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Preface 

Welcome, and thank you for purchasing Reactive Applications with Akka.NET! I hope that this 
book lays a solid foundation for you to create applications and services that are truly capable of 
standing the trials and tribulations of a wide audience, making the most of the Reactive 
Manifesto along your way. 

As software developers, we find ourselves in an interesting time. The significant growth in 
popularity of computers of all shapes and sizes—whether they’re in traditional devices like 
laptops and desktops, smart entertainment devices such as TVs, or in the booming Internet of 
Things market—is leading to a wide demand for new and innovative solutions that can handle 
high rates of data and scalability. 

As the demand on internet-capable computers and devices increases, so does the pressure on 
software developers to create applications that can withstand growth. We need applications that 
not only stand up to the demands of users, but are also flexible enough to be rapidly adapted 
and modified in order to change with market trends and needs. 

Reactive systems offer applications that can respond to changes in their environment nearly 
instantly, making you and your applications essential in the software development landscape. I 
hope this book helps you on your journey to a thorough understanding of reactive applications 
and how using Akka.NET can alleviate some of the difficulties you’ve experienced in the past. 
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About this book 

As you work through the book, you’ll see how the Reactive Manifesto and reactive concepts fit 
into this new era of software development. In part 1 of the book, you’ll see an overview of the 
reactive approach and why it’s needed in the coming years, as well as a more in-depth look at 
how you can design systems with reactive traits in mind. From there, you’ll get acquainted with 
Akka.NET, an actor model implementation in .NET that allows you to write applications in the 
reactive style. Following this, you’ll build an understanding of the fundamentals of writing 
applications using Akka.NET before you look at how to apply these principles in the applications 
you write, thanks to the Akka.NET ecosystem. 

WHO SHOULD READ THIS BOOK? 

Reactive Applications with Akka.NET is written for those with little-to-no experience with 
Akka.NET, the actor model, or reactive systems, who have encountered difficulties in creating 
applications that are resilient and scalable. Readers should be comfortable with C# or F# and 
the .NET framework, but no previous reactive experience is needed. 

HOW IS THIS BOOK ORGANIZED?  

This book has three parts spanning 13 chapters. Part 1 sets the stage for moving into a reactive 
mindset: 

• Chapter 1 outlines what it means to be reactive and when you want to apply Akka.NET. 
• Chapter 2 focuses on the tenets for designing a reactive e-commerce application, and will 

teach you how to effectively design such an application with many of the features that 
Akka.NET makes available. 

Part 2 focuses on digging into the details that you need to create fully functional reactive systems 
in Akka.NET: 

• Chapter 3 presents your first Akka.NET application, and will acquaint you with the design 
patterns typically used when designing reactive systems in Akka.NET. 

• Chapter 4 teaches how to selectively receive messages into an actor with switchable 
behaviors, and will also teach you the basics of finite state machines, including how to 
model them using Akka.NET. 

• Chapter 5 takes a deep look into how you can instrument and operationalize an Akka.NET 
application through the configuration of individual actors and actor systems as a whole. 

• Chapter 6 focuses on how to respond to service failures within an Akka.NET application, 
delivering an in-depth look from the original source of the failure to typical failure 
models. 

• Chapter 7 looks at the difficulties involved with traditional scaling approaches, and how 
the Akka.NET approach is different. 

• Chapter 8 looks at actor systems and how to link, scale, and create applications that can 
handle machine-level failure. 
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Part 3 wraps up the book by offering real-world case studies and implementations: 

• Chapter 9 is focused on testing, from designing unit tests for functionality to verifying the 
functionality of distributed actor systems through multinode tests. 

• Chapter 10 helps you integrate Akka.NET with custom protocols, focusing on sending and 
receiving data, integrating real-time connection mechanisms, and adding web APIs to 
allow communication with actor systems. 

• Chapter 11 teaches how to add a persistent backing data store to an actor to save its state, 
with a focus on developing evolvable applications using Akka .-Persistence and event 
sourcing. 

• Chapter 12 utilizes Akka.Cluster to create elastic and scalable actor systems that span 
multiple machines. 

• Chapter 13 is an end-to-end case study that will allow you to implement everything you’ve 
learned while programming one real-world production problem. 

ABOUT THE CODE  

This book contains many examples of source code in a fixed-width font like this to separate 
it from ordinary text. 

In many cases, the original source code has been reformatted; we’ve added line breaks and 
reworked indentation to accommodate the available page space in the book. Additionally, 
comments in the source code have often been removed from the listings when the code is 
described in the text. 

Source code for the examples in this book is available for download from the publisher’s website 
at www.manning.com/books/reactive-applications-with-akka-net. 

LIVEBOOK DISCUSSION FORUM 

Purchase of Reactive Applications with Akka.NET includes free access to a private web forum 
run by Manning Publications where you can make comments about the book, ask technical 
questions, and receive help from the author and from other users. To access the forum, go 
to https://livebook.manning.com/#!/book/reactive-applications-with-akka-net/discussion. You can also 
learn more about Manning’s forums and the rules of conduct 
at https://livebook.manning.com/#!/discussion. 

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue 
between individual readers and between readers and the author can take place. It is not a 
commitment to any specific amount of participation on the part of the author, whose 
contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some 
challenging questions lest his interest stray! The forum and the archives of previous discussions 
will be accessible from the publisher’s website as long as the book is in print. 
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About the author 
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About the cover illustration 

The figure on the cover of Reactive Appplications with Akka.NET is captioned “Habit of 
Moorish Woman in 1695.” The illustration is taken from Thomas Jefferys’ A Collection of the 
Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 
1757 and 1772. The title page states that these are hand-colored copperplate engravings, 
heightened with gum arabic. 

Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English 
cartographer who was the leading map supplier of his day. He engraved and printed maps for 
government and other official bodies and produced a wide range of commercial maps and 
atlases, especially of North America. His work as a map maker sparked an interest in local dress 
customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection. 
Fascination with faraway lands and travel for pleasure were relatively new phenomena in the 
late eighteenth century, and collections such as this one were popular, introducing both the 
tourist as well as the armchair traveler to the inhabitants of other countries. 

The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and 
individuality of the world’s nations some 200 years ago. Dress codes have changed since then, 
and the diversity by region and country, so rich at the time, has faded away. It’s now often hard 
to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, 
we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and 
interesting intellectual and technical life. 

At a time when it’s difficult to tell one computer book from another, Manning celebrates the 
inventiveness and initiative of the computer business with book covers based on the rich 
diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures. 
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Part 1. The road to reactive 

This part of the book sets the stage for your journey throughout the book. In chapter 1, you’ll 
learn what it means to be reactive and when you want to apply Akka.NET. Chapter 2 focuses on 
the tenets for designing a reactive e-commerce application, and teaches how to effectively design 
such an application with many of the features that Akka.NET makes available. 
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Chapter 1. Why reactive? 

This chapter covers 

• Understanding the Reactive Manifesto’s principles of reactive design 
• Using messaging, resilience, elasticity, and responsiveness 
• Building reactive systems with Akka.NET 

Over the past several decades, computers and the internet have moved from a position of 
relative obscurity to being central to many aspects of modern life. We now rely on the internet 
for all manner of day-to-day tasks, including shopping and keeping in contact with friends and 
family. The proliferation of computers and devices capable of accessing the internet has 
increased pressure on software developers to create applications that are able to withstand this 
near-exponential growth: we must develop applications that can meet the demands of a modern 
populace dependent on technology. Demands range in scope from providing instantly available 
information to users, to services that are resilient to issues they might encounter from increased 
usage or an increased likelihood of failure, which may be caused by factors entirely outside of 
our control. When this is twinned with the demands of a rapidly evolving company trying to beat 
the competition to find gaps in an ever-changing marketplace, applications must not only satisfy 
demands imposed by users but also be sufficiently malleable that they can be rapidly adapted 
and modified to fill those gaps. 

In response to this, technology companies working across a broad range of different domains 
began to notice common design patterns that were able to fulfill these new requirements. Trends 
began to emerge, which were clearly visible to companies building the next generation of 
modern applications with a strong focus on huge datasets, up to the petabyte scale in some 
instances, which needed to be analyzed and understood in record time, with results being 
delivered to users at near-instantaneous speeds. Systems following these patterns were seen to 
be robust, resilient, and open to change. These principles were collected together and form the 
outcomes you can expect when you develop applications by implementing the Reactive 
Manifesto: a set of shared principles that exemplify a system design capable of standing up to 
the challenges of today’s demands. 

1.1. THE HEART OF THE REACTIVE MANIFESTO  

At the core of the Reactive Manifesto is an understanding that applications designed to be 
responsive, resilient, elastic, and message-driven can respond to changes in their environment 
quickly (see figure 1.1). A change in the environment could include any number of variables, 
whether it’s a change in the data of another component in the system, an increase in the error 
rate when attempting to process data or communicate with an external system, or an increase in 
the amount of data flowing through the system across component boundaries. 
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Figure 1.1. Reactive systems: responsive, resilient, elastic, message-driven 

 

The implication is that the most important property of a modern application is its 
responsiveness: it should quickly respond to requests from users. For example, in the context of 
a web application, the user should expect to see changes as soon as data is input, whether this is 
by the application pushing data changes to the user’s web browser, or ensuring that such 
changes can be retrieved quickly when the user next requests the change. The term responsive is 
broad, and its definition in one domain may be vastly different than in another context, so some 
consideration should be applied to what responsive means when applied to your applications. 
Many of the examples in this book apply to either web applications or real-time data solutions. 
These two cases themselves include a number of potential interpretations of 
what responsive means. For example, a web application should be responsive by quickly 
responding to an HTTP request, whereas a data-streaming solution should ensure that data 
flows at a constant rate in order to prevent a stalled stream, which might have knock-on effects 
for other components earlier in the stream. 

In order to achieve this level of responsiveness, the systems you design must able to handle 
greater scale. Let’s consider the example of a web application again. If it receives more web 
requests than the server is capable of handling, then it’s inevitable that the incoming requests 
will start to queue up until resources are available to service them. Queuing leads to an increase 
in response time for users, making the application less responsive. Similarly, in the case of a 
streaming-data solution, if more events start to flow through the stream, your system must be 
able to process them within a fixed amount of time; otherwise, subsequent events may be 
delayed. But it’s not enough to constantly provide more computing power; although computing 
power has dropped in price significantly in recent years, it’s still far from cheap. As such, your 
system should be able to respond to periods of inactivity or reduced throughput by negatively 
adjusting provisioned compute resources so that you don’t have to maintain or pay for 
unnecessary resources. This scenario relates to designing systems with elasticity: having the 
ability to expand resources when needed, but otherwise shrinking down to a minimum set of 
operational resources. 

In parallel with elasticity, it’s important that systems are equally resilient: they’re able to react to 
a failure, whether it’s a failure that originates from within the system, over which you have some 
degree of control, or from other systems external to yours and over which you have no control. 
In a streaming-data solution, this might translate into the ability of your stream-processing 
system to handle receiving bad or invalid data from an incoming data source. For example, with 
an Internet of Things (IoT) device sending sensor data, your stream-processing solution should 
be able to handle incoming data that may contain invalid sensor readings caused by a faulty 
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sensor. If your application starts to fail, then this will likely cause knock-on failures in other 
components within your system. Therefore, a resilient application focuses on the containment of 
errors in the smallest possible area of the application. Following this containment, it should 
recover from these failures automatically, without the need for manual intervention. This notion 
of resilience ensures that the client doesn’t end up being burdened with the responsibility for 
handling failures that may occur in the system. 

Finally, driving the concepts you’ve seen thus far, message-driven systems are the core 
component that links everything together. By using messaging as the basis of communication 
between components, the system can perform work asynchronously and in a completely non-
blocking manner. It can perform more work in parallel, leading to an increase in overall 
responsiveness. By using message passing as the basis of communication, you’re also able to 
redirect and divert messages at runtime as appropriate, thus allowing you to reroute a message 
from a failing component to one that can service the request. For example, if you have two 
servers, each of which can service a request, then by using message passing, you can change 
which server receives the request if one server becomes unavailable to service it. Similarly, if you 
notice one server has become a bottleneck, you can divert a message to another server that’s 
able to service the request. This means that you can dynamically add or remove new instances 
and automatically redirect messages to the target instance. 

You can see how these concepts work together, with messaging being the core building block 
that powers the resilience, elasticity, and responsiveness of the application. You can also see that 
elasticity and resilience are shared concerns: when you have the infrastructure in place for 
resilience, it provides the necessary logic for elasticity. When all of these concepts are linked 
together, you have applications that are responsive. 

1.2. REACTIVE SYSTEMS VS. REACTIVE PROGRAMMING  

The concepts embodied in the Reactive Manifesto are far from new, having evolved over several 
decades. The Manifesto is itself a formalization of a significant amount of domain knowledge 
from varying organizations. Due to the relatively broad concepts covered in the Reactive 
Manifesto, there’s some overlap between two related programming concepts: reactive 
programming and reactive systems. 

Reactive programming, like the programming model offered by Reactive Extensions (Rx; a 
library for developing in .NET), offers a small-scale overview of reactive systems, tailored to how 
data flows in a single application. Typical applications are driven by a threaded execution model 
in which operations are performed sequentially in an order that you’ve defined, leaving you to 
deal with many of the underlying flow-control primitives needed to synchronize data. In 
contrast, reactive programming is driven by the execution of code only when new data is 
available; typically, this is in the form of events arising from a data source. One example is a 
timer that ticks once every 5 minutes. Using typical programming patterns, you’d have to set up 
a loop that continuously polls until the minimum time period has elapsed before you progress 
through your application flow. But with reactive programming, you create handlers that receive 
an event and are executed whenever a new event is received. 

Reactive systems, however, focus on applying the same concepts on a much larger scale 
involving the integration of multiple distinct components. Many of the applications built today 
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are no longer basic programs, taking in an input and producing an output; instead, they’re 
complex systems made up of arrays of components, where each component could itself be an 
entire system. This level of interconnectedness brings with it complexities. Systems may not be 
running on the same physical hardware and may not even be collocated, with one system 
existing thousands of miles from another. This means you need to consider what happens in the 
event of failure, or how other system components will respond in the event of a sudden flood of 
information passing through the system. You saw when we discussed the Reactive Manifesto 
that these are requirements for a system to remain responsive, and you saw the way to achieve 
these aims is through the use of a higher-level message-passing-based API. 

This is the core difference between reactive programming and a reactive system. Reactive 
programming involves the notion of events: data that is broadcast to everybody who’s listening 
to that event. Reactive systems are message-driven, with individually addressable components 
supporting targeted messages. Akka.NET is one example of a tool that simplifies the building of 
large-scale reactive systems, which you’ll see throughout this book, whereas Reactive Extensions 
is an example of reactive programming, which we won’t be considering in this book. The two 
concepts can be combined, with reactive programming being built on top of a reactive system, or 
reactive programming existing within a single component of a reactive system. But the 
combination of these concepts won’t be addressed in this book. 

1.3. APPLYING AKKA.NET 

Akka.NET is a platform on which reactive systems can be built. This opens the door to using it 
across multiple distinct domains. It has been used in IoT applications, e-commerce, finance, and 
many other domains. The internal requirements of these applications determine whether 
Akka.NET is an ideal fit. One concern common to these types of applications is the requirement 
to update components based on the results of operations of other components. Akka.NET is a 
powerful tool when you need immediate responses from multiple components all integrated 
together. 

1.3.1. Where to use Akka.NET 

One example of where Akka.NET is an ideal fit is in the world of commercial air travel. Here, 
multiple distinct components produce data at an incredible rate: data that must be processed 
and delivered to the user as soon as possible. For example, a passenger in the terminal waiting 
to board a flight needs to know which gate their flight will depart from. Up-to-date information 
is particularly important in large airports, where it might take 20 or 30 minutes to walk between 
gates. But a vast number of integrated systems dictate where a flight travels. National air traffic 
control, which reroutes flights in the event of an emergency and to prevent in-air collisions 
between planes in a congested airspace, is a factor. The airport’s air traffic control, responsible 
for directing planes to the correct runway, is also a factor; in the case of a large airport, landing 
on a different runway could direct the plane to a different gate. Other airport operations may 
divert a flight to a different gate due to a scheduling issue between airlines that prevents a plane 
from arriving at its planned gate. Similarly, data from the airline’s internal systems might force 
a gate change due to internal scheduling problems. A vast array of data sources publish data that 
needs to be processed quickly to keep passengers immediately updated regarding any changes 
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that occur as part of the effort to ensure that aircraft are able to turn around and take off again 
after landing. 

Although not all systems are this complex or rely on as many distinct data sources, you can see 
the pattern of integrating multiple components together into a larger system while 
accommodating difficulties that might be encountered in the process. An airline, for instance, 
needs to immediately respond to changes when they’re published, to protect the safety and 
security of passengers and staff. 

1.3.2. Where not to use Akka.NET 

Although Akka.NET makes it easier to build large reactive systems, it brings with it some 
difficulties. You’ve seen how complex systems force you to consider their complexities. For 
example, you must think about partial failures of system components that might impact other 
components, consider data consistency and how that should be handled in the case of partial 
failures, and deal with plenty of other issues. Akka.NET brings these difficulties and 
complexities to the surface as first-class principles, which means that you have to address them. 
When dealing with them, you’ll also unearth a number of other complexities: notably, debugging 
is more difficult, and you have to think about concurrency. Therefore, for fairly simple web 
applications that have basic requirements, Akka.NET is unlikely to provide any significant 
benefits. These include relatively basic CRUD (create, read, update, delete) applications that are 
backed by a basic database model. 

At its core, Akka.NET provides a concurrency model designed to allow multiple components to 
operate simultaneously. This means that when developing systems with Akka.NET, you need to 
think carefully about the data in your system. Although Akka.NET removes the possibility of 
concurrent access to shared data, there’s still the opportunity for data races to occur, as well as 
the potential for deadlocks. For a system that doesn’t need to operate concurrently, Akka.NET is 
likely to complicate matters rather than simplify them. 

1.4. HOW DOES AKKA.NET WORK?  

Although Akka.NET itself and how it works might be new to many developers, its underlying 
principles have been in development for decades, in the form of the actor model. As part of the 
actor model, independent entities, known as actors, are responsible for performing work. You 
can have multiple different types of actors within a system, and each of these types can have 
multiple instances running in the system. Every actor runs independently of every other actor in 
the system, meaning that two running actors can’t directly interfere or interact with each other. 
Instead, each actor is supplied with a mailbox, which receives messages, and an address, which 
can be used to receive messages from other actors in the system. An actor sits idle and doesn’t 
do anything until a new message is received in the actor’s mailbox; at this point, the actor can 
process the message using its internal behavior. Its behavior is the brain of the actor and defines 
how it should respond to each message it receives. If an actor receives more than one message, 
the messages are queued up in the order in which they were received, and the actor processes 
each message sequentially. Each actor will only process a single message at a time, although 
multiple actors can process their respective messages at the same time. This allows you to create 
highly concurrent applications without having to concern yourself with the underlying 
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multithreading infrastructure and code that’s typically required when developing concurrent 
applications. It’s important to note also that actors are completely isolated, meaning that any 
internal information or data owned by one actor isn’t accessible by anything other than that 
actor. 

You can think of actors as being similar to people with mobile phones (see figure 1.2). Each 
person has an address through which they can be contacted; in this case, the address is the 
person’s phone number. The person initiating the phone call also has a unique address; again, 
this is a phone number. By means of those addresses, communication takes place between two 
people, for example, by sending an SMS with some data in it. The data you might include in an 
SMS is typically a question, if you want to acquire information, or a statement, if you want to 
pass information. The SMS you send goes to the other person’s mailbox, where they can 
asynchronously deal with it when they have the resources and bandwidth available. Like actors, 
every person is an independent, isolated entity with no ability to directly access information 
belonging to another person. If you want to find out what plans a friend has for the weekend, 
you don’t have direct access to that information; instead, you send them an SMS asking for the 
information. This is the same pattern you use when sending data between actors: rather than 
directly accessing an actor’s data, you send the actor a message asking for it, and await the 
response. 

Figure 1.2. Actors communicate much like people with mobile phones do. 
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Similar to humans, actors can perform a number of operations upon receiving a new message. 
The simplest operation for a receiving actor is to ignore a message; if it’s particularly important, 
the requesting actor will resend the message and attempt a second time to retrieve a response. 
Alternatively, upon receiving a message, the receiving actor may choose to send a message 
elsewhere. This actor might not have all the information available to create a complete response, 
but it can contact other actors in the system, who might have the information available, after 
which the receiving actor can act on the message and send a response to the requesting actor. 
For a particularly intense or long-running task, an actor can spawn another actor that’s solely 
responsible for performing that task. This is similar to how people delegate work to other people 
if they lack the time needed to perform the task, or if they have other pressing matters to attend 
to. An actor can also choose how to respond to the next message it receives by modifying its own 
internal state. This is analogous to hearing new information from a third party that influences 
your answers to the questions you receive from other people. 

The main takeaway when considering the actor model is that its core design principle is to form 
an abstraction over the top of low-level multithreading concepts to simplify the process of 
developing concurrent applications. Understanding this, combined with the isolated nature of 
individual actors, ensures that the systems you build on top of Akka.NET are able to fulfill the 
criteria in the Reactive Manifesto. 

This chapter has shown the core principles that make up the Reactive Manifesto; in later 
chapters, you’ll see how you can apply concepts from Akka.NET to closely align your systems 
with the aims of the Manifesto. 

SUMMARY  

In this chapter, you learned 

• The driving force behind the move to reactive systems has been the need for systems that 
are responsive, resilient, elastic, and message-driven, and that can respond to changes in 
their environment quickly. 

• Akka.NET’s underlying programming principles are based on the actor model. 
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Chapter 2. Reactive application design 

This chapter covers 

• Designing reactive systems with Akka.NET design patterns 
• Exploring application design concepts 
• Reactive design trade-offs 

In chapter 1, you saw many reasons why you might want to design an application using the 
principles laid out in the Reactive Manifesto—reasons primarily driven by the changing face of 
technology over the past several decades. Whereas computers were once rarities, used primarily 
by researchers or organizations with sufficient funds, they have since been transformed into the 
commonplace, with the vast majority of households now having at least one computer, 
smartphone, or tablet. This number is set to grow with the introduction of the Internet of 
Things, which is transforming many of the mundane tasks we perform on a daily basis by 
harnessing the power of an interconnected network of smart devices. This transformation is 
likely to replicate many of the changes we’ve already seen in industry over the past few decades, 
as companies adapt to provide their services in the internet age. 

For example, in the world of e-commerce, more and more retailers are providing products and 
services through online stores. Online shopping has grown, with more consumers opting to use 
the internet for the majority of their shopping. This has led to a situation in which online 
retailers are in direct competition with each other. Although this level of competition benefits 
consumers who can access readily available products with competitive pricing, it puts a huge 
amount of pressure on retailers to ensure that their online user experience (UX) is near-perfect; 
otherwise, customers can easily transfer their business to competitors. Research indicates that 
when consumers encounter errors and excessive page-loading times, they move to competitors 
with friendlier websites. 

2.1. BASIC REACTIVE SYSTEM DESIGN  

Given that the overall aim of the Reactive Manifesto is to provide a responsive experience to the 
end user, it’s apparent that the principles of reactive application design could have significant 
benefits for the world of e-commerce. You saw the four tenets of a reactive application in chapter 

1: it’s responsive, fault tolerant, elastically scalable, and message-driven. Of these four, three are 
directly relevant to an e-commerce website’s UX. 

If you want to increase the likelihood that customers remain on the website, then you need to 
ensure that pages load quickly and other actions are performed promptly. If a customer wants to 
spend money on an e-commerce website, that website should provide a fluid UX; otherwise, the 
website runs the risk of alienating the user and sending them to a competitor. 

An e-commerce website should also be elastically scalable, especially during sharp spikes in 
numbers of visitors during peak periods of traffic. When you analyze common shopping habits, 
you see many users accessing websites during a given period, driven by gift-giving holidays such 
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as Christmas, key shopping-discount events such as Black Friday, and so on. In these cases, you 
want your service to handle the most requests possible. If you have a user spike of an order of 
magnitude more than normal, you need to accommodate it; otherwise, you run the risk of 
customers flocking en masse to competing websites. 

Similarly, when designing for failure, you want to ensure that even if a non-essential component 
of an e-commerce website fails, it can still accept the user’s payment. For example, if a customer 
navigates to the checkout page, they shouldn’t be faced with errors caused by non-essential 
features, such as recommendation services or advertising features intended to sell additional 
products or services. If such components fail, the customer should still be able to complete the 
purchase. 

This combination of requirements suggests that designing an e-commerce application using the 
principles specified in the Reactive Manifesto may provide substantial benefits. But effectively 
designing an application using the concepts of the Manifesto can mean significant changes, in 
terms of both the developer’s thought process and the application architecture. In order to 
better understand reactive application design, in this chapter we’ll look at how to design a 
traditionally CRUD-based application using actors with Akka.NET and the principles from the 
Manifesto. We’ll consider some of the challenges and design decisions you’re likely to encounter 
as you design such applications, as well as how you can effectively design an application using 
features made available by Akka.NET. 

2.2. REACTIVE E-COMMERCE APPLICATION WITH ACTORS 

As we’ve already considered, the way we use computers has rapidly changed over the past 
several decades, and they’re now seen as a commodity that exists in the majority of households, 
along with internet connection. But users have also become more demanding, requiring more 
features to enhance their shopping experience. These features include recommendation engines 
that suggest alternative products, trend calculations to predict which products are due to be the 
most popular, and integrations with external third-party services that provide additional 
features and benefits. And e-commerce businesses are interested in gaining insights into how 
customers are shopping and better positioning themselves to respond to customer demands. 
This produces high demands on the scalability of both the traffic-handling and application 
architectures. 

Let’s consider how you can effectively design a reactive system with an actor-based approach, 
representing the system entities with actors, in the familiar context of an e-commerce 
application. If you haven’t had the experience of writing e-commerce websites, you’ve likely used 
one to make purchases. You saw in the previous section why the world of e-commerce is a strong 
candidate for reactive application design, where the goal is to create applications that are 
responsive. 

Given that an average e-commerce website is quite large, we won’t examine every component 
within the system; instead, we’ll focus on one key aspect of the application: the final purchasing 
experience. This is the part of the website the user will navigate to once they’ve finished 
browsing and are ready to purchase their selected items. This component will have a number of 
requirements such as providing a shopping cart where users can store items as they browse the 
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site, a checkout where users enter their shipping address, and a payment gateway where users 
enter payment card details. 

Chapter 1 addressed what an actor is and how actors allow you to design applications with 
concurrency handled transparently for you. It also addressed the requirements of a reactive 
application and the principles you should adhere to for success. In the rest of this chapter, we’ll 
consider how to incorporate these ways of thinking into a real-life application. We’ll also 
consider how these components would fit into the context of an application designed using 
Akka.NET, by linking these design ideas to the functionality and features provided as core 
components of the Akka.NET distribution. 

2.2.1. A reactive shopping cart 

The first component that a potential customer is likely to encounter is the shopping cart, 
analogous to the shopping cart in a physical store, which they can use when browsing to collect 
the items they intend to purchase. Thousands of users may browse the site at once, so your 
application must support the simultaneous use of thousands of shopping carts. To design this, 
you’ll create a shopping cart, which is nothing more than a list of items and the quantity of 
items. Each shopping cart is accessed through a unique identifier, which is stored in the user’s 
session. One of the core attributes of actors is the ability to store state, which varies per type of 
actor. In the case of the shopping cart, you could store a dictionary of the user’s session 
identifier, along with a list of items and quantities. This is how you might model the component 
if you were to use a database. But actors serialize all incoming messages; only one message is 
processed at any one time, in order. This means that if lots of users are trying to access their 
shopping carts at the same time, then they’ll have to sit through long queues. This defeats the 
aim of providing a responsive UX. 

But because actors can perform work in parallel and are an incredibly cheap abstraction in 
terms of memory and computation, you can create many actors to work concurrently. For the 
shopping cart example, you can create a single actor per shopping cart, responsible for storing a 
list of items and associated quantities, and the actors are addressed by the shopping cart 
identifier. You can see an example of this in figure 2.1; each actor is effectively a shopping cart, 
which is similar to how this might be modeled in the physical world, where you have one 
physical entity per customer. 
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Figure 2.1. Creating one actor per shopping cart allows each shopping cart to be accessed independently of the others. This means 

there’s no contention for resources between User 1 and User 2. 

 

This leads us to the first design pattern you’re likely to encounter in an actor-based reactive 
system. Where possible, you should partition work into actors based on concurrency 
boundaries; in the case of a shopping cart, a concurrency boundary is an individual shopping 
cart. Designing systems like this allows for the greatest throughput, ensuring your application 
remains responsive. It also allows for easier scalability, because you can fine-tune the 
deployment of the actor to better handle any increased throughput it might experience. The next 
chapter will look at how to effectively design actors in the context of Akka.NET; you’ll also see 
how to handle an increased throughput by scaling actors out across multiple servers in chapter 

12. 

2.2.2. Changing states of actors 

While a customer is browsing the store, they’ll hopefully add items to their cart. There are a 
number of states a shopping cart can exist in. For example, the two key states are browsing, 
where the customer continues to browse the store, and purchase-completion, where the user is 
completing a purchase. When a user is browsing, they should be able to add more items to their 
cart; but once they start the process of completing a purchase, you typically don’t allow the cart 
to be modified. This is for a number of reasons, such as the need to reserve items while the 
purchase is being completed, and computing the cost of the shopping cart contents. You 
therefore want to prevent new items from being added to the cart while it’s in the purchase-
completion state. 

You saw in the previous section how the shopping cart can be represented as an actor and as 
part of the actor model. Actors can change their state on demand to respond differently to 
subsequent messages. Given how this is such a fundamental component of designing actors 
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within actor systems, Akka.NET provides the functionality of switching between states to invoke 
different behavior and simplify the process of responding to messages. In figure 2.2, you can see 
how the shopping cart actor can switch between multiple different states. 

Figure 2.2. The use of state machines with actors in Akka.NET allows you to simplify the process of developing actors with complex 

internal logic. 

 

This shows another pattern you’ll typically encounter with applications written using Akka.NET, 
whereby you switch between multiple different states as required. Specifying multiple different 
states allows you to focus on one individual state and the messages it’s able to respond to, 
without needing to consider alternative scenarios simultaneously. This lets you easily 
understand the logic embedded within actors at a later stage. You’ll see how this can be applied 
to actors in chapter 4, when we consider the importance of state machines in Akka.NET 
applications and how you can represent them. 

2.2.3. Making the purchase 

Once a customer has decided on everything they want to purchase, they proceed to the payment 
stage where you process their choice of payment, typically a credit or debit card. To simplify the 
development of complex systems involving credit card details, a solution is to integrate with an 
external payment gateway. You send a request to a third-party service with a token representing 
the user’s credit card details and the total value of the purchase. Given that you’re integrating 
with external services, there’s a high probability of failures happening, so you need the system to 
allow for failure. As you saw in chapter 1, for a system to be truly responsive, it needs to continue 
to work even in situations where individual components might fail. Due to the high potential for 
failure when designing complex systems, the Akka.NET mindset is to embrace failure and 
provide the ability to recover from it quickly. 

In Akka.NET, an actor can supervise other actors that are spawned as its children. This design 
allows for a number of different operations when an actor is discovered to have failed; for 
example, you may want to restart the actor and attempt to retry whatever work it had been 
performing, or you might want to stop the actor’s operations altogether. By pushing as much 
work as possible down to child actors, you can isolate failures and allow for a broader approach 
than retrying the operation, which might be sufficient to resolve the issue. In figure 2.3, an actor 
has to perform two tasks: upload some data to a web API responsible for processing the 
payment on a user’s credit card, and then send a message to another actor upon completion, 
informing it that the purchase has been completed. The actor pushes the potentially dangerous 
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work, in this case the web API call, down to a child actor, which is responsible for performing 
the operation. 

Figure 2.3. Creating child actors allows you to perform dangerous work by isolating it from the rest of the application. 

 

This is another common design pattern in Akka.NET. Because actors are completely isolated 
from other actors, should one actor encounter difficulties, it won’t directly endanger other actors 
executing as part of an application. You’ll see the concept of passing work down to children 
in chapter 3, when we look at spawning new actors to perform work. You’ll then learn how to use 
actor-based supervision to create fault--tolerant applications in chapter 6. 

2.2.4. Data transfer between services 

Underpinning the methodology behind designing applications with Akka.NET is the actor 
model, a concurrency model that solves the problems of coordination and synchronization of 
operations across multiple threads by preferring isolation. In the actor model, every actor is 
independent of every other actor, and they communicate by sending messages to each other, in 
much the same way as humans communicate with each other. This means that when you design 
applications using Akka.NET, you need to think about how actors talk to each other. Let’s 
consider the example of the payment-gateway actor you saw in the previous section. The 
payment-gateway actor is solely responsible for interacting with the external payment service, 
but many components make up the payment flow of an e-commerce website. For example, after 
a customer has made a purchase, what should the next step be? The logical next step is to fulfill 
the order speedily. If your e-commerce application is selling digital media, then you may have 
another actor responsible for assigning privileges to the user’s account, which allows them to 
view the content they’ve just purchased. Alternatively, if you’re selling physical products, then 
you need to retrieve the products from the warehouse and prepare printed invoices and shipping 
labels, which will be sent with the purchase. 

Because you want to prioritize fine-grained operations within actors, for reasons of scalability 
and fault tolerance (which I’ll address in depth later), you’ll have multiple actors responsible for 
selected operations within the checkout flow. These independent actors need to be able to share 

www.EBooksWorld.ir



results. Each actor has an address associated with it, by means of which other actors can 
communicate with it; this allows them to pass messages between fixed addresses for actors, 
rather than having direct references to actors themselves. For example, after the customer has 
completed their payment and you’ve verified its authenticity, you pass the message on to the 
component responsible for fulfilling the order. The payment-gateway actor automatically sends 
a message to the addresses for multiple other actors in response to payment completion, as 
illustrated in figure 2.4. 

Figure 2.4. Sending messages between actors is a fundamental part of reactive application design. 

 

Messaging between actors is a fundamental aspect of reactive applications designed with 
Akka.NET; it plays a crucial role in the Reactive Manifesto by providing the foundation on which 
you create fault tolerance and elastic scalability. As such, you’ll see messaging appear in every 
chapter throughout the rest of the book; but I’ll introduce messages in more detail inchapter 3, 
when you create your first actors. 

2.2.5. Scaling work with routers 

In an e-commerce application, often a single actor is responsible for a certain operation: for 
example, an actor that performs a search operation for products. But due to the concurrency 
guarantee offered by Akka.NET, which specifies that only one message should be processed at 
once, there may be a large queue of messages waiting to be processed by that actor. For the task 
of product search, you maintain an index of words commonly used so an actor can look up 
search terms related to certain products. A search actor stores the word index as its internal 
state and then receives a message to search it for products containing the search term. But if 
several hundred users are searching for products simultaneously, they may encounter queues as 
the actor performs each search individually. Although this actor is stateful, in that it stores the 
product index internally, it is stateless between requests, which ensures that you can easily 
parallelize the search operation. Figure 2.5 shows that you no longer have a single 
actor processing each message, but instead have multiple independent actors, which are treated 
as a single target. 
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Figure 2.5. You can parallelize stateless operations by using multiple actors behind a routing proxy. 

 

The introduction of a router allows you to abstract away multiple individual actor instances and 
treat them all as a single actor, given that you direct messages to the router rather than to each 
actor sitting behind the router. The use of routers as a means of parallelizing trivial workloads is 
a common pattern, and you’ll see how to use one in chapter 6, when we look at using routers to 
build scalable applications that respond to an increased number of messages by forwarding 
messages to other targets. 

2.2.6. Wrapping up 

These are just some of the most basic design patterns you’re likely to encounter when designing 
applications using the fundamentals of the Reactive Manifesto. Figure 2.6 shows a broader 
picture of the checkout system as a whole, which features the individual components and how 
they communicate with each other. You can see the customer’s shopping cart, where they add 
items as they browse through the store. After a while, the user is finished shopping and wants to 
complete their purchase. The shopping cart then transfers into the purchase-completion state, 
which passes customer payment details to an external payment gateway. When a response 
comes back from the payment gateway, the application can complete the purchase. 
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Figure 2.6. A simple e-commerce checkout flow has a number of interconnected components that can be built from the design 

patterns you’ve seen so far. 

 

Here, we’ve considered only some of the basic design patterns; but even simple Akka.NET 
functionality forces you to consider many of the principles that make up a reactive application. 
The use of message passing directs you down a systems path that simplifies the process of 
scalability and fault tolerance; actors force you to think about concurrency boundaries and 
which tasks can be performed simultaneously; and supervision makes you think about what will 
happen in the event of the failure of other systems, whether internal or external. Throughout the 
rest of the book, we’ll progressively consider deeper design patterns that help simplify the 
process of developing larger and more complex systems. 

2.3. BUILDING ON REACTIVE FOUNDATIONS  

Although these few components allow you to build an e-commerce system with a wide array of 
features, many potential enhancements are available for you to take it further. On top of the 
basic components provided by Akka.NET, there are a number of additional components for 
building more-advanced functionality. In this section, we’ll consider how you can extend your 
application using these features, and easily build larger and more complex systems that 
continue to follow the principles of the Manifesto. 

2.3.1. Publishing the e-commerce application to the world 

As it currently stands, the e-commerce application you designed exists solely as an Akka.NET 
application. A typical system is consumed by a number of different clients including web 
browsers and mobile apps; this means that you need to add some degree of integration with 
existing systems. With Akka.NET, you can expose an actor system onto a network using the 
Akka.Remote functionality, which lets other clients consume your e-commerce application. 
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Let’s consider one of the most typical ways of consuming an e-commerce application: using a 
website in a web browser. In this case, you need to serve the contents of the application through 
a secure HTTP interface. Figure 2.7 shows the scenario: a web API that communicates with the 
Akka.NET application. By using an HTTP-based web API, clients and web browsers can 
consume your application. 

Figure 2.7. Akka.NET applications need to be accessible to a number of clients. This can be achieved through the use of a web proxy 

in front of the application. 

 

To achieve this level of integration, Akka.NET provides the Akka.Remote functionality, which 
lets you expose an Akka.NET application over a network connection to other clients. This allows 
a web proxy to communicate with the actors defined in your web application, such as the 
shopping cart or payment-gateway actors. You’ll see in chapter 8 how to use Akka.Remote to 
work with existing web API projects. 

2.3.2. Storing state within actors 

The application you’ve created has no persistence of state and, instead, stores everything in 
memory. You’ll usually want to persist changing data so that users can modify it. Consider the 
shopping cart. In an e-commerce store, you want to ensure that there’s minimal friction in the 
buying process. Losing the user’s shopping cart is a potential loss of revenue for the business. To 
avoid data loss, it’s important to persist data to a persistent data store such as a database or a 
filesystem. In chapter 11, you’ll see how to use a database to back up the data stored in your 
actors to create resilient applications with Akka.Persistence. 

2.3.3. Scaling out across a cluster of machines 

As e-commerce sites continue to grow in popularity, it’s likely that your website and e-commerce 
application will see an increase in traffic volume. This may become too much for a single server 
to handle, so you’ll need to use multiple servers. For this purpose, Akka.NET provides the 
Akka.Cluster extension, which allows you to treat a number of machines as a cluster. You can 
run your e-commerce application across all machines in the cluster and scale up the application 
beyond the limits of a single server. In chapter 12, you’ll see how Akka.Cluster lets you build 
elastically scalable services and systems that scale on demand across multiple machines, as 
dictated by load. 
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2.3.4. Continuing to react to environmental changes 

The Reactive Manifesto states that an application should react to changes in its environment. In 
an Akka.NET application, this often means responding to a message from another actor, such as 
the way multiple actors communicated in the checkout flow. But sometimes changes need to 
trigger an immediate response; for example, in your e-commerce application, peripheral 
components may rely on knowing when a customer completes a purchase. Such components 
might include systems that autosuggest new products based on historical purchases, or internal 
systems that adjust pricing automatically based on the number of purchases within a given time 
period. In these cases, responding to events as soon as they occur lets you build more-reactive 
applications. Akka.NET provides publish-subscribe functionality, allowing decoupled 
components to register to receive any messages that are published onto an event bus. In chapter 

12, you’ll see how the distributed publish/subscribe functionality can respond to changes in the 
cluster as soon as they happen. 

2.3.5. Wrapping up 

Akka.NET provides a rich ecosystem of additional functionality, much of which is beyond the 
scope of a simple checkout in an e-commerce application. Given increasingly demanding 
customers and a more competitive marketplace, it’s important to consider how some of this 
additional functionality can be applied to a simple shopping cart to create a richer experience for 
users, leading to increased spending on your e-commerce website. These more advanced 
features will be addressed later in the book, when we look at clustering across machines, 
persisting actor state to external data stores, and integrating an Akka.NET application with 
other applications, whether these are new or legacy applications. 

SUMMARY  

In this chapter, you learned 

• Applications that follow the principles of the Reactive Manifesto are responsive, fault 
tolerant, elastically scalable, and message-driven. 

• Several core design patterns can be used to simplify reactive application development: 
the actor model, using state machines, and using routers. 

• When designing a system to benefit from Akka.NET, consider using Akka.Remote to 
expose your application to other clients, persisting data, scaling services, and 
incorporating publish/subscribe functionality. 
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Part 2. Digging in 

Part 2 digs down into the details that you need to create fully functional reactive systems in 
Akka.NET. Chapter 3 presents your first Akka.NET application, taking you through the design 
patterns typically used when designing reactive systems in Akka.NET. Chapter 4 will teach you 
how to selectively receive messages into an actor with switchable behaviors, and will also teach 
you the basics on finite state machines, including how to model them using Akka.NET. Chapter 

5 takes a deep look into how you can instrument and operationalize an Akka.NET application 
through the configuration of individual actors and actor systems as a whole. Chapter 6 focuses on 
how to respond to service failures within an Akka.NET application, delivering an in-depth look 
from the original source of the failure to typical failure models. In chapter 7, you’ll take a look at 
the difficulties involved with traditional scaling approaches, and how the Akka.NET approach is 
different. Chapter 8 looks at actor systems and how to link, scale, and create applications that can 
handle machine-level failure. 
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Chapter 3. Your first Akka.NET application 

This chapter covers 

• Setting up an actor system 
• Defining an actor 
• Sending a message to an actor 
• Evaluating alternative actor implementations 

The first few chapters covered what reactive architecture means, as well as the key reasons 
you’ll likely want to use it. You’ve seen how the aim of a reactive system is to create applications 
that are responsive to the end user, and how this requires applications to work, even when 
struggling with the demands of scale or malfunctioning components. We’ve also covered the key 
things you need to consider when designing a reactive application. 

For the rest of the book, we’ll consider how you can write reactive systems that follow the 
principles laid out in the Reactive Manifesto: guidelines designed to suggest solutions that many 
organizations have found effective for solving their problems. There are many means of 
developing reactive systems, but we’ll focus on one in particular. You’ll use the actor model as 
the underlying basis for your reactive systems, and the implementation you’ll use is Akka.NET, a 
framework designed for writing concurrent applications using the actor model in .NET. 

By the end of this chapter, you’ll have a basic actor that can receive messages, and you’ll send 
this actor some messages. You’ll then be able to adapt this actor and start to build your own, 
capable of performing more-complex functions. 

3.1. SETTING UP AN APPLICATION  

Akka.NET feels much like a framework, but it markets itself as a toolkit and runtime that form 
the basis of concurrent applications. Akka.NET requires no special application configuration to 
run and can be hosted in any of the normal .NET runtime environments, whether console 
applications, Windows services, IIS, WPF, or Windows Forms applications. Throughout this 
book, examples are given in the form of console applications unless otherwise specified. 

All the components required to run Akka.NET are distributed through the NuGet package 
management system. Because Akka.NET relies on modern features of the .NET runtime, it 
requires a minimum of .NET v4.5. Akka.NET also has full Mono support, allowing it to run in 
Linux and Mac OS X environments. 

To install the libraries, a NuGet client is required. Options available for dependency 
management with a NuGet client include these: 

• Visual Studio package-management GUI—If you’re developing applications using Visual 
Studio, then dependencies can be managed directly through the references node of a 
project in the Solution Explorer. 
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• Command-line tooling—In environments where you don’t have access to Visual Studio, a 
number of command-line tooling options are available, including the official NuGet client 
and third-party alternatives such as Paket. 

The only NuGet package required to develop applications in a single-machine scenario is the 
Akka package. This provides all of the core functionality required to create and host actors, and 
then send messages to these actors. 

3.2. ACTORS  

When considering Akka.NET, it’s important to realize that the ideas surrounding the framework 
are those relating to concurrency. The actor model is designed to allow multiple tasks to operate 
independently of each other. It abstracts away many of the underlying multithreading 
constructs that are required to ensure that concurrency is possible. At the heart of this is the 
concept of an actor. 

3.2.1. What does an actor embody? 

Let’s consider what an actor is in the context of Akka.NET. The actor model is a model of 
computation designed to make concurrency as easy as possible by abstracting away the 
difficulties associated with threading, including mutexes, semaphores, and other multithreading 
concepts. 

We can think of actors in the same way that we think of people. Every day, we communicate 
with hundreds or thousands of people using a variety of methods. People send messages to those 
surrounding them and then react to messages they’ve received. This communication is all in the 
form of message passing, where a message can be any of a number of types, such as body 
language or verbal cues. When a person receives a message, they can process the information 
and make decisions. The decisions a person makes might include sending a message back to the 
original sender, such as saying “hello” in response to a greeting, or it may be to interact with 
other parts of the world, such as tasting or feeling something in order to get more information. 
Finally, a person can save memories or information in their mind. For example, they’re able to 
recognize faces and names, and store facts for later recollection. 

The comparison between human communication and actors can be condensed into three key 
concepts, which form the basis of the actor model. These three concepts are communication—
how they send messages between each other; processing—how an actor responds whenever it 
receives a new message; and state—the information that an actor is able to store when 
processing. 

Communication 

When considering the principles of reactive applications, you saw the advantages of using a 
message-passing architecture to build systems that are scalable and fault tolerant. By default, all 
actors communicate asynchronously by means of message passing. 
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Each actor has a unique identifier—an address—through which it can be contacted. You can 
think of the actor’s address in exactly the same way you think of an email address: it provides a 
known endpoint you can send messages to. The end user can receive their email at any address, 
and the same is true with an actor’s address. You can send a message to an actor’s address, and 
it automatically gets routed to the intended processing for that actor. This address is then 
connected to a mailbox, which is a queue of the messages an actor has received at its address. 
This mailbox is where every message is added as it’s received, until the actor is able to process 
the messages sequentially. 

Email can serve various purposes. It can contain text, media, or even contact information. 
Akka.NET is similar, but it relies on using data types as the basis of messages. Actors can use 
any type as the basis of messages, but there’s one requirement: messages must be immutable. If 
a message isn’t immutable, then the actor could potentially modify it either while it’s in the 
processing stage or while it’s in the queue. In either scenario, this would break the concurrency 
safety guarantees provided by Akka.NET. 

Processing 

Once a message has been received, an actor needs to be able to do something with that data. 
This is the job of the actor’s processing component. As a message is received, the processing 
component is started by the framework, which then invokes the appropriate method on the 
message object to handle it. Akka.NET provides guarantees that at most one message will be 
processed at any one time and, due to the queue provided by the framework, that the processing 
component receives the messages in the exact order they were sent to the actor. 

Akka.NET supports different programming methodologies, so there are a number of techniques 
for using the APIs that best fit different paradigms. For example, the C# APIs revolve around the 
use of inheritance. 

State 

The analogy of actors as people touched on the notion of memory and information saved in the 
brain. If you want to access this data, you can’t directly query it from somebody else; you need to 
ask them about data they know about. The same concept applies with actors. An actor is free to 
store whatever state is appropriate, and then forms a sealed boundary around it. The only thing 
in the application that has access to the data stored in the actor is the processing component 
associated with that actor. 

The primary reason for this is that actors are a construct designed to reduce complexity when 
writing multithreaded applications. Removing shared access to data reduces vast numbers of 
potential concurrency bugs, such as deadlocks and race conditions. It also means you can 
quickly scale up an application built on actors, because you can deploy actors into new locations 
when required. 

Combined result 

When these three constructs—communication, processing, and state—are combined, you have 
the concept of an actor: a high-level approach to dealing with concurrency, whether the tasks 
running concurrently are on separate threads or in separate datacenters. Figure 3.1shows the 
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interaction between the three key concepts and how they relate to each other. As you can see, 
the state is entirely enclosed within the bounds of the actor and isn’t accessible from outside the 
actor instance. The only means you have of manipulating or retrieving the data is through the 
use of behavior, which you define to run within the bounds of the actor. This behavior is then 
only invoked as required when a new message is received by the actor’s inbox. 

Figure 3.1. An actor embodies communication, processing, and state. 

 

3.2.2. What can an actor do? 

You’ve seen that actors are very small isolated entities that share nothing with the outside world, 
and each of them is scheduled to process the messages in its mailbox. They’re like small 
applications that have built-in communication channels. Because of this, actors are able to 
perform any operation an application can normally perform. But you can generalize the actions 
that an actor is likely to perform into three categories: 

• Sending a message—When you designed a reactive system, you saw that an application is 
typically built as a data flow, whereby applications propagate events that they’ve received 
and responded to. Actors need to be able to send messages to other addresses in the actor 
system. This task isn’t necessarily confined to sending messages to actors; it could also 
include communication through external services with other transport protocols such as 
HTTP. 

• Spawning other actors—When an actor is under load with long-running computations 
and a queue of messages, it can spawn a new actor responsible for handling all of the 
significant processing. The ability of an actor to spawn new actors also serves other uses, 
such as having a supervisory actor spawn new children to perform dangerous work that 
may lead to errors. 

• Setting behavior for the next message—One key role of an actor is to respond to 
messages it receives: reactive applications respond to changes in their environment. 
Changes in an environment are likely to lead to changes in the way messages need to be 
processed, so actors should be able to set how they process new messages. 

These are some of the common tasks that actors perform, but it’s likely that your actors will be 
performing other tasks as well. These might include jobs such as connecting with external web 
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services, interacting with devices such as the graphics on the host machine, and interacting with 
external input and output on the host machine. 

There is, however, a restriction on the kind of work an actor can perform. Actors should avoid 
performing long-running blocking operations, particularly in cases where a number of actors 
may all be performing blocking operations. This prevents the Akka.NET scheduler from running 
any of the processing for other actors. The work that actors do should be asynchronous and 
operate primarily through message passing. An example of a blocking operation is waiting for a 
user to enter some text into a console window through the use of Console.ReadLine. 

3.2.3. Defining an actor 

Now that you understand actors and how the core components fit together, let’s look at how to 
define an actor. Think again about the similarity between actor communication and how people 
communicate. Let’s build an example with actors to model this interaction. You’ll create an actor 
that represents the sort of actions a person might take after receiving a greeting. 

When writing an actor in C#, you rely on the inheritance of certain actor classes and override 
certain methods that are called whenever a new message arrives. The simplest possible means of 
implementing an actor is to use the UntypedActor class. Using this approach, you can execute a 
single method any time a new message arrives, similar to the following: 

class PersonActor : UntypedActor 

{ 

    protected override void OnReceive(object message) 

    { 

   Console.WriteLine("Received a message: {0}", message); 

    } 

} 

This basic example shows how you create an actor using Akka.NET, but you’ll also want to do 
something with the actor when it receives a message. You can use any type within the Common 
Language Runtime (CLR) as a message, with the only requirement being that the class must be 
immutable. 

Note 

In the following message classes, I omitted constructor guards, which should be used to verify 
that you’re not, for example, passing a null or empty value where you should be passing an 
actual value. In a production-quality application, as opposed to demo code, additional checking 
should be performed to ensure that the application consistently stays in a valid state. 
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Create two messages that an actor can receive, Wave and VocalGreeting: 

class Wave {} 

 

class VocalGreeting 

{ 

    private readonly string _greeting; 

    public string Greeting { get { return _greeting; }} 

 

    public VocalGreeting(string greeting) 

    { 

        _greeting = greeting; 

    } 

} 

Now the actor can be changed to perform different actions when it receives a message of a given 
type. For example, when it receives a VocalGreeting message, it can print a message to the 
console: 

class PersonActor : UntypedActor 

{ 

    protected override void OnReceive(object message) 

    { 

   if(message is VocalGreeting) 

        { 

            very msg = (VocalGreeting)message; 

            Console.WriteLine("Hello there!"); 

        } 

    } 

} 

When you create a message for each type, you end up with a lot of duplication in the handling of 
the message. Here, for example, you’ve got two types of messages, and in each instance, you 
need to check whether the message is of a certain type and then cast it to that type. You can also 
end up with a lot of code duplication when you want to check a condition within the message 
itself. To prevent this, Akka.NET provides an API that can pattern match on the message type. 
The following example shows how, using the Akka.NET pattern-matching API, you can invoke a 
handler, depending on the message received: 
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class PersonActor : UntypedActor 

{ 

     protected override void OnReceive(object message) 

     { 

       message.Match() 

                .With<VocalGreeting> 

                    (x => Console.WriteLine("Hello there")); 

     } 

} 

Akka.NET also provides a further abstraction on top of the basic actor, which you can use to 
declaratively handle messages. ReceiveActor combines many aspects of pattern matching while 
continuing to abstract away much of the logic surrounding message-type handling. Whereas 
with the simple UntypedActor you had to override a method that would be executed on receipt of 
a message, ReceiveActor requires you to register a message handler for each of the message 
types you want to support. The following example shows how the previous example using 
an UntypedActor can be converted to the ReceiveActorimplementation: 

class PersonActor : ReceiveActor 

{ 

    public PersonActor() 

    { 

        Receive<VocalGreeting> 

            (x => Console.WriteLine("Hello there")); 

    } 

} 

Akka.NET is a model for concurrently performing asynchronous operations, and as such is an 
alternative to the .NET Task Parallel Library (TPL). When dealing with asynchronous 
operations, you’ll typically pipe the results back to the actor’s mailbox as a message, 
but ReceiveActor provides the ability to interoperate with the TPL through asynchronous 
message handlers. An asynchronous message handler works exactly the same as a regular 
message handler, except it returns a Task instead of void: 

class PersonActor : ReceiveActor 

{ 

    public PersonActor() 

    { 

        Receive<VocalGreeting>(async x => 
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            { 

                await Task.Delay(50); 

                Console.WriteLine("Hello there"); 

            }); 

    } 

} 

The approaches shown so far for creating actors have relied on the use of delegates for handling 
messages, but Akka.NET provides an additional means of creating actors in the form 
of TypedActor. It allows for stricter contracts for the types of messages actors can receive, by 
implementing an interface for each of them. When an actor receives a message of a given type, 
the method implementing the interface for that message type is executed with an instance of the 
received message: 

class PersonActor : TypedActor, 

                    IHandle<VocalGreeting> 

{ 

    void Handle(VocalGreeting greeting) 

    { 

        Console.WriteLine("Hello there"); 

    } 

} 

All of the actor definitions here allow you to build up bigger and more advanced actors, capable 
of performing more-complex operations. As you’ve seen, actor definitions are classes in C# that 
override specific methods. You can store state in an actor using either properties or fields of the 
class. 

When you store state in an actor, it’s only accessible from within that actor. It’s impossible to 
access any properties or fields from outside the actor’s boundaries. This means that, regardless 
of where an actor exists, there’s no need to worry about synchronizing access to the state, 
because messages are processed one at a time: 

class PersonActor : ReceiveActor 

{ 

    private int _peopleMet = 0; 

 

    public PersonActor() 

    { 
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        Receive<VocalGreeting>(x => 

            { 

                _peopleMet++; 

                Console.WriteLine("I've met {0} people today", 

                                  _peopleMet); 

            }); 

    } 

} 

Upon receiving a message, it’s common to require some metadata about either the message 
received, such as the address of the sender, or the actor processing the message, such as the 
address behavior stored in the actor. In any of the actor types, you can access this metadata 
through the Context property. For example, if you want to identify the sender of a message, you 
can access it through the Sender property of the context. Given the sender, an actor can send 
messages in response to a message it received. In human terms, if somebody waves at you, you 
can say “hello” to that person in response by sending them a VocalGreeting and also waving at 
them with a WaveGreeting: 

class PersonActor : ReceiveActor 

{ 

    public PersonActor() 

    { 

        Receive<Wave>(x => 

            { 

                Context.Sender.Tell( 

                    new VocalGreeting("Hello!")); 

                Context.Sender.Tell( 

                    new WaveGreeting (); 

            }); 

    } 

} 

There are many more ways of defining actors that are specific to certain aspects of Akka.NET, 
but I’ll cover those in later chapters. 
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3.2.4. Wrapping up 

In reactive system design, one key consideration is that operations should be done on the level 
of the smallest unit of work. In the context of Akka.NET, the actor is the encapsulation of that 
smallest unit of work. Actors are designed in line with the concurrent programming model, so 
any operations within the confines of an actor are thread safe. Thus, you can scale out your 
application across as many threads, machines, or data centers as you like, and the framework 
will be able to handle any and all scaling issues. These are handled by queued messages 
processed one at a time, ensuring that messages are processed in the same order in which 
they’re received. 

3.3. DEPLOYING AN ACTOR 

Having defined an actor, you need to get it running in your application. Let’s dig into the 
underlying framework and see how you can use Akka.NET to start instances of actors that can 
react to messages. We’ll look at the concept of an actor system and how to deploy an actor into 
one. 

3.3.1. The actor system 

If actors are people, then actor systems are the countries in which they live. An actor system is 
essentially the host within which all of your actors are deployed. Once actors are deployed, they 
can perform any assigned tasks. Like people under governments, actors need some form of 
management and restrictions in place to ensure that they’re good and valuable citizens in 
society. These tasks fall within the realm of the actor system, which is not only the actor host, 
but also the scheduler and routing system. You don’t need to know about the internals of the 
actor system to be able to develop applications with Akka.NET, because it abstracts all of that 
away from the user. 

Some of the key roles the actor system is in charge of include these: 

• Scheduling—Actors, as multithreading constructs, run at a higher level than regular 
threads, and as such, they need some means of coordination. The actor system ensures 
that all actors have a fair chance of processing their messages within a reasonable amount 
of time. It also ensures that heavily used actors can’t starve the system of resources, 
which prevents less frequently used actors from being in a situation where they’re not 
processing data. 

• Message routing—All messaging through Akka.NET is location transparent, meaning the 
sender doesn’t need to have any knowledge of the location of the recipient. But some part 
of the system does need to know the locations, and this is the actor system. It’s capable of 
routing messages to many different locations, whether they’re on a separate thread, 
running on a remote system, or running on a machine in a cluster. 

• Supervision—The actor system is also the top-level supervisor of your application, so 
that, if a component crashes, the actor system can recover it. Chapter 6 looks into this, 
when you incorporate the notion of fault tolerance into your application. 

• Extensions—Akka.NET supports a vast range of extensibility points at all stages in the 
processing pipeline. The actor system is responsible for managing all of these 
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extensibility points and ensuring that any extensions are correctly incorporated into the 
application. 

This is only a small subset of the many tasks the actor system is responsible for. It’s common to 
have only one actor system running per application. On a machine, actor systems are identified 
using unique names, allowing for the possibility of more than one actor system existing on each 
machine. 

Actors in Akka.NET operate under the concept of a hierarchy, whereby each actor is the child of 
another actor in the hierarchy. This arrangement provides better fault tolerance when you’re 
developing applications; the intricacies of this will be covered in chapter 6. When instantiating an 
actor system, Akka.NET initially creates a number of actors used by the system. The top-level 
actors are these: 

• user—This actor holds all the actors spawned in the actor system. Even if you spawn an 
actor without a parent, it does have a parent in the form of the user actor, which 
supervises all of the top-level actors. 

• system—This is the top-level actor under which all of the system-level actors are stored—
typically actors that are used for tasks such as logging, or those deployed as part of some 
configuration. 

• deadletters—As actors are free to send messages to any address at any stage of the 
application, there’s always the possibility that no actor instance is available at the path 
specified. In this case, the messages are directed to the deadletters actor. 

• temp—At times, Akka.NET spawns short-lived actors. This is typically for scenarios such 
as retrieving data, which will be covered later in this chapter. 

• remote—When multiple actor systems are joined using Akka.NET remoting, there are 
some scenarios in which Akka.NET needs to create actors to perform supervisory tasks 
when a supervisor exists on a separate machine. In these cases, the remote top-level actor 
is used. This will be covered in chapter 8. 

These actors all form part of the actor hierarchy. In figure 3.2, you can see their deployment in 
the hierarchy of a relatively simple actor system. The actors form a tree structure, similar to a 
filesystem, with files and folders. The user has deployed three actors into the actor 
system, actorA, actorB, and childA, which is a child actor spawned beneath actorA. 
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Figure 3.2. An example actor hierarchy in an Akka.NET application 

 

The decision to use actors for all top-level work in Akka.NET ensures that a uniform interface 
exists throughout the application. user actors are free to send a message to any of these system-
created actors in the same way that a user might expect to send a message to an actor that they 
have instantiated. 

3.3.2. Spawning an actor 

In section 3.2.3, you defined a GreeterActor that can do some work; now, you need to deploy it 
into an application so that it can be used. Before you can deploy an actor, you need something 
capable of hosting it: you need to initialize an actor system. As you’ve seen, the actor system is 
the component of Akka.NET responsible for many of the tasks related to how actors are run 
within the framework. 
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Instantiating an actor system that hosts actors is a simple task: call the Create static method on 
the actor system. The only requirement when creating an actor system is to name it so that 
actors can be identified based on which actor system they live in: 

var actorSystem = ActorSystem.Create("MyActorSystem"); 

An actor system can also be created with a configuration section for customizing parts of the 
framework (covered in chapter 5). For now, you’ll create an actor system without a configuration 
file in C#, which causes a fallback to the default configuration. 

The actor system is responsible for many of the internal tasks and scheduling associated with 
the Akka.NET framework. As a result, the actor system ends up becoming a heavyweight object, 
so you typically only spawn one actor system per application. The actor system is also the main 
means you have of interacting with actors operating within the framework. In the majority of 
scenarios, it’s typical for the actor system to reside either in a static class or in a singleton object, 
or be injected as a dependency into those methods that require it. 

Once an actor system has been created, you’re free to deploy new actors into it. For this, you use 
the ActorOf method, which requires the actor type to instantiate as a generic type argument. The 
following example shows how you can deploy your actor from earlier into the actor system: 

var actorRef = actorSystem.ActorOf<GreeterActor("actorA"); 

Once the ActorOf method has been called, Akka.NET will create and initialize the new actor. You 
also pass it a string that you can use to uniquely identify a given actor instance within the actor 
system, actorA in this case. With this name, you can retrieve references to the actor instance 
directly from the actor system. 

3.3.3. Wrapping up 

The actor system forms the basis of the host within which your actors will live. Although you 
don’t need to understand all the intricacies of what happens deep within the framework, it’s 
beneficial to be familiar with some of the features provided by the actor system. The actor 
system is also the key extensibility point of an Akka.NET application and allows more-advanced 
features to be implemented, many of which we’ll look at in later chapters. 

3.4. COMMUNICATING WITH ACTORS  

Having spawned an actor into your actor system, you’ll want to communicate with it. The actor 
is currently doing no work and just sitting in memory. By communicating with it, the framework 
will invoke the message-processing on that actor. 

As you’ve seen, the actor model relies on message passing as a means of communication 
between actors. Message is essentially a generic term for a collection of data that’s packaged and 
sent to an actor instance, represented by its address, somewhere in the actor system. You saw in 
the example earlier that your messages will consist of data types you’ve created. 
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3.4.1. Actor addresses and references 

Upon spawning an actor, the actor system returns a direct reference to the actor through 
an IActorRef. This actor reference isn’t a direct reference to the actor’s location in memory, but 
rather a reference to the actor as used by Akka.NET. The reference facilitates sending messages 
to the inbox of the referenced actor. The Akka.NET framework provides a number of built-in 
means of referencing actors, including actor references for clusters and remote actor systems, 
but you won’t see these until later chapters. 

The most commonly used actor reference is LocalActorRef, whose job is to operate on actor 
systems that function on a single machine. The key component of the actor reference is the 
storage of the address of the actor itself. Upon deployment, every actor is given a unique 
address, through which it is reachable. The address is reminiscent of a simple URI that might be 
used to identify files in a filesystem or web pages on a website. Figure 3.3 shows the four key 
components of an actor address: 

• Protocol identifier—This is used to reference how a connection is made to the actor 
system. It’s similar to how http and https are used in web addresses to identify which 
system should be used. For a single machine, this is typically through an identifier similar 
to akka://, but for concepts such as remoting, there are other commonly used identifiers, 
such as akka.tcp://. 

• Actor system name—When you create an actor system, you give it a unique name, 
represented by this part of the address. 

• Address—This is only used with remoting, but it still forms a key part of the actor path 
and identifies the machine on which an actor system resides. 

• Path—The final part of the address is the path, used to identify an actor. All user-defined 
actors start with /user/ for this part of the path, but other system-defined actors inhabit 
other root addresses. 

Figure 3.3. The four parts of an actor address 

 

Using an actor reference ensures that your application is loosely coupled, but other problems 
remain. To send a message to a given actor reference, you need to pass the actor reference 
around the application. Among the benefits of a message-driven architecture is the ability to 
have loosely coupled systems where actors don’t rely on intimate knowledge of other actors. To 
achieve this with Akka.NET, you send messages to an address rather than to an actor reference 
directly. Given an address, you’re able to send a message to that address. For example, to send a 
message to ActorA in your actor system, you retrieve a reference to its address: 

var address = system.ActorSelection("/user/ActorA"); 
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When you deploy an actor, you see that it’s deployed into a hierarchy. If you deploy an actor as 
the child of another actor, then you can continue to address it, similar to how you find files in a 
folder in a filesystem. If ActorA has a child actor called Child, then you can send messages to it 
as follows: 

var childAddress = system.ActorSelection("/user/ActorA/Child"); 

The addressing system in Akka.NET also respects the use of path-traversal elements that are 
typically associated with URIs. For example, a common case is to retrieve the parent of the 
current actor, so that messages can be sent to a sibling of the current actor. This can be achieved 
by using the .. syntax to retrieve an actor’s parent: 

var address = Context.ActorSelection("../ActorB"); 

Actor selection vs. actor references 

Although it might seem that the concepts of actor selection and actor reference are the same, there’s 
a significant difference in that an actor reference points to a specific incarnation of an actor, 
whereas an actor selection points to an address. This address may be shared with multiple 
instantiations of an actor. For example, given a reference to a specific actor, if that actor is 
destroyed and re-created, then any messages sent to that actor reference won’t be delivered to the 
target, even if they both share the exact same path across instantiations. But, given an actor 
selection, messages can be sent to it; even if an actor is destroyed and re-created, all messages will 
be delivered. 

This distinction allows for more-complex paths to be used in the context of an actor address. An 
example of this is the use of wildcards in an actor’s path to select a large number of actors at once. 
When actors have been selected, you can send the same message to all actors encompassed by the 
wildcard with a single method call. Paths in Akka.NET support two kinds of wildcards in actor 
addresses, based on a standard wildcard syntax common to other languages and tools: 

• ?—The question mark replaces a single instance of any given character in a path. For 
example, the path c?t matches paths such as cat, but not coat or cost. 

• *—The asterisk matches any string of characters usable as a path. For example, the path 
/parent/*/ sends a message to all children of the actor called parent. 

On occasion, it’s beneficial to have a direct reference to an actor instance rather than a generic 
address. For this, Akka.NET provides a number of means of retrieving a reference from an 
address: 

• Calling ActorOf to spawn a new actor—Upon spawning a new actor, a direct reference to 
that actor is returned, which represents the incarnation that has been spawned. 

• Sending a message to an actor—By sending a message to an actor, you can use 
the sender property of a received message to identify which actor replied to the request 
for information. Akka.NET provides built-in support for this through 
the Identify message, and through an abstraction over the top of this 
on ActorSelection, which can be used to resolve an instance. 
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Although often it’s appropriate to send messages to an address, it can frequently be beneficial to 
pass around a reference to a specific actor. For example, for a long--running actor that’s valid 
throughout the lifecycle of the application and carries out a specific purpose, it’s typical to pass 
an actor reference in the constructor of those actors that depend on it. 

It’s important to understand the difference between an actor reference and a simple actor 
address due in part to the actor lifecycle, covered in chapter 4. But for your purposes, either is an 
appropriate means of messaging a specific actor. 

3.4.2. Sending a message 

After spawning an actor into the system, you can communicate with it by sending messages to 
its mailbox. For this, you need something capable of receiving a message. As you saw in the 
discussion of the differences between an address and a reference, you can send a message to 
either. Once an actor is spawned, the actor system returns a -reference to that actor instance, to 
which you can then send a message. The actor reference defines a method called Tell, which 
takes an instance of any type and passes it through the Akka.NET framework. If you’re using F#, 
a custom operator is defined for sending a message. For example, if you want to send a vocal 
greeting message to the actor you defined earlier, you can do so as follows: 

actorRef.Tell(new VocalGreeting("Hello")); 

There may be times when you don’t have an actor reference; on those occasions, you’ll look up 
an actor by its address. For this, you need something capable of providing references to other 
actors. This may be the actor system that’s hosting the actor, or it may be the Contextassociated 
with a specific actor. To select actorA that you deployed earlier, you can use the actor system 
and select the actor by its address: 

var selection = actorSystem.ActorSelection("actorA"); 

In each of these cases, the actor system provides the root location from which actors will be 
retrieved, which for the actor system is directly beneath the user actor. But if you had a second 
actor deployed alongside your first, you could use the first actor reference as an anchor to other 
actor locations: 

var selection = actorRef.ActorSelection("../actorB"); 

Once you’ve got an address, you can then pass messages to it in the exact same way as if it was 
an actor reference: 

selection.Tell(new VocalGreeting("Hello")); 

Actors are designed to completely encapsulate any state, to ensure that nothing outside of the 
system is capable of mutating it. Akka.NET retains full control over the processing stage, 
allowing only one message to be processed at a time. This keeps all code thread safe, but it 
makes it more difficult to access data. To access data from outside the system, you need to send 
a message specifically requesting that data. Akka.NET provides another method that allows for 
request-reply scenarios: Ask. This asynchronous method is designed to form a layer of 
abstraction over the top of the messaging: 
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var response = await selection.Ask(new Wave()); 

Because Ask is an asynchronous construct, you need to factor this into your code so that you 
await the response to Ask. By default, Ask has a timeout of 10 seconds, within which the actor 
needs to respond to the initial request message; otherwise, the request will time out with an 
exception. It’s important to realize that the actor receiving the Ask request has no way of 
knowing that the sender is expecting a reply. It’s up to you, the developer, to handle this 
scenario. 

3.4.3. Wrapping up 

Messages form an integral part of the design of a system using Akka.NET and are the key to 
communication between multiple actors, or even other entities outside of the actor system. As 
such, it’s important to model your domain effectively through the commands that actors 
respond to. In later chapters, we’ll look at techniques such as event sourcing and domain-driven 
design as a means of modeling certain interactions between actors. At this stage, however, it’s 
likely that most actors will be either reacting to events or responding to commands. 

Although the term message is used, Akka.NET doesn’t require anything special with regard to 
the design of a message; messages can be simple .NET classes or structs. The only requirement 
when designing messages is that they should be immutable, in order to ensure that the thread-
safety guarantees specified by Akka.NET can’t be broken anywhere in the application. 

3.5. CASE STUDY: ACTORS, CONCURRENCY, AND PHONE BILLING  

Many modern mobile games operate on a freemium model, whereby users play the game for 
free, but in-game credits are required to perform certain tasks. These in-game credits can be 
either purchased using real money or earned by performing certain operations in the game, and 
can then be used to purchase upgrades in the form of visual changes or temporary performance 
boosts to get through challenging parts of the game. In this case, multiple external sources 
attempt to credit the user’s account; also, the user will try to debit their account. The overall 
financial success of the company is dependent on selling in-game credits to players, so it’s 
important that users get the credits they’re entitled to through performance and by purchase. 
You also need to ensure that you don’t allow users to overspend their credits, and limit their 
spending potential to the number of credits they have in their account. 

You may have to deal with many operations in which you either debit or credit the user’s 
account. It’s likely that many of these changes will happen concurrently, with multiple 
components trying to access the user’s credit balance. Because actors help eliminate many of the 
difficulties you face when developing concurrent, multithreaded code, you can safely operate on 
the user’s credit balance without worrying about whether other components are also modifying 
it. 

If the billing system is flawed, the business will suffer from lower revenue than expected. Actors 
operate on a serial stream of messages, and this guarantees that an actor can’t modify the same 
state from two concurrent operations. You can see how to model that in a game backend server 

www.EBooksWorld.ir



in figure 3.4. Here, each actor represents a single user’s account in the game. Multiple actors can 
process work concurrently, ensuring that every user can modify their balance with minimal 
waiting. Other components in the game can send messages to modify the user’s account balance 
by requesting that the amount be reduced when the user spends their earned credits, or by 
increasing the balance if the user purchases more credits. 

Figure 3.4. The user’s in-app purchasing or financial situation can be updated from multiple different sources. 

 

By using actors, you’ve managed to greatly simplify the complexity surrounding concurrent 
operations on shared data, all thanks to the principles of the actor model, which sits at the core 
of Akka.NET applications. 

SUMMARY  

In this chapter, you learned 

• An actor is the smallest unit of work in a reactive system. Operations within the confines 
of an actor are thread safe. 

• You deploy an actor into an actor system, which is the host for all your actors. 
• To communicate with actors, you pass messages. Messages are the key to communication 

between actors and with other entities. 
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Chapter 4. State, behavior, and actors 

This chapter covers 

• Receiving messages with switchable behaviors 
• Understanding finite state machines 
• Modeling finite state machines with switchable behaviors 
• Building complex finite state machines with FSMActor 

In chapter 3, we looked at creating actors and sending messages to them. You saw how, 
using ReceiveActor, you can register methods that an actor will execute when it receives a 
message. In this chapter, you’ll learn how to change which methods are executed in response to 
the messages received at runtime. This will allow you to build complex actors that are 
responsive and reactive to their environment, in accordance with the Reactive Manifesto. 

This chapter also covers how you can generalize actors in various states into a finite state 
machine (FSM). You’ll learn how you can create FSMs diagrammatically and how you can 
convert these diagrams into different actor types, including a new actor type—the FSMActor. 

By the end of this chapter, you’ll have learned how to create actors that fully react to changes in 
their environment. 

4.1. PREPARING FOR THE NEXT MESSAGE  

You’ll remember that the aim of a reactive application is to react quickly to changes in the 
environment. These changes could require an actor to respond to either expected or unexpected 
events, with a different behavior executed in response to each type of event. 

As an example, consider an actor that represents a water-depth sensor. For homeowners living 
next to a river, this sensor would be used to measure the current water depth and to warn of 
heavy rains. On a daily basis, the homeowners would typically log depth values in a database 
purely for their historical value. But if the sensor receives values that lie outside the expected 
range—for example, if the river starts to rise due to heavy rains—the sensor needs to alert the 
homeowners of a potential flood danger. 

Here the simplest approach would be for the actor to maintain a set of variables that record both 
the water’s current depth and all the water-depth messages received. To monitor whether the 
water is at an alert level, you need to store details such as how many messages the actor has 
received that contain readings over a specified level. Although this is a potentially workable 
option, it causes problems related to the maintenance of the codebase. As a developer, your aim 
should be to reduce the complexity of potential solutions, not increase it. When you have to 
analyze all the variables stored in your actor to determine its current state, the simplest parts of 
the application become harder to monitor. 
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In chapter 2, you learned about the pipeline of steps carried out by an actor. When the framework 
receives a message, the actor associated with that message stores it and invokes a handler, a 
specific behavior, as its response. 

In our homeowner example, you could create multiple handlers for the water-depth sensor, one 
for each of the possible states being monitored. For instance, homeowners might monitor two 
states, a normal state and an alert state. When the actor executes normal-state behavior, it 
processes messages by appending the result to a database table. But if the actor receives a value 
higher than a specified water level, it will switch into an alert state. When it’s in an alert state, 
the actor will send an urgent notification to the user warning of possible flooding, which will 
then require extra actions in response. 

4.2. SETTING APPROPRIATE RUNTIME BEHAVIORS 

The concept of behavioral changes forms a key part of building easy-to-maintain applications 
with Akka.NET. As you’ve learned, an actor’s lifecycle consists of four stages: define, deploy, 
message, and become. In chapter 3, you learned how to define, deploy, and message actors, but 
you haven’t yet examined how to perform the become operation. So in this section, you’ll focus 
on how actors dynamically change their behavior at runtime. 

4.2.1. Switchable behaviors 

In the previous chapter, we considered how actors communicate in a manner similar to how 
people do; both actors and people communicate asynchronously through message passing. We 
looked at how people respond when they receive a message. Sometimes, because of the state 
they’re in, they aren’t able to respond to a message in the same way that they would normally. 
For example, if somebody waves at you while you’re asleep, you’re not aware of the behavior, so 
you inadvertently ignore the message. 

The same is true of actors in Akka.NET. Sometimes an actor isn’t in a situation where it makes 
sense to process a message. For those situations, Akka.NET offers switchable behaviors, which 
allow an actor to process messages only when it’s in the appropriate state. So when an actor 
switches into a new state, it can continue processing the messages received in the previous state, 
or it can receive an entirely different set of messages. 

4.2.2. Become and unbecome 

When you defined an actor in chapter 3, you used the UntypedActor, which invokes a method 
upon receipt of a message. With Akka.NET, you can choose to change a message handler 
dynamically at runtime through the use of switchable behaviors. The only requirement for a 
message handler to switch behaviors is that it must retain its method signature. Therefore, a 
new message handler must take an Object as a parameter and return void. In order to switch to 
a new message handler, you set it using Become. 
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Let’s consider an example. You can use an actor to provide access to a database, although in 
certain circumstances the database might not be reachable by the application. In cases where 
you can’t reach the database, any connections will time out, so the application needs to wait 
several seconds every time it tries to access data. This wait time breaks one of the aims of the 
Reactive Manifesto: to ensure that applications remain responsive even in the face of failure. 
Thus, you can create an actor that has two possible states: operating normally, or failing. If the 
database is unreachable, you can return either cached data or a message informing the 
requesting actor that the database is unreachable. 

Let’s create an application that responds to a GetData message. If the database is unreachable, 
the application returns a DatabaseNotAvailableMessage; otherwise, it returns 
a GetDataSuccess message: 

class DatabaseActor : UntypedActor 

{ 

    protected override void OnReceive(object message) 

    { 

 

    } 

 

    public void Reachable(object message) 

    { 

        message.Match() 

               .With<GetData>(x => 

                   { 

                       var data = Database.Get(x.Key); 

                       Sender.Tell(new GetDataSuccess 

                           {Key = x.Key, Data = data}); 

                   }) 

               .With<DatabaseUnavailable>(x => Become(Unreachable)); 

    } 

 

    public void Unreachable(object message) 

    { 

        message.Match() 

               .With<GetData>(x => Sender.Tell( 
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                                     new DatabaseUnreachable())) 

               .With<DatabaseAvailable>(x => Become(Reachable)); 

    } 

} 

You can also use Become and Unbecome within the ReceiveActor. You saw in the previous chapter 
how the ReceiveActor registers message handlers that operate whenever it receives a message of 
any type. You can, however, choose to add each of the handlers within a method. As long as you 
call this method from the constructor, it will work as expected. Moving the handlers into a new 
method allows you to change the currently applied message handlers at runtime. When you 
call Become within a ReceiveActor, you need to supply a method that takes no parameters and 
returns nothing. When you call Become with a new method, it calls that method to register all the 
message handlers. You can use the same techniques as in UntypedActor to add the message 
handler to a stack: 

    class DatabaseActor : ReceiveActor 

    { 

        public void Reachable() 

        { 

            this.Receive<GetData>(x => 

                { 

                    var data = Database.Get(x.Key); 

                    Sender.Tell(new GetDataSuccess 

                            { Key = x.Key, Data = data}); 

                }); 

            this.Receive<DatabaseUnavailable>(x => Become(Unreachable)); 

        } 

 

        public void Unreachable() 

        { 

            this.Receive<GetData>(x => Sender.Tell( 

                            new DatabaseUnreachable())); 

            this.Receive<DatabaseAvailable>(x => Become(Reachable)); 

        } 

    } 
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The circuit breaker pattern 

Although this example of switchable behaviors might seem simple, it forms the basis for a 
frequently used pattern in Akka.NET. The goal of the Reactive Manifesto is to create applications 
that are responsive regardless of circumstances, such as a failing state. In the case of a database, 
you only know it’s unreachable by trying to access it. If it fails to respond within a given time limit, 
then you know that the connection has failed, and you can then avoid retrying every request. 

The circuit breaker pattern is inspired by the principles of the circuit breaker found in electrical 
wiring installations. In these systems, at the first sign of a fault, a circuit breaker automatically cuts 
off the power supply, acting as a failsafe that could potentially save lives. The circuit breaker 
pattern follows the same principle. In the event of a failure, the circuit breaker automatically forces 
the application to “switch off.” This ensures that timeouts don’t affect other actors that are 
requesting data from, for example, a database. 

Although we won’t cover the circuit breaker pattern in depth here,[a] it’s important to note that even 
more-complex constructs can be built quickly and easily using some of the most basic elements of 
the Akka.NET framework. 

a 

A thorough guide to the circuit breaker pattern can be found on the Microsoft Azure website, at https://docs.microsoft.com/en-

us/azure/architecture/patterns/circuit-breaker. 

The concept of switchable behaviors in Akka.NET forms an important part of building systems 
that follow the principles of the Reactive Manifesto. Switchable behaviors allow you to specify 
the messages an actor can receive, without undue complications regarding the internal state. 

4.2.3. Wrapping up 

Switchable behaviors are a great feature. They enable you to write actors that react to their 
environment—and they let you write cleaner code. You’ve learned how to write actors that can 
switch their message-receiving behavior at runtime, thereby allowing a different set of message 
types to be received. In the next section, you’ll look at a broader range of switchable behaviors, 
namely, FSMs, which you’ll find extremely useful in a concurrency model like Akka.NET. 

4.3. FINITE STATE MACHINES 

When you develop an application, you often need to identify a behavior as being in one of 
several key states. For example, if you’re designing an application that directs calls to call-center 
workers, you need to identify which state an agent is currently in. They might be on a call, on 
hold, finishing a call, on a break, offline completely, or in some other scenario. But there are 
only a finite number of states that an agent can be in, so it’s possible to model those states, as 
well as the events that cause transitions between states. For example, if you have a call-center 
agent who’s currently on a call, then they won’t be able to answer an incoming call. Finite state 
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machines allow you to model this behavior effectively using a common diagrammatic format 
that makes it easy to view the events that cause transitions within a system. 

4.3.1. Understanding finite state machines 

The example involving a call-center agent compares well with an FSM, but it’s a relatively 
complex example to start with. Instead, we’ll start with something simpler. 

An FSM is composed of events and states. An event can be thought of as a signal used by the 
current state to transition to a new state. A state is a group of actions that are executed, 
depending on the event received. Once a state receives an event, it can perform one of three 
options: it can ignore the event, remain in the same state, or move to a new state. 

Let’s consider the example of a turnstile gate at an entrance to a theme park or sports stadium. 
The aim of a turnstile is to keep people out until they’ve provided a ticket, required to unlock the 
barrier. When a ticket is scanned at the turnstile, assuming it’s valid, the barrier transitions into 
the unlocked state. When it’s in the unlocked state, the individual is free to enter the stadium. As 
soon as one person has passed through the turnstile, it automatically locks to prevent the next 
person from entering. Sometimes, when someone walks up to the turnstile, they might not have 
a valid ticket. In that situation, you want to prevent the barrier from unlocking, ensuring it 
remains in the locked state. Of course, you might accidently scan a ticket more than once; in that 
case, you don’t want to lock the turnstile before the guest has entered. 

We can represent these states in a state transition diagram. A state transition diagram shows 
all the states in which your system can exist, as well as the events that cause the changes 
between states. In the turnstile example, your system can only be in two possible states: locked 
or unlocked. In the transition between those two states, there are only two events: either the 
user rotates the turnstile, or the user scans their ticket. When the user scans a valid ticket, the 
turnstile transfers into the unlocked state. When the user then pushes the turnstile to rotate it, it 
should let them pass, as well as transition back to the locked state. If the user pushes on the gate 
when it’s in the locked state, it should stay in the locked state. Similarly, if the user scans their 
ticket multiple times, it should remain in the unlocked state as it waits for the user to pass 
through the gate (see figure 4.1). 

Figure 4.1. A simple FSM for a ticket turnstile, showing the two possible states and the transitions between them 

 

www.EBooksWorld.ir



A text-based description of an FSM can be difficult to understand, but it’s possible to represent 
the state machine diagrammatically with a state transition diagram. In a state transition 
diagram, you draw the state machine as a directed graph, where each vertex is a state, and each 
edge is an event. This provides a visualization of how each event causes transitions between 
states. Each edge is marked with a label that signifies the type of event received. You can see the 
transition by finding the current state vertex and then tracing the edge that has a label matching 
the event name. An event edge can transform the state machine into either a different state or 
the same state. 

Typically, when you build an FSM, your system will automatically need to enter a certain state 
as soon as it starts up. We refer to this as the default state, and it can be represented on the state 
transition diagram as a small black spot with an arrow pointing to a state. This small spot 
symbolizes the initial entry location for the state machine and signifies that it should 
automatically move into the new space. Figure 4.2 shows the turnstile state machine with a 
default state marker, which indicates that the locked state is automatically entered when the 
FSM is started. 

Figure 4.2. An enhancement of the turnstile FSM showing the initial state of the system 

 

Although state transition diagrams are a valid means of representing FSMs, there are many 
other ways of representing them, such as the commonly used state transition table. This is a 
textual representation of the behavior changes encompassed within a state machine. A state 
transition table also makes it easier to include details of the effects that could occur between 
transitions. This might include, for example, some communication with an external information 
source, or in the case of the turnstile, telling a locking mechanism to unlock when the unlocked 
state is entered. You can represent the turnstile state machine as a state transition table, as 
shown in table 4.1. The information represented in both the diagram and the table is identical; 
they simply provide two different views of the available information. 

Table 4.1. State transition table for a turnstile showing the current state and the next state it transitions to upon receiving a message 

Current state Input Next state Output 

Locked 

Ticket Unlocked Unlock lock 

Turnstile pushed Locked Nothing 
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Current state Input Next state Output 

Unlocked 

Ticket Unlocked Nothing 

Turnstile pushedv Locked Lock turnstile 

4.3.2. Using finite state machines in a concurrency model 

Finite state machines are important building blocks upon which you can build complex 
asynchronous systems. Let’s take, for example, an actor that’s responsible for loading some state 
from a database. You’ve seen how important it is to ensure that the behavior of actors is 
asynchronous, so all actors can make progress. Given this requirement for asynchronous 
behavior, you need to consider how best to handle the messages an actor receives. 

As soon as your actor is initialized, it will immediately retrieve its internal state from a database. 
This asynchronous operation completes when the database passes the state back to the actor as 
a message. Unfortunately, this leads to a potential problem. What happens if another actor 
sends your actor a message before your actor has received a reply from the database? In this 
scenario, your actor receives a message that it’s unable to process, because it’s currently in the 
middle of performing its initialization. 

You give your actor two key states: initializing and initialized. Figure 4.3 shows this situation in a 
state transition diagram. The actor is first set to the initializing state. When it’s in this state, the 
only message that you care about is a response from the database containing its initial state. In 
this example, the input that causes a transition is a message containing a response from the 
database. 

Figure 4.3. An FSM for an actor loading data into memory 

 

Once your actor has received the response from the database, it can parse the data and set its 
initial state. The actor is then in its initialized state, which ensures that it’s able to respond to 
messages that it would normally experience during its lifecycle. 

www.EBooksWorld.ir



Although this demonstrates how to design an actor that can switch between states even while it’s 
performing an asynchronous operation, there’s still a problem. The actor currently ignores any 
messages that were received while the actor was in the initializing state. Figure 4.3shows a 
timeline of messages received during the actor’s different states. Currently, its initialization state 
will simply dismiss any other message that isn’t a response from the database. Usually, you 
don’t want to ignore messages, because your application assumes that the actor is able to 
process any new messages once it’s created and initialized. 

Stashing 

To remedy this problem, you need to store any messages the actor has received but can’t yet 
process. You could store these in a queue on the actor, as state internal to the actor. But then 
you have to manually process these messages when you receive a response message. Akka.NET 
provides a solution in the form of a message stash. Think of a stash as a temporary message 
store, where messages can be stored while maintaining the order in which they were delivered. A 
stash works with the mailbox of the actor to ensure that you’re able to temporarily stash away 
messages until a more appropriate time. 

In order to create a stash on an actor, you need to ensure that your actor implements an 
interface. Currently, Akka.NET provides an unbounded stash, which doesn’t set any limits on 
the maximum number of messages that can be stashed. In order to implement the interface, the 
only requirement is to add a single property to the actor. The simplest actor definition that also 
has a stash attached to it is shown in the following example. In this scenario, you create an actor 
in exactly the same way as in chapter 3, but it has one minor modification in the form of the 
addition of an interface implementation: 

public class StashingActor : UntypedActor, 

                             IWithUnboundedStash 

{ 

    public IStash Stash { get; set; } 

} 

Now that you’ve got an actor with a stash attached to it, you can delay the processing of 
messages. Expanding on your simple actor definition, you can add two message handlers. Then, 
whenever the actor receives a message that isn’t a database payload, it’ll stash it for later. When 
it does receive the payload, it will perform two operations. It will change its behavior into a 
different message handler, in this case the Initialized message handler. It’ll also unstash all its 
stashed messages. When these messages are unstashed, they’re prepended to the mailbox 
associated with that actor. Prepending these messages ensures that they’ll be processed in the 
same order in which they were delivered: 

    private void Initializing(object message) 

    { 

        if (message is ReadComplete) 

        Become(Initialized); 

            Stash.UnstashAll(); 
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        else 

            Stash.Stash(); 

    } 

    private void Initialized(object message) 

    { 

        //Process messages normally here 

    } 

When you want to retrieve messages from the stash, you do so in one of three ways: 

• Unstash—Prepends only the oldest message from the stash 
• UnstashAll—Prepends all the messages from the stash while also retaining their order 
• UnstashAll with predicate—Prepends all messages from the stash for which the predicate 

returns true, while also retaining their order 

The use of stashing is not something that’s limited to changing state. The stash is accessible 
within the actor at any time, allowing it to retrieve messages from the stash whenever it wants to 
add stashed messages back to the queue. 

Stashing forms one of the key parts of actor implementation when you’re working with FSMs, as 
it allows you to delay the processing of some messages until the actor is in the correct state to do 
so. This lets you build a more complex state machine, one capable of dealing with significant 
amounts of asynchronous code, while also ensuring that the code stays manageable and easy to 
understand. 

4.3.3. Converting a finite state machine into an actor 

As you’ve seen, FSMs are an essential component for developing concurrent applications with 
Akka.NET. Although you could develop an FSM in the actor using state stored within it, you can 
also use an actor’s behavior-switching capabilities. Given either a state transition diagram or a 
state transition table, you can port the FSM to an actor. 

Let’s work with the turnstile example once again, in which you have two states: locked and 
unlocked. You also have two events: rotate the turnstile and scan the ticket. You can represent 
each state as your message-received behavior when using Akka.NET. This means that if you use 
a ReceiveActor, for example, you can create two methods in your actor definition that represent 
actor states. In this case, they’ll be called Locked and Unlocked,according to the states in your 
state transition diagram. This leads to an implementation similar to the following code example, 
which shows the two states of your actor: 

class TurnstileActor : ReceiveActor 

{ 

    void Locked() 
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    { 

    } 

 

    void Unlocked() 

    { 

    } 

} 

Given your actor with its possible states, you need to look at the events the actor receives and 
how they should affect the current state. An event in an FSM can be thought of as an external 
influence, designed to show a change in the world in which your system is running. This 
definition of an event in an FSM matches the definition of an actor when used in the context of 
the Reactive Manifesto. As such, you can model your events through the use of messages. 

Examining the state transition diagram, you only have two events that cause transitions in your 
system: a guest pushing against the turnstile or a guest scanning a valid entry ticket. You’ll 
create classes to represent the possible events; in both cases, they’ll be class definitions with no 
data associated with them. You can call them Ticket-Validated and BarrierPushed. The 
following code example shows the events and how simple their definitions are. When naming 
events, you may have noticed a common trait. Events are always historical facts that have taken 
place within your system and, thus, are named accordingly: 

class TicketValidated { } 

class BarrierPushed { } 

Now that you’ve got the states and events defined, you can look at the state transition diagram to 
see how your actor should react to the messages received. As you saw in figure 4.3, an arrow 
represents a state transition. An arrow from a vertex to itself (labeled “Other” in the figure) can 
be thought of as a null operation; it won’t have any effect on the current state, so, typically, you 
can ignore it. You can see that the Ticket-Validated event in the Lockedstate will cause a 
transition to Unlocked, and the -BarrierPushed message will lead to the Locked state. In each of 
these states, you only have one message that you need to react to, so you can create them as a 
single message handler delegate. The following code example shows you how to set up handler 
delegates to ensure that they only react to their own specific message: 

void Locked() 

 

{ 

    Receive<TicketValidated>(msg => Become(Unlocked)); 

    Receive<BarrierPushed>(msg => { }); 

} 
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void Unlocked() 

{ 

    Receive<TicketValidated>(msg => { }); 

    Receive<BarrierPushed>(msg => Become(Locked)); 

} 

Continuing through the state transition diagram, you see the entry state, represented by a black 
dot pointing to a given state. In this case, it’s the Locked state. So your actor should immediately 
be placed in the Locked state to ensure nobody is allowed in without a valid ticket. You do this by 
directly placing a call to Become in the constructor of the actor. This specifies that an actor 
should use this specific behavior for the very first message it receives: 

public TurnstileActor() 

{ 

    Become(Locked); 

} 

Although that’s all the information you can glean from your state transition diagram, there’s still 
one other feature that needs implementing. Remember that the state transition table can 
contain more data than the diagram. In this case, it’s an external change that needs to occur 
when the actor enters the Unlocked state: it needs to communicate with the turnstile locking 
mechanism to unlock it for one turn to allow the user to enter. You can do that by adding 
information to the body of the Unlocked state method. In this case, you’ll call a method on an 
object, which will inform it of the unlocking action: 

void Unlocked() 

{ 

    Barrier.Unlock(); 

    Receive<BarrierPushed>(msg => Become(Locked)); 

    Receive<TicketValidated>(msg => { }); 

} 

4.3.4. Using the finite state machine actor 

FSMs are incredibly useful components when you’re writing asynchronous applications, and 
although you can replicate simple state machines using switchable behaviors, there are 
limitations involved with them. For example, an actor can’t perform operations as it transitions 
out of a given state. You also have one other problem with your current implementation. In 
Akka.NET, you have the concept of supervision, which you’ll learn about in chapter 6. For now, 
you only need to know that when an actor throws an error, it restarts in a new state. This means 
that it loses all its data and associated state when it restarts. 
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To address these issues, Akka.NET provides an actor specifically for the purpose of creating an 
FSM: FSMActor, a generic class requiring two type arguments. You need to supply the type of the 
actor state as well as the type of data the actor stores. The following example shows how you can 
begin converting your turnstile actor to use FSMActor. This code snippet simply defines your 
actor as an FSM that has all states deriving from ITurnstileState, with the actor storing data of 
type ITurnstileData: 

class TurnstileStateMachine : FSM<ITurnstileState, ITurnstileData> 

{ 

} 

You can now define data structures that are used to represent the states and data stored in the 
actor. You’ll start by defining a base interface that all of its possible states can inherit from. 
Following that, you’ll create two classes that implement the interface and represent the states, 
namely, Locked and Unlocked. You’ll also create a class within which you’ll store state. Although 
you don’t need to store any data in your FSM, you’ll create a class that it could use as a data 
storage location: 

interface ITurnstileState { } 

class Locked : ITurnstileState 

{ 

    public static readonly Locked Instance = new Locked(); 

} 

class Unlocked : ITurnstileState 

{ 

    public static readonly Unlocked Instance = new Unlocked(); 

} 

 

interface ITurnstileData { } 

class TurnstileData : ITurnstileData { } 

When you create states, an important consideration is how Akka.NET compares the states in the 
application. By default, C# uses reference equality to compare the two states. To ensure the 
states are compared correctly, you should implement Equals on each state to ensure you choose 
the correct state. 

Once you’ve implemented equality, you can register each of the states and a handler in the 
constructor of the actor. Use the When method on FSMActor to register a handler that executes 
when a message is received and the actor is in that state. The handler is invoked with two pieces 
of information: the current actor state and the received message. Once it receives a message, it 
can then pattern match on the possible messages received and handle them appropriately. Every 
message handler has to return the action that should be undertaken as a result of the message. 

www.EBooksWorld.ir



This is usually one of two methods: either GoTo, which transitions the actor into a new state, 
or Stay, which keeps the actor in its current state. You can build your state machine further by 
using these features to register the two handlers you’ll need for the Locked and Unlocked states: 

public TurnstileStateMachine() 

{ 

    When(Locked.Instance, @event => 

    { 

         if(@event.FsmEvent is TicketValidated) 

         { 

              Console.WriteLine("Ticket was validated"); 

              return GoTo(Unlocked.Instance); 

         } 

         return Stay(); 

    }); 

 

    When(Unlocked.Instance, @event => 

    { 

        if(@event.FsmEvent is BarrierPushed) 

        { 

            Console.WriteLine("User pushed barrier"); 

            return GoTo(Locked.Instance); 

        } 

        return Stay(); 

}); 

After registering the handlers, you need to perform a number of other operations before the 
actor is usable. You first need to tell the actor what the initial state and internal data should be, 
which you manage with the StartsWith method. Once you’ve performed all of your 
configurations, you need to initialize the actor and ensure it’s ready to receive any messages sent 
to it. This is managed with the Initialize method: 

StartWith(Locked.Instance, new TurnstileData()); 

Initialize(); 

When developing applications using FSMs, you can also set a timeout on an individual state. If a 
message hasn’t been received within a fixed timespan, then the actor will send itself 
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a StateTimeout message. This message can be handled like any other and can be used in pattern 
matching. To use the StateTimeout functionality, you pass a TimeSpan to the Whenmethod, which 
specifies how long the actor should wait before sending a timeout message. For example, when 
you may want the turnstile to stay unlocked for only a limited period of time. To accomplish 
this, you can create a timeout on the Unlocked state and handle the message in the state message 
handler: 

When(Unlocked.Instance, @event => 

{ 

    if(@event.FsmEvent is BarrierPushed || 

       @event.FsmEvent is StateTimeout) 

    { 

        Console.WriteLine("Barrier will now lock"); 

        return GoTo(Locked.Instance); 

    } 

    return Stay(); 

}, TimeSpan.FromSeconds(10.0)); 

You saw that one of the problems when using switchable behaviors is the limited potential for 
performing operations on a state change in an actor. FSMActor helps solve this problem by 
registering a function that executes every time a transition occurs. When this function is called, 
it receives the previous state as well as the next state. This allows operations to happen between 
state transitions. For example, in the turnstile actor, you want to tell the locking mechanism to 
unlock upon transition from Locked to Unlocked, and to lock on the transition 
between Unlocked and Locked: 

OnTransition(OnTransition); 

 

private void OnTransition(ITurnstileState prevState, 

        ITurnstileState newState) 

        { 

            if (prevState is Locked && newState is Unlocked) 

            { 

                BarrierLock.Unlock(); 

            } 

            else if (prevState is Unlocked && newState is Locked) 

            { 

                BarrierLock.Lock(); 
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            } 

            else if (prevState is Locked && newState is Locked) 

            { 

                Console.WriteLine("The barrier gate is still locked"); 

            } 

            else if (prevState is Unlocked && newState is Unlocked) 

            { 

                Console.WriteLine("The barrier gate is still unlocked"); 

            } 

     } 

FSMActor allows you to develop more-complex FSMs that are easier to scale when using more 
states with more-complex transitions. FSMActor is less frequently used than ReceiveActor, but it 
can form a solid foundation upon which you can build complex state-based asynchronous 
systems. 

4.3.5. Wrapping up 

This section covered a lot of content. You’ve looked at how, using FSMs, you can generalize the 
ideas surrounding the states and behaviors that an actor can exist in at any given time. You’ve 
seen how you can represent these states and transitions, both textually and diagrammatically, 
through the use of state transition tables and state transition diagrams. Finally, you’ve examined 
how these representations can be converted to Akka.NET using actors’ built-in features that 
help manage complexity. 

4.4. CASE STUDY: STATE MACHINES, STATES AND EVENTS, MARKETING ANALYTICS 

CAMPAIGN  

In this chapter, we’ve considered how you can model some common objects using state 
machines. You’ve seen how to represent a turnstile as a set of finite states, as well as the events 
that cause transitions between states. These principles can be extended to larger and more-
complex applications that have a limited number of states. One practical example is the 
management of complex marketing campaigns. 

For businesses to thrive, they need to retain customers and potentially convert them from 
occasional users to recurring users who pay monthly for a service. One way to achieve this is to 
incentivize the user by offering promotions, based on their previous usage of the application or 
service. For example, if a user signs up for a service but doesn’t use it, then the business might 
want to provide them with a user guide to help them make the most of the service. Similarly, if 
the user signs up as a free user but doesn’t convert to a paying user, then the user could be 
targeted with a promotional campaign offering them a discount code. Marketing campaigns that 
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start small can quickly grow into complex systems that depend on a number of different 
variables, such as the date or how long it’s been since the user last used the service. 

As these campaigns are typically made up of a number of states, along with events that cause 
transitions between these states, you can think of a marketing campaign as a state machine, 
which means you can encode the logic in an actor. In figure 4.4, you can see how push events 
flow within the actor. These events include information relating to how the user uses the 
application, such as how long it’s been since they last used it, and whether they pay for the 
service. The actor can use its current state to work out how to process incoming events, and 
whether the user should be notified of a discount available to them or be sent more information 
on the service. 

Figure 4.4. A marketing campaign application can quickly become complex. Marketing departments will want to provide targeted 

information to individual users based on how they’ve been using the app. 

 

In this example, the overall state of the marketing campaign would be difficult to represent in a 
database table, but using an actor that allows for on-the-fly configuration of its behavior vastly 
simplifies processing incoming messages. 
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SUMMARY  

In this chapter, you learned 

• How to model real-world situations using state machines 
• How to diagrammatically explain a state machine using state transition tables and state 

transition diagrams 
• How to create a simple state machine using the behavior-switching functionality of 

Akka.NET 
• How to create more-complex state machines using the finite state machine actor type 
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Chapter 5. Configuration, dependency injection, and logging 

This chapter covers 

• Configuring actor deployments 
• Using dependency injection 
• Using Akka.NET’s logging system 

You’ve learned how to deploy simple actors in Akka.NET, and in the remainder of the book, we’ll 
look at how you can create actors that solve more-complex problems. First, you need to 
understand how to inject configuration into Akka.NET, as a way of controlling how scenarios are 
handled in the framework. 

In this chapter, we’ll look at how to instrument and operationalize an Akka.NET application. It’s 
important to have thorough instrumentation and logging in place, even when developing simple 
actor applications. Akka.NET provides abstractions to develop distributed applications, but this 
comes with inherent downsides. You saw in chapter 1 that one of the principles of the Reactive 
Manifesto is the use of asynchronous message passing for communication between components 
in a reactive system. Because messages are passed asynchronously, there’s no notion of the 
typical flow control that you get with applications that rely on synchronous method calls. 
Although asynchronous message passing provides a foundation for reliable and scalable 
systems, it also prevents you from effectively debugging applications using a debugger. Instead, 
it’s important to have thorough logging and instrumentation in place, which allows you to 
understand the system as a whole, rather than as isolated components. This chapter focuses on 
how to use Akka.NET to monitor and instrument an application with centralized logging. We’ll 
also look at how to effectively tailor an application to different environments by configuring the 
actor system, as well as the context in which the system operates. This chapter isn’t a 
comprehensive guide to all means of configuration in Akka.NET, but rather is a baseline on 
which later chapters will build when introducing additional configuration options. 

5.1. WHY DO YOU NEED CONFIGURATION?  

The actor systems you’ve used so far have been relatively simple, with only a few actors 
communicating and with few messages being passed between them. In later chapters, the 
number of features in the systems we look at will increase, which means an increase in system 
complexity. This chapter provides a firm basis for handling that increased complexity. 

Let’s consider for a moment the actors you deployed into your system. They required no 
customization. But the simplest actor configuration will fail when you deploy more-complex 
actors. For example, how do you handle a case in which you want an actor to distribute its 
messages to other actors, thereby increasing the amount of work that can be done in parallel? 
And how does an actor handle a failure? These are just two of the scenarios you’ll configure in 
your actors. In later chapters, you’ll see more uses for actor configuration when we look at 
remote actors and failure handling. In this chapter, we’ll look at creating more-complex actors, 
such as those with many dependencies. 
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Not only can you configure actor deployment, you can also modify the way the actor system 
itself runs, without the need to recompile the application. As you’ll learn, you can change how 
Akka.NET deploys an actor into the actor system; for example, you can create a cluster of actor 
systems, or change where actors are deployed within the cluster. For now, we’ll look at one of 
the most essential parts of an Akka.NET project: logging. You’ll learn how to use Akka.NET 
configuration to customize loggers and how loggers can be used in an application. 

5.2. CONFIGURING AN ACTOR DEPLOYMENT  

In each of the actor examples you’ve seen so far, all deployments into the actor system have been 
through the generic method ActorOf<T>. In these cases, T is the type of the actor being 
instantiated. But sometimes you’ll want to change how the actor is deployed by Akka.NET, for 
example: 

• Custom constructor—When Akka.NET deploys an actor using ActorOf, it uses the default 
constructor of the actor. For more-complex actors, you may need to pass some 
dependencies into the constructor, so you’ll need to tell Akka.NET how to instantiate the 
actor. 

• Custom mailbox—The mailbox is the internal component responsible for receiving 
messages for an actor. Although the mailbox isn’t directly used by the developer, it forms 
a key component of the actor itself. Often, an actor will need to use a mailbox other than 
the default one, as when some messages have a higher priority than others and need to be 
processed first. 

• Deployment location—An actor is typically deployed into the local actor system. But as 
you’ll see later, an actor can be deployed into several other locations, including a remote 
system or even a cluster of actor systems. 

• Custom dispatcher—The dispatcher is responsible for the thread on which an actor 
processes its messages. For example, if you’re defining an actor that processes many 
messages, it may need more resources than other actors. The dispatcher for that actor can 
be set to use a dedicated thread to process messages. 

These are some of the more common requirements you’ll need when configuring an actor. 
Whereas the custom mailbox, deployment location, and custom dispatcher are only used in 
advanced actors, the custom constructor is frequently used, as it allows you to directly inject 
dependencies into the deployment itself. Throughout the rest of this section, we’ll look at 
configuring the Akka.NET framework to create and deploy an actor into an actor system. 

5.2.1. Understanding Props 

In previous chapters, you saw that after defining an actor, you need to effectively deploy it into 
an actor system. Deploying an actor means that it’s given an address and a mailbox that can 
receive messages from other actors in the system. In order to deploy an actor and instantiate it, 
you used the ActorOf<T> method on the actor system instance. For all the examples so 
far, ActorOf has been sufficient, as it simply takes an actor type as a generic parameter and uses 
the default constructor. 
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But this generic method doesn’t automatically spawn the actor into the system. Instead, it 
creates a template for how the actor should be deployed. The template provides a reproducible 
way of creating an instance of the actor. The template, then, is similar to a recipe. A recipe isn’t a 
meal in itself, but simply a series of reproducible steps one follows to create a meal. By providing 
food and something capable of “defining” the food, such as a chef, you can create the same meal 
repeatedly. Now consider what happens when something goes wrong in a restaurant, as when a 
waiter drops a meal. The restaurant can create a new meal, because it has the recipe. 

The same principle applies to actors; for example, consider the scenario in which an actor 
unexpectedly stops because it encounters an error. We’ll look at how Akka.NET responds to 
failures more in a later chapter, but for now, we’ll consider the easiest and most common 
approach to handling failures. The Reactive Manifesto encourages building applications that 
respond to failures in the system. One way of responding to a failure is to simply restart the 
actor, in the hope of regaining a known working state. But for this you need a template to 
provide a reproducible deployment. The term reproducible in this setting means that the actor 
must end up in the same state as when it was first deployed. 

The “recipe” that can produce an actor in Akka.NET is known as Props. Props is used heavily in 
Akka.NET and is a requirement for complex actors. For now, we’ll focus on the simpler aspects 
of using Props, such as creating actors with complex constructors. 

Creating Props 

Due to the multithreaded nature of the code in which Props is used, every Props instance is 
immutable and requires factory functions to create an instance. Let’s take another look at 
the PersonActor example from chapter 3, where the actor defines a behavior for what happens 
when it receives one of two messages. If it receives a wave message, it sends a vocal greeting 
back to the original sender; if it receives a vocal-greeting message, it writes the content of the 
message to the console. 

Normally, when spawning an actor, you’d use ActorOf with the actor type as the generic 
parameter. But you can create the Props object for this actor in a similar way by using the 
generic factory method for this actor type, assuming you have a default constructor on the actor 
that takes no parameters. Then you receive the Props object, which you can use to spawn an 
actor internally: 

var personProps = Props.Create<PersonActor>(); 

var personActor = system.ActorOf(personProps); 

But this doesn’t change anything for when you want to deploy PersonActor, and you had to write 
more code to do the same job. Custom Props become useful when you want to do something 
complicated that’s outside the scope of what Akka.NET can manage by default. For example, 
let’s modify the PersonActor definition to take a dependency on a string that the actor will use to 
communicate with another actor. Akka.NET needs some way of knowing what string it should 
pass into the constructor. You can manage this in one of two ways: by providing an expression 
that’s used when an actor instance needs to be created, or by specifying the type name along 
with an array of parameters. 
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The simplest way of providing this string is by creating Props with the type of the actor and an 
array of parameters. For example, if you want to use the string "Hello from Props!", you can 
create Props as shown in the following code. In this case, you provide the type of the actor 
to Props using the typeof keyword. You also create an array of parameters, which in this case is 
the string constant "Hello from Props!": 

var personProps = Props.Create(typeof(PersonActor), 

    "Hello from Props!"); 

This approach is by far the simplest, but you give up the ability at compile time to check that 
you’re either providing all of the required parameters or that all parameters are of the correct 
type for the actor definition. To alleviate this difficulty, Akka.NET allows you to specify an 
expression for creating an instance of the actor. When you want to deploy or redeploy that actor 
definition, Akka.NET will evaluate that expression and use the returned instance in the actor 
system: 

var personProps = Props.Create<PersonActor>( 

    () => new PersonActor("Hello from Props!")); 

Spawning an actor with Props 

Having created a Props object, you can spawn it in a way similar to how you spawned actors 
using the actor type. In this case, rather than using a generic method, you can use 
the ActorOf method and pass in the Props object. You can also create it with a name, exactly as 
when you deployed actors. The following example deploys your more-complex actor using 
the Props object you built earlier. As you can see, there’s very little difference in the process 
when creating actors using Props versus directly deploying actors: 

var personActor = system.ActorOf(personProps); 

A warning about Props 

As you’ve seen, when you use Props, you can use an expression to create an actor instance. You 
can then create a Props object with this expression and use that to spawn an actor. But there’s 
no guarantee that you’ll spawn the actor as soon as you create the Props object. In order to 
remain performant, many operations in Akka.NET are evaluated lazily. One example of this is 
when you want to retrieve the original sender of the current message using the Sender property. 
This is only evaluated when it’s needed, which means that if you pass the Props object, you 
create a different actor to spawn it, and then the Sender will be different than what the receiving 
actor expects. You can solve this problem by retrieving a reference to the current value first, as 
shown in the following code: 

var sender = Sender; 

var props = 

    Props.Create(() => new LoadTestingActor(sender)); 
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There are other scenarios in C# where you might encounter this problem, most notably when 
using an index variable in a loop. In such situations, it’s important to realize that the Propsare 
not evaluated immediately, which might lead to unexpected values. 

5.2.2. Wrapping up 

In this section, you’ve seen how Akka.NET can spawn an actor by using a template known 
as Props. You’ve seen how to create Props for a given class with a complex example. In the next 
section, we’ll look at how to spawn complex classes using a dependency injection (DI) 
framework.[1] Although Props might seem difficult or even dense at the moment, you’ll explore in 
later chapters just how important Props is when Akka.NET scales up actors or handles failures. 
At this stage, however, the main use of Props is as a means of deploying actors with more 
dependencies, as provided through the constructor. You’ll see in the next chapter how to use 
dependency injection to automatically inject dependencies into Props. 

1 

This book isn’t doesn’t provide a thorough introduction to dependency injection, but only provides the basics needed to begin using 

it. If you’re interested in learning more about DI, see Dhanji R. Prasanna, Dependency Injection: Design patterns using Spring and 

Guice (Manning, 2009), or Mark Seemann and Steven van Deursen, Dependency Injection in .NET (Manning, 2018). 

5.3. DEPENDENCY INJECTION (DI) 

In previous chapters, you saw actors that had no external dependencies and that were simple to 
deploy into an actor system. Then you saw how Akka.NET creates a template for actor 
deployment, and how you can interact with templates to provide additional dependencies into 
an actor’s instantiation. Sometimes, actors grow and require more and more dependencies on 
external services. As dependencies increase, you start to generate more-complex chains of 
dependencies, so that one dependency requires others. Typically, you’d approach this problem 
by using a dependency injection framework, which can automatically create any dependencies 
you require. 

The same principles apply to Akka.NET, and you can use dependency injection to create 
the Props object that you used as a template. In this section, you’ll see how to create an actor 
using the principles of dependency injection, thereby providing a number of external 
dependencies that are consumed by the actor instance. 

5.3.1. Introducing dependency injection 

Among the tasks an actor can perform is to work with external dependencies. For example, you 
may have a database actor that forms the basis from which other actors in the system 
communicate with the database. Or, you may have an actor that’s in charge of performing 
interactions with a web service. In these cases, you deal with dependencies that you may want to 
quickly and easily configure, so that later you can replace them with something else. 

Let’s consider your database actor again. When it communicates with the database, it probably 
performs the operation with a well-known abstraction over the top of it. For example, you may 
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already be using Microsoft’s Entity Framework or even a custom-written API using raw SQL 
queries. Regardless of the technology, you probably tend to use a built-up abstraction because of 
its simplicity. But there may be times when you no longer want to use that abstraction to 
retrieve data from the database, such as during testing. When you write tests, you don’t want to 
interact with external services, for a number of reasons: 

• Time to execute—External dependencies are typically served over high-latency 
connections, such as a network or internet connection. If every test needs to use these 
connections, it can lead to a significant increase in the amount of time a test suite takes to 
execute. This is something you don’t want, as you seek quick feedback from tests. 

• Difficulty in setting up data for tests—Once you’ve got a test with a dependency on an 
external service, in order to achieve predictability, you need to have an understanding of 
the data in the source. This means you need to configure the data source to add new test 
data or retrieve stale data before you’re able to run a test. 

In testing, when you have a dependency on an external service, you should replace it with 
something that optimizes system efficiency and throughput. Although this can be configured 
manually, a DI framework allows for the easier resolution of complex dependency graphs. 
A dependency graph is the chain of dependencies that builds up as dependencies depend on 
other services. For example, you may have a dependency on Gmail within your application, but 
Gmail itself might require an abstraction over the top of an email client. 

Possible uses of dependency injection go far beyond just testing; for example, if you have an 
application that can run in different environments, you could switch dependencies on a per-
environment basis. If an application can run in a number of different cloud hosts, such as 
Amazon Web Services or Microsoft Azure, you might use different logic for performing certain 
operations, such as retrieval of the current machine’s IP address. 

Scenarios such as these are where dependency injection can be useful. By registering a concrete 
instantiation of a dependency, such as a class, against a template of the dependency, such as an 
interface, you can separate the implementation of the dependency from how you use it. 

You’ll see throughout this section how you can manage complex dependency graphs in 
Akka.NET by using a DI framework. In particular, we’ll look at containers and how they can be 
used to provide dependencies to an actor when it’s spawned. 

Do You Need Dependency Injection? 

Many developers swear by dependency injection as a means of creating testable code; but before 
deciding to use it, you should consider whether it’s truly necessary. Akka.NET presents a different 
approach to concurrency by using actors, which were typically not considered when dependency 
injection became popular. 

With actors, you have to be cautious of anything that can be a potential source of state sharing. You 
saw in chapters 2 and 3 how you should design actors so that they don’t share any state between 
them, which promotes better scalability and fault tolerance. This goes against the structure of DI 
frameworks: they use a dependency, which is shared across many instances, for as long as possible. 
Also, you don’t know how long an actor might be in use. Some actors may reply to a single message 
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and have a lifetime of less than a second, while other actors may stay active for long periods of time 
with potentially no downtime. This poses a different set of challenges that some DI frameworks 
may not be tailored for. 

Before using dependency injection in Akka.NET, you should consider whether it brings significant 
advantages to your codebase, especially when being careful about dependencies is a major 
consideration. 

5.3.2. Configuring a DI container 

In Akka.NET, you can use several DI libraries, with the option of including adapters for others, 
if they’re not already provided. All the adapters are available through NuGet, along with a 
number of community-contributed alternatives. Some available adapters include Ninject, Castle 
Windsor, and Autofac; in this section, we’ll use Autofac. The only key difference in the API is 
how you register dependencies in your framework. 

Your first step is to install the Autofac library from NuGet, along with the adapter for Akka.NET. 
In the same way that you installed the Akka.NET project in chapter 3, you need to install the 
Akka.DI.AutoFac NuGet project. This will add the DI library to your project, if it’s not already 
included. Before you can create actors with automatically resolved dependencies, you need to 
configure the container. The container is the component responsible for mapping a required 
type onto a type instance. 

We’ll continue with how you can insert extra dependencies into your actor system. In this case, 
you’ll register every request for a string to provide a simple instance of a string. This is 
something you wouldn’t typically do with a DI container; instead, you’d provide more-complex 
type definitions. In Autofac, you can quickly create a container and supply an instance to use for 
a given type:[2] 

2 

For a more in-depth guide on how to use Autofac as a DI framework, see the official documentation available 

at http://www.autofac.org. 

var containerBuilder = new Autofac.ContainerBuilder(); 

       containerBuilder.RegisterInstance<string>( 

    "Hello from a DI container"); 

    var container = containerBuilder.Build(); 

Now that you’ve got a container, you can create type instances with it. The Akka.NET framework 
will also use the container to create instances of actors. In addition, you need to register the 
container with the framework. To do this, create a dependency resolver specific to your chosen 
DI framework; in this case, an AutoFacDependencyResolver, when created, will be automatically 
registered to the actor system, enabling it to create actors: 

var propsResolver = new AutoFacDependencyResolver(container, system); 
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As you saw earlier, you need a Props object in order to spawn an actor. When you want to create 
an actor using the DI framework, you use an extension method provided on the ActorSystem. 
Once you’ve retrieved a reference to the DI extension, you simply call the Props method with the 
type you want to create as a generic type argument. The following example creates 
the Props for PersonActor by retrieving all the dependencies from the provided container. To 
create the Props object, you retrieve the Props from the context using the Akka.NET DI features: 

var props = system.DI().Props<PersonActor>(); 

Once you’ve retrieved the Props, you can use it the same way as previously. Also, you can 
use Props to deploy the actor in the same way as you did when manually generating actors. 

5.3.3. Wrapping up 

This section focused on how to configure and manage complex dependency graphs for actors in 
Akka.NET by using a DI framework. NuGet supplies a number of DI frameworks for which 
bindings and thorough documentation are available for Akka.NET. The same principles apply 
regardless of which framework is used, allowing for your choice. 

This section also marks the end of your introduction to configuring independent actor 
deployments using Props. Throughout the rest of the book, you’ll see more examples of 
how Props is used to provide additional functionality to an actor’s deployment, such as with 
remote actors or clustered actors. In the rest of this chapter, we’ll look at further configuration 
in Akka.NET using HOCON, which you’ll use to configure system-wide settings for actors. 

5.4. CONFIGURING WITH HOCON  

Many libraries and frameworks today use something like XML or JSON for storing and 
providing configuration data. Typically, the data includes configuration variables that might 
need to be changed, depending on the environment at runtime, or that need to be frequently 
changed without requiring recompilation. However, XML and JSON are far from ideal for 
storing configuration data. 

Both XML and JSON were designed as data interchange formats for sending data between 
multiple applications. These formats are intended for high-speed serialization and 
deserialization, but they’re difficult for humans to read and write. For example, XML is a 
verbose format with significant amounts of repetition that the user is required to write. Also, it’s 
far from intuitive for the user to compose, due to the potential confusion of when to use 
attributes on data or when to use nested elements. JSON removes much of the verbosity 
associated with XML, but it still suffers from problems. The lack of comments can cause issues, 
particularly when you’re documenting complex configurations. Furthermore, the format can be 
difficult to understand when you’re dealing with data that doesn’t naturally map onto the types 
provided by JavaScript. 

To address many of these issues, Akka.NET uses a configuration file format known as HOCON, 
which stands for Human Optimized Configuration Object Notation. The key point is that it’s 
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human readable and was designed from the ground up to be easier to read and write than many 
other formats. 

5.4.1. What is HOCON? 

HOCON is a configuration file format that was designed as a superset of JSON. As such, you 
may notice some similarities between a HOCON file and a JSON file. But HOCON improves 
upon JSON by removing a lot of the noise that doesn’t add value for a human reading it. It 
removes the leading and trailing braces and adds other features, such as comments, which 
ensure that developers can explain certain program decisions in their configuration files. 

Let’s take a look at a simple HOCON file to see how certain constructs can be expressed in it. 
The following example shows a file that’s been tailored to demonstrate many of HOCON’s 
features. The first point to notice is that HOCON resembles a JSON file. In fact, since HOCON is 
a superset of JSON, valid JSON can also be used to configure Akka.NET. 

akka { 

    # Project details 

    project { 

        name = "Cooking" 

        description = ${my.organization.project.name} "is a tool to ensure 

     the correct preparation of bearnaise source ;)" 

    } 

    # Team members 

    team { 

        members = [ 

            "Bob" 

            "Fred" 

            "Alice" 

        ] 

    } 

} 

akka.team.avgAge = 26 

You can see a lot of similarities between JSON and HOCON, but some key changes ensure that 
HOCON is human readable. For example, there’s no need to supply opening and closing braces. 
The separator between keys and values has also changed from a colon to an equals sign. These 
are the two most noticeable changes, but many other features also assist readability. In the 
preceding example, you’ll notice a number of nested sections, each of which has only one key in 
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it. To simplify cases such as this, HOCON allows you to specify paths where each path segment 
is separated by a full stop. The two following examples both resolve to the same configuration 
object: 

akka { 

 cluster { 

  roles = [] 

 } 

} 

  akka.cluster.roles = [] 

Sometimes, you may need to convey additional information about decisions within the 
configuration; for example, you might need to specify a detail about the structure of a 
configuration string for later users. In such situations, you can use a comment to express your 
intent. It’s no different in Akka.NET, and you’re free to use one of two commenting styles. 
Comments may start either with a double forward slash (//), similar to C-style languages, or 
with a hash character (#), similar to languages such as Python and Bash. In the following 
example, you add a comment above a key value, which is used to describe the intent of the 
definition. Comments extend through the length of a line, and a comment ends when it reaches 
a line separator. 

#Specifies the roles which this node belongs to 

    akka.cluster.roles = [] 

In Akka.NET, you’ll also want to configure timeouts and the intervals between certain 
operations. The other common configuration formats approach this problem of measurement 
units by using milliseconds or seconds as their values, leaving you to work out which is required 
from the documentation. HOCON, though, supports the use of certain measurement units in 
program values. For example, the following time values lead to the same value being made 
available in the configuration: 

akka.cluster.seed-node-timeout = 120 s 

 

    akka.cluster.seed-node-timeout = 2 m 

These are some of the features of HOCON that we’ll use throughout the rest of the book, but 
there’s plenty more to discover and use. 

5.4.2. Loading configuration into an actor system 

Now that you’ve seen what the HOCON format looks like, you can use it in an actor system. You 
can retrieve the configuration from a couple of different places in an application. At the simplest 
level is the ConfigurationFactory.Parse method, which takes in a string containing the HOCON 
definition. As a layer of abstraction on top of this, you can also retrieve the configuration from a 
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resource file embedded in the application. The final option is to retrieve the configuration from 
an Akka element stored in the application’s App.config file as CDATA. For now, we’ll use the 
.NET file APIs and ParseString to retrieve the configuration from a file stored in the current 
directory. Assuming that the configuration file is in the same directory as the executable, you 
can load it in as follows: 

var configString = File.ReadAllText("actorsystem.conf"); 

var config = ConfigurationFactory.ParseString(configString); 

ActorSystem actorSystem = 

    ActorSystem.Create("configuredActorSystem", config); 

Because Akka.NET starts the components (such as logging and other components) in the actor 
system, the components will overwrite their default values with the values provided in the 
configuration file. Because all components in Akka.NET use default values, this means you don’t 
need to create a configuration file with every value for every component; instead, you’ll fill the 
configuration with values that you need to change. 

5.4.3. Wrapping up 

You’ve seen some of HOCON’s features and how HOCON differs from other file formats 
typically used by applications for configuration. You examined how the features provided by 
Akka.NET and HOCON allow you to write an application configuration that’s tailored to the 
environment in which it’s running. Finally, you looked at the Akka.NET API, which allows you 
to load a configuration into an actor system when it’s created. HOCON is a feature-rich 
configuration format that provides many more features outside the scope of this section, 
including merging keys and more-advanced key replacements. Up until this point, you haven’t 
needed to configure some of the internals of the actor system, because Akka.NET has provided a 
configuration file with reasonable defaults, which is used as a backup if you don’t provide your 
own settings. As you use more-advanced features of Akka.NET, you’ll modify these settings, 
such as how actors get created if they’re in a cluster or a remote actor system. The next section 
describes a simple, real-life example of using HOCON to modify a basic section of the 
framework, the logger. 

5.5. LOGGING  

You’ve seen how to configure the actor system in which your actors are running, thanks to the 
HOCON configuration available in Akka.NET. Next, you’ll see how to create a configuration file 
and alter how key parts of the system operate. In this section, we’ll focus on the logging 
capabilities of Akka.NET and how to use logging to view the state of the actor system. You’ll see 
how to access Akka.NET’s logging utilities, as well as how to configure the log sink to use a 
different logging system. 

Logging is one of the most important operations you’ll use in any Akka.NET application to 
handle some of the problems that arise with asynchronous and distributed systems. In this 
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section, we’ll look at how to configure logging in Akka.NET and how to use logging functionality 
from within an actor to send messages to your configured log sink. 

5.5.1. Why do you need logging? 

Logging plays a valuable part in any application, providing insights into how your system is 
running at any point in time. But it’s especially important in the case of actor systems or, more 
generally, asynchronous systems, because of factors peculiar to asynchronous systems. A 
synchronous system provides a linear flow through the system at the cost of a reduction in 
scalability and fault tolerance, as you saw in chapter 1. But as asynchronous systems allay this 
determinism, they make it difficult to get a thorough, deep understanding of your system. 

For example, consider the flow of a message as it proceeds through a number of stages in a 
processing pipeline. In the message flow shown in figure 5.1, messages are processed or modified 
in one actor before being passed to the next. In a synchronous system, you can iteratively step 
through each of the processing stages before arriving at the final result. At each stage, the 
workload is visible, and you can see the results at that stage. Asynchronicity forfeits this and 
gives you benefits related to scalability and fault tolerance in its place. Using logging, you can 
see the flow of messages through the chain of actors, revealing potential sources of failure when 
the system’s running. By using logging in messages, you can see where messages might be 
directed to targets other than their intended destination, or even where messages aren’t 
reaching any target. 

Figure 5.1. Messages flowing through a processing pipeline 
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This is just one example of when logging can be used. The vast number of other uses relate to 
this same concept, which is that logging provides better visibility if/when something goes wrong 
in an environment where you can’t use a debugger. In the event of a failure in the system, you 
can consult the history stored in the logs and step through the circumstances that led to the 
system failure. 

5.5.2. Writing to the log 

Before an actor can write to the Akka.NET log, it needs to retrieve access to the system logger. 
The logger is retrieved through the static GetLogger method on the Logging class. From there, 
the actor passes in a logging target. In this case, it uses its context. Internally, the factory 
method will retrieve the logger: 

private readonly ILoggingAdapter _log = Logging.GetLogger(Context); 

Having retrieved the logger, an actor can write to the log by using any of the methods provided. 
For example, to write a message at the Debug log level, it calls the Debug method with a string to 
print. Akka.NET formats the string to provide additional information, such as the thread on 
which the actor was running, as well as the address of the actor that logged the message, before 
it’s written to the log. 

Logging is Asynchronous 

Like many other components in Akka.NET, logging is completely asynchronous. Within the 
logging system, an actor is responsible for receiving log messages that it then writes to the log 
output. This means that sometimes, as your system is being shut down, messages going into the 
log may not reach their final destination, leading to the apparent loss of messages. 

5.5.3. Customizing a logger deployment 

As mentioned in section 5.4.3, Akka.NET uses reasonable default values in situations where no 
other values are provided. This is no different for cases when a logger isn’t provided. By default, 
Akka.NET creates a logger that prints all received messages to the console. So, if you want to 
direct all logged messages to the console, you can leave the configuration as is. But in a 
production deployment, you’ll want to log messages to a centralized server, where they can be 
more easily processed and read. Although Akka.NET doesn’t provide the infrastructure to 
directly log messages to a centralized system, it provides adapters that can perform the task. In 
this example, you’ll use the NLog logging library, which appends log messages to various 
sources, including files on the filesystem, databases, and even emails. For now, we’ll use a 
simple logger that directs the output to an output file.[3] 

3 

This is a relatively simple example of a logging output. More-complex outputs are available, but they won’t be covered here. For more 

information on configuring and using NLog, see the NLog project site (http://nlog-project.org/). 
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The first step is to add the logging library to the project. You can do this from NuGet by 
adding Akka.Logger.NLog. To customize some of the core components, create a file called 
NLog.config and add it to the project. The NLog.config file provides details of how to handle 
certain log messages. For example, it can specify that debug messages go to one location, such as 
a database, and error messages go to another, such as a text file. For now, you’ll use a simple 
config file that sends all log messages to a text file: 

<?xml version="1.0" encoding="utf-8" ?> 

<nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd" 

      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

    <targets> 

    <target name="logfile" xsi:type="File" fileName="file.txt" /> 

    </targets> 

    <rules> 

    <logger name="*" minlevel="Info" writeTo="logfile" /> 

    </rules> 

</nlog> 

Now that NLog is configured in your application, you can configure Akka.NET to use it as the 
sink to which all logs are sent. This is done by modifying the configuration object that you pass 
into the actor system when you create it. To change your log providers, you can add an array of 
possible Akka.NET loggers: 

akka { 

    loggers = ["Akka.Logger.NLog.NLogLogger, Akka.Logger.NLog"] 

} 

There are further settings that you can modify that also affect the logging behavior of the 
application. For example, sometimes you may not have an actor instantiated at the address to 
which you sent a message. In this case, the message would get diverted to a special actor known 
as deadLetters. You can configure the logging functionality of Akka.NET so that it outputs a 
message to the log whenever messages are undelivered: 

akka { 

    actor.debug.unhandled = on 

} 

Creating Custom Loggers 

Although Akka.NET provides a wide variety of adapters for commonly used logging libraries, 
there may be a situation in which it doesn’t support your choice of logging library. For example, 
you may be using a custom-developed solution for your business, or an infrequently used 
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library. Akka.NET provides an extensibility point for creating a custom logging adapter that 
receives messages from your Akka.NET application and outputs them to your logging library. 
This is out of the scope of this chapter, but we’ll come back to it later in the book, when we talk 
about how to extend the Akka.NET library and its components. 

5.5.4. Wrapping up 

In this section, you’ve seen the benefits of using logging when you’re dealing with an 
asynchronous system, and how it allows you to gain better insight into how an application is 
working and whether it’s operating correctly at runtime. You saw how logging works in 
Akka.NET through the actor system and how an actor sends messages to logging. Finally, you 
saw how to change the output destination for any log messages you write in the actor system. 

5.6. CASE STUDY: CONFIGURATION AND DISTRIBUTED SYSTEMS  

In any modern application development workflow, it’s common to have a variety of 
environments that are used at different stages of the development pipeline, for example, 
development, test, and production environments. But it’s unlikely that configuration is common 
across all environments. When logging in a development environment, you can log to the local 
development machine; but in a production environment, you’ll probably be aggregating all of 
your logs into one centralized log-management service, allowing for simplified problem tracking 
in the event of production issues. Similarly, if you’re persisting data into a database or 
alternative data storage location, you’ll want to ensure that production data and test data are 
stored in separate data stores, and for testing purposes, you may not want to persist data at all. 

In this chapter, you saw how configuration components work in Akka.NET; the configuration 
tooling allows you to change application parameters without having to recompile the 
application. This allows you to change the configuration file for different environments, and the 
changes will be reflected in the application. 

As part of application configuration, there are typically two categories of configuration 
parameters: application settings and environment settings. Application settings are the 
parameters responsible for driving business logic. For example, in a machine-learning 
component, this includes the configuration of machine-learning models. These are parameters 
that might change frequently as the application is used, but will remain stable across 
environments. Environment settings describe how the application interacts with other systems 
in the environment, including connection strings to databases and the keys needed to consume 
external APIs. These are configuration parameters that should change between environments. 

Akka.NET HOCON configuration simplifies this usage by allowing you to overwrite 
configuration parameters, depending on the environment. In figure 5.2, you can see a 
configuration file shared across all the environments. This includes the common configuration 
elements, notably, the application settings. You can also see that there’s an additional 
configuration file that’s different for each environment and that contains the settings for each 
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independent environment. Internally, HOCON configuration merges the two files—the shared 
configuration and environment-specific configuration—into a single configuration file. 

Figure 5.2. A modern application needs to run in multiple contexts, either local, test, or production. It’s important to be able to 

configure the application for each environment without needing to recompile. 

 

This ensures consistency across environments for configuration parameters in applications that 
still need some simplified runtime modification. You can also easily modify the environment-
specific settings and ensure that there’s no possibility of settings from one environment making 
their way into another environment. 

SUMMARY  

In this chapter, you learned 

• The importance of monitoring and logging in asynchronous systems 
• How Akka.NET provides a centralized logging point for collecting both system and 

application logs 
• How to configure an Akka.NET application to suit the environment 
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Chapter 6. Failure handling 

This chapter covers 

• Discovering where failures happen in asynchronous systems 
• Understanding how actors in Akka.NET handle failure 
• Dealing with failures in Akka.NET 

First, you learned how to create simple actors in Akka.NET; then, you learned how to create 
more-complex actors that can react to changes in their environment by using state machines. 
Next, you learned how actors are configured in Akka.NET by using Props for individual actor 
deployments and HOCON for configuring the internals of the actor system. You know how to 
implement the principles of reactive systems. In chapter 3, you saw how to build actors that 
communicate asynchronously through message passing, which forms the building blocks of 
reactive applications. 

In this chapter, we’ll look at how you can implement one of the building blocks that sits on top 
of the message-passing layer, and how an Akka.NET application can respond to service failures. 
Throughout this chapter, we’ll look at what a failure typically involves, especially in the context 
of distributed environments running Akka.NET. Then, you’ll see how an actor system reacts to 
failures to ensure operations without requiring frequent human intervention. 

6.1. UNDERSTANDING FAILURES  

As the applications you write become increasingly complex, with more moving parts, there’s 
more potential for errors to occur at many different points in the stack. If you want to write 
applications that can operate for extended periods of time with minimal downtime, then it’s 
important that they deal successfully with failures. 

When you make applications asynchronous, you increase the failure potential in the system, at 
the same time making it harder to find the root cause of the issues. Consider the scenario where 
you make a phone call to someone not visible to you. During the phone call, you might ask the 
other person a question. In an ideal situation, the person will hear the question and respond 
directly, but if you don’t receive a response, you’re presented with a range of possible 
circumstances that may have lead to this scenario (see figure 6.1): 

• The other person didn’t receive the question. Although you asked the other person a 
question, there’s no way of knowing that the other person did in fact receive the question. 

• The other person didn’t understand the question. You asked the other person something 
that they didn’t understand, either at all or in the given context. In this scenario, the 
other party might not know how to respond to the question, so they choose not to 
respond. 

• The other person is preoccupied with something else. When you’re talking to someone on 
the phone, you can’t see that person, and so you don’t know what they’re doing at the 
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moment. They may have had to temporarily put down the phone to respond to a more 
urgent matter. 

• Something serious might have happened to the person. Once again, you can’t see what 
the other person is doing at the time you ask them a question. If you ask them to do 
something, but something unrelated has just caused them harm, then they won’t be able 
to respond to you and will need attention from somebody nearby before they can respond 
to your question. 

• You never received their reply. The other person received the question, formulated the 
response, and then replied, but the response was lost because the phone signal was too 
weak to transmit it. 

Figure 6.1. During a typical phone call, there are numerous reasons why you might fail to receive a response to a question. 

 

All of these failures directly translate to failures that you may see in the world of asynchronous 
systems development. These are scenarios that you should plan for and attempt to mitigate 
throughout the design process of your applications. The Akka.NET framework provides features 
to help developers create applications that stay responsive, even in the face of failure. 
Throughout the rest of this chapter, we’ll look at three key elements of writing failure-resistant 
applications: supervision trees, failure recovery, and message delivery. These issues are faced on 
a regular basis by all asynchronous applications and not just those written with Akka.NET. 

6.2. HANDLING APPLICATION-LEVEL FAILURES  

First, we’ll look at failures that your application itself can cause. These are failures of application 
logic caused by attempting to perform an operation when the system isn’t in a valid state. 
Common examples include trying to access data stored on objects that are currently null 
references, and invoking a method at the wrong stage in the application’s lifecycle. The lifecycle 
of an application can be thought of as an original starting state with a number of transitions 
leading to a finished state. Figure 6.2 shows how you modify a state by performing operations on 
the data. 
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Figure 6.2. variable’s state can be considered as a series of events applied to an initial state. 

 

Sometimes you’ll encounter problems with transitioning into a new state. If you’re performing a 
number of potentially dangerous operations, you don’t want to leave the system with only half of 
them completed; you could quickly find the system in an indeterminate state. Figure 6.3 shows a 
number of operations that are applied to an object until it encounters an error. The object is set 
to a local state before encountering the error, which it tries to recover from. After this, there’s no 
guarantee that any operation it executes can be deemed valid, because the object existed in an 
indeterminate state. 

Figure 6.3. An event that fails to apply a change to a variable’s state leaves the system in an invalid state. 

 

In this section, we’ll look at how severe these kinds of issues are, as well as how you can recover 
from them normally. You’ll see the Akka.NET approach to dealing with errors and the shift in 
mindset necessary when you’re designing applications capable of recovering from errors on 
their own, without human interaction. 

6.2.1. Responding to application errors 

Programming languages have always provided options for dealing with errors. Relatively simple 
languages, such as C, rely on the use of an integer to represent an error status returned from a 
function. Later programming languages provide more-advanced means of handling scenarios 
where the application is in an invalid state. One example is using exceptions to convey in-depth 
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information relating to an error. For example, a common exception in C# is 
the NullReferenceException. The issue that causes this exception is trying to use an object that 
hasn’t been initialized and is still null. When the application runs, it tries to retrieve data stored 
at that address and is unable to, because nothing exists at that memory location. This exception 
is probably encountered because the application is in an invalid state. This is a classic example 
of an application error. There are many possible causes of such an error, but the root cause is 
that the application performs an operation that forces the system into an invalid state at some 
stage in its lifetime. 

This is a scenario that you’ll probably encounter frequently in the world of technology. Let’s 
consider for a moment the sheer complexity of a modern-day application in relation to the 
universe in which we live. For an application that has six 32-bit integers, there are more than 6 
× 1057 possible states in which those six integers can exist (232-bit arrangements per number with 
six possible arrangements, giving 232 × 6), but the earth on which we live has only 1.33 × 
1050 atoms. Given how many potential states six integers can end up in, it’s not unreasonable to 
think that a more complex application could end up in a broken state, especially because you 
have neither the computational resources to check every state, nor an understanding of what 
should happen in each state. 

But there is one state in which we know an object is almost guaranteed to work, which is the 
very first state that it exists in once the object has been created. This is an approach to solving 
technological problems that is used fairly frequently. For example, if your computer starts 
behaving erratically or slowing down, the first thing you do to eradicate the problem is to restart 
the machine in the hope that it will return to a known good state, typically the state in which the 
system was started. Despite a number of tries, this might not work, and the problem might not 
be solved; you can then try to freshly install the operating system (OS) in an effort to return the 
whole machine to a known state. 

Due to the isolated nature of components in Akka.NET, this is an approach to maintaining fault 
tolerance that proves to be viable. With tightly coupled applications, it’s unlikely to be possible 
to re-create selected components. But the loosely coupled message passing architecture of 
Akka.NET ensures that you can remove components temporarily in an effort to fix them. You 
need a way to signal to the system in charge of monitoring for failure that the component has 
failed. Fortunately, such a system is provided by the .NET framework, as we discussed earlier, in 
the form of exceptions. Exceptions are considered to be fatal errors and lead to the whole 
application crashing if they’re not handled. But in Akka.NET, unhandled exceptions are 
considered to be a crash of the internal logic of the application. 

A number of other problems can also result in errors; for example, a logic error when an actor 
receives and processes a message. In this case, there’s little you can do to manage the situation 
at runtime, other than failing the entire application. An example of such a failure might be that 
you used some hardcoded logic that divides a number in the message by a constant number in 
the actor. If this constant number has been initialized to 0, then it will always lead to problems 
when that type of message is received by the actor. There’s no operation you can perform that 
can alleviate this situation. Instead, you need to redeploy the application with the required fixes 
in place. 

Another potential failure scenario is transient system failures. A transient failure is one that 
may only last for a certain period before being fixed, without the need for any external 
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interaction. An example of this is if your system communicates with an external service, such as 
a web API or a database. These services may be afflicted by errors that then propagate 
throughout your system. You saw in chapter 4 how you can address issues relating to transience 
by using finite state machines to create objects resembling circuit breakers. 

From a black-box perspective, there’s no single means of determining the source of the 
application error; instead, you take the same approach across all three scenarios in the hope that 
the issue isn’t threatening the integrity of the application. You can restart the failing actor to 
refresh it into its original state. This is not to say that continuous restarting of the actor is the 
solution to the problem. If it’s a continuous logic problem, you need to address the logic bugs. 
This requires the thorough instrumentation of your codebase, through the logging functionality 
you saw in chapter 5, so you can understand why actors are restarting and how to fix the 
application. 

6.2.2. The Akka.NET supervision tree 

You saw in chapter 3 what happens when you deploy an actor into an actor system, and the 
hierarchy of actors that forms when you deploy each new actor as a child of another. The 
benefits involve scoping actors into related groups so you can build up an effective hierarchy 
(see figure 6.4). But this is only one advantage of designing systems in such a manner. 
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Figure 6.4. The Akka.NET deployment tree lends itself to a natural hierarchy of supervision in the event of errors. 

 

Upon spawning an actor into a given context, whether that’s into the actor system’s root level or 
as the child of another actor, that actor is configured to have a parent responsible for monitoring 
its status. Let’s take an example from the world of business. If you’re looking for employment, 
you have one of two options: you can either create your own company, or you can join an 
existing company. Regardless of which option you choose, somebody sits in a position above you 
in the hierarchy, some person whom you directly report to. If you’ve joined a company, then you 
probably have a manager who has control over one area of the company. If something that 
you’re working on goes seriously wrong, then you tell your manager what happened and look at 
what steps can be taken to get the work back on track. This might involve several options, 
including firing you or the whole team, or your boss reporting the issue to his boss. You may be 
at the top of the tree, either by starting your own company or by being promoted up the 
hierarchy so that you don’t appear to report to anybody, but you still have to report to the 
government and its offices about your activities as a company, which is in charge of sorting out 
any serious problems that may arise. 

The same idea is used in Akka.NET. When an actor encounters a serious error, it tells its parent 
that something has gone wrong, and the parent decides on the best choice of action. By default, 
Akka.NET will restart the child in the hope that this will fix the issue; but if the error continues 
to be received, it will escalate the issue to the next parent in the hierarchy. This escalation will be 
continuously executed until the problem is solved—a technique that’s also used in many OSs to 
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ensure that a single application failure doesn’t cause the entire OS to crash. The most notable 
OS kernel that uses this method is the Linux kernel. 

Internally, Akka.NET handles this behavior through supervision strategies, which tell the 
framework how it should respond when it detects the failure of an actor’s processing stage. A 
supervision strategy consists of four key components, which are used to make decisions as to 
what should happen following an error: the actors on which to perform the action, the action to 
take depending on the failure, the maximum allowable number of the same type of error, and 
the timespan in which those errors occur. 

Specifying the actors to restart 

The first component of the supervision strategy is the actors on which actions are performed in 
the event of failure. Akka.NET provides two key options in the framework: the one-for-one 
strategy and the all-for-one strategy. You can add more, but the two provided cover almost all 
the common actions that are frequently required. In the one-for-one strategy, only the failing 
actor and actors deployed under it are restarted. Figure 6.5 shows which actor is restarted in the 
case of a failure. As you can see, once Child A is deemed to have failed, the action is performed 
on it. 

Figure 6.5. The one-for-one strategy will apply the given action only to the child that encountered a problem. 

 

The all-for-one strategy, however, performs the action on the failing actor as well as all of its 
siblings. Figure 6.6 shows the case where Child A fails. Once Child A is considered to have failed, 
the resulting action is performed on it, but it is also applied to Child B and Child C. 
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Figure 6.6. The all-for-one strategy will also apply the given action to all the siblings of the actor that encountered an error. 

 

Typically, the only supervision strategy you’ll need to use is the one-for-one strategy. The all-for-
one strategy is used by actors that have a tight coupling on key components with their siblings. 
This might, for example, include the need to recompute a shared resource that all actors need in 
order to process messages. You saw in chapter 3 how Akka.NET provides sane defaults for 
configuration settings, and it’s no different in the case of supervision. By default, Akka.NET uses 
the one-for-one strategy for any freshly deployed actor. 

Choosing which action to take 

Upon detecting a failure, Akka.NET needs to know what to do next, as determined by 
the Decider component of the supervisor strategy. The Decider is a simple component that 
supplies a directive to Akka.NET by means of a Directive. Akka.NET provides four directives to 
indicate to the framework how it should respond to a failure: 

• Resume—The actor will ignore the error and continue on to the next message in its 
mailbox without performing any special operations relating to the error. 

• Restart—The actor will restart in an attempt to resolve the error, but the actor won’t 
attempt to reprocess the same message and will instead restart with the next message in 
the mailbox as the first one it will process. 

• Stop—The actor will shut down safely and won’t receive any more messages. Any 
messages in its queue will be considered undelivered, and the undelivered-message error 
will be written to the log. 

• Escalate—Sometimes, an error might be so serious that the supervisor has only one 
possible action: tell its supervisor that something has gone wrong. The parent will decide 
on the best course of action for the error. Then, the supervision strategy of the parent will 
be used, depending on the error. 

In Akka.NET, Decider is a simple function you can pass into your supervision strategy that 
returns a Directive when presented with an exception. The Decider checks what exception has 
been invoked in the actor and returns the appropriate Directive. You can create a Decider that 
responds to some of the typical failures your system might experience. 

Let’s consider the example of the shopping cart from chapter 2. Each shopping cart has an 
associated actor responsible for communicating with the external payment service to settle the 
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final bill for the contents of the shopping cart. There might also be other actors deployed as 
children of that shopping cart. For example, you might have an actor responsible for applying 
discounts to the cart contents. Because the payment service is typically provided by an external 
entity, the data that comes back might not always be in the expected form. In that case, it will 
probably cause an issue in the actor, leading to an exception. As you’ve seen in this chapter, an 
exception will cause the actor to crash and a message to be sent to the parent asking how it 
should respond. You have a choice of supervision strategies: either restart the faulty actor or 
restart all child actors. This scenario is an ideal case for using the one-for-one restart strategy, 
because the other child actors won’t be restarted as a result of the payment-service actor failing. 
But if the child actors communicated with each other and shared state among themselves, then 
you’d want to restart all of them, as they could have an invalid shared state. 

Sometimes errors don’t affect the overall operation of your actor. For example, when using a 
payment service through the network, your system might encounter a response timeout. 
Although you could restart the actor, it’s likely that any other services will simply resend their 
request if they don’t get a response in a predefined time period, ensuring that you don’t need to 
restart the actor. You can build this logic into a Decider. If you get a TimeoutException, then you 
simply resume processing messages through the actor, but if you get an ArithmeticException, 
then you restart the actor: 

Decider.From(exception =. 

    { 

        if (exception is ArithmeticException) return Directive.Restart; 

        else if (exception is NullReferenceException) return 

     Directive.Resume; 

        else return Directive.Resume; 

    }); 

The Decider is the core of the supervision strategy and allows you to specify issues and remedy 
them in the most appropriate way. This, along with the supervision strategy, is all that’s 
required to effectively handle errors in your actors, providing an easy way of managing issues 
that arise. Although you can create your own custom Decider, if you use the default supervision 
strategy in Akka.NET, then it uses a Decider that restarts every actor, regardless of which 
exception is raised. 

Cumulative errors 

So far, we’ve considered what happens with errors caused by an actor’s state becoming corrupt; 
but there are other categories of errors, as you saw earlier. What happens if the state of the 
failing actor is corrupted because of a corrupted state in its parent? In this case, there’s no 
possibility of the actor recovering from the failure, because it’s been incorrectly configured by its 
parent. You need to restart the parent as well and escalate the issue. You can specify that if the 
actor must restart a given number of times within a given time period, then it will escalate the 
error to its parent. By default, Akka.NET uses 10 restarts in a one-minute period to determine 
whether the next exception should be propagated up the hierarchy. 
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Piecing it together 

You’ve seen the components that make up the supervision strategy of an actor. You can now 
piece these together and see how to use them in an actor. We’ll continue to use the example for 
which you’ve already designed Directives. First, create a SupervisorStrategy based on all the 
parts you’ve seen so far. In this example, you tell the supervisor that it should restart only the 
failing child and leave the siblings alone. You also say that, in the event that it restarts more than 
10 times, the issue should be escalated to the supervisor’s parent. Finally, you only want to 
restart in the event that the child actor throws an ArithmeticException; if the actor throws 
an ArgumentException, then the supervisor should simply ignore the message and continue as 
though it never received the message. The following code shows how to define 
this SupervisorStrategy. You can see the use of the OneForOneStrategy as the basis from which 
you build the rest of the components. The Decider is created from a function passed 
into Decider.From. This function requires you to return a Directive based on 
an Exception that’s passed to the function: 

new OneForOneStrategy(10, 

                        TimeSpan.FromMinutes(1.0), 

                        Decider.From(exception => 

    { 

        if (exception is ArithmeticException) 

            return Directive.Restart; 

        else if (exception is NullReferenceException) 

            return Directive.Resume; 

        else return Directive.Resume; 

    })); 

Now that you’ve created a supervisor strategy, you need to associate it with an actor. There are 
two approaches you can use: you can associate the strategy with the actor itself, ensuring that 
it’s responsible for its own supervision settings; or the supervisor strategy can be configured at 
the point when the actor is deployed, leaving the deployer responsible for configuring how its 
child should act in the face of a failure. 

The first course is by far the simplest, requiring you to override the SupervisorStrategymethod 
on an actor. This method is then called in the event that an exception is thrown during the 
processing of a message. In the following code, you make the actor responsible for 
the SupervisorStrategy in the event of a failure: 

protected override SupervisorStrategy SupervisorStrategy() 

{ 

    return new 

        OneForOneStrategy(10, 
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                        TimeSpan.FromMinutes(1.0), 

                        Decider.From(exception => 

        { 

            if (exception is ArithmeticException) 

                return Directive.Restart; 

            else if (exception is NullReferenceException) 

                return Directive.Resume; 

            else return Directive.Resume; 

        })); 

} 

You saw in chapter 5 how to change details of an actor’s deployment with Props, which you pass 
into the actor system when you want to spawn an actor. You can specify the supervisor strategy 
on the Props so that it’s decided by the actor responsible for deploying it. In the following code, 
you specify the supervisor strategy as part of the Props. If you’ve got 
a DatabaseCommunicationActor responsible for communicating with a database, you can create 
the Props for it by using the Create factory method. Once you’ve got the Propsresponsible for 
creating the actor, you use the fluent API to create a new Props object with the supervisor 
strategy on it. The supervisor strategy is declared in the same way as in the previous example: 

Props.Create<AnomalyDetector>() 

     .WithSupervisorStrategy 

     (new OneForOneStrategy( 

        10, 

        TimeSpan.FromMinutes(1.0), 

        Decider.From(exception => 

        { 

            if (exception is ArithmeticException) 

                return Directive.Restart; 

            else if (exception is NullReferenceException) 

                return Directive.Resume; 

            else return Directive.Resume; 

        }))); 

Both of these approaches have advantages, and the decision of when to use which is influenced 
by the usage of the actor. Some actors are designed for general use in multiple different 
components in the same system. That would impose differing constraints on how the actor 
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should react in the event of a failure, depending on its role in the system. In that case, an actor 
shouldn’t be responsible for specifying how it reacts to a failure; instead, that responsibility 
should go to the component that wants to spawn the actor into its context. But if you’ve written 
an actor for a specific purpose, which relies on restarting in a specific way, then you’re likely to 
associate the supervisor strategy with the actor itself. This ensures that all the spawned actors of 
that type will be spawned with that same supervisor strategy, leaving it suited to homogeneous 
collections of actors. 

6.2.3. Failing fast 

Programmers often interact with a number of APIs on a daily basis, many of which perform 
some potentially unsafe operations in the course of their lifecycle. You’ll see some of the many 
possible errors throughout this chapter. In every case where these errors result in an 
unrecoverable or unexpected error, APIs in high-level languages such as C# typically throw an 
exception. 

This use of exceptions is designed so that the caller of the API has its control flow diverted and is 
prevented from the intended order of execution. To regain control of the situation, the approach 
taken is to wrap the calls to the API in a try-catch block. Following this, exceptions are handled 
by an exception handler specific to the type of exception thrown. The exception handler 
performs operations to recover from the exception by either retrying the operation again or 
logging some details of the exception. Then, the exception is wrapped in an enclosing type to 
provide meaningful information to the user. Finally, either this new exception is thrown or the 
original exception is rethrown. 

This approach has a number of disadvantages, the first of which is the obfuscation of the intent 
of the business logic expressed in the code. With error-handling code, you surround your cleanly 
factored code with code that provides functions that will only be executed in exceptional 
circumstances, rather than allowing developers to focus on the core intent of the code. If you 
add error-handling code, you may create a codebase that’s more confusing for developers, 
because it imposes an understanding of the implicit details of API methods and where they can 
fail. This is information that’s typically not made immediately obvious in documentation. 

Another source of pain when using this approach is the potential for logs to quickly become 
polluted with multiple messages reporting the same source of errors but at different points in 
the error-handling hierarchy. For example, a log message may be generated at the most deeply 
nested point where the error is generated, as well as the place where this rethrown exception is 
then caught. The log will then contain two messages with different information relating to the 
same error. 

Also, in the event that an exception is logged only at the top of the error-handling chain, there’s 
potential for lost context. If the original exception is generated but not included in any more-
generalized API exceptions, it becomes significantly more difficult to drill down to the original 
source of the error; you only know which API method led to the failure. 

The final issue is potentially the most significant. If you perform a number of method calls, one 
following the other, and following each method call you modify state, in the event that the final 
method call throws an exception, this will prevent it from setting its final state. This leaves the 
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system in an indeterminate state, where the application has left one state but hasn’t entered a 
new state, creating difficulties further down the line. If you now call that API again, there’s no 
guarantee that it won’t provide invalid results every time it’s called. 

You’ve seen how Akka.NET provides supervisors that prevent the whole application from being 
brought down when an exception isn’t caught by an exception handler. Relying on this feature, 
Akka.NET advises that you not use any behavior blocks at all, instead allowing supervisors to 
deal with errors. This approach is known as fail-fast programming, because after an error 
occurs, the system is immediately informed of the failure. Then, you let the supervisor deal with 
the specifics of what to do to recover. This ensures that when the supervisor receives an error, 
it’s the only thing that logs the error and the reason for it, right where it occurs, whether it was 
an inability to connect to an external database or an attempt to divide by zero. Then, assuming 
the error can lead to an invalid state, the actor can be restarted to a known good state to prevent 
knock-on effects. 

This approach to programming has shown significant benefits historically when developers 
design applications built on actor systems, but it does involve a significant change in the 
fundamental concepts of writing code. 

The error kernel pattern 

The approach of restarting actors as soon as an error is encountered can lead to issues, in 
particular relating to actors that are required to store lots of state. Because Akka.NET actors 
exist wholly in memory, if an actor is restarted, then it loses all of its associated state. This 
causes problems, because you rely on restarting actors so frequently in Akka.NET. The common 
approach to dealing with this problem is to use the error kernel pattern, which forces dangerous 
work down the actor hierarchy to child actors. Then, in the event that the child fails, the error is 
isolated, ensuring that the parent doesn’t end up losing its long-term state. 

6.2.4. The actor lifecycle 

In chapter 3, you saw how to spawn a new actor into the actor system, which internally creates an 
actor instance. In this chapter, you also saw how actors can be shut down and restarted when a 
failure is detected. There are two different ways of shutting down an actor, depending on the 
severity of the situation: 

• Passing a poison pill message—Akka.NET provides a number of messages that can be 
sent to actors and processed before reaching the internals of your actor. One example of 
this is the poison pill message that’s identified by the PoisonPill class. The actor 
processes any messages in its mailbox until it reaches the poison pill message, which 
shuts down the actor before it processes any messages that arrived in the queue after the 
poison pill. With the PoisonPill, you can send messages to a single actor or a group of 
actors as you would send any other messages. 

• Using Context.Stop—If an actor needs to stop immediately after processing the current 
message, it can use the Stop method on its internal actor context. Here, it passes in 
the ActorRef relating to what it wants to shut down, and then the framework handles the 
shutdown of the actor. 
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The lifecycle 

You’ve seen how an actor can be created by calling ActorOf in the framework, which will cause 
an actor to be instantiated. You’ve also seen how an actor can be killed either programmatically 
by itself or by other actors, or by the framework when it detects a failure. Actors in Akka.NET 
operate and transition through a number of states during their lifecycle. Figure 6.7 shows the 
states an actor can exist in, as well as how to move between those states. 

Figure 6.7. The two most common options in the event of an error cause the actor system to reuse the old actor instance or create a 

new one as a replacement. 

 

The core state is the actor’s regular operating state, but it must take a number of steps to get into 
such a state. When an actor is spawned into the actor system, it has a starting state. At this 
point, any configuration the actor needs during its lifecycle is prepared, after which it’s ready to 
start receiving messages. From here, it moves into the running state, where the processing loop 
is invoked any time a message is received in its mailbox. Eventually, the actor is likely to be 
terminated, either gracefully by its own choice, or forcefully by a supervisor. Following either of 
these cases, the actor then transitions into the terminating state before ending up in 
the terminated state. When the actor is in the terminated state, messages addressed to it won’t 
be delivered and instead are passed on to the deadLetters actor that logs these events. 

Specifying the transitions an actor takes 

When you create a class for an actor, you can specify operations that should be undertaken at 
points during the actor’s lifecycle. For example, it can be useful to perform actions before an 
actor starts up, such as sending a message to other actors in the system. This can be achieved by 
overriding certain methods on the base actor class, which are invoked by the framework at 
stages in the actor’s lifecycle. Figure 6.8 shows the state transitions throughout an actor’s 
lifecycle from the starting phase, through the receiving stage, and on. 
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Figure 6.8. Actor lifecycle stages 

 

In this chapter, you’ve seen how the framework can restart an actor once the framework decides 
that it has failed. It can be beneficial to know whether an actor has been restarted, as well as the 
reason for doing so. This can be achieved by overriding the PreRestart method on the actor. 
The PreRestart method then provides the Exception that caused the actor to restart, as well as 
the message that led up to the exception. This allows for rescheduling the failing message so that 
the actor can make another attempt at processing it. You’ve seen that the common approach to 
dealing with failure is to restart the failing actor, because a known good state could allow it to 
process the message successfully. By obtaining the message that led to failure, you can send the 
message to yourself and attempt to process it in its new state. This is what you do in the 
following example, in which you receive the message that caused the crash and schedule it to be 
added to the mailbox, ready to be processed again: 

protected override void PreRestart(Exception reason, object message) 

{ 

    Self.Tell(message); 

} 

When an actor is assigned to a periodic task, you can use Akka.NET’s scheduling capabilities to 
deliver a message to that actor at periodic intervals, thereby invoking a regularly scheduled 
behavior. For example, you may want to synchronize the actor’s internal state with an external 
service once every second. To achieve this, the actor sends itself a message once every second, to 
which is added logic so that the actor’s state is accessed safely and with the same concurrency 
guarantees as other messages. To ensure that this message gets scheduled when the actor starts 
up, you can use its PreStart method. This method is called following the actor’s creation and 
before it starts receiving messages. It’s called every time the actor starts, whether that’s a restart 
or a fresh start. In PreStart, you can initialize any resources that are likely to last the lifetime of 
the actor. One example of this is a timer, which is required for synchronization. The following 
example shows an actor that’s responsible for performing an operation on a recurring schedule. 
You create a scheduled message in the PreStart method and, following this, the actor will 
receive that message on a regular schedule: 

ICancelable _synchronisationTick; 

 

protected override void PreStart() 
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{ 

    var scheduler = Context.System.Scheduler; 

    scheduler.ScheduleTell RepeatedlyCancelable( 

        0, 500, Self, SynchronisationTick.Instance, Self); 

} 

After the continuously scheduled message is registered, the message should stop when the actor 
stops, so the scheduler doesn’t keep sending the message to it. The PostStop override is 
available to dispose of resources that are no longer needed. The last example showed the actor 
creating a recurring task and storing a handle to it in the actor’s state. Now that the actor has 
finished its work, it can dispose of the scheduler that’s sending it a message. The following 
example shows how, by using the PostStop method, you can safely access the state of the actor 
and modify it, in this case by disposing of the scheduler. You can use the PostStop method for 
other purposes also; for example, you can send a message to other actors to notify them that this 
actor is terminating. 

protected override void PostStop() 

{ 

    _synchronisationTick.Cancel(); 

} 

These are the core functionalities of the actor lifecycle in Akka.NET. You’ve seen how, by 
overriding the methods in the actor definition, you can gain insight into the operation of the 
actor. You’ve also seen how to safely access the internal state of the actor to ensure it can 
initialize and dispose of resources used throughout its lifecycle. 

6.2.5. Watching for the deaths of other actors 

In Akka.NET, it’s not just the parent of an actor that can watch for its failure; through a concept 
known as DeathWatch, other actors can monitor an actor and be notified if it fails. Using 
DeathWatch, when the framework discovers that an actor has failed, it sends a message to all 
actors who have subscribed to that notification. 

Actors can sign up for DeathWatch notifications through their own context in the actor instance. 
You saw in chapters 3 and 4 how to use the Context in the actor to perform certain core 
operations; DeathWatch is no different. With the Watch method, you can supply an ActorRef, 
which will be monitored, as will the ActorRef of the subscriber. Then, if the watched actor fails, 
the subscriber will receive a Terminated message in its mailbox, containing the address of the 
actor that was terminated. 

DeathWatch and the reaper pattern 

In Akka.NET, sometimes you have to wait until a number of core actors in the actor system have 
shut down before you can shut down the entire actor system. It’s important to understand what 
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it means for an actor to be finished. The simplest clue is that its mailbox is empty, but this 
doesn’t cover all possibilities. You might think an actor is finished because its mailbox is empty, 
but it might be in either of two other situations: 

• It’s still processing the last message. The actor might have emptied its mailbox, but if it’s 
doing some intensive computation as a result of a final message, it may not be safe to 
shut down the actor system just because its message queue is empty. 

• It hasn’t received all of its messages yet. In a similar vein, if an actor depends on 
receiving a message from another actor earlier in the chain, then it may not be safe to 
shut down the actor just because its message queue is empty; it may not have processed 
even one message yet. 

Earlier in the chapter, you saw the various ways you can shut down an actor, one of which is 
with the PoisonPill message. You can send an actor a number of messages it should process, 
followed by a PoisonPill message. You can then say with a degree of certainty that when an 
actor has died, it has managed to complete all the work sent to it; it’s finished. Figure 6.9 shows a 
message queue of work an actor must do before you shut it down. 

Figure 6.9. The PoisonPill ensures that all messages in the queue are processed before an actor is shut down. 

 

But you likely have more than one actor sitting at the core of the actor system, and you can only 
safely exit after all of these actors are done. You need to form a barrier that you can only pass 
after all core actors have finished their work. You can extend the approach you’ve used so far, 
where an actor does some assigned work and is shut down once that work is complete. 

The DeathWatch concept outlined earlier can be used here. You can create an actor whose job it 
is to DeathWatch each of the core actors you’re interested in (the reaper pattern). Once the 
reaper actor gets a message informing it of the death of all the core actors, then it’s safe to pass 
the barrier. You can see the reaper pattern illustrated in figure 6.10. The regular hierarchy of 
actors is positioned below the parent actor, but you also see the reaper actor, waiting for the 
deaths of the other actors. 
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Figure 6.10. The reaper pattern is an application of DeathWatch that allows you to know when all actors have finished working. 

 

You can create a reaper actor that watches other actors and then safely executes operations once 
all their work is complete. The reaper actor takes a collection of actor paths that it watches for 
deaths. It then subscribes to DeathWatch notifications for all of these actors, before listening for 
the terminated events. When it receives a -Terminated message, it removes that actor from the 
collection of watched actors and checks to see whether it needs to wait for any other actors. If it 
doesn’t, then it exits the barrier. 

First, create a reaper actor responsible for watching all the core actors. The following code 
snippet shows the initial actor definition with the constructor. The only data you need for this 
actor is the list of actors it’ll be watching, which you supply as a set. Then, in the constructor, 
you subscribe to DeathWatch notifications for each of the actors you’re interested in. This is 
done by calling Context. Use the IActorRef to watch for the actors you’re interested in: 

public class ReaperActor : ReceiveActor 

{ 

    readonly HashSet<IActorRef> _watchedActors; 

 

    public ReaperActor(HashSet<IActorRef> watchedActors) 

    { 
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        _watchedActors = watchedActors; 

    } 

 

    protected override void PreStart() 

    { 

        foreach(var actor in _watchedActors) 

        { 

            Context.Watch(actor); 

        } 

    } 

} 

Next, add the correct handler for the Terminated message. Upon receiving a Terminatedmessage, 
you need to remove the associated actor references from the set of references the ReaperActor is 
watching. If that set is now empty, then you can safely say that all the work has been successfully 
completed; now, you can safely stop the whole actor system without worrying about whether 
there’s any work still going on: 

Receive<Terminated>(terminated => 

{ 

    _watchedActors.Remove(terminated.ActorRef); 

    if (_watchedActors.Count == 0) 

    { 

        Context.System.Terminate(); 

    } 

}); 

This pattern shows how you can use the built-in lifecycle monitoring tools as a means of 
watching for the work completion of actors. The reaper pattern allows you to safely perform 
actions once all work has been completed. The key benefit of using DeathWatch, as opposed to 
other techniques, is the built-in consideration for failure. If you were to design such a pattern 
using message passing, you’d have to factor in the potential for the actor to fail before ever 
sending a completed message, meaning you’d need to add timeouts to ensure your actor didn’t 
get stuck in a state where it was waiting for a message it would never receive. 
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6.2.6. Interface-level failures 

So far, you’ve seen what happens if an actor encounters an error because it’s in a faulted state; 
but there’s another error state you need to consider, one caused by a user providing invalid 
input to your actor. 

A common pattern seen when developing APIs is something like the following. A method or 
function takes a number of arguments; the API then progressively checks each parameter to the 
method to ensure it’s deemed valid. This might include checking to see whether a parameter is 
null or matches a validation scheme. In the event that a parameter isn’t valid, then an exception 
is thrown, such as an ArgumentNullException or just an ArgumentException: 

public void RegisterUser(string email, string password) 

{ 

    if (email == null) 

        throw new ArgumentNullException("email"); 

    if (password.Length < 8) 

        throw new ArgumentException( 

            "Provided password is too short", "password"); 

} 

But this approach falls apart when you consider the message-passing approach of Akka.NET. 
The interface is called by simply passing a message rather than directly invoking it. If you then 
request data from the actor, you could still be passing invalid data. As such, you need to change 
the way you consider these errors. 

Earlier in this chapter, you saw what happens when an application error occurs: the supervisor 
is contacted with a notification of the failure and is then responsible for deciding on the 
appropriate course of action. The sender of the message doesn’t know whether or not an 
exception was thrown, leaving you unsure of whether a receiving actor succeeded in processing 
the message. 

This presents problems with knowing whether the information sent to the target actor was valid 
for the API. You saw in chapter 3 that when you send a message to an actor, you can send it in the 
form of a fire-and-forget manner through the use of Tell; but it’s also possible to 
use Ask. Ask allows your system to asynchronously send a message to an actor and await a 
response. You can use this communication channel to surface any validation errors to the party 
that can deal with them in the most appropriate way. 

Akka.NET provides the Success and Failure classes for this purpose. These two classes are used 
to encompass all the possible outcomes of calling an API through a message-based protocol. A 
target actor can either return a Success message with a result that indicates that the sent data is 
valid and everything has executed successfully, or the actor can return a Failure message that 
can contain exceptions, providing more details of the validation failure. 
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Let’s revisit the API for registering a user with an email address and a password for an example 
of how to design actors that respond with the details of user-induced errors. The actor first 
validates that the information provided by the user passes all the required checks. In this case, 
it’ll ensure that both the email address and password provided by the user are valid. 

The actor receives a UserRegistration message containing the desired username and password. 
When it receives this message, the actor performs some simple validation, and in the event that 
the email isn’t in the correct format or the password isn’t valid, it replies with a failure message. 
Otherwise, it continues with the execution and processes the request by storing the message in a 
database of users. Upon completion, it returns a Success message informing the caller that their 
response was successful: 

Receive<UserRegistrationInformation>(registration => 

{ 

    if (ValidInput(registration)) 

    { 

        var accountInfo = RegisterAccount(registration); 

        Sender.Tell(new Status.Success(accountInfo)); 

    } 

}); 

A client can use this actor to understand whether information passed to it was correct and in the 
expected format by asking the actor for a response. Upon receiving the response, you can see 
whether it was successful, or examine the cause of an error the actor saw: 

var response = 

    await userRegistration.Ask( 

        new UserRegistrationInformation( 

            "newuser@google.com", 

            "P4ssw@rd")); 

 

if(response is Status.Success) 

{ 

    //Handle successful account creation 

} 

else if(response is Status.Failure) 

{ 

    //Handle invalid input case 
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} 

Using this approach to error handling combined with that of the previous section implicitly 
creates two error channels, which presents you with further benefits. Errors encountered due to 
an invalid state in the actor or due to a failure to communicate with other services are errors 
that the user will be unable to deal with and that will degrade the UX for your service or 
application. But if the user provides an invalid email address, this is a situation that can be 
remedied. 

6.2.7. Wrapping up 

In this section, you’ve seen how Akka.NET can help reduce the impact of application-level 
failures by isolating errors and encapsulating them in the smallest unit of work. Having all 
potentially error-causing logic hidden deep in one actor means you can let it fail if something 
goes wrong, because another actor is responsible for watching that actor and restarting it to a 
known working state. You’ve also seen how to deal with API-user errors such as when a user 
supplies an address in an invalid format. 

6.3. UNDERSTANDING TRANSPORT-LEVEL FAILURES 

So far in this chapter, we’ve focused on code-based failures, but there’s more to actor systems 
than just the code. You also need to consider how your systems handle failures induced by the 
distributed environments in which they’re running. The most critical failure you need to 
consider is message-delivery failure, because you want to guarantee that two actors are able to 
communicate with each other. 

Let’s consider what happens when you send a letter through the postal system. You wrap your 
message in an envelope that informs the delivery mechanism of the target, and you leave it in a 
known location for the delivery system to pick it up. From there, you have no knowledge of 
whether or not the target received what you sent. This is one of the key disadvantages of 
asynchronous systems such as Akka.NET. Due to the large infrastructure between the point 
from which a message is sent and the point at which it should be received, it’s possible that the 
message might not reach its intended destination safely. These sorts of issues are as common in 
software development as in the physical message-delivery world, so it’s important that you write 
systems that can cope with such failures in the most appropriate ways. 

In the vast majority of cases, you’re unlikely to lose a message, especially in the scenarios you’ve 
seen so far, which have featured actors running across multiple threads on a single machine. 
Thinking back to the water-depth-sensor example of chapter 4, consider that there might be a 
message sent between a sensor and the system that fails to be delivered. In this case, you end up 
having to use a potentially low-quality network connection through which you send messages. 
This vastly increases the probability of message loss due to the additional levels of complexity 
through all stages of the pipeline. 

For most sensor data, such as for capturing light or humidity readings, it’s unlikely to matter if a 
message is lost, especially if the volume of data is sufficiently high that you can afford to lose 1 
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out of every 100 data points. But some sensors are much more important. For example, if a 
motion detector picks up movement suggestive of an intruder in a house, an immediate reaction 
is necessary. In this case, you want to ensure that a message is delivered to an actor capable of 
dealing with the event. 

In the systems you’ve built so far, you’ve relied on Akka.NET to guarantee that a message is 
delivered; but such guarantees are nonexistent in Akka.NET as it simply follows the at-most-
once delivery guarantee. This guarantee says that a message will be sent and passed through the 
system. But if the message gets lost at any stage in the pipeline, then the sender won’t receive 
any feedback about the failure. You hope that each message is only processed once, but this 
uncertainty can be a source of difficulties. 

Throughout this chapter, you’ve seen a variety of failures that an actor can face during its 
lifecycle. You’ve also seen some of the potential failures in a generalized asynchronous system, 
such as a phone call. In all these cases, the key problem is that you don’t know what state the 
remote actor is in. It could be in a faulted state, meaning that it’s incapable of processing 
messages; or the communication link between the two actors might have failed; or 
communication might have failed in only one direction. You’re simply unable to determine the 
state of remote actors, so you can never know whether an actor has received a message, whether 
it successfully processed a message, or whether it failed to send a successful acknowledgement 
in response. 

To work around this lack of acknowledgment, instead of using the at-most-once delivery 
strategy, you can switch to the at-least-once delivery strategy. This technique involves sending 
the same message to a receiving actor multiple times until the sending actor receives 
confirmation that the message has been successfully processed, at which point any further 
message-sending will cease. This delivery strategy ensures that the target actor will eventually 
receive the message, although the target actor might end up receiving several copies of the same 
message. By sending the message a number of times, you counteract any problems with 
transient errors across the communication link, thereby allowing at least one of the messages to 
reach its intended destination. 

6.3.1. Writing applications that handle message loss 

The actor systems you’ve written so far have dealt with failures that could be caused by your 
code, but a modern application always sits on top of several layers of infrastructure, including 
the CPU internals and the OS, and is dependent on a network connecting multiple machines. 
You’ve seen the problems that can arise from this supporting infrastructure, which is capable of 
inducing failures. You’ve also seen how Akka.NET handles sending messages, as well as how you 
can send a message without knowing whether its delivery was a success or a failure. 

Although the delivery guarantees of Akka.NET can’t be changed, you can turn an at-most-once 
delivery guarantee into an at-least-once delivery guarantee. In this section, we’ll look at how you 
can build a tool that will let you communicate without worrying about the communication layer. 

You’ll need an API capable of repeatedly sending a message until it receives a completion 
acknowledgement. To that end, you’ll create an actor that will repeatedly send a message, and 
then attempt to receive an acknowledgement message in return. In the event that your actor 
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doesn’t receive a response within a set time period, it will automatically resend the message, 
repeating the process until it eventually receives an acknowledgement, or until it sends the 
maximum allowed number of messages without acknowledgement. 

As you’ve done before, you’ll first consider the states that your message-delivery actor can exist 
in. Typically, its main state will be the one in which it sends a message and awaits a response. In 
this state, it’s capable of accepting one of two messages: either one from the intended recipient 
notifying it of a successful message receipt, or a timeout message informing the actor that it 
should send another message. If the actor does receive an acknowledgement message, then it 
should shut down, because it has nothing else to do. If, however, it fails to receive an 
acknowledgement across several timeouts, then it will respond to the original sender with a 
delivery-failure message. You can view these states and their associated transitions in figure 6.11. 

Figure 6.11. The state machine for an actor providing at-least-once delivery is simple, requiring only two states with two possible 

events. 

 

The first thing to consider is the messages you’ll send between the actors. As shown in figure 

6.11, a number of events cause state transitions, notably 
the Acknowledgement and ReceiveTimeout events. These two messages make clear the various 
state transitions, as you saw in the discussion of interface-level failures. 
Also, Success and Failure messages are provided by the framework, enabling your message-
delivery actor to inform the sending actor of a successful message delivery. 

Because of the potential for failures in asynchronous systems, Akka.NET provides an API that 
allows you to specify, after a certain period of inactivity, that a ReceiveTimeout message must be 
sent to an actor. This provides a means of developing actors that can respond to situations 
where the length of time required to send and deliver a message is important. 

You need a message that tells the resending actor that the target has successfully received the 
message, and that it can stop sending messages. You’ll now define a simple class that informs 
the target that it has successfully received a message. In the following code snippet, you’ll define 
just such a class, called Ack, which doesn’t need to hold any additional data associated with the 
received message: 

public class Ack 

{ 

    private static readonly Ack _instance = new Ack(); 

 

    public static Ack Instance { get { return _instance; } } 
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} 

Now that you have all the messages used as state transitions in your state machine, you’ll need 
to implement each of these states. As is the case with the actor model, you’ll define an actor 
capable of doing this resending work, which then leaves the original sending actor free to 
process other work while the resend actor attempts to communicate with a target. The resend 
actor needs the destination of the message, the message itself, the maximum number of retries it 
should attempt, and the timeout between retries. Because the actor will be designed with a 
single purpose, that is, to handle one message and then stop, you’ll rely on the constructor to 
pass in these required arguments. 

The following code example contains the initial actor definition as set forth in the constructor. 
You’ll notice that a ReceiveActor has been selected for the target you’ll be sending the message 
to, rather than a reference to an actor in the form of an -IActorRef. In chapter 3, you learned 
about the difference between an IActorRef and an ActorSelection. An IActorRef contains 
information about the creation of an actor, so if it restarts, then this reference will change. In 
this scenario, you want to guarantee that you can send the message to the target regardless of 
failures, such as network failures. But if you used an IActorRef, you wouldn’t be accounting for 
the possibility that the actor fails and is restarted. In the constructor, you’ll also notice the use of 
the SetReceiveTimeout method, which tells the framework that the actor should receive 
a ReceiveTimeout message after the period specified in the timeout: 

public class GuaranteedDeliveryActor : ReceiveActor 

{ 

    readonly ActorSelection _target; 

    readonly object _message; 

    readonly int _maxRetries; 

    int _retryCount; 

    readonly TimeSpan _messageTimeout; 

 

    public GuaranteedDeliveryActor(ActorSelection target, 

                                   object message, 

                                   int maxRetries, 

                                   TimeSpan messageTimeout) 

    { 

        _target = target; 

        _message = message; 

        _maxRetries = maxRetries; 

        _messageTimeout = messageTimeout; 

    } 
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    protected override void PreStart() 

    { 

        SetReceiveTimeout(_messageTimeout); 

        _target.Tell(_message); 

    } 

} 

Because this state machine has only one core state, you don’t need to use any of the finite state 
machine features; instead, you can use a basic actor. You’ve seen figure 6.11 that there are two 
core events that the message-delivery actor needs to handle: a ReceiveTimeoutmessage and 
an Ack message. If it receives a ReceiveTimeout message, then first it checks whether it’s reached 
the maximum number of retries. If it has, then it follows these steps: it notifies the original 
sending actor that the message delivery failed; it cancels the message; it 
receives ReceiveTimeout messages; and it shuts the actor down. If, however, it has retries 
remaining, it again attempts to send the message to the target and increments the retries 
counter. This means you have a receive handler for the timeout messages: 

Receive<ReceiveTimeout>(_ => 

{ 

    if (_retryCount >= _maxRetries) 

        throw new TimeoutException( 

            "Unable to deliver the message to the target in the specified 

     number of retries"); 

    else 

    { 

        _target.Tell(_message); 

        _retryCount++; 

    } 

}); 

You also need to handle where the message-delivery actor receives an Ack message in response 
from the target. In this case, as shown in the next code snippet, it informs the sending actor that 
it has successfully sent the message, and then it cancels the ReceiveTimeout messages, before 
finally shutting down. Once again, this leads to a fairly simple receive handler: 

Receive<Ack>(_ => 

{ 

    SetReceiveTimeout(null); 
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    Context.Stop(Self); 

}); 

Finally, having completed such a system, the message-delivery actor needs to confirm delivery. 
It needs to tell the sending actor that it has contacted the required target, which it does by 
sending the Ack message to the Sender (sending actor): 

public class BillingActor : ReceiveActor 

{ 

    public BillingActor() 

    { 

        Receive<RequestNewPayment>(payment => 

            { 

                Sender.Tell(Ack.Instance); 

            }); 

    } 

} 

It’s important to consider the operations that the target actor undertakes upon receiving a 
message from the message-delivery actor. The target actor could process the same message 
many times over multiple timeouts if it doesn’t send its acknowledgment back within the 
timeout period. To get around this problem, you can filter out messages that the target has 
already processed, possibly by passing an identifier to uniquely identify a message, and then 
storing a set of processed messages in the target actor. Alternatively, you could design your 
target actor so that receiving the same message twice will lead to the same outcome. This 
property is known as idempotence. 

You’ve now seen how to define an actor that provides a best-effort at-least-once delivery 
guarantee and that will repeatedly attempt to send a message to a given -target. 

6.3.2. Wrapping up 

This section focused on how to build applications that stay resilient and reliable even in the 
event of failures outside of your control, as in the underlying infrastructure that connects actors 
together. You’ve seen how Akka.NET deals with sending messages; you’ve also seen the 
limitations of this method and how you can address these limitations to ensure successful 
message transmission. This is a topic we’ll come back to in later chapters, where you’ll discover 
an implementation that’s available in Akka.Persistence, one of the many Akka.NET plugins. 
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6.4. CASE STUDY: SUPERVISION, FAILURE, CHAT BOTS  

Modern applications have become increasingly complex and dependent on a variety of other 
systems for their successful operation. Even a relatively simple application needs to interoperate 
with a database and, potentially, external APIs. However, APIs are now being developed that 
will open up more-complex domains and techniques to a broader audience, thus simplifying the 
development of enhanced projects. 

One example of these new developments is the proliferation of conversational user interfaces in 
the form of chat bots. These interfaces require an understanding of the way natural human 
language works. Natural language processing (NLP) is a fundamentally difficult problem to 
solve due to the complexities of human language. On top of the difficulties of processing the text 
itself, your system need to understand the intent of the text and what the user wants the system 
to do. 

A number of companies have started providing APIs capable of figuring out the intent of text so 
that the user’s original text can be compressed into a more manageable dataset. But it’s also 
possible that these external services could fail at any stage. If they do fail, you need to continue 
to process the user’s request. If you don’t handle the failure correctly, the user could be 
presented with internal error messages or, even worse, the user could end up without a response 
and the application could hang. 

Using the supervision components of Akka.NET, you can let it handle the exceptions you don’t 
expect. The common means of communicating with natural-language-intent APIs is by using an 
HTTP API. An HTTP API could present a variety of issues: there may be network issues that 
cause timeouts or no responses; there may be authentication issues if you fail to supply 
passwords when they’re required; or there may be errors generated by the remote system if the 
text you supply is invalid. In all of these situations, you still want to tell the user something 
meaningful in response to their questions, rather than simply leaving them without any further 
information. 

Figure 6.12 shows how you can assign tasks to a dedicated actor that’s responsible for performing 
the required work and communicating with an external service. In the event that an unexpected 
error is encountered, Akka.NET will process the failed actor. In a typical situation, this involves 
restarting the actor and hoping that the issue was transient. But, given that APIs are commonly 
billed based on the number of operations performed against them, you would shut down the 
actor calling the API if it encounters an exception caused by invalid text, because you know that 
this is an unrecoverable error. 
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Figure 6.12. Designing a strong actor hierarchy simplifies the process of reacting to failure in such a way that it doesn’t affect other 

parts of the running application. 

 

Supervision ensures that you can write systems that aren’t overly dependent on external 
services, as failure handling is a component that lies at the core of the Akka.NET API. 

SUMMARY  

In this chapter, you learned 

• How the complexity of modern systems leads to an increased likelihood of failures 
• How Akka.NET helps to reduce the likelihood of system failure by isolating component 

failures 
• How Akka.NET enables you to intelligently recover from errors 
• How to handle failures not only in your own systems, but also in the systems with which 

yours interact 
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Chapter 7. Scaling in reactive systems 

This chapter covers 

• Evaluating the difficulties of traditional scaling approaches 
• Comparing the Akka.NET scaling approach to traditional methods 
• Using routers in Akka.NET 
• Dynamically scaling actors to react to load changes 

In chapter 1, you embraced the goal of building responsive systems to ensure the best possible 
UX. In chapter 3, you saw how a message-passing architecture lets you break free of systems that 
rely heavily on blocking API calls. You also saw, in chapter 6, how you can ensure that your 
applications continue to work in gray-sky as well as blue-sky conditions. By considering where 
failures are likely to occur and using the failure detection and recovery tooling in Akka.NET, you 
can respond to errors in your application before they significantly impact your application’s 
performance and negatively affect the end user’s experience. Now, we’ll look at how you can 
handle increased traffic and prevent the extra pressure from affecting the performance of your 
application. 

In recent years, with increased computer and internet use in the home, many traditional 
retailers have started offering their products for sale on the internet, and many retailers such as 
Amazon operate exclusively on the internet. Some find that the number of customers attempting 
to access their site isn’t linear over the course of the year, with significant spikes around 
holidays or during sales: for example, Black Friday and post-Christmas sales. Retailers offer 
discounts on products to draw in new customers and encourage them to spend money. When 
these sales offer significant discounts, there’s a corresponding increase in the number of users 
trying to access the online store. Most of these visitors likely want to make a purchase, but if the 
website struggles under the increased load, then it’s likely that many visitors will simply stop 
trying to access it and instead buy the product from a competitor. A consequence of a degraded 
UX is that many users could be driven away, leading to a loss of revenue for the retailer. 

Providing users with a solid experience even when the system’s under an intense load is just one 
of the plusses of a scalable system. There are benefits to be found on the micro as well as the 
macro levels. Many applications have a relatively fixed number of users at any point in the day. 
For example, an application designed for employees in the UK is likely to see its full usage 
during the normal working hours of 9 a.m. to 5 p.m. GMT; but outside of these hours, there 
might be only a handful of users online. With a scalable solution, you can scale the application 
down when you see periods of extended quiet and, as a result, save both money and resources. 

7.1. SCALING UP AND SCALING OUT  

E-commerce markets are likely to experience large spikes in their number of users. For example, 
an online retailer may be about to reveal a new product, begin a sale with significant discounts, 
or enter a gift-giving period such as Christmas. Online marketers need to provision the 
resources capable of serving an increased number of requests to their websites. The simplest 
and most frequently used approach is to purchase a faster server for their website to run on, 
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called scaling up, where you improve the resources that are currently available (see figure 7.1). If 
the number of requests is limited by the number of CPU cycles it takes to generate a response, 
then by using a CPU that can go through more cycles every second, you’re able to reduce the 
time it takes for a response to be generated. 

Figure 7.1. Scaling up means you use bigger machines, while scaling out means you use greater numbers of smaller 

machines. 

 

Although this approach might be the simplest for existing legacy codebases, there are many 
disadvantages to it: even scaled-up resources still have a limit, as you saw in chapter 1. 
Throughout the history of the semiconductor, and the CPU in particular, the number of 
transistors has increased every year in line with Moore’s law. But, in recent years, the increase in 
transistor count hasn’t led to an increase in speed; we’re no longer making CPUs faster. If you 
rely on buying faster CPUs to scale up your applications, you’re going to reach the point where 
you have the fastest processor available, with no room for growth and scaling beyond that. 

You also need to consider how to move your application over to a faster machine in such a way 
that it doesn’t negatively impact your application’s availability. If you only have one instance of 
the application and rely on moving to a faster processor every time it needs to be scaled, then 
you’ll incur an amount of downtime when the application is shut down, as either its host 
machine is upgraded or a virtual machine is shut down and restarted. This presents an even 
more frustrating experience to the user: rather than accessing a slow but usable system, they’re 
instead unable to access the system at all. 

Scaling up is also very difficult or even impossible to do in an automated manner, depending on 
the underlying changes that have to be made to the hardware on which the application is 
running. You saw in chapter 1 that the defining characteristic of reactive applications is that 
they’re able to react to the changing environment in which they’re running. In this case, the 
environmental change is the sheer pressure of increased load. A truly reactive application is 
nearly autonomous and can handle this increased load dynamically. The scaling-up approach 
makes this incredibly difficult and requires system administrators to monitor the system and 
make preemptive changes based on guesswork or assumptions. 

Rather than simply trying to work faster to free up resources for the next batch of work when it 
arrives, an alternative approach is to provide more resources and process work concurrently. 
This approach means you scale out resources rather than modify already provisioned resources. 
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For example, if an online retailer sees an increased load, they make a second server available to 
serve a request, with clients being directed to whichever server is least busy. Although this won’t 
result in requests being processed any faster than they were previously, twice the amount of load 
will be handled. This approach, scaling out (refer back to figure 7.1), provides an easier means of 
scaling resources, and a greater ability to handle an increased load. 

You saw that the scaling-up approach could lead to downtime due to transferring the application 
over to a new machine. This is a problem that you won’t encounter when scaling out, because 
you add more resources to a pool of worker actors, so you still have a worker available to service 
requests while new resources are allocated. Although the service may experience delays as the 
scaled-down service copes with the increased load, once the new workers are available, the load 
is balanced and the response times drop down to the values expected prior to the spike. 

You also saw that, when scaling up, it’s incredibly difficult to dynamically allocate fresh 
resources when they’re required. But when you simply increase the number of services running, 
scaling out is easier to automate and more manageable. 

Although scaling out presents many benefits, it also poses a number of challenges from a 
programming perspective in handling increased concurrent workflow. For example, when 
scaling up, you don’t need to worry about two operations modifying a piece of data 
simultaneously, because you’re not running two operations at the same time. Fortunately, 
Akka.NET’s actor model helps resolve this difficulty. By isolating a state to a single actor, you 
can ensure that there’s no contention between multiple instances for a shared resource, which 
could lead to a bottleneck. 

This chapter focuses on how, using Akka.NET, you can scale out actor instances effectively, in 
harmony with the Reactive Manifesto’s aim of being responsive even when you encounter 
significantly higher amounts of traffic than you designed for. The key component that will help 
you in this regard is routers, used to distribute the work across multiple actors. 

7.2. DISTRIBUTING WORK 

While scaling up the machines on which you run Akka.NET is a perfectly viable option, it isn’t 
the preferred option for the reasons just stated. You want to build systems that can cope under 
any conditions they’re presented with, and if the environment changes, then they should react in 
a way that provides a good UX. As you’ve seen, the scale-out option allows you to provide that. 
This is especially true in Akka.NET, where you have an isolated state that’s inaccessible by other 
actors. This means that you can safely scale out your actors without worrying about concurrency 
bugs. Figure 7.2 illustrates scaling up versus scaling out. 
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Figure 7.2. Actors can be thought of as funnels: scaling up creates a faster flow rate, whereas scaling out is similar to adding multiple 

channels to a funnel. 

 

7.2.1. Routers 

If the goal is to perform work in parallel, the easiest way to achieve it is by having multiple 
instances of an actor able to process messages directed to the same target. Remember that, 
when choosing where to send messages, you can use wildcard paths, which will send a message 
to all actors whose paths match the wildcard address. But you may want more control over how 
you process parallel workloads. Consider a further example: a tool designed to stress test how a 
website handles increased load, by sending many requests simultaneously. Although you could 
use the wildcard-address approach, it can be slow when there are complex paths to match; it 
only provides basic message-delivery techniques; and it’s tightly coupled with the actor 
hierarchy architecture. 

You need a way to distribute work evenly across a number of worker actors. Akka.NET takes 
care of this with routers. The concept of a router is quite simple: it wraps a number of actors to 
use as a single target to which messages can be sent. Messages can then be distributed to all 
workers, as specified in the routing strategy. Routers can be configured either mostly through 
configuration or entirely in code. Distributing work to all actors referenced by the router is 
referred to as broadcast in Akka.NET, and the broadcast pool provides the infrastructure to 
distribute work in this way (see figure 7.3). 
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Figure 7.3. The broadcast router sends the received message to every routee actor. 

 

You can use HOCON configuration to configure the router. In chapter 5, you saw the HOCON 
format and how it’s used in Akka.NET to allow for the configuration of core Akka.NET features. 
To define a router in HOCON, you create a HOCON element, with the element key being the 
path to the router. This path has the same syntax as actor addresses shown in figure 3.3, so you 
can use wildcards in the address if the router is nested under multiple other actors. Every router 
configuration needs at least the type of router; but routers may also need additional 
configuration. 

The router broadcast-pool defines that when the router is created, it should use the specified 
routing logic. You also need to specify the number of worker actors that are deployed along with 
the router, in this case, the number of workers that will be processing messages simultaneously. 
In the following code, you create a router at the /LoadGenerator route and specify that it should 
create 10 workers. The terminology used in Akka.NET for the workers in a router is routes, and 
that terminology is used in the router definition: 

akka.actor.deployment { 

  /LoadGenerator { 

    router = broadcast-pool 

    nr-of-instances = 10 

  } 

} 

It’s not enough to define the router in HOCON; you also need to deploy it in the actor system. To 
do that, you create the Props for the given actor you want to deploy, as you saw in chapter 5. 

One use for the broadcast router is as a tool for load-testing services, because with it you can 
execute a number of requests to the service simultaneously. You create a load-testing actor and 
the Props to deploy it. Once you’ve got the basic actor Props, you need to specify the router to 
use. You use the WithRouter method to achieve this and create a new Props object containing the 
extra routing information. In this case, because the routing information is referenced in the 
configuration, you need to tell Akka.NET that it should look in the configuration file for the 
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specified definition, by passing an instance of the FromConfig class. Akka.NET looks up the 
definition based on the address to which the router is being deployed: 

var loadTestingProps = 

    Props.Create<LoadTestingActor>() 

         .WithRouter(FromConfig.Instance); 

It’s also possible to create the router entirely in code without using a configuration file. When 
creating the Props for the actor and specifying the router, you can provide an instance of the 
routing logic to use. In the case of the broadcast pool, you can create an instance of 
the BroadcastPool router with the number of routes to use. You then deploy that router in the 
same way as the configuration approach. The following code creates a router instance and uses 
that directly in the Props. The router is then deployed, with 10 routees to which it can distribute 
work: 

var loadTestingProps = 

    Props.Create<LoadTestingActor>() 

         .WithRouter(new BroadcastPool(10)); 

A router is itself a generalized actor and exists in the actor system exactly the same as any actor 
that you might write. This means that an actor can send it a message, and it will forward the 
message to the routes dependent on the routing logic. In the broadcast example, it will 
distribute the message to each routee. The router can be referenced in the same way as any other 
actor; also, messages are sent to it same way—with the Tell method: 

loadTestingActor.Tell(new LoadTestingActor.WebsiteStressTestMessage) 

This is all that’s required to instantiate a router that creates a number of routee actors to which 
messages are distributed. The broadcast logic is just one example of such a router, and there are 
many others included in Akka.NET, which we’ll come to later in the chapter. But, for now, you’re 
able to deploy a router into the actor system and send messages to routees. 

7.2.2. Pools and groups 

In the last section, when you were deploying a broadcast router, you saw different terminology 
used: rather than a BroadcastRouter, you created an instance of a BroadcastPool. The reason for 
this is that Akka.NET supports two different types of routers: pools and groups. Although they 
both use the same logic to route messages to their routees, they differ in the way that routees are 
managed. 

When you created a BroadcastPool, you defined the number of routees to which it should 
distribute messages. The router creates the specified number of routees as its children and then 
passes messages to them. This means that, when you’re using a pool-based router, the router 
itself is responsible for supervision of the routees. The supervision of the workers adheres to one 
supervision strategy, which is to escalate all exceptions to the parent actor. If the parent then 
decides to restart the router, it will restart all of its routees as well. This makes pools an ideal 
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solution for when you’re only interested in having a basic set of workers that can respond to 
messages. 

In contrast to this, if you’re using a group, you need to explicitly specify the routees that the 
router must forward messages to. The router expects the routees to already be deployed in the 
actor system at the provided paths. Because the router is no longer directly responsible for the 
routees it communicates with, it doesn’t supervise the actors at all—that’s left to the parents of 
the actors. You can’t specify things like wildcards here either; instead, you need to specify the 
concrete paths to the given actors. Router groups are ideal when you have a preexisting 
hierarchy of actors where a selection of actors in that hierarchy should be used as routees. 
Router groups also work well if you want to use a granular supervisor strategy. 

To use a group instead of a pool, instantiate it the same way you did with a pool. But instead of 
specifying the number of routees, provide a collection of routee addresses. You can configure 
this in HOCON or code exactly as you did with the pool setup. If you want to specify the use of a 
group in HOCON, you can use a snippet similar to the following: 

akka.actor.deployment { 

  /LoadGenerator { 

    router = round-robin-group 

    routees.paths = ["/user/loadgenerator/w1", "/user/loadgenerator/we", 

     [CCA]"/user/loadgenerator/w3"] 

  } 

} 

As you can see, the key difference is the use of round-robin-group as the router type, and you 
specify the routee paths as an array of strings. 

You can then create an instance of it in the actor system, exactly as you did before, by specifying 
that the router used in the Props should be taken from HOCON. It’s important to note that when 
the router gets created, it doesn’t validate that the actors exist at the paths provided. If there are 
no actors available at those paths, when the router attempts to deliver messages, they will 
instead be delivered to the deadLetters actor and logged as such: 

var loadTestingProps = 

    Props.Create<LoadTestingActor>() 

         .WithRouter(FromConfig.Instance); 

You can also choose to create the entire router group in code. But instead of creating 
the BroadcastPool actor, you create an instance of the BroadcastGroup object, and you specify 
the paths of the routees: 

var loadTestingProps = 

    Props.Create<LoadTestingActor>() 
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         .WithRouter(new BroadcastGroup("/user/loadgenerator/w1", 

                                        "/user/loadgenerator/w2", 

                                        "/user/loadgenerator/w3")); 

There’s one other difference between pools and groups that we’ve not yet covered. Because pools 
are responsible for all the workers that are able to receive messages, they can spawn new 
instances on demand to react to load and message backlog. The pool can do this thanks to 
autoscaling, whereby you specify the minimum and maximum numbers of workers that should 
be used. You specify autoscaling by providing a resizer when you create the pool, either in 
configuration or in code. With configuration, you add a resizer configuration element to the 
router configuration, where you specify three values: that it should be enabled; the lower bound, 
which is the minimum number of workers; and the upper bound, which is the maximum 
number of workers. You can see in the following example that you initially deploy the router 
with 5 actors, but you can scale the number of children actors to a value between 1 and 10: 

akka.actor.deployment{ 

    /LoadGenerator [ 

    router = round-robin-pool 

    nr-of-instances = 5 

    resizer { 

      enabled = on 

      lower-bound = 1 

      upper-bound = 10 

    } 

       } 

     } 

You can also specify autoscaling in code when you create the router by providing an instance of a 
resizer. The DefaultResizer is a simple autoscaler that uses message pressure as its reason for 
scaling. You can create a RoundRobinPool with 5 workers by default, with the ability to scale 
between 1 and 10 worker actors: 

var smsGateway = 

    Props.Create<SmsGatewayActor>() 

         .WithRouter(new RoundRobinPool(10, new DefaultResizer(5, 50))); 

Although pools and routers share all the routing logic, and the distribution of messages works in 
the same way, they do have some interesting differences that can help you build scalable 
architectures. Notably, autoresizing pools allow you to build architectures that are not only 
scalable but also elastic, ensuring that you only ever use and pay for the scale you need, while 
retaining the ability to rapidly scale up and down as required. 
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Router performance 

Although you use routers in the exact same way as actors, and from an external point of view they 
appear to be nothing more than actors, internally they’re optimized for message throughput. 
Because routers are responsible for distributing a large number of messages, it’s important that 
they don’t become bottlenecks, slowing the application down. As such, the core routing logic isn’t 
encoded in the actor itself but is instead stored in the actor reference returned for the given router. 
This ensures that the router’s mailbox is bypassed entirely, which decreases latency and ensures 
that a router’s mailbox doesn’t overflow due to high throughput. 

7.2.3. Wrapping up 

Routers provide an incredibly simple means of distributing messages among a large collection of 
workers, allowing you to effectively scale applications to react quickly to demands imposed on 
them. You’ve seen how simple a broadcast router makes it to write an application that 
distributes a given message to every routee associated with a router. We’ll look at other 
Akka.NET routers later in this chapter. 

7.3. ROUTING STRATEGIES 

Using Akka.NET routers, you can distribute a single message to a number of routees associated 
with a router. But this router only allows you to broadcast a message to all of the intended 
targets. In certain circumstances, this proves to be beneficial, such as when you want to 
parallelize workloads. The example you’ve seen is of a distributed load-testing system. In that 
case, you wanted to perform as many operations simultaneously as possible. 

In line with the Manifesto, you want to build applications that are responsive even under a 
heavy load. When considering scaling techniques, you saw that the most appropriate choice for 
rapid scalability is scaling out. You can use this approach to distribute messages to many targets 
without creating a bottleneck on a single actor. But so far, we haven’t addressed increasing the 
throughput of message queues. Akka.NET provides a number of implementations of routing 
logic that distribute messages through the router to its routees. Routers allow for a wide variety 
of behaviors, thus allowing you to build applications that remain responsive even under intense 
load. 

Throughout the rest of this chapter, we’ll look at the routers included with Akka.NET and the 
advantages they provide. In each case, we’ll look at how you can deploy a pool implementation 
in code using classes. We’ll also look at how you can configure the router using HOCON, but for 
this approach, we’ll only look at the configuration section, along with what its values mean. In 
all cases, when using the HOCON configuration approach for routers, the router itself is 
deployed in the exact same way as in broadcast actor configuration deployment. We’re looking 
only at the pool-based approach, but note that all routers also support the group-based 
approach. By following the same pattern of simply changing the configuration value of the 
number of routees to the array of actor addresses, you can create a group instead of a pool. 
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7.3.1. Random routing 

The simplest approach to distributing a message through a router to a single actor is to choose 
one of the routees randomly and then send a message to it (see figure 7.4). Assuming the 
random-number generator (RNG) is truly random, and given enough time, a random 
distribution of targets will be generated to receive the messages. 

Figure 7.4. The random router selects a routee randomly for each message. 

 

To create a random router, you provide the number of routees it should create in much the same 
way as with the broadcast router, the difference being that the random router only forwards the 
message to a single, randomly chosen route. Create an instance of the RandomPool class, which is 
passed to the router configuration in Props: 

var smsGateway = 

    Props.Create<SmsGatewayActor>() 

         .WithRouter(new RandomPool(5)); 

The router can also be configured using HOCON, and the configuration is mostly the same as 
the broadcast pool, with the exception that you specify the name for the round-robin pool. In the 
following example, you supply the number of routees to be created by the router pool: 

akka.actor.deployment { 

    /smsgateway { 

        router = random-pool 

        nr-of-instances = 5 

    } 

} 

After deployment, you can see the effect this has on message distribution. In figure 7.5, you can 
see the number of messages each of the five routees receives when you send a total of 10,000 
messages. Although all the routees receive a similar number of messages, there’s a difference of 
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several hundred between the lowest number of messages processed and the highest. For small 
messages, this effect may be negligible, but for messages that require a lot of processing, there 
could be a sizeable difference in processing time between the shortest and longest queues. 

Figure 7.5. The random router may not evenly distribute messages to every routee. 

 

The random router is an incredibly simple router that can effectively distribute messages to a 
number of routees, depending on the performance of the platform’s RNG. But with the RNG’s 
random output, it’s possible that only one number is generated for an extended period of time, 
creating a bottleneck with one routee, while the other routees have empty queues. 

7.3.2. Round-robin routing 

Because the random router depends on the RNG’s performance for random numbers, there’s a 
possibility that the majority of messages will go to only one routee. Consequently, you need a 
way to ensure an even distribution of messages to all routees. For example, if you have three 
routees, you want to ensure that, if you have nine messages to distribute, each routee receives 
three messages in an even order. In figure 7.6, you can see the order of messages in the mailbox 
for each routee. The router sends the first message to the first routee, the second message to the 
second routee, and the third message to the third routee, before it cycles around and sends the 
fourth message to the first routee. 
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Figure 7.6. The round-robin router chooses the next routee as each message arrives and then starts again from the beginning. 

 

You can create a round-robin pool in much the same way as you created the last two routers: by 
specifying the number of routees to be used. When using the coding approach, you create an 
instance of the RoundRobinPool class, to which you provide the number of routees: 

var smsGateway = 

    Props.Create<SmsGatewayActor>() 

         .WithRouter(new RoundRobinPool(5)); 

You can also create the router using HOCON, by specifying the number of routees and providing 
the name of the router type: 

akka.actor.deployment { 

    /smsgateway { 

        router = round-robin-pool 

        nr-of-instances = 5 

    } 

} 

The round-robin approach to message routing is simple and ensures an even distribution of 
messages to all routees. It’s particularly effective where you have a stateless actor, which you 
might use to communicate with an external service, for example, and you want to scale it out to 
multiple instances. By using a round-robin router, you get fairly consistent throughput, 
assuming all routees are capable of processing a message at a similar rate. 

But the round-robin is still only a best-effort router, and a number of problems are associated 
with it, preventing a truly even distribution. For example, if one routee is running slower than 
the others, its queue is likely to grow, while the others process their messages quickly, ensuring 
their mailboxes stay small. 
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7.3.3. Smallest-mailbox router 

In Akka.NET, every actor has a mailbox, as you saw in chapter 3. When you send a message to an 
actor, it’s appended to the end of the queue to be picked up at some point in the future by the 
actor’s processing component. Because an actor can only process a single message at a time, if 
it’s slow, then the message queue can grow quickly. A faster actor working in parallel with the 
slow one will quickly get through all of its messages and have no more work to do. 

To avoid having one actor sit idle while another has a long message queue, you can choose to use 
the smallest-mailbox router in Akka.NET. The name says it all: when a message is sent through 
this router, it consults the routees to see which has the smallest message queue as shown 
in figure 7.7. The message is sent to that actor, ensuring that actors that are processing messages 
quickly can receive more messages than slow-running actors. 

Figure 7.7. The smallest-mailbox router routes messages to the routee with the smallest mailbox queue. 

 

You specify the number of routees, and the smallest-mailbox router automatically handles 
creating actors and processing based on mailbox size. To create the router in code, you create an 
instance of the SmallestMailboxPool class, which is provided as the router instance to 
the Props for an actor: 

var smsGateway = 

    Props.Create<SmsGatewayActor>() 

         .WithRouter(new SmallestMailboxPool(5)); 

With HOCON configuration, you supply the name of the router, in this case, smallest-mailbox-
pool, along with the number of instances to use, as you’ve seen before: 

akka.actor.deployment { 

    /smssender { 

        router = smallest-mailbox-pool 

        nr-of-instances = 5 
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    } 

} 

The smallest-mailbox router is particularly useful when you don’t know in advance how long it’s 
going to take to process a message. If you have a message with a payload that will lead to a lot of 
work, then the smallest-mailbox router is an ideal candidate for reducing the impact that the 
message is likely to have on subsequent messages. But it’s far from a silver bullet; you don’t 
know how long it will take to process a message until it’s actually processed. As such, if you 
enqueue a message after a long-processing message, the enqueued message will encounter a 
delay. 

7.3.4. Consistent hashing 

All the routers you’ve seen so far have relied on selecting a random routee to process the 
message; but sometimes you want messages with a common trait to be sent to the same target 
routee. For example, you may build a key-value data store that persists its data to the filesystem. 
In this case, the common trait between each message is the key that identifies the item in the 
database. 

You saw a similar scenario in chapter 3, where you had a unique means of identifying the target 
actor through a sensor identification string that allowed you to route new messages directly to 
the actor. This allowed you to have every sensor running in parallel without worrying about 
bottlenecks. Given these benefits, this scenario might seem to be a natural fit, allowing 
concurrent operations across large numbers of keys simultaneously; but it also comes with some 
downsides. For example, you need an instance of an actor at the provided name before you can 
communicate with it. When a request comes in for a given key, you must ensure, first of all, that 
an actor exists at that key’s address. If it doesn’t, then you must create an actor instance, adding 
a lot of overhead to every request and introducing significant latency, leading to applications 
becoming unresponsive. You also need to have one actor per key and store that actor in memory. 
Although a single actor represents very little overhead, it does start to add up on larger scales. If 
you’re implementing a key-value store, you might see millions or even billions of keys and actors 
in memory. 

Another difficulty is ensuring the isolation of actors. You saw that every actor should keep its 
state internal and not share it with other actors. Because the data you persist to disk for an actor 
is, by association, part of the actor’s internal state, it can’t share it with any other actors in the 
system. This can impose a lot of pressure on the filesystem, where you have one file per key and 
the potential for millions of very small files. 

You want a single actor responsible for a select portion of the available keys, with each other 
actor instance responsible for a different portion of the key space. You could store each of the 
key space regions in a specific location, which allows the router to automatically route the 
message based on what a lookup table says. This approach does, however, require a lot of 
coordination to update a lookup table when a new key-value pair is added. Ideally, what you 
want is a completely stateless router that allows you to select a given routee based on the 
message, in a repeatable manner. 

www.EBooksWorld.ir



A simple approach to this is to calculate the hash of the message or a specific property in the 
message. This hash can be used to calculate the target routee for the message (see figure 7.8). A 
hash is calculated by passing the message through a hash function whose sole responsibility is to 
map data down to a fixed size from an arbitrary length. In Akka.NET, the hash function maps 
the message property from whatever its data size is, which in the case of a key-value data store 
will be a string for the key with variable length, down to a fixed length, which is the number of 
routees available to the router. 

Figure 7.8. The consistent-hashing router directs every message with the same properties to the same actor. 

 

This forms the basis of the consistent-hashing router in Akka.NET, which computes a hash for 
the message and uses it to decide which routee to send the message to. You can create a 
consistent-hashing router in code by creating an instance of the Consistent-HashingPoolclass. 
Specify the number of routees to use: 

var smsGateway = 

    Props.Create<SmsGatewayActor>() 

         .WithRouter(new ConsistentHashingPool(5)); 

It’s important to choose the correct property on your message so that all messages with that 
property in common end up reaching the correct target. You have three possible options for how 
to manage that in Akka.NET. The least intrusive way for both the routees and the message is to 
create a hash-mapping delegate when you create the router. This takes in the message and 
returns the property of it to use as the thing to hash. If you’ve got a message defined as in the 
following code snippet for your key-value data store, when you create the actor instance, you can 
supply a hash-mapping delegate by using the WithHashMappingmethod on the router, which 
supplies a new router with the mapping applied. In the following code, you have a common 
interface for all of the database-related operations, which allows you to easily retrieve the key 
out of the key-value pair: 

var consistentHashingPool = new ConsistentHashingPool(5) 

    .WithHashMapping(x => 

    { 

        if (x is IDatabaseMessage) 
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            return ((IDatabaseMessage)x).Key; 

        return x; 

    }); 

Since all of your messages use a common interface, you could also use 
the IConsistentHashable interface, which allows you to specify what the hash key should be. 
The router then checks to see whether the message implements this interface, and if it does, it 
uses this interface to retrieve the hash key. This approach requires you to edit all the messages 
to rely on an underlying implementation detail, and so it may not be a valid option, depending 
on where the messages originate from. 

public class Get : IConsistentHashable 

{ 

    readonly string _key; 

    public string Key { get { return _key; } } 

 

    public object ConsistentHashKey { get { return _key; } } 

 

    public Get(string key) 

    { 

        _key = key; 

    } 

} 

The final option is to wrap all the messages you send to the router in an envelope that provides 
the internal message along with the hash. The router uses the hash to direct the message before 
forwarding the original message stripped out of the envelope. To use the envelope, you create an 
instance of ConsistentHashableEnvelope with the message and the hash key to use: 

var message = new Get("Anthony"); 

var envelope = new ConsistentHashableEnvelope(message, message.Key); 

database.Tell(envelope); 

You’re then able to calculate a hash for a message and choose the routee to which the message 
goes. With the hash function, you have a known fixed size for the possible output values; for 
example, it might generate a number in the range between 0 and 255, inclusive. You then create 
a circle and place these possible values around the edge of it, using the same hash function used 
for mapping keys to also map the node identifiers onto the ring. So, given that you create a 
router with three routees that act as nodes in the consistent-hashing router, you can position 
them onto the ring. Figure 7.9 shows an example of placing a node on the ring. That node is 
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responsible for all of the hash values encountered, moving clockwise around the ring until 
reaching the next node. 

Figure 7.9. In a consistent-hashing router, routees are placed around a ring, and each routee is responsible for a portion of the ring. 

 

Although consistent hashing helps you to choose a target for a message, it also has some 
disadvantages. Due to hashing each node, some nodes will inevitably be responsible for more 
keys than others, leading to the potential for increased load on one of the routees. To counter 
this problem, the consistent-hashing router allows you to specify the number of virtual nodes 
per routee. So, rather than having 5 routees with 1 node each, you can create 5 routees with, for 
example, 10 nodes each. This provides a total of 50 nodes around the ring, which promotes a 
more even distribution of keys around the nodes. It’s important to note that the new nodes are 
entirely virtual and are only for the purpose of calculation; you still have only 5 routees created 
at any time. By default, Akka.NET uses a value of 10 for the virtual-nodes factor; but should you 
want to, you can supply a different value in the constructor when you create the router. Here, 
you use a virtual-nodes factor of 20: 

var databaseProps = Props.Create<DatabaseActor>() 

                         .WithRouter(new ConsistentHashingPool(5) 

                                     .WithVirtualNodesFactor(20)); 

You can create the router using HOCON configuration rather than storing these values in code. 
The values you need are the router name, the number of routees to use, and the virtual-nodes 
factor. You still need to handle how to retrieve the hashing property using code, adopting any of 
the techniques you saw previously. 

akka.actor.deployment { 

    /services/cache { 
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        router = consistent-hashing-pool 

        nr-of-instances = 5 

        virtual-nodes-factor = 20 

    } 

} 

Although the router pool also supports automatic resizing in the same way as all the other 
routers, you need to be more careful when using it. In the example, you stored a state in the 
actor, with the file containing all of the key-value pairs also stored in that node. If you were to 
add another node, then it would affect which node was queried for a given key. This change 
would then leave you in a situation where historical data can’t be retrieved from the routees. 
Autoresizing with the router is therefore only useful if the routees are completely stateless. If the 
routees are stateful, then autoresizing and the consistent-hashing router should be avoided. 

Consistent-hashing routers are a great means of ensuring an even distribution of keys to all 
routees. The consistent-hashing approach to stateful distribution has proven to be useful in a 
number of large projects, including distributed NoSQL databases, such as Amazon’s DynamoDB 
and Basho’s Riak, as well as the internals of some big data–processing tools, such as Hadoop’s 
MapReduce. In Akka.NET, you can ensure that the router distributes messages with a common 
trait to the same actor consistently with minimal overhead required and no coordination in the 
router. 

7.3.5. Scatter-gather first-completed 

None of the routers up to this point have prevented you from returning data from them, but 
they’re designed more for scenarios where you dispatch work to be completed without a result 
returned. But sometimes you want a request-response model to ensure that you’re able to get 
data out of a service. With the request-response approach, you aim for low latency between 
sending a message and returning a value in response. 

With a single-destination router such as the round-robin router, if your system chooses a routee 
with a long queue, it will suffer a long delay in reaching the processing stage. But choosing a 
short queue that has a number of large messages also results in long latencies. The easiest way 
to ensure the shortest possible latency is by sending the request to all candidates capable of 
processing the message. Whichever one gets to the message first sends a response back to the 
requesting actor. To model this, you could use the broadcast router to send the message to all 
routees. 

But then there’s the problem of all of the routees replying to the requesting actor. The first result 
to arrive provides the shortest possible latency. You want the requesting actor to ignore all other 
messages and not have them fill its message queue. 

Akka.NET provides a router designed specifically for this purpose: the scatter-gather, first-
completed router. It distributes a message to all routees and waits for the first result, which it 
sends to the requesting actor, ignoring all subsequent response messages (see figure 7.10). This 
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ensures the shortest possible latency from the collection of routees, while also preventing the 
requester from being flooded with the same response multiple times. If, however, no reply is 
received from the routees in a given timespan, then it sends a Failuremessage back to the 
requesting actor to notify it of the timeout. 

Figure 7.10. The scatter-gather, first-completed router broadcasts the message to every routee and then returns the first response. 

 

One example of this router is a database with a number of replicas, where each routee is 
responsible for communicating with a single replica. When you want to retrieve a value from the 
database, you query the actor that executes the request. You get the response from the first 
replica that replies, and return that to the requesting actor. This allows you to use a database 
with the lowest latency. 

Because you’re dealing with actors that have independent configurations, you’ll create a group 
router this time, using the ScatterGatherFirstCompletedGroup class. You can specify the 
maximum timeout before a Failure response is sent back to the requesting actor. In this case, 
specify that if it doesn’t receive a response in 200 ms from one of the database servers, the 
router sends a timeout failure: 

var databaseReplicas = 

    new ScatterGatherFirstCompletedGroup( 

        TimeSpan.FromSeconds(0.2), 

        databaseMaster, 

        databaseReplica1, 

        databaseReplica2); 

You can create the same scatter-gather, first-completed router using HOCON. Specify the type 
of router to create, as well as the standard number of routees. Also specify the timeout period 
with time units. In the following example, you specify a timeout of 0.2 seconds. You can also use 
other suffixes to represent other units of time, such as minutes and milliseconds. 
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akka.actor.deployment { 

    /services/database { 

        router = scatter-gather-group 

        routees.paths = 

["/database/master", 

        "/database/replica1", 

        "/database/replica2"] 

        in = 0.2 seconds 

    } 

} 

The scatter-gather, first-completed router is incredibly useful, particularly in cases where you 
want to minimize the latency of request-response message passing. Despite the fact that you 
distribute the work to many routees, you only need to worry about a single message being 
returned from the router. This makes it ideal for using with the ask-based approach to receiving 
a message response you saw in chapter 3. 

7.3.6. Tail-chopping router 

In asynchronous systems, sometimes one actor processes a message slower than another actor 
does. This can happen from several causes ranging from hardware, to OSs, to transient issues 
that external services experience. Although these slowdowns are relatively infrequent, they pass 
the issue on to the user and create latency. A graph of the latencies across a large number of 
requests typically looks somewhat like figure 7.11. A small number of requests executes and 
returns almost instantaneously, with the majority of requests falling around the median latency, 
before you finally see a long tail of high latency. 
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Figure 7.11. Typically, request-response latencies follow a bell curve with the majority of responses having a common time, and with 

some faster and some slower. 

 

To ensure that all users enjoy a responsive application, you need to minimize the effects of long-
tail latencies by preventing the seemingly random slowdowns that -system components 
experience. The scatter-gather, tail-chopping router t first--completed router helps make this 
possible, thanks to distributing messages to all routees. If one routee experiences a slowdown, 
that doesn’t cause a significant degradation of service, because another routee picks up the 
message and processes it. If it processes the message more quickly than the first routee, then its 
response is forwarded to the requester. But this results in a significant amount of redundant 
work, potentially leading to problems further down the line. Using the scatter-gather approach 
means assuming the worst possible scenario will occur: the first routee to respond will take 
longer than you can tolerate. But this is unlikely to be the case, because most responses 
complete within an acceptable time period. The aim is to shorten the tail of the graph, which is 
frequently less than 1% of the total requests. 

This is the aim of the tail-chopping router: to significantly shorten the tail of the graph. It does 
this by combining a number of components. The router first selects a routee at random to send 
the message to, but if it doesn’t receive a response before a timeout, it sends the message to 
another routee and awaits a response (see figure 7.12). When it receives a response, it forwards 
the message to the requester and ignores all subsequent responses (see figure 7.13). But if it 
doesn’t receive a response before a timeout, it sends a Failure message to the requester. The 
tail-chopping router works on the premise that there’s a high probability that one of the other 
routees can process the message faster than the routees chosen so far. 
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Figure 7.12. The tail-chopping router first sends a request to a random routee and starts a timer, awaiting a response before the 

timer expires. 

 

Figure 7.13. If no response is received, a second routee is chosen at random and the timer is reset; when a message is eventually 

received, it’s forwarded to the requester. 

 

The tail-chopping router requires a little more configuration than the other routers you’ve seen 
so far in this chapter. You can create a tail-chopping router by creating an instance of 
the TailChoppingPool. As with the other routers, specify the number of routees to use, and much 
like the scatter-gather router, specify the failure timeout. You also need to specify the time to 
wait, the interval, before contacting the next routee. The following example shows a tail-
chopping router with 5 routees and a timeout of 1.5 seconds. It also defines forwarding the 
message to a second routee after 200 ms without a response: 

var searchApiProps = 

    Props.Create<SearchAPIActor>() 
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         .WithRouter( 

            new TailChoppingPool( 

                5, 

                TimeSpan.FromSeconds(1.5), 

                TimeSpan.FromSeconds(0.2))); 

You can also create this router with HOCON configuration, where you follow a pattern similar to 
the scatter-gather router. Many of the configuration variables used are the same, notably, the 
number of routees and the maximum timeout, but you can also supply a tail-chopping-
router.interval to specify the time between multiple routee calls: 

akka.actor.deployment { 

    /services/search { 

        router = tail-chopping-pool 

        nr-of-instances = 5 

        in = 1.5 seconds 

        tail-chopping-router.interval = 200 milliseconds 

    } 

} 

Using the tail-chopping router to perform redundant work when you believe you can get a 
quicker response from another target than the current one has been effective in a number of 
distributed NoSQL databases for reducing the tail end of response latencies. Because 
Akka.NET’s routers are simple, they’re easy to implement in your applications for decreasing 
user wait time. There are downsides to using them, though: you’re aware of the expected latency 
of the target routees, but without any idea of what that latency will be, it’s likely that any 
configuration values supplied for the interval period will not be effective at reducing the latency 
tail. 

7.3.7. Wrapping up 

Although it may seem like Akka.NET supplies an abundance of routers, many of them are 
tailored to a specific set of situations and designed to ensure that your applications stay 
responsive even when faced with increased load. All the routers that Akka.NET provides are also 
able to use the resizer functionality once the application experiences a certain sustained level of 
load. 

Broadcast support in routers 

Early in this chapter, you saw the broadcast router, which allows you to rapidly send a message to 
all routees. This means of message distribution is also supported in all the other routers. The 
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consistent-hashing router introduced the concept of message envelopes to retrieve the hash key for 
a message, but there’s another envelope supported by all the routers you’ve seen here. If you wrap 
a message in a BroadcastEnvelope before sending it to a router, then it will automatically distribute 
the message to all routees. This allows you to easily transmit data to all of the routees of a given 
router. 

7.4. CASE STUDY: SCALING, THROUGHPUT, ADVERTISING SYSTEMS  

Advertising has become a core component of millions of websites and has also become either the 
primary or sole source of revenue for many of them. At the heart of web advertising is a vast 
bidding war being fought between hundreds of advertising agencies, all trying to show their 
clients’ ads on the most appropriate web pages for the right audiences. All of this needs to 
happen in milliseconds if an agency wants to be competitive in an industry worth billions of 
dollars every year. 

Given the number of web pages that display ads and the number of people who visit those web 
pages, advertising agencies have to process a huge number of requests per second. They also 
have to cope with inevitable spikes in traffic. Given this need for low-latency, high-throughput 
services, Akka.NET provides an ideal base upon which to build advertising systems. But it’s 
more than simple scalability that’s required; an advertising system must also respond to traffic 
spikes. 

In this chapter, you’ve seen how to use routers to distribute work across a number of actors. 
Routers can simplify and automate the process of scaling the number of actors. Given that many 
actors working in parallel can process more work, such an advertising system can handle more 
page views and send more bids quickly, providing a competitive advantage. 

Figure 7.14 shows how to hide actors behind routers that can deploy more actors on demand and 
shut down actors after a period of low usage. Each actor is responsible for receiving input 
containing information related to the visiting user, which includes data such as their IP address, 
location, anonymized ID, and plenty more. The actor then works out whether a bid should be 
made. When the originating website sends a request for an ad, it’s converted into a message, and 
then it’s sent to the router. The router then chooses an actor to process the message. At the same 
time, the router is computing metrics and calculating the number of messages that are flowing 
through itself, which it then uses as a means of working out whether more actors are needed to 
achieve the required throughput. 
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Figure 7.14. A router allows you to receive a huge number of messages, in this case when users visit a web page to see an ad, and 

allows you to split those messages across multiple actors, thus increasing throughput. 

 

In cases where you need to react on demand to unpredictable usage, routers allow you to scale 
the number of actors to receive and process messages. By parallelizing processing, you can easily 
increase throughput while also reducing response times. 

SUMMARY  

In this chapter, you learned 

• How to increase application throughput by scaling out the number of workers processing 
messages 

• How Akka.NET uses pools to respond to the load demands of the application by scaling 
up and down as required 

• How Akka.NET allows you to manage routees with a group router 
• How to choose different routing methodologies to suit the task at hand 
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Chapter 8. Composing actor systems 

This chapter covers 

• Linking actor systems 
• Scaling applications across multiple machines 
• Creating applications that can handle machine-level failure 

One of the key objectives of the Reactive Manifesto is to ensure a responsive UX, regardless of 
what happens in the application, by using reactive principles. This means designing to address 
two problems: failures internal to the actor system and increased load on actors in the system. 
You’ve seen how the features of the Akka.NET framework handle both of these scenarios. 

Failures can be handled by a combination of actor hierarchies and the supervision system. With 
the hierarchy, you can isolate failures to a single actor and recover with a supervision strategy 
handled by its parent. You’ve also seen that handling increased system load depends on 
increased message throughput. You can address this with Akka.NET’s routers, which evenly 
distribute messages to a number of actors that perform as a single actor. Routers can scale the 
number of routees dynamically according to the load, so you can elastically scale by providing 
either more or less compute power. 

Although these features help you create applications that are fault tolerant and scalable, so far 
they’ve only run on a single machine, which limits their capabilities. In our consideration of 
fault tolerance, we’ve discussed recovering from the failure of small, isolated actors running in 
the context of larger applications. But, as you saw in chapter 2, many things can lead to more 
catastrophic failure for your application. Besides failures that you handle at the application 
level, you also encounter issues relating to hardware failure that shut down the entire 
application. Hardware failures are a relatively infrequent occurrence, but you must also consider 
all the layers of abstraction between the hardware and the application that could result in 
failure. For example, if you’re connecting to a server from a client, due to network connectivity 
issues, the server may be unreachable; alternatively, a process running on the server may end up 
killing the process that’s running the actor system. In these cases, the problems lie outside the 
bounds of the actor system and so need more planning to resolve. 

In chapters 2 and 3, we explored the notion that actors are cheap and that you can create millions 
of them per gigabyte of memory, but you need to consider the downsides of doing this. Notably, 
the CPU only has a limited number of cores, limiting the number of operations that can run 
concurrently. Although you can upgrade to a CPU with more cores or better threading 
capabilities, you still hit a limit on the number of processes that can run simultaneously. This 
creates a bottleneck where actors are waiting for available resources on the CPU; what’s 
required is to increase the concurrency capabilities of the CPU. 

To address these problems, you need to combine multiple machines so that you can either 
reduce the likelihood of downtime caused by machine-level crashes or distribute workloads 
more evenly in order to further increase the potential throughput of the actor system. Akka.NET 
is built with ease of distribution in mind so that it can scale out across multiple machines as well 
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as multiple cores. You saw in chapter 1 that in fault-tolerant and scalable solutions, applications 
aren’t tied to the physical location of an actor. Instead, they rely on location transparency that 
results from the message-passing architecture of Akka.NET. With location transparency, you 
only care about a loosely coupled address pointing to the actor’s mailbox, and you let the 
messaging system calculate how that message should be delivered. This affords you the freedom 
to move actors not only between threads or cores on a single machine but also between 
processors on distant machines (see figure 8.1)—even if they happen to be located on the 
opposite side of the world. 

Figure 8.1. Akka.NET remoting allows multiple independent actor systems to act as a single actor system that’s transparent to the 

user. 

 

Using actors facilitates developing applications that scale across machines. You saw in chapter 

3 that actors encapsulate all their state internally, thus preventing other actors from directly 
accessing their stored data. Other actors communicate with an actor by sending it a message to 
retrieve its stored data. So you can safely relocate an actor without worrying about implicit 
connections between actors. Because all communication is handled through messages, it’s left to 
the messaging system to direct them to the correct targets. 

8.1. INTRODUCING AKKA.NET REMOTING  

If you want to avoid the problems you’re likely to encounter with an application running on just 
one machine, you need to distribute your application across multiple machines. This will 
provide a consistent level of service in the event that one machine has difficulties, or you reach 
the concurrency limits of a single machine. You can connect two machines together through a 
network and enable communication between them. But network programming entails a number 
of complexities, leading to complications for applications that communicate through a network. 
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Networks come with a number of considerations. They can be unreliable: there’s no guarantee 
that a message will reach its intended target. Increased latency caused by the sheer distance 
between two machines must be accounted for. Further difficulties arise, such as determining 
whether a process on a remote machine is executing correctly or has failed. 

Akka.NET provides a number of remoting features designed to allow multiple actor systems to 
communicate without you having to worry too much about these issues. These systems can exist 
on either a single machine or multiple machines, with communication through a variety of 
protocols, such as TCP or UDP, and with pluggable support for alternative transports tailored to 
the specific problem at hand. 

You saw in chapter 3 that one of the biggest benefits of a message-passing architecture is the 
freedom to relocate actors on a machine. You’re not tied down to a single reference for an actor; 
instead, you let the Akka.NET runtime relocate actors to different threads or different locations 
in memory. Akka.Remote takes this notion of location transparency to its limit by letting you 
develop applications that don’t need to concern themselves with knowledge of the underlying 
network. In fact, with Akka.Remote, you can run your applications without the need for any 
code changes at all. Instead, you can simply modify the configuration of an application and 
immediately have it scaled out across multiple machines. 

In Akka.Remote, all the machines run identical actor systems, and these actor systems are 
connected. All systems can run the same code without changes to individual applications in the 
deployment. This means that no single actor system acts as a server with others connecting to it; 
instead, all actor systems operate as peers, allowing for truly distributed applications with no 
single point of failure. 

With actor systems acting as peers, you can build applications that are truly indifferent to the 
environment in which they’re running or hosting actors. No code changes are needed to run a 
single application across multiple machines; the application can be driven entirely by 
configuration. This is enforced, to a point, through the limited API that’s available for 
developing networked applications. You only have two ways to directly influence a remote 
deployment: the usage of Props, and the address system of actors, both of which we’ll discuss 
later in this chapter. 

In the internals of the remoting API, everything that could lead to problems across a network is 
considered and anticipated. In this chapter, you’ll see how to use the remoting functionality 
provided by Akka.NET to distribute your applications across a network with minimal changes to 
code. 

Akka.Remote usage 

Akka.Remote is designed for situations in which the two connected machines have the same level of 
privileges, and it doesn’t provide support for running specific roles on only one machine. The 
design isn’t intended for use in cases where a client application is connecting directly with an actor 
system. You’ll see examples of how to address that in a later chapter when we discuss how to 
expose the actor system to the outside world. 
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8.2. PREPARING TO USE REMOTING  

You can prepare your system for remoting by following the steps outlined in this -section. 

8.2.1. Installing Akka.Remote 

The remoting capabilities of Akka.NET are shipped outside of the core distribution, so before 
you can use it, you need to install the library. The library is shipped through NuGet; to install it, 
you add the Akka.Remote project. After installing the library, you configure it so that it’s able to 
receive connections from other actor systems. 

8.2.2. Configuring remoting for a project 

Before you can use the remoting functionality, you need to provide a number of key 
configuration parameters to the actor system. You do this with the HOCON configuration you 
saw in chapter 5. At the least, you specify the following information in the configuration file: 

akka { 

 actor { 

  provider = "Akka.Remote.RemoteActorRefProvider, Akka.Remote" 

 } 

 remote { 

  helios.tcp { 

   port = 8080 

   hostname = localhost 

  } 

 } 

} 

In this configuration, you make two major additions. The first is the change to the actor provider 
responsible for how the Akka.NET library retrieves its IActorRef instances and how it performs 
all the routing to the defined target. Here, you supply the class name for 
the RemoteActorRefProvider, which is able to retrieve references to actors running on remote 
machines. You also configure the network transport, which is responsible for communication 
between actor systems. In this case, you use a TCP socket and configure it to listen on the 
supplied address, and a port that’s currently not being used. If you want any random unused 
port, you can choose to use port 0, and the OS will choose one at random. 

This is all that’s required to allow other actor systems to connect to this actor system instance, 
but you’ll also need multiple actor systems configured to run with remoting enabled. The 
examples you’ll see in this chapter have two actor systems communicating with each other. To 
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manage this, you’ll alter the listening port and the address, if the actor systems are running on 
different machines. You can use a number of different approaches to this, as you saw in chapter 

5, but for now, you’ll use two independent files with different configurations. In the following 
example, you set up a second actor system that listens on a different port while running on the 
same machine. This allows you to run across multiple actor systems throughout the rest of the 
chapter. 

akka { 

 actor { 

  provider = "Akka.Remote.RemoteActorRefProvider, Akka.Remote" 

 } 

 remote { 

  helios.tcp { 

   port = 8081 

   hostname = localhost 

  } 

 } 

} 

Although you now have two actor systems with remoting configured, no connections are made 
between them until one of the applications needs to communicate with the other. Connections 
are made lazily on demand as the actor system needs them. To test the remote actor systems, 
you run multiple instances of the application, each with a different configuration file. While 
testing, you can supply the configuration file as a parameter to the application and load it on 
demand, as in the following example: 

Chapter8.exe node1 

With the configuration loaded from the command line, you pass the path to the file as a 
parameter to the application. This means that if you refer to the configuration files 
as node1.conf and node2.conf, you can run two instances of the application by running the 
following commands in the directory containing the executables and configuration files: 

Chapter8.exe node1 

Chapter8.exe node2 

In a production environment, you’re unlikely to supply the configuration file path through the 
command line, and instead will use the fallback configuration options you saw in chapter 5with 
HOCON. But because you’ll run multiple instances in the same environment in the examples in 
this chapter, you’ll use different configuration files to allow for completely isolated 
configurations. 
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8.3. COMMUNICATING WITH REMOTE ACTORS  

Now that you have two actor systems configured to listen on incoming network connections, you 
can create applications that communicate by sending messages between these instances. 
Because connections in Akka.NET are created lazily, despite a network being available, there 
isn’t yet a connection between the actor systems you created. In this section, you’ll start to use 
the many Akka.NET features you’ve seen throughout the book, but spread across multiple actor 
systems. 

Remote actor system addresses 

You saw in chapter 3 that all actors in an actor system are identified by an address. The address is 
used by the framework to route messages to the correct actor instance in memory. So far, all the 
actors you’ve encountered have used a simple scheme for representing their address, such as the 
address shown in figure 8.2. The address is a URI with three key pieces of information: the 
scheme, which in this case is the string akka; the actor system name, which is whatever name 
you provide when you create the actor system; and the path to the actor, which is used to 
traverse the actor hierarchy to search for the specific child actor. 

Figure 8.2. A typical actor system address 

 

When using multiple actor systems, you need to encode additional information in the address to 
identify the machine that’s hosting the actor system. Because remoting has support for a 
number of networking protocols, you need to ensure that the system understands how to 
communicate with the remote actor system. An example of a remote address is shown in figure 

8.3. 

Figure 8.3. A typical remote system address 
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The first change is the different scheme being used. You supply akka as before, but you also 
postfix it with the protocol used; in this case, the value tcp is added to signify that the 
connection method is TCP. You might see other values in this space to represent other 
communication protocols, such as UDP. After the actor system name, you specify the address 
that’s hosting it. This has two components, the IP address or the hostname of the remote 
machine, and the port that the remote system is listening on. 

If you need to address an individual actor on a running system, this is the simplest way of doing 
so, but it doesn’t favor location transparency, because you’re tightly coupling your machine’s 
location to your codebase. Given the widespread use of the cloud for deploying code, this may 
prove to be problematic due to the potential for frequent IP address changes with autoscaling 
architectures. In the rest of this section, we’ll look at how to abstract locations away from code 
and drive the logic through configuration. 

8.3.1. Sending messages to remote actors 

So far, you’ve seen how to send messages to actors in one of two ways: by using a direct 
reference to an actor with IActorRef, or by sending a message to a given address. You can 
follow the same process even when dealing with remote actor instances. 

You have to target a remote actor instance through the address format you saw in the previous 
section, making sure to include the remote actor system name and target machine. You can then 
create an actor selection using this address and use it as you would have at any stage previously. 
In the following example, you send a message to an actor running on a different machine: 

var remoteActor = 

    remoteActorSystem.ActorSelection( 

        "akka.tcp://RemoteSystem@localhost:8081/user/remoteActor"); 

remoteActor.Tell("Hello remote actor"); 

When an actor on a remote machine receives a message, it replies in the same way that you’ve 
seen. Akka.Remote then deals with handling remote senders and serializing them so you can 
address them in the usual way. You can perform request-response queries against remote actors 
by using Ask. But because a network connection links remote actors, there’s the possibility of 
message loss and of Ask not receiving a response, causing it to block indefinitely. So you specify 
a timeout period, after which the call will throw an exception. The following code says that a 
response from a remote actor is expected, but if that doesn’t happen within 20 seconds, an 
exception is thrown: 

var response = 

    await remoteActor.Ask<string>("Anthony", TimeSpan.FromSeconds(20.0)); 

Akka.Remote and message ordering 
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When you dealt with a single in-process actor system, it was guaranteed that all messages would 
arrive in the correct order, but when you introduce a network connection, you lose that guarantee. 
In the case where two independent actor systems both send a message to the same actor, there’s no 
guarantee that the two messages will arrive in the order in which they were sent. This is due to the 
latency constraints that a network imposes, which may fluctuate over time. Akka.Remote provides a 
guarantee that messages sent between a pair of actors will be delivered in the correct order. For 
example, in a pair of actors, A and B, if actor A sends messages to actor B, they will always arrive in 
the correct order. But if actor C also sends a message to actor B, it may not arrive in the order in 
which it was sent. 

This setup for accessing known actors on a remote machine is ideal for dealing with an external 
service. For example, in a web application, you may have one actor system running as a payment 
service responsible for aggregating customer charges, and a second actor system responsible for 
running the core application logic. In the context of the example in chapter 2, the home with 
water-level detection, the billing system would be responsible for computing the cost based on 
the number of sensors a customer has running per month, or the amount of data the application 
is processing, and the core application logic would be responsible for running the sensor’s 
processing. 

Sometimes you want more processing power for a single server with as little overhead as 
possible. In this case, you should avoid being constrained to a single machine and instead scale 
out across more machines. You want to avoid coupling this configuration to your codebase 
because that means the infrastructure deployment is locked into the binary of the application. 
You may need to scale quickly to cope with a significant load spike. In these situations, you need 
to be able to provision a new machine and have it usable as an additional resource. 

Akka.Remote allows you to specify through configuration that entire sections of the actor 
deployment hierarchy should be deployed onto a remote machine. These remote sections are 
addressed in the same way as if they were local. In figure 8.4, you can see an actor hierarchy in 
which a child actor of a parent actor is running on a different machine. 
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Figure 8.4. Akka.NET remoting allows you to deploy child actors remotely while also allowing for all the features of local deployment, 

such as supervision. 

 

This takes the notion of location transparency to the limit, because you can develop applications 
without having to consider remote deployments, yet configure them to run on different 
machines. Because the remoting capabilities of Akka.NET are driven by configuration rather 
than an API, you can change the infrastructure of the application with a change to the 
configuration rather than requiring a full rebuild when you want to scale out. In the following 
example, you specify in the configuration that the actor system at the address specified should 
host the stated section of the hierarchy. The following code specifies that the services branch of 
the actor system should run on a remote actor system: 

akka.actor.deployment { 

    /services { 

        remote = "akka.tcp://RemoteSystem@localhost8081" 

    } 

} 

This configuration change lets you develop your actor system as though it’s all running on a 
single machine. In the following example, you select an actor below the services actor, which 
looks identical to any of the previous actor selection examples in chapter 3; but due to the 
configuration change you just made, it calls to a remote actor system: 

var remoteActor = actorSystem.ActorSelection("services/cache"); 

Using this mindset when developing applications, you can embrace location transparency and 
focus on the core aims of the application without worrying about the details of where actors in 
the hierarchy exist. This allows you to significantly scale out the actor system to overcome the 
limits you might encounter on a single machine. 
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8.3.2. Remote deployment of actors 

If you want to scale out with actors on remote machines, you first need to get those actors 
running on the remote machines. Akka.Remote allows an actor system to deploy actors on a 
remote actor system. 

There are two key ways to deal with remoting in Akka.NET: connect to existing long-running 
actor systems, or treat other machines as an extension of your computing resources. The remote 
deployment feature works for both ways, but with one constraint: you must have the same types 
deployed across both machines. The remote machine needs to have knowledge of the actor that 
it’s going to deploy. In many cases, this means creating an assembly containing the actor 
definitions and message definitions, which is then shared between the machines. 

In the first scenario, where you’re dealing with an existing long-running actor system, you can 
deploy an actor into its system when a key event happens. For example, in the case of the web 
application and billing system, you may sign up a new user to the service, meaning that a new 
actor relating to their account needs to be created. You could either send a message to an actor 
on the remote system that it should create a new actor, or you can create it and deploy it on the 
remote system yourself. You’ll see throughout this chapter some of the advantages to this 
approach. 

When deploying into a remote actor system, you follow the same process as when you deploy 
actors into a local actor system. You first create the Props that define the proposed actor. As you 
saw in chapter 5, the Props specify how an actor should be created. In this case, you specify the 
type of the new actor as well as any constructor arguments. The constructor arguments must be 
serializable, because they’ll be sent over the network to the remote system. You also need to 
specify how the actor should be deployed. When you don’t supply a deployer, the default uses 
the local deployment, so deploying into a remote system requires configuration. You create a 
new Props object by calling WithDeploy with the chosen Deployinstance, in this 
case, RemoteDeploy. This takes the address of the remote machine. When you use this in 
combination with ActorOf, you receive an actor reference to an actor deployed on a remote actor 
system that you can communicate with as you would with any local actor. 

var remoteDeploy = 

    Deploy.None 

          .WithScope(new RemoteScope 

              (new Address("akka.tcp", 

                           "RemoteSystem", 

                           "localhost", 

                           8081))); 

 

var remoteProps = 

    Props.Create<Cache>() 
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         .WithDeploy(remoteDeploy); 

You can configure the actor system so that any actors existing at a certain address will be 
automatically routed onto a separate actor system. In this case, calls to deploy an actor at this 
address will automatically be routed to the correct machine as defined in the configuration. As 
before, any constructor arguments the actor takes must be serializable and sent over the 
network, but outside of this, nothing else needs to be done. Akka.Remote handles all of the 
remote deployment. 

Remote deployment allows you to rapidly build systems that can scale out across multiple 
machines without any significant initial design. With Akka.Remote’s configuration-driven 
remoting API, you can write actor-based applications that make the most of the computing 
resources they need while also providing location transparency. 

8.3.3. Wrapping up 

This section focused on how you can communicate with actors across multiple actor systems 
without worrying about the underlying network code, thanks to Akka.Remote. You’ve seen how 
to abstract away the network and focus on the core business logic in your applications without 
adding communication code. 

8.4. ELASTIC SCALE ACROSS MACHINES  

A reactive architecture remains responsive even if the system is under a significantly increased 
load. In chapter 7, you saw how to use Akka.NET’s routers to pool computational resources and 
treat that pool of resources as a single actor, leading to higher message throughput by running 
more than one processing stage simultaneously. This allows the processing of multiple messages 
concurrently while also maintaining the thread safety that Akka.NET provides. Concurrent 
processing makes the most of the multiple cores and threading capabilities of modern 
processors. But you’ll still hit a limit of what you can do on one machine. 

For example, many applications attempt to brute-force a solution to a problem by running the 
same code with different inputs. If you have millions of potential inputs, you’re unlikely to have 
a CPU capable of running all of these actors simultaneously. You’re also likely to encounter 
other limitations on a single machine. The work that actors are doing might be heavily reliant on 
memory usage, and running lots of actors simultaneously might lead to slowdowns due to a lack 
of available RAM. Alternatively, actors might be doing a lot of network-related work and 
downloading large files to disk, reaching a point where the network connection becomes a 
bottleneck. 

You’ve seen how easy Akka.NET makes it to communicate with actors running on remote 
machines, but it’s also possible to configure routers so that they use multiple external actor 
systems for the routees in a pool or a group of actors (see figure 8.5, where actors systems A, B, 
and C are running on different machines). This combines all the benefits of routers, such as 
different routing strategies, high throughput, and more, with the ability of actor systems to get 
around the limits imposed by a single machine. 
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Figure 8.5. A router can be configured to use other independent actor systems as hosts for routees. 

 

8.4.1. Configuring a router to use multiple machines 

In chapter 7, you saw that there are two main types of routers: group routers, which deal with 
already deployed actor instances; and pool routers, which deploy the correct number of routees. 
Both router groups and pools can be used with Akka.Remote’s routing strategies. 

With Akka.Remote, the simplest routing technique is using group routers, which use actors that 
already exist and build routing capabilities on top of them. To create a group router, you provide 
a number of addresses that the router should treat as its routees. Because you can communicate 
with remote actors using the same address patterns covered previously, you can supply remote 
addresses to a group router and it will route messages over the network to actors on remote 
actor systems. In the following example, you create a new round-robin router with code to direct 
messages to both local actors and those running in a remote actor system: 

var roundRobinGroup = 

    new RoundRobinGroup( 

        "akka.tcp://RemoteSystem@localhost:8081/user/greeter", 

        "akka://LocalSystem/user/greeter"); 

But hardcoding remote network addresses into the assembly may not be the most practical 
solution, especially if IP addresses might change on a per-deployment basis. In these situations, 
it might be better to provide routees using HOCON configuration, supplying the routee paths at 
runtime rather than at compile time. In the following example, you configure the same round-
robin group router with HOCON in the same way as in chapter 7: 
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akka.actor.deployment { 

    /greeterRouter { 

        router = round-robin-group 

        routees.paths = [ 

            "akka.tcp://RemoteSystem@localhost:8081/user/greeter", 

            "akka://LocalSystem/user/greeter" ] 

    } 

} 

Although the group router is ideal for cases where actors already exist in the system, you may 
want to deploy actors as part of the router. Combining the pool router’s ability to deploy routees 
with the remote deployment capabilities of Akka.Remote provides automatic management of 
routees across actor systems. When using pool routers with HOCON configuration, in addition 
to specifying the required information for the given router, you also need to specify the actor 
system addresses that the router should use to deploy routees. Here, you configure a round-
robin pool to use two actor systems, one remote and one local: 

var addresses = 

    new List<Address> { 

        new Address("akka", "LocalSystem"), 

        Address.Parse("akka.tcp://RemoteSystem:@localhost:8081") 

    }; 

 

var roundRobinPool = 

    new RemoteRouterConfig( 

        new RoundRobinPool(5), 

        addresses); 

You can also configure a remote router in code in the actor system, but that imposes underlying 
knowledge of the fact that remoting is being used, thus breaking location transparency. To use a 
remote router pool in code, you first create a RemoteRouterConfigthat draws in the addresses of 
the actor systems, onto which you can deploy the routees along with the router pool class. For 
example, if you want to use code to create the same round-robin pool as the preceding example, 
you can write the following, which handles the remote deployment: 

akka.actor.deployment { 

    /greeterRouter { 

        router = round-robin-pool 

        nr-of-instances = 5 
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        target.nodes = [ 

            "akka.tcp://RemoteSystem@localhost:8081/user/greeter", 

            "akka://LocalSystem/user/greeter" 

        ] 

    } 

} 

Remote router drawbacks 

Although the majority of routers work well with remoting, some don’t make the most of network 
scale-out opportunities. One example of this is the smallest-mailbox router: local routees take 
priority over remote routees because the router doesn’t know the sizes of the remote mailboxes. In 
the event that you’ll be scaling out a smallest-mailbox router, the round-robin router is likely to 
provide better service. 

This approach conforms to the notion of location transparency, and applications can be scaled 
out onto vast numbers of actor systems with no changes needed to the assemblies themselves. 
Using routers allows you to parallelize and increase workloads further than you might be able to 
on a single machine. 

8.4.2. Wrapping up 

In this section, you’ve seen three ways to scale across machines. The simplest way is using group 
routers, which use actors that already exist and build routing capabilities on top of them. You 
can provide routees using HOCON configuration, supplying the routee paths at runtime. And 
you can configure a remote router in code, using a RemoteRouterConfig. 

8.5. FAILURE HANDLING ACROSS MACHINES  

Distributing work across a network provides a wide variety of benefits, but it also brings all the 
complexities associated with network programming, problems you never encounter when 
running your applications on a single machine. Machine connections are typically via Ethernet 
over distances ranging from a few centimeters to several kilometers and even thousands of 
kilometers. This distance may not seem that far, but it drastically limits the speed at which data 
can travel between machines and introduces latency. Although latency in itself isn’t a problem, 
when you need lots of coordination—for example, when dealing with shared mutable state—it 
can lead to significant problems. Although shared mutable state is fortunately not an issue with 
Akka.NET thanks to the actor model, plenty of other difficulties arise. 

Unfortunately, the distance between machines also poses other problems. When multiple 
processor cores pass data between themselves, the distance is in the range of several 
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nanometers, giving little opportunity for data corruption. But when network connections span 
kilometers, there’s the potential for message corruption to occur, for several reasons. It may be 
something as simple as someone cutting the network connection; or it may be more-complex 
reasons such as environmental factors influencing data flow; for example, magnetic or 
electromagnetic fields causing corruption, or the signal becoming attenuated or distorted over 
long distances. 

The errors don’t stop at the physical network connection; there’s also a significant amount of 
infrastructure between the physical network connection and your application. There are routers 
and switches designed to ensure packets reach their intended destination, networking interfaces 
on the application host and the drivers that interface the hardware with the OS, and then the OS 
itself. These aren’t likely to be perfect, and a bug in any component along the chain could cause 
significant propagating failures. Even if there were no bugs along the chain, you could still 
experience packet loss caused by network congestion. If you send too much data through a 
single connection, and it’s unable to handle the load, it has only one option: dropping packets to 
prevent cascading failures. 

You also need to consider the variance associated with packet latency through a network. Given 
the vast number of components between the application and the network connection, there’s 
plenty of opportunity for an OS to perform an operation it deems to be more important than 
receiving a packet of data through the network, causing a delay in message processing. Network 
congestion can result in packets in the queue waiting to be processed by the OS; packets at the 
back of the queue will encounter delays. These potential latencies make it impossible to 
effectively calculate the expected latency for a given operation. 

Between latency issues and packet loss, it’s incredibly difficult to ensure that your distributed 
applications can withstand failures across a network, and to use many of the components you 
take for granted on a day-to-day basis. Because of latency issues, it’s impossible to synchronize 
two independent machines with the same time. When there’s packet loss, it’s impossible to 
know the current state of a remote machine at any point in time. 

When we discussed failure handling earlier in the book, you saw how to handle message loss 
across an unreliable channel, a must for systems that can’t tolerate message loss. Akka.NET 
employs actor supervision, which provides isolation of errors and automated recovery from 
these errors. In many typical distributed applications, these are all issues you need to consider, 
along with how they might affect the safety and stability of the network. Fortunately, when using 
Akka.Remote, you can mitigate the effects of some of these failures so that you can more easily 
develop location-transparent applications. Thanks to features such as remote deployment and 
monitoring of actors, you can continue to use Akka.NET’s fault-tolerance patterns, and continue 
to build truly responsive applications. 

8.5.1. Supervisor strategies across a network 

You’ve seen that actors aren’t deployed independently, but as part of a larger hierarchy of actors 
with a supervision tree. Parent actors watch their children for failures, and if an error is raised, 
parents respond to it in the appropriate manner. Even when you deploy an actor onto a remote 
node as a child of a local node, you can retain this error-handling functionality so that you can 
build fault-tolerant applications that scale across a network. 

www.EBooksWorld.ir



Earlier in this chapter, you saw that you can specify an actor path to deploy an actor onto a 
remote actor system. If the deployed actor is the child of an actor in the local actor system, then 
it’s supervised by a proxy actor on the remote node. In the examples you saw earlier in which 
you deployed an actor onto a remote node, a proxy supervisor cared for the remote actor. Figure 

8.6 shows how this looks in the actor system, which remains transparent to the developer. 

Figure 8.6. Remote children are deployed with a proxy that’s responsible for supervision and handling any errors that may occur. 

 

Using remote supervision actors creates the additional possibility of losing location 
transparency. You communicate with actors by means of their addresses. An address provides 
some context regarding the actor’s deployment in the hierarchy. With remote supervision, these 
values diverge due to the addressing system. In figure 8.6, although the remote child actor’s 
location in the hierarchy is directly below the parent actor system A, its contact address shows 
the remote supervision actor instead of actor system A. Therefore, 
calling Context.Path.Parent and Context.Parent on a remotely deployed actor will return 
different results. 

8.5.2. Remoting DeathWatch 

You’ve seen that DeathWatch is used as a means of watching actors for failures, or for detecting 
completion when using the reaper pattern. Because Akka.Remote provides remote failure 
detection, you can use DeathWatch on remote actors, and also receive information about the 
source of failures. 

You use DeathWatch to target a remote actor the same way as when you target a local actor, 
with Context.Watch. You also receive a Terminated message, exactly as if the remote actor was 
running locally, but there’s even more useful information encoded in the message. In addition to 
the actor reference relating to the watched actor, you also receive two pieces of information 
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designed to help diagnose the source of failure: ExistenceConfirmed and AddressTerminated. By 
observing the status of these properties, you can determine whether the Terminated message 
originated from the remote node or from the Akka.NET remote failure detector. If the message 
has the AddressTerminated property set to true, then the message means that the remote actor 
system is no longer responding to health checks. The Existence-Confirmed property helps 
determine whether the remote actor itself reported its failure, or if the failure resulted from an 
inability to resolve a reference to the actor. 

In the same way you use supervision strategies across a network, you can use the DeathWatch 
concepts you saw earlier. You do need to be cautious when using a network connection, because 
there’s a higher possibility of failures occurring. But by using the data you receive in 
the Terminated message, you can make better decisions about the status of a remote actor. 

8.5.3. Wrapping up 

Using a network presents opportunities for a wide range of problems to occur at various points 
up the technology stack. But with Akka.NET, you can use the same tooling you use with a single 
actor system across multiple actor systems. Failure becomes more likely as the number of 
running machines increases, so it’s important that you consider failure early when designing 
networked applications. You’ve seen the benefits of the supervision system used in Akka.NET 
earlier in the book, but thanks to Akka.Remote, you can continue to create applications that are 
fault tolerant even when an unreliable network is involved. 

8.6. AKKA.REMOTE SECURITY  

The remoting functionality of Akka.NET is designed to work in a peer-to-peer environment, 
where every connected actor system has the same level of privileges. This typically means that 
the actor systems are joined together on a private internal network, accessible only to the 
machines running the actor system instances. It’s typical to see an approach similar to that 
shown in figure 8.7, where actor systems listen on a port that’s only accessible to machines in 
their network, and provide gateway entry into the actor systems through an HTTP API, 
WebSockets, or even raw sockets. 
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Figure 8.7. A typical Akka.NET actor system won’t be exposed to the public internet and will instead stay in a private network, 

accessible through a gateway. 

 

But there are still security considerations that need to be taken into account, and even more so 
when you open your application to the whole world. This might be the case if you have an actor 
system instance running on a client’s machine, which needs to communicate with your hosted 
actor system. This could provide a means of entry into the actor system that malicious entities 
could exploit. Because the remoting functionality of Akka.NET is designed for use as a low-level 
communication layer, you need to ensure that the applications you build take security into 
account. 

8.6.1. Limiting messages that can be sent over the network 

When you send a message over the network, it’s serialized into a binary representation that is 
then deserialized into the in-memory message. There’s no validation of the original sender of the 
message, so it’s possible for an attacker to construct a message payload with a dangerous 
message, which is then sent to the target actor system. Depending on the message, this could 
have severe consequences on the stability of the application. 

An example of a dangerous message is the PoisonPill, which tells Akka.NET to shut down an 
actor. If this was sent over the network to the root actor supervisor at the top of the actor 
hierarchy, it would shut down every actor in the system immediately. 
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In Akka.NET, you can specify that a message type could be harmful to an actor system by 
making the message implement the IPossiblyHarmful interface. When Akka.Remote 
deserializes a message from outside the system that implements the IPossiblyHarmfulinterface, 
the message will be discarded. But if the message originates from within the same actor system, 
then it will be passed through to the target as intended. A number of the messages in Akka.NET 
implement the IPossiblyHarmful interface, notably, 
the PoisonPill, Kill, ReceiveTimeout, and Terminated messages. In the following example, you 
create a new message type that’s used to delete a record from a database. This is something you 
don’t want a client to send to the application, and it should instead only be sent from within the 
same actor system. To ensure this happens, the message implements 
the IPossiblyHarmful interface: 

public class DeleteAccount : IPossiblyHarmful 

{ 

    private readonly string _accountId; 

    public string AccountId { get { return _accountId; } } 

 

    public DeleteAccount(string accountId) 

    { 

        _accountId = accountId; 

    } 

} 

Sandboxing messages to a single actor system is a good start in terms of security, as it allows you 
to significantly limit the impact a client can have on a running actor system, whether that client 
is a regular user with good intentions or a malicious user intending to compromise the system. 

8.6.2. Restricting available remote actor targets 

By restricting certain message types from being sent over the network, you can reduce the 
potential for damage to your actor system. But there are certain messages that might be 
harmful, but in a different context, that you do want to send over the network to remote actor 
systems. For example, the actor hierarchy might be laid out so that individual actors are scoped 
to a single customer. In this case, you don’t want an unauthorized entity to be able to send a 
message to that customer’s information, leading to a data breach or malicious attacks against 
that customer’s data. This modeling of customer information might be like the actor hierarchy 
shown in figure 8.8. Here, each customer has a unique identifier in which an actor’s name is 
based on that customer identifier. The customer actors share a common parent: 
the Customers actor. 
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Figure 8.8. An actor hierarchy may contain sensitive customer information, so you need to prevent users from retrieving data from 

Customer2 if the data belongs to Customer1. 

 

Typically, once a client has authenticated and your system has information relating to the 
customer account they belong to, the actor system can communicate with either the scoped 
customer account actor or one of its children for specific services. But a malicious user could 
change the request to direct it to a different user account, and there’s nothing you can do to 
prevent that. Instead, in Akka.NET, you can specify that only certain paths can be contacted 
over a network. With this technique, you can create an authorization actor whose sole 
responsibility is to act as a receptionist in the remote node. All messages are passed through this 
actor, which then performs authorization to verify that a user has the correct privileges to 
communicate with a given target. 

You can design such a system of authorization by wrapping all messages in a custom 
authorization message that contains an authentication token,[1] an actor target, and a payload. 
When you send a message across a remote connection, wrap it in this message: 

1 

There are many options available for generating authentication tokens. One example is a JSON Web Token (JWT) that’s created by an 

identity service elsewhere in the system. Such a service is out of the scope of this example, but a common choice for an identity 

service is the IdentityServer project (https://github.com/-IdentityServer/IdentityServer4) or Azure Active Directory 

(https://azure.microsoft.com/en-us/services/-active-directory/). 

public class AuthenticatedMessageEnvelope 

{ 

    private readonly object _payload; 

    private readonly IActorRef _targetActor; 

    private readonly string _authenticationToken; 
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    public object Payload { get { return _payload; } } 

    public IActorRef TargetActor { get { return _targetActor; } } 

    public string AuthenticationToken 

        { get { return _authenticationToken; } } 

 

    public AuthenticatedMessageEnvelope(object payload, 

                                        IActorRef targetActor, 

                                        string authenticationToken) 

    { 

        _payload = payload; 

        _targetActor = targetActor; 

        _authenticationToken = authenticationToken; 

    } 

} 

You also need to create an authorization actor in the remote actor system whose responsibility is 
to authorize incoming requests before forwarding messages to targets. When the authorization 
actor receives a message, it validates that the given token is authorized to communicate with the 
provided actor address. If it is, the message is forwarded to the intended destination, as shown 
in the sample code below. Here you use a feature for sending messages that you haven’t seen yet, 
the Forward method. Typically, when you send a message, you use the Send method, which uses 
the address of the sending actor. The Forwardmethod, however, not only sends a message, but 
also uses the address of the original sending actor. This means that the target doesn’t know that 
the message was handled at an intermediary stage: 

public class SystemReceptionist : ReceiveActor 

{ 

    public SystemReceptionist() 

    { 

        Receive<AuthenticatedMessageEnvelope>(env => 

        { 

            if (IsAuthorised(env.AuthenticationToken)) 

            { 

                env.TargetActor.Forward(env.Payload); 

            } 

        }); 
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    } 

 

    private bool IsAuthorised(string authToken) 

    { 

        //This is only sample code 

        //A production application should verify the authToken 

        //And only return true if the authToken is valid 

        return true; 

    } 

} 

You also need to add a setting to your HOCON configuration, which specifies that the only path 
accessible over a remote connection is your authorization actor. Assuming you’ve deployed that 
actor at the address "/user/authorization", you can modify HOCON to only allow messages to 
be sent to this path over the remote connection. You modify the trusted-selection-
paths element of the akka.remote configuration element and supply a list of all possible paths. 
In this case, you create a list containing the path to your authorization actor: 

akka.remote { 

    trusted-selection-paths = ["/user/authorization"] 

} 

Now, when someone wants to send a message over the network to the remote actor system, the 
message is wrapped in an envelope and sent to the authorization actor, which unwraps it, 
authorizes it, and sends it to the correct target. By defining which actor paths are accessible to 
the outside world, you effectively reduce the surface area an attacker can access. With the same 
techniques, you can enable authorization to prevent interference between customers. 

8.6.3. Wrapping up 

When you develop an application, it’s imperative that you consider the security implications of 
any features you add. When you have an actor system that contains all of your customer data, 
it’s vital that you effectively secure it. By using the features you’ve seen in this section, you can 
reduce the possibility that an attacker can compromise your applications. 

8.7. CASE STUDY: REMOTING, NETWORK APPLICATIONS, WEB SERVER, AND BACKEND 

SERVER 

As application requirements and functionality grow, so do the teams who are responsible for 
their development. As these teams grow, they’re inevitably partitioned into smaller sub-teams, 
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with each team focusing on a specific piece of functionality in the greater application. 
Eventually, though, development reaches a stage where the independent teams need to work 
towards integrating the components to complete the product. 

In this chapter, you saw how you can take multiple independent Akka.NET actor systems and 
connect them together, while treating the actors on remote actor systems as though they’re local, 
all made possible by the location transparency provided by Akka.NET remoting. In figure 8.9, 
you can see how to connect two independent components of an enterprise application, which 
enables the actors on one actor system to appear in the other, and vice versa. This simplifies the 
integration period between components, as it treats the remote component as an extension of 
the original component, which is accomplished without requiring any additional tooling 
between the two. 

Figure 8.9. Integrations are usually complex, requiring large amounts of custom logic. By developing each integration as an individual 

application, you’re able to dedicate resources to it, while Akka.NET remoting allows you to bring the integrations into the core 

application. 

 

By using the remoting capabilities of Akka.NET, you can simplify the integration of applications 
created by other teams, allowing you to focus on the development of the core business logic that 
powers the application rather than the tedium of application integration. 

SUMMARY  

In this chapter, you learned 

• How to join two actor systems to compose a larger system 
• How to create secure actor systems using authorization actors 
• How to create scalable systems across a network 
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Part 3. Real-life usage 

Part 3 wraps up the book by offering real-world case studies and implementations. Chapter 9 is 
focused on testing, from designing unit tests for functionality to verifying the functionality of 
distributed actor systems through multinode tests. Chapter 10 helps you integrate Akka.NET 
with custom protocols, focusing on sending and receiving data, integrating real-time connection 
mechanisms, and adding web APIs to allow communication with actor systems. Chapter 

11 teaches how to add a persistent backing data store to an actor to save its state, with a focus on 
developing evolvable applications using Akka.Persistence and event sourcing. Chapter 12 utilizes 
Akka.Cluster to create elastic and scalable actor systems that span multiple machines. And, 
finally, chapter 13 is an end-to-end case study that will allow you to implement everything you’ve 
learned while programming one real-world production problem. 
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Chapter 9. Testing Akka.NET actors 

This chapter covers 

• Designing unit tests to verify the functionality of individual actors 
• Testing the interaction between multiple actors 
• Verifying functionality with multinode tests 

Throughout the book, you’ve seen that the outcome of applying the Reactive Manifesto to 
application design is a better UX. The services and applications you build should remain 
responsive even in the face of failure or scalability issues. Your goal is to provide the best 
possible experience to users and ensure they’re happy when using your applications, but this 
entails more than maintaining responsiveness. You want them to use the application to its full 
potential without facing bugs and other issues. 

An e-commerce website can experience spikes in traffic that create significant stress on services, 
possibly leading to failure. You can prepare for increased load to ensure that users are able to 
make purchases during traffic spikes. But even if you’ve built a system that scales up well, there 
still may be scenarios that prevent users from making a purchase. For example, users add items 
to their shopping carts before going through a checkout to complete their purchase, but if there’s 
a bug in the logic powering the shopping cart service, the process fails, leading to frustration and 
lost sales. 

To prevent these issues, we typically write tests that exercise the system with input data and 
validate that the data output from the system matches the expected values. Testing plays a key 
role at all stages of the software-development lifecycle, and a number of testing techniques can 
be used, depending on the functionality that needs to be tested. 

Testing types can be generalized into one of three categories: end-to-end, behavioral, and unit 
tests. Each stage of testing relates to the level of depth to which you want to validate the 
functionality of the system.[1] Each stage goes progressively deeper into the system, starting from 
a black-box implementation of the system and using it as a user might (for example, through a 
UI or a web API), progressing down to the individual components of the system, and validating 
the business logic contained in each component. 

1 

This book doesn’t go into software testing and quality assurance in depth. This chapter provides an overview of the basics of unit 

testing. For a more in-depth discussion, see The Art of Unit Testing, 2nd edition (Manning, 2013) and Specification by 

Example (Manning, 2011). 

Applications include areas of complex logic isolated within components. For example, a 
shopping cart service may have some logic that applies a discount to the items in the cart when a 
voucher is applied to the purchase. This sort of logic is important from a business perspective in 
that it acts as a way to attract new customers to the site, but you need to ensure that the discount 
is applied only when conditions are met, to prevent the company from losing money. You should 
write a number of tests that cover this logic and validate the functionality of the component. Due 
to the potential for many inputs to this small component, you typically have many tests to cover 
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all possibilities. These are called unit testsbecause they test small, isolated units of functionality 
that are independent of the rest of the system. 

As these units grow toward becoming a complete system, they interact with other independent 
units required for a feature. In the shopping cart example, other components may interact with 
the discount calculation, such as a loyalty scheme that rewards the buyer for making purchases. 
In this case, there are two components working together: the discount and voucher application 
logic, and the logic for calculating the number of loyalty points the user is due to receive for a 
completed transaction. You have tests to verify the functionality of the independent 
components, and it’s also important to verify that they can operate together, and the requisite 
information is shared between them. These tests group together multiple components to test 
their integration, and thus are known as integration tests. 

Having tested the internal functionality of the feature, you also need to verify that it integrates 
with all the other components of the system, such as external web services and databases. To 
validate this, you write more tests that treat the system as a black box with no testing of the 
internals, and validate that the provided outputs match the expected outputs for a number of 
known inputs. Because these tests cover all aspects of the application, they’re called end-to-end 
tests. 

In this chapter, we’ll focus on how to effectively test the internals of applications written using 
Akka.NET by writing unit tests and integration tests that test either single actors or multiple 
groups of actors responsible for communicating with each other. Although end-to-end tests are 
still needed to completely validate functionality, they don’t require anything different from the 
current approaches to writing these tests. 

9.1. INTRODUCING AKKA.TESTKIT  

You saw back in chapter 3 how different the actor model is from the object-oriented architecture 
you’re used to in C#, leading to a different approach to writing tests. When you write a unit test 
for a typical C# class, it may look something like the next example, in which you’ll follow a 
typical three-stage approach to testing: arrange, act, and assert. You’ll first arrange all the data 
that will be used to validate the functionality; in this case, you’ll create variables to hold the 
input data and expected data, and create an instance of the system under test, with its 
dependencies. Next, you’ll supply the system under test with input data and receive output from 
it, which supplies you with the actual value that the system has computed. Finally, you’ll assert 
that the data retrieved from the system under test matches the data you expect. Although this 
test is limited, it follows a pattern you’ll see in more-complex examples: 

[Fact] 

public void TheCartContainsAProductAfterAddingIt() 

{ 

    var expectedProduct = 

        new Product { Category = "Homeware", 

                      Price = 3.52M, 
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                      SKU = "01222456" }; 

 

    var shoppingCart = new ShoppingCart(); 

 

    shoppingCart.AddItemToCart(expectedProduct); 

 

    Assert.Contains(expectedProduct, shoppingCart.Products); 

} 

This example focuses on the data supplied as a result of calling a method, but there are many 
other techniques you can use to validate system functionality, including checking the object’s 
state and validating that its new value matches the expected outcome. Sometimes, you may need 
to rely on introspection of the object and validate that its internal data matches some expected 
value. 

But as you saw in chapter 3, there are two key differences between the actor model’s approach to 
componentization and the typical object-oriented approach. In the actor model, you don’t have 
access to the actor’s internal state; and every operation in Akka.NET is designed to work 
asynchronously. Both present a challenge when you test components, if these components are 
actors. 

In the discussion of the unit test example, you saw that you may need to verify that the object 
has updated its internal state, depending on the method being called. But in the actor model, 
actors encapsulate all their state and don’t allow outside access to it. When you create an 
instance of an actor in Akka.NET, you don’t even have a direct reference to the actor itself: you 
have an address that you send messages to. These messages are routed to the actor’s location in 
memory. This means that when you use commonly available unit-testing tooling, you can’t 
validate that an actor’s state has been updated. 

Actors communicate through message passing. In the actor system, operations happen 
asynchronously and will execute when the scheduler picks up a message. This means that the 
unit-testing technique used in the example won’t work, and instead you have a scheduler route 
messages to the relevant processing logic. Finally, you need to consider the effect that time may 
have on your tests. When you’re validating logic, the environment in which the tests are running 
may be an important factor in determining whether tests will pass or fail as a result of timing 
inconsistencies. 

The Akka.TestKit package provides effective tooling to help ease the problems we’ve discussed. 
The testing tooling isn’t designed to completely replace your existing test tools, but is designed 
to work alongside them so that your existing tooling is able to test all actors or compositions of 
actors. A number of adapters are available that allow Akka.TestKit tooling to work with many of 
the most common unit-testing frameworks, such as NUnit, xUnit, and MSTest. Akka.TestKit 
provides an implementation of ActorSystem, which is responsible for scheduling execution and 
routing messages and is designed to handle the difficulties discussed in this section. 
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We’ll explore features that can help you more effectively test actor implementations: spawning 
test actors that allow you to introspect an actor reference and see its internal state, and running 
tests on a single thread, thus preventing race conditions. Throughout the rest of this chapter, 
we’ll explore some of the other functionality provided by Akka.TestKit and how you can test 
typical scenarios as you develop actor applications with Akka.NET. 

Installing Akka.TestKit 

Akka.TestKit is installed in the same way as you installed previous packages, through NuGet. A 
number of Akka.TestKit packages are available that contain adapters to interoperate with 
numerous supported unit-testing frameworks. It’s important to include Akka.TestKit; otherwise, 
certain functionality won’t be available, such as asserting certain behavior. 

9.2. UNIT TESTING ACTORS 

You’ve seen two concepts relating to testing actors: unit testing your actors to verify their 
functionality when sending them a message, and integration testing your actors by verifying that 
message-passing components work together and messages are sent correctly. In this section, 
we’ll look how to use Akka.TestKit to verify the behaviors associated with actors. Throughout 
this section, you’ll use the xUnit test runner, but the same concepts apply to other adapters; the 
only changes you’ll need to make will relate to, for example, asserts that depend on the chosen 
testing framework. The reasoning for using the xUnit runner will become apparent later in the 
chapter when we look at other testing methodologies in Akka.NET. 

This section focuses on unit testing actors, particularly when you want to test their internal 
business logic and validate that they correctly respond to messages. To do this in a deterministic 
manner, Akka.TestKit can spawn new actors and run them through a single-threaded scheduler 
that executes all the actors synchronously, thus avoiding the issue of how time might affect your 
tests. Throughout this section, you’ll learn more about the benefits these features bring. 

9.2.1. Spawning test actors 

Throughout the book, you’ve seen that actors should be designed to operate on the smallest unit 
of concurrency possible for that component. This is likely to contain some amount of business 
logic as part of the application, which needs to be verified as correct. In the shopping cart 
example in the previous section, you might have one shopping cart per user session as they 
browse the e-commerce site. You might choose to represent them as an actor instance per cart. 
This means that you’re going to have some logic involved when performing operations such as 
adding new items to the cart. In this case, you need to validate that the item is in the cart after 
it’s been added. You might also have an option to apply a discount code that leads to an updated 
price for the items in the cart. 

As you aim to provide a great UX, you want to ensure that these pieces of functionality work 
smoothly. To prove that they work as expected, you create an actor and send it messages similar 
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to those that it might receive in real-world usage. Akka.TestKit allows you to spawn a new form 
of an actor reference. So far, you’ve seen local actor references and remote actor references; 
now, you’ll spawn test-actor references, which are specialized for use in testing, as shown 
in figure 9.1. 

Figure 9.1. Test-actor references allow you to inspect actor state to verify an actor behaves as expected when it receives a message. 

 

For example, if you have an actor for the checkout, you need to write a test to validate that when 
it receives a message telling it to add a given quantity of an item, the checkout updates correctly 
to reflect that. You can retrieve a test actor by creating an instance of TestActorRef, as in the 
following example. TestActorRef requires no backing actor system through which messages are 
routed; instead, the receive-handler method of the actor is called when you send it a message: 

var testActorSystem = ActorSystem.Create("test"); 

var actor = 

    new TestActorRef<ShoppingCartActor>( 

        testActorSystem, 

        Props.Create<ShoppingCartActor>()); 

TestActorRef is designed to be a lightweight tool for testing the internal logic of receive 
handlers; you can write tests that exercise an actor’s logic and run the tests without the overhead 
of an actor system. You can quickly run tests on actors to validate that the functionality remains 
consistent even when you may end up refactoring the internal logic. But TestActorRef is 
synchronous in nature, limiting its testing potential. For example, some actor types rely on 
asynchronous communication to operate. Although the actors you’ve seen so far won’t have 
problems, the actors you’ll see in later chapters will prevent you from using synchronous tests. 

9.2.2. Validating internal data 

In the example already considered of unit testing an actor, the assertion was that its internal 
state was updated after it received a message. But the actor model guarantees that you can’t see 
the internal state, providing a level of safety by preventing concurrency issues. One difference 
between TestActorRef and the other actor references you’ve seen so far is the ability to retrieve 
the actor instance that the reference is pointing to. This allows you to access fields and 
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properties stored in the actor instance. Accessing an actor is simply a matter of calling 
the UnderlyingActor property on TestActorRef. This returns an instance of the actor object and 
allows you to use it as a regular instance and access data or call methods on it. In the following 
example, you retrieve the underlying actor instance for the shopping cart actor reference you 
created earlier: 

var underlyingActor = actor.UnderlyingActor; 

By having access to the underlying actor instance, you can perform assertions on the internal 
state and validate that the state has correctly updated. In the next example, you see a test that 
sends a message to the actor reference and then validates that the actor’s state has been updated 
to the correct number of items. Thanks to the synchronous nature of TestActorRef, you can 
access the state immediately after sending the message. If you were writing tests in an 
asynchronous manner, then you would have to implement some means of periodically checking 
whether the state has been updated, leading to a certain amount of nondeterminism, which is 
not what you want when writing test code. 

 [Fact] 

public void TheCartAcceptsAProduct() 

{ 

    var testProduct = 

        new Product 

        { 

            Category = "Homeware", 

            Price = 9.99M, 

            SKU = "0122224678" 

        }; 

    var testActorSystem = ActorSystem.Create("test"); 

    var actor = 

        new TestActorRef<ShoppingCartActor>( 

            testActorSystem, 

            Props.Create<ShoppingCartActor>()); 

    var underlyingActor = actor.UnderlyingActor; 

 

    actor.Tell(new AddProductToCart(testProduct, 1)); 

 

    Assert.Contains(testProduct, underlyingActor.Products); 

} 
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As this example shows, you can use your preferred unit-testing framework, meaning you can 
write any unit test in a process similar to how you currently write tests. You can work in the way 
that best suits the task at hand, whether that’s using tests to validate existing functionality, or 
writing tests first and then developing features. 

9.2.3. Testing FSMs 

In chapter 4, you saw the importance of finite state machines (FSMs) and how they enable you to 
more easily develop actors handling multiple states. You also saw the specific FSMActortype, 
which allows you to develop more-complex FSMs than you might typically manage using 
switchable behaviors. If you want to test these actors, Akka.TestKit provides a test actor 
designed to allow the validation of the actor’s current state: 

var testActorSystem = ActorSystem.Create("test"); 

var actor = new TestFSMRef<TurnstileActor, ITurnstileState, 

     ITurnstileData>(testActorSystem, Props.Create<TurnstileActor>()) 

In a way similar to how you generate the regular TestActorRef, you create TestFSMRef, passing 
in your FSMActor to test. In chapter 4, you created an FSM, which you used to control access 
through a turnstile barrier. Using the FSM test tooling in Akka.TestKit, you can create a test 
that’s responsible for validating the transitions in that FSM. For example, to ensure that the 
barrier doesn’t shut if you send it two messages of the same type in a short period of time, you 
can create a TestFSMRef with your TicketBarrierActor and start sending it messages. 

Having sent the actor a message, you can access extended properties in the 
FSM. TestFSMRefprovides two core properties, StateName, which is used to uniquely identify the 
possible states, and StateData, which is where the states can pass data between states. With 
these properties, you can validate that your internal logic is functioning correctly when you send 
a message to the actor. In the following example, you’ll send the TestFSMRef the same message 
twice and validate that the state remains Unlocked: 

var expectedState = Unlocked.Instance; 

var testActorSystem = ActorSystem.Create("test"); 

var actor = new TestFSMRef<TurnstileActor, 

     ITurnstileState,ITurnstileData>testActorSystem, 

     Props.Create<TurnstileActor>()); 

 

actor.Tell(new TicketValidated()); 

actor.Tell(new TicketValidated()); 

 

Assert.Equal(expectedState, actor.StateName); 
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Being able to see the internal state of the FSM in the actor is a powerful means of testing the 
complex state machines you may deal with when you create a greater number of more involved 
actors with many states. It provides significant benefits over the simpler receive-handler 
approach with its limited potential for validating the current receive handler. 

9.2.4. Wrapping up 

Because many of your actors will feature some internal business logic, the TestActorRefunit 
tests allow for significantly lower overhead. This ensures that you can write sufficient tests to 
validate that the internal logic of your actors works as expected. 

9.3. INTEGRATION TESTING ACTORS  

Although it’s important to test the logic of each actor in the system independently to validate 
their functionality, you also need to test how actors interact with each other. Due to the 
asynchronous nature of the message-passing architecture, you can’t rely on the synchronous 
testing framework you saw previously; you need to work with a dedicated asynchronous testing 
framework. Akka.TestKit provides such a tool to spin up a lightweight test-actor system with an 
increased number of inspection points to assert that your actors are communicating correctly. In 
this section, you’ll see how to write tests to validate that when an actor receives a message, it 
sends the message to the correct target. 

9.3.1. Creating test specifications 

To write an integration test, you need to create a specification that provides tools you can use to 
validate messages sent through the actor system. With Akka.TestKit, you have a test-actor 
system that allows you to spawn an actor just as you would with a normal actor system, and you 
have tools to validate successful message passing. We’ll explore these features in more depth 
throughout the rest of the chapter. 

To create a specification, create a class that inherits from the TestKit class in Akka.TestKit. Any 
tests you write that use the actor system should inherit from this class. Tests are then specified 
by creating methods that are marked with the test attribute for your unit-testing framework of 
choice. For example, in the case of xUnit, which you’ll use throughout this chapter, you need to 
mark your test methods with the Fact attribute. The following example shows how to define a 
simple test. Once the project containing the test code is compiled, the test runner for your unit-
testing tool will detect the tests and run them: 

public class ShoppingCartIntegrationTesting : TestKit 

{ 

    [Fact] 

    public void PricingEngineComputesCorrectPriceForAShoppingCart() 

    { 
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    } 

} 

Once you have the test infrastructure in place, you can write some tests. First, you need an actor 
system to spawn an actor. The Akka specification class provides an actor system through 
the Sys property on the base class. This actor system works in the same way as the actor systems 
you’ve seen, and allows you to perform common operations such as spawning actors with Props. 

var pricingActor = Sys.ActorOf<PricingActor>(); 

var shoppingCartActor = 

    Sys.ActorOf(Props.Create<ShoppingCartActor>(pricingActor)); 

Having spawned a test actor, you can use it to send messages and communicate with other 
actors. Throughout the rest of this section, you’ll see how to verify the messages the test actor 
sends. 

9.3.2. Asserting message responses 

When your test actor sends a message, its processing logic will be invoked by the host actor 
system, and you can observe its external effects. Typically, you expect to receive a message in 
response to your test actor’s message, as shown in figure 9.2. In the case of the shopping cart 
actor, you may want to show the total cost on a web page. This means the actor needs to 
communicate with the shopping cart actor and retrieve the total. Your test actor can send a 
message that asks for the total and have the shopping cart actor respond to this message by 
sending a message back. 

Figure 9.2. Test probes allow you to verify that actors are receiving the correct messages in response to their requests. 
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You need to test that the target actor is correctly operating in its environment by communicating 
back to the requesting actor. As part of the integration testing, you don’t get to see the internals 
of the target actor; instead, you have a black-box system, meaning you can only observe the 
system’s inputs and outputs. As part of the specification you wrote earlier, in addition to the 
test-actor system, you also have methods that are used to set expectations of what messages 
should be received before a timeout. If the test actor sends a GetCartOverview message, it 
expects a CartOverview message in response. To verify this with Akka.TestKit, use 
the ExpectMsg method on the object. You also need to specify a timeout. If TestKit receives the 
supplied message, then the test passes. Otherwise, the test fails, and the test runner will pick it 
up. In the following example, you assert that when the test actor sends a request to calculate the 
shopping cart total, the shopping cart actor returns a response that matches what you expect. In 
this case, after having sent two messages to store a product in the shopping cart, the total should 
come to 19.98: 

var product = 

    new Product 

    { 

        Category = "Homeware", 

        Price = 9.99M, 

        SKU = "1231214643" 

    }; 

 

shoppingCartActor.Tell(new AddProductToCart(product, 2)); 

shoppingCartActor.Tell(new GetCartOverview()); 

 

ExpectMsg(new CartOverview(1, 19.98M)); 

As you build complex actor systems, you’re likely to see different patterns of communication 
between actors. TestKit provides a number of alternative assertions you can make on received 
messages. The previous example expected a message that was the same as the one provided, but 
sometimes you need to validate that the received message is of a given type, and you don’t care 
about its internals. This is useful in cases where you can’t deterministically compute the value in 
the sent message, but you do want to validate the existence of this message. For example, you 
may not care about computing the total for the shopping cart and may instead simply want to 
check that you receive a response. To do this, you use the generic form of ExpectMsg, which takes 
in the type as a generic parameter. 

You also can use a predicate to validate properties of the message. For example, it may contain a 
timestamp and a value, and if equality is implemented to include the timestamp, then you can’t 
get the granularity required to ensure that the important properties of the message match the 
expected values. If the message both matches the supplied type and passes the predicate, then 
the test passes; otherwise, it fails. 

ExpectMsg<CartOverview>(); 
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    ExpectMsg<CartOverview> (msg => 

    { 

        Assert.Equal (1, msg.ItemsCount); 

    }0; 

You might also expect many messages to be sent by the actor under test, for example, where it 
presents a stream of information to a calling actor in the case of a subscription. Alternatively, 
there may be a second actor performing some other action, also causing the actor under test to 
send more than one message. In either of these cases, you can specify that an actor should 
receive all of the messages supplied. This allows you to send multiple messages and perform 
multiple assertions simultaneously: 

ExpectMsgAllOf<CartOverview>( 

    new CartOverview(1, 19.98M), 

    new CartOverview(1, 9.99M)); 

There may also be times when you want to ensure that you receive one message within a set of 
messages. For example, you may be expecting a pseudorandom response that then opens up the 
option of receiving one message in a set range of messages: 

ExpectMsgAnyOf<CartOverview>( 

    new CartOverview(1, 9.99M), 

    new CartOverview(2, 14.98M)); 

The final assertion you’re likely to make is that your test actor shouldn’t receive a message at all 
in a given time period. For example, you saw in chapter 8 how to require authorization to access 
certain resources; if the test actor fails to provide credentials as it sends a request, no response is 
expected. This is handled through ExpectNoMsg, along with a timeout: 

ExpectNoMsg(TimeSpan.FromMilliseconds(2000.0)); 

These simple assertions cover most of the complex test cases you’re likely to encounter as you 
write integration tests for multiple actors by testing for message effects. 

9.3.3. Time-based testing 

Although the tests so far have simply asserted that your actor system can return a number of 
messages in a set period of time, you’re also likely to encounter scenarios where you have a fixed 
time in which you need a set number of things to happen. For example, it may be the case that 
an Akka.NET actor system sits in a much larger API that provides a service-level agreement that 
all operations will complete in a set period of time. In these cases, you need to ensure that the 
tests you write can either validate that these agreements are reachable or demonstrate that code 
changes are needed to bring the actual times in line with the expected times. You’re likely to be 
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making more than one call to a number of different actors, each responsible for a small 
component of the application. For example, in the e-commerce example, you have the simple 
shopping cart, but you’ll also have to deal with product-listing services, product--
recommendation services, search services, and potentially many more, which together create the 
shopping experience (see figure 9.3). 

Figure 9.3. A simple web page on an e-commerce site will communicate with a number of different services before presenting 

information to the user. It’s important to verify that all requests happen quickly. 

 

It’s important to know the impact that a large number of components will have on system 
responsiveness. For this purpose, TestKit provides an In block with a timeout for completing a 
number of steps. If the steps time out, the test fails, but if all the steps complete, the test passes. 
In the following example, you’ll integrate with some of the external services we considered 
earlier to build a response to present to the user. In this case, you’ll specify that a message sent 
to the shopping cart will produce a response in 2 seconds: 

In(TimeSpan.FromSeconds(2.0), () => 

{ 

 

    var product = 

        new Product 
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        { 

            Category = "Homeware", 

            Price = 9.99M, 

            SKU = "1231214643" 

        }; 

 

    shoppingCartActor.Tell(new AddProductToCart(product, 2)); 

    shoppingCartActor.Tell(new GetCartOverview()); 

 

    ExpectMsg<CartOverview>(); 

}); 

Many of the tests in the previous section have some degree of time sensitivity. Although these 
tests may succeed when run locally on a powerful development machine, if they’re run on a 
build server, they may time out due to a lack of available resources. To counter this, you can use 
dilated time spans instead of regular time spans, and provide a scaling factor in the actor 
system’s test configuration. With dilated time, the scale factor is pulled in from the 
configuration, and the timeout for each test component is updated. This allows for short 
timeouts on tests when running locally, as well as longer timeouts for build services that are 
shared with many other test runners. 

In(Dilated(TimeSpan.FromSeconds(2.0)), () => 

Once again, thanks to Akka.NET’s tooling, you can build products and services that customers 
enjoy using. In this case, you can accurately test the timing of communications between actors 
and validate a responsive UX, in line with the Manifesto. 

9.3.4. Test probes 

You’ve seen how to assert that the sending actor of a message receives a reply from a target 
actor, but you also want to validate that an actor under test sends the correct messages on to 
other targets. For example, you may need to validate that an actor forwards a message to 
another actor, or you may want to validate that for a given code path, an actor sends a new 
message to a target (see figure 9.4). 
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Figure 9.4. Test probes allow you to validate that even in complex actor flows, a named target receives the correct messages. 

 

In order to validate that alternative targets are able to receive messages, Akka.NET provides the 
notion of test probes. Test probes are IActorRefs that you can use to verify message reception, 
similar to the previous example, where you verified the requesting actor. To create a test probe 
actor, call the CreateTestProbe method, which returns a test probe. To integrate the test probe 
with other actors, you need access to the -IActorRef, which can be accessed using 
the Ref property on the test probe: 

var testProbe = CreateTestProbe(); 

From here, you can pass the test probe actor to other actors as a dependency and allow them to 
communicate with it. The actor under test has no knowledge that it’s communicating with a test 
actor, thus ensuring that the test environment is as close to the production environment as 
possible: 

var testProbeRef = testProbe.Ref; 

var cartActor = 

    Sys.ActorOf(Props.Create<ShoppingCartActor>(testProbeRef)); 

Now you can perform assertions on the test probe to validate that it has received messages as 
expected. You have access to all the assertions you saw at the start of this section, allowing you 
to assert receiving the correct message, message type, collection of messages, or no messages at 
all. But you’re not actually testing that it’s the original sender that’s receiving the message; 
instead, you’re testing an external actor: 

cartActor.Tell(new GetCartOverview()); 

testProbe.ExpectMsg<ComputeCartTotal>(); 
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Test probes are a powerful construct, allowing you to create more in-depth tests that cover large 
portions of the actor system hierarchy and ensure that actors in your system are correctly 
integrated and communicating. By using test probes, you can continue with black-box testing of 
the system, even when the black box relies on external actors. 

9.3.5. Wrapping up 

Many actors can be tested independently and proven to operate correctly on their own, but in a 
real-world system, there will be significant interaction between actors. As such, it’s important 
that you test a subset of your system to validate that the individual behaviors will cooperate in a 
production system without performance problems, such as messages timing out. 

9.4. TESTING DISTRIBUTED APPLICATIONS WITH MULTINODE TESTKIT  

So far, the tests you’ve seen have focused on testing actors that all run in the same actor system, 
but you should also test their functionality across a network. You saw in chapter 8 how to link 
two actor systems together with Akka.Remote and have them communicate over a network. You 
also saw how much potential for failure there is once you start to communicate over an 
unreliable channel such as a network. There’s potential for messages to arrive later than 
planned, in a corrupted state, out of the original sent order, or even not at all. These scenarios 
could lead to failure of the application or of core components in the system. You want to ensure 
that critical core components aren’t degraded as a result of such failures. In this section, we’ll 
look at how to inject failures at the transport level between two applications to more effectively 
test applications that are distributed over a network channel and ensure they maintain resiliency 
even in the event of uncontrollable failures. 

In the discussion on failure scenarios in chapter 6, you saw that unreliable channels are one such 
problem, and you also saw a possible solution. Although having a theoretical problem-solving 
plan is useful, you can prove that your plan works by testing it using the MultiNode TestKit. 
Testing across the network provides another means of ensuring that applications and systems 
work in edge cases. An example of where this level of testing is useful is distributed database 
design, where developers need to ensure that data remains consistent and error free even when 
faced with unanticipated bugs. You may not be writing databases yourself, but you do need to 
verify certain aspects of the systems you write, such as their ability to return valid data for 
99.9% of requests, a requirement that may typically be included in a service level agreement. 
High availability must be a core tenet of your system’s design. This means having redundant 
services in place to cope with failure and appropriate routing to deal with failures in the code. 
These tasks are an important part of any high-availability service and should be tested to ensure 
that they work and will handle network failure. 

In addition to the testing components you’ve seen so far, Akka.NET provides the MultiNode 
TestKit, a simple way of starting up multiple connected actor systems all running on the same 
machine, but communicating as though they were scattered across a network. Using assertions 
similar to those you saw earlier, you can verify that your actors continue to operate despite 
network difficulties. The examples you’ve seen so far on integration testing have focused on the 
xUnit test kit. This is because the MultiNode TestKit is an extension of the xUnit test kit, 
meaning that you must use xUnit as your testing library. 
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The MultiNode TestKit consists of two key components that form the basis of the tests you 
write: the test conductor and the specifications. The test conductor is responsible for 
orchestrating the work done under the hood by the test runner. This means that it provides 
support for tasks such as running functions on individual machines, providing barriers to allow 
tests to operate at the same pace, automating the process of finding the addresses for each of the 
actor systems, and acting as a centralized location where you can inject failures into the network 
layer deterministically. The specifications are designed to describe the details of the test, 
providing a means of telling the test conductor what operations it should perform on each 
independent actor system that’s being tested. Throughout the rest of this section, we’ll look at 
how to use these components to test the network resiliency of the actor systems you write and 
how they work in the presence of unreliability. 

9.4.1. MultiNode specs 

We’ll first look at MultiNode TestKit test specifications. A specification (typically shortened 
to spec) provides a means of describing the structure of a test, including deploying actors across 
multiple actor systems, entering barriers, and inducing failures into the network, as well as 
using assertions, such as validating message reception. 

Although the specifications are similar to those used in integration testing, there are some 
notable differences, which will become clear as you write spec files in this section. A test 
specification has three main sections: the common configuration shared between the actor 
systems under test, the specification detailing the operations that the test should perform, 
and specific configuration modifications that may be needed on a per-actor-system basis. In 
this section, we’ll look at how to write a specification designed to demonstrate a simple ping-
pong between multiple actors on separate actor systems, and what happens when they lose 
network connection. 

When writing a multinode test, your first task is to create a configuration that will be shared by 
all actor systems, by creating a subclass of MultiNodeConfig. Here, you can create any HOCON 
configuration that your test needs and specify the names of the actor systems to use. In the 
following example, you tell the test conductor to use two actor systems, referred to as roles in 
the MultiNode TestKit. To add some configuration shared by all actor systems, assign it 
to CommonConfigurationProperty. In the following example, you use the provided debugging 
configuration, which provides enhanced logging to aid with debugging across all your actor 
systems: 

public class MultiNodeGuaranteedMessagingConfig : MultiNodeConfig 

{ 

    private readonly RoleName _first; 

    private readonly RoleName _second; 

 

    public RoleName First { get { return _first; } } 

    public RoleName Second { get { return _second; } } 
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    public MultiNodeGuaranteedMessagingConfig() 

    { 

        _first = Role("first"); 

        _second = Role("second"); 

 

        CommonConfig = DebugConfig(true); 

    } 

} 

The next step is to create the actual test that will be executed on each of the actor systems. The 
test is created as an abstract class that inherits from MultiNodeSpec. You’ll soon see why it’s 
abstract. You also need to pass your configuration object up the class hierarchy 
to MultiNodeSpec: 

public class MultiNodeGuaranteedMessagingSpec : MultiNodeSpec 

{ 

    private readonly MultiNodeGuaranteedMessagingConfig _config; 

 

    public MultiNodeGuaranteedMessagingSpec() 

        : this(new MultiNodeGuaranteedMessagingConfig()) 

        { } 

    public MultiNodeGuaranteedMessagingSpec( 

        MultiNodeGuaranteedMessagingConfig config) 

            : base(config) 

    { 

        _config = config; 

    } 

 

    protected override int InitialParticipantsValueFactory 

        { get { return Roles.Count; } } 

} 

Having created a test container, next you’ll write test methods in the class that will be run on 
every node. Add the MultiNodeFact attribute, which the test runner will pick up, to specify that 
the method is a test. In your test method, you can perform any of the assertions you saw when 
looking at integration tests, including a validation of having received the correct message, or no 
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message at all. You can even create a TestProbe, as you saw earlier, to complement your suite of 
integration tests with large-scale tests covering a greater area of potential problems: 

[MultiNodeFact] 

public void MessageShouldBeResentIfNoAcknowledgement() 

{ 

    var pricingActor = Sys.ActorOf(Props.Create<PricingActor>()); 

} 

Lastly, you’ll create a subclass of MultiNodeSpec for each of the nodes participating in the test. In 
this case, you’ve been using two nodes, so you need to create two classes that inherit from your 
custom abstract MultiNodeSpec. When you specify it should run this test, the test conductor will 
pick up one class per node in which to run it: 

public class MultiNodeGuaranteedMessagingSpec1 : 

    MultiNodeGuaranteedMessagingSpec 

{ } 

 

public class MultiNodeGuaranteedMessagingSpec2 : 

    MultiNodeGuaranteedMessagingSpec 

{ } 

Now you can call the Akka.NET MultiNode TestKit runner, passing in a path to the DLL 
containing the tests, as well as the name of a single spec, if you want to run only one test instead 
of all tests in the DLL. The test runner is supplied as part of the NuGet package, but it’s copied 
to the output directory of the project with the tests, meaning it’s as simple as running the 
following example. It initializes a number of external processes, each of which is running its own 
independent deployment of the actor system: 

Akka.MultiNodeTestRunner.exe Chapter9.dll 

This is the bare minimum needed to set up a new test designed to span multiple actor systems. 
Throughout the rest of this section, we’ll look at the other tools available in the MultiNode 
TestKit that allow for more-powerful tests. 

9.4.2. Testing individual actor systems 

When you created your test in the previous section, you specified a test method that’s invoked by 
the test runner whenever the test is run. But there’s currently no differentiation between which 
actor systems run which code. As it stands, every actor system will execute the exact same code. 
This proves to be a problem, as you don’t want all the actor systems to start doing the same 
thing. You want them to have different responsibilities. As you saw in chapter 8, a number of 
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different architectural styles can be used when you’re developing applications that run across a 
network. 

You can limit the execution of certain functions to selected machines. This means that you can 
specify, for example, that the first machine should deploy an actor that the second one is able to 
communicate with. In chapter 8, you saw an example of a billing system on one actor system that 
would be used by other actor systems. In this case, only one actor system should contain the 
billing actor. 

As part of a multinode test, you can call the RunOn method to limit the scope of the function to a 
selection of machines. In the following example, you specify that the test runner should only run 
the test actor on the node that you called First. When this test is executed by the test runner, it 
will only execute the function if the role it’s currently running on matches the role you’ve 
specified it should run on: 

RunOn(() => 

{ 

    var pricingActor = Sys.ActorOf(Props.Create<PricingActor>()); 

}, _config.First); 

By limiting the execution of your function to an individual node, you can build complex tests 
that more accurately represent the deployment and release scenarios in a production 
environment. You can design tests for catching bugs relating to the system infrastructure rather 
than just the code. 

9.4.3. Barriers 

When you run test code on different actor systems, you introduce the possibility of a race 
condition in your tests. For example, consider the scenario where node A deploys an actor into 
its own actor system, and node B makes a call to that recently deployed actor. Because node B 
requires that node A has already spawned an actor, if the actor deployment takes an extended 
period of time, then the test may fail because it’s unable to find the deployed actor. You need to 
allow time for preconditions to be met before you proceed with the remainder of the test. As a 
test is run, it can enter a barrier coordinated by the test conductor. Upon entering the barrier, 
the current test run will block until every other node participating in the current test has also 
entered the same barrier. 

Entering a barrier is achieved through a call to the EnterBarrier method, which requires a name 
for the barrier. The name is used to ensure that all the nodes in the actor system are at the same 
stage and have entered the barrier. Once EnterBarrier is called, no other test steps run, and test 
execution pauses. In the following example, the second node doesn’t need to do any test setup 
and instead waits for the first node to complete its deployment of a new actor. Here, the barrier 
is called "DeploymentComplete". Assuming every node has also entered the barrier with the same 
name, you can proceed to the next section of the test, which in this case is for node B to send a 
message to node A: 

EnterBarrier("DeploymentComplete"); 
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Barriers are a quick and easy way to ensure that the distributed tests you write operate together 
and work at the same pace, forestalling race conditions and random test failures in your 
multinode tests. 

9.4.4. Testing for network failure 

You saw in chapter 8 that a network powering Akka.Remote can at times be unreliable, leading to 
plenty of opportunities for the systems you write to become unreliable. Testing applications that 
span a network can often be a difficult or laborious process requiring a number of tools, and can 
even be dependent on the OS you use. But because the test conductor powers all of the network 
routing for the remoting layer of Akka.NET, you can modify the network connection by 
communicating with the test conductor. This means that from the test conductor sitting outside 
the remote system, you can inject failures at different layers of the application. 

The test conductor allows you to perform a number of network changes designed to simulate 
some of the networking difficulties encountered in a production environment. When using the 
test conductor, you can simulate a node crash and kill a test runner, add throttling to the 
network channel to slow messages down, and drop messages completely (see figure 9.5). These 
are all similar to issues that you might encounter when you deploy your applications into a 
multi-tenanted cloud environment, for instance. Nodes might automatically close for OS 
updates; messages might be throttled if a neighboring VM starts a large downloading operation; 
or messages might disappear en route through a network path. 

Figure 9.5. When using the test conductor, you can drop messages sent over a network connection to simulate the effects of a 

network interruption. 

 

To enable these features of the test conductor, set the TestTransport property 
of MultiNodeConfig to true. This will cause the remoting layer to use the fault-injecting 
transports instead of the usual network transports. In this example, you set up the configuration 
to allow you to test the transport: 

public MultiNodeGuaranteedMessagingConfig() 

{ 
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    TestTransport = true; 

 

    _first = Role("first"); 

    _second = Role("second"); 

 

    CommonConfig = DebugConfig(true); 

} 

Now you can start communicating with the test conductor and injecting failures into the 
networking layer. The simplest failure is to ignore all the data traveling between two nodes, a 
feature known as blackholing in Akka.NET. You restrict the messages sent between nodes and 
drop them, either in both directions or in the receive or send direction. Call 
the Blackhole method on the TestConductor property, specifying the source role, target role, 
and the direction of message loss. In the following example, you specify that the transport 
should drop any messages traveling between the source and the target: 

TestConductor.Blackhole(_config.First, 

                        _config.Second, 

                        ThrottleTransportAdapter.Direction.Both); 

Sometimes, you need to restrict messages to a certain number per second. For example, your 
actor system may be communicating over a low-bandwidth connection, such as a 2G or 3G 
mobile connection or a slow broadband connection. In these cases, you need to validate that 
you’re not sending so much data that it gives the impression that a remote node is unable to 
communicate with you. You can set TestConductor to only allow through a certain number of 
messages per second, calculated by the total size sent over the network. For example, you may 
have a limitation of 500 Kbps of bandwidth. By using the test conductor, you can limit the 
communication between two nodes to 500 Kbps. In the following example, you specify that the 
communication between node 1 and node 2 should be limited to that of a slow 3G mobile 
connection, in this case, roughly 0.5 Mbps: 

TestConductor.Throttle(_config.First, 

                       _config.Second, 

                       ThrottleTransportAdapter.Direction.Both, 

                    0.5f); 

Finally, you may want to make a node disappear entirely, mapping to cases where machines 
shut down suddenly without the opportunity for finalization, such as in the event of a hardware 
failure, the host OS restarting, or even the host runtime encountering an unrecoverable error. 
To emulate this, you can tell the test conductor to shut down that node. This will remove the 
node from all the connected nodes’ lists, ensuring that any other barriers are passable: 

TestConductor.Shutdown(_config.First); 
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These three basic cases—transport, bandwidth, and crash—cover the majority of the issues that 
you’re likely to encounter that involve the networking layer. By testing them, you can ensure 
that systems are able to endure network difficulties in a production environment. The test 
conductor proves to be a very valuable tool in gaining assurance that your systems are truly 
resilient and able to stand up to even the harshest environments. 

9.4.5. Wrapping up 

The MultiNode TestKit is an incredibly powerful tool that allows you to test your applications in 
complicated integrations. Although many test environments replicate production environments, 
they’re unlikely to see the same sorts of issues you might encounter; but the MultiNode TestKit 
used as part of Akka.NET allows you to simulate some of the most obscure issues possible, 
issues that you may even overlook during the testing stage of development, but that could have 
catastrophic outcomes if ignored. 

9.5. CASE STUDY: TESTING, TEST-DRIVEN DEVELOPMENT, UNIT TESTING 

For most software developers, unit testing and integration testing play key roles in the 
development process, providing an automatable means of verifying that an application correctly 
follows behavioral specifications. By using the Akka.NET test kit outlined in this chapter, you 
can define tests that work together with your existing tests as part of your development 
process. Figure 9.6 shows how to structure a typical solution that uses multiple projects. 
A production project contains the definitions of your actors. This will be the project that’s 
deployed into the production environment and is responsible for performing the business logic. 
In addition, a test project contains a number of unit and integration tests. When changes are 
made to the production project, the test project is run through a test runner, and if any tests fail, 
then it can be assumed that the change has broken your application logic. 
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Figure 9.6. A typical test project structure is simple but offers the opportunity to easily reproduce a known test case to check for 

potential regressions. 

 

With the Akka.NET test kit, you can use the common test-driven development practices that 
have become widespread in other areas of .NET software development. You can integrate the 
test kit with other test runners as part of an automated system that prevents the deployment of 
potentially bug-ridden code into a production environment. 

SUMMARY  

In this chapter, you learned 

• How to design a unit test that tests the functionality of a single actor 
• How to develop integration tests that verify that multiple actors work together 
• How to test distributed applications using the MultiNode Testkit 
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Chapter 10. Integrating Akka.NET 

This chapter covers 

• Designing custom protocols to receive and send data 
• Integrating with real-time connection mechanisms 
• Adding a web API frontend for web application communication 

All the examples you’ve seen in the book so far have contained actors in actor systems and 
haven’t exposed them to the world. As you build actor applications, you want to make their data 
available for consumption by various technologies, of which there are many. The data in your 
actor systems might be sent to IoT devices to enable command-and-control-style scenarios; 
mobile apps and games for refreshing information on user devices, video game consoles for 
multiscreen gamer experiences; other cloud services responsible for other utilities; or websites 
(figure 10.1). In all these cases, you need to present the information stored in your actor system 
in the appropriate manner for each service. 

Figure 10.1. An Akka.NET actor system may need to receive input from a number of different devices, all using different technologies. 

 

In chapter 8, you saw that with Akka.Remote you can expose actor systems over the internet by 
allowing them to listen on a specific port and accept incoming communication from other actor 
systems. This has some key benefits, most notably its simplicity, but it leaves you in a difficult 
position, because the recommended security practice is to only allow access to Akka.NET actor 
systems from behind a firewall, preventing system exposure to the internet. But there’s another 
reason why you’re unlikely to allow communication through actor systems. In all the cases we’ve 
seen where you want to integrate with an actor system, your current client platform of choice 
may not be capable of running an Akka.NET actor system. 

Let’s consider the example of an IoT device, typically, a low-powered hardware designed for 
energy efficiency to conserve battery life. Akka.NET isn’t optimized for low-powered devices as 
it needs a full CLR virtual machine to execute the .NET application. This is a lot of overhead to 
execute on something that’s low powered. You also need to consider transport and integration 
with third-party tooling. In the world of IoT, MQTT has become a standard for device 
communication. If you use Akka.NET with its remoting capabilities, you potentially exclude 
your device from communicating with other manufacturers’ devices. 

You also need to consider the supporting libraries on client machines. Although some machines 
may be more powerful and able to support a fully functioning virtual machine, you may be 
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unable to run Akka.NET due to security permissions on the client’s device. For example, an iOS 
mobile device won’t allow you to run a just-in-time compiler; you have to run an ahead-of-time 
compiler. This means that you’re not able to run a full virtual machine in your application; you 
need special tools to ensure the abilities of VM tooling. 

Another consideration is the languages used to access an actor system. Akka.NET actor systems 
can communicate only with other Akka.NET actor systems: the client application must be 
written in C# or F#. This is often impossible. One example is video game development, which 
often uses low-level languages such as C and C++ to make the most of the hardware and get the 
best performance. Using C or C++, game developers wouldn’t be able to communicate with an 
Akka.NET backend system. 

Finally, you should ensure that the tools you’re using to interoperate with other systems are 
appropriate given historical and likely future tooling. An example of this is the use of HTTP in 
web browsers. As backend servers are changing to a more reactive model, HTTP communication 
between the user’s web browser and backend servers has become fairly standardized. As the 
internet community increasingly uses web applications to deliver content to users, you need to 
support access to data in a way that is both consumable and manageable. 

Your actor systems must be consumable by a wide range of devices and their particular 
protocols and technologies. You need to consider how to design actor systems capable of 
generating responses in milliseconds that can communicate with other systems, applications, 
and devices. 

In this chapter, you’ll see how to integrate a new Akka.NET application with protocols and 
technologies you’re likely to encounter in a preexisting .NET application. This allows you to put 
incredibly simple integrations in place that permit access from many different devices. You’ll see 
how to create actor systems that can be accessed through HTTP using your preferred web 
framework; in this case, you’ll use ASP.NET, but you can follow the same guidelines with 
alternatives such as NancyFx, -ServiceStack, Suave, and many others. You’ll also see how to 
create reactive services that run on the web by integrating with web sockets, using SignalR. 
Finally, you’ll see how to integrate low-level TCP socket connections into your application so you 
can build protocols on top of the socket connections. 

10.1. INTEGRATING WITH ASP.NET  

Over the past twenty years, the web has changed significantly. Originally intended for sharing 
research materials between academics, it’s evolved into a tool that people rely on for 
communication, entertainment, and so much more. Web browsers have changed accordingly 
and have grown so much in functionality that it’s now possible to create applications that are 
delivered through the internet to the user’s web browser, thanks to the power of HTML, CSS, 
and JavaScript. 

In contrast with the changes that users can see in the frontends of today’s applications, the 
backends have followed the same protocol of HTTP communication. The HTTP specification has 
seen some minor changes but has, for the most part, stayed consistent. This level of consistency 
and standardization presents some clear benefits for those looking to integrate their application 
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over a network. Most devices provide either support for a web browser or, at the very least, a set 
of tools for making requests to an HTTP API. This level of availability has led to HTTP becoming 
the transport of choice for many applications. 

In the .NET ecosystem, a wide variety of web servers are designed for writing applications that 
communicate with clients over HTTP. In addition to the Microsoft--supported ASP.NET web 
framework, other options from the wider community include NancyFx, ServiceStack, and Suave. 
All have their respective merits and all can be used with Akka.NET; in this section, we’ll look at 
Microsoft’s widely used ASP.NET framework. Integration with ASP.NET builds on one of the 
concepts you saw back in chapter 3: you can send a message to an actor and then wait for a 
response, with the Ask method. The techniques used in this section are also applicable to the 
other frameworks, and the examples can be ported to them. 

Assuming you have an application already set up[1] and configured with the basic features 
required to build an ASP.NET website, you can add all the components required to use 
Akka.NET. As before, you need to add the references to the prerequisite components of 
Akka.NET; for the most basic Akka.NET application, this means installing the Akka package 
from NuGet exactly as you did in chapter 3. 

1 

This book focuses on features relating to Akka.NET and as such doesn’t go in depth into features related to ASP.NET. For information 

on ASP.NET, including getting-started tutorials, documentation, and more, visit http://asp.net or refer to Jeffrey Palermo et 

al., ASP.NET in Action (Manning, 2012). 

Before you can use Akka.NET, your application needs an actor system set up and configured to 
run. You saw in chapter 3 that you should only have a single actor system, containing all of your 
actors, deployed for each application. To make an actor system available across your entire 
application and ensure that the actor system runs for the lifetime of your application, you can 
use one of two approaches: 

• Global.asax—You can initialize your actor system in the Global.asax file and make it 
accessible to all parts of the application with a static property. By using the Global.asax 
file, you can also register to certain events raised by the ASP.NET framework or IIS host. 
For example, you can listen to events that send notifications that the application will soon 
be shut down or restarted. This allows you to shut down the actor system and save the 
state of the actors in preparation for the event. 

• Startup.cs—In addition to an IIS host for your application, you can use one of the OWIN-
compatible hosts, allowing you to change the server quickly and easily. This removes the 
possibility of using the Global.asax file, which is tied to IIS. But as an alternative, you can 
store data in the OWIN environment, which is then accessible from anywhere in the 
application. 

In this example, you’ll use the Startup.cs option for its simplicity and cross-platform 
capabilities. OWIN is a simple contract that .NET web servers can implement that allows 
applications to be moved between different hosting technologies with minimal effort. For 
example, an application that uses OWIN middleware can be targeted at a self-hosted version for 
local development and then deployed onto an IIS instance when in a production deployment. 
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OWIN works as a pipeline in which each component has a subsequent operation that’s executed, 
until it gets to the end of the chain, upon which a result is passed back along the chain. This 
means that if you want to use your actor system further down the chain, you need to ensure that 
you’ve initialized it at the very start of the queue. To add an element to the OWIN pipeline, call 
the Use method on the IAppBuilder provided in the Configurationmethod. Use takes a function 
as a parameter that takes the environment and the next element in the chain and returns a task. 
You’ll create an actor system in this function and store it in the environment, where you can 
access it from any step in the chain that follows it. In the following example, you store the actor 
system in the environment dictionary under the key akka.actorsystem. Follow the same process 
for creating an actor system as if you were creating it in a console application, which includes 
loading the configuration from a file: 

public class Startup 

{ 

    public void Configuration(IAppBuilder appBuilder) 

    { 

        var actorSystem = ActorSystem.Create("webapi"); 

 

        appBuilder.Use((ctx, next) => 

        { 

            ctx.Environment["akka.actorsystem"] = actorSystem; 

            return next(); 

        }); 

    } 

} 

If you have an element that follows the actor system creation, you can access the actor system 
stored in the environment. If your pipeline looks as follows, then anything in the web API step 
can access the actor system by using the OWIN environment: 

appBuilder.Use((ctx, next) => 

{ 

    ctx.Environment["akka.actorsystem"] = actorSystem; 

    return next(); 

}).UseWebApi(config); 

If you add a controller to your project, you can retrieve the actor system by using the OWIN 
extension methods. Now that you have a reference to the actor system, you can interact with it 
just as you would if it was a console application. Even though it will be accessed by multiple 
threads, you’re still safe to interact with the actor system due to Akka.NET’s guarantee that each 
actor will only process one message at a time. But actors operate concurrently, making them 
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ideal for web applications where you might have multiple users with multiple web browsers or 
applications trying to modify the data stored on the web server concurrently. 

You can now start to work with the actor system in your controller. For example, if you want to 
pull data out of the actor system as part of a get request, you can select an actor path and send it 
a message with Ask, awaiting the response. Because Ask returns a task and operates 
asynchronously, you can use asynchronous controller support alongside it. In the following 
example, you request data from one of the actors in the system by sending it a message and 
awaiting a response with Ask: 

public class GreeterController : ApiController 

{ 

    [HttpGet] 

    [Route("hello/{name}")] 

    public async Task<string> GetGreeting(string name) 

    { 

        var owinCtx = Request.GetOwinContext(); 

        var actorSystem = owinCtx.Get<ActorSystem>("akka.actorsystem"); 

        var greeter = actorSystem.ActorSelection("/user/greeter"); 

        var greeting = await greeter.Ask<string>(name); 

        return greeting; 

    } 

} 

As you can see, this integration is incredibly simple, especially in small services, but there are 
some issues that you might encounter if your web service becomes popular. You saw in chapter 

7 that the best option for scaling is to create more instances of something, rather than scaling up 
your existing infrastructure. As it stands, every time you add a new web server, you’ll add a new 
actor system as well, each of which is independent. Fortunately, you saw in chapter 8 how to 
combine multiple actor systems together, thanks to Akka.Remote. You can set up your actor 
system as a service that other servers can connect to. Each web server in your example has a 
lightweight actor system containing no actors, which you use to communicate with the shared 
actor system. Your architecture looks like figure 10.2, where each web server shares a centralized 
actor system. All of this is possible using the features you saw in chapter 8. 
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Figure 10.2. When developing a load-balanced web application, you can keep the frontends stateless by having a common actor 

system that the frontends all communicate with. 

 

By combining your actor system with a web API, you can access it from the vast majority of 
devices and systems. Anything that can access your web API or website can communicate with 
your actor system. You also get the benefit of the vast array of existing middleware for OWIN, 
ASP.NET, and other web frameworks, using prebuilt and thoroughly tested options and thus 
reducing the time spent developing components such as security. 

10.2. INTEGRATING WITH SIGNALR  

Integrating your actor system into your existing applications through a web service affords some 
key benefits, such as the ability to access it from almost any device. As a means of data 
interchange, it’s relatively static, allowing clients a single-point-in-time snapshot of their data. 
But in an age where data flows rapidly and users want immediately responsive systems, you 
must periodically check whether the service has some updated data for the user. In line with the 
Reactive Manifesto, you want to write responsive applications and services, and that means 
systems that can react nearly instantaneously to changes in the environment. 

Instead of waiting for the user to refresh the web page, your system would be more responsive if 
you quickly push changes to the client without them interacting with the application at all. 
Although this may not have been possible 20 years ago, the habits of users have greatly changed, 
inducing further changes in web browsers. One example of change is using web sockets, which 
provide a bidirectional persistent channel of communication between the user’s web browser 
and the web server. Due to the persistent nature of communication, your application can push 
new messages to the client as soon as they arrive on the server, causing an update to the UI or 
notifying the user of new information. 

An example is when you render charts that are plotting the data being aggregated by your 
system in real time. In this situation, you can push new readings to the UI, which can append 
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them to the end of the graph, providing live visualizations of the current state. In this scenario, 
your actor system may receive data from IoT devices that it then acts on, performing 
calculations continuously and predicting the future direction of readings, which it then presents 
to the user. 

In .NET, SignalR is the library commonly used for providing WebSocket support to web 
applications, including a number of abstractions over the top of the low-level WebSocket 
protocol. The library also offers a number of fallback mechanisms in the event that the user’s 
web browser doesn’t support WebSockets. The two abstractions provided by SignalR 
are persistent connections and hubs, each of which has their own valid use case: 

• Hubs—Hubs are a means of performing remote procedure calls either from a JavaScript 
client to a .NET server or from a .NET server to a JavaScript client. 

• Persistent connections—Persistent connections are sockets over which you can transfer 
data to clients by pushing messages through a connection on the server side. 

Throughout this section, we’ll look at how to use SignalR in an Akka.NET application to provide 
a constant stream of information to clients by using persistent connections. Although it’s still 
possible to use hubs, persistent connections more closely match the messaging and usage 
patterns of an Akka.NET application. In order to use SignalR in your web application, you need 
to add a reference to the Microsoft.AspNet.SignalR NuGet package in the same way you added a 
reference to the Akka.NET libraries. 

10.2.1. Communicating through an actor 

SignalR provides a fairly advanced level of abstraction over the WebSocket protocol, allowing 
you to focus on the business logic rather than on accepting connections and passing data 
through them. But wrapping your SignalR abstraction in an actor provides benefits, the biggest 
being preventing concurrency bugs when clients connect and disconnect and send messages. As 
the SignalR connection is likely to be used in an ASP.NET application hosted on an IIS server or 
in a console application, a number of threads can be used to handle incoming connections. This 
creates the potential for data races or other concurrency problems. By wrapping your 
connection in an actor, you can head off these issues, as well as completely integrate your 
WebSocket connection with your actor system, thus benefiting from Akka.NET’s remoting, 
routing, and supervision. 

You’ll first define some basic classes that represent the messages your persistent--connections 
actor can process. The messages fall into one of two categories: commands that tell the actor to 
do something (in this case, you tell the actor to send a message with 
the SendMessage command); and events that inform the actor that something has happened, 
such as the UserConnected, UserDisconnected, and Message-Received messages in the following 
code. This is in line with what you’ve seen in other chapters where you’ve created messages to 
send to actors. You can add a number of properties that reflect the information you want to 
store on a per-connection basis. For example, when your persistent-connections actor receives a 
message, it can track the connection that sent the message; or, when a new connection is 
received by the server, it identifies the username of the connection and the connection identifier. 

public class ClientDisconnected 
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{ 

    private readonly string _connectionId; 

 

    public string ConnectionId { get { return _connectionId; } } 

 

    public ClientDisconnected(string connectionId) 

    { 

        _connectionId = connectionId; 

    } 

} 

 

public class ClientConnected 

{ 

    private readonly string _connectionId; 

 

    public string ConnectionId { get { return _connectionId; } } 

 

    public ClientConnected(string connectionId) 

    { 

        _connectionId = connectionId; 

    } 

} 

 

public class MessageReceived 

{ 

    private readonly string _connectionId; 

    private readonly string _data; 

 

    public string ConnectionId { get { return _connectionId; } } 

    public string Data { get { return _data; } } 

 

    public MessageReceived(string connectionId, string data) 
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    { 

        _connectionId = connectionId; 

        _data = data; 

    } 

} 

 

public class SendMessage 

{ 

    private readonly string _connectionId; 

    private readonly string _data; 

 

    public string ConnectionId { get { return _connectionId; } } 

    public string Data { get { return _data; } } 

 

    public SendMessage(string connectionId, string data) 

    { 

        _connectionId = connectionId; 

        _data = data; 

    } 

} 

Having defined your messages, you can create a ReceiveActor that responds to them and reacts 
appropriately. The actor can maintain any state you want, and it will be safe from potential race 
conditions across all threads in the thread pool. You may want to store a unique user identifier 
along with the request so that you can address all of the persistent connections for a given user, 
thus allowing you to push messages to all of their web browser sessions. 

public class WebsocketActor : ReceiveActor 

{ 

 

    public WebsocketActor() 

    { 

 

        Receive<MessageReceived>(msg => 

        { 
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            //Application specific functionality 

            //for receiving messages 

        }); 

 

        Receive<ClientConnected>(client => 

        { 

            //Application specific functionality 

            //to handle client connects 

        }); 

 

        Receive<ClientDisconnected>(client => 

        { 

            //Application specific functionality 

            //to handle client disconnects 

        }); 

    } 

} 

You now have an actor that sends messages through a WebSocket connection so that browsers 
can receive push-based messages through the web server from the actor system in a web 
browser. 

10.2.2. Connecting to the user’s web browser 

You currently have a ReceiveActor, WebsocketActor, that can handle events raised by the 
SignalR library, as well as handlers that allow it to push data to clients, but you have no means 
of sending data to clients. You need to create a SignalR connection that will allow 
your WebsocketActor to interact with WebSockets. 

You’ll create a class that inherits from SignalR’s PersistentConnection class. In the following 
example, you create a class that overrides the default behavior when 
your WebsocketActor receives a message, a client connects, or a client disconnects. When one of 
these events happens, the method is invoked: 

public class GraphingConnection : PersistentConnection 

{ 

    protected override Task OnReceived( 
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        IRequest request, 

        string connectionId, 

        string data) 

    { 

        return base.OnReceived(request, connectionId, data); 

    } 

 

    protected override Task OnConnected( 

        IRequest request, 

        string connectionId) 

    { 

        return base.OnConnected(request, connectionId); 

    } 

 

    protected override Task OnDisconnected( 

        IRequest request, 

        string connectionId, 

        bool stopCalled) 

    { 

        return base.OnDisconnected(request, connectionId, stopCalled); 

    } 

} 

Having created a persistent connection class, you need to host it in the application. This 
functionality is provided by OWIN, as you saw in the previous section. To register the persistent 
connection, add a MapSignalR call into your OWIN startup class following the actor system 
initialization. The following example shows what the OWIN startup looks like when you have an 
Akka.NET actor system, SignalR, and MVC in the same project: 

public class Startup 

{ 

    public void Configuration(IAppBuilder appBuilder) 

    { 

        var actorSystem = ActorSystem.Create("webapi"); 

 

www.EBooksWorld.ir



        appBuilder.Use((ctx, next) => 

        { 

            ctx.Environment["akka.actorsystem"] = actorSystem; 

            return next(); 

        }).MapSignalR<GraphingConnection>("graph"); 

    } 

} 

I mentioned at the start of the previous section that one reason to wrap your connection in an 
actor is to ensure that your application isn’t susceptible to race conditions. SignalR creates a 
single instance of the persistent connection, but it gets executed as part of a thread pool 
provided by the application host, which could potentially lead to concurrent invocations of the 
methods on this class. To counter this, you can forward all the events to the persistent-
connections actor you created earlier. Before you can send a message to it, you first need to be 
able to reference the actor system. By configuring SignalR after you configure the actor system 
in the OWIN startup, you can access it from the OWIN environment, a dictionary of strings and 
objects relating to the request, following the same pattern you saw in the previous section. The 
actor can access the OWIN environment using the Environment property on the incoming 
request on each method it overrides. Having retrieved the actor system, your actor can interact 
with it and send it messages. In the following example, having received a message, the actor first 
wraps the message in an envelope along with the connection identifier and then sends it to the 
persistent-connections actor, responsible for the SignalR connection: 

protected override Task OnReceived( 

    IRequest request, 

    string connectionId, 

    string data) 

{ 

    var actorSystem = 

        (ActorSystem)request.Environment["akka.actorsystem"]; 

    var websocketActor = 

        actorSystem.ActorSelection("/user/messagingConnection"); 

    websocketActor.Tell(new MessageReceived(connectionId, data)); 

    return base.OnReceived(request, connectionId, data); 

} 

In addition to handling events from the connection, the persistent-connections actor handles 
commands that need to be processed and forwarded through the connection. In the following 
example, you can see how to retrieve PersistentConnections from the actor so you can send 
messages to a given client identifier in response to a SendMessage command: 
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var connection = 

    GlobalHost 

        .ConnectionManager 

        .GetConnectionContext<GraphingConnection>(); 

Receive<SendMessage>(msg => 

{ 

    connection.Connection.Send(msg.ConnectionId, msg.Data); 

}); 

By wrapping a lot of the behavior in the derived PersistentConnection class, you can remove 
the possibility of race conditions, thus reducing the potential number of bugs. 

10.2.3. Wrapping up 

With WebSockets, you can create end-to-end reactive web applications so users can receive 
updates in their frontend UI immediately after the event has been triggered in the backend 
system. With SignalR, you can build web applications where users can visualize and manipulate 
data in your actor system incredibly easily. Combining -SignalR with Akka.NET allows users to 
see their application changing and responding to events in real time. They can act on the 
information they’re presented with as soon as it happens without waiting for a refresh. 

10.3. CUSTOM INTEGRATIONS WITH AKKA.IO  

Besides the cases we’ve discussed, many other systems and devices may want to connect to your 
actor systems and send messages. HTTP has clear benefits in its uptake and support across a 
vast number of devices, but it proves to be fairly heavyweight due to its reliance on text rather 
than a simple binary protocol. In some environments, this amount of overhead could lead to 
difficulties. For example, in an IoT scenario where you’re sending data through a cellular 
modem, you need to minimize the amount of data to bring down costs and avoid data loss. But 
you shouldn’t just limit your view to IoT scenarios where there are direct benefits. If you’re 
interoperating with other custom-developed solutions, you may see significantly reduced 
latencies as a result of using a simpler protocol, leading to a more responsive application, which 
is in line with the aims of the Manifesto. 

In custom integrations, you want to provide a low-level connection to your actor system so you 
can operate on a socket level rather than going through a complex pipeline of operations to get a 
request from a user. You want your actor system to receive a message every time the socket 
receives a message and allow an actor to process the message instead of relying on complex code 
surrounding sockets, which can be difficult to correctly set up. Custom integrations allow you to 
quickly write tooling that relies on basic or less popular protocols. For example, by using the 
low-level socket APIs in Akka.NET, you can easily create implementations like DNS servers, 
monitoring servers, and mail servers, or implement your own protocol tailored to the 
requirements of your application. 
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Throughout this section, we’ll look at how to use akka.io to create a socket server designed to 
communicate with a common metrics collection protocol known as StatsD. StatsD is an API that 
can receive counters, gauges, and timers sent to it over a network from either TCP or UDP. With 
this kind of low-level protocol in your actor system, you can use all the benefits Akka.NET 
provides, such as message routing, fault tolerance, and on-demand scaling. These features 
ensure that your system can react instantly to any load or failure encountered when receiving 
metrics, making akka.io an incredibly valuable tool for debugging that requires a certain degree 
of resiliency, even in the face of failure, in order to provide the information you need to 
understand the causes of failure. 

The simple StatsD protocol consists of two core concepts: buckets and values. A bucket is a 
means of representing a metric you want to collect; for example, you may create a bucket 
called UserService.Login.Latency as a way of representing all the latencies observed when 
users log in through the user service. Of the number of valid metric types, in this section we’ll 
focus on three: counters, gauges, and timers. Counters are used for basic counting tasks; some 
examples of metrics you may want to count include the number of requests for a web service, the 
number of times your system fails to retrieve a value from a cache and needs to talk to a 
database, and the number of times an exception was thrown. Gauges are for already averaged 
data. This might include things such as system load or average latency; these are things that are 
likely to be set once every second and don’t fluctuate. Timers are used to specify the amount of 
time an operation took to complete; for example, the latency involved when executing a query 
against a database or the time it takes between a request being received from the user and a 
response being sent back to the user. 

The StatsD implementation requires a line of text to be sent to the socket as part of a single 
packet sent over the network, the basic structure of which is shown in the following example. It 
includes the bucket name, a value for it, and the type of metric it is. You provide a string for each 
component. These can be anything for the bucket name and value, and then the final part 
matches a string representation of each of the metric types. This can be sent over either a TCP or 
UDP socket, depending on what the server is configured to listen on. 

<metricname>:<value>|<type> 

UserService.RequestCount:50|c 

Having created an implementation of the protocol in Akka.NET, you can dispatch the received 
metrics to anywhere else in your actor system to perform tasks such as data storage, stats 
aggregation, and notifications. But we’ll focus on the actual task of ingestion and how you can 
map incoming packets over to messages that can be used in the context of your actor system. 

10.3.1. Creating a listening socket 

akka.io provides support for a number of different scenarios based on factors such as whether 
your system should be listening for incoming packets or sending packets over the socket, as well 
as the socket protocol it should be listening on. Although TCP and UDP support is provided as 
pluggable transport in the Akka.NET distribution, you can also create your own transport 
mechanism to reflect other networking technologies. For example, you may want to create 
an akka.io transport that can communicate over a pipe rather than a socket, or use a socket 
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with a different transport protocol than UDP or TCP, such as SPDY. In this example, you’ll use 
the TCP socket for one thing only: listening for incoming messages. 

Before your actor system can receive messages over a socket, you need to tell the OS that you 
want any messages received on a certain port to be forwarded to your application. You’ll use 
the TcpManager, which handles all of the bind operations to get the OS to route TCP packets to 
the application. The TcpManager is made available through an extension method on the actor 
system itself and is accessed through the TCP extension method on the system. In the following 
example, you get the reference to the TcpManager, which then allows the actor system to bind to 
a specific port: 

public class StatsDServer : ReceiveActor 

{ 

    public StatsDServer() 

    { 

        var tcpManager = Context.System.Tcp(); 

    } 

} 

The typical approach to building socket servers with akka.io is to have a server actor that’s 
responsible for port binding, as well as handling incoming connection requests from the socket, 
before passing the network connection to another actor, which deals with the specifics of that 
one connection. Figure 10.3 demonstrates how to design such a system. A server actor deals with 
incoming messages from the TcpManager relating to the status of the connection. This includes 
binding success or failure messages, incoming connection requests, and socket errors. The 
server actor has a number of children that are spawned on a per-connection basis. As you saw 
in chapter 3, actors are a very cheap abstraction, so you can create millions of them in a single 
application. 
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Figure 10.3. akka.io creates an actor per network connection, forestalling concurrency problems when the system receives messages 

from multiple senders simultaneously. 

 

The first component of figure 10.3 is the server actor, which is responsible for communication 
with the TcpManager. The server actor tells the TcpManager where to send all new incoming 
connections. It sends the TcpManager a Bind message with a reference to the actor that should 
receive new messages, as well as the incoming endpoint on which to listen for packets. In the 
following example, you create a TCP-connection actor that’s responsible for server-related 
responsibilities, and send a message to the TcpManager telling it that this new actor should 
receive incoming connection requests: 

tcpManager.Tell(new Tcp.Bind(Self, new IPEndPoint(IPAddress.Any, 8080))); 

With this accomplished, your new TCP-connection actor needs to receive incoming messages 
containing incoming connections. A new actor typically receives two messages during 
initialization: Bound and Connected. Bound is sent when the socket listener has been established 
and is able to start receiving incoming connections. The Bound message contains the socket 
address that the OS is listening on. When a new connection is established with the TCP listener, 
a new actor is spawned in the actor system, which is responsible for handling all of the low-level 
socket tasks, such as message serialization, buffering, and any other tasks. This actor sends a 
message to the server actor, informing it that a new connection is available. Then the server 
actor can register an actor that should receive the deserialized messages from this connection. 
You could choose to register them in the server actor, but in the following example, you create a 
new actor that’s responsible for that single connection. This decision allows you to process more 
packets in parallel while also getting all the benefits of single actors, including finite state 
machines, which may be useful for complex situations that use involved handshake protocols. In 
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the following example, you spawn a new communication actor that’s responsible for each 
incoming connection and for responding to incoming messages: 

Receive<Tcp.Bound>(bound => 

{ 

    Console.WriteLine("The connection was bound to port 8080"); 

}); 

 

Receive<Tcp.Connected>(connected => 

{ 

    var connectionActor = 

        Context.ActorOf(Props.Create(() => new StatsDServerChannel())); 

    Sender.Tell(new Tcp.Register(connectionActor)); 

}); 

Having created an actor hierarchy with one actor per connection, the actor system can process 
incoming information from each actor. When a TCP-connection actor receives an incoming 
packet, akka.io first reassembles the complete TCP message, which may have been split across 
several packets, before sending it, wrapped in a Received message, to the actor registered to the 
given connection. You can then access the bytes transferred over the network through 
the Data property of the Received message. From here, you can convert it into an appropriate 
format. This may include leaving the message in a binary format, converting it into a text 
format, or deserializing into an object graph with tools such as Google’s Protocol Buffers 
or other binary-serialization tooling. In this case, you convert the message to an ASCII string, 
because this matches the specification as laid out by StatsD. In the following example, you can 
convert the received ByteString into a parsable string and take the appropriate action: 

Receive<Tcp.Received>(packet => 

{ 

    var statsDData = packet.Data.DecodeString(); 

    HandleStatsDData(statsDData); 

}); 

With metrics data in your actor system, you can use other Akka.NET features to better 
understand the data. You may want to create an actor for each bucket that will be responsible for 
aggregating the incoming data and creating alerts based on that data; you may want to ingest it 
into other systems or databases for easier metrics analysis or visualization. 
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10.3.2. Sending data through akka.io 

Having created a socket that is capable of listening, you may want to open a connection to a 
socket listening at a remote endpoint. You may want to create a low-level socket 
implementation, but because you have akka.io, you can bring your client socket connection into 
the actor system, following many of the same principles you saw when you created a socket 
capable of listening for incoming data. You can follow many of the same ideas, but as one client 
is only able to connect to one server, you can simplify it further. 

When you created a server, the first step was to bind it to a socket so your actor system could 
receive incoming messages, but when developing a client designed to consume a socket, your 
system must connect to the remote endpoint before it can send data. To connect to a remote 
socket, your server retrieves a reference to the Tcp-Manager, which is responsible for handling all 
of the low-level socket management, and sends it a Connect message. In the following example, 
you create an actor that’s responsible for communicating with the server. It does this by sending 
a message to the TcpManager actor, with the endpoint that the server is listening on. The 
endpoint consists of two key pieces of information: the IP address of the remote host and the 
port on which it’s listening. 

var serverEndpoint = 

    new IPEndPoint( 

        IPAddress.Parse("127.0.0.1"), 

        8080); 

tcpManager.Tell(new Tcp.Connect(serverEndpoint)); 

A new connection is created, and the actor that’s requesting a connection is informed of whether 
the connection was successful or not. If the connection was unsuccessful, it receives 
a CommandFailed message with a string representation of the issue. But if the connection was 
successful, then the requesting actor receives a message with both the remote endpoint for 
communicating and the local endpoint the connection was opened on, and it can start the 
communication with the server. Every message the sender wants to pass is forwarded through 
the socket. In the following example, you can see how to use the switchable behavior 
functionality of an actor to communicate with the server by having a different behavior for 
connected and unconnected states. The actor can receive a variety of messages relating to either 
the connection itself or other actors in the system who want to communicate with the socket. 

Receive<Tcp.Connected>(msg => 

{ 

    Sender.Tell(new Tcp.Register(Self)); 

    Become(Connected(Sender)); 

}); 

 

Receive<Tcp.CommandFailed>(msg => 
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{ 

    Console.WriteLine("Failed to connect to remote endpoint"); 

}); 

Now that you have a client connection through your server endpoint, your actor system can start 
communicating with a remote server. You’ve already seen the StatsD protocol, and you’ll now 
see how to communicate with a server running the protocol. With a client in your actor system 
that communicates with the StatsD server, the server can ingest metrics with little effort. This 
means that you can persist metrics such as the time taken to process certain message types or 
the number of messages an actor has processed. The following example shows how your actor 
system can receive messages and send them through the socket: it sends a Tcp.Write message to 
a coordinating actor, with a ByteString that contains the message data. You can create 
a ByteString from other ByteStrings, an array, or a string, meaning that you can easily serialize 
the ASCII strings required by the StatsD protocol. But there may be other situations in which 
your actor system receives a message from the socket: an IO error if the network connection was 
physically cut; a peer reset error if the other party quickly quit the application without first 
closing the connection; or if the remote party normally disconnects. In these cases, the 
coordinating actor sends a message relating to the cause of the problem. For example, if a peer 
reset occurs, a Tcp.PeerReset message is sent; or if a network error occurs, a Tcp.IOError is 
sent. Your actor system can handle these errors and respond appropriately. For example, it may 
cache incoming messages until it can reconnect, and then send them once the connection has 
been reestablished. In this case, you write a message to the log that the connection was reset: 

private Action Connected(IActorRef connection) 

{ 

    return () => 

    { 

        Receive<string>(msg => 

        { 

            var write = Tcp.Write.Create(ByteString.FromString(msg)); 

            connection.Tell(write); 

        }); 

    }; 

} 

Although the example here focuses on connecting to an Akka.NET socket server, the 
implementation that you’ve created can connect to any StatsD servers that use TCP, because 
you’re not constrained to connecting to other actor systems. You’re also not limited to using the 
StatsD protocol, and you can implement clients for any protocol sent over a network. For 
example, you could just as easily create a client that interoperates with an SMTP server to send 
and receive emails, or a DNS server providing IP addresses for domain names. 
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10.3.3. Wrapping up 

In this section, you created a socket connection on both a server actor system and a client actor 
system, allowing communication between the two. Although you could have used the 
Akka.Remote features you saw in chapter 8, this would have limited your system to connecting 
with other Akka.NET actor systems, but akka.io allows input on a common protocol, in this 
instance StatsD, so other clients can connect and publish metrics. You can use other 
technologies where appropriate, for example, shell scripts when you want to monitor OS-level 
metrics, or use clients available in other languages such as Java or Ruby, allowing you to receive 
metrics from any system in your system architecture. 

By using akka.io, you quickly and easily set up a high-performance, low-level socket connection 
for receiving messages sent from applications outside of the actor system, with minimal 
overhead, low latency, and immediate availability. This level of abstraction helps to remove 
many of the complexities of networked applications. By having a well-known, easy-to-use API, 
your system can receive messages from the network in a performant manner without deep 
technical knowledge of the OS kernel and how it handles packets received from the network. 

10.4. CASE STUDY: IO, INTEGRATION, IOT APPLICATIONS  

Increasingly, IoT devices are used in hostile environments where you don’t have many of the 
conveniences of a traditional software project. For example, when designing systems, you expect 
high-speed broadband connections between client and server. But as you seek data from remote 
environments, you’re likely to encounter low speed, low bandwidth, and high latency from 
operating over older cellular connections. You must choose the correct protocol for transferring 
data over the network. In typical scenarios, you might choose HTTP, but in hostile 
environments, you’ll use a low-level protocol, specialized for the task at hand, focusing on 
minimizing the packet size. 

You can use the IO components of Akka.NET to use actors for simplifying the acquisition of data 
from a network socket and immediately processing it with your actor system. From here, you 
can decompress or deserialize the contents of the network packet and push it to other actors in 
the system. This allows you to perform complex logic on actors that process the messages as 
.NET objects. 

As an example, one of the tasks relating to IoT workflows is receiving time-series data and 
performing complex event processing on it to understand historical data and predict future 
trends. In figure 10.4, a number of IoT devices are deployed in a field on a farm. These devices 
monitor the moisture of soil and weather data over time, which they periodically upload to an 
Akka.NET system in the cloud. This system aggregates the data from multiple devices and 
calculates predictions based on the current data and historical data to ascertain whether 
irrigation should be switched on. Given that these devices are deployed in rural locations outside 
of major population centers, it’s likely that the only internet connection available will be through 
a cellular connection, probably 2G or EDGE. As such, you’ll have to use a protocol that 
prioritizes small packet sizes because of the high cost of cellular data and the low bandwidth 
available. Figure 10.4 shows how you can create an actor that receives data from a network socket 
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and passes it to an actor dedicated to processing the event data from each device. Other actors 
can aggregate data from clusters of devices, if necessary. 

Figure 10.4. IoT applications operating in hostile environments may be subject to bandwidth constraints. By opening a direct socket 

into your actor system, you have the opportunity to create a custom protocol relevant to the circumstances. 

 

Using the IO components of Akka.NET, you can simplify the ingestion of data from a network 
source that might not have a preexisting network client. Despite the complexities typically 
associated with low-level socket programming, the IO components in Akka.NET allow you to 
treat a socket as another actor. 

SUMMARY  

In this chapter, you learned 

• How Akka.NET can be combined with other tools, such as a web API and -SignalR, to 
build reactive applications 

• How to use akka.io to treat sockets as first-class components of an actor system 
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Chapter 11. Storing actor state with Akka.Persistence 

This chapter covers 

• Adding a persistent backing data store to an actor to save its state 
• The concepts behind event sourcing 
• Creating evolvable applications using Akka.Persistence and event sourcing 

Throughout the book so far, you’ve developed a wide variety of actors designed to operate in a 
number of different scenarios—both small, isolated actors and larger systems such as e-
commerce applications. All these actors share a common trait: they exist as an abstraction over 
the top of application memory. Although actors incorporate desirable attributes such as message 
queues, processing, and state, the primary purpose of an actor system is to support concurrent 
workloads and reduce the surface area on which concurrency bugs can occur. 

For every actor you’ve created so far, the actor’s state has been ephemeral, and if the actor shuts 
down, upon restart it returns to the state it had when it was created. But sometimes you need an 
actor to be more resilient and return to the last state it had before it shut down. Actors in 
Akka.NET can be shut down for a wide range of reasons: you might need to relocate the actor 
onto a different actor system because you’re running low on resources; you might take the 
approach of failing fast and letting Akka.NET restart the actor in the event of an error; or you 
might need to shut the application down when you want to upgrade it, which will cause all of the 
actors in the actor system to shut down. 

In all of these instances, you need to have systems in place so that you can re-create an actor’s 
state as and when required. Let’s consider the example of the shopping cart of previous 
chapters. An actor represents the user’s shopping cart and stores references to items in the 
actor’s state; you want to ensure that the user continues to see those items in their cart as they 
move around the website. If your system experiences a failure that crashes the entire 
application, when it restarts, you want the user to see all their items in their shopping cart. From 
a business perspective, if a user spent a lot of time browsing the website adding items to their 
cart and then lost them, their irritation may result in taking their business elsewhere. 

This presents a challenge: you must enable tasks related to saving and recovering an actor’s 
internal state. You need to move the shopping cart actor’s internal state into a persistent storage 
system such as a database or a filesystem. You also need to be able to re-create the actor’s 
internal state from the persisted state. Fortunately, the Akka.Persistence tool lets you write 
actors that can persist state and recover it from a variety of file stores, ranging from SQL and 
NoSQL databases to flat files in a filesystem; you also have the ability to plug in alternative data 
stores. In this chapter, we’ll look at how to write applications in which actors can store and 
recover state, thanks to Akka.Persistence. 
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11.1. UNDERSTANDING EVENT SOURCING  

Before you start using Akka.Persistence, it’s important to understand how state is persisted to 
the data store. An actor’s state is an abstraction over some location in the computer’s RAM. In 
many applications, you persist this location in memory to a database table, with an object 
relational mapper (ORM). This pattern, known as the active record pattern (see figure 11.1), has 
become a common approach due to its simplicity, but it presents a number of problems: 
notably, object-relational impedance mismatch, whereby objects in memory don’t map directly 
onto database tables. 

Figure 11.1. The active record pattern relies on mapping an in-memory object into an object in a data store that mutations are then 

saved to. 

 

You can therefore consider the internal state to be nothing more than an initial state along with 
a number of changes in the form of events. Although this might sound relatively obscure, this 
idea forms the basis for systems that are hundreds of years old. For example, with accounting 
records, rather than record the total money in the account at a point in time, you instead 
maintain a log of all the transactions that have taken place against that account. This includes all 
debits from the account to their destination, and the credits into the account from their origin. 
This provides vastly improved traceability and auditing capabilities than what you would 
achieve with the active record approach, in which you have a line representing the amount of 
money in the account. You can also rebuild the state, in this case representing the total money in 
the account, by reapplying every event onto the starting state. 

This conceptual model isn’t limited to the accounting world, and a number of systems in 
software development also rely on these ideas: for example, a Git source--control repository. It 
has an initial state (an empty directory) along with a number of changes to files in that directory. 
You might add files to the directory as you develop an application, make changes to files to add 
new functionality, or remove files entirely. Every time you commit a change to the repository, 
you have a point-in-time snapshot of the state. This model of persisting changes is significantly 
more lightweight for source-control systems, as you may need to rebuild the state at a snapshot 
point. Although you could store the whole repository’s contents at each snapshot point, it would 
rapidly expand to become a huge file. 

The active record pattern isn’t limited to source-control technology; you can apply the model to 
the applications you write. Let’s reconsider the shopping cart example. The shopping cart has an 
internal state: the items contained in it as a result of the user adding and removing items. By 
persisting these events, you can rebuild them into the current list of items. Figure 11.2 shows 
how to represent a shopping cart actor as a process over time during which events are applied to 
the state, resulting in a new state. As you scan from left to right, you can see how events are 
applied, starting with an empty shopping cart and then adding a television; then, adding a 
laptop and removing the television. At each stage along the way, you can see the state of the 
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shopping cart. This provides significantly enhanced observability of system changes, as well as 
the ability to audit historical changes, if needed. As you have an ordered list of all the changes 
that exist in your application, you can pass the list to another actor, and as the new actor replays 
the events, each event will produce a state equal to the original one. When using active record 
systems, you don’t get this level of historical detail and so can’t correct historical errors as easily, 
resulting in invalid data. 

Figure 11.2. You can think of a shopping cart’s state as the result of applying events to it from an initial state. 

 

This model, known as event sourcing, sits at the heart of Akka.Persistence and provides the 
basis for persisting and recovering actor state as part of a larger actor system. Throughout the 
rest of this chapter, we’ll look at how to use Akka.Persistence to create actors that follow the 
event-sourcing model. 

11.2. USING AKKA.PERSISTENCE 

To use Akka.Persistence, you first need to install the library files; again, the library is provided 
through NuGet and can be installed from the Akka.Persistence package. Having installed the 
library, you can begin writing actors based on the actor types provided by Akka.Persistence. 

11.2.1. Writing persistent actors 

The PersistentActor, a variation of the actors you’ve seen, lies at the heart of Akka .Persistence. 
You’ve used ReceiveActor to write actors as handlers matched to message types, and the 
specialized FSMActor to create a finite state machine. PersistentActor is another specialized 
actor with a specific use: persistence. To create an actor that has a backing store, you define an 
actor that inherits from the PersistentActor class and implement the required methods on it. 
The following example shows how to define a shopping cart actor responsible for storing items a 
user adds to their shopping cart. The actor has a number of additional methods as part of the 
contract: 

using Akka.Persistence; 

 

public class ShoppingCartActor : PersistentActor 

{ 
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    public override string PersistenceId { get { throw new 

     NotImplementedException(); } } 

 

    protected override bool ReceiveCommand(object message) 

    { 

            throw new NotImplementedException(); 

    } 

    protected override bool ReceiveRecover(object message) 

    { 

        throw new NotImplementedException(); 

    } 

} 

The first requirement is a persistence ID, the value that Akka.Persistence uses as its means of 
identification when it persists state into a database. It’s important that the persistence ID is 
unique on a per-actor basis; otherwise, you may muddle state and events between two distinct 
actors, leading to unexpected behavior. You can choose an ID based on the actor’s location in 
the actor hierarchy, or the actor’s name if the name is unique. In the following example, you give 
the actor a persistence ID of "shoppingcart" because the application will have only one 
shopping cart. In a production environment, you’ll have many shopping cart actors, and you’ll 
need to uniquely identify each one. This may be either a generated GUID or an integer 
representing it. The persistence ID is also used to recover the state for the actor, so it’s 
important to use a deterministically generated identifier. This might mean having a parent actor 
responsible for persisting all the actors that exist below it. 

public override string PersistenceId { get { return "shoppingcart"; } } 

This shopping cart actor also implements the ReceiveCommand method. Receive-Command is 
analogous to the Receive method that you implemented earlier in some actor instances. Notice 
that this method is called ReceiveCommand and not ReceiveEvent, despite the fact that 
Akka.Persistence embodies the concept of event sourcing. The reasoning behind this is the 
distinction between commands and events in event sourcing. Although the two seem similar, 
there’s a subtle difference between them: 

• Commands—Commands are directives telling an actor to do something. In the case of the 
shopping cart, you’ll pass it the command AddItem. Commands are named in an 
imperative manner: they direct the target to do something. 

• Events—Events are the outcomes of commands. If the shopping cart is told to add an 
item, then the direct outcome of that command is an ItemAdded event. Events are named 
in the past tense: they’re the result of a completed action. 

This might seem unnecessary, but consider what happens if an actor has to perform some 
additional actions while it’s working. In the shopping cart example, it doesn’t need to do 
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anything beyond adding/deleting items in its internal state, but in a more complex example, it 
will probably need to perform more operations. For example, it may need to post a message onto 
a message queue for an external system to process. If the actor were to post that message onto 
the queue every time it processes an event, then it might enqueue the same message multiple 
times because of reprocessing the event every time it recovers its state. By splitting sourcing into 
commands and events, you can more easily handle the outcome of actions. 

The following code example shows the code that needs to be added to an actor that receives 
commands and emits events as a result. It receives the command AddItem containing an item 
identifier representing a stock number, as well as the number of items to add. The actor matches 
on the incoming message and performs the appropriate action. In this case, it creates 
the ItemAdded event, which contains the stock number as well as the total number of items to 
add. After creating the event, the actor persists it by calling the Persist method with an event 
and a handler. Upon calling Persist, the message is written into what Akka.NET calls a journal. 
The journal is an ordered log of all events for a given persistence ID. The handler is executed 
when the event is successfully stored, and is where the internal state of the actor is modified. In 
this case, you add the items to a dictionary of all of the stored items. 

class AddItem 

{ 

    public string ItemId { get; } 

    public int ItemCount { get; } 

 

    public AddItem(string itemId, int itemCount) 

    { 

        ItemId = itemId; 

        ItemCount = itemCount; 

    } 

} 

 

class ItemAdded 

{ 

    public string ItemId { get; } 

    public int ItemCount { get; } 

 

    public ItemAdded(string itemId, int itemCount) 

    { 

        ItemId = itemId; 
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        ItemCount = itemCount; 

    } 

} 

 

protected override bool ReceiveCommand(object message) 

{ 

    if (message is AddItem) 

    { 

        var msg = (AddItem)message; 

        var itemAddedEvent = new ItemAdded(msg.ItemId, msg.ItemCount); 

        Persist(itemAddedEvent, HandleEvent); 

        return true; 

    } 

    return false; 

} 

 

private void HandleEvent(object @event) 

{ 

    if (@event is ItemAdded) 

    { 

        var evt = (ItemAdded)@event; 

        if (_items.ContainsKey(evt.ItemId)) 

        { 

            var currentCount = _items[evt.ItemId]; 

            var newCount = currentCount + evt.ItemCount; 

            _items[evt.ItemId] = newCount; 

        } 

        else 

        { 

            _items[evt.ItemId] = evt.ItemCount; 

        } 

    } 
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} 

A note on stashing 

You saw in chapter 4 how to create a message stash for your actors. With Akka .Persistence, the 
actor already has a stash defined, which it uses to store incoming messages when a persist 
operation is already in progress. This can interfere with some of the methods that shut down an 
actor. For example, you saw how to shut down an actor by sending it a PoisonPillmessage, but this 
message is handled by the actor system, meaning that the PoisonPill will be handled even if there 
are other messages currently in the stash awaiting processing. The way to handle this problem is to 
create a dedicated message used for handling shutdown in persistent actors, for which the 
command calls Context.Stop. You can see an example of how you might handle that in the following 
code: 

class Shutdown { } 

 

protected override bool ReceiveCommand(object message) 

{ 

    if(message is Shutdown) 

    { 

         Context.Stop(Self); 

         return true; 

    } 

} 

Now that you have a system in place for handling commands, generating events, and persisting 
those events, you need a way to handle those events if the application is recovering from a failure. 
You can do so by implementing the ReceiveRecover method, which receives events from an event 
journal after an actor is restarted. During recovery, commands received by the actor are stashed so 
that they’re handled after the state has fully recovered. This gives you the ability to modify the state 
in line with what you saw previously when modifying the state in a command handler, in the 
example preceding this sidebar. 

Now, whenever you create a new instance of this actor type, PersistentActor checks the event 
journal to see whether events have already been persisted. If they have, the persisted events are 
sent to the actor to be handled through the Receive-Recover method. In this method, the actor can 
match on the event and update the state, depending on the type of event received. The following 
example shows matching on the event type and updating the state exactly as when you wrote 
command handlers: 

protected override bool ReceiveRecover(object message) 

{ 
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    if(message is ItemAdded) 

    { 

        HandleEvent(message); 

        return true; 

    } 

    return false; 

} 

During the actor’s lifecycle, you can check what state the actor is in: recovery mode and receiving 
persisted events, or regular operational mode and receiving commands from other actors. 
IsRecovering tells you the actor is still recovering, and IsRecoveryComplete tells you the actor can 
process commands received the usual way. 

if(this.IsRecovering) 

{ 

    //Perform specific logic for when the actor is in the 

    recovering state 

} 

else if(this.IsRecoveryComplete) 

{ 

    //Perform specific logic for when the actor has finished 

    recovering it's state 

} 

You can proactively determine the status of recovery with the RecoveryCompleted event, which is 
sent to the ReceiveRecover method when the system has successfully processed all incoming 
events. For this, you create a further match case that handles the RecoveryCompleted event: 

protected override bool ReceiveRecover(object message) 

{ 

   if(message is RecoveryCompleted) 

   { 

        //Perform specific actions once the actor state has been 

     recovered 

         } 
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   if(message is ItemAdded) 

   { 

       HandleEvent(message); 

       return true; 

   } 

   return false; 

} 

As you can see, some additional concepts are involved when you use Akka .Persistence actors, but 
not many changes are required to create an actor that can persist all of its changes to a database 
and then recover that state upon a restart. 

11.2.2. Configuring a journal 

In the previous section, you saw how events are persisted to a data store, or, in Akka.Persistence 
parlance, a journal. This journal can be a SQL or NoSQL database or another option, but, by 
default, Akka.NET persists events to a short-term data--storage structure in memory, which is 
deleted if the application is closed. If you want to change this setting, you need to modify the 
HOCON configuration in a manner similar to what you saw in chapter 5. 

Various plugins are provided for persisting journal events, but in this example, you’ll look at 
how to store them in a Microsoft SQL Server–supported journal. To use this journal, you first 
install actors to communicate with it, by installing the Akka .-Persistence.SQLServer package 
from NuGet. 

Now, you need to configure the journal for communication by adding it to your HOCON 
configuration file. You follow the same process of creating a configuration file and using it as 
you did in chapter 5, but you modify it to add settings for Akka .-Persistence. The following 
example shows how to specify SQL Server as the journal to use and how to connect to it by 
specifying the connection string. You create a dedicated configuration section in the 
Akka.Persistence settings for the journal, where you specify the journal to use, which is a 
location in the configuration file. The specified location contains two pieces of information: the 
class to use as the persistence journal (in this case, the SqlServerJournal class) and the 
connection string to the database for persisting state. 

akka { 

    persistence { 

        journal { 

            # SQL Server journal plugin. 

            sql-server { 
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                # Class name of the plugin. 

                class ="Akka.Persistence.SqlServer.Journal.SqlServerJournal, 

      Akka.Persistence.SqlServer" 

 

                # Dispatcher for the plugin actor. 

                plugin-dispatcher = "akka.actor.default-dispatcher" 

 

                # The connection to the SQL server database which will store 

      the persisted events. 

                connection-string = "<SQL Server Connection string>" 

             } 

        } 

 

        snapshot-store { 

            sql-server { 

 

                # Class name of the plugin. 

                class = 

      "Akka.Persistence.SqlServer.Snapshot.SqlServerSnapshotStore, 

      Akka.Persistence.SqlServer" 

 

                # Dispatcher for the plugin actor. 

                plugin-dispatcher = ""akka.actor.default-dispatcher"" 

 

                # The connection to the SQL server database which will store 

      the persisted snapshots. 

                 connection-string = "" 

            } 

        } 

    } 

} 
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In this example, you used SQL Server as the data-store journal, but you can choose from a wide 
variety of plugins, including Postgres, Azure Table Storage, Azure Blob Storage, and others. In 
addition, the Akka.NET community has created many plugins for various databases. You can 
also create custom journals in the event that one doesn’t already exist for your data store of 
choice, but that’s beyond the scope of this book. 

11.2.3. Wrapping up 

In this section, you’ve seen how to build actors backed by a journal that stores events, and how 
to specify your journal of choice. In the rest of this chapter, we’ll dive deeper into some of the 
more advanced features of Akka.NET that give you better performance from data, and different 
overviews of data. 

11.3. AKKA.PERSISTENCE PERFORMANCE TUNING 

Although the performance of Akka.Persistence is just as good as the active record approach in 
most situations, sometimes you’ll want to increase the message throughput of persistent actors. 
In this section, you’ll see a couple of approaches that can help you to make the most of the 
library and continue to use it in cases where you might otherwise be strained. 

11.3.1. Snapshot stores 

Although event-sourced applications provide plenty of advantages, there are also downsides, 
one of which is how much time it can take to recover internal state. As the state is computed by 
applying events in the order they were persisted, when a huge number of events are persisted, it 
will take longer and longer to recover the state. 

Consider the example of an indecisive customer using their shopping cart. Because your system 
stores every change to the actor’s state, if a customer repeatedly adds and removes items from 
their cart, a large number of events can quickly build up. If many items are involved, as might be 
the case for a grocery store cart, this could lead to a lot of events. As more events are added, it 
takes more time to retrieve them all from the data store, and they must be applied sequentially. 

A situation like this could make it difficult to maintain a reactive Akka.Persistence application. 
You saw in the previous section how the actor stashes incoming messages while it’s in the 
process of recovering state. This presents a problem if an actor needs to recover state frequently, 
for example, if it fails frequently. If an actor takes seconds to recover state as a result of many 
events, then it’s unable to respond to messages from other actors until it has completed its 
recovery. If you’re building applications that require low latency to ensure responsiveness, then 
having operations block for several seconds isn’t ideal. 

With Akka.Persistence, you can use a snapshot store, which stores snapshots of actor state at 
specific points in time, allowing an actor to replay states from those points. You can see an 
example of this in figure 11.3. Rather than recovering every event from the beginning of the 
actor’s lifecycle, the actor can choose the latest snapshot and replay events from that point on. 
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Figure 11.3. Snapshots allow you to limit the number of events that must be replayed every time a persistent actor needs to recover 

its internal state. 

 

To store a snapshot in a persistent actor, you call the SaveSnapshot message with whatever you 
want as the state. In the shopping cart example, you would choose to store your dictionary of 
items and item counts. But you don’t want to store a snapshot after every event, because there’s 
no garbage collection of historical snapshots; they accumulate in the database. Instead, you 
should save a snapshot either after a certain number of events have been emitted or after a 
certain period of time has elapsed since the last message. In the following example, you keep 
track of how many messages have been handled since the last stored snapshot, and if a 
maximum is exceeded, then you persist a new snapshot. In contrast to event persistence, 
snapshots are persisted asynchronously, so other messages can be processed while snapshots 
are persisted. This is because snapshots are designed as an optimization technique rather than a 
primary storage mechanism. 

private int _eventsProcessed = 0; 

 

private void HandleEvent(object @event) 

{ 

    if (@event is ItemAdded) 

    { 

        //Event logic 

        _eventsProcessed++; 

    } 

    if(_eventsProcessed > 10) 

    { 

        SaveSnapshot(_items); 

        _eventsProcessed = 0; 

    } 

    return false; 

} 
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Having saved a snapshot, you need to recover the actor’s state from the snapshot itself instead of 
replaying events from the beginning of the actor’s lifecycle. For the recovery stage, you need a 
new type of message. If a snapshot exists for the persistence ID of an actor, the message first 
retrieves the latest snapshot and the event associated with the snapshot. These are presented to 
the actor as part of a SnapshotOffer message. The actor can access the state persisted through 
the Snapshot property on the message. The following example shows how to set the actor’s state 
from the received SnapshotOffer message: 

protected override bool ReceiveRecover(object message) 

{ 

    if(message is SnapshotOffer) 

    { 

        var snapshot = (SnapshotOffer)message; 

        _items = (Dictionary<string, int>)snapshot.Snapshot; 

        return true; 

    } 

 

    if(message is ItemAdded) 

    { 

        HandleEvent(message); 

        return true; 

    } 

    return false; 

} 

After the snapshot offer has been received, the persistent actor is then sent events that follow 
the sequence number of the snapshot, if any. This means that it can continue receiving events to 
recover to the latest state. 

Snapshots allow you to reduce the time it takes to recover to the latest state by maintaining 
history at a specific point in time. But it’s important to understand that they exist as an 
optimization technique rather than as a basis for storage. 

11.3.2. Async write journals 

You saw in the previous section how, by using the Persist method on a persistent actor, you can 
supply an event and a callback that then persists an event and executes the callback on 
completion. You also saw how the actor stashes incoming messages until the write on the last 
event has completed, ensuring the operation remains consistent. This technique is ideal for most 
situations, because you get good-enough performance, but in some situations, any form of 
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blocking causes the response time to grow rapidly; for example, when large numbers of writes 
go through the system at one time. In these cases, blocking can cause the queue of incoming 
messages to rapidly grow, causing system failure. 

To handle this situation, Akka.NET supplies the PersistAsync method, which sends a request to 
the write journal containing the event to write. You once again supply an action for when the 
write request completes, but the main difference from -Persist is that when you use 
the PersistAsync method, while the write request is in flight, the actor can process the next 
message in its mailbox. This does, however, necessitate a relaxed consistency guarantee. In 
synchronous persistence, the application will only handle the next message if it was able to 
successfully write the last event to the journal. If the write failed for any reason, such as a 
database being unavailable, then the next message isn’t processed. But when using 
asynchronous persistence, an actor continues to process messages without any guarantee that 
the state has been written. This makes it ideal when you’re receiving vast amounts of data, some 
of which you can afford to lose. One example of this is writing and aggregating log or metrics 
data. In these cases, you ideally want to record all the data for later use, but losing several 
minutes of data is acceptable if it means the system doesn’t fail. 

You can see an example of using PersistAsync in the next example, where you write an event 
asynchronously to the event journal. The rest of the actor stays the same, and you change the 
call to Persist to a call to PersistAsync: 

protected override bool ReceiveCommand(object message) 

{ 

    if (message is AddItem) 

    { 

        var msg = (AddItem)message; 

        var itemAddedEvent = new ItemAdded(msg.ItemId, msg.ItemCount); 

        PersistAsync(itemAddedEvent, HandleEvent); 

        return true; 

    } 

    return false; 

} 

PersistAsync rapidly increases message throughput for an actor by allowing the actor to process 
other messages while waiting on writes to complete. Be mindful of the potential effect this could 
have on the actor, and if consistency is a core requirement of the actor, then other alternatives 
should be investigated before choosing asynchronous write journals. 
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11.3.3. Wrapping up 

When an actor needs to recover state frequently, you can use a snapshot store, which allows an 
actor to replay states from specific points in time. Snapshots allow you to recover to the latest 
state by maintaining history at a specific point in time. When your system is processing a large 
numbers of writes, waiting on persistence can cause blocking as the queue of incoming messages 
grows. The PersistAsync method allows an actor to handle the next message instead of waiting 
for the previous one to be persisted. 

11.4. AKKA.PERSISTENCE PERFORMANCE TUNING 

Akka.Persistence is incredibly fast in its own right, but under certain circumstances, the default 
configuration is unfortunately not as fast as an active-record approach. You can counter this 
with a number of provided features. You’ve seen how using snapshot stores helps decrease 
recovery time for an actor restart. You’ve also seen how to relax the consistency of your actors by 
using asynchronous write journals, allowing them to handle more write operations on events in 
less time. 

11.4.1. At-least-once delivery 

You 1113.290 saw in chapter 6 that there are a number of ways an actor can counter problems. In 
the wake of errors, supervisors and supervision strategies can restore actors. If message-passing 
fails in an asynchronous messaging application, you can build an actor responsible for receiving 
acknowledgements from the target to guarantee message processing. If an actor fails to receive 
an acknowledgement in response to a message, it resends the message until an 
acknowledgement is returned. 

This is known as at-least-once messaging, because the message is delivered repeatedly until its 
processing is confirmed (see figure 11.4). This is contrary to the typical Akka.NET approach to 
messaging whereby you send at most one message, and it acts in a fire-and-forget manner. Such 
an actor is satisfactory for small cases, but there are significant edge cases that can occur in 
asynchronous distributed systems, and such a protocol needs guarantees that it will continue to 
operate even in the face of adversity. Fortunately, as part of the Akka.Persistence library, 
Akka.NET provides a thoroughly tested and developed solution for delivering messages at least 
once. 
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Figure 11.4. An at-least-once delivery actor system continuously resends a message to a target actor until it eventually receives an 

acknowledgement in reply. 

 

The at-least-once delivery system in Akka.Persistence permits other features, such as persisting 
whether the target has correctly received the message in the event that the application fails and 
the entire actor system is shut down. This provides even stronger fault tolerance guarantees 
than those you saw when you developed a simple solution for blue-sky scenarios. In this section, 
we’ll look at how to use the at-least-once delivery actor in Akka.Persistence to develop actors 
that can resend messages until they are successfully processed. 

An actor that attempts delivery multiple times must inherit from the AtLeast-
OnceDeliveryActor. This actor provides a number of additional features on top of those 
provided by a PersistentActor, which makes it easier for you to develop actors with different 
delivery semantics. In this section, we’ll consider a trivial example where the actor sends a string 
to a remote target and waits for a response. This relates to real-life scenarios where you can’t 
afford to lose an update, such as when deducting money from a user’s account or when 
performing an update that must succeed. The following code shows the shell of the actor you’ll 
create, which inherits from the AtLeast-OnceDeliveryActor class: 

class CustomDeliveryActor : AtLeastOnceDeliveryActor 

{ 

    public override string PersistenceId { get { throw new 

      NotImplementedException(); } } 

    protected override bool ReceiveCommand(object message) 

    { 

        throw new NotImplementedException(); 

    } 

 

    protected override bool ReceiveRecover(object message) 

    { 

        throw new NotImplementedException(); 

    } 
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} 

In the same way as with the persistent actor definition, you supply a PersistenceId that’s used 
to persist and recover state. Follow the same restrictions you saw when dealing with persistent 
actors, and ensure that the persistenceId is deterministic and is recoverable between actor 
restarts. In this case, you hardcode the persistenceId, but in production environments, you 
need to ensure that it’s unique across multiple actor instances: 

public override string PersistenceId { get { return "GuaranteedSender"; } } 

Similar to the persistent actor, at-least-once delivery actor commands must be handled; in this 
case, two commands—the request to send a message to a target and the confirmation message 
received from the target. You’ll use a fixed target that will receive all messages, and you’ll 
operate on the basis that any strings the delivery actor receives will be treated as data to be sent 
to the target actor. Coming up is an example of this in which the delivery actor matches on the 
incoming data. If it’s a string, then it creates a new MessageSent event, and if it receives 
a Confirm command, then it creates a MessageConfirmed event. You also need to handle the 
recovery of events in the same manner as with a persistent actor to restore state if the actor fails. 
In this case, the operations you perform on events are the same as with a persistent actor when 
you’re recovering state as well as when you’re emitting events. You can create a common method 
that both the command handler and recovery use for each of the events. The following example 
shows the method definitions alongside the command handler and recovery code that calls 
the UpdateState method: 

protected override bool ReceiveCommand(object message) 

{ 

    if(message is string) 

    { 

        Persist(new MessageSent((string)message), Handler); 

        return true; 

    } 

    else if(message is Confirm) 

    { 

        Persist(new MessageConfirmed(((Confirm)message).DeliveryId), 

     Handler); 

        return false; 

    } 

    return false; 

} 

 

protected override bool ReceiveRecover(object message) 
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{ 

    if(message is MessageConfirmed) 

    { 

        Handler((MessageConfirmed)message); 

        return true; 

    } 

    else if(message is MessageSent) 

    { 

        Handler((MessageSent)message); 

        return true; 

    } 

    return false; 

} 

With your UpdateState shell in place, you need to implement the logic in it. This is where the 
delivery actor will either deliver the message or mark it as being received, depending on the 
event it’s dealing with. If it’s a MessageSent event, then it calls the Deliver method, which is 
provided by the AtLeastOnceDeliveryActor. Deliver takes in the path to the destination actor 
and a callback that’s used to create the message. The AtLeastOnceDeliveryActor maintains a 
unique number sequence that represents the next message to be sent, which it uses to mark 
which messages have been confirmed. The delivery actor sends the sequence number to the 
target so the target can respond with which messages it has processed. In the following example, 
the delivery actor sends a Message wrapper that contains a string to send as well as the sequence 
number provided by the AtLeastOnceDeliveryActor. The delivery actor also needs to handle 
the MessageConfirmed event, which it created when it received a Confirm command from the 
target actor. In this case, it calls ConfirmDelivery with the returned sequence number from the 
target actor. In the following example, you can see how these components fit together in 
the UpdateState method, the shell of which you defined earlier: 

private void Handler(MessageSent message) 

{ 

    Deliver(_destinationActor.Path, deliveryId => new 

     MessageEnvelope(deliveryId, message.Message)); 

} 

 

private void Handler(MessageConfirmed confirmed) 

{ 

    ConfirmDelivery(confirmed.DeliveryId); 

www.EBooksWorld.ir



} 

With the infrastructure in place on the sending side, you also need to send a confirmation 
message from the target back to the delivery actor with the sequence number of the message 
currently being processed. Here’s a small example that receives the wrapper event, prints the 
string to the console, and then sends an acknowledgement message to the delivery actor in 
response: 

class GuaranteedPrinterActor : ReceiveActor 

{ 

    public GuaranteedPrinterActor() 

    { 

        Receive<MessageEnvelope>(msg => 

        { 

            Console.WriteLine("Received a message: {0}", msg.Message); 

            Sender.Tell(new Confirm(msg.DeliveryId)); 

        }); 

    } 

} 

With an AtLeastOnceDeliveryActor, a number of properties allow you to configure certain 
semantics of the delivery protocol, all of which are configurable from the HOCON configuration 
for at-least-once delivery actor functionality. For example, by using 
the MaxUnconfirmedMessages property, you can specify how any unconfirmed messages are kept 
in memory while awaiting responses. If you have too many messages in flight, then any time the 
delivery actor calls Deliver, it will fail and throw a Max-UnconfirmedMessages-
ExceededException error, allowing the actor to back off and try again later. By default, the 
maximum is 100,000, but it may be necessary to lower this number if you have 
many AtLeastOnceDeliveryActor instances, so as to prevent lack-of-memory errors. In the 
following example, the number is reduced to 1,000: 

akka.persistence.at-least-once-delivery.max-unconfirmed-messages = 1000 

The AtLeastOnceDeliveryActor also sends warnings if it fails to receive a response after sending 
a message a number of times. By default, that number is five times, but it is possible to increase 
or decrease that number by setting warn-after-number-of-unconfirmed-attempts in HOCON 
configuration. Then you can handle the UnconfirmedWarningmessages in the command handler 
to choose the appropriate course of action. 

akka.persistence.at-least-once-delivery.warn-after-number-of-unconfirmed- 

     attempts = 5 

The AtLeastOnceDeliveryActor periodically resends unconfirmed messages that it still has in 
memory. It batches these messages and sends them in one burst every time period. By default, 
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this property is set to 10,000, but, depending on things such as the network, it may be useful to 
modify this by providing a value for the redelivery-burst-limit property in HOCON. The 
following example shows how to change the limit to 1,000 instead of 10,000: 

akka.persistence.at-least-once-delivery.redelivery-burst-limit 

The AtLeastOnceDeliveryActor is a powerful construct to create actors that overcome transient 
issues caused by network difficulties in a fault-tolerant manner. With a journal-backing store, 
you can even resend unconfirmed messages to target actors if the application shuts down 
inexplicably. 

11.4.2. Upgrade strategies for applications using event sourcing 

Over time, you’re likely to encounter situations that arise due to the evolution of your 
application; for example, multiple versions of messages. Consider the shopping cart example 
again. You represented a shopping cart item with a stock identification number and the quantity 
of that item in the cart. This information was stored in the event journal. But although this 
might have been appropriate at the time, this process for persisting stock identifiers may later 
lead to problems. For example, you may have chosen one format when only a few products were 
available for sale, but with sales growth, you may need a new stock identification method. When 
you change your processing logic to use the new event type, you can’t recover the old events. 
This contradicts the reason you wanted to persist state in the first place: to recover state later. 

To handle these situations, Akka.Persistence provides for event adapters (see figure 11.5) that 
map data types used in your code to data stored in your event journal. This separation provides 
a number of distinct advantages: 

• Data migrations—This is one scenario we’ve already considered. When an event model 
changes between two versions of the application, you need to handle transitions between 
the data types so that you can continue to read in old data types. 

• Separation of domain and journal data models—When you develop your application 
domain, you might create special classes to represent cases that should never happen in 
an effort to make illegal states unrepresentable. One example of this is a custom email 
class designed to only be created if it follows a certain pattern, or it will otherwise fail. 
When you then persist this data to the journal, you don’t necessarily need the wrapper 
class, and it will inflate the amount of time and disk space taken to persist the individual 
event. Another situation is if you wanted to use a custom serialization technology to 
persist data. For example, in the case of large messages, you may want to use a 
technology such as Google’s Protocol Buffers for compact storage of events. By creating 
an event adapter, you can specify that you use one representation for the data when it’s in 
memory and another for when it’s stored in the journal. 

• Journal-specific features—Your database may support features that open up additional 
benefits. One example is if the database supports the persistence of JSON documents; it 
may be beneficial to persist journal events as JSON documents, thus getting either better 
performance or better future query features. By using an event adapter, you can take the 
in-memory representation and convert it into the shape required by the database, and 
vice versa. 
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Figure 11.5. Event adapters allow you to modify events from a journal to an actor and vice versa, enabling you to make changes to 

event-sourced applications while also maintaining the full event history. 

 

In this section, we’ll look at how you can write an event adapter for the shopping cart. We’ll 
assume that in version 1 of your events, you persisted the stock identification number as a 
string, but in the upgraded version 2, you need to map events into a new format. The new format 
is a new class that holds the stock identifier. The following example shows how to create an 
event adapter by implementing the IEventAdapter interface. The interface provides three 
methods that you need to implement. 

public class ShoppingCartEventAdapter : IEventAdapter 

{ 

    public IEventSequence FromJournal(object evt, string manifest) 

    { 

        throw new NotImplementedException(); 

    } 

 

    public string Manifest(object evt) 

    { 

        throw new NotImplementedException(); 

    } 

 

    public object ToJournal(object evt) 

    { 

        throw new NotImplementedException(); 

    } 

} 

The first method is Manifest, which allows you to link a manifest to an event. A manifest is a 
type hint that matches on the string for future deserialization of the event with the appropriate 
mechanism. This can be set to a value specific to your purposes; in this case, you just return an 
empty string: 
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public string Manifest(object evt) 

{ 

    return String.Empty; 

} 

You also need to implement the ToJournal method, called when an event is being persisted to 
the event journal—in this case, after the Persist method has been called. Because you have old 
events persisted, you don’t need to do anything special, and you can return the event that was 
passed to you (in this case, ItemIdentifier). This event will then be serialized and persisted into 
the data store. If you wanted to store an event in the data store as a Protocol Buffers–encoded 
byte array, this is where you would convert it into that format with the Protocol Buffers 
serializer. 

public object ToJournal(object evt) 

{ 

    if(evt is Events.V2.ItemAdded) 

    { 

        var newEvt = (Events.V2.ItemAdded)evt; 

        return new Events.V1.ItemAdded(newEvt.ItemIdentifier.Identifier); 

    } 

    return evt; 

} 

The final method you need to implement is the most important one, the FromJournalmethod, 
which allows you to map an event from one type into another type. In this case, you need to 
create a new event from the ItemIdentifier event. You start by defining the new event: a class 
containing a StockIdentifier property and a count, shown in the following example. You then 
define the mapping function by creating an instance of the new event from the old event. In the 
following example, you create a new instance and map all the properties into the new event. One 
point to note about the FromJournal method is that it returns an IEventSequence interface. This 
means that you can return one event, more than one event, or no events at all. In this case, you 
return a single event, which you store in a new event sequence. 

public IEventSequence FromJournal(object evt, string manifest) 

{ 

    if(evt is Events.V1.ItemAdded) 

    { 

        var oldEvt = (Events.V1.ItemAdded)evt; 

        var newEvt = new Events.V2.ItemAdded(new 

     Events.V2.StockIdentifier(oldEvt.ItemIdentifier)); 
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        return EventSequence.Single(newEvt); 

    } 

    return EventSequence.Single(evt); 

} 

Finally, you also need to configure the event journal to use IEventAdapter when it passes events 
to the journal. Use the HOCON configuration for the event journal SqlServerJournal you chose 
in section 11.2.2. To specify which event adapter bindings to use, first create a mapping of the 
event adapter type to a name for it. In the following example, the fully qualified type name, 
including the namespace and assembly, is v1. Then set up an event binding, which maps an 
event type onto an adapter. In the following example, you provide an event adapter name—in 
this case, the v1 string—for the version 1 event type, with namespace and assembly. Because 
you’re also converting from V2 to V1 format for storage into the journal, you also need to add a 
type binding for the V2 event. 

akka.persistence.journal { 

    sql-server { 

        event-adapters { 

            v1 = "Chapter11.ShoppingCartEventAdapter, Chapter11" 

        } 

 

        event-adapter-bindings { 

            "Chapter11.Events.V1.ItemAdded, Chapter11" = v1 

            "Chapter11.Events.V2.ItemAdded, Chapter11" = v1 

        } 

    } 

} 

Event adapters help you solve one of the primary update issues you’ll encounter when 
developing event-sourcing applications over an extended period of time. They also make 
accessible the advanced features of event-journal data stores, without sacrificing the advanced 
features provided by Akka.Persistence. 

11.4.3. Wrapping up 

Under certain circumstances, the Akka.Persistence default configuration isn’t as fast as an 
active-record approach, but you can counter this with a number of provided features. The at-
least-once delivery system allows you to resend messages until they are successfully processed. 
Event adapters allow you to modify events from a journal to an actor and vice versa, enabling 
you to make changes to event-sourced applications while also maintaining the full event history. 

www.EBooksWorld.ir



11.5. CASE STUDY: PERSISTENCE, STORAGE, STAGED UPGRADES  

For many industries, compliance is a vital aspect of their systems. This is especially true in the 
world of finance, where detailed records must maintain an accurate historical representation of 
every action that has been taken. An example of this is in the world of automated trading, where 
hundreds of stock transactions happen every second. It’s imperative that these companies can 
demonstrate to the authorities, such as the SEC in the United States or the FCA in the UK, that 
securities trading transactions and profits are legally valid. For example, securities commissions 
require documentation as a way of precluding insider trading. Similarly, the securities market 
offers opportunities for nefarious parties to launder money, hiding the source of income in order 
to evade either law enforcement or taxation. 

As such, in the finance industry, businesses face regulatory audits where trades are assessed to 
ascertain whether they were in breach of regulations. To pass these regulatory audits, businesses 
must maintain a history of every single trade that has been made, rather than storing only the 
stocks currently held in a portfolio. In this chapter, you saw how the persistence components of 
Akka.NET maintain a persistent ordered history of every event that was received by an actor. 
This event history can be replayed to show the events that led to a state at any point in time. You 
can model this by creating an actor per stock portfolio, where a stock portfolio is a collection of 
stocks in different listed companies along with the count of stock owned in each case. Every time 
an actor receives a message to either buy or sell stock from the portfolio, you persist the 
message, meaning that you maintain a log of every transaction that was made per portfolio. This 
is illustrated in figure 11.6, which shows an actor—a stock portfolio—that receives messages 
indicating whether to buy or sell a stock. The messages could originate from automated systems 
or from humans, but regardless of their origin, as soon as they’re received by the portfolio actor, 
they’re persisted to a data store. From this data store, the individual trades can be replayed, 
allowing the portfolio to be rebuilt to any point in its history. 

Figure 11.6. Finance applications need full audit trails in the event of investigation. Using Akka.NET persistence, you can simplify the 

process of maintaining an audit trail by persisting every event that the actor processes, in this case, a list of trades. 

 

By using Akka.NET persistence, you can maintain a log representation of every event that was 
created by an actor. This allows you to simplify the process of audit trail creation, a feature that’s 
a requirement in many heavily regulated industries such as finance, insurance, and healthcare. 

SUMMARY  

In this chapter, you learned 

• How to add a backing data store to an actor to persist changes to its state 
• How to apply concepts relating to event sourcing to actors 
• How to upgrade the logic contained in an event-sourcing application 
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Chapter 12. Building clustered applications with Akka.Cluster 

This chapter covers 

• Creating elastically scalable actor systems across multiple machines 
• Interacting with Akka.NET cluster infrastructure in an actor system 
• Applying Akka.NET concepts to clustered applications 

You know that a reactive application depends on systems that are responsive, regardless of 
system failures, failures in external dependencies, or increased load; and you’ve seen numerous 
tools and design methodologies to help you achieve that end. You’ve seen how to get around 
many of the problems relating to fault tolerance and scalability when running on a single 
machine through the use of Akka.Remote. 

When you create applications that use Akka.Remote, you architect with the explicit intention of 
having to perform manual configuration changes. For example, when you had a subset of the 
actor deployment tree hosted on another machine, you needed to specify the exact network 
address for the machine that was hosting it. You had to do the same thing when you assigned 
routees on separate machines to develop applications that could scale out. But there was no 
process in place for what should happen if the machine hosting the actor system failed, leaving 
you with no actor system running. You’d need to constantly monitor your Akka.Remote 
application and be ready to update the configuration at any point during the day or night. Even 
if you managed to script the process of updating the actor system to point to new instances as 
they became available, you’d still be faced with inevitable downtime, because you’d need to 
reprocess configuration by restarting the actor system. 

Although using Akka.Remote certainly presents some advantages over using a single machine, it 
doesn’t yet match all the traits of reactive applications, which can automatically react to their 
hosting environment and remain fault tolerant in the face of failure, or scale when faced with 
increased or decreased load. The key part here is the automatic reaction to their environment. 
Akka.Remote’s role wasn’t automatic and required some degree of human intervention to 
manage. In an ideal situation, you’d add more machines that would become part of a single 
actor system distributed across multiple machines. 

Akka.NET provides this functionality through the Akka.Cluster module, which builds on top of 
the low-level functionality provided by Akka.Remote to create a high-level overview of the 
networked actor system. It creates a cluster of the individual actor systems and allows you to 
address all the machines as though they were a single actor system. In this chapter, you’ll see 
how to create a cluster from independent actor systems. You’ll see how to deploy actors into the 
cluster and let Akka.Cluster transparently handle the deployment on any machine in the cluster. 
You’ll also see some of the more advanced features available in Akka.Cluster that help you easily 
build applications that make the most of the resources available in these vast clusters of 
machines. 

www.EBooksWorld.ir



12.1. INTRODUCING AKKA.CLUSTER  

Akka.Cluster builds on top of the networking abstraction provided by Akka.Remote to create a 
scalable, fault-tolerant cluster of machines that can represent a cluster of actor systems as a 
single actor system (see figure 12.1). Akka .Cluster is therefore incredibly useful for scenarios in 
which you need high availability guarantees that you can’t achieve by using a single machine to 
host an actor system. 

Figure 12.1. With Akka.NET ‘s clustering capabilities, you can treat a cluster of individual machines as a single actor system. 

 

Some of Akka.Cluster’s concepts can be confusing, especially considering it presents a new area 
of computing—distributed computing. It’s useful to define some of the terms used throughout 
this chapter: 

• Node—An individual actor system instance that runs as part of a larger cluster. A node 
runs an Akka.NET application that connects to and communicates with other nodes in 
the cluster. 

• Seed node—A contact point for new nodes to join the cluster. It has all of the same 
responsibilities as a regular node, but it has a well-known address that new nodes can 
contact. 

• Cluster—A set of individual nodes that are joined together through the membership 
component of Akka.Cluster. A cluster of nodes is addressable as though it was a single 
node rather than a collection of independent nodes. 

• Gossip protocol—An internal component of Akka.Cluster responsible for communicating 
changes in cluster membership to all the other nodes in the cluster, thus creating a 
uniform overview of the cluster state. 
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• Leader—The node in the cluster chosen to be in charge of accepting changes to the 
cluster state and that is responsible for adding or removing new nodes, which are then 
disseminated through the gossip protocol to other nodes in the cluster. There is no leader 
election process; instead, the leader is chosen deterministically when the cluster is in a 
stable state. 

• Failure detector—The Akka.Cluster component responsible for detecting whether a node 
has become unavailable, through heartbeat message failure in a given time period. 

Although many of these components run internally in Akka.Cluster without human 
intervention, they provide the low-level tooling that directly powers many of the high-level 
features that you’ll see throughout this chapter and that will be referenced in each section. When 
all these components are combined, you have an actor system representation that spans a 
number of machines. This presents you with the following benefits, in addition to the other 
benefits you get when building applications with Akka.NET running on a single node: 

• Scalable—In order to add a new machine to the actor system cluster, you must provide 
the address of one of the nodes that’s already running in the cluster, which allows you to 
instantly scale and add resources on demand. 

• Fault tolerant—All the nodes in the cluster periodically send heartbeat messages to 
demonstrate their health to other nodes in the cluster. If no heartbeats are received from 
a node, the failure detector detects this and communicates it to the cluster. If a sufficient 
number of nodes agree that a node is no longer responsive, it can be removed from the 
cluster, and the actors hosted on that node can be deployed onto another node in the 
cluster. 

• Peer to peer—All peers in an Akka.NET cluster have the same responsibilities, allowing 
you to create new nodes that can talk to any peer in the actor system and receive events 
relating to other peers in the cluster. 

• No bottleneck point—Because Akka.Cluster creates a peer-to-peer cluster of machines, 
there’s no single machine that coordinates all of the other actor systems. This ensures 
that the performance of the cluster doesn’t degrade as a result of a single node in the 
cluster being under a heavy load. 

• No single point of failure—Using gossip messages, all nodes in the cluster are responsible 
for detecting failures of other nodes and then disseminating this information to the other 
nodes in the cluster. No single node in the actor system is responsible for handling 
membership in the cluster, guaranteeing that if one node becomes unavailable, then the 
cluster can autonomously fix itself and continue running the application. 

Before you can use Akka.Cluster, you need to install the Akka.Cluster package. As with other 
Akka.NET packages, it’s distributed through NuGet and can be installed by running the 
following command in the package manager window, or by searching for Akka.Cluster in the 
NuGet UI: 

Install-Package Akka.Cluster 

After the Akka.Cluster package is installed, you need to configure your application for clustering. 
All the configuration for Akka.Cluster is handled with HOCON configuration in a way similar to 
how you configured Akka.Remote, as shown in the following example. Akka.Cluster contains 
three key components: configuring the actor reference provider, specifying an endpoint for 
Akka.Remote to listen on, and providing one or more seed nodes that you can join to when 
initializing the cluster. You configure the actor reference provider to 
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use ClusterActorRefProvider rather than the single-node actor reference provider. This is 
similar to the RemoteActorRefProvider you used with Akka.Remote. You also specify a listen 
endpoint; in this case, port 8080, and you listen on localhost. Because this uses Akka.Remote 
under the hood, you can configure this exactly as with Akka.Remote, specifying other properties 
such as public hostnames if you’re running the application through a load balancer. Finally, you 
can also add a seed node for Akka.Cluster. You specify the seed node to be the node’s own 
address. This means that it will join itself and form a cluster of one node. 

akka { 

    actor.provider = "Akka.Cluster.ClusterActorRefProvider, Akka.Cluster" 

    remote { 

        helios.tcp { 

            port = 8080 

            hostname = localhost 

        } 

    } 

    cluster { 

        seed-nodes = ["akka.tcp://Chapter12Cluster@localhost:8080"] # address 

     of seed node 

    } 

} 

Now that you have a single node running, you can create a configuration for any subsequent 
node that uses the address configured for the first node as the seed node. Because a seed node is 
an address of one node that’s running in the cluster, once you have more than one node in the 
cluster, you can specify any of the nodes as a seed node. 

akka { 

    actor.provider = "Akka.Cluster.ClusterActorRefProvider, Akka.Cluster" 

    remote { 

        helios.tcp { 

            port = 8081 

            hostname = localhost 

        } 

    } 

    cluster { 

        seed-nodes = ["akka.tcp://Chapter12Cluster@localhost:8080"] # address 
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     of seed node 

    } 

} 

One of the other most useful configuration changes you can make on a per-node basis is to 
specify a role for a node. Assigning a role is a way of limiting the scope of the work that a node is 
responsible for. For example, consider an application that runs some intense computational 
work such as financial modeling, and some IO-intensive work such as web-page scraping. You 
can get better performance out of your application if you tailor the hardware to the usage. This 
might be by using a machine with a faster network for web scraping, and machines with lots of 
CPU cores for financial modeling. In this case, you don’t want IO work happening on machines 
with lots of cores. Using roles, you can scope the work you deploy, as you’ll see throughout this 
chapter. To assign a role to a node, you modify the cluster configuration to specify the roles that 
the current node belongs to: 

akka.cluster.roles = ["network"] 

You can then create an actor system on each node with the configuration shown in previous 
chapters. It’s important to note, however, that you need to ensure that every actor system that 
joins the cluster has the same name. If the names differ, then the node wanting to join will be 
blocked from joining. This means that every node in the actor system differs only by the listen 
address. In the following example, you create a cluster with the name Chapter12Cluster: 

var configFile = File.ReadAllText("chapter12.conf"); 

var config = ConfigurationFactory.ParseString(configFile); 

var actorSystem = ActorSystem.Create("Chapter12Cluster", config); 

Now that you have a number of machines communicating together through Akka.Cluster, you 
can develop more-advanced distributed applications. In the rest of this chapter, you’ll see some 
of these features and how to use them in your Akka.NET applications. 

12.2. CLUSTER-AWARE ROUTERS 

One of the biggest benefits of using Akka.Cluster is that you can scale out your actor system to 
more nodes as load on the system increases. But you want to make the most of this 
scalability. Chapter 7 showed that Akka.NET provides scaling support with a variety of routers, 
which can route messages to actors that have already been created (in group routers), or actors 
that are created by the Akka.NET router (in pool routers). You can even add new routees to the 
pool when demand is high if you use pool routers. 

Chapter 8 showed how to integrate routers with Akka.Remote to specify that routees should be 
deployed onto other nodes if you’re using pools, or to specify full addresses for group routers, 
referencing actors already deployed on remote actor systems. Because Akka.Cluster uses 
Akka.Remote as its networking layer, you can still use this technique to create routers that span 
nodes in the cluster, but you’ll lose fault tolerance with a configuration reliant on a single node: 
a single point of failure. 
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To address this, Akka.Cluster provides the notion of cluster-aware routers. These are the same 
routers you saw in chapter 7, but they integrate with the gossip protocol used by Akka.Cluster to 
receive notifications of when certain events happen: for example, when new nodes join the 
cluster or when existing nodes are suspected of being unresponsive. In these cases, when using 
cluster-aware routers, you can remove routees if you suspect their host node is unavailable, or 
add new routees if new nodes have been added to the cluster. Cluster-aware routers let you use 
routers that simplify developing scalable applications while also making the most of the 
Akka.Cluster’s scaling benefits. All the routers available in the standard Akka.NET package can 
be used with Akka.Cluster, but the same caveats apply as when using these routers with 
Akka.Remote. Although many of the routers work well across a network, the smallest-mailbox 
router acts effectively as a random router due to the lack of knowledge of mailbox sizes across 
the network. 

12.2.1. Creating cluster-aware router groups 

Router groups allow you to specify the paths to a selection of actors and direct messages to 
them. You can do the same thing with Akka.Cluster, but you can send the messages across a 
cluster of machines instead. The cluster-aware router groups use cluster membership to 
determine which of the routees specified exist on machines that live in the cluster. If the routee 
specified exists on a node deemed unresponsive, then messages won’t be directed to that target 
and will instead be sent to other routees. The cluster-aware router group also uses gossip 
messages to react to changes in the cluster and add or remove routees to the group as their hosts 
are deemed either live or unresponsive. 

Figure 12.2 shows a cluster-aware router and routee nodes joining a cluster. A first node joins the 
cluster, which alerts the router that a new potential routee is available. The router verifies that 
the new node has routees on it and starts routing messages to it. Later, a second node joins the 
cluster and the process repeats, allowing the router to add that routee to its list of available 
routees. 

Figure 12.2. The sequence of events that occurs in the router as you add new nodes to the cluster 
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When you use groups of actors with cluster-aware routers, it’s important that the actors exist at 
the paths specified as soon as possible after startup. The other nodes in the cluster will all send 
messages to the provided path on any node as soon as it’s marked as being up in the cluster. If a 
routee is delayed at startup, it may lead to race conditions where messages are sent to an actor 
that don’t yet exist. 

You can create routers using either HOCON configuration, as in the following code example, or 
directly, using code. In the deployment section of the HOCON configuration, you can specify the 
router for a given path. The example also shows how to specify a cluster-aware router for a given 
path. You follow the same format as when developing a local router, but you also specify a 
number of specific properties for creating cluster versions. With a clustersection added to the 
actor deployment, the router is configured to use clustering capabilities. You enable clustering 
by setting the enabled property to on as well as specifying whether the routees should only be 
sent to those nodes that have the specified role. You can also specify not to use local routees and 
instead direct all messages to actors on other nodes. This is particularly beneficial in situations 
where you want to create a master-worker environment, where a number of masters submit 
work into a cluster of worker nodes. By default, Akka.Cluster limits the total number of routees 
to 10,000, but you can configure that number with the nr-of-instances property and reduce 
the number if it might overload an external system. 

akka { 

   actor{ 

      provider = "Akka.Cluster.ClusterActorRefProvider, Akka.Cluster" 

      deployment { 

        /workdispatcher { 

          router = consistent-hashing-group # routing strategy 

          routees.paths = ["/user/worker"] # path of routee on each node 

          nr-of-instances = 3 # max number of total routees 

          cluster { 

             enabled = on 

             allow-local-routees = on 

          } 

        } 

      } 

   } 

} 

You can deploy your HOCON actor configuration by specifying that the router definition should 
be taken from the config when you create the Props for the router. By using this definition, you 
can switch between systems that run locally on one node without clustering to creating a 
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multinode-clustered environment, all by simply changing the configuration and restarting the 
application. 

var worker = system.ActorOf<Worker>("worker"); 

var router = system.ActorOf(Props.Empty.WithRouter(FromConfig.Instance), 

     "workdispatcher"); 

You can also use code to create routers instead of using HOCON. You create an instance of 
the ClusterRouterGroup class and supply it a router group that provides the routing logic as well 
as the settings that define how the router gets deployed across the cluster. In the following code 
example, you create the cluster-aware router using the ConsistentHashingGroup router group 
type, but you don’t provide the internal router with any paths. These will be provided by the 
cluster-aware router. The cluster-router group also needs a settings object that contains all the 
configuration for the cluster router, specifying many of the same settings as when you used 
HOCON to create a router. You specify the maximum number of routees that should be used in 
the router, and supply a list of the routee paths that should be used, while also including the root 
user actor in their paths. You also specify whether to use local routes, as you did with HOCON, 
and whether the router should only target paths on nodes belonging to a given node. 

var routeePaths = new List<string> { "/user/worker" }; 

var clusterRouterSettings = new ClusterRouterGroupSettings(3, routeePaths, 

     true); 

var clusterGroupProps = 

    Props.Empty.WithRouter(new ClusterRouterGroup(new 

     Akka.Routing.ConsistentHashingGroup("/user/worker"), 

     clusterRouterSettings)); 

By using cluster-aware group routers, you can route messages to any node in the cluster while 
also maintaining ownership of the deployment lifecycle of those nodes. Because the router has 
deep integration with the cluster membership, this ensures that you don’t need to manage which 
routees are available in the cluster at any one time. 

12.2.2. Creating cluster-aware router pools 

In chapter 7, you saw how to create router actors that can deploy all of their routees and scale 
them on demand by using router pools. You can create the same type of router actor across a 
cluster of nodes with Akka.Cluster. When a new node joins the cluster, the router actor is 
deployed onto the new node and is then added to the list of available routees. If a node becomes 
unresponsive, it’s removed from the list of available routees. 

Figure 12.3 shows new nodes that join the cluster and how these are added to the router’s list of 
available routees. Node2 joins the cluster, triggering the notification to the router. The new 
routee is then deployed, and messages are routed to it. The process repeats when Node3 joins 
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the cluster. A message is sent to the router notifying it that a new node has joined, the routee is 
deployed to the new remote node, and the node is added to the list of routees. 

Figure 12.3. The sequence of events that occur when using a pool router and a new node is added to the cluster 

 

Because the only real difference between group routers and pool routers is which actor 
maintains ownership of the lifecycle of the routees, you can use the same principles to create 
cluster-aware pool routers as you can to create cluster-aware group routers. You can use 
HOCON configuration to create a router instance, or you can create the router instance entirely 
in code. The following example shows how to create a pool router using HOCON configuration. 
The only difference is that you specify the internal router type to be a pool instead of a group, 
omit the routee paths, and add max-nr-of-instances-per-node, which specifies how many 
routees should be created by the pool on each node. 

akka { 

   actor{ 

      provider = "Akka.Cluster.ClusterActorRefProvider, Akka.Cluster" 

      deployment { 

        /workdispatcher { 

          router = round-robin-pool # routing strategy 

          max-nr-of-instances-per-node = 5 

          cluster { 

             enabled = on 

             allow-local-routees = on 

          } 

        } 

      } 
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   } 

} 

You can deploy this cluster-aware pool router by specifying that the router definition should be 
taken from the HOCON configuration instead of creating it in code: 

var routerProps = Props.Empty.WithRouter(FromConfig.Instance); 

You can also create a router pool in code, specifying a ClusterRouterPool. This works in a way 
similar to the cluster-router group in that it takes in an instance of a router to specify the 
internal logic as well as a settings object that contains any configuration. In the following 
example, you create a round-robin pool that operates across a cluster by 
passing RoundRobinPool to the cluster-aware router that doesn’t have any routees. You also pass 
in the settings, supplying values as needed. In this case, you need the maximum number of 
routees per node as well as in total across the cluster, and whether to use the local node to 
deploy routees or which roles should host routees. 

var clusterPoolSettings = new ClusterRouterPoolSettings(1000, 5, true); 

var clusterPoolProps = 

    Props.Create<Worker>().WithRouter(new 

     ClusterRouterPool(new RoundRobinPool(5), clusterPoolSettings)); 

With cluster-aware pool routers, you can easily deploy actors right across a cluster that can 
handle messages on any node with minimal human intervention, sparing you needless worry 
about the intricacies of cluster development. 

12.2.3. Wrapping up 

With cluster-aware routers, you can easily create applications that scale across a cluster even as 
you add more and more instances. If you’re using HOCON configuration to develop routers, 
then you can expand from a solution that runs locally on a single actor system to one running on 
a cluster of thousands of machines without code changes, which allows you instead to focus on 
the configuration. 

12.3. WORKING WITH CLUSTER GOSSIP  

You saw how to use cluster-aware routers to scale out across the cluster. But sometimes you 
need to drop down to a lower level and interact directly with a cluster itself. You can use the 
same Akka.NET gossip protocol notifications used in cluster-aware routers in any actors that 
you create yourself. In this section, you’ll see how to get an overview of a cluster at a point in 
time, and how to react to cluster changes by registering actors for notifications from the gossip 
service in Akka.Cluster. 

www.EBooksWorld.ir



12.3.1. Retrieving cluster state 

As you develop cluster applications, you may need to take an overview of a cluster node at a 
particular point in time. For example, you might be building monitoring tooling that needs to 
examine what a cluster is doing. You can retrieve this information directly from the actor system 
cluster extension: 

Cluster cluster = Cluster.Get(Context.System); 

Once you’ve retrieved the cluster extension, you can get an overview of the cluster by accessing 
the State property. This allows you to see which nodes are currently members of the cluster 
through the Members property. You can also see which of them are unreachable by inspecting 
the Unreachable set of members. If the cluster is in a stable state, you can also see which 
member is currently the leader by accessing the Leader property. Finally, you can get the set of 
all roles that currently exist across all nodes by using the AllRoles property. 

12.3.2. Handling cluster gossip messages 

In chapter 6, we noted many sources of failure for an application running on a single machine, 
and even more for multiple applications connected in a network. This means that when you’re 
running an application on Akka.Cluster, you’ll encounter situations where you believe a node 
has become unreachable. Fortunately, you don’t have to worry about these details yourself 
because the Akka.Cluster failure detector handles heartbeat messages without needing any 
intervention. But you may want to receive notifications of changes in the cluster state caused by 
failures. You’ve seen one example of how this information is used when you saw how to create 
routers that are influenced by cluster status. There are plenty of other scenarios in which you 
would want to receive this information. For example, if you’re storing state in actors and a node 
hosting one of those actors becomes unreachable, then you might need to switch to using a 
different node hosting a replica of the data. 

In Akka.Cluster, you can register an actor you develop with the cluster extension to receive 
notifications of any changes that occur in the cluster. To do this, you first retrieve the cluster 
extension: 

Cluster cluster = Cluster.Get(actorSystem); 

Now you can use the Subscribe method to retrieve events in the cluster. When you call 
the Subscribe method, you supply a reference to the actor that is due to receive cluster 
messages. You also supply a value indicating how you want to receive the initial state of the 
cluster: either as a single snapshot with a picture of the current state of the cluster, or as a 
sequence of ordered events that represents the transitions the cluster has taken from its initial 
state to its current state. In the following example, you specify that you want the current actor to 
receive the current state in the form of the events that represent the current state, and then you 
want to receive the member events whenever there are any unreachable nodes: 

cluster.Subscribe(Self, 

     ClusterEvent.SubscriptionInitialStateMode.InitialStateAsEvents, 
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     typeof(ClusterEvent.UnreachableMember)); 

You can now handle these messages like any others to build up a picture of the current actor 
system state as soon as any changes are detected in the cluster state by the gossip service. You 
can write to the actor system log when a change is detected in the actor system: 

Receive<ClusterEvent.UnreachableMember>(msg => 

{ 

    Context.System.Log.Info("A node was detected as being unreachable: {0}", 

     msg.Member.Address); 

}); 

By handling cluster events as they happen, you can proactively adjust your application to 
minimize the latency or maximize the availability of the application, ensuring that users get the 
most responsive experience possible. 

12.3.3. Wrapping up 

You’ll rarely need to work with cluster-status APIs directly; instead, you’ll build your 
applications on top of the abstractions that Akka.Cluster provides, one of which is cluster-aware 
routers, and you’ll see several others in the remainder of the chapter. But you can use cluster-
status APIs to build applications that are more responsive: you can redeploy actors, or you can 
redirect messages to handle an increased load if cluster size grows and it seems that a node 
failure is likely. 

12.4. CLUSTER SINGLETON  

There are times when you don’t necessarily want an instance of an actor on multiple nodes, as 
would happen if you were to use a router. Instead, you might want to have a single instance of 
an actor that’s responsible for performing a certain task; for example, an actor that handles 
resource coordination across a cluster. You don’t want a lot of actors competing with each other 
and overloading a resource. If you use an actor to decide which machines to deploy a VM or 
container image onto, you don’t want multiple actors deploying multiple images, using up more 
resources than are available on the machine 

In this case, you could deploy a single actor responsible for the task. The Akka.Cluster cluster 
singleton allows you to deploy an actor onto the cluster on a single node and migrate it when the 
node hosting it becomes unavailable. It’s important to note, however, that using this approach 
and creating a single actor responsible for performing a certain task will lead to a bottleneck: all 
traffic must travel through this single component, degrading performance. You should consider 
whether alternative solutions exist that could distribute the load across a number of actors. 

To create a cluster singleton, use the ClusterSingletonManager, which will handle the creation 
and deployment of the actor into the actor system on the most appropriate node. The cluster 
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singleton will always be deployed onto the oldest node in the cluster because it’s least likely to be 
subject to node churn, caused by adding and removing new nodes (see figure 12.4). In the event 
that this oldest node is removed from the cluster, the ClusterSingletonManager is responsible 
for redeploying the singleton onto whichever actor is now the oldest in the system. It’s possible 
that during handover while the singleton is redeployed, there’s no running instance of the 
cluster singleton. 

Figure 12.4. A cluster singleton is a powerful tool that permits only one instance of an actor to be deployed in a cluster. 

 

Another consideration is what happens during a network partition if the cluster thinks it has 
split and so marks a node as down. The two halves of the cluster might then deploy their own 
cluster singleton, and you’ll have two cluster singletons deployed in independent sections of the 
same cluster. This might lead to unexpected behavior when you need to guarantee that only one 
actor is ever accessing an external resource at the same time. In these cases, it’s best to manually 
remove nodes from the cluster rather than rely on the failure detector to mark unreachable 
nodes as down. 

You create the cluster singleton by using specialized Props generated by the Cluster-
SingletonManager. The following example shows how to create the Props for an actor 
called Coordinator. In a typical application, this actor would be responsible for coordinating 
certain actions across all nodes in the cluster. You create the regular Props that you need to 
create the actor, in which you can specify how to create the actor and which constructor 
parameters are required. The Props settings are passed to the ClusterSingletonManager. You 
also specify the termination message, should the singleton need to be relocated in the event that 
the oldest node becomes available again after a failure. In this case, you use the PoisonPill, but 
if you have more complex work before shutting down, then you may want to use a custom 
termination message. Finally, you also supply the settings used for handling the cluster 
singleton. For example, in this case, you specify that the singleton should only be deployed onto 
a node that belongs to the coordinator role. 

//Create the Props for the actor which will be deployed on only one node in 

     the cluster 

var coordinatorProps = Props.Create<CoordinatorActor>(); 
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//Create the settings for the cluster singleton manager, retrieving them from 

     the actor system 

//configuration and then overriding the name of the singleton 

var settings = 

    ClusterSingletonManagerSettings.Create(actorSystem) 

    .WithSingletonName("coordinator"); 

 

//Create the Props for the cluster singleton manager by providing the props 

     of the singleton and the 

//settings to use for the singleton 

var clusterSingletonProps = 

    ClusterSingletonManager.Props(coordinatorProps, settings); 

With these specialized Props, you can deploy the actor in the same way you’d deploy any other 
actor in your system. Here’s how to use the ActorOf method on actor-System to deploy the 
actor: 

var coordinatorSingleton = actorSystem.ActorOf(clusterSingletonProps, 

     "coordinatorManager"); 

Now you need to create a means of accessing the actor that has been deployed in the 
cluster, CoordinatorActor. Akka.Cluster provides the ClusterSingletonProxy, which acts as a 
message target and allows you to easily forward received messages onto the singleton’s correct 
location in the cluster. The proxy is also registered to track the cluster state and can reroute 
messages to whichever node is hosting the singleton. In the following code example, you create 
the Props required for the proxy and then deploy it. When creating the Props, you need to 
specify the actor path to the singleton that you previously created, coordinator. Because you 
deployed it at the top of the actor hierarchy, the path will be /user/coordinator. You also need 
to supply any additional configuration: specify that you deployed the singleton onto nodes with 
a specific role. If the roles fail to match, the proxy can’t accurately route messages to the correct 
target. 

//Create the settings for the proxy using the configuration supplied in the 

     actor system 

//configuration and override the name of the singleton to match the name 

     provided above when 

//creating the actor for the cluster singleton manager 

var coordinatorProxySettings = 

    ClusterSingletonProxySettings.Create(actorSystem) 
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    .WithSingletonName("coordinator"); 

 

//Create the Props for the coordinator, ensuring the path matches that of the 

     cluster singleton manager 

 

//created above when deploying the cluster singleton manager 

var coordinatorProxyProps = 

    ClusterSingletonProxy.Props("/user/coordinatorManager", 

     coordinatorProxySettings); 

 

//Deploy the coordinator proxy to the path /user/coordinatorProxy other 

     actors will then 

//send messages to this address and have them  forwarded onto the singleton 

     wherever it is 

//deployed in the cluster 

var coordinatorProxy = 

    actorSystem.ActorOf(coordinatorProxyProps, "coordinatorProxy"); 

Now that you have a proxy, you can send messages to it as you would to any other actor in your 
system, and they’ll be forwarded onto the singleton regardless of where it exists in the cluster. 

coordinatorProxy.Tell("Hello coordinator!"); 

12.4.1. Wrapping up 

Cluster singletons shouldn’t be your first choice when developing cluster applications with 
Akka.Cluster, but there are certain tasks that require having only a single instance available in 
the cluster at any point in time, and the Akka.Cluster cluster singleton makes those tasks 
significantly easier. By handling migration in the event of failure, the Akka.Cluster cluster 
singleton ensures that you always have an instance of the actor available somewhere. Combined 
with the Akka.Persistence features in the previous section, the Akka.Cluster cluster singleton 
allows you to easily create reliable actors backed by a data store. 

12.5. CLUSTER SHARDING  

As you develop applications using Akka.NET, you naturally develop an actor hierarchy driven by 
the domain design, where parents and children exist. For example, you may logically group all 
actors related to a given user so that there’s no possibility for cross-pollination between users. 
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This presents something of a problem: unless you explicitly state that part of an actor hierarchy 
should be deployed onto a given remote target, an actor will be deployed locally, directly 
beneath its parent. But you may have too many actors deployed under a single parent on a node. 
This can impede message processing because CPU resources are limited, or actors may 
encounter issues when modifying their internal state due to insufficient memory for all actors on 
the node. 

You can shard these actors across nodes in the cluster to balance the load and prevent a node 
from becoming a single point of failure or a bottleneck. You need a way to deterministically 
deploy actors onto alternative nodes in the cluster and redirect their messages to them. 
Akka.NET provides the Akka.Cluster.Sharding module, a way of partitioning child actors into 
shards across a cluster without requiring significant work on your part. A shard, in this case, is a 
horizontal partition of the actors in your actor system. Figure 12.5 shows how several actors with 
the same parent might be partitioned across a number of nodes. Using sharding, you can deploy 
more actors with a common parent than is possible on a single node. 

Figure 12.5. Akka cluster sharding permits the automatic partitioning of actors across multiple nodes in a cluster. 

 

12.5.1. Creating a new shard 

Conside a situation in which you might need such sharding capabilities, as when creating an 
actor for storing the state of a user’s shopping cart. In this scenario, hundreds of thousands of 
shopping carts exist on an e-commerce site, with signed-in users as well as browsing visitors. 
This is a problem if your application is deployed on many nodes running on commodity 
hardware. Although you could use machines with more RAM to host all the shopping carts, 
you’d pay for the extra RAM even when you only host a few shopping carts. This is an ideal 
scenario for Akka.Cluster.Sharding in that you can easily shard the shopping carts across 
multiple nodes in the cluster. 
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You’ll define your shopping cart actor exactly as you have in the past. For this example, you’ll 
use ReceiveActor, which means that if the cluster shuffles the actors, you’ll lose any state stored 
in your actor. When dealing with Akka.Cluster, the recommended approach is to use persistent 
actors so that state can be restored if an actor is moved to another node. To keep this example 
focused on cluster sharding, you’ll use the ReceiveActor. The definition is similar to examples 
you’ve seen before, where an actor receives a request to add a new item to the cart or retrieve the 
cart status. 

public class ShoppingCartActor : ReceiveActor 

{ 

    private List<string> _items = new List<string>(); 

    public ShoppingCartActor() 

    { 

        Receive<AddItemToCart>(msg => 

        { 

            _items.Add(msg.ItemId); 

        }); 

    } 

} 

You’ll add an extra property containing the target identifier to messages you send to the 
shopping cart actor. The reason for this will become apparent later in the section, when you see 
how to direct messages to the correct shard containing the target actor. Adding the shopping 
cart identifier gives your messages the same properties that you’ve seen before, but now you also 
have a string containing the shopping cart identifier: 

class AddItemToCart 

{ 

    public string ItemId { get; } 

    public string ShoppingCartId { get; } 

 

    public AddItemToCart(string itemId, string shoppingCartId) 

    { 

        ItemId = itemId; 

        ShoppingCartId = shoppingCartId; 

    } 

} 
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Before you can create a shard, you first need to create a message extractor. This class will be 
responsible for retrieving from a message the actor identifier as well as the shard on which the 
actor is located. The message extractor will be used by Akka .-Cluster.Sharding to handle 
redirection of messages to the correct actor instance. To create a message extractor, create a 
class that implements the IMessageExtractor interface. In the code example below, you create a 
message extractor for shopping cart actor messages. You need to implement the three methods 
for retrieving the entity ID, the entity shard, and the actual message. 

In retrieving the entity ID, the message extractor checks the type of message, and if it’s one of 
the messages you defined above, then it extracts the shopping cart identifier. When dealing with 
shard handling, the extractor chooses an appropriate number of shards to make the most of the 
clustering capabilities. If it chooses too few shards, it can’t make the most of all available 
resources when scaling out the number of instances. If it chooses too many shards, the routing 
struggles to find the correct node on which the shard is located. 

A good rule of thumb is to use ten times more shards than the number of nodes expected in the 
cluster. For example, if there’s a 10-node cluster, then use 100 shards. You calculate the shard 
for the message by using the hash code of the node identifier and then calculating the remainder 
when dividing by 100. Assuming the hash function is uniform, this creates a uniform 
distribution of actors across the cluster. 

The final method you need to implement is retrieving the message, because the message 
contains the shopping cart identifier itself; you return the message directly. This method is 
useful if you’re storing the message as a property in an envelope -message. 

class ShoppingCartMessageExtractor : IMessageExtractor 

{ 

    //The EntityId method retrieves the identifier for the shopping cart to 

     which 

    //the message should be directed 

    public string EntityId(object message) 

    { 

        return (message as AddItemToCart)?.ShoppingCartId; 

    } 

 

    //The EntityMessage retrieves the  content of the message which should be 

     sent 

    //to the target actor 

    public object EntityMessage(object message) 

    { 

        return (message as AddItemToCart); 
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    } 

 

    //The ShardId method is used to work out which shard the message should 

     be directed to 

    public string ShardId(object message) 

    { 

        var hash = (message as AddItemToCart)?.ShoppingCartId.GetHashCode(); 

        var shardId = hash % 100; 

        return shardId.ToString(); 

    } 

} 

Now you need to specify how you tell Akka.NET to deploy the actors across a number of shards 
instead of onto a single node. To create a shard, you retrieve the cluster sharding extension, and 
then call the Start method, supplying the shard name to use, the Props for how to create the 
actor you’re sharding, as well as an instance of the message extractor. The following example 
shows how to define a new cluster shard. Call this on every node that you want to act as a host 
for cluster sharding. This may be every node in the cluster or only selected nodes, such as those 
with a specific role. 

//Create the Props for the actor which resides in a shard 

var shoppingCartProps = 

    Props.Create<ShoppingCartActor>(); 

 

//Retrieve the shard extension from the actor system 

var shardingExtension = 

    ClusterSharding.Get(actorSystem); 

 

//Create the settings for the cluster sharding, retrieving them from the 

//actor system config 

var clusterShardingSettings = 

    ClusterShardingSettings.Create(actorSystem); 

 

//Build up a shard region which will be responsible for creating and shutting 

//down actors on each individual node in the cluster 
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var region = 

    shardingExtension.Start("shoppingCart", 

                            shoppingCartProps, 

                            clusterShardingSettings, 

                            new ShoppingCartMessageExtractor()); 

Now you can send messages to a shard of actors, and the cluster-sharding infrastructure will 
direct the messages to the correct shard. You need to start cluster sharding on every node that 
you want to host actors in an individual shard, and run the preceding code to start cluster 
sharding on the startup of every node that’s part of the cluster. In the next section, you’ll see 
how to communicate directly with a shard, as well as how to create a proxy to communicate with 
it. 

12.5.2. Communicating with actors in a shard 

Now that you have a shard for hosting actors, you want to send messages to the correct actors in 
that shard. If you have a direct handle to the shard—for example, if you created it as in the 
previous example—then you can give it a message. In the following example, you create a 
message called 1 to add a new item to the shopping cart. When you send 1 to the shard 
coordinator, it’s directed to the node actor hosting the shard. If that node actor exists, the shard 
coordinator sends it a message; if it doesn’t already exist, the shard coordinator creates a new 
instance of the actor before sending it a message. 

region.Tell(new AddItemToCart("REF2201", "1")); 

Sometimes, you don’t want a node to participate in cluster sharding but do want it to 
communicate with actors that exist in the shard. To handle this, you create a proxy that will 
handle the routing of messages to the correct shard. To create a proxy, you get the actor system 
extension and call the StartProxy method, supplying the name of the shard, which role it’s 
deployed on, and the message extractor you created previously. Having created a proxy, you can 
send messages to it, and they’ll be directed to the correct node in the actor system. 

//Create a shard proxy which will  forward messages onto the correct shard 

     which 

//is hosting the actor 

var shardProxy = 

    shardingExtension.StartProxy("shoppingCart", null, new 

     ShoppingCartMessageExtractor()); 

Now that you can communicate with an actor in a shard, you can build up actor-system 
applications that scale out across entire nodes with minimal effort. Akka .-Cluster.Sharding also 
provides some other techniques that help you build applications that continue to react to their 
environment, which you’ll see in the next section. 
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12.5.3. Handling passivation in shards 

Sometimes, actors in a shard are required for a short time before they can be shut down. They 
might only receive messages for a five-minute period every 24 hours, for example. With 
Akka.Cluster.Sharding, you can use actor passivation, which lets you shut down an actor after a 
period of inactivity, and the shard coordinator can re-create the actor when it next receives a 
message. For example, if you have a business chat-room application, the rooms will only be used 
during typical working hours, 8 a.m. through 6 p.m. Outside of these times, you can shut the 
actor down and release computing resources that could better be used elsewhere. 

To create an actor that supports passivation, you must tell the parent to shut down its child. It’s 
important that you don’t use Context.Stop, as this may lead to losing messages; instead, you 
send the parent a Passivate message, which shuts down the child actor after it has finished 
processing messages. If the parent again receives messages intended for the child actor, the 
parent re-creates it and starts sending it -messages. The following example shows how to create 
a receive timeout of one hour, after which the actor receives a ReceiveTimeoutmessage. From 
there, you can send the parent a Passivate message, supplying the message that should be sent 
to the child to shut it down. 

public ShoppingCartActor() 

{ 

    SetReceiveTimeout(TimeSpan.FromHours(1.0)); 

 

    Receive<ReceiveTimeout>(msg => 

    { 

        Context.Parent.Tell(new Passivate(PoisonPill.Instance)); 

    }); 

} 

Passivation is a useful concept when you have actors that you need only once every few hours. It 
allows you to shut down idle actors, preserving resources that other actors can use. 

12.5.4. Wrapping up 

Akka.Cluster.Sharding is an incredibly powerful tool that allows you to rapidly scale out actors 
across an entire cluster without needing to worry about the details relating to state. This means 
you can focus on the application logic without needing to worry about what should happen in 
the event of a node failure or other potential edge cases. 
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12.6. DISTRIBUTED PUBLISH-SUBSCRIBE  

With Akka.Remote, you can retrieve a path to an actor on an actor system and send a message to 
that path. Although this approach also works in Akka.Cluster, you need to consider how 
Akka.NET handles the movement of actors around the cluster. During cluster sharding, the 
shards hosting actors can be moved around the cluster and onto different nodes. This poses a 
problem, particularly when dealing with paths to actors, because an actor might send a message 
to a path on which the receiving actor no longer exists because it has been moved elsewhere in 
the cluster. 

Akka.Cluster provides the distributed publish-subscribe feature, which allows you to send 
messages to actors that have registered to receive messages on a path or on a topic. By 
using DistributedPubSubMediator, you can send messages around the cluster to any actors that 
are listening on a path or on a topic without having to worry about the node on which the actor 
is deployed. 

Internally, the mediator maintains a registry of actor locations along with subscriptions, which 
is disseminated around the cluster in an eventually consistent manner. This means that 
subscriptions may not appear across all nodes, but after a few seconds, the gossip protocol used 
by the mediator will have disseminated any registry changes to all of the other nodes in the 
cluster. 

In this section, you’ll see the two ways in which you can use Akka.Cluster’s distributed publish-
subscribe to send messages to all actors interested in a particular topic or only selected actors 
listening on a specific path. 

12.6.1. Topic messaging 

Topic messaging allows you to publish a message on a named topic, and all the actors that have 
subscribed to that topic will receive the message (see figure 12.6). An example of this is a chat 
room where you want to publish a message and send it to all members. In this case, you might 
have one topic per chat room; for example, if you had a chat room called general and another 
called random, you’d create two topics named after their respective chat rooms. 
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Figure 12.6. Topic messaging allows you to broadcast a message to all actors that are subscribed to a certain topic regardless of their 

location in the cluster. 

 

You can model each chat-room user with an actor, which registers with the mediator for each 
chat room that the user belongs to. The following example shows an actor that receives a 
message to join a chat room, and it messages the mediator that it wants to receive messages sent 
to that chat room. The actor first retrieves the mediator from the distributed publish-subscribe 
actor system extension, the entry point for all applications that need access to the mediator. 
Now, when it receives a JoinChatroom message, it sends a Subscribe message with the name of 
the topic for subscription to the mediator—in this case, the chat room name—and also 
the IActorRef, which will receive all the messages sent to that topic. In this case, you use 
the Self identifier. 

//Create a class which holds the message which will be sent to the given 

     chatroom 

class ChatMessage 

{ 

    public string Sender { get; } 

    public string MessageContent { get; } 

 

    public ChatMessage(string sender, string messageContent) 

    { 

        Sender = sender; 

        MessageContent = messageContent; 

    } 

} 
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//Create a class which will allow an actor to join a given chatroom 

class JoinChatroom 

{ 

    public string ChatroomName { get; } 

    public JoinChatroom(string chatroomName) 

    { 

        ChatroomName = chatroomName; 

    } 

} 

 

//Create a class which represents a user which is able to join a chatroom and 

     receive 

//messages from that chatroom 

class UserActor : ReceiveActor 

{ 

    public UserActor() 

    { 

        Receive<JoinChatroom>(msg => 

        { 

            //Retrieve the pub/sub extension and then subscribe to updates to 

     a given topic 

            var mediator = DistributedPubSub.Get(Context.System).Mediator; 

            mediator.Tell(new Subscribe(msg.ChatroomName, Self)); 

        }); 

 

        //The pub/sub extension informs us if our subscription to the topic 

    was successful 

       Receive<SubscribeAck>(_ => Become(Subscribed)); 

    } 

 

    public void Subscribed() 

    { 
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        //Now that we're subscribed, you can listen out for messages which 

     get published 

        //to the topic 

        Receive<ChatMessage>(msg => 

        { 

            Console.WriteLine("Received a message from {0}: {1}", msg.Sender, 

     msg.MessageContent); 

        }); 

    } 

} 

You can create instances of this actor on any node in the cluster, and regardless of where the 
actor has been spawned, it will receive any messages that have been posted to the chat room. 
You can expand the user actor to handle a message that tells it to post a message to the chat 
room, in this case publishing a message onto a topic. The following example shows how to send 
the mediator a Publish message. In the message, the actor specifies the topic it wants to send 
the message to, in this case, the name of the chat room and the message it wants to distribute to 
all subscribers of the topic. 

var mediator = DistributedPubSub.Get(actorSystem).Mediator; 

mediator.Tell(new Publish("chatroom", new ChatMessage("user1", "Hello from 

      user1"))); 

The topic messaging option in Akka.Cluster’s distributed publish-subscribe feature fits the true 
definition of publish and subscribe, allowing you to easily post a message to hundreds of 
listeners simultaneously, regardless of their location in the cluster. 

12.6.2. Point-to-point messaging 

In addition to topic messaging, distributed publish-subscribe lets you send a message to an 
individual target in the actor system. Messages you send using this technique will be delivered to 
only one target somewhere in the cluster, but, again, you don’t need to concern yourself with 
where that target is located. Continuing with the example of a chat room, by using point-to-
point messaging, you can create private messaging: a message is sent to only one user. 

In this approach, actors register with their path in the actor hierarchy. For example, an actor 
might have the path /user/customers/-customer1/users/user1. The following example shows 
how to register an actor as the only recipient of a message. Instead of using Subscribe, which 
you use with topic subscriptions, you use Put, which takes the IActorRefof the actor that’s 
subscribing. The actor reference you send to the mediator must exist on the same local actor 
system as the mediator; otherwise, the subscription request will be ignored and an error will be 
generated. 
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public UserActor() 

{ 

    //Register the actor to receive any messages published on the path of the 

     actor 

    var mediator = DistributedPubSub.Get(Context.System).Mediator; 

    mediator.Tell(new Put(Self)); 

 

    Receive<SubscribeAck>(_ => Become(Subscribed)); 

} 

 

//Spawn the actor at the address /user/anthony 

var user = 

    actorSystem.ActorOf<UserActor>("anthony"); 

You can wrap the message in a Send envelope along with the receiving actor’s path. In this case, 
if you send a message with the path /user/customers/customer1/ users/user1, the actor 
registered with that path receives the message. The following example shows how to format the 
actor path based on the username in the PrivateMessageUser message. You send 
the Send message to the mediator, which routes it to the correct node in the actor system. 

mediator.Tell(new Send("/user/anthony", new ChatMessage("user2", "Hello 

     user1!"))); 

Note that if you have multiple actors registered with the same path, the mediator will use 
random-routing logic to choose which target receives the message. You specify that the mediator 
should use the local actor system, if a registration exists there for the path, by using 
the LocalAffinity flag in the Send message. The following example shows how to mark 
the LocalAffinity flag on the Send message when you send it to the mediator: 

mediator.Tell(new Send("/user/anthony", new ChatMessage("user2", "Hello 

     user1!"), localAffinity: true)); 

Alternatively, you could modify the routing logic that the mediator should use by editing the 
HOCON configuration to specify it. Here’s how to modify HOCON to specify a round-robin 
approach to distributing the message to multiple subscribers instead of the default random 
approach: 

akka.cluster.pub-sub { 

  # The routing logic to use for 'Send' 

  # Possible values: random, round-robin, broadcast 
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  routing-logic = round-robin 

} 

You might also need to broadcast a message to all subscribers in the cluster with the registered 
path. If you have three actors registered around the cluster with the same path and all perform 
the same task for redundancy purposes, you might need to broadcast a message to all 
subscribers, for example, to update configuration. By sending a SendToAll message to the 
mediator, you can broadcast the message to all subscribers. 

mediator.Tell(new SendToAll("/user/downloader", new 

     ConfigurationUpdate(usePersistentStorage: true))); 

Point-to-point messaging allows you to easily send messages across a cluster to an individual 
target without having to worry about where exactly that target is located in the cluster. This 
vastly reduces the amount of state your application needs to maintain and allows you to focus on 
the core logic of the application. 

12.6.3. Wrapping up 

By using the distributed publish-subscribe functionality in Akka.NET, you can solve many of the 
problems you’re likely to encounter when building applications across a cluster. Rather than 
keeping track of lots of state in your application, you can delegate it to the mediator. 

12.7. CLUSTER CLIENT  

Having now created an Akka.NET application that uses clustering, you’ve let the Akka.Cluster 
package deal with many of the tasks related to deployment of actors in the cluster, at nodes 
driven by computation and by the reactive nature of the framework. This presents you with a 
potential difficulty when it comes to accessing the actors stored in it from outside of the cluster. 
One example of this is if you have multiple independent Akka.NET clusters running separate 
applications. You may at some stage need to integrate the two applications together and allow 
communication between the two clusters. But with no known fixed hosts for actors in the 
cluster, this means that you can no longer follow the Akka.Remote approach to communicating 
with remote actors by specifying fixed well-known paths. 

Akka.Cluster’s ClusterClient allows an actor to connect to a cluster without joining it (see figure 

12.7). It’s important to note that the ClusterClient should only be used for communicating 
between separate actor systems and should not be used for communication internal to an actor 
system; the distributed publish-subscribe component should be used for internal 
communication. 
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Figure 12.7. The cluster client allows communications with actors hosted in a cluster from other actors that are located on actor 

systems outside of the cluster. 

 

The ClusterClient works by specifying one or more known contact points that you can use to 
connect to a cluster, much like the seed nodes you saw earlier when considering how to get new 
nodes to join an existing cluster. To connect to a cluster, you run the cluster receptionist 
component on either all the nodes in an actor system or on only those selected nodes belonging 
to a specific role. The first step when using the ClusterClient is to specify which services are 
accessible to actors that reside outside of the cluster. This increases the security of the cluster by 
ensuring that external clients can’t interact with actors that may be storing sensitive data as 
their internal state. 

The following example shows how to retrieve the cluster receptionist extension and then register 
an actor to be accessible to external actors by calling the RegisterService method on the cluster 
receptionist. In the example, you create an actor that acts as an echo service, replying to the 
requesting actor with whatever message it received. You could also use RegisterSubscriber, 
which allows listening to a specific topic, similar to distributed publish-subscribe. 

//Create an actor which replies to the original sender with the message 

//it received 

class EchoActor : UntypedActor 

{ 

    protected override void OnReceive(object message) 

    { 

        Sender.Tell(message); 

    } 

} 

 

//Deploy the echo service to the path /user/echo 
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var echoService = actorSystem.ActorOf<EchoActor>("echo"); 

 

//Retrieve the cluster receptionist extension 

var receptionist = ClusterClientReceptionist.Get(actorSystem); 

 

//Register the echo service with the cluster client 

receptionist.RegisterService(echoService); 

Outside of the cluster, you configure the client application to communicate with the cluster. You 
first need to ensure that your actor system has a port open to allow messages to be sent in 
response. You also need to change actorRefProvider to use 
either RemoteActorRefProvider or ClusterActorRefProvider. In the client HOCON 
configuration, you create a port to listen on and set actorRefProvider to use Remote-
ActorRefProvider: 

Client HOCON configuration 

Now, on the client, you create an actor that acts as a proxy to the cluster. You specify the initial 
contact points, which are the nodes that run the cluster receptionist and permit communication. 
In this case, you create two receptionist paths that the cluster client uses. If other receptionists 
are running in the cluster on different paths than those the client knows about, they will be sent 
to the client. This ensures that even in the event of a node becoming unresponsive, 
the ClusterClient can still communicate with the cluster through another node. On the client, 
you can create a ClusterClient proxy that uses the contact points as the initial cluster 
receptionist points. 

//The set of nodes which the cluster client will first  connect to in the 

     cluster 

var initialContacts = 

    ImmutableHashSet<ActorPath>.Empty 

 

.Add(ActorPath.Parse("akka.tcp://Chapter12Cluster@localhost:8080/system/recep 

     tionist")) 

 

.Add(ActorPath.Parse("akka.tcp://Chapter12Cluster@localhost:8081/system/recep 

     tionist")); 

 

//The settings used to configure the cluster client 

var clusterClientSettings = 
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    ClusterClientSettings.Create(actorSystem) 

    .InitialContacts(initialContacts); 

 

//Creaste the Props used to deploy the cluster client on the local actor 

     system 

var clusterClientProps = 

    ClusterClient.Props(clusterClientSettings); 

 

//Deploy the cluster client into the local actor system 

var clusterClient = actorSystem.ActorOf(clusterClientProps, "clusterClient"); 

You can now send messages to the cluster through the proxy and communicate in the same way 
you communicated through distributed publish-subscribe. The next example shows how to send 
a message to services listening on a defined path in the actor system. Here, you send a message 
to the /user/echo path, which has the echo service you created on the cluster listening: 

var response = await clusterClient.Ask("Hello echo service"); 

Once a connection is established between a cluster receptionist and a ClusterClient, the client 
becomes an extension of the cluster. During usage, heartbeats are sent between the receptionist 
and the client to ensure that both are still available. If the receptionist fails to respond to 
heartbeats, the system switches to using a different receptionist hosted in the cluster. By 
extension, because this information is being sent and received by the client, you can register an 
actor to receive messages from the cluster client informing it when more contact points have 
been added. The cluster-Client uses the SubscribeContactPointsmessage to do this: 

clusterClient.Tell(SubscribeContactPoints.Instance); 

Similarly, in the cluster, you can register an actor to receive notifications when new clients 
connect to the actor system. In this case, sending a SubscribeClusterClients message to the 
receptionist notifies an actor when new clients connect to the cluster: 

clusterReceptionist.Tell(SubscribeClusterClients.Instance); 

The ClusterClient and cluster receptionist provide a safe means of communicating with an 
Akka.NET cluster without the need to proxy through an external network protocol such as 
HTTP. By using the ClusterClient and the cluster receptionist, you can also get an experience 
that is almost equivalent to your client being a node in the cluster. 

12.8. CASE STUDY: CLUSTERING, SCALING, CLUSTER MANAGEMENT  

Big data processing has become a core component of many modern applications, providing 
valuable insight and analytics to both the business and the consumer. A big data–processing 
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pipeline needs to ingest data from tens or hundreds of disparate data sources, joining rows 
quickly and efficiently across datasets before finally unlocking the insight contained within. In 
many instances, this is achievable using a single server capable of processing all the data 
sources. But as datasets grow in size and count, you may encounter many difficulties. You may 
be limited by the amount of memory on the machine. If there’s not enough RAM to hold all the 
datasets, you have to use techniques that cache files to the hard disk, possibly increasing latency. 
You may be performing computationally intensive operations that take longer and longer to 
complete. In an industry where users and businesses increasingly expect immediate results, it’s 
imperative that businesses match these expectations to remain competitive. 

In this chapter, you saw how to scale out an actor system across multiple nodes, thanks to 
Akka.NET’s clustering components. You can think of a big data pipeline as a sequence of actors. 
Each actor takes in the results from the previous actor and other datasets before performing 
mapping, joining, or filtering operations, after which the results are passed to the next actor in 
the chain. Figure 12.8 shows two datasets mapped to a similar format, joined together based on a 
common key, and filtered to remove unwanted lines. This maps to four distinct actors, two for 
performing the mapping stage on the initial two datasets, one for performing the join, and the 
final one for filtering the data. 

Figure 12.8. Big data jobs are composed of several distinct stages. By using Akka.NET clustering, you can partition each of these 

stages across a cluster of machines without needing to deal with network topology. 

 

But as datasets grow in size, a single server might struggle with processing. Because actors are 
simple to scale, though, you can transparently move the actors around a cluster of machines. 
The decision on where to host actors is made internally by the Akka.NET runtime, meaning that 
you can focus on the data-processing pipeline itself rather than the difficult task of coordinating 
work across multiple machines. 

SUMMARY  

In this chapter, you learned 

• Extending many of the concepts you saw when using Akka.Remote to allow you to 
transparently scale actor systems across multiple nodes 

• Patterns used in Akka.Cluster that allow you to design applications that can scale across 
machines 

• Features of Akka.NET that make it easier for you to write distributed applications 
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Chapter 13. Akka.NET and reactive programming in production 

Throughout the book, we’ve looked at several small case studies, each chapter detailing how an 
Akka.NET feature is applicable in a real-world scenario. In chapter 2, you also saw how to design 
an e-commerce website using the principles of the Reactive Manifesto. In this chapter, you’ll see 
how to combine these approaches by designing a reactive system from the ground up using 
Akka.NET functionality. 

This chapter focuses on designing and developing an IoT application using Akka.NET. Sensors 
and consumer electronics have advanced in recent decades, and it’s now possible to create ultra-
low-cost and ultra-low-power sensor devices capable of recording data and sending it through 
an internet connection for collection elsewhere. In this chapter, we’ll look at this type of system 
in the context of designing a smart-home application, in which there are several sensors per 
room collecting data to provide feedback about the overall state of the house. For example, a 
smart home might have movement sensors to detect motion, temperature sensors to control 
heating and air conditioning, and carbon monoxide detectors to detect the presence of gas. 
These sensors collect data at a fixed frequency and send it to a backend system so it can be 
accessed from anywhere in the world, allowing a homeowner to see the status of their home 
whether they’re at home, at work, or on holiday. The application must support use by multiple 
people. With potentially many users and an even larger number of sensors, vast amounts of data 
are sent through the system. The system must provide quick feedback to users after data has 
been collected; and it must scale with the expected load, while continuing to be responsive in the 
presence of ever-changing data. In view of the concepts considered in chapter 1, a reactive 
architecture provides an ideal solution. 

Figure 13.1 illustrates how a smart home might look. It has multiple rooms, and each room has 
multiple sensors for collecting data. The data is sent to a backend system, where it’s processed. 
In this chapter, we’ll only focus on building the backend -system from the point of data 
collection onward; we won’t focus on how to build the physical devices for the smart home. 

Figure 13.1. A smart home with multiple sensors forms the context for this chapter’s case study. 
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Once data has been collected in the system, it must be aggregated in real time and 
understandable to users of the application, providing feedback about the home’s state. The time-
series aggregated data can be stored in a database for later presentation in graphs, and graphs 
should be dynamically updated when new data arrives. 

13.1. DESIGNING WITH ACTORS 

So far, you’ve seen at a high level that the application must receive data readings from IoT 
devices at a given frequency and aggregate those readings into a format that can be presented to 
users as graphs and warnings. You want to follow the principles of the Manifesto, so that you 
can build a larger, responsive system by scaling out as the load grows; you also want to handle 
errors by isolating them, forestalling knock-on effects on other system components. 

When designing systems with Akka.NET, it’s often beneficial to think of the smallest possible 
component you can use that can exist independently of other components: in this case, one actor 
per sensor in each smart home. This approach allows you to easily add more and more sensors 
to the system, without developing a backlog of messages to be processed. It will also be possible 
to isolate errors, should a sensor send faulty data through the system. 

But the sensors exist as part of a broader context that contains a number of other linked 
components. Notably, sensors are deployed in rooms, and although you want to see data from 
individual sensors, you also want to see a broad overview of the state of a single room. 
Broadening the context further still, individual rooms are constituent parts of a house, and you 
want to see an overview of the status of the house as a whole. Although you could create a single 
actor responsible for the entire house that receives readings from every deployed sensor, that 
would create a potential bottleneck. An alternative is to create a hierarchy representing the 
overall application structure. This would allow performing aggregations on a sensor level and 
then pushing aggregated data up to the room level, where further aggregations could be done 
before pushing those aggregations up to the house level. We’ll look at further benefits of the 
hierarchical approach in the next section, where we’ll consider the failure--handling capabilities 
that come with this design. 

In addition to performing aggregations on data, you also want to create alerts. As you collect 
data, you’ll be on the lookout for anomalies indicating a sensor event, which could indicate an 
event of interest. For example, when using a motion sensor, several constant readings of 
movement would suggest movement in the home, something that should be investigated. But, at 
the same time, you don’t want to send a notification every time movement is detected, or the 
user may receive hundreds of notifications every day. There should be some logic in place that 
continues to perform aggregations but doesn’t send data. Although you could set a flag in the 
actor, this could increase the complexity of the code, especially as the number of potential states 
grows. For example, you should also consider what would happen if you wanted to reset an actor 
after a certain period of time, or allow for other functionality, such as a cool-down timer. In such 
cases, you can create state machines using the functionality you saw in chapter 4. This allows you 
to change an actor’s behavior at runtime to an entirely new function for incoming messages, 
rather than trying to combine everything in a single handler function. 
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13.2. HANDLING FAILURE 

Failur is a part of every software project. In addition to possible software failure, you need to 
factor in the hardware components of an IoT application, such as the possibility of a faulty 
sensor, which can lead to a sensor sending invalid data. If invalid readings are sent to the 
processing backend, the likely cause is sensor failure. If a sensor fails, you need to ensure that it 
doesn’t affect other system components. In chapter 6, you saw the benefits when parent actors 
supervise their spawned child actors; in the same manner, you can build a hierarchy of actors 
for this smart-home application. 

Fortunately, you have a very hierarchical data model in place as it stands. Every sensor is 
deployed in a room, and each room exists as part of a house. This means that, at the very top 
level, an actor represents a house. Deployed under the house actor are a number of actors for 
each room, and each room has a number of sensor actors deployed. If a sensor starts to fail, it 
will propagate the error up to the room, which will isolate that sensor’s errors from the other 
sensors. If the sensor fails on a frequent basis, its parent actor can escalate the error up to the 
level of the house and display the error more prominently in the application. This results in the 
hierarchy shown in figure 13.2. By modeling your application as a hierarchy of components 
where the child actors are responsible for the most critical work, your system isolates failure in 
the smallest individual component. 

Figure 13.2. The smart-home hierarchy of actors 

 

13.3. DESIGNING FOR SCALE  

Given the rise in popularity of IoT devices, your system could see continuous growth in coming 
years, leading to more data passing through it—something you need to consider. To maintain a 
reactive application, you must persist data in a database, in a format optimized for reading. To 
do that, you’ll create a database-writer actor whose sole responsibility is to receive a record, 
which is then inserted into a database. You’ll create an actor dedicated to this task primarily as 
an optimization. You could create a database connection per sensor, but that could lead to 
performance problems caused by connections not being reused. It would also disallow creating 
batches of writes against the database, because you’d have to send every row for every sensor, 
rather than writing a number of rows at once for a selection of sensors. 
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You’ll create a system that looks like figure 13.3. Here, you see several sensors, all sending data to 
a single actor responsible for writing data into the database. But it’s likely that the number of 
sensors will grow, forcing more data through the database-writer actor. As more data is forced 
through this actor, the message queue will grow, eventually delaying database writes and 
reducing application responsiveness, contradicting the aims of reactive architecture. To ensure 
that your system can stay responsive, you need to eschew bottlenecks, which limit system 
throughput. Fortunately, in your case, you can deploy multiple database writers, and thanks to 
Akka.NET’s routers, you can treat a collection of writer actors as a single actor. You can add 
more -writers as the load increases, ensuring that your application scales successfully with the 
expected load. 

Figure 13.3. Multiple actors send input to a router, which passes the input to a database-writer actor. If its message queue grows too 

large, another database-writer actor can be added. 

 

13.4. HANDLING CONFIGURATION  

You’ll design your system to be maintainable and testable, including running the application 
and its dependencies in multiple environments to verify that all functionality works as expected. 
You’ll also want to ensure separation of the various environments. For example, you’ll run the 
application locally on a development machine, as well as in a production environment. It’s 
important to use different databases for these two purposes so that you don’t include test data in 
your production database or risk customer data by using it in a test environment. 

In the last section, you designed a database-writer actor responsible for pushing aggregated data 
into the database in an efficient manner. By parameterizing the connection string that this actor 
uses, you can run the same application both in production and locally on a development 
machine without issue. But you’ll also have a configuration for routers, which are common 
across both environments. In chapter 5, you saw how to create configuration files that can be 
accessed by actors across the system. 

In your application, you’ll create three configuration files: one common file holding the overall 
actor-system configuration, and two files providing environment--specific settings, notably, 
connection strings for the database. By splitting environment--specific settings into two files 
with different responsibilities, you can override the connection strings and merge the two types 
of files. 
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13.5. INGESTING DATA  

With an internal infrastructure in place, your system is ready to receive data from the IoT 
devices deployed in people’s homes. You’ll create a publicly accessible API through which the 
devices can send messages. This API will be responsible for data-transmission security, as well 
as for converting data from an efficient protocol (HTTP) into the actor-system format. 

In chapter 10, you saw that you can write a custom protocol that interacts directly with the actor 
system with Akka.IO; but here, you’ll use an HTTP connection endpoint. This offers a number of 
benefits, including preexisting security solutions, which will help to protect user data when it’s 
sent to backend systems. As these devices are deployed in homes with stable internet 
connection, you’ll also have sufficient bandwidth to send data through HTTP, rather than 
needing to heavily optimize a protocol. 

Although your actor system will hold all the system state, you should ensure that your ingestion 
nodes are stateless, so that you can quickly provision more of them on demand. You can achieve 
this by separating the core actor system (which holds your state) from the edge nodes 
(responsible for data ingestion), and then connecting the two together using Akka.NET 
remoting, as you saw in chapter 8. Because the data only flows from devices to the system in its 
current state, the ingestion nodes simply act as a pipeline stage, converting the messages from 
one format to another: HTTP to Akka.NET. This creates an architecture that resembles figure 

13.4, in which messages are sent from sensor devices to the ingestion nodes, where they’re 
forwarded to the actor system. 

Figure 13.4. Messages are sent from sensor devices to ingestion nodes, where they’re converted and forwarded to the actor system. 

 

13.6. TESTING  

With your actors designed and ready, it’s important to verify that they function as expected. You 
can do this by creating a test project that exercises the expected behavior of the actors by 
sending a number of messages when the application runs in production. In chapter 9, you saw 
how to test actors using a number of different methods, either testing them in isolation or 
testing how they integrate with other actors. These tests should be designed to test as much of 
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the functionality of the actors as possible, to eliminate any surprises when the system runs in 
production and new messages are delivered. 

With a suite of tests, you can verify system integrity when actor changes occur, allowing you to 
catch errors before the application goes live. You can further integrate the tests you write with a 
continuous-integration server. By constantly testing the quality of the build as changes are 
checked in to source control, fewer bugs will slip into the production environment than if you 
were testing manually. 

13.7. REAL-TIME INTEGRATION  

One key feature you want in your application is the ability to push new data to clients as soon as 
it becomes available, allowing users to respond to it appropriately. For example, if a user has a 
motion detector installed in their smart home and they have the web page open, they’ll want 
immediate notification if movement is detected, so they can take appropriate action. 

You can use one of the techniques we looked at in chapter 10 to achieve this by adding a 
WebSocket connection outside of the actor system. Whenever a user navigates to a web page 
with a WebSocket protocol, the actor system is notified that the user is connected. The actor 
system can register the WebSocket as a subscriber to any events published by the system: for 
example, a room sensor. Figure 13.5 illustrates what happens when a user navigates to a web 
page with a WebSocket connection and how the actor system is responsible for managing event 
subscription. 

Figure 13.5. A WebSocket actor is activated when the user opens a web page with a WebSocket connection. The actor registers the 

connection as an event subscriber and pushes event data to the user. 
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13.8. DATA PERSISTENCE 

You know how to write data in a database in an optimized time-series schema, but you’ll also 
want to store other pieces of static data as sensor metadata, including the time period you 
should use when performing aggregations for a given sensor. Some sensors may need a finer 
level of granularity than others. With a motion sensor, you want to receive an alert as soon as a 
number of events have occurred, whereas with a temperature sensor, you might be happy to use 
a broader timescale. This data will be configured by users, so you need to persist it in the event 
of sensor restart or redistribution onto a different node. 

Although you could choose to persist the data in a fashion similar to the database-writer actor, a 
better option in this scenario is to use Akka.Persistence, which we looked at in chapter 11. With 
Akka.Persistence, you include a simplified data store as part of an actor’s definition. With the 
persistence components, you can persist events that flow through an actor. In this case, you’ll 
choose not to persist sensor readings; instead, you’ll store the events that change an actor’s 
behavior, including events that influence message output, as defined by your application. 

13.9. CLUSTER SCALE-OUT 

As more customers use your service, you’ll need more computing resources to handle the 
increased amount of data flowing through the system. Because your system actors are designed 
to be independent, you can locate them on any machine you want: there are no direct 
dependencies between any two actors. This means you can use the cluster-sharding capabilities 
of the Akka.NET clustering tools to distribute the sensors on different machines, as you saw 
in chapter 12. Given the hierarchy you developed (where you have a top-level actor for each 
home; each home has several rooms; and each room has several sensors), by partitioning the 
actor system at the home level, you can maintain the locality of all sensors and rooms, which are 
children of the home. This ensures that components that need to communicate with each other 
are located on the same machine; communication between them will be faster than if they were 
located on different machines. This opens up future opportunities for information sharing 
between sensors. 

You can add more machines to the cluster, either manually or using the autoscaling capabilities 
provided by many cloud providers. In chapter 12, you saw that you can connect more nodes to 
the cluster in response to increased demand at any point in the application’s life, and they’ll 
become part of the cluster without manual intervention. In addition to this, Akka.NET 
clustering can detect node failures and reallocate resources from a cluster with healthy nodes. In 
this way, you can build elastically scalable systems that are resilient in the face of failures more 
significant than those affecting only small system components. 

CONCLUSION  

You can see how components fit together when you design systems using Akka.NET. Although 
there’s no single one-size-fits-all solution to every problem, this chapter has given you an idea of 
the considerations you need to make when architecting broader solutions. When this 
understanding of system design with Akka.NET is combined with a solid understanding of the 
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principles of the Reactive Manifesto, it presents an opportunity to create systems that are robust 
and scalable. Having seen this broader case study, along with the smaller case studies included 
in each chapter, you should now have an understanding of how the individual components of 
Akka.NET fit into a larger reactive system architecture, as well as how to develop those 
individual components usin Akka.NET. 
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