONSIVE AppLICATIONS

The first computers were created following a logical design called “von Newmann architecture,”
which was developed by John von Newmann and other mathematicians in 1945. According to that
design, a computer should have one processing unit, a control unit, memory, and an input and output

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 267

system (IO). The processing unit and the control unit form the central processing unit (CPU). Because
the design had only one processing unit, the programs needed to be written for that kind of design
were sequential, and most of the programming languages were created to be used in a sequential
manner, which is a practice still used in today’s programming languages, including C#. The biggest
disadvantage of creating such applications is that whenever your application had to wait for some-
thing to happen, the whole system would freeze, creating a very unpleasant user experience. Threads
were introduced to minimize this kind of problem.

Working with Threads
Less than 20 years ago, most consumer operating systems (OS) could run one single process
with one thread of execution. (A thread is the smallest unit of execution that can be indepen-
dently scheduled by the OS.) In a single-threaded OS, the computer runs only one application at
the time. There was normally a command-line interpreter that was interpreting the commands
entered by the user. When a command was entered, the interpreter transferred the control to
the processor to the application the command was referring to. When the application was done,
it transferred the control back to the interpreter. If you think about it, this made a lot of sense,
considering the fact that you had only one thread. The biggest problem was that the user could
feel that the computer froze when an application did one of the following two things:

➤➤ Intensive calculations

➤➤ Fetched some data from the I/O

When your application had to do intensive calculations, there wasn’t too much you could do except
either using a quicker computer to decrease the time it took to do the calculation or splitting the
problem into smaller ones and distributing it across several computers, both of which are expensive
operations, and sometimes it might take longer to do the calculations.

When your application fetched data from the I/O, your CPU was waiting for the data to come,
doing no processing in the meantime. To improve the responsiveness of your application, the notion
of multithreading was introduced. In a multithreaded application, one thread would spawn another
thread to do the fetching and waiting while the parent thread continued to do other work. When the
data was needed, the parent thread was blocked waiting for the spawned thread to finish its work.
This pattern is known as fork-join pattern.

ADVICE FROM ThE EXpERTS: Understanding Threads

Although threads are not explicitly required for the exam, it is the authors’ firm
belief that a good understanding of how threads work in Windows can help you
become a better programmer and understand this chapter. If you are already famil-
iar with this subject, you can skip this section and jump to the next one, “Spawning
New Threads by Using ThreadPool,” after going through the code in this section.

www.EBooksWorld.ir

www.EBooksWorld.ir

268 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

Having one processor, it meant that only one thread could be run at any given time. This can be
achieved in two different ways:

➤➤ Collaboratively: Every thread must give up the control so that another thread can execute.

➤➤ Preemptively: The operating system has a component called scheduler that makes sure that
no thread monopolizes the CPU. This is how Windows is implemented.

The Windows scheduler works as follows:

 1 . Every thread gets a priority assigned when it is created. A created thread is not automatically
started; you have to do that.

 2 . When a thread is started, it will be added on a queue with all the threads that can be run.

 3 . The scheduler takes the thread with the highest priority on the queue, and it starts to run it.

 4 . If several threads have the same priority, the scheduler schedules them in circular order
(round robin).

 5 . When the time allotted is up, the scheduler suspends the thread, adding it at the end of the
queue. After that, it picks up a new thread to run it.

 6 . If there is no other thread with higher priority than the one just interrupted, that thread
executes again.

 7 . When a thread is blocked because it has to wait for an I/O operation, or for some other
reasons such as locking (discussed later in this chapter in the “Synchronizing Resources”
section), the thread will be removed from the queue and another thread will be scheduled
to run.

 8 . When the reason for blocking ends, the thread is added back in the queue to get a chance
to run.

 9 . When a thread finishes the work, the scheduler can pick another thread to run it.

There is one thread called System idle process that does nothing, except keeping the processor busy
when there is no other thread to run. This process of time slicing creates the impression that your
operating system can run several applications at the same time, including answering to the user
interface (UI) commands you send, such as moving the mouse or moving windows around.

In .NET all applications have several threads. Following is a list with some of those threads:

➤➤ Garbage Collector thread: Responsible for the garbage collection.

➤➤ Finalizer thread: Responsible to run the Finalize method of your objects.

➤➤ Main thread: Responsible to run your main application’s method.

➤➤ UI thread: If your application is a Windows Form application, a WPF application, or a
Windows store application, it will have one thread dedicated to update the user interface.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 269

Except for the main thread, all the threads mentioned so far are background threads. When you cre-
ate a new thread, you have the option to specify if the thread should be a background thread.

When the main thread and all other nonbackground threads of a .NET application finishes, the
.NET application finishes as well.

With the coming of the new multicore and many-core processors, the applications that are written in
a multithreaded fashion will inherently benefit from those improvements, whereas the applications
written sequentially will underuse the resources available while making the user wait unnecessarily.

NOTE Multicore and many-core are both used to describe systems with more than
one core, but there is a difference between them. Multicore refers to CPUs that
have several cores of the same type on the same silicon chip. Many-core refers to
CPUs that have different kinds of specialized cores on the same silicon chip.

To illustrate what happens when your application is compute-intensive but is written in a sequen-
tial manner versus if it were written in a concurrent manner with multiple cores in mind, analyze
Figures 7-1 and 7-2.

FIGURE 7-1: Single-threaded compute-intensive application

As you can see in Figure 7-1, the CPU on the top left is working at 100 percent load most of the
time, whereas the other seven CPUs are idling most of the time. In some situations you might see
that the load moves from one CPU to the other, but still there is only one CPU fully loaded by the
application at any given time.

www.EBooksWorld.ir

www.EBooksWorld.ir

270 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

The same application in Figure 7-2 is loading all the CPUs to 100 percent. Although this might seem
a bad thing in the eye of a system administrator, this is actually a good thing. The reason this might
seem a bad thing for the system administrator is because historically a CPU loaded to 100 percent
meant that one application entered an endless loop consuming all the resources, impeding other
applications on the same machine from doing their job. In this case, you know that the application
is compute-intensive and, therefore, is not waiting for any I/O to complete. The scheduler will do its
job and ensure that all the threads having the same priority get a chance to run, so 100 percent in
this situation just means that the computer is busy working. However, you need to tell your system
administrator about your application so she won’t mistake it for an erroneous application.

FIGURE 7-2: Multithreaded compute-intensive application

Following are some of the disadvantages of multithreaded applications:

➤➤ All threads are resource-intensive. They need a lot of memory (1 megabyte is standard), and
every time the scheduler has to switch between threads, the processor will be busy saving the
context of the suspending thread and restoring the context of the running thread.

➤➤ If your application creates too many threads, the context switching consumes a considerable
amount of time.

➤➤ Because the thread needs so much memory, it usually takes a considerable amount of time for
the system to create one tread and takes some time to destroy it as well.

In .NET threads are implemented in the System.Threading.Thread class. Because threads are not
required for the exam, you can find more information about the Thread class in the “Additional
Readings and Resources” section at the end of this chapter.

It is a straightforward process to work with threads:

 1 . Create a thread object.

 2 . Start the thread.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 271

 3 . Do more work in the calling method.

 4 . Wait for the thread to finish.

 5 . Continue the work on the calling method.

Take a look at the following Code Lab.

CODE LAB Using threads [Chapter7\SimpleApp\Program.cs]

class Program {

 static void Main(string[] args) {

 // We are using Stopwatch to time the code
 Stopwatch sw = Stopwatch.StartNew();

 // Here we call different methods
 // for different ways of running our application.
 RunSequencial();

 // Print the time it took to run the application.
 Console.WriteLine("We're done in {0}ms!", sw.ElapsedMilliseconds);
 if (Debugger.IsAttached) {
 Console.Write("Press any key to continue . . .");
 Console.ReadKey(true);
 }
 }

 static void RunSequencial() {

 double result = 0d;

 // Call the function to read data from I/O
 result += ReadDataFromIO();
 // Add the result of the second calculation
 result += DoIntensiveCalculations();

 // Print the result
 Console.WriteLine("The result is {0}", result);
 }

 static double ReadDataFromIO() {

 // We are simulating an I/O by putting the current thread to sleep.
 Thread.Sleep(5000);
 return 10d;
 }

 static double DoIntensiveCalculations(){

 // We are simulating intensive calculations
 // by doing nonsens divisions
 double result = 100000000d;
 var maxValue = Int32.MaxValue;

www.EBooksWorld.ir

www.EBooksWorld.ir

272 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 for(int i=1; i < maxValue; i++){
 result /= i;
 }
 return result + 10d;
 }
}

Code Lab Analysis

This code shows a program that must do two things: read data from I/O and do some intensive calcula-
tions. The implementation of the two methods is not important in this context; they simulate the intended
behavior. In a real application the assumption is that the ReadFromIO method does real I/O operations,
such as reading files or requiring data from the network, whereas DoIntensiveCalculations does calcu-
lations needed for the application. Running this application produces the following result:

The result is 20.
We're done in 10437ms.

Because the two methods are independent, you can improve the response time of this code by using
threads. To do this, you need to modify the Main method accordingly to call RunWithThreads instead
of RunSequencial.

 static void RunWithThreads() {

 double result = 0d;

 // Create the thread to read from I/O
 var thread = new Thread(() => result = ReadDataFromIO());

 // Start the thread
 thread.Start();

 // Save the result of the calculation into another variable
 double result2 = DoIntensiveCalculations();

 // Wait for the thread to finish
 thread.Join();

 // Calculate the end result
 result += result2;

 // Print the result
 Console.WriteLine("The result is {0}", result);

 }

You start by creating a new thread that will run the result = ReadDataFromIO() code. The thread is
not started when it is created, so you have to start it by calling the Start() method. This queues this
new thread for execution while continuing to run the code in the current method, in this case double
result2 = DoIntensiveCalculations(). When the intensive calculation is done, you need to wait
for the previously created thread to finish executing. You do that by calling the Join() method. Join
blocks the current thread until the other thread is finished executing. When the other thread finishes,
Join will return, and the current thread will be unblocked.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 273

Please note that a new variable called result2 has been introduced to hold the result from the second
method, instead of using the result variable. (Why this was done is discussed later in this chapter in the
“Synchronizing Resources” section.) When you run the application now, you get the following result:

The result is 20
We're done in 5370ms!

As you can see, this cuts the time it took to run the calculation by 5 seconds (the time it took for the I/O
operation to complete). This improvement can be achieved for any number of cores. If both methods were
doing calculations, you would have reduced the execution time only if you have had two or more cores.

This is a naïve take at the multithreading problem, but it illustrates the problem and the solution
quite well.

The number of threads you can end up creating can be big, and because of the resource-intensive
nature of the threads, sometimes it is better to have the threads already created.

Spawning New Threads by Using Threadpool
As discussed in the previous section, threads are expensive resources, and to improve the overall
performance of your application, you can choose to pre-create some threads. In .NET there is a class
called System.Threading.ThreadPool used when you want to work with threads from the thread
pool. This class contains only static methods that are useful when working with the ThreadPool.
Table 7-2 lists some of the methods you normally need from that class.

TABLE 7-2: System .Threading .ThreadPool Methods

METhOD DESCRIpTION

GetAvailableThreads Returns the number of threads available in the thread pool .
This represents the number of threads that can pick up work
items from the queue .

GetMaxThreads Returns the maximum number of threads that can be cre-
ated by the thread pool .

GetMinThreads Returns the minimum number of threads that will be avail-
able in the thread pool .

QueueUserWorkItem Adds a request for execution to the thread pool queue .
If there are available threads in the thread pool, then the
request will execute right away .

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

274 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

METhOD DESCRIpTION

RegisterWaitForSingleObject Registers a method to be invoked when either the
WaitHandle specified as the first parameter gets signaled
or when the timeout specified as fourth parameter will
elapse . This method has four overloads, one for every
mode, that the timeout can be expressed as: int, long,
unsigned int, or TimeSpan .

SetMaxThreads Sets the maximum number of threads that can be created in
the thread pool .

SetMinThreads Sets the minimum number of threads that will be available in
the thread pool at any given time .

The preceding list is not complete, and from this list you are more likely to use only one method:
QueueUserWorkItem. If you are interested in all the methods that the ThreadPool class has to
offer, you can follow the link from the “Additional Reading and Resources” section at the end of
this chapter.

The thread pool works in the following way. When you need a long running method to be run in a
separate thread, instead of creating a new thread, you call the QueueUserWorkItem method to place
a new work item in a queue managed by the thread pool. If there is a thread idle in the pool, it picks
up the work item and runs it to completion like any thread will do. If there is no thread available
and the total number in the pool is less than MaxThreads, the pool creates a new thread to run the
work item; otherwise, the job work item waits in the queue for the first available thread.

SetMinThread is used to prepopulate the pool with threads to improve the performance of your
application when you know that you will use the thread pool.

QueueUserWorkItem has two overloads:

➤➤ public static bool QueueUserWorkItem(WaitCallback callBack)

➤➤ public static bool QueueUserWorkItem(WaitCallback callBack, Object state)

The first parameter is of type System.Threading.WaitCallback, which is a delegate defined
as follows:

public delegate void WaitCallback(Object state)

If you recall from Chapter 6, “Working with Delegates, Events, and Exceptions,” this represents a
method that takes one parameter of type Object and doesn’t return any value.

Before looking at a code example, you need to know a bit about the differences between threads
created manually and threads from the thread pool:

➤➤ All the threads from the thread pool are background threads, whereas the manually created
threads are foreground threads by default and can be set as background threads as well.

TABLE 7-2 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 275

➤➤ You can’t abort or interrupt a thread from the thread pool.

➤➤ You can’t join a thread from the thread pool. To achieve that, you must use some other
mechanisms (discussed later in this chapter in the “Synchronizing Resources” section).

➤➤ Threads from the thread pool are reused when they finish their work, whereas the normal
threads are destroyed.

➤➤ You can’t control the priority of a thread from the thread pool.

More differences exist but are outside the scope of this book.

NOTE The maximum number of threads in the thread pool is different for differ-
ent versions of .NET and should be treated as an implementation detail. In .NET
2.0 there were 25 threads per core, in .NET 3.5 there were 250, and in .NET 4
there are 1,023 threads for the 32-bit applications and 32,767 threads for the
64-bit applications.

REAL-WORLD CASE SCENARIO Using the thread pool

Now it’s time to return to the problem. If you skipped the previous section, go back and take a look at the
program proposed earlier. This scenario requires for you to create a method named RunInThreadPool
that uses the thread pool to run the ReadDataFromIO method and call it from the Main method.

Solution

The RunInThreadPool looks like this:

static void RunInThreadPool() {

 double result = 0d;

 // Create a work item to read from I/O
 ThreadPool.QueueUserWorkItem((x) => result += ReadDataFromIO());
 // Save the result of the calculation into another variable
 double result2 = DoIntensiveCalculations();
 // Wait for the thread to finish

 // TODO: We will need a way to indicate
 // when the thread pool thread finished the execution

 // Calculate the end result
 result += result2;

 // Print the result
 Console.WriteLine("The result is {0}", result);

}

www.EBooksWorld.ir

www.EBooksWorld.ir

276 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

Calling the ThreadPool.QueueUserWorkItem method places the work item on the queue managed by
the thread pool. When a thread from the pool is available, it picks up the item and runs it to completion.
The only problem is that you don’t know when the thread finishes its work. There is no Join method or
something similar. To solve this problem, you need to use some kind of signaling mechanism. (Different
signaling mechanisms are discussed later in the “Synchronizing Resources” section.)

If you run the application now, you get the correct result but only because the thread pool thread returns
before the other method finishes its work. If you increase the value you send to Sleep to be higher than
the total time it takes to run the other method, you will observe that the result will be 10 instead of 20,
which is wrong.

Often you won’t use the ThreadPool class directly. Instead you can use other technologies built
on top of it, such as Task Parallel Library (TPL), Asynchronous Pattern Model (APM), Event-
based Asynchronous Pattern (EAP), Task-based Asynchronous Pattern Model (TAP), or the new
async/await keywords.

Unblocking the UI
One of the biggest problems mentioned earlier in this chapter was that your application might
become unresponsive, giving the user the impression that the application is hung up. The reason for
this is often because heavy work is placed on the thread responsible for updating the UI. To improve
the perceived performance of the application, you can move this heavy work into another thread.
To achieve that, you have to apply different asynchronous programming patterns. (You can find a
detailed explanation of those patterns in the “Additional Reading and Resources” section.)

Windows forms or WPF applications have one thread responsible to update the UI. Any update to
the UI should be done through this thread.

If your application targets .NET 4.5, the new async/await programming model (discussed later in
this chapter in the “Programming Asynchronous Applications with C# 5.0” section) takes care of
this for you. If you target a .NET version prior to 4.5, you must take care of this by yourself.

BackgroundWorker Class
.NET 2.0 introduced a class called System.ComponentModel.BackgroundWorker that abstracts
away the thread creation and the usage of the thread pool. Tables 7-3, 7-4, and 7-5 show some of the
methods, properties, and events that this class offers.

TABLE 7-3: System .ComponentModel .BackgroundWorker Methods

METhOD DESCRIpTION

RunWorkerAsync Registers a start request for the background operation

ReportProgress Raises the ProgressChanged event

CancelAsync Registers a cancellation request for the background operation

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 277

TABLE 7-4: System .ComponentModel .BackgroundWorker Properties

pROpERTY DESCRIpTION

CancellationPending Set to true if CancelAsync was called for this background
operation .

IsBusy Returns true after the RunAsync was called and before the
background operation completed .

WorkerReportsProgress Set this property to true if you want your background opera-
tion to report progress updates .

WorkerSupportsCancellation Set this property to true if you want your background opera-
tion to support cancellation .

TABLE 7-5: System .ComponentModel .BackgroundWorker Events

EVENT DESCRIpTION

DoWork Triggers when RunWorkerAsync is invoked . This is where
you call your long-running method .

ProgressChanged Triggers when ReportProgress is invoked .

RunWorkerCompleted Triggers when the background operation is done . It can be
done either because the operation completed successfully,
as a response to a cancellation request, or because of an
unhandled exception .

NOTE For a complete list of methods, properties, and events, refer to the
“Additional Reading and Resources” section at the end of this chapter.

The workflow of using the BackgroundWorker class is as follows:

 1 . Create a method that follows the DoWorkEventHandler signature.

 2 . In this method call the long-running operation. When the operation finishes, assign the result
of the operation to the Result property of the DoWorkEventArgs parameter.

 3 . Create a BackgroundWorker instance.

 4 . Use the method you created on the first step to subscribe to the DoWork event.

 5 . Create a method that follows the RunWorkerCompletedEventHandler signature.

 6 . In this method, get the result of the long-running operation and update the UI.

 7 . Use this method to subscribe to the RunWorkerCompleted event so that your code knows
when the long-running operation is completed. Before reading the result, you must make sure
that your long-running operation did not throw an exception by checking the Error property

www.EBooksWorld.ir

www.EBooksWorld.ir

278 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

of the RunWorkerCompletedEventArgs parameter. If the property is null, it means that no
exception was thrown.

 8 . Optionally, create a method to be used to report progress, following the
ProgressChangedEventHandler signature and subscribing this method to the
ProgressChanged event.

 9 . Call the RunWorkerAsync method to start the background work.

 10 . If the work supports cancellation and you want to cancel the work, you can call the
CancelAsync method.

BEST pRACTICES: Threading with BackgroundWork

The implementation of the BackgroundWork class ensures that in a Windows Forms
or WPF application the RunWorkerCompleted event handler is run by a UI thread
if the RunWorkerAsync is called by the UI thread. In other words, if you start the
background work inside an event handler, the completion event will be run in
the UI thread. You can see the implications of this in the next two sections.

Assume that you have a Windows Forms application that has a form with one label called lblResult
and one button called btnRun. If you use the long-running method from the previous section together
with BackgroundWork, the resulting code might look like this:

public partial class Form1 : Form {

 private BackgroundWorker worker;

 public Form1() {

 InitializeComponent();

 worker = new BackgroundWorker();
 worker.DoWork += worker_DoWork;
 worker.RunWorkerCompleted += worker_RunWorkerCompleted;
 }

 void worker_DoWork(object sender, DoWorkEventArgs e) {

 e.Result = DoIntensiveCalculations();
 }

 void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {

 lblResult.Text = e.Result.ToString());
 }

 private void btnRun_Click(object sender, EventArgs e) {

 if (!worker.IsBusy) {
 worker.RunWorkerAsync();
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating Responsive Applications ❘ 279

 }

 static double DoIntensiveCalculations() {

 // We are simulating intensive calculations
 // by doing nonsens divisions
 double result = 100000000d;
 var maxValue = Int32.MaxValue;
 for (int i = 1; i < maxValue; i++) {
 result /= i;
 }
 return result + 10d;
 }
}

Multithreaded Windows Forms Applications
As mentioned earlier, both Windows Forms and WPF applications have dedicated threads that
update the UI to avoid a situation that might arise in multithreaded applications, called race condi-
tions. A race condition occurs when two or more threads access shared data, for writing, at the
same time. (How to deal with race conditions is covered later in this chapter in the “Synchronizing
Resources” section.) If you try to update the UI from another thread, .NET Framework throws an
InvalidOperationException containing the following message: "Cross-thread operation not
valid: Control 'ctrlName' accessed from a thread other than the thread it was

created on." You might not get this exception every time, but this doesn’t make your code correct.
The code in the previous section works because you started the background worker from the UI thread.
If the background worker would have been started from another thread, you would have gotten the
exception mentioned earlier. To solve the problem, change the worker_RunWorkerCompleted method
as follows:

void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
 if (this.InvokeRequired) {
 this.Invoke(
 new Action<string>(UpdateLabel),
 e.Result.ToString());
 }
 else {
 UpdateLabel(e.Result.ToString());
 }
}

private void UpdateLabel(string text) {
 lblResult.Text = text;
}

This is what you had to do with the preceding code:

 1 . You moved the UI code in to its own method. In this case you called the method
UpdateLabel.

 2 . In the worker_RunWorkerCompleted method, you now check the InvokeRequired
property. This property is defined in the Control class, and as such is present on all the

www.EBooksWorld.ir

www.EBooksWorld.ir

280 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

controls on a page. InvokeRequired is set to false if you call it from the UI thread and true
otherwise.

 3 . If you are in the UI thread, you just call the UpdateLabel method. If you are in another
thread, you must call the Invoke method, which is defined on the Control class.

 4 . The Invoke method takes as the first parameter a delegate, meaning any method can be
placed there. The new Action<string>() constructor call is used to make sure that you
get a delegate. If your method has a different signature, you must change that constructor
accordingly. The rest of the parameters of the Invoke method are sent directly to the method
you want to run. Invoke places the method call in a queue to be picked up by the UI thread.

Multithreaded WPF Applications
Like with Windows Forms applications, WPF applications have a dedicated UI thread. Unlike
Windows Forms, WPF has an extra thread responsible for rendering the UI. This second thread
is private to WPF, and you don’t have access to it from your application. For detailed information
about the threading model in WPF, consult the “Additional Reading and Resources” section at the
end of this chapter.

Now see how the application from the previous section looks in the WPF world. Start by assuming
that you have a WPF application that has a main window. On that window you have a button called
btnRun and a label called lblResult. A possible implementation of the MainWindow class that calls
the DoIntensiveCalculation method can look as follows:

public partial class MainWindow : Window {

 private BackgroundWorker worker;

 public MainWindow() {
 InitializeComponent();
 worker = new BackgroundWorker();
 worker.DoWork += worker_DoWork;
 worker.RunWorkerCompleted += worker_RunWorkerCompleted;
 }

 void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
 lblResult.Content = e.Result;
 }

 void worker_DoWork(object sender, DoWorkEventArgs e) {

 e.Result = DoIntensiveCalculations();
 }

 private void btnRun_Click(object sender, EventArgs e) {
 if (!worker.IsBusy) {
 worker.RunWorkerAsync();
 }
 }

 static double DoIntensiveCalculations() {

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 281

 // We are simulating intensive calculations
 // by doing nonsens divisions
 double result = 100000000d;
 var maxValue = Int32.MaxValue;
 for (int i = 1; i < maxValue; i++) {
 result /= i;
 }
 return result + 10d;
 }
}

As you can see, the code for the WPF application looks almost the same as the one for the Windows
Forms application. The only difference is how you update the label—instead of the setting the Text
property, you set the Content property. This solution suffers from the same issue that the Windows
Forms solution suffered from. If the background worker is triggered from another thread than the UI
thread, when you try to update the UI, the .NET Framework throws an InvalidOperationException
with the message: The calling thread cannot access this object because a different
thread owns it. The solution to this problem resembles the one in the previous section but is much
simpler. The new worker_RunWorkerCompleted should look like the following:

void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
 this.Dispatcher.Invoke(()=> lblResult.Content = e.Result);
}

As you can see it is enough to call the Dispatcher.Invoke method in all the situations. This call
ensures that the lambda expression ()=> lblResult.Content = e.Result is run by the UI thread,
regardless from which thread the method is called.

BEST pRACTICES: Updating the UI

When you need to update the UI, make sure that you keep the non-UI work to a
minimum. You should dispatch only the code that updates the UI (in the previous
example, only the code that updates the label). If in your code, after you get the
result from the background worker, you need to do some more processing before
updating the UI, do that processing before you call the Dispatch.Invoke method
for WPF applications or Invoke method for Windows Forms applications.

WORKING WITh ThE TASK pARALLEL LIBRARY

One of the shortcomings of using threads is that they are resource-intensive. When you start a
thread, that thread competes with other threads for the CPU in order to run. Sometimes a thread
it is interrupted in the middle of an operation and must wait for its turn to run again to be able to
complete that operation.

www.EBooksWorld.ir

www.EBooksWorld.ir

282 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

Most of the time you need to perform some work unitarily and get back the result. You don’t care
about the underlying implementation in the OS. This unit of work is called task and can be run
independently. Microsoft introduced a new library, TPL, which is a collection of classes designed to
abstract away the threads.

Introducing Task
With .NET 4 Microsoft introduced the Task class, which represents an asynchronous operation.
The tasks are as well a way to abstract away the need for threads from the programmer. It uses
threads from the thread pool but offers a great deal of flexibility and control over how the task is
created. The Task class is defined under the System.Treading.Tasks namespace. There are two
task classes: Task and Task<TResult>. The first one is used when you run a method as a task and
you don’t have or don’t need the return value, and the second one is used when you run a function
as a task and you want to use the return value.

The methods and properties used most often are described in Tables 7-6 and 7-7, respectively.

TABLE 7-6: System .Threading .Tasks .Task Methods

METhOD DESCRIpTION

ContinueWith Creates new task that will be started asynchronously when the current task
completes .

Delay This static method creates a task that is marked as completed after the speci-
fied delay .

Run This static method adds a request for work on the thread pool and it returns a
Task object .

Start Starts the task represented by this instance .

Wait Waits for the task represented by this instance to complete .

WaitAll This static method waits for all tasks sent as parameters to complete .

WaitAny This static method waits for any of the tasks sent as parameters to complete .

WhenAll This static method creates a task that is marked as completed when all tasks
sent as parameters complete .

WhenAny This static method creates a task that is marked as completed when any of the
tasks sent as parameters complete .

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 283

TABLE 7-7: System .Threading .Tasks .Task Properties

pROpERTY DESCRIpTION

CurrentId This read-only static property retrieves the ID of the currently executing
task .

Exception This read-only property retrieves the unhandled AggregateException, if
any, that caused the task to end its execution .

Factory This read-only static property returns a factory object that can be used to
create a new task .

ID This read-only property gets the ID of a particular task instance .

IsCanceled This read-only property is set to true if the task completed because it was
canceled .

IsCompleted This read-only property is set to true when the task completes .

IsFaulted This read-only property is set to true if the task completes because of an
unhandled exception .

Status This read-only property returns the status of the task .

Result This read-only property gets the value returned by the asynchronous opera-
tion represented by this task .

For a complete list of methods and properties, refer to the “Additional Reading and Resources” sec-
tion at the end of this chapter.

The static property Factory is of type TaskFactory and is used to create new tasks. Table 7-8
describes some of the most common methods.

TABLE 7-8: System .Threading .Tasks .TaskFactory Methods

METhOD DESCRIpTION

ContinueWhenAll Creates a task that starts when all the tasks sent as parameters complete .

ContinueWhenAny Creates a task that starts when any of the tasks sent as parameters
complete .

FromAsync Several overloaded methods used to bring old APM code to the new TAP
model by wrapping a task around the asynchronous call .

StartNew Several overloaded methods used to create a task and start it .

www.EBooksWorld.ir

www.EBooksWorld.ir

284 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

For a complete list of methods and properties, refer to the “Additional Reading and Resources” sec-
tion at the end of this chapter.

Creating Tasks
You can create a task in several ways:

➤➤ You can create an instance of Task. This method of creating is useful when you want to
update code that uses threads to use tasks instead. The task is not started, so you must call
the Start method.

➤➤ You call one of the overloads of the static method TaskFactory.StartNew. Those methods
create and start the tasks.

➤➤ You call one of the overloads of the static method Task.Run. Those methods create and start
the tasks. This is a simplified wrapper for TaskFactory.StartNew.

➤➤ You can call one of the continuation methods. Those are Task.WhenAll, Task.WhenAny,
TaskFactory.ContinueWhenAll, TaskFactory.ContinueWhenAny.

TaskFactory.StartNew offers a great deal of flexibility. When you create a new task, you need to
specify at least the method or function that you want to run as a task. In addition, you can specify
options for creating the task, a cancelation token, and a scheduler that queues tasks into threads.
(Schedulers are discussed in the next section, and cancellation will be discussed later in this chapter
in the “Working with Cancellations” section.)

TaskCreationOptions enumeration describes the options for creating tasks. Table 7-9 describes
the options.

TABLE 7-9: System .Threading .Tasks .TaskCreationOptions Members

MEMBER NAME DESCRIpTION

None Default behavior .

PreferFairness Tasks should be scheduled in a fair manner . This is just a hint and the
intended result is that tasks scheduled sooner will have a better chance
to be run sooner, and tasks scheduled later will be more likely to be
run later .

LongRunning This is used to specify that the task will take a long time to complete . This
is just a hint and the result will be oversubscription . Oversubscription
allows the scheduler to create more threads to run the tasks than the
available number of hardware threads .

AttachedToParent The newly created task is attached to the parent task in the hierarchy .

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 285

MEMBER NAME DESCRIpTION

DenyChildAttach Specifies that no child tasks are allowed to be attached to the current
task . If you attempt to attach a child task to this newly created task, an
InvalidOperationException will be thrown .

HideScheduler Specifies that the current scheduler should not be used when creating
new tasks from this newly created task . Those new tasks should use
Default as the current scheduler when they are created .

This enumeration is decorated with the FlagsAttribute, meaning that these options can
be combined.

Now take a moment to look at some code that deals with tasks. Consider the following code
snippet. It is a variation of the code you saw in the first section, but instead of calling one I/O
and one computing-intensive method, you call the same computing method 32 times.

class Program {

 const int NUMBER_OF_ITERATIONS = 32;

 static void Main(string[] args) {

 // We are using Stopwatch to time the code
 Stopwatch sw = Stopwatch.StartNew();

 // Run the method
 RunSequential();

 // Print the time it took to run the application.
 Console.WriteLine("We're done in {0}ms!", sw.ElapsedMilliseconds);

 }

 static void RunSequential() {

 double result = 0d;

 // Here we call same method several times.
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 result += DoIntensiveCalculations();
 }

 // Print the result
 Console.WriteLine("The result is {0}", result);

 }

 static double DoIntensiveCalculations() {

 // We are simulating intensive calculations
 // by doing nonsens divisions and multiplications

www.EBooksWorld.ir

www.EBooksWorld.ir

286 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 double result = 10000d;
 var maxValue = Int32.MaxValue >> 4;
 for (int i = 1; i < maxValue; i++) {
 if (i % 2 == 0) {
 result /= i;
 }
 else {
 result *= i;
 }
 }
 return result;
 }

}

Running this code results in the following output:

The result is 22.0386557304958
We're done in 41860ms!

As you can see it takes approximately 42 seconds to run this code sequential. You should improve
that time by using tasks. First, you must replace the call to RunSequential with a call to RunTasks.
Add the RunTasks method to your code that should look like this:

static void RunTasks() {

 double result = 0d;

 Task[] tasks = new Task[NUMBER_OF_ITERATIONS];

 // We create one task per iteration.
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 tasks[i] = Task.Run(() => result += DoIntensiveCalculations());
 }

 // Print the result
 Console.WriteLine("The result is {0}", result);
}

By running the application on a machine with eight cores, you get the following result:

The result is 2.75483196631197
We're done in 10115ms!

There are two things to notice here. Before telling you what those are, take a minute to see if you
can spot them.

Now for the first one: The result is incorrect. Can you guess why?

Secondly, the application is not eight times faster as expected.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 287

COMMON MISTAKES: The performance Gain Induced by Modern processors

The reason the application is not eight times faster is because you run the application
on an Intel Core I7 processor. This is a quad core with hyper-threading. Quad core
means that there are four cores in one silicon chip. Hyperthreading means that every
core has two instruction pipelines, but only one execution engine. The operating
system sees those as eight different processors. Hyperthreading improves the perfor-
mance by 30 percent, not 100 percent as expected, whereas every core on the chip
improves the performance by 70 percent.

If you didn’t guess why the result is incorrect, it is because it is not obvious for an untrained eye.
Earlier in this chapter we hinted something about race conditions. That discussion will be deferred
once more, but what is happening here is that instead of adding the return value of the method to
the result, you overwrite the result with that return value. To solve that you need to make sure that
only one task at the time updates the result, or that you read the results of the calculation one at a
time. A corrected version of the method looks something like this:

static void RunTasksCorrected() {

 double result = 0d;

 Task<double>[] tasks = new Task<double>[NUMBER_OF_ITERATIONS];

 // We create one task per iteration.
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 tasks[i] = Task.Run(() => DoIntensiveCalculations());
 }

 // We wait for the tasks to finish
 Task.WaitAll(tasks);

 // We collect the results
 foreach (var task in tasks) {
 result += task.Result;
 }

 // Print the result
 Console.WriteLine("The result is {0}", result);
}

After replacing the call in the main method as well and running the application, you get the
following result:

The result is 22.0386557304958
We're done in 10369ms!

Now the result is correct, and the speed up is roughly four times.

www.EBooksWorld.ir

www.EBooksWorld.ir

288 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

ADVICE FROM ThE EXpERTS: Getting Results from a Task

It’s not actually necessary to call Task.WaitAll(tasks) in the code because task
.Result will block the caller if the task didn’t finish the calculation. So if any of the
tasks isn’t done when you enter the foreach loop, the caller will block and wait for
the task to finish.

Working with the Scheduler
The work of queuing tasks into threads is done by a component called task scheduler, implemented
by the TaskScheduler class. Normally, you don’t work with the scheduler directly. When you start
a new task, if you are not specifying any scheduler, it uses a default one.

There is one situation, though, that you need to use the scheduler when you use tasks, and that
is when you use tasks in a Windows Forms or WPF application. If you remember from the previ-
ous section, the UI can be updated only by the UI thread, so if a task needs to update the UI, it
needs to be executed by the UI thread. To achieve that you need to call one of the StartNew or
ContinueWith overloads that takes a TaskScheduler parameter and pass TaskScheduler
.FromCurrentSynchronizationContext() as the value for that parameter. For instance, if
you were to use tasks in the Windows Forms application and you want to call the UpdateLabel
method on the UI thread, you would use the following:

Task.Factory.StartNew(UpdateLabel,
CancellationToken.None,
 TaskCreationOptions.None,
 TaskScheduler.FromCurrentSynchronizationContext());

By creating the task this way, it will be executed by the UI thread as soon as the UI thread can
process it.

Using the parallel Class
As discussed, the tasks are abstractions representing asynchronous operations run by threads.
Although they are lighter than threads, sometimes you just need a better abstraction to do this
kind of multitasking work. That is why Microsoft created the Parallel class. This class is part
of the System.Threading.Tasks namespace. This class has three static methods, as outlined in
Table 7-10.

TABLE 7-10: System .Threading .Tasks .Parallel Methods

METhOD DESCRIpTION

For Similar to a for loop but iterations may run in parallel . There are 12 overloads
for this method, some of them accepting a ParallelOptions parameter, oth-
ers using ParallelLoopState to control the loop .

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 289

METhOD DESCRIpTION

ForEach Similar to a foreach loop but iterations may run in parallel . There are 20 over-
loads for this method, some of them accepting a ParallelOptions parameter,
others using ParallelLoopState to control the loop .

Invoke This method will attempt to run the provided actions in parallel . There are two
overloads for this method, both accepting an array of Actions delegates to exe-
cute . One of the overloads accepts a ParallelOptions parameter .

As you can see all three methods mention the possibility of running in parallel, but they don’t
guarantee it.

ParallelLoopState is used as an input parameter for some of the For and ForEach methods. It has
two methods, Stop and Break, which you can use to prematurely stop a loop from running. If you
use Break in a For method, you are instructing the loop to stop executing all the iterations with an
iterator higher than the one of the current iteration.

Now see how the previous example can be implemented with Parallel.For:

static void RunParallelFor() {

 double result = 0d;

 // Here we call same method several times in parallel.
 Parallel.For(0, NUMBER_OF_ITERATIONS, i => {
 result += DoIntensiveCalculations();
 });

 // Print the result
 Console.WriteLine("The result is {0}", result);

}

As you might have guessed, if you run the previous code snippet, you get an erroneous result for the
same reason you did before: race conditions. Here is the result:

The result is 2.06612397473398
We're done in 10186ms!

To solve the problem you must take care of this by using interim results. You can use the following
overload of the Parallel.For method to solve this problem:

public static ParallelLoopResult For<TLocal>(
 int fromInclusive,
 int toExclusive,
 Func<TLocal> localInit,
 Func<int, ParallelLoopState, TLocal, TLocal> body,
 Action<TLocal> localFinally
)

www.EBooksWorld.ir

www.EBooksWorld.ir

290 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

Here is a possible solution:

static void RunParallelForCorrected() {

 double result = 0d;

 // Here we call same method several times.
 //for (int i = 0; i < NUMBER_OF_ITERATIONS; i++)
 Parallel.For(0, NUMBER_OF_ITERATIONS,
 // Func<TLocal> localInit,
 () => 0d,

 // Func<int, ParallelLoopState, TLocal, TLocal> body,
 (i, state, interimResult) => interimResult + DoIntensiveCalculations(),

 // Final step after the calculations
 // we add the result to the final result
 // Action<TLocal> localFinally
 (lastInterimResult) => result += lastInterimResult
);
 // Print the result
 Console.WriteLine("The result is {0}", result);
}

By running the application now, you get this result:

The result is 22.0386557304958
We're done in 10370ms!

Again, you get the correct result and a speedup of four times.

COMMON MISTAKES: When to Use the parallel Loops

Try to resist the urge to change all your for and foreach loops into their parallel
counterparts. If you do that, you risk breaking your application. As you saw in the sim-
ple sample, it was easy to do just that. If you know that the iterations are completely
independent of each other and you can avoid race conditions, then by all means, go for
it. But chances are high that not all your loops are that simple, so a bit of analysis and
testing is always recommended.

NOTE TPL has another abstraction in the form of Parallel Linq (PLinq) that is also
built using tasks and the TPL. This subject is addressed in Chapter 10, “Working
with Language Integrated Query (LINQ).”

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 291

Working with Continuations
In some situations you cannot transform everything into tasks without breaking your application.
You need to take care of the dependencies imposed by your algorithm. If you have dependencies
between tasks such as you can’t start step 3 before step 1 and 2 are done, you can use some of the
continuations mechanisms available in the TPL. Assume that you have three methods that you need
to call in your application. You call them Step1, Step2, and Step3.

The code should look similar to this:

class Program {
 static void Main(string[] args) {

 Step1();
 Step2();
 Step3();
 }

 static void Step1() {
 Console.WriteLine("Step1");
 }
 static void Step2() {
 Console.WriteLine("Step2");
 }
 static void Step3() {
 Console.WriteLine("Step3");
 }
}

Following are four main scenarios:

➤➤ Step1, Step2 and Step3 are independent of each other.

➤➤ Step1 and Step2 are independent of each other, and Step3 can be run only after
Step1 finishes.

➤➤ Step1 and Step2 are independent of each other, and Step3 can be run only after Step1 and
Step2 finish.

➤➤ Step1 and Step2 are independent of each other, and Step3 can be run only after Step1 or
Step2 finishes.

If you want to use tasks to implement this functionality, you have different solutions.

For the first case the Main method looks something similar to this:

 static void Main(string[] args) {

 Parallel.Invoke(Step1, Step2, Step3);
 }

The result of running the previous code is unpredictable, meaning that the methods can be run in
any order, but considering the independent nature of the steps, it shouldn’t matter.

www.EBooksWorld.ir

www.EBooksWorld.ir

292 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

For the second case, you need to change the code to use tasks. The result could be something similar
to this:

static void Main(string[] args) {

 Task step1Task = Task.Run(() => Step1());
 Task step2Task = Task.Run(() => Step2());
 Task step3Task = step1Task.ContinueWith((previousTask) => Step3());

 Task.WaitAll(step2Task, step3Task);
}

The only guarantee you have by running this is that Step3 runs after Step1. Nothing can be said
about when Step2 will be executed. The last line of code Task.WaitAll(step2Task, step3Task);
guarantees that you are waiting to collect the results. Without it the Main method just returns, and
the application might not get a chance to run the tasks. You don’t need to wait for Step1 because
Step3 starts only after Step1 finishes.

For the third case, the code should look like this:

static void Main(string[] args) {

 Task step1Task = Task.Run(() => Step1());
 Task step2Task = Task.Run(() => Step2());
 Task step3Task = Task.Factory.ContinueWhenAll(
 new Task[] { step1Task, step2Task },
 (previousTasks) => Step3());

 step3Task.Wait();
}

For this call ContinueWhenAll that takes as a first parameter an array of tasks, and as a second param-
eter a delegate to run when all the tasks finish. It returns a new task, which you can use to wait for all
the tasks to complete. The delegate takes as in parameter the array of tasks it was waiting for.

For the last scenario use the following code:

static void Main(string[] args) {

 Task step1Task = Task.Run(() => Step1());
 Task step2Task = Task.Run(() => Step2());
 Task step3Task = Task.Factory.ContinueWhenAny(
 new Task[] { step1Task, step2Task },
 (previousTask) => Step3());

 step3Task.Wait();
}

By calling ContinueWhenAny, you create a task that runs the delegate after any task from the list
completes. The delegate takes as a parameter the completed task. If the completed task returns
something, you can get that value from the previousTask.Result property. This scenario is quite
common when you have some redundant services and you care only about the value retrieved by
the quickest one.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 293

programming Asynchronous Applications with C# 5 .0
Prior to C# 5.0 to achieve asynchrony you had to manually implement this kind of functionality
using the IAsyncResult and callbacks. The resulting code was hard to follow and error prone. When
lambda expressions made their entry in C# 3.0, the code could be made somewhat more compact but
still had the same problems as before. It was difficult to both implement and maintain. TPL made
possible the birth of another paradigm in .NET: asynchronous programming. In C# 5.0 Microsoft
introduced two new language keywords: async and await.

You can use the async modifier to mark a method as asynchronous, and to notify the compiler that
the method will have at least an await statement. If your method lacks the await statement, the
compiler generates a warning.

The await operator is applied to a task in an asynchronous method to suspend the execution of the
method until the awaited task completes. The task represents ongoing work.

Many of the classes in .NET Framework Library that deal with I/O have been modified by adding
to them asynchronous methods to support the async/await pattern. If you have classes that deal
with I/O, you can do the same. See how you can change an existing synchronous method into an
asynchronous one. Here you have the ReadDataFromIO method:

public static double ReadDataFromIO() {
 // We are simulating an I/O by putting the current thread to sleep.
 Thread.Sleep(2000);
 return 10d;
}

The asynchronous variant of the method can be implemented as simple as this:

public static Task<double> ReadDataFromIOAsync() {
 return Task.Run(new Func<double>(ReadDataFromIO));
}

To make a method asynchronous, you must return a Task or Task<TResult> and add the Async
suffix to the method name. The suffix is there so the programmers using your library know that the
method is the asynchronous counterpart of your synchronous method.

RETURN TYpE OF ASYNChRONOUS METhODS

When a method is marked with an async modifier, it can have one of the following
three return types: void, Task, and Task<TResult>. If your synchronous method
were returning void, you have a choice between void and Task. If the method is
not an event handler, the recommendation is to return Task. By returning Task you
make the method not only asynchronous, but awaitable as well. If your synchronous
method were returning something else than void, you must change the return type
to Task<TResult>, so a synchronous method returning double returns in the asyn-
chronous variant Task<double>.

www.EBooksWorld.ir

www.EBooksWorld.ir

294 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

ADVICE FROM ThE EXpERTS: To Asynchronize or Not to Asynchronize?

What you did in the previous sample is a naïve implementation of an asynchronous
method, obtained by wrapping the synchronous method inside a task. Just because it
is that easy to do it doesn’t mean you should transform all your synchronous meth-
ods into asynchronous methods, and that all the methods should be transformed like
that. This chapter has mentioned I/O operations several times, so if your method
deals with I/O then you should consider making your methods asynchronous.

Now it’s time to get back to the WPF application from the previous sections and see how you can
transform the application from using ReadDataFromIO method to using the asynchronous version
of it. Recall that the example is a simple WPF application with a button called btnRun and a label
called lblResult.

public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 }

 private void btnRun_Click(object sender, EventArgs e) {
 lblResult.Content = ReadDataFromIO();
 }

}

If you run the application and press the button, the UI freezes for two seconds. You cannot move
nor do anything with it. The reason is simple: btnRun_Click is run by the UI thread, so the
method ReadDataFromIO will be run by the UI thread. Before C# 5.0 you had to make use of
a BackgroundWorker to offload the UI thread. To solve the problem with C# 5.0, the solution
is simple:

 private async void btnRun_Click(object sender, EventArgs e) {
 lblResult.Content = await ReadDataFromIOAsync();
 }

If you run the application now, you can see that the application does not freeze this time and yields
the same result.

Take a moment now to analyze what you just did and to understand why it works:

 1 . You added the async reserved word to mark the method as asynchronous. The return
type of the method wasn’t changed because you need to follow the EventHandler delegate
signature.

 2 . You replaced the call to ReadDataFromIO with the await ReadDataFromIOAsync. This
is approximately equivalent with Task<double> task = ReadDataFromIOAsync();
lblResult.Content = task.Result;.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with the Task Parallel Library ❘ 295

 3 . When you call ReadDataFromIOAsync, .NET Framework runs the code until the method will
be blocked by an I/O operation. At that point the framework saves the state of the method,
wraps it in a task, and returns to the calling method.

 4 . The calling method continues to run until it needs the result. In this case that’s right away,
but it is completely possible to save the task, do some more synchronous work, and then call
await task later, blocking the calling method.

 5 . When the compiler sees the await keyword, it rewrites the method to do what you just
described.

If you have an application and a library that makes use of some asynchronous methods, you
can change them as well. Take a moment to see how the code can change if you do not call the
ReadDataFromIO directly from the event handler, but instead call it several times via another
method, updating several labels. So using the previous example, you add an extra label called
lblResult2.

The code might look like this:

public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 }

 private void btnRun_Click(object sender, EventArgs e) {
 GetData();
 }

 private void GetData() {
 lblResult.Content = ReadDataFromIO();
 lblResult2.Content = ReadDataFromIO();
 }

}

To make it asynchronous, you need first to transform GetData. One possible implementation would
be this:

 private async Task GetDataAsync() {
 lblResult.Content = await ReadDataFromIOAsync();
 lblResult2.Content = await ReadDataFromIOAsync();
 }

As you can see, the async modifier was added to the method, and the name was changed by adding
the Async suffix to give an indication to the developers using the method that this is an asynchronous
method. The return type was changed from void to Task, and you used the asynchronous variant of
the ReadDataFromIO method, ReadDataFromIOAsync, together with the await keyword.

If you run the application now, you can see that the application won’t freeze. After two seconds you
get the first result, and after another two seconds you get the second result.

www.EBooksWorld.ir

www.EBooksWorld.ir

296 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

The reason for that is because you block the calling method in the first await and then call the sec-
ond method and await for it. One way to improve this code will be to rewrite the GetDataAsync
as follows:

private async Task GetDataAsync() {
 var task1 = ReadDataFromIOAsync();
 var task2 = ReadDataFromIOAsync();

 // Here we can do more processing
 // that doesn't need the data from the previous calls.

 // Now we need the data so we have to wait
 await Task.WhenAll(task1, task2);

 // Now we have data to show.
 lblResult.Content = task1.Result;
 lblResult2.Content = task2.Result;
}

In this case, you call ReadDataFromIOAsync the first time, and when it blocks, it wraps the call in
a Task<double> and returns the control to GetDataAsync. Then GetDataAsync method calls the
second ReadDataFromIOAsync, and when that one blocks as well, it will wrap the call in another
Task<double> and returns the control back to GetDataAsync. Then you might do some more pro-
cessing that doesn’t require the data you just asked for asynchronously. When you need the data,
you can await for it blocking the calling method. After you get the data, the calling method gets
unblocked. The method unwraps the result from the tasks by calling task.Result.

BEST pRACTICES: Dealing with Multiple Await Statements

You could have implemented the GetDataAsync as follows:

private async Task GetDataAsync() {
 var task1 = ReadDataFromIOAsync();
 var task2 = ReadDataFromIOAsync();

 lblResult.Content = await task1;
 lblResult2.Content = await task2;
}

This implementation and the previous one would have been almost identical. From
the end result standpoint, they are equivalent, but calling await two times forces the
compiler to rewrite the method twice, when you just need both values for the method
to complete.

For more in-depth information about asynchronous programming in C# 5.0, consult the links in the
“Additional Reading and Resources” section at the end of this chapter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 297

NOTE Asynchronous methods are meant to be nonblocking operations, mean-
ing that the calling method will not block the current thread while waiting on the
awaited task to finish. Using async and await doesn’t create additional threads,
because the asynchronous method doesn’t run on its own thread. More informa-
tion about threads and asynchronous operations can be found on the “Additional
Reading and Resources” section.

EXpLORING ADVANCED MULTIThREADING
pROGRAMMING TOpICS

Multithreaded programing is hard—much harder than single-threaded programing—for
several reasons:

➤➤ It introduces some “strange” behavior, caused because several threads can update the same
piece of data at the same time.

➤➤ Is not as easy to follow and understand.

➤➤ It is not as predictable; although, you have to guarantee the same result.

➤➤ It is not as easy to debug, making it harder to find bugs.

➤➤ It is harder to test.

➤➤ The list can continue.

As stated before, one of the most common problems is called race condition. This happens when
two threads try to update the same data. Here’s a simple example. Assume that you have one vari-
able called sharedData and two threads, and both of them want to run the following instruction:
sharedData++, which is executed by the CPU in the following way:

 1 . Read sharedData in a register.

 2 . Add 1 to the value in the register.

 3 . Write the new value from the register back into sharedData variable.

Why is that important to know? Because if it would have been only one instruction, the CPU would
have executed that once, and no error can be introduced here. That is called atomic operation. But
when you have a multithreaded application, the scheduler can interrupt the current thread at any
time, and that might result in an error. Here’s how:

 1 . sharedData has an initial value of 0.

 2 . The first thread runs the first instruction, reading the value 0.

 3 . The second thread runs the first instruction, reading the value 0. On a single-core machine,
this can happen when the scheduler interrupts the first thread and schedules the second
thread. In a multicore machine this is a common situation because the threads can be sched-
uled on different cores.

www.EBooksWorld.ir

www.EBooksWorld.ir

298 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 4 . The first thread increments the value to 1.

 5 . The first thread writes back the value 1 into sharedData.

 6 . The second thread increments the value to 1. Now the value should have been 2, but the
value that the second thread has is the “old” value of 0.

 7 . The second thread writes back the value 1 into sharedData.

As explained, this kind of behavior can happen even if you run your application on a machine with
one core, but it is more likely to manifest itself if you run it on a machine with several cores. To
avoid this kind of problem, you must ensure that only one thread can access a shared variable at any
given time.

The best way to deal with share data is not to share it. If you do need to share data, make it in a
read-only kind of way. Sometimes, this might not be feasible because the data is big. If that is the
case, try to isolate the data and make sure you access it in a controlled way. If this is not possible
either, make sure you synchronize access to the data using different mechanisms. In conclusion, the
order to consider sharing data is as follows:

 1 . Don’t share.

 2 . Make data read-only.

 3 . Isolate the data in smaller modules.

 4 . Use synchronization mechanisms.

Microsoft provides several classes that deal with this. There are classes that deal with signaling,
classes that deal with mutual exclusion, classes that deal with cancellations, and classes that deal
with concurrent collection. Most of them are discussed in the remainder of this section.

Synchronizing Resources
If you recall, earlier in this chapter the discussion about signaling was deferred, and now is the time
to discuss it. Signaling is used as a communication mechanism between threads. In .NET there are
two kinds of signaling mechanisms: synchronization events and barriers.

COMMON MISTAKES: Disambiguating Event

Synchronization events should not be confused with the C# events.

Synchronization Events
Synchronization events are objects that can be in one of two states: signaled and nonsignaled. If a
thread needs something to be done by another thread, it can use a synchronization event and inter-
rogate the state of the event as a communication mechanism. If it is signaled, it continues the execu-
tion; if not, it blocks the execution, waiting for the event to be signaled. When the other thread

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 299

finishes its work, it signals the event, unblocking the waiting thread or threads. Synchronization
events are implemented by two classes: EventWaitHandle and CountdownEvent.

EventWaitHandle Class
This class represents a thread synchronization event. EventWaitHandle is defined in the System
.Threading namespace, and Table 7-11 lists the most common methods.

TABLE 7-11: System .Threading .EventWaitHandle Methods

METhOD DESCRIpTION

EventWaitHandle Constructor . This method has four different overloads . At minimum
you need to specify if the event should be signaled, and if the event
should be reset manually or automatically using the EventResetMode
enumeration .

Dispose This is the method from the IDisposable interface . You need to
call this method to ensure that the OS resources are freed when this
object is not needed anymore .

Reset Sets the state of the event to nonsignaled state, causing threads
to block .

Set Sets the state of the event to signaled state . One or more wait-
ing threads will be able to proceed . If the event were created as
AutoReset, only one thread will be enabled to call WaitOne without
being blocked . Or if there are threads already blocked as a result of
a call to WaitOne, only one thread will be unblocked, and then the
event will be again nonsignaled until the Set method is called again .
If the event was created as ManualReset, the event will be signaled
until Reset is called on this event .

WaitOne Blocks the current thread if the event is nonsignaled . When this event
is signaled, if it was created as AutoReset, it unblocks the thread and
resets the event back in the nonsignaled state .

You can find a complete list of methods and properties in the “Additional Reading and Resources”
section at the end of this chapter.

Here’s an example of using this class. And to be more precise, you can see how to correct the
thread pool solution to be sure that you are not trying to read the result of the calculation before
the calculation is actually completed. The original method looked like this:

static void RunInThreadPool() {

 double result = 0d;

 // Create a work item to read from I/O
 ThreadPool.QueueUserWorkItem((x) => result += ReadDataFromIO());

www.EBooksWorld.ir

www.EBooksWorld.ir

300 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 // Save the result of the calculation into another variable
 double result2 = DoIntensiveCalculations();
 // Wait for the thread to finish

 // TODO: We will need a way to indicate
 // when the thread pool thread finished the execution

 // Calculate the end result
 result += result2;

 // Print the result
 Console.WriteLine("The result is {0}", result);

}

A possible solution using signaling looks like this:

 static void RunInThreadPoolWithEvents() {

 double result = 0d;

 // We use this event to signal when the thread is don executing.
 EventWaitHandle calculationDone =
 new EventWaitHandle(false, EventResetMode.ManualReset);

 // Create a work item to read from I/O
 ThreadPool.QueueUserWorkItem((x) => {
 result += ReadDataFromIO();
 calculationDone.Set();
 });

 // Save the result of the calculation into another variable
 double result2 = DoIntensiveCalculations();

 // Wait for the thread to finish
 calculationDone.WaitOne();

 // Calculate the end result
 result += result2;

 // Print the result
 Console.WriteLine("The result is {0}", result);
 }

The previous code does the following:

 1 . The code first creates an EventWaitHandle object in the nonsignaled state.

 2 . The code then queues a new work item. After you get the first result, you signal the event to
indicate that the calculation is done.

 3 . In the main thread, you call the second method.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 301

 4 . After the second method returns, you need to wait for the first calculation to be done, by
waiting on the event to get signaled.

 5 . When you get the signal, you know that you have the result, so you can just calculate the
final result and show it.

.NET provides two classes that inherit from EventWaitHandle: AutoResetEvent and
ManualResetEvent. Both classes have only one constructor and no methods or properties of their
own defined. In both cases the constructor takes one boolean parameter specifying if the event is
initially signaled. AutoResetEvent class constructor creates an EventWaitHandle and sets the mode
to EventResetMode.AutoReset. The ManualResetEvent class constructor sets the mode parameter
to EventResetMode.ManualReset.

CoundownEvent Class
.NET 4 introduced a new class called CoundownEvent, defined in the System.Threading
namespace. The usage scenario is straightforward: You need to wait for a predefined number of
threads to finish their work. Before .NET this was implemented by using several EventWaitHandle
objects and calling the WaitHandle.WaitAll method. As this is a common scenario, Microsoft
decided to implement this functionality in .NET. Tables 7-12 and 7-13 list the most common meth-
ods and properties of CoundownEvent.

TABLE 7-12: System .Threading .CountdownEvent Methods

METhOD DESCRIpTION

CountdownEvent Constructor that accepts as parameter an integer value called count, repre-
senting the number of signals it needs to receive before it becomes signaled .

AddCount Two overloads . Increments the CountdownEvent’s current count by one, or
by a specified value . If the CountdownEvent object is already set, then this
method can throw an InvalidOperationException .

Dispose This is the method from the IDisposable interface . You must call this
method to ensure that the OS resources are freed when this object is not
needed anymore .

Reset Two overloads . Resets the CurrentCount to the value of InitialCount or
to a specified value .

Signal Two overloads . Registers a signal with the CountdownEvent, decrementing
the value of CurrentCount by one or by a specified value .

TryAddCount Two overloads . Attempts to increment CurrentCount by one or by a speci-
fied value . This method won’t throw an exception as AddCount does . It
returns true or false to indicate the success or failure of the operation .

Wait Six overloads . Blocks the current thread until the CountdownEvent is set .
The overloads are used to call the method with a cancellation token and/or
with a timeout .

www.EBooksWorld.ir

www.EBooksWorld.ir

302 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

TABLE 7-13: System .Threading .CountdownEvent Properties

pROpERTY DESCRIpTION

CurrentCount Read-only property that returns the number of remaining signals required to set
the event .

InitialCount Read-only property that returns the numbers of signals initially required to set
the event .

IsSet Read-only property that returns true if the event is set .

WaitHandle Read-only property that returns a WaitHandle used to wait for the event to be set .

You can find a complete list of methods and properties in the “Additional Reading and Resources”
section at the end of this chapter.

The CoundownEvent does not inherit from WaitHandle like almost all other synchronization classes,
instead has a property called WaitHandle that will return a WaitHandle instance. That instance can
be used wherever a WaitHandle is needed.

Barriers
In a multithreaded scenario, there are situations when you spawn several threads and you want to
make sure that they arrive all at a certain point before you can continue the execution of your code.
One common example for this scenario is as follows: A group of friends decide to travel by cars
from point A to point C, via point B. They want to start traveling together from point A and stop at
point B; then they plan to start together again to travel and meet at the final point C. Some of them
might even decide that they don’t want to go anymore and return back home.

Before looking at a possible implementation, you need to look at what .NET can offer to solve this
kind of problems. One way would be to use the Countdown event, but it is not actually modeling
what you need! .NET 4 introduced a new class called System.Threading.Barrier that deals with
exactly such situations. Tables 7-14 and 7-15 list some of the methods and properties of the class.

TABLE 7-14: System .Threading .Barrier Methods

METhOD DESCRIpTION

Barrier Constructor . Initializes a new instance of the Barrier class . This method
has two overloads, both taking as a parameter the number of participants .
The second overload takes as an extra parameter an Action that will be
run after all the participants have arrived at the barrier on one phase .

AddParticipant Send a notification to the Barrier that there will be one more participant .

AddParticipants Send a notification to the Barrier that there will be several more
participants .

Dispose This is the method from the IDisposable interface . You must call this
method to ensure that the OS resources are freed when this object is not
needed anymore .

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 303

METhOD DESCRIpTION

RemoveParticipant Sends a notification to the Barrier that there will be one less participant .

RemoveParticipants Sends a notification to the Barrier that there will be fewer participants .

SignalAndWait Six overloads . Signals that a participant has reached the barrier and waits
for all other participants to reach the barrier as well . The overloads are
used to call the method with a cancellation token and/or with a timeout .

TABLE 7-15: System .Threading .Barrier Properties

pROpERTY DESCRIpTION

CurrentPhaseNumber Read-only property that returns the number of the barrier's current phase .

ParticipantCount Read-only property that returns the total number of participants in the
barrier .

ParticipantsRemaining Read-only property that returns the number of participants in the bar-
rier that haven’t arrived yet .

You can find a complete list of methods and properties in the “Additional Reading and Resources”
section at the end of this chapter.

CODE LAB Using barriers [Chapter7\BarrierSample\Program.cs]

Consider the following code snippet that uses the Barrier class:

static void Main(string[] args) {
 var participants = 5;

 Barrier barrier = new Barrier(participants + 1,
 // We add one for the main thread.
 b => { // This method is only called when all the paricipants arrived.
 Console.WriteLine("{0} paricipants are at rendez-vous point {1}.",
 b.ParticipantCount -1, // We substract the main thread.
 b.CurrentPhaseNumber);
 });

 for (int i = 0; i < participants; i++) {
 var localCopy = i;
 Task.Run(() => {
 Console.WriteLine("Task {0} left point A!", localCopy);
 Thread.Sleep(1000 * localCopy + 1); // Do some "work"
 if (localCopy % 2 == 0) {
 Console.WriteLine("Task {0} arrived at point B!", localCopy);
 barrier.SignalAndWait();
 }
 else {

www.EBooksWorld.ir

www.EBooksWorld.ir

304 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 Console.WriteLine("Task {0} changed its mind and went back!",
 localCopy);
 barrier.RemoveParticipant();
 return;
 }
 Thread.Sleep(1000 * (participants - localCopy)); // Do some "more work"
 Console.WriteLine("Task {0} arrived at point C!", localCopy);
 barrier.SignalAndWait();
 });
 }

 Console.WriteLine("Main thread is waiting for {0} tasks!",
 barrier.ParticipantCount - 1);
 barrier.SignalAndWait(); // Waiting at the first phase
 barrier.SignalAndWait(); // Waiting at the second phase
 Console.WriteLine("Main thread is done!");
}

In this sample you create a barrier to keep track of the participants that arrived at the meeting points.
You have to initialize the barrier with the number of participants plus one. The extra participant is
used by the main thread.

Then you create one task per participant. The statement var localCopy = i captures the value of the
iterator, so you avoid problems that might appear. Just to make the scenario more interesting, every
other task will “change its mind” and go back, but not before informing the others. The main thread is
calling barrier.SignalAndWait twice, once for each phase.

Running the previous sample yields the following result:

Main thread is waiting for 5 tasks!
Task 4 left point A!
Task 2 left point A!
Task 0 left point A!
Task 3 left point A!
Task 1 left point A!
Task 0 arrived at point B!
Task 1 changed its mind and went back!
Task 2 arrived at point B!
Task 3 changed its mind and went back!
Task 4 arrived at point B!
3 paricipants are at rendez-vous point 0.
Task 4 arrived at point C!
Task 2 arrived at point C!
Task 0 arrived at point C!
3 paricipants are at rendez-vous point 1.
Main thread is done!

Using Locking Mechanisms
One way to deal with data sharing is mutual exclusion. Mutual exclusion ensures that only one thread
at a time can access a shared resource. If another thread tries to gain access to the same resource, it
will be blocked while the first thread works with the shared resource. Instead of trying to control all

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 305

the code paths that lead to a specific data region, you control the code regions that are trying to access
that piece of data. Mutual exclusion is implemented in .NET in several ways: monitors, mutexes, sema-
phores, reader-writer locks, and some lock-free implementations. This section describes using monitors
and some lock-free implementations.

Monitors
Monitors are synchronization primitives used to synchronize access to objects. They are implemented
in .NET in the System.Threading.Monitor class. The Monitor class is used in conjunction with
reference types, not value types, to ensure that only one thread can access that object at the time. The
class exposes only static methods that take as a first parameter the object you want to take the lock
on. At any given time at most one thread can place a lock on an object by calling the Monitor.Enter
static method. If another thread will call Monitor.Enter before the first thread called Monitor.Exit,
that second thread will be blocked until the first thread calls Monitor.Exit. In .NET all objects have
a field that holds a reference to the thread that acquired a lock on the object, a ready list with all the
threads that want to acquire the lock, and a waiting list with all the threads waiting for the object to
get a notification via Pulse or PulseAll methods.

The class exposes several static methods, some of which are listed in Table 7-16.

TABLE 7-16: System .Threading .Monitor Methods

METhOD DESCRIpTION

Enter Acquires an exclusive lock on a specified object . If the lock were already
acquired by another thread, the current thread will be placed in the
ready queue and will block its execution until the thread that owns the
object releases the lock .

Exit Releases an exclusive lock on the specified object .

IsEntered Returns true if the current thread holds the lock on the specified object .
This method was introduced in .NET 4 .5 .

Pulse Notifies the thread in the waiting queue that the locked object's state
changed, in effect moving the thread from the waiting queue to the
ready queue .

PulseAll Notifies all waiting threads that the locked object's state changed, in
effect moving all the threads from the waiting queue to the ready queue .

TryEnter Attempts to acquire an exclusive lock on the specified object . This
method has six overloads enabling you to specify a timeout as well .

Wait Releases the exclusive lock on the object and blocks the current thread
until it reacquires the lock . The current thread will be placed on the
waiting queue, and it will wait there for another thread to call Pulse or
PulseAll so it can resume its execution .

www.EBooksWorld.ir

www.EBooksWorld.ir

306 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

Wait, Pulse, and PulseAll can be called only by the thread that owns the lock on the object.
Here’s some simple code using a monitor:

object syncObject = new object();
Monitor.Enter(syncObject);

// Code updating some shared data

Monitor.Exit(syncObject);

This code creates a new object to be used specifically for locking. You acquire the lock by calling
Monitor.Enter. You execute the code that accesses the shared data. You then release the lock by
calling the Monitor.Exit.

Although this is a complete piece of code, it does not account for the fact that the code that updates
the shared data might throw an exception. If that happens, the lock won’t be released, leading to a
deadlock. To solve this problem you can change the code as follows:

object syncObject = new object();

Monitor.Enter(syncObject);

try {
 // Code updating some shared data
}
finally {
 Monitor.Exit(syncObject);
}

In this way you make sure that even if the code throws an exception, the lock it is still released. The
C# language provides a shortcut instruction for this called lock. The previous snippet can be writ-
ten with lock as follows:

object syncObject = new object();

lock (syncObject) {
 // Code updating some shared data
}

Lock-Free Alternatives
Locking is both dangerous and resource-intensive. Sometimes, you just need to perform simple oper-
ations, and you need to make sure that they are atomic. To solve this kind of problem, .NET offers
a class called Interlocked, defined in the System.Threading namespace. The class has only static
methods, and all the represent atomic operations, meaning they will be performed without being
interrupted by the scheduler. Those methods are listed in the Table 7-17.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 307

COMMON MISTAKES: Using References with Monitors

As mentioned, monitors work only with reference objects, not value objects. The rea-
son is simple. Value objects are copied when they are sent as parameters. The result
will be that the lock will be acquired on one object, but when you call release you will
be on another object. When you call Exit on an object that you never called Enter
on, .NET will throw an exception.

The best practice to deal with locks is the one shown earlier. You have to create an
object that will be used only for this purpose. If you have to deal with legacy code,
or if you look for samples on the Internet, you might find code acquiring a lock on
this reference. The code looks like this:

lock (this) {
 // Code updating some shared data
}

Although this is a perfectly valid C# code snippet, and indeed acquires and releases
a lock on the current object, this code has a latent error that can manifest itself at
any time. Where might the error come from? See the following code snippet:

public class LockThisBadSample {
 public void OneMethod() {
 lock (this) {
 // Do Something here
 }
 }
}

public class UsingTheLockedObject {
 public void AnotherMethod(){
 LockThisBadSample lockObject = new LockThisBadSample();
 lock (lockObject) {
 // Do something else
 }
 }
}

As you can see AnotherMethod acquires a lock on lockObject, which is this refer-
ence inside the OneMethod call. Because you don’t have control over all the code
that would like to acquire locks on the objects, this can easily lead to deadlocks.

The lesson here is to avoid lock(this) even if you see online samples using this
kind of programming, and MSDN is no exception.

www.EBooksWorld.ir

www.EBooksWorld.ir

308 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

TABLE 7-17: System .Threading .Interlocked Methods

METhOD DESCRIpTION

Add Adds two 32-bit or 64-bit integers and replaces the first integer with the
sum, as an atomic operation .

CompareExchange Compares the first and third parameters for equality and, if they
are equal, replaces the value of the first parameter with the second
parameter .

Decrement Decrements a specified variable and stores the result, as an atomic
operation .

Exchange Sets an object to a specified value and returns a reference to the original
object, as an atomic operation .

Increment Increments a specified variable and stores the result, as an atomic
operation .

Read Loads a 64-bit value as an atomic operation and returns it to the caller .
This is only necessary on 32-bit Platforms .

Working with Concurrent Collections
The collections defined in System.Collections and System.Collections.Generic were not imple-
mented to be thread-safe. They were implemented to be fast. Prior to .NET 4 if you needed a thread-
safe collection, you had to implement it by yourself. In .NET 4 Microsoft introduced new collections
that are thread-safe. They are all defined in the System.Collections.Concurrent namespace.
Except ConcurrentDictionary, all concurrent collection classes implanted by Microsoft implement
the IProducerConsumerCollection interface. This interface requires a class that implements it to
provide the method listed in Table 7-18.

TABLE 7 .18: System .Collections .Concurrent .IProducerConsumerCollection Interface

METhOD DESCRIpTION

CopyTo Copies the elements of the IProducerConsumerCollection object
into an Array, starting at the specified location .

ToArray Returns a new array containing all the elements in the
IProducerConsumerCollection .

TryAdd Tries to add an object to the IProducerConsumerCollection.

TryTake Tries to remove and return an object from the
IProducerConsumerCollection.

www.EBooksWorld.ir

www.EBooksWorld.ir

Exploring Advanced Multithreading Programming Topics ❘ 309

The concurrent collection classes available in .NET are listed in Table 7-19.

TABLE 7 .19: System .Collections .Concurrent Classes

CLASS DESCRIpTION

BlockingCollection<T> Implements the
IProducerConsumerCollection<T> interface,
providing blocking and bounding capabilities .

ConcurrentBag<T> Represents a thread-safe collection of objects .

ConcurrentDictionary <TKey, TValue> Represents a thread-safe version of the
Dictionary <TKey, TValue> class .

ConcurrentQueue<T> Represents the thread-safe version of the
Queue<T> class .

ConcurrentStack<T> Represents the thread-safe version of the
Stack<T> class .

Working with Cancellations
One thing mentioned several times but never talked about in this chapter is how to cancel an ongoing
operation. Prior to .NET 4 the ways to cancel an ongoing operation were unsafe. They included abort-
ing threads, interrupting threads, or even abandoning operations you weren’t interested in anymore.
Although this worked most of the time, cancellations were the source of many errors. .NET 4 intro-
duced cancellations as first-class citizens of the .NET library. The cancellations provided in .NET are
cooperative cancellations, meaning that you can send a cancellation request to another thread, or task,
but it is their choice to honor the request. Cancellation capabilities are implemented using one class,
CancellationTokenSource, and one struct, CancellationToken, and works as follows:

 1 . If a thread wants to have the capability to cancel subsequent operations, it creates a
CancellationTokenSource object.

 2 . When a cancellable asynchronous operation starts, the calling thread passes a
CancellationToken obtained via the Token property of the CancellationTokenSource
object. Cancelable asynchronous operation means either an operation that has support for
cancellations or a new thread or that will be created by the current thread. This is normally
expressed in the form of one or several overloaded methods accepting a CancellationToken
parameter. By sending a CancellationToken you won’t allow the operation to initiate the
cancellation. This can be done only via the CancellationTokenSource object.

 3 . If the parent thread wants to cancel the ongoing cancelable operations, it calls Cancel on the
CancellationTokenSource object.

 4 . All ongoing operations might use the CancelationToken sent as a parameter to check if a
cancellation is pending and respond accordingly. Note that ignoring the cancellation request
is a perfect valid option.

www.EBooksWorld.ir

www.EBooksWorld.ir

310 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

You can find more information about cancellations in the “Additional Reading and Resources”
section at the end of this chapter.

You can find a practical example about how to use cancellations in the following Code Lab.

CODE LAB: Using barriers with cancellations
[Chapter7\BarrierWithCancellationSample\Program.cs]

Earlier in this chapter you saw an example in which barriers were used to coordinate the arrival of several
threads at the same point. But what happens if you want to cancel the trip? The next code sample does
just this.

static void Main(string[] args) {
 var participants = 5;

 // We create a CancellationTokenSource to be able to initiate the cancellation
 var tokenSource = new CancellationTokenSource();
 // We create a barrier object to use it for the rendez-vous points
 var barrier = new Barrier(participants,
 b => {
 Console.WriteLine("{0} paricipants are at rendez-vous point {1}.",
 b.ParticipantCount,
 b.CurrentPhaseNumber);
 });

 for (int i = 0; i < participants; i++) {
 var localCopy = i;
 Task.Run(() => {
 Console.WriteLine("Task {0} left point A!", localCopy);
 Thread.Sleep(1000 * localCopy + 1); // Do some "work"
 if (localCopy % 2 == 0) {
 Console.WriteLine("Task {0} arrived at point B!", localCopy);
 barrier.SignalAndWait(tokenSource.Token);
 }
 else {
 Console.WriteLine("Task {0} changed its mind and went back!",
 localCopy);
 barrier.RemoveParticipant();
 return;
 }
 Thread.Sleep(1000 * localCopy + 1);
 Console.WriteLine("Task {0} arrived at point C!", localCopy);
 barrier.SignalAndWait(tokenSource.Token);
 });
 }

 Console.WriteLine("Main thread is waiting for {0} tasks!",
 barrier.ParticipantsRemaining - 1);
 Console.WriteLine("Press enter to cancel!");
 Console.ReadLine();
 if(barrier.CurrentPhaseNumber < 2){
 tokenSource.Cancel();
 Console.WriteLine("We canceled the operation!");
 }
 else{

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary ❘ 311

 Console.WriteLine("Too late to cancel!");
 }
 Console.WriteLine("Main thread is done!");
}

Code Lab Analysis

The code starts by creating a CancellationTokenSource and a Barrier. The participant count for this
barrier will be the same as the number of participants because you want to use the main thread for the
cancellation.

Next, the code creates one task per participant. As before, the code makes every other task change its
mind and remove itself from the barrier.

The code then calls SignalAndWait, which sends a cancellation token from the
CancellationTokenSource.

The main thread now calls Console.ReadLine instead of waiting on the barrier to wait for the user input.
When the user presses Enter, the code looks first to see if everyone arrived at the destination. It finds this
out by querying the value of the CurrentPhaseNumber property of the barrier object. If this is 2, it means
that everyone passed through the first and second phase, so there is no need to cancel the operation.

Finally, the code calls tokenSource.Cancel, which sends cancellation signals to all objects waiting on
the barrier object, effectively unblocking them and canceling the remainder of the operation.

SUMMARY

This chapter described how to work with different technologies to improve the performance
of applications.

First, the chapter looked at threads and how they are created and started. Unfortunately, threads
are resource-consuming, but one way to circumvent this is to use threads from the thread pool.
The thread pool has a pool of pre-created threads that can pick up work items placed in a queue
by the application.

With .NET 4 Microsoft introduced the Task Parallel Library. Tasks represent an asynchronous unit
of work. A task can be created and started in one operations via Task.Run or Task.Factory
.StartNew methods. Tasks can be started as well as continuations of other tasks by calling one of the
ContinueWith, or WhenAnll/WhenAny methods. One more class introduced by .NET 4 is the Parallel
class, which abstracts away tasks’ creation and makes it easier to deal with loops or running or parallel
invocation of methods.

C# 5.0 took the tasks concepts further, by making asynchronous programming in .NET a first-class
citizen, via async/await keywords. The chapter also looked at some of the advanced topics in multi-
threading applications such as synchronization events, barriers, different locking mechanisms, and the
lock-free alternatives offered by the Interlocked class.

Finally, the chapter looked at the concurrent collections that implement a thread-safe version of the
most common collections, and it looked at ways to cancel ongoing operations with cancellation tokens.

www.EBooksWorld.ir

www.EBooksWorld.ir

312 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . You are a developer at company xyx. You have been asked to improve the responsiveness of
your WPF application. Which solution best fits the requirements?

 a . Use the BackgroundWorker class.

 b . Use the LongRunningMethod class.

 c . Run the method in the UI thread.

 d . Use the WorkInBackground class.

 e . None of the above.

 2 . How do you execute a method as a task?

 a . Create a new Task object, and then call the Start method on the newly created
object.

 b . Create the task via the Task.Run method.

 c . Create the task via the Task.Factory.StartNew method.

 d . All the above.

 e . None of the above.

 3 . Which of the following is not a locking mechanism?

 a . Monitor

 b . Semaphore

 c . Mutex

 d . async

 4 . How can you schedule work to be done by a thread from the thread pool?

 a . You create a new object of type ThreadPool, and then you call the Start method.

 b . You call the ThreadPool.Run method.

 c . You call the ThreadPool.QueueUserWorkItem method.

 d . You create a new thread and set its property IsThreadPool to true.

 e . You call ContinueWith on a running thread from the thread pool.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 313

 5 . Which of the following are methods of the Parallel class?

 a . Run

 b . Invoke

 c . For

 d . ForEach

 e . Parallel

 6 . Which method can you use to cancel an ongoing operation that uses CancelationToken?

 a . Call Cancel method on the CancelationToken

 b . Call Cancel method on the CancelationTokenSource object that was used to cre-
ate the CancelationToken

 c . Call Abort method on the CancelationToken

 d . Call Abort method on the CancelationTokenSource object that was used to create
the CancelationToken

 7 . Which method would you call when you use a barrier to mark that a participant reached that
point?

 a . Signal

 b . Wait

 c . SignalAndWait

 d . RemoveParticipant

 e . JoinParticipant

 8 . What code is equivalent with lock(syncObject){…}?

 a . Monitor.Lock(syncObject) {…}

 b . Monitor.TryEnter(syncObject) {…}

 c . Monitor.Enter(syncObject); try{…} finally{
 Monitor.Exit(syncObject); }

 d . Monitor.Lock(syncObject); try{…} catch{

 Monitor.Unlock(syncObject); }

 9 . In a multithreaded application how would you increment a variable called counter in a lock
free manner? Choose all that apply.

 a . lock(counter){counter++;}

 b . counter++;

 c . Interlocked.Add(ref counter, 1);

 d . Interlocked.Increment (counter);

 e . Interlocked.Increment (ref counter);

www.EBooksWorld.ir

www.EBooksWorld.ir

314 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

 10 . Which method will you use to signal and EventWaitHandle?

 a . Signal

 b . Wait

 c . Set

 d . Reset

 e . SignalAndWait

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this chapter:

Parallel Processing and Concurrency in the .NET Framework
http://msdn.microsoft.com/en-us/library/hh156548.aspx

Thread Class
http://msdn.microsoft.com/en-us/library/system.threading.thread.aspx

Threading in C# by Joseph Albahari
http://www.albahari.com/threading/

Asynchronous Programming Patterns
http://msdn.microsoft.com/en-us/library/jj152938.aspx

Consuming the Task-based Asynchronous Pattern
http://msdn.microsoft.com/en-us/library/hh873173.aspx

BackgroundWorker Class
http://msdn.microsoft.com/en-us/library/4852et58.aspx

Threading Model
http://msdn.microsoft.com/en-us/library/ms741870.aspx

Task Class
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.aspx

Asynchronous Programming with Async and Await
http://msdn.microsoft.com/en-us/library/hh191443.aspx

Asynchronous Programming with Async and Await and Threads
http://msdn.microsoft.com/en-us/library/hh191443.aspx#BKMK_Threads

Parallel Programming team blog
http://blogs.msdn.com/b/pfxteam/

EventWaitHandle Class
http://msdn.microsoft.com/en-us/library/system.threading.eventwaithandle.aspx

CountdownEvent Class
http://msdn.microsoft.com/en-us/library/system.threading.countdownevent.aspx

Barrier Class
http://msdn.microsoft.com/en-us/library/system.threading.barrier.aspx

Cancellation in Managed Threads
http://msdn.microsoft.com/en-us/library/dd997364.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/hh156548.aspx
http://msdn.microsoft.com/en-us/library/system.threading.thread.aspx
http://www.albahari.com/threading/
http://msdn.microsoft.com/en-us/library/jj152938.aspx
http://msdn.microsoft.com/en-us/library/hh873173.aspx
http://msdn.microsoft.com/en-us/library/4852et58.aspx
http://msdn.microsoft.com/en-us/library/ms741870.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx#BKMK_Threads
http://blogs.msdn.com/b/pfxteam/
http://msdn.microsoft.com/en-us/library/system.threading.eventwaithandle.aspx
http://msdn.microsoft.com/en-us/library/system.threading.countdownevent.aspx
http://msdn.microsoft.com/en-us/library/system.threading.barrier.aspx
http://msdn.microsoft.com/en-us/library/dd997364.aspx

Cheat Sheet ❘ 315

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Threads

➤➤ Create a thread object by sending to the constructor a delegate that will be the thread’s
main method.

➤➤ Start the thread by calling explicitly the start method on the thread object.

➤➤ To use the thread pool, call ThreadPool.QueueUserWorkItem or ThreadPool
.RegisterWaitForSingleObject.

Tasks

➤➤ Create a task object by sending to the constructor a delegate that will be the tasks main
method. Start the task by calling explicitly the start method on the task object.

➤➤ Call one of the Task.Run static methods and send as parameter a delegate that will be tasks
main method. The task is started automatically.

➤➤ Call one of the Task.Factory.StartNew static methods and send as parameter a delegate
that will be the task’s main method. The task is started automatically.

Locks

➤➤ Use Monitor.Enter or Monitor.TryEnter to acquire a lock, and use Monitor.Exit to
release the lock.

➤➤ Use the lock statement in C#.

Cancellations

➤➤ Use CancellationTokenSource objects to control cancelable operations.

➤➤ Use the CancellationToken obtained from a CancellationTokenSource object via the
Token property to start a cancelable operation

➤➤ Call Cancel on the CancellationTokenSource object to initiate the cancellation.

➤➤ Inside the cancelable operation stop what you were doing to cancel the operation.

async/await

➤➤ These are two new keywords introduced in C# 5.0

➤➤ async marks a method as asynchronous, effectively telling the compiler that the method will
have an await instruction in the body. If you don’t have any await instruction in the method
body, the compiler will issue a warning.

➤➤ await blocks the execution of the current method, waiting for the awaited operation
to complete.

www.EBooksWorld.ir

www.EBooksWorld.ir

316 ❘ ChApTER 7 multIthreadIng and asynchronous ProcessIng

BackgroundWorker

➤➤ Wire the long-running method that you need executed via the DoWork event.

➤➤ Start the operation by calling RunWorkerAsync.

➤➤ To find out when the long operation is done, subscribe to the RunWorkerCompleted event.

➤➤ To get information about the progress of the operation, subscribe to the
ProgressChanged event.

Task continuation

➤➤ Continue a task by invoking ContinueWith, WhenAll, or WhenAny methods.

REVIEW OF KEY TERMS

asynchrony Operations that are run in a nonblocking fashion. When a method needs to call another
method that potentially can block, instead of calling that method directly you can apply different
techniques to avoid the blocking of the calling method.

Asynchronous pattern Model (ApM) When using this pattern, a method is split in two parts, a
Begin and an End part. The begin part is responsible to prepare the call and to return the caller
right away, and the end part is the one called to get back the result. The method was run in a
thread from the thread pool. It is not recommended to use this approach for new development;
instead use the new TAP.

atomic operation An operation that will be run at once without being interrupted by the scheduler.

deadlock Occurs when two or more threads try to acquire a lock on a resource that one of the other
threads has locked already; neither of them can make more progress. There are four conditions that
need to be fulfilled and that lead to a deadlock: mutual exclusion, hold and wait, no preemption, and
circular wait.

Event-based Asynchronous pattern (EAp) This pattern requires a method to be suffixed with Async
and provide events and delegates to signal when the method finished or failed. It is not recommended
for new development to use this approach; instead use the new TAP.

fork-join pattern The process of spawning another thread from the current thread (fork) to do
something else while the current threads continue their work and then to wait for the spawned
thread to finish its execution (join).

multithreading The capability of an operating system, or a hardware platform to have several threads
of execution at the same time.

mutual exclusion Mutual exclusion is the problem, first solved by Edsger W. Dijkstra, of ensuring
that two threads can’t be in the same critical section at the same time.

race condition Occurs when two or more threads access shared data, writing at the same time. If
the access to data is for read purposes only, there is no problem. But when several threads try to
write, one thread might overwrite the data written by another thread, not taking in consideration
the change.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 317

scheduler A component of the operating system that ensures that threads are given access to the
CPU in a fair manner, avoiding situations when a thread monopolizes the CPU.

task A unit of work. It normally represents an asynchronous operation that is part of a bigger problem.

Task parallel Library (TpL) A .NET library created by Microsoft that tries to abstract away and
simplify the code that deals with threads.

Task-based Asynchronous pattern (TAp) A pattern based on a single method that returns Task or
Task<Result> objects that represent the asynchronous work in progress. This is the recommended
pattern for the new development.

thread The smallest unit of execution that can be independently scheduled by the operating system.

thread pool The thread pool represents a pool of precreated threads that can be used by the tasks, or
to queue work items, or to run asynchronous I/O operations.

EXAM TIpS AND TRICKS

You can print the Review of Key Terms and the Cheat Sheet for this chapter to help
you study. You can find these files in the ZIP file for this chapter at www.wrox.com/
remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating and Using Types with
Reflection, Custom Attributes,
the CodeDOM, and Lambda
Expressions

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Using the System.Reflection namespace

➤➤ Reading and creating custom attributes

➤➤ Generating code using the CodeDOM namespace

➤➤ Understanding lambda expressions

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter08
download and individually named according to the names throughout the chapter.

This chapter has a mix of topics that will be covered on the exam, and these four topics do not
directly relate to each other. The first three topics cover features that can be used to examine,
customize, or generate C# code, while the last topic explains how to write shorthand syntax for
your existing methods. It is especially important to understand the concept of lambda expressions
because not only will you see them used extensively in Chapter 10, “Working with Language
Integrated Query (LINQ),” but you will see questions on the test that use lambda expressions and
you could be asked what the result of the expression would be.

Table 8-1 introduces you to the exam objectives covered in this chapter.

8

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

320 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

TABLE 8-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Create and use types Reflection . This includes finding, executing, and creating types at
run time .

Attributes . This includes creating, applying, and reading attributes that
can be used to change the behavior of your class .

The CodeDOM . This includes creating code generators .

Lambda expressions . This is shorthand syntax for creating methods
without the normal method declaration syntax .

USING ThE SYSTEM .REFLECTION NAMESpACE

Reflection refers to the ability to examine code and dynamically read, modify, or invoke behavior
for an assembly, module, or type. A type is any class, interface, array, value type, enumeration,
parameter, generic type definition, and open or closed constructed generic types. You can use the
classes in the System.Reflection namespace and the System.Type class to discover the assembly
name, the namespace, the properties, the methods, the base class, and plenty of other metadata
about a class or variable.

The System.Reflection namespace contains numerous classes that can be used to read metadata
or dynamically invoke behavior from a type. Table 8-2 lists some of the frequently used classes in
the System.Reflection namespace.

TABLE 8-2: Commonly Used Classes in the System .Reflection Namespace

TYpE DESCRIpTION

Assembly Represents a DLL or EXE file and contains properties for the
Assembly name, classes, modules, and other metadata language
run-time application .

EventInfo Represents an event defined in your class and contains properties such
as the event name .

FieldInfo Represents a field defined in your class and contains properties such
as whether the field is public or private .

MemberInfo Abstracts the metadata about a class and can represent an event, a
field, and so on .

MethodInfo Represents a method defined in your class and can be used to invoke
the method .

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 321

TYpE DESCRIpTION

Module The module is a file that composes the assembly . This is usually a DLL
or EXE file .

ParameterInfo Represents a parameter declaration for a method or a constructor .
This allows you to determine the type of parameter, its name, as well as
other properties .

PropertyInfo Represents a property defined in your class and contains properties
such as the property name and type .

Reflection is a powerful feature and can be used with some design patterns such as the Factory or
Inversion of Control design patterns. These design patterns are more advanced topics and won’t be
covered in the test, but it is important to understand the concept of reflection and its capabilities
for the test.

Assembly Class
An assembly is essentially a compiled piece of code that is typically a DLL or EXE file. You can use the
Assembly class to load the assembly, read metadata about the assembly, and even create instances of the
types contained in the assembly. Table 8-3 lists frequently used properties for an Assembly.

TABLE 8-3: Commonly Used System .Reflection .Assembly Properties

property Description

CodeBase Returns the path for the assembly

DefinedTypes Returns a collection of the types defined in this assembly

ExportedTypes Returns a collection of the public types defined in this assembly

FullName Returns the name of the assembly

GlobalAssemblyCache Returns a boolean value indicating whether the assembly was loaded
from the global assembly cache

ImageRuntimeVersion Returns the version of the Common Language Runtime (CLR) for
the assembly

Location Returns the path or UNC location of the assembly

Modules Returns a collection that contains the modules in this assembly

SecurityRuleSet Returns a value that indicates which set of security rules the Common
Language Runtime enforces for the assembly

www.EBooksWorld.ir

www.EBooksWorld.ir

322 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

The following code sample loads the System.Data assembly and writes some of the assembly’s
properties to the Output window:

Assembly myAssembly = Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089");

Debug.WriteLine("CodeBase: {0}", myAssembly.CodeBase);
Debug.WriteLine("FullName: {0}", myAssembly.FullName);
Debug.WriteLine("GlobalAssemblyCache: {0}", myAssembly.GlobalAssemblyCache);
Debug.WriteLine("ImageRuntimeVersion: {0}", myAssembly.ImageRuntimeVersion);
Debug.WriteLine("Location: {0}", myAssembly.Location);

The preceding code produces the following output:

CodeBase: file:///C:/Windows/Microsoft.Net/assembly/GAC_32/System.Data/
v4.0_4.0.0.0__b77a5c561934e089/System.Data.dll
FullName: System.Data, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
GlobalAssemblyCache: True
ImageRuntimeVersion: v4.0.30319
Location: C:\Windows\Microsoft.Net\assembly\GAC_32\System.Data\
v4.0_4.0.0.0__b77a5c561934e089\System.Data.dll

Table 8-4 lists the frequently used methods for an Assembly.

TABLE 8-4: Commonly Used System .Reflection .Assembly Methods

METhOD DESCRIpTION

CreateInstance(String) Creates an instance of the class by searching the assem-
bly for the class name

GetCustomAttributes(Boolean) Returns an array of objects that represent the custom attri-
butes for this assembly

GetExecutingAssembly Returns an Assembly object for the currently running
program

GetExportedTypes Returns the public classes defined in this assembly

GetModule Returns the specified module in this assembly

GetModules() Returns all the modules that are part of this assembly

GetName() Returns the AssemblyName for this assembly

GetReferencedAssemblies Returns an array of AssemblyName objects that represent
all referenced assemblies

GetTypes Returns an array of Type object defined in this assembly

Load(String) Loads an assembly given the long form of its name

www.EBooksWorld.ir

www.EBooksWorld.ir

file:///C:/Windows/Microsoft.Net/assembly/GAC_32/System.Data/

Using the System.Reflection Namespace ❘ 323

LoadFile(String) Loads the contents of an assembly file given a file path

LoadFrom(String) Loads an assembly given its file name or path

ReflectionOnlyLoad(String) Loads an assembly but you can only perform reflection on
the types defined in the assembly

UnsafeLoadFrom Loads an assembly bypassing some security checks

The GetExecutingAssembly method is a static method that enables you to get a reference to the
currently executing code. The GetExportedTypes and GetTypes methods are all used to get ref-
erences to the types defined in the assembly. (The System.Type class will be explained in more
detail in the next section.) The difference between GetExportedTypes and GetTypes is that the
GetExportedTypes returns only the types that are public. The following code snippet displays all
the types defined in the currently executing assembly:

Assembly myAssembly = Assembly.GetExecutingAssembly();

Type[] myAssemblysTypes = myAssembly.GetTypes();

foreach (Type myType in myAssemblysTypes)
{
 Debug.WriteLine(string.Format("myType Name: {0}", myType.Name));
}

The Modules property or the GetLoadedModules, GetModules, and GetModule methods return
the list of modules or a specific module defined in the assembly. A module is a file that composes the
Assembly. This is usually a single DLL or EXE file. The following code lists all the modules defined
in the System.Data assembly:

Assembly myAssembly = Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089");

Module[] myAssemblysModules = myAssembly.GetModules();

foreach (Module myModule in myAssemblysModules)
{
 Debug.WriteLine(string.Format("myModule Name: {0}", myModule.Name));
}

The output for the preceding code snippet is as follows:

myModule Name: System.Data.dll

The preceding code snippet used the Load method to load the System.Data assembly into memory.
Because the assembly was loaded using the Load method, you can then execute code within the
assembly. If you do not need to execute code, you can use the ReflectionOnlyLoad method.

You can also load an assembly by calling the LoadFrom or LoadFile methods. Both methods take
a file path as a parameter. To understand the difference between LoadFrom and LoadFile, you
need to understand the concept of context and the different types of context there are. Think of the

www.EBooksWorld.ir

www.EBooksWorld.ir

324 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

context as where reflection searches for the assembly. An assembly can be in one of three contexts
or no context at all:

➤➤ The first context is the load context, which contains the assemblies found by probing.
Probing is the process of looking in the GAC, the host assembly store, the folder of the exe-
cuting assembly, or the private bin folder of the executing assembly to find the assembly.

➤➤ The second context is the load-from context. This contains the assemblies located in the path
passed into the LoadFrom method.

➤➤ The third context is the reflection-only context, which contains the assemblies loaded with
the ReflectionOnlyLoad and ReflectionOnlyLoadFrom methods.

ADVICE FROM ThE EXpERTS: The Disadvantages of Using LoadFrom

There are a few disadvantages of using the LoadFrom method, and using Load is
recommended. First, if there is already an assembly loaded with the same identity,
then this assembly is returned, not the one found in the file path. If an assembly
of the same identity is found in the probing path but in a different location, an
exception can occur. Third, you must have FileIOPermissionAccess.Read and
FileIOPermissionAccess.PathDiscovery permissions to the file path. LoadFile is
different in that it can load the specific file passed in the parameter, but you still need
the correct file permissions to load the assembly. You would use the LoadFile when
there are two assemblies with the same identity in different folders on the computer.

Once you have an assembly loaded you can then create instances of the classes defined in the assem-
bly. To create an instance of a class, use the CreateInstance method. The following code creates an
instance of the DataTable and prints the number of rows to the Output window:

Assembly myAssembly = Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089");

DataTable dt = (DataTable)myAssembly.CreateInstance("System.Data.DataTable");

Debug.Print("Number of rows: {0}", dt.Rows.Count);

COMMON MISTAKES: Working with the CreateInstance Method

The CreateInstance method will not throw an exception if you pass in a type
name that is not found in the assembly. The return value will be null, so be sure to
check that the name is correct.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 325

The GetReferencesAssemblies is used to discover the references for the assembly. This can be help-
ful when troubleshooting deployment issues. The following code prints all the referenced assemblies
for the System.Data assembly:

Assembly myAssembly = Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089");

AssemblyName[] referencedAssemblyNames = myAssembly.GetReferencedAssemblies();

foreach (AssemblyName assemblyName in referencedAssemblyNames)
{
 Debug.WriteLine("Assembly Name: {0}", assemblyName.Name);
 Debug.WriteLine("Assembly Version: {0}", assemblyName.Version);
}

The preceding code will produce the following results:

Assembly Name: mscorlib
Assembly Version: 4.0.0.0
Assembly Name: System
Assembly Version: 4.0.0.0
Assembly Name: System.Xml
Assembly Version: 4.0.0.0
Assembly Name: System.Configuration
Assembly Version: 4.0.0.0
Assembly Name: System.Transactions
Assembly Version: 4.0.0.0
Assembly Name: System.Numerics
Assembly Version: 4.0.0.0
Assembly Name: System.EnterpriseServices
Assembly Version: 4.0.0.0
Assembly Name: System.Core
Assembly Version: 4.0.0.0

The GetCustomAttributes and GetCustomAttributesData will be explained later in this chapter
in the “Read and Create Custom Attributes” section. But for now just realize that you can use the
Assembly class to get the list of custom attribute classes defined in an assembly.

The System .Type Class
The System.Type class represents a class, interface, array, value type, enumeration, parameter,
generic type definitions, and open or closed constructed generic types. For the most part, you usu-
ally use a Type to get information about a class contained in an assembly. You can obtain a refer-
ence to a type in two ways. You can use the typeof() keyword and pass in the name of the type:

System.Type myType = typeof(int);

Or you can use the GetType() method on an instance of the type:

int myIntVariable = 0;
System.Type myType = myIntVariable.GetType();

www.EBooksWorld.ir

www.EBooksWorld.ir

326 ❘ CHAPTER 8 REFLECTION, CUSTOM ATTRIBUTES, THE CODEDOM, AND LAMBDA EXPRESSIONS

Both of these examples create an instance of a type class for the int type. After you have a reference
to the type, you can then examine the properties. Table 8-5 lists commonly used properties for the
System.Type class.

TABLE 8-5: Commonly Used Properties of the System.Type Class

PROPERTY DESCRIPTION

Assembly Returns the Assembly in which the type is declared

AssemblyQualifiedName Returns a string which is the assembly-qualified name of the
Type, which includes the name of the assembly from which
the Type was loaded

BaseType Return a Type from which the current Type inherits

FullName Returns a string which is the fully qualified name of the Type,
including the namespace of the Type but not the assembly

IsAbstract Returns a boolean value indicating whether the Type is abstract

IsArry Returns a boolean value indicating whether the Type is an array

IsClass Returns a boolean value indicating whether the Type is a class
rather than a value type or interface

IsEnum Returns a boolean value indicating whether the current Type
represents an enumeration

IsInterface Returns a boolean value indicating whether the Type is
an interface

IsNotPublic Returns a boolean value indicating whether the Type is not
declared public

IsPublic Returns a boolean value indicating whether the Type is declared
as public

IsSerializable Returns a boolean value indicating whether the Type is serializable

IsValueType Returns a boolean value indicating whether the Type is a
value type

Name Returns the name of the type

Namespace Returns the namespace of the current type

The following code creates an instance of an int variable, obtains a reference to the int type, and
writes some of its properties to the Output window:

int myIntVariable = 0;
System.Type myType = myIntVariable.GetType();

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 327

Debug.WriteLine("AssmeblyQualifiedName: {0}", myType.AssemblyQualifiedName);
Debug.WriteLine("FullName: {0}", myType.FullName);
Debug.WriteLine("IsValueType: {0}", myType.IsValueType);
Debug.WriteLine("Name: {0}", myType.Name);
Debug.WriteLine("Namespace: {0}", myType.Namespace);

The preceding code produces the following output:

AssmeblyQualifiedName: System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
FullName: System.Int32
IsValueType: True
Name: Int32
Namespace: System

The System.Type class also has methods that you can use to get the properties, methods, construc-
tors, interfaces, events and any other metadata about the type. Table 8-6 lists some of the methods
of the type class.

TABLE 8-6: Commonly Used Methods of the System.Type Class

NAME DESCRIPTION

GetArrayRank When the type represents an array, this returns the number of
dimensions in an Array.

GetConstructor(Type[]) Searches for a public instance constructor whose param-
eters match the types in the specified array and returns a
ConstructorInfo object.

GetConstructors() Returns an array of ConstructorInfo objects for all the public
constructors defined for the current Type.

GetEnumName When the type represents an enumeration, this returns the name
of the element that has the specified value.

GetEnumNames When the type represents an enumeration, this returns the all of
the names of the members.

GetEnumValues When the type represents an enumeration, this returns an array of
the values of the enumeration.

GetField(String) Searches for the public field with the specified name.

GetFields() Returns all the public fields of the current Type.

GetInterface(String) Returns the interface with the specified name.

GetMember(String) Returns the public member with the specified name.

GetMembers() Returns all public members of the current Type.

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

328 ❘ CHAPTER 8 REFLECTION, CUSTOM ATTRIBUTES, THE CODEDOM, AND LAMBDA EXPRESSIONS

NAME DESCRIPTION

GetMethod(String) Returns the public method with the specified name.

GetMethods() Returns all the public methods of the current Type.

GetProperties() Returns all the public properties of the current Type.

GetProperty(String) Returns the public property with the specified name.

GetTypeArray Returns all the types of objects in the specified array.

InvokeMember(String,

BindingFlags, Binder,

Object, Object[])

Executes a method using the specified binding constraints and
matching the specified argument list.

GetArrayRank
When the Type object represents an array, the GetArrayRank method returns the number of dimen-
sions in the array. The following code creates a three-dimensional array and prints the array rank to
the Output window:

int[,,] myIntArray = new int[5,6,7];
Type myIntArrayType = myIntArray.GetType();
Debug.Print("Array Rank: {0}", myIntArrayType.GetArrayRank());

The preceding code prints the following to the Output window:

Array Rank: 3

GetConstructors
The GetConstructors method returns an array of ConstructorInfo objects that you can use to get
information about all the constructors of the type. The following code prints the constructors and
the parameters for a System.DataTable object to the Output window:

DataTable myDataTable = new DataTable();
Type myDataTableType = myDataTable.GetType();
ConstructorInfo[] myDataTableConstructors = myDataTableType.GetConstructors();

for(int i = 0; i <= myDataTableConstructors.Length - 1; i++)
{
 ConstructorInfo constructorInfo = myDataTableConstructors[i];
 Debug.Print("\nConstructor #{0}", i + 1);

 ParameterInfo[] parameters = constructorInfo.GetParameters();
 Debug.Print("Number Of Parameters: {0}", parameters.Length);

 foreach (ParameterInfo parameter in parameters)
 {

TABLE 8-6 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 329

 Debug.Print("Parameter Name: {0}", parameter.Name);
 Debug.Print("Parameter Type: {0}",
 parameter.ParameterType.Name);
 }
}

The preceding code produces the following output:

Constructor #1
Number Of Parameters: 0

Constructor #2
Number Of Parameters: 1
Parameter Name: tableName
Parameter Type: String

Constructor #3
Number Of Parameters: 2
Parameter Name: tableName
Parameter Type: String
Parameter Name: tableNamespace
Parameter Type: String

GetEnumName, GetEnumNames, and GetEnumValues
When the Type object represents an enumeration, the GetEnum methods enable you to determine all
the names and values within an enumeration. For example, the following is a custom enumeration
with three members:

private enum MyCustomEnum
{
 Red = 1,
 White = 2,
 Blue = 3
}

The following code writes all the names in the enumeration to the Output window:

Type myCustomEnumType = typeof(MyCustomEnum);

string[] enumNames = myCustomEnumType.GetEnumNames();

foreach (string enumName in enumNames)
{
 Debug.Print(string.Format("Name: {0}", enumName));
}

The preceding code displays the following in the Output window:

Name: Red
Name: White
Name: Blue

www.EBooksWorld.ir

www.EBooksWorld.ir

330 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

You can obtain the values for the enumeration by using the GetEnumValues method. The following
code prints all the enumerations values to the Output window:

Type myCustomEnumType = typeof(MyCustomEnum);

Array enumValues = myCustomEnumType.GetEnumValues();
foreach (object enumValue in enumValues)
{
 Debug.Print(string.Format("Enum Value: {0}", enumValue.ToString()));
}

The preceding code produces the following output:

Enum Value: Red
Enum Value: White
Enum Value: Blue

COMMON MISTAKES: The Value Is the Same as the Name

Note that the value is the same as the name, not the numbers 1, 2, or 3.

You can also use the GetEnumName method to retrieve the name. The following displays all the
members by using the underlying value of the enumeration.

Type myCustomEnumType = typeof(MyCustomEnum);

for (int i = 1; i <= 3; i++)
{
 string enumName = myCustomEnumType.GetEnumName(i);
 Debug.Print(string.Format("{0}: {1}", enumName, i));
}

The preceding code produces the following output.

Red: 1
White: 2
Blue: 3

GetField and GetFields
A field is a variable defined in a class or struct. The GetField method is used to get a FieldInfo
object for one field. The GetFields method returns an array of FieldInfo objects. The GetFields
method can also return the fields from inherited classes. When you call GetFields, you pass in the
BindingFlags enumeration to specify the scope of fields that you want it to return. For example,
the following class contains five fields all with different scope:

class ReflectionExample
{
 private string _privateField = "Hello";
 public string _publicField = "Goodbye";
 internal string _internalfield = "Hola";

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 331

 protected string _protectedField = "Adios";
 static string _staticField = "Bonjour";
}

You can use GetFields to get the values of these variables regardless of the scope.

ReflectionExample reflectionExample = new ReflectionExample();
Type reflectionExampleType = typeof(ReflectionExample);

FieldInfo[] fields = reflectionExampleType.GetFields(BindingFlags.Public |
 BindingFlags.Instance |
 BindingFlags.Static |
 BindingFlags.NonPublic |
 BindingFlags.FlattenHierarchy);

foreach (FieldInfo field in fields)
{
 object fieldValue = field.GetValue(reflectionExample);

 Debug.WriteLine(string.Format("Field Name: {0}, Value: {1}", field.Name,
 fieldValue.ToString()));
}

The preceding code produces the following output:

Field Name: _privateField, Value: Hello
Field Name: _publicField, Value: Goodbye
Field Name: _internalfield, Value: Hola
Field Name: _protectedField, Value: Adios
Field Name: _staticField, Value: Bonjour

When calling GetFields, you use the BindingFlags enumeration and can specify more than one
value by using the bitwise operator.

ADVICE FROM ThE EXpERTS: Declaring Variables as private

Even if you declare a variable as private, the user of your class can still read the
value of the field using reflection, so be careful what you put in these variables,
especially if you store passwords or sensitive data.

The FieldInfo object also has a SetValue method that enables you to change the value of
the field, even if it is private or protected. To demonstrate, add the following get accessor to the
ReflectionExample class:

public string PrivateField
{
 get { return privateField; }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

332 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

The following code changes the value of the privateField variable and prints its value to the
Output window:

ReflectionExample reflectionExample = new ReflectionExample();
Type reflectionExampleType = typeof(ReflectionExample);

reflectionExampleType.GetField("privateField", BindingFlags.NonPublic |
 BindingFlags.Instance).SetValue(reflectionExample, "My New Value");

Debug.Print("Private Field Value: {0}",
 reflectionExample.PrivateField);

The preceding code produces the following output:

Private Field Value: My New Value

GetProperty and GetProperties
The GetProperty and GetProperties methods are similar to the GetField and GetFields methods
because they enable you to get the properties, get their value, or set their value. The difference is that
you use a PropertyInfo object instead of the FieldInfo object, and you can access only proper-
ties instead of fields. The PropertyInfo object has GetValue and SetValue methods just like the
FieldInfo object and works the same way.

GetMethod and GetMethods
The GetMethod and GetMethods methods enable you to obtain information about a method for a type.
After you have a reference to the method, you can execute the method by calling the Invoke method
of the MethodInfo class. You can also execute the method by calling the InvokeMember method of the
Sytem.Type class and pass in the name of the method and its parameters.

Add the following method to the ReflectionExample class:

public double Multiply(double x, double y)
{
 return x * y;
}

The following code calls the Multiply method and prints the return value to the Output window:

ReflectionExample reflectionExample = new ReflectionExample();
Type reflectionExampleType = typeof(ReflectionExample);

MethodInfo methodInfo = reflectionExampleType.GetMethod("Multiply");

double returnValue = (double)methodInfo.Invoke(reflectionExample,
 new object[] { 4, 5 });

Debug.Print("Return Value: {0}", returnValue);

Notice that you pass parameters to the method by creating an array of objects and passing it as the
second parameter to the Invoke method. The preceding code prints “Return Value: 20” to the
Output window.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using the System.Reflection Namespace ❘ 333

When using the InvokeMember method of the System.Type class, the syntax is as follows:

ReflectionExample reflectionExample = new ReflectionExample();
Type reflectionExampleType = typeof(ReflectionExample);

double returnValue = (double)reflectionExampleType.InvokeMember("Multiply",
 BindingFlags.InvokeMethod,
 null,
 reflectionExample,
 new object[] { 4, 5 });

Debug.Print(string.Format("Return Value: {0}", returnValue));

The second parameter is BindingFlags.InvokeMethod, which triggers the InvokeMember method
to invoke the method.

REAL-WORLD CASE SCENARIO Using reflection to map a table’s columns to
the properties of a class

A common pattern in a C# application is to map the columns in
a table to the properties of a class. You can use reflection to create a
shared utility method that can set the properties of your class to the
value of the columns in your table and only have to write this code
once for all your classes. This can save you a lot of time. For this
exercise, you will need a database with a table called Person and a
class that already contains a property for each column. Figure 8-1
displays the design of the table in SQL Server Enterprise Manager.

The following code is your class definition:

class Person
{
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

Solution

 1 . Create a class called ReflectionExample and add the following method:

public static bool LoadClassFromSQLDataReader(object myClass, SqlDataReader dr)
{
 if (dr.HasRows)
 {
 dr.Read();

 Type typeOfClass = myClass.GetType();

FIGURE 8-1: Table design in SQL
Server Enterprise Manager

www.EBooksWorld.ir

www.EBooksWorld.ir

334 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 for (int columnIndex = 0; columnIndex <= dr.FieldCount - 1; columnIndex++)
 {
 //Get the name of the column
 string columnName = dr.GetName(columnIndex);

 //Check if a property exists that matches that name.
 PropertyInfo propertyInfo = typeOfClass.GetProperty(columnName);

 if (propertyInfo != null)
 {
 //Set the value to the value in the SqlDataReader
 propertyInfo.SetValue(myClass, dr.GetValue(columnIndex));
 }
 }

 return true;
 }
 else
 {
 return false;
 }
}

This method takes an instance of a class and a SqlDataReader as a parameter. It first checks if
the SqlDataReader has rows, and if it does it positions the cursor on the first record. Then it
gets the type for myClass using the GetType method. Next, it loops around for each column in
the SqlDataReader. In the loop it first gets the column name and then tries to retrieve the prop-
erty from the object with that name. If the property exists, the value of the property is set to the
data in the column.

 2 . Now you can add the GetPerson method to the Person class to use this method:

public bool GetPerson(int personId)
{
 //Open the connection to the database.
 SqlConnection cn = new
 SqlConnection("Server=(local);Database=Reflection;Trusted_Connection=True;");
 cn.Open();

 //Retrieve the record.
 SqlCommand cmd = new SqlCommand(
 string.Format("SELECT * FROM Person WHERE PersonId = {0}", personId), cn);

 SqlDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 return ReflectionExample.LoadClassFromSQLDataReader(this, dr);
}

Be aware, though, that when using reflection there is a performance hit because there is extra process-
ing going on to resolve all the references. You need to take this into account when deciding whether to
use reflection.

www.EBooksWorld.ir

www.EBooksWorld.ir

Read and Create Custom Attributes ❘ 335

READ AND CREATE CUSTOM ATTRIBUTES

Attributes enable you to define metadata for a class, a property, or a method. The class, property,
or method is referred to as the target of the attribute. Reflection can then be used to read these attri-
butes dynamically and change how the target behaves. Attributes are contained in square brackets
“[]” above the target and can be stacked on top of each other when multiple attributes are needed
to define the target. For example, if you want to make a class serializable, you need to add the
[Serializable()] attribute above the class declaration:

[Serializable()]
public class MyClass
{
…
}

The Serializable attribute is actually a class defined in the .NET Framework that inherits from
System.Attribute. The System.Attribute class is an abstract class that is the base class for all
custom attributes. This section explains how to read attributes using reflection and then create your
own custom attributes.

Read Attributes
In the previous section you learned about the System.Reflection namespace and the numerous
classes defined in the namespace that let you read the metadata about the classes within an assembly.
An assembly has a GetCustomAttributes method that enables you to enumerate through all the cus-
tom attributes classes contained in the assembly or filter the specific type of attribute you would like
to retrieve. The following code block iterates through all the referenced assemblies for the currently
executing assembly and prints the custom attributes class names and properties to the Output window:

Assembly assembly = Assembly.GetExecutingAssembly();

AssemblyName[] assemblyNames = assembly.GetReferencedAssemblies();

foreach (AssemblyName assemblyName in assemblyNames)
{
 Debug.WriteLine("\nAssembly Name: {0}", assemblyName.FullName);

 Assembly referencedAssembly = Assembly.Load(assemblyName.FullName);

 object[] attributes = referencedAssembly.GetCustomAttributes(false);

 foreach (object attribute in attributes)
 {
 Debug.WriteLine(\nAttribute Name: {0}",
 attribute.GetType().Name);

 //Get the properties of this attribute
 PropertyInfo[] properties = attribute.GetType().GetProperties();

www.EBooksWorld.ir

www.EBooksWorld.ir

336 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 foreach (PropertyInfo property in properties)
 {
 Debug.WriteLine("{0} : {1}", property.Name,
 property.GetValue(attribute));
 }
 }
}

The following text is a partial list of the output from the preceding code. The currently executing
assembly referenced three assemblies: mscorlib, System.Data, and System. Each has their own set
of custom attribute classes.

Assembly Name: mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

Attribute Name: StringFreezingAttribute
TypeId : System.Runtime.CompilerServices.StringFreezingAttribute

…

Assembly Name: System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

Attribute Name: AllowPartiallyTrustedCallersAttribute
PartialTrustVisibilityLevel : VisibleToAllHosts
TypeId : System.Security.AllowPartiallyTrustedCallersAttribute

Attribute Name: CLSCompliantAttribute
IsCompliant : True
TypeId : System.CLSCompliantAttribute

Attribute Name: RuntimeCompatibilityAttribute
WrapNonExceptionThrows : True
TypeId : System.Runtime.CompilerServices.RuntimeCompatibilityAttribute

…

Assembly Name: System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

Attribute Name: ComVisibleAttribute
Value : False
TypeId : System.Runtime.InteropServices.ComVisibleAttribute

Notice that the GetCustomAttributes method returns an array of objects. This is because each attri-
bute is its own class. The first attribute in the mscorlib assembly is the StringFreezingAttribute.
This is a class that inherits from System.Attribute and can have its own properties and methods. As
you read through the preceding output, you can see that each attribute class has its own custom prop-
erties and also the properties of the System.Attribute class.

www.EBooksWorld.ir

www.EBooksWorld.ir

Read and Create Custom Attributes ❘ 337

Create Attributes
To create your own custom attribute, you need to create a class that inherits from the System
.Attribute abstract class:

class MyCustomAttribute : System.Attribute
{
}

BEST pRACTICES: Naming Custom Attribute Classes

When naming a custom attribute class, it should always have Attribute at the
end of its name. When using the custom attribute, you reference it by the name
and exclude the Attribute part.

After you declare your class, you can then add properties and enumerations to the class just like any
other class. For this example, you add one enumeration and three properties:

public enum MyCustomAttributeEnum
{
 Red,
 White,
 Blue
}

public bool Property1 { get; set; }
public string Property2 { get; set; }
public MyCustomAttributeEnum Property3 { get; set; }

The next step is to define the scope of the attribute. For this example you limit the scope
of this attribute so that the target can be only a class or a struct. To do this you use the
System.AttributeUsage custom attribute. This attribute is applied to the class:

[System.AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
class MyCustomAttribute : System.Attribute
{
…
}

Now you can use this attribute when defining a class. Create a new class named MyTestClass.
Above the class declaration add the following code:

[MyCustom(Property1 = true, Property2 = "Hello World", Property3 =
MyCustomAttribute.MyCustomAttributeEnum.Red)]
class MyTestClass()
{
}

www.EBooksWorld.ir

www.EBooksWorld.ir

338 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

Notice that the name of the attribute is MyCustom, not MyCustomAttribute. To set the properties of
the attribute, you pass the values to the constructor as named parameters. You could have also added a
constructor to the MyCustomAttribute class with three parameters and then set the property values in
the body of the constructor.

Now that you have the class with a custom attribute, you can use reflection to read the attribute
values. The following code can read the custom attributes for the MyTestClass:

Type myTestClassType = typeof(MyTestClass);

MyCustomAttribute attribute =
(MyCustomAttribute)myTestClassType.GetCustomAttribute
(
 typeof(MyCustomAttribute),
 false
);

Debug.WriteLine("Property1: {0}", attribute.Property1);
Debug.WriteLine("Property2: {0}", attribute.Property2);
Debug.WriteLine("Property3: {0}", attribute.Property3);

The preceding code produces the following output:

Property1: True
Property2: Hello World
Property3: Red

REAL-WORLD CASE SCENARIO Using custom attributes

In the previous Real-World Case Scenario, you learned how to use reflection to map the value of the
columns in a table to the properties in a class. This works great as long as the names of the columns
in the table match the names of the properties in the class. But if for some reason they do not match,
you may want to map a column to a property of a different name. A custom attribute is a great way
to handle this situation. Try creating it now, before looking at the solution provided.

Solution

 1 . Add a class to the project and name it DataMappingAttribute. Because this attribute should
be used only for classes, set the AttributeTarget property to Class. You also want to use
this attribute for more than one column, so you need to set the AllowMultiple property of the
AttributeUsage class to true.

[System.AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class DataMappingAttribute : System.Attribute
{
}

 2 . Add two string properties called ColumnName and PropertyName. When implemented, these prop-
erties contain the column name that maps to the property name:

public string ColumnName { get; set; }
public string PropertyName { get; set; }

www.EBooksWorld.ir

www.EBooksWorld.ir

Read and Create Custom Attributes ❘ 339

 3 . Add a constructor to the attribute class that takes the column and property names as parameters
and sets the property value:

public DataMappingAttribute(string columnName, string propertyName)
{
 ColumnName = columnName;
 PropertyName = propertyName;
}

 4 . Open the Person class that was created in the previous Real-World Case Scenario, change the
name of the FirstName property to FName, and change the LastName property to LName. Add the
DataMapping attributes above the class name, and set the appropriate mappings for the first and
last name columns\properties:

[DataMapping("FirstName", "FName")]
[DataMapping("LastName", "LName")]
class Person
{
…
}

 5 . Open the ReflectionExample class, and modify the LoadClassFromSqlDataReader method to
the following:

public static bool LoadClassFromSQLDataReader(object myClass, SqlDataReader dr)
{
 if (dr.HasRows)
 {
 dr.Read();

 Type typeOfClass = myClass.GetType();

 object[] dataMappingAttributes =
 typeOfClass.GetCustomAttributes(typeof(DataMappingAttribute), false);

 for (int columnIndex = 0; columnIndex <= dr.FieldCount - 1; columnIndex++)
 {
 //Get the name of the column.
 string columnName = dr.GetName(columnIndex);

 //Check if a property exists that matches that name.
 PropertyInfo propertyInfo = null;

 //Check if an attribute exists that maps this column to a property.
 foreach (DataMappingAttribute dataMappingAttribute in
 dataMappingAttributes)
 {
 if (dataMappingAttribute.ColumnName == columnName)
 {
 propertyInfo =
 typeOfClass.GetProperty(dataMappingAttribute.PropertyName);
 break;
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

340 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 //The the property was mapped explicitely then try to find a
 //property with the same name as the column.
 if (propertyInfo == null)
 {
 propertyInfo = typeOfClass.GetProperty(columnName);
 }

 //If you found a property then set its value.
 if (propertyInfo != null)
 {
 //Set the value to the value in the SqlDataReader
 propertyInfo.SetValue(myClass, dr.GetValue(columnIndex));
 }
 }

 return true;
 }
 else
 {
 return false;
 }
}

You can now see the power of attributes and how they can help control the flow of your application.

GENERATE CODE USING ThE CODEDOM NAMESpACE

The Code Document Object Model, CodeDOM, is a set of classes in the .NET Framework that
enables you to create code generators. A code generator is a program that can write your code for
you. The CodeDOM is an object model that contains classes that represent properties, methods,
classes, boolean logic, parameters, and any other type of code element you can write in your pro-
gram. You can use the CodeDOM classes to write your code generically and then have it generated
in C#, VB.NET, or JScript.

Have you ever written classes that have properties that map to a table? This can be tedious and
time-consuming. This is a great example of when you would want to use the CodeDOM to gener-
ate this code for you automatically. You can create a program that reads the columns from a table
in a database and creates a class that contains a column for each property. This section explains
the classes within the CodeDOM namespace and shows you how to generate code for classes,
properties, and methods, and even generate looping structures and if statements.

Generate Code Using the CodeDOM Namespace
The classes in the CodeDOM model the code statements, such as an if statement or variable declara-
tion. You can write a code generator using the CodeDOM classes and then generate your code in either
C#, VB.NET, or JScript. The CodeDOM classes are great for automating repetitive coding tasks or

www.EBooksWorld.ir

www.EBooksWorld.ir

Generate Code Using the CodeDOM Namespace ❘ 341

enforcing patterns within your projects. This section will demonstrate how to create a class file using
the CodeDOM that contains fields, properties, and methods.

The typical structure of a class within C# contains the following elements:

➤➤ Text file that contains the code for the class

➤➤ Set of using statements

➤➤ Namespace declaration

➤➤ Class name declaration

➤➤ Set of fields and properties

➤➤ Set of methods, which contain logic with looping structures and logical expressions such as
if and switch statements

The CodeDOM namespace contains classes that enable you to create a structure called a
CodeDOM Graph that models these elements. Table 8-7 lists some of the classes you can use
in the CodeDOM namespace.

TABLE 8-7: Commonly Used Classes in the CodeDOM Namespace

NAME DESCRIPTION

CodeArgumentReferenceExpression Represents a reference to the value of an
argument passed to a method

CodeAssignStatement Represents an assignment statement

CodeBinaryOperatorExpression Represents an expression that consists of a
binary operation

CodeCastExpression Represents an expression that casts to
another data type or interface

CodeComment Represents a comment

CodeCompileUnit Provides a container for a CodeDOM, which
contains the declarations, namespace, class,
and components of your class

CodeConditionStatement Represents a conditional statement, typically
represented as an if statement

CodeConstructor Represents a declaration of an instance
constructor

CodeFieldReferenceExpression Represents a reference to a field

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

342 ❘ CHAPTER 8 REFLECTION, CUSTOM ATTRIBUTES, THE CODEDOM, AND LAMBDA EXPRESSIONS

NAME DESCRIPTION

CodeIterationStatement Represents a for statement or other looping
structure

CodeMemberEvent Represents a declaration for an event

CodeMemberField Represents a declaration for a field

CodeMemberMethod Represents a declaration for a method

CodeMemberProperty Represents a declaration for a property

CodeMethodInvokeExpression Represents an expression that invokes
a method

CodeMethodReturnStatement Represents a return value statement

CodeNamespace Represents a namespace declaration

CodeNamespaceImport Represents a namespace import directive

CodeObjectCreateExpression Represents an expression that creates a new
instance of a type

CodeParameterDeclarationExpression Represents a parameter declaration for a
method, property, or constructor

CodePropertyReferenceExpression Represents a reference to the value of
a property

CodePropertySetValueReferenceExpression Represents the value argument of a property
set method

CodeRegionDirective Specifies the name and mode for a
code region

CodeSnippetCompileUnit Represents a literal code fragment that can
be compiled

CodeSnippetStatement Represents a statement using a literal code
fragment

CodeThisReferenceExpression Represents a reference to the current local
class instance

CodeThrowExceptionStatement Represents a statement that throws an
exception

CodeTryCatchFinallyStatement Represents a try, catch, and finally block

TABLE 8-7 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Generate Code Using the CodeDOM Namespace ❘ 343

NAME DESCRIpTION

CodeTypeConstructor Represents a static constructor for a class

CodeTypeDeclaration Represents a declaration for a class,
structure, interface, or enumeration

CodeTypeDelegate Represents a delegate declaration

CodeVariableDeclarationStatement Represents a variable declaration

CodeVariableReferenceExpression Represents a reference to a local variable

As you can see from the list of classes in Table 8-6, the CodeDOM has classes for every type of
statement you can make in the .NET Framework. You can then choose to have the code rendered in
the language of your choice. For example, look at the following class and then later in the chapter
you will use the CodeDOM to generate this class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Reflection
{
 class Calculator
 {
 private double x;
 private double y;

 public double X
 {
 get { return this.x; }
 set { this.x = value; }
 }

 public double Y
 {
 get { return this.y; }
 set { this.y = value; }
 }

 public double Divide()
 {
 if (this.Y == 0)
 {
 return 0;
 }
 else
 {
 return this.X / this.Y;
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

344 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 }

 public double Exponent(double power)
 {
 return Math.Pow(this.X, power);
 }
 }
}

This is a simple class called Calculator that is in the Reflection namespace, contains two
fields, two properties, and two methods. The following sections demonstrates which classes in
the CodeDOM you should use to create the class dynamically.

CodeCompileUnit
The CodeCompileUnit class is the top-level class that is the container for all other objects within the
class you want to generate. Think of this as the class that represents the file that contains your code.
The following code is used to create an instance of the CodeCompileUnit class:

CodeCompileUnit codeCompileUnit = new CodeCompileUnit();

CodeNamespace and CodeNamespaceImport
The next step is to add the namespace. The CodeNamspace class is used to represent the namespace. The
constructor takes the namespace as the parameter.

CodeNamespace codeNamespace = new CodeNamespace("Reflection");

Now that you have a namespace, you can append the using statements. Normally, when you create
a class file, the using statements are above the namespace declaration, but they still work if you add
them after the namespace. The CodeNamespaceImport class is used to define the namespace you
would like to import. In C# you use the using keyword, but in VB.NET you would use the imports
keyword. By using the CodeDOM, you don’t have to worry about the correct keyword.

codeNamespace.Imports.Add(new CodeNamespaceImport("System"));
codeNamespace.Imports.Add(new CodeNamespaceImport("System.Collections.Generic"));
codeNamespace.Imports.Add(new CodeNamespaceImport("System.Linq"));
codeNamespace.Imports.Add(new CodeNamespaceImport("System.Text"));
codeNamespace.Imports.Add(new CodeNamespaceImport("System.Threading.Tasks"));

The preceding code produces the following output:

namespace Reflection
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading.Tasks;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Generate Code Using the CodeDOM Namespace ❘ 345

CodeTypeDeclaration
The next step is to declare the class. This is done by using the CodeTypeDeclaration class.

CodeTypeDeclaration targetClass = new CodeTypeDeclaration("Calculator");
targetClass.IsClass = true;
targetClass.TypeAttributes = TypeAttributes.Public;

//Add the class to the namespace.
codeNamespace.Types.Add(targetClass);

The preceding code creates an instance of the CodeTypeDeclaration class and sets the IsClass attri-
bute to true, which tells the .NET Framework to generate a class declaration. The TypeAttributes
property enables you to define attributes such as public, private, and static. These can be com-
bined using the bitwise operator (|). After the class is defined, you need to add it to the Types collec-
tion of the namespace. The preceding code produces the following output:

public class Calculator
{
}

CodeMemberField
The next step is to add the fields to the class. This is done by using the CodeMemberField class. You
simply create an instance of the class and set its Name property, set the Type property, and add it to
the Members collection of the CodeTypeDeclaration object. The following code creates two fields,
_x and _y, both of which are declared as a double:

CodeMemberField xField = new CodeMemberField();
xField.Name = "x";
xField.Type = new CodeTypeReference(typeof(double));
targetClass.Members.Add(xField);

CodeMemberField yField = new CodeMemberField();
yField.Name = "y";
yField.Type = new CodeTypeReference(typeof(double));
targetClass.Members.Add(yField);

The preceding code produces the following output:

private double x;
private double y;

CodeMemberProperty
The next step is to create the properties for the x and y fields. You use a CodeMemberProperty class
to create a property and generate the get and set methods. The following code creates the X and Y
properties in the Calculator class:

//X Property
CodeMemberProperty xProperty = new CodeMemberProperty();

xProperty.Attributes = MemberAttributes.Public | MemberAttributes.Final;

www.EBooksWorld.ir

www.EBooksWorld.ir

346 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

xProperty.Name = "X";
xProperty.HasGet = true;
xProperty.HasSet = true;
xProperty.Type = new CodeTypeReference(typeof(System.Double));

xProperty.GetStatements.Add(new CodeMethodReturnStatement(
 new CodeFieldReferenceExpression(new CodeThisReferenceExpression(), "x")));

xProperty.SetStatements.Add(new CodeAssignStatement(
 new CodeFieldReferenceExpression(new CodeThisReferenceExpression(), "x"),
 new CodePropertySetValueReferenceExpression()));
targetClass.Members.Add(xProperty);

//Y Property
CodeMemberProperty yProperty = new CodeMemberProperty();
yProperty.Attributes = MemberAttributes.Public | MemberAttributes.Final;
yProperty.Name = "Y";
yProperty.HasGet = true;
yProperty.HasSet = true;
yProperty.Type = new CodeTypeReference(typeof(System.Double));

yProperty.GetStatements.Add(new CodeMethodReturnStatement(
 new CodeFieldReferenceExpression(new CodeThisReferenceExpression(), "y")));

yProperty.SetStatements.Add(new CodeAssignStatement(
 new CodeFieldReferenceExpression(new CodeThisReferenceExpression(), "y"),
 new CodePropertySetValueReferenceExpression()));

targetClass.Members.Add(yProperty);

The CodeMemberProperty class has two properties (HasGet and HasSet) that you need to set to true
so the code generator can create the Get and Set accessors. The GetStatements collection property
is used to add the code to the Get accessor. In this example, the Get method returns the this.x field.
The CodeThisReferenceExpression class is used because in C# you use this; in VB you use Me.
The code generator knows which keyword to use when you generate the code. The SetStatements
collection property contains the code to set the this.x field. In this instance you need to create a
CodeAssignStatement along with the CodePropertySetValueReferenceExpression. The preced-
ing code produces the following output:

public double X
{
 get
 {
 return this.x;
 }
 set
 {
 this.x = value;
 }
}
public double Y
{
 get

www.EBooksWorld.ir

www.EBooksWorld.ir

Generate Code Using the CodeDOM Namespace ❘ 347

 {
 return this.y;
 }
 set
 {
 this.y = value;
 }
}

CodeMemberMethod
The next step is to create the Divide method. To create methods using the CodeDOM, you need to
use the CodeMemberMethod class. The following code creates an instance of the CodeMemberMethod
class, names the method Divide, sets the return type to double, and sets its attributes to public
and final. If you want to set other attributes, such as static, virtual, or new, you can use the bitwise
operator to concatenate the attributes.

CodeMemberMethod divideMethod = new CodeMemberMethod();
divideMethod.Name = "Divide";
divideMethod.ReturnType = new CodeTypeReference(typeof(double));
divideMethod.Attributes = MemberAttributes.Public | MemberAttributes.Final;

Now that the method signature is defined, you need to create the code for the body of the method.
The Divide method checks if the Y property is 0 and either returns 0 or the quotient. If logic is
created by using the CodeConditonStatement class.

CodeConditionStatement ifLogic = new CodeConditionStatement();

ifLogic.Condition = new CodeBinaryOperatorExpression(
 new CodeFieldReferenceExpression(
 new CodeThisReferenceExpression(), yProperty.Name),
 CodeBinaryOperatorType.ValueEquality,
 new CodePrimitiveExpression(0));

ifLogic.TrueStatements.Add(new CodeMethodReturnStatement(
 new CodePrimitiveExpression(0)));

ifLogic.FalseStatements.Add(new CodeMethodReturnStatement(
 new CodeBinaryOperatorExpression(
 new CodeFieldReferenceExpression(
 new CodeThisReferenceExpression(), xProperty.Name),
 CodeBinaryOperatorType.Divide,
 new CodeFieldReferenceExpression(
 new CodeThisReferenceExpression(), yProperty.Name))));

divideMethod.Statements.Add(ifLogic);

As you can see the CodeConditonStatement class has a Condition property that is a
CodeBinaryOperatorExpression class. This class is used to create a binary expression. In
this example the expression equates to (this.Y == 0). The CodeBinaryOperatorExpression
class also has a TrueStatements and a FalseStatements property that enables you to create the

www.EBooksWorld.ir

www.EBooksWorld.ir

348 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

code that will be written for the true and false conditions. The preceding code creates the follow-
ing output:

public double Divide()
{
 if ((this.Y == 0))
 {
 return 0;
 }
 else
 {
 return (this.X / this.Y);
 }
}

CodeParameterDeclarationExpression and CodeMethodInvokeExpression
The next step is to create the Exponent method. This method takes a parameter called power and
returns this.Y raised to that power.

CodeMemberMethod exponentMethod = new CodeMemberMethod();

exponentMethod.Name = "Exponent";
exponentMethod.ReturnType = new CodeTypeReference(typeof(double));
exponentMethod.Attributes = MemberAttributes.Public | MemberAttributes.Final;

CodeParameterDeclarationExpression powerParameter =
 new CodeParameterDeclarationExpression(typeof(double), "power");
exponentMethod.Parameters.Add(powerParameter);

CodeMethodInvokeExpression callToMath = new CodeMethodInvokeExpression(
 new CodeTypeReferenceExpression("System.Math"),
 "Pow",
 new CodeFieldReferenceExpression(new CodeThisReferenceExpression(),
 xProperty.Name), new CodeArgumentReferenceExpression("power"));

exponentMethod.Statements.Add(new CodeMethodReturnStatement(callToMath));

targetClass.Members.Add(exponentMethod);

You use the CodeParameterDeclarationExpression class to create the power parameter. The
CodeMethodInvokeExpression class is used to call a method and pass a parameter to the method.
The preceding code produces the following output:

public double Exponent(double power)
{
 return System.Math.Pow(this.X, power);
}

CodeDOMProvider
The last step is to generate the class file. You use the CodeDOMProvider class to create the file in
either C#, VB, or JScript. This class has a method called GenerateCodeFromCompileUnit that

www.EBooksWorld.ir

www.EBooksWorld.ir

Lambda Expressions ❘ 349

takes a CodeCompileUnit, TextWriter, and CodeGeneratorOptions class as parameters. The
CodeGeneratorOptions class has properties that enable you to control the formatting of your auto-
matically generated code. The following sample tells the compiler to use single-line spacing between
the member declarations. Setting the BracingStyle property to “C” places the brackets, {}, on
separate lines.

CodeDOMProvider provider = CodeDOMProvider.CreateProvider("CSharp");

CodeGeneratorOptions options = new CodeGeneratorOptions();
options.BlankLinesBetweenMembers = false;
options.BracingStyle = "C";

using (StreamWriter sourceWriter = new StreamWriter(@"c:\CodeDOM\Calculator." +
 provider.FileExtension))
{
 provider.GenerateCodeFromCompileUnit(codeCompileUnit, sourceWriter, options);
}

LAMBDA EXpRESSIONS

Lambda expressions are shorthand syntax for creating an anonymous methods. What’s an anony-
mous method? Well, an anonymous method is essentially a method without a name. What good is a
method without a name? Well, when writing methods that are small and used in limited scope, you
can write an anonymous method without going through the trouble of creating the method signa-
ture. Also, you can pass an anonymous method to other methods to dynamically change how those
methods behave. This concept is extremely important to understand before tackling the concept of
LINQ. Lambda expressions are used everywhere in LINQ.

Delegates
Before exploring lambda expressions start with the basics. A delegate is a type that references a
method. When you declare a delegate, you specify the signature of the method that you want to ref-
erence. For example, create a new class called LambdaExpressions and add the following method
that takes a string parameter and writes it to the console window:

static void WriteToConsoleForward(string stringToWrite)
{
 Console.WriteLine("This is my string: {0}", stringToWrite);
}

If you want to reference this method, first create a delegate that has the same signature.

delegate void MyFirstDelegate(string s);

Notice that the return type is void and the parameter’s type is string which matches the signature
of the WriteToConsoleForward method. Now that you have a delegate, you need to associate a
variable of this type to the method.

MyFirstDelegate myFirstDelegate = new
 MyFirstDelegate(LambdaExpressions.WriteToConsoleForward);

www.EBooksWorld.ir

www.EBooksWorld.ir

350 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

The myFirstDelegate variable essentially holds a reference to the method. You can now call the
method by using the myFirstDelegate variable and passing in a parameter.

myFirstDelegate("Hello World");

Now create a second method that takes a string as a parameter and writes the string backward to
the console.

static void WriteToConsoleBackwards(string stringToWrite)
{
 char[] charArray = stringToWrite.ToCharArray();
 Array.Reverse(charArray);

 Console.WriteLine("This is my string backwards: {0}",
 new string(charArray));
}

Both methods have the same signature, so you can create a single delegate to reference either
method. Now create another method that takes the delegate as a parameter and calls the method.

static void WriteToConsole(MyFirstDelegate myDelegate, string stringToWrite)
{
 myDelegate(stringToWrite);
}

Now you can call the WriteToConsole method and pass in the method as a parameter.

WriteToConsole(LambdaExpressions.WriteToConsoleForward, "Hello World");

WriteToConsole(LambdaExpressions.WriteToConsoleBackwards, "Hello World");

The preceding two lines of code produce the following output:

This is my string: Hello World
This is my string backwards: dlroW olleH

ADVICE FROM ThE EXpERTS: Covariance and Contravariance

Something to note about delegates are the concepts of covariance and contravari-
ance. Covariance enables you to have a method with a more derived return type than
the delegate’s return type. So the delegate’s return type could be a base class, and the
method’s return type can be a type that inherits from the base class. Contravariance
permits parameter types that are less derived than the delegate’s parameter types. So
the delegate’s parameters can be a base class, but the method’s parameters can be a
class that is derived from the base class.

www.EBooksWorld.ir

www.EBooksWorld.ir

Lambda Expressions ❘ 351

Anonymous Methods
Anonymous methods are similar to delegates except you don’t have to create the method. You still
create the delegate, but you can assign the method all within the same line of code.

MyFirstDelegate forward = delegate(string s2)
 {
 Console.WriteLine("This is my string: {0}", s2);
 };

forward("Hello World");

The preceding code creates a delegate variable called forward, and it references the body of a
method. The method can have as many lines as you want. One difference between an anonymous
method and a delegate is that you can reference local variables that are not passed as parameters.
For example, the following sample creates a delegate that has no parameters. It then creates a local
variable and an anonymous method that uses the variable.

delegate void MyAnonymousMethod();

static void Main(string[] args)
{
 string myLocalString = "Hello World";

 //Create an anonymous method using the local variable.
 MyAnonymousMethod forward = delegate()
 {
 Console.WriteLine(string.Format("This is my string: {0}", myLocalString));
 };

 forward();
}

This method produces the same output as the previous method. As you can see, programmatically
these methods produce the same output, but anonymous methods involve less coding.

Lambda Expressions
Lambda expressions enable you to create an anonymous function using shorthand syntax. Consider
the following:

delegate double square(double x);

static void Main(string[] args)
{
 square myLambdaExpression = x => x * x;
 Console.WriteLine("X squared is {0}", myLambdaExpression(5));
}

www.EBooksWorld.ir

www.EBooksWorld.ir

352 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

The lambda expression is x => x * x. When reading the code, you would say x goes to x times
x. The => is called the goes to operator. The left side of the goes to operator evaluates to the input
parameters of your method. The body of your method goes on the right side of the goes to operator.
In this instance the method can square whatever number is passed into the method. If you need to
pass multiple parameters, you use the following syntax:

delegate bool GreaterThan(double x, double y);

static void Main(string[] args)
{
 GreaterThan gt = (x, y) => x > y;
 Console.WriteLine("Is 6 greater than 5. {0}", gt(6, 5));
}

The preceding code produces the following output:

Is 6 greater than 5. True

When the method contains only a single expression, it is referred to as an expression lambda. When
you need multiple statements in the body of the method it is referred to as a statement lambdas.
Statement Lambdas are contained in brackets, {}. The following is a lambda expression for the
WriteToConsoleBackward method:

s =>
 {
 char[] charArray = s.ToCharArray();
 Array.Reverse(charArray);
 Console.WriteLine("This is my string to write backwards: {0}",
 new string(charArray));
 };

You can also use a lambda expression to pass a function to a method. The following uses a lambda
expression to call the WriteToConsole method:

WriteToConsole(x => Console.WriteLine("This is my string {0}", x), "Hello World");

As you can see, the syntax requires less typing as you go from delegate, to anonymous function, to
lambda expressions.

SUMMARY

This chapter described a number of topics, starting with reflection. Reflection is a powerful feature
in the .NET Framework that enables you to examine all types within an assembly, create instances of
classes, invoke methods, read attributes, and perform many other useful operations within your code.

Attributes are metadata that can be applied to a class, a method, or a property. You can use reflection
to read attributes and dynamically change the behavior of your application.

You can create custom attribute classes and associate them with your own classes, properties, or meth-
ods. Custom attributes are created by creating a class that inherits from the System.Attribute class.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 353

The Code Document Object Model (CodeDOM) is the object model provided by the .NET
Framework that enables you to generate code dynamically in either C#, VB, or JScript. Learning
the types in the System.CodeDOM namespace is useful when you want to automate tedious tasks or
compile code programmatically.

Lambda expressions are shorthand syntax for creating anonymous functions. Anonymous functions
are small methods without a signature. Lambda expressions are used extensively in LINQ.

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . You are given an assignment to create a code generator to automate the task of creating
repetitive code. Which namespace contains the types needed to generate code?

 a . System.Reflection

 b . CodeDom

 c . Reflection

 d . System.CodeDom

 2 . Which code can create a lambda expression?

 a . delegate x = x => 5 + 5;

 b . delegate MySub(double x); MySub ms = delegate(double y) { y *

y; }

 c . x => x * x;

 d . delegate MySub(); MySub ms = x * x;

 3 . You are consulting for a company called Contoso and are taking over an application that
was built by a third-party software company. There is an executable that is currently not
working because it is missing a DLL file that is referenced. How can you figure out which
DLL files the application references?

 a . Create an instance of the Assembly class, load the assembly, and iterate through the
ReferencedAssemblies property.

 b . Create an instance of the Assembly class, load the assembly, and call the
GetReferencedAssemblies method.

 c . Create an instance of the Assembly class, load the assembly, and iterate through the
Modules property.

 d . Create an instance of the Assembly class, load the assembly, and call the
GetModulesReferenced method.

www.EBooksWorld.ir

www.EBooksWorld.ir

354 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 4 . You are a developer for a finance department and are building a method that uses reflection
to get a reference to the type of object that was passed as a parameter. Which syntax can be
used to determine an object’s type?

 a . Type myType = typeof(myParameter);

 b . Object myObject = myParameter.GetType(object);

 c . Object myObject = typeof(myParameter);

 d . Type myType = myParameter.GetType();

 5 . You are asked to create a custom attribute that has a single property, called Version, that
allows the caller to determine the version of a method. Which code can create the attribute?

 a . class MyCustomAttribute :System.Reflection.Attribute

{ public string Version { get; set; } }

 b . class MyCustomAttribute : System.Attribute

{ public string Version { get; set; } }

 c . class MyCustomAttribute : System.AttributeUsage

{ public string Version { get; set; } }

 d . class MyCustomAttribute : System.ClassAttribute

{ public string Version { get; set; } }

 6 . Which class in the System.Reflection namespace would you use if you want to determine
all the classes contained in a DLL file?

 a . FileInfo

 b . Assembly

 c . Type

 d . Module

 7 . Which method of the Assembly class allows you to get all the public types defined in
the Assembly?

 a . DefinedTypes

 b . Types

 c . GetExportedTypes

 d . GetModules

 8 . Which property of the Assembly class returns the name of the assembly?

 a . Name

 b . FullyQualifiedName

 c . Location

 d . FullName

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 355

 9 . Which method of the Assembly class returns an instance of the current assembly?

 a . GetExecutingAssembly

 b . GetAssembly

 c . GetCurrentAssembly

 d . Assembly

 10 . Which syntax will Load an Assembly? (Choose all that apply)

 a . Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089");

 b . Assembly.LoadFrom(@"c:\MyProject\Project1.dll");

 c . Assembly.LoadFile(@"c:\MyProject\Project1.dll");

 d . Assembly.ReflectionOnlyLoad(("System.Data, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089");

 11 . Which method should you call if you want the .NET Framework to look in the load-context
to load an Assembly?

 a . ReflectionOnlyLoad

 b . LoadFrom

 c . Load

 d . LoadFromContext

 12 . Which method should you call if you want the .NET Framework to look in the load-from
context?

 a . ReflectionOnlyLoad

 b . LoadFrom

 c . Load

 d . LoadFromContext

 13 . Which line creates an instance of a DataTable using reflection?

 a . myAssembly.CreateInstance("System.Data.DataTable");

 b . DataTable.GetType();

 c . typeof("System.Data.DataTable");

 d . myType.CreateInstance("System.Data.DataTable");

www.EBooksWorld.ir

www.EBooksWorld.ir

356 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

 14 . Which class would you create if you wanted to determine all the properties contained in a
class using reflection?

 a . Assembly

 b . Class

 c . Property

 d . Type

 15 . How can you determine if a class is public or private?

 a . Create an instance of the Type class using the typeof keyword and then examine the
IsPublic property of the Type variable.

 b . Create an instance of the Type class using the typeof keyword and then examine the
IsPrivate property of the Type variable.

 c . Create an instance of the class within a try catch block and catch the exception if
you cannot create an instance of the class.

 d . Create an instance of the class and check the IsPublic property.

 16 . Which class in the System.Reflection namespace is used to represent a field defined in
a class?

 a . PropertyInfo

 b . FieldInfo

 c . Type

 d . EventInfo

 17 . Which property of the Type class can you use to determine the number of dimension for
an array?

 a . GetDimension

 b . GetRank

 c . GetDimensions

 d . GetArrayRank

 18 . Which statement will returns a private, instance field called "myPrivateField" using
reflection? Assume the myClass variable is an instance of a class.

 a . myClass.GetType().GetField("myPrivateField",

BindingFlags.NonPublic | BindingFlags.Instance)

 b . myClass.myPrivateField

 c . myClass.GetType().GetField("myPrivateField")

 d . myClass. GetType().GetField("myPrivateField",
BindingFlags.NonPublic & BindingFlags.Instance)

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 357

 19 . Which method of the MethodInfo class can be used to execute the method?

 a . Execute

 b . Invoke

 c . Call

 d . Load

 20 . Which statement uses reflection to execute the method and passes in two parameters given
the following code block?

MyClass myClass = new MyClass();
MethodInfo myMethod = typeof(MyClass).GetMethod("Multiply");

 a . myMethod.Execute(myClass, new object[] { 4, 5 });

 b . myMethod.Execute(MyClass, new object[] { 4, 5 });

 c . myMethod.Invoke(myClass, new object[] { 4, 5 });

 d . myMethod.Invoke(MyClass, new object[] { 4, 5 });

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you in your understanding of the topics presented
in this chapter:

Complete list of Microsoft’s System.Reflection namespace classes
http://msdn.microsoft.com/en-us/library/system.reflection(v=vs.110).aspx

Microsoft’s Attribute Reference
http://msdn.microsoft.com/en-us/library/z0w1kczw(v=vs.110).aspx

Microsoft’s CodeDOM Quick Reference
http://msdn.microsoft.com/en-us/library/f1dfsbhc.aspx

Microsoft’s Lambda Expression description
http://msdn.microsoft.com/en-us/library/bb397687(v=vs.110).aspx

Code Project.com (a great reference site with a sample of reflection, CodeDOM, and lambda expres-
sions)
http://www.codeproject.com/

StackOverflow.com (a great reference site for sample code)
http://www.StackOverflow.com

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/system.reflection(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/z0w1kczw(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/f1dfsbhc.aspx
http://msdn.microsoft.com/en-us/library/bb397687(v=vs.110).aspx
http://www.codeproject.com/
http://www.StackOverflow.com

358 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Reflection

➤➤ There are two ways to get a reference to the Type object, using typeof() or the .GetType()
method on an object.

➤➤ You can use the System.Reflection.Assembly class to examine the types within an EXE
file or DLL file.

➤➤ The Assembly.Load method loads an assembly into memory and enables you to execute code.

➤➤ The Assembly.ReflectionOnlyLoad method loads the assembly into memory, but you
cannot execute any code.

➤➤ The Assembly.CreateInstance method creates an instance of a type.

➤➤ The System.Type class represents a class, interface, array, value type, enumeration, parameter,
generic type definitions, and open or closed constructed generic types.

➤➤ The Type.GetProperty method returns a PropertyInfo object and enables you to set or
get a property’s value.

Attributes

➤➤ Attributes enable you to create metadata for a class, a property, or a method.

➤➤ Attributes are contained in square brackets [] just above the target.

➤➤ Custom attributes must inherit from the System.Attribute class.

Code Document Object Model (CodeDOM)

➤➤ The CodeDOM is a set of classes that enables you to create code generators.

➤➤ The System.CodeDom.CodeCompileUnit class is the top-level class; this is the container for
all other object within the class you want to generate.

➤➤ The System.CodeDom.CodeDOMProvider class generates the class file in either C#, VB,
or JScript.

Lambda expressions

➤➤ Lambda expressions are shorthand syntax for anonymous functions.

➤➤ A delegate is a type that references a method.

➤➤ Covariance enables you to have a method with a more derived return type than the delegate’s
return type.

➤➤ Contravariance permits parameter types that are less derived than the delegate type.

➤➤ The => in a lambda expression is referred to as “goes to.”

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 359

REVIEW OF KEY TERMS

anonymous method Enables you to associate a block of code with a delegate without declaring the
method signature.

assembly A compiled piece of code in a DLL or EXE file.

attribute Enables you to associate metadata with assemblies, types, methods, properties, and so on.

Code Document Object Model (CodeDOM) Enables the developer to generate code in multiple lan-
guages at run time based on a single code set.

context When loading an assembly using reflection, the context is where reflection searches for
the assembly.

contravariance Permits parameter types that are less derived than the delegate’s parameter types.

covariance Enables you to have a method with a more derived return type than the delegate’s
return type.

delegate A type that references a method.

expression lambda A lambda expression that contains only one statement for the body.

Expression Tree Code in a tree-like structure where each node is an expression.

field A variable defined in a class or struct.

lambda expression Shorthand syntax for an anonymous method that can be associated with a
delegate or expressions tree.

load context When loading an assembly using reflection, this context contains the assemblies found
by probing.

load-from context When loading an assembly using reflection, this context contains the assemblies
located in the pat passed into the LoadFrom method.

module A file that composes an assembly. Typically this is the DLL or EXE file.

probing The process of looking in the GAC, the host assembly store, the folder of the executing
assembly, or the private bin folder of the executing assembly to find an assembly.

reflection Provides classes that can be used to read metadata or dynamically invoke behavior from
a type.

reflection-only context When loading an assembly using reflection, this is the context that contains
the assemblies loaded with the ReflectionOnlyLoad and ReflectionOnlyLoadFrom methods.

statement lambda A lambda expression with more than one statement in the body of the expression.

target The class, property, or method that contain metadata defined by an attribute.

type Any class, interface, array, value type, enumeration, parameter, generic type definition, and
open or closed constructed generic type.

www.EBooksWorld.ir

www.EBooksWorld.ir

360 ❘ ChApTER 8 reflectIon, custom attrIButes, the codedom, and lamBda exPressIons

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed
off to help you study. You can find these files in the ZIP file for this chapter at
www.wrox.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Working with Data

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Working with data collections

➤➤ Consuming data

➤➤ Performing I/O operations

➤➤ Understanding serialization

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter09
download and individually named according to the names throughout the chapter.

Managing data is an essential part of most applications, and understanding all the options
available to you is critical when studying for the test, but also for advancing your career as a
developer. The first section in this chapter will explain the concept of arrays and collections.
These are two options you have for managing sets of data in C#.

The second section, on consuming data, discusses accessing databases using ADO.NET, the
ADO.NET Entity Framework, and WCF Data Services. ADO.NET is a set of classes in the
.NET Framework that enables you to connect to a database, retrieve data, execute stored pro-
cedures, add, update, and delete records. The ADO.NET Entity Framework is an object rela-
tional mapping tool that provides a graphical user interface that generates the code for you to
perform the operations against a database using ADO.NET. WCF Data Services is a feature in
.NET that exposes an ADO.NET Entity Framework model so that it can be accessed over the
web or an intranet.

The third section reviews I/O operations and the many choices available for reading and writ-
ing files. It also demonstrates how to read and write files asynchronously to create responsive
applications during long running processes.

9

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

362 ❘ ChApTER 9 WorkIng WIth data

The final section discusses serialization and how to convert an object into binary format, XML, or
JSON. This allows you to easily transform a record, or records, in a database to a format that could
be used by another system or persisted to disk as a file.

Table 9-1 introduces you to the exam objectives covered in this chapter.

TABLE 9-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Perform I/O operations This includes reading-and-writing files and streams either syn-
chronously or asynchronously .

Consume data This includes retrieving, adding, updating, and deleting data
from a database . This also includes using the ADO .NET Entity
Framework and WCF Data Services to expose a database to
other systems .

Serialize and deserialize data This includes how to serialize and deserialize data using binary,
custom, XML, JSON, and Data Contract serialization .

Store data in and retrieve data
from collections

This includes data using arrays and collections

WORKING WITh DATA COLLECTIONS

Understanding how to manipulate a series of data is critical for all types of developers. For example,
drop-down lists require a set of data, reading records from a database requires a set of data, and
reading a file requires storing a set of data in memory. There are many different terms peoples use to
describe a series of data such as arrays, sets, collections, lists, dictionaries, or queues. They all are
used to store a series of data in memory, and each offers functionality for appending, searching, and
sorting the data. This section explains arrays and collections and the differences between the two.
Arrays are the most primitive type in C#, with limited functionality, while collections is a general
term that encompasses lists, dictionaries, queues, and other objects.

Arrays
An array is the most basic type used to store a set of data. An array contains elements, and they are
referenced by their index using square brackets, []. The following example creates a single dimen-
sional array of integers:

int[] mySet = new int[5];

mySet[0] = 1;
mySet[1] = 2;
mySet[2] = 3;
mySet[3] = 4;
mySet[4] = 5;

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 363

When you create an array, you must specify the number of elements the array can contain. In the
previous example the number of elements is 5. You can also create a multidimensional array using
the following syntax:

int[,] mySet = new int[3, 2];

mySet[0, 0] = 1;
mySet[0, 1] = 2;
mySet[1, 0] = 3;
mySet[1, 1] = 4;
mySet[2, 0] = 5;
mySet[2, 1] = 6;

COMMON MISTAKES: Arrays Are Zero Based

Arrays in C# are zero based. So if you have an array with two elements, the first
index is 0 and the second is 1. You may see a question regarding this in the exam.

The preceding code created a two-dimensional array with three elements in the first dimension
and two elements in the second dimension. Conceptually, this is like having a table with rows and
columns. The preceding code could be represented by the table shown in Figure 9-1.

1 2

3 4

5 6

FIGURE 9-1: Two-
dimensional array

EXAM TIpS AND TRICKS: Declaring Multidimensional Arrays

You may see a question regarding how to declare an multidimensional array, so be
sure to know that when you declare the array, the type is first and the number of
dimensions is specified on the left side of the equals sign when the array is initialized.

You can create 3, 4, or 5, or up to 2,147,483,647 dimensions. You simply need to declare the vari-
able with the number of dimensions and initialize the size of each dimension.

All arrays inherit from the base class System.Array. This class contains properties and methods
that are useful when working with arrays. The two most commonly used properties of an array are
Length and Rank. The Length property indicates the total number of elements in all dimensions of

www.EBooksWorld.ir

www.EBooksWorld.ir

364 ❘ ChApTER 9 WorkIng WIth data

the array. The Rank property indicates the number of dimension in the array. These properties are
helpful when determining the bounds of an array when doing for or while loops.

The Clone method is used to make a shallow copy of the array, while the CopyTo method copies the
elements of the array to another array.

ADVICE FROM ThE EXpERTS: Understanding Shallow Copies

It is important to understand the concept of a shallow copy. When cloning an array
with reference types, you can inadvertently change the original array if you do not
understand the concept of a shallow copy. Consider the following example:

Person[] orginal = new Person[1];

orginal[0] = new Person() { Name = "John" };

Person[] clone = (Person[])orginal.Clone();

clone[0].Name = "Mary";

Debug.WriteLine("Original name " + orginal[0].Name);
Debug.WriteLine("Clone name " + clone[0].Name);

In this example, the Name property of the first element in the clone is changed to
"Mary". So what would you expect the output would be? You might be surprised
to learn that the output is the following:

Original name Mary
Clone name Mary

A shallow copy contains the reference to the original element in the original array.
Now what would you expect the output to be given the following code?

Person[] orginal = new Person[1];

orginal[0] = new Person() { Name = "John" };

Person[] clone = (Person[])orginal.Clone();

clone[0] = new Person() { Name = "Bob" };

Debug.WriteLine("Original name " + orginal[0].Name);
Debug.WriteLine("Clone name " + clone[0].Name);

You might be surprised to learn that the output is the following:

Original name John
Clone name Bob

Notice that this time the names are different because in the cloned array the reference
in the first element was replaced, but it didn’t replace the reference in the first array.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 365

Collections
Collections is a generic term for special classes in C# that are more flexible than arrays. These classes
enable you to dynamically add or subtract elements after they have been initialized, associate keys for
elements, automatically sort the elements, and allows for elements to be different types or type specific.
Some of the classes are List, List<T>, Dictionary, Dictionary<T>, Stack, and Queue. These classes
all have slightly different functionality and are explained in detail in next few sections.

The namespaces for the collection classes are System.Collections, System.Collections.Generic,
and System.Collections.Concurrent. The classes in the System.Collections.Concurrent
namespace are for performing safe operations for accessing the items from multiple threads and are
not covered in this section of the book.

System.Collections
The System.Collections namespace contains classes for use when you do not have the same type of
elements stored within the collection. These collections can mix int, string, classes, or structs within
the same collection. Table 9-2 lists the types in the System.Collections namespace. Each of these
types is discussed in more detail in the following sections.

TABLE 9-2: System .Collections

COLLECTION NAME DESCRIpTION

ArrayList Creates a collection whose size is dynamic and can contain any type
of object

HashTable Creates a collection with a key\value pair whose size is dynamic and
contains any type of object

Queue Creates a collection that is first-in-first-out for processing

SortedList Creates a collection of key\value pairs whose elements are sorted by the
key value

Stack Creates a collection that is last-in-first-out for processing

ArrayList
An ArrayList is a class that enables you to dynamically add or remove elements to the array. This
is different from the simple array, which does not enable you to change the dimensions after it is
initialized. The ArrayList class is useful when you don’t know the number of elements at the time
of creation and also if you want to store different types of data in the array. In the Array examples,
all elements of the mySet array had to be an int. An ArrayList has an Add method that takes an
object as a parameter and enables you to store any type of object. The following code creates an
ArrayList object and adds three elements of different types to the ArrayList:

ArrayList myList = new ArrayList();

www.EBooksWorld.ir

www.EBooksWorld.ir

366 ❘ ChApTER 9 WorkIng WIth data

myList.Add(1);
myList.Add("hello world");
myList.Add(new DateTime(2012, 01, 01));

Tables 9-3 and 9-4 list the most common properties and methods of the System.Collections
.ArrayList class.

TABLE 9-3: Common System .Array Properties

pROpERTY DESCRIpTION

Capacity Gets or sets the number of elements in the ArrayList

Count Gets the number of actual elements in the ArrayList

Item Gets or sets the element at the specified index

TABLE 9-4: Common System .Array Methods

METhOD DESCRIpTION

Add Adds an element at the end of the ArrayList

AddRange Adds multiple elements at the end of the ArrayList

BinarySearch Searches the sorted ArrayList for an element using the default com-
parer and returns the index of the element

Clear Removes all the elements from the ArrayList

Contains Determines if an element is in the ArrayList

CopyTo Copies the ArrayList to a compatible one-dimensional array

IndexOf Searches the ArrayList and returns the index of the first occurrence
within the ArrayList

Insert Inserts an element into the ArrayList at a specific index

Remove Removes an element from the ArrayList

RemoveAt Removes an element from the ArrayList by index

Reverse Reverses the order of the elements in the ArrayList

Sort Sort the elements in the ArrayList

In addition to the Add method, an AddRange method enables you to add multiple elements with one
call. You can use an Insert method, which enables you to add an element in a specific location in
the array, and a Remove method, which enables you to remove an element from the array. These few
methods enable easier maintenance compared to a simple array type.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 367

EXAM TIpS AND TRICKS: Array Indexes

You may see a question on the exam that uses the Insert method, and you will be
asked the index of the newly added element in the ArrayList.

You can also use the Sort method, which enables you to sort the elements in the array. Consider the
following example for a simple sorting exercise:

ArrayList myList = new ArrayList();

myList.Add(4);
myList.Add(1);
myList.Add(5);
myList.Add(3);
myList.Add(2);

myList.Sort();

foreach (int i in myList)
{
 Debug.WriteLine(i.ToString());
}

The preceding code can print the numbers in order to the Output window. But, what if you want to
store a custom object in the array list that wasn’t a simple type? For example, say you have a custom
class with an ID property that stores the unique identifier for this object:

class MyObject
{
 public int ID{ get; set; }
}

Now if you were to create an ArrayList, add five instances of this class, and then call the Sort
method, what do you think would happen?

ArrayList myList = new ArrayList();

myList.Add(new MyObject() { ID = 4 });
myList.Add(new MyObject() { ID = 1 });
myList.Add(new MyObject() { ID = 5 });
myList.Add(new MyObject() { ID = 3 });
myList.Add(new MyObject() { ID = 2 });

myList.Sort();

If you were to execute this code, you would get an exception on the line that calls the Sort method:
Failed to Compare Two Elements in the Array. This is because the Sort method does not know what
it is supposed to sort on. To fix this you can implement the IComparable interface in the MyObject
class. The IComparable interface enables the class to be sorted.

www.EBooksWorld.ir

www.EBooksWorld.ir

368 ❘ ChApTER 9 WorkIng WIth data

The IComparable interface has one method called CompareTo, which takes one parameter, the
object that you want to compare. The CompareTo method returns either a number less than zero,
zero, or greater than zero. Less than zero indicates that the current instance is higher in the sort
order; zero indicates that the two objects are equal; and greater than zero indicates that the second
object is higher in the sort order.

class MyObject : IComparable
{
 public int ID{ get; set; }

 public int CompareTo(object obj)
 {
 MyObject obj1 = obj as MyObject;
 return this.ID.CompareTo(obj1.ID);
 }
}

In the preceding example, the ID property is used to sort the MyObject type. Because the ID property
is defined as an int, you can use its CompareTo method to determine which object is higher in the
hierarchy. If you were to execute the previous code, it would work without error.

Another common use of arrays and array lists is the ability to search the array. You can use a
simple for or foreach loop to find a specific element in the array, or you can use the much quicker
BinarySearch method. In order to use the BinarySearch method, you must have already sorted
the elements in the ArrayList, either by calling the Sort method or explicitly adding them to the
ArrayList in order; otherwise, you get unexpected results. The BinarySearch method returns the
index of the element if it is found. If it is not found, it returns a negative number.

ArrayList myList = new ArrayList();

myList.Add(new MyObject() { ID = 4 });
myList.Add(new MyObject() { ID = 1 });
myList.Add(new MyObject() { ID = 5 });
myList.Add(new MyObject() { ID = 3 });
myList.Add(new MyObject() { ID = 2 });

myList.Sort();
int foundIndex = myList.BinarySearch(new MyObject() { ID = 4 });

if (foundIndex >= 0)
{
 Debug.WriteLine(((MyObject)myList[foundIndex]).ID.ToString());
}
else
{
 Debug.WriteLine("Element not found");
}

EXAM TIpS AND TRICKS: BinarySearch prerequisites

The two important points to remember about the BinarySearch method are
that the ArrayList must be sorted and the elements in the ArrayList must
implement the IComparable interface.

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 369

Hashtable
A Hashtable enables you to store a key\value pair of any type of object. The data is stored accord-
ing to the hash code of the key and can be accessed by the key rather than the index of the element.
The following sample creates a Hashtable and stores three elements with different keys. You can
then reference the elements in the Hashtable by its key.

Hashtable myHashtable = new Hashtable();

myHashtable.Add(1, "one");
myHashtable.Add("two", 2);
myHashtable.Add(3, "three");

Debug.WriteLine(myHashtable[1].ToString());
Debug.WriteLine(myHashtable["two"].ToString());
Debug.WriteLine(myHashtable[3].ToString());

The preceding code will produce the following output:

one
2
three

Queue
A Queue is a first-in-first-out collection. Queues can be useful when you need to store data in a specific
order for sequential processing. The following code will create a Queue, add three elements, remove
each element, and print its value to the Output window:

Queue myQueue = new Queue();

myQueue.Enqueue("first");
myQueue.Enqueue("second");
myQueue.Enqueue("third");

int count = myQueue.Count;
for (int i = 0; i < count; i++)
{
 Debug.WriteLine(myQueue.Dequeue());
}

Notice that instead of an Add method, there is an Enqueue method that adds the element to the Queue.
To Dequeue method is used to remove an element from the Queue. You can’t reference an element by
index or key; all you can do is add, remove, or peek at the value that is on the top of the Queue. The
Peek method returns the value at the top of the Queue but does not remove it from the Queue.

EXAM TIpS AND TRICKS: pay Attention to the Queue Methods

You will often see a question regarding a queue on the test. Remember that you use
Enqueue and Dequeue, rather than Add and Remove. Or, the test may have a question
regarding a list that must be processed as first-in-first-out and ask which collection
class is best suited to perform this operation.

www.EBooksWorld.ir

www.EBooksWorld.ir

370 ❘ ChApTER 9 WorkIng WIth data

SortedList
A SortedList is a collection that contains key\value pairs but it is different from a Hashtable because
it can be referenced by the key or the index and because it is sorted. The elements in the SortedList
are sorted by the IComparable implementation of the key or the IComparer implementation when the
SortedList is created. The following code creates a SortedList, adds three elements to the list, and
then prints the elements to the Output window:

SortedList mySortedList = new SortedList();

mySortedList.Add(3, "three");
mySortedList.Add(2, "second");
mySortedList.Add(1, "first");

foreach (DictionaryEntry item in mySortedList)
{
 Debug.WriteLine(item.Value);
}

The preceding code produces the following output:

first
second
third

COMMON MISTAKES: SortedList Order of Elements

Notice that the order of the elements was printed based on the order of the key, not
the order they were added to the list. The type of variables passed to the key param-
eter must all be comparable with each other. If you try to add an element with an
integer for a key and then add a second element with a string for a key, you would
get an error because the two cannot be compared. If your list contains elements
with different types for the key, use a Hashtable.

Stack
A Stack collection is a last-in-first-out collection. It is similar to a Queue except that the last element
added is the first element retrieved. To add an element to the stack, you use the Push method. To
remove an element from the stack, you use the Pop method. The following code creates a Stack object,
adds three elements, and then removes each element and prints the value to the Output window:

Stack myStack = new Stack();

myStack.Push("first");
myStack.Push("second");
myStack.Push("third");

int count = myStack.Count;
for (int i = 0; i < count; i++)
{
 Debug.WriteLine(myStack.Pop());
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 371

The preceding code produces the following output:

third
second
first

You cannot access the elements in the stack by an index. All you can do is add, remove, or peek at
the next element on the stack.

EXAM TIpS AND TRICKS: pay Attention to the Stack Methods

A question about a Stack is another class that Microsoft likes to put on the exam.
Just remember that Push and Pop are used instead of Add and Remove. Remember also
that you can Peek at the next element, but you cannot reference an element by index.

System.Collections.Generic
The System.Collections.Generic namespace contains classes that are used when you know the
type of data to be stored in the collection and you want all elements in the collection to be of the same
type. Table 9-5 lists the types in the System.Collections.Generic namespace. These types are
described in detail in the following sections.

TABLE 9-5: System .Collections .Generic

COLLECTION NAME DESCRIpTION

Dictionary<TKey, TValue> Creates a collection of key\value pairs that are of the same type

List<T> Creates a collection of objects that are all the same type

Queue<T> Creates a first-in-first-out collection for objects that are all the
same type

SortedList<TKey, TValue> Creates a collection of key\value pairs that are sorted based on
the key and must be of the same type

Stack<T> Creates a collection of last-in-first-out object that are all of the
same type

BEST pRACTICES: Use Generic Type Whenever possible

It is considered best practice to use a collection from the Generic namespace
because they provide type-safety along with performance gains compared to the
non-generic collections.

www.EBooksWorld.ir

www.EBooksWorld.ir

372 ❘ ChApTER 9 WorkIng WIth data

Dictionary
A Dictionary type enables you to store a set of elements and associate a key for each element. The
key, instead of an index, is used to retrieve the element from the dictionary. This can be useful when
you want to store data that comes from a table that has an Id column. You can create an object that
holds the data and use the record’s Id as the key.

The following example creates a class called MyRecord, which represents a record in a table that has
three columns. A Dictionary is used to store multiple instances of this class. After the dictionary is
loaded, you can then retrieve the elements from the dictionary using the key rather than an index.

class MyRecord
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

static void Sample1()
{
 Dictionary<int, MyRecord> myDictionary = new Dictionary<int, MyRecord>();

 myDictionary.Add(5, new MyRecord() { ID = 5,
 FirstName = "Bob",
 LastName = "Smith" });

 myDictionary.Add(2, new MyRecord() { ID = 2,
 FirstName = "Jane",
 LastName = "Doe" });

 myDictionary.Add(10, new MyRecord() { ID = 10,
 FirstName = "Bill",
 LastName = "Jones" });

 Debug.WriteLine(myDictionary[5].FirstName);
 Debug.WriteLine(myDictionary[2].FirstName);
 Debug.WriteLine(myDictionary[10].FirstName);
}

The preceding code will write "Bob", "Jane", and "Bill" to the Output window.

If you want to know how many elements are in the Dictionary object, you use the Count property,
unlike an Array, which has a Length property.

Table 9-6 lists the most common methods of the System.Collections.ArrayList class.

TABLE 9-6: Common System .Collections .Generic .Dictionary Methods

METhOD DESCRIpTION

Add Adds a key and value to the dictionary

Clear Removes all the keys and values in the dictionary

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 373

METhOD DESCRIpTION

ContainsKey Returns true if the dictionary contains the specified key

ContainsValue Returns true if the dictionary contains the specified value

Remove Removes the element with the specified key

The Dictionary object has an Add method to add elements to the dictionary, a Remove method to
remove an element, and a Clear method to remove all the elements from the Dictionary. There is
also a ContainsKey and ContainsValue method that allows you to determine if an element exists
in the Dictionary before trying to reference it.

BEST pRACTICES: Be Aware of Dictionary Exceptions

If you reference an element in a Dictionary by its key and the key isn’t found, you
will get an exception. It is always good practice to check the ContainsKey method
before retrieving an element from the Dictionary.

List
A List class is a strongly typed collection of objects. It is similar to an ArrayList except all elements
of the List must be of the same type. It is different from a Dictionary because there is no Key, and
elements are referenced by index. When you declare the List object, you specify the type of elements
it can contain.

List<int> myList = new List<int>();

When you add elements to the list, they must be of that type, or you get an error. The preceding
code created a List object that can contain only int values.

myList.Add(1);
myList.Add(2);
myList.Add(3);

EXAM TIpS AND TRICKS: Know the Differences Between the Collections

You may see a question asking you which type of collection class to use based on a
specific set of requirements. Remember the following points:

 1 . Generic collections are used when you have the same type for all elements.

 2 . Lists and ArrayLists are referenced by index and do not have a key.

 3 . Dictionaries, SortedLists, and Hashtables have a key\value pair.

 4 . Queues and Stacks are used when you have a specific order of processing.

www.EBooksWorld.ir

www.EBooksWorld.ir

374 ❘ ChApTER 9 WorkIng WIth data

The SortedList<TKey, TValue>, Queue<T>, and Stack<T> types are the same as their counterpart
in the System.Collections namespace except that when you create the object, you must specify
the type of data for the key or elements, and all elements must be of the same type.

Custom Collections
In addition to the standard collections provided by .NET, you can create your own custom
strongly typed collections. Strongly typed collections are useful because they do not incur the
performance hit due to boxing and unboxing. To create your own custom collection, you can
inherit from the CollectionBase class. Tables 9-7 and 9-8 list the commonly used properties
and method of the CollectionBase class.

TABLE 9-7: System .Collections .CollectionBase Properties

pROpERTY DESCRIpTION

Capacity Gets or sets the number of elements the collection can contain

Count Returns the number of elements in the dictionary

InnerList Gets an ArrayList containing the elements in the collection

List Get an IList containing the elements in the collection

TABLE 9-8: System .Collections .CollectionBase Methods (Partial List)

METhOD DESCRIpTION

Clear Clears the elements from the collection

OnInsert Enables you to perform custom processing before inserting a new
element

OnRemove Enables you to perform custom processing before removing an element

OnSet Enables you to perform custom processing before setting a value in the
collection

RemoveAt Removes the element at the specified index

There are not Add, Insert, Sort, or Search methods in the base class. When you implement your
class, you need to implement whichever methods you want to add, insert, sort, or search items
within the collection.

For example, say you have a Person class with a few properties:

class Person
{
 public int PersonId { get; set; }
 public string FName { get; set; }

www.EBooksWorld.ir

www.EBooksWorld.ir

Working with Data Collections ❘ 375

 public string LName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

You can then create a person collection class that inherits from the CollectionBase class. The
following code creates a custom collection class for the Person class and creates Add, Insert, and
Remove methods and creates a strongly typed indexer. The indexer is used when you reference the
collection by index, such as myCollection[index].

class PersonCollection : CollectionBase
{
 public void Add(Person person)
 {
 List.Add(person);
 }
 public void Insert(int index, Person person)
 {
 List.Insert(index, person);
 }
 public void Remove(Person person)
 {
 List.Remove(person);
 }
 public Person this[int index]
 {
 get
 {
 return (Person)List[index];
 }

 set
 {
 List[index] = value;
 }
 }
}

Now that you have a strongly typed PersonCollection class, you can use it in your code:

static void Main(string[] args)
{
 PersonCollection persons = new PersonCollection();

 persons.Add(new Person() {
 PersonId = 1,
 FName = "John",
 LName = "Smith" });

 persons.Add(new Person()
 {
 PersonId = 2,
 FName = "Jane",

www.EBooksWorld.ir

www.EBooksWorld.ir

376 ❘ ChApTER 9 WorkIng WIth data

 LName = "Doe" });

 persons.Add(new Person()
 {
 PersonId = 3,
 FName = "Bill Jones",
 LName = "Smith" });

 foreach (Person person in persons)
 {
 Debug.WriteLine(person.FName);
 }

}

The preceding code creates an instance of the PersonCollection class, adds three objects to the class,
and then enumerates through the collection and prints the element’s value to the Output window.

REAL-WORLD CASE SCENARIO Populating a drop-down list from a generic list

One of the most common uses of ArrayLists, Lists, or Dictionaries is to populate a drop-down list
in a Windows Form or Web Form. Create an ASP.NET web page with a drop-down list. Next, create a
class with an Id and a Name and then create a List<T> object and populate the drop-down list with the
items in the list.

Solution

 1 . Create a new Empty Web Application using Visual Studio 2012. Add a new Web Form to the
project and drag a drop-down list control onto the Web Form. The name of the drop-down list
will default to DropDownList1.

 2 . Add a class to the application that contains the following code:

public class MyRecord
{
 public int Id { get; set; }
 public string Name { get; set; }
}

This class has an Id property and a Name property. The Id will be stored in the Value attribute of
the drop-down ListItem. The Name property will be set to the text of the ListItem in the drop-
down list.

 3 . Add the following code to the Page_Load event in the code behind the page of the Web Form:

List<MyRecord> myRecordList = new List<MyRecord>();

myRecordList.Add(new MyRecord() { Id = 1, Name = "John" });
myRecordList.Add(new MyRecord() { Id = 2, Name = "Sue" });
myRecordList.Add(new MyRecord() { Id = 3, Name = "Jack" });

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 377

DropDownList1.DataSource = myRecordList;
DropDownList1.DataTextField = "Name";
DropDownList1.DataValueField = "Id";
DropDownList1.DataBind();

This code creates a generic list object called myRecordList. This list can only contain object that are of
the type MyRecord. Next, three items are added to the list using the Add method. Next, the DataSource
property of the drop-down list control is set to the myRecordList. Now that the control knows where
to get the data from, you need to tell it which property should be used as the text and as the value for
the list items. The DataTextField property must be set to the Name property of the MyRecord class. The
DataValueField property specifies which property should be used for the value field; in this instance,
the Id property. The last step is to call the DataBind method, which generates the HTML for a drop-
down list control and creates a ListItem for each element in the myRecordList object.

CONSUMING DATA

This section explains how to retrieve data from a database using ADO.NET, the Entity Framework,
or a WCF Data Service. Many applications store information in a database and retrieve the data
using one of these methods, and then store the data in memory using the arrays or collections.

Working with ADO .NET
ADO.NET is a set of classes in the .NET Framework that enables you to connect to a database;
insert, update, select, or delete records from a table; execute store procedures; or perform data
definition language statements. Almost all applications use databases, so you must understand
the concepts surrounding ADO.NET.

The ADO.NET types are located in the System.Data namespace. There are numerous base classes
and interfaces defined in this namespace that a data provider must implement to allow ADO.NET
to access a database. For example, the System.Data.SqlClient namespace contains the types that
implement the ADO.NET base classes and interfaces to connect to a SQL Server database. Oracle,
MySQL, and other major database systems all have their own namespace and classes that implement
the ADO.NET base classes and interfaces. This enables you to use consistent syntax across all data-
bases. This section uses the classes defined in the System.Data.SqlClient namespace.

Connection
A connection object is used to open up a line of communication with a database. The
SqlConnection object is used to connect to a SQL Server database. This class, along with
any provider’s connection class, inherits from the System.Data.Common.DBConnection class.
Table 9-9 lists the most common properties for the DBConnection class.

www.EBooksWorld.ir

www.EBooksWorld.ir

378 ❘ ChApTER 9 WorkIng WIth data

TABLE 9-9: Common System .Data .Common .DBConnection Properties

pROpERTY DESCRIpTION

ConnectionString Gets or sets the string used to open a connection to a database

ConnectionTimeout Gets the time in seconds that the system should wait while establishing a
connection to the database before generating an error

Database Gets the name of the database

DataSource Gets the name of the database server

ServerVersion Gets the server version for the database

State Gets a string that represents the state of the connection such as Open
or Closed

The most important property to take note of is the ConnectionString property. This tells the con-
nection object which server and database to connect to. For SQL Server a connection string has the
following syntax.

Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;

ADVICE FROM ThE EXpERTS: Connection Strings

Each provider has slight variations on the settings within the connection string.
http://www.ConnectionStrings.com is a great resource for determining the dif-
ferent syntax for connection strings for many different types of databases.

Table 9-10 lists the most important methods for the DBConnection class.

TABLE 9-10: System .Data .Common .DBConnection Methods (Partial List)

METhOD DESCRIpTION

BeginTransaction Begins a database transaction

Close Closes the connection to the database

GetSchema Returns a DataTable that contains the schema information for the
data source

Open Opens the database connection using the connection string

The Open method is used to establish a connection to the database. After you have a connection,
you can then use this object along with the other ADO.NET objects to execute commands against

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.ConnectionStrings.com

Consuming Data ❘ 379

the database. The following code creates an instance of the SqlConnection object, sets the
ConnectionString property, and opens a connection to the database:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

Command
A Command object is used to execute statements against a database. You can execute insert, update,
delete, select, or stored procedures using the command object. The System.Data.Common.DBCommand
class is the base class for all provider Command classes. The System.Data.SqlClient.SqlCommand class
is SQL Server’s implementation of the DBCommand class.

ExecuteNonQuery Method
The ExecuteNonQuery method is used to execute statements against the database that do not return
resultsets. For example, an insert, update, or delete statement does not return any records. They simply
execute the statement against a table. The following code demonstrates how to execute an insert state-
ment against the database:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "INSERT INTO Person (FirstName, LastName) " +
 "VALUES ('Joe', 'Smith')";
cmd.ExecuteNonQuery();

cn.Close();

Notice the three properties of the command object that had to be set before calling the
ExecuteNonQuery method. The first is the Connection property. This must be set to an open
connection. This tells the command object what database to use when executing the text con-
tained in the CommandText property. In this sample you use inline SQL, which is why the
CommandType property is set to CommandType.Text.

If you used a stored procedure to insert a Person record, you would need to change the CommandType
to CommandType.StoredProcedure and set the CommandText to the name of the stored procedure. For
example, assume you have the following stored procedure that inserts a record into the Person table:

CREATE PROCEDURE PersonInsert
 @FirstName varchar(50),
 @LastName varchar(50)
AS
BEGIN
 INSERT INTO PERSON (FirstName, LastName) VALUES (@FirstName, @LastName)
END

www.EBooksWorld.ir

www.EBooksWorld.ir

380 ❘ ChApTER 9 WorkIng WIth data

The following code executes the stored procedure and passes in the @FirstName and @LastName
parameters:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;
cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = "PersonInsert";
cmd.Parameters.Add(new SqlParameter("@FirstName", "Joe"));
cmd.Parameters.Add(new SqlParameter("@LastName", "Smith"));
cmd.ExecuteNonQuery();

The Command object has a Parameters property that you use to pass parameters to the stored
procedure. Also note that the ExecuteNonQuery method returns the number of rows affected by
the query. In this example, 1 is returned, but if you have an Update or Delete statement, you can
determine the number of records affected by the query using the return value.

ExecuteReader Method
Use the ExecuteReader method to retrieve results from the database such as when you use a
Select statement. The ExecuteReader returns a DBDataReader object. The DBDataReader object
is another class defined in ADO.NET. A DBDataReader object is a forward-only resultset that
remains connected to the database the entire time the reader is open. Forward-only means that you
can traverse only through the records once, and you cannot move the cursor back to any previous
record. The following code prints all the records in the Person table to the output window using
a DBDataReader object. The return object is declared as a SqlDataReader because that is SQL
Server’s implementation of the DBDataReader class.

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT * FROM Person";
SqlDataReader dr = cmd.ExecuteReader();

if (dr.HasRows)
{
 while (dr.Read())
 {
 Debug.WriteLine(string.Format("First Name: {0} , Last Name: {1}",
 dr["FirstName"], dr["LastName"]));
 }
}
dr.Close();
cn.Close();

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 381

You must call the Close method on the DBDataReader object and then close the Connection
object. If you don’t you can be left with orphaned open connections, which can hurt performance.
The ExecuteReader method is overloaded and can take a parameter of type CommandBehavior
that tells ADO.NET to close the connection automatically when the reader is closed.

BEST pRACTICES: Closing Connections in C#

There are two ways to close a connection in C#. First is to call the Close method, and
second is to use a using statement. A using statement defines a scope for the object
that is declared and automatically disposes of the object once the object is out of scope.
The syntax for a using statement that defines a scope for a connection is as follows:

using (SqlConnection cn = new SqlConnection())
{

}

The open and close brackets, {}, define the scope for the connection. When the
connection is disposed, it is closed.

Table 9-11 lists commonly used properties of the DBDataReader class.

TABLE 9-11: Commonly used Properties for System .Data .Common .DBDataReader

pROpERTY DESCRIpTION

FieldCount Returns the number of columns on the current row .

HasRows Returns a boolean indicating if the reader has any rows .

IsClosed Returns a boolean indicating if the reader is closed .

Item[Int32] This is an indexer that returns the column based on the index .

Item[String] This is an indexer that returns the column based on the name of
the column .

There isn’t a Count property for the number of rows in the resultset. The only way to get the
count is to traverse through the datareader. The indexers, which are the Item properties, return an
object. They enable you to get the value of a column either by column index or by name. It is up to
you to cast the object to the right type when using the indexers.

COMMON MISTAKES: null Versus DBNull .Value

Be aware that if a column contains a null value, the object returned from the
indexer is not null; it is DBNull.Value. This can be the cause of many bugs if you
do not understand the difference between the two.

www.EBooksWorld.ir

www.EBooksWorld.ir

382 ❘ ChApTER 9 WorkIng WIth data

Table 9-12 lists commonly used methods for the DBDataReader class.

TABLE 9-12: Commonly used method for the System .Data .Common .DBDataReader

METhOD DESCRIpTION

Close Closes the object

GetBoolean Returns the value of the specified column as a boolean

GetByte Returns the value of the specified column as a byte

GetChar Returns the value of the specified column as a character

GetDateTime Returns the value of the specified column as a DateTime object

GetDecimal Returns the value of the specified column as a Decimal object

GetDouble Returns the value of the specified column as a double object

GetFieldType Returns the data type of the specified column

GetFieldValue<T> Returns the value of the specified column as a type

GetFloat Returns the value of the specified column as a single object

GetGuid Returns the value of the specified column as a GUID

GetInt16 Returns the value of the specified column as a 16-bit integer

GetInt32 Returns the value of the specified column as a 32-bit integer

GetInt64 Returns the value of the specified column as a 64-bit integer

GetName Returns the name of the specified column given the ordinal position

GetOrdinal Returns the ordinal position of a column given the column name

GetSchemaTable Returns a DataTable that describes the column metadata

GetString Returns the value of the specified column as a string

GetValue Returns the value of the specified column as an object

GetValues Populates an array of objects with the values of the columns

NextResult Moves the cursor to the next resultset in the reader

IsDBNull Returns a boolean to indicate if the specified column contains a null value

Read Advances the cursor to the next record

Numerous GetTYPE methods enable you to use a column index to get the value from the data reader
and casts the value to the specified type. This works only with column indexes and not names. If the
order in your SELECT clause changes, your indexes must also change.

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 383

The Read method moves to the next record in the resultset if it exists. It returns true if there is
another record and false after it reaches the end of the resultset. There is also a HasRows property,
which returns a boolean to tell you if there are rows in the resultset.

BEST pRACTICES: prevent Errors When Reading a Records

It is always good practice to check the HasRows property before calling the Read
method because if there aren’t any rows in the resultset and you call the Read method,
you get an exception.

When retrieving data from a database, you can save trips by executing multiple SELECT statements
in a single call. The DBDataReader has the capability to hold multiple resultsets in a single object.
To move to the next resultset, you simply call the NextResult method.

The GetSchemaTable method returns a DataTable that contains the metadata about the col-
umns in the DBDataReader. The returned table with the schema has a row for each column that
contains columns for the column name, the column type, the column size, the ordinal position,
whether it is an Identity column, and whether the column enables nulls. If all you need is the
schema for a query rather than the data, you can call the ExecuteDataReader method and pass
in CommandBehavior.SchemaOnly.

ExecuteScalar Method
The ExecuteScalar method is used when you know that your resultset contains only a single
column with a single row. This is great when your query returns the result of an aggregate func-
tion such as SUM or AVG. The following code calls the ExecuteScalar method and returns the
Count of records in the Person table:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT COUNT(*) FROM Person";
object obj = cmd.ExecuteScalar();

Debug.WriteLine(string.Format("Count: {0}", obj.ToString()));

cn.Close();

The ExecuteScalar method always returns an object, so it is up to you to cast this value to the
right type when you want to use the value.

www.EBooksWorld.ir

www.EBooksWorld.ir

384 ❘ ChApTER 9 WorkIng WIth data

ExecuteXmlReader Method
The ExecuteXmlReader method returns an XMLReader, which enables you to represent the data as
XML. The following code returns the data from the Person table into an XmlReader object:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT * FROM Person FOR XML AUTO, XMLDATA";
System.Xml.XmlReader xml = cmd.ExecuteXmlReader();

cn.Close();

The SQL statement was changed and included the FOR XML AUTO, XMLDATA clause. The XML result
for this query follows:

<Schema name="Schema1" xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:dt="urn:schemas-microsoft-com:datatypes">
 <ElementType name="Person" content="empty" model="closed">
 <AttributeType name="PersonId" dt:type="i4"/>
 <AttributeType name="FirstName" dt:type="string"/>
 <AttributeType name="LastName" dt:type="string"/>
 <AttributeType name="Address" dt:type="string"/>
 <AttributeType name="City" dt:type="string"/>
 <AttributeType name="State" dt:type="string"/>
 <AttributeType name="ZipCode" dt:type="string"/>
 <attribute type="PersonId"/>
 <attribute type="FirstName"/>
 <attribute type="LastName"/>
 <attribute type="Address"/>
 <attribute type="City"/>
 <attribute type="State"/>
 <attribute type="ZipCode"/>
 </ElementType>
</Schema>
<Person xmlns="x-schema:#Schema1" PersonId="1" FirstName="John" LastName="Smith"
Address="123 First Street" City="Philadelphia" State="PA" ZipCode="19111"/>

Notice that the schema is returned along with the data in this example.

DataSet, DataTable, and DataAdapter
Another way to retrieve results from a database is to use DataSets and DataTables. A DataTable is
similar to a DBDataReader except that it is disconnected from the database; you can move the cursor
back and forth; and you can update data in the DataTable, reconnect to the database, and commit
the changes. A DataSet is a container for one or more DataTables. You can execute a SQL state-
ment that returns multiple resultsets, and each can be contained in the DataSet. You can then filter,
sort, or update the data in memory. The DataAdapter is the object used to populate a DataSet or
DataTable and also the reconnect to the database to perform insert, update, or delete commands.

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 385

The following code uses a DataSet to retrieve the data from the Person table and write all the
records to the Output window:

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM Person", cn);

DataSet ds = new DataSet();
da.Fill(ds, "Person");

cn.Close();

foreach (DataRow row in ds.Tables[0].Rows)
{
 Debug.WriteLine(string.Format("First Name: {0} , Last Name: {1}",
 row["FirstName"], row["LastName"]));
}

In this example, the constructor of the SqlDataAdapter was passed the SQL statement to execute
when calling the Fill method. The Fill method is used to populate the DataSet. Notice that after
the Fill method was called that the Connection was closed, but the DataSet was still available for
use. You cannot do this with a DBDataReader because it is connected to the database.

The DataSet object has a Tables property that you can use to reference the DataTable objects
returned from your query. In this example there was only one resultset returned, so you can reference
it by using the zero index of the Tables property. DataTables has a Rows property, which contains a
collection of DataRow objects that contains the records. You can reference the records by row index or
enumerate through them with a loop. The Rows collection also has a Count property, which can tell
you the number of rows in the DataTable. This is also a different from the DBDataReader because you
can move back and forth between rows.

The DataAdapter class enables you to insert, update, or delete rows after you have changed
the underlying DataTable in your dataset. The following example shows you how to use the
DataAdapter to insert records into a database.

CODE LAB Use a DataAdapter to add a record to a table [ADONETSamples.cs]

The following code demonstrates how to use a DataAdapter to add a new record to a table. You must
have a database with a table named Person with a PersonId, FirstName, and LastName column.

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM Person", cn);

//Create the insert command

www.EBooksWorld.ir

www.EBooksWorld.ir

386 ❘ ChApTER 9 WorkIng WIth data

SqlCommand insert = new SqlCommand();
insert.Connection = cn;
insert.CommandType = CommandType.Text;
insert.CommandText = "INSERT INTO Person (FirstName, LastName) VALUES (@FirstName,
 @LastName)";

//Create the parameters
insert.Parameters.Add(new SqlParameter("@FirstName", SqlDbType.VarChar, 50,
 "FirstName"));
insert.Parameters.Add(new SqlParameter("@LastName", SqlDbType.VarChar, 50,
 "LastName"));

//Associate the insert command with the DataAdapter.
da.InsertCommand = insert;

//Get the data.
DataSet ds = new DataSet();
da.Fill(ds, "Person");

//Add a new row.
DataRow newRow = ds.Tables[0].NewRow();
newRow["FirstName"] = "Jane";
newRow["LastName"] = "Doe";
ds.Tables[0].Rows.Add(newRow);

//Update the database.
da.Update(ds.Tables[0]);

cn.Close();

Code Lab Analysis

The DataAdapter has an InsertCommand property that must be set to a DBCommand object. The DBCommand
object can be associated with a stored procedure or dynamic SQL. In this sample the insert command is
associated with dynamic SQL. This is accomplished by setting the CommandType to CommandType.Text
and the CommandText to a valid INSERT statement. Notice that the INSERT statement has two parameters,
@FirstName and @LastName. You have to add these parameters to the DBCommand’s Parameters property
and specify the column name that should be used for that parameter. In this example the column names are
FirstName and LastName respectively.

The code sample uses the NewRow method of the DataTable object to obtain a reference to a DataRow
object that has all the fields in the table. After you set the value of the columns, you can then add the
DataRow to the DataTable using the DataTable.Rows.Add method. Calling the Update method of the
DataAdapter can trigger ADO.NET to look at any added, updated, or deleted records and call the cor-
responding command. In this example only records were added so that the InsertCommand is called.

The next code lab demonstrates how to use the DeleteCommand and UpdateCommand.

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 387

CODE LAB Update and delete records using the DbDataAdapter
[ADONETSamples.cs]

This code lab will demonstrate how to use the UpdateCommand property of a DbDataAdapter object to
update a record, and also how the use the DeleteCommand property of a DbDataAdapter to delete a record.

SqlConnection cn = new SqlConnection();
cn.ConnectionString = "Server=myServerAddress;Database=myDataBase;
 User Id=myUsername;Password=myPassword;";
cn.Open();

SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM Person", cn);

//Create the update command
SqlCommand update = new SqlCommand();
update.Connection = cn;
update.CommandType = CommandType.Text;
update.CommandText = "UPDATE Person SET FirstName = @FirstName, LastName = @LastName
 WHERE PersonId = @PersonId";

//Create the parameters
update.Parameters.Add(new SqlParameter("@FirstName", SqlDbType.VarChar, 50,
 "FirstName"));
update.Parameters.Add(new SqlParameter("@LastName", SqlDbType.VarChar, 50,
 "LastName"));
update.Parameters.Add(new SqlParameter("@PersonId", SqlDbType.Int, 0, "PersonId"));

//Create the delete command
SqlCommand delete = new SqlCommand();
delete.Connection = cn;
delete.CommandType = CommandType.Text;
delete.CommandText = "DELETE FROM Person WHERE PersonId = @PersonId";

//Create the parameters
SqlParameter deleteParameter = new SqlParameter("@PersonId", SqlDbType.Int, 0,
 "PersonId");
deleteParameter.SourceVersion = DataRowVersion.Original;
delete.Parameters.Add(deleteParameter);

//Associate the update and delete commands with the DataAdapter.
da.UpdateCommand = update;
da.DeleteCommand = delete;

//Get the data.
DataSet ds = new DataSet();
da.Fill(ds, "Person");

//Update the first row
ds.Tables[0].Rows[0]["FirstName"] = "Jack";
ds.Tables[0].Rows[0]["LastName"] = "Johnson";

www.EBooksWorld.ir

www.EBooksWorld.ir

388 ❘ ChApTER 9 WorkIng WIth data

//Delete the second row.
ds.Tables[0].Rows[1].Delete();

//Updat the database.
da.Update(ds.Tables[0]);

cn.Close();

Code Analysis

Notice that the UpdateCommand and DeleteCommand properties are set to different command objects
that contain the logic for updating and deleting records. The DbDataAdapter logic will automatically
execute the command object according to which function it should perform. Be sure to put the right
logic in your command objects, because the DbDataAdapter is just going to execute the command; it
does not check that it actually does the correct work.

Working with the ADO .NET Entity Framework
The ADO.NET Entity Framework is a set of classes within the .NET Framework that also enables
you to add, insert, update, and delete data within a database. The Entity Framework has a graphical
user interface that enables you to drag and drop objects from a database onto a design surface. This
is called an Object-Relational Mapping tool, or ORM tool. There are many different ORM tools
on the market. The Entity Framework and LINQ to SQL are just two examples that Microsoft has
created for use within Visual Studio. There are other vendors that create ORM tools for other data-
bases and other languages such as NHibernate, CakePHP, and ActiveRecord, just to name a few.

The sample code in this section uses the Northwinds database, which is a sample database provided by
CodePlex.com. You can download the database from http://northwinddatabase.codeplex.com/
and restore the backup file to your SQL Server.

Create an Entity Framework Model
At the core of the Entity Framework is the Model. The Model contains all of the classes that represent
an object in the database. Follow these steps to create an Entity Framework Model by mapping the
Northwinds database:

 1 . Launch Visual Studio 2012.

 2 . Click New Project from the Start Page.

 3 . Select Console Application from the list of installed C# templates.

 4 . Name the project NorthwindsConsole, and click the OK button.

 5 . Right-click the project in the Solution Explorer, click Add. Then select New Item from the
pop-up menu.

 6 . Select ADO.NET Entity Data Model from the list of installed C# templates.

 7 . Change the Name to NorthwindsModel, and click the Add button. The Entity Data Model
Wizard appears.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://northwinddatabase.codeplex.com/

Consuming Data ❘ 389

 8 . Because you already have the database, select the Generate from Database option. This
approach is called Database First. An alternative approach is called Model First, which enables
you to create all your classes in the model first and then generate a database from the model.

 9 . Click the Next button. The next page asks for the database connection.

 10 . Click the New Connection button. The Choose Data Source dialog appears.

 11 . Select Microsoft SQL Server from the list of data sources, and click the Continue button. The
Connection Properties dialog appears.

 12 . Enter the name of the server where you created the Northwinds database.

 13 . You can either use Windows Authentication or a SQL Server Authentication to connect to
the database. If you select SQL Server Authentication, you need to enter a valid SQL Login
and Password.

 14 . Select the Northwinds database from the Select or Enter a Database Name list.

 15 . Click the OK button. This brings you back to the Entity Data Model Wizard. By default the
connection string will be stored in an app.config file within your project.

 16 . Click the Next button. This screen enables you to select the objects in the database that you
want to map. Select the check boxes next to Tables, Views, and Stored Procedures from the
list, and leave the other settings unchanged. Click the Finish button.

The Entity Data Model Wizard automatically generates the Model (see Figure 9-2).

FIGURE 9-2: Northwinds Model - Entity Framework Designer

The NorthwindsModel.edmx file was added to your project in the Solution Explorer. This file is the
graphical representation of all the classes that were created to represent the objects in the database.

www.EBooksWorld.ir

www.EBooksWorld.ir

390 ❘ ChApTER 9 WorkIng WIth data

Click the arrow next to the NorthwindsModel.edmx file in the Solution Explore to view all the files
that were created for you.

Notice the file called NorthwindsModel.tt. This is a Text Transformation Template Toolkit file,
also known as a T4 template. A T4 template file is used to automatically generate code within Visual
Studio. T4 templates are a mixture of text blocks and control statements that enable you to generate a
code file. Click the arrow next to the NorthwindsModel.tt file to expand the list of files generated by
this template. A file was created for each table, view, and stored procedure that returns a resultset.

Click the Category.cs file. This file contains a class that maps to the Category table in the Northwinds
database. There is a property for each column in the table. There is also a property called Products,
which is of type ICollection<Product>. The reason why this property was created is because there
is a foreign key in the Products table that references the Category table. Categories can have many
products associated with it. The Entity Framework Wizard was smart enough to recognize this and
generated these properties for you.

Click the Category_Sales_for_1997.cs file. This maps to the Category_Sales_for_1997 view in the
database. The class file that was generated maps to the columns in the query of the view.

Click the CustOrderHist_Results.cs file. This class was created to represent the columns that are
returned from the CustOrderHist stored procedure. The CustOrderHist stored procedure is
defined as follows:

CREATE PROCEDURE [dbo].[CustOrderHist] @CustomerID nchar(5)
AS
SELECT ProductName, Total=SUM(Quantity)
FROM Products P, [Order Details] OD, Orders O, Customers C
WHERE C.CustomerID = @CustomerID
AND C.CustomerID = O.CustomerID
AND O.OrderID = OD.OrderID
AND OD.ProductID = P.ProductID
GROUP BY ProductName

This procedure returns two columns: ProductName and Total. Notice that the CustOrderHist_
Result class has two properties, ProductName and Total. So as you can see, the Entity Data
Model Wizard saves you from writing these classes and is smart enough to read the definition of a
view or a stored procedure to create a class that can be used to represent the resultset of either.

Now click the NorthwindsModel.Context.tt file in the Solution Explorer. This is the T4 Template
for the Context object. Think of the Context object as the class that represents the entire data-
base. If you click the arrow next to the NorthwindsModel.Context.tt file, you can see one file,
NorthwindsModel.Context.cs. This is the class that was created by the T4 Template. Open
the NorthwindsModel.Context.cs file by clicking it. The class name is NorthwindsEntities and
has properties for each table contained in the database. The properties are generic DbSet types,
which is a collection of the each type that represents a table or view. A few of the properties that
were created are listed here:

public DbSet<Category> Categories { get; set; }
public DbSet<CustomerDemographic> CustomerDemographics { get; set; }
public DbSet<Customer> Customers { get; set; }
public DbSet<Employee> Employees { get; set; }
public DbSet<Order_Detail> Order_Details { get; set; }

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 391

The stored procedures are created as methods. After the properties are defined, there is a list of
methods that have the same name as the stored procedures in the database. Any parameters to the
stored procedures are parameters to the method. If a store procedure returns a resultset, the return
value of the method is an ObjectResult collection of that type. For example, the CustOrderHist
stored procedure is created as the following method:

public virtual ObjectResult<CustOrderHist_Result> CustOrderHist(string customerID)
{
 var customerIDParameter = customerID != null ?
 new ObjectParameter("CustomerID", customerID) :
 new ObjectParameter("CustomerID", typeof(string));

 return ((IObjectContextAdapter)this).ObjectContext.ExecuteFunction
 <CustOrderHist_Result>("CustOrderHist", customerIDParameter);

}

The CustOrderHist_Result class is the type for the return set. The stored procedure had one
string parameter for the customer ID, so the method has one parameter for the customer ID. To call
the stored procedure, the ExecuteFunction method is called, which is a method contained in the
NorthwindEntities base class, DbContext. The DbContext class is defined in the System.Data
.Entity namespace, and this is like an ADO.NET connection object on steroids. This class has
methods for executing commands against the database and behind the scenes is using ADO.NET to
do the heavy lifting. The gory details are spared from you, and everything is automatically gener-
ated by running the wizard.

Select Records
Now that you have a Model, you can use it to make calls to the database without having to know
anything about SQL syntax. Follow the next set of instructions to select the records from the Category
table, and print them to the Output window.

Open the Program.cs file in the designer, and add the following using statements:

using System.Diagnostics;

Add the following code to the Main method:

using (NorthwindsEntities db = new NorthwindsEntities())
{
 var categories = from c in db.Categories
 select c;

 foreach (Category category in categories)
 {
 Debug.WriteLine(string.Format("CategoryId: {0}, CategoryName: {1}",
 category.CategoryID,
 category.CategoryName));
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

392 ❘ ChApTER 9 WorkIng WIth data

Run the project and the following will be printed to the Output window:

CategoryId: 1, CategoryName: Beverages
CategoryId: 2, CategoryName: Condiments
CategoryId: 3, CategoryName: Confections
CategoryId: 4, CategoryName: Dairy Products
CategoryId: 5, CategoryName: Grains/Cereals
CategoryId: 6, CategoryName: Meat/Poultry
CategoryId: 7, CategoryName: Produce
CategoryId: 8, CategoryName: Seafood

As you can see it took only a few lines of code to get the records, and you didn’t have to write any
SQL queries. Everything is handled for you by the Entity Framework. In this example the db vari-
able is declared as a NorthwindsEntities type. A LINQ query is used to retrieve the data from the
database and retrieve the results in the categories variable. Notice that you write the query using
C# syntax. The Entity Framework classes know how to convert that to a SQL query for you behind
the scenes. When the data is retrieved, you can then enumerate through the categories to write
each record to the Output window.

Earlier it was pointed out that the Products table had a foreign key to the Categories table. The
Product class that is generated by the Entity Data Model Wizard created a property to represent
this relationship.

public virtual Category Category { get; set; }

The following code sample shows you how to write a LINQ query to join the two tables and write
the product name and the category name to the Output window:

using (NorthwindsEntities db = new NorthwindsEntities())
{
 var products = from c in db.Categories
 join p in db.Products on c.CategoryID equals p.CategoryID
 select p;

 foreach (Product product in products)
 {
 Debug.WriteLine(string.Format("ProductName: {0}, CategorName: {1}",
 product.ProductName,
 product.Category.CategoryName));
 }
}

In this example instead of selecting the Category object, it selects the Products object. The Entity
Framework retrieves the correct columns and populate the properties of the Products class, and as
you can see, it also populates the Category property, which is a Categories class.

Insert Records
Inserting records into a database with the Entity Framework is simple. The following code sample
inserts a record in the Categories table:

using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 393

 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Add(category);
 db.SaveChanges();
}

This code created an instance of the Category class and initialized its properties. It then added
the object to the Categories property of the NorthwindsEntities. The SaveChanges() method
is then called to add the record to the database. Again, there was no SQL syntax needed; the Entity
Framework handled all that behind the scenes.

Update Records
Updating records is just as trivial. The following code sample retrieves the Category with the name
Alcohol, changes its description, and then updates the record in the database:

Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.SaveChanges();

Delete Records
You can also delete records by using just a few lines of code.

using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
 db.Categories.Remove(category);
 db.SaveChanges();
}

In Entity Framework 5.0 you use the Remove method. In previous versions the method was called
DeleteObject.

Call a Stored Procedure
As previously shown, all the stored procedures were created as methods in the NorthwindsEntities
class by the Entity Data Model Wizard. To call a stored procedure, you simply need to call the method.
The following code sample calls the CustOrderHist stored procedure, passes in a customer ID, and
then prints the orders to the Output window:

using (NorthwindsEntities db = new NorthwindsEntities())
{
 var custOrderHist = db.CustOrderHist("ALFKI");

 foreach (CustOrderHist_Result result in custOrderHist)
 {
 Debug.WriteLine(string.Format("ProductName: {0}, Total: {1}",
 result.ProductName, result.Total));
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

394 ❘ ChApTER 9 WorkIng WIth data

As you can see, all the heavy lifting is done for you by the Entity Framework, but it is still important to
understand what is going on behind the scenes with ADO.NET to become a more complete developer.

Creating WCF Data Services
WCF Data Services is a component of the .NET Framework that enables you to access a database
over the web or an intranet using a URI. In previous versions of .NET, this was called ADO.NET
Data Services. You can select, filter, add, update, and even delete data using a URI and query string
parameters. The WCF Data Services use the Open Data Protocol, OData, which is a web proto-
col that uses HTTP. For example, the following request can be made to a WCF Data Service that
exposes the Categories table from the Northwinds database.

http://localhost/WcfDataService1.svc/Categories?$filter=CategoryName eq 'Beverages'

In this example, Categories specifies the entity to return, and the filter parameter in the querystring
is used to find the category with the name ‘Beverages’. In the example the filter is set to CategoryName
eq 'Beverages'. The spaces are allowed in the query string. You can choose to have the data returned
as either XML, in which case it follows the OData ATOM Format (the XML representation of data
returned from an OData query), or JavaScript Object Notation, JSON (a lightweight data-interchange
format). By default the data is returned as XML. The following XML shows the response for the pre-
ceding call to the WCF Data Service:

<?xml version="1.0" encoding="utf-8" ?>
<feed xml:base="http://localhost:5000/WcfDataService1.svc/"
 xmlns=http://www.w3.org/2005/Atom
 xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
<id>http://localhost:5000/WcfDataService1.svc/Categories</id>
<title type="text">Categories</title>
<updated>2013-01-01T23:54:24Z</updated>
<link rel="self" title="Categories" href="Categories" />
<entry>
<id>http://localhost:5000/WcfDataService1.svc/Categories(1)</id>
<category term="NorthwindsModel.Category"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<link rel="edit" title="Category" href="Categories(1)" />
<title />
<updated>2013-01-10T23:54:24Z</updated>
<author>
<name />
</author>
<content type="application/xml">
<m:properties>
<d:CategoryID m:type="Edm.Int32">1</d:CategoryID>
<d:CategoryName>Beverages</d:CategoryName>
<d:Description>Soft drinks, coffees, teas, beers, and ales</d:Description>
<d:Picture m:type="Edm.Binary">FRwvA…</d:Picture>
</m:properties>
</content>
</entry>
</feed>

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 395

Notice that the columns have been returned as elements in the m:properties element along with
the data.

Create a WCF Data Service
Creating a WCF Data Service involves creating a web application, creating an ADO.NET Entity
Framework model for the database and then exposing the model by adding a WCF Data Service
file to your web application.

 1 . Launch Visual Studio 2012, and select New Project from the Start Page.

 2 . Select Empty ASP.NET Web Application from the list of installed C# templates.

 3 . Change the name of the site to NorthwindsWCFDataService and click the OK button.

 4 . Right-click the project in the Solution Explorer, click Add, and then select New Item from the
pop-up menu. Steps 5 through 14 create an ADO.NET Entity Data Model for the Northwinds
database just as you did in the previous exercise.

 5 . Select ADO.NET Entity Data Model from the list of installed C# templates.

 6 . Change the Name to NorthwindsModel and click the Add button. The Entity Data Model
Wizard appears.

 7 . Select the Generate from Database option; click the Next button. The next page asks for the
database connection.

 8 . Click the New Connection button. The Choose Data Source dialog appears.

 9 . Select Microsoft SQL Server from the list of data sources, and click the Continue button.
The Connection Properties dialog appears.

 10 . Enter the name of the server where you created the Northwinds database.

 11 . You can either use Windows Authentication or a SQL Server Authentication to connect to
the database. If you select SQL Server Authentication, you have to enter a valid SQL Login
and Password.

 12 . Select the Northwinds database from the Select or Enter A Database Name list.

 13 . Click the OK button. This brings you back to the Entity Data Model Wizard. By default, the
connection string will be stored in a Web.config file within your project.

 14 . Click the Next button. This screen enables you to select the objects in the database that you
want to map. Select the check boxes next to Tables, Views, and Stored Procedures from the
list, and leave the other settings unchanged. Click the Finish button.

 15 . The Entity Data Model appears in Visual Studio’s designer. Save your changes, and then
close the window in the designer.

 16 . Right-click the project in the Solution Explorer, click Add, and then select New Item from
the pop-up menu.

 17 . Choose WCF Data Service from the list of Installed C# Web templates.

www.EBooksWorld.ir

www.EBooksWorld.ir

396 ❘ ChApTER 9 WorkIng WIth data

 18 . Name the file NorthwindsService.svc, and click the Add button. Visual Studio creates the
NorthwindsService class.

public class NorthwindsService : DataService
 < /* TODO: put your data source class name here */ >
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and service
 // operations are
 visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset",
 // EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule("MyServiceOperation",
 // ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 }
}

The NorthwindsService inherits from the DataService class, which expects an Entity
Framework model as the type. Notice the /* TODO: code that was automatically generated.

 19 . Replace the commented TODO text with the name of the Entity Data Model that you created
during steps 5 through 14. It should be NorthwindsEntities.

 20 . Remove the commented code in the InitializeService method.

 21 . Add the following line in the InitializeService method:

config.SetEntitySetAccessRule("Categories", EntitySetRights.AllRead);

This line of code defines which entities are available for the web service. In this example
only the Categories entity is exposed. Your class should contain the following code:

public class NorthwindsService : DataService< NorthwindsEntities >
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("Categories", EntitySetRights.AllRead);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 }
}

 22 . Click the Run button to start debugging. You should get the following XML response:

<?xml version="1.0" encoding="UTF-8"?>
<service xmlns:atom=http://www.w3.org/2005/Atom
 xmlns="http://www.w3.org/2007/app"

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 397

 xml:base="http://localhost:8999/NorthwindsService.svc/">
 <workspace>
 <atom:title>Default</atom:title>
 <collection href="Categories">
 <atom:title>Categories</atom:title>
 </collection>
 </workspace>
</service>

This lists the entities that are exposed by this service; for this example only the Categories
entity is exposed.

 23 . Append Categories to the URL in the browser and press Enter.

http://localhost:8999/NorthwindsService.svc/Categories

You should now get an XML response that lists all the records in the Categories table. If you were
to append "?$filter=CategoryName eq 'Beverages'" to the URL in the browser and click enter,
you would get only the Category with the name Beverages. The $filter is an OData query option.
The WCF Data Services also support the following query options, as shown in Table 9-13.

TABLE 9-13: OData Query Options

OpTION DESCRIpTION

$orderby Sets the sort order for the returned data .

Example: $orderby=CategoryName,CategoryId

$top Set the number of entities to include in the returned data .

Example: $top=10

$skip Specifies the number of entities to skip before returning data .

Example: $skip=10

$filter Defines an expression that filters the entities .

See Table 9-14 through Table 9-18 for OData filter options .

$expand Specifies which related entities are returned in the data .

Example: $expand=Products

$select Specifies which properties (columns) in the returned data .

Example: $select=CategoryName,CategoryId

$inlinecount Requests the count of entities returned from the query .

Table 9-14 lists the keywords for use with the $filter query option.

www.EBooksWorld.ir

www.EBooksWorld.ir

398 ❘ ChApTER 9 WorkIng WIth data

TABLE 9-14: OData $filter Query Options

OpTION DESCRIpTION

Eq Equal

Ne Not equal

Gt Greater than

Ge Greater than or equal to

Lt Less than

Le Less than or equal to

And Logical and

Or Logical or

Not Logical not

() Precedence grouping

Add Addition ($filter=Cost Add 5 Gt 100)

Sub Subtraction ($filter=Cost Sub 5 Gt 100)

Mul Multiplication ($filter=Cost Mul 5 Gt 1000)

Div Division ($filter=Cost Div 5 Gt 100)

Mod Remainder ($filter=Cost Mod 2 Eq 0)

In addition to the operators, there are also specific functions that can be used for string, dates,
math, and type (see Tables 9-15 through 9-18).

TABLE 9-15: OData $filter string Functions

FUNCTION DESCRIpTION

bool substring(string p0,

string p1)

Returns true if p0 is in p1

bool endswith(string p0,

string p1)

Returns true if p0 ends with p1

bool startswith(string p0,

string p1)

Returns true if p0 starts with p1

int length(string p0) Returns the length of p0

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 399

FUNCTION DESCRIpTION

int indexof(string p0, string

p1)

Returns the first character index of p0 that contains p1

string replace(string p0,

string p1, string replace)

Searches p0 for p1 and replaces it with replace

string substring(string p0,

int pos)

Returns the substring of p0 from position pos

string substring(string p0,

int pos, int length)

Returns the substring of p0 from position pos for the speci-
fied length of characters

string tolower(string p0) Returns p0 in lowercase

string toupper(string p0) Returns p0 in uppercase

string trim(string p0) Removes leading and trailing whitespace

string concat(string p0,

string p1)

Concatenates strings p0 and p1

TABLE 9-16: OData $filter date Functions

FUNCTION DESCRIpTION

int day(DateTime p0) Returns the day of the date time

int hour(DateTime p0) Returns the hour of the date time

int minute(DateTime p0) Returns the minute of the date time

int month(DateTime p0) Returns the month of the date time

int second(DateTime p0) Returns the second of the date time

int year(DateTime p0) Returns the year of the date time

TABLE 9-17: OData $filter math Functions

FUNCTION DESCRIpTION

double round(double p0) The nearest integral value to the parameter value, follow-
ing the rules defined in IEEE754-2008

decimal round(decimal p0) The nearest integral value to the parameter value, follow-
ing the rules defined in IEEE754-2008

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

400 ❘ ChApTER 9 WorkIng WIth data

FUNCTION DESCRIpTION

double floor(double p0) The largest integral value less than or equal to the param-
eter value, following the rules defined in IEEE754-2008

decimal floor(decimal p0) The largest integral value less than or equal to the param-
eter value, following the rules defined in IEEE754-2008

double ceiling(double p0) The smallest integral value greater than or equal to
the parameter value, following the rules defined in
IEEE754-2008

decimal ceiling(decimal p0) The smallest integral value greater than or equal to
the parameter value, following the rules defined in
IEEE754-2008

TABLE 9-18: OData $filter type Functions

FUNCTION DESCRIpTION

bool isOf(type p0) Returns true if the entity is of type p0

bool IsOf(expression p0, type p0) Returns true if p0 is of type p1

In addition to filtering with the $filter syntax, OData also enables you to specify a primary key
value in ()to select a record based on its primary key. The following URI returns the
Category with the primary key of 1:

http://localhost:8999/NorthwindsService.svc/Categories(1)

The following URI returns the CategoryName of the Category with a primary key of 1:

http://localhost:8999/NorthwindsService.svc/Categories(1)/CategoryName

Create a Client Application That Uses WCF Data Services
The section creates a client application that consumes the WCF Service. This is similar to the sec-
tion that described how to create an ADO.NET Entity Framework model and showed you how to
select, add, update, and delete records. This section creates a console application that references
the Northwinds WCF Data Service and performs all the CRUD operations on the data.

 1 . Open the NorthwindsWCFDataService project in Visual Studio 2012 that was created in the
last section.

 2 . Select File, click Add, and then select New Project from the menu.

 3 . Select Console Application from the list of installed templates.

TABLE 9-17 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 401

 4 . Name the project NorthwindsClient and click the OK button.

 5 . Right-click the References of the NorthwindsClient project in the Solution Explorer, and
select Add Service Reference from the pop-up menu.

 6 . Click the arrow next to the button that says Discover, and select Services in Solution.

FIGURE 9-3: Add Service Reference dialog

 7 . Change the Namespace to NorthwindsServiceReference, and click the OK button.

 8 . Open the Program.cs file in the console application, and add the following using statements:

using NorthwindsClient.NorthwindsServiceReference;
using System.Diagnostics;
using System.Data.Services.Client;
using System.Net;

 9 . Add the following code to the Main method. Note that the port number will vary based on
your local server. In this sample the port number was 8999, but it will most likely be differ-
ent for your project.

NorthwindsEntities db = new NorthwindsEntities(new
 Uri("http://localhost:8999/NorthwindsService.svc/"));

var categories = from c in db.Categories
 select c;

foreach (Category category in categories)

www.EBooksWorld.ir

www.EBooksWorld.ir

402 ❘ ChApTER 9 WorkIng WIth data

{
 Debug.WriteLine(string.Format("CategoryId: {0}, CategoryName: {1}",
 category.CategoryID, category.CategoryName));
}

 10 . Set the console application as the startup project and run the application.

Notice that the code to query the database was the same as it was when querying directly against
the ADO.NET Entity Framework model in the last section. The only difference is that when you
create the NorthwindsEntities object, you need to pass in the URI of the WCF Data Service.

Add Records Using WCF Data Services
The next few lines of code can be used to add a record to the Categories table in the Northwinds
database. Replace the code in the Main method with the following:

NorthwindsEntities db = new NorthwindsEntities(new
 Uri("http://localhost:8999/NorthwindsService.svc/"));

//Create a category
Category category = new Category()
{
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
};

db.AddToCategories(category);
DataServiceResponse response = db.SaveChanges();

if (response.First().StatusCode == (int)HttpStatusCode.Created)
{
 Debug.WriteLine("New CategoryId: {0}", category.CategoryID);
}
else
{
 Debug.WriteLine("Error: {0}", response.First().Error.Message);
}

There are a couple things to note here that are different from when you added a record using
the ADO.NET Entity Framework. First, a method called AddToCategories was created in the
NorthwindsEntities class. This is used to add records to the Categories table. Second, the
SaveChanges method returns a DataServiceResponse object. This object has a list of responses
from the server. In this example, you use the first response’s StatusCode property to determine if
the record were successfully added. If you run this code as-is, you get an error: “An Error Occurred
While Processing This Request.” This is because you did not allow the creation of Category
records when you set up the security in the WCF Data Service. To allow add, update, and delete
capability to the Categories table, you need to open the NorthwindsService.svc.cs file in the WCF
Data Service project. Change the InitializeService method to the following:

public static void InitializeService(DataServiceConfiguration config)
{
 config.SetEntitySetAccessRule("Categories", EntitySetRights.AllRead |

www.EBooksWorld.ir

www.EBooksWorld.ir

Consuming Data ❘ 403

 EntitySetRights.AllWrite);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V3;
}

The SetEntitySetAccessRule has an additional permission, EntitySetRights.AllWrite. This
allows a client to add, update, or delete records in the table. If you run the project again, it adds the
new Category record and prints the newly added CategoryId to the Output window.

Update Records Using WCF Data Services
The following code updates a Category record using the WCF Data Service. Replace the code in the
Main method with the following:

NorthwindsEntities db = new NorthwindsEntities(new
 Uri("http://localhost:8999/NorthwindsService.svc/"));

Category category = db.Categories.Where(c => c.CategoryName ==
 "Alcohol").FirstOrDefault();

category.Description = "Happy People";

db.UpdateObject(category);

db.SaveChanges();

This code uses a lambda expression to retrieve the Category entity from the service. The code then
changes the Description property and calls the UpdateObject method of the NorthwindsEntities
object. This marks the object to be updated when SaveChanges is called.

Delete Records Using WCF Data Services
The following code deletes a record from the Category table:

NorthwindsEntities db = new NorthwindsEntities(new
 Uri("http://localhost:8999/NorthwindsService.svc/"));

Category category = db.Categories.Where(c => c.CategoryName ==
 "Alcohol").FirstOrDefault();
db.DeleteObject(category);
db.SaveChanges();

This time you needed to call the DeleteObject method instead of the Remove method when using
the ADO.NET Entity Framework.

Request Data as JSON in a Client Application
By default, the data returned from a WCF Data Service is in XML format. You can, however, send
the header “Accept: application/json;odata=verbose” in the HTTP request to return the data
in JSON format. The following code creates a request using the WebRequest object in the System.
Net namespace:

HttpWebRequest req =
(HttpWebRequest)WebRequest.Create("http://localhost:8999/NorthwindsService.svc/

www.EBooksWorld.ir

www.EBooksWorld.ir

404 ❘ ChApTER 9 WorkIng WIth data

 Categories(1)?$select=CategoryID,CategoryName,Description");

req.Accept = "application/json;odata=verbose";

using (HttpWebResponse resp = (HttpWebResponse)req.GetResponse())
{
 Stream s = resp.GetResponseStream();
 StreamReader readStream = new StreamReader(s);

 string jsonString = readStream.ReadToEnd();

 Debug.WriteLine(jsonString);

 resp.Close();
 readStream.Close();
}

This code creates a request that selects the Category record with the primary key of 1 and selects
the CategoryId, CategoryName, and Description properties. The req.Accept = "application/
json;odata=verbose" line tells the WCF Data Service to return the data as JSON. When you
execute this code, it prints the following to the Output window. Line breaks are added to make it
easier to read.

{
 "d":
 {
 "__metadata":
 {
 "id":"http://localhost:8999/NorthwindsService.svc/Categories(1)",
 "uri":"http://localhost:8999/NorthwindsService.svc/Categories(1)",
 "type":"NorthwindsModel.Category"
 },
 "CategoryID":1,
 "CategoryName":"Beverages",
 "Description":"Soft drinks, coffees, teas, beers, and ales"
 }
}

pERFORMING I/O OpERATIONS

I/O operations refer to reading and writing files to and from storage. Files are stored in directories,
and the .NET Framework provides a set of classes for copying, moving, deleting, or checking for
the existence of files or directories. A file is an ordered and named collection of bytes that has been
saved to storage. When working with files, you use a stream. A stream is an in-memory object used
to represent the sequence of bytes in a file. Special reader and writer classes enables working with
encoded streams. This section first reviews the basic types that represent files and directories, then
reviews the different types of streams, and finally reviews the different types of readers and writers.
All the types for performing these I/O operations can be found in the System.IO namespace.

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 405

Files and Directories
Table 9-19 lists the classes defined for working with files and directories.

TABLE 9-19: File and Directory Classes

CLASS NAME DESCRIpTION

File A static class that provides methods for creating, copying, deleting,
moving, and opening files

FileInfo Provides for creating an instance of a class that provides methods for
creating, copying, deleting, moving, and opening files

Directory A static class that provides methods for creating, moving, deleting, and
enumerating through the files in a directory

DirectoryInfo Provides for creating an instance of a class that provides methods for
creating, moving, deleting, and enumerating through the files in
a directory

Path A static class that provides methods for obtaining information or
manipulating a file or directory name using a string variable

The File and FileInfo class are similar except that the File class is static and contains only
methods in which the FileInfo class enables you to create an instance that represents a file, so it
has properties and methods. Table 9-20 lists some of the properties for the FileInfo class. Note
that the File class does not have properties because it is a static class.

TABLE 9-20: FileInfo Properties

pROpERTY NAME DESCRIpTION

Directory Gets an instance of a DirectoryInfo object for the parent directory

DirectoryName Gets a string for the directory’s full path

Exists Returns a boolean indicating if the file exists

IsReadOnly Returns a boolean indicating if the file is read-only

Length Returns the size in bytes of the file

Name Gets the name of the file

The FileInfo object, unlike the File object, inherits from the System.IO.FileSystemInfo object,
which contains properties for the attributes, the creation time, the extension, the full name, the last
access time, and the last write time of the file.

www.EBooksWorld.ir

www.EBooksWorld.ir

406 ❘ ChApTER 9 WorkIng WIth data

The constructor of the FileInfo class takes a string parameter that contains the path and name of
the file. This is the only constructor for the FileInfo object. The following code sample creates an
instance of a FileInfo object and writes the name of the file to the Output window:

FileInfo fileInfo = new FileInfo(@”c:\Chapter9Samples\HelloWorld.txt”);
Debug.WriteLine(fileInfo.Name);

COMMON MISTAKES: FileInfo Does Not Open a File

The file was not “opened,”; the instance is simply enabling you to get information
about the file. There are methods that enable you to open and change the contents of
the file, but simply creating an instance of a FileInfo object does not open the file.

The methods for the File and FileInfo class are similar. The methods for the File class take param-
eters to a file path where the methods for the FileInfo class use the instance rather than parameters.
Table 9-21 lists some of the common methods between the File and FileInfo class. Be aware that
the parameters are different based on whether you use a File or FileInfo object.

TABLE 9-21: File and FileInfo Methods

METhOD NAME DESCRIpTION

AppendAllText Creates a StreamWriter that can be used to append text to the file

CopyTo (FileInfo)

Copy (File)

Copies the file

Create Creates the file

Decrypt Decrypts the file that was encrypted by the current account

Delete Deletes the file

Encrypt Encrypts the file so only the account used to encrypt the file can
decrypt it

MoveTo Moves a file to a different directory

Open Returns a FileStream object for read, write, or read\write access

Replace Replaces the content of a file with the contents from another file

SetAccessControl Applies access control list entries by a FileSecurity object

The Directory and DirectoryInfo classes are similar to the File and FileInfo classes except they
handle directories rather than files. The Directory class is a static object and the DirectoryInfo
class enables the creation of an instance of the class. The DirectoryInfo class inherits from the

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 407

System.IO.FileSystemInfo object, and just like the FileInfo object, it contains the same proper-
ties for the attributes, the creation time, the extension, the full name, the last access time, and the last
write time of the directory. The properties for the DirectoryInfo class are listed in Table 9-22.

TABLE 9-22: DirectoryInfo Properties

pROpERTY NAME DESCRIpTION

Exists Returns a boolean indicating if the directory exists

Name Gets the name of the DirectoryInfo instance

Parent Returns a DirectoryInfo object of the parent directory

Root Returns a DirectoryInfo object of the root directory

The Directory and DirectoryInfo object have similar methods that perform the same operation;
the only difference is that because the Directory object is static, the methods take parameters to the
directories to manipulate, and the DirectoryInfo object manipulates the directory for the instance.
Table 9-23 lists some of the common methods between the Directory and DirectoryInfo object.

TABLE 9-23: Directory and DirectoryInfo Methods

METhOD NAME DESCRIpTION

Create (DirectoryInfo)

CreateDirectory (Directory)

Creates the directory

Delete Deletes the directory

GetAccessControl Returns a DirectorySecurity object that encap-
sulates the access control list entries for the current
directory

GetDirectories Returns a DirectoryInfo array of the subdirecto-
ries in the current directory

GetFiles Returns a FileInfo array of the files in the current
directory

GetFileSystemInfos Returns a FileSystemInfo array of the files and
directories in the current directory

MoveTo (DirectoryInfo)

Move (Directory)

Moves a directory

SetAccessControl Applies access control list entries described by a
DirectorySecurity object to the current directory

www.EBooksWorld.ir

www.EBooksWorld.ir

408 ❘ ChApTER 9 WorkIng WIth data

The following code writes all the directories and all the files in the c drive to the Output window:

//DirectoryInfo
DirectoryInfo directoryInfo = new DirectoryInfo(@"c:\");

//Directories
Debug.WriteLine("Directories");
foreach (FileInfo fileInfo in directoryInfo.GetFiles())
{
 Debug.WriteLine(fileInfo.Name);
}

//Files
Debug.WriteLine("Files");
foreach (DirectoryInfo di in directoryInfo.GetDirectories())
{
 Debug.WriteLine(di.Name);
}

Streams
Streams are classes used to contain the contents of a file. Table 9-24 lists the different types of
streams available in the .NET Framework.

TABLE 9-24: Streams

CLASS NAME DESCRIpTION

FileStream Reads and writes files

IsolatedStorageFileStream Reads and writes files in isolated storage

MemoryStream Reads and writes data to memory

BufferedStream Used to store a block of bytes in memory to cache data

NetworkStream Reads and writes data over a network socket

PipeStream Reads and writes data over an anonymous or named pipes

CryptoStream Used to link data streams to cryptographic transformations

A FileStream can be used to read, write, open, and close files. The following example creates a new
file, writes the numbers 1 through 10 in the file, and then closes the file:

FileStream fileStream = new FileStream(@"c:\Chapter9Samples\Numbers.txt",
 FileMode.Create, FileAccess.Write, FileShare.None);

for(int i = 0; i < 10; i++)
{
 byte[] number = new UTF8Encoding(true).GetBytes(i.ToString());

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 409

 fileStream.Write(number, 0, number.Length);
}

fileStream.Close();

In this example, the FileStream constructor takes four parameters, the path to the file, the file
mode, the file access, and the file share. The FileMode enumeration values are listed in Table 9-25.
The FileMode enumeration determines whether you create, open, or truncate a file.

EXAM TIpS AND TRICKS: Know the Options when Opening a File

Be sure to pay attention to these options because it is likely that you will be asked a
question about the FileMode, FileAccess, or FileShare enumerations.

TABLE 9-25: FileMode Enumeration

VALUE DESCRIpTION

Append Opens a file if it exists and seeks to the end of the file, or creates a new
file if it doesn’t exist . This can be used only with FileAccess.Write .

CreateNew Creates a new file . If the file already exists, an exception is thrown .

Create Creates a new file . If the file already exists it will be overwritten . If the file
exists and is hidden, an exception is thrown .

Open Opens a file . If the file does not exist, an exception is thrown .

OpenOrCreate Opens a file if it exists or creates a new file if it does not exist .

Truncate Opens an existing file and truncates the data in the file . If the file does
not exist, an exception is thrown .

The FileAccess enumeration determines what you can do with the stream after it is created
(see Table 9-26).

TABLE 9-26: FileAccess Enumeration

VALUE DESCRIpTION

Read Read access to the file

Write Write access to the file

ReadWrite Read-and-write access to the file

www.EBooksWorld.ir

www.EBooksWorld.ir

410 ❘ ChApTER 9 WorkIng WIth data

The FileShare enumeration determines the type of access other streams can have on this file at the
same time you have it open (see Table 9-27).

TABLE 9-27: FileShare Enumeration

VALUE DESCRIpTION

None Does not enable another stream to open the file

Read Enables subsequent opening of the file for reading only

Write Enables subsequent opening of the file for writing

ReadWrite Enables subsequent opening of the file for reading or writing

Delete Enables for subsequent deletion of the file

Inheritable Makes the file handle inheritable by child processes

When creating or opening a file, the process must have the correct permissions to the file or
directory to perform the specified operation. The System.Security.Permissions
.FileIOPermissionAccess enumeration contains the types of permissions for a file or
directory (see Table 9-28).

TABLE 9-28: FileIOPermissionAccess Enumeration

VALUE DESCRIpTION

NoAccess No access to a file or directory

Read Read access to a file or directory

Write Write access to a file or a directory

Append Access to append data to a file or directory . Append access also
includes the ability to create a new file or directory

PathDiscovery Access to the information about the path

AllAccess Append, Read, Write, and PathDiscovery provide access to the file
or directory

The stream classes are used for reading or writing byte arrays. The next section will discuss using
reader and writer classes to manipulate arrays of binary values, arrays of characters, or strings.

Readers and Writers
Readers and writers are classes in the System.IO namespace that read or write encoded characters
to and from streams. Table 9-29 lists the common types of readers and writers in the System.IO
namespace.

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 411

TABLE 9-29: Reader and Writer Classes (Partial List)

CLASS DESCRIpTION

BinaryReader, BinaryWriter Used for reading and writing binary values

StreamReader, StreamWriter Used for reading and writing characters by using an encoded
value to convert the characters to and from bytes

StringReader, StringWriter Used for reading and writing characters to and from strings

TextReader, TextWriter Abstract classes for other readers and writers that read-and-
write character or strings

The StreamReader and StringReader both inherit from the TextReader abstract class. The
StreamWriter and StringWriter both inherit from the TextWriter class.

The StreamReader class is used to read character input in a particular encoding. The default encod-
ing is UTF-8. You can use a StreamReader to read a standard text file. Table 9-30 lists some of the
methods for the StreamReader class.

TABLE 9-30: StreamReader Methods (Partial List)

METhOD NAME DESCRIpTION

Close Closes the stream reader and underlying stream

Peek Returns the next character in the stream but does not
move the character position

Read() Returns the next character in the stream and moves the
character position by one

Read(Char[], Int32, Int32)

ReadBlock(Char[], Int32, Int32)

Reads the specified number of characters into the
byte array

ReadLine Reads a line of characters and returns a string

ReadToEnd Reads all characters from the current position to the
end of the file and returns a string

The StreamReader provides methods for reading character by character, line by line, or an entire file
in one call. The Read and ReadBlock methods return characters and character arrays; the ReadLine
and ReadToEnd methods return strings. The following code opens a file with the following content:

abc
123
456
789

www.EBooksWorld.ir

www.EBooksWorld.ir

412 ❘ ChApTER 9 WorkIng WIth data

The code first writes the contents character by character to the Output window, line by line to the
Output window, and then writes the entire contents to the Output window:

StreamReader streamReader = new StreamReader(@"c:\Chapter9Samples\Numbers.txt");
Debug.WriteLine("Char by Char");
while (!streamReader.EndOfStream)
{
 Debug.WriteLine((char)streamReader.Read());
}

streamReader.Close();

streamReader = new StreamReader(@"c:\Chapter9Samples\Numbers.txt");
Debug.WriteLine("Line by line");
while (!streamReader.EndOfStream)
{
 Debug.WriteLine(streamReader.ReadLine());
}

streamReader.Close();

streamReader = new StreamReader(@"c:\Chapter9Samples\Numbers.txt");
Debug.WriteLine("Entire file");
Debug.WriteLine(streamReader.ReadToEnd());

The preceding code prints the following to the Output window:

Char by Char
a
b
c

1
2
3

4
5
6

7
8
9
Line by line
abc
123
456
789
Entire file
abc
123
456
789

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 413

The StringReader class is similar to the StreamReader class, except that instead of reading a file
you read a string. The constructor of the StringReader class takes a string as a parameter. This is
not a path to a file but just a regular string that contains text. The StringReader then enables you
read the string character by character, line by line, or the entire string. The following code writes
the contents of a string character by character to the Output window:

StringReader stringReader = new StringReader("Hello\nGoodbye");
int pos = stringReader.Read();
while (pos != -1)
{
 Debug.WriteLine("{0}", (char)pos);
 pos = stringReader.Read();
}
stringReader.Close();

The StreamWriter class is similar to a Stream except that a StreamWriter is for characters of a par-
ticular encoding, and a Stream is designed for byte input and output. You can use the StreamWriter
class to write data to a file. The StreamWriter has Write and WriteLine methods used to write
to the stream in memory. The StreamWriter has a property called AutoFlush that, when set to
true, can write to store when the Write method is called and when set to false can write to stor-
age when the Flush method is called or the StreamWriter is closed. The following code creates a
StreamWriter and writes a string, a boolean value, and an integer to the file:

StreamWriter streamWriter = new
 StreamWriter(@"c:\Chapter9Samples\StreamWriter.txt");

streamWriter.WriteLine("ABC");
streamWriter.Write(true);
streamWriter.Write(1);

streamWriter.Close();

In this example, the constructor is passed a path to a file. If the file does not exist, it is created; if
it does exist it is overwritten. Be aware that you can also pass a Stream object to the constructor.
The sample code uses both the WriteLine and Write methods to write to the file. The character
representation of nonstring or char values will be written. The boolean value true is written as
“True” in the file.

You can use the BinaryWriter class to write primitive types in binary or strings in a specific coding.
The following code writes the same data as the last exercise but writes it in binary format:

FileStream fileStream = new FileStream(@"c:\Chapter9Samples\BinaryWriter.txt",
 FileMode.Create);
BinaryWriter binaryWriter = new BinaryWriter(fileStream);

binaryWriter.Write("ABC");
binaryWriter.Write(true);
binaryWriter.Write(1);

binaryWriter.Close();

www.EBooksWorld.ir

www.EBooksWorld.ir

414 ❘ ChApTER 9 WorkIng WIth data

The BinaryWriter class requires a Stream object be passed to the constructor; you cannot pass a
string that points to a file path. If you open the BinaryWriter.txt file created in this exercise, you
would see the values in binary format.

If you need to read a binary file, you use a BinaryReader class to read the data. The following code
reads the file created in the previous exercise:

FileStream fileStream = new FileStream(@"c:\Chapter9Samples\BinaryWriter.txt",
 FileMode.Open);
BinaryReader binaryReader = new BinaryReader(fileStream);

string abs = binaryReader.ReadString();
bool b = binaryReader.ReadBoolean();
int i = binaryReader.ReadInt32();

binaryReader.Close();

Asynchronous I/O Operations
The Stream, Reader, and Writer classes all provide the ability to read or write files asynchronously.
This can be helpful when you want to return processing back to the user interface while you are per-
forming a time-consuming operation on a large file. In C# there are two new keywords used when
dealing with asynchronous processing: async and await.

The async keyword is a method modifier that enables the method to use the await keyword and
also enables a calling method to this function using the await keyword. The await keyword is used
when calling a method to suspend execution in that method until the awaited task completes. For
example, suppose you have a Windows forms application that has a button that performs a long-
running task. You can modify the button click event signature with the async modifier and then call
the long-running method using the await keyword. This allows the long-running process to run,
but also allows the user to navigate to different parts of your application, so the system does not
appear to be locked up.

private async void button1_Click(object sender, EventArgs e)
{
 this.Text = "Started";

 await MyLongRunningProcess();

 this.Text = "Finished";
}

In the preceding example the caption of the form is changed to "Started" when the button is clicked.
When the MyLongRunningProcess method is called, the method is executed, but processing is returned
to the main thread until the MyLongRunningProcess method finishes executing. After it is done, the
form’s caption is changed to "Finished".

You can use the asynchronous methods for file I\O in a similar manner. The following code sample
searches all files in a given folder and searches for a specific string in the file. If the file contains the

www.EBooksWorld.ir

www.EBooksWorld.ir

Performing I/O Operations ❘ 415

string, its name is written to an output file. When the process is complete, the output file is shown in
the default text viewer.

private async void button1_Click(object sender, EventArgs e)
{
 this.Text = "Searching...";

 string outputFileName = @"c:\Test\FoundFiles.txt";

 await SearchDirectory(@"c:\Chapter9Samples", "A", outputFileName);

 this.Text = "Finished";

 Process.Start(outputFileName);
}

private static async Task SearchDirectory(string searchPath, string searchString,
 string outputFileName)
{
 StreamWriter streamWriter = File.CreateText(outputFileName);

 string[] fileNames = Directory.GetFiles(searchPath);
 await FindTextInFilesAsync(fileNames, searchString, streamWriter);

 streamWriter.Close();
}

private static async Task FindTextInFilesAsync(string[] fileNames, string
 searchString, StreamWriter outputFile)
{
 foreach (string fileName in fileNames)
 {
 if (fileName.ToLower().EndsWith(".txt"))
 {
 StreamReader streamReader = new StreamReader(fileName);

 string textOfFile = await streamReader.ReadToEndAsync();
 streamReader.Close();

 if (textOfFile.Contains(searchString))
 {
 await outputFile.WriteLineAsync(fileName);
 }
 }
 }
}

Each method is modified with the async keyword. This enables you to call asynchronous methods
within the method using the await keyword. If you don’t use the async keyword but have an await
command in the method, you get a compile error. The potentially time-consuming operation is the
reading of the file. The StreamReader’s ReadToEndAsync method is called with the await command.
Execution does not continue in this method until the entire file is read, but the calling method can
continue to execute.

www.EBooksWorld.ir

www.EBooksWorld.ir

416 ❘ ChApTER 9 WorkIng WIth data

UNDERSTANDING SERIALIZATION

Serialization is the process of transforming an object into a form that can either be persisted to
storage or transferred from one application domain to another. When transforming the object you
are serializing the object; when reading it back, you are deserializing the object. You can serialize
an object to a disk, to a stream, to memory, or over a network. Two common formats for passing
objects between systems are XML and JSON. You’ve seen samples of these in the section about
WCF DataServices. As you remember, by default, in WCF Data Services an object is returned as
XML. There was also a later sample that showed how to return the object as JSON. The objects
were serialized to either XML or JSON before being transferred to the client. The .NET Framework
has classes that support binary, XML, and JSON, and you can even create your own custom serial-
ization, as discussed in the following sections.

Binary Serialization
The BinaryFormatter object is used to serialize and deserialize an object. This is found in the
System.Runtime.Serialization.Formatters.Binary namespace. The two main methods you
need to be concerned about are the Serialize and Desearialize methods. You can use the
BinaryFormatter along with a FileStream to read and write your objects to disk. Remember,
the FileStream is an object used to read and write data to and from disk as byte arrays. For a
class to be serialized, you must add the [Serializable] attribute to the top of the class. The fol-
lowing example creates a class called Person and makes it serializable:

[Serializable]
class Person
{
 private int _id;
 public string FirstName;
 public string LastName;

 public void SetId(int id)
 {
 _id = id;
 }
}

If you want to persist this object’s data to storage, you can create an instance of the BinaryFormatter
object and call its Serialize method.

Person person = new Person();
person.SetId(1);
person.FirstName = "Joe";
person.LastName = "Smith";

IFormatter formatter = new BinaryFormatter();
Stream stream = new FileStream("Person.bin", FileMode.Create, FileAccess.Write,
 FileShare.None);
formatter.Serialize(stream, person);
stream.Close();

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Serialization ❘ 417

Be aware that even the private field will be persisted to the disk. You can restore the state of the
object by reading the Person.bin file and deserializing the file.

stream = new FileStream("Person.bin",FileMode.Open,FileAccess.Read,FileShare.Read);
Person person2 = (Person)formatter.Deserialize(stream);
stream.Close();

If you execute the code and view the person2 object in the Watch window, you can see that all the
fields retain their value, even the private _id field. If you want to prevent the private field from being
persisted, you can add the [NonSerialized] attribute before the field declaration.

[Serializable]
class Person
{
 [NonSerialized]
 private int _id;
 public string FirstName;
 public string LastName;

 public void SetId(int id)
 {
 _id = id;
 }
}

When serializing the object, the _id field will be skipped. If you were to run the code again and
serialize the object and deserialize the object and view person2 in the Watch window, you would
notice the _id is 0.

XML Serialization
XML serialization is just as simple to implement as binary serialization. You use the XmlSerializer
class in the System.Xml.Serialization namespace. One difference between the XmlSerializer and
BinaryFormatter is that the XmlSerializer serializes only public properties and fields. You also do
not need to use the [Serializable] attribute when declaring the class. Also, the class must be public.
The following code serializes the Person object:

Person person = new Person();
person.SetId(1);
person.FirstName = "Joe";
person.LastName = "Smith";

XmlSerializer xmlSerializer = new XmlSerializer(typeof(Person));
StreamWriter streamWriter = new StreamWriter("Person.xml");
xmlSerializer.Serialize(streamWriter, person);

The code produces the following file:

<?xml version="1.0" encoding="utf-8"?>
<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
</Person>

www.EBooksWorld.ir

www.EBooksWorld.ir

418 ❘ ChApTER 9 WorkIng WIth data

If you want to ignore a property, use the [XmlIgnore] attribute before the property. The following
code would ignore the FirstName property when serializing the object to XML:

[XmlIgnore]
public string FirstName;

You can use the following code to read the XML back into an object:

XmlSerializer xmlSerializer = new XmlSerializer(typeof(Person));
FileStream fs = new FileStream("Person.xml", FileMode.Open);
Person person = (Person)xmlSerializer.Deserialize(fs);

JSON Serialization
JSON is similar to XML except it is less verbose. JSON looks like a name\value pair but also enables
one-to-many relationships such as when you have an invoice object and invoice details. You need to
do a little more coding with JSON because you must explicitly put an attribute before each property
or field that you want to be serialized. In addition you need to add the [DataContract] attribute
before the declaration of the class. The following code demonstrates how to change the code for the
Person class to allow for JSON serialization:

[DataContract]
public class Person
{
 [DataMember]
 private int _id;
 [DataMember]
 public string FirstName;
 [DataMember]
 public string LastName;

 public void SetId(int id)
 {
 _id = id;
 }
}

To ignore a field or property, you simply do not put the [DataMember] attribute in front of its
declaration. To serialize an object to JSON, use the DataContractJsonSerializer class. This
class is in the System.Runtime.Serialization.Json namespace. The following code serializes
the Person object to JSON:

Person person = new Person();
person.SetId(1);
person.FirstName = "Joe";
person.LastName = "Smith";

Stream stream = new FileStream("Person.json", FileMode.Create);
DataContractJsonSerializer ser = new DataContractJsonSerializer(typeof(Person));
ser.WriteObject(stream, person);
stream.Close();

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Serialization ❘ 419

Instead of calling a Serialize method, you call the WriteObject method. The JSON for the
Person object is:

{
 "FirstName":"Joe",
 "LastName":"Smith",
 "_id":1
}

The code to read the JSON back to the object follows:

Person person = new Person();

Stream stream = new FileStream("Person.json", FileMode.Open);
DataContractJsonSerializer ser = new DataContractJsonSerializer(typeof(Person));
person = (Person)ser.ReadObject(stream);
stream.Close();

Custom Serialization
There are two methods for customizing the serialization processes. The first is to add an attribute
before a custom method that manipulates the object’s data during and upon completion of serializa-
tion and deserialization. You can use four attributes to accomplish this: OnDeserializedAttribute,
OnDeserializingAttribute, OnSerializedAttribute, and OnSerializingAttribute. Adding this
attribute before a method declaration fires this method during or after the serialization or deserializa-
tion process. The following code can be added to the Person class to customize the serialization logic:

[OnSerializing()]
internal void OnSerializingMethod(StreamingContext context)
{
 FirstName = "Bob";
}

[OnSerialized()]
internal void OnSerializedMethod(StreamingContext context)
{
 FirstName = "Serialize Complete";
}

[OnDeserializing()]
internal void OnDeserializingMethod(StreamingContext context)
{
 FirstName = "John";
}

[OnDeserialized()]
internal void OnDeserializedMethod(StreamingContext context)
{
 FirstName = "Deserialize Complete";
}

www.EBooksWorld.ir

www.EBooksWorld.ir

420 ❘ ChApTER 9 WorkIng WIth data

If you run the code for any of the serializer objects and put breakpoints in each method, you can
see when each method is called. This enables you to customize the input or output in case you have
enhancements to your objects in later versions, and properties are missing from your persisted files.

The second option for customizing the serialization process is to implement the ISerializable inter-
face. The ISerializable interface has one method that you must implement called GetObjectData.
This method is called when the object is serialized. You must also implement a special constructor
that will be called when the object is deserialized. The following code changes the Person object, so
it implements the ISeriliazable interface:

[Serializable]
public class Person : ISerializable
{
 private int _id;
 public string FirstName;
 public string LastName;

 public void SetId(int id)
 {
 _id = id;
 }

 public Person() { }

 public Person(SerializationInfo info, StreamingContext context)
 {
 FirstName = info.GetString("custom field 1");
 LastName = info.GetString("custom field 2");
 }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue("custom field 1", FirstName);
 info.AddValue("custom field 2", LastName);
 }
}

First, take a look at the GetObjectData method. This has a parameter of type SerializationInfo,
which enables you to customize the name and data that will be written to the stream. In this example,
the value of the FirstName field is written to "custom field 1" and the value of the LastName field
is written to "custom field 2". If you were to serialize this code as JSON, the output would be
as follows:

{
 "custom_x0020_field_x0020_1":"Joe",
 "custom_x0020_field_x0020_2":"Smith"
}

When the data is deserialized, the constructor is called. Here you call methods on the
SerializationInfo object to get the value based on the custom name you gave the field. Notice
that the value for "custom field 1" is set to the FirstName property, and the value for "custom
field 2" is set to the LastName property.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary ❘ 421

ADVICE FROM ThE EXpERTS: Use Attributes Instead of ISerializable

Using the four attributes is considered the best practice rather than implementing the
ISerializable interface. It is also easier to implement. The attribute methods
allow you to manipulate the underlying object before or after serialization or deserial-
ization. Implementing the ISerializable interface intercepts the serialization\dese-
rialization process and can have unexpected results when working with objects that
inherit from other object that need to be serialized or deserialized.

SUMMARY

Working with data collections is a fundamental concept that you must learn not only for the test, but
also to become a better programmer. This chapter explained the difference between simple arrays
and collections and elaborated on the different reasons for why you would choose one class over
another. The main classes to know for the test are Arrays, Lists, ArrayLists, Stacks, HashTables,
and Queues. You should also know about the generic version of these classes that are available when
you have a set of data that must be of the same type.

Consuming data using ADO.NET, the ADO.NET Entity Framework, and WCF Data Services
is another concept that is fundamental for building an application that interacts with a database.
ADO.NET is the core technology in the .NET Framework that contains the classes that communicate
with a database. The Entity Framework allows you to generate a majority of the code using a designer
that is needed to communicate with a database. ADO.NET is used behind the scenes in the ADO.NET
Entity Framework. WCF Data Services is a layer on top of an ADO.NET Entity Framework model that
allows you to access a database via the Internet or an intranet using query string parameters in a URL.

Many applications still use files to exchange data between systems so understanding the many choices
you have in the .NET Framework for reading and writing files is important. The .NET Framework
has classes that allow you to determine the properties of a file or folder, and also for reading and
writing files to disk, in memory, or over a network pipe.

Serialization is the concept of transforming an object and its data into another form such as XML,
JSON, or a binary format. The .NET Framework has classes that can accomplish this with very
little code or you can implement your own custom serialization.

This chapter covered a lot of material, so it might be a good idea to review it a few times. You might
have plenty of questions about the material covered in this chapter, so be sure to walk through all the
sample code and get a good understanding of the concepts that have been discussed. Many times on
the test you will see specific syntax questions about a particular object, so you must know method and
property names. In addition to this chapter, review the articles listed in the “Additional Reading
and Resources” section at the end of this chapter. Not only must you understand these concepts for
the test, but you will see these concepts when you work with real-world applications.

www.EBooksWorld.ir

www.EBooksWorld.ir

422 ❘ ChApTER 9 WorkIng WIth data

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . Which object does the variable mySet inherit from?

Int[] mySet = new int[5];

 a . System.Collection

 b . System.Collection.List

 c . System.Array

 d . None, this is a value type.

 2 . Which type should you use to store objects of different types but do not know how many
elements you need at the time of creation?

 a . Collection

 b . List<T>

 c . Stack<T>

 d . ArrayList

 3 . If you create a custom class that is going to be used as elements in a List object and you
want to use the Sort method of the List object to sort the elements in the array, what steps
must you take when coding the custom class?

 a . Inherit from the ICompare interface. Implement the Comparable method.

 b . Inherit from the IComparable interface. Implement the CompareTo method.

 c . Inherit from the System.Array class. Override the Sort method.

 d . Inherit from the List class. Implement the Sort method.

 4 . Which collection would you use if you need to process the items in the collection on first-in-
first-out order?

 a . HashTable

 b . Queue

 c . Stack

 d . List

 5 . Which collection would you use if you need to process the items in the collection on a last-in-
first-out order?

 a . HashTable

 b . Queue

 c . Stack

 d . List

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 423

 6 . Which collection would you use if you need to quickly find an element by its key rather than
its index?

 a . Dictionary

 b . List

 c . SortedList

 d . Queue

 7 . Which ADO.NET object is used to connect to a database?

 a . Database

 b . Connection

 c . Command

 d . DataAdapter

 8 . Which properties of an ADO.NET Command object must you set to execute a stored
procedure?

 a . CommandTypeStoredProcedureNameParameters

 b . IsStoredProcedureCommandTypeStoredProcedureNameParameters

 c . CommandTypeCommandTextParameters

 d . IsStoredProcedureCommandTextParameters

 9 . Which Command object’s method would you use to execute a query that does not return
any results?

 a . ExecuteNonQuery

 b . ExecuteDataReader

 c . ExecuteScalar

 d . Execute

 10 . Which Command object’s method would you use to execute a query that returns only one row
and one column?

 a . ExecuteNonQuery

 b . ExecuteDataReader

 c . ExecuteScalar

 d . Execute

www.EBooksWorld.ir

www.EBooksWorld.ir

424 ❘ ChApTER 9 WorkIng WIth data

 11 . Which ADO.NET object is a forward only cursor and is connected to the database while the
cursor is open?

 a . DBDataReader

 b . DataSet

 c . DataTable

 d . DataAdapter

 12 . Which ADO.NET Command object’s property would you use when a query returns the SUM of
a column in a table?

 a . ExecuteNonQuery

 b . ExecuteDataReader

 c . ExecuteScalar

 d . Execute

 13 . Which ADO.NET object is a fully traversable cursor and is disconnected from the database?

 a . DBDataReader

 b . DataSet

 c . DataTable

 d . DataAdapter

 14 . Which method of a DataAdapter is used to populate a DataSet?

 a . Populate

 b . Fill

 c . Load

 d . DataSets[0].Fill

 15 . Which property of an ADO.NET DataAdapter is used to insert records in a database?

 a . InsertText

 b . InsertType

 c . InsertCommand

 d . InsertDataTable

 16 . Which ADO.NET Command object’s property would you use when a query returns the SUM of
a column in a table?

 a . ExecuteNonQuery

 b . ExecuteDataReader

 c . ExecuteScalar

 d . Execute

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 425

 17 . When using the ADO.NET Entity Framework you create a Model that represents the object
in the database. What class does the Model inherit from?

 a . DBContext

 b . DBSet

 c . Model

 d . Connection

 18 . How are stored procedures represented in the ADO.NET Entity Framework?

 a . A class is created with the same name as the stored procedure, and the Execute
method is implemented.

 b . A method is added to the Model that is the same name as the stored procedure.

 c . Stored procedures cannot be called from the ADO.NET Entity Framework.

 d . A method is created in the entity class for the table in the stored procedure.

 19 . Which code uses the ADO.NET Entity Framework to add a record to the database?

 a .
using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()
 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Add(category);
 db.SaveChanges();
}

 b .
using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()
 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Add(category);
 db.InsertRecords ();
}

 c .
using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()

www.EBooksWorld.ir

www.EBooksWorld.ir

426 ❘ ChApTER 9 WorkIng WIth data

 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Insert (category);
 db.SaveChanges();
}

 d .
using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()
 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Insert(category);
 db.InsertRecords();
}

 20 . Which code uses the ADO.NET Entity Framework to update a record in the database?

 a .
Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.UpdateRecords ();

 b .
Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.Categories.UpdateRecords();

 c .
Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.SaveChanges();

 d .
Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.Categories.SaveChanges();

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 427

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this
chapter:

Microsoft WCF Data Services Documentation
http://msdn.microsoft.com/en-us/library/cc668792.aspx

Open Data Protocol
http://www.odata.org

Open Data Protocol Filter Options
http://www.odata.org/developers/protocols/

uri-conventions#FilterSystemQueryOption

NHibernate
http://nhforge.org

Microsoft’s Entity Framework
http://msdn.microsoft.com/en-us/data/ef.aspx

Julie Lerman’s blog (Entity Framework Guru)
http://thedatafarm.com/blog/

Microsoft’s Collection Reference
http://msdn.microsoft.com/en-us/library/ybcx56wz(v=vs.110).aspx

Connection String
http://www.connectionstrings.com

JSON Reference
http://www.json.org

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/cc668792.aspx
http://www.odata.org
http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption
http://nhforge.org
http://msdn.microsoft.com/en-us/data/ef.aspx
http://thedatafarm.com/blog/
http://msdn.microsoft.com/en-us/library/ybcx56wz(v=vs.110).aspx
http://www.connectionstrings.com
http://www.json.org

428 ❘ ChApTER 9 WorkIng WIth data

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Arrays and collections

➤➤ Arrays all inherit from the System.Array type.

➤➤ There are numerous collection types that are similar to arrays, but they offer much more
flexibility for manipulating the data contained in the collection.

➤➤ ArrayList, HashTable, Queue, SortedList, and Stack are all in the System.Collections
namespace.

➤➤ Dictionary<TKey, TValue>, List<T>, Queue<T>, SortedList<TKey, TValue>, and
Stack<T> are all in the System.Collections.Generic namespace.

➤➤ The generic collection classes are used when you want all objects to be of the same type.

➤➤ Queues are first-in-first-out.

➤➤ Stacks are last-in-first-out.

➤➤ You can implement the IComparable interface to control how two objects are compared.

➤➤ A Dictionary object stores a key\value pair.

➤➤ Custom collections inherit from the CollectionBase class.

ADO .NET

➤➤ ADO.NET is a set of classes used to execute commands on a database.

➤➤ A Command object is used to call a stored procedure or execute a dynamic SQL statement.

➤➤ The Command’s ExecuteNonQuery method is used to execute nonresult-returning queries
such as an INSERT or UPDATE command.

➤➤ A DBDataReader object is a read-only, forward-only cursor connected to the database.

➤➤ The Command’s ExecuteScalar method is used to return a single value from a database
such as when a query returns a SUM or COUNT.

➤➤ The Command’s ExecuteXMLReader method returns the data represented as XML. Use the
FOR XML clause in SQL Server to select the data as XML.

➤➤ A DataSet is a disconnected resultset and can contain one or more DataTables. A
DataAdapter is used to fill a DataSet.

➤➤ A DataAdapter can be used with a DataSet to add, update, or delete records in a database.

ADO .NET Entity Framework

➤➤ The Entity Framework is an ORM tool that masks the syntax for using ADO.NET to com-
municate with a database.

➤➤ An Entity Framework Model contains the classes that represent the objects in a database.

➤➤ Stored procedures are methods on an Entity Framework Model.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 429

WCF Data Services

➤➤ WCF Data Services enables you to access a database over the web or an intranet.

➤➤ WCF Data Services uses the OData protocol.

➤➤ WCF Data Services returns data in OData ATOM format but also can return data in
JSON format.

➤➤ You can query data in a database by passing parameters in the URL’s query string.

File I\O

➤➤ File and FileInfo object are used to determine properties about a file and also perform
operations on a file.

➤➤ A Stream is used to represent the contents of a file in memory and can be used to write data
to a file or read data from a file.

➤➤ A BinaryReader and BinaryWriter are used for reading and writing binary values.

➤➤ A StreamReader and StreamWriter are used for reading and writing characters by using an
encoded value to convert the characters to and from bytes.

➤➤ The default character encoding for a StreamReader and StreamWriter is UTF-8.

➤➤ You can use a StreamReader to read a file character by character, line by line, or the entire
file at once.

➤➤ The StringReader and StringWriter is used to read and write string data.

➤➤ The async and await keywords are used to perform asynchronous operations.

➤➤ The async keyword must modify a method signature for it to use the await keyword.

➤➤ The await command kicks off the method but returns processing back to the calling method
until the method completes.

Serialization

➤➤ Serialization is the process of transforming an object’s data to persisted storage or to transfer
the object from one domain to another.

➤➤ The BinaryFormatter is used to perform binary serialization.

➤➤ The XmlSerializer is used to perform XML serialization.

➤➤ The DataContractJsonSerializer is used to perform JSON serialization.

➤➤ There are two ways to customize serialization, using attributes or implementing the
ISerializable interface.

REVIEW OF KEY TERMS

ADO .NET A set of classes in the .NET Framework that enables you to connect to a database, retrieve
data, execute stored procedures, add, update, or delete records in a table.

www.EBooksWorld.ir

www.EBooksWorld.ir

430 ❘ ChApTER 9 WorkIng WIth data

ADO .NET Entity Framework An object relational mapping tool that provides a graphical user inter-
face that generates to code to perform operations against a database using ADO.NET

array The most basic type used to store a set of data.

async Indicates that the method, lambda expression, or anonymous method is asynchronous.

await Suspends the execution of a method until the awaited task completes.

boxing/unboxing Boxing is the process of converting a value type to a reference type. Unboxing is
the process of converting a reference type to a value type.

collection A generic term that encompasses lists, dictionaries, queues, stacks, hash tables, and other
objects that can contain sets of data.

connection object An object in ADO.NET that allows you to open and execute commands against
a database.

IComparable interface A class that implements the IComparable interface can be sorted when used
in a collection or array.

indexer A method that is used when referencing an element in an array or collection by using square
brackets, [], and its index.

JSON JavaScript Object Notation is a lightweight data-interchange format.

Object Relational Mapping (ORM) A computer software term for tools that convert data between
type systems using an object oriented programming language.

OData ATOM The XML representation of data returned from an OData query.

Open Data protocol (OData) A web protocol for querying and updating data through the Internet
or intranet.

shallow copy Creating a new copy of an object that copies all value types and copies object references
for reference types.

serialization The process of converting an object into a stream of bytes that can be stored
or transmitted.

stream An abstract class that provides a generic view of a sequence of bytes.

Text Transformation Template Toolkit (T4 Template) A file that contains text blocks and control
statements that enable to you to generate a code file.

WCF Data Services Enables you to use OData to expose and consume data over the web or
an intranet.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Working with Language
Integrated Query (LINQ)

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding query expressions

➤➤ Understanding method-based LINQ queries

➤➤ Utilizing LINQ to XML

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter10
download and individually named according to the names throughout the chapter.

Language Integrated Query (LINQ) is a language feature in the .NET Framework that enables
you to use common syntax to query data in a collection, an XML document, a database, or any
type that supports the IEnumerable<T> or IQueryable<T> interface. Prior to LINQ, a devel-
oper needed to learn different syntax depending on the source of the data. If the source were a
database, you needed to learn SQL. If the source were an XML document, you needed to learn
XQuery. If the source were an array or a collection, you would write a looping structure, such as
a foreach loop, that would enumerate through the items in the collection and filter them appro-
priately. LINQ enables you to use common syntax regardless of what the source is.

In this chapter, you learn two different styles of syntax for LINQ. Query expressions are the
first style, and method-based queries are the second. They are functionally equivalent, which
can sometimes be confusing when you first learn LINQ because you can write the code two dif-
ferent ways and it does the exact same thing. The last section discusses LINQ to XML, which
enables you to create XML documents without having to write all the tags that normally would
be required when working with XML.

10

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

432 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

Table 10-1 introduces you to the exam objectives covered in this chapter.

TABLE 10-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Query and manipulate data
and objects using LINQ

Writing query expressions and method-based queries using LINQ.
Topics covered include projection, joining and grouping collections,
the take and skip methods, and aggregate methods . You will also
learn how to create, and modify data structures by using LINQ to XML .

UNDERSTANDING QUERY EXpRESSIONS

As you saw in the introduction to this chapter, Language Integrated Query is a language feature in
the .NET Framework that enables you to use common query syntax to query data in a collection,
an XML document, a database, or any type that supports the IEnumerable<T> or IQueryable<T>
interface. There are two forms of syntax that perform LINQ queries. The first is a query expression,
which is discussed in this section. The second are method-based queries, which are discussed in the
next section. Functionally, they do the exact same thing; the only difference is the syntax. You must
decide which syntax you prefer, but the compiler does not care.

ADVICE FROM ThE EXpERTS: Query Expressions versus Method-
Based Queries

The compiler converts query expressions to method-based expressions when your
assembly is compiled. Query expressions are sometimes easier to read, so you may
choose to standardize on that syntax, but be aware that you cannot perform all the
operations using query expressions that you can using method-based queries such as
a Count or Sum.

Query expressions search through data stored in an array, a collection, or any type that supports
the IEnumerable<T> or IQueryable<T> interfaces. The syntax for a query expression is similar to the
syntax when working with SQL. Before getting into the details about query expressions, you first take
a look at the code needed to search data in objects prior to LINQ. For example, suppose you have an
array with the numbers 1 through 10. If you want to retrieve all the even numbers from the array, your
code would look something like the following:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int[] evenNumbers = new int[5];
int evenIndex = 0;

foreach (int i in myArray)
{
 if (i % 2 == 0)

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 433

 {
 evenNumbers[evenIndex] = i;
 evenIndex++;
 }
}

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

LINQ query expressions enable you to perform “queries” against the array with syntax similar to
SQL except it is C# syntax and the order of the elements is different. The benefit of a query expres-
sion is less coding and more readability. The following code performs a LINQ query against the
array to return only even numbers:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0
 select i;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

A few things need explaining here. First, the evenNumber variable is declared as a var. A variable
defined as var is called an implicitly typed variable. This means that the compiler determines the type
of variable based on the expression on the right side of the initialization statement. In this sample the
compiler knows that the items in the evenNumbers variable are int. It is common practice to declare
the results of a LINQ query expression as a var variable.

The second thing to notice is the from clause syntax. In this example, the from clause contains i in
myArray. The compiler implicitly knows what type i is based on the type of myArray. This is function-
ally equivalent to the foreach(int i in myArray) statement. The variable i represents an item in the
array as it is enumerated.

The third thing to notice is that the where clause is second and the select clause is third. This is the
opposite of SQL syntax. When writing LINQ queries, even if you query a database, the where clause
precedes the select clause. The fourth thing is that the where clause contains C# syntax for filtering
the data, which means you use the equivalence operator (==) instead of equals (=). This essentially tells
the compiler to evaluate each element in the array and return the items that meet this condition.

EXAM TIpS AND TRICKS: Query Expression Syntax

You may see a question on the exam that features the different clauses in a query
expression, and you will be asked to put the clauses in the correct order.

www.EBooksWorld.ir

www.EBooksWorld.ir

434 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

Finally, notice that the select clause returns the variable i. This actually means as the code enumer-
ates through the array it should return all elements that meets the where condition. If you were to
step through this code, you would notice something different from what you might expect. When you
start stepping through the code and get to the foreach statement, you can notice that execution keeps
transferring from the foreach statement back to the where clause in the LINQ query. This is because
the LINQ query isn’t actually executed until the evenNumbers variable is used. This is called deferred
execution. If you were to add a watch statement to the evenNumbers variable, you would notice that
it doesn’t actually store the results. It executes any time the elements are enumerated. If the source of
the data changed and you enumerated the elements again, it would pick up the changes. For example,
examine the following code:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0
 select i;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

myArray[1] = 12;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

In the preceding example, the second element in the array, which contains the number 2, is replaced
with the number 12 after the first foreach loop. When the evenNumbers variable is enumerated the
second time, the number 12 is written to the Output window along with the other even numbers.

Filtering
Filtering data is done by using the where clause in a query expression. Because you are writing in C#,
you must use the and (&&) and or (||) operators when making complex statements. In the previous
examples, the where clause contained the boolean expression i % 2 == 0. This is referred to as a pred-
icate. The predicate is the comparison statement that is executed against each element in the sequence.
The following example returns all event numbers that are greater than 5:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0 && i > 5
 select i;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 435

You can have multiple where clauses in your query expression. This is the same as having multiple
expressions in the where clause using the && operator. The following code produces the same result
as the preceding code:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0
 where i > 5
 select i;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

EXAM TIpS AND TRICKS: Multiple where Clauses

You typically would not use multiple where clauses in your code. Instead, you would
just separate your clauses by the && operator. However, for the test you may see a
question using this syntax, so you need to be aware that multiple where clauses is the
equivalent of using the && operator.

If you had a complex filter condition that needed precedence operators, you would use parentheses, (),
just as you would in a regular if statement. But be aware that if your query expression contains two
where clauses, each is executed separately and are considered and expressions.

Also be aware that you can call a function in your statement to make your code more readable. The
following code sample calls a method called IsEvenAndGT5 and passes in the current element while
enumerating through the array:

static void RetrieveEvenNumberGT5V3()
{
 int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 var evenNumbers = from i in myArray
 where IsEvenAndGT5(i)
 select i;

 foreach (int i in evenNumbers)
 {
 Debug.WriteLine(i);
 }
}

static bool IsEvenAndGT5(int i)
{
 return (i % 2 == 0 && i > 5);
}

The last point to be aware of regarding the where clause is that it can appear anywhere in your
query expression as long as it is not the first or last clause.

www.EBooksWorld.ir

www.EBooksWorld.ir

436 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

Ordering
You can sort the results of your query by using the orderby clause in your query. You can order
ascending or descending just as you would in a SQL statement. The following code sorts the even
elements in descending order:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0
 orderby i descending
 select i;

foreach (int i in evenNumbers)
{
 Debug.WriteLine(i);
}

You can also order by more than one property by separating your conditions with a comma. The fol-
lowing example uses a class that contains a City and State property. The query returns the elements
sorted first by state and then by city alphabetically.

class Hometown
{
 public string City { get; set; }
 public string State { get; set; }
}

static void OrderByStateThenCity()
{
 List<Hometown> hometowns = new List<Hometown>()
 {
 new Hometown() { City = "Philadelphia", State = "PA" },
 new Hometown() { City = "Ewing", State = "NJ" },
 new Hometown() { City = "Havertown", State = "PA" },
 new Hometown() { City = "Fort Washington", State = "PA" },
 new Hometown() { City = "Trenton", State = "NJ" }
 };

 var orderedHometowns = from h in hometowns
 orderby h.State ascending, h.City ascending
 select h;

 foreach (Hometown hometown in orderedHometowns)
 {
 Debug.WriteLine(hometown.City + ", " + hometown.State);
 }
}

The preceding code produces the following results:

Ewing, NJ
Trenton, NJ
Fort Washington, PA

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 437

Havertown, PA
Philadelphia, PA

The default order in an orderby clause is ascending, and you can omit this keyword.

Projection
The select clause can return the object in the sequence or return a limited number of properties from
the object in the sequence. Selecting a limited number of properties or transforming the result into a
different type is referred to as projection. For example, assume you have a Person call declared with
the following properties:

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address1 { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
}

Now suppose you need to write a query that only returns the LastName of each Person in a List of
Person objects:

List<Person> people = new List<Person>()
{
 new Person()
 {
 FirstName = "John",
 LastName = "Smith",
 Address1 = "First St",
 City = "Havertown",
 State = "PA",
 Zip = "19084"
 },
 new Person()
 {
 FirstName = "Jane",
 LastName = "Doe",
 Address1 = "Second St",
 City = "Ewing",
 State = "NJ",
 Zip = "08560"
 },
 new Person()
 {
 FirstName = "Jack",
 LastName = "Jones",
 Address1 = "Third St",
 City = "Ft Washington",
 State = "PA",
 Zip = "19034"
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

438 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

};

var lastNames = from p in people
 select p.LastName;

foreach (string lastName in lastNames)
{
 Debug.WriteLine(lastName);
}

The select clause selects p.LastName instead of the entire p object. The compiler determines that
the result should be a list of strings, based on the type of the property selected. This is one example
of projection. You selected a single property and returned a list of strings from the query.

Now suppose that you needed to return the FirstName and LastName properties. The following query
creates an anonymous type that contains just a FirstName and LastName property. An anonymous
type is an object with read-only properties that is not explicitly declared.

var names = from p in people
 select new { p.FirstName, p.LastName };

foreach (var name in names)
{
 Debug.WriteLine(name.FirstName + ", " + name.LastName);
}

You can also explicitly name the properties of an anonymous type using the following syntax:

var names = from p in people
 select new { First = p.FirstName, Last = p.LastName };

foreach (var name in names)
{
 Debug.WriteLine(name.First + ", " + name.Last);
}

In the preceding example, the properties of the anonymous type are named First and Last. Visual
Studio’s IntelliSense can recognize these properties, which appear in the drop-down lists when you
use the anonymous type.

Joining
You can use the join clause to combine two or more sequences of objects similar to how you join
tables in a SQL statement. The following sample joins two separate lists on a common property
called StateId:

class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int StateId { get; set; }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 439

class State
{
 public int StateId { get; set; }
 public string StateName { get; set; }
}
static void Join()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 StateId = 2
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 StateId = 1
 }
 };

 List<State> states = new List<State>()
 {
 new State()
 {
 StateId = 1,
 StateName = "PA"
 },
 new State()
 {
 StateId = 2,
 StateName = "NJ"
 }
 };

 var employeeByState = from e in employees
 join s in states
 on e.StateId equals s.StateId
 select new { e.LastName, s.StateName };

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.StateName);
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

440 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

The join clause uses the equals keyword instead of =. This is because you can join fields only based
on equivalence unlike SQL where you can use > or < signs. Using the keyword equals is supposed to
make it clearer that the operation is equivalence.

EXAM TIpS AND TRICKS: Equals versus “=”

You may see a question on the exam that displays four different join clauses, and
you will be asked which is correct. Be sure to remember that a join clause must use
the equals keyword and not the = operator.

Outer Join
Now suppose you need to perform an outer join. An outer join selects all elements from one sequence
even if there is not a matching element in the second sequence. In SQL this is referred to as a RIGHT
OUTER JOIN or a LEFT OUTER JOIN. In SQL, if you want all the rows from the table on the right
side of the JOIN clause, you use a RIGHT OUTER JOIN; if you want all the rows from the table on the
left side of the join, you use LEFT OUTER JOIN. This scenario happens often when writing database
queries. For example, if you have a table that contains a foreign key that is nullable and you want to
join to the table with the primary key, you would use an OUTER JOIN clause to ensure you select all
records, even if the column is NULL.

To accomplish this same functionality in a query expression, you need to use the group join keyword
and the DefaultIfEmpty method. A group join enables you to combine two sequences into a third
object. For example, suppose you added another Employee object to the employees list in the previous
example, but the StateId for your new object does not exist in the states list.

new Employee()
{
 FirstName = "Sue",
 LastName = "Smith",
 StateId = 3
}

The following query selects all the elements from the employees list even if there is not a match in
the states List:

var employeeByState = from e in employees
 join s in states
 on e.StateId equals s.StateId into employeeGroup
 from item in employeeGroup.DefaultIfEmpty(new State
 {StateId = 0,
 StateName = ""})
 select new { e.LastName, item.StateName };

foreach (var employee in employeeByState)
{
 Debug.WriteLine(employee.LastName + ", " + employee.StateName);
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 441

The joined lists are combined into an object called employeeGroup. This is done by using the into
keyword. There is also a second from clause that can create a new instance of a State object with
a StateId of 0 and a StateName of "" when there is not a match found on StateId. If you use an
into clause, you can no longer reference the variable declared on the right side of the on statement
in your select clause. You instead use the variable that was used to enumerate the values of the
new sequence, in this example that is the item variable. The select clause needs to be changed to
use the item variable rather than the s variable to get the state name.

COMMON MISTAKES: Left Joins Only

For query expressions, you can perform only left joins, so the order of the sequences
is important in your from clause.

Composite Keys
There may be instances where you need to perform your join on a composite key. A composite key
contains multiple properties that you need for the purpose of a join. To accomplish this, you create
two anonymous types with the same properties and compare the anonymous types. For example,
change the Hometown class to have a CityCode property, and change the Employee class to contain
the City and State and remove the StateId:

class Hometown
{
 public string City { get; set; }
 public string State { get; set; }
 public string CityCode { get; set; }
}

class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }
}

The following query joins a List of Hometown objects and Employee objects using their City and
State properties:

static void CompositeKey()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 City = "Havertown",
 State = "PA"

www.EBooksWorld.ir

www.EBooksWorld.ir

442 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 City = "Ewing",
 State = "NJ"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 City = "Fort Washington",
 State = "PA"
 }
 };

 List<Hometown> hometowns = new List<Hometown>()
 {
 new Hometown()
 {
 City = "Havertown",
 State = "PA",
 CityCode = "1234"
 },
 new Hometown()
 {
 City = "Ewing",
 State = "NJ",
 CityCode = "5678"
 },
 new Hometown()
 {
 City = "Fort Washington",
 State = "PA",
 CityCode = "9012"
 }
 };

 var employeeByState = from e in employees
 join h in hometowns
 on new { City = e.City, State = e.State } equals
 new { City = h.City, State = h.State }
 select new { e.LastName, h.CityCode };

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.CityCode);
 }
}

The join creates two anonymous types with the same properties. The equivalence is determined by
matching all properties of the anonymous type.

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 443

Grouping
Often, you need to group items to determine the count of elements or the sum of a particular prop-
erty when working with a sequence of objects. For example, you may need to produce a report that
displays the count of employees by state. You can use the group clause in a query expression to
group by a particular property to accomplish this requirement. For example, the following code cre-
ates a List of Employee objects and then executes a query to group them by State. The count of the
employees by state can then be written to the Output window.

static void Group()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 City = "Havertown",
 State = "PA"
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 City = "Ewing",
 State = "NJ"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 City = "Fort Washington",
 State = "PA"
 }
 };

 var employeesByState = from e in employees
 group e by e.State;

 foreach (var employeeGroup in employeesByState)
 {
 Debug.WriteLine(employeeGroup.Key + ": " + employeeGroup.Count());

 foreach (var employee in employeeGroup)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.State);
 }
 }
}

In this sample there isn’t a select clause. This is because a group clause returns an IGrouping<TKey,
TElement> collection. This object is a collection that contains a property for the key that the
sequence is grouped by. There are two foreach loops in this sample. The first enumerates through

www.EBooksWorld.ir

www.EBooksWorld.ir

444 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

the IGrouping collection and writes the Key property and the Count of elements for the State to the
Output window. The inner foreach loop writes the elements that make up the group to the Output
window. The output for the previous sample is as follows:

PA: 2
Smith, PA
Jones, PA
NJ: 1
Doe, NJ

You can add logic in your group by clause to group by anything. The following example groups
even and odd number and then prints the count and sum of each group to the Output window:

static void GroupV2()
{
 int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 var groupedNumbers = from i in myArray
 group i by (i % 2 == 0 ? "Even" : "Odd");

 foreach (var groupNumber in groupedNumbers)
 {
 Debug.WriteLine(groupNumber.Key + ": " + groupNumber.Sum());
 foreach(var number in groupNumber)
 {
 Debug.WriteLine(number);
 }
 }
}

In the preceding example, the group by clause contains a conditional statement that returns the
string "Even" or "Odd" and groups the number appropriately. The preceding code produces the fol-
lowing result:

Odd: 25
1
3
5
7
9
Even: 30
2
4
6
8
10

You can use a select clause when grouping sequences, but you must include an into clause in your
group clause. Suppose in the last example you wanted to select the key and the sum of even or odd
numbers in the query. The following code can accomplish this:

static void GroupV3()
{
 int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 445

 var groupedNumbers = from i in myArray
 group i by (i % 2 == 0 ? "Even" : "Odd") into g
 select new { Key = g.Key, SumOfNumbers = g.Sum() };

 foreach (var groupNumber in groupedNumbers)
 {
 Debug.WriteLine(groupNumber.Key + ": " + groupNumber.SumOfNumbers);
 }
}

The variable g is of type IGrouping<TKey, TElement> and you can use that in your
select clause. The select clause creates an anonymous type with two properties: Key and
SumOfNumbers. The preceding code produces the following output:

Odd: 25
Even: 30

Understanding Method-Based LINQ Queries
The previous section discusses query expressions, which is the syntax used to perform LINQ queries
using a shorthand query syntax. You can also perform the same queries using method-based LINQ
queries. They are functionally equivalent; the only difference is the syntax.

Method-based queries are actually extension methods found in the System.Linq namespace.
These methods extend any variable that implements the IEnumerable<T> or IQueryable<T> inter-
face. Method-based queries take a lambda expression as a parameter, which represents the logic
to be performed while enumerating through the sequence. Recall the first example for the query
expression syntax:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = from i in myArray
 where i % 2 == 0
 select i;

This code selects all the even numbers in an array. The equivalent method-based query follows:

int[] myArray = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

var evenNumbers = myArray.Where(i => i % 2 == 0);

The variable i represents the element in the array, and the code on the right of the goes to operator (=>)
represents the logic to be performed while enumerating through the array. These two code examples
produce the exact same results; again, you must decide which syntax you are more comfortable with.

Filtering
Filtering is done by using the Where method as you’ve seen in the previous examples. You pass a
lambda expression to the Where method that returns a boolean value to return only the elements
that meet the true condition.

myArray.Where(i => i % 2 == 0)

www.EBooksWorld.ir

www.EBooksWorld.ir

446 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

You still use the and (&&) and or (||) operators for complex conditions because the lambda expression
is C# syntax.

var evenNumbers = myArray.Where(i => i % 2 == 0 && i > 5);

If you need precedence operators, you can chain the Where clauses. This is equivalent to having
multiple where clauses in a query expression.

var evenNumbers = myArray.Where(i => i % 2 == 0).Where(i => i > 5);

And you can also call a function that returns a boolean.

var evenNumbers = myArray.Where(i => IsEvenAndGT5(i));

Ordering
You can order the elements in a sequence by using the OrderBy or the OrderByDescending methods.
The following code orders all the even numbers in an array descending:

var evenNumbers = myArray.Where(i => i % 2 == 0).OrderByDescending(i => i);

If you need to order by more than one field, you chain the methods using a ThenBy or
ThenByDescending method. The following example orders by State and then by City:

static void MethodBasedOrderByStateThenCity()
{
 List<Hometown> hometowns = new List<Hometown>()
 {
 new Hometown() { City = "Philadelphia", State = "PA" },
 new Hometown() { City = "Ewing", State = "NJ" },
 new Hometown() { City = "Havertown", State = "PA" },
 new Hometown() { City = "Fort Washington", State = "PA" },
 new Hometown() { City = "Trenton", State = "NJ" }
 };

 var orderedHometowns = hometowns.OrderBy(h => h.State).ThenBy(h => h.City);

 foreach (Hometown hometown in orderedHometowns)
 {
 Debug.WriteLine(hometown.City + ", " + hometown.State);
 }

Projection
You can project the result by using the Select method. The following code selects only the
LastName property of a list of Person objects:

static void MethodBasedProjectionV1()
{
 List<Person> people = new List<Person>()
 {
 new Person()
 {

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 447

 FirstName = "John",
 LastName = "Smith",
 Address1 = "First St",
 City = "Havertown",
 State = "PA",
 Zip = "19084"
 },
 new Person()
 {
 FirstName = "Jane",
 LastName = "Doe",
 Address1 = "Second St",
 City = "Ewing",
 State = "NJ",
 Zip = "08560"
 },
 new Person()
 {
 FirstName = "Jack",
 LastName = "Jones",
 Address1 = "Third St",
 City = "Ft Washington",
 State = "PA",
 Zip = "19034"
 }
 };

 var lastNames = people.Select(p => p.LastName);

 foreach (string lastName in lastNames)
 {
 Debug.WriteLine(lastName);
 }
}

You can create an anonymous type similar to how you do it with a query expression. The only
difference is you use a lambda expression. The following creates an anonymous type with just the
FirstName and LastName properties:

static void MethodBasedProjectionV2()
{
 List<Person> people = new List<Person>()
 {
 new Person()
 {
 FirstName = "John",
 LastName = "Smith",
 Address1 = "First St",
 City = "Havertown",
 State = "PA",
 Zip = "19084"
 },
 new Person()
 {

www.EBooksWorld.ir

www.EBooksWorld.ir

448 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 FirstName = "Jane",
 LastName = "Doe",
 Address1 = "Second St",
 City = "Ewing",
 State = "NJ",
 Zip = "08560"
 },
 new Person()
 {
 FirstName = "Jack",
 LastName = "Jones",
 Address1 = "Third St",
 City = "Ft Washington",
 State = "PA",
 Zip = "19034"
 }
 };

 var names = people.Select(p => new { p.FirstName, p.LastName });

 foreach (var name in names)
 {
 Debug.WriteLine(name.FirstName + ", " + name.LastName);
 }
}

You can also explicitly name the anonymous type properties by using the following syntax:

var names = people.Select(p => new { First = p.FirstName, Last = p.LastName });

The preceding sample created an anonymous type with a First and Last property rather than
FirstName and LastName.

There is also a SelectMany method that you can use to flatten two sequences into one sequence
similar to how a join works. The following flattens a list of Employees and a list of States and
returns the combination of the two:

static void MethodBasedProjectionV4()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 StateId = 2
 },
 new Employee()

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 449

 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 }
 };

 List<State> states = new List<State>()
 {
 new State()
 {
 StateId = 1,
 StateName = "PA"
 },
 new State()
 {
 StateId = 2,
 StateName = "NJ"
 }
 };

 var employeeByState = employees.SelectMany(e => states.Where(s =>
 e.StateId == s.StateId).Select(s => new { e.LastName, s.StateName }));

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.StateName);
 }
}

Joining
The Join method enables you to join two sequences together using a common property or set of prop-
erties. The following code joins a List of Employee and State objects using the StateId property:

static void MethodBasedJoin()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 StateId = 2
 },
 new Employee()
 {
 FirstName = "John",

www.EBooksWorld.ir

www.EBooksWorld.ir

450 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 LastName = "Smith",
 StateId = 1
 }
 };

 List<State> states = new List<State>()
 {
 new State()
 {
 StateId = 1,
 StateName = "PA"
 },
 new State()
 {
 StateId = 2,
 StateName = "NJ"
 }
 };

 var employeeByState = employees.Join(states,
 e => e.StateId,
 s => s.StateId,
 (e, s) => new { e.LastName, s.StateName });

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.StateName);
 }
}

The employees list is considered the outer sequence. The first parameter to the Join method is the
sequence you want to join to: states. This is referred to as the inner sequence. The second parameter
is the key property of the of the outer sequence. The third parameter is the key property of the inner
sequence. By default an equivalence comparison will be used to join the two sequences. The fourth
parameter is a lambda expression that creates the anonymous type for the result. In this sample you
create a new type with LastName and StateName properties. When joining two sequences it can be
more readable to use a query expression rather than the Join method.

Outer Join
An outer join is created by using the GroupJoin method. The following sample performs a left join
using a List of Employee and State objects. If no matching state is found in the State list, the
StateName will be blank.

static void MethodBasedOuterJoin()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 },

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 451

 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 StateId = 2
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 StateId = 1
 },
 new Employee()
 {
 FirstName = "Sue",
 LastName = "Smith",
 StateId = 3
 }
 };

 List<State> states = new List<State>()
 {
 new State()
 {
 StateId = 1,
 StateName = "PA"
 },
 new State()
 {
 StateId = 2,
 StateName = "NJ"
 }
 };

 var employeeByState = employees.GroupJoin(states,
 e => e.StateId,
 s => s.StateId,
 (e, employeeGroup) => employeeGroup.Select(s => new
 {
 LastName = e.LastName, StateName = s.StateName
 }).DefaultIfEmpty(new
 {
 LastName = e.LastName,StateName = ""
 })).SelectMany(employeeGroup => employeeGroup);

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.StateName);
 }
}

The employees list is the outer sequence and the states list is the inner sequence. The first parameter
to the GroupJoin method is the inner sequence. The second parameter is the Key property for the outer
sequence, and the third parameter is the Key property for the inner sequence. The fourth parameter is

www.EBooksWorld.ir

www.EBooksWorld.ir

452 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

where it is tricky. Recall in the query expression section that when creating an outer join, you needed to
include the into keyword to create a variable that would contain the results of the join:

var employeeByState = from e in employees
 join s in states
 on e.StateId equals s.StateId into employeeGroup
 from item in employeeGroup.DefaultIfEmpty(new State
 {StateId = 0,
 StateName = ""})
 select new { e.LastName, item.StateName };

When using the GroupJoin method, you simply name the variable when creating the lambda
expression in the fourth parameter:

 var employeeByState = employees.GroupJoin(states,
 e => e.StateId,
 s => s.StateId,
 (e, employeeGroup) => employeeGroup.Select(s => new
 {
 LastName = e.LastName, StateName = s.StateName
 }).DefaultIfEmpty(new
 {
 LastName = e.LastName,StateName = ""
 })).SelectMany(e => e);

You can then use the Select method to enumerate through the values in the employeeGroup object
and use the DefaultIfEmpty method when no match is found between the two sequences. Finally,
you need to call the SelectMany method to return the sequence of objects. This can be quite confus-
ing when dealing with complex structures so the query expression syntax might be more to your liking
than the method-based syntax. The preceding code produces the following results:

Smith, PA
Doe, NJ
Jones, PA
Smith,

Composite Keys
You can use a composite key by creating anonymous types when defining your keys in the Join
parameters. The following code joins on two fields to match the data between two sequences:

static void MethodBasedCompositeKey()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 City = "Havertown",
 State = "PA"
 },

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 453

 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 City = "Ewing",
 State = "NJ"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 City = "Fort Washington",
 State = "PA"
 }
 };

 List<Hometown> hometowns = new List<Hometown>()
 {
 new Hometown()
 {
 City = "Havertown",
 State = "PA",
 CityCode = "1234"
 },
 new Hometown()
 {
 City = "Ewing",
 State = "NJ",
 CityCode = "5678"
 },
 new Hometown()
 {
 City = "Fort Washington",
 State = "PA",
 CityCode = "9012"
 }
 };

 var employeeByState = employees.Join(hometowns,
 e => new { City = e.City, State = e.State },
 h => new { City = h.City, State = h.State },
 (e, h) => new { e.LastName, h.CityCode });

 foreach (var employee in employeeByState)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.CityCode);
 }
}

The second and third parameters create an anonymous type with two properties. LINQ compares
all properties of the two types when doing its equivalence test.

www.EBooksWorld.ir

www.EBooksWorld.ir

454 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

Grouping
The GroupBy method can be used to group by one or more fields. This is equivalent to using the
group keyword when creating a query expression. The following code groups a List of Employee
objects by State:

static void MethodBasedGroupV1()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 City = "Havertown",
 State = "PA"
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 City = "Ewing",
 State = "NJ"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 City = "Fort Washington",
 State = "PA"
 }
 };

 var employeesByState = employees.GroupBy(e => e.State);

 foreach (var employeeGroup in employeesByState)
 {
 Debug.WriteLine(employeeGroup.Key + ": " + employeeGroup.Count());

 foreach (var employee in employeeGroup)
 {
 Debug.WriteLine(employee.LastName + ", " + employee.State);
 }
 }
}

The GroupBy method returns an IGrouping<TKey, TElement> collection, which can be enumerated
to perform aggregate functions on the elements in the group or enumerate through the elements in
each group.

If you need to group by more than one field, you would create an anonymous type as a parameter
to the GroupBy method. For example, the following code will group by the City then the State
properties:

var employeesByState = employees.GroupBy(e => new { e.City, e.State });

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 455

The following results are printed to the Output window:

{ City = Havertown, State = PA }: 1
Smith, PA
{ City = Ewing, State = NJ }: 1
Doe, NJ
{ City = Fort Washington, State = PA }: 1
Jones, PA

The { City = Havertown, State = PA } is printed to the Output window because that is now
the key. The key was created as an anonymous type with two properties.

Aggregate Functions
Aggregate functions enable you to quickly compute the average, sum, count, max, or min on a
sequence. For example, if you had a list of items that represent line items on an invoice you could
quickly compute the total for the invoice by using the Sum method. These functions are only available
as method-based queries but can be used in a query expression. The following code samples show the
query expression syntax and the equivalent method-based syntax for the aggregate functions.

count
Query expression:

int count = (from i in myArray
 where i % 2 == 0
 select i).Count();

Method-based query:

int count = myArray.Where(i => i % 2 == 0).Count();

Alternatively, you could write the query expression as follows if you want to defer the execution of
the query:

var evenNumbers = from i in myArray
 where i % 2 == 0
 select i;

int count = evenNumbers.Count();

If you were to step through the code for the query expression, you would notice that when you
execute the int count = evenNumbers.Count() statement that execution jumps to the where i %
2 == 0 statement five times before setting the value of the count variable. This way of coding the
query could be useful if you want to return the count of items and also enumerate through the query
results in a later statement. Be aware that the query is executed every time you execute the aggregate
function or enumerate through the result.

average
Query expression:

double average = (from i in myArray
 where i % 2 == 0
 select i).Average();

www.EBooksWorld.ir

www.EBooksWorld.ir

456 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

Method-based query:

double average = myArray.Where(i => i % 2 == 0).Average();

sum
Query expression:

int sum = (from i in myArray
 where i % 2 == 0
 select i).Sum();

Method-based query:

int sum = myArray.Where(i => i % 2 == 0).Sum();

min
Query expression:

int min = (from i in myArray
 where i % 2 == 0
 select i).Min();

Method-based query:

int min = myArray.Where(i => i % 2 == 0).Min();

max
Query expression:

int max = (from i in myArray
 where i % 2 == 0
 select i).Max();

Method-based query:

int max = myArray.Where(i => i % 2 == 0).Max();

first and last
There are two other functions that enable you to find the first or last element in your sequence.
These are also only available as methods but can be used by a query expression. These functions
can be helpful when you want to find the first or last element in a sequence that meets a specific
condition, such as the first even number in an array. The syntax for the First and Last method
is shown in the following examples.

first
Query expression:

int first = (from i in myArray
 where i % 2 == 0
 select i).First();

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 457

Method-based query:

int first = myArray.Where(i => i % 2 == 0).First();

last
Query expression:

int last = (from i in myArray
 where i % 2 == 0
 select i).Last();

Method-based query:

int last = myArray.Where(i => i % 2 == 0).Last();

Concatenation
The Concat method enables you to concatenate two sequences into one. This is similar to how a
UNION clause works in a SQL statement. The following example combines two Lists of Employee
objects and prints the combined sequence to the Output window:

static void Concat()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith"
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones"
 }
 };

 List<Employee> employees2 = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "Bill",
 LastName = "Peters"
 },
 new Employee()
 {
 FirstName = "Bob",
 LastName = "Donalds"

www.EBooksWorld.ir

www.EBooksWorld.ir

458 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 },
 new Employee()
 {
 FirstName = "Chris",
 LastName = "Jacobs"
 }
 };

 var combinedEmployees = employees.Concat(employees2);

 foreach (var employee in combinedEmployees)
 {
 Debug.WriteLine(employee.LastName);
 }
}

The preceding code prints all six last names to the Output window. Be aware that the type for each list
does not need to be the same. You can combine different types by selecting an anonymous type from
each sequence that contains the same properties. The following code combines a List of Employee and
Person objects and creates a new anonymous type that just contains a Name property:

static void ConcatV2()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith"
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe"
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones"
 }
 };

 List<Person> people = new List<Person>()
 {
 new Person()
 {
 FirstName = "Bill",
 LastName = "Peters"
 },
 new Person()
 {
 FirstName = "Bob",
 LastName = "Donalds"
 },

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 459

 new Person()
 {
 FirstName = "Chris",
 LastName = "Jacobs"
 }
 };

 var combinedEmployees = employees.Select(e => new { Name =
 e.LastName }).Concat(people.Select(p => new { Name = p.LastName }));

 foreach (var employee in combinedEmployees)
 {
 Debug.WriteLine(employee.Name);
 }
}

Skip and Take
You can partition sequences by using the Skip or Take methods. The Skip method enables you to pass
in a number and returns all elements in the sequence after that number. For example, the following
code skips the first element in the Employee List.

var newEmployees = employees.Skip(1);

You can use the Take method to limit the number of elements returned from the sequence. The
following code returns only the top two elements from the Employee List object.

var newEmployees = employees.Take(2);

These two methods can be useful when paging through the results of a query and displaying them
on a screen one page at a time. If you show 10 elements at a time and want to display the third page,
you would use the following syntax.

var newEmployees = employees.Skip(20).Take(10);

Distinct
The Distinct method returns the distinct list of values in the returned sequence. This is useful
when you want to remove duplicates from a sequence. The following code returns the distinct list
of numbers from an array:

int[] myArray = new int[] { 1, 2, 3, 1, 2, 3, 1, 2, 3 };

var distinctArray = myArray.Distinct();

foreach (int i in distinctArray)
{
 Debug.WriteLine(i);
}

The preceding code prints 1, 2, 3 to the Output window.

www.EBooksWorld.ir

www.EBooksWorld.ir

460 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

CODE LAB Distinct with custom classes

The Distinct method behaves differently when the underlying object is a custom class. Consider the
following code:

class State : IEquatable<State>
{
 public int StateId { get; set; }
 public string StateName { get; set; }

 public bool Equals(State other)
 {
 if (Object.ReferenceEquals(this, other))
 {
 return true;
 }
 else
 {
 if (StateId == other.StateId && StateName == StateName)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 }

 public override int GetHashCode()
 {
 return StateId.GetHashCode() ^ StateName.GetHashCode();
 }
}
static void DistinctCodeLab()
{
 List<State> states = new List<State>()
 {
 new State(){ StateId = 1, StateName = "PA"},
 new State() { StateId = 2, StateName = "NJ"},
 new State() { StateId = 1, StateName = "PA" },
 new State() { StateId = 3, StateName = "NY"}
 };

 var distintStates = states.Distinct();

 foreach (State state in distintStates)
 {
 Debug.WriteLine(state.StateName);
 }
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Understanding Query Expressions ❘ 461

Code Lab Analysis

The State class must implement the IEquatable<T> interface, because the Distinct method uses the
default equality comparer when determining if two objects are equivalent. The IEquatable<T> interface
has one method you must override, called Equals. In this example, the StateId and StateName properties
are being used to determine equivalence. You must also override the GetHashCode method and return the
hash code based on the properties in your object. When you execute the DistinctCodeLab method, only
three states are printed to the Output window. If the State class didn’t implement the IEquatable<T>
interface, then all for states would be printed to the window, which you wouldn’t expect.

Utilizing LINQ to XML
LINQ to XML enables you to easily convert a sequence into an XML document. Remember, you
can use LINQ to query any sequence regardless of the source. As long as the sequence supports
the IEnumerable<T> or IQueryable<T> interface, you can use a LINQ query expression to con-
vert the sequence to XML. This can be useful when transferring data between two systems.

The following example converts a List of Employee objects to XML:

static void LINQToXML()
{
 List<Employee> employees = new List<Employee>()
 {
 new Employee()
 {
 FirstName = "John",
 LastName = "Smith",
 StateId = 1
 },
 new Employee()
 {
 FirstName = "Jane",
 LastName = "Doe",
 StateId = 2
 },
 new Employee()
 {
 FirstName = "Jack",
 LastName = "Jones",
 StateId = 1
 }
 };

 var xmlEmployees = new XElement("Root", from e in employees
 select new XElement("Employee", new XElement("FirstName", e.FirstName),
 new XElement("LastName", e.LastName)));

 Debug.WriteLine(xmlEmployees);
}

www.EBooksWorld.ir

www.EBooksWorld.ir

462 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

The output of the preceding code follows:

<Root>
 <Employee>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 </Employee>
 <Employee>
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Employee>
 <Employee>
 <FirstName>Jack</FirstName>
 <LastName>Jones</LastName>
 </Employee>
</Root>

The XElement class is found in the System.Xml.Linq namespace. The first parameter to the con-
structor is the name of the element. The second parameter is a ParamArray, which means you can
pass a variable number of arguments to the constructor. In this example, you pass a LINQ query
expression that returns the list of employees.

SUMMARY

Language Integrated Query (LINQ) is a feature in the .NET Framework that enables you to query
different data sources, such as a collection or a database, with common syntax. It may take a bit of
time to understand the different forms of syntax in LINQ, but once learned it will make you a more
efficient programmer. The two forms of syntax are query expressions and method-based queries. As
stated throughout this chapter, both syntaxes are functionally equivalent. Query expressions can be
more readable, but they do not offer all of the capabilities of method-based queries. Method-based
queries require you to understand lambda expressions, which sometimes can be harder to read.

LINQ to Objects, LINQ to SQL, and LINQ to XML all refer to the ability to query a data source
such as a collection, a database, or an XML document. You can also use LINQ to query data in an
ADO.NET Entity Framework model. LINQ replaces the need for you to learn specific SQL or XQuery
syntax and allows you to use a handful of keywords to manipulate your data. You are sure to see some
questions in the exam regarding LINQ or questions that use LINQ syntax, so be sure to understand
all of the keywords described in this chapter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 463

ChApTER TEST QUESTIONS

The following questions are similar to the types of questions you will find on Exam 70-483.
Read each question carefully and select the answer or answers that represent the best solution to
the problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . Which answer has the correct order of keywords for a LINQ query expression?

 a . select, from, where

 b . where, from, select

 c . from, where, select

 d . from, select, where

 2 . Which where clause can select all integers in the myList object that are even numbers given
the following from clause?

from i in myList

 a . where myList.Contains(i % 2)

 b . where i % 2 = 0

 c . where i % 2 == 0

 d . where i % 2 equals 0

 3 . Which line of code executes the LINQ query?

[1] var result = from i in myArray

[2] order by i

[3] select i

[4] foreach(int i in result)

[5] { …}

 a . Line 1

 b . Line 2

 c . Line 3

 d . Line 4

 4 . Which method can you use to find the minimum value in a sequence?

 a . (from i in myArray select i).Min()

 b . from i in myArray select Min(i)

 c . from Min(i) in myArray select i

 d . from i in Min(myArray) select i

www.EBooksWorld.ir

www.EBooksWorld.ir

464 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 5 . Which methods can you use to find the first item in a sequence?

 a . Min

 b . First

 c . Skip

 d . Take

 6 . Which where clause returns all integers between 10 and 20?

 a . where i >= 10 and i <= 20

 b . where i >= 10 && i <= 20

 c . where i gt 10 and i lt 20

 d . where i gt 10 && i lt 20

 7 . Which clause orders the state and then the city?

 a . orderby h.State
 orderby h.City

 b . orderby h.State thenby h.City

 c . orderby h.State, h.City

 d . orderby h.State, thenby h.City

 8 . Which statement selects an anonymous type?

 a . select { h.City, h.State }

 b . select h

 c . select new { h.City, h.State }

 d . select h.City, h.State

 9 . Which on statement joins two sequences on the StateId property?

 a . on e.StateId equals s.StateId

 b . on e.StateId = s.StateId

 c . on e.StateId == s.StateId

 d . on e.StateId.Equals(s.StateId)

 10 . Which two keywords must you use in a join clause to create an outer join?

 a . groupby, into

 b . into, DefaultIfEmpty

 c . new, DefaultIfEmpty

 d . into, groupby

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 465

 11 . Which join clause uses a composite key?

 a . on new { City = e.City, State = e.State } equals new { City =

h.City, State = h.State }

 b . on e.City = h.City && e.State = h.State

 c . on e.City = h.City and e.State = h.State

 d . on e.City equals h.City and e.State equals h.State

 12 . Which statement groups a sequence by the State property?

 a . groupby e.State

 b . group e.State

 c . group e by e.State

 d . groupby e.State in states

 13 . Which answers return the count of all even numbers?

 a . myArray.Where(i => i % 2 == 0).Count()

 b . myArray.Count(i => i % 2 == 0)

 c . myArray.Count(i =>).Where(i % 2 == 0)

 d . myArray.Count(Where(i => i % 2))

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this
chapter:

Microsoft LINQ Official Documentation
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

LINQPad
http://www.linqpad.net/

LINQ Wiki
http://en.wikipedia.org/wiki/Language_Integrated_Query

LINQ on Code Project
http://www.codeproject.com/KB/linq/

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://www.linqpad.net/
http://en.wikipedia.org/wiki/Language_Integrated_Query
http://www.codeproject.com/KB/linq/

466 ❘ ChApTER 10 WorkIng WIth language Integrated Query (lInQ)

 ⊲ ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Language Integrated Query LINQ

➤➤ Any object that implements the IEnumerable<T> or IQueryable<T> interface can be queries
using LINQ.

➤➤ The results of a LINQ query are normally returned to a variable of type var, which is an
implicitly typed variable.

Query expression

➤➤ A query expression contains a from clause and can contain a select, groupby, order by,
where, or join clause

➤➤ Joins are always equivalence based for LINQ queries.

➤➤ The execution of a query does not occur until the result is enumerated. You can force
execution of the query by using an aggregate function.

➤➤ The code in the where clause of a query expression is the predicate.

➤➤ Multiple where clauses use the and operator.

➤➤ The orderby clause is used in query expressions to sort the results on one or more properties.

➤➤ You can create a new type on the fly in the select clause of a query expression with a
limited number of properties from the original object. This is referred to as projection.

➤➤ You use the keyword equals in a join clause.

➤➤ To create an outer join, you include an into clause in your join, and also call the
DefaultIfEmpty method to set the properties on the object when no match was found
between the two sequences.

➤➤ A join clause can contain an anonymous type to create a composite key.

➤➤ The group by clause returns an IGrouping<TKey, TElement> collection.

Method-based queries

➤➤ Method-based queries and query expressions are interchangeable and produce the same
results. The only difference is the syntax.

➤➤ Method-based query use lambda expressions as parameters to the methods.

➤➤ You can use the SelectMany method to flatten two sequences into one sequence similar to
how a join works.

➤➤ You can use the GroupJoin method create outer joins when using method-based queries.

➤➤ You can concatenate two sequences by using the Concat method.

➤➤ You can use the Skip method to skip a specific number of elements in a sequence.

➤➤ You can use the Take method to return a limited number of elements from a sequence.

➤➤ You can use the Distinct method to return the distinct list of elements from a sequence.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 467

LINQ to XML

➤➤ You can use the XElement class in a LINQ to XML query to return the result of a query
in XML.

REVIEW OF KEY TERMS

anonymous type A type created with read-only properties without having to write the code to
declare the class.

composite keys Contains multiple properties that you need for the purpose of a join.

deferred execution Execution of a LINQ query is deferred until the result is enumerated or by
calling a function on the result.

Goes To operator The Goes To operator is the => signs in a lambda expression.

implicitly typed variable A variable that has its type determined by the expression on the right side
of the initialization statement. Use the keyword var to declare an implicitly typed variable.

inner sequence When using the method-based Join function, this refers to the sequence passed into
the Join method as a parameter.

Language Integrated Query (LINQ) A set of features that extends powerful query capabilities to C#.

method-based query A feature of LINQ that uses extension methods on types that implement the
IEnumerable<T> or IQuerable<T> interface to query the data.

outer join Selects all elements from one sequence when joined to another sequence even if there is
not a match on the joined property.

outer sequence When using the method-based Join function, this refers to the sequence calling the
Join method.

paramArray A parameter to a method that enables you to pass an unknown number of parameter to
the method.

predicate The code executed in a where clause for a query expression.

projection Selecting a subset of properties from a type that creates a new anonymous type.

query expression A feature of LINQ that enables you to query any type that implements the
IEnumerable<T> or IQueryable<T> interface by using syntax that is easy to comprehend.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed to
help you study. You can find these files in the ZIP file for this chapter at www.wrox.
com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation, Debugging,
and Instrumentation

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding validation input

➤➤ Using regular expressions

➤➤ Managing data integrity

➤➤ Using preprocessor directives and symbols

➤➤ Using the Debug and Trace classes

➤➤ Tracing, logging, and profiling

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter11
download and individually named according to the names throughout the chapter.

This chapter explains several topics that at first may seem unrelated. It starts by discussing
input validation techniques that a program can use to protect itself from bad values entered by
the user.

After the data has entered the program, you still need to manage the data so that it doesn’t
become corrupted by incorrect calculations. A useful method to do this is to use preprocessor
directives to include testing code during debug builds, but to exclude it from release builds.

That same technique of using preprocessor directives is also useful for studying the program’s
activities and performance. It enables you to include or exclude code that traces execution,
logs progress, and profiles the application’s performance during the appropriate releases.

11

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

470 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

This chapter introduces all these topics: input validation, managing data integrity, tracing, logging,
profiling, and preprocessor directives that you can use to determine which of those activities occur
in various program builds.

Table 11-1 introduces you to the exam objectives covered in this chapter.

TABLE 11-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Debug applications and implement security Validate application input. This includes using string
methods and regular expressions to validate inputs .

Debug an application. This includes creating and
using preprocessor directives, and using the Debug
and Trace classes to follow program execution and
watch for unexpected values .

Implement diagnostics. This includes tracing, using
the profiler, writing to event logs, and using perfor-
mance counters .

INpUT VALIDATION

It’s hard enough debugging an application when it contains correct data. It’s even harder if the data
it works with is incorrect. If the data is wrong, how can you tell whether invalid results are caused
by buggy code or incorrect data?

As is the case with bugs in code, mistakes in data are easiest to correct if you detect them quickly.
Ideally you can catch incorrect data as soon as the user enters it. At that point if you can figure out
why the data is incorrect, then you can ask the user to fix it.

The following sections describe methods you can use to validate inputs to detect incorrect data.

Avoiding Validation
Before discussing ways to validate data, it’s worth taking a moment to discuss ways to avoid
validation.

If the user cannot enter an incorrect value, you don’t need to write code to validate the value. C# pro-
grams can use lots of different kinds of controls, and many of those let you restrict the user’s input to
valid values.

For example, suppose the program needs the user to enter an integer value between 1 and 10. You
could let the user type the value into a TextBox. In that case, the code would need to check the value
to make sure the user didn’t enter 100, 0, –8, or ten. However, if the program makes the user select the
value from a TrackBar, the user cannot select an invalid value. You can set the TrackBar’s Minimum
and Maximum properties and the control does all the validation work for you.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 471

Not only does this save you the trouble of writing and debugging the validation code, it also saves
you the trouble of figuring out what to do if the user enters an invalid number. You don’t need to
display a message box to the user, and the user’s work flow isn’t interrupted by the message box.

Many controls enable the user to select values of specific types such as colors, dates, files, folders,
fonts, numbers, a single item from a list, and multiple items from a list. Whenever you build a pro-
gram and plan to let the user type something into a TextBox, you should ask yourself whether there
is some control that would let the user select the value instead of typing it.

Triggering Validations
Realistically controls can’t help the user select every possible value. To select an arbitrary phone
number, a program would probably need to let the user select each digit one at a time, a painfully
tedious process. Making the user select an arbitrary name would be even worse.

In cases like these a program should let the user type data but then it must validate the result. The
program should verify that the phone number follows the format required by the program’s locale.
It can’t do too much validation for a name but can at least verify that it is not blank.

All this begs the question, “When should the program validate data entered by the user?” Should
it validate each keystroke? Should it validate when the user enters a value and then moves to a new
field? Or should it validate all the values on a form after the user enters all the data and clicks OK?

The answer depends on how often a particular event occurs and how intrusive the validation is. For
example, when the user types a value in a TextBox, many keystrokes occur. It would be extremely
annoying if the program interrupted the user between every keystroke with an error message.

Instead the program may simply ignore invalid keystrokes. For example, the MaskedTextBox control
enables you to specify a mask that the text must match. In the United States you could set the mask
to (999)000-0000 to require that the text match a 10-digit phone number format. The user must
enter a digit or space for places corresponding to the 9s and must enter a digit for places correspond-
ing to the 0s. The parentheses and dash character are displayed by the control but the user cannot
change them. If the user types any other character, the control ignores it.

The MaskedTextBox can’t prevent all invalid inputs. For example, the user could enter (000)000-0000,
which is not a valid phone number.

For another example, suppose the user must enter a floating point value such as 1.73. The program
can’t use a TrackBar, ScrollBar, or other control to let the user select a value because those controls
select only integers, so you can let the user type a value into a TextBox. While the user types a float-
ing-point value, there are times when the value may not be valid; it might be part of a possible valid
value. For example, the value “–.” is not a valid floating point number but “–.1” is. In that case, the
program shouldn’t interrupt the user with an error message after “–.” has been typed. Instead it must
wait until the user finishes typing.

When the user moves to a new field, the program can validate the user’s input more fully. In a Windows
Forms application, you can use a TextBox’s Validating event to validate its value when focus moves
to another control that has CausesValidation property set to true. The Validating event provides
a parameter of type CancelEventArgs that has a Cancel property. If you set this property to true,
the program cancels the event that moved focus to this control. This traps the user in the field that set
e.Cancel to true until the user fixes the input problem.

www.EBooksWorld.ir

www.EBooksWorld.ir

472 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

NOTE The form refuses to close as long as a control’s Validating event sets
e.Cancel to true; although the form closes if focus never reaches that control.
The fact that the form sometimes closes and sometimes doesn’t makes using
e.Cancel even more confusing for the user.

Trapping the user in a field disrupts the user’s workflow and forces the user to take immediate
action. If the user types “head down” without looking at the screen, it could be a while before the
user notices that focus is stuck in the control with the problem.

A better approach, and one taken by many websites these days, is to mark the control so that users
can see that it contains an error but to let users continue using other parts of the form until they
decide to fix the problem. For example, the program might change a TextBox’s background color to
yellow, change its foreground color to red, or display an asterisk next to it.

Later when users click the OK button or otherwise try to accept the values on the form, the code can
revalidate the values and display error messages if appropriate.

The following list summarizes the three stages of input validation ranging from most frequent and
least intrusive to least frequent and most intrusive:

 1 . Keystroke validation: The program can ignore any keystrokes that don’t make sense, but be
sure to allow values that could turn into something that makes sense as “–.” could turn into
“–.123”. Optionally, you could mark the field as containing an invalid value as long as you
don’t interrupt the user.

 2 . Field validation: When focus leaves a field, the program can validate its contents and flag
invalid values. Now if the field contains “–.” it is invalid. The program should display an
indicator that the value is invalid but should not force the user to correct it yet.

 3 . Form validation: When the user tries to accept the values on the form, the program should
validate all values and display error messages if appropriate. This is the only place where the
program should force the user to fix values.

NOTE Form validation is also the only place where the program can perform
cross-field validations where the value of one field depends on the values in
other fields. For example, the ZIP code 02138 is in Cambridge, MA. If the user
enters this ZIP code but the state AZ, something is wrong. Either the ZIP code is
incorrect or the state is incorrect (or both).

The following section describes specific methods for validating data to ensure that it meets
required formats.

Validating Data
After you decide when to validate the user’s inputs, you still need to know how to perform the
actual validation. The following sections describe two approaches: using built-in functions and
using regular expressions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 473

Using Built-in Functions
One of the most basic data validations is to verify that the user entered a required value. If the value
should be entered in a TextBox, the program can simply check its length. For example, the following
code checks the emailTextBox control to see if its contents are blank:

if (emailTextBox.Text.Length == 0)
{
 // The email field is blank. Display an error message.
 ...
}

For some other types of controls, the program must look at different control properties to see if
the user has made a selection. For example, a ListBox or ComboBox uses its SelectedIndex and
SelectedItem properties to indicate the user’s selection. To see if the user has made a selection,
the code should check whether SelectedIndex == -1 or SelectedItem == null.

NOTE In normal selection mode, after a ComboBox or ListBox has selected an
item, the user cannot deselect all items. The user can select a different item but
cannot deselect all items. You can ensure that the user makes a selection by
selecting a default value when the form loads. Then you don’t need to verify that
the user has made a selection because you know there must be a selection.

If the field is not blank, the program may need to perform additional validation to determine
whether the field makes sense. For example, the value test isn’t a valid e-mail address.

C# and the .NET Framework provide several built-in methods for performing additional data vali-
dation. Perhaps the most useful of these are the TryParse methods provided by built-in data types
such as int, float, and DateTime. The TryParse methods attempt to parse a string value and
return true if they succeed. The following code checks whether the costTextBox contains a valid
currency value:

decimal cost;
if (!decimal.TryParse(costTextBox.Text,
 NumberStyles.Currency,
 CultureInfo.CurrentCulture,
 out cost))
{
 // Cost is not a valid currency value. Display an error message.
 ...
}

The NumberStyles enumeration and the CultureInfo class are in the System.Globalization
namespace, so this code assumes the program has included that namespace with a using statement.

Note that some values may not make sense now, but they must still be allowed because later they
may make sense. For example, as was mentioned earlier, the value “–.” is not a valid floating point
number but “–.1” is, so the program must allow “–.” while the user is typing.

www.EBooksWorld.ir

www.EBooksWorld.ir

474 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

However, the value “– –” is not a legal part of a floating-point value, so you don’t need to allow
that. Most programs just ignore the issue and don’t try to validate the entry until the user accepts
the form.

If you want to validate partial values, however, you may turn a partial entry into a full entry. In
this example, you can add “0” to the end of the string. Then the text “–.0” is a valid floating point
value, but the text “– –0” is not.

Using String Methods
A program can use the string data type’s Length property to determine whether the string is
blank. That lets you easily decide whether the user has left a required field blank on a form.

The string class also provides several methods that are useful for performing more complicated
string validations. Table 11-2 summarizes the most useful of those methods.

TABLE 11-2: Useful String Validation Methods

METhOD pURpOSE

Contains Returns true if the string contains a specified substring . For example,
you could use this to determine whether an e-mail address contains
the @ character .

EndsWith Returns true if the string ends with a specified substring .

IndexOf Returns the location of a specified substring within the string, option-
ally starting the search at a particular position .

IndexOfAny Returns the location of any of a specified set of characters within the
string, optionally starting at a particular position .

IsNullOrEmpty Returns true if the string is null or blank .

IsNullOrWhitespace Returns true if the string is null, blank, or contains only whitespace
characters such as spaces and tabs .

LastIndexOf Returns the last location of a specified substring within the string,
optionally starting the search at a particular position .

LastIndexOfAny Returns the last location of any of a specified set of characters within
the string, optionally starting at a particular position .

Remove Removes characters from the string . For example, you can remove the
– characters from the phone number 234-567-8901 and then examine
the result to see if it makes sense .

Replace Replaces instances of a character or substring with a new value .

Split Returns an array containing substrings delimited by a given set of char-
acters . For example, you could split the phone number 234-567-8901
into its pieces and examine them separately .

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 475

METhOD pURpOSE

StartsWith Returns true if the string starts with a specified substring .

Substring Returns a substring at a specified location .

ToLower Returns the string converted to lowercase . This can be useful if you
want to ignore the string’s case .

ToUpper Returns the string converted to uppercase . This can be useful if you
want to ignore the string’s case .

Trim Returns the string with leading and trailing whitespace characters
removed .

TrimEnd Returns the string with trailing whitespace characters removed .

TrimStart Returns the string with leading whitespace characters removed .

With enough work, you can use these string methods to perform all sorts of validations. For
example, suppose the user enters a phone number of the format (234)567-8901. You could use the
Split method to break this into the pieces 234, 567, and 8901. You can then verify that Split
returned three pieces and that the pieces have the necessary lengths.

Although you can use the string methods to perform just about any validation, sometimes that
can be hard because the validations can be complex. For example, (234)567-8901 is not the only
possible U.S. phone number format. You might also want the program to allow 234-567-8901,
1(234)567-8901, 1-234-567-8901, +1-234-567-8901, 234.567.8901, and other formats.

Phone numbers for other countries, e-mail addresses, postal codes, serial numbers, and other values can
also require complicated validations. You can perform all these by using the string class’s methods,
but sometimes it can be difficult. In those cases you can often use the regular expressions described in
the following section to validate the more complex structure that these entities hold.

Using Regular Expressions
Regular expressions provide a flexible language for a pattern in strings. Regular expressions let a
program determine whether an entire string matches a pattern (a regular expression used for match-
ing parts of a string), find pieces of a string that match a pattern, and replace parts of a string with
new values.

The System.Text.RegularExpressions.Regex class provides the objects that a program can
use to work with regular expressions. Using the Regex class is fairly complicated, so this section
describes only its most common and useful operations.

Table 11-3 summarizes the Regex class’s most useful methods.

www.EBooksWorld.ir

www.EBooksWorld.ir

476 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

TABLE 11-3: Useful Regex Methods

METhOD pURpOSE

IsMatch Returns true if a regular expression matches a string .

Match Searches a string for the first part of it that matches a regular expression .

Matches Returns a collection giving information about all parts of a string that match a
regular expression .

Replace Replaces some or all the parts of the string that match a pattern with a new value .
This is more powerful than the string class’s Replace method .

Split Splits a string into an array of substrings delimited by pieces of the string that
match a regular expression .

Many of the methods described in Table 11-3 have multiple overloaded versions. In particular, many
take a string as a parameter and can optionally take another parameter that gives a regular expres-
sion. If you don’t pass the method a regular expression, the method uses the expression you passed
the object’s constructor.

The Regex class also provides static versions of these methods that take both a string and a regular
expression as parameters. For example, the following code validates the text in a TextBox and sets
its background color to give the user a hint about whether the value matches a regular expression.
(Don’t worry about the regular expression just yet. Regular expressions are described shortly.)

private void ValidateTextBox(TextBox txt, bool allowBlank, string pattern)
{
 // Assume it's invalid.
 bool valid = false;

 // If the text is blank, allow it.
 string text = txt.Text;
 if (allowBlank && (text.Length == 0)) valid = true;

 // If the regular expression matches the text, allow it.
 if (Regex.IsMatch(text, pattern)) valid = true;

 // Display the appropriate background color.
 if (valid) txt.BackColor = SystemColors.Window;
 else txt.BackColor = Color.Yellow;
}

The code assumes the value is invalid, so it sets the variable valid to false.

Next, if the allowBlank parameter is true and the text is blank, the code sets valid to true.

The code then uses the Regex class’s static IsMatch method to determine whether the regular
expression matches the text. If the expression matches the text, the code sets valid to true.

Finally, the code sets the TextBox’s background color to SystemColors.Window if the text is valid
or yellow if the text is invalid. This gives the user a visible indication when the text is invalid with-
out interrupting the user.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 477

Table 11-3 lists only five methods, whereas Table 11-2 lists 18 methods provided by the string
class, so you might think the Regex class isn’t as useful. The power of the Regex class comes from
the flexibility of the regular expression language.

NOTE There are a few different regular expression languages used by different
programming languages and environments. These languages are similar but not
identical, so it’s easy to be confused and use the wrong syntax. If you find that
an expression doesn’t do what you think it does, be sure you’re using the right
syntax for C#.

In particular, if you use the Internet to find an expression to match some standard
format such as UK phone numbers or Canadian postal codes, be sure the web-
site where you found the expressions uses the syntax required by C#.

A regular expression is a combination of literal characters and characters that have special meanings.
For example, the sequence [a-z] means the Regex object should match any single character in the
range “a” through “z.”

Regular expressions can also include special character sequences called escape sequences that rep-
resent some special value. For example, the sequence \b matches a word boundary and \d matches
any digit 0 through 9.

Sometimes a program needs to use a character as itself even though it looks like a special character.
For example, the [character normally begins a range of characters. If you want to use [itself, you
“escape” it by adding a \ in front of it as in \[. For example, the somewhat confusing sequence
[\[-\]] matches the range of characters between [and].

BEST pRACTICES: Avoiding Too Many \ Characters

Remember that strings inside C# code also treat \ as a special character. For example,
\t represents a tab and \n represents newline.

To add a \ inside a string in C#, you must escape it by adding another \ in front
of it as in \\. This can become maddeningly confusing. For example, to put the
already confusing regular expression pattern [\[-\]] in C# code, you would need
to use [\\[-\\]].

A much simpler method is to use a string literal that starts with the @ character. For
example, the following code creates a string named pattern that contains the text
[\[-\]].

string pattern = @"[\[-\]]";

The most useful pieces of a regular expression can be divided into character escapes, character classes,
anchors, grouping constructs, quantifiers, and alternation constructs. The following sections describe

www.EBooksWorld.ir

www.EBooksWorld.ir

478 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

each of these. See the links in the “Additional Reading and Resources” section later in this chapter for
information about other features of regular expressions.

Character Escapes
Table 11-4 lists the most useful regular expression character escapes.

TABLE 11-4: Useful Character Escapes

ChARACTER MEANING

\t Matches tab

\r Matches return

\n Matches newline

\nnn Matches a character with ASCII code given by the two or three octal
digits nnn

\xnn Matches a character with ASCII code given by the two hexadecimal
digits nn

\unnnn Matches a character with Unicode representation given by the four hexa-
decimal digits nnnn

Character Classes
A character class matches any one of a set of characters. Table 11-5 describes the most useful char-
acter class constructs.

TABLE 11-5: Useful Character Class Constructs

CONSTRUCT MEANING

[chars] Matches a single character inside the brackets . For example, [aeiou]
matches a lowercase single vowel .

[^chars] Matches a single character that is not inside the brackets . For example,
[^aeiouAEIOU] matches a single nonvowel character such as x, 7, or & .

[first-last] Matches a single character between the character first and the character
last . For example, [a-zA-Z] matches any lowercase or uppercase letter .

. A wildcard that matches any single character except \n . (To match a
period, use the \. escape sequence .)

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 479

CONSTRUCT MEANING

\w Matches a single word character . Normally this is equivalent to
[a-zA-Z_0-9] .

\W Matches a single nonword character . Normally this is equivalent to
[^a-zA-Z_0-9] .

\s Matches a single whitespace character . Normally this includes space, form
feed, newline, return, tab, and vertical tab .

\S Matches a single nonwhitespace character . Normally this matches every-
thing except space, form feed, newline, return, tab, and vertical tab .

\d Matches a single decimal digit . Normally this is equivalent to [0-9] .

\D Matches a single character that is not a decimal digit . Normally this is
equivalent to [^0-9] .

Anchors
An anchor, or atomic zero-width assertion, represents a state that the string must be in at a certain
point. Anchors do not consume characters. For example, the ^ and $ characters represent the begin-
ning and ending of a line or the string, depending on whether the Regex object is working in single-
line or multiline mode.

Table 11-6 describes the most useful anchors.

TABLE 11-6: Useful Anchors

ANChOR MEANING

^ Matches the beginning of the line or string

$ Matches the end of the string or before the \n at the end of the line
or string

\A Matches the beginning of the string

\z Matches the end of the string

\Z Matches the end of the string or before the \n at the end of the string

\G Matches where the previous match ended

\B Matches a nonword boundary

www.EBooksWorld.ir

www.EBooksWorld.ir

480 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

REGEX OpTIONS

A program can specify regular expression options in three ways.

First, it can pass an options parameter to a Regex object’s pattern matching meth-
ods such as IsMatch. The options are defined by the RegexOptions enumeration.

Second, it can use the syntax (?options) to include inline options in a regular expres-
sion. Here, options can include any of the values i, m, n, s, or x. (These are described
shortly.) If the list begins with a - character, the following options are turned off. The
options remain in effect until a new set of inline options reset their values.

Third, it can use the syntax (?options:subexpression) in a regular expression.
In this case, options is as before and subexpression is part of a regular expression
during which the options should apply.

Table 11-7 describes the available options.

TABLE 11-7: Regular Expression Options

OpTION MEANING

i Ignore case .

m Multiline . Here ^ and $ match the beginning and ending
of lines .

s Single line . Here, . matches all characters including \n .
(See the entry for . in Table 11-5 .)

n Explicit capture . Do not capture unnamed groups . See
the section “Grouping Constructs” for more information
on groups .

x Ignore unescaped whitespace in the pattern and enable
comments after the # character .

For more information on these options, see “Regular Expression Options” at
http://msdn.microsoft.com/library/yd1hzczs.aspx.

Grouping Constructs
Grouping constructs let you define groups of matching pieces of a string. For example, in a U.S.
phone number with the format 234-567-8901, you could define groups to hold the pieces 234, 567,
and 8901. The program can later refer to those groups either with code or later inside the same
regular expression.

For example, consider the expression (\w)\1. The parentheses create a numbered group that, in
this example, matches a single word character. The \1 refers to numbered group 1. That means this
regular expression matches a word character followed by itself. If the string is “book,” this pattern
would match the “oo” in the middle.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/yd1hzczs.aspx

Input Validation ❘ 481

There are several kinds of groups, some of which are fairly specialized and confusing. The two most
common are numbered and named groups.

To create a numbered group, simply enclose a regular subexpression in parentheses, as shown in the
previous example (\w)\1. Note that the group numbering starts with 1, not 0.

To create a named group, use the syntax (?<name>subexpression) where name is the name you
want to assign to the group and subexpression is a regular subexpression. For example, the expres-
sion (?<twice>\w)\k<twice> is similar to the previous version except the group is named twice.
Here, the \k makes the expression match the substring matched by the named group that follows, in
this case twice.

Quantifiers
Quantifiers make the regular expression engine match the previous element a certain number of times.
For example, the expression \d{3} matches any digit exactly three times. Table 11-8 describes regular
expression quantifiers.

TABLE 11-8: Quantifiers

QUANTIFIER MEANING

* Matches the previous element 0 or more times

+ Matches the previous element 1 or more times

? Matches the previous element 0 or 1 times

{n} Matches the previous element exactly n times

{n,} Matches the previous element n or more times

{n,m} Matches the previous element between n and m times (inclusive)

If you follow one of these with ?, the pattern matches as few times as possible. For example, the pat-
tern bo+ matches b followed by 1 or more occurrences of the letter o, so it would match the “boo”
in “book.” The pattern bo+? also matches b followed by 1 or more occurrences of the letter o, but it
matches as few letters as possible, so it would match the “bo” in “book.”

Alternation Constructs
Alternation constructs use the | character to allow a pattern to match either of two subexpressions.
For example, the expression (yes|no) matches either yes or no.

Useful Regular Expressions
The following code shows one way you could validate a TextBox to see if it contains a 7-digit U.S.
phone number:

// Perform simple validation for a 7-digits US phone number.
private void phone7TextBox_TextChanged(object sender, EventArgs e)
{
 const string pattern = @"^\d{3}-\d{4}$";

www.EBooksWorld.ir

www.EBooksWorld.ir

482 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

 bool valid = false;

 string text = phone7TextBox.Text;
 if (text.Length == 0) valid = true;

 if (Regex.IsMatch(text, pattern)) valid = true;

 if (valid) phone7TextBox.BackColor = SystemColors.Control;
 else phone7TextBox.BackColor = Color.Yellow;
}

The code first defines a constant named pattern to hold the regular expression that the text should
match. This pattern’s pieces mean the following:

pIECE OF pATTERN DESCRIpTION

^ Matches the start of the string, so the phone number must start at the
beginning of the string .

\d Match any digit .

{3} Repeat the previous (match any digit) three times . In other words, match
three digits .

– Match the – character .

\d Match any digit .

{4} Match 4 digits .

This is a simple 7-digit phone number format and allows several illegal phone numbers such
as 111-1111 and 000-0000.

The code then initializes the boolean variable valid to false.

If the text entered by the user is blank, the code sets valid to true. Next if the text matches the
pattern, the code sets valid to true.

After it has performed those checks, the code sets the TextBox’s background color to the system’s
control color if the value is valid or to yellow if the value is invalid.

The following list describes several useful regular expressions.

➤➤ ^[2-9][0-9]{2}-\d{3}$: This pattern matches a 7-digit U.S. phone number more rigor-
ously. The exchange code at the beginning must match the pattern NXX where N is a digit
2–9 and X is any digit 0–9.

➤➤ ^[2-9][0-8]\d-[2-9][0-9]{2}-\d{3}$: This pattern matches a 10-digit U.S. phone num-
ber with the format NPA-NXX-XXXX where N is a digit 2-9, P is a digit 0–8, A is any digit
0–9, and X is any digit 0–9.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 483

➤➤ ^([2-9][0-8]\d-)?[2-9][0-9]{2}-\d{3}$: This pattern matches a U.S. phone number
with an optional area code. The part of the pattern ([2-9][0-8]\d-)? matches an area
code. The question mark at the end means the part inside the parentheses can appear 0 or
1 times. The rest of the pattern is similar to the earlier pattern that matches a 7-digit U.S.
phone number.

➤➤ ^\d{5}(-\d{4})?$: This pattern matches a US ZIP code with optional +4 as in 12345 or
12345-6789.

➤➤ ^[A-Z]\d[A-Z] \d[A-Z]\d$: This pattern matches a Canadian postal code with the format
A#A #A# where A is any capital letter and # is any digit.

➤➤ ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9._%+-]+\.[a-zA-Z]{2,4}$: This pattern matches an
e-mail address. The sequence [a-zA-Z0-9._%+-] matches letters, digits, underscores, %,
+, and -. The plus sign after it means one of those characters must appear one or more
times. Next, the pattern matches the @ symbol. The pattern then matches another letter
1 or more times, followed by a ., and then between 2 and 4 letters. For example, this
matches RodStephens@CSharpHelper.com. This pattern isn’t perfect but it matches most
valid e-mail addresses.

Notice that all these patterns begin with the beginning-of-line anchor ^ and end with the end-of-
line anchor $. That makes the pattern to match the entire string not just part of it. For example,
the pattern ^\d{5}(-\d{4})?$ matches complete strings that look like ZIP codes such as 12345.
Without the ^ and $, it would match strings that contain a string that looks like a ZIP code such
as test12345value.

Using Sanity Checks
After the program verifies that a value has a reasonable format, it can perform basic sanity
checks to see whether it makes sense. If the user enters a cost of $1 trillion dollars for a note-
book, wants to order 1 million pencils, or has the e-mail address a@a.com, something may be
wrong. The program can look for this kind of suspicious value and display a message asking the
user if the value is correct.

Sometimes these unusual values are correct, so the program should give the user a way to allow
them if possible. Your company may not provide 1 million pencils, but if it can that would probably
be a lucrative sale.

NOTE Names can be particularly tricky because they can contain almost anything.
You can’t even count on a name to have a minimum number of letters or to contain
both consonants and vowels. Some tricky first names include Sy, Ly, Su, and Gd,
and some difficult last names include Ng, Bt, and O. You may even encounter peo-
ple who use only a single name; although in that case some programs just ask the
user to make something up for a last name even if it’s only Nothing.

www.EBooksWorld.ir

www.EBooksWorld.ir

mailto:RodStephens@CSharpHelper.com
mailto:a@a.com

484 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

REAL-WORLD CASE SCENARIO New order form

Make a new order form similar to the one shown in Figure 11-1.

FIGURE 11-1: A new order form contains many
validations .

Give the form the following field validations:
➤➤ First and last name: These are required. For a sanity check, these should consist of an uppercase

letter followed by any number of lowercase letters. That can be followed by a hyphen, apostrophe,
or space, and then the whole thing can repeat. For example, O’Neil, Mary Ann, and Jones-Smythe
should all be allowed.

➤➤ Street: This is required but has no other validation.

➤➤ City and ZIP: This is a small local business, so the program should allow only the three cities with
specific ZIP codes: Programmeria (13370, 13371, and 13372), Bugsville (13375 and 13376), and
Abend (13376, 13377, 13378, and 13379).

➤➤ State: The program should allow only FL.

➤➤ Items If any field in a row is present, all are required. As a sanity check, description should contain
at least six characters. Unit cost is currency and quantity is an integer. If unit cost and quantity are
both present, calculate the row’s total. As sanity checks, unit cost should be between $0.01 and
$1,000.00, and quantity should be between 1 and 100.

➤➤ Grand total: If any row has a total, calculate the grand total.

Only enable the OK button if the order is complete with all contact fields filled in and at least one row
filled in.

When the user clicks OK, make the user confirm any values that violate their sanity checks.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 485

Solution

This example has three kinds of validation. First, as the user types, it changes each field’s background
color to indicate whether the current value is valid. It doesn’t try to restrict the user so, for example, it
allows the user to type invalid characters in a numeric field. It just flags the value as invalid.

Second, when the user clicks OK, the program checks the fields and refuses to close the form if any
values are invalid.

Finally, when the user clicks OK and all the fields contain valid values, it checks for unusual values such
as prices greater than $1,000.00, or name with only one character. If it finds unusual values, the pro-
gram warns the user and asks if it should continue.

The following steps walk through the solution:

 1 . Build the form as shown in Figure 11-1. Because there are only three choices for city, it should be a
ComboBox. Given a choice for city, there are only a few choices for ZIP code so that should also be
a ComboBox. By using ComboBoxes, the program prevents the user from entering invalid values.

 2 . All the other fields are TextBoxes. Those that the user doesn’t enter (the row totals and the grand
total) are read-only. Because the state must be FL, it is also read-only. Set the ReadOnly property
for those TextBoxes to true.

 3 . The program begins with the following setup code:

using System.Globalization;
using System.Text.RegularExpressions;
...
// Regular expressions for validation.
private const string namePattern = @"^([A-Z][a-z]*[-']?)+$";

// Sanity check bounds.
private const int minNameLength = 3;
private const int minDescrLength = 6;
private const decimal minUnitCost = 1.00m;
private const decimal maxUnitCost = 1000;
private const int minQuantity = 1;
private const int maxQuantity = 100;

// ZIP codes for different cities.
private string[][] zips =
{
 new string[] { "13370", "13371", "13372" }, // City 0
 new string[] { "13375", "13376" }, // City 1
 new string[] { "13376", "13377", "13378", "13379" }, // City 2
};

// Colors for valid and invalid fields.
private Color validColor = SystemColors.Window;
private Color invalidColor = Color.Yellow;

// An array holding the item row TextBoxes.
private TextBox[,] rowTextBoxes;

www.EBooksWorld.ir

www.EBooksWorld.ir

486 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

The code starts by including the System.Globalization namespace it needs to parse currency values
and then including the System.Text.RegularExpressions namespace it needs to use regular expres-
sions easily.

It then defines several values that it uses in validations. The first is a regular expression pattern to vali-
date names. The pattern matches an uppercase letter followed by any number of lowercase letters and
then a hyphen, apostrophe, or space. It repeats this group at least one time. The pattern as a whole is
anchored to the beginning and ending of the text, so all the text must be matched by the pattern.

The code defines some constants to use for sanity checking. It then creates an array of arrays that holds
the allowed ZIP codes for the three cities that the program allows.

The last pieces of initialization code define colors to use for fields containing valid and invalid values,
and an array to hold the TextBoxes that hold information about the items in the order.

The following code shows the program’s Load event handler and the event handler that executes when
the user clicks Cancel:

// Get ready.
private void Form1_Load(object sender, EventArgs e)
{
 // Select a city so there's always a selection.
 cityComboBox.SelectedIndex = 0;

 // Initialize the array of item row TextBoxes.
 rowTextBoxes = new TextBox[,]
 {
 { descrTextBox1, unitCostTextBox1, quantityTextBox1, totalTextBox1 },
 { descrTextBox2, unitCostTextBox2, quantityTextBox2, totalTextBox2 },
 { descrTextBox3, unitCostTextBox3, quantityTextBox3, totalTextBox3 },
 { descrTextBox4, unitCostTextBox4, quantityTextBox4, totalTextBox4 },
 };
}

// Just close the form.
private void cancelButton_Click(object sender, EventArgs e)
{
 Close();
}

The Load event handler selects the first choice in the city ComboBox, so a city is always selected. Because
a city is always selected and all the selections are valid, the program never needs to validate this entry.

The event handler also initializes the array of TextBoxes representing the order items.

The Cancel button simply closes the form.

The following code shows some of the program’s validation methods. They are enclosed in #region
and #endregion directives, so it’s easy to hide the validation code.

#region Field Validation Methods

// Validate a TextBox.
private void ValidateTextBoxPattern(TextBox txt, bool allowBlank, string pattern)
{

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 487

 // Assume it's invalid.
 bool valid = false;

 // Check for allowed blank.
 string text = txt.Text;
 if (allowBlank && (text.Length == 0)) valid = true;

 // If the regular expression matches the text, allow it.
 if (Regex.IsMatch(text, pattern)) valid = true;

 // Display the appropriate background color.
 if (valid) txt.BackColor = validColor;
 else txt.BackColor = invalidColor;
}

// Validate a TextBox containing a currency value.
// Return true if the TextBox's value is valid.
private bool ValidateTextBoxCurrency(TextBox txt, bool allowBlank,
 out decimal value)
{
 // Assume it's invalid.
 bool valid = false;

 // Check for allowed blank.
 string text = txt.Text;
 if (allowBlank && (text.Length == 0)) valid = true;

 // If it contains a currency value, allow it.
 if (decimal.TryParse(text, NumberStyles.Currency,
 CultureInfo.CurrentCulture, out value))
 valid = true;

 // Display the appropriate background color.
 if (valid) txt.BackColor = validColor;
 else txt.BackColor = invalidColor;

 return valid;
}

// Validate a TextBox containing an integer.
// Return true if the TextBox's value is valid.
private bool ValidateTextBoxInteger(TextBox txt, bool allowBlank, out int value)
{
 // Assume it's invalid.
 bool valid = false;

 // If the text is blank and blank is allowed, allow it.
 string text = txt.Text;
 if (allowBlank && (text.Length == 0)) valid = true;

 // If it contains a currency value, allow it.
 if (int.TryParse(text, out value)) valid = true;

 // Display the appropriate background color.

www.EBooksWorld.ir

www.EBooksWorld.ir

488 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

 if (valid) txt.BackColor = validColor;
 else txt.BackColor = invalidColor;

 return valid;
}

// Validate the entries for a row.
// Return true if the row is valid.
private bool ValidateRow(int row)
{
 // If every field is blank, it's valid.
 if ((rowTextBoxes[row, 0].Text.Length == 0) &&
 (rowTextBoxes[row, 1].Text.Length == 0) &&
 (rowTextBoxes[row, 2].Text.Length == 0))
 {
 rowTextBoxes[row, 0].BackColor = validColor;
 rowTextBoxes[row, 1].BackColor = validColor;
 rowTextBoxes[row, 2].BackColor = validColor;

 // Clear the total.
 rowTextBoxes[row, 3].Clear();
 return true;
 }

 // Some fields are non-blank so all are required.
 bool descrIsValid = (rowTextBoxes[row, 0].Text.Length > 0);
 if (descrIsValid) rowTextBoxes[row, 0].BackColor = validColor;
 else rowTextBoxes[row, 0].BackColor = invalidColor;

 // Validate unit cost.
 decimal unitCost;
 bool unitCostIsValid =
 ValidateTextBoxCurrency(rowTextBoxes[row, 1], false, out unitCost);

 // Validate quantity.
 int quantity;
 bool quantityIsValid =
 ValidateTextBoxInteger(rowTextBoxes[row, 2], false, out quantity);

 // If unit cost and quantity are present, calculate total cost.
 if (unitCostIsValid && quantityIsValid)
 {
 decimal total = unitCost * quantity;
 rowTextBoxes[row, 3].Text = total.ToString("C");
 }
 else rowTextBoxes[row, 3].Clear();

 // Enable or disable the OK button.
 EnableOkButton();

 // Return true if all fields are valid.
 return (descrIsValid && unitCostIsValid && quantityIsValid);
}

#endregion Field Validation Methods

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 489

The ValidateTextBoxPattern method examines a TextBox and sets its background color to validColor
or invalidColor depending on whether it matches a regular expression.

The ValidateTextBoxCurrency method validates a TextBox to see if it contains a currency value. It sets
the control’s background color appropriately and returns true if the TextBox contains a valid currency
value. If it contains a valid value, the method also returns the value through the parameter value.

The ValidateTextBoxInteger method is similar to ValidateTextBoxCurrency except it determines
whether a TextBox contains an integer instead of a currency value.

The ValidateRow method validates a row of TextBoxes that represents an order item. If all the TextBoxes
are blank, the row is valid.

If any field in the row is nonblank, every field is required and the method validates each appropriately. If
the unit cost and quantity are both valid, the method calculates and displays the row’s total.

The method finishes by calling the EnableOkButton method, which are described next.

The Changed event handlers for the TextBoxes on each row call the ValidateRow method to determine
whether the values in their rows are valid.

The following code shows the EnableOkButton method:

// Enable the OK button if all fields are okay.
private void EnableOkButton()
{
 // Assume all fields are okay.
 bool valid = true;

 // See if the contact fields are okay.
 if (firstNameTextBox.Text.Length == 0) valid = false;
 if (lastNameTextBox.Text.Length == 0) valid = false;
 if (streetTextBox.Text.Length == 0) valid = false;

 // See if all item fields are okay.
 foreach (TextBox txt in rowTextBoxes)
 if (txt.BackColor == invalidColor)
 {
 valid = false;
 break;
 }

 // Calculate the grand total.
 CalculateGrandTotal();

 // Make sure at least one item row has values in it.
 if (grandTotalTextBox.Text.Length == 0) valid = false;

 // If the values are valid, calculate the grand total.
 CalculateGrandTotal();

 // Enable or disable the button.
 okButton.Enabled = valid;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

490 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

This method enables or disables the form’s OK button depending on whether all the form’s fields hold
valid values. It begins by validating the first name, last name, and street fields. (The city and ZIP code
ComboBoxes always have valid selections, so it doesn’t need to validate them.)

The code checks the TextBoxes in the item rows. If any of those TextBoxes has the invalid background
color, the form’s entries are invalid.

The code then calls the CalculateGrandTotal method (which is described next) to calculate a grand
total if possible. If the grand total value is blank, there is no row with a valid unit cost and quantity, so
the form’s fields are not valid.

The method enables the OK button if all the field values are valid.

The following code shows the CalculateGrandTotal method:

// Calculate the grand total if possible.
private void CalculateGrandTotal()
{
 // See if any row has a total.
 if ((totalTextBox1.Text.Length == 0) &&
 (totalTextBox2.Text.Length == 0) &&
 (totalTextBox3.Text.Length == 0) &&
 (totalTextBox4.Text.Length == 0))
 {
 grandTotalTextBox.Clear();
 return;
 }

 // Add up the item totals.
 decimal grandTotal = 0;
 for (int row = 0; row < 4; row++)
 {
 if (rowTextBoxes[row, 3].Text.Length > 0)
 grandTotal += decimal.Parse(
 rowTextBoxes[row, 3].Text, NumberStyles.Currency);
 }

 // Display the grand total.
 grandTotalTextBox.Text = grandTotal.ToString("C");
}

If all the item rows have a blank total, none of them have valid unit costs and quantities. In that case,
the method blanks the grand total TextBox.

If any item row has a total, the method adds up the totals and displays the grand total.

Each of the controls has an appropriate event handler to set its background color to indicate whether
the control holds a valid value. For example, the following code shows how the first name TextBox
validates changes:

private void firstNameTextBox_TextChanged(object sender, EventArgs e)
{
 ValidateTextBoxPattern(firstNameTextBox, false, namePattern);
 EnableOkButton();
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 491

This code uses ValidateTextBoxPattern to set the control’s background color appropriately. It then
calls EnableOkButton to enable or disable the OK button.

The other fields perform similar but appropriate validation. For example, the quantity TextBoxes use
ValidateTextBoxInteger to determine whether they contain valid integer values.

The city ComboBox is somewhat different from the other fields. When the user selects a city, the follow-
ing code executes:

private void cityComboBox_SelectedIndexChanged(object sender, EventArgs e)
{
 zipComboBox.Items.Clear();
 foreach (string zip in zips[cityComboBox.SelectedIndex])
 zipComboBox.Items.Add(zip);
 zipComboBox.SelectedIndex = 0;
}

This code copies the ZIP codes for the selected city into the ZIP code ComboBox. It then selects the first
ZIP code, so there is always one selected.

When the user clicks the OK button, the following code performs final validations:

// Make sure the form is complete.
private void okButton_Click(object sender, EventArgs e)
{
 // Perform validations that require fixing.
 string message = "";
 TextBox focusTextBox = null;
 if (firstNameTextBox.Text.Length == 0)
 {
 message += "First name cannot be blank.\n";
 if (focusTextBox == null) focusTextBox = firstNameTextBox;
 }
 if (lastNameTextBox.Text.Length == 0)
 {
 message += "Last name cannot be blank.\n";
 if (focusTextBox == null) focusTextBox = lastNameTextBox;
 }
 if (streetTextBox.Text.Length == 0)
 {
 message += "Street cannot be blank.\n";
 if (focusTextBox == null) focusTextBox = streetTextBox;
 }
 if (grandTotalTextBox.Text.Length == 0)
 {
 message += "At least one item row must be entered.\n";
 if (focusTextBox == null) focusTextBox = descrTextBox1;
 }

 // See if any of these failed.
 if (message.Length > 0)
 {
 // Remove the final \n.
 message = message.Substring(0, message.Length - 1);

www.EBooksWorld.ir

www.EBooksWorld.ir

492 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

 // Display the message.
 MessageBox.Show(message, "Invalid Data",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 focusTextBox.Focus();
 return;
 }

 // Perform sanity checks.
 if (firstNameTextBox.Text.Length < minNameLength)
 {
 message += "The first name is unusually short.\n";
 if (focusTextBox == null) focusTextBox = firstNameTextBox;
 }
 if (lastNameTextBox.Text.Length < minNameLength)
 {
 message += "The last name is unusually short.\n";
 if (focusTextBox == null) focusTextBox = lastNameTextBox;
 }
 if (streetTextBox.Text.Length < minNameLength)
 {
 message += "The street name is unusually short.\n";
 if (focusTextBox == null) focusTextBox = streetTextBox;
 }
 for (int row = 0; row < 4; row++)
 {
 SanityCheckRow(row, ref message, ref focusTextBox);
 }

 // See if any sanity checks failed.
 if (message.Length > 0)
 {
 // Compose the question.
 message = "Some fields contain unusual values.\n\n" +
 message + "\nDo you want to continue anyway?";

 // Display the message and let the user decide whether to continue.
 if (MessageBox.Show(message, "Continue?",
 MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)
 {
 // Continue anymway.
 Close();
 }
 else
 {
 // Let the user edit the data.
 focusTextBox.Focus();
 }
 }
}

The code first performs mandatory validations. It verifies that the first name, last name, and street are
not blank and that there is a grand total. As it checks these conditions, it builds a message describing
any problems. If any of these conditions are not met, the program displays the message, sets focus to
the first control that had a problem, and returns.

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 493

If the form passes its mandatory checks, the code performs sanity checks. It verifies that the first
name, last name, and street have certain minimum lengths. For each item row, the code calls the
SanityCheckRow method to see if its values make sense. As with the mandatory checks, the code
builds a message describing any problems it finds. If any of the sanity checks finds problems, the
method displays the messages describing them and asks the user if it should continue anyway. If the
user clicks Yes, the form closes. (In a real application, the program would probably save the order
information to a database.)

The following code shows the SanityCheckRow method:

// Perform sanity checks for a row.
// If a field fails its checks, add a message to the message string
// and set focus to that field (if focus isn't already set somewhere else).
private void SanityCheckRow(int row, ref string message, ref TextBox focusTextBox)
{
 // Either every field is present or every field is blank.
 // If the description is blank, returnu true.
 if (rowTextBoxes[row, 0].Text.Length == 0) return;

 // Check the description.
 if (rowTextBoxes[row, 0].Text.Length < minDescrLength)
 {
 message += "Description " + (row + 1) + " is unusually short.\n";
 if (focusTextBox == null) focusTextBox = rowTextBoxes[row, 0];
 }

 // Check the unit price.
 decimal price = decimal.Parse(
 rowTextBoxes[row, 1].Text, NumberStyles.Currency);
 if ((price < minUnitCost) || (price > maxUnitCost))
 {
 message += "Unit price " + (row + 1) + " is unusual.\n";
 if (focusTextBox == null) focusTextBox = rowTextBoxes[row, 1];
 }

 // Check the quantity.
 int quantity = int.Parse(rowTextBoxes[row, 2].Text);
 if ((price < minUnitCost) || (price > maxUnitCost))
 {
 message += "Quantity " + (row + 1) + " is unusual.\n";
 if (focusTextBox == null) focusTextBox = rowTextBoxes[row, 1];
 }
}

This method checks the row’s description, unit cost, and quantity to see if they make sense. In any
value is suspicious, the code adds a message to the string that will be displayed to the user.

This may seem like a lot of code, but the form contains quite a few fields that have different require-
ments and sanity checks. Giving the user the best possible experience sometimes takes work.

www.EBooksWorld.ir

www.EBooksWorld.ir

494 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Managing Data Integrity
Some programmers validate the user’s inputs and then assume that the data is correct forevermore.
This is usually a big mistake. Even if the user enters correct data, the data can later be corrupted by
incorrect calculations as it passes through the system. If the program isn’t constantly on the lookout
for invalid data, mistakes can sneak in and go unnoticed until long after they were introduced, mak-
ing it extremely hard to figure out what part of the system caused the mistake.

There are a couple of actions you can take to help prevent this kind of data corruption. Two of these
are using database validations and using assertions.

Using Database Validations
If a program uses a database, you can add checks and constraints to the database to prevent it from
allowing invalid data. For example, if the database requires that an address has a ZIP code that
includes exactly five decimal digits, there is no way the program can insert a record without a ZIP
code or with the ZIP code 2812H.

Modern databases can ensure that a field isn’t blank, has a certain format, has a unique value, and
even has certain relationships with other fields in the same or other records. If these kinds of stan-
dard database validations aren’t sufficient, you can write custom validation code that the database
can execute when a value is created or modified.

Making the database validate its data can prevent the program from saving invalid data and is
important, but in some sense it’s also a last resort. Many programs perform a considerable amount
of work with data before it is saved to a database, so there are opportunities for the data to become
corrupted between the user’s input and the database.

Programs also use data stored in the database later to perform calculations and that provides other
opportunities for the data to become corrupted. Finally, some programs don’t use databases at all.

Using Assertions
Another precaution you can take to manage the data’s integrity as it passes through the system is to
use assertions. An assertion is a piece of code that makes a particular claim about the data and that
interrupts execution if that claim is false.

One way to make assertions is to simply use an if statement to test the data and then throw an
exception if the data seems invalid. The following code shows an example:

if (!Regex.IsMatch(zip, @"^\d{5}$"))
 throw new FormatException("ZIP code has an invalid format.");

This code uses the Regex class’s static IsMatch method to determine whether the string variable zip
contains a value that matches a five-digit ZIP code format. If the zip contains an invalid value, the
code throws a FormatException.

To make this kind of assertion easier, the .NET Framework provides the System.Diagnostics.Debug
class. This class’s Assert method tests a boolean value and throws an exception if it is false. The fol-
lowing code is roughly equivalent to the previous code that uses an if statement:

Debug.Assert(Regex.IsMatch(zip, @"^\d{5}$"));

www.EBooksWorld.ir

www.EBooksWorld.ir

Input Validation ❘ 495

If an assertion fails, the program displays a dialog similar to the one shown in Figure 11-2.

FIGURE 11-2: If an assertion fails, the Debug .Assert
method displays a dialog that includes a stack trace
showing where the assertion failed .

If you click Abort, the program ends. If you click Retry, Visual Studio pauses the program’s execution
at the Assert statement, so you can try to figure out what went wrong. If you click Ignore, the pro-
gram continues executing after the Assert statement.

Overloaded versions of the Assert method let you indicate a message that the dialog should display
in addition to the stack trace.

The dialog shown in Figure 11-2 is one big difference between throwing your own exceptions and
using the Assert statement. Another big difference is that the Assert statement executes only in
debug releases of a program. In release builds, the Assert statement is completely ignored. While
you are testing the program, the assertion will help you locate bugs. When you compile a release
build and give it to end users, the users won’t see the intimidating dialog shown in Figure 11-2.

NOTE To select a debug or release build, open the Build menu and select
Configuration Manager. In the Active Solution Configuration drop-down, select
Debug or Release.

www.EBooksWorld.ir

www.EBooksWorld.ir

496 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

This means the program must be prepared to continue running even if an assertion fails. The pro-
gram must have a way to work around invalid data or else it will fail in a release build.

If a failed assertion means the program cannot reasonably continue, the program should throw an
exception and stop instead of using an assertion that will be skipped in release builds.

For example, suppose a retailer sales program needs to print a customer invoice and a customer has
ordered 1,000 pairs of sunglasses. That is a suspiciously large order, so the program can flag it by
using an assertion. For instance, it might assert that the number of items ordered is less than 100.

In debug builds, the assertion fails, so you can examine the data to see if the order actually does
need 1,000 pairs of sunglasses or if the data has become corrupted. In release builds, this assertion
is skipped, so the program prints the invoice for 1,000 pairs of sunglasses. This is an unusual order,
but it could actually happen—and you’ll make a fair amount of profit.

In contrast, suppose the order doesn’t contain a customer address. In that case, the program can-
not print a meaningful invoice, so it should not try. The invoice printing code could either catch this
error, display an error message, and stop trying to print the invoice, or it could throw an exception
and let code higher up in the call stack deal with the problem. Unlike the case of the unusual order
size, the program cannot successfully print the invoice, so it may as well give up.

You can use assertions anywhere in the program where you think the data might become corrupted.
One particularly good location for assertions is at the beginning of any method that uses the data.
For example, the following code shows how an invoice printing method might validate its inputs:

private void PrintInvoice(string customerName, string customerAddress,
 List<OrderItem> items)
{
 // Validate inputs.
 // Validate customer name.
 if (string.IsNullOrWhiteSpace(customerName))
 throw new ArgumentNullException("Customer name is missing.");
 // Validate customer address.
 if (string.IsNullOrWhiteSpace(customerAddress))
 throw new ArgumentNullException("Customer address is missing.");
 // Validate item quantities and unit prices.
 foreach (OrderItem item in items)
 {
 Debug.Assert(item.Quantity <= 100,
 "OrderItem " + item.Description +
 ", quantity is larger than 100.");
 Debug.Assert(item.UnitPrice <= 100,
 "OrderItem " + item.Description +
 ", unit price is larger than $100.00.");
 }

 // Print the invoice.
 ...
}

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 497

This method starts with data validation code. First, it verifies that the customer’s name and address
are not blank. If either of those values is blank, the method cannot print a useful invoice, so it
throws an exception.

Next, the method loops through the order’s items and validates their quantities and unit costs.
For each item, the code asserts that the item’s quantity is at most 100 and its unit cost is at most
$100.00. If either of those assertions fails in a debug build, executing stops, so you can try to
determine if the data has been corrupted or if this is just an unusual order. In a release build, these
assertions are ignored, so the program prints the invoice even if an item’s quantity or unit price is
unusually large.

Another good place for assertions is at the end of any method that manipulates the data. At that
point the code can verify that the changes made by the method make sense.

For example, suppose a method sorts a list of customer records, so they are ordered with those hav-
ing the largest delinquent balances coming first. Before it returns the newly order list, the method
can run through the list and verify that the customers are in their proper order.

NOTE Programmers sometimes resist putting data validation code at the end
of their methods because they can’t visualize the code making a mistake. That’s
natural because they just wrote the code, and if it contained a mistake, they
would have fixed it.

Of course, if programmers were right and none of their modules contained bugs,
the program as a whole wouldn’t contain bugs, and that’s rarely the case for non-
trivial programs.

One way to encourage programmers to add these sorts of validations is to write
the validation code before writing the rest of the method. At that point, the pro-
grammer doesn’t have the preconception that the code is perfect so is more
likely to validate the data thoroughly.

Because assertions are ignored in release builds, the program’s performance doesn’t suffer even if
you add a lot of assertions to a method. Even if the validations never detect an error, at least you’ll
have some reason to believe the code is correct. Validation code is worth the effort if for no other
reason than peace of mind.

DEBUGGING

Visual Studio provides good tools for interactively debugging an application. Breakpoints, watches,
and the ability to step through the code let you study the application as it runs. You set breakpoint
conditions, hit counts, and filters to further refine how breakpoints work.

These are important techniques that every programmer should know, but they are not part of the
C# language, so they aren’t covered here. Instead the sections that follow describe techniques you
can use to make your C# code help debug a program. They explain how to use compiler directives
to determine which pieces of code are executed and which are ignored.

www.EBooksWorld.ir

www.EBooksWorld.ir

498 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

preprocessor Directives
Preprocessor directives tell the C# compiler how to process pieces of code. They let a program
exclude pieces of code from compilation, define symbols to use in managing compiled code, and
group pieces of code for convenience.

The following sections describe the C# preprocessor directives.

#define and #undef
The #define directive defines a preprocessor symbol or conditional compilation symbol for the
module that contains the directive. Later you can use the #if and #elif preprocessor directives to
see if the symbol is defined.

Note that you cannot assign a value to the symbol, so it isn’t comparable to a C# variable or constant.
All you can do is define or undefine the symbol and see if it has been defined.

You can also use Visual Studio to define symbols for an entire project. To do so, open the Project
menu and select Properties. In the project’s property pages, select the Build tab and enter the names
of any symbols you want to define in the Conditional Compilation Symbols text box.

The #undef directive undefines a previously defined preprocessor symbol.

Both the #define and #undef directives must appear in a module before any nondirective statement
in a module. Because these statements must go at the beginning of the file, you normally don’t use
#undef to undefine a symbol that you had just created with #define. Usually #undef is more useful
for undefining a symbol that you created by using the project’s property pages.

#if, #elif, #else, and #endif
The #if, #elif, #else, and #endif directives work much like the C# if, else, and else if state-
ments do, but they test preprocessor symbols instead of boolean expressions. Because you cannot
assign a value to a preprocessor symbol, these statements merely test whether a symbol exists.

The #if and #elif directives determine whether a symbol exists and include their code in the
compilation if it does. If the symbol does not exist, the code following the directive is completely
omitted from the compilation.

If none of the symbols in a series of #if and #elif directives exists, the code following the #else
directive (if it exists) is included in the compilation.

For example, suppose a module begins with the following #define statements:

// Debug levels. Level 2 gives the most information.
#define DEBUG1
//#define DEBUG2

This code defines the two preprocessor symbols: DEBUG1 and DEBUG2. The second is commented out,
so only DEBUG1 is defined.

Now suppose the module later includes the following method:

 private void VerifyInternetConnections()
 {
#if DEBUG2

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 499

 // Display lots of debugging information.
 ...
#elif DEBUG1
 // Display some debugging information.
 ...
#else
 // Display minimal debugging information.
 ...
#endif

 // Verify the connections.
 ...
 }

The #if directive looks for the symbol DEBUG2. That symbol’s definition is commented out, so the
following code is ignored.

Next, the #elif directive looks for the symbol DEBUG1. That symbol’s definition is not commented
out, so the symbol exists. The code following the #elif directive is included in the compilation, and
the program displays some debugging information.

If neither DEBUG2 nor DEBUG1 were defined, the #else directive would include its code, and the
program would display minimal debugging information.

You can use the logical operators !, &&, and || to combine symbols in an expression. For example,
the directive #if DEBUG1 && DEBUG2 includes its code if both of the symbols DEBUG1 and DEBUG2
are defined.

You can also use the relational operators != and == to compare the existence of two symbols. The
directive #if DEBUG1 == DEBUG2 includes its code if both DEBUG1 and DEBUG2 are defined or both
are undefined.

The special values true and false represent a symbol’s existence. For example, the following
statements are all equivalent:

#if DEBUG1
#if DEBUG1 == true
#if DEBUG1 != false

Similarly, the following statements are equivalent:

#if !DEBUG1
#if DEBUG1 != true
#if DEBUG1 == false

Finally, you can use parentheses to group symbols and make complex expressions easier to
understand.

NOTE Visual Studio immediately grays out any code that is not included in
the current compilation. For example, if a piece of code follows the #if DEBUG1
directive and DEBUG1 is not defined, the code is grayed out. This lets you easily
see which code will be included in the compilation and which will not.

www.EBooksWorld.ir

www.EBooksWorld.ir

500 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

#warning and #error
The #warning directive generates a warning that appears in Visual Studio’s Error List. Visual
Studio’s code editor also highlights the warning by default with a squiggly green underline.

One use for this is to flag code that is included in a #ifdef directive but that is obsolete. For example,
consider the following code:

#if OLD_METHOD
#warning Using obsolete method to calculate fees.
 ...
#else
 ...
#endif

If the symbol OLD_METHOD is defined, the code adds the warning to the Error List and includes
whatever code is appropriate. If the symbol is not defined, the program includes the code after
the #else directive and does not include the warning.

The #error directive is somewhat similar to the #warning directive except it generates an error
instead of a warning. Like a warning, the error appears in Visual Studio’s Error List. Unlike a warn-
ing, the error prevents Visual Studio from successfully building the program. Visual Studio’s code edi-
tor also highlights the error by default with a squiggly red underline.

#line
The #line directive enables you to change the program’s line number and optionally the name of the
file that is reported in warnings, errors, and stack traces. For example, the following code displays a
stack trace with a modified line number and filename:

#line 10000 "Geometry Methods"
 Console.WriteLine("********** " + Environment.StackTrace);

This stack trace would indicate that the Console.WriteLine statement is at line 10000 in the file
“Geometry Methods.”

Changing the line numbering information in this way can be confusing, so you should use this
method sparingly. One reason you might want to do this is if you want to keep a section of code’s
line numbering even if you insert other lines of code before it.

The #line default directive restores the lines that follow to their original numbering. In that case,
the lines that were renumbered by a previous #line directive are counted normally.

The #line hidden directive hides the following lines from the debugger until the next #line directive.
If you step through the code, the debugger jumps over those lines.

#region and #endregion
As their names imply, the #region and #endregion directives create a region in the code that you
can expand or collapse to hide code in the code editor. Figure 11-3 shows the code editor displaying
a piece of code that defines three regions. The first two, which are named Sales Routines and Billing
Routines, are expanded. The third, which is named Graphical Routines, is collapsed to hide the
code it contains. Click the + or - sign to the left to expand or collapse a region.

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 501

FIGURE 11-3: You can use regions to hide blocks of
code to make a file easier to read .

Every #region must end with a corresponding #endregion. You can nest a region inside #if directives,
but you cannot make a region that overlaps part of an #if directive.

A region can, however, overlap part of a method. For example, a region could start outside of the
LocateCustomer method and end in the middle of it. If you collapsed that region, the code would
be confusing to read, so you should probably not make a region that overlaps methods in that way.

You can follow the #region and #endregion directives with an optional name. If you follow the
#region directive with a name, the code editor displays it when you collapse the region. In Figure 11-3
the Graphical Routines region is collapsed, and the code editor is displaying its name.

The names following the #region and #endregion directives are just strings that the code editor
ignores, so they can contain any characters. The text after an #endregion directive doesn’t need to
match the text after the corresponding #region directive; although, to make the code as readable as
possible, you may want to make them the same.

#pragma warning
The #pragma directive gives special instructions to the compiler, potentially enabling you to create new
preprocessor instructions. The C# compiler supports two #pragma directives: #pragma warning and
#pragma checksum.

The #pragma warning directive can enable and disable specific warnings. For example, consider the
following class definition:

private class OrderItem
{
 public string Description;
 public int Quantity = 0;
 public decimal UnitPrice = 0;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

502 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

This code defines three public fields: Description, Quantity, and UnitPrice. It initializes
Quantity and UnitPrice but not Description, so when you try to build this program, Visual
Studio flags the line that declares Description with the following warning:

Field ‘WindowsFormsApplication1.Form1.OrderItem.Description’ is never assigned to, and
will always have its default value null.

The following code shows how you can use a #pragma directive to hide that warning:

 private class OrderItem
 {
#pragma warning disable 0649
 public string Description;
#pragma warning restore 0649
 public int Quantity = 0;
 public decimal UnitPrice = 0;
 }

The first #pragma directive disables warning number 0649, which is the “never assigned to” warning.
(More on how to find the warning number shortly.)

The second #pragma directive re-enables the warning. Warnings are displayed for a reason, so it’s
not a good idea to turn them off without a good reason. Re-enabling the warning lets Visual Studio
flag other uninitialized variables so that you can fix them.

Before you can disable a warning, you need to figure out its number. Unfortunately, the Error List
displays the warning message, but not its number. To find the number, build the program and then
look in the Output window. Somewhere buried in the copious compilation output you should find
the warning and its number.

Figure 11-4 shows the Output window after building a program that contains several warnings.
The first warning, Using Obsolete Method to Calculate Fees, was created by a #warning directive
and has number 1030.

FIGURE 11-4: The Output window displays information about warnings including their numbers .

The next three warnings are about variables that are initialized but never used. Their warning
number is 0219.

The final warning, which says the Description field is never assigned, has warning number 0649.

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 503

#pragma checksum
The #pragma checksum directive generates a checksum for a file. Normally, the compiler generates
a checksum for a file and puts it in the program database (PDB) file, so the debugger can compare
the file it is debugging to the source file. For ASP.NET applications, however, the checksum repre-
sents the generated source file rather than the original .aspx file, so this solution doesn’t work.

The #pragma checksum directive enables you to explicitly specify a checksum for the file. The
following shows the syntax.

#pragma checksum "filename" "{guid}" "bytes"

Here filename is the name of the file, guid is the file’s globally unique identifier (GUID), and bytes
is a string giving an even number of hexadecimal digits specifying the checksum.

This is a specialized directive, so it is not covered further here. For more information, see the online
C# reference page http://msdn.microsoft.com/library/ms173226.aspx.

predefined Compiler Constants
Earlier this chapter explained how you can use the #define and #undef directives to define and
undefine conditional compilation symbols. By default, Visual Studio also predefines two other sym-
bols: DEBUG and TRACE. You can use these symbols and the #if, #elif, #else, and #endif directives
to include or exclude code from a build just as you can with symbols that you define.

Normally, DEBUG is defined in debug builds and TRACE is defined in both debug and release builds,
but you can change that behavior.

To determine which kind of build Visual Studio will create, open the Build menu, and select
Configuration Manager to display the Configuration Manager, as shown in Figure 115. Use the
Active Solution Configuration drop-down on the upper left to select a debug or release build.
The drop-down also includes a New option that lets you define a new build type.

FIGURE 11-5: Use the Configuration Manager to select a debug or release build .

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/ms173226.aspx

504 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Next, open the Project menu and select Properties to display the project’s property pages. On
the Build tab, as shown in Figure 11-6, check or uncheck the Define DEBUG Constant and Define
TRACE Constant boxes to determine whether those constants are defined. You can also add new
constants of your own in the Conditional Compilation Symbols text box. (You can also use the
Build page’s Configuration drop-down to select a configuration to modify; although, that doesn’t
change the currently active configuration so it can be a bit confusing.)

FIGURE 11-6: You can use the project’s Build property page to define
conditional compilation constants .

The DEBUG and TRACE symbols, and symbols that you define in the Debug property page, are saved
with the current configuration. Later if you use the Configuration Manager to select a different con-
figuration, its settings will apply.

For example, suppose you want to make a special configuration for weekly builds that defines the TRACE
and WEEKLY_BUILD symbols but not the DEBUG symbol. To do that, you would use the Configuration
Manager to define and select a new configuration named WeeklyBuild. Then on the project’s Build
property page, you would uncheck the DEBUG box and add WEEKLY_BUILD to the Conditional
Compilation Symbols text box. Now whenever you select the WeeklyBuild configuration, Visual Studio
defines the TRACE and WEEKLY_BUILD symbols.

Debug and Trace
Earlier this chapter explained that a program can use the Debug.Assert method to test assertions in
the code and that this method is ignored in release builds. Actually, the Debug class and the closely
related Trace class do more than merely verify assertions. They provide services that send messages
to listener objects. By default, the only listener is an instance of the DefaultTraceListener class,
which sends messages to the Output window.

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 505

The following section says more about the Debug and Trace classes. The section after that one
describes listeners in greater detail.

Debug and Trace Objects
Earlier this chapter said that the Debug class’s methods are ignored in release builds. It’s actually
not the build that controls this behavior but the predefined DEBUG symbol. By default, that symbol
is defined in debug builds and not in release builds; although, as was noted earlier, you can use the
Build property page to change that behavior. As was mentioned earlier, you can also create your
own configurations that may or may not define the DEBUG symbol.

You can also use the #define and #undef directives to define or undefine the DEBUG symbol. For exam-
ple, you can define the symbol in a particular module to make the program execute the Debug.Assert
method even in release builds for that module only.

The Trace class, which is also defined in the System.Diagnostics namespace, is similar to the
Debug class except its behavior is controlled by the TRACE symbol. By default, both the debug and
release builds define the TRACE symbol.

The Debug and Trace classes provide many of the same methods. Table 11-9 summarizes the classes’
most useful methods.

TABLE 11-9: Useful Debug and Trace Methods

METhOD pURpOSE

Assert Checks a boolean condition and throws an exception if it is not true .

Fail Emits a failure message to the object’s listeners . Normally, the effect is
similar to the way Assert throws an exception .

Flush Flushes output to the listeners .

Indent Increases the indent level by 1 . This lets you make output displayed by the
Write and WriteLine methods easier to read . For example, you could
have a recursive method indent the output, so you can tell which method
call is displaying different messages .

Unindent Decreases the indent level by 1 . If a method indents its output, it should
probably unindent the output when it finishes .

Write Writes a message to the object’s listeners .

WriteIf If an indicated boolean expression is true, this method writes a message
to the object’s listeners .

WriteLine Writes a message followed by a new line to the object’s listeners .

WriteLineIf If an indicated boolean expression is true, this method writes a message
followed by a new line to the object’s listeners .

www.EBooksWorld.ir

www.EBooksWorld.ir

506 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Listeners
Both the Debug and Trace classes have a Listeners collection that holds references to listener
objects. Initially, these collections hold a reference to a DefaultTraceListener object, but you
can change that if you like. To remove the DefaultTraceListener, call the Listeners collection’s
Remove method passing it the DefaultTraceListener object.

To direct output to other locations, add an appropriate trace listener object to the Listeners collec-
tion. The following list describes some of the other trace listener classes that you might use:

➤➤ ConsoleTraceListener: Sends output to the Console window.

➤➤ EventLogTraceListener: Sends output to an event log.

➤➤ TextWriterTraceListener: Sends output to a stream such as a FileStream. This lets you
write output into any file.

For example, the following code shows how a program might create a TextWriterTraceListener
to log Trace output to the file TraceFile.txt.

using System.IO;
using System.Diagnostics;

private void Form1_Load(object sender, EventArgs e)
{
 // Create the trace output file.
 Stream traceStream = File.Create("TraceFile.txt");

 // Create a TextWriterTraceListener for the trace output file.
 TextWriterTraceListener traceListener =
 new TextWriterTraceListener(traceStream);
 Trace.Listeners.Add(traceListener);

 // Write a startup note into the trace file.
 Trace.WriteLine("Trace started " + DateTime.Now.ToString());
}

When the form loads, this code creates a stream associated with the file TraceFile.txt. It then
uses that stream to create a TextWriterTraceListener that will write into the file. The Load event
handler finishes by writing a message into the file indicating the time the trace started.

As the program works, it can write other messages into the file. The following code shows how the
program might add trace information while processing an order:

private void processOrderButton_Click(object sender, EventArgs e)
{
 // Log an order processing message.
 Trace.WriteLine("Processing order");

 // Log the order's data.
 Trace.Indent();
 Trace.WriteLine("CustomerId: " + CustomerId);
 Trace.WriteLine("OrderId: " + OrderId);
 Trace.WriteLine("OrderItems:");

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 507

 Trace.Indent();
 foreach (OrderItem item in OrderItems)
 Trace.WriteLine(item.ToString());
 Trace.Unindent();
 Trace.WriteLine("ShippingAddress: " + ShippingAddress);
 Trace.Unindent();

 // Process the order.
 ...
}

The code starts by adding a message saying that it is processing an order. It then indents the trace
output and displays the order’s information. It displays the customer and order IDs. It indents the
trace again and displays the order’s items. After displaying the items, the code unindents to get back
to the main order level of indentation, and displays the order’s shipping address. Finally, after display-
ing all the order information, the code unindents again to return to the original indentation level. It
then does whatever is necessary to process the order.

When the program stops, it can use the following code to flush any buffered text to the trace file:

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 // Flush the trace output.
 Trace.WriteLine("Trace stopped " + DateTime.Now.ToString());
 Trace.Flush();
}

This code writes the current date and time into the file and flushes the output. If the program
doesn’t flush the output before ending, any buffered output will be lost.

The following text shows some sample output describing a single order:

Trace started 4/1/2014 10:43:19 AM
Processing order
 CustomerId: 1310
 OrderId: 112980
 OrderItems:
 6 x White copy paper, ream
 1 x Pencils, dozen box
 6 x White copy paper, ream
 ShippingAddress: 123 Main St, East Zephyr NH 01293
Trace stopped 4/1/2014 10:47:19 AM

By using a TextWriterTraceListener, you can make a program keep a complete log of
its activities.

There are a couple of useful modifications you can make to this technique. First, you can open the file
for appending instead of creating it as in the previous example. That lets the trace file keep records of
past program runs instead of overwriting the file each time.

You can also allow sharing when you open the file. That lets other programs such as Microsoft Word
open the file in read-only mode, so you can take a peek at the file while the program is still running. If
you do this, you should call the Trace or Debug object’s Flush method each time you write something

www.EBooksWorld.ir

www.EBooksWorld.ir

508 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

into the file that you may want to peek at. In the previous example, you would probably want to flush
the output after opening the file and after writing an order’s information into it.

NOTE If you set the Trace or Debug object’s AutoFlush property to true, then
the object automatically flushes its output after every write.

The following code shows one way you could open the trace file to append new text at the end of the
file if it exists and allowing other programs to read the file.

Stream traceStream = File.Open("TraceFile.txt",
 FileMode.Append, FileAccess.Write, FileShare.Read);

For information on building your own listener class, see “TraceListener Class” at http://
msdn.microsoft.com/library/system.diagnostics.tracelistener.aspx.

programming Database Files
When you build a debug release, Visual Studio creates a program database file that contains debug-
ging information about the program. The debugger uses this information to let you debug the
application.

You can use the project’s property pages to control the amount of information that Visual Studio
includes in the PDB file. To do that, select the Project menu’s Properties command to open the project’s
property pages. On the Build tab, click Advanced. On the Advanced Build Settings dialog, use the
Debug Info drop-down to select full, pdb-only, or none.

The “full” setting, which is the default for debug builds, creates a fully debuggable program.

The “pdb-only” setting, which is the default for release builds, creates a PDB file so exception messages
can include information about where the error occurred. Visual Studio doesn’t include the Debuggable
attribute, however, that makes the code debuggable.

The “none” setting makes Visual Studio not create the PDB file.

If you create a compiled executable, you can still debug it if you have the correct PDB file available.
Note that the PDB file is tied to a specific build, and will let you debug only that particular build.
Due to the way builds are created, a PDB file cannot debug an executable from a different build
even if you haven’t changed the code.

To debug a compiled executable, place the PDB file in the same directory as the executable. Next,
use Visual Studio to open the executable file and run it. If a Debug or Trace object’s Assert or
Fail method causes an exception, you can click the Retry button on the resulting dialog to debug
the program.

The moral of the story is, if you want to debug an executable program after you build it, save its
PDB file, and be sure you can figure out which PDB file goes with which version of the executable
program.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/system.diagnostics.tracelistener.aspx
http://msdn.microsoft.com/library/system.diagnostics.tracelistener.aspx

Instrumenting Applications ❘ 509

INSTRUMENTING AppLICATIONS

Instrumenting a program means adding features to it to study the program itself. Usually that
means adding code to monitor performance, record errors, and track program execution. With good
instrumentation, you can tell what an application is doing and identify performance bottlenecks
without stepping through the code in the debugger.

The following sections discuss some ways you can instrument a program to understand its behavior
and performance.

Tracing
Tracing is the process of instrumenting a program, so you can track what it is doing. Earlier sections
in this chapter explained how to use the Debug and Trace classes to add tracing to a program. By
placing calls to Debug and Trace methods in key routines, you can follow the program’s execution
through those routines. In addition to making the program tell you what it is doing, you can add the
current time to messages to get an idea of how fast the program is running at different points.

Logging and Event Logs
Logging is the process of instrumenting a program, so it records key events. For example, in an
order processing system, you might want to keep a record of an order’s major steps such as order
creation, fulfillment, shipping, billing, and payment received.

As earlier sections explained, you can add listeners to the Debug or Trace classes to write messages
into files. You could use that technique to log important events into files. The Debug and Trace
classes are usually used for tracing not logging, however. In particular, most developers want log-
ging to occur even if the DEBUG and TRACE symbols are not defined.

Instead of using Debug and Trace to log events, the program can write event records into an ordi-
nary text file. This has the advantage of simplicity, and anyone can easily read a text file.

NOTE Often it is useful to make the amount of logging information recorded
configurable, either by using preprocessor symbols or through configuration files.
Then if the program is having problems, you can increase the amount of informa-
tion it saves, so you can study the problem.

For example, when it creates a new customer order, a program might normally
record only the new order’s ID. If you set a configuration flag, it might also log the
customer’s contact information. If you set a different flag, it might also log all
the order’s data including information about the order items.

When things are running smoothly, you can omit most of this information to save
space in the log file, but you can increase the amount of information saved when
necessary, so you can troubleshoot problems.

www.EBooksWorld.ir

www.EBooksWorld.ir

510 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Another option is to write event information into the system log files. The WriteToEventLog program,
which is shown in Figure 11-7 and available for download, demonstrates writing into the system event
logs. Enter an event source name, event ID number, and event description of your choosing. The log
name should be one of Application, Security, or System. When you have entered the values, click Write
to create the log entry.

FIGURE 11-7: The WriteToEventLog
program writes messages into the
system event logs .

The following code shows how the program works:

using System.Diagnostics;
...
// Write an event log entry.
private void writeButton_Click(object sender, EventArgs e)
{
 string source = sourceTextBox.Text;
 string log = logTextBox.Text;
 string message = eventTextBox.Text;
 int id = int.Parse(idTextBox.Text);

 // Create the source if necessary. (Requires admin privileges.)
 if (!EventLog.SourceExists(source))
 EventLog.CreateEventSource(source, log);

 // Write the log entry.
 EventLog.WriteEntry(source, message,
 EventLogEntryType.Information, id);

 MessageBox.Show("OK");
}

The code first gets the values you entered on the form. It then uses the EventLog class’s SourceExists
method to see if the source you entered is defined. If the source has not yet been defined, the code uses
the CreateEventSource method to create it. Note that CreateEventSource requires administrative
privilege.

Next, the code uses the WriteEntry method to create the event log entry. This method has several
overloaded versions. The one used here takes as parameters the source name, entry description,
entry type, and ID number.

www.EBooksWorld.ir

www.EBooksWorld.ir

Instrumenting Applications ❘ 511

Figure 11-8 shows the Event Viewer displaying some log entries created by this program. In this
figure the third entry is selected, so the General tab at the bottom of the viewer displays that entry’s
message text, “Created New Order 120193.”

FIGURE 11-8: The system’s Event Viewer displays log entries .

The system event logs provide a central place to view messages, so they can be particularly handy if
you want to monitor several applications all in one place.

profiling
Profiling is the process of gathering information about a program to study its speed, memory, disk
usage, or other performance characteristics. There are two basic approaches to profiling a program:
using a profiler and instrumenting the code by hand.

Using a Profiler
Automatic profilers can take several approaches to profiling an application. Some profilers instrument
the source code to add timing statements to some or all the program’s methods. Others instrument the
compiled code. Still others use CPU sampling, periodically peeking at the program’s state of execution
and building up a statistical model of the amount of time the program spends in each method.

Visual Studio’s Premium and Ultimate editions include profiling tools that you can use to measure
an application’s performance.

www.EBooksWorld.ir

www.EBooksWorld.ir

512 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Some of the profiler’s features require elevated privileges, so when you’re ready to use it, start Visual
Studio as an administrator. (One way to do that is to right-click the Visual Studio application and
select Run As Administrator.)

To start, load a project, open the Analyze menu, and select Launch Performance Wizard to see the
wizard shown in Figure 11-9. The CPU Sampling method periodically checks the program’s state to
see what it is doing. This provides an idea of which routines are using the most CPU time without
slowing the program down too badly. Instrumented code may provide more accurate information
but adds instrumentation in the compiled code, so it slows the program down. The .NET Memory
Allocation option uses sampling to gather information about memory usage. The Resource Contention
Data option is used to study concurrency issues in multithreaded applications. For now, just pick CPU
Sampling and click Next.

FIGURE 11-9: The Performance Wizard lets you study an application’s
memory of CPU usage .

The wizard’s next page lets you pick the application that you will profile. Leave the currently loaded
project selected and click Next.

The wizard’s final page says it is ready to collect performance information. Leave the Launch Profiling
After the Wizard Finishes box checked and click Finish.

After the wizard closes, the program launches with the profiler running. (It may take several seconds
for the profiler start, so be patient.) When the program appears, exercise the features that you want
to profile. Because the sampling method takes data periodically, it may miss some fast method calls.
To get the best data, exercise the features you’re studying several times.

www.EBooksWorld.ir

www.EBooksWorld.ir

Instrumenting Applications ❘ 513

When you finish, close the program normally and the profiler analyzes the data and presents results
similar to those shown in Figure 11-10. The panels shown in Figure 11-10 show the hot path, the
most often used call path, and the methods that were sampled the most often.

FIGURE 11-10: The profiler’s output lets you see the most active call path, the methods sampled
most often, and other statistics .

Other views of the report let you see information for modules, methods, all call paths, lines of code,
and other categories. See “Beginners Guide to Performance Profiling” at http://msdn.microsoft
.com/library/ms182372.aspx for a more comprehensive introduction to using the profiler.

Profiling by Hand
You can profile a program by hand by inserting statements into the source code that record the pro-
gram’s state and the current or elapsed time. For example, the following code shows how a method
can use the Stopwatch class provided by the .NET Framework to time itself:

private void PerformCalculations()
{
 Stopwatch stopwatch = new Stopwatch();
 stopwatch.Start();

 // Perform the calculations here.
 ...

 Console.WriteLine("Time: " +
 stopwatch.Elapsed.TotalSeconds.ToString("0.00") +
 " seconds");
}

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/ms182372.aspx

514 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

When the method starts, it creates a Stopwatch object and calls its Start method to begin timing.
The method does whatever it needs to do and then uses the Stopwatch’s Elapsed property to see
how much time has passed. The code converts the elapsed time into seconds and displays the result.

This technique is effective if you need to study only one or two key methods, but it has some draw-
backs. If you don’t know where the program is spending most of its time, it’s hard to know where to
put the profiling code. You can use preprocessor symbols to enable or hide this code when you don’t
need it, but that could still require a lot of code.

Another approach to profiling by hand is to use performance counters.

Using Performance Counters
Performance counters track operations system wide to give you an idea of the computer’s activity.

For example, suppose an image processing program scans a directory every minute. It takes any
image files it finds in that directory, processes them somehow, and then moves them into a different
directory. You could make the program use a performance counter to keep track of each file it pro-
cessed. Then you can use the system’s Performance Monitor tool to see the counter changing as the
program executes.

Before you can use a custom performance counter, you need to make one. If you run Visual Studio
with administrator privileges, you can use the Server Explorer built in to Visual Studio to create new
performance counters. Open the View menu and select Server Explorer.

NOTE You can also use C# code to create performance counters. For instructions,
see the article “How to: Create Custom Performance Counters” at http://msdn
.microsoft.com/library/5e3s61wf.aspx.

Expand your computer’s entry, right-click Performance Counters, and select Create New Category.
Figure 11-11 shows the Server Explorer on the left and the Performance Counter Builder dialog on
the right.

Enter a new category name and description. Then use the New button to add new counters to the
category. When you finish, click OK.

Figure 11-11 shows two performance counters being created. The first has type NumberOfItems32,
which represents the total number of some event that is counted by a program. The second counter
has type RateOfCountsPerSecond32, which tracks the current number of items per second. When a
program increments this counter, the counter automatically updates the counts per second value.

To use a performance counter in a program, create a System.Diagnostics.PerformanceCounter
object for the counter. The following code shows how a program could create PerformanceCounter
objects for the two performance counters created in Figure 11-11:

private PerformanceCounter totalImages, imagesPerSecond;

private void Form1_Load(object sender, EventArgs e)
{

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/5e3s61wf.aspx

Instrumenting Applications ❘ 515

 totalImages = new PerformanceCounter();
 totalImages.CategoryName = "ImageProcessor";
 totalImages.CounterName = "Images processed";
 totalImages.MachineName = ".";
 totalImages.ReadOnly = false;

 imagesPerSecond = new PerformanceCounter();
 imagesPerSecond.CategoryName = "ImageProcessor";
 imagesPerSecond.CounterName = "Images per second";
 imagesPerSecond.MachineName = ".";
 imagesPerSecond.ReadOnly = false;
}

FIGURE 11-11: You can use Visual Studio’s Sever Explorer to create new performance
counters .

This code first creates a PerformanceCounter object. It sets the object’s CategoryName and
CounterName to the values used to create the counter in Figure 11-11. The code sets the MachineName
to “.” to indicate the local computer. It then sets ReadOnly to false to allow the program to modify the
counter’s value.

The code then repeats those steps to create a second PerformanceCounter object.

Having created the PerformanceCounter objects, the program can increment them when it performs
whatever action you want to count.

www.EBooksWorld.ir

www.EBooksWorld.ir

516 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

Suppose the ImageProcessor program periodically examines a directory to see if it contains image
files. When it finds a file, the program calls the following ProcessImageFile method:

private void ProcessImageFile(string filename)
{
 // Process the file.
 ...

 // Increment the performance counters.
 totalImages.Increment();
 imagesPerSecond.Increment();
}

This method does whatever it needs to do to the file. It then calls the performance counter objects’
Increment methods to increment the counters.

That’s all you need to do to create and use the performance counters. Now you need to use the system’s
Performance Monitor tool to see the results.

To start the Performance Monitor in Windows 8, open the Control Panel, and use the navigation
bar to go to Control Panel d All Control Panel Items d Performance Information And Tools. Click
the Advanced Tools link and then click Open Performance Monitor.

In the tree view on the Performance Monitor’s left, expand Monitoring Tools and select Performance
Monitor. In the graph that appears on the right, click the + sign to add performances counters to the
graph. Select the performances counters that you want to view and click Add. After you have selected
the counters, click OK.

Figure 11-12 shows the Performance Monitor displaying the two counters used by this example.
The steadily increasing curve that wraps around from the right to left edge of the graph represents
the Images Processed counter. The curve that wiggles up and down represents the Images Per
Second counter.

The graph uses a Y-axis that ranges from 0 to 100 so often you’ll want to scale the counters’ values.
In Figure 11-12, the program has been running for a while so Images Processed is scaled by a factor
of 0.1, so its value would fit on the graph. The Images per Second value is scaled by a factor of 10,
so the program is actually processing between 0 and approximately 6 image files per second.

To scale a counter, right-click the graph and select Properties. On the properties dialog, select the
Data tab, click the counter that you want to scale, and set its Scale value to the scale factor that you
want. When you finish, click OK.

Performance counters are fairly complicated and NumberOfItems32 and RateOfCountsPerSecond32
are only two of many counter types. For more information on performance counters, see the
“Additional Reading and Resources” listed later in this chapter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary ❘ 517

FIGURE 11-12: The Performance Monitor lets you view performance counters graphically .

SUMMARY

This chapter described ways you can protect a program from incorrect data and study a program’s
behavior.

Input validation techniques enable you to validate the user’s input before processing. Useful tech-
niques include using methods provided by the string class and using regular expressions. Of course,
you can avoid validation entirely if you use controls such as ComboBox and DateTimePicker, so the
user cannot select invalid values.

Even after the program reads the user’s inputs, it must manage the data’s integrity as it moves
through the program. The Debug.Assert statement lets the program detect unexpected or incorrect
values within the program.

Preprocessor symbols and directives enable you to determine what code is included in a program
compilation. Using these you can compile extensive data validation code only for debug builds much
as the Debug.Assert statement is ignored except in debug builds.

www.EBooksWorld.ir

www.EBooksWorld.ir

518 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

The chapter finished by discussing different ways you can instrument applications and study a
program’s performance. These include using the Debug and Trace classes, profilers, hand-coded
instrumentation, and performance counters.

By using all these techniques, you can protect the program from invalid user inputs and watch for
unexpected changes in the data during processing. You can also monitor the program’s performance
to see what it is doing and how efficiently it is running.

ChApTER TEST QUESTIONS

Read each question carefully and select the answer or answers that represent the best solution to the
problem. You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . If the user is typing data into a TextBox and types an invalid character, which of the follow-
ing actions would be inappropriate for the program to take?

 a . Change the TextBox’s background color to indicate the error.

 b . Silently discard the character.

 c . Display an asterisk next to the TextBox to indicate the error.

 d . Display a message box telling the user that there is an error.

 2 . If the user types an invalid value into a TextBox and moves focus to another TextBox, which
of the following actions would be inappropriate for the program to take?

 a . Force focus back into the TextBox that contains the error.

 b . Change the first TextBox’s background color to indicate the error.

 c . Change the first TextBox’s font to indicate the error.

 d . Display an asterisk next to the first TextBox to indicate the error.

 3 . If the user enters some invalid data on a form and then clicks the form’s Accept button,
which of the following actions would be appropriate for the program take?

 a . Change the background color of TextBoxes containing invalid values to indicate the
errors.

 b . Display a message box telling the user that there is an error.

 c . Do not close the form until the user corrects all the errors.

 d . All the above.

 4 . Which of the following methods returns true if a regular expression matches a string?

 a . Regex.Matches

 b . Regex.IsMatch

 c . Regexp.Matches

 d . String.Matches

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 519

 5 . Which of the following regular expressions matches the Social Security number format
###-##-#### where # is any digit?

 a . ^###-##-####$

 b . ^\d3-\d2-\d4$

 c . ^\d{3}-\d{2}-\d{4}$

 d . ^[0-9]3-[0-9]2-[0-9]4$

 6 . Which of the following regular expressions matches a username that must include between
6 and 16 letters, numbers, and underscores?

 a . ^[a-zA-Z0-9_]?{6}$

 b . ^[a-zA-Z0-9_]{6,16}$

 c . ^[A-Z0-9a-z_]?$

 d . ^\w{16}?$

 7 . Which of the following regular expressions matches license plate values that must include
three uppercase letters followed by a space and three digits, or three digits followed by a
space and three uppercase letters?

 a . (^\d{3} [A-Z]{3}$)|(^[A-Z]{3} \d{3}$)

 b . ^\d{3} [A-Z]{3} [A-Z]{3} \d{3}$

 c . ^\w{3} \d{3}|\d{3} \w{3}$

 d . ^(\d{3} [A-Z]{3})?$

 8 . Which of the following statements about assertions is true?

 a . The Debug.Assert method is ignored in release builds.

 b . The program must continue running even if a Debug.Assert method stops the
program.

 c . When an assertion fails in debug builds, the Debug.Assert method lets you halt,
debug the program, or continue running.

 d . All the above.

 9 . Which of the following statements about the Debug and Trace classes is true?

 a . The Debug class generates messages if DEBUG is defined. The Trace class generates
messages if both DEBUG and TRACE are defined.

 b . The Debug class generates messages if DEBUG is defined. The Trace class generates
messages if TRACE is defined.

 c . The Debug and Trace classes both generate messages if DEBUG is defined.

 d . The Debug and Trace classes both generate messages if TRACE is defined.

www.EBooksWorld.ir

www.EBooksWorld.ir

520 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

 10 . Which of the following statements about builds is true by default?

 a . Debug builds define the DEBUG symbol.

 b . Debug builds define the TRACE symbol.

 c . Release builds define the DEBUG symbol.

 d . Release builds define the TRACE symbol.

 e . Release builds define the RELEASE symbol.

 11 . Which of the following statements about PDB files is false?

 a . You need a PDB file to debug a compiled executable.

 b . You can use a PDB file to debug any version of a compiled executable.

 c . The “full” PDB file contains more information than a “pdb-only” PDB file.

 d . If you set the PDB file type to None, Visual Studio doesn’t create a PDB file.

 12 . Which of the following statements about tracing and logging is false?

 a . Tracing is the process of instrumenting a program to track what it is doing.

 b . Logging is the process of making the program record key events in a log file.

 c . You can use DEBUG and TRACE statements to trace or log a program’s execution.

 d . A program cannot write events into the system’s event logs, so you can see them in
the Event Viewer.

 13 . Which of the following methods would probably be the easiest way to find bottlenecks in a
program if you had no idea where to look?

 a . Use an automatic profiler.

 b . Instrument the code by hand.

 c . Use performance counters.

 d . Set breakpoints throughout the code and step through execution.

 14 . What of the following is the best use of performance counters?

 a . To determine which of a program’s methods use the most CPU time.

 b . To determine how often a particular operation is occurring on the system as a whole.

 c . To determine how often a particular operation is occurring in a particular executing
instance of a program.

 d . To find the deepest path of execution in a program’s call tree.

www.EBooksWorld.ir

www.EBooksWorld.ir

Debugging ❘ 521

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in
this chapter:

.NET Framework Regular Expressions
http://msdn.microsoft.com/library/hs600312.aspx

Regular Expression Language - Quick Reference
http://msdn.microsoft.com/library/az24scfc.aspx

Character Classes in Regular Expressions
http://msdn.microsoft.com/library/20bw873z.aspx

Regular Expression Options
http://msdn.microsoft.com/library/yd1hzczs.aspx

C# Preprocessor Directives
http://msdn.microsoft.com/library/ed8yd1ha.aspx

John Robbins’ Blog, PDB Files: What Every Developer Must Know
http://www.wintellect.com/CS/blogs/jrobbins/archive/2009/05/11/

pdb-files-what-every-developer-must-know.aspx

TraceListener Class
http://msdn.microsoft.com/library/system.diagnostics.tracelistener.aspx

Tracing and Instrumenting Applications in Visual Basic and Visual C#
http://msdn.microsoft.com/library/aa984115.aspx

Beginners Guide to Performance Profiling
http://msdn.microsoft.com/library/ms182372.aspx

Find Application Bottlenecks with Visual Studio Profiler
http://msdn.microsoft.com/magazine/cc337887.aspx

An Introduction To Performance Counters
http://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters

How to: Create Custom Performance Counters
http://msdn.microsoft.com/library/5e3s61wf.aspx

PerformanceCounter Class
http://msdn.microsoft.com/library/system.diagnostics.performancecounter.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/library/hs600312.aspx
http://msdn.microsoft.com/library/az24scfc.aspx
http://msdn.microsoft.com/library/20bw873z.aspx
http://msdn.microsoft.com/library/yd1hzczs.aspx
http://msdn.microsoft.com/library/ed8yd1ha.aspx
http://www.wintellect.com/CS/blogs/jrobbins/archive/2009/05/11/pdb-files-what-every-developer-must-know.aspx
http://msdn.microsoft.com/library/system.diagnostics.tracelistener.aspx
http://msdn.microsoft.com/library/aa984115.aspx
http://msdn.microsoft.com/library/ms182372.aspx
http://msdn.microsoft.com/magazine/cc337887.aspx
http://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters
http://msdn.microsoft.com/library/5e3s61wf.aspx
http://msdn.microsoft.com/library/system.diagnostics.performancecounter.aspx

522 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Input validation

➤➤ Use TrackBar, ComboBox, ListBox, DateTimePicker, FolderBrowserDialog, and other
controls to avoid validation if possible.

➤➤ Make frequent validations (such as during keystrokes) provide nonintrusive feedback (such
as changing the field’s background color).

➤➤ Do not trap the user in a field until its value is entered correctly.

➤➤ Remember that some values (such as “–.”) may be invalid but may be part of a valid value
(such as “–.0”).

➤➤ When the user tries to accept a form, validate all fields. Refuse to accept the form if there are
invalid values. Warn the user if there are unusual values.

Validating data—built-in validation functions

➤➤ Use string length to check for missing values.

➤➤ Initialize a ComboBox or ListBox so that it always has a valid selection.

➤➤ Use TryParse to validate data types such as int or decimal.

➤➤ String methods that can help with validation include Contains, EndsWith, IndexOf,
IndexOfAny, IsNullOrEmpty, IsNullOrWhitespace, LastIndexOf, LastIndexOfAny,
Remove, Replace, Split, StartsWith, Substring, ToLower, ToUpper, Trim, TrimEnd,
and TrimStart.

Validating data—regular expressions

➤➤ Table 11-3 summarizes the useful Regex methods IsMatch, Matches, Replace, and Split.

➤➤ Use string literals (beginning with the @ character) to make it easier to use regular expressions
that contain escape characters.

➤➤ For example, the following code checks whether the variable phone contains a value that
matches a 7-digit U.S. phone number pattern:

if (Regex.IsMatch(phone, @"^\d{3}-\d{4}$")) ...

➤➤ Table 11-10 summarizes some of the most useful regular expression components.

TABLE 11-10: Useful Regular Expression Components

ITEM pURpOSE

\ Begins a special symbol such as \n or escapes the following character

^ Matches the beginning of string or line

$ Matches the end of string or line

www.EBooksWorld.ir

www.EBooksWorld.ir

Cheat Sheet ❘ 523

ITEM pURpOSE

\A Matches the beginning of string (even if in multiline mode)

\Z Matches the end of string (even if in multiline mode)

* Matches the preceding 0 or more times

+ Matches the preceding 1 or more times

? Matches the preceding 0 or 1 times

. Matches any character

[abc] Matches any one of the characters inside the brackets

[^abc] Matches one character that is not inside the brackets

[a-z] Matches one character in the range of characters

[^a-z] Matches one character that is not in the range of characters

x|y Matches x or y

(pattern) Makes a numbered match group

(?<name>expr) Makes a named match group

\2 Refers to previously defined group number 2

\k<name> Refers to previously defined group named name

{n} Matches exactly n occurrences

{n,} Matches n or more occurrences

{n,m} Matches between n and m occurrences

\b Matches a word boundary

\B Matches a nonword boundary

\d Matches a digit

\D Matches a nondigit

\f Matches a form-feed

\n Matches a newline

\r Matches a carriage return

\s Matches whitespace (space, tab, form-feed, and so on)

\S Matches nonwhitespace

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

524 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

ITEM pURpOSE

\t Matches a tab

\v Matches a vertical tab

\w Matches a word character (includes underscore)

\W Matches a nonword character

➤➤ Use sanity checks to look for unusual values.

Managing data integrity

➤➤ After you validate user inputs, the code must still protect the data as it is processed.

➤➤ Use Debug.Assert statements to validate data as it moves through the program.

Debugging

➤➤ Use the #define and #undef directives to define and undefined preprocessor symbols.

➤➤ Use the #if, #elif, #else, and #endif directives to determine what code is included in the
program depending on which preprocessor symbols are defined.

➤➤ Use #warning and #error to add warnings and errors to the Error List.

➤➤ Use #line to change a line number and optionally the name of the file as reported in errors.

➤➤ Use #region and #endregion to make collapsible code regions.

➤➤ Use #pragma warning disable number and #pragma warning restore number to dis-
able and restore warnings.

➤➤ The DEBUG and TRACE compiler constants are predefined. Normally, DEBUG is defined in
debug builds, and TRACE is defined in debug and release builds.

➤➤ Calls to Debug and Trace class methods are ignored if the symbols DEBUG and TRACE are not
defined, respectively.

➤➤ Useful Debug and Trace methods include Assert, Fail, Flush, Indent, Unindent, Write,
WriteIf, WriteLine, and WriteLineIf.

➤➤ You can add listeners to the Debug and Trace objects. Standard listeners write messages to
the Output window, event logs, and text files.

program Database files

➤➤ You need a PDB file to debug a compiled executable.

TABLE 11-10 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 525

Instrumenting applications

➤➤ Tracing means instrumenting the program to trace its progress. You can use Debug and
Trace for tracing.

➤➤ Logging means recording key events. Methods for logging include writing into a text file,
using Debug and Trace with a listener that writes into a text file, and writing in an event log.

➤➤ Profiling means gathering information about a program to study characteristics such as speed
and memory usage. Methods for profiling include using a profiler, instrumenting the code by
hand, and using performance counters.

REVIEW OF KEY TERMS

assertion A piece of code that makes a particular claim about the data and that throws an excep-
tion if that claim is false. In C# you can use the System.Diagnostics.Debug.Assert method to
make assertions.

character class A regular expression construction that represents a set of characters to match.

conditional compilation constant A predefined symbol created by Visual Studio that you can use with
the #if, #elif, #else, and #endif directives to determine what code is included in the program. These
include DEBUG and TRACE, which are normally defined in debug and release builds, respectively.

data validation Program code that verifies that a data value such as a string entered by the user
makes sense. For example, the program might require that a value be nonblank, that a monetary
value be a valid value such as $12.34 not “ten,” or that an e-mail address contain the @ symbol.

escape sequence A sequence of characters that have special meaning, for example, in a regular
expression.

inline options Options set in a regular expression by using the syntax (?imnsx).

instrumenting Adding features to a program to study the program itself.

logging The process of instrumenting a program, so it records key events.

pattern A regular expression used for matching parts of a string.

performance counter A system-wide counter used to track some type of activity on the computer.

profiler An automated tool that gathers performance data for a program by instrumenting its code or
by sampling.

profiling The process of instrumenting a program to study its speed, memory, disk usage, or other
performance characteristics.

www.EBooksWorld.ir

www.EBooksWorld.ir

526 ❘ ChApTER 11 InPut valIdatIon, deBuggIng, and InstrumentatIon

regular expression An expression in a regular expression language that defines a pattern to match.
Regular expressions let a program match patterns and make replacements in strings.

sanity check A test on data to see if the data makes sense. For example, if a user enters the cost
of a ream of paper as $1e10.00, that might be a typographical error, and the user may have meant
$100.00. Sometimes the user might actually have intended an unusual value, so the program must
decide whether to reject the value or ask the user whether the value is correct.

tracing The process of instrumenting a program so that you can track what it is doing.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed off to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Using Encryption and
Managing Assemblies

WhAT YOU WILL LEARN IN ThIS ChApTER

➤➤ Understanding encryption

➤➤ Using symmetric encryption

➤➤ Using asymmetric encryption

➤➤ Signing and hashing data

➤➤ Creating strong name assemblies

➤➤ Deploying assemblies in the GAC

WROX .COM CODE DOWNLOADS FOR ThIS ChApTER

You can find the code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=1118612094 on the Download Code tab. The code is in the chapter12
download and individually named according to the names throughout the chapter.

When you deal with sensitive data, you must protect it from unauthorized access or modifica-
tion, and for that you need to use techniques such as encryption, digital signatures, and hashing
of data. One application of digital signatures and hashing of data used often by .NET is with
strong name assemblies.

This chapter begins by going through different technologies that you can use to ensure pri-
vacy, integrity, and authenticity of your data. You will look at both symmetric and asymmetric
algorithms. In the second part of this chapter you will look in details at how you can ensure
the integrity of you assemblies by using digital signatures.

Table 12-1 introduces you to the exam objectives covered in this chapter.

12

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

528 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

TABLE 12-1: 70-483 Exam Objectives Covered in This Chapter

OBJECTIVE CONTENT COVERED

Perform symmetric and
asymmetric encryption

Choose an appropriate encryption algorithm . This includes discussing
the symmetric and asymmetric algorithms .

Manage and create certificates. This includes working with different
kind of certificates and certificates store .

Implement key management . This includes discussing the options avail-
able in .NET to store the encryption keys .

Implement the System.Security namespace . This includes discuss-
ing the classes and interfaces available in the System.Security
namespace .

Hash data . This includes discussing the options available to hash data
and to create digital signatures .

Encrypt streams . This includes using the CryptoStream class to
encrypt streams

Manage assemblies Version assemblies. This includes choosing a versioning scheme for
the assembly .

Sign assemblies using strong names. This includes signing the
assemblies from Visual Studio, as well as using the sn.exe .

Implement side-by-side hosting. This includes discussing techniques
you can use to have different version of the same assembly on the same
machine at the same time .

Put an assembly in the global assembly cache. This includes using
different tools to deploy the assemblies in the global assembly cache .

USING ENCRYpTION

Encryption is the process of transforming plain data in a way that makes it harder for an unauthor-
ized person to make sense of it. The encrypted data is called ciphertext. Decryption is the reverse
process, meaning that having the ciphertext, you must apply a transformation to it to get back the
original information. The harder it is to decrypt the ciphertext, the better the algorithm. You might
have reacted to saying “harder” to make sense of it instead of saying “impossible.” The reason for
that is because any encrypted data can be decrypted eventually, but some algorithms are so compli-
cated that it can take a long time (such as hundreds of years) to decrypt the data, so the information
is useless. Cryptography is the practice and study of encryption and decryption techniques.

Romans used simple algorithms such as transposition. They replaced every letter with another one, like
the next one in the alphabet, or the one found three positions after the current one. But this was just a
simple algorithm. To decrypt the message, you only had to figure out the algorithm used (transposition
in this example) and the algorithm parameters (how many positions were used for the transposition). In
time the algorithms evolved, making it harder and harder to decrypt the data. A notable effort before
computers appeared was the German machine Enigma that used an electromechanical rotor cipher to
encrypt and decrypt secret messages.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 529

With the invention of computers, the encryption became more and more advanced, and with today’s
technologies the algorithms are open because their parameters are the ones improving the security
of any encrypted data. Today’s encryption techniques make heavy use of mathematics.

Sometimes you might not need to hide the data, but to make sure that the data is not tampered with,
or that the data comes from the right source. If you want to ensure that the data is not tampered
with, you can use a Secured Hash Algorithm (SHA), whereas for authenticity of the data you can
use a Message Authentication Code (MAC) algorithm. So let’s assume that you want to send an
order to a supplier. To make sure that the order doesn’t get altered on its way to the supplier, you
can add the SHA signature to the message. If you want to guarantee the identity of the sender of the
order as well as the integrity of the order, then you would use a MAC.

Choosing an Appropriate Encryption Algorithm
You saw that encryption and decryption protect data from unauthorized access. Encryption can be
done in two ways. One way is called symmetric encryption, or shared secret, and the second one is
called asymmetric encryption or public key. (Both types of encryption are described in more detail
in the following sections.)

Microsoft implemented some of the existing algorithms in .NET, which are implemented in three ways:

➤➤ Managed classes (in .NET): The class name for those is the algorithm name suffixed with
Managed, for instance RijndaelManaged is the managed class that implements the Rijndael
algorithm. The managed implementations are somewhat slower than the other implementa-
tions and are not certified by the Federal Information Processing Standards (FIPS).

➤➤ Wrapper classes around the native Cryptography API (CAPI) implementation: The class
name for those is the algorithm name suffixed with CryptoServiceProvider, for instance
DESCryptoServiceProvider is the wrapper class that implements the Data Encryption
Standard (DES) algorithm. The CAPI implementations are suitable for older systems, but
they are no longer being developed.

➤➤ Wrapper classes around the native Cryptography Next Generation (CNG) API imple-
mentation: The class name for those is the algorithm name suffixed with CNG, for instance
ECDiffieHellmanCng is the wrapper class that implements the Elliptic Curve Diffie-Hellman
(ECDH) algorithm. CNG algorithms require a Windows Vista or newer operating system.

All cryptography classes are defined in the System.Security.Cryptography namespace and are
part of the core .NET library.

Symmetric Encryption
As mentioned symmetric encryption is also known as shared secret encryption, and that is because
the encryption of the data is done with an encryption key, a byte array, and the same key is used
to decrypt the data. The symmetric algorithms rely on the fact that only an authorized person has
access to the encryption key. The main drawback of the symmetric encryption is that if the encryp-
tion key becomes compromised, the data will not be secured.

The symmetric algorithms that come with .NET use a chaining mode called cipher block chaining.
This kind of algorithm works in the following way. If the data is bigger than a predefined size, called

www.EBooksWorld.ir

www.EBooksWorld.ir

530 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

block size, the data is split in blocks of that predefined size. The first block is encrypted using a random
block of data of the same size, called initialization vector (IV), and the encryption key. The next block
is encrypted using the result of the previous encrypted block instead of the IV and the same encryption
key, and so on until it reaches the last block. The block size is determined by the algorithm used. If the
last block is less than that size, it will be padded with data so it will have the same size as the size used
by the algorithm. To decrypt the cipher text, you must have the IV and the key. The IV doesn’t need to
be kept secret, but the private key does. You will see later in this chapter how the encryption key can
be handled.

.NET Framework implements five different symmetric algorithms, as shown in Table 12-2.

TABLE 12-2: Symmetric Algorithms Implemented in .NET

ALGORIThM ShORT NAME DESCRIpTION

Aes Advanced Encryption Standard (AES) . There are two classes implement-
ing this algorithm:

AesManaged and AesCryptoServiceProvider .

DES Data Encryption Standard algorithm implemented by
DESCryptoServiceProvider .

RC2 Rivest Cipher (or Ron’s code) algorithm implemented by
RC2CryptoServiceProvider .

Rijndael Rijndael algorithm implemented by RijndaelManaged .

TripleDES Triple Data Encryption Standard (DES) algorithm implemented by
TripleDESCryptoServiceProvider .

All the classes mentioned in Table 12-2 inherit from the System.Security.Cryptography
.SymmetricAlgorithm class. This class contains properties and methods that are useful when
working with symmetric algorithms. Tables 12-3 and 12-4 list the properties and methods of
that class.

TABLE 12-3: System .Security .Cryptography .SymmetricAlgorithm Properties

pROpERTY DESCRIpTION

BlockSize Gets or sets the size of the block used by the cryptographic operation .
The block size is specified in bits and represents the basic unit of data
that can be encrypted or decrypted in one operation . Messages longer
than the block size are split into blocks of this size; messages shorter
than the block size are padded with extra bits until they reach the size of
a block . The algorithm used determines the validity of the block size .

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 531

pROpERTY DESCRIpTION

FeedbackSize Gets or sets the size of the feedback size used by the cryptographic
operation . The feedback size represents the amount of data in bits that
is fed back to the next encryption or decryption operation . The feedback
size must be lower than the block size .

IV Gets or sets the IV . Whenever you create a new instance of a symmetric
algorithm, the IV is set to a new random value . You can generate one
as well by calling the GenerateIV method . The size of the IV property
must be the same as the BlockSize property divided by eight .

Key Gets or sets the secret key used by the algorithm . The secret key has to
be the same for both encryption and for decryption . For a symmetric algo-
rithm to be successful, the secret key must be kept secret . The valid key
sizes are specified by the particular symmetric algorithm implementation
and are listed in the LegalKeySizes property .

KeySize Gets or sets the size of the secret key used by the symmetric algorithm .
The valid key sizes are specified in bits by the particular symmetric algo-
rithm implementation and are listed in the LegalKeySizes property .

LegelBlockSizes Gets the block sizes in bits that are accepted by the algorithm .

LegalKeySizes Gets the key sizes in bits that are accepted by the algorithm .

Mode Gets or sets the mode for operation of the algorithm . See the
System.Security.Cryptography.CipherMode enumeration for a
description of specific modes .

Padding Gets or sets the padding mode used by the algorithm . See the
System.Security.Cryptography.PaddingMode enumeration
for a description of specific modes .

TABLE 12-4: System .Security .Cryptography .SymmetricAlgorithm Methods

METhOD DESCRIpTION

Clear Releases all resources used by the SymmetricAlgorithm class .
You need to call this method to clear all the resources allocated
by the algorithm to ensure that no sensitive data remains in the
memory when you finish with the cryptographic object . Do not rely
on garbage collector to clear the data .

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

532 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

METhOD DESCRIpTION

Create() This static method creates a new cryptographic using the default
algorithm, which in .NET 4 .5 is RijndaelManaged .

Create(String) This static method creates a new cryptographic object using the
specified cryptographic algorithm . The name of the algorithm can
be either one of the names on the left column of Table 12-2 or the
name of the type itself, with or without the namespace . Aes cor-
responds to the AesCryptoServiceProvider algorithm . If you
want to use the managed version of the algorithm, you need to
specify AesManaged .

CreateDecryptor() Creates a decryptor object using the Key and IV currently set in
the properties .

CreateDecryptor(Byte[],

Byte[])

Creates a decryptor object using the Key and IV values specified
as parameters .

CreateEncryptor() Creates an encryptor object using the Key and IV currently set in
the properties .

CreateEncryptor(Byte[],

Byte[])

Creates an encryptor object using the Key and IV properties speci-
fied as parameters .

GenerateIV Generates a random IV to be used by the algorithm . Normally there
is no need to call this method .

GenerateKey Generates a random Key to be used by the algorithm . The secret
key has to be the same for both encryption and for decryption .
For a symmetric algorithm to be successful, the secret key must
be kept secret . The valid key sizes are specified by the particu-
lar symmetric algorithm implementation and are listed in the
LegalKeySizes property .

ValidKeySize Returns true if the specified key size is valid for this specific
algorithm .

The workflow of encrypting plain text into chipper text is straightforward:

 1 . Create a symmetric algorithm object by calling the Create method of the SymmetricAlgorithm
class setting the optional string parameter to the name of the wanted algorithm.

 2 . If you want you can set a key and an IV, but this is not necessary because they are generated
by default.

TABLE 12-4 (continued)

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 533

 3 . Create an encryptor object by calling the CreateEncryptor method. Again, you can choose
to send the key and the IV as parameters to this method or use the default, generated one.

 4 . Call the TransformFinalBlock method on the encryptor, which takes as input a byte array,
representing the plain data, the offset where to start the encryption from, and the length of
the data to encrypt. It returns the encrypted data back.

The code should look like this:

byte[] EncryptData(byte[] plainData, byte[] IV, byte[] key) {

 SymmetricAlgorithm cryptoAlgorythm = SymmetricAlgorithm.Create();
 ICryptoTransform encryptor = cryptoAlgorythm.CreateEncryptor(key, IV);
 byte[] cipherData = encryptor.TransformFinalBlock(plainData, 0,
 plainData.Length);

 return cipherData;
}

The workflow of decrypting chipper text to get back the plain text is straightforward as well:

 1 . Create a symmetric algorithm object by calling the Create method of the
SymmetricAlgorithm class setting the optional string parameter to the name of the same
algorithm used for encryption.

 2 . If you want you can set a key and an IV, but this is not necessary now because you can set
them on the next step.

 3 . Create a decryptor object by calling CreateDecryptor method. You must now set the key
and the IV by sending them as parameters to this method, if you didn’t do it in the previous
step. The key and the IV must be the same as the ones used for encryption.

 4 . Call the TransformFinalBlock method on the decryptor, which takes as input a byte array,
which is the chipper data, the offset where to start the decryption from, and the length of the
data to decrypt, and it returns the plain data back.

The code should look like this:

byte[] DecryptData(byte[] cipherData, byte[] IV, byte[] key) {

 SymmetricAlgorithm cryptoAlgorythm = SymmetricAlgorithm.Create();
 ICryptoTransform decryptor = cryptoAlgorythm.CreateDecryptor(key, IV);
 byte[] plainData = decryptor.TransformFinalBlock(cipherData, 0,
 cipherData.Length);

 return plainData;
}

The biggest challenge of symmetric encryption algorithms is to keep the key secret. If the data doesn’t
have to leave the machine, you must save it somehow in a safe place so that only you can get access

www.EBooksWorld.ir

www.EBooksWorld.ir

534 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

to it when you need to decrypt the data. You see later in this chapter in the “Implementing Key
Management” section how to solve that.

If you need to send the data across the wire, make sure that the other party has the key as well.
Transmitting the key needs to be done securely so that no unauthorized person gets access to it;
otherwise, the whole data becomes compromised.

ADVICE FROM ThE EXpERTS: Working with Symmetric Algorithms

By using the abstract base class SymmetricAlgorithm instead of the concrete classes
and calling the factory method Create, you have good flexibility in your system. If
later the requirements for your encryption change and you need to use a different
algorithm, the only thing that you need to do, in principle, is to change the name of
the algorithm.

Asymmetric Encryption
An alternative to symmetric encryption is to use asymmetric encryption. The main reason to use
asymmetric encryption is to avoid sharing the encryption key, which is considered a vulnerabil-
ity. Asymmetric encryption uses two mathematically related keys that complement each other,
such as whatever is encrypted with one key can be decrypted only with the other key. One key is
made public, and is known as the public key, by the receiving party, so whoever wants to trans-
mit secured data can encrypt the data. Make sure at the same time only the receiving party can
decrypt the data by using the other key, known as the private key. (The mathematics behind gen-
erating the two keys is outside the scope of this book.)

The main disadvantage of the asymmetric encryption is that it is slower than the symmetric encryption,
but the biggest advantage is that there is no need to have a shared secret for the algorithm to work.

.NET Framework implements five different symmetric algorithms, as shown in Table 12-5.

TABLE 12-5: Asymmetric Algorithms Implemented in .NET

ALGORIThM ShORT NAME DESCRIpTION

DSA Digital Signature algorithm . Used to create digital signatures that help
protect the integrity of data .

There is one class implementing this algorithm:
DSACryptoServiceProvider . Use DSA only for compatibility with
legacy applications and data .

ECDiffieHellman Elliptic Curve Diffie-Hellman algorithm implemented by
ECDiffieHellmanCng .

ECDsa Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm imple-
mented by ECDsaCng .

RSA RSA algorithm implemented by RSACryptoServiceProvider .

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 535

In .NET all classes that implement an asymmetric algorithm inherit from System.Security
.Cryptography.AsymmetricAlgorithm.

The workflow of encrypting data using asymmetric encryption follows:

 1 . Obtain the public key of the receiver.

 2 . Create a new asymmetric encryption object.

 3 . Set the public key.

 4 . Encrypt the data.

 5 . Send the data to the receiver.

The workflow of decrypting data using asymmetric encryption follows:

 1 . Get the data from the sender.

 2 . Create a new asymmetric encryption object.

 3 . Set the private key.

 4 . Decrypt the data.

If the data were changed or it not encrypted using the corresponding public key, a
CryptographicException will be thrown.

There are two ways to handle the keys. The first is to send the key directly; the second is to save the
keys in a cryptographic service provider container. How to handle the key will be discussed later
in this chapter in the “Implementing Key Management” section. To see how those two are imple-
mented, look at the code lab at the end of this section.

One common scenario is to use asymmetric encryption to exchange the keys needed for symmetric
encryption using the following workflow:

 1 . Both parties generate a public/private key pair.

 2 . The parties exchange the public keys.

 3 . Each party generates a symmetric key that can use the encrypt data.

 4 . Each party encrypts the symmetric key using an asymmetric algorithm and the other party’s
public key.

 5 . Each party sends the encrypted key to the other party.

 6 . Each party decrypts the key using the same asymmetric algorithm and their own private key
to obtain the symmetric key generated by the other party.

 7 . They start exchanging data using the same symmetric algorithm and the keys from
previous step.

Another common scenario is to use the asymmetric encryption to digitally sign data, ensuring in
this way both the authenticity and the identity.

www.EBooksWorld.ir

www.EBooksWorld.ir

536 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

Stream Encryption
As discussed in Chapter 9, “Working with Data,” streams represent a file, an I/O device, or a com-
munication channel and can perform three fundamental operations:

➤➤ Read: You can transfer data from the stream into a data structure.

➤➤ Write: You can transfer data to the stream from a data structure.

➤➤ Seek: You can change the current position within the stream where the next read-or-write
operation operates.

One important property of streams in .NET is that they can be chained by feeding the output data
from a stream into the input of another stream. Sometimes you might want to encrypt the data
the goes through those streams, in order to ensure the privacy or integrity of the data. You can
either encrypt the data before it is sent through the stream, or you can just chain the streams so
one of them will be in charge of encryption. Remember that one of the streams classes presented in
Chapter 9 was CryptoStream, which you can use to encrypt or decrypt data coming through it.

The workflow of encrypting streams is straightforward:

 1 . Create a symmetric algorithm object by calling the Create method of the
SymmetricAlgorithm class, setting the optional string parameter to the name of the wanted
algorithm.

 2 . If you want you can set a key and an IV, but this is not necessary because they will be gen-
erated by default.

 3 . Create an encryptor object by calling CreateEncryptor method. Again, you can choose to
send the key and the IV as parameters to this method or use the default generated one.

 4 . Create a CryptoStream object. The constructor of CryptoStream expects three parameters.
The first parameter is the stream where you send the encrypted data; the second one is the
encryptor you created in the previous step; and the third one is the stream operation mode,
which in this case is Write.

 5 . Write data to the CryptoStream object either calling one of the Write methods exposed by
CryptoStream, by using a StreamWriter, or by chaining it to another stream.

 6 . When you finish, clear the CryptoStream object of all the sensitive data by calling the Clear
method, and then dispose of the object.

The code should look like this:

byte[] EncryptString(string plainData, byte[] IV, byte[] key) {

 SymmetricAlgorithm cryptoAlgorythm = SymmetricAlgorithm.Create();
 ICryptoTransform encryptor = cryptoAlgorythm.CreateEncryptor(key, IV);
 byte[] cipherData = new byte[0];

 using (MemoryStream msEncrypt = new MemoryStream()) {
 using (CryptoStream csEncrypt = new CryptoStream(msEncrypt,
 encryptor,
 CryptoStreamMode.Write)) {
 StreamWriter swEncrypt = new StreamWriter(csEncrypt);

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 537

 swEncrypt.Write(plainData);
 swEncrypt.Close();
 csEncrypt.Clear();
 cipherData = msEncrypt.ToArray();
 }
 }
 return cipherData;
}

The workflow of decrypting streams is straightforward as well:

 1 . Create a symmetric algorithm object by calling Create method of the SymmetricAlgorithm
class, setting the optional string parameter to the name of the same algorithm used for
encryption.

 2 . If you want you can set a key and an IV, but this is not necessary now because you can set
them on the next step.

 3 . Create a decryptor object by calling CreateDecryptor method. You now have to set the key
and the IV by sending them as parameters to this method if you didn’t do it in the previous
step. The key and the IV must be the same as the ones used for encryption.

 4 . Create a CryptoStream object. The constructor of CryptoStream expects three parameters.
The first parameter is the stream where to send the encrypted data; the second one is the
decryptor you created in the previous step; and the third one is the stream operation mode,
which in this case is Read.

 5 . Read data from the CryptoStream object either calling one of the Read methods exposed by
CryptoStream, by using a StreamReader or by chaining it to another stream.

 6 . When you finish, clear the CryptoStream object of all the sensitive data by calling the Clear
method, and then dispose of the object.

The code should look like this:

string DecryptString(byte[] cipherData, byte[] IV, byte[] key) {

 SymmetricAlgorithm cryptoAlgorythm = SymmetricAlgorithm.Create();
 ICryptoTransform decryptor = cryptoAlgorythm.CreateDecryptor(key, IV);
 string plainText = string.Empty;

 using (MemoryStream msDecrypt = new MemoryStream(cipherData)) {
 using (CryptoStream csDecrypt = new CryptoStream(msDecrypt,
 decryptor,
 CryptoStreamMode.Read)) {
 StreamReader srDecrypt = new StreamReader(csDecrypt);

 plainText = srDecrypt.ReadToEnd();
 srDecrypt.Close();
 csDecrypt.Clear();
 }
 }
 return plainText;
}

www.EBooksWorld.ir

www.EBooksWorld.ir

538 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

ADVICE FROM ThE EXpERTS: Chaining Streams to Encrypt
and Compress Data

One common scenario is to encrypt and compress the data that is sent via a net-
work. The order in which you do that is important for two reasons. First, compress-
ing text is more effective than compressing binary data, resulting in less data to
encrypt. Second, you have to apply the transformations in reverse order, meaning
that if you first compress and then encrypt the data on the sender side, you must
first decrypt data and then decompress it on the receiver side.

hashing Data
Hashing is the process of mapping binary data of a variable length to a fixed size binary data.
Applying the same hash function to two identical data structures yields the same result. Hashing
functions are used in several scenarios:

➤➤ Indexing data: Instead of matching the data when the index key is a variable length, calcu-
late the hash value of the index key and locate that instead. The hash value resulting from
a data structure is usually shorter than the original value, so when searching for a shorter
amount of data, the search time will be shorter as well. It is possible that two or more
index keys can yield the same hash value. In this situation the indexing algorithm uses
a technique called hash bucket, where all the index keys having the same hash value are
grouped together. The kind of hashing used in this scenario has nothing to do with cryp-
tography, but it is worth mentioning.

➤➤ Data integrity: Data integrity is used to ensure that the data reaches the destination
unchanged. The sender computes a cryptographic hash of the data that wants to send, and
then the sender sends the data, the hash, and information about the technique used to com-
pute the hash to the receiver. The receiver can apply the same algorithm to the data, and it
will compare the resulting hash with the one received. If they are the same, it means that the
data wasn’t changed after the hash was computed. This doesn’t guarantee that the data is not
changed, though. If someone wants to change the message, the only thing that person will
have to do is to compute the hash of the new message and send that instead.

➤➤ Data authenticity: Data authenticity is used when a receiver wants to make sure that the data
is coming from the right sender and that it is not changed on its way. It works in this way:
The sender computes a cryptographic hash and signs it with its own private key. The receiver
hashes the data again and then decrypts the received signature, uses the senders’ public key to
decrypt the signature, and verifies that is the same as the hash.

➤➤ Password storage: Storing a password in plain text is an unsecure technique, and if the data
store becomes compromised, all the passwords will be compromised as well. To protect the
passwords, they are usually hashed, and instead of saving the password, you save the hash
of the password. When someone attempts to log in, you can hash the entered password and
verify that the two hashes are the same.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 539

The strength of the cryptographic hash is that it is improbable that two different inputs generate the
same hash. Two passwords that are not the same and differ little from each other can produce two
completely different hashes.

There are two kind of hashing algorithms: with or without a key. The algorithms without keys are
used only to calculate secure hashes for data to ensure integrity, whereas the keyed algorithms are used
together with a key as a MAC for both integrity and authenticity.

.NET Framework comes with implementations for different algorithms, as shown in Table 12-6.

TABLE 12-6: Hash Algorithms Implemented in .NET

ALGORIThM ShORT NAME DESCRIpTION

SHA1 Implementation of SHA algorithm with a resulting hash size of 160 bits

SHA256 Implementation of SHA algorithm with a resulting hash size of 256 bits

SHA512 Implementation of SHA algorithm with a resulting hash size of 512 bits

SHA384 Implementation of SHA algorithm with a resulting hash size of 384 bits

MD5 Implementation of MD5 hash algorithm

RIPEMD160 Implementation of RIPEMD hash algorithm

In .NET all hashing algorithms inherit from the System.Security.Cryptography.HashAlgorithm
abstract class. Tables 12-7 and 12-8 list the properties and methods of the HashAlgorithm class.

TABLE 12-7: System .Security .Cryptography .HashAlgorithm Properties

pROpERTY DESCRIpTION

CanReuseTransform Read-only property that returns true if the
current transform can be reused

CanTransformMultipleBlocks Read-only property that returns true if mul-
tiple blocks can be transformed

Hash Read-only property that returns the calcu-
lated hash code

HashSize Read-only property that returns, in bits, the
size of the computed hash code

InputBlockSize Read-only property that returns the size of
the input block

OutputBlockSize Gets the size of the output block

www.EBooksWorld.ir

www.EBooksWorld.ir

540 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

DIFFERENT FAMILIES OF hASh ALGORIThMS

There are several families of hash algorithms:

➤➤ Message Digest (MD), with different versions such as MD2, MD4, and the
current one called MD5: The resulting hash size for MD5 is 128 bits. Choose
this algorithm only if you work with legacy applications. Use instead SHA256
or SHA512 because they offer better security and performance. Implementations
of this algorithm must inherit from the System.Security.Cryptography.MD5
abstract class. There are two concrete implementations in .NET 4.5: the CAPI
implementation in the MD5CryptoServiceProvider class and the CNG one in
the MD5Cng class.

➤➤ RACE Integrity Primitives Evaluation Message Digest (RIPEMD): This family
of algorithms has resulting hash sizes of 128, 160, 256, and 320 bits. The ver-
sion implemented in .NET is the one with the hash size of 160 bits. Choose this
algorithm only if you work with legacy applications. Use instead SHA256 or
SHA512 because they offer better security and performance. Implementations
of this algorithm must inherit from the System.Security.Cryptography
.RIPEMD160 abstract class. There is only one implementation of this algorithm
in .NET 4.5, the managed one in the RIPEMD160Managed class.

➤➤ SHA-1 is the second implementation of the Secure Hash Algorithm designed
by National Security Agency (NSA). The first implementation was called
SHA-0, but it proved to have errors, which were corrected by SHA-1. The
resulting hash size for SHA-1 is 160 bits. Implementations of this algorithm
must inherit from the System.Security.Cryptography.SHA1 abstract
class. There are three concrete implementations in .NET 4.5: the managed
implementation in the SHA1Managed class, the CAPI implementation in the
SHA1CryptoServiceProvider class, and the CNG one in the SHA1Cng class.

➤➤ SHA-2 is the third implementation of SHA by NSA, which addresses some
of the vulnerabilities found in SHA-1. This family of algorithms has resulting
hash sizes of 224, 256, 384, and 512 bits. .NET is not implementing the 224
bit hash size version of the algorithm. Implementations of this algorithm must
inherit from the System.Security.Cryptography.SHA256 for the 256-bit size
hash, the System.Security.Cryptography.SHA384 for the 384 bits size hash,
and the System.Security.Cryptography.SHA512 for the 512-bit size hash
abstract classes. All three versions are implemented as managed, CAPI wrappers
and CNG wrappers.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 541

TABLE 12-8: System .Security .Cryptography .HashAlgorithm Methods

METhOD DESCRIpTION

Clear Releases all resources used by the
HashAlgorithm class .

ComputeHash(Byte[]) Calculates the hash for the a byte array .

ComputeHash(Stream) Calculates the hash for the a Stream object .

ComputeHash(Byte[], Int32, Int32) Calculates the hash for a region of a byte array .

Create() This static method creates a new cryptographic using
the default algorithm, which in .NET 4 .5 is SHA1 .

Create(String) This static method creates a new hash algorithm
object using the specified algorithm . The name of the
algorithm can be either one of the names on the left
column of Table 12-6 or the name of the type itself,
with or without the namespace .

TransformBlock Calculates the hash for the specified region of the
inputBuffer byte array and copies the result to the
specified region of the outputBuffer byte array .

TransformFinalBlock Calculates the hash for the specified region of the
inputBuffer byte array .

Normally, you use only Create and the ComputeHash methods. TransformBlock and
TransformFinalBlock methods are used when you want to compute the hash for portions of
your data.

BEST pRACTICES: Implementing Your Own Algorithm

If you check the online documentation on MSDN for the HashAlgorithm class,
you can notice three extra methods not mentioned on the Table 12-8. They are
HashCore, HashFinal, and Initialize. All three methods are abstract methods
that need to be implemented by the implementers of the hash algorithm. This is the
way Microsoft implemented the existing algorithms. Although it sounds tempting,
you should not start implementing your own hash algorithms if this is not what your
main business is. You should instead use the existing implementations.

The keyed hashing algorithms inherit from the System.Security.Cryptography
.KeyedHashAlgorithm class, which has only one extra property compared with the HashAlgorithm
class, as shown in Table 12-9.

www.EBooksWorld.ir

www.EBooksWorld.ir

542 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

TABLE 12-9: System .Security .Cryptography .KeyedHashAlgorithm Properties

pROpERTY DESCRIpTION

Key Read/write property representing the key to be used by the hash algo-
rithm . If you attempt to change the key after the hashing has begun, a
CryptographicException is thrown .

The workflow of hashing data is as follows:

 1 . Create a hashing algorithm object.

 2 . Set the hashing key if the algorithm used is a keyed one.

 3 . Call the ComputeHash method.

 4 . Save the hash of the data.

The code should look something like this:

string ComputeHash(string input)
{
 HashAlgorithm sha = SHA256.Create();
 byte[] hashData = sha.ComputeHash(Encoding.Default.GetBytes(input));
 return Convert.ToBase64String(hashData);
}

The workflow of verifying a hash for data follows:

 1 . Create a hashing algorithm object using the same algorithm you used for hashing the data.

 2 . If a hashing keyed algorithm was used, set the key to the same value used for hashing.

 3 . Extract the original hash of the data.

 4 . Call the ComputeHash method.

 5 . Compare the extracted hash with the computed one. If they are the same, it means that the
data wasn’t changed.

bool VerifyHash(string input, string hashValue) {

 HashAlgorithm sha = SHA256.Create();
 byte[] hashData = sha.ComputeHash(Encoding.Default.GetBytes(input));
 return Convert.ToBase64String(hashData) == hashValue;
}

Managing and Creating Certificates
Although the communication might seem secure at times, when two parties communicate, they need
to make sure that they are talking with the right partner. For instance, when you want to do a bank
transaction via the Internet, you need to make sure that you are on your bank site and not on some
website that is spoofing the identity of your bank. You also want to know that the communication
is secured. For web applications there are two protocols that solve this problem: Transport Layer
Security (TLS) and Secure Socket Layer (SSL).

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 543

COMMON MISTAKES: Avoiding Convert .ToBase64String

The Convert.ToBase64String transforms the input byte array into a string-
encoded base64. There is no need to use this function. The only reason we use it
here is just to make it easier to compare the result of the hashing functions. The
alternative would have been to write a function that compares two arrays if they are
the same in both length and content. The way the two previous methods are used
resembles the following code:

public static void Run() {

 string input = "Data to be hashed!";
 string hash = ComputeHash(input);
 bool sameHash = VerifyHash(input, hash);

 Console.WriteLine("Input:{0}", input);
 Console.WriteLine("Hash: {0}", hash);
 Console.WriteLine("Same hash: {0}", sameHash);
}

The output of this code should look exactly like the one in Figure 12-1.

FIGURE 12-1: Output of string hashing

Both encrypt data and ensure data authenticity. For authenticity they use Public Key Infrastructure
(PKI) (the infrastructure needed to handle digital certificates). PKI uses a notion called Certificate
Authority (CA). A CA is an entity that issues digital certificates. Digital certificates bind a public
key with an identity. By doing this, when two parties wants to communicate and the sending party
wants to make sure that it talks with the right party, the sending party can use PKI to verify the
identity of the receiving party.

The principle is simple. You can either choose to trust the other party directly, but this might
become cumbersome if you have to do that for every party, or you can choose to trust a third party
instead that only verifies the identity of different entities. This second choice is a hierarchic one,

www.EBooksWorld.ir

www.EBooksWorld.ir

544 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

meaning the number of entities you choose to trust is limited. Those entities can verify the identity
of other entities, which become trusted entities and so on, until one of them will trust the entity you
want to communicate with and confirm its identity.

The top-level certificates that you choose to trust are called root certificates. Normally, you won’t
add any root certificates. They come with your Windows installation or via Windows Updates. If you
want to see which roots certificates your computer is set up to trust by default, go to Control Panel
and open the Internet Options dialog. From there open the Content tab, and press the Certificates
button; then choose the Trusted Root Certification Authorities tab. A dialog similar with the one in
Figure 12-2 appears. As you can see, the list is long, but it can save you a lot of trouble if you want to
have secure communication.

FIGURE 12-2: The root certificate authorities list

If a site now wants to guarantee its identity, it must verify only its identity with one of the entities
you chose to trust. One example is Microsoft. On your computer, as you can see in the previous
figure, there is a Root Certificate Authority called GTE CyberTrust Global Root. If you point your
browser to https://www.microsoft.com (note the https) and you want to see the certificate of the
site and go to the Certification Path tab, a dialog similar with the one in Figure 12-3 appears.

As you can see, www.microsoft.com is trusted by Microsoft Secure Server Authority, which is
trusted by Microsoft Internet Authority, which is trusted by GTE CyberTrust Global Root, which
you can choose to trust, as one of your Root Certificate Authorities.

The standard used by the PKI is X.509, which specifies the format the PKIs, the Certificate
Revocation List (CLR), attributes for the certificates, and how to validate the certificate path.

.NET Framework implements the X.509 standard, and all the classes needed to create and manage
the certificates are defined in the System.Security.Cryptography.X509Certificates namespace.
If you have a certificate with the private key installed locally, you can use it to decrypt data encrypted
with the corresponding public key.

www.EBooksWorld.ir

www.EBooksWorld.ir

https://www.microsoft.com
http://www.microsoft.com

Using Encryption ❘ 545

FIGURE 12-3: SSL certificate info
for Microsoft .com

NOTE Microsoft offers a tool called Makecert.exe (Certificate Creation Tool) that
can you can use to create certificates. You can find more information about this
tool in the “Additional Reading and Resources” section at the end of this chapter.

To work with certificates programmatically, you can use the X509Certificate2 class.

Certificates use the notion of certificate stores, which are the places where the certificates are securely
kept. In .NET stores are implemented in the X509Store class. Windows offers two store locations
represented by the StoreLocation enumeration. The possible values are shown in Table 12-10.

TABLE 12-10: System .Security .Cryptography .X509Certificates .StoreLocation

MEMBER NAME DESCRIpTION

CurrentUser Represents the certificate store used by the current user

LocalMachine Represents the certificate store common to all users on the local
machine

Windows offers eight predefined stores represented by the StoreName enumeration. The possible
values are shown in Table 12-11.

www.EBooksWorld.ir

www.EBooksWorld.ir

546 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

TABLE 12-11: System .Security .Cryptography .X509Certificates .StoreName

MEMBER NAME DESCRIpTION

AddressBook Certificate store for other users

AuthRoot Certificate store for third-party CAs

CertificateAuthority Certificate store for intermediate CAs

Disallowed Certificate store for revoked certificates

My Certificate store for personal certificates

Root Certificate store for trusted root CAs

TrustedPeople Certificate store for directly trusted people and resources

TrustedPublisher Certificate store for directly trusted publishers

X509Store class offers a string property called Name, which you can use if you want to create your
own store.

The following program shows how you can use the X509Store to show the X509Certificates
information similar to the one in Figure 12-2.

using System;
using System.Security.Cryptography.X509Certificates;

namespace Encryption {
 class CertificateTest {

 static void Main() {

 X509Store store = new X509Store(StoreName.Root,
 StoreLocation.LocalMachine);
 store.Open(OpenFlags.ReadOnly);

 Console.WriteLine("Friendly Name\t\t\t\t\t Expiration date");
 foreach (X509Certificate2 certificate in store.Certificates) {
 Console.WriteLine("{0}\t{1}", certificate.FriendlyName
 , certificate.NotAfter);
 }
 store.Close();
 }

 }
}

This small program starts by opening in read-only mode the root store from the local machine and
then prints the name and the expiration date of all the certificates in there.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 547

NOTE Figure 12-2 includes two more fields, called Issued To and Issued By. If
you want to obtain this information, it is part of the Subject and Issuer property,
respectively. Those are of type X509DistinguishedName. From there you must
extract the value of the Common Name (CN) attribute.

Implementing Key Management
Sometimes you might just need to keep data safely without thinking too much about the algorithm
used or how it is implemented. For example, in order for an encryption algorithm to be effective,
you will need to protect the shared secret for a symmetric algorithm, and the private key for an
asymmetric algorithm.

To solve this kind of problems, .NET Framework offers in the System.Security.Cryptography
namespace one static class named ProtectedData. This class has two static methods: Protect and
Unprotect. As the name implies, the first one is used to encrypt the data, and the second one is used
to decrypt the data.

Their signatures are as follows:

public static byte[] Protect(
 byte[] userData,
 byte[] optionalEntropy,
 DataProtectionScope scope
)
public static byte[] Unprotect(
 byte[] encryptedData,
 byte[] optionalEntropy,
 DataProtectionScope scope
)

As you can see, both methods accept three parameters. The first parameter represents the data to by
encrypted (userData) or decrypted (encryptedData); the second one is called optionalEntropy, and
it is used to increase the complexity of the encrypted data; and the last one is called scope and is of
type DataProtectionScope. The scope parameter specifies who can decrypt the data. The values it
can take are: DataProtectionScope.CurrentUser and DataProtectionScope.LocalMachine. First,
one specifies that only the current user can decrypt the encrypted data, and the second one specifies
that any logged-in user on the local machine will be able to decrypt the data.

Protect returns the encrypted data, and Unprotect returns the unencrypted data.

REAL-WORLD CASE SCENARIO Encrypt data using the ProtectData class

Use the ProtectedData class to write a method called ProtectString that takes a string in clear text
and encrypts it so that only the current user can decrypt it.

www.EBooksWorld.ir

www.EBooksWorld.ir

548 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

Solution

A possible solution might look like this:

byte[] ProtectString(string data) {

 byte[] userData = System.Text.Encoding.Default.GetBytes(data);
 byte[] encryptedData = ProtectedData.Protect(userData, null,
 DataProtectionScope.CurrentUser);
 return encryptedData;
}

First you convert the string into a byte array, and then you call the ProtectedData.Protect method to
encrypt the data.

Choosing When to Use Which
Microsoft recommends the following algorithms to be used in the following situations:

➤➤ For data privacy, use Aes.

➤➤ For data integrity, use HMACSHA256 or HMACSHA512.

➤➤ For digital signatures, use RSA or ECDsa.

➤➤ For key exchange, use RSA or ECDiffieHellman.

➤➤ For random number generation, use RNGCryptoServiceProvider.

➤➤ For generating a key from a password, use Rfc2898DeriveBytes.

You can find a link to more information about the Cryptography Model on MSDN in the
“Additional Reading and Resources” section.

CODE LAB Using the RSA asymmetric algorithm [Chapter12\Asymmetric\
RSASample.cs]

Consider the following complete piece of code:

using System;
using System.Text;
using System.Security.Cryptography;

namespace EncryptionSamples.Asymmetric
{
 public class RSASample
 {
 public static void Main() {

 string keyContainerName = "MyKeyContainer";
 string clearText = "This is the data we want to encrypt!";
 CspParameters cspParams = new CspParameters();

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Encryption ❘ 549

 cspParams.KeyContainerName = keyContainerName;

 RSAParameters publicKey;
 RSAParameters privateKey;

 using (var rsa = new RSACryptoServiceProvider(cspParams)) {

 rsa.PersistKeyInCsp = true;
 publicKey = rsa.ExportParameters(false);
 privateKey = rsa.ExportParameters(true);

 rsa.Clear();
 }

 byte[] encrypted = EncryptUsingRSAParam(clearText, publicKey);
 string decrypted = DecryptUsingRSAParam(encrypted, privateKey);

 Console.WriteLine("Asymmetric RSA - Using RSA Params");
 Console.WriteLine("Encrypted:{0}", Convert.ToBase64String(encrypted));
 Console.WriteLine("Decrypted:{0}", decrypted);

 Console.WriteLine("Asymmetric RSA - Using Persistent Key Container");
 encrypted = EncryptUsingContainer(clearText, keyContainerName);
 decrypted = DecryptUsingContainer(encrypted, keyContainerName);

 Console.WriteLine("Encrypted:{0}", Convert.ToBase64String(encrypted));
 Console.WriteLine("Decrypted:{0}", decrypted);

 }

 static byte[] EncryptUsingRSAParam(string value, RSAParameters rsaKeyInfo)
 {
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
 {
 rsa.ImportParameters(rsaKeyInfo);
 byte[] encodedData = Encoding.Default.GetBytes(value);
 byte[] encryptedData = rsa.Encrypt(encodedData, true);

 rsa.Clear();
 return encryptedData;
 }
 }

 static string DecryptUsingRSAParam(byte[] encryptedData,
 RSAParameters rsaKeyInfo) {
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
 {
 rsa.ImportParameters(rsaKeyInfo);
 byte[] decryptedData = rsa.Decrypt(encryptedData, true);
 string decryptedValue = Encoding.Default.GetString(decryptedData);

 rsa.Clear();
 return decryptedValue;
 }
 }

www.EBooksWorld.ir

www.EBooksWorld.ir

550 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

 static byte[] EncryptUsingContainer(string value, string containerName)
 {
 CspParameters cspParams = new CspParameters();
 cspParams.KeyContainerName = containerName;
 using (var rsa = new RSACryptoServiceProvider(cspParams))
 {
 byte[] encodedData = System.Text.Encoding.Default.GetBytes(value);
 byte[] encryptedData = rsa.Encrypt(encodedData, true);

 rsa.Clear();
 return encryptedData;
 }
 }

 static string DecryptUsingContainer(byte[] encryptedData, string container)
 {
 CspParameters cspParams = new CspParameters();
 cspParams.KeyContainerName = container;
 using (var rsa = new RSACryptoServiceProvider(cspParams))
 {
 byte[] decryptedData = rsa.Decrypt(encryptedData, true);
 string decryptedValue = Encoding.Default.GetString(decryptedData);

 rsa.Clear();
 return decryptedValue; }
 }
 }
}

Code Lab Analysis

Start by generating new encryption keys pair, by creating a new instance of the
RSACryptoServiceProvider and not specifying any keys. This object won’t be used for encryption
or decryption, only to get or create the keys. Because you send the cspParams as a parameter and set
the PersistKeyInCsp property to true (which is true by default, anyway, you are just being explicit),
specify that you want the keys to be saved in a container called MyKeyContainer. When you run the
code second time, it uses the keys that exist in that container. By setting PersistKeyInCsp property
to false, when you call the Clear method, the parameter is removed from the container.

By calling ExportParameters on the RSA object, you can export the parameters necessary to re-create
the public key (when you invoke it with false as a parameter) or both keys (when you invoke it with true
as a parameter).

Now examine the EncryptUsingRSAParam method, which takes two parameters: the string to encrypt
and an RSAParameters value needed to create the public key.

 1 . Create a new instance of RSACryptoServiceProvider that implements the RSA algorithm.

 2 . Call ImportParameters that takes as a parameter the RSAParameters value exported earlier,
which can generate the public key.

 3 . The call to the System.Text.Encoding.Default.GetBytes method transforms the input value
from a string into a byte array, so you can prepare it for the Encrypt method.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 551

 4 . Call Encrypt to encrypt the data. The second parameter is to be set to false only if you run your
application on a version of Windows prior to Windows XP; otherwise, set it to true.

 5 . Call Clear to remove any sensitive data from memory and return the encrypted data in a byte
array format.

Now examine the DecryptUsingRSAParam method, which takes two parameters: the encrypted data as
a byte array and an RSAParameters value needed to create the public and private key.

 1 . Create a new instance of RSACryptoServiceProvider that implements the RSA algorithm.

 2 . Call ImportParameters that takes as a parameter the RSAParameters value exported earlier,
which can generate the public and private key. You don’t need the public key here, but it will be
created anyway.

 3 . Call Decrypt to decrypt the data. The second parameter is to be set to false only if you run your
application on a version of Windows prior to Windows XP; otherwise, set it to true.

 4 . The call to the System.Text.Encoding.Default.GetString method is transforming the input
value from a byte array into the decrypted string.

 5 . Call Clear to remove any sensitive data from memory and return the decrypted string.

EncryptUsingContainer and DecryptUsingContainer works in exactly the same manner with the
only difference that instead of sending RSAParamaters that are used to generate the keys, you use the
same Crypto Service Provider container that you used when you generated the keys.

MANAGING ASSEMBLIES

Compiling projects results in executable files, generally known as assemblies. Assemblies are the
building blocks of every .NET applications. They are the fundamental unit for deployment, ver-
sioning, reuse, and security.

What Is an Assembly?
An assembly contains Intermediate Language (IL), metadata, and resources. IL is the result of com-
piling the source code files into a common language that the Common Language Runtime (CLR)
understands. CLR has a component called a Just In Time (JIT) compiler that compiles the IL code
into binary code to run it on a specific platform, such as Windows. An assembly can be a single-file
assembly or a multifile assembly. Because Visual Studio can generate only single-file assemblies, this
book does not cover the multifile assembly, but you can find additional information in the “Additional
Reading and Resources” section at the end of this chapter.

An assembly is obtained by compiling a project. The resulting assembly could be a process assem-
blies (EXE files) or library assemblies (DLL files); the only difference between the two of them is
the presence of the main entry point in process assemblies. The main entry point indicates which
method should be called when the application is started, aka the Main method.

www.EBooksWorld.ir

www.EBooksWorld.ir

552 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

Because an assembly is the unit of deployment of any .NET application, if you want to split your
application in smaller units of deployment to make it more manageable and reusable by different
products, you need to split the functionality into different assemblies. Every assembly can then rep-
resent a module in your application, which can be updated independent of the other projects. The
simplest way to implement this kind of modularization is to create different projects, where one
project is one module, and group those into one big solution. To differentiate between different ver-
sions of the same assembly, you need to use Assembly Versions.

Understanding Assembly Versions
Software evolves, and the way to mark that is by creating new versions, with every new version add-
ing new features, fixing bugs, or being a complete rewrite of the software, hopefully for the better.

The .NET assembly version is implemented as a string, normally made up of four numeric parts
separated by dots: Major, Minor, Build number, and Revision. For instance, the current version
of .NET is known as 4.5. This is the marketing version number, or what the customers get to see.
Instead, the assemblies that were released with this version have the following version string embed-
ded: 4.0.30319.17929, where 4 represents the Major number, 0 the Minor number, 30319 the
Build number, and 17929 the Revision. If you choose to have a version number that is in another
format, the compiler generates an error. The recommendation is to use the number format to give
the assembly version a meaning.

ADVICE FROM ThE EXpERTS: Versioning Your Assemblies

Choose the versioning scheme carefully because this can help you in the long run.
If you use the recommended way with numbers, it is much easier to decide which
version is newer based on the version number. The way to think about the different
parts of the version follows.

The Revision is normally a random number used to differentiate two versions that
have the same build number. Normally, you must set a new number every time you
check in and your project is built.

The Build number is a number that normally increases every day, while you are
working on a certain version of your product. This is done normally every night by
your nightly build process.

The Minor number is increased with every public release of your product. Normally,
two versions of the same assembly having the same major number, but different minor
numbers are backward compatible—although this is not always the case. Backward
compatibility means that when replacing an assembly with a newer version of the
same assembly, the system will still work. The way to achieve this is by adding new
features, but never removing existing features or changing the public face of the exist-
ing ones.

The Major number is increased every time when you have a major release of your
product, either by changing existing features or rewriting the entire application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 553

You can set the version of your assembly in two ways. First is via your project settings. Right-click
your project settings and choose Properties. On the Assembly property page, press the Assembly
Information button. A dialog similar to the one in Figure 12-4 appears. The four Assembly Version
fields represent the aforementioned parts of the assembly version.

The second way to set the version is to go directly and edit the AssemblyInfo.cs file. To find the file,
you have to click the project for which you want to change the version, and then expand the prop-
erty node, as shown in Figure 12-5.

FIGURE 12-4: Assembly Information dialog FIGURE 12-5: Opening the AssemblyInfo .cs file

At the end of the file, you can find a line resembling the following code:

[assembly: AssemblyVersion("2.1.42.15")].

As explained in Chapter 8, “Creating and Using Types with Reflection, Custom Attributes,
the CodeDOM, and Lambda Expressions,” this is an attribute implemented in the
AssemblyVersionAttribute applied to the assembly that specifies which version the assembly
should have.

The Assembly Version is ignored by CLR unless it is used together with the strong names. Strong
names are covered in the next section.

USING DIFFERENT KINDS OF VERSIONS

Referring to Figure 12-4, you can see two kinds of versions: Assembly Version
and File Version. The corresponding attribute for the file version is called
AssemblyFileVersionAttribute.

continues

www.EBooksWorld.ir

www.EBooksWorld.ir

554 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

The CLR doesn’t use the File Version. This information is something that has
a meaning for you or your product. Normally, the marketing department cares
about the File Version. Although the File Version is normally specified in the same
format as the assembly version with a Major, Minor, Build, and Revision number,
you can have any string you want. If you use a different format, though, the com-
piler emits a harmless warning. You cannot set the File Version to a string via the
Assembly Information window. You must do it in code by passing the value to the
AssemblyFileVersionAttribute attribute.

.Net Framework offers a third attribute for versioning called the
AssemblyInformationalVersionAttribute. This is plain text and is normally
the value of your product version. If you don’t set it, it will have the value of
AssemblyVersionAttribute.

To see the values of the AssemblyFileVersionAttribute and the
AssemblyInformationalVersionAttribute, you can compile your assembly, using
Windows Explorer navigate to the output folder, and then right-click the assembly.
Then choose the Property menu to bring up the file properties window, and choose
the Details tab. A dialog similar to the one in Figure 12-6 should appear.

FIGURE 12-6: File and product version information

The value of the AssemblyFileVersionAttribute is represented by the value of the
File Version property and the value of AssemblyInformationalVersionAttribute
is represented by the value of the Product Version property.

continued

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 555

Signing Assemblies Using Strong Names
One of the major problems developers were facing prior to .NET was the DLL hell. DLL stands for
dynamic linked library, and it was a way to share code and optimize the space an application takes
on the disk. The problem that the DLL hell refers to could appear when different applications used
the same library. If they were compiled against different version of the same library, the one that
was installed last would override the existing DLL. If there were compatibility issues between dif-
ferent versions of the same assembly, one application started to act erratic, or even refused to start.
.NET solved this problem by introducing a new concept called side-by-side versioning. For this to
work, you must make a distinction between different versions of the same assembly, while assuring
that the two different versions are coming from the same source.

In .NET the name of the assembly consists of four parts:

➤➤ The friendly name

➤➤ The version

➤➤ The culture

➤➤ The public key token

The friendly name is what you previously called the library name. In the normal situation,
this is the name of the assembly file without the extension, so if your assembly file were called
ProgrammingCSharp.dll, then the assembly-friendly name would be ProgrammingCSharp.

The version is the Assembly Version discussed in the previous section.

The culture represents the culture of the assembly. The culture is used when you want to localize
your application for different markets. To localize your application, you create one assembly con-
taining the code and one assembly for each region you want your application to be localized for.
The localized assemblies contain only resources for that specific region such as translated strings
or specific images. The executable assembly always has the culture set to neutral. If you try to set
it to something else, an error will be generated by the complier. Globalization and localization are
outside the scope of this exam, but if you want to know more about this, please see the “Additional
Reading and Resources” section for a link to the MSDN list of articles about this subject.

For an assembly to have a strong name, it needs to be signed with a public/private pair of keys using
the techniques discussed in the previous section. The private key is used to digitally sign the assembly,
whereas the public key is used to verify the signature. The Public Key Token is a 64-bit hash of the
assembly public key. The reason that the .NET uses a hash of the signature instead of the signature
itself is to save space because the signature is much bigger than 64 bits. An assembly that is not digi-
tally signed can have the Public Key Token set to null.

As mentioned earlier, to sign an assembly, you need a pair of public/private keys. You can generate
those keys in two ways. The first way is to create the file via Visual Studio. To do that, you right-click
the project and then choose Properties. On the properties page, choose the Signing tab. There, check
the Sign the Assembly check box, as shown in Figure 12-7.

www.EBooksWorld.ir

www.EBooksWorld.ir

556 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

FIGURE 12-7: The Signing tab in Visual Studio 2012

When you do that, a dialog similar to the one shown in Figure 12-8 appears.

FIGURE 12-8: Create Strong Name Key dialog

As you can see, there you can specify the name of the key file, a password that you can use to pro-
tect the private key in the file, and the algorithm to be used for the signature. The choices for the
algorithm are sha256RSA and sha1RSA. After you create the file, it will be added to your project.
When your project is opened by another user, or by you on another machine, you must to introduce
the password you just set in the previous step.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 557

BEST pRACTICES: Signing Assemblies

It is recommend that you use a strong password for the key file and make the pass-
word available only for a few selected developers—or even better, for the person
responsible for the deployment of your applications. If the password is compro-
mised, it will be easy for someone else to create assemblies and distribute them as
if they come from you. To keep the password secret but still have other developers
working with your application, you must use Delay sign only. Delay sign is outside
the scope of this exam. For extra information about the Delay sign process, look at
the “Additional Reading and Resources” section.

The second way to generate a key is to use the sn.exe program. To do that, you need to open the
Developer Command Prompt for VS2012. From the command line, run the following:

sn.exe -k myFile.snk

The command output should look similar to the one in Figure 12-9.

FIGURE 12-9: Sn .exe output

After you generate the file, instead of choosing <New…> in Visual Studio on the Signing tab, you
need to choose <Browse…> and choose the newly created file. The downside of using sn.exe is that
you cannot specify the password, but sn.exe is used in the delay sign scenario, to extract the public
key from the file, or to sign the assembly before the deployment. You can find more information
about sn.exe in the “Additional Reading and Resources” section.

NOTE Delay signing is not required for the exam but you should to read the article
specified in the “Additional Reading and Resources” section about this subject.

www.EBooksWorld.ir

www.EBooksWorld.ir

558 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

When an assembly needs to be digitally signed, the compiler signs the assembly using the private key
and embeds the public key in the assembly for later verification by other assemblies that refer to it.
The next step is to hash the public key to create the Public Key Token, and embed that one as well
into the assembly.

In conclusion, the assembly name is not only the filename or the friendly name. The complete name
of an assembly is known as the Fully Qualified Name (FQN). For instance the FQN of the System
assembly in .NET 4.5 is

System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Implementing Side-by-Side Versioning
Strong naming would have only little value without the power of running side-by-side different
versions of the same assembly. Consider the following scenario.

In your organization there are two teams working on two different products, but both of them need
to use some common functionality. As mentioned earlier, the best way to deal with this kind of situ-
ation is to move the common code into a separate project, creating a separate assembly that can be
used by both teams. Everything works fine; they deploy their products, and there is only one copy of
the common assembly per machine, instead of having one per product. After a while the first team
might need some additional functionality to be added into the common assembly, but the second
team is “not there yet.” Without the side-by-side versioning, you must keep a copy of the assembly
private for every installation. With two products this might be an acceptable solution, but if you
have more products, or if you are a third-party vendor, then it will become much harder to maintain
this kind of solution.

Side-by-side versioning works only with strong name assemblies because it requires them to be
deployed into the Global Assembly Cache (GAC). GAC is covered in the next section. But for now,
see how side-by-side versioning works.

When you add a reference to an assembly, information about the referred assembly is added to the
manifest file of the assembly. The manifest is embedded into the assembly as part of the metadata.
Inside the manifest file every referenced assembly is represented by a block resembling the follow-
ing code:

// Metadata version: v4.0.30319
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
 .ver 4:0:0:0
}
.assembly extern CommonFunctionality
{
 .ver 1:0:0:0
}
.assembly 'Programming CSharp Assembly'
{ … }

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 559

The first .assembly extern line represents the reference to the mscorlib assembly, which is ref-
erenced by default by all .NET applications because this one contains all the definitions for all the
base data types in .NET. The version of the assembly is 4.0.0.0 and the Public Key Token is (B7 7A
5C 56 19 34 E0 89). The second .assembly extern represents a reference to an assembly called
CommonFunctionality that has version 1.0.0.0 and is not signed. If the second assembly would
have been signed as well, the manifest information would have been something like this:

// Metadata version: v4.0.30319
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
 .ver 4:0:0:0
}
.assembly extern CommonFunctionality
{
 .publickeytoken = (48 27 85 37 58 E3 97 63) // H'.7X..c
 .ver 1:0:0:0
}
.assembly 'Programming CSharp Assembly'
{ …}

This information is shown using the Intermediate Language Disassembler (ildasm.exe) application.
To see that, open the Developer Command Prompt for VS2012 and go the output folder of your
assembly (normally <Your Project Folder>\bin\Debug). From there type ildasm.exe <Your assembly
name>.exe. The command output should look similar with the one in Figure 12-10.

FIGURE 12-10: Invoking ildasm .exe

This opens the IL DASM application, as shown in Figure 12-11.

From there you can double-click the MANIFEST node to open the manifest file, as shown in
Figure 12-12.

www.EBooksWorld.ir

www.EBooksWorld.ir

560 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

FIGURE 12-11: The IL DASM main application window

FIGURE 12-12: The IL DASM MANIFEST window

Now when you try to run the application, the run time tries to locate the right assemblies for you.

If an assembly is not signed, CLR looks into the local folder of the application to try to find an
assembly based only on the assembly name and assembly filename, ignoring the assembly version.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 561

If the assembly is signed, CLR first tries to see if there are any policies specified for that particular
assembly that can instruct CLR to use a different version. This process of replacing an assembly with-
out requiring to recompile the assemblies that use it is called binding redirection. After the version
is established, CLR first looks in the GAC for that particular version of the assembly, and if it is not
there, it looks in the local folder of the application to try to find the right assembly. When the CLR
finds the assembly, it verifies the digital signature of the assembly to ensure that the assembly wasn’t
tampered with. If the CLR finds the assembly but doesn’t find the right version for it or the signature
doesn’t match, it throws a System.IO.FileLoadException. If the CLR cannot find the assembly, a
System.IO.FileNotFoundException is thrown.

NOTE Two different exceptions are thrown. FileLoadException is only thrown
if the CLR doesn’t find the right version of a signed assembly or the assembly
was tampered with. FileNotFoundException is thrown if the assembly is not
found at all.

How CLR does probing on the local folders is outside the scope of this exam, but you can find a
link on the “Additional Reading and Resources” section.

pROCESSOR ARChITECTURE

Since .NET 2.0, Microsoft added the processor architecture to the assembly name,
which is optional. This means that you can have two identical versions of the same
assembly that differ only by the ProcessorArchitecture attribute. The values per-
mitted for the ProcessorArchitecture are described by the System.Reflection
.ProcessorArchitecture enumeration. The values and their meaning are shown
in Table 12-12.

TABLE 12-12: System .Reflection .ProcessorArchitecture Members

MEMBER NAME DESCRIpTION

None Not specified or unknown

MSIL Processor independent

X86 A 32-bit Intel processor

IA64 A 64-bit Intel processor only

Amd64 A 64-bit AMD processor only

Arm An ARM processor

www.EBooksWorld.ir

www.EBooksWorld.ir

562 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

The processor architecture attribute is shown only if it has a value different than None, so if the System
assembly that you saw earlier would set the ProcessorArchitecture to MSIL, the assembly name
would have been

System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089, ProcessorArchitecture=MSIL

Adding Assemblies to the Global Assembly Cache
As mentioned earlier, only signed assemblies can be placed in the GAC, but what is the GAC?

If your application is a non-.NET application and uses dynamic link libraries, it looks for them
either on the folder that the application was installed on or on the folders specified in the PATH envi-
ronment variable. If you want to see the value of the PATH environment variable, open the Developer
Command Prompt for VS2012 and run the following commend:

set PATH

This outputs something similar with the text shown in Figure 12-13.

FIGURE 12-13: Output from set PATH command

Instead, .NET uses the concept of GAC, which is an assembly repository that acts as a cache for
shared libraries. The location of the GAC is <Your Windows Installation Folder>\assembly. If you
want to see which assemblies are in your GAC, you can open Windows Explorer and navigate to
this folder, and you see something resembling Figure 12-14.

As you can see, the list shows all the aforementioned attributes of an assembly: Assembly Name,
Version, Culture, Public Key Token, and Processor Architecture. The empty Culture means that
this is the neutral culture, whereas the empty Processor Architecture means NONE for the proces-
sor architecture. There is no empty Public Key Token because only strong named (digitally signed)
assemblies can be deployed on the GAC.

Before talking about how to add assemblies to GAC, you’ll first explore the advantages of using
the GAC.

www.EBooksWorld.ir

www.EBooksWorld.ir

Managing Assemblies ❘ 563

FIGURE 12-14: The GAC view from Windows Explorer

First, two advantages already mentioned are side-by-side versioning and sharing of assemblies. If an
assembly is already loaded in memory, the CLR does not load it again.

Another advantage is that the assembly signature is verified before it is installed on the GAC, so
when the assembly will be loaded by the CLR when it is executed, it skips verification improving
the startup time of your application.

Last is the possibility to precompile the assemblies, so they won’t need to be compiled by the JIT
compiler every time you load them, as discussed at the beginning of this section. This can speed
up the startup process even more. To do that you must run a utility called ngen.exe (Native Image
Generator), which is outside the scope of this book, but as always you can find more information
in the “Additional Reading and Resources” section.

You can install an assembly in the GAC in two ways.

First, use an installer that can do this. This is the preferred way. By using the installer you ensure
that the installation is atomic, meaning that it either succeeds to install all the components or none
at all, and it gives you the possibility to uninstall it later in the same manner. When an assembly
is installed this way, the installer adds the assembly if is not there, or if it is there, it increases the
reference count only, making sure that the assembly won’t be uninstalled if it is still used when you
uninstall the application.

The second way is to use the utility called gacutil.exe, which can be run as follows:

gacutil.exe [options] [assemblyName | assemblyPath | assemblyListFile]

Table 12-13 shows the most common parameters for the gacutil.exe. For a complete reference, refer
to the “Additional Reading and Resources” section.

www.EBooksWorld.ir

www.EBooksWorld.ir

564 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

TABLE 12-13: gacutil .exe Usage

OpTION DESCRIpTION

/i Adds an assembly to the GAC .

/u Removes an assembly from the GAC .

/l [assemblyName] Lists all the assemblies in the GAC . Specifying the assemblyName
parameter will list only the assemblies matching that name .

/r Traces references to an assembly by increasing a counter on every
install and decreasing the counter on uninstall . Specify this option
with the /i, /il, /u, or /ul options . If an assembly is traced, it will be
removed from GAC only when the counter is 0 .

SUMMARY

In this chapter you learned how to encrypt sensitive data in your application using both symmetric
and asymmetric algorithms. You looked at some of the existing algorithms, how you can manage
and create certificates, and how to manage the encryption keys. Then you looked at how to hash
data to ensure that the information is not modified and you ended by looking at how you can encrypt
streams of data.

In this chapter you learned as well about assemblies, what they are, and how you can create strong-
named assemblies to use several side-by-side versions. You then looked at the options available to
add an assembly to the GAC, and how you can create a WINMD assembly.

ChApTER TEST QUESTIONS

The following questions are similar to the types of questions you will find on Exam 70-483. Read each
question carefully and select the answer or answers that represent the best solution to the problem.
You can find the answers in Appendix A, “Answers to Chapter Test Questions.”

 1 . You are a developer at company xyx. You have been asked to implement a method to
safely save and restore data on the local machine. What kind of algorithm best fits the
requirements?

 a . Symmetric algorithm

 b . Asymmetric algorithm

 c . Hashing algorithm

 d . X509Certificate

 e . None of the above

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter Test Questions ❘ 565

 2 . You are a developer at the company xyx. You have been asked to implement a method to
safely send data to another machine. What kind of algorithm best fits the requirements?

 a . Symmetric algorithm

 b . Asymmetric algorithm

 c . Hashing algorithm

 d . X509Certificate

 e . None of the above

 3 . You are a developer at the company xyx. You have been asked to implement a method to
handle password encryption without offering the possibility to restore the password. What
kind of algorithm best fits the requirements?

 a . Symmetric algorithm

 b . Asymmetric algorithm

 c . Hashing algorithm

 d . X509Certificate

 e . None of the above

 4 . Which of the following code snippets will you use to calculate the secure hash of a byte array
called userData? If you already have created an algorithm object called sha.

 a . userData.GetHashCode(sha);

 b . sha.ComputeHash(userData);

 c . sha.GetHash(userData);

 d . sha.EncryptHash(userData);

 5 . Which of the following code snippets will you use to encrypt an array called userData that
can be decrypted by anyone logged in on the current machine, and without using
any entropy?

 a . ProtectedData.Protect(userData, null,

DataProtectionScope.CurrentUser);

 b . ProtectedData.Protect(userData, null,

DataProtectionScope.LocalMachine);

 c . ProtectedData.Encrypt(userData, null,

DataProtectionScope.CurrentUser);

 d . ProtectedData.Unprotect(userData, null,

DataProtectionScope.LocalMachine);

www.EBooksWorld.ir

www.EBooksWorld.ir

566 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

 6 . Which of the following code will you use to encrypt an array called encryptedData that can
be encrypted by the current user, and without using any entropy?

 a . ProtectedData.Unprotect(encryptedData, null, DataProtectionScope

.CurrentUser);

 b . ProtectedData.Protect(encryptedData, null, DataProtectionScope

.LocalMachine);

 c . ProtectedData.Decrypt(encryptedData, null, DataProtectionScope

.CurrentUser);

 d . ProtectedData.Unprotect(encryptedData, null, DataProtectionScope

.LocalMachine);

 7 . What describes a strong name assembly?

 a . Name

 b . Version

 c . Public key token

 d . Culture

 e . Processor Architecture

 f . All the above

 8 . How can you deploy a strong named assembly?

 a . By running gacutil.exe

 b . By creating an installer

 c . By running asm.exe

 d . By copying the file to the Bin folder of the application

 e . By running regsvcs.exe

 9 . How can you deploy a private assembly?

 a . By running gacutil.exe

 b . By adding a reference to the assembly in Visual Studio

 c . By copying the file in the Bin folder of the application

 d . By copying the file in C:\Windows folder

 10 . What is a strong name assembly?

 a . An assembly with the name marked as bold

 b . An assembly with a major and minor version specified

 c . An assembly with a full version specified

 d . An assembly with the culture info specified

 e . A signed assembly

www.EBooksWorld.ir

www.EBooksWorld.ir

Additional Reading and Resources ❘ 567

ADDITIONAL READING AND RESOURCES

Here are some additional useful resources to help you understand the topics presented in this
chapter:

Cryptography Model
http://msdn.microsoft.com/en-us/library/0ss79b2x.aspx

Makecert.exe (Certificate Creation Tool)
http://msdn.microsoft.com/en-us/library/bfsktky3.aspx

Working with Assemblies
http://msdn.microsoft.com/en-us/library/8wxf689z.aspx

Globalization and Localization
http://msdn.microsoft.com/en-us/library/hh965328.aspx

Delay signing of an assembly
http://msdn.microsoft.com/en-us/library/t07a3dye.aspx

Ngen.exe (Native Image Generator)
http://msdn.microsoft.com/en-us/library/6t9t5wcf(v=vs.110).aspx

Sn.exe (Strong Name Tool)
http://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.110).aspx

How CLR Locates Assemblies
http://msdn.microsoft.com/en-us/library/yx7xezcf.aspx

Gacutil.exe (Global Assembly Cache Tool)
http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx

www.EBooksWorld.ir

www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/0ss79b2x.aspx
http://msdn.microsoft.com/en-us/library/bfsktky3.aspx
http://msdn.microsoft.com/en-us/library/8wxf689z.aspx
http://msdn.microsoft.com/en-us/library/hh965328.aspx
http://msdn.microsoft.com/en-us/library/t07a3dye.aspx
http://msdn.microsoft.com/en-us/library/6t9t5wcf(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/yx7xezcf.aspx
http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx

568 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

ChEAT ShEET

This cheat sheet is designed as a way for you to quickly study the key points of this chapter.

Choosing an encryption algorithm

➤➤ If you need to encrypt data that is used locally, or you have a secure way to distribute the
encryption key, use the symmetric encryption.

➤➤ If you don’t have a secure way to send the encryption key data between parties, then asym-
metric encryption is recommended.

➤➤ If you need only to ensure integrity of the data, use a hashing algorithm.

➤➤ If you need to ensure both integrity and authenticity, choose a MAC algorithm.

Symmetric encryption

➤➤ Based on a common key called shared secret.

➤➤ It needs an initialization vector (IV) that doesn’t need to be secret but is used to encrypt the
first block of data.

➤➤ You use it by instantiating a symmetric algorithm object and then calling CreateEncryptor
or CreateDecryptor.

➤➤ The encryptor/decryptor is then used with either by calling directly the
TransformFinalBlock method or by sending it to a CryptoStream.

Asymmetric encryption

➤➤ It is based on a pair of complementary keys. Encrypted data with one key can be decrypted
only with the other key.

➤➤ One key is kept secret and is called a private key; the other one is made available to anyone
that wants to encrypt data, or verify encrypted data, and it is called a public key.

hashing

➤➤ Mapping binary data of a variable length to a fixed size binary data, called hash.

➤➤ When you need to make sure that data is not modified while transferred, you can calculate the
cryptographic hash and send it together with the data to be verified by the receiving party.

➤➤ The two commonly used algorithms are SHA256 and SHA512 with resulting hashes of
256 and 512 bits, respectively (32 and 64 bytes).

Key management

➤➤ Symmetric keys can be exchanged using asymmetric algorithms.

➤➤ Asymmetric private keys can be secured either by using certificates or by using Crypto Service
Providers containers.

Assembly version

➤➤ An assembly version is specified by four parts: Major, Minor, Build, and Revision.

www.EBooksWorld.ir

www.EBooksWorld.ir

Review of Key Terms ❘ 569

Strong name

➤➤ An assembly that is digitally signed is called a strong named assembly.

➤➤ A strong name has five parts: Friendly Name, Version, Culture, Public Key Token, and
Processor Architecture.

GAC

➤➤ Stands for Global Assembly Cache.

➤➤ A repository to share .NET assemblies.

➤➤ Only strong named assemblies can be deployed on the GAC.

➤➤ Several versions of the same assembly can be deployed on the GAC at the same time.

REVIEW OF KEY TERMS

assembly An assembly is the unit of reuse, deployment, versioning, and security.

asymmetric encryption (public key) A cryptographic algorithm that uses two complementary keys,
one for encryption and one for decryption. Data encrypted with the public key can only be decrypted
using the private key.

Certificate Authority (CA) An entity that issues digital certificates.

Certificate Revocation List (CRL) A list of digital certificates that has been revoked for various
reasons. You shouldn’t use a certificate if it is revoked.

certificate stores A special storage location on your computer, used to store encryption certificates.

Common Language Runtime (CLR) CLR is the component of .NET Framework responsible for
running .NET applications and managing their running environment.

cryptography The practice and study of techniques for secure communication.

decryption The process of decoding previously encrypted data so that it can be used by your
application.

encryption The process of encoding data so that it cannot be read by an unauthorized person.

Global Assembly Cache (GAC) GAC is a machine-wide code cache.

hash bucket A data structure that holds items that share the same hash value.

hashing Used to map data structures of variable length, to fixed size data structures. Hashing the
same data using the same algorithm will always yield the same hash value.

initialization vector (IV) A data array used by the encryption algorithms to encrypt the first data
block. The IV doesn’t need to be kept secret.

Intermediate Language (IL) The result of compiling a .NET application from source code.

Just In Time compiler (JIT) A component of the .NET that transforms the IL into binary code that
can be run on the target platform.

www.EBooksWorld.ir

www.EBooksWorld.ir

570 ❘ ChApTER 12 usIng encryPtIon and managIng assemBlIes

Message Authentication Code (MAC) A family of cryptographic algorithms used to provide data
integrity and authenticity.

private key The public and private keys are a pair of complementary keys used together in the
asymmetric encryption. Data encrypted with the private key can only be decrypted using the public
key, and data encrypted with the public key can only be decrypted using the private key.

public key See private key.

public Key Infrastructure (pKI) The infrastructure needed to handle digital certificates.

Secured hash Algorithm (ShA) A family of cryptographic algorithms used to calculate hashes
published by NIST.

Secure Socket Layer (SSL) A cryptographic protocol used for secure communication over the Internet.

symmetric encryption (shared secret) A cryptographic algorithm that uses the same key for both
encryption and decryption of data.

Transport Layer Security (TLS) A cryptographic protocol used for secure communication over the
Internet, the successor of SSL.

EXAM TIpS AND TRICKS

The Review of Key Terms and the Cheat Sheet for this chapter can be printed to
help you study. You can find these files in the ZIP file for this chapter at www.wrox
.com/remtitle.cgi?isbn=1118612094 on the Download Code tab.

www.EBooksWorld.ir

www.EBooksWorld.ir

http://www.wrox.com/remtitle.cgi?isbn=1118612094

Answers to Sample Test
Questions

ChApTER 1: INTRODUCING ThE pROGRAMMING
IN C# CERTIFICATION

Chapter 1 has no chapter test questions.

ChApTER 2: BASIC pROGRAM STRUCTURE

 1 . You want to declare an integer variable called myVar and assign it the value 0. How
can you accomplish this?

 b . myVar = 0;

 2 . You need to make a logical comparison where two values must return true in order
for your code to execute the correct statement. Which logical operator enables you to
achieve this?

 d . &&

 3 . What kind of result is returned in the condition portion of an if statement?

 a . Boolean

 4 . What are the keywords supported in an if statement?

 b . if, else, else if

 5 . In the following code sample, will the second if structure be evaluated?

bool condition = true;

if(condition)

AppENDIX

www.EBooksWorld.ir

www.EBooksWorld.ir

572 ❘ AppENDIX ansWers to samPle test QuestIons

 if(5 < 10)
 Console.WriteLine("5 is less than 10);

 a . Yes

 6 . If you want to iterate over the values in an array of integers called arrNumbers to perform an
action on them, which loop statement enables you to do this?

 a . foreach (int number in arrNumbers){}

 7 . What is the purpose of break; in a switch statement?

 b . It causes the code to exit the switch statement.

 8 . What are the four basic repetition structures in C#?

 c . for, foreach, while, do-while

 9 . How many times will this loop execute?

int value = 0;
do
{
 Console.WriteLine (value);
} while value > 10;

 b . 1 time

ChApTER 3: WORKING WITh ThE TYpE SYSTEM

 1 . What is the maximum value you can store in an int data type?

 d . 4,294,967,296

 2 . True or false: Double and float data types can store values with decimals.

 a . True

 3 . Which declaration can assign the default value to an int type?

 b . int myInt = new int();

 4 . True or false: structs can contain methods.

 a . True

 5 . What is the correct way to access the firstName property of a struct named Student?

 a . string name = Student.firstName;

 6 . In the following enumeration, what will be the underlying value of Wed?

enum Days {Mon = 1, Tue, Wed, Thur, Fri, Sat, Sun};

 b . 3

 7 . What are two methods with the same name but with different parameters?

 a . Overloading

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 4: Using Types ❘ 573

 8 . What is the parameter in this method known as?

public void displayAbsoluteValue(int value = 1)

 b . Optional

 9 . When you create an abstract method, how do you use that method in a derived class?

 b . You must override the method in your derived class.

 10 . How do you enforce encapsulation on the data members of your class?

 a . Create private data members.

 c . Use public properties.

 11 . Boxing refers to:

 b . Converting a value type to a reference type

 12 . What is one advantage of using named parameters?

 a . You can pass the arguments in to the method in any order using the parameter
names.

 13 . What is an advantage of using Generics in .NET?

 b . Generics enable you to create classes that accept the type at creation time.

 14 . What does the <T> designator indicate in a generic class?

 c . It is a placeholder that will contain the object type used.

 15 . How are the values passed in generic methods?

 b . They are passed by reference.

ChApTER 4: USING TYpES

 1 . To parse a string that might contain a currency value such as $1,234.56, you should pass the
Parse or TryParse method which of the following values?

 c . NumberStyles.Currency

 2 . Which of the following statements is true for widening conversions?

 d . All of the above.

 3 . Which of the following statements is true for narrowing conversions?

 b . The source and destination types must be compatible.

 4 . Assuming total is a decimal variable holding the value 1234.56, which of the following
statements displays total with the currency format $1,234.56?

 c . Console.WriteLine(total.ToString("c"));

 5 . Which of the following statements generates a string containing the text "Veni, vidi, vici "?

 c . String.Format("{2}, {0}, {3}", "vidi", "Venti", "Veni", "vici")

www.EBooksWorld.ir

www.EBooksWorld.ir

574 ❘ AppENDIX ansWers to samPle test QuestIons

 6 . If i is an int and l is a long, which of the following statements is true?

 a . i = (int)l is a narrowing conversion.

 7 . Which of the following methods is the best way to store an integer value typed by the user in
a variable?

 d . TryParse

 8 . The statement object obj = 72 is an example of which of the following?

 c . Boxing

 9 . If Employee inherits from Person and Manager inherits from Employee, which of the following
statements is valid?

 a . Person alice = new Employee();

 10 . Which of the following is not a String method?

 c . StopsWith

 11 . Which of the following techniques does not create a String containing 10 spaces?

 d . Use the String class's Space method passing it 10 as the number of spaces the string
should contain.

 12 . Which of the following statements can you use to catch integer overflow and underflow errors?

 a . checked

 13 . Which of the following techniques should you use to watch for floating point operations that
cause overflow or underflow?

 c . Check the result for the value Infinity or NegativeInfinity.

ChApTER 5: CREATING AND IMpLEMENTING CLASS hIERARChIES

 1 . Which the following statements about the base keyword is false?

 c . The base keyword lets a constructor invoke a different constructor in the same class.

 2 . Which the following statements about the this keyword is false?

 b . A constructor can use a this statement and a base statement if the base statement
comes first.

 3 . Suppose you have defined the House and Boat classes and you want to make a HouseBoat class
that inherits from both House and Boat. Which of the following approaches would not work?

 a . Make HouseBoat inherit from both House and Boat.

 4 . Suppose the HouseBoat class implements the IHouse interface implicitly and the IBoat interface
explicitly. Which of the following statements is false?

 b . The code can use a HouseBoat object to access its IBoat members.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 6: Working with Delegates, Events, and Exceptions ❘ 575

 5 . Which of the following is not a good use of interfaces?

 d . To reuse the code defined by the interface.

 6 . Suppose you want to make a Recipe class to store cooking recipes and you want to sort the
Recipes by the MainIngredient property. In that case, which of the following interfaces
would probably be most useful?

 b . IComparable

 7 . Suppose you want to sort the Recipe class in question 6 by any of the properties
MainIngredient, TotalTime, or CostPerPerson. In that case, which of the following
interfaces would probably be most useful?

 c . IComparer

 8 . Which of the following statements is true?

 c . A class can inherit from at most one class and implement any number of interfaces.

 9 . A program can use the IEnumerable and IEnumerator interfaces to do which of the following?

 a . Use MoveNext and Reset to move through a list of objects.

 10 . Which of the following statements about garbage collection is false?

 d . Before destroying an object, the GC calls its Dispose method.

 11 . Which of the following statements about destructors is false?

 c . Destructors are inherited.

 12 . If a class implements IDisposable, its Dispose method should do which of the following?

 d . All of the above.

 13 . If a class has managed resources and no unmanaged resources, it should do which of the
following?

 b . Implement IDisposable and not provide a destructor.

 14 . If a class has unmanaged resources and no managed resources, it should do which of the
following?

 a . Implement IDisposable and provide a destructor.

ChApTER 6: WORKING WITh DELEGATES, EVENTS,
AND EXCEpTIONS

 1 . Which of the following is a valid delegate definition?

 d . private delegate void MyDelegate(float x);

 2 . Which of the following statements is not true of delegate variables?

 a . You need to use a cast operator to execute the method to which a delegate
variable refers.

www.EBooksWorld.ir

www.EBooksWorld.ir

576 ❘ AppENDIX ansWers to samPle test QuestIons

 3 . If the Employee class inherits from the Person class, covariance lets you do which of
the following?

 b . Store a method that returns an Employee in a delegate that represents methods that
return a Person.

 4 . If the Employee class inherits from the Person class, contravariance lets you do which of
the following?

 c . Store a method that takes a Person as a parameter in a delegate that represents
methods that take an Employee as a parameter.

 5 . In the variable declaration Action<Order> processor, the variable processor represents
which of the following?

 b . Methods that take an Order object as a parameter and return void.

 6 . In the variable declaration Func<Order> processor, the variable processor represents
which of the following?

 a . Methods that take no parameters and return an Order object.

 7 . Suppose F is declared by the statement Func<float, float> F. Then which of the following
correctly initializes F to an anonymous method?

 d . F = delegate(float x) { return x * x; };

 8 . Suppose the variable note is declared by the statement Action note. Then which of the
following correctly initializes note to an expression lambda?

 c . note = () => MessageBox.Show("Hi");

 9 . Suppose the variable result is declared by the statement Func<float, float> result.
Which of the following correctly initializes result to an expression lambda?

 d . Both a and c are correct.

 10 . Which of the following statements about statement lambdas is false?

 b . A statement lambda cannot return a value.

 11 . Suppose the MovedEventHandler delegate is defined by the statement delegate void
MovedEventHandler(). Which of the following correctly declares the Moved event?

 d . Both b and c are correct.

 12 . Suppose the Employee class is derived from the Person class and the Person class defines an
AddressChanged event. Which of the following should you not do to allow an Employee
object to raise this event?

 b . Create an OnAddressChanged method in the Employee class that raises the event.

 13 . Which of the following statements subscribes the myButton_Click event handler to catch the
myButton control’s Click event?

 a . myButton.Click += myButton_Click;

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 7: Multithreading and Asynchronous Processing ❘ 577

 14 . Suppose the Car class provides a Stopped event that takes as parameters sender and
StoppedArgs objects. Suppose also that the code has already created an appropriate
StoppedArgs object named args. Then which of the following code snippets correctly
raises the event?

 c . if (Stopped != null) Stopped(this, args);

 15 . Which of the following statements about events is false?

 c . If an object subscribes to an event once and then unsubscribes twice, its event handler
throws an exception when the event is raised.

 16 . Which of the following statements about inheritance and events is false?

 a . A derived class can raise a base class event by using code similar to the following:

if (base.EventName != null) base.EventName(this, args);

 17 . Which of the following statements about exception handling is true?

 a . You can nest a try-catch-finally block inside a try, catch, or finally section.

 18 . Which of the following methods can you use to catch integer overflow exceptions?

 d . Either b or c.

 19 . Which of the following returns true if variable result holds the value
float.PositiveInfinity?

 d . All of the above.

 20 . Which of the following statements about throwing exceptions is false?

 b . If you rethrow the exception ex with the statement throw, the exception’s call stack is
reset to start at the current line of code.

 21 . Which of the following should you not do when building a custom exception class?

 c . Make it implement IDisposable.

ChApTER 7: MULTIThREADING AND
ASYNChRONOUS pROCESSING

 1 . You are a developer at company xyx. You have been asked to improve the responsiveness of
your WPF application. Which solution best fits the requirements?

 a . Use the BackgroundWorker class.

 2 . How do you execute a method as a task?

 d . All the above.

 3 . Which of the following is not a locking mechanism?

 d . async

www.EBooksWorld.ir

www.EBooksWorld.ir

578 ❘ AppENDIX ansWers to samPle test QuestIons

 4 . How can you schedule work to be done by a thread from the thread pool?

 c . You call the ThreadPool.QueueUserWorkItem method.

 d . You create a new thread and set its property

 5 . Which of the following are methods of the Parallel class?

 b . Invoke

 c . For

 d . ForEach

 6 . Which method can you use to cancel an ongoing operation that uses CancelationToken?

 b . Call Cancel method on the CancelationTokenSource object that was used to create the
CancelationToken

 7 . Which method would you call when you use a barrier to mark that a participant reached that
point?

 c . SignalAndWait

 8 . What code is equivalent with lock(syncObject){…}?

 c . Monitor.Enter(syncObject); try{…} finally{ Monitor.
Exit(syncObject); }

 9 . In a multithreaded application how would you increment a variable called counter in a lock
free manner? Choose all that apply.

 c . Interlocked.Add(ref counter, 1);

 e . Interlocked.Increment (ref counter);

 10 . Which method will you use to signal and EventWaitHandle?

 c . Set

ChApTER 8: CREATING AND USING TYpES WITh REFLECTION,
CUSTOM ATTRIBUTES, ThE CODEDOM, AND LAMBDA
EXpRESSIONS

 1 . You are given an assignment to create a code generator to automate the task of creating
repetitive code. Which namespace contains the types needed to generate code?

 d . System.CodeDom

 2 . Which code can create a lambda expression?

 c . x => x * x;

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 8: Reflection, Custom Attributes, the CodeDOM, and Lambda Expressions ❘ 579

 3 . You are consulting for a company called Contoso and are taking over an application that
was built by a third-party software company. There is an executable that is currently not
working because it is missing a DLL file that is referenced. How can you figure out which
DLL files the application references?

 b . Create an instance of the Assembly class, load the assembly, and call the
GetReferencedAssemblies method.

 4 . You are a developer for a finance department and are building a method that uses reflection
to get a reference to the type of object that was passed as a parameter. Which syntax can be
used to determine an object’s type?

 d . Type myType = myParameter.GetType();

 5 . You are asked to create a custom attribute that has a single property, called Version, that
allows the caller to determine the version of a method. Which code can create the attribute?

 b . class MyCustomAttribute : System.Attribute { public string

Version { get; set; } }

 6 . Which class in the System.Reflection namespace would you use if you want to determine
all the classes contained in a DLL file?

 b . Assembly

 7 . Which method of the Assembly class allows you to get all the public types defined in
the Assembly?

 c . GetExportedTypes

 8 . Which property of the Assembly class returns the name of the assembly?

 d . FullName

 9 . Which method of the Assembly class returns an instance of the current assembly?

 a . GetExecutingAssembly

 10 . Which syntax will Load an Assembly?

 a . Assembly.Load("System.Data, Version=4.0.0.0, Culture=neutral, Public

KeyToken=b77a5c561934e089");

 b . Assembly.LoadFrom(@"c:\MyProject\Project1.dll");

 c . Assembly.LoadFile(@"c:\MyProject\Project1.dll");

 d . Assembly.ReflectionOnlyLoad(("System.Data, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089");

 11 . Which method should you call if you want the .NET Framework to look in the load-context
to load an Assembly?

 c . Load

www.EBooksWorld.ir

www.EBooksWorld.ir

580 ❘ AppENDIX ansWers to samPle test QuestIons

 12 . Which method should you call if you want the .NET Framework to look in the load-from
context?

 b . LoadFrom

 13 . Which line creates an instance of a DataTable using reflection?

 a . myAssembly.CreateInstance("System.Data.DataTable");

 14 . Which class would you create if you wanted to determine all the properties contained in a
class using reflection?

 d . Type

 15 . How can you determine if a class is public or private?

 a . Create an instance of the Type class using the typeof keyword and then examine the
IsPublic property of the Type variable.

 16 . Which class in the System.Reflection namespace is used to represent a field defined in a class?

 b . FieldInfo

 17 . Which property of the Type class can you use to determine the number of dimension for
an array?

 d . GetArrayRank

 18 . Which statement will returns a private, instance field called "myPrivateField" using reflection?
Assume the myClass variable is an instance of a class.

 a . myClass.GetType().GetField("myPrivateField", BindingFlags.NonPublic

| BindingFlags.Instance)

 19 . Which method of the MethodInfo class can be used to execute the method?

 b . Invoke

 20 . Which statement uses reflection to execute the method and passes in two parameters given
the following code block?

MyClass myClass = new MyClass();
MethodInfo myMethod = typeof(MyClass).GetMethod("Multiply");

 c . myMethod.Invoke(myClass, new object[] { 4, 5 });

ChApTER 9: WORKING WITh DATA

 1 . Which object does the variable mySet inherit from?

Int[] mySet = new int[5];

 c . System.Array

 2 . Which type should you use to store objects of different types but do not know how many
elements you need at the time of creation?

 d . ArrayList

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 9: Working with Data ❘ 581

 3 . If you create a custom class that is going to be used as elements in a List object and you want
to use the Sort method of the List object to sort the elements in the array, what steps must you
take when coding the custom class?

 b . Inherit from the IComparable interface.Implement the CompareTo method.

 4 . Which collection would you use if you need to process the items in the collection on first-in-
first-out order?

 b . Queue

 5 . Which collection would you use if you need to process the items in the collection on a last-in-
first-out order?

 c . Stack

 6 . Which collection would you use if you need to quickly find an element by its key rather than
its index?

 a . Dictionary

 c . SortedList

 7 . Which ADO.NET object is used to connect to a database?

 b . Connection

 8 . Which properties of an ADO.NET Command object must you set to execute a stored
procedure?

 c . CommandTypeCommandTextParameters

 9 . Which Command object’s method would you use to execute a query that does not return
any results?

 a . ExecuteNonQuery

 10 . Which Command object’s method would you use to execute a query that returns only one row
and one column?

 c . ExecuteScalar

 11 . Which ADO.NET object is a forward only cursor and is connected to the database while the
cursor is open?

 a . DBDataReader

 12 . Which ADO.NET Command object’s property would you use when a query returns the SUM
of a column in a table?

 c . ExecuteScalar

 13 . Which ADO.NET object is a fully traversable cursor and is disconnected from the database?

 c . DataTable

 14 . Which method of a DataAdapter is used to populate a DataSet?

 b . Fill

www.EBooksWorld.ir

www.EBooksWorld.ir

582 ❘ AppENDIX ansWers to samPle test QuestIons

 15 . Which property of an ADO.NET DataAdapter is used to insert records in a database?

 c . InsertCommand

 16 . Which ADO.NET Command object’s property would you use when a query returns the SUM
of a column in a table?

 c . ExecuteScalar

 17 . When using the ADO.NET Entity Framework you create a Model that represents the object in
the database. What class does the Model inherit from?

 a . DBContext

 18 . How are stored procedures represented in the ADO.NET Entity Framework?

 b . A method is added to the Model that is the same name as the stored procedure.

 19 . Which code uses the ADO.NET Entity Framework to add a record to the database?

 a .
using (NorthwindsEntities db = new NorthwindsEntities())
{
 Category category = new Category()
 {
 CategoryName = "Alcohol",
 Description = "Happy Beverages"
 };

 db.Categories.Add(category);
 db.SaveChanges();
}

 20 . Which code uses the ADO.NET Entity Framework to update a record in the database?

 c .
Category category = db.Categories.First(c => c.CategoryName == "Alcohol");
category.Description = "Happy People";
db.SaveChanges();

ChApTER 10: WORKING WITh LANGUAGE INTEGRATED
QUERY (LINQ)

 1 . Which answer has the correct order of keywords for a LINQ query expression?

 c . from, where, select

 2 . Which where clause can select all integers in the myList object that are even numbers given the
following from clause?

from i in myList

 c . where i % 2 == 0

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 10: Working with Language Integrated Query (LINQ) ❘ 583

 3 . Which line of code executes the LINQ query?

[1] var result = from i in myArray

[2] order by i

[3] select i

[4] foreach(int i in result)

[5] { …}

 d . Line 4

 4 . Which method can you use to find the minimum value in a sequence?

 a . (from i in myArray select i).Min()

 5 . Which methods can you use to find the first item in a sequence?

 b . First

 d . Take

 6 . Which where clause returns all integers between 10 and 20?

 b . where i >= 10 && i <= 20

 7 . Which clause orders the state and then the city?

 c . orderby h.State, h.City

 8 . Which statement selects an anonymous type?

 c . select new { h.City, h.State }

 9 . Which on statement joins two sequences on the StateId property?

 a . on e.StateId equals s.StateId

 10 . Which two keywords must you use in a join clause to create an outer join?

 b . into, DefaultIfEmpty

 11 . Which join clause uses a composite key?

 a . on new { City = e.City, State = e.State } equals new { City =

h.City, State = h.State }

 12 . Which statement groups a sequence by the State property?

 c . group e by e.State

 13 . Which answers return the count of all even numbers?

 a . myArray.Where(i => i % 2 == 0).Count()

 b . myArray.Count(i => i % 2 == 0)

www.EBooksWorld.ir

www.EBooksWorld.ir

584 ❘ AppENDIX ansWers to samPle test QuestIons

ChApTER 11: INpUT VALIDATION, DEBUGGING,
AND INSTRUMENTATION

 1 . If the user is typing data into a TextBox and types an invalid character, which of the following
actions would be inappropriate for the program to take?

 d . Display a message box telling the user that there is an error.

 2 . If the user types an invalid value into a TextBox and moves focus to another TextBox, which of
the following actions would be inappropriate for the program to take?

 a . Force focus back into the TextBox that contains the error.

 3 . If the user enters some invalid data on a form and then clicks the form’s Accept button,
which of the following actions would be appropriate for the program take?

 d . All the above.

 4 . Which of the following methods returns true if a regular expression matches a string?

 b . Regex.IsMatch

 5 . Which of the following regular expressions matches the Social Security number format
###-##-#### where # is any digit?

 c . ^\d{3}-\d{2}-\d{4}$

 6 . Which of the following regular expressions matches a username that must include between
6 and 16 letters, numbers, and underscores?

 b . ^[a-zA-Z0-9_]{6,16}$

 7 . Which of the following regular expressions matches license plate values that must include
three uppercase letters followed by a space and three digits, or three digits followed by a
space and three uppercase letters?

 a . (^\d{3} [A-Z]{3}$)|(^[A-Z]{3} \d{3}$)

 8 . Which of the following statements about assertions is true?

 d . All the above.

 9 . Which of the following statements about the Debug and Trace classes is true?

 b . The Debug class generates messages if DEBUG is defined. The Trace class generates
messages if TRACE is defined.

 10 . Which of the following statements about builds is true by default?

 a . Debug builds define the DEBUG symbol.

 b . Debug builds define the TRACE symbol.

 d . Release builds define the TRACE symbol.

 11 . Which of the following statements about PDB files is false?

 b . You can use a PDB file to debug any version of a compiled executable.

www.EBooksWorld.ir

www.EBooksWorld.ir

Chapter 12: Using Encryption and Managing Assemblies ❘ 585

 12 . Which of the following statements about tracing and logging is false?

 d . A program cannot write events into the system’s event logs, so you can see them in
the Event Viewer.

 13 . Which of the following methods would probably be the easiest way to find bottlenecks in a
program if you had no idea where to look?

 a . Use an automatic profiler.

 14 . What of the following is the best use of performance counters?

 b . To determine how often a particular operation is occurring on the system as a whole.

ChApTER 12: USING ENCRYpTION AND MANAGING ASSEMBLIES

 1 . You are a developer at company xyx. You have been asked to implement a method to
safely save and restore data on the local machine. What kind of algorithm best fits the
requirements?

 a . Symmetric algorithm

 2 . You are a developer at the company xyx. You have been asked to implement a method to
safely send data to another machine. What kind of algorithm best fits the requirements?

 b . Asymmetric algorithm

 3 . You are a developer at the company xyx. You have been asked to implement a method to
handle password encryption without offering the possibility to restore the password. What
kind of algorithm best fits the requirements?

 c . Hashing algorithm

 4 . Which of the following code snippets will you use to calculate the secure hash of a byte array
called userData? If you already have created an algorithm object called sha.

 b . sha.ComputeHash(userData);

 5 . Which of the following code snippets will you use to encrypt an array called userData
that can be decrypted by anyone logged in on the current machine, and without using
any entropy?

 b . ProtectedData.Protect(userData, null, DataProtectionScope.

LocalMachine);

 6 . Which of the following code will you use to encrypt an array called encryptedData that can
be encrypted by the current user, and without using any entropy?

 a . ProtectedData.Unprotect(encryptedData, null, DataProtectionScope.

CurrentUser);

www.EBooksWorld.ir

www.EBooksWorld.ir

586 ❘ AppENDIX ansWers to samPle test QuestIons

 7 . What describes a strong name assembly?

 f . All the above

 8 . How can you deploy a strong named assembly?

 a . By running gacutil.exe

 b . By creating an installer

 d . By copying the file to the Bin folder of the application

 9 . How can you deploy a private assembly?

 b . By adding a reference to the assembly in Visual Studio

 c . By copying the file in the Bin folder of the application

 10 . What is a strong name assembly?

 e . A signed assembly

www.EBooksWorld.ir

www.EBooksWorld.ir

587

INDEX

Symbols

&& operator
as boolean operator, 26–27
method-based queries and, 446
query expressions and, 434, 435

#define preprocessor directive, 498, 505
#elif preprocessor directive, 498–499
#else preprocessor directive, 498–499
#endif preprocessor directive, 498–499
#endregion preprocessor directive, 500–501
#error preprocessor directive,

498–499, 500
#if preprocessor directive, 498–499
#line preprocessor directive, 500
#pragma checksum preprocessor

directive, 503
#pragma preprocessor directive, 501–502
#region preprocessor directive, 500–501
#undef preprocessor directive, 498, 505
#warning preprocessor directive, 500
$ character, as anchors, 479, 482–483
// characters, comment sections and, 22
@ character, regular expressions and, 477
[] (square brackets)

arrays and, 362
statement lambdas and, 221

[DataContract] attribute, 418
[XmlIgnore] attribute, 418
^ character, as anchors, 479, 482–483

{ } curly brackets
C# connections and, 381
complex statements and, 23
to denote statement blocks, 30
statement Lambdas and, 352

| | operator
as boolean operator, 26, 27
method-based queries and, 446
query expressions and, 434

| operator, combining attributes and, 345
<T>, generic type parameter, 103, 104
! (unary logical negation operator), 28
!= operator, 26
= = operator, 26, 433
= operator, query expressions and, 433, 440
=> (goes to operator)

lambda expressions and, 352
method-based queries and, 445

\ (backslash), regular expressions and, 477
; (semicolons)

do-while loops and, 46
simple statements and, 21–22
for statements and, 39

. . . (ellipses)
ellipses and circles (real-world scenario),

170–171
else clause and, 34

() parentheses, in lambda expressions, 220

www.EBooksWorld.ir

www.EBooksWorld.ir

588

abstract methods – arguments

A

abstract methods, 90–91
access modifiers, variables and

properties and, 96
accessor methods, 72
Action delegates, 216
adding

assemblies to global assembly cache,
562–564

event handlers to form’s Paint event,
217–218

functions to structs, 69–70
methods to structs, 69–70
parameters to lambda expressions, 220
records to tables with DataAdapter (code

lab), 385–386
records using WCF Data Services,

402–403
AddToCategories method, 402
ADO.NET, 377–394

ADO.NET Entity Framework. See
ADO.NET Entity Framework

basics of, 377
DataAdapter to add records to tables

(code lab), 385–386
DataSets, DataTables, and DataAdapter,

384–385
DbDataAdapter to update and delete

records (code lab), 387–388
System.Data.Common.DBCommand class.

See Command object
System.Data.Common.DBConnection

class, 377–379
ADO.NET Entity Framework, 388–394

basics of, 388
Entity Framework Models, creating,

388–391
records, deleting, 393
records, inserting, 392–393

records, selecting, 391–392
records, updating, 393
stored procedures, calling, 393–394

Advanced Build Settings dialog, throwing
overflow exceptions and, 244

aggregate functions, queries and, 455–456
algorithms

asymmetric, 534
basics of, 528–529
hashing, 539
selecting for encryption, 529, 548
symmetric, 530

aliases
comparison of value types and (code lab),

63–64
value types and, 61

alternation constructs (regular
expressions), 481

ancestors (classes), defined, 163
anchors (regular expressions), 479
anonymous methods

basics of, 351
defined, 349
vs. delegates, 351
delegates and, 217–218
lambda expressions and, 218, 349

anonymous types
query expressions and, 438
querying data and, 16

AnonymousGraph example program,
221–222

application input, validating (as exam
objective), 15

applications
debugging (as exam objective), 15
improving performance. See threads

arguments
defined, 84
methods and, 82
named, 94

www.EBooksWorld.ir

www.EBooksWorld.ir

589

ArrayList class – base classes

ArrayList class, 365–371
basics of, 365–366
Hashtable, 369
vs. List class, 373
methods, 366–368
Populating drop-down list from generic

list (real-world scenario), 376–377
properties, 366
Queue collection, 369
SortedList collection, 370
Stack collection, 370–371
when to use, 373

arrays
casting, 119–122
data collections and, 362–365
defined, 362
multidimensional, declaring, 363
of references, 119, 121, 122
of variables, delegate types and, 209

as keyword, casting and, 118
as operator

basics of, 118–119
casting arrays and, 120

assemblies
basics of, 551–552
defined, 321, 551
GetCustomAttributes method, 335–336
global assembly cache, adding assemblies

to, 562–564
managing (as exam objective), 15, 528
side-by-side versioning, 558–562
signing, strong names and, 555–558
versions, 552–554

Assembly class (System.Reflection
namespace), 321–325

assertions
basics of, 252–253
data integrity, managing with, 494–497
defined, 494

asymmetric encryption, 15, 529, 534–538

async keyword, 276, 293, 414, 415
async lambdas, 222–223
asynchronous application programming,

293–297
asynchronous I/O operations, 414–415
Asynchronous Pattern Model (APM), 276
asynchronous processing

as exam objective, 13, 266
lambda expressions and, 222
when to make methods

asynchronous, 294
AsyncLambda example program (code

lab), 223
atomic operation, defined, 297
attribute methods, serialization of

data and, 421
attributes, custom, 335–340

attributes basics, 335
creating, 337–338
read attributes, 335–336
Using (real-world scenario), 338–340

AutoResetEvent class, 301
average aggregate function, 455–456
await keyword

asynchronous I/O operations and,
414, 415

asynchronous programming and, 293,
295, 296, 297

threads and, 276

B

BackgroundWorker class, 276–279
banker’s rounding, 127
barriers

basics of, 302–304
using with cancellations (code lab),

309–310
base classes, inheriting from, 162–171

base classes, defined, 163
basics of, 162–163

www.EBooksWorld.ir

www.EBooksWorld.ir

590

base classes (continued) – character escapes

base classes (continued)
constructors that invoke other

constructors (code lab), 166–167
ellipses and circles (real-world scenario),

170–171
parent class constructors, calling,

164–165
same class constructors, calling, 165–166,

167–170
base keyword, calling parent class

constructors and, 164, 168
“Beginners Guide to Performance

Profiling”, 513
binary serialization of data, 416–417
BinaryFormatter object

basics of, 416
vs. System.Xml.Serialization

namespace, 417
BinarySearch method, 368
BinaryWriter class, 413–414
binding redirection, 561
block size in cipher block chaining, 529–530
blueprinting process, 9
bool

keyword, 28
program flow and, 29
structs and, 61
true and false values and, 27–28

boolean and bitwise operators, 26
boolean expressions, 28–29
Boolean types, see bool
boxing

custom collections and, 374
value types, 128–130

brain dumps, 4
breakpoints, lambda expressions and, 219
Build number, assembly versions and, 552
Build property, 504, 505
built-in functions, validating data with,

473–474

C

C# programming basics, 19–57
C# program structure, 21
complex statements, 23
exam objectives, 20
loops. See loops
program flow. See decisions in code;

program flow
simple statements, 21–23

CA (Certificate Authority), 543–544
CalculateGrandTotal method, 490
Calculator class, 344
call stack, throwing exceptions and, 251
callbacks, creating and implementing (as

exam objective), 13
cancellations, 309–310
case statements, 37
casting. See also converting values,

casting and
basics of, 117–118
cast operators, 119
casting arrays, 119–122
is operator, 118
as operator, 118–119

catch lists, for try-catch-finally block, 238
catch sections

sorting exceptions and, 236
of try-catch-finally block, 235, 238

catching exceptions, 235, 250
CCIE (Cisco Certified Internetworking

Expert) certification, 2
Certificate Authority (CA), 543–544
Certificate Revocation List (CRL), 544
certificate stores, 545–546
certificates, 542–546
certification. See also Microsoft certifications

defined, 2, 4
character classes (regular expressions),

478–479
character escapes (regular expressions), 478

www.EBooksWorld.ir

www.EBooksWorld.ir

591

Cheat Sheet – code generators

Cheat Sheet, xxiv
checked blocks, throwing overflow exceptions

and, 244
checksums, #pragma checksum directive

and, 503
child classes

DbException, 243
defined, 163

cipher block chaining, 529–530
ciphertext, 528
Cisco Certified Internetworking Expert

(CCIE) certification, 2
class hierarchies, 161–206

base classes, inheriting from. See base
classes, inheriting from

exam objectives, 162
interfaces. See interfaces, designing and

implementing
object life cycle. See object life cycle,

managing
terminology, 163

classes. See also reference types
character classes (regular expressions),

478–479
child classes, DbException, 243
class files, OOP and, 76
class hierarchy (as exam objective), 14
CodeDOM namespace, 341–344
collections, types to use, 373
concurrent collection classes, 309
creating and using (code lab), 79–80
exception, 240–242
files and directory classes (System.IO

namespace), 405
inherited. See inheritance
methods in (code lab), 83–84
nested, 77
in .NET code, 76–77
new operator and, 63
Reader and Writer, 411
string, 144–148

System.Collections namespace, 365
System.Reflection namespace, common,

320–321. See also specific classes
trace listeners, 506

classes, CodeDOM namespace
CodeCompileUnit class, 344
CodeDOMProvider class, 348–349
CodeMemberField class, 345
CodeMemberMethod class, 347–348
CodeMemberProperty class, 345–347
CodeMethodInvokeExpression class, 348
CodeNamespaceImport class, 344
CodeNamspace class, 344
CodeParameterDeclarationExpression

class, 348
CodeTypeDeclaration class, 345
common, 341–344

client application that uses WCF Service,
creating, 400–403

Clone method
ICloneable interface, 183–184
System.Array class, 364

CloneArray example program, 133
clones, 183–184
Close method, 381
closing connections, 381
CLR. See Common Language Runtime (CLR)
code

code branching, 24
data validation code, methods and, 497
duplicated, 175–176
efficiency, 66
generating, using CodeDom. See CodeDOM

namespace
using to subscribe to events, 230–231

Code Document Object Model. See CodeDOM
namespace

code editor (Visual Studio), inserting event
handler names and, 230–231

code generators
CodeDOM and, 340
defined, 340

www.EBooksWorld.ir

www.EBooksWorld.ir

592

Code Labs as book convention – consume data

Code Labs as book convention, xxv–xxvi
CodeBinaryOperatorExpression class,

347–348
CodeConditionStatement class, 347
CodeDOM namespace, 340–349

basics of, 340–341
classes, 341–344
CodeCompileUnit class, 344
CodeDOMProvider class, 348–349
CodeMemberField class, 345
CodeMemberMethod class, 347–348
CodeMemberProperty class, 345–347
CodeMethodInvokeExpression class, 348
CodeNamespaceImport class, 344
CodeNamspace class, 344
CodeParameterDeclarationExpression

class, 348
CodeTypeDeclaration class, 345

CodePlex.com, 388
collection classes

ArrayList class. See ArrayList class
basics of, 365
System.Collections namespace, 365

CollectionBase class, 374–375
collections, defined, 362
COM Interop, unmanaged code and,

130, 133
Command object, 379–384

basics of, 379
ExecuteNonQuery method, 379–380
ExecuteReader method, 380–383
ExecuteScalar method, 383
ExecuteXmlReader method, 384

comment section, simple statements and, 22
Common Language Runtime (CLR)

assemblies and, 551, 553–554
interoperability and, 130
managed resources and, 191

common mistakes, infinite loops, 41
CompareTo method, 177, 368
Comparing Cars (code lab), 178–179

comparisons, 27
compiler constants (predefined), debugging

and, 503–504
complex statements, 21, 23
composite keys

method-based queries and, 452–453
query expressions and, 441–442

concatenation, queries and, 457–459
concurrent collections, 308–309
conditional instructions, 25–28
conditional operators, 28
conditions, defined, 25
Configuration Manager, 503
Connection property, 379
connection strings, 378
connections, closing, 381
ConnectionString property, 378
constants

compiler constants, debugging and,
503–504

defined, 25
constructors

basics of, 81–82
invoking multiple, 169–170
overloaded methods and, 88
overloading (real-world scenario), 89–90
parent class constructors, calling,

164–165
same class constructors, calling, 165–166,

167–170
String class, 139
string constructors, 138–139
that invoke other constructors (code lab),

166–167
constructs

alternation constructs (regular
expressions), 481

character class, 478–479
grouping constructs (regular expressions),

480–481
consume data (as exam objective), 16

www.EBooksWorld.ir

www.EBooksWorld.ir

593

consume types – data collections

consume types (as exam objective), 14
consuming data. See ADO.NET
ContainsKey method, 373
context (assemblies), 324
continuations (TPL), 291–292
contravariance

CovarianceAndContravariance example
program (code lab), 214–215

delegates and, 214, 350
controls

data validation and, 473
Validating events, 472

converting between types
basics of, 114, 161
casting. See casting
implicit and explicit conversions, 116–117
widening and narrowing conversions,

114–116
converting sequences into XML

documents, 461
converting values, casting and, 122–128

basics of, 122
Parse methods, 122–126
System.BitConverter class and, 128
System.Convert class and, 127

Convert.ToBase64String, 543
cores, 265, 269, 287
count aggregate function, 455
covariance

CovarianceAndContravariance example
program (code lab), 214–215

delegates and, 214, 350
CPU usage, 512
create types (as exam objective), 13
CreateInstance method, 324
credential, defined, 4
CRL (Certificate Revocation List), 544
cryptography. See also encryption

defined, 528
curly braces ({})

complex statements and, 23

to denote statement blocks, 30
currency

Displaying Currency Values (real-world
scenario), 153

NumberStyles.Currency, 136
Parse method and, 124, 126

custom formatting strings, 151

D

data
access, implementing (as exam objective),

15–16
ADO.NET and. See ADO.NET
authenticity, hashing and, 538
collections for storing. See data

collections
compressing, encryption and, 538
consuming. See ADO.NET; WCF Data

Services
detecting incorrect input of. See

validation of input
encrypting. See encryption
exam objectives, 362
integrity, hashing and, 538
integrity, managing, 494–497
I/O operations. See I/O operations
serialization of. See serialization of data
sharing, 298
structures. See structs
validating. See regular expressions for

data validation; validating data
data collections, 362–377

arrays and, 362–365
collections and. See ArrayList class;

collection classes
custom, 374–376
Populating drop-down list from generic

list (real-world scenario), 376–377
storing data in (as exam objective), 16
System.Collections.Generic

namespace, 371–374

www.EBooksWorld.ir

www.EBooksWorld.ir

594

data structures – delegates

data structures. See structs
data types. See also delegates

basics of, 61–62
storage needs and, 66

DataAdapter (ADO.NET)
adding records to tables with (code lab),

385–386
basics of, 384–385
DataAdapter class, 385

databases
database validations, 494
files, programming, 508

[DataContract] attribute, 418
DataContractJsonSerializer class, 418
DataSets (ADO.NET), 384–385
DataTables (ADO.NET), 384–385
date and time

OData $filter date functions, 399
Parse method and, 124
standard DateTime formatting strings,

152–153
DBConnection class, 377–379
DbDataAdapter, updating and deleting

records using (code lab), 387–388
DBDataReader class

ExecuteReader method and, 380
methods, 382–383
properties, 381

DBNull.Value vs. null values, 381
Debug and Trace classes, 504–508, 509
Debug.Assert method, 495, 504
debugging, 497–508

applications, 14–15, 498
database files, programming, 508
Debug and Trace classes, 504–508
DEBUG symbol, 503
exam objectives, 470
predefined compiler constants, 503–504
preprocessor directives. See preprocessor

directives
decimal.Parse method, 124

decision types basics, 30
decisions in code, 29–38

if statements, 30–32, 34
if statements, beyond basic (code lab),

35–36
if statements (code lab), 32–34
switch statements, 36–38

declarations, variables and, 23
declaring events, 224–225, 226
decrement operators, for statements and, 40
decrementing, loops and, 42
decryption

with asymmetric encryption, 535
of chipper text to plain text, 533
defined, 528
of streams, 537

deep clones, 184
default constructors, 82
DefaultIfEmpty method, outer joins and, 440
DefaultTraceListener class, 504, 506
deferred execution, defined (query

expressions), 434
#define preprocessor directive, 498
defining

delegates, 208–209
interfaces, 173–174

delayed processing, 22–23
delegate keyword, 211
delegate variables

basics of, 209–210, 211
contravariance and, 214
covariance and, 214
series of, 211–212
storing lambda expressions in, 218
Using delegate variables (code lab),

210–211
delegates, 208–223

Action delegate, 216
anonymous methods, 217–218, 351
basics of, 77, 208, 349
covariance and contravariance, 214

www.EBooksWorld.ir

www.EBooksWorld.ir

595

DeleteCommand property – encryption

defining, 208–209
delegate variables. See delegate variables
Func delegate, 216
lambda expressions and. See lambda

expressions
static and instance methods, 212
Understanding covariance and

contravariance (code lab), 214–215
Using delegate variables (code lab),

210–211
Using static and instance delegates (code

lab), 212–214
DeleteCommand property, 387–388
deleting

DbDataAdapter to update and delete
records (code lab), 387–388

records (ADO.NET Entity
Framework), 393

records, using WCF Data Services, 403
Dequeue method, 369
derived classes, defined, 163
deriving

new exception classes, 252
one class from another, defined, 163

descendants (classes), defined, 163
deserialization

of data (as exam objective), 16
of exceptions, 252

Deserialize method, 416
destructors

defined, 191
finalizers and, 192
providing, 191–197

diagnostics (as exam objective), 470
dictionaries, defined, 362
Dictionary type, System.Collections.

Generic namespace, 372–373
directories, working with (I/O), 405–408
Directory and DirectoryInfo classes (I/O),

406–408

DisplayErrorMessage, order entry forms
(real-world scenario), 136

Dispose method, 190, 191, 193, 197
Distinct method

Distinct with custom classes (code lab),
460–461

method-based queries and, 459–461
Divide method, creating, 347
DLL files (assemblies), 551
DllImport statement, unmanaged code and,

130–132, 133
do loop vs. while loops, 47–48
do-while loops vs. while loops, 47–48
do-while statements, loops and, 46–49
drop-down lists, populating (real-world

scenario), 376–377
dynamic types, 133–137

E

#elif preprocessor directive, 498–499
ellipses (. . .)

ellipses and circles (real-world scenario),
170–171

else clause and, 34
#else preprocessor directive, 498–499
Empty field (String class), 139
empty statements, 22
encapsulation, 95–102

basics of, 60, 95–96
enforced, using properties, 97–98
indexed properties, 101–102
properties, 96–97
properties, accessing, 100–101
properties, using (code lab), 98–100

Encrypt data using the ProtectData class
(real-world scenario), 547–548

encryption, 527–551
algorithms, selecting, 529, 548
asymmetric, 15, 534–538

www.EBooksWorld.ir

www.EBooksWorld.ir

596

encryption – exam objectives

encryption (continued)
basics of, 528–529
certificates, 542–546
defined, 528
Encrypt data using the ProtectData class

(real-world scenario), 547–548
as exam objective, 15, 528
hashing, 538–542
key management, 547
RSA asymmetric algorithm, using (code

lab), 548–551
stream, 536–538
symmetric. See symmetric encryption

#endif preprocessor directive, 498–499
#endregion preprocessor directive, 500–501
enforcing encapsulation (as exam

objective), 14
Enqueue method, 369
Entity Data Model Wizard, 389, 390, 393
Enumerating Tree Nodes (code lab), 185–188
enumerations

basics of, 72–75
enum keyword and, 61
enums, using (code lab), 75–76
GetEnum methods, and (System.Type

class), 329–330
made easy, 189
naming, 73

equals keyword, join clauses and, 440
Equals method, 182
#error preprocessor directive, 498–499, 500
errors

#warning and #error directives and, 500
error checking vs. exception

handling, 234
escape sequences, defined, 477
event handlers

adding to form’s Paint event, 217–218
anonymous methods and, 217

event logs, 509–511
Event Viewer, 511

Event-based Asynchronous Pattern
(EAP), 276

events, 223–233
basics of, 77, 223–224
creating and implementing (as exam

objective), 13
event publishers, defined, 77
event subscribers, defined, 77
publishing. See publishing events
subscribing and unsubscribing to,

230–233
synchronization events, 298–302
System.ComponentModel.

BackgroundWorker class, 277
EventWaitHandle class, 299–301
Exam 70-483

basics of, 8–10
exam prep guide, 9, 11, 12
objectives, 12–16
questions in, how written, 9–10
recommended prerequisites for

taking, xxiii
studying for, 11–12
tips and tricks, 10

exam delivery partners (EDPs), defined, 2
exam objectives

70-483 exam, 12–16
assemblies, managing, 528
asynchronous processing, 266
C# programming basics, 20
class hierarchies, 162
data, working with, 362
debugging, 470
encryption, 528
events and callbacks, 208
exception handling, 208
LINQ, 432
managing program flow, 208
multithreading, 266
security, 470
type system in C#, 60

www.EBooksWorld.ir

www.EBooksWorld.ir

597

ExcelInterop example program – finalization queues

types, 114, 320
value types, 61

ExcelInterop example program, 133
Exception class

creating custom exceptions and, 251
properties, 246–247

exception handling, 234–253
basics of, 234–235
error checking vs., 234
as exam objective, 13
exception properties, 246–247
exception types, 240–244
ExceptionType class, 235–236
Factorials (real-world scenario), 244–246
throwing and rethrowing exceptions. See

exceptions, throwing
try-catch-finally blocks, 235–238
unhandled exceptions, 238–239

exceptions
Dictionary type, 373
protecting code from, 239
return values and, 248–249
sorting, 236

exceptions, throwing
assertions, 252–253
catching, rethrowing and, 249–251
custom exceptions, creating, 251–252
exceptions and return values and,

248–249
invalid integer conversions and, 115
narrowing conversions and, 115–116
throw statement, 250

EXE files (assemblies), 551
ExecuteNonQuery method, 379–380
ExecuteReader method, 380–383
ExecuteScalar method, 383
ExecuteXmlReader method, 384
exit conditions for loops, 41
explicit conversions, 116
Exponent method, creating, 348
expression Lambdas

basics of, 218–221
defined, 352

expressions, defined, 25
extension methods, 92–93

F

Factorial method, 244, 245, 249
Factorials (real-world scenario), 244–246
false values

if statements and, 34
type bool and, 27

fields. See also text box fields
defined, 67, 330
instance fields (code lab), 79–80
in .NET code, 77
reference types, basics of defining, 79
string fields, 139–140

File and FileInfo classes (System.IO
namespace), 366

FileAccess enumeration, 409
FileIOPermissionAccess enumeration, 410
FileLoadException, 561
FileMode enumeration values, 409
FileNotFoundException, 561
files

database files, programming, 508
defined, 404
FileMode, FileAccess, or FileShare

enumerations, 409
I/O operations and, 405–408
working with (I/O), 405–408

files classes (System.IO namespace), 405
FileShare enumeration, 409, 410
FileStream constructor, 408–409
FillBrush property, 198
filtering

method-based queries and, 445–446
query expressions and, 434–435

finalization, defined, 190
finalization queues, destructors and, 193

www.EBooksWorld.ir

www.EBooksWorld.ir

598

Finalize method – GetLoadedModules

Finalize method, 190, 192
finalizers, destructors and, 192
finally section, of try-catch-finally

block, 235, 237, 238
First method, queries and, 456–457
FlagsAttribute, 285
floating point conversion, overflows and, 116
floating point values

casting, 117
floating point, 117
methods, 244

for loops
nested, 42–43
vs. while loops, 46

for statements, loops and, 39–42
foreach loops, 44–45

complex statements and, 23
read-only indexer in, 140

foreach statements
looping over string characters and, 140
loops and, 43–44

fork-join pattern, defined, 267
formatting

strings, type conversion and, 151–153
values, type conversion and, 149–153

forms, order entry forms (real-world
scenario), 135–137

FreeResources method, 194, 195
from clause syntax, query expressions

and, 433
Fully Qualified Name (FQN), 558
Func delegates, 216
Functional Groups, 11–12
functions

adding to structs, 69–70
built-in, validating data with, 473–474
OData $filter OData, 398–400

G

GAC (Global Assembly Cache), 558, 562–564
gacutil.exe, 561–562
garbage collection, defined, 190
garbage collector (GC), unreachable memory

and, 190
generic collection classes, IEquatable

and, 183
generic methods, 103–105
generic types

basics of, 102–103
generic delegate types, 215–216
vs. non-generic, 371

generic vs. nongeneric versions of
IComparable, 178

generic vs. nongeneric versions of
IComparer, 180

get method, properties and, 97
GetArrayRank method (System.Type

class), 328
GetConstructors method (System.Type

class), 328–329
GetCustomAttributes method (assemblies),

335–336
GetDataAsync method, 296
GetEnum methods (System.Type class),

329–330
GetEnumerator method, 185, 186, 188
GetExecutingAssembly method (Assembly

class), 322, 323
GetExportedTypes and GetTypes methods

(Assembly class), 322, 323
GetField/GetFields methods (System.Type

class), 330–332
GetLoadedModules, GetModules, and

GetModule methods (Assembly class), 323

www.EBooksWorld.ir

www.EBooksWorld.ir

599

GetMethod/GetMethods methods – increment operators

GetMethod/GetMethods methods (System
.Type class), 332–333

GetObjectData method, 420
GetProperty/GetProperties methods

(System.Type class), 332
GetReferencesAssemblies method

(Assembly class), 325
GetStringDelegate delegate type, 212
GetTYPE methods, (System.Data.Common.

DBDataReader), 382
Global Assembly Cache (GAC), 558, 562–564
goes to operator (=>)

lambda expressions and, 352
method-based queries and, 445

GraphFunction example program
code lab, 210–211
lambda expressions and, 221

GroupBy method, 452
grouping

method-based queries and, 454–455
query expressions and, 443–445

grouping constructs, regular expressions for
data validation, 480–481

GroupJoin method, 450–452
GTE CyberTrust Global Root, 544

h

hash bucket, 538
hashing data, 538–542
Hashtable, 369, 373
HasRows property, 381, 383
heaps, in .NET code, 76
“How to: Create Custom Performance

Counters”, 514

I

ICloneable class, 183–184
ICloneablePerson example program, 184
IComparable

IComparableCars example program (code
lab), 178–179

implementing interfaces and, 177–179
sorting and, 367–368

IComparer

IComparerCars example program, 181
implementing interfaces and, 179–182

IDisposable interface, implementing, 176,
190–191

IDisposableClass example program,
193–196, 197

IEnumerable

defined, 44
implementing interfaces and, 185

IEnumerableTree example program (code
lab), 185–188, 189

IEquatable, 182–183
if, else if statements, decisions in

code and, 34
#if preprocessor directive, 498–499
if statements

basics of, 32–34
beyond basic if statements, 35–36
code lab, 35–36
decisions and, 30–32, 34

ignoring properties, 418
IGrouping<TKey, TElement> collection, 443,

445, 454
ildasm.exe, 559–560
immutability of strings, 138
implicit conversions, 116
in keyword, 216
increment operators, for statements and, 40

www.EBooksWorld.ir

www.EBooksWorld.ir

600

incrementing – I/O operations

incrementing, loops and, 39–42
indexers

basics of, 101–102
CollectionBase class and, 375
read-only indexer (String class),

139–140
indexes, array, 367
indexing data, hashing and, 538
inheritance

basics of, 91–92
event inheritance, 227–228

inherited classes, defined, 163
infinite loops, 41
initialization vector (IV) in cipher block

chaining, 530
initializer, for statements and, 39
InitializeService method, 402–403
initializing

defined, for statements and, 39–41
String variables, 138

inline options (regular expressions), 480
inner sequences, joining and, 450
inserting records (ADO.NET Entity

Framework), 392–393
instance fields

code lab, 79–80
defined, 79

instance method, delegates and, 212
instances

of classes defined in assemblies,
creating, 324

creating, 80
of int variable, creating, 326–327

instrumentation, 509–517
defined, 509
logging and event logs, 509–511
profiling. See profiling
tracing, 509

int datatype, 62
integer overflows, 115–116

integer types, math vs. programming integer
types, 38

integer values, enums and, 73
IntelliSense

exam and, 10, 21
new types and, 74–75
optional and named parameters and, 94
showing values in persons array, 121
static methods and, 93
Student class properties and, 100

interface inheritance, 172–174
interfaces, designing and implementing

basics of, 171–172
defining interfaces, 173–174
delegating interfaces, 175–176
Enumerating Tree Nodes (code lab),

185–188
enumerations made easy, 189
ICloneable, 183–184
IComparable, 177–179
IComparer, 179–182
IEnumerable, 185
IEquatable, 182–183
implementing, 174–175

Interlocked class, 306, 308
Intermediate Language Disassembler

(ildasm.exe) application, 559–560
Intermediate Language (IL), assemblies

and, 551
intern pools, String variables and, 138
interoperability, unmanaged code and,

130–133
into clause, grouping and, 444
intrinsic data types, 61
int.TryParse method, 234
InvokeMember method of the System.Type

class, 333
I/O operations, 405–415

asynchronous, 414–415
basics of, 405

www.EBooksWorld.ir

www.EBooksWorld.ir

601

is operator – locks

as exam objective, 15
files and directories, 405–408
readers and writers, 410–414
streams, 408–410

is operator
basics of, 118
casting arrays and, 120

ISerializable interface, 420–421
IsLetter method, 140
iteration

iterators in loops, defined, 39
read-only indexer as source of, 140

J

JavaScript Object Notation (JSON)
request data in JSON format (WCF Data

Services), 403–404
serialization of data, 418–419
WCF Data Services and, 394

join keyword, outer joins and, 440
joining

method-based queries and, 449–452
query expressions and, 438–441

JSON. See JavaScript Object Notation
(JSON)

Just In Time (JIT) compiler, assemblies
and, 551

K

key management
asymmetric encryption and, 535
basics of, 547
hashing algorithms and, 539
key secrecy, 533–534
RSA asymmetric algorithm, using (code

lab), 548–551
key parameter, SortedList and, 370
Key Terms, xxiv

L

lambda expressions, 218–223
async lambdas, 222–223
basics of, 349–352
expression lambdas, 218–221
statement lambdas, 221–222

Language Integrated Query (LINQ). See
LINQ

Last method, queries and, 456–457
left joins, query expressions and, 441
Legacy Certifications, defined, 5
Length property (String class), 139
Length property (System.Array class),

363–364
library references, COM Interop and, 133
line numbers, #line directive and, 500
LINQ, 431–467. See also method-based

LINQ queries
basics of, 431, 432
data and objects and (as exam

objective), 16
exam objectives, 432
LINQ to XML, 461–462
queries, writing, 392
query expressions. See query expressions

list box fields, data validation and, 473
List class (System.Collections.Generic

namespace), 373–374
listeners, Debug and Trace classes, 506–508
lists, defined, 362
literals, defined, 25
load context (assemblies), 324
load-from context (assemblies), 324
LoadFrom or LoadFile methods (Assembly

class), 323
locale-aware parsing, 126
localization, 555
locks

alternatives to locking, 306–307
dealing with, 307
locking mechanisms, 304–308

www.EBooksWorld.ir

www.EBooksWorld.ir

602

logging – methods

logging, 509–511
loops, 38–51

basics of, 38–39
do-while statements, 46–49
foreach loops (code lab), 44–45
foreach statements, 43–44
infinite loops, 41
looping structures, 39
loops (code lab), 49–50
nested for loops, 42–43
parallel, 289–290
for statements, 39–42
while statements, 45–46

lottery program, nested loops for (real-world
scenario), 42–43

M

Major number, assembly versions and, 552
Makecert.exe (Certificate Creation Tool), 545
managed resources

CLR and, 191
vs. unmanaged resources, 193

ManualResetEvent class, 301
many-core processors, 269
MarshalAs attributes, 132–133
MaskedTextBox control, 471
math

OData $filter math functions, 399–400
vs. programming integer types, 38

max aggregate function, 456
MCM (Microsoft Certified Master)

certification, 2
MCP (Microsoft Certified Professional)

certifications, 5. See also Microsoft
certifications

MCPD (Microsoft Certified Professional
Developer) certification, 6

MCSD (Microsoft Certified Solutions
Developer) certification, 5

MCSE (Microsoft Certified Systems Engineer)
certification, 5

MCSM (Microsoft Certified Solutions
Master) certification, 2

MCTS (Microsoft Certified Technology
Specialist) credential, 6

MDM, 2
memory

of CPU usage, 512
memory address, in .NET code, 76–77

Message Authentication Code (MACs)
algorithms, 529

Message Digest (MD) (hash algorithms), 540
method-based LINQ queries, 445–459

aggregate functions, 455–456
basics of, 432, 445
composite keys, 452–453
concatenation, 457–459
Distinct method, 459–461
filtering, 445–446
First method, 456–457
grouping, 454–455
joining, 449–450
Last method, 456–457
ordering, 446
outer joins, 450–452
projection, 446–449
vs. query expressions, 432, 445
Skip or Take methods, 459

methods. See also constructors; specific
methods

abstract and overridden, 90–92
adding to structs, 69–70
anonymous, 217
ArrayList class, 366–368
Assembly class, 322–325
asynchronous, 295, 297
attribute methods, serialization of data

and, 421
Barrier class, 302–303
BitConverter class, 128

www.EBooksWorld.ir

www.EBooksWorld.ir

603

Microsoft certifications – Model (Entity Framework)

CountdownEvent class, 301–302
data validation code and, 497
DBDataReader class, 382–383
Debug and Trace classes, 505
defining, 82–83
delegates and, 208
Directory and DirectoryInfo classes

(I/O), 407
EventWaitHandle class, 299
extension, 92–93
File and FileInfo classes, 406
floating point special value, 244
generic, 103–105
hash algorithms, 541
incoming values and, 84
Interlocked class, 308
making asynchronous, 293, 294, 295
method-based queries and, 445
methods in classes (code lab), 83–85
Monitor class, 305–306
objects and, 77
overloaded, 88
Parallel class, 288–289
private, in structs, 72
public, in structs, 72
Regex class, 476
rethrowing exceptions and, 249–250, 251
rules that apply to destructors, 192
StreamReader class, 411
string, 140–143, 474–475
StringBuilder class, 146
StringReader class, 148
StringWriter class, 147
symmetric encryption, 531–532
System.Collections

.CollectionBase, 374
System.Collections.Concurrent

namespace, 308
System.Collections.Generic

.Dictionary, 372–373

System.ComponentModel

.BackgroundWorker class, 276–277
System.Convert class, 127
System.Data.Common.DBConnection

class, 378
System.Security.Cryptography.

SymmetricAlgorithm class, 531–532
System.Threading.ThreadPool class,

273–274
System.Type class, 327–328
Task class, 282
TaskFactory, 283
validating data with string methods,

474–475
validation methods, 489–490
value types, passing to (code lab), 85–87

Microsoft certifications, 1–8
basics of, 4–7
certification, defined, 2
exam. See Exam 70-483
MDM, MCSM basics, 2
reasons for, 2–4
various, 2

Microsoft Certified Master (MCM)
certification, 2

Microsoft Certified Professional Developer
(MCPD), 6

Microsoft Certified Solutions Developer
(MCSD) certification, 5

Microsoft Certified Solutions Master
(MCSM) certification, 2

Microsoft Certified Systems Engineer (MCSE)
certification, 5

Microsoft Certified Technology Specialist
(MCTS) credential, 6

Microsoft Learning Web site, 12
Microsoft Technology Associate (MTA), 7
min aggregate function, 456
Minor number, assembly versions and, 552
Model (Entity Framework), creating,

388–391

www.EBooksWorld.ir

www.EBooksWorld.ir

604

modifiers – object life cycle

modifiers, 77–79
modules

defined, 323
System.Data assembly, 323

Modules property (Assembly class), 323
modulus, 28
monitors, 305–306, 307
Moore, Gordon, 265
MoveNext method, 185, 188
MTA (Microsoft Technology Associate), 7
multicore processors, 269
multiple class constructors, 165, 169–170
multiple inheritance, interfaces to simulate,

172–174
Multiply method, 332
multithreading

barriers, 302–304
barriers code labs, 303–304, 310–311
basics of, 267
cancellations, 309–310
concurrent collections, 308–309
difficulty of, 297
disadvantages of, 270
exam objectives, 266
lambda expressions and, 222
lock-free alternatives, 306–307
managing (as exam objective), 13
monitors, 305–306, 307
multithreaded Windows Forms

applications, 279–280
multithreaded WPF applications,

280–281
mutual exclusion, 304–308
sharing data and, 298
synchronization events, 298–302

mutual exclusion, 304–308
myFirstDelegate variable, 349–350
MyLongRunningProcess method, 414

N

names, signing assemblies and, 555–558
naming

custom attribute classes, 337
delegate types, 209
enumerations, 73
extension methods, 93
interfaces, 173
methods, 88
when values are the same as names, 330

NaN, overflow exceptions and, 244
narrowing conversions, 114–116, 117
negativeInfinity static property, 244
nested for loops, 42–43
nested if statements, 31, 34
New Generation of Certifications, defined,

5, 6
new operator, creating classes and, 63
New order form (real-world scenario),

484–493
nondeterministic finalization, 190
null vs. DBNull.Value, 381
NumberFormatInfo class, 126
numbers

NumberStyles enumeration, values
defined by, 124–126

numeric types, defined, 61
standard numeric formatting strings, 152

O

object life cycle, managing, 190–199
basics of, 190
destructors, providing, 191–197
as exam objective, 14
IDisposable interface, implementing,

190–191
Shape Resources (real-world scenario),

198–199
using statement, 197–198

www.EBooksWorld.ir

www.EBooksWorld.ir

605

object-oriented programming (OOP) – percentage values

object-oriented programming (OOP), 76
Object-Relational Mapping tool, 388
objects

assigning value to members of. See
constructors

basics of, 77
Debug and Trace classes, 505
reusing, 191

OData (Open Data Protocol)
$filter date functions, 399
$filter math functions, 399–400
$filter query options, 398
$filter string functions, 398–399
$filter type functions, 400
basics of, 393, 394
OData ATOM Format, 394
query options, 397

OnDeserializingAttribute and
OnDeserializedAttribute, 418, 421

OnSerializedAttribute and
OnSerializingAttribute, 418, 421

operators. See also specific operators
basics of, 25–26
boolean and bitwise, 26
cast, 119
conditional, 28
decrement operators, for statements

and, 40
increment operators, for statements

and, 40
relational, 25
ternary, 28

options, regular expressions, 480
order entry forms (real-world scenario),

135–137
ordering

method-based queries and, 446
query expressions and, 436–437

ORM tool, 388

outer joins
method-based queries and, 450–452
query expressions and, 440–441

outer sequences, joining and, 450
OutlinePen property, 198
Overdraft account (real-world scenario),

228–229
overflow exceptions, 244
overridden methods, 90, 91
overriding, defined, 73
oversubscribing to events, 231

p

P2P forums, xxviii
Parallel class, 288–290
Parallel Linq (PLinq), 290
Parallel.For method, 289
ParallelLoopState parameter, 289
ParamArrays, LINQ to XML and, 462
parameters

adding to lambda expressions, 220
defined, 84
events best practices and, 225–226
optional and named, 94–95
prefixes on names, 131
subscribing to events and, 230

parent class constructors, calling, 164–165
parent classes, defined, 163
parentheses () in lambda expressions, 220
parsing methods

converting values and, 122–126
errors and, 234

passwords
signing assemblies and, 557
storing, hashing and, 538–539

patterns, defined, 475
PDB file, 508
percentage values, handling (real-world

scenario), 144

www.EBooksWorld.ir

www.EBooksWorld.ir

606

performance counters – properties

performance counters, 514–517
Performance Monitor, 514, 516–517
Performance Wizard, 512
Person class (ThisAndBase example

program), 167–168
piracy, exams and, 4
PKI (Public Key Infrastructure), 543
Platform invoke (P/invoke), unmanaged

code and, 130–132
PLinq, 290
Pop method, Stack collection and, 370–371
positional arguments, named arguments

and, 94
PositiveInfinity static property, 244
practice questions basics, 12
#pragma checksum preprocessor

directive, 503
#pragma warning preprocessor

directive, 501–502
predefined event types, 225
predicate, defined (query expressions), 434
prefixes, on parameter names, 131
prep guide for exam, 9, 11, 12
preprocessor directives

#define and #undef , 498
#error, 500
#if, #elif, #else, and #endif, 498–499
#line, 500
#pragma, 501–502
#pragma checksum, 503
#region and #endregion, 500–501
#warning, 500

primary key values, specifying, 400
PrintGrades method, 175
private keys, 534
private member variables, 96
private methods and properties in

structs, 72
probing, defined, 324
ProcessImageFile method, 516

processor architecture, assemblies and,
561–562

profiling
“Beginners Guide to Performance

Profiling”, 513
by hand, 513–514
performance counters, using, 514–517
using profilers, 511–513

program flow, 24–51
basics of, 24
bool (code lab), 29
boolean expressions, 28
conditional instructions, 25–28
decisions in code. See decisions in code
exam objective, 13

program structure, C#, 21
programming basics. See C#

programming basics
programming integer types vs.

math integers, 38
projection

method-based queries and, 446–449
query expressions and, 437–438

properties
accessing (code lab), 100–101
ArrayList class, 366
Assembly class, 321–322
Barrier class, 302–303
DBDataReader class, 381
Directory and DirectoryInfo classes

(I/O), 407
encapsulation and, 96–97
enforced encapsulation using, 97–100
exception properties, 246–247
fields and, 77
FileInfo class (I/O), 405
hash algorithms, 539, 542
ignoring, 418
indexed, 101–102
private, in structs, 72
public, in structs, 72

www.EBooksWorld.ir

www.EBooksWorld.ir

607

ProtectData class – Real-World Case Scenarios as book convention

reflection to map table columns to class
properties (real-world scenario),
333–334

SQL exceptions, 243
SqlException class, 242–243
static, floating point types, 244
string, 139–140
StringBuilder class, 146
symmetric encryption, 530–531
System.Collections

.CollectionBase, 374
System.Data.Common.DBConnection

class, 378
System.Exception class, 246–247
System.Security.Cryptography.

SymmetricAlgorithm class, 530–531
System.Type class, 326–327
Task class, 283
using reflection to map table columns to

(real-world scenario), 333–334
ProtectData class, encrypting with (real-

world scenario), 547–548
ProtectedData class, 547
psychometrics, exams and, 8, 9
public key encryption. See also asymmetric

encryption
defined, 529

Public Key Infrastructure (PKI), 543
Public Key Token, 555
public keys, 534
public methods and properties in structs, 72
publishing events

declaring events, 224–225
event best practices, 225–227
event inheritance, 227–228
Overdraft account (real-world scenario),

228–229
predefined event types, 225
publishers, defined, 224

Push method, Stack collection and, 370–371

Q

quad cores, defined, 287
quantifiers (regular expressions), 481
query expressions, 432–445

aggregate functions and, 455–456
basics of, 432–434
composite keys, 441–442
filtering, 434–435
First and Last methods, 456–457
grouping, 443–445
joining, 438–440
vs. method-based queries, 432
ordering, 436–437
outer joins, 440–441
projection, 437–438
syntax, exam and, 433

query options (OData), 397–398
questions in exams, how written, 9–10
Queue collection, 369, 373
queues

defined, 362
Enqueue and Dequeue methods and, 369

QueueUserWorkItem method, 273, 274, 276

R

race conditions, 279, 297
RACE Integrity Primitives Evaluation

Message Digest (RIPEMD), hash
algorithms and, 540

Rank property, System.Array class, 363–364
reachable memory, 190
ReadDataFromIO method, 293, 294–296
readers

I/O operations and, 410–414
System.IO namespace, 410–414

read-only indexer (String class), 139
Real-World Case Scenarios as book

convention, xxv

www.EBooksWorld.ir

www.EBooksWorld.ir

608

records – schedulers

records
adding to tables (code lab), 385–386
adding/deleting/updating, using WCF

Data Services, 402–403
selecting/inserting/updating/deleting

(ADO.NET Entity Framework),
391–393

reference types, 76–95
basics of, 59–60, 76–77
constructors, 81–82
constructors, overloading (real-world

scenario), 89–90
extension methods, 92–93
fields, basics of defining, 79
instance fields (code lab), 79–80
methods, abstract and overridden, 90–92
methods, overloaded, 88
methods basics, 82–83
methods in classes (code lab), 83–85
modifiers, 77–79
parameters, optional and named, 94–95
value types, passing to methods

(code lab), 85–87
references

to arrays, 120, 121, 122
using with monitors, 307

reflection. See also System.Reflection
namespace

basics of, 320–321
boxing and unboxing and, 129
reflection-only context (assemblies), 324
using to map table columns to class

properties (real-world scenario),
333–334

using with types at runtime (as exam
objective), 14

Regex class
data validation and, 475–476
power of, 477

#region preprocessor directive, 500–501

regular expressions for data validation,
475–483

alternation constructs, 481
anchors, 479
basics of, 475–478
character classes, 478–479
character escapes, 478
grouping constructs, 480–481
options, 480
quantifiers, 481
useful, 481–483

relational operators, 25
resource management, 190–193
rethrowing exceptions, 249–251
retrieving data from collections (as exam

objective), 16
return statements

methods and, 82–83
statement lambdas and, 221

return values, exceptions and, 248–249
Revision, assembly versions and, 552
RIPEMD (RACE Integrity Primitives

Evaluation Message Digest), hash
algorithms and, 540

root certificates, 544
RSA asymmetric algorithm, using (code lab),

548–551
RunSequential method, 286
RunTasks method, 286
runtime. See also Common Language

Runtime (CLR)
types at, as exam objective, 14

S

sanity checks
SanityCheckRow method, 493
validating data with, 483

scheduler (TPL), 288
schedulers, threads and, 268

www.EBooksWorld.ir

www.EBooksWorld.ir

609

Secure Socket Layer (SSL) – Stopwatch class

Secure Socket Layer (SSL), web security and,
542, 545

Secured Hash Algorithms (SHAs), 529, 540
security, implementing (as exam objective),

14–15, 470
select clause

grouping and, 444
projections and, 437, 438

Select method
outer joins and, 452
projection and, 446

SelectMany method, projection and, 448
semicolons (;)

do-while loops and, 46
simple statements and, 21–22
for statements and, 39

sentinels, 48–49
Serializable attribute, 335
serialization of data

basics of, 416
binary, 416–417
custom, 419–421
as exam objective, 16
JSON, 418–419
XML, 417–418

serialization of exceptions, 252
Serialize method, 416
series, of delegate variables, 211–212
set method, properties and, 97
SetEntitySetAccessRule, 403
SetMinThread method, 274
sets, defined, 362
SHA (Secured Hash Algorithms), 529
SHA-1, 540
SHA-2, 540
shallow clones, 184
shallow copies of arrays, 364
Shape Resources (real-world scenario),

198–199
shared secret encryption. See symmetric

encryption

sharing data, 298
sibling classes, defined, 163
side-by-side versioning, assemblies and,

555, 558–562
signaling mechanisms, 298
signatures, of methods, 88
signing assemblies, 555–558
simple statements, 21–23
Skip method, queries and, 459
Solutions Associate level, 7
Solutions Expert level, 7
Solutions Master level, 7
Sort method (arrays), 367
SortedList collection, 370, 373
spaghetti, defined, 24
SQL exceptions, 242–243
SSL (Secure Socket Layer), web security and,

542, 545
Stack collection, 370–371, 373
stacks, in .NET code, 76
standard DateTime formatting strings,

152–153
standard formatting strings, 151–152
standard numeric formatting strings, 152
statement lambdas

basics of, 221–222
defined, 352

statements
complex, 23
methods and, 82
simple, 21–23

static keyword, declaring properties
and, 96

static methods
delegates and, 212
IntelliSense and, 93
Regex class, 476
static String methods, 140

StaticAndInstanceDelegates example program
(code lab), 212–214

Stopwatch class, 513–514

www.EBooksWorld.ir

www.EBooksWorld.ir

610

stored procedures – symmetric encryption

stored procedures, calling (ADO.NET),
393–394

storing
anonymous methods in delegate

variables, 217
data in collections (as exam objective), 16
delegate values in variables, 209
passwords, hashing and, 538–539
series of data. See data collections

stream encryption, 536–538
StreamReader class

 ReadToEndAsync method, 415
basics of, 411–413

streams, 404, 408–410
StreamWriter class, 413
string functions, OData $filter, 398–399
string keyword, 138
string methods

basics of, 140–141
string instance methods, 141–143
validating data with, 474–475

StringBuilder class
 ToString method, 145
basics of, 145–147
Using (real-world scenario), 148–149

String.Format method, 150–151
StringReader class

basics of, 147–148
vs. StreamReader class, 413

strings, 137–149
assembly versions and, 552
basics of, 138
basics of manipulating, 137–138
connection strings, 378
as exam objective, 14
formatting, type conversion and, 151–153
methods. See string methods
percentage values (real-world

scenario), 144
string classes, 137–138, 144–148

string constructors, 138–139
string fields and properties, 139–140
string processing classes, 145
StringBuilder, Using (real-world

scenario), 148–149
StringWriter class, 147
strong names, signing assemblies and,

555–558
strongly typed collections, 374–376
structs

basics of, 61, 66–70
creating (real-world scenario), 70–72
delegate types and, 209
illegal use of, 69
instances of, creating, 68
user-defined, 61
working with, 68

studying for exam, 11–12
Functional Groups, 11–12
practice questions, 12
prep guide, 11

subclasses
covariance and, 214
defined, 163

subclassing, defined, 163
subexpression, regular expressions and, 480
subscribers (events)

defined, 224
subscribing to events, 230–233

sum aggregate function, 456
superclasses

contravariance and, 214
defined, 163

swap methods, 104–105
switch statements, decisions and, 36–38
symbols, preprocessor directives and,

498–499
symmetric encryption

algorithms implemented in .NET, 530
basics of, 529–530

www.EBooksWorld.ir

www.EBooksWorld.ir

611

synchronization events – System.Type class

decrypting chipper text, 533
encrypting text into chipper text,

532–533
as exam objective, 15, 528
methods, 531–532
properties, 530–531

synchronization events
CountdownEvent class, 301–302
EventWaitHandle class, 299–301

synchronizing resources. See barriers;
synchronization events

System idle process, 268
system log files, writing event information

into, 510
System.Array class, 363
System.Attribute abstract class, 337
System.BitConverter class, converting

values and, 128
System.Collections namespace, 365
System.Collections.CollectionBase

methods, 374
properties, 374

System.Collections.Concurrent

namespace, 365
System.Collections.Generic namespace,

371–374
System.ComponentModel.BackgroundWorker

class. See BackgroundWorker class
System.Convert class, converting values

and, 127
System.Data namespace, 377
System.Data.Common.DBCommand class, 379
System.Data.Common.DBConnection class,

377–379
System.Data.Common.DBDataReader,

381–382
System.Data.SqlClient namespace, 377
System.Data.SqlClient.SqlCommand

class, 379

System.Data.SqlClient.SqlException

class, 242–243
System.Diagnostics.Debug class, 252
System.Diagnostics.PerformanceCounter

object, 514
System.Enum type, 74
System.Exception class properties, 246–247
System.IO namespace, 405
System.IO.FileSystemInfo object, 405
System.Reflection namespace, 320–335

Assembly class, 321–325
common classes of, 320–321
reflection basics, 320–321
System.Type class. See System.Type class
Using reflection (real-world scenario),

333–334
System.Reflection

.ProcessorArchitecture, 561
System.Runtime.Serialization.

Formatters.Binary namespace, 416
System.Runtime.Serialization.Json

namespace, 418
System.Security.Cryptography namespace

basics of, 530
hashing and, 540
key management and, 547

System.Security.Cryptography.

X509Certificates namespace, 544
System.String, string keyword and, 138
System.Text.RegularExpressions.Regex

class, 475–476
System.Threading.Thread class. See

threads
System.Threading.ThreadPool class,

273–275
System.Type class, 325–333

basics of, 325–326
details about classes or variables and, 320
GetArrayRank method, 328
GetConstructors method, 328–329

www.EBooksWorld.ir

www.EBooksWorld.ir

612

System.Type class (continued) – threads

System.Type class (continued)
GetEnum methods, 329–330
GetField/GetFields methods, 330–332
GetMethod/GetMethods methods,

332–333
GetProperty/GetProperties

methods, 332
methods, 327–328
properties, 326–327

System.ValueType, 61
System.Xml.Linq namespace, 462
System.Xml.Serialization namespace, 417

T

<T>, generic type parameter, 103
T4 templates, 390
tables

adding new records to (code lab),
385–386

reflection to map table columns to class
properties (real-world scenario),
333–334

Take method, queries and, 459
targets, of attributes, defined, 335
Task Parallel Library (TPL), 281–297

asynchronous application programming,
293–297

basics of, 276
continuations, 291–292
methods, 282
Parallel class, 288–290
properties, 283
scheduler, 288
Task class, 282
Task return type, 293
Task<TResult> class, 282, 288
Task<TResult> return type, 293
TaskCreationOptions enumeration

options, 284–285
TaskFactory methods, 283

tasks, creating, 284–288
tasks, defined, 282

task scheduler, 288
Task-based Asynchronous Pattern Model

(TAP), 276
tasks, defined, 282
templates, T4, 390
terminology of class hierarchies, 163
ternary operators, 28
text box fields

data validation and, 473, 481–482
New order form (real-world scenario),

484–493
validating data and, 472

text styles in this book, xxvii
Text Transformation Template Toolkit

files, 390
TextReader, StringReader and, 147
TextReader abstract class, 411
TextWriter class, 411
TextWriterTraceListener, 506, 507
TheFunction variable, 209–210, 211
ThenBy method, 446
this keyword, calling parent class

constructors and, 166, 168
ThisAndBase example program, 166–167
ThreadPool class

basics of, 273–275
Using (real-world scenario), 275–276

threads, 267–281
anonymous methods and, 217–218
basics of, 267–271
defined, 267
manually created vs. thread pool threads,

275–276
multithreading. See multithreading
reason for creating, 267
shortcomings of, 281
thread pool, 273–275
UI, unblocking. See UI, unblocking
Using (code lab), 271–273

www.EBooksWorld.ir

www.EBooksWorld.ir

613

throwing exceptions – types

Using the thread pool (real-world
scenario), 275–276

throwing exceptions. See exceptions,
throwing

tiers in certification programs, 7
time

Parse method and, 124
standard DateTime formatting strings,

152–153
TLS (Transport Layer Security), web security

and, 542
tools

Makecert.exe (Certificate Creation
Tool), 545

Object-Relational Mapping (ORM)
tool, 388

Text Transformation Template Toolkit
files, 390

Visual Studio tool for implementing
interfaces, 174

ToString method, 147, 150, 151
Trace class

debugging, and, 504–508
tracing and, 509

TRACE symbol, 503, 504
“TraceListener Class”, 508
tracing, 509
Transport Layer Security (TLS), web

security and, 542
true values

boolean operators and, 27
if statements and, 34

try section, of try-catch-finally block,
235, 238

try-catch blocks, protection and, 123
try-catch-finally blocks

basics of, 235–238
exceptions and return values and, 248
protecting code from all possible

exceptions, 239

unhandled exceptions and, 238
TryParse methods

data types providing, 123–124
data validation and, 473
order entry forms (real-world scenario)

and, 136
type system in C#, 59–112

encapsulation. See encapsulation
exam objectives, 60
generic methods, 103–105
generic types, 102–103
reference types (classes). See reference

types
value types. See value types

typeof() keyword, 325
types, 113–159

casting. See casting
CodeDOM namespace. See CodeDOM

namespace
converting between types basics, 114, 161
creating and using, as exam objective,

13–14
defined, 320
dynamic, 133–137
exam objectives, 114, 320
generic delegate types, 215–216
implicit and explicit conversions, 116–117
interoperability, unmanaged code and,

130–133
lambda expressions. See lambda

expressions
reflection, using with at runtime (as exam

objective), 14
reflection and. See System.Reflection

namespace
strings, manipulating. See strings
System.Collections namespace, 365
System.Collections.Generic

namespace, 371

www.EBooksWorld.ir

www.EBooksWorld.ir

614

types (continued) – value types

types (continued)
value types, boxing and unboxing,

128–130
values, converting. See converting values,

casting and
values, formatting, 149–153
widening and narrowing conversions,

114–116

U

UI, unblocking
BackgroundWorker class, 276–279
multithreaded Windows Forms

applications, 279–280
multithreaded WPF applications,

280–281
updating the UI, 281

unary logical negation operator (!), 28
unboxing

custom collections and, 374
value types, 128–130

#undef preprocessor directive, 498
undersubscribing, 233
unhandled exceptions, 238–239
Unicode version UTF-16, 138
unmanaged code, interoperability and,

130–133
unmanaged resources

CLR and, 191
vs. managed resources, 193

unreachable memory, 190
unsubscribing from events, 230–233
UpdateCommand property of DbDataAdapter

object, 387–388
updating

records (ADO.NET Entity
Framework), 393

records using WCF Data Services, 403

user input, parsing String class methods
and, 143

user-defined structs, defined, 61
using keyword, 198
using statements

for closing connections, 381
interoperability with unmanaged code

and, 130–131
managing object life cycle and, 197–198
as a try-finally sequence, 235–238

V

ValidateRequiredTextBox, order entry forms
(real-world scenario) and, 136

ValidateRow, order entry forms (real-world
scenario) and, 136, 137

validating data, 472–493
with built-in functions, 473–474
New order form (real-world scenario),

484–493
with regular expressions. See regular

expressions for data validation
with sanity checks, 483
with string methods, 474–475

validation of input
avoiding, 470–471
basics of, 470
data integrity, managing, 494–497
triggering, 471–472
validating data. See validating data

value types, 61–76
alias comparison and (code lab), 63–64
allowable in enums, 73–74
basics of, 59, 61–63
enumerations basics, 72–75
enums, using (code lab), 75–76
exam objectives, 61
passing to methods (code lab), 85–87

www.EBooksWorld.ir

www.EBooksWorld.ir

615

value_type_passing – WCF Data Services

structs, creating (real-world
scenario), 70–72

structs basics, 61, 66–70
types of, 61
using (code lab), 64–66

value_type_passing (code lab), 85–87
values. See also converting values, casting and

assigning to enumerators, 74
assigning to members of objects. See

constructors
defined by NumberStyles enumeration,

124–126
delegate values, storing in variables, 209
Displaying Currency Values (real-world

scenario), 153
FileIOPermissionAccess enumeration, 409
FileMode enumeration, 409–410
floating point operations and, 244
formatting, type conversion and, 149–153
incoming, methods and, 84
null vs. DBNull.Value, 381
percentage values (real-world

scenario), 144
true values, 27, 34
of variables, GetFields method and, 331

var, variables defined as, 433
variables

array variables, casting and, 121
contravariant, 214
covariant, 214
declaring as private, 331
defined, 25
defined as var, 433
delegate, 209–210
of delegate type, anonymous method

stored in, 217
exception catching and, 237
implicitly typed, 433
values of, GetFields method and, 331

verifying hash for data, 542

versions, assemblies, 552–554, 558–562
virtual methods, 90–91
Visual Studio

code editor, inserting event handler
names and, 230–231

debugging and, 41, 50
error messages, 238–239
event handlers and, 231–232
handling dynamic types and, 133–135
IntelliSense and, 94. See also IntelliSense
Server Explorer, 514–515
tool for implementing interfaces, 174
using code to subscribe to events and,

230–231
void return type, 293
von Newmann, John, 267

W

#warning preprocessor directive, 500
warnings

#warning and #error directives, 500
#pragma warning preprocessor

directive, 502
WCF Data Services, 394–404

basics of, 394–395
client application that uses, creating,

400–403
creating, 395–397
OData $filter OData $filter date

functions, 399
OData $filter OData $filter math

functions, 399–400
OData $filter OData $filter string

functions, 398–399
OData $filter OData $filter type

functions, 400
OData $filter query options, 398
OData query options, 397
request data in JSON format, 403–404

www.EBooksWorld.ir

www.EBooksWorld.ir

616

websites for downloading – zero based arrays

websites for downloading
chapter downloads, xxv
Northwinds database, 388
ShortPathNames example program, 132

websites for further information
BitConverter class, 128
DllImport statements, 132
“How to: Create Custom Performance

Counters”, 514
P2P forums, xxviii
prep guide, 11
strings, 378
“TraceListener Class”, 508

where clause
multiple, 435
query expressions and, 433, 434, 435

while loops
vs. do-while loops, 47–48
vs. for loops, 46

while statements, loops and, 45–47
white keyword, 45
widening conversions, 114, 116, 117
Window Designer, subscribing/unsubscribing

to events and, 232
Windows Forms

event inheritance and, 227
multithreaded applications, 279–280
vs. XAML applications, 232

Windows Forms form designer
subscribing to events and, 231–233
undersubscribing and, 233

wizards
Entity Data Model Wizard, 389, 390, 393
Performance Wizard, 512

WPF, multithreaded applications, 280–281
wrapper classes, implementing encryption

algorithms and, 529
writers

I/O operations and, 410–414
System.IO namespace, 410–414

WriteToConsoleForward method, 349, 350
WriteToEventLog program, 510

X

XAML applications, vs. Windows Forms
applications, 232

XElement class, 462
XML

converting LINQ to, 461–462
serialization of data, 417–418

[XmlIgnore] attribute, 418
XmlReader object, 384
XmlSerializer class, 417

Z

zero based arrays, 363

www.EBooksWorld.ir

www.EBooksWorld.ir

	MCSD Certification Toolkit (Exam 70-483)
	About the Authors
	About the Techincal Editor
	Acknowledgements
	Contents
	Introduction
	Chapter 1: Introducing the Programming C# Certification
	Getting Certified
	Why Get Certified?
	What Is MS Certification?
	Certification Changes
	The Initial Certifications (Version One)
	A New Generation of Certifications (Version 2)
	The Current Microsoft Certifications (Version 3)
	Other Microsoft Certifications: The MTA

	Things to Know About the Test
	How the Test Is Created
	How Questions Are Written

	How to Study for the Exam Using This Book
	Prep Guide
	Functional Groups
	Practice Questions
	Preparation

	The 70-483 Objectives
	Manage Program Flow (25 Percent)
	Implement Multithreading and Asynchronous Processing
	Manage Multithreading
	Implement Program Flow
	Create and Implement Events and Callbacks
	Implement Exception Handling

	Create and Use Types (24 Percent)
	Create Types
	Consume Types
	Enforce Encapsulation
	Create and Implement a Class Hierarchy
	Find, Execute, and Create Types at Runtime Using Reflection
	Manage the Object Life Cycle
	Manipulate Strings

	Debug Applications and Implement Security (25 Percent)
	Validate Application Input
	Perform Symmetric and Asymmetric Encryption
	Manage Assemblies
	Debug an Application
	Implement Diagnostics in an Application

	Implement Data Access (26 Percent)
	Perform I/O Operations
	Consume Data
	Query and Manipulate Data and Objects by Using LINQ
	Serialize and Deserialize Data
	Store Data in and Retrieve Data from Collections

	Summary
	Additional Reading and Resources

	Chapter 2: Basic Program Structure
	Writing Your First Program
	Exploring the Structure of the Program
	Understanding Simple Statements
	Understanding Complex Statements

	Controlling Program Flow
	Conditional Instructions
	Boolean Expressions

	Making Decisions in Code
	if Statements
	Beyond Basic if Statements
	switch statements

	Using Loops
	for statements
	Nested for Loops
	foreach statements
	while statements
	do-while statements

	Summary
	Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 3: Working with the Type System
	Creating Value Types
	Understanding Predefined Value Types
	Working with Data Structures
	Working with Enumerations

	Creating Reference Types
	Understanding Modifiers
	Defining Fields
	Using Constructors
	Defining Methods
	Overloaded Methods
	Abstract and Overridden Methods
	Extension Methods
	Optional and Named Parameters

	Understanding Encapsulation
	Properties
	Enforced Encapsulation by Using Properties
	Indexed Properties

	Understanding Generic Types and Generic Methods
	Defining Generic Types
	Using Generic Types
	Defining Generic Methods
	Using Generic Methods

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 4: Using Types
	Converting Between Types
	Using Widening and Narrowing Conversions
	Using Implicit and Explicit Conversions
	Casting
	The is Operator
	The as Operator
	Casting Arrays

	Converting Values
	Parsing Methods
	System.Convert
	System.BitConverter

	Boxing and Unboxing Value Types
	Ensuring Interoperability with Unmanaged Code
	Handling Dynamic Types

	Manipulating Strings
	Behind the Strings
	String Constructors
	String Fields and Properties
	String Methods
	Additional String Classes
	StringBuilder
	StringWriter
	StringReader

	Formatting Values
	ToString
	String.Format
	Formatting Strings

	Summary
	Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 5: Creating and Implementing Class Hierarchies
	Inheriting from a Base Class
	Calling Parent Class Constructors
	Calling Same Class Constructors

	Designing and Implementing Interfaces
	Defining Interfaces
	Implementing Interfaces
	Delegating Interfaces

	Implementing Common Interfaces
	IComparable
	IComparer
	IEquatable
	ICloneable
	IEnumerable

	Managing Object Life Cycle
	Implementing the IDisposable Interface
	Providing Destructors
	Using the using Statement

	Summary
	Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 6: Working with Delegates, Events, and Exceptions
	Working with Delegates
	Delegates
	Delegate Details
	Static and Instance Methods
	Covariance and Contravariance

	Built-in Delegate Types
	Action Delegates
	Func Delegates

	Anonymous Methods
	Lambda Expressions
	Expression Lambdas
	Statement Lambdas
	Async Lambdas

	Working with Events
	Publishing Events
	Predefined Event Types
	Event Best Practices
	Event Inheritance

	Subscribing and Unsubscribing to Events
	Using Code to Subscribe to an Event
	Using Designer to Subscribe to an Event

	Exception Handling
	Error Checking and Exception Handling
	try-catch-finally Blocks
	Unhandled Exceptions
	Common Exception Types
	SQL Exceptions
	Overflow Exceptions

	Exception Properties
	Throwing and Rethrowing Exceptions
	Using Exceptions and Return Values
	Catching, Throwing, and Rethrowing Exceptions
	Creating Custom Exceptions
	Making Assertions

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 7: Multithreading and Asynchronous Processing
	Creating Responsive Applications
	Working with Threads
	Spawning New Threads by Using ThreadPool
	Unblocking the UI
	BackgroundWorker Class
	Multithreaded Windows Forms Applications
	Multithreaded WPF Applications

	Working with the Task Parallel Library
	Introducing Task
	Creating Tasks
	Working with the Scheduler

	Using the Parallel Class
	Working with Continuations
	Programming Asynchronous Applications with C# 5.0

	Exploring Advanced Multithreading
Programming Topics
	Synchronizing Resources
	Synchronization Events
	Barriers

	Using Locking Mechanisms
	Monitors
	Lock-Free Alternatives

	Working with Concurrent Collections
	Working with Cancellations

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 8: Creating and Using Types with Reflection, Custom Attributes, the CodeDOM, and Lambda Expressions
	Using the System.Reflection Namespace
	Assembly Class
	The System.Type Class
	GetArrayRank
	GetConstructors
	GetEnumName, GetEnumNames, and GetEnumValues
	GetField and GetFields
	GetProperty and GetProperties
	GetMethod and GetMethods

	Read and Create Custom Attributes
	Read Attributes
	Create Attributes

	Generate Code Using the CodeDOM Namespace
	Generate Code Using the CodeDOM Namespace
	CodeCompileUnit
	CodeNamespace and CodeNamespaceImport
	CodeTypeDeclaration
	CodeMemberField
	CodeMemberProperty
	CodeMemberMethod
	CodeParameterDeclarationExpression and CodeMethodInvokeExpression
	CodeDOMProvider

	Lambda Expressions
	Delegates
	Anonymous Methods
	Lambda Expressions

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 9: Working with Data
	Working with Data Collections
	Arrays
	Collections
	System.Collections
	System.Collections.Generic
	Custom Collections

	Consuming Data
	Working with ADO.NET
	Connection
	Command
	DataSet, DataTable, and DataAdapter

	Working with the ADO.NET Entity Framework
	Create an Entity Framework Model
	Select Records
	Insert Records
	Update Records
	Delete Records
	Call a Stored Procedure

	Creating WCF Data Services
	Create a WCF Data Service
	Create a Client Application That Uses WCF Data Services
	Request Data as JSON in a Client Application

	Performing I/O Operations
	Files and Directories
	Streams
	Readers and Writers
	Asynchronous I/O Operations

	Understanding Serialization
	Binary Serialization
	XML Serialization
	JSON Serialization
	Custom Serialization

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 10: Working with Language Integrated Query (LINQ)
	Understanding Query Expressions
	Filtering
	Ordering
	Projection
	Joining
	Grouping

	Understanding Method-Based LINQ Queries
	Filtering
	Ordering
	Projection
	Joining
	Grouping
	Aggregate Functions
	first and last
	Concatenation
	Skip and Take
	Distinct

	Utilizing LINQ to XML

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Review of Key Terms

	Chapter 11: Input Validation, Debugging,
	Input Validation
	Avoiding Validation
	Triggering Validations
	Validating Data
	Using Built-in Functions
	Using String Methods
	Using Regular Expressions
	Using Sanity Checks

	Managing Data Integrity
	Using Database Validations
	Using Assertions

	Debugging
	Preprocessor Directives
	#define and #undef
	#if, #elif, #else, and #endif
	#warning and #error
	#line
	#region and #endregion
	#pragma warning
	#pragma checksum

	Predefined Compiler Constants
	Debug and Trace
	Debug and Trace Objects
	Listeners

	Programming Database Files

	Instrumenting Applications
	Tracing
	Logging and Event Logs
	Profiling
	Using a Profiler
	Profiling by Hand
	Using Performance Counters

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Chapter 12: Using Encryption and
	Using Encryption
	Choosing an Appropriate Encryption Algorithm
	Symmetric Encryption
	Asymmetric Encryption
	Stream Encryption

	Hashing Data
	Managing and Creating Certificates
	Implementing Key Management
	Choosing When to Use Which

	Managing Assemblies
	What Is an Assembly?
	Understanding Assembly Versions
	Signing Assemblies Using Strong Names
	Implementing Side-by-Side Versioning
	Adding Assemblies to the Global Assembly Cache

	Summary
	Chapter Test Questions
	Additional Reading and Resources
	Cheat Sheet
	Review of Key Terms

	Appendix: Answers to Sample Test Questions
	Chapter 1: Introducing the Programming
in C# Certification
	Chapter 2: Basic Program Structure
	Chapter 3: Working with the Type System
	Chapter 4: Using Types
	Chapter 5: Creating and Implementing Class Hierarchies
	Chapter 6: Working with Delegates, Events,
and Exceptions
	Chapter 7: Multithreading and
Asynchronous Processing
	Chapter 8: Creating and Using Types with Reflection, Custom Attributes, the CodeDOM, and Lambda Expressions
	Chapter 9: Working with Data
	Chapter 10: Working with Language Integrated
Query (LINQ)
	Chapter 11: Input Validation, Debugging,
and Instrumentation
	Chapter 12: Using Encryption and Managing Assemblies

	Index

