
www.EBooksWorld.ir

Windows Presentation Foundation Development Cookbook

100 recipes to build rich desktop client applications on Windows

Kunal Chowdhury

www.EBooksWorld.ir

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Windows Presentation
Foundation Development
Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Nitin Dasan
Content Development Editor: Akshada Iyer
Technical Editor: Supriya Thabe
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jisha Chirayil
Production Coordinator: Shantanu Zagade

First published: February 2018

Production reference: 1210218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-980-7

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

www.EBooksWorld.ir

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from
over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

www.EBooksWorld.ir

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.packtpub.com

Contributors

www.EBooksWorld.ir

About the author
Kunal Chowdhury has been a Microsoft MVP since 2010. He is a renowned public speaker,
an active blogger (by passion), and a software engineer (technical lead) by profession. Over the
years, he has acquired profound knowledge of various Microsoft products and helped developers
throughout the world with his deep knowledge and experience.

He has authored the book Mastering Visual Studio 2017 and written many articles, tips, and
tricks on his technical blog (kunal-chowdhury [DOT] com) for developers and consumers. You
can follow him on Twitter at @kunal2383 and become one of his fans on social media.

I would like to thank my wife, Manika Paul Chowdhury, and my parents for their continuous
support throughout the period of writing this book. I would also like to thank the publisher and
reviewers for their valuable feedback. Lastly, thanks to all my friends and colleagues who
helped me to learn all that I have gathered over the years.

www.EBooksWorld.ir

About the reviewer
Alvin Ashcraft is a developer living near Philadelphia. He has spent his 23-year career building
software with C#, Visual Studio, WPF, ASP.NET, and more. He has been awarded, nine times,
a Microsoft MVP. You can read his daily links for .NET developers on his blog, the Morning
Dew. He works as a principal software engineer for Allscripts, building healthcare software. He
has previously been employed with software companies, including Oracle. He has reviewed
titles for Packt Publishing, such as Mastering ASP.NET Core 2.0, Mastering Entity Framework
Core 2.0, and Learning ASP.NET Core 2.0.

I would like to thank wonderful wife, Stelene, and our three amazing daughters for their support.
They were very understanding when I was reading and reviewing these chapters on evenings
and weekends to help deliver a useful, high-quality book for WPF developers.

www.EBooksWorld.ir

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author for, or submit your
own idea.

www.EBooksWorld.ir

http://authors.packtpub.com

Table of Contents
Title Page
Copyright and Credits

Windows Presentation Foundation Development Cookbook
Packt Upsell

Why subscribe?
PacktPub.com

Contributors
About the author
About the reviewer
Packt is searching for authors like you

Preface
Who this book is for
What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. WPF Fundamentals
Introduction

The WPF Architecture
Presentation Framework
Presentation Core
Common Language Runtime
Media Integration Library
OS Core

Types of WPF applications
The XAML overview
XAML syntax terminologies

Object element syntax
Property Attribute syntax
Property Element syntax
Content syntax
Collection syntax
Event Attribute syntax

Installing WPF Workload with Visual Studio 2017
Getting ready
How to do it...

Creating WPF applications
Getting ready
How to do it...
There's more...

Creating and navigating from one window to another
Getting ready
How to do it...
How it works...

www.EBooksWorld.ir

There's more...
Creating and navigating from one page to another

Getting ready
How to do it...
How it works...
There's more...

Creating a dialog box
Getting ready
How to do it...
How it works...
There's more...

Using the open file dialog
Using the save file dialog
Using the print dialog
Other common dialogs

Creating ownership between windows
Getting ready
How to do it...
How it works...
There's more...

Creating a single instance application
Getting ready
How to do it...
How it works...
There's more...

Passing arguments to WPF applications
Getting ready
How to do it...
How it works...
There's more...

Handling unhandled exceptions
Getting ready
How to do it...
How it works...
There's more...

2. Using WPF Standard Controls
Introduction
Using the TextBlock control to add plain text

Getting ready
How to do it...
How it works...
There's more...

Using Label to add other controls in text
Getting ready
How to do it...
How it works...
There's more...

Providing a user option to input text
Getting ready
How to do it...

www.EBooksWorld.ir

How it works...
There's more...

Windows Clipboard support
Adding spellcheck support

Adding images to your application UI
Getting ready
How to do it...
How it works...
There's more...

Working with ready-to-use 2D shapes
Getting ready
How to do it...
How it works...
There's more...

Adding tooltips to show additional information
Getting ready
How to do it...
How it works...
There's more...

Adding a standard menu to the WPF application
Getting ready
How to do it...
How it works...
There's more...

Adding an access key to menus
Adding icons to menus
Adding checkable menu items
Adding click-event handlers to menus

Providing extra functionalities using the context menu
Getting ready
How to do it...
How it works...

Adding user options with radio buttons and checkboxes
Getting ready
How to do it...
How it works...
There's more...

Working with the progress bar control
Getting ready
How to do it...
How it works...

Using the Slider control to pick a numeric value
Getting ready
How to do it...
How it works...
There's more...

Using the Calendar control in your application
Getting ready
How to do it...
How it works...
There's more...

www.EBooksWorld.ir

The SelectionModes property
The DisplayDate property
The DisplayMode property
The BlackoutDates property

Listing items in a Listbox control
Getting ready
How to do it...
How it works...
There's more...

Implementing multi selection
Customizing the ListBoxItem with multiple controls

Providing options to select from a ComboBox
Getting ready
How to do it...
How it works...
There's more...

Adding a status bar to your window
Getting ready
How to do it...
How it works...

Adding a toolbar panel to perform quick tasks
Getting ready
How to do it...
How it works...

3. Layouts and Panels
Introduction
Building a UI layout using a Grid

Getting ready
How to do it...
How it works...
There's more...

Creating a resizable Grid
Spanning elements across multiple rows and/or columns

Placing elements in uniform cells
Getting ready
How to do it...
How it works...
There's more...

Setting the row and column count
Defining the first cell of the UniformGrid
Filling elements from right to left

Automatically repositioning controls using WrapPanel
Getting ready
How to do it...
How it works...
There's more...

Placing controls in a Stack
Getting ready
How to do it...
How it works...
There's more...

www.EBooksWorld.ir

Positioning controls inside a Canvas
Getting ready
How to do it...
How it works...
There's more...

Wrapping UI elements using a Border
Getting ready
How to do it...
How it works...

Creating a scrollable panel
Getting ready
How to do it...
How it works...

Docking controls using the DockPanel
Getting ready
How to do it...
How it works...
There's more...

Rescaling UI elements using a ViewBox
Getting ready
How to do it...
How it works...
There's more...

Creating a tabbed layout
Getting ready
How to do it...
How it works...

Dynamically adding/removing elements in a panel
Getting ready
How to do it...
How it works...
There's more...

Implementing the drag and drop feature
Getting ready
How to do it...
How it works...
There's more...

4. Working with Data Bindings
Introduction
Working with CLR properties and UI notifications

Getting ready
How to do it...
How it works...
There's more...

Working with dependency properties
Getting ready
How to do it...
How it works...
There's more...

Working with attached properties
Getting ready

www.EBooksWorld.ir

How to do it...
How it works...

Data binding to an object
Getting ready
How to do it...
How it works...

Data binding to a collection
Getting ready
How to do it...
How it works...
There's more...

Element-to-element data binding
Getting ready
How to do it...
How it works...

Sorting data in a DataGrid control
Getting ready
How to do it...
How it works...

Grouping data in a DataGrid control
Getting ready
How to do it...
How it works...
There's more...

Filtering data in a DataGrid control
Getting ready
How to do it...
How it works...

Using static bindings
Getting ready
How to do it...
How it works...

Using value converters
Getting ready
How to do it...
How it works...
There's more...

Using multi-value converters
Getting ready
How to do it...
How it works...

5. Using Custom Controls and User Controls
Introduction
Creating a custom control

Getting ready
How to do it...
How it works...
There's more...

XMLNS attribute declaration
Default styling
Toolbox integration

www.EBooksWorld.ir

Customizing the template of a custom control
Getting ready
How to do it...
How it works...

Exposing properties from the custom control
Getting ready
How to do it...
How it works...

Exposing events from a custom control
Getting ready
How to do it...
How it works...

Extending the functionality of a control using behavior
Getting ready
How to do it...
How it works...

Creating a User Control interface
Getting ready
How to do it...
How it works...

Exposing events from a User Control
Getting ready
How to do it...
How it works...

Customizing the XMLNS namespace
Getting ready
How to do it...
How it works...

6. Using Styles, Templates, and Triggers
Introduction
Creating the style of a control

Getting ready
How to do it...
How it works...
There's more...

Creating the Style of a control based on another Style
Getting ready
How to do it...
How it works...

Applying Style to a control automatically
Getting ready
How to do it...
How it works...

Editing the template of any control
Getting ready
How to do it...
How it works...
There's more...

Creating a property trigger
Getting ready
How to do it...

www.EBooksWorld.ir

How it works...
Creating a multi trigger

Getting ready
How to do it...
How it works...

Creating a data trigger
Getting ready
How to do it...
How it works...

Creating a multi data trigger
Getting ready
How to do it...
How it works...

Creating an event trigger
Getting ready
How to do it...
How it works...

7. Using Resources and MVVM Patterns
Introduction
Using binary resources inside a WPF application

Getting ready
How to do it...
How it works...
There's more...

Using binary resources from another assembly
Getting ready
How to do it...
How it works...
There's more...

Accessing binary resources in code
Getting ready
How to do it...
How it works...

Using static logical resources in WPF
Getting ready
How to do it...
How it works...
There's more...

Using dynamic logical resources in WPF
Getting ready
How to do it...
How it works...
There's more...

Managing logical resources
Getting ready
How to do it...
How it works...
There's more...

Using user selected colors and fonts
Getting ready
How to do it...

www.EBooksWorld.ir

How it works...
There's more...

Building an application using the MVVM pattern
Getting ready
How to do it...
How it works...

Using routed commands in a WPF application
Getting ready
How to do it...
How it works...

8. Working with Animations
Introduction
Scaling an element while rendering

Getting ready
How to do it...
How it works...

Rotating an element while rendering
Getting ready
How to do it...
How it works...

Skewing an element while rendering
Getting ready
How to do it...
How it works...

Moving an element while rendering
Getting ready
How to do it...
How it works...

Grouping multiple transforms
Getting ready
How to do it...
How it works...
There's more...

Creating property-based animations
Getting ready
How to do it...
How it works...

Creating path-based animations
Getting ready
How to do it...
How it works...

Creating key-frame-based animations
Getting ready
How to do it...
How it works...
There's more...

Adding easing effects to animations
Getting ready
How to do it...
How it works...
There's more...

www.EBooksWorld.ir

BounceEase
CircleEase
CubicEase
ElasticEase
ExponentialEase
PowerEase
QuadraticEase
QuarticEase
QuinticEase
SineEase

9. Using WCF Services
Introduction
Creating a WCF service

Getting ready
How to do it...
How it works...

The DataContract attribute
The DataMember attribute
The ServiceContract attribute
The OperationContract attribute

Self-hosting a WCF service
Getting ready
How to do it...
How it works...
There's more...

Hosting a WCF service in an IIS server
Getting ready
How to do it...
How it works...

Integrating a WCF service in a WPF application
Getting ready
How to do it...
How it works...
There's more...

10. Debugging and Threading
Introduction
Enabling the UI debugging tool for XAML

Getting ready
How to do it...

Navigating through XAML elements using Live Visual Tree
Getting ready
How to do it...
How it works...
There's more...

Inspecting XAML properties using Live Property Explorer
Getting ready
How to do it...
How it works...
There's more...

Updating the UI from a non-UI thread

www.EBooksWorld.ir

Getting ready
How to do it...
How it works...
There's more...

Adding cancelation support to long running threads
Getting ready
How to do it...
How it works...

Using the background worker component
Getting ready
How to do it...
How it works...
There's more...

Using a timer to periodically update the UI
Getting ready
How to do it...
How it works...

11. Interoperability with Win32 and WinForm
Introduction
Hosting WinForm controls in WPF applications

Getting ready
How to do it...
How it works...
There's more...

Hosting WPF controls in WinForm applications
Getting ready
How to do it...
How it works...

Calling Win32 APIs from WPF applications
Getting ready
How to do it...
How it works...

Embedding ActiveX controls in WPF applications
Getting ready
How to do it...
How it works...

Other Books You May Enjoy
Leave a review - let other readers know what you think

www.EBooksWorld.ir

Preface
Along with Windows 1.0, in the year 1985, Microsoft introduced Graphics Device Interface
(GDI) and the USER subsystem in order to build a Windows-based Graphical User Interface
(GUI). In 1990, OpenGL came into picture to create 2D and 3D graphics on Windows and non-
Windows systems. In 1995, Microsoft presented another technology, called DirectX, to create
high-performance 2D/3D graphics. Later, GDI+ was introduced to add alpha blending and
gradient brush support on top of the existing GDI.

In 2002, Microsoft introduced .NET Framework. Along with this, Windows Forms was also
introduced to build User Interface (UI) for Windows using C# and Visual Basic languages. It
was built on top of GDI+, and hence, it still had the limitations of the GDI+ and USER
subsystems.

Over the years, Microsoft decided to bring a new technology to build rich UIs for Windows-
based applications, which not only helped the users (developers and designers) to escape the
limitations of GDI/GDI+ and USER subsystems, but also helped them to improve their
productivity when building desktop-based applications.

In November 2006, along with .NET 3.0, Windows Presentation Foundation (WPF) was
introduced to provide the developers a unified programming model to build dynamic, data-
driven desktop applications for Windows. It came with a broad set of features to create a
graphical subsystem to render rich UIs using various controls, layouts, graphics, resources, and
more, considering the application and the security of the data. As it was first shipped as part of
the .NET Framework 3.0, the first release was called WPF 3.0.

WPF is a resolution-independent framework that uses a vector-based rendering engine using an
XML-based language called XAML (pronounced Zammel), to create modern user experiences
that provided a declarative model for application programming. Using this, you can easily
customize the controls and add skins to it to get a better representation of the application's UI.

As WPF was different than classic Windows Forms, as it uses XAML, data binding, templates,
styles, animations, documents, and more, initially it got little attention. However, later, it started
gaining a lot of popularity and attraction. Many updated versions were released to add more
functionality to it to make it robust and powerful.

In this book, we will cover a set of recipes that will show you how to perform common tasks
using WPF. Starting with WPF fundamentals, we will cover standard controls, layouts, panels,
data bindings, custom controls, user controls, styles, templates, triggers, and animations and
later move on to the uses of resources, MVVM patterns, WCF services, debugging, threading,
and WPF interoperabilities, to make sure you understand the foundation properly.

The examples given in this book are simple, easy to understand, and provide you with a what
you need to learn and master the skills that you need to build desktop applications using WPF.
By the time you reach the end of this book, you will be proficient enough with deep knowledge

www.EBooksWorld.ir

about each of the chapters that it covers. Although this book has covered most of the important
topics, there will always be some topics that no books can completely cover. You will definitely
enjoy reading this book, as there are lots of graphical and textual steps to help you gain
confidence working with Windows Presentation Foundation.

www.EBooksWorld.ir

Who this book is for
The book is intended for developers who are relatively new to Windows Presentation
Foundation (WPF) or those who have been working with WPF for some time, but want to get a
deeper understanding of its foundation and concepts to gain practical knowledge. Basic
knowledge of C# and Visual Studio is assumed.

www.EBooksWorld.ir

What this book covers
Chapter 1, WPF Fundamentals, focuses on WPF's architecture, application types, and XAML
syntax, terminologies, and explains how to install WPF Workload with Visual Studio 2017 to
create your first application targeting Windows Presentation Foundation. It will cover the
navigation mechanisms, various dialog boxes, building ownership between multiple windows,
and then proceed toward creating a single instance application. This chapter will then cover how
to pass arguments to WPF application and how to handle unhandled exceptions thrown in WPF.

Chapter 2, Using WPF Standard Controls, provides you with an in-depth knowledge to help you
learn about various common control parts of WPF. This chapter will begin with TextBlock,
Label, TextBox, and Image controls, and then continue with 2D shapes, Tooltip, standard menu,
Context Menu, Radio buttons, and CheckBox controls. This chapter will also cover how to work
with Progress Bar, Slider, Calendar, ListBox, ComboBox, StatusBar, and Toolbar panel.

 Chapter 3, Layouts and Panels, gives you quick tour of the standard layout and panels. This
chapter will cover how to use the panels to create proper layouts. It will also cover
implementing the drag and drop feature in brief.

Chapter 4, Working with Data Bindings, discusses the important concept of data binding and how
to use it in WPF. It also discusses CLR properties, dependency properties, attached properties,
converters, and data operations (such as sorting, grouping, and filtering). The step-by-step
approaches will guide you to be proficient with all types of data bindings.

Chapter 5, Using Custom Controls and User Controls, provides the basic building blocks you
need to create custom controls and user controls that you can reuse in various places. You will
also learn how to customize the control template using custom properties and events from the
custom controls and user controls.

Chapter 6, Using Styles, Templates, and Triggers, provides a deep insight into the styles and
templates of a control, followed by various triggers that you can use to perform some operations
or UI changes directly from the XAML, without using any C# code.

Chapter 7, Using Resources and MVVM Patterns, begins by demonstrating various ways to use
and manage binary resources, logical resources, and static resources. It will then continue with
the Model View ViewModel (MVVM) pattern to build a WPF application by writing less code
in the code behind file. The MVVM pattern is introduced with some examples to show how you
can build command bindings.

Chapter 8, Working with Animations, provides a tour to the animation capabilities in WPF and
discusses how to use various transforms and animations and apply effects to animations.

Chapter 9, Using WCF Services, makes it easy for you to understand the ABC of WCF services
and explains how to create, host, and consume them in a WPF application.

www.EBooksWorld.ir

Chapter 10, Debugging and Threading, discusses WPF's support for debugging the XAML
application UI using the Live Visual Tree and Live Property Explorer. This chapter helps you to
create asynchronous operations so that the application UI is always responsive.

Chapter 11, Interoperability with Win32 and WinForm, focuses on understanding the
interoperability of WPF with Win32 and Windows Forms. In this chapter, you will learn how to
host an element from one technology (WPF/WinForm) to other technology (WinForm/WPF),
followed by calling Win32 APIs and embedding ActiveX controls in a WPF application.

www.EBooksWorld.ir

To get the most out of this book
This book assumes that the reader has knowledge of .NET Framework and C# (at least C#
version 3.0, but C# 7.0 or higher version is preferable) and has working experience of Visual
Studio 2015 or higher (Visual Studio 2017 is preferable). Basic knowledge of WPF and XAML
has been assumed.

www.EBooksWorld.ir

Download the example code files
You can download the example code files for this book from your account at www.packtpub.com.
If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have
the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Windows-
Presentation-Foundation-Development-Cookbook. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://git
hub.com/PacktPublishing/. Check them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Windows-Presentation-Foundation-Development-Cookbook
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://www.packtpub.com/sites/default/files/downloads/WindowsPresentationFou
ndationDevelopmentCookbook_ColorImages.pdf.

www.EBooksWorld.ir

https://www.packtpub.com/sites/default/files/downloads/WindowsPresentationFoundationDevelopmentCookbook_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
"The Presentation Core layer, part of presentationcore.dll, provides you with the wrapper around
the Media Integration Library."

A block of code is set as follows:

 <Button>

 <Button.Background>

 <SolidColorBrush Color="Red" />

 </Button.Background>

 </Button>

Any command-line input or output is written as follows:

svcutil.exe http://localhost:59795/Services/EmployeeService.svc?wsdl

Bold: Indicates a new term, an important word, or words that you see onscreen. For example,
words in menus or dialog boxes appear in the text like this. Here is an example: "To build WPF
applications targeting the .NET Framework, select the .NET desktop development workload."

Warnings or important notes appear like this.

Tips and tricks appear like this.

www.EBooksWorld.ir

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your
message. If you have questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this
to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the
site that you purchased it from? Potential readers can then see and use your unbiased opinion to
make purchase decisions, we at Packt can understand what you think about our products, and
our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

www.EBooksWorld.ir

https://www.packtpub.com/

WPF Fundamentals
In this chapter, we will cover the following recipes:

Installing WPF Workload with Visual Studio 2017
Creating WPF applications
Creating and navigating from one window to another
Creating and navigating from one page to another
Creating a dialog box
Creating ownership between windows
Creating a single instance application
Passing arguments to WPF applications
Handling unhandled exceptions

www.EBooksWorld.ir

Introduction
The Windows Presentation Foundation (WPF) provides developers with a unified
programming model to build dynamic, data-driven desktop applications for Windows. It was
first released in 2006 along with .NET 3.0. It is part of the .NET Framework itself.

WPF is a graphical subsystem, for rendering rich user interfaces (UIs), and is a resolution-
independent framework that uses a vector-based rendering engine in the Extensible Application
Markup Language (XAML) to create stunning user interfaces. It supports a broad set of
features that includes application models, controls, layouts, graphics, resources, security, and
more.

The runtime libraries for it to execute have been included with Windows since Windows Vista
and Windows Server 2008. If you are using Windows XP with SP2/SP3 and Windows Server
2003, you can optionally install the necessary libraries.

To begin learning the different recipes of WPF, you should have a clear understanding of the
basic foundations. In this chapter, we will start with the architecture and syntaxes, and will guide
you in creating a building block.

www.EBooksWorld.ir

The WPF Architecture
WPF uses a layered architecture that includes managed, unmanaged, and the core APIs in five
different layers called Presentation Framework, Presentation Core, Common Language
Runtime, Media Integration Library, and OS Core. The programming model is exposed
through the managed code.

In the following diagram, you can see a clear picture of the architecture:

www.EBooksWorld.ir

Presentation Framework
The Presentation Framework, which is part of presentationframework.dll, provides the basic
required components (such as controls, layouts, graphics, media, styles, templates, animations,
and more) to start building the UIs of your WPF applications. It is part of the managed layer.

www.EBooksWorld.ir

Presentation Core
The Presentation Core layer, part of presentationcore.dll, provides you with the wrapper
around the Media Integration Library (MIL). It present you with the public interfaces to
access the MIL Core and the Visual System to develop the Visual Tree. It contains visual
elements and rendering instructions to build applications for Windows using the XAML tools.
This is also part of the managed code.

www.EBooksWorld.ir

Common Language Runtime
Common Language Runtime, commonly known as the CLR and part of the managed layer,
provides you with several features to build robust applications covering common type system
(CTS), error handling, memory management, and more.

www.EBooksWorld.ir

Media Integration Library
The Media Integration Library (MIL), which resides in milcore.dll, is part of the unmanaged
layer used to display all graphics rendered through the DirectX engine. It provides you with
basic support for 2D and 3D surfaces, and allows you to access the unmanaged components to
enable tight integrations with DirectX. It also enables you to gain performance while rendering
instructions from the Visual System to the Common Language Runtime (CLR).

www.EBooksWorld.ir

OS Core
Just after the MIL, the next layer is the OS Core, which provides you with access to the low-
level APIs to handle the core components of the operating system. This layer includes Kernel,
User32, DirectX, GDI, and device drivers.

www.EBooksWorld.ir

Types of WPF applications
Though WPF is mainly used for desktop applications, you can also create web-based
applications. Thus, WPF applications can be of two types:

Desktop-based executables (EXE)
Web-based applications (XBAP)

The desktop applications are the normal .exe executables, which you normally run on any of
your Windows-based systems, whereas the web-based applications are the .xbap files that can be
deployed in web servers and can run inside any supported browser. The .NET Framework is
mandatory to run any of these application types.

When you run a WPF application, it starts in two threads. The UI thread uses the
System.Threading.DispatcherObject to create the messaging system and that maintains the UI
operations queue. Just like the Win32 message pumping, it performs the UI operation based on
the priority set for it.

The other thread is the background thread, which is used to handle the rendering engine being
managed by WPF. It picks up a copy of the visual tree and performs actions to show the visual
components in the Direct3D surface. Then it calls the UI elements to determine the size and
arranges the child elements by their parents.

www.EBooksWorld.ir

The XAML overview
XAML stands for Extensible Application Markup Language. It is an XML-based markup
language that is used to declaratively create the UI of any XAML-based application, such
as Windows Platform Foundation (WPF), Universal Windows Platform (UWP),
and Xamarin.Forms. You can create visible UI elements in a declarative XAML syntax to
design the rich UI and then write the code behind to perform a runtime logic.

Microsoft recently introduced XAML Standards, which is a specification that
defines a standard XAML vocabulary, which will allow the supported frameworks
to share common XAML-based UI definitions.

You can learn more about this specification by visiting GitHub here:
http://aka.ms/xamlstandard.

Though it is not mandatory to use the XAML markup to create a UI, it has been widely accepted
as the smart option for the creation of the entire application's UI, as it makes things easier to
create. You can create the UI by writing C# or VB.NET code too, but that makes it more
difficult and tougher to maintain. Also, that makes it difficult for the designers to work
independently.

Designing an application UI using XAML is as easy as writing an XML node with a few
optional attributes. Attributes are used to set additional styles, behaviors, and properties. To
create a simple button in the UI, you can just write <Button /> in your XAML file. Similarly, you
can just write <TextBox /> to create a user-input box.

Additionally, you can add more details to the controls. For example, to add a label to a button,
use its Content property, and to set its dimension, use the Height and Width property, as shown in
the following code:

 <Button Content="Click Here" />

 <Button Height="36" Width="120" />

In general, when you add XAML pages to your WPF application project, it compiles along with
the project and produces a binary file in what is known as Binary Application Markup
Language (BAML). The final output of the project (that is, the assembly file) contains this
BAML file as a resource. When the application loads into the memory, the BAML is then parsed
at runtime.

You can also load an XAML into memory and directly render it on the UI. But, in this case, if it
has any XAML syntax errors, it will throw those in runtime. If you compare the performance
with the first process, the latter is slower, as it renders the entire XAML syntax onto UI.

Here's a flow diagram, that demonstrates the ways to load and render/parse the XAML UI:

www.EBooksWorld.ir

http://aka.ms/xamlstandard

www.EBooksWorld.ir

XAML syntax terminologies
XAML uses some syntax terminologies to define an element in the UI and create the instance of
it. Before you start working on it, you must understand the different terminologies that it offers.
Let's have a look at a few of them.

www.EBooksWorld.ir

Object element syntax
Each instance of a type is defined using proper XAML syntax to create an object element in the
UI. Each of these object elements starts with a left angular bracket (<) and defines the name of
the element. You can optionally prefix the namespace when it is defined outside the default
scope. You can use a self-closing angular bracket (/>) or a right angular bracket (>) to close the
object element definition. If the object element does not have any child elements, the self-
closing angular bracket is used. For example, (<Button Content="Click Here" />) uses a self-
closing angular bracket. If you write the same with a child element, it closes with an end tag
(<Button>Click Here</Button>,) as shown.

When you define the object element in an XAML page, the instruction to create the instance of
the element gets generated and it creates the instance by calling the constructor of the element
when you load it in memory.

www.EBooksWorld.ir

Property Attribute syntax
You can define one or more properties to an element. These are done by writing an attribute
called Property Attribute syntax to the element. It starts with the name of the property and an
assignment operator (=), followed by the value within quotes. The following example
demonstrates how easy it is to define a button element to have a label as its content, and how to
set its dimension in UI:

<Button Content="Click Here" />

<Button Content="Click Here" Width="120" Height="30" />

www.EBooksWorld.ir

Property Element syntax
This is another type of XAML syntax that allows you to define the property as an element. This
is often used when you cannot assign the value of the property within quotes. If we take the
previous example, the text Click Here can be assigned to the button content easily. But, when you
have another element or a composite property value, you cannot write those within the quotes.
For this, XAML introduces Property Element syntax to help you to define the property value
easily.

It starts with <element.PropertyName> and ends with </element.PropertyName>. The following
example demonstrates how to assign a color to a button background with a SolidColorBrush
object:

 <Button>

 <Button.Background>

 <SolidColorBrush Color="Red" />

 </Button.Background>

 </Button>

www.EBooksWorld.ir

Content syntax
This is another type of XAML syntax that is used to set the content of a UI element. It can be set
as the value of child elements. The following example demonstrates how to set the text content
property of a Border control to hold a Button control as its child element:

 <Border>

 <Border.Child>

 <Button Content="Click Here" />

 </Border.Child>

 </Border>

While using Content syntax, you should remember the following points:

The value of a Content property must be contiguous
You cannot define an XAML Content property twice within a single instance

Thus, the following is invalid as it will throw XAML error:

 <Border>

 <Border.Child>

 <Button Content="Button One" />

 </Border.Child>

 <Border.Child>

 <Button Content="Button Two" />

 </Border.Child>

 </Border>

www.EBooksWorld.ir

Collection syntax
When you need to define a collection of elements to the parent root, the Collection syntax is
used to make it easy to read. For example, to add elements inside StackPanel, we use its Children
property, as shown in the following code:

 <StackPanel>

 <StackPanel.Children>

 <Button Content="Button One" />

 <Button Content="Button Two" />

 </StackPanel.Children>

 </StackPanel>

This can be also written as follows, and the parser knows how to create and assign the elements
to StackPanel:

 <StackPanel>

 <Button Content="Button One" />

 <Button Content="Button Two" />

 </StackPanel>

www.EBooksWorld.ir

Event Attribute syntax
When you add a button, you need to associate an event listener to it, to perform some operation.
The same is applicable for adding other controls and UI layouts. The XAML allows you to use
the Event Attribute syntax to define events for a specific XAML object element.

The syntax looks like a property attribute, but it is used to associate the event listener to the
element. The following example demonstrates how to assign the click event to a button control:

 <Button Content="Click Here" Click="OnButtonClicked" />

The associated event gets generated from the code behind the XAML page, where you can
perform the real action. Here is the code snippet for the event implementation of the preceding
button-click event:

 void OnButtonClicked (object sender, RoutedEventArgs e)

 {

 // event implementation

 }

www.EBooksWorld.ir

Installing WPF Workload with
Visual Studio 2017
As we have learned the basic concepts of WPF Architecture and XAML syntax, we can start to
learn different recipes to build applications for Windows using the XAML tools for WPF. But,
before that, let's install the required workload/components for Visual Studio 2017. If you are
using prior versions of Visual Studio, this step will be different.

www.EBooksWorld.ir

Getting ready
To install the required components for building WPF applications, run the Visual Studio 2017
installer. If you don't have the installer, you can go to https://www.visualstudio.com/downloads and
download the correct edition. Let's download the Visual Studio Community 2017 edition as it is
a fully featured IDE and available free for students, open source, and individual developers.

www.EBooksWorld.ir

https://www.visualstudio.com/downloads

How to do it...
Once you have downloaded the Visual Studio 2017 installer, follow these steps to install the
correct workload:

1. Once you have run the installer, it will show you the following screen. Click on Continue:

2. Wait for a few minutes to let the installer prepare itself for the installation process. A
progress bar will show you the status of the current progress:

3. Then the following screen will pop up, where it will ask you to select the workloads or
components that you want to install:

www.EBooksWorld.ir

4. To build WPF applications targeting .NET Framework, select the .NET desktop
development workload, as shown in the preceding screenshot.

5. Click on the Install button to continue with the installation.
6. The following screen will be displayed, showing the status of the installation. It will take

some time, based on your internet bandwidth, as it's going to download the required
components, based on your selection, from the Microsoft servers and install them one by
one:

www.EBooksWorld.ir

7. Once the installation has completed, you may have to restart your system for the changes
to take effect. In this case, a popup will appear on the screen, asking you to reboot your
PC.

Once you have installed the .NET desktop development component and restarted your system,
you are good to go with building your first WPF application.

www.EBooksWorld.ir

Creating WPF applications
The WPF development platform supports a broad set of features that includes UI controls,
layouts, resources, graphics, data binding, application model, and more. Before using each of
those features, you need to create the WPF project using Visual Studio.

The goal of this recipe is to create a WPF project and learn the basic project structure and
components. Let's start building our first WPF application using the XAML tools.

www.EBooksWorld.ir

Getting ready
To get started with the WPF application development, you must have Visual Studio running on
your system with the required components already installed on it.

www.EBooksWorld.ir

How to do it...
Follow these steps to create your first WPF application:

1. Inside your Visual Studio IDE, navigate to the File | New | Project... menu as shown in the
following screenshot:

2. This will open the New Project dialog on the screen. You can alternatively open it by
pressing the keyboard shortcut Ctrl + Shift + N.

3. In the New Project dialog, navigate to Installed | Templates | Visual C# | Windows Classic
Desktop, as shown in the left-hand side of the following screenshot:

www.EBooksWorld.ir

4. In the right-hand side panel, first select the .NET Framework that you want your
application to target. We have selected .NET Framework 4.7 here.

5. Then select WPF App (.NET Framework), from the available list of templates.
6. Give a name (in our case, it is CH01.HelloWPFDemo) to the project.
7. Optionally, select the location of the project, where you want to create it.
8. Optionally, you can also provide a different name for the Solution.
9. When you are ready, click on the OK button to let Visual Studio create the project based

on the template that you have selected.

Once the project has been created, Visual Studio will open the Solution Explorer, which lists the
project with all the default files created on it. The project structure will look like the following
screenshot:

www.EBooksWorld.ir

There's more...
Each WPF application project created by Visual Studio using the default template consists of the
following files:

App.config: This is the configuration file of your WPF application. By default, it contains
the following lines that describe the supported runtime version for the application to run.
This contains exactly the same runtime version that we selected during the project
creation:

 <?xml version="1.0" encoding="utf-8" ?>

 <configuration>

 <startup>

 <supportedRuntime

 version="v4.0"sku=".NETFramework,Version=v4.7" />

 </startup>

 </configuration>

The config file can also contain application settings and other configuration settings that
you want to use/refer in your application.

App.xaml: Visual Studio automatically creates the App.xaml file when you create a WPF
project. It is the declarative starting point of your application. The root element of this file
is the Application instance, which defines application specific properties and events:

 <Application x:Class="CH01.HelloWPFDemo.App"

 xmlns="http://schemas.microsoft.com/winfx

 /2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="clr-namespace:CH01.HelloWPFDemo"

 StartupUri="MainWindow.xaml">

 <Application.Resources>

 </Application.Resources>

 </Application>

The instance of the Application class defines the Window or a Page that's going to be the
startup UI, and is registered with the StartupUri property. In the preceding code,
(StartupUri="MainWindow.xaml") states that the MainWindow.xaml page will get loaded, once
you run the application.

The application instance can also hold global/application-level resources (such as, Style,
Template, and Converter) that can be used globally throughout the application.

App.xaml.cs: This is the code-behind class file of the App.xaml and extends the Application
class of the framework to write application-specific code. You can use this file to subscribe
to the events such as Startup, UnhandledException to perform common operations:

namespace CH01.HelloWPFDemo

{

 /// <summary>

www.EBooksWorld.ir

 /// Interaction logic for App.xaml

 /// </summary>

 public partial class App : Application

 {

 }

}

This class is often used to manipulate command-line parameters and load different
XAML pages based on that.

MainWindow.xaml: This is the default UI page that Visual Studio generates on creation of the
WPF project. It is the page that gets registered as the StartupUri in App.xaml. The root
element of this page is Window and it contains a Grid layout by default. Here is the default
code snippet:

<Window x:Class="CH01.HelloWPFDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="MainWindow" Height="350" Width="525">

 <Grid>

 </Grid>

</Window>

The x:Class attribute defines the associated partial class where the UI logic is being
written. You can modify this XAML to provide a fresh look to your application start
page. Various UI controls and layouts are going to be covered in the later chapters of
this book.

MainWindow.xaml.cs: This is the code-behind class of MainWindow.xaml and contains the logic
related to UI operations. In general, developers write implementations of various UI
operations in this class.

Whenever you add any UI elements to an XAML page, the control gets registered internally in a
partial class file that has .g.i.cs as the extension. For example, if you add a control in the
MainWindow.xaml file, it gets registered in the MainWindow.g.i.cs residing in the obj folder. If you
open the file, you can observe the entire loading process inside the InitializeComponent() method.

www.EBooksWorld.ir

Creating and navigating from
one window to another
In WPF standalone applications, a window is used to host the UI elements to enable users to
interact with the UI and data. The base class Window provides all the APIs to create and interact
with the Window UI.

In WPF applications, the generic window layout is divided into multiple parts. Here is a
screenshot of a basic window, containing its various parts:

The various parts of the window are as mentioned here:

The outer part of the window is a Border, which you can utilize to enable the resizing
option:

The outer border can contain a resizing grip, which enables you to resize the
window diagonally

The window contains a Title bar at the top, which consists of the following parts:
An Icon to provide a unique brand to your application window
A Title, showing the identifiable name of the window
A small panel, containing Minimize, Maximise/Restore, and Close buttons
A System menu with menu items to allow users to perform Minimize, Maximize/
Restore, Move, Size, and Close operations on the window

A client area for the developers to add application/window specific layouts and controls

www.EBooksWorld.ir

Getting ready
To get started with this recipe, open your Visual Studio instance and create a WPF project
called CH01.WindowDemo based on the WPF App (.NET Framework) template. Once the project has
been created, it will have files called MainWindow.xaml and MainWindow.xaml.cs, along with the other
default files.

Let's get started with creating a new window in the same project and invoke a button to open the
new window from the MainWindow.

www.EBooksWorld.ir

How to do it...
To create a new window, follow these simple steps:

1. Open the Solution Explorer and right-click on the project node.
2. From the right-click context menu, navigate to Add | Window... as shown in the following

screenshot:

3. The following Add New Item dialog will appear on the screen:

www.EBooksWorld.ir

4. Make sure that the selected template is Window (WPF). Give it a name, SecondWindow.xaml,
and click the Add button.

5. This will create the SecondWindow.xaml file and its associated code-behind file
SecondWindow.xaml.cs in the project directory.

6. Open the XAML file (SecondWindow.xaml) and replace the entire contents with the following
XAML code:

<Window x:Class="CH01.WindowDemo.SecondWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Second Window" Height="200" Width="300">

 <Grid>

 <TextBlock Text="Second Window Instance"
 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="16"/>

 </Grid>

</Window>

7. Now open the MainWindow.xaml file to add a button into it. Replace the entire <Grid> </Grid>
block, with the following XAML code:

<Grid>

 <Button Content="Open Second Window"
 Height="30" Width="150"

 Click="OnSecondWindowButtonClicked"/>

</Grid>

8. Now we need to add the implementation for the button-click event. Simply open the
MainWindow.xaml.cs file and add the following lines of code inside the class definition:

private void OnSecondWindowButtonClicked(object sender,

RoutedEventArgs e)

{

 var window = new SecondWindow();

www.EBooksWorld.ir

 window.Show();

}

9. Now, when you run the application, you will see that the MainWindow opens on the
screen, containing a button labeled Open Second Window. Clicking on this button opens
the second window on the screen that has text content of Second Window Instance. Here's
the screenshot for your reference:

Please note that if you click the button again, it will create another instance of
the second window because it's modeless.

www.EBooksWorld.ir

How it works...
When you create the instance of the Window class, it will not become visible to the user. It only
becomes visible when you call the Show() method, which returns the handle to the originated
caller without waiting for the window to close.

When you call the Show() method, it basically creates a modeless window, and hence you can
interact with other windows within the same application when the same is already open. The
Window class also exposes a method called ShowDialog(), which creates a model window and
prevent users from interacting with other windows of the application. We will discuss the more
later in this chapter, in the Creating a dialog box section.

www.EBooksWorld.ir

There's more...
The Window class provides you with a bunch of properties, methods, and events to customize the
look of the window, and perform specific operations or to be notified of the current context. To
ask the client area to support transparency, set the AllowsTransparency property of the window to
true. This is often useful when you want to create a custom-shaped window or a skinned theme.

You can change the default icon of the window by setting the Icon property and enable/disable
the window resizing by setting the ResizeMode property. You can also set the window title, startup
location, window state, window style, and taskbar visibility by settings the Title,
WindowStartupLocation, WindowState, WindowStyle, and ShowInTaskbar properties, respectively.

Not only these but you can bring the window to the foreground by calling its Activate() method
and close the window by calling the Close() method available in the Window class. Sometimes,
when you want to hide the window instead of quitting it completely, you can utilize the Hide()
method to make the window hidden and bring it back again by calling the Show() method on the
same instance.

The class also exposes some events to notify you of the current contextual information. You can
use the Activated, Deactivated, Closing, Closed, and StateChanged, events in your code to get such
notifications.

www.EBooksWorld.ir

Creating and navigating from
one page to another
The WPF application supports a browser style navigation mechanism, which can be used in both
standalone applications as well as in XBAP applications. To implement it, WPF provides
the Page class to encapsulate the Page content that can be navigated to and hosted by the browser,
a NavigationWindow and/or a Frame.

www.EBooksWorld.ir

Getting ready
To get started with this recipe to build an application that supports navigations mechanisms from
one WPF page to another, open the Visual Studio IDE and create a project based on the WPF
App (.NET Framework) template. Give it a name (in our case, it's CH01.PageDemo).

www.EBooksWorld.ir

How to do it...
Once you have created your project based on the WPF App (.NET Framework) template, follow
these steps to add pages to your project and integrate them with the NavigationService:

1. Right-click on the project node where you want to create the pages.

2. As shown in this screenshot, navigate to Add | Page... from the context menu:

3. This will open the following Add New Item dialog window, where the item titled Page
(WPF) is already selected. Give it a name, Page1.xaml and click Add. It will create the
Page1.xaml and the associated code-behind file Page1.xaml.cs in your project:

www.EBooksWorld.ir

4. Now follow the same steps, 1 to 3, to create another page Page2.xaml, which will add both
the XAML and associated C# code-behind file into the project.

5. Open the Page1.xaml file and replace the Grid with the following XAML:

<Grid>

 <TextBlock Text="This is Page 1" FontSize="20"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 <Button Content="Next" Height="30" Width="120"

 Margin="20"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom"

 Click="OnNextButtonClicked"/>

</Grid>

6. In the associated code-behind file (Page1.xaml.cs), add the following button-click event
handler:

private void OnNextButtonClicked(object sender,

 RoutedEventArgs e)

{

 NavigationService.Navigate(new Uri("Page2.xaml",

 UriKind.Relative));

}

7. Similarly, add the following XAML into the Page2.xaml page, replacing the existing Grid:

<Grid>

 <TextBlock Text="This is Page 2" FontSize="20"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 <Button Content="Previous" Height="30" Width="120"

 Margin="20"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom"

 Click="OnPreviousButtonClicked"/>

</Grid>

www.EBooksWorld.ir

8. Add the following button-click event handler into the Page2.xaml.cs file:

private void OnPreviousButtonClicked(object sender, RoutedEventArgs e)

{

 if (NavigationService.CanGoBack)

 {

 NavigationService.GoBack();

 }

}

9. Now open the MainWindow.xaml file and replace the XAML content with the following:

<NavigationWindow x:Class="CH01.PageDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="MainWindow" Height="350" Width="525"

 Source="Page1.xaml">

</NavigationWindow>

10. Now open the MainWindow.xaml.cs file and change its base class to NavigationWindow, instead
of Window.

11. Run the application, which will open the following screen containing Page 1:

12. Clicking on the Next button will navigate you to Page 2, as shown here, which contains the
activated navigational button automatically provided by the WPF Framework:

13. Now, if you click on the Previous button or the back button in the navigation panel, it will
navigate you to Page 1.

www.EBooksWorld.ir

How it works...
The NavigationWindow, which is defined in the MainWindow.xaml page, provides the basic mechanism
to support the content navigation. The Source attribute (Source="Page1.xaml"), defined as URI,
asks NavigationWindow to load the mentioned page (Page1.xaml) by default.

When you click on the Next button of Page1, the NavigationService.Navigate method executes,
passing the URI of the page that you want to load next. The navigation buttons automatically
activate based on the history of the navigation that you performed.

In Page2, when you click on the Previous button, it first checks whether the NavigationService has
an immediate history item to navigate you to a previous page. If it finds a previous page, it then
automatically navigates you to the desired page by calling the NavigationService.GoBack() method
call. In this case, you don't have to pass the URI of the page.

www.EBooksWorld.ir

There's more...
NavigationService offers a variety of properties, methods, and events to perform navigation
mechanisms on your page content. CanGoBack() and CanGoForward() return a Boolean value
indicating whether there is at least one entry in the back and forward navigation history,
respectively. The method GoBack() navigates you to the most recent entry from back navigation
history, whereas the GoForward() method navigates you to the forward navigation history, if
there's one available.

To refresh the current content, you can call the Refresh() method. The StopLoading() method
stops the current execution from downloading/loading the content part of the current navigation
context. You can also programmatically add or remove an entry from the navigation history.
The AddBackEntry method takes a parameter for the CustomContentState object to add the entry into
the back-navigation history. The RemoveBackEntry() method removes the most recent entry from
the back-navigation history.

Events such as Navigating, Navigated, NavigationFailed, NavigationStopped, NavigationProgress,
and LoadCompleted are there to notify you of the various statuses of the current navigation process.
Use them wisely, based on your requirements.

www.EBooksWorld.ir

Creating a dialog box
A dialog box is also a kind of window, and is generally used to get some inputs from the user or
to show a message to the user. It uses a model window to prevent users from interacting with
other windows of the same application when it is already open. In this recipe, we will learn how
to create a model dialog and use the common dialog boxes that the framework provides.

www.EBooksWorld.ir

Getting ready
To get started with building and using dialog boxes in a WPF application, open your Visual
Studio IDE and create a new WPF project, calling it CH01.DialogBoxDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to create the dialog window and invoke it from the MainWindow to show a
message to the user:

1. Open the Solution Explorer and right-click on the project node.
2. From the context menu, select Add | Window... to open the Add New Item dialog.
3. Making sure that the Window (WPF) template is selected, give it the name MessageDialog,

and click Add to continue. This will create MessageDialog.xaml and MessageDialog.xaml.cs
files in the project.

4. Open the MessageDialog.xaml file and replace the entire XAML content with the following:

<Window x:Class="CH01.DialogBoxDemo.MessageDialog"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 ShowInTaskbar="False" WindowStyle="SingleBorderWindow"

 Title="Message" Height="150" Width="400"

 FontSize="14" Topmost="True" ResizeMode="NoResize">

 <Grid>

 <TextBlock TextWrapping="Wrap" Margin="8"

 Text="Thank you for reading 'Windows Presentation

 Foundation Cookbook'. Click 'OK' to continue next."/>

 <StackPanel Orientation="Horizontal"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Right"

 Margin="4">

 <Button Content="OK" Width="60" Height="30"

 Margin="4" IsDefault="True"

 Click="OnOKClicked"/>

 <Button Content="Cancel" Width="60" Height="30"

 Margin="4" IsCancel="True"

 Click="OnCancelClicked"/>

 </StackPanel>

 </Grid>

</Window>

5. Open the MessageDialog.xaml.cs file, and add the following event implementations for the
OK button and Cancel button:

private void OnOKClicked(object sender, RoutedEventArgs e)

{

 DialogResult = true;

}

private void OnCancelClicked(object sender, RoutedEventArgs e)

{

 DialogResult = false;

}

6. Now open the MainWindow.xaml page and replace the Grid with the following XAML content:

<Grid>

 <ListBox x:Name="result" Height="100" Margin="8"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Top" />

 <Button Content="Show Message" Width="150" Height="30"

www.EBooksWorld.ir

 VerticalAlignment="Bottom" Margin="8"

 Click="OnShowMessageButtonClicked"/>

</Grid>

7. Go to the code-behind file, MainWindow.xaml.cs, and add the button event implementation as
shared in the following code section:

private void OnShowMessageButtonClicked(object sender, RoutedEventArgs e)

{

 var messageDialog = new MessageDialog();

 var dialogResult = messageDialog.ShowDialog();

 if (dialogResult == true)

 {

 result.Items.Add("You clicked 'OK' button.");

 }

 else if (dialogResult == false)

 {

 result.Items.Add("You clicked 'Cancel' button.");

 }

}

8. Now run the application. The visible window will have a button labeled Show Message.
Click on it to invoke the message dialog window that we have created:

9. Click on the Cancel button, which will add You clicked 'Cancel' button text into the list
present in the MainWindow.

10. Launch the message window again and click on the OK button. This will add You clicked
'OK' button in the list.

www.EBooksWorld.ir

How it works...
When you call the ShowDialog() method of the Window instance, it opens it as a model dialog and
waits until the user provides an input to it. In this case, the user input is the interaction with the
OK and Cancel button. When you click the OK button, the associated event handler assigns true
to the DialogResult property and returns to the caller. Similarly, the Cancel button event handler,
assigns false to the DialogResult property and returns.

Based on the return value of the ShowDialog() method, which actually returns the value of
DialogResult, you can decide whether the user clicked the OK or Cancel button.

The dialog window has been customized by setting the following properties to the Window
instance:

The ShowInTaskbar property has been set to False to prevent the window from being visible
in the Taskbar.
The WindowStyle property has been set to SingleBorderWindow to add a thin border to the
window, removing the minimize and maximize buttons from the title bar.
The Topmost property has been set to True to keep it always visible on top of other windows.
This is optional, but good to have.
The ResizeMode property has been set to NoResize to prevent the user from resizing the dialog
window.

www.EBooksWorld.ir

There's more...
The operating system provides some reusable dialog boxes, which provide a user
experience consistent with the version of the operating system in which the application is
running. The experience also stays consistent across all applications to provide a unique
interface for performing common operations such as opening files, saving files, printing files,
color selection, and more.

WPF provides these reusable, common dialog boxes as managed wrapper classes, encapsulating
the core implementation. This reduces the extra effort creating and managing the common
operations.

www.EBooksWorld.ir

Using the open file dialog
To open files in your WPF application, you can use the managed wrapper class OpenFileDialog,
which is present under the Microsoft.Win32 namespace. You just have to create the instance and
call the ShowDialog() method by optionally setting a few properties for UI customization.

A basic open file dialog looks like the following screenshot, providing you with an option to
select one or more files to open:

The following code snippet demonstrates how to initiate the open file dialog by optionally filling
the file-extension filter:

private void OnOpenButtonClicked(object sender, RoutedEventArgs e)

{

 var openfileDialog = new OpenFileDialog

 {

 Filter = "Text documents (.txt) | *.txt | Log files (.log) |

 *.log"

 };

 var dialogResult = openfileDialog.ShowDialog();

 if (dialogResult == true)

 {

 var fileName = openfileDialog.FileName;

 }

}

The dialogResult returned by the ShowDialog() method tells us whether the operation was
performed successfully. Based on that, you can call the instance of the file dialog to get more
details about the selected file.

www.EBooksWorld.ir

Using the save file dialog
Along with the OpenFileDialog interface, the Microsoft.Win32 namespace also provides the
SaveFileDialog managed wrapper to perform file saving operations from your WPF application.
Similar to the open file dialog, you need to create the instance of it by optionally filling its
various properties to finally call the ShowDialog() method.

The save file dialog looks like the following screenshot, where you can provide a name to save
as a file:

Optionally, you can set the extension filter, default file name, and other properties before
launching the dialog window, as shown in the following code snippet:

private void OnSaveButtonClicked(object sender, RoutedEventArgs e)

{

 var saveFileDialog = new SaveFileDialog

 {

 Filter = "Text documents (.txt) | *.txt | Log files (.log) |

 *.log"

 };

 var dialogResult = saveFileDialog.ShowDialog();

 if (dialogResult == true)

 {

 var fileName = saveFileDialog.FileName;

 }

}

Based on the dialogResult returned by the ShowDialog() call you can decide whether the save was
successful and retrieve more information about the saved file from the file dialog instance.

www.EBooksWorld.ir

Using the print dialog
The managed wrapper PrintDialog is also present in the Microsoft.Win32 namespace, and provides
you with the interface to call the operating system's printer properties and perform the print
operation. The dialog gives you the option to Select Printer, configure the printing preferences,
and select the page range and other parameters, as shown in the following screenshot:

To invoke the same, just create the instance of the PrintDialog and call its ShowDialog() method.
You can optionally set page range, printable area, and other properties. If the
dialogResult returned by the ShowDialog() method is set to true, it confirms that the printing job
has been queued up successfully, and based on that you can perform the next set of actions.

Here's the code snippet for your reference:

private void OnPrintButtonClicked(object sender, RoutedEventArgs e)

{

 var printDialog = new PrintDialog();

 var dialogResult = printDialog.ShowDialog();

 if (dialogResult == true)

 {

 // perform the print operation

 }

}

www.EBooksWorld.ir

Other common dialogs
WPF also provides some other common dialog boxes to perform the selection of various
formatting options, such as font, font style, font size, text effects, and color. You can use the
FontDialog and ColorDialog, present under the System.Windows.Forms namespace, to add support for
the font and color selections, respectively.

Here's the screenshot presenting the font selector and color selector dialogs:

www.EBooksWorld.ir

Creating ownership between
windows
In the WPF application, the window objects that you create are independent of each other by
default. But, sometimes, you may want to create an owner-owned relationship between them.
For example, the toolbox window that you generally see in your Visual Studio IDE and/or in a
Photoshop application.

When you set an owner of a window, it acts according to the owner instance. For example, if
you minimize or close the owner window, the other window under the owner-owned
relationship automatically minimizes or closes according to its owner.

Let's begin creating this recipe to have an owner-owned relationship between two windows.

www.EBooksWorld.ir

Getting ready
To get started with this recipe, open your Visual Studio IDE and create a new WPF project
called CH01.OwnershipDemo.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create a ToolBox window and assign its ownership to the
MainWindow, so that it can act according to its owner:

1. Right-click on the project node and select Add | Window... from the context menu.
The Add New Item dialog will be shown on the screen.

2. Select Window (WPF) from the available list, give it the name ToolBox, and click Add to
continue. This will add ToolBox.xaml and ToolBox.xaml.cs into your project.

3. Open the ToolBox.xaml file and replace its content with the following XAML code:

<Window x:Class="CH01.OwnershipDemo.ToolBox"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 SizeToContent="WidthAndHeight"

 ResizeMode="NoResize"

 Title="ToolBox">

 <StackPanel Margin="10">

 <Button Content="Bold" Width="70" Margin="4"/>

 <Button Content="Italics" Width="70" Margin="4"/>

 <Button Content="Underlined" Width="70"

 Margin="4"/>

 </StackPanel>

</Window>

4. Now open the App.xaml page and remove the property attribute StartupUri, defined as
(StartupUri="MainWindow.xaml") from it.

5. Go to its code-behind file App.xaml.cs and override the OnStartup event. We need to modify
the implementation according to our needs. Replace the entire OnStartup event handler with
the following code block:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

 var mainWindow = new MainWindow();

 mainWindow.Show(); // must show before setting it

 as owner of some other window

 var toolBox = new ToolBox { Owner = mainWindow };

 toolBox.Show();

}

6. Run the application to see the relationship between the two windows. The windows will
look like the following screenshot:

www.EBooksWorld.ir

7. Drag the ToolBox window and you can see that you are able to move it outside the
MainWindow. Now perform some operations, such as minimizing and closing, on the
MainWindow, and you will see that the ToolBox window also acts according to its owner.

www.EBooksWorld.ir

How it works...
By default, the owner of every Window object is set to null, and thus each window is independent
of the other. But, when you set its owner, it follows the owner-owned relationship and acts with
the owner window.

Window ownership is not a feature of WPF, but a capability of the Win32 user API and, accessible
from a WPF application.

www.EBooksWorld.ir

There's more...
Make sure you display the owner window first, before setting it as the owner of some other
window, otherwise the system will throw an InvalidOperationException:

Some points to note about window ownership:

The window that has an ownership relationship with another window always appears on
top of that owner
You can drag the window outside the owner window
When you minimize or close the owner, the other window, which is related to it, will
follow the owner and minimize or close respectively
By default, the window in a relationship gets displayed in the taskbar, but when you
minimize the owner, it gets removed from the taskbar
When you want to break the relationship, just set the Owner property to null

www.EBooksWorld.ir

Creating a single instance
application
When you build applications for Windows, there are many reasons why you would want to
restrict users from launching multiple instances of your application. Some common examples
are installers, uninstallers, update utilities, media applications, utility tools, and so on.

In a normal application, when you launch the app, it creates a Windows process, and allocates
its own memory space and resources. But, when you don't want to create multiple instances of
the process for a single application that is already running, you want to silently quit the new
instance and bring the running process into the foreground.

In this recipe, we will learn how to achieve this using Mutex (Mutual Exclusion) and
unmanaged code.

www.EBooksWorld.ir

Getting ready
To get started with this, open your Visual Studio instance and create a new project based on the
WPF application template. During the project creation, give it the name CH01.SingleInstanceDemo.

www.EBooksWorld.ir

How to do it...
Once the WPF project has been created, follow these steps to create a single instance of the
WPF application:

1. Run the application by pressing the CTRL + F5 key combination. This will launch one
instance of the application.

2. Press CTRL + F5 multiple times to launch multiple instances of the application. Now it's
time to make the application a single instance application:

3. Close all the running processes and then follow the next steps to implement the single
instance behavior.

4. Open the MainWindow.xaml and add the window title to Single Instance Demo. Here you can
find the entire XAML code:

<Window x:Class="CH01.SingleInstanceDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Single Instance Demo"

 Height="250" Width="400">

 <Grid>

 </Grid>

</Window>

5. Open the App.xaml.cs file and override the base implementation of the OnStartup method.

www.EBooksWorld.ir

6. Change the code of the OnStartup method so that it looks like the following code:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

 var mutex = new Mutex(true, "SingleInstanceDemo",

 out bool isNewInstance);

 if (!isNewInstance)

 {

 MessageBox.Show("Application instance is

 already running!");

 Shutdown();

 }

}

7. Add the System.Threading namespace declaration, so that the Mutex can be discoverable.
The Mutex resides in the aforesaid namespace.

8. Now compile the project to make sure that there are no compiler errors.
9. Press CTRL + F5, which will run the first instance of the application.

10. Now return to the Visual Studio, without closing the application, and then hit CTRL + F5.
This time, instead of launching the application UI, an Application instance is already
running! message will pop up on the screen. Clicking OK will close the message.

11. Press CTRL + F5 again. Observe that no second instance of the UI is visible on the screen.

www.EBooksWorld.ir

How it works...
It's a trick to handle the application to have only a single instance. The Mutex (Mutual
Exclusion) object is used to define the instance with a unique name. Here we called
it SingleInstanceDemo. The Boolean out parameter returns whether the current calling thread has
been granted the initial ownership of the mutex object.

A Mutex object is a synchronization object, which is generally used to
synchronize access to a shared resource, so that only one thread can access that
resource at a single point in time.

For the first instance of the application, it will be granted as the initial ownership. When the
second instance runs, the calling thread will not get the initial ownership because the mutex
object with the same name, SingleInstanceDemo, already exists and is running.

So, the Boolean value of isNewInstance will be false and the message box will get displayed on
the screen. The second instance of the application is still running at that moment and calls the
Shutdown() method when you click on the OK button to close the message box.

Thus, the second instance will be removed from the process list. The first instance will continue
running on the system.

www.EBooksWorld.ir

There's more...
There could be a scenario where the application is running in a background process and the user
tries to relaunch the application. In such a scenario, instead of showing a message to the user,
you may want to activate the already running application and show its UI.

You can do this by changing a bit of the existing code and integrating an unmanaged code call.
To do so, open the App.xaml.cs file once again and follow these steps:

1. Add the following using namespace into the file: System.Runtime.InteropServices.
2. Then, you need to add the following unmanaged code declaration from the user32.dll to

the App.xaml.cs file:

[DllImport("user32", CharSet = CharSet.Unicode)]

static extern IntPtr FindWindow(string cls, string win);

[DllImport("user32")]

static extern IntPtr SetForegroundWindow(IntPtr hWnd);

3. Add the following method to activate the already running window, provided that the title
of the window is static. In our case, it is Single Instance Demo, modified in the
MainWindow.xaml page:

private static void ActivateWindow()

{

 var otherWindow = FindWindow(null, "Single Instance Demo");

 if (otherWindow != IntPtr.Zero)

 {

 SetForegroundWindow(otherWindow);

 }

}

4. Now, instead of calling the MessageBox, call the ActivateWindow() method in the OnStartup.
Here, you can find this new code:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

 var mutex = new Mutex(true,

 "SingleInstanceDemo",

 out bool isNewInstance);

 if (!isNewInstance)

 {

 // MessageBox.Show("Application instance is

 already running!");

 ActivateWindow();

 Shutdown();

 }

}

5. Now run the application. It will launch the MainWindow titled Single Instance Demo on the
screen.

6. Return to Visual Studio. This will put the application window in the background. Now run
the application once again by pressing the keyboard shortcut CTRL + F5. This time,

www.EBooksWorld.ir

instead of running a different instance to show the UI, it will activate the existing window
and push the running application to foreground.

It's not mandatory that the application window must always have a static title. In such cases, it
will become more complex to handle said scenario.

www.EBooksWorld.ir

Passing arguments to WPF
applications
The command-line arguments are used to take optional parameters or values from the user,
while launching the application. These are generally used to perform specific commands on the
application from the outside.

In this recipe, we will learn how to pass command-line arguments to a WPF application.

www.EBooksWorld.ir

Getting ready
To get started, open the Visual Studio IDE and create a WPF application project
called CH01.CommandLineArgumentDemo.

www.EBooksWorld.ir

How to do it...
Now follow these steps to let the application support command line arguments and perform
actions based on those:

1. Open the MainWindow.xaml to add a TextBlock into the Grid panel. Replace the entire XAML
content with the following lines:

<Window x:Class="CH01.CommandLineArgumentDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Main Window" Height="200" Width="400">

 <Grid>

 <TextBlock Text="This is 'Main Window'

 of the application."

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="18" />

 </Grid>

</Window>

2. Create a new window in the project by right-clicking on the project node and then
following the context menu path Add | Window... to open the Add New Item dialog
window. Give it the name OtherWindow and click the Add button. This will add
OtherWindow.xaml and OtherWindow.xaml.cs into the project.

3. Now open the OtherWindow.xaml and change its UI to have different text. Let's replace the
entire XAML code with the following lines:

<Window x:Class="CH01.CommandLineArgumentDemo.OtherWindow"

xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Other Window" Height="200" Width="400">

 <Grid>

 <TextBlock Text="This is 'Other Window' of the

 application."

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 FontSize="18" />

 </Grid>

</Window>

4. Now open the App.xaml and remove the StartupUri="MainWindow.xaml". This has been done to
control the launch of the proper window, based on the argument passed to the application.

5. Open the App.xaml.cs and override its OnStartup method to retrieve the arguments passed to
it and open the desired window based on that. Let's add the following code implementation
for the OnStartup method:

protected override void OnStartup(StartupEventArgs e)
{

 base.OnStartup(e);

www.EBooksWorld.ir

 var args = e.Args;

 if (args.Contains("/other"))

 {

 new OtherWindow().Show();

 }

 else

 {

 new MainWindow().Show();

 }

}

6. Now build the project. Navigate to the bin\Debug folder and launch a Command Window in
that location. Alternatively, you can launch a Command Window (cmd.exe) and navigate
to the bin\Debug path, where your application is available.

7. In the console window, enter the name of the application without passing any arguments to
it, as shown in the following command:

 CH01.CommandLineArgumentDemo.exe

8. This will launch the MainWindow of our application, with this screen:

9. Close the application window and, from the console window, enter the application name
by specifying the /other argument to it, as shown in the following command:

 CH01.CommandLineArgumentDemo.exe /other

10. This will launch the OtherWindow of the application, instead of the MainWindow:

www.EBooksWorld.ir

How it works...
The OnStartup(StartupEventArgs e) method signature contains StartupEventArgs as a method
parameter. It contains a property, Args, that returns a string array of the command line arguments
that were passed to the application. If no command line arguments were passed, the string array
will have zero items in it.

Now, by checking the condition, we launch the desired window that we want to show to the
user. You can also take arguments such that the application launches in normal mode,
maximized mode, or minimized. You can also use it to open the application as hidden, in some
specific cases.

www.EBooksWorld.ir

There's more...
As we have seen how to launch the WPF application from the command line by passing the
arguments, let's learn how to do this from Visual Studio itself to launch it in debug mode.

To pass a command line argument to your WPF application from Visual Studio in debug mode,
right-click on the project node and click Properties from the context menu entry. This will open
the project properties. Now navigate to the Debug tab. Please refer to the following screenshot:

Under Start options, enter /other as the command line arguments. Now run the application in
debug mode by pressing F5. You will see that the OtherWindow opens on the screen. To launch the
MainWindow, just remove the /other argument from the project properties mentioned earlier and
run the application again. This time you will see that the MainWindow opens instead of the
OtherWindow.

www.EBooksWorld.ir

Handling unhandled exceptions
Exception handling is a vital part of software development. When an exception occurs at
runtime, due to any error in the code, we handle those with a try {} catch {} block. The try {}
block contains the code where the exception occurred; the catch {} block knows how to handle
that, based on the type of the exception. After the exception has been handled, the normal
execution of the program continues without affecting the application.

Though, in most of the cases we handle, there could be cases that may go unnoticed and come
into the picture at runtime. Such an unhandled exception crashes the application. In this recipe,
we will learn how to catch the unhandled exceptions in the WPF application and close the
application properly.

www.EBooksWorld.ir

Getting ready
To get started, open the Visual Studio IDE. Now create a new project, based on the WPF
Application template, and call it CH01.UnhandledExceptionDemo.

www.EBooksWorld.ir

How to do it...
Let's start the demonstration by following these steps:

1. Open the MainWindow.xaml page, and add two radio buttons and one button on it. The first
radio button will cause an exception handled in a try {} catch {} block, whereas the
second radio button will throw an exception that will go unhandled. Add the following
code into your MainWindow.xaml:

<Window x:Class="CH01.UnhandledExceptionDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="UnhandledException Demo"

 Height="120" Width="400">

 <Grid Margin="10">

 <StackPanel Orientation="Vertical">

 <RadioButton x:Name="radioOne" GroupName="type"

 Content="Handle in Try/Catch Block"

 IsChecked="True" Margin="4"/>

 <RadioButton x:Name="radioTwo" GroupName="type"

 Content="Handle in Unhandled Block"

 IsChecked="False" Margin="4"/>

 </StackPanel>

 <Button Content="Throw Exception"

 Width="120" Height="30"

 VerticalAlignment="Top"

 HorizontalAlignment="Right"

 Margin="10"

 Click="OnThrowExceptionClicked"/>

 </Grid>

</Window>

2. Open the MainWindow.xaml.cs file to add the button-click event handler. Add the following
code block inside the class:

private void OnThrowExceptionClicked(object sender, RoutedEventArgs e)

{

 if (radioOne.IsChecked == true)

 {

 try { throw new Exception("Demo Exception"); }

 catch (Exception ex)

 {

 MessageBox.Show("'" + ex.Message +

 "' handled in Try/Catch block");

 }

 }

 else

 {

 throw new Exception("Demo Exception");

 }

}

3. Go to the App.xaml.cs file and override the OnStartup method to have the application level
DispatcherUnhandledException event registered as shown in the following code:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

www.EBooksWorld.ir

 DispatcherUnhandledException += OnUnhandledException;

}

4. Add the DispatcherUnhandledException event handler into the App.xaml.cs and handle the
exception as shown in the following code, but with an empty code block:

private void OnUnhandledException(object sender, DispatcherUnhandledExceptionEventArgs e)

{

}

5. Let's build and run the application. You will see the following UI on the screen:

6. It will have two radio selectors and one button in the application window. When the first
radio button is checked and you click on the Throw Exception button, it will generate an
exception in a try {} block, which will then immediately be handled by the associated
catch {} block without crashing the application. The following message box will be shown
on the UI:

7. For the second radio button, when checked, if you click on the Throw Exception button,
the exception will go unhandled and will be caught in the App.xaml.cs file, under the
OnUnhandledException event, and the application will crash:

8. Open the App.xaml.cs once again and modify the OnUnhandledException event
implementation, as follows, to handle the thrown exception:

private void OnUnhandledException(object sender, DispatcherUnhandledExceptionEventArgs e)

{

www.EBooksWorld.ir

 e.Handled = true;

}

9. Now run the application once again, check the second radio button and click on the button.
You will notice that the application will not crash this time.

10. Click the Throw Exception button multiple times. The application will continue as-is,
without causing any crash of the UI.

www.EBooksWorld.ir

How it works...
When you handle this kind of uncaught/unhandled exception by specifying e.Handled = true,
your application will not crash and will continue running. The best part of catching an
unhandled exception is logging the unknown/unhandled errors, so that you can investigate the
root cause behind these exceptions and fix them in future builds.

When there's a critical error, you can restart the application programmatically from this block.

www.EBooksWorld.ir

There's more...
You can also use the AppDomain.CurrentDomain.UnhandledException event handler to catch any
unhandled exceptions, but you won't be able to handle it in a way to continue running the
application. When used, you can log the error and terminate/restart the application.

Unhandled exceptions handled in the DispatcherUnhandledException event, by
specifying e.Handled = true will not route to the
AppDomain.CurrentDomain.UnhandledException.

www.EBooksWorld.ir

Using WPF Standard Controls
In this chapter, we will cover the following recipes:

Using the TextBlock control to add plain text
Using Label to add other controls in text
Providing a user option to input text
Adding images in your application UI
Working with ready-to-use 2D shapes
Adding tooltips to show additional information
Adding a standard menu to the WPF application
Providing extra functionalities using the context menu
Adding user options with radio buttons and checkboxes
Working with the progress bar control
Using the Slider control to pick a numeric value
Using the calendar control in your application
Listing items in a ListBox control
Providing options to select from a ComboBox
Adding a status bar to your window
Adding a toolbar panel to perform quick tasks

www.EBooksWorld.ir

Introduction
Every UI Framework must provide the standard controls to design the application UI and
Windows Presentation Foundation (WPF) is one of them. WPF provides a set of standard
controls and UI elements such as TextBlock, TextBox, Button, Image, various shapes, ProgressBar,
Slider, various menus, Toolbar, ListBox, ComboBox, DataGrid, and more.

As you can see from the following diagram, UI controls can be of two types—ItemsControl
and ContentControl, which inherit from Control class. All the panels available in WPF share the
same base class Panel. The Control and Panel class have the base FrameworkElement, which
again inherits from the UIElement. It has the base class as the DependencyObject and the
superbase as the Object:

Every control has some common set of properties exposed. This includes FontFamily, FontSize,
FontStyle, Foreground, Background, BorderBrush, BorderThickness, and more. Every framework
element exposes additional properties such as Width, MaxWidth, MinWidth, ToolTip, Height, Name,
Language, Margin, and more. When using any element in the UI, you will use these common
properties to set the UIElement's style and other parameters.

www.EBooksWorld.ir

Using the TextBlock control to
add plain text
The TextBlock control in WPF is a lightweight UI element, which is used to display text content
to the screen. Almost everywhere, you will use this element in your application UI to display
plain text in a single line or a multiline format. To add simple plain text, you can either write
<TextBlock Text="Text message" /> or <TextBlock>Text message</TextBlock> in your XAML page.

In this recipe, we will explore more about this UI element.

www.EBooksWorld.ir

Getting ready
To get started, open your Visual Studio IDE, and create a new WPF project
called CH02.TextBlockDemo.

www.EBooksWorld.ir

How to do it...
Now open the MainWindow.xaml, and follow these steps to add TextBlock control with various
formatting options:

1. First, change the pre-existing Grid panel to a StackPanel.
2. Now add the following two TextBlock controls to it, which will have plain text in them:

<TextBlock Text="1. This is a TextBlock control, with 'Text'

 property" Margin="10 5" />

<TextBlock Margin="10 5">

 2. This is a TextBlock control, having text as Content

</TextBlock>

3. Add the following XAML to have a few more TextBlock controls, with some basic text
formatting applied to them:

<TextBlock Text="3. This is a TextBlock control, having text

 formatting"

 FontWeight="Bold"

 FontStyle="Italic"

 TextDecorations="Underline"

 Foreground="Red"

 Margin="10 5" />

<TextBlock Text="4. TextBlock with different FontFamily"

 FontFamily="Lucida Handwriting"

 FontSize="16" Foreground="Blue"

 Margin="10 5" />

<TextBlock Text="5. This is a TextBlock control,

 having long text

 content, wrapped automatically using

 'TextWrapping' property."

 TextWrapping="Wrap"

 Margin="10 5" />

<TextBlock Text="6. This is a TextBlock control,

 having long text content, trimmed

 automatically using

 'TextTrimming' property."

 TextTrimming="CharacterEllipsis"

 Margin="10 5" />

4. Let's build the project and run it. You will see the following UI on the screen:

www.EBooksWorld.ir

How it works...
For the first two TextBlock controls, the UI will have a plain text on it. The third TextBlock control
will have Bold, Italic, and Underline applied to it, by specifying the FontWeight, FontStyle, and
TextDecoration properties of the control. Also, the foreground color of it has been set to red, by
specifying the Foreground property.

You can also set a different font to your TextBlock control. Use the FontFamily property to set it.
As you can see, the fourth TextBlock control has a Lucida Handwriting font applied to it.

When you have a long text, which is not viewable in a single line, you can either wrap it to
multiline or trim it, based on the available space. TextWrapping="Wrap", in the fifth TextBlock spans
it to multiline. Try making the window bigger or smaller, and you will see that the TextBlock
automatically adjusts itself to match the available space, whereas, the text of the sixth TextBlock
control trims with the TextTrimming property set to character ellipsis (three dots at the end). This
says that more text is available but it has been cropped.

As an alternative to CharacterEllipsis, you may use WordEllipsis, which will trim
the text at the end of the last possible word, instead of the last possible character.

www.EBooksWorld.ir

There's more...
The TextBlock control also supports inline formatting. Just like HTML tags, you can surround a
text content with Bold, Italic, and Underline tags to format it, as shown in the following XAML
code:

<TextBlock Margin="10, 5">

 7. TextBlock with <Bold>Bold</Bold>, <Italic>Italics</Italic>, <Underline>Underlined</Underline> text

</TextBlock>

You can also add a line break to a text content, like this:

<TextBlock Margin="10, 5">

 8. TextBlock with LineBreak<LineBreak/> in between the text

</TextBlock>

The following XAML code demonstrates how to add a hyperlink element to a TextBlock control
that matches the style of your Windows theme:

<TextBlock Margin="10, 5">

 9. TextBlock with a <Hyperlink NavigateUri="http://www.kunal-chowdhury.com">Hyperlink</Hyperlink> text in it

</TextBlock>

The NavigateUri property is used to define the URL that you wish to navigate to.

You can use the Span element to set the style of individual text content that includes font style,
size, foreground color, and so on. It also allows you to specify other inline elements inside it.
The Run element allows you to style a text content using all the available properties of the Span
element. The following example demonstrates how easy it is to use the Span and Run elements
inside a TextBlock control:

<TextBlock Margin="10, 5"

 TextWrapping="Wrap">

 10. This is a <Bold>TextBlock</Bold> control, with Span Elements and <Run TextDecorations="Underline">Run</Run> commands in it

</TextBlock>

The Span element may contain other inline elements, but a Run element can contain
only plain text.

Running the preceding example will result in the following output:

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Label to add other
controls in text
The Label control is another way of representing text in WPF application. It looks like what
TextBlock control offers, but instead of having only text support, it can also host any kind of other
controls. It exposes the Content property to host text and other controls.

In this recipe, we will explore how to use the Label control in a WPF.

www.EBooksWorld.ir

Getting ready
To get started with this control, open Visual Studio to create an application based on the WPF
project template and call it CH02.LabelDemo.

www.EBooksWorld.ir

How to do it...
Once the project gets created, follow these simple steps to add text in your application UI, using
the Label control:

1. Open the MainWindow.xaml file to change the application UI.
2. Replace the existing Grid panel with the following XAML code:

<StackPanel Margin="10 10 10 20">

 <Label Content="1. This is a Label control" />

 <Label Content="2. A Label control with text formatting"

 FontWeight="Bold" Foreground="Red"

 FontStyle="Italic"/>

 <Label>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="3. A Rectangle" />

 <Rectangle Width="20" Height="20" Fill="Red"

 Margin="10 0" />

 <TextBlock Text="inside a Label control" />

 </StackPanel>

 </Label>

</StackPanel>

3. Now build and run the application. You will see the following output on the screen:

www.EBooksWorld.ir

How it works...
The first control added in the StackPanel is a very basic label, which has plain text as its Content
property. The second Label control also contains plain text, but has various formatting (such
as, FontWeight, Foreground, and FontStyle) applied to it to give it a bold, italic, and red color look
to its style.

As the Label control derives from System.Windows.Controls.ContentControl, it also supports adding
other controls to its content. The third label added to the UI is a little different than the previous
two examples. It not only contains text, but also other controls, such as StackPanel, TextBlock,
and a Rectangle, owing to its Content property.

In the preceding example, for the third label, the TextBlock control is used to hold the actual text
content, and StackPanel is used as a panel control to hold both the TextBlock and the Rectangle.

A point to remember is that Label is heavier than a TextBlock. So, when you need
to render a plain text on the UI, prefer TextBlock only.

www.EBooksWorld.ir

There's more...
In Windows and other operating systems, it's a widespread practice to access the controls in a
window by holding the Alt key and then pressing a character defined as its access key. For
example, to open the File menu of any Windows application, we use Alt + F. Here, the character
F is the access key, which gets invoked when we press Alt.

Let's learn how to add an access key to labels in the WPF application, using the Label control.
Create a new project called CH02.LabelAccessKeyDemo, open the MainWindow.xaml page, and replace
the default Grid by a StackPanel. Now add two labels and two textboxes inside the StackPanel, as
follows:

<StackPanel Margin="10 10 10 20">

 <Label Content="Enter _Username:"

 Target="{Binding ElementName=txbUsername}" />

 <TextBox x:Name="txbUsername" Margin="6 0" />

 <Label Content="Enter _Password:"

 Target="{Binding ElementName=txbPassword}" />

 <TextBox x:Name="txbPassword" Margin="6 0" />

</StackPanel>

Now run the application. Press Alt + U to activate the access key for the first label, and place the
focus on the txbUsername field. Press Alt + P to automatically focus on the txbPassword field:

The Windows Form application uses "&" as its access key specifier, but in the WPF application
it's a little different, as it uses XML notation to create the UI. So, in the WPF application, if you
want to add an access key specifier to labels, you need to specify _ (underscore) before the
character which you want to highlight.

For example, adding _ before the U in Username, activates the said label when Alt + U is pressed.
It's a similar case for the Password field, in the preceding example.

The frequently used practice is to use the first character that's not already used
as an access key of another control. But, on a need basis, you can specify any
character part of the label content.

The Target property of the Label control passes the instruction to the designated control to
activate automatically when the access key gets triggered by the user. The ElementName property,
which is present in the binding (Target="{Binding ElementName=txbPassword}"), tells the name of the

www.EBooksWorld.ir

control where you want to send the activation instruction.

www.EBooksWorld.ir

Providing a user option to input
text
The TextBox control in WPF is used to allow the user to input plain text in a single line or
multiline format. A single-line textbox is the commonly used control for form inputs; whereas
the multiline textbox is used like an editor.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE, and create a new project named CH02.TextBoxDemo, based on the
WPF application template.

www.EBooksWorld.ir

How to do it...
Once the project gets created, follow the mentioned steps to play with some of the TextBox
properties:

1. Open the MainWindow.xaml page, and replace the default Grid with a StackPanel so that we can
add the controls in a stacked fashion.

2. Now add five TextBox controls inside the StackPanel, and set various properties, as follows:

<StackPanel Margin="10 10 10 20">

 <TextBox Height="30" Margin="10 5"

 Text="Hello"/>

 <TextBox Text="Hello WPF!"

 FontSize="18" Foreground="Blue"

 FontWeight="Bold"

 Height="30" Margin="10 5"/>

 <TextBox Text="This is a 'ReadOnly' TextBox control"

 IsReadOnly="True" Height="30" Margin="10 5"/>

 <TextBox Text="This is a 'Disabled' TextBox control"

 IsEnabled="False" Height="30" Margin="10 5"/>

 <TextBox TextWrapping="Wrap" AcceptsReturn="True"

 Height="60" VerticalScrollBarVisibility="Auto"

 Margin="10 5">

 This is multiline textbox.

 User can press 'Enter' key to move to next line.

 </TextBox>

 </StackPanel>

3. Run the application so that it has the following UI on the screen:

www.EBooksWorld.ir

How it works...
The first TextBox control, which we added to the StackPanel, is the simplest one, and when it is
rendered in the UI, it contains empty text. The user can enter any plain text here. You can also
specify text from code, by using the Text property, as shown in the second control.

You can also define a range of styles for the text of the TextBox control. As shown in the second
control, we specified FontSize, Foreground, FontWeight. You can specify other properties too, as
part of any control.

The third one is a ReadOnly textbox, which you can define by setting the IsReadOnly property value
to True. When you want to disable a TextBox, set its IsEnabled property to False, as shown in the
fourth example.

The fifth example demonstrates how easy it is to define a multiline textbox. Just set
its AcceptsReturn property to True and TextWrapping to Wrap. The control will behave like a
multiline text editor.

www.EBooksWorld.ir

There's more...
When you are using TextBox as a multiline text-input control, don't forget to set its
VerticalScrollBarVisibility. This will allow your user to scroll the text content. As shown in the
last example, set it to Auto to make it enabled on demand, based on its content.

www.EBooksWorld.ir

Windows Clipboard support
The TextBox control automatically supports the Windows Clipboard. Right-click on it to see the
context menu pop up in the screen with common clipboard functions, such as Select all, Cut,
Copy, and Paste. Along with these functions, it also supports the common keyboard shortcuts
for clipboard operations, undo/redo, by default.

www.EBooksWorld.ir

Adding spellcheck support
The attached SpellCheck.IsEnabled property allows you to add spellcheck support to the TextBox
control. Set it to True to enable it. Let's add a multiline textbox in the UI with this feature
enabled:

<TextBox TextWrapping="Wrap" AcceptsReturn="True"

 Height="60" VerticalScrollBarVisibility="Auto"

 SpellCheck.IsEnabled="True"

 Margin="10 5" />

Now run the application to have a window with a multiline text-input field in the UI. Enter some
text with some spelling mistakes. You will see that the wrongly spelled words get highlighted
with red underline. Right-click on it to see a context menu, which suggests words from the
dictionary.

As shown in the following screenshot, select the one that is best suited in this context:

www.EBooksWorld.ir

Adding images to your
application UI
Images are used to create a UI that looks good, with a background, icons, and thumbnails, and
they convey more information to the user. In WPF, the Image element is used to display images.
Let's take a look at this.

www.EBooksWorld.ir

Getting ready
To get started with images in WPF, launch your Visual Studio IDE and create a WPF project
called CH02.ImageDemo, and add an image called demoImage.jpg.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to add images in the MainWindow.xaml page:

1. Open the MainWindow.xaml page, and replace the existing Grid with a StackPanel. Set its
Orientation property to Horizontal so that the items added to this panel stack themselves
horizontally.

2. Add four images to the StackPanel, and set their Source property to demoImage.jpg, which is
available within the project directory.

3. Set the width and the height of each image to 100.
4. For the first image, set its Stretch property to None.
5. For the second image, set its Stretch property to Fill.
6. For the third and fourth images, set their Stretch property to Uniform and UniformToFill,

respectively.
7. Here's the complete XAML code, to which you can refer:

<StackPanel Orientation="Horizontal">

 <Image Source="demoImage.jpg"

 Stretch="None"

 Width="100" Height="100"

 Margin="10 10 5 10" />

 <Image Source="demoImage.jpg"

 Stretch="Fill"

 Width="100" Height="100"

 Margin="10 10 5 10" />

 <Image Source="demoImage.jpg"

 Stretch="Uniform"

 Width="100" Height="100"

 Margin="10 10 5 10" />

 <Image Source="demoImage.jpg"

 Stretch="UniformToFill"

 Width="100" Height="100"

 Margin="10 10 5 10" />

</StackPanel>

8. Let's build and run the application. You will see the following output in the application UI:

www.EBooksWorld.ir

How it works...
In XAML, the Source property of the Image control is the path of the image file that you want to
display. When you access the same from code, it's a BitmapImage.

The Stretch property of an image describes how it should be stretched to fill the destination. For
the first image, that we set as Stretch= "None", it preserves the original size of the image. When
you set it as Fill, for the second image in the example, the content is resized to fill the
destination dimensions without preserving its aspect ratio.

For the third and fourth image, setting it to Uniform and UniformToFill, respectively, set its content
resized to fit in the destination dimensions while preserving its native aspect ratio. But for the
fourth case, if the aspect ratio of the destination image differs from the source, the source
content is clipped to fit in the destination dimensions.

The default value of the image Stretch property is Uniform. That means, when you
add an image to the UI, by default, it sets its content resized to fit in the
destination dimensions.

www.EBooksWorld.ir

There's more...
You can also set an image in XAML by creating a BitmapImage instance and assigning it to its
Source property. The BitmapImage instance exposes the UriSource property to set the image path.
Here's an example of how to set the image source in XAML, using the BitmapImage element:

<Image>

 <Image.Source>

 <BitmapImage UriSource="demoImage.jpg" />

 </Image.Source>

</Image>

You can also rotate an image by setting the Rotation property of BitmapImage. It contains four
values Rotate0, Rotate90, Rotate180, and Rotate270. Here's an example to demonstrate how to rotate
an image by 180 degrees:

<Image>

 <Image.Source>

 <BitmapImage UriSource="demoImage.jpg"

 Rotation="Rotate180"/>

 </Image.Source>

</Image>

Additionally, you can also use the StretchDirection property of an Image control. The value
indicates how the image is scaled. There are three values UpOnly, DownOnly, and Both. The content
scales upward, downward, or in both directions, based on the size of the image content.

www.EBooksWorld.ir

Working with ready-to-use 2D
shapes
In WPF, a Shape is an UIElement that enables you to draw a 2D shape in your application. There
are a couple of ready-to-use shapes already provided by WPF, and they are as follows:

Rectangle
Ellipse
Line
Polyline
Polygon
Path

All of these UIElements expose some common properties to draw the shape. The Stroke and
StrokeThickness properties describe the color and the thickness to draw the shape's outline. The
Fill property describes the color used to decorate the interior of the shape.

In this recipe, we will learn how to create various shapes.

www.EBooksWorld.ir

Getting ready
Let's begin with creating a new project. Open your Visual Studio, and create a WPF project
called CH02.ShapesDemo. As we will be creating multiple shapes, we will be using the UniformGrid
panel to host the shapes in this demonstration. You can learn more about this panel in the next
chapter.

www.EBooksWorld.ir

How to do it...
Follow these steps to create various shapes in your application:

1. Open your MainWindow.xaml file, and replace the existing Grid panel with UniformGrid. Set its
maximum columns count to 3, by setting its Column property.

2. Let's add our first shape, a Rectangle. Add the following XAML code inside the UniformGrid:

<Rectangle Width="200" Height="100"

 Stroke="DarkBlue" StrokeThickness="5"

 Fill="SkyBlue" Margin="10 5" />

3. Now let's add an Ellipse, which you can change to a circle by setting the same value to its
Height and Width properties. Add the following code to create the ellipse:

<Ellipse Width="200" Height="100"

 Stroke="DarkBlue" StrokeThickness="5"

 Fill="SkyBlue" Margin="10 5" />

4. To add a Line in the panel, add the following XAML:

<Line X1="10" Y1="80" X2="190" Y2="20"

 Stroke="DarkBlue" StrokeThickness="5"

 Margin="10 5" />

5. Polyline is a series of connected straight lines. Add the following XAML to easily create a
polyline shape, where the line is being drawn based on the data points provided in the
Points property:

<Polyline Points="10,60 60,180 100,20 180,80 120,140"

 Stroke="DarkBlue" StrokeThickness="5"

 Margin="10 5" />

6. Similarly, you can add a Polygon shape to the UI. Add the following code inside the
UniformGrid to draw the shape:

<Polygon Points="10,60 60,180 100,20 180,80 120,140"

 Fill="SkyBlue" Stroke="DarkBlue"

 StrokeThickness="5" Margin="10 5" />

7. To add a Path shape control, add the following XAML code:

<Path Data="M10,60 60,180 C100,20 180,80 120,140"

 Stroke="DarkBlue" StrokeThickness="5"

 Margin="10 5" />

8. Now let's build your project and run the application. You will see the following shapes on
the screen, as we have added the preceding code:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
A rectangular shape is being drawn by setting the Height and Width properties of the Rectangle
class, along with the stroke color and the thickness of it. To create a square, you can use this
shape by setting its dimension properly.

In the second example, a circular shape has been drawn using the Ellipse control. It uses the
same property sets to create the shape. To make it a complete circle, set its Height and Width to
the same value.

If you want to draw a straight line in the UI, use the Line class. It exposes four properties to draw
the line. Set the X1 and Y1 properties to mark the starting point; set X2 and Y2 properties to mark
the ending point of the line. In the preceding example, a line has been drawn from the (10,80)
coordinate point to the (190,20) coordinate point.

In the fourth example, we have seen how to create a series of connected straight lines using the
Polyline shape control. You need to set the (X, Y) coordinate points of the lines in its Points
property. In the preceding example, it creates the shape connecting the following coordinate
points (10,60), (60,180), (100,20), (180,80), and (120,140).

Polygon also uses the same concept to draw a series of lines, but it completes the connected series
of lines to draw a closed shape.

Using the Path control, in the sixth example, you can draw a series of connected lines and
curves. The Data property is used to set the geometry that specifies the shape to be drawn. The
data points always start with M to begin drawing the lines. In any part, if you want to create a
curve, prefix the character C at that point.

www.EBooksWorld.ir

There's more...
The PathGeometry objects are used to draw lines, curves, arcs, and complex shapes. WPF provides
two classes to describe the geometric paths using the mini language Path Markup Syntax.

You can learn more about it here:
 http://bit.ly/path-markup-syntax

If you want to draw simple shapes, you can use the EllipseGeometry, LineGeometry, and
RectangleGeometry objects. Composite geometries are created by GeometryGroup and to create
combine geometries, use the CombineGeometry.

Let's take the following example to demonstrate a complex path geometry using a
PathSegmentCollection of three segments:

<Path Stroke="DarkBlue" StrokeThickness="5">

 <Path.Data>

 <PathGeometry>

 <PathGeometry.Figures>

 <PathFigureCollection>

 <PathFigure StartPoint="10,100">

 <PathFigure.Segments>

 <PathSegmentCollection>

 <ArcSegment Point="40,80" />

 <BezierSegment Point1="100,300"

 Point2="100,-100"

 Point3="200,150" />

 <BezierSegment Point1="100,200"

 Point2="200,-10"

 Point3="100,150" />

 </PathSegmentCollection>

 </PathFigure.Segments>

 </PathFigure>

 </PathFigureCollection>

 </PathGeometry.Figures>

 </PathGeometry>

 </Path.Data>

</Path>

The collection consists of one ArcSegment and two BeizerSegments to set the geometry points to
draw the following shape, but you can also add additional segments, such as LineSegment,
PolyBeizerSegment, PolyLineSegment, PolyQuadraticBeizerSegment, and QuadraticBeizerSegment to
create a more complex path:

Note that all shapes are stretchable. You can use the Stretch property to define a shape's
stretching behavior. If you set it to None, the Shape object will not be stretchable. If you set it to
Fill, Uniform, or UniformToFill, the Shape content will be stretched to fill the space with or without
preserving the aspect ratio.

www.EBooksWorld.ir

http://bit.ly/path-markup-syntax

Adding tooltips to show
additional information
Tooltips are used to show additional information about a specific control or a link when
hovering your mouse over it. The FrameworkElement class exposes a property named Tooltip,
which you can find on all the controls available in WPF.

In this recipe, we will learn how to work with the tooltips in WPF. We will also cover how to
design a tooltip using other controls.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE and create a new WPF application project called CH02.TooltipDemo.

www.EBooksWorld.ir

How to do it...
Open the MainWindow.xaml page, and then follow these steps to add simple tooltips to the UI:

1. First, replace the default Grid with a StackPanel, and set its Orientation property to
Horizontal to have some horizontally stacked items.

2. Add three buttons to the StackPanel, and set their ToolTip property. To add a show duration
of the tooltip, set its ToolTipService.ShowDuration attached property to a value in
milliseconds. You can use the following XAML as a reference:

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 Margin="20">

 <Button Content="New" Width="60" Height="30"

 ToolTip="Create a New file"

 Margin="4" />

 <Button Content="Open" Width="60" Height="30"

 ToolTip="Open a file"

 ToolTipService.ShowDuration="2000"

 Margin="4" />

 <Button Content="Save" Width="60" Height="30"

 ToolTip="Clicking on this button,

 saves the file to disk"

 Margin="4" />

</StackPanel>

3. Run the application, and hover over the buttons to see the tooltip pop up on the screen, as
shown in the following screenshot:

www.EBooksWorld.ir

How it works...
The ToolTip property, when set in any WPF control, gets visible when you hover over the
control. Apart from this, the ToolTipService class has a bunch of attached properties to help you
set various behaviors of the tooltip.

Like the second example, as shown earlier, if you hover over the Open button, the
Tooltip property will be visible on screen for 2 seconds. This is because we set the ShowDuration
property of the ToolTipService to 2000 milliseconds (2 seconds).

You can also use the ToolTipService.ShowOnDisabled property to show or hide a Tooltip on an
element that is disabled. The HasDropShadow property of the class ensures whether the Tooltip will
have a shadow on it.

www.EBooksWorld.ir

There's more...
As the ToolTip property is of object type, you can assign anything to it, including various UI
controls. Hence, it helps you to customize the UI of the tooltip with a much richer experience.

Let's modify the Tooltip property of the third button in the preceding example. Place a few
TextBlock and Border controls in a StackPanel to design the UI, as shared in the following XAML
code snippet:

<Button Content="Save" Width="60" Height="30"

 Margin="4">

 <Button.ToolTip>

 <StackPanel>

 <TextBlock FontWeight="Bold"

 Text="Save File" />

 <TextBlock Text="Clicking on this button,

 saves the file to disk"

 FontSize="10" />

 <Border BorderBrush="Silver"

 BorderThickness="0,1,0,0"

 Margin="0 4" />

 <TextBlock FontStyle="Italic"

 FontSize="9"

 Text="Press F1 for more help" />

 </StackPanel>

 </Button.ToolTip>

</Button>

When you run the application, hover over the third button to see the customized UI of the tooltip
for that button, as shown in the following screenshot:

The ToolTipService class also exposes a few additional properties, such
as HorizontalOffset and VerticalOffset to position Tooltip in a specific position on the screen.

www.EBooksWorld.ir

Adding a standard menu to the
WPF application
One of the most common parts of WPF applications is the menu, as it gives various options
within a very little space. WPF comes with a control named Menu, to hold items named MenuItem.

Let's learn more about this menu control and how to add it to Windows applications.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio, and create a new WPF project called CH02.MenuDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to add menus to your WPF application:

1. Open the MainWindow.xaml page, and replace the default Grid with a DockPanel. We will
discuss more about this panel in the next chapter.

2. Now add the Menu control inside the DockPanel. This will create the base to hold all the menu
items.

3. You can then add root-level menu items and sub-menu items in a hierarchical fashion, as
shown in the following code snippet:

<DockPanel>

 <Menu>

 <MenuItem Header="File">

 <MenuItem Header="New" />

 <MenuItem Header="Open" />

 <MenuItem Header="Save" />

 <Separator />

 <MenuItem Header="Exit" />

 </MenuItem>

 <MenuItem Header="Edit">

 <MenuItem Header="Undo" />

 <MenuItem Header="Redo" />

 </MenuItem>

 </Menu>

</DockPanel>

4. Run the application to see the following window containing the added menu items:

www.EBooksWorld.ir

How it works...
When you add the first menu item under the <Menu> tag, it creates the root-level menu item; for
example, File menu, Edit menu. Each root menu item can contain one or more hierarchical sub-
menu items. In the preceding example, the File menu contains four sub-menu items.

The header property of the MenuItem is used to add the label of each item. When you want to add
a separator, you can do so by adding the <Separator /> tag, as shown in the preceding example.
A separator does not need any Header content.

www.EBooksWorld.ir

There's more...
You can further customize a menu entry to have an icon, a check-mark, a shortcut key, or a
keyboard access specifier. Let's discuss each of them.

www.EBooksWorld.ir

Adding an access key to menus
It's a general practice to access application menus by holding the Alt key and then pressing the
character defined as its access key. For example, to open the File menu of any Windows
application, we use Alt + F, and to access the File | New menu, we use Alt + F, N. Here, the
character F and N are used as access keys that are invoked when we press Alt.

In the WPF application, you need to specify _ (underscore) before the character you want to
highlight as the access key. For example, adding _ before the F in File menu header content
activates the said menu when Alt + F is pressed:

<MenuItem Header="_File">

 <MenuItem Header="_New" />

 <MenuItem Header="_Open" />

</MenuItem>

The frequently used practice is to use the first character that's not already used as an access key
of another control. But, on a need basis, you can specify any character part of the label content.

www.EBooksWorld.ir

Adding icons to menus
You can add icons to menus to give a better look to the application's menu items. The MenuItem
element contains a property named Icon to add an image icon or a Unicode character as an icon
to it.

Let's add a Unicode character to add an icon for the Open and Save menu items:

Run the application now to see the icons added to the said menus, as shown in the following
screenshot:

www.EBooksWorld.ir

Adding checkable menu items
You can add checkable menu items too. The WPF menu item exposes two properties to handle
this. The IsCheckable property tells the menu item that it can handle check/uncheck options.
When IsCheckable is set to True, it sets to the check/uncheck icon on an alternate click of that
menu item.

You can also programmatically check/uncheck a menu item. Set its IsChecked property to True or
False. Make sure to set IsCheckable="True". Let's add the following menu item, under the Edit
menu:

<MenuItem Header="Save _settings on exit"

 IsCheckable="True" IsChecked="True" />

www.EBooksWorld.ir

Adding click-event handlers to
menus
Menus are not just to add to the application; you need to perform some actions on the menu with
a click by adding the Click event handler, as shown in the following code snippet:

<MenuItem Header="E_xit" Click="OnExitMenuClicked" />

In the code behind, implement the handler, as shown in the following code:

private void OnExitMenuClicked(object sender, RoutedEventArgs e)

{

 MessageBox.Show("'Exit' menu item clicked!");

 Environment.Exit(0);

}

This will first show a message box and then exit the application when the user clicks on the Exit
menu item.

www.EBooksWorld.ir

Providing extra functionalities
using the context menu
The context menu provides a vital role in any Windows applications offering additional
functionalities to the user, within that context. This is often done relevant to a single control or a
window.

When you right-click on a control or a window, you can provide a popup context menu to the
user, to perform single-click actions. WPF provides a ContextMenu property to all framework
elements to hold a ContextMenu, having hierarchical MenuItems.

Consider this recipe to learn more about adding a context menu in your WPF application.

www.EBooksWorld.ir

Getting ready
Create a new project named CH02.ContextMenuDemo, using the WPF application project template of
Visual Studio.

www.EBooksWorld.ir

How to do it...
Follow these steps to add a context menu to a TextBlock control. The same steps can be followed
to add a context menu to any of the controls inheriting FrameworkElement:

1. Open the MainWindow.xaml file to modify the application UI.
2. Replace the entire Grid block with the following XAML code:

<Grid>

 <TextBlock Text="Right-click on me to open Context Menu!"

 Margin="10">

 <TextBlock.ContextMenu>

 <ContextMenu>

 <MenuItem Header="Menu item 1" />

 <MenuItem Header="Menu item 2"

 InputGestureText="Ctrl + R, Ctrl + G"/>

 <Separator />

 <MenuItem Header="Menu item 3"

 IsCheckable="True"

 IsChecked="True" />

 </ContextMenu>

 </TextBlock.ContextMenu>

 </TextBlock>

</Grid>

3. Run the application. You will see a text saying Right-click on me to open Context Menu!.

4. Right-click on the window. You will see the following context menu pop up on the screen:

www.EBooksWorld.ir

How it works...
As you see from the preceding example, each FrameworkElement exposes a property named
ContextMenu, which can hold a ContextMenu item. Just like the menu, as we learnt in the previous
recipe, the context menu can also hold multiple items as MenuItem, and each menu item can again
hold one or more menu items to make the context menu hierarchical.

Labels of menu items are assigned by setting its Header property. You can also set icons for each
menu item, by assigning an image or a Unicode character to its Icon property. If you have binded
a command to the menu, you can assign the shortcut key text as InputGestureText property.

Additionally, you can create checkable context menu items. As shown in the Menu item 3, you
can set the IsCheckable property to True, to make the menu checkable. Then you can use the
IsCheck property to show/hide the check mark on it.

To add a separator between a group of context menu items, you can use the <Separator /> tag, as
shown in the preceding example.

www.EBooksWorld.ir

Adding user options with radio
buttons and checkboxes
Radio buttons and check boxes have a vital role in Windows Application Development. They
are mostly used to provide the user an option to select from a group of items. Radio buttons
allow you to select one from a group of options, whereas a checkbox allows you to toggle an
option.

In this recipe, we will learn how to use RadioButton and CheckBox controls in the WPF application.

www.EBooksWorld.ir

Getting ready
To get started, open your Visual Studio IDE, and create a new project named
CH02.OptionSelectorsDemo. Make sure you select the WPF application project template.

www.EBooksWorld.ir

How to do it...
Open the MainWindow.xaml page, and follow these steps to add a set of radio buttons and checkbox
controls to it:

1. First, replace the default Grid panel with a StackPanel to hold items stacked vertically.
2. Now add the following StackPanel with a set of radio buttons with a GroupName="rdoGroup1":

<StackPanel Orientation="Horizontal">

 <RadioButton GroupName="rdoGroup1"

 Content="Radio 1"

 IsChecked="True"

 Margin="4" />

 <RadioButton GroupName="rdoGroup1"

 Content="Radio 2"

 Margin="4" />

 <RadioButton GroupName="rdoGroup1"

 Content="Radio 3"

 Margin="4" />

</StackPanel>

3. Add another set of radios, with the GroupName="rdoGroup2", in a horizontally placed
StackPanel, and add it to the root StackPanel:

<StackPanel Orientation="Horizontal">

 <RadioButton GroupName="rdoGroup2"

 Content="Radio 1"

 Margin="4" />

 <RadioButton GroupName="rdoGroup2"

 Content="Radio 2"

 IsChecked="True"

 Margin="4" />

 <RadioButton GroupName="rdoGroup2"

 Content="Radio 3"

 Margin="4" />

</StackPanel>

4. Now place the following CheckBox controls in a horizontal StackPanel and add it to the root:

<StackPanel Orientation="Horizontal">

 <CheckBox Content="Checkbox 1"

 IsChecked="True"

 Margin="4" />

 <CheckBox Content="Checkbox 2"

 IsChecked="True"

 Margin="4" />

 <CheckBox Content="Checkbox 3"

 Margin="4" />

</StackPanel>

5. Run the application, which will give you the following output on screen:

www.EBooksWorld.ir

6. Select a few of the radio and checkbox controls to feel the behavior.

www.EBooksWorld.ir

How it works...
The first set of radio button controls are placed in a group with the same name rdoGroup1. When a
group name is set to a set of radio buttons, the selection follows that. The first radio button in
that group is by default selected, by setting its IsChecked property to True. If you select any other
radio button within that group, the previous selection resets to unchecked status.

The same is true for the second group too, but selection of one group does not affect the other
group. So, when you check one radio button from the first group, it will not uncheck the radio
buttons from the other group.

This is not the same for CheckBox controls. Checkbox controls allow you to have many checked
items. When you select a checkbox, it can just toggle from one state to another.

Both the radio button and checkbox control expose the IsChecked property to return a Boolean
value to tell whether the control is checked or unchecked.

www.EBooksWorld.ir

There's more...
To disable the radio button or the checkbox control, set its IsEnabled property to False. Both the
controls expose two events—Checked and Unchecked. When you register the events, the Checked
event of the control will trigger when you check that. Similarly, the Unchecked event will trigger
when you uncheck that.

www.EBooksWorld.ir

Working with the progress bar
control
When you perform a lengthy task in the background, you probably would like to add a progress
indicator in your application UI to give a visual indication that some work is in progress. WPF
provides us with a control name, ProgressBar, to show a percentage value of the work between
0% to 100%, in general.

In this recipe, we will learn about the progress bar control and its various properties.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio and create a new WPF application project. Name
it CH02.ProgressBarDemo.

www.EBooksWorld.ir

How to do it...
Once the project gets created, follow these steps to add a progress indicator to the application's
UI:

1. Open the MainWindow.xaml, and replace the existing Grid panel with a StackPanel, so that, we
can add our controls stacked vertically.

2. As shown in the following code snippet, add three ProgressBar controls in the StackPanel:

<StackPanel Margin="10">

 <TextBlock Text="Progress Indicator set at: 20%" />

 <ProgressBar Height="30"

 Margin="0 4"

 Minimum="0"

 Maximum="100"

 Value="20" />

 <TextBlock Text="Progress Indicator set at: 70%" />

 <ProgressBar Height="30"

 Margin="0 4"

 Minimum="0"

 Maximum="100"

 Value="70" />

 <TextBlock Text="Progress Indicator set at:

 Indeterminate" />

 <ProgressBar Height="30"

 Margin="0 4"

 Minimum="0"

 Maximum="100"

 IsIndeterminate="True" />

</StackPanel>

3. Set the Minimum and Maximum properties of both the three controls to 0 (zero) and 100
(hundred) respectively.

4. As shared in the preceding XAML code snippet, set the Value of the first progress bar to 20,
and the second progress bar to 70.

5. Set the IsIndeterminate property of the third progress bar to True.
6. Now run the application. You will see the following output for the XAML code we shared

earlier:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
The value of the first progress indicator is set to 20, whereas the second progress indicator is set
to 70. This denotes that the 20% and 70% job is done respectively. As and when you progress
with the task, you can just increment the value to have the visual indication of the progress in
the UI, with the ProgressBar control.

For the third ProgressBar control, in the preceding example, it's a bit different. When you are
unsure about the total job to be done, you can set its IsIndeterminate property to True, as shown in
the preceding screenshot. When your job is done, you can stop the indeterminate state and set its
Value to 100.

www.EBooksWorld.ir

Using the Slider control to pick
a numeric value
The Slider control is used to pick a numeric value by dragging a thumb button along a horizontal
or vertical line. This is often used to provide a visualization of a playing video and as a volume
indicator.

WPF provides us a control named Slider to quickly implement this in your application UI, and,
with a lot of properties for various configurations. Let's learn more about it, in this recipe.

www.EBooksWorld.ir

Getting ready
First, create a project named CH02.SliderDemo, based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Integration of the slider in WPF is very easy. Just place <Slider /> in your XAML page, and it
will start working. But to customize it further, let's follow these steps:

1. Open the MainWindow.xaml page, and replace the default Grid with a StackPanel.
2. Now add a Slider and a TextBlock control inside the StackPanel, as shown in the following

XAML snippet:

<StackPanel Margin="10">

 <Slider x:Name="slider"

 Minimum="0" Maximum="100"

 Value="25"

 SmallChange="1"

 LargeChange="5" />

 <TextBlock Margin="4">

 <Run Text="Current slider value: " />

 <Run Text="{Binding Value, ElementName=slider}" />

 </TextBlock>

</StackPanel>

3. Run the application. You will see a Slider control in the UI, along with a text that shows
the current value, which is set to 25. Move the slider thumb to right, and it will show you
the currently selected value. In our demonstration, it's now 65, as shown in the following
screenshot:

www.EBooksWorld.ir

How it works...
It works based on the current value. The property named Value, provides us with an integer,
which denotes the current position. You can programmatically set it to move the slider thumb to
a smaller or larger value.

The Minimum and Maximum properties denote the minimum and maximum value that the slider can
accept. In our example, we set it to 0 (zero) and 100 (hundred), respectively.

The other control, TextBlock, in our example code, has a data binding to the Value property of the
slider that we have in the XAML. It displays the current value of the slider in a plain text format.

www.EBooksWorld.ir

There's more...
You can also enable the tick display in a slider control, to provide a better indication of the
thumb placement. Use the TickPlacement property to turn on the tick markers. It has four
values None, TopLeft, BottomRight, and Both. Let's add TickPlacement="BottomRight" in our previous
slider control.

The TickFrequency property is used to set the range of possible values between 0 and 100. Let's
add TickFrequency="20" to our code and then run the application again. You will see the following
screen:

As shown in the preceding screenshot, you can see that some dots are added to the bottom of the
slider. They represent the tick. As we have added TickFrequency as 20, it divided the entire slider
range to 100/20 = 5 sections.

In general, moving the slider will not snap to the tick. Thus, you will observe the thumb placed
between ticks. Use the IsSnapToTickEnabled property and set it to True, to make sure that the
thumb always stays on the tick marker only. In this case, dragging the slider will move the
thumb based on the tick frequency count.

www.EBooksWorld.ir

Using the Calendar control in
your application
The Calendar control, part of the System.Windows.Controls namespace, allows you to create a visual
calendar in WPF applications. It allows you to select a date or a collection of dates. As it inherits
from the Control class, all common properties and events from Control class are available to it.

In this recipe, we will learn more about Calendar control and how to use that.

www.EBooksWorld.ir

Getting ready
To get started with this recipe, let's create a WPF application project named CH02.CalendarDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to add the basic controls to the main window:

1. Open the MainWindow.xaml page.
2. Inside the default Grid panel, add the tag <Calendar /> to create the basic calendar control in

the application UI.
3. To retrieve the date selected by the user, register the SelectedDatesChanged event to it, as

shown in the following code snippet:

<Grid Margin="10">

 <Calendar SelectedDatesChanged="OnSelectedDateChanged"

 HorizontalAlignment="Left" />

</Grid>

4. Add the associated event handler (OnSelectedDateChanged) in the code-behind class
(MainWindow.xaml.cs), as shown in the following code, to retrieve the selected date and show
it in a message box:

private void OnSelectedDateChanged(object sender,

 SelectionChangedEventArgs e)

{

 MessageBox.Show("You selected: " +

 ((DateTime)e.AddedItems[0]).ToString("dd-MMM-yyyy"));

}

5. Let's run the application. You will see the following UI on the screen:

6. Once you select a date from the calendar, the selected date will be shown in a message
box, like this:

www.EBooksWorld.ir

7. Select a different date. This will show the message to the UI with the newly selected date.

www.EBooksWorld.ir

How it works...
WPF Calendar control provides you with the basic UI to begin the calendar integration in your
application. The top two arrow-heads, allow you to navigate back and forth to other months and
select the desired date from the calendar.

The navigation also supports year view and decade view, so, you can select the desired year and
month very easily. Click on the month name (in our case, it's August 2017) present at the top, to
navigate to the year view. When you are in the year view, it will show you the Jan–Dec month
range, and clicking on the year will navigate you to the decade view where you can select the
desired year.

www.EBooksWorld.ir

There's more...
The Calendar control exposes many properties and events for you to customize the behavior and
look of the control. Let's discuss this further.

www.EBooksWorld.ir

The SelectionModes property
The SelectionMode property allows you to get or set the value indicating what kind of selections
are allowed on the calendar. There are four values available, named None, SingleDate, SingleRange,
and MultipleRange. The enum value SingleDate is default, and allows you to select only a single
date. But when you want multi-selection, set it as MultipleRange:

<Calendar SelectionMode="MultipleRange" />

www.EBooksWorld.ir

The DisplayDate property
The Calendar control allows you to set the start and end display dates. The DisplayDate property
represents the current date to display; whereas, setting the DisplayDateStart and DisplayDateEnd
properties limits you to select only the dates from the period ranging from the start date to the
end date.

The following XAML code demonstrates how to set the DisplayDate, DisplayDateStart, and
DisplayDateEnd properties in Calendar control:

<Calendar SelectionMode="MultipleRange"

 DisplayDateStart="8/10/2017"

 DisplayDateEnd="8/21/2017"

 DisplayDate="8/16/2017" />

Run the application now to see the following output:

www.EBooksWorld.ir

The DisplayMode property
The DisplayMode property allows you to select the format of the calendar, which can be a month,
a year, or a decade. When you launch a basic calendar, by default, it shows the month view:

But a user can easily navigate from month to year to decade by clicking the header text of the
Calendar control.

To change the display mode from code, you can set the DisplayMode property to Month, Year, or
Decade:

<Calendar DisplayMode="Month" /> <!-- default mode -->

<Calendar DisplayMode="Year" />

<Calendar DisplayMode="Decade" />

The user can initiate the downward transitions by clicking any of the calendar cells, and they can
easily navigate from decade to year to month and select the correct date.

www.EBooksWorld.ir

The BlackoutDates property
You can choose ranges of dates to be non-selectable despite being displayed. You can
implement the same by using the calendar's BlackoutDates property, which takes a collection of
CalendarDateRange objects.

The following Calendar control will block the date range from August 1st, 2017 to August 8th,
2017, and August 21st, 2017 to August 31st, 2017:

<Calendar>

 <Calendar.BlackoutDates>

 <CalendarDateRange Start="8/1/2017" End="8/8/2017" />

 <CalendarDateRange Start="8/21/2017" End="8/31/2017" />

 </Calendar.BlackoutDates>

</Calendar>

All non-selection dates are marked by a cross, as shown in the following screenshot:

www.EBooksWorld.ir

Listing items in a Listbox
control
In WPF, the ListBox control is used to display a list of items. Users can select one or more items
from the list, depending on the SelectionMode specified.

In this recipe, we are going to learn how to create a ListBox control and use it in WPF
applications.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE and create a new WPF application project, called CH02.ListBoxDemo.

www.EBooksWorld.ir

How to do it...
Adding a ListBox control in the UI is as easy as writing a <ListBox /> tag in any XAML page. But
to hold the data in it, you will have to use its properties properly. Follow these steps to add a
ListBox control with some static data:

1. Open the MainWindow.xaml page of the WPF project.
2. Under the default Grid panel, add the <ListBox></ListBox> tag to add the control.
3. Add a few ListBoxItem inside the control, as shared here:

<ListBox x:Name="lstBox"

 Width="120" Height="85"

 Margin="10 10 20 5">

 <ListBoxItem Content="Item 1" />

 <ListBoxItem Content="Item 2" IsSelected="True" />

 <ListBoxItem Content="Item 3" />

 <ListBoxItem Content="Item 4" />

 <ListBoxItem Content="Item 5" />

</ListBox>

4. Add two buttons labelled + and - to perform the add and delete operations on the said
Listbox control. Register the Click event of both the buttons:

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

 <Button Content="+"

 Width="20" Height="20"

 Margin="0 0 4 0"

 Click="OnAddItemClicked" />

 <Button Content="-"

 Width="20" Height="20"

 Margin="0 0 4 0"

 Click="OnDeleteItemClicked" />

</StackPanel>

5. In the code-behind file, MainWindow.xaml.cs, implement the button-click event handler as
shown here:

private void OnAddItemClicked(object sender,

 RoutedEventArgs e)

{

 var itemsCount = lstBox.Items.Count;

 var newitem = new ListBoxItem

 {

 Content = "Item " + (itemsCount + 1)

 };

 lstBox.Items.Add(newitem);

 lstBox.SelectedItem = newitem;

}

private void OnDeleteItemClicked(object sender,

 RoutedEventArgs e)

{

 var selectedItem = lstBox.SelectedItem;

 if (selectedItem != null)

 {

 lstBox.Items.Remove(selectedItem);

 lstBox.SelectedIndex = 0;

www.EBooksWorld.ir

 }

}

6. Now run the application. You will see the following UI in the screen:

www.EBooksWorld.ir

How it works...
In the preceding example, the ListBox control contains five items as ListBoxItem. When you
launch the application, by default, the second item is selected due to its property
IsSelected being set to True.

The two buttons are used to add or delete items in the Listbox control. Click on the + button to
trigger the OnAddItemClicked event, which will create a new instance of the ListBoxItem and add it
to the ListBox control. Scroll the list to see the newly added entry. As the SelectedItem property of
the ListBox is assigned with the latest item, it will now get selected, removing the previous
selection.

Click on the - button to trigger the OnDeleteItemClicked event. This will get the current selected
item, and, if it is not null, it will be removed from the ListBox control. The property SelectedIndex
will set to 0 (zero), to select the first element after deletion.

www.EBooksWorld.ir

There's more...
ListBox has numerous properties to perform specific actions. Let's learn a few of them. Later in
this section, we will also cover how to add a customized ListBoxItem having additional UI
controls.

www.EBooksWorld.ir

Implementing multi selection
ListBox supports multi selection. By default, when the SelectionMode property is set to Single, it
only accepts a single selection of items. If you set SelectionMode to Multiple, it will accept multi
selection. The Extended mode allows you to perform single selection, but if you press the Ctrl
key while selecting items, it will act as a multi selection.

www.EBooksWorld.ir

Customizing the ListBoxItem
with multiple controls
You can easily customize the ListBoxItem, by adding additional UI controls to it. Consider the
following XAML code snippet, where we have added a ListBox, which has four ListBoxItem:

<ListBox Width="150" Margin="20 10 10 10">

 <ListBoxItem>

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Red"

 Margin="0 0 8 0" />

 <TextBlock Text="Red (#FFFF0000)" />

 </StackPanel>

 </ListBoxItem>

 <ListBoxItem IsSelected="True">

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Green"

 Margin="0 0 8 0" />

 <TextBlock Text="Green (#FF00FF00)" />

 </StackPanel>

 </ListBoxItem>

 <ListBoxItem>

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Blue"

 Margin="0 0 8 0" />

 <TextBlock Text="Red (#FF0000FF)" />

 </StackPanel>

 </ListBoxItem>

</ListBox>

If you see the preceding code snippet, each ListBoxItem has a StackPanel to hold a Rectangle
control and a TextBlock control. If you run the preceding code, you will see the following UI:

In the preceding screenshot, notice the way the items have been listed. Each item consists of a
rectangle to preview the color that is listed as an item. This is more useful when displaying
information on an entity.

www.EBooksWorld.ir

Generally, this is done using the DataTemplate property of ListBox control, which we will learn in
the later chapters of this book.

www.EBooksWorld.ir

Providing options to select from
a ComboBox
A ComboBox control is an items control and works like ListBox, but only one item from the list is
selectable. A ListBox control by default lists multiple items on screen, but ComboBox control
displays the scrollable list only on a user click. Thus, it takes up a lot less space.

This recipe will talk about ComboBox control and how to use it.

www.EBooksWorld.ir

Getting ready
Begin with creating a new WPF application project, called CH02.ComboBoxDemo, using your Visual
Studio IDE.

www.EBooksWorld.ir

How to do it...
Follow these simple steps to add a ComboBox control in your application UI:

1. Replace the default Grid with a StackPanel to host UI controls horizontally stacked.
2. Add the following XAML code, inside the StackPanel, to have a simple ComboBox control

with some items in it:

<ComboBox Width="150" Height="26"

 Margin="10">

 <ComboBoxItem Content="Item 1" />

 <ComboBoxItem Content="Item 2" IsSelected="True" />

 <ComboBoxItem Content="Item 3" />

 <ComboBoxItem Content="Item 4" />

 <ComboBoxItem Content="Item 5" />

</ComboBox>

3. Add another ComboBox to have customized items, as shown in the following example code:

<ComboBox Width="150" Height="26"

 Margin="10">

 <ComboBoxItem>

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Red"

 Margin="0 0 8 0" />

 <TextBlock Text="Red (#FFFF0000)" />

 </StackPanel>

 </ComboBoxItem>

 <ComboBoxItem>

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Green"

 Margin="0 0 8 0" />

 <TextBlock Text="Green (#FF00FF00)" />

 </StackPanel>

 </ComboBoxItem>

 <ComboBoxItem>

 <StackPanel Orientation="Horizontal">

 <Rectangle Width="10"

 Height="10"

 Fill="Blue"

 Margin="0 0 8 0" />

 <TextBlock Text="Red (#FF0000FF)" />

 </StackPanel>

 </ComboBoxItem>

</ComboBox>

4. Now run the application, which will look like the following screenshot, with an
expandable pop up menu:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
Though a ComboBox control is like ListBox, it does not show the list of items by default. A user
intervention is required to display the items. The UI of a ComboBox is a combination of three
controls:

A TextBox, which displays the selected item
A Button, which is used to show or hide available items
A Popup, which displays a list of items inside a scrollable pane and gives the user the
option to select one item from the available list

ComboBox contains a collection of ComboBoxItem. You can add those to its Items property. When you
click on the arrow-head, the list of items will pop up in the screen, as demonstrated in the
preceding screenshot. To preselect an item from code, set its IsSelected property to True.

You can also add custom contents to a ComboBoxItem to represent a better UI component. The
second ComboBox in the preceding example, demonstrates how easy it is to customize the UI.

Just like ListBox, it also exposes SelectedItem, SelectedIndex, SelectedValue properties to help you
to easily set or get the selected item.

www.EBooksWorld.ir

There's more...
The ComboBox control is not editable by default. But you can control this behavior to provide the
user with the option to manually enter the desired value, directly in the ComboBox control.
The IsEditable property is used to add this functionality. Set it to True, to change it to an editable
ComboBox. Consider the following code:

<ComboBox Width="150" Height="26"

 Margin="10" IsEditable="True">

 <ComboBoxItem Content="Item 1" />

 <ComboBoxItem Content="Item 2" IsSelected="True" />

 <ComboBoxItem Content="Item 3" />

 <ComboBoxItem Content="Item 4" />

 <ComboBoxItem Content="Item 5" />

</ComboBox>

If you run the preceding code, you can see the following UI, where the control now allows you
to enter text to it:

www.EBooksWorld.ir

Adding a status bar to your
window
The status bar is used to show various information about the current state of the application. You
can use this to show cursor position, word counts, progress of tasks, and more. Generally, a
status bar is placed at the bottom of the window whereas the menus, toolbars are placed at the
top.

In this recipe, we will learn how to add a status bar in a WPF window.

www.EBooksWorld.ir

Getting ready
To get started with the status bar, let's create a WPF application project
called CH02.StatusBarDemo.

www.EBooksWorld.ir

How to do it...
Once you create the WPF project, open the MainWindow.xaml page and follow these steps to add
the StatusBar control to the window:

1. Inside the Grid panel, add a StatusBar tag and set its Height to 26 and VerticalAlignment to
Bottom.

2. Now change its items panel template to host a Grid with five columns (we will discuss
more about grid columns in the next chapter), as shown here:

<StatusBar.ItemsPanel>

 <ItemsPanelTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 </Grid>

 </ItemsPanelTemplate>

</StatusBar.ItemsPanel>

3. Now, inside the StatusBar tag, add the controls that you want to show. Let's add two
StatusBarItem; one having a plain text content and the other with a ProgressBar control.
Place two separators in between, as shown in the following XAML snippet:

<StatusBarItem Content="Running Process..."

 Grid.Column="0"/>

<Separator Width="1" Grid.Column="1" />

<Separator Width="1" Grid.Column="3" />

<StatusBarItem Grid.Column="4">

 <ProgressBar IsIndeterminate="True"

 Width="100" Height="15" />

</StatusBarItem>

4. Here's the complete XAML code, which you need to place inside the default Grid panel:

<StatusBar Height="26" VerticalAlignment="Bottom">

 <StatusBar.ItemsPanel>

 <ItemsPanelTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 </Grid>

 </ItemsPanelTemplate>

 </StatusBar.ItemsPanel>

 <StatusBarItem Content="Running Process..."

www.EBooksWorld.ir

 Grid.Column="0"/>

 <Separator Width="1" Grid.Column="1" />

 <Separator Width="1" Grid.Column="3" />

 <StatusBarItem Grid.Column="4">

 <ProgressBar IsIndeterminate="True"

 Width="100" Height="15" />

 </StatusBarItem>

</StatusBar>

5. Once your UI is ready, let's run the application. You will see the following screen:

www.EBooksWorld.ir

How it works...
In the preceding example, we have placed a plain text content Running Process... as a
StatusBarItem inside the first column of the Grid. The second and fourth columns of the Grid
contain a Separator control, having one pixel width. The fifth column contains a ProgressBar
control, having an indeterminate state.

When you resize the window, the status bar will follow its parent to resize itself automatically
and position it to the bottom of the window. Instead of Grid, you can also use DockPanel to dock
the status bar at the bottom.

www.EBooksWorld.ir

Adding a toolbar panel to
perform quick tasks
In any windows-based application, you can find a toolbar, usually placed just below the main
menu of a window. It contains a set of controls to provide easy access to common functions.

WPF offers you a ToolBarTray element to host one or more ToolBar controls, containing various
UI controls. It provides you with some extra features, such as an automatic overflowing
mechanism and a manual repositioning feature.

In this recipe, we will learn how to work with toolbars in a WPF application.

www.EBooksWorld.ir

Getting ready
To begin with, open your Visual Studio IDE and create a new WPF application project
called CH03.ToolBarDemo.

www.EBooksWorld.ir

How to do it...
Once the project gets created, follow these steps to add a toolbar in the application window:

1. Open the MainWindow.xaml page from the Solution Explorer.
2. Now, replace the existing Grid with a DockPanel so that we can host the toolbar docking to

the top of the window.
3. Add a ToolBarTray element inside the DockPanel and dock it to Top.
4. Add a ToolBar control inside the ToolBarTray and then add a few buttons inside it, as shown

in the following XAML markup:

<ToolBarTray DockPanel.Dock="Top">

 <ToolBar>

 <Button Content="B" FontWeight="Bold"

 Width="20"

 Click="OnBoldButtonClicked"/>

 <Button Content="I" FontStyle="Italic"

 Width="20"/>

 <Button Width="20">

 <TextBlock Text="U"

 TextDecorations="Underline"/>

 </Button>

 </ToolBar>

</ToolBarTray>

5. Add a TextBox control inside the DockPanel, just below the ToolBarTray, so that, it can cover
the remaining space of the window. Give it the following name txtBox.

6. You can add a multiple toolbar inside a ToolBarTray. You can also add other controls inside
a ToolBar. Let's add the following ToolBar with a ComboBox inside it. Place it just after the first
ToolBar control:

<ToolBar>

 <ComboBox Width="50">

 <ComboBoxItem Content="8"/>

 <ComboBoxItem Content="10"/>

 <ComboBoxItem Content="12"/>

 <ComboBoxItem Content="14"

 IsSelected="True"/>

 <ComboBoxItem Content="16"/>

 </ComboBox>

</ToolBar>

7. Here's the complete XAML code to take as a reference:

<DockPanel>

 <ToolBarTray DockPanel.Dock="Top">

 <ToolBar>

 <Button Content="B" FontWeight="Bold"

 Width="20"

 Click="OnBoldButtonClicked"/>

 <Button Content="I" FontStyle="Italic"

 Width="20"/>

 <Button Width="20">

 <TextBlock Text="U"

 TextDecorations="Underline"/>

 </Button>

 </ToolBar>

www.EBooksWorld.ir

 <ToolBar>

 <ComboBox Width="50">

 <ComboBoxItem Content="8"/>

 <ComboBoxItem Content="10"/>

 <ComboBoxItem Content="12"/>

 <ComboBoxItem Content="14"

 IsSelected="True"/>

 <ComboBoxItem Content="16"/>

 </ComboBox>

 </ToolBar>

 </ToolBarTray>

 <TextBox x:Name="txtBox" Text="Sample Text"

 AcceptsReturn="True" TextWrapping="Wrap" />

</DockPanel>

8. As we have associated a click event of the first button of the first toolbar, we need to write
the event body. Open the MainWindow.xaml.cs file, and add the following button-click event
implementation inside the class:

private void OnBoldButtonClicked(object sender,

 RoutedEventArgs e)

{

 txtBox.FontWeight =

 txtBox.FontWeight == FontWeights.Bold ?

 FontWeights.Normal : FontWeights.Bold;

}

9. Once you run the application, you will see the following UI containing two toolbars inside
a toolbar panel:

10. Click on the first button (denoted by the character B). You will see that the text Sample
Text becomes bold. If you click the same button again, the text will change the font weight
to normal:

www.EBooksWorld.ir

How it works...
A ToolBarTray can contain one or more ToolBar controls. Each ToolBar control can contain one or
more controls inside it. A ToolBar control can also remain empty. When you start adding other
controls to it, the toolbar starts changing its size and position, based on the available space.

The controls placed inside a ToolBar can have its associated events registered. If you want, you
can also use command bindings to have a more granular association between the view and the
code.

In the preceding example, the first button, denoted by the character B, stands for applying
Bold weightage to the associated TextBox. When you click it for the first time, the FontWeight
property of the text will set it to Bold. When you click it again, it will set to Normal. By following
the same logic, you can add a Click event for other buttons and a SelectionChange event for the
combobox, as shown in the preceding example.

www.EBooksWorld.ir

Layouts and Panels
In this chapter, we will cover the following recipes:

Building a UI layout using a Grid
Placing elements in uniform cells
Automatically repositioning controls using a WrapPanel
Placing controls in a Stack
Positioning controls inside a Canvas
Wrapping UI elements using a Border
Creating a scrollable panel
Docking controls using a DockPanel
Rescaling UI elements using a ViewBox
Creating a tabbed layout
Dynamically adding/removing elements in a panel
Implementing the drag and drop feature

www.EBooksWorld.ir

Introduction
WPF provides a proper layout and positioning to provide interactive, user-friendly applications
with a suitable container element that helps you to position the child UI elements. The parent
container is usually the contents of a window. You can place child level containers and elements
with proper margins, paddings, and alignments.

In WPF, Panel is the base class that provides layout support. There are plenty of derived panels
in WPF that help you to create simple to complex layouts and all of them are defined in the
System.Windows.Controls namespace.

All Panel elements support sizing and positioning defined by the FrameworkElement. You can set
the Height, Width, Margin, Padding, HorizontalAlignment, and VerticalAlignment properties to design
your UI. The following diagram describes these important properties, which you will use
everywhere:

A panel also exposes other properties such as Background, Children, ZIndex, and more. Since a
window can contain only one child, a panel is often used to divide the space to hold another
control or a panel. Picking the right panel is important to create the layout. In this chapter, we
will learn various recipes to design your application layout using various panels.

www.EBooksWorld.ir

Building a UI layout using a
Grid
A Grid panel enables you to arrange child elements in tabular format, represented by cells in
rows and columns. This is the default panel that you will see when you create a new WPF
project and navigate to the MainWindow.xaml file. Visual Studio automatically adds this as the first
container inside every window.

It is often useful when you want to represent data in a tabular or matrix form. It is also useful
when creating a form layout.

In this recipe, we will discuss the Grid panel in detail, so that you can properly use it while
designing your application layout.

www.EBooksWorld.ir

Getting ready
Let's start with Grid as a layout panel, by creating a new project. Open Visual Studio and create a
new project named CH03.GridDemo, by selecting the WPF application template.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create a sample Grid layout to host a few rectangles in each cell:

1. Inside Solution Explorer, open your MainWindow.xaml page.
2. Create a few rows and columns inside the default Grid panel, as shown in the following

code:

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

3. Add six rectangles inside the Grid, and place them properly by using the Grid.Row and
Grid.Column attached properties. You can refer to the following sample code:

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="0" Grid.Column="0"/>

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="0" Grid.Column="1"/>

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="0" Grid.Column="2"/>

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="1" Grid.Column="0"/>

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="1" Grid.Column="1"/>

 <Rectangle Width="100" Height="60"

 Fill="OrangeRed"

 Grid.Row="1" Grid.Column="2"/>

4. Now run the application and you will see the following UI on the screen:

www.EBooksWorld.ir

How it works...
Grid works in cells, by creating the rows and columns. <Grid.RowDefinitions> and
<Grid.ColumnDefinitions> define the structure of the Grid. It contains a collection of rows and
columns, respectively. Here we have created two rows and three columns (2x3 matrix)
using RowDefinition and ColumnDefinition.

When we placed the rectangles inside the Grid, we positioned them in cells by specifying the row
and column number by using the attached properties, Grid.Row and Grid.Column. As the index
position starts at 0 (zero), the first rectangle placed in the first cell has row index = 0 and column
index = 0. Similarly, the sixth/last rectangle has the position Row=1 and Column=2.

You can set the Height of a RowDefinition and the Width of a ColumnDefinition by specifying an
absolute value, a percentage value (star sizing), or an automatic sizing. In the preceding
example, we used star sizing to define the row and column dimensions.

An absolute value takes an integer to define fixed height/width. Star sizing is a relative based
factor, that works like percentage value. When you mark the height/width as *, it takes as much
space as possible after filling all other fixed and auto sized rows/columns. When you specify
Auto, it takes as much space as required by the contained control.

www.EBooksWorld.ir

There's more...
There's more to know about the star sized value. When there are two rows or two columns
having height/width defined as *, they will occupy the available space by dividing it
proportionally. Thus, in the preceding example, each of the two rows occupied 50% of the
available space. Similarly, the three columns equally occupied a total of 100% of the available
space.

You can also define them using n*. For example, if a Grid contains two rows, and among them,
one of the rows has a height defined as 2* and the other as 8*, they will occupy 20% and 80% of
the available space. Let's see this with a simple example.

Create a Grid inside a window and set its ShowGridLines property to True, so that the grid lines are
visible on screen. By default, it is set to False. Now divide the entire Grid into five columns.
Consider the following XAML code:

<Grid ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="2*"/>

 <ColumnDefinition Width="Auto" MinWidth="5"/>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="3*"/>

 <ColumnDefinition Width="40"/>

 </Grid.ColumnDefinitions>

</Grid>

The width of the second column is set to Auto, which means it will take as much space as the
width of the containing element. When the said column does not contain any element inside it,
this will have 0 (zero) width. You can specify MinWidth to provide a minimum value.

The fifth column has a fixed width of 40. Both the second column and fourth column width will
be calculated first, as they contain auto width and fixed width, respectively.

The other three columns, in the preceding example, will be calculated now based on the
available space and will be calculated in the ratio of 2:1:3. The third column in the example will
take one-sixth of the space. The first and fourth columns will take 2x and 3x width, based on the
width of the third column.

Once you run this UI, you will see the following output. Now resize the window to see how the
resizing happens dynamically based on the given inputs:

www.EBooksWorld.ir

Creating a resizable Grid
It is possible to create a resizable Grid in WPF. You can use the <GridSplitter/> tag to create a
splitter control, which can be used by the user to resize a specific column. Let's consider the
following XAML code:

<Grid ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="2*"/>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="3*"/>

 <ColumnDefinition Width="40"/>

 </Grid.ColumnDefinitions>

 <GridSplitter Grid.Column="1" Width="5"/>

</Grid>

In this example, the GridSplitter control has been placed in the second column. When you run
the application, you will see a vertical line inside the second column that you can drag to resize
the grid column, as shown in the following screenshot:

www.EBooksWorld.ir

Spanning elements across
multiple rows and/or columns
It's not mandatory to place an item in a single cell only. You can span it across multiple rows
and/or columns. The attached property Grid.RowSpan allows you to span the element across two or
more grid row cells. Similarly, Grid.ColumnSpan allows you to span the element across two or
more grid columns. You can use either or both.

Consider the following code snippet, where the rectangle is spanned across two rows and two
columns, starting at the (0,0) cell position:

 <Rectangle Fill="OrangeRed"

 Grid.Row="0" Grid.Column="0"

 Grid.RowSpan="2" Grid.ColumnSpan="2" />

When you run this, you will see the following output:

www.EBooksWorld.ir

Placing elements in uniform
cells
Just like the Grid layout system in Windows Presentation Foundation, the UniformGrid control
also provides the similar layout system, but only with a difference that the rows and columns are
of same size. It equally divides the layout into cells, of the same size, based on the number of
rows and columns. Thus, you will not have the choice to modify the height and width of the
rows and columns explicitly.

In this recipe, we will learn about the UniformGrid layout with a simple example.

www.EBooksWorld.ir

Getting ready
Let's create a sample application to demonstrate the UniformGrid control. Open your Visual
Studio IDE and create a new WPF application project named CH03.UniformGridDemo.

www.EBooksWorld.ir

How to do it...
Now perform the following steps:

1. From Solution Explorer, open the MainWindow.xaml page.
2. Replace the existing Grid panel with the following XAML code:

<UniformGrid>

 <Label Content="Cell 1" Background="Yellow" />

 <Label Content="Cell 2" Background="YellowGreen" />

 <Label Content="Cell 3" Background="Orange" />

 <Label Content="Cell 4" Background="OrangeRed" />

</UniformGrid>

3. Build the project and run the application. You will see the following output on the screen:

4. Now close the application and add a few more Label controls in the same UniformGrid as
follows:

<Label Content="Cell 5" Background="Violet" />

<Label Content="Cell 6" Background="DeepSkyBlue" />

<Label Content="Cell 7" Background="SkyBlue" />

5. Run the application once again and you will see that the row and column count
automatically changed to accommodate the new elements, as seen in the following
screenshot:

www.EBooksWorld.ir

How it works...
When you start placing controls inside an UniformGrid control, it automatically calculates the
number of cells required to accommodate placing of the added controls. Based on that, it divides
the available space into rows and columns to position the child elements sequentially.

When there is a need to place more controls, it again breaks the space into an additional number
of equal rows and columns, as shown in the second example.

www.EBooksWorld.ir

There's more...
There are many properties that UniformGrid provides us with, to customize the UI. We are now
going to discuss some of the most important properties.

www.EBooksWorld.ir

Setting the row and column
count
UniformGrid does not have any restriction on setting the number of rows and columns. You can
set the numbers by assigning the Rows and Columns properties. For example, the following XAML
will render the elements in a single row only, as we assigned Rows="1":

<UniformGrid Rows="1">

 <Label Content="Cell 1" Background="Yellow" />

 <Label Content="Cell 2" Background="YellowGreen" />

 <Label Content="Cell 3" Background="Orange" />

 <Label Content="Cell 4" Background="OrangeRed" />

 <Label Content="Cell 5" Background="Violet" />

 <Label Content="Cell 6" Background="DeepSkyBlue" />

 <Label Content="Cell 7" Background="SkyBlue" />

</UniformGrid>

The preceding example will have the following output:

If you set Columns="2", all the elements will reposition themselves into two columns, but in
multiple rows. You can also combine both the properties.

www.EBooksWorld.ir

Defining the first cell of the
UniformGrid
It's a default nature of the UniformGrid panel to place the first element at the first cell (Row=0,
Column=0), but it also offers to set the cell position explicitly. The first cell location must be in
the first row, starting the index at 0 (zero).

The following example demonstrates how you can set the first element position by assigning the
FirstColumn property:

<UniformGrid Columns="4" FirstColumn="2">

 <Label Content="Cell 1" Background="Yellow" />

 <Label Content="Cell 2" Background="YellowGreen" />

 <Label Content="Cell 3" Background="Orange" />

 <Label Content="Cell 4" Background="OrangeRed" />

 <Label Content="Cell 5" Background="Violet" />

 <Label Content="Cell 6" Background="DeepSkyBlue" />

 <Label Content="Cell 7" Background="SkyBlue" />

</UniformGrid>

When you run the preceding example, you will see the following output on the screen, where the
Cell 1 label is positioned at the third column (index position is 2):

www.EBooksWorld.ir

Filling elements from right to
left
The default behavior of filling elements in UniformGrid is left to right. But you can fill them in
right to left fashion. To do this, set the FlowDirection property to RightToLeft (the default
is LeftToRight), as shown in the following snippet:

<UniformGrid FlowDirection="RightToLeft">

 <Label Content="Cell 1" Background="Yellow" />

 <Label Content="Cell 2" Background="YellowGreen" />

 <Label Content="Cell 3" Background="Orange" />

 <Label Content="Cell 4" Background="OrangeRed" />

 <Label Content="Cell 5" Background="Violet" />

 <Label Content="Cell 6" Background="DeepSkyBlue" />

 <Label Content="Cell 7" Background="SkyBlue" />

</UniformGrid>

When you run the preceding code, you will see a UI similar to the following screenshot:

www.EBooksWorld.ir

Automatically repositioning
controls using WrapPanel
 WrapPanel in WPF is similar to StackPanel, but it does not stack the items in a single line; rather it
wraps the items to a new line based on the available space. It also looks like a UniformGrid
control, but it has odd cell size depending on the item dimension.

In this recipe, we will cover more about WrapPanel and how to reposition controls using it.

www.EBooksWorld.ir

Getting ready
To get started, open Visual Studio IDE and create a new project named CH03.WrapPanelDemo. Make
sure to select the WPF app template while creating the project.

www.EBooksWorld.ir

How to do it...
Let's look at a simple example to add a few buttons in WrapPanel. Perform the following steps to
design the UI:

1. From the Visual Studio Solution Explorer, open the MainWindow.xaml page.
2. Replace the existing Grid panel with a WrapPanel control and set its Orientation property to

Horizontal.
3. Add a few button controls of diverse sizes. The entire XAML inside the window will look

like the following code:

<WrapPanel Orientation="Horizontal">

 <Button Content="Button 1" Margin="4"

 Width="100" Height="30"/>

 <Button Content="Button 2" Margin="4"

 Width="100" Height="30"/>

 <Button Content="Button 3" Margin="4"

 Width="100" Height="30"/>

 <Button Content="Button 4" Margin="4"

 Width="208" Height="30"/>

 <Button Content="Button 5" Margin="4"

 Width="100" Height="30"/>

 <Button Content="Button 6" Margin="4"

 Width="60" Height="30"/>

 <Button Content="Button 7" Margin="4"

 Width="60" Height="30"/>

 <Button Content="Button 8" Margin="4"

 Width="180" Height="30"/>

</WrapPanel>

4. Now build the project and run the application. You will see the following output on the
screen:

5. Resize the application UI to see how the buttons are placed within the screen.

www.EBooksWorld.ir

How it works...
WrapPanel works by stacking child elements in a line. Once the line is full and can't hold to add
more elements, it wraps there, and adds the new element in the next line and continues. Unlike
UniformGrid, the WrapPanel does not have any fixed width for columns. So, items can be placed
based on the available space.

The button controls, which we added as child elements of the WrapPanel, get added in stack in the
first row. When it's unable to accommodate within the same line, it wraps to the next line to give
room for the next elements.

The Orientation property of the WrapPanel decides whether you want to stack them horizontally or
vertically.

www.EBooksWorld.ir

There's more...
In the preceding example, we have seen that the items inside the WrapPanel have their individual
size mentioned along with them. You can also set the size for all the items to a specific value by
setting the ItemWidth and ItemHeight properties, as shown in the following code snippet:

<WrapPanel Orientation="Vertical"

 ItemWidth="100" ItemHeight="30">

 <Button Content="Button 1" Margin="4" />

 <Button Content="Button 2" Margin="4" />

 <Button Content="Button 3" Margin="4" />

 <Button Content="Button 4" Margin="4" />

 <Button Content="Button 5" Margin="4" />

 <Button Content="Button 6" Margin="4" />

</WrapPanel>

In this case, you won't need to specify the size individually to each child element. When you run
the preceding code, you will see the output similar to the following:

www.EBooksWorld.ir

Placing controls in a Stack
Another simple and useful layout panel in WPF is a StackPanel. It works almost like a WrapPanel,
but with a difference that it can't wrap the child elements to a new line. All items added inside it
either get placed in horizontal or vertical stacks.

The StackPanel measures its children using either native or relative sizing,
keeping the arrangement pass simple by laying out the items in order.

However, the Grid uses complex combinations of child elements when
proportional sizing or auto sizing is used. Thus, it makes the Grid layout have a
slow to medium performance for the measure pass and the arrangement pass to
execute.
Therefore, wherever possible, the StackPanel preferable to over the Grid panel to
reduce the rendering overhead.

In this recipe, we will learn how the StackPanel works, by using a very simple example.

www.EBooksWorld.ir

Getting ready
To get started, let's open Visual Studio and create a new WPF application project named
CH03.StackPanelDemo.

www.EBooksWorld.ir

How to do it...
Inside Solution Explorer, navigate to the project and perform the following steps to create the
sample UI with StackPanel containing a few button controls:

1. First, open the MainWindow.xaml file.
2. Inside the Window tag, replace the default Grid with the following XAML code:

<StackPanel>

 <StackPanel Orientation="Horizontal">

 <Button Content="Button 1" Margin="4" />

 <Button Content="Button 2" Margin="4" />

 <Button Content="Button 3" Margin="4" />

 <Button Content="Button 4" Margin="4" />

 </StackPanel>

 <StackPanel Orientation="Vertical">

 <Button Content="Button 5" Margin="4" />

 <Button Content="Button 6" Margin="4" />

 <Button Content="Button 7" Margin="4" />

 <Button Content="Button 8" Margin="4" />

 </StackPanel>

</StackPanel>

3. Let's build and run the application. You will see the following output:

www.EBooksWorld.ir

How it works...
The first StackPanel is used to hold the multiple inner StackPanel, stacked vertically by default.
The first inner StackPanel control holds Button 1 - Button 4. These will be stacked horizontally,
as we set the Orientation property of the panel to Horizontal.

The second inner StackPanel holds Button 5 - Button 8, stacked vertically, as we set the
Orientation property to Vertical.

Unlike WrapPanel, where the default orientation is Horizontal, StackPanel has its
default orientation set to Vertical.

www.EBooksWorld.ir

There's more...
StackPanel stretches its child elements by default, but you can take control of how it will stretch.
On a vertically oriented StackPanel, you can assign the HorizontalAlignment property of the child
elements to Left, Center, Right, or Stretch, as shown in the following code:

<StackPanel Orientation="Vertical">

 <Button Content="Button (Left)" Margin="4"

 HorizontalAlignment="Left"/>

 <Button Content="Button (Center)" Margin="4"

 HorizontalAlignment="Center"/>

 <Button Content="Button (Right)" Margin="4"

 HorizontalAlignment="Right"/>

 <Button Content="Button (Stretch)" Margin="4"

 HorizontalAlignment="Stretch" />

</StackPanel>

The preceding code example will give you the following output:

Similarly, you can assign the VerticalAlignment property of the child elements, placed in a
horizontally oriented StackPanel. This property contains the following values—Top, Center, Bottom,
and Stretch.

www.EBooksWorld.ir

Positioning controls inside a
Canvas
A Canvas is another simple panel in WPF, which allows you to place child elements at a specific
coordinate position relative to the Canvas. It exposes four attached properties: Left, Right, Top, and
Bottom, to handle the positioning of controls.

This recipe will help you to understand the positioning of child elements in a Canvas panel.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio instance and create a new WPF application project named
CH03.CanvasDemo.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create a simple Canvas panel with a few label controls in it and
position them to specific coordinate positions:

1. Open Solution Explorer and navigate to the project.
2. Open the MainWindow.xaml file and replace the default Grid with the following lines:

<Canvas>

 <Label Width="100" Height="60"

 Background="GreenYellow"

 Canvas.Left="70" Canvas.Top="40"

 Content="(70, 40)"

 FontSize="20" FontWeight="Bold"/>

 <Label Width="100" Height="60"

 Background="YellowGreen"

 Canvas.Left="220" Canvas.Top="90"

 Content="(220, 90)"

 FontSize="20" FontWeight="Bold"/>

</Canvas>

3. Build and run the application. It will show the following screen:

4. Now resize the window and observe the positioning of the labels.

www.EBooksWorld.ir

How it works...
The Canvas.Left property allows you to assign a value indicating the distance of the child
element from the left edge of the Canvas. The Canvas.Top property allows you to assign a value
indicating the distance of the child element from the top.

Similarly, the Canvas.Right and Canvas.Bottom properties allow you to assign the relative position
from right and bottom, respectively.

As you can see in the preceding example, the first label is placed at the coordinate position (70,
40), whereas the second element is placed at the coordinate position (220, 90). If you resize the
window, the position of the child elements will not change.

Points to note are that the vertical and horizontal alignments on child elements
do not work. Also, if you set the Left property, the Right property does not work.
Similarly, if you set the Top property, the Bottom property does not work.

www.EBooksWorld.ir

There's more...
The Z-order of a control, placed in a Canvas panel, determines whether the control is in front of or
behind another overlapping control. You can use the Canvas.ZIndex property to play with the
positioning of the Z-order.

By default, the ZIndex of the first element starts with 0 (zero) and gradually increases by 1
whenever you add a new element on the canvas. But in special cases, when you want to bring an
overlapped control to the top, set its ZIndex higher than the ZIndex of the last element that is
overlapping it.

www.EBooksWorld.ir

Wrapping UI elements using a
Border
The Border control in WPF is used as a Decorator, which you can use to draw a border around
another control. As the WPF panels do not support adding a border around its edges, the Border
control is used to achieve the same.

This recipe will guide you to add a border to a control. You can also use the same concept to
decorate a group of controls placed inside a panel, by wrapping the panel with a Border.

www.EBooksWorld.ir

Getting ready
To begin with an example, let's first create a new project. Open Visual Studio and create a WPF
application project named CH03.BorderDemo.

www.EBooksWorld.ir

How to do it...
Perform the following simple steps to add a border around TextBlock:

1. Open the MainWindow.xaml file of your WPF project.
2. Now replace the default Grid with a StackPanel.
3. Add a few TextBlocks inside it, wrapped by a Border. Here's the complete XAML code:

<StackPanel Margin="10">

 <Border BorderBrush="OrangeRed"

 BorderThickness="2"

 Margin="10 4" Padding="10">

 <TextBlock Text="Text surrounded by border"/>

 </Border>

 <Border BorderBrush="OrangeRed"

 BorderThickness="2"

 CornerRadius="20"

 Margin="10 4" Padding="10">

 <TextBlock Text="Text surrounded by border,

 having corner radius = 20"/>

 </Border>

 <Border BorderBrush="OrangeRed"

 BorderThickness="2"

 CornerRadius="5"

 Background="Yellow"

 Margin="10 4" Padding="10">

 <TextBlock Text="Text surrounded by border,

 having a Yellow background and rounded border"

 TextWrapping="Wrap"/>

 </Border>

 <Border BorderBrush="OrangeRed"

 BorderThickness="4 0"

 CornerRadius="5"

 Margin="10 4" Padding="10">

 <TextBlock Text="Text surrounded by two-side border"/>

 </Border>

</StackPanel>

4. Let's run the application. You will see the following output:

www.EBooksWorld.ir

How it works...
The BorderThickness property accepts an integer value to draw a border around the control. The
property BorderBrush adds a color to it. You can use SolidColorBrush, GradientColorBrush, or any
other brush type. The first Border control adds a thin 2px border around the text.

In the second example, the CornerRadius property has been set to 20 to add a 20-degree curve
around the corners of the Border control.

The third example has a border with a background brush to wrap the TextBlock control. You can
club both the BorderThickness, BorderBrush, and Background properties together to give such a look.
Notice the small corner radius of 5 degrees!

In the fourth example, we have provided a border to two sides of the text. The value of
BorderThickness can have 1, 2, or 4 double values. The four doubles (BorderThickness="5, 3, 5,
4" or BorderThickness="5 3 5 4") describes the Left, Top, Right, and Bottom sides in the same order.

When you provide two double values (BorderThickness="5, 3" or BorderThickness="5 3"), the first
value describes Left and Right; the second value describes Top and Bottom, respectively. To
provide thickness of the same amount in all the sides, assign only one double to the property
(BorderThickness="5").

www.EBooksWorld.ir

Creating a scrollable panel
The ScrollViewer controls enable scrolling functionality in a WPF application and help you to
host other controls. When there are more contents available to show, but the viewable area is
smaller than that, ScrollViewer is used to help the user to scroll through the content.

In this recipe, we will learn how to use a ScrollViewer inside a WPF application.

www.EBooksWorld.ir

Getting ready
Let's open Visual Studio and create a project named CH03.ScrollViewerDemo. Be sure to create the
project based on the WPF application template.

www.EBooksWorld.ir

How to do it...
It's a quick step to surround a panel or control using the ScrollViewer. Perform the following
steps to add a scrolling functionality to an image control:

1. Inside the project, add an image named demoImage.jpg.
2. Open the MainWindow.xaml file from Solution Explorer.
3. Now replace the existing Grid with a ScrollViewer.
4. Add an image pointing to the demoImage.jpg file, as follows:

<ScrollViewer HorizontalScrollBarVisibility="Auto"

 VerticalScrollBarVisibility="Auto">

 <Image Source="demoImage.jpg" />

</ScrollViewer>

5. Run the application and you will see the following window with an image inside a
ScrollViewer:

6. Use the scroll bars to scroll left-right and/or up-down to see the entire image.

www.EBooksWorld.ir

How it works...
ScrollViewer exposes two major properties—HorizontalScrollBarVisibility and
VerticalScrollBarVisibility. Both represent an enumeration named ScrollBarVisibility, having
four values:

Visible: When the property is set to ScrollBarVisibility.Visible, the scroll bar will be
visible all the time.
Hidden: When the property is set to ScrollBarVisibility.Hidden, the scrollbar will not be
visible on screen and the user will not be able to scroll to see the complete content.
Disabled: When it is set to ScrollBarVisibility.Disabled, the scrollbars will be disabled.
Auto: This is often used to make the scrolling thumbs visible only when they are needed.
For this, set the property to ScrollBarVisibility.Auto.

www.EBooksWorld.ir

Docking controls using the
DockPanel
DockPanel makes it easier to dock UI elements in the left, right, top, or bottom of the screen. This
is often useful, mainly when you want to divide the window into specific areas. For example, a
status bar is always kept at the bottom of the window, whereas a menu or a toolbar resides at the
topmost position of the window.

This recipe will help you to learn how to dock child elements in an application window.

www.EBooksWorld.ir

Getting ready
Let's begin with a new project. Open Visual Studio and create a project named
CH03.DockPanelDemo, based on the available WPF application template.

www.EBooksWorld.ir

How to do it...
Perform the following steps to add a DockPanel with a few labels docked into it:

1. From Solution Explorer, navigate to the project and open MainWindow.xaml.
2. Replace the existing Grid panel with a DockPanel control.
3. Now add five labels inside it and dock them in various sides of the window.
4. Here's the complete XAML code for reference:

<DockPanel>

 <Label Content="Button (DockPanel.Dock='Right')"

 Background="YellowGreen"

 Margin="4" Padding="4"

 DockPanel.Dock="Right"/>

 <Label Content="Button (DockPanel.Dock='Top')"

 Background="GreenYellow"

 Margin="4" Padding="4"

 DockPanel.Dock="Top"/>

 <Label Content="Button (DockPanel.Dock='Bottom')"

 Background="SkyBlue"

 Margin="4" Padding="4"

 DockPanel.Dock="Bottom"/>

 <Label Content="Button (DockPanel.Dock='Left')"

 Background="Orange"

 Margin="4" Padding="4"

 DockPanel.Dock="Left"/>

 <Label Content="Button (None)"

 Background="Pink"

 Margin="4" Padding="4"/>

</DockPanel>

5. Let's run the application. You will see that the labels are positioned in different sides of the
window, as shown in the following screenshot:

www.EBooksWorld.ir

How it works...
The DockPanel.Dock property determines the position of the element, based on the relative order.
The property is of type Dock enumeration and it accepts the following values—Dock.Left,
Dock.Right, Dock.Top, and Dock.Bottom. If you don't specify the property, by default, the first
element will be docked to the left and the other elements will take the remaining space.

In the preceding example, the labels are added inside the DockPanel in the following order, having
the DockPanel.Dock property set to Right, Top, Bottom, and Left, respectively. The last label does not
specify any Dock property and hence it takes the remaining space to accommodate itself inside it.

www.EBooksWorld.ir

There's more...
In a DockPanel, ordering of dock matters most. If you change the order of the example that we
have created previously, you will notice how the DockPanel changes the position of the added
labels.

www.EBooksWorld.ir

Rescaling UI elements using a
ViewBox
When you are building an application, you don't know the screen resolution of the system where
the application will be running. If you design the UI considering small or standard resolution in
mind, the UI controls will look very small in a high-resolution monitor. If you do the reverse,
with big screens in mind, the user won't see the parts of the screen, if executed on a low-
resolution monitor.

Hence, there is a need to create an auto-scaling mechanism, which will take care of different
screen resolutions. ViewBox is a very popular control in WPF, which helps you to scale the
content to fit the available space based on the size. When you resize the parent, it automatically
transforms the content to scale in proportion.

Let's learn how it works, with a simple example, in this recipe.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE and create a new WPF application project named CH03.ViewBoxDemo.

www.EBooksWorld.ir

How to do it...
Please perform the following steps:

1. Open the MainWindow.xaml file from Solution Explorer.
2. Set a smaller size of the Window. Let's set its height to 120 and width to 400.
3. Replace the existing Grid panel with a ViewBox.
4. Add text inside it, using the TextBlock control as follows:

<Viewbox>

 <TextBlock Text="This is a text, inside a ViewBox"

 Margin="10"/>

</Viewbox>

5. Run the application. You will see the following output:

6. Now resize the window and you will see that the text is automatically scaled based on the
size of the window:

www.EBooksWorld.ir

How it works...
The ViewBox provides you with a way to adjust the content of a window automatically, based on
the resolution of the screen. When you resize the ViewBox, it automatically adjusts the size and the
relative position of the contents to fit on the screen.

In the preceding example, the size of the window is set to 400x120. The window has a TextBlock
control with a text string, wrapped in a ViewBox. When you resize the window, the content also
resizes by applying scale transform.

But if the aspect ratio of the ViewBox window does not fit in proportion, you will see a white
space either at the left and right or top and bottom of the content.

www.EBooksWorld.ir

There's more...
The ViewBox control provides two properties to stretch the content. Those are Stretch and
StretchDirection. When you don't specify the Stretch property to a ViewBox, it uses the default
value for Stretch, which is Uniform.

When the Stretch property is set to Uniform, and the ViewBox does not match the aspect ratio of the
content, it adds a white margin to it. It can be either at the top and bottom or at the left and right
sides:

<Viewbox Stretch="Uniform">

 <TextBlock Text="This is a text, inside a ViewBox"

 Margin="10"/>

</Viewbox>

When it is set to Fill, it causes the content to completely fill the space without obeying the
aspect ratio. Thus, you may see a distortion in the UI:

<Viewbox Stretch="Fill">

 <TextBlock Text="This is a text, inside a ViewBox"

 Margin="10"/>

</Viewbox>

When you set the Stretch property to UniformToFill, it maintains the original aspect ratio and fills
the window completely. You will not see any distortion in the UI:

<Viewbox Stretch="UniformToFill">

 <TextBlock Text="This is a text, inside a ViewBox"

 Margin="10"/>

</Viewbox>

If you don't want to resize the content, set the Stretch property to None. When you set it as None,
and resize the window to enlarge, the content will not scale and will remain in its original state
surrounded by white space:

<Viewbox Stretch="None">

 <TextBlock Text="This is a text, inside a ViewBox"

 Margin="10"/>

</Viewbox>

The StretchDirection property of the ViewBox is used to tell the ViewBox to stretch the content based
on the Stretch property. When the Stretch property is set to None, the StretchDirection property
has no effect.

When StretchDirection is set to UpOnly or DownOnly, the content will be resized upward or
downward, based on the ViewBox size. When it is set to Both, the content will be resized in both
directions.

www.EBooksWorld.ir

Creating a tabbed layout
To accommodate more content in a window layout, tabbed user interfaces are mostly used. They
allow users to open multiple pages in a single window. For example, most of the recent internet
browsers use tabbed interface to let the user open multiple web pages simultaneously in a single
window.

WPF provides TabControl to create the tabbed layout. In this recipe, we will learn the basics of
tab interfaces, with a simple example to let you understand how it works.

www.EBooksWorld.ir

Getting ready
To get started, make sure that you have opened Visual Studio IDE. Now create a new project
named CH03.TabControlDemo, based on the available WPF application project template.

www.EBooksWorld.ir

How to do it...
Let's create the UI interface to host a very basic tab control with a few tab items inside it.
Perform the following steps:

1. From the Solution Explorer window, open the MainWindow.xaml file.
2. Inside the default Grid panel, add the TabControl with two TabItem controls as shown in the

following code:

<Grid>

 <TabControl>

 <TabItem Header="Tab 1">

 <TextBlock Text="You have selected 'Tab 1'"

 FontSize="30" Margin="4"/>

 </TabItem>

 <TabItem Header="Tab 2">

 <TextBlock Text="You have selected 'Tab 2'"

 FontSize="30" Margin="4"/>

 </TabItem>

 </TabControl>

</Grid>

3. Now run this application and you will see the following UI, which contains two tabs inside
it:

4. Close the application and return to the XAML editor to add another TabItem inside the
TabControl. Let's change the template of the header to contain UI elements other than the
plain text. Copy the following XAML after the second tab:

<TabItem>

 <TabItem.Header>

 <StackPanel Orientation="Horizontal">

 <Ellipse Width="10" Height="10"

 Fill="Green" Margin="0 1 8 0"/>

 <TextBlock Text="Tab 3"/>

 </StackPanel>

 </TabItem.Header>

 <Border Background="ForestGreen"

 Margin="4">

 <TextBlock Text="You have selected 'Tab 3'"

 FontSize="30" Foreground="White"/>

 </Border>

</TabItem>

5. Now run the application once again and navigate to the third tab. You will see the
following UI in the screen:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
The TabControl derives from Selector to provide you an ItemsControl to host elements inside it.
You can host only TabItem controls, which are actually HeaderedContentControl to provide a Header
to each of the items.

The Header property is of type object, which will allow you to put any content inside it, be it a
plain text or a different UI element.

In the preceding example, the first two TabItem controls contain plain text as headers, whereas
the third TabItem contains many different UIElement to give its header a customized look. When
you switch from one tab to another, you will see its associated content, which you can
programmatically access through its Content property.

www.EBooksWorld.ir

Dynamically adding/removing
elements in a panel
So far, we have seen how to add static elements/contents in a Panel control. But it's not always
useful, mainly when you are retrieving data from the backend and populating in the UI or
dynamically based on the user interaction.

This recipe will discuss this topic. As all the panels perform similarly to add/remove elements,
with a slight difference on the positioning, we will be demonstrating it with a simple Canvas.

www.EBooksWorld.ir

Getting ready
To begin with the coding, let's create a WPF application project first. Open Visual Studio and
create a new project named CH03.DynamicPanelDemo.

www.EBooksWorld.ir

How to do it...
Let's add a Canvas panel inside the window, and dynamically add squares at the current cursor
position when the user clicks the Canvas panel. Perform the following steps:

1. Open the MainWindow.xaml page and replace the default Grid panel with a Canvas.
2. Give it a name. In our example, let's give the name as canvasPanel.
3. Set a background to the canvas panel and register a MouseLeftButtonDown event to it. Here's

the complete XAML code, for reference:

<Window x:Class="CH03.DynamicPanelDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/

 2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Dynamic Panel Demo"

 Height="300" Width="500">

 <Canvas x:Name="canvasPanel"

 Background="LightGoldenrodYellow"

 MouseLeftButtonDown="OnMouseLeftButtonDown"/>

</Window>

4. Now open its associated code-behind file MainWindow.xaml.cs and implement the event.
Alternatively, you can place the cursor on top of the event name and press F12 to generate
the event and navigate to it directly.

5. Inside the OnMouseLeftButtonDown event implementation, retrieve the current cursor position
and place the element at the same position on the canvas, where the user clicked. Here's the
code implementation:

private void OnMouseLeftButtonDown(object sender,

 MouseButtonEventArgs e)

{

 var mousePosition = e.GetPosition(canvasPanel);

 var square = new Rectangle

 {

 Width = 50,

 Height = 50,

 Fill = new SolidColorBrush(Colors.Green),

 Opacity = new Random().NextDouble()

 };

 // set the position of the element

 Canvas.SetLeft(square,

 mousePosition.X - square.Width / 2);

 Canvas.SetTop(square,

 mousePosition.Y - square.Height / 2);

 // add the element on the Canvas

 canvasPanel.Children.Add(square);

}

6. Let's run the application. You will see a blank window with the same background color
that we have set on the Canvas.

7. Randomly click on the Canvas area and you will see the squares popping up on the screen,
at the same place where you are left-clicking on the Canvas. The UI will look as follows:

www.EBooksWorld.ir

8. To remove the elements from the square, let's register a MouseRightButtonDown event in the
Canvas panel present in the XAML. Close the running application and replace the entire
content of the MainWindow.xaml page with the following one:

<Window x:Class="CH03.DynamicPanelDemo.MainWindow"

 xmlns=

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Dynamic Panel Demo"

 Height="300" Width="500">

 <Canvas x:Name="canvasPanel"

 Background="LightGoldenrodYellow"

 MouseLeftButtonDown="OnMouseLeftButtonDown"

 MouseRightButtonDown="OnMouseRightButtonDown"/>

</Window>

9. Now navigate to the MainWindow.xaml.cs file to add the associated event implementation.
Add the following snippet inside the class:

private void OnMouseRightButtonDown(object sender,

 MouseButtonEventArgs e)

{

 if (e.Source is UIElement square)

 {

 canvasPanel.Children.Remove(square);

 }

}

10. Run the application once again and randomly click inside the Canvas to add the squares
inside it.

11. Once the squares are in place, right-click on them to see the clicked ones disappear from
the panel.

www.EBooksWorld.ir

How it works...
Every panel exposes a property named Children to hold a collection of UIElement as
UIElementCollection. To dynamically add an element to UIElementCollection, use its Add method;
and to remove an element, pass the element to its Remove method.

In the preceding example, when the user left-clicks on the Canvas, the e.GetPosition method
provides the coordinate position (X, Y) of the click, relative to the panel where it was clicked. The
Canvas.SetLeft and Canvas.SetTop methods are used to position the created element relative to the
panel and then are added to it.

Similarly, to delete the element from the panel, the e.Source property is used to retrieve the
element where the user right-clicked. If it is not null, remove it from the Canvas by calling the
Remove method.

www.EBooksWorld.ir

There's more...
The coordinate positions are used to place elements in a Canvas panel. When you want to place
an item in a Grid, set the Row and Column while placing it. For StackPanel, WrapPanel, and UniformGrid
panels, you won't need to specify any other property as those will be stacked automatically.

The following example shows you how to dynamically add an element in a Grid, at a specific
cell position, specified by the Row and Column index:

// set the Row and Column to place the element

Grid.SetRow(element, rowIndex);

Grid.SetColumn(element, columnIndex);

// add the element to the Grid

gridPanel.Children.Add(element);

If you want to span the element to multiple rows and multiple columns, you can do so by calling
the Grid.SetRowSpan and Grid.SetColumnSpan methods, as shown in the following code:

Grid.SetRowSpan(element, noOfRowsToSpan);

Grid.SetColumnSpan(element, noOfColumnsToSpan);

www.EBooksWorld.ir

Implementing the drag and
drop feature
When you want to provide a rich experience to the user, you may want to use the dragging and
dropping feature. You may also want to add a drag and drop feature in your application to access
a local resource to upload it to the server.

In this recipe, we will learn the basics of drag and drop implementation in WPF by using a
simple example.

www.EBooksWorld.ir

Getting ready
Open Visual Studio and create a new WPF application named CH03.DragAndDropDemo.

www.EBooksWorld.ir

How to do it...
Let's perform the following steps to create a few elements inside a window and provide the
option to drag and drop from one panel to the other:

1. First, open MainWindow.xaml and replace the existing Grid with a StackPanel. Set its
Orientation property to Horizontal.

2. Add two WrapPanel inside it and set their Width, Margin, ItemHeight, and ItemWidth properties.
3. Give a name to both panels. Let's name the first wrap panel sourcePanel and the second

wrap panel targetPanel. We will be using these name later from the code, while accessing
them.

4. Add a few labels to the first wrap panel. Set their Content, Background, and other text
formatting properties. Here's the complete markup code:

<StackPanel Orientation="Horizontal">

 <WrapPanel x:Name="sourcePanel"

 ItemHeight="60" ItemWidth="100"

 Width="200" Margin="4"

 Background="LightGoldenrodYellow">

 <Label Content="Item 1"

 Background="Olive" Margin="4"

 Foreground="White" FontSize="22" />

 <Label Content="Item 2"

 Background="Olive" Margin="4"

 Foreground="White" FontSize="22" />

 <Label Content="Item 3"

 Background="Olive" Margin="4"

 Foreground="White" FontSize="22" />

 <Label Content="Item 4"

 Background="Olive" Margin="4"

 Foreground="White" FontSize="22" />

 <Label Content="Item 5"

 Background="Olive" Margin="4"

 Foreground="White" FontSize="22" />

 </WrapPanel>

 <WrapPanel x:Name="targetPanel"

 ItemHeight="60" ItemWidth="100"

 Width="200" Margin="4"

 Background="OldLace">

 </WrapPanel>

</StackPanel>

5. If you run this application, you will see two panels on the screen. As shown in the
following screenshot, one of them will have five labels (Item 1 - Item 5) and the other will
be empty:

www.EBooksWorld.ir

If you now drag any element from the left panel and try to drop it to the right panel,
you will see that it won't work. We have not yet added the drag and drop support.

6. To add the dragging support to the first wrap panel (sourcePanel), register its
MouseLeftButtonDown event property in the XAML as follows:

<WrapPanel x:Name="sourcePanel"

 ItemHeight="60" ItemWidth="100"

 Width="200" Margin="4"

 Background="LightGoldenrodYellow"

 MouseLeftButtonDown="OnDrag">

7. An OnDrag event, registered in XAML, needs to be implemented in the code behind the file.
Open MainWindow.xaml.cs and add the following event implementation, which will add the
dragging support to the sourcePanel:

private void OnDrag(object sender, MouseButtonEventArgs e)

{

 if (e.Source is UIElement draggedItem)

 {

 DragDrop.DoDragDrop(draggedItem,

 draggedItem,

 DragDropEffects.Move);

 }

}

8. Now we need to enable the second wrap panel (targetPanel) as a droppable target and set
its AllowDrop property to True.

9. Also register its Drop event property, so that we can perform the drop operation. Here's the
entire mark-up for the second panel:

<WrapPanel x:Name="targetPanel"

 ItemHeight="60" ItemWidth="100"

 Width="200" Margin="4"

 Background="OldLace"

 AllowDrop="True"

 Drop="OnDrop">

 <!-- This is the DROP Target -->

</WrapPanel>

10. Now we need to implement the body of the OnDrop event to perform the desired drop
operation. Navigate to MainWindow.xaml.cs once again and add the following code:

private void OnDrop(object sender, DragEventArgs e)

{

 var draggedData = e.Data;

 if (draggedData.GetData(draggedData.GetFormats()[0])

 is UIElement droppedItem)

 {

www.EBooksWorld.ir

 sourcePanel.Children.Remove(droppedItem);

 targetPanel.Children.Add(droppedItem);

 }

}

11. Let's run the application now. The same screen will appear with two panels. The first panel
(left) will have a few elements in it. Position your cursor on one of them, click it to drag it
to the other panel (right), and release it there. You will see that the item will be removed
from the first and added to the right panel, as shown in the following screenshot:

www.EBooksWorld.ir

How it works...
The AllowDrop="True" property prepares the panel as drop enabled. When you start a drag by
clicking on the element, the DragDrop.DoDragDrop method written in the OnDrag event initiates the
drag and drop operation. It takes the first parameter as a reference to the dependency object, that
is, the source of the data being dragged. The second parameter is the data object that contains
the data being dragged. And the last parameter is a value that specifies the final effect
(DragDropEffects) of the operation.

In the preceding example, when the element is dropped to the drop target, the dragged data
retrieved from the DragEventArgs parameter value is first removed from the source and then
added to the drop target.

www.EBooksWorld.ir

There's more...
Based on your drag-and-drop requirement, you can change the effects by specifying the proper
enum value of the DragDropEffects. The effects can be of six types:

None: When specified, the drop target will not accept any data and the cursor will change
to an unavailable icon:

Copy: When specified, the data is copied to the drop target and during the drop operation
on the target, the cursor will look as follows:

Move: When specified, the data from the source is moved to the drop target. During the
drop operation, the cursor will change to the following:

Link: When specified, the data from the source is linked to the drop target. During the drop
operation on the target, the cursor will change to the following:

Scroll: When specified, it defines whether the scrolling is about to start or currently
happening on the drop target.

All: When specified, the data is copied and scrolled to the drop target after being removed
from the source.

www.EBooksWorld.ir

Working with Data Bindings
In this chapter, we will cover the following recipes:

Working with CLR properties and UI notifications
Working with dependency properties
Working with attached properties
Data binding to an object
Data binding to a collection
Element-to-element data binding
Sorting data in a DataGrid control
Grouping data in a DataGrid control
Filtering data in a DataGrid control
Using static bindings
Using value converters
Using multi-value converters

www.EBooksWorld.ir

Introduction
Data binding is a technique to establish a connection between the UI of the application and the
business logic in order to have proper data synchronization between them. Though you can
directly access UI controls from code behind to update their content, data binding has become
the preferred way to update the UI layer for its automatic notification system.

To make data binding work in WPF applications, both sides of the binding must provide a
change notification to the other side. The source property of a data binding can be a .NET CLR
property or a dependency property, but the target property must be a dependency property, as
shown here:

Data binding is typically done in XAML using the {Binding} markup extension. In this chapter,
we are going to learn more about the WPF data binding mechanism by exploring a few recipes.

www.EBooksWorld.ir

Working with CLR properties
and UI notifications
The CLR properties are just a wrapper around the private variables to expose getters and setters
to retrieve and assign the value of a variable. You can use these normal CLR properties in data
binding, but the automatic UI notifications are not possible by default, unless you create the
notification mechanism.

In this recipe, we will learn how to perform data binding with CLR properties and then learn
how to trigger notifications from the code to automatically update the UI when the value
changes.

www.EBooksWorld.ir

Getting ready
To get started with data binding with normal CLR properties, open your Visual Studio IDE and
create a new WPF application project called CH04.NotificationPropertiesDemo.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create CLR properties that send notifications to the UI:

1. Open the MainWindow.xaml file and give the window a name. For example, name the current
window window by adding the following syntax to the Window tag: x:Name="window".

2. Now divide the default Grid into a few rows and columns. Copy the following XAML
markup inside your Grid panel:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="15"/>

 <ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="10"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

3. Once the grid has been divided into rows and columns, let's add a few text and button
controls inside it. Place these at proper cells, as shared in the following code:

<!-- Row 0 -->

<TextBlock Text="Your department"

 Grid.Row="0" Grid.Column="0"/>

<TextBlock Text=":"

 Grid.Row="0" Grid.Column="1"

 HorizontalAlignment="Center"/>

<TextBlock Text="{Binding Department, ElementName=window}"

 Margin="0 2"

 Grid.Row="0" Grid.Column="2"/>

<!-- Row 1 -->

<TextBlock Text="Your name"

 Grid.Row="1" Grid.Column="0"/>

<TextBlock Text=":"

 Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"/>

<TextBox Text="{Binding PersonName, ElementName=window, Mode=TwoWay}"

 Margin="0 2"

 Grid.Row="1" Grid.Column="2"/>

<!-- Row 3 -->

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 Grid.Row="3" Grid.Column="0"

 Grid.ColumnSpan="3">

 <Button Content="Submit"

 Margin="4" Width="80"

 Click="OnSubmit"/>

 <Button Content="Reset"

 Margin="4" Width="80"

 Click="OnReset"/>

</StackPanel>

4. Now open the code behind the file MainWindow.xaml.cs and add two CLR properties named
Department and PersonName inside it. The first property (Department) always returns a constant

www.EBooksWorld.ir

string, whereas the second property (PersonName) can accept values from the user. Here's the
complete code:

public string Department { get { return "Software Engineering"; } }

private string personName;

public string PersonName

{

 get { return personName; }

 set { personName = value; }

}

5. In the code-behind class, add the following event implementations:

private void OnSubmit(object sender, RoutedEventArgs e)

{

 MessageBox.Show("Hello " + PersonName);

}

private void OnReset(object sender, RoutedEventArgs e)

{

 PersonName = string.Empty;

}

6. Now build and run the application. As shown in the following screenshot, enter your name
in the TextBox and click the Submit button. A message will be shown to the user with the
entered name:

7. Now click on the Reset button and watch the behavior. Even though the code has been
written to set the property with an empty string, the UI was not modified:

8. To send a notification to the UI when there is a change in the associated property, you need
to implement the INotifyPropertyChanged interface, present in the System.ComponentModel
namespace. Open the MainWindow.xaml.cs file and add theINotifyPropertyChanged interface as
defined here:

public partial class MainWindow : Window, INotifyPropertyChanged

www.EBooksWorld.ir

9. You need to add the following using namespace declaration to resolve the build issue:

using System.ComponentModel;

10. Add the following PropertyChanged event implementation inside the class:

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged(string propertyName)

{

 //in C# 7.0 and above

 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));

 //prior to C# 7.0

 //var handler = PropertyChanged;

 //if (handler != null)

 //{

 // handler(this, new PropertyChangedEventArgs(propertyName));

 //}

}

11. Now notify the framework to update the UI when there is a change in the property value.
Modify the existing implementation of the PersonName property to give a call to
the OnPropertyChanged event, passing the name of the property as follows:

private string personName;

public string PersonName

{

 get { return personName; }

 set

 {

 personName = value;

 OnPropertyChanged("PersonName");

 }

}

If you are using C# 6 and above, you can remove the hardcoded strings by using
the nameof operator.

12. Build and run the application once again. Enter your name in the input box and hit the
Submit button. You will see the message box mentioning the entered name.

13. Close the message box and hit the Reset button. You will see that the text in the TextBox
initialized to an empty string:

www.EBooksWorld.ir

How it works...
In the preceding example, the Department property has a data binding with the TextBlock control
and thus the associated TextBlock displays the text returned by the property. Similarly, the
PersonName property has a data binding with a TextBox control. As the data binding has been made
to the Text property of the TextBlock (with TwoWay mode), it automatically updates the associated
property when the user changes it in the UI.

So, when you hit the Submit button, the OnSubmit event triggers, and it directly reads the
PersonName property instead of fetching the text from the UI by accessing the Text property of the
TextBox control.

When you hit the Reset button, the OnReset event triggers and it sets the PersonName property to an
empty string. But the UI does not change. This is because the CLR property does not have a
notification mechanism to automatically update the UI when a value change happens to it.

To overcome this, WPF uses the INotifyPropertyChanged interface, which defines
a PropertyChanged event to automatically push the UI notification to update the elements in the UI
thread. In the example, when you set the PersonName property, the OnPropertyChanged event fires
from the property setter and notifies the UI that the PersonName has been modified. The UI then
sets the value based on the property value.

www.EBooksWorld.ir

There's more...
Data binding can be unidirectional (source > target or target > source) or bidirectional (source <
> target), known as mode, and is defined in four categories:

OneTime: This type of data binding mode causes the source property to initialize the
target property. After the binding gets generated, no notifications will be triggered. You
should use this type of data binding where the source data does not change.
OneWay: This type of binding causes the source property to automatically update the
target property. The reverse is not possible here. For example, if you want to display a
label/text in the UI based on some condition in the code behind or business logic, you need
to use OneWay data binding as you don't need to update back the property from the UI.
TwoWay: This type of binding is a bidirectional data binding, where both the source
property and the target property can send update notifications. This is applicable for
editable forms where the user can change the value displayed in the UI. For example, the
Text property of a TextBox control supports this type of data binding.
OneWayToSource: This is another unidirectional data binding, which causes the target
property to update the source property (the reverse of OneWay binding). Here, the UI sends
notification to the context and no notification is generated if the context changes.

Here's a simple diagram, describing how the various data binding modes work:

www.EBooksWorld.ir

Working with dependency
properties
WPF provides a set of services which can be used to extend the CLR properties to provide
additional benefits such as automatic UI notifications in the ecosystem. To implement the
dependency property, the class must be inherited from the DependencyObject class.

A CLR property reads directly from the private member of the class, whereas a dependency
property is stored in a dictionary of keys and values provided by the base class. As the
dependency property stores the property only when it is changed, it uses a great deal less
memory and is accessed faster.

To easily create a dependency property in a .cs file, use the propdp code snippet. In any class file
which is inherited from DependencyObject, write propdp followed by TAB to generate the structure
of it. Navigate using the TAB key and change the type, name, owner, and metadata details.

In this recipe, we will learn how to use a dependency property to automatically notify the UI that
a change has been made in the property value, which will reduce the burden of defining the
PropertyChanged event from the INotifyPropertyChanged interface.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio IDE and create a project named CH04.DependencyPropertyDemo. Make
sure that you have selected the WPF application type as a project template. We will use the same
example that we have created in the previous recipe.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create a dependency property, bind it to the UI, and send
notifications from the code:

1. From Solution Explorer, open the MainWindow.xaml page and use the same UI design that we
have used in the previous example. Copy the following XAML markup and replace the
content of the MainWindow.xaml file:

<Window x:Class="CH04.DependencyPropertyDemo.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Name="window"

 Title="Dependency Properties Demo" Height="150"

 Width="300">

 <Grid Margin="10">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="15"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="10"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <!-- Row 0 -->

 <TextBlock Text="Your department"

 Grid.Row="0" Grid.Column="0"/>

 <TextBlock Text=":"

 Grid.Row="0" Grid.Column="1"

 HorizontalAlignment="Center"/>

 <TextBlock Text="{Binding Department,

 ElementName=window}"

 Margin="0 2"

 Grid.Row="0" Grid.Column="2"/>

 <!-- Row 1 -->

 <TextBlock Text="Your name"

 Grid.Row="1" Grid.Column="0"/>

 <TextBlock Text=":"

 Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"/>

 <TextBox Text="{Binding PersonName,

 ElementName=window, Mode=TwoWay}"

 Margin="0 2"

 Grid.Row="1" Grid.Column="2"/>

 <!-- Row 3 -->

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 Grid.Row="3" Grid.Column="0"

 Grid.ColumnSpan="3">

 <Button Content="Submit"

 Margin="4" Width="80"

 Click="OnSubmit"/>

 <Button Content="Reset"

 Margin="4" Width="80"

 Click="OnReset"/>

 </StackPanel>

 </Grid>

</Window>

www.EBooksWorld.ir

2. Now open the code-behind file and add the following CLR property inside the class. We
don't need to make it a dependency property, as the value is always constant here:

public string Department

{

 get { return "Software Engineering"; }

}

3. Now, inside the class, write propdp and press the TAB key twice. It will create the structure
of the property system. By default, int will be highlighted. Replace it with string.

4. Press the TAB key once again and rename the property name from MyProperty to PersonName.
5. Press the TAB key once again to change the focus to the ownerclass name parameter of the

Register method. Rename it to the class name of the owner. In our case, it is MainWindow.
6. Press the TAB key once again to move the focus to the property metadata. Here you can set

the default value of the property. By default, 0 (zero) is selected. Change it to string.Empty.
Here's the complete implementation of our dependency property, named PersonName:

public string PersonName

{

 get { return (string)GetValue(PersonNameProperty); }

 set { SetValue(PersonNameProperty, value); }

}

public static readonly DependencyProperty PersonNameProperty =

 DependencyProperty.Register("PersonName",

 typeof(string), typeof(MainWindow),

 new PropertyMetadata(string.Empty));

7. Let's add the following event implementations for the Submit and Reset buttons inside the
MainWindow class:

private void OnSubmit(object sender, RoutedEventArgs e)

{

 MessageBox.Show("Hello " + PersonName);

}

private void OnReset(object sender, RoutedEventArgs e)

{

 PersonName = string.Empty;

}

8. As the code change has been done, let's build and run the application. You will see the
application window pop up on the screen. Enter a name in the provided input box and click
Submit. The message box will be shown, including the entered text:

9. Click on the Reset button. This will clear the text inside the input box (TextBox control):

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
The getters and setters work differently in dependency properties. Rather than returning or
setting a value from/to its private field (CLR property), the dependency property calls
GetValue(DependencyProperty) or SetValue(DependencyProperty, value) from its base class
DependencyObject. In our example, the name of the dependency property is PersonNameProperty.

The static Register method of the DependencyProperty class takes a few parameters to create the
dependency property. The first parameter that it takes is the actual name of the property. The
second parameter is the type of the property, the third is the owner type which is basically the
class name where the dependency property is going to create. The next parameter it takes is the
metadata information, where you can assign the default value of the property. Here is the
complete code:

public static readonly DependencyProperty PersonNameProperty =

 DependencyProperty.Register("PersonName",

 typeof(string),

 typeof(MainWindow),

 new PropertyMetadata(string.Empty));

When you set a value from the XAML, by providing a data binding with the property, it sets the
value which you can pick from an accessible place. Similarly, when you set the value from code,
it automatically notifies the UI that a change has been made and performs the same change in
the UI. Thus, it reduces the burden of implementation of the INotifyPropertyChanged interface and
its associated PropertyChanged event.

www.EBooksWorld.ir

There's more...
The property metadata of the Register method can take one to three arguments to it. The first one
is the default value that we have seen earlier. The second one is the PropertyChangedCallback,
which is to be called by the property system whenever the effective value of the property
changes. The third one is the CoerceValueCallback, which is to be called whenever the property
system calls System.Windows.DependencyObject.CoerceValue method against the property.

Most of the time, the property metadata is created using one to two parameters defining the
default value and the property changed callback. Let's learn with an example demonstrating how
this can be written:

public string PersonName

{

 get { return (string)GetValue(PersonNameProperty); }

 set { SetValue(PersonNameProperty, value); }

}

public static readonly DependencyProperty PersonNameProperty =

 DependencyProperty.Register("PersonName", typeof(string),

 typeof(MainWindow), new PropertyMetadata(string.Empty,

 OnPropertyChangedCallback));

private static void OnPropertyChangedCallback(DependencyObject d, DependencyPropertyChangedEventArgs e)

{

}

Here, the OnPropertyChangedCallback event will be raised whenever you change the value of the
property. You can take further action based on the event trigger. You can also call other non-
static members from the callback event by accessing the DependencyObject "d".

You can also validate a dependency property before submitting it to the property system. The
fifth parameter of the Register method accepts a delegate, called ValidateValueCallback. You can
implement it to validate the effective value of the dependency property. If the value has been
validated properly, it will return true; if not it will be treated as invalid and will return false.

www.EBooksWorld.ir

Working with attached
properties
An attached property is a kind of dependency property which is intended to be used as a global
property type and is settable on any object. It does not have conventional property wrapper and
can still be used to receive notification of a value change. Unlike dependency properties,
attached properties are not defined in the same class where they are used.

The main purpose of using attached properties is to allow different child elements to specify
unique values of a property, which is actually defined in a parent element. For example, you can
use Grid.Row, Grid.Column in any child elements of the Grid panel. Similarly, the Canvas.Left,
Canvas.Top attached properties are used in any child elements of a Canvas panel.

In this recipe, we will learn how to create an Attached property and perform the operation from a
different class.

www.EBooksWorld.ir

Getting ready
First, create a new project called CH04.AttachedPropertyDemo, based on the WPF application project
type.

www.EBooksWorld.ir

How to do it...
Now, perform the following steps to create the Attached property named SelectOnFocus, to a
TextBox control, which when enabled will select the text on focus change by using the TAB key:

1. Open Solution Explorer, right-click on the project, and add a new class by following the
Add | Class... context menu path. Give the class the name TextBoxExtensions.

2. Open the TextBoxExtensions.cs file and add the following using namespace inside the class
file:

using System.Windows;

using System.Windows.Controls;

3. Inside the class body, type propa and press TAB twice. This will create the structure of the
attached dependency property and the keyboard focus will move to the property type,
which is int by default. Change it to bool.

4. Press TAB again to select MyProperty. Rename it to SelectOnFocus.
5. TAB it once again to select the ownerclass and change it to TextBoxExtensions.

6. Press TAB to set the property metadata. Set the default value to false. Set the
PropertyChangedCallback parameter to OnSelectOnFocusChanged. Here's the complete code,
including the callback event:

public static bool GetSelectOnFocus(DependencyObject obj)

{

 return (bool)obj.GetValue(SelectOnFocusProperty);

}

public static void SetSelectOnFocus(DependencyObject obj,

 bool value)

{

 obj.SetValue(SelectOnFocusProperty, value);

}

public static readonly DependencyProperty SelectOnFocusProperty

 = DependencyProperty.RegisterAttached("SelectOnFocus",

 typeof(bool),

 typeof(TextBoxExtensions),

 new PropertyMetadata(false, OnSelectOnFocusChanged));

private static void OnSelectOnFocusChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)

{

 if (d is TextBox textBox)

 {

 textBox.GotFocus += (s, arg) =>

 {

 textBox.SelectAll();

 };

 }

}

7. Now open the MainWindow.xaml file and replace the existing XAML content with the
following one:

www.EBooksWorld.ir

<Window x:Class="CH04.AttachedPropertyDemo.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:extensions="clr-

 namespace:CH04.AttachedPropertyDemo"

 Title="Attached Property Demo"

 Height="150" Width="340">

 <StackPanel Margin="15">

 <TextBox Text="Normal TextBox Control"

 Width="200" Height="30"

 Margin="4"/>

 <TextBox Text="Select On Focus: Enabled"

 extensions:TextBoxExtensions.SelectOnFocus="True"

 Width="200" Height="30"

 Margin="4"/>

 </StackPanel>

</Window>

8. Now, build and run the application.
9. Focus on the first textbox. It won't have any selection by default. Press TAB to move the

focus to the second textbox. The entire text of the textbox will be highlighted. Press TAB
again to focus on the first textbox. There won't be any selection, as the said attached
property was added to the second textbox only.

www.EBooksWorld.ir

How it works...
Dependency properties are registered by calling the DependencyProperty.Register method, whereas
attached properties are registered by calling the DependencyProperty.RegisterAttached method. It
takes four parameters—the actual name of the property, type of the property, type of the owner,
and property metadata.

When you set the property to the control, as an attached property
(extensions:TextBoxExtensions.SelectOnFocus="True", in our example), in the XAML, it registers it
to the WPF property system during the instance load and fires the PropertyChangedCallback
defined in the RegisterAttached method. In the preceding example, the OnSelectOnFocusChanged
event will be called, which will register the GotFocus event on the associated TextBox control to
perform the selection of the text.

Instead of a specific control such as TextBox, you can use UIElement to generalize the association.
In this way, you can apply it to any control, by registering the attached property in the XAML.

www.EBooksWorld.ir

Data binding to an object
Up to this point, we have learned how to create CLR properties with the INotifyPropertyChanged
interface; we have also learned about the dependency property with a simple data type. There
are many instances when you need to bind an object of some class/model to an UI and display
its associated properties necessary.

In this recipe, we will learn how to do object data binding to show and retrieve information to
and from the user.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio instance and create a new project named CH04.ObjectBindingDemo.
Make sure you select the proper WPF application project type.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create the model and dependency property, and bind the data to
the UI controls, so that, when a change happens in underlying data, it automatically reflects in
the UI:

1. First, we need to create a data model. From Solution Explorer, right-click on the project
and navigate to the context menu entry Add | Class... and create a class file
called Person.cs.

2. Replace the content of the Person class with the following three properties:

public class Person

{

 public string Name { get; set; }

 public string Blog { get; set; }

 public int Experience { get; set; }

}

3. Go to Solution Explorer once again and double-click to open the MainWindow.xaml.cs file.
Create a dependency property named PersonDetails and set its data type as Person. Also, set
its default value to null as shared here:

public Person PersonDetails

{

 get { return (Person)GetValue(PersonDetailsProperty); }

 set { SetValue(PersonDetailsProperty, value); }

}

public static readonly DependencyProperty PersonDetailsProperty =

 DependencyProperty.Register("PersonDetails",

 typeof(Person),

 typeof(MainWindow),

 new PropertyMetadata(null));

4. Just after the InitializeComponent() method call, inside the constructor of the MainWindow
class, initialize the PersonDetails property and set it as the DataContext of the selected class
as follows:

PersonDetails = new Person

{

 Name = "Kunal Chowdhury",

 Blog = "http://www.kunal-chowdhury.com",

 Experience = 10

};

DataContext = PersonDetails;

5. Now, as the backend code is ready, let's open the MainWindow.xaml file to design the UI and
do the data binding with our model.

6. Replace the existing Grid panel with the following XAML markup:

<StackPanel Margin="10">

 <TextBlock Margin="0 0 0 20"

 TextWrapping="Wrap">

www.EBooksWorld.ir

 <Run Text="{Binding Name}"/> blogs at <Hyperlink NavigateUri="{Binding Blog}"><Run Text="{Binding Blog}"/></Hyperlink>, and has <Run Text="{Binding Experience}"/> years of experience.

 </TextBlock>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Enter years of experience:"/>

 <TextBox Text="{Binding Experience, Mode=TwoWay}"

 Margin="10 0" Width="50"/>

 </StackPanel>

</StackPanel>

7. Now compile the project and run the application. You will see the following UI:

www.EBooksWorld.ir

How it works...
The UI of the application has two TextBlock controls to represent the data and one TextBox to get
input from the user. In the first TextBlock control, we have multiple <Run/> commands to bind the
data value from the Person class, along with other static texts and a Hyperlink to create a link. The
data of the UI class is bound to the DataContext, which is PersonDetails in our case. The properties
binded to the UI come from the Person class, which is the data type of the PersonDetails
dependency property.

The TextBox control is bound to the Experience property, which is again bound to the third Run
command of the first TextBlock. Hence, it is showing 10 in both places. Now change the value of
the TextBox control to 15 and press the TAB key to change the focus. This will trigger the
TextChanged event of the TextBox and modify the underlying property named Experience. Due to its
nature, the notification will be automatically sent to the UI and the TextBlock control will get
updated as follows:

www.EBooksWorld.ir

Data binding to a collection
As we learned about object data binding to show a single object on the UI, let's begin with
binding a collection of data objects in a UI to display all the records to the user. We will discuss
it in this recipe.

www.EBooksWorld.ir

Getting ready
Open a Visual Studio instance and create a new project called CH04.CollectionBindingDemo. Make
sure you use the WPF application project template.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create a collection data model and bind it to the UI, using a
DataGrid control:

1. Inside the Solution Explorer, right-click on the project. From the context menu, navigate to
Add | Class... to create a class file named Employee.cs.

2. Open the Employee.cs file and replace the class implementation with the following code:

public class Employee

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Department { get; set; }

}

3. Navigate to the MainWindow.xaml.cs file and add the following using statement to define
ObservableCollection inside the class:

using System.Collections.ObjectModel;

4. Inside the MainWindow class implementation, create a dependency property named Employees,
of type ObservableCollection<Employee>, as shared here:

public ObservableCollection<Employee> Employees

{

 get { return (ObservableCollection<Employee>)GetValue(EmployeesProperty); }

 set { SetValue(EmployeesProperty, value); }

}

public static readonly DependencyProperty EmployeesProperty =

 DependencyProperty.Register("Employees",

 typeof(ObservableCollection<Employee>),

 typeof(MainWindow),

 new PropertyMetadata(null));

5. Now, just after the InitializeComponent() method call inside the constructor, write the
following code block:

Employees = new ObservableCollection<Employee>

{

 new Employee

 {

 FirstName = "Kunal", LastName ="Chowdhury",

 Department="Software Division"

 },

 new Employee

 {

 FirstName = "Michael", LastName ="Washington",

 Department="Software Division"

 },

 new Employee

 {

 FirstName = "John", LastName ="Strokes",

 Department="Finance Department"

 },

www.EBooksWorld.ir

};

dataGrid.ItemsSource = Employees;

6. Now open the MainWindow.xaml file and a DataGrid control inside the default Grid panel.
Create three columns and bind their values to the FirstName, LastName, and Department
properties of the Employee object. Make sure you set the AutoGenerateColumns property of the
DataGrid to False. Here's the complete XAML markup:

<Grid>

 <DataGrid x:Name="dataGrid"

 AutoGenerateColumns="False">

 <DataGrid.Columns>

 <DataGridTextColumn Header="First Name"

 Binding="{Binding FirstName}"/>

 <DataGridTextColumn Header="Last Name"

 Binding="{Binding LastName}"/>

 <DataGridTextColumn Header="Department"

 Binding="{Binding Department}"/>

 </DataGrid.Columns>

 </DataGrid>

</Grid>

7. Now build the project and run the application. You will see the following screen, along
with the data inside a DataGrid:

www.EBooksWorld.ir

How it works...
When you bind a collection of objects to a DataGrid, it creates data grid rows for each object
present in the collection. The column defines the properties exposed by the object.

When the AutoGenerateColumns property of the DataGrid is set to True (default), it automatically
creates the columns based on the property list. In this example, we have set the
AutoGenerateColumns property to False and defined the individual columns explicitly. Using this
method, you can define which column to show or hide. Once you set the collection to the
ItemsSource property of the DataGrid, it populates the rows and columns accordingly.

www.EBooksWorld.ir

There's more...
You can also define the binding in the XAML. To do this, first open the MainWindow.xaml.cs and
remove the line dataGrid.ItemsSource = Employees;. Now, go to the MainWindow.xaml file and give
the window a name (x:Name="window"). Now, set the ItemsSource property of the DataGrid control,
as mentioned here:

<DataGrid ItemsSource="{Binding Employees, ElementName=window}"

Let's run the application once again, by building the project. You will see the same output on the
screen.

www.EBooksWorld.ir

Element-to-element data
binding
In the last few recipes, we learned how to do object-to-element data binding. Though this is
commonly used, you will need element-to-element data binding within the same XAML page to
reduce the extra lines of codes in the code-behind file. In this recipe, we will learn how to do
this.

www.EBooksWorld.ir

Getting ready
First, launch your Visual Studio IDE and create a new WPF application project. Give it the
name CH04.ElementToElementBindingDemo.

www.EBooksWorld.ir

How to do it...
Now perform the following steps to design the UI with a TextBlock and a Slider control. Then we
will bind the value of the slider control with the FontSize property of the TextBlock:

1. Open the MainWindow.xaml page and replace the default Grid panel with the following XAML
markup:

<Grid>

 <TextBlock FontSize="{Binding Value,

 ElementName=fontSizeSlider}"

 Margin="4"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <Run Text="Font Size:"/>

 <Run Text="{Binding Value,

 ElementName=fontSizeSlider}"/>

 </TextBlock>

 <Slider x:Name="fontSizeSlider"

 Minimum="10" Maximum="40" Value="20"

 LargeChange="5"

 VerticalAlignment="Bottom"

 Margin="10"/>

</Grid>

2. Now build the project and run it. You will see the application UI on the screen, with a
TextBlock and a Slider control.

3. Now increase or decrease the slider value to see the change in the UI, as shown in the
following screenshot:

www.EBooksWorld.ir

How it works...
When you drag the thumb of the slider, it increases or decreases the value of the slider control
(fontSizeSlider, in our example). The FontSize property of the TextBlock control is directly bound
to the value of the slider. So, when you drag the slider, based on the value, it increases or
decreases the font size.

Similarly, the TextBlock has a few Run commands. The Text property of one of the Run commands
is also binded with the slider value, and thus, you can see the number (current value of slider) on
the screen as the font size.

www.EBooksWorld.ir

Sorting data in a DataGrid
control
The DataGrid control is used to show a number of records in a tabular format. Rows and columns
are used to display the data. Along with other common functionalities, the WPF DataGrid control
offers a default sorting feature. You can also customize this to handle it programmatically. In
this recipe, we will learn how to add the sorting feature to DataGrid and trigger it on demand.

www.EBooksWorld.ir

Getting ready
To get started with this recipe, open your Visual Studio editor and create a new WPF application
project, called CH04.DataGridSortDemo.

www.EBooksWorld.ir

How to do it...
Perform the following to create a data model, populate it, and bind it to a DataGrid in the UI.
Later, add a CheckBox control to customize the sorting functionality:

1. To begin, right-click on the Solution Explorer, create a new class file named Employee.cs,
by following the right-click context menu entry Add | Class..., and add a few properties in
it:

public class Employee

{

 public string ID { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Department { get; set; }

}

2. Open the MainWindow.xaml.cs file and add a dependency property, Employees, of type
ObservableCollection<Employee>. Make sure you add the following
namespaces, System.Collections.ObjectModel and System.ComponentModel, in order to resolve
the required classes:

public ObservableCollection<Employee> Employees

{

 get { return (ObservableCollection<Employee>) GetValue(EmployeesProperty); }

 set { SetValue(EmployeesProperty, value); }

}

public static readonly DependencyProperty

 EmployeesProperty =

 DependencyProperty.Register("Employees",

 typeof(ObservableCollection<Employee>),

 typeof(MainWindow),

 new PropertyMetadata(null));

3. Inside the constructor of the MainWindow class, initialize the Employees collection as follows:

Employees = new ObservableCollection<Employee>

{

 new Employee

 {

 ID = "EMP0001",

 FirstName = "Kunal", LastName = "Chowdhury",

 Department = "Software Division"

 },

 new Employee

 {

 ID = "EMP0002",

 FirstName = "Michael", LastName = "Washington",

 Department = "Software Division"

 },

 new Employee

 {

 ID = "EMP0003",

 FirstName = "John", LastName = "Strokes",

 Department = "Finance Department"

 },

www.EBooksWorld.ir

 new Employee

 {

 ID = "EMP0004",

 FirstName = "Ramesh", LastName = "Shukla",

 Department = "Finance Department"

 }

};

4. Now open the MainWindow.xaml page and replace the default Grid panel with a StackPanel.
Add a DataGrid control inside it and give it a name (let's say, dataGrid). Set its
AutoGenerateColumns property to False.

5. Create four data grid columns of type DataGridTextColumn and create the data binding with
the properties exposed from the Employee model. Here's the XAML code:

<StackPanel>

 <DataGrid x:Name="dataGrid"

 AutoGenerateColumns="False">

 <DataGrid.Columns>

 <DataGridTextColumn Header="EMP ID"

 Binding="{Binding ID}"/>

 <DataGridTextColumn Header="First Name"

 Binding="{Binding FirstName}"/>

 <DataGridTextColumn Header="Last Name"

 Binding="{Binding LastName}"/>

 <DataGridTextColumn Header="Department"

 Binding="{Binding Department}"/>

 </DataGrid.Columns>

 </DataGrid>

</StackPanel>

6. Now, as the data grid is already in place, assign the Employees collection as the ItemsSource
property of the data grid. You can do this inside the MainWindow.xaml.cs file, just after
initialization of the Employees collection:

dataGrid.ItemsSource = Employees;

7. If you run the application now, you will see a DataGrid control with the records that we
have added into the collection. You will be able to sort the records by clicking on the
column headers, which is the default functionality of the control:

8. Now we need to add a CheckBox control in the UI to toggle the sort on demand. Let's do this
for the Department column. Add the following CheckBox inside the StackPanel, just after the
DataGrid control:

<CheckBox x:Name="sortByDepartment"

 Content="Sort by Department"

 HorizontalAlignment="Right"

 Margin="10"

 Click="OnSortByDepartment"/>

www.EBooksWorld.ir

9. Navigate to the MainWindow.xaml.cs file once again, and add the following event inside the
class:

private void OnSortByDepartment(object sender,

 RoutedEventArgs e)

{

 var cvs =

 CollectionViewSource.GetDefaultView(dataGrid.ItemsSource);

 if (cvs != null && cvs.CanSort)

 {

 cvs.SortDescriptions.Clear();

 if (sortByDepartment.IsChecked == true)

 {

 cvs.SortDescriptions.Add(

 new SortDescription("Department",

 ListSortDirection.Ascending));

 }

 }

}

10. Now run the application again. You will see a new checkbox, under the data grid. Toggle
the selection (check status) and observe the behavior on the UI:

www.EBooksWorld.ir

How it works...
Once the OnSortByDepartment event triggers, it gets the default view of the data grid and adds
SortDescription to the SortDescriptions property of the default view instance. SortDescription
takes the property name as the first argument. It defines the column for which you want to add
the sort functionality. The second parameter is the ListSortDirection, which can be either
Ascending or Descending.

It's not limited to a single SortDescriptor. You can add more based on your requirement. At any
point of time, when you want to reset the view from the applied sort description, you can call
the SortDescriptions.Clear() method on the view (in our case, it is cvs).

www.EBooksWorld.ir

Grouping data in a DataGrid
control
The DataGrid control also allows you to group the records by field name. In this recipe, we are
going to learn how to implement this feature using the PropertyGroupDescription.

www.EBooksWorld.ir

Getting ready
Let's begin with creating a new project called CH04.DataGridGroupDemo. Make sure you select the
WPF application template while creating the project.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create groups while displaying records in DataGrid:

1. Inside the project, create the Employee model class and expose some properties, like we
shared earlier in the Sorting data in a DataGrid control recipe.

2. Create the same dependency property (Employees, of type ObservableCollection<Employee>) in
the MainWindow.xaml.cs file and populate the collection with some data records.

3. Now open the MainWindow.xaml file and add the attribute x:Name="window" to give the Window a
name, so that we can perform element-to-element data binding.

4. Replace the default Grid panel with StackPanel and add a DataGrid control inside it.
5. Set the ItemsSource property of the DataGrid to bind the Employees collection, exposed from

the code behind as a dependency property:

ItemsSource="{Binding Employees, ElementName=window}"

6. Set the AutoGenerateColumns of the data grid to False, as we are going to add the columns
manually.

7. As shown in the following XAML snippet, add the four columns to the data grid.
8. Also, add a CheckBox control, just after the DataGrid, to enable it to apply grouping to the

records by department name. Here's the complete XAML code:

<StackPanel>

 <DataGrid x:Name="dataGrid"

 ItemsSource="{Binding Employees,

 ElementName=window}"

 AutoGenerateColumns="False"

 CanUserAddRows="False">

 <DataGrid.Columns>

 <DataGridTextColumn Header="EMP ID"

 Binding="{Binding ID}"/>

 <DataGridTextColumn Header="First Name"

 Binding="{Binding FirstName}"/>

 <DataGridTextColumn Header="Last Name"

 Binding="{Binding LastName}"/>

 <DataGridTextColumn Header="Department"

 Binding="{Binding Department}"/>

 </DataGrid.Columns>

 </DataGrid>

 <CheckBox x:Name="groupByDepartment"

 Content="Group by Department"

 HorizontalAlignment="Right"

 Margin="10"

 Click="OnGroupByDepartment"/>

</StackPanel>

9. As we are going to add grouping on the DataGrid records, we need to design the group
style. Add the following snippet inside the DataGrid:

<DataGrid.GroupStyle>

 <GroupStyle>

 <GroupStyle.ContainerStyle>

 <Style TargetType="{x:Type GroupItem}">

 <Setter Property="Margin" Value="0,0,0,5"/>

 <Setter Property="Template">

www.EBooksWorld.ir

 <Setter.Value>

 <ControlTemplate TargetType="{x:Type

 GroupItem}">

 <Expander IsExpanded="True">

 <Expander.Header>

 <TextBlock Text="{Binding

 Path=Name}"

 Margin="5,0,0,0"/>

 </Expander.Header>

 <Expander.Content>

 <ItemsPresenter />

 </Expander.Content>

 </Expander>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

 </Style>

 </GroupStyle.ContainerStyle>

 </GroupStyle>

</DataGrid.GroupStyle>

10. Now we will need to add the OnGroupByDepartment event implementation. Open the
MainWindow.xaml.cs and add the following code:

private void OnGroupByDepartment(object sender,

 RoutedEventArgs e)

{

 var cvs =

 CollectionViewSource.GetDefaultView(dataGrid.ItemsSource);

 if (cvs != null && cvs.CanGroup)

 {

 cvs.GroupDescriptions.Clear();

 if (groupByDepartment.IsChecked == true)

 {

 cvs.GroupDescriptions.Add(

 new PropertyGroupDescription("Department"));

 }

 }

}

11. Run the application now. You will see that the UI contains a DataGrid with some records.
12. Click on the checkbox that says Group by Department and observe the behavior:

13. Uncheck the checkbox to revert the view to its original state.

www.EBooksWorld.ir

How it works...
When you trigger the OnGroupByDepartment event, it retrieves the instance of the default view of
DataGrid and applies the group description to it. The grouping applies based on the property
name, passed to the PropertyGroupDescription, as shared here:

cvs.GroupDescriptions.Add(

 new PropertyGroupDescription("Department"));

Based on that, the group style applies to the data grid. The template contains an Expander control
with the name of the column to be grouped as the Header:

<Expander IsExpanded="True">

 <Expander.Header>

 <TextBlock Text="{Binding Path=Name}" Margin="5,0,0,0"/>

 </Expander.Header>

 <Expander.Content>

 <ItemsPresenter />

 </Expander.Content>

</Expander>

You can now expand or collapse the groups and apply sorting or filtering to drill down the data.
It helps to find the correct record easily.

www.EBooksWorld.ir

There's more...
You can also modify the Expander Header to display the number of records inside a group.
The ItemCount property can be used to display the record count. Modify the Expander.Header, as
shared here, to customize it:

<Expander.Header>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="{Binding Path=Name}" Margin="5,0,0,0"/>

 <StackPanel Orientation="Horizontal">

 <TextBlock Margin="5,0,0,0"

 Text="{Binding Path=ItemCount}"/>

 <TextBlock Text=" Item(s)"/>

 </StackPanel>

 </StackPanel>

</Expander.Header>

Now build and run the application again. Once the window loads, click on the checkbox to
group the records by department name. Observe the item count in the expander, as shown here:

www.EBooksWorld.ir

Filtering data in a DataGrid
control
When we display a set of huge records in a DataGrid, it often becomes difficult for the user to
search for and find a particular record from the grid. In such cases, you may want to provide an
additional feature to filter the records to a specific search term.

In this recipe, we will learn how to add a search box to filter records in a DataGrid control.

www.EBooksWorld.ir

Getting ready
Let's start by creating a WPF application project named CH04.DataGridFilterDemo in your Visual
Studio IDE.

www.EBooksWorld.ir

How to do it...
Now perform the following steps to add the search functionality attached to the grid records:

1. Once the project has been created, add a new Employee model class inside the project and
expose some properties, like we shared earlier in the Sorting data in a DataGrid control
recipe.

2. Create the same dependency property (Employees, of type ObservableCollection<Employee>) in
the MainWindow.xaml.cs file and populate the collection with some data records.

3. Now open the MainWindow.xaml file and add the attribute x:Name="window" to give the Window a
name, so that we can perform element-to-element data binding.

4. Replace the default Grid panel with a StackPanel.
5. Now insert the following horizontal StackPanel, containing one TextBlock and one TextBox,

inside the root StackPanel:

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Right"

 Margin="4 8">

 <TextBlock Text="Filter records: "/>

 <TextBox x:Name="searchBox" Width="100"

 TextChanged="OnFilterChanged"/>

</StackPanel>

6. Add a DataGrid control, having four columns inside it. Set the AutoGenerateColumns to False
and add the data binding of the ItemsSource property with the Employees collection
(ItemsSource="{Binding Employees, ElementName=window}"). Here's the complete code for
reference:

<DataGrid x:Name="dataGrid"

 AutoGenerateColumns="False"

 CanUserAddRows="False"

 ItemsSource="{Binding Employees,

 ElementName=window}">

 <DataGrid.Columns>

 <DataGridTextColumn Header="EMP ID"

 Binding="{Binding ID}"/>

 <DataGridTextColumn Header="First Name"

 Binding="{Binding FirstName}"/>

 <DataGridTextColumn Header="Last Name"

 Binding="{Binding LastName}"/>

 <DataGridTextColumn Header="Department"

 Binding="{Binding Department}"/>

 </DataGrid.Columns>

</DataGrid>

7. Now navigate to the MainWindow.xaml.cs file, and add the following code blocks to
implement the OnFilterChanged event that gets triggered whenever any text changes in the
searchBox:

private void OnFilterChanged(object sender,

 TextChangedEventArgs e)

{

 var cvs =

 CollectionViewSource.GetDefaultView(dataGrid.ItemsSource);

 if (cvs != null && cvs.CanFilter)

www.EBooksWorld.ir

 {

 cvs.Filter = OnFilterApplied;

 }

}

private bool OnFilterApplied(object obj)

{

 if(obj is Employee emp)

 {

 var searchText = searchBox.Text.ToLower();

 return

 emp.Department.ToLower().Contains(searchText) ||

 emp.FirstName.ToLower().Contains(searchText) ||

 emp.LastName.ToLower().Contains(searchText);

 }

 return false;

}

8. Let's build the project and run the application. You will see the following UI on the screen:

9. Now filter the records by entering some search term in the textbox. Let's enter Finance as
the keyword and see the behavior:

10. If you change the search term to perform the following from the records, it will filter out
only those records.

www.EBooksWorld.ir

How it works...
When you enter a search term, it fires the event OnFilterChanged and retrieves the default view of
the DataGrid. It exposes a property named Filter, which is a predicate. In our example, we
assigned the predicate OnFilterApplied on the Filter property, which, when called, compares the
term with Department, FirstName, LastName, and returns true if a match is found. Based on the
boolean value, it shows the said record.

www.EBooksWorld.ir

Using static bindings
Often, we use static properties in our applications. Along with WPF 4.5, Microsoft provided us
with the option to use static properties in XAML markup, while performing data binding. In this
recipe, we will learn how to create such bindings. These can be useful in the next recipes while
using Converters, Styles, and Templates.

www.EBooksWorld.ir

Getting ready
Let's start by creating a new project, called CH04.StaticBindingDemo. Open your Visual Studio IDE
and select the WPF application project as the project template.

www.EBooksWorld.ir

How to do it...
Once the project has been created, perform the following steps to learn static binding:

1. Open the MainWindow.xaml page and add a Label inside the Grid panel. Give it a background
color (let's say, OrangeRed) and run the application. This is what we use most often to write
hardcoded values inline:

<Label Background="OrangeRed"

 Content="Kunal Chowdhury"

 FontSize="25"

 Width="300" Height="60"

 Padding="10" Margin="10"/>

2. Now, let's change it to set a background color from the system defined colors. To do this,
we need to use {x:Static} markup extension to access the static properties. Here's how the
code will be changed:

<Label Background="{x:Static

 SystemColors.ControlDarkBrush}"

 Content="Kunal Chowdhury"

 FontSize="25"

 Width="300" Height="60"

 Padding="10" Margin="10"/>

3. You can also access locally defined resources, within the XAML page or defined in a
centralized ResourceDictionary. Let's define a color within the same page, under Window:

<Window.Resources>

 <SolidColorBrush Color="GreenYellow"

 x:Key="myBrush"/>

</Window.Resources>

4. Add a Foreground property to the label, to assign its foreground color. Let's bind it with the
static resource (myBrush), that we defined earlier. Here's the code for reference:

<Label Background="{x:Static

 SystemColors.ControlDarkBrush}"

 Foreground="{StaticResource myBrush}"

 Content="Kunal Chowdhury"

 FontSize="25"

 Width="300" Height="60"

 Padding="10" Margin="10"/>

5. Now let's build and run the application. You will see the colors similar to the following
screenshot, where the background will have a light gray color (based on the color set to
your system's ControlDarkBrush) and the foreground will have a greenish yellow color:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
A markup extension is a class that derives from System.Windows.Markup.MarkupExtension and
implements a single method named ProvideValue. In this example, we have used the {x:Static}
markup extension, implemented by the System.Windows.Markup.StaticExtension class, which
allowed you to access the static property.

Similarly, the {StaticResource} is used to access the resource (Color, Brush, Converter, and more),
defined in a XAML.

www.EBooksWorld.ir

Using value converters
Converters are often useful when you want to perform data binding between two properties that
have incompatible types. In such cases, you will need a piece of code which creates a bridge
between source and target. This piece of code is defined as a value converter.

The IValueConverter interface is used to create value converters and contains two methods named
Convert and ConvertBack:

Convert(...): It gets called when the source updates the target object
ConvertBack(...): It gets called when the target object updates the source object

In this recipe, we will learn how to create value converters and use them while data binding.

www.EBooksWorld.ir

Getting ready
Let's begin by creating a new WPF project. Call it CH04.ConverterDemo.

www.EBooksWorld.ir

How to do it...
To begin with the value converter, perform the following steps:

1. From the Solution Explorer, open the MainWindow.xaml file.
2. Replace the existing Grid with the following XAML markup, which contains a CheckBox and

a Rectangle inside a StackPanel:

<StackPanel Orientation="Horizontal"

 VerticalAlignment="Top"

 Margin="20">

 <CheckBox x:Name="chkBox"

 Content="Show/Hide Box"/>

 <Rectangle Fill="Red" Margin="80 0 0 0"

 Width="150" Height="50"

 Visibility="{Binding IsChecked,

 ElementName=chkBox}"/>

</StackPanel>

3. There is a data binding between the Visibility property of the Rectangle and the IsChecked
property of the CheckBox control. If you build and run the application, you will see that there
exists no visible change in the UI when you change the checked state of the checkbox:

4. As the Visibility property does not accept boolean values, the Rectangle stays always visible
by default. Now we will add the converter to it, which will automatically convert the value
from bool to Visibility.

5. Let's create a new class file in the project. Name it BoolToVisibilityConverter.
6. Open the BoolToVisibilityConverter.cs file and add the following namespaces—System,

System.Globalization, System.Windows, and System.Windows.Data as using statement.
7. Now, mark the class as public and implement the IValueConverter interface.
8. Add the following two code blocks inside the class:

public object Convert(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

{

www.EBooksWorld.ir

 return value is bool val && val ? Visibility.Visible :

 Visibility.Collapsed;

}

public object ConvertBack(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

{

 throw new NotImplementedException();

}

9. Now, go to the MainWindow.xaml file and add the following XMLNS namespace, so that we
can declare the converter as a window resource:

xmlns:converters="clr-namespace:CH04.ConverterDemo"

10. Inside the Window tag, add the following markup to declare the converter that we have
created:

<Window.Resources>

 <converters:BoolToVisibilityConverter

 x:Key="BoolToVisibilityConverter"/>

</Window.Resources>

11. Now, in the binding syntax of the Visibility property of Rectangle, associate the converter
as StaticResource, as shown in the following code snippet:

Visibility="{Binding IsChecked, ElementName=chkBox, Converter={StaticResource BoolToVisibilityConverter}}"

12. Once this is done, build the project and run the application.
13. By default, the checkbox will be unchecked and the rectangle will not be visible on the

screen. Change the state of the checkbox to checked and observe that the rectangle will
become visible on the screen. Unchecking the box will again hide the rectangle:

www.EBooksWorld.ir

How it works...
A value converter is used to convert one value to another, by implementing the IValueConverter
interface. The values may be of the same type or different types, but require some
transformation that is not possible declaratively. These are often powerful because they are
written in code, and hence have more logic to control the functionality.

An instance of the converter is generally created in the XAML page and declared as a resource.
Then it sets to the controls by using binding expressions with the Converter property.

Whenever the source property changes, the converter returns a different result through the
Convert method. The ConvertBack method is called in a two-way binding mode, where the source
and target are reversed. In a one-way binding, there's no need to implement ConvertBack and
generally we set its body to return an exception, like this—throw new NotImplementedException().

www.EBooksWorld.ir

There's more...
You can extend the functionality of the converter by using the converter parameter. Let's modify
the Convert method to utilize the parameter named parameter and reverse the visibility based on
its value.

To do so, open the BoolToVisibilityConverter.cs and modify the class implementation as shared
in the following code snippet:

public class BoolToVisibilityConverter : IValueConverter

{

 public object Convert(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

 {

 var val = (bool) value;

 if (parameter is string param &&

 param.ToString().Equals("inverse")) { val = !val; }

 return val ? Visibility.Visible: Visibility.Collapsed;

 }

 public object ConvertBack(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

 {

 throw new NotImplementedException();

 }

}

Now, open the MainWindow.xaml file and modify the data binding of the Visibility property of the
Rectangle to have a ConverterParameter=inverse, as shared here:

<Rectangle Fill="Red" Margin="80 0 0 0"

 Width="150" Height="50"

 Visibility="{Binding IsChecked, ElementName=chkBox,

 Converter={StaticResource BoolToVisibilityConverter},

 ConverterParameter=inverse}"/>

Let's build and run the application. You will see that, this time, the rectangle will be visible by
default when the checkbox is unchecked. Now change the status of the checkbox to check, and
you will see that the rectangle becomes visible on the screen:

www.EBooksWorld.ir

You can, of course, change the implementation and the value of the ConverterParameter, based on
your business requirement, and use the same converter class to return different values on various
conditions.

You can also use BooleanToVisibilityConverter, provided by .NET Framework. You
can read more about this converter here: https://msdn.microsoft.com/en-us/library/syste
m.windows.controls.booleantovisibilityconverter(v=vs.110).aspx.

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/system.windows.controls.booleantovisibilityconverter(v=vs.110).aspx

Using multi-value converters
When you want to change the target value based on multiple values of the same or different
types, you will need to use multi-binding. This is done by using a multi-value converter
(IMultiValueConverter interface).

In this recipe, we will build a sample demo to learn how to work with multi-binding and multi-
value converters.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE and create a new project called CH04.MultiValueConverterDemo, based
on the WPF application project template.

www.EBooksWorld.ir

How to do it...
Once the project is created, follow these steps to design the UI and do a multi-binding between
multiple elements:

1. From the Solution Explorer, open the MainWindow.xaml page.
2. Inside the default Grid panel, create a few rows and columns, so that we can position

elements at specific cells. Let's divide the Grid into five rows and three columns:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition Width="90"/>

 <ColumnDefinition/>

</Grid.ColumnDefinitions>

3. Inside the Grid panel, insert the following XAML code snippet to add few labels and input
boxes inside the window:

<TextBlock Text="Firstname:"

 Grid.Column="0" Margin="2 0"/>

<TextBlock Text="Middle:"

 Grid.Column="1" Margin="2 0"/>

<TextBlock Text="Lastname:"

 Grid.Column="2" Margin="2 0"/>

<TextBlock Text="Fullname:"

 Grid.Row="2" Grid.ColumnSpan="3"

 Margin="2 0"/>

<TextBox x:Name="firstName"

 Grid.Row="1" Grid.Column="0"

 Margin="2 0"/>

<TextBox x:Name="middleName"

 Grid.Row="1" Grid.Column="1"

 Margin="2 0"/>

<TextBox x:Name="lastName"

 Grid.Row="1" Grid.Column="2"

 Margin="2 0"/>

<TextBox x:Name="fullName"

 Grid.Row="3" Grid.ColumnSpan="3"

 Margin="2 0">

</TextBox>

4. Build the project and run the application. You will see four input boxes on the screen,
along with their associated labels as follows:

www.EBooksWorld.ir

5. Let's close the application and return to the Solution Explorer. Create a new class named
FullNameConverter inside the project.

6. Open the FullNameConverter.cs file and implement IMultiValueConverter on it.

7. Define the following using namespaces in the class file—System, System.Globalization, and
System.Windows.Data.

8. Now add the following two methods inside the class, which implements the methods
defined in IMultiValueConverter interface:

public object Convert(object[] values, Type targetType, object parameter, CultureInfo culture)

{

 return string.Format("{0} {1} {2}", values[0], values[1],

 values[2]);

}

public object[] ConvertBack(object value, Type[] targetTypes, object parameter, CultureInfo culture)

{

 return value.ToString().Split(' ');

}

9. Now navigate to the MainWindow.xaml page and add the following XMLNS namespace, so
that the converter can be accessible from the XAML markup:

xmlns:converters="clr-namespace:CH04.MultiValueConverterDemo"

10. Now add the converter to the window resource. To do this, inside the Window tag, add the
following markup to define the instance by key name:

<Window.Resources>

 <converters:FullNameConverter

 x:Key="FullNameConverter"/>

</Window.Resources>

11. Now, inside the Text property of the fullName textbox, define the multi-binding to bind the
property with the Text property of three TextBox controls. Here's the code:

<TextBox x:Name="fullName"

 Grid.Row="3"

 Grid.ColumnSpan="3"

 Margin="2 0">

 <TextBox.Text>

 <MultiBinding Converter="{StaticResource

 FullNameConverter}">

 <Binding ElementName="firstName"

 Path="Text" Mode="TwoWay"/>

 <Binding ElementName="middleName"

 Path="Text" Mode="TwoWay"/>

 <Binding ElementName="lastName"

 Path="Text" Mode="TwoWay"/>

 </MultiBinding>

 </TextBox.Text>

www.EBooksWorld.ir

</TextBox>

12. Once the binding is done, build the project and run the application. You will see the same
UI on the screen. Enter some strings in the Firstname, Middle, and Lastname fields. Observe
the value in the Fullname field:

13. Similarly, change the Fullname field to hold three strings. Press the TAB key once you are
done, and observe the value of the other three fields—Firstname, Middle and Lastname.

www.EBooksWorld.ir

How it works...
When you use a converter of type IMultiValueConverter in a MultiBinding, it passes the values
defined by the Binding tag to the Convert method as an object array. In our preceding example, we
passed three string values (firstName, middleName, and lastName) to the Convert method. The method
then concatenated the strings to form a single string, which was the output string of the Fullname
field as the binding was made with its Text property.

Similarly, when we changed the value of the Fullname field, the ConvertBack method triggered by
the binding converter and returned the splitted strings. As per the binding order, those
automatically got assigned to the respective fields—Firstname, Middle, and Lastname.

www.EBooksWorld.ir

Using Custom Controls and
User Controls
In this chapter, we will cover the following recipes:

Creating a custom control
Customizing the template of a custom control
Exposing properties from a custom control
Exposing events from a custom control
Extending the functionality of a control using behavior
Creating a User Control interface
Exposing events from a User Control
Customizing the XMLNS namespace

www.EBooksWorld.ir

Introduction
A custom control is a loosely coupled control defined in a class which derives from
the System.Windows.Controls.Control class. You may also derive it from a different custom control,
depending on your requirement.

The UI of custom control is generally defined in a resource dictionary inside the resource
file. We can create themes for custom control and reuse them in various projects very easily:

Generally, the custom controls are compiled into a dll assembly and can be reused in multiple
places very easily. You have total control over its code, and thus it gives you more flexibility to
extend the behavior. Once you build and add a reference to the custom control in your project,
you can find it in the Visual Studio control toolbox, which will allow you to drag and drop the
control in your XAML design view and start working with it.

On the other end, User Control is nothing but a custom control that you derive to control the UI
specific to your project. It derives from the System.Windows.Controls.UserControls class, which
basically inherits from System.Windows.Controls.Control:

Generally, the User Control gets placed inside a XAML page with tight bonding to its code
behind. You can directly access its UI elements from the code behind and do some specific
operations.

A point to remember is that you can't create theming support for User Controls
but you can style them by creating theme for its child, custom controls. Also, once
you create a User Control UI in one project, you can't change it in the other
projects.

In this chapter, we will learn how to create custom controls and User Controls, and then
customize them based on need.

www.EBooksWorld.ir

Creating a custom control
Before working with custom controls, you will need to know how to create custom controls and
how to add them to any XAML pages. In this recipe, we will learn these basic operations first.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio IDE and create a new WPF application project,
called CH05.SearchControlDemo.

www.EBooksWorld.ir

How to do it...
Perform the following steps to create your first custom control, which will contain a text input
box and a button to build a search control. At the end, we will add it to the application window:

1. Once the project has been created, right-click on the project, from Solution Explorer, and
follow Add | New Item... from the context menu entries. A new dialog window will pop up
on the screen.

2. Inside the Add New Item dialog window, expand the Installed | Visual C# | WPF tree item,
from the left navigation panel, and select Custom Control (WPF) from the right screen:

3. Give the custom control a name (let's say, SearchControl.cs) and click Add to create it. This
will create the class file named SearchControl.cs inside the project, and a folder (named
Themes) containing a Generic.xaml file.

4. Open the Generic.xaml file, which will contain a Style for the custom control that we
created. This gets generated automatically by the Visual Studio IDE, while creating the
custom control from the default template. Here's the default Style:

<Style TargetType="{x:Type local:SearchControl}">

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="{x:Type local:

 SearchControl}">

 <Border Background="{TemplateBinding

 Background}"

www.EBooksWorld.ir

 BorderBrush="{TemplateBinding

 BorderBrush}"

 BorderThickness="{TemplateBinding

 BorderThickness}">

 </Border>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

5. Now replace the preceding Style of the control with the following one, which contains an
input box and a button, as the control template inside a Grid:

<Style TargetType="{x:Type local:SearchControl}">

 <Setter Property="Height" Value="26"/>

 <Setter Property="Width" Value="150"/>

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="{x:Type

 local:SearchControl}">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBox x:Name="PART_TextBox"

 Grid.Column="0"

 Margin="2"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

 <Button x:Name="PART_Button"

 Content="Search"

 Grid.Column="1"

 Margin="2" Padding="8 2"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

 </Grid>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

6. Now open the MainWindow.xaml page, and add the following XMLNS namespace:

xmlns:controls="clr-namespace:CH05.SearchControlDemo"

7. Now, inside the default Grid panel, add the custom control that we just created, and
optionally set its Height and Width properties:

<Grid>

 <controls:SearchControl Height="30"

 Width="180"/>

</Grid>

8. That's all! Our first custom control has been created and added to the MainWindow of the
application. Let's build and run the application. You will see the following UI on the
screen:

www.EBooksWorld.ir

We have just added the UI of our custom control here and hence no functionality related to
search will work. We will enhance the functionalities in the next recipes.

www.EBooksWorld.ir

How it works...
When you first create a custom control in a project, Visual Studio creates a folder named Themes,
and places a file named Generic.xaml. This file contains all the styles and templates of the custom
controls, by default. When you add more custom controls inside the same project,
the Generic.xaml file gets updated with the styles of the new controls.

The property called TargetType defines the type of the control for which we are going to create
the style. In the preceding example, <Style TargetType="{x:Type local:SearchControl}"> defines the
style of the custom control called SearchControl. To change the UI of the control, we need to
update the same style.

The <ControlTemplate TargetType="{x:Type local:SearchControl}"> defines the template of the
control, which generally resides inside the Style.

The Setter properties inside the Style define the default value of various properties of the said
control. In the preceding example, we have defined the default value of the Height and Width
properties. You can add additional property values.

www.EBooksWorld.ir

There's more...
Before going further with the custom controls, you need to learn and understand some other
points related to them. Let's discuss them in the following sections.

www.EBooksWorld.ir

XMLNS attribute declaration
When the custom control is present within the same project where you are going to use it, you
need to add the XMLNS attribute in the following way:

xmlns:controls="clr-namespace:CH05.SearchControl"

This is the same way we added it in the preceding example. The clr-namespace defines the
namespace where the controls are available. A single namespace can have one or more controls.

When the custom control is present in a different project to the one where you are going to add
it, you need to add the XMLNS attribute in the following way:

xmlns:controls="clr-namespace:CH05.SearchControl;assembly=CH05.SearchControlDemo"

Here, the clr-namespace defines the namespace of the controls, whereas the assembly defines the
fully qualified name of the assembly where the control is present.

www.EBooksWorld.ir

Default styling
When you create a custom control, all the default properties of its base class, Control, gets
assigned to it. You can use TemplateBinding to bind the data to a specific control. For example, to
change the background color of the input box based on the Background property set on the control
level, you need to create the template binding in the following way:

<TextBox x:Name="PART_TextBox"

 Grid.Column="0"

 Margin="2"

 Background="{TemplateBinding Background}"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

Now, when you change the color of the control, it will change the color of the said input box.
Set a color to the Background property of our search control inside the MainWindow.xaml and observe
the change.

www.EBooksWorld.ir

Toolbox integration
When you create a custom control within the same project and/or reference a dll containing any
custom control, you will be able to utilize the Visual Studio Toolbox to drag and drop the
control directly to the XAML/designer view.

After creating the control or adding the control library in a project, you need to build it first.
Now, open any XAML page and navigate to the Visual Studio Toolbox. You will be able to find
the control, as demonstrated here:

Now you can drag it to the place where you want to add the said control.

www.EBooksWorld.ir

Customizing the template of a
custom control
The development of a custom control always requires its default template to be changed to give
it a proper look and make it ready for theming support. That starts with the customization of the
template and its default values.

In this recipe, we will learn how to change the template and use TemplateBinding to create a
relation with its property values.

www.EBooksWorld.ir

Getting ready
To get started, launch Visual Studio, create a project, and add a new custom control in it. For
this demonstration, we will be using the existing project, CH05.SearchControlDemo, that we created
in the previous recipe. So, let's open the project.

www.EBooksWorld.ir

How to do it...
As we want to customize the template of the custom control to have a proper template binding,
perform the following steps:

1. Open the Generic.xaml file, which is present under the Themes folder of the project.
2. Now, scroll down to the definition of the ControlTemplate as we need to customize the look

and feel of it.
3. Search for the TextBox control named PART_TextBox, and set its Background, BorderBrush,

BorderThickness, and Foreground properties to have a binding with the control's default
properties.

4. Similarly, set the Background and Foreground property of the button (PART_Button) to the same
properties of the control, by using template binding. Here's the complete code of the
modified control template:

<ControlTemplate TargetType="{x:Type local:SearchControl}">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBox x:Name="PART_TextBox"

 Grid.Column="0"

 Margin="2"

 Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding

 BorderBrush}"

 BorderThickness="{TemplateBinding

 BorderThickness}"

 Foreground="{TemplateBinding Foreground}"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

 <Button x:Name="PART_Button"

 Content="Search"

 Grid.Column="1"

 Margin="2" Padding="4 2"

 Background="{TemplateBinding Background}"

 Foreground="{TemplateBinding Foreground}"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

 </Grid>

</ControlTemplate>

5. You can also assign default values to your control templates, by using the <Setter/> tag.
You will need to add it inside the <Style/> definition. To add default values to the Height,
Width, Background, BorderBrush, BorderThickness, and Foreground properties, add the following
code block inside the Style tag:

<Setter Property="Height" Value="30"/>

<Setter Property="Width" Value="280"/>

<Setter Property="Background" Value="AliceBlue"/>

<Setter Property="BorderBrush" Value="LightSkyBlue"/>

<Setter Property="BorderThickness" Value="1"/>

<Setter Property="Foreground" Value="Navy"/>

6. Once done, compile your project and run it. You will see the following screen, where the

www.EBooksWorld.ir

background of the TextBox and Button controls are painted with AliceBlue color. Similarly,
the other styles are applied as per the default values specified:

7. You can override the default style values in your application, where you are using the
control. To do this, open the MainWindow.xaml file and add a custom Background color,
BorderBrush, Foreground, and BorderThickness to the control as follows:

<Grid>

 <controls:SearchControl

 Background="#2200FF00"

 BorderThickness="2"

 BorderBrush="GreenYellow"

 Foreground="Green"/>

</Grid>

8. Now, if you build and run the application, you will notice the UI changed as per the
custom value that you specified directly to the control:

www.EBooksWorld.ir

How it works...
TemplateBinding is a type of binding used mainly while working with templates. This allows you
to replace the visual tree of controls for a completely fresh look and feel, based on the theme or
style that you want to use. It also helps you to reference the parent control, read its properties,
and apply its values.

When you apply a template binding to a control, present in the ControlTemplate of the parent
control, it first checks whether the property is present to the parent control. If it is not present, it
throws an XAML syntax error.

If it finds the property, it checks whether the value is supplied from the place where the custom
control has been used. If it finds no reference, it applies the default value to the property.

www.EBooksWorld.ir

Exposing properties from the
custom control
Most of the time, while using custom controls, we need to expose additional properties based on
the requirement. In this recipe, we will demonstrate exposing dependency properties from the
custom control and binding the record to the UI.

www.EBooksWorld.ir

Getting ready
Let's extend our previous project to perform these steps. To get started, launch Visual Studio and
open the project CH05.SearchControlDemo.

www.EBooksWorld.ir

How to do it...
Once the project has been opened, perform the following steps to create a dependency property
named SearchTerm and bind it with the control UI:

1. Let's open the SearchControl.cs to create a dependency property. Inside the class definition,
type propdp and press the TAB key twice to create the property structure. By default, it
generates MyProperty of type int.

2. Change the property type from int to string and press TAB.
3. Rename MyProperty to SearchTerm and press TAB again.
4. Now change ownerclass to SearchControl and press TAB.
5. Pass string.Empty as the default value to the PropertyMetaData.
6. Once these preceding steps are done, your property is ready to use. Now open the

Generic.xaml page to create the binding to the UI control.
7. Inside the template of the control, find the TextBox named PART_TextBox.

8. Now, add the Text property to it, by using TemplateBinding. You will see the dependency
property (SearchTerm) listed in the XAML IntelliSense, as shown here:

9. Let's complete the template binding as follows:

<TextBox x:Name="PART_TextBox"

 Grid.Column="0"

 Margin="2"

 Text="{TemplateBinding SearchTerm}"

 Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding

 BorderThickness}"

 Foreground="{TemplateBinding Foreground}"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

10. Now navigate to the MainWindow.xaml page and add the SearchTerm property to the control that
we have already added:

www.EBooksWorld.ir

11. Set some sample strings to it:

<controls:SearchControl

 SearchTerm="my search term"

 Background="#2200FF00"

 BorderThickness="2"

 BorderBrush="GreenYellow"

 Foreground="Green"/>

12. Build the project and run it. You will see that the string that you assigned to the SearchTerm
property of the control, actually assigned the value to the search TextBox:

www.EBooksWorld.ir

How it works...
Template binding works only with the dependency properties. When you assign a value to the
dependency property, it automatically updates the child control where you have created the
binding. In our example, when you assign a value to the SearchTerm property, it sets the value to
the textbox (PART_TextBox) control's Text property and thus you can see the value provided to it.

www.EBooksWorld.ir

Exposing events from a custom
control
When you build any custom control, you need to expose additional events, based on the child
controls and functionality that you want to expose to the user. In this recipe, we will learn how
to expose a custom event from a custom control and perform a specific operation using it.

www.EBooksWorld.ir

Getting ready
Let's start with the existing project that we have already used in the previous recipes. Launch the
IDE and open the CH05.SearchControlDemo project inside Visual Studio.

www.EBooksWorld.ir

How to do it...
In this recipe, we will create a public event from the SearchControl, so that we can subscribe to
the PART_Button button event and fetch the user-entered text. To do so, follow perform the
following steps:

1. From Solution Explorer, create a new class named SearchEventArgs, inside the project.
2. Extend the SearchEventArgs class from the EventArgs and expose a public property

(SearchTerm) of type string. Here's the class implementation:

public class SearchEventArgs : EventArgs

{

 public string SearchTerm { get; set; }

}

3. Now open the SearchControl.cs file. We need to create a delegate and event inside it. Let's
add the following inside the class implementation:

public delegate void OnSearchClick(object sender,

 SearchEventArgs e);

public event OnSearchClick SearchButtonClick;

4. The next task is to associate the button click event with the custom event that we have just
created. Pass the SearchTerm to the custom event as an argument. To do this, copy the
following code inside the SearchControl class:

public override void OnApplyTemplate()

{

 base.OnApplyTemplate();

 if (GetTemplateChild("PART_Button") is Button

 searchButton)

 {

 searchButton.Click +=

 OnSearchButtonClicked_Internal;

 }

}

private void OnSearchButtonClicked_Internal(object sender,

 RoutedEventArgs e)

{

 SearchButtonClick?.Invoke(this, new SearchEventArgs {

 SearchTerm = SearchTerm });

}

5. Open the Generic.xaml page and perform a slight change to the Text property binding of the
search TextBox. Instead of template binding, let's perform a normal data binding, passing a
relative source to it. As we need to take input from the user, we will set the binding mode
to TwoWay. Here's the XAML code:

<TextBox x:Name="PART_TextBox"

 Grid.Column="0"

 Margin="2"

 Text="{Binding SearchTerm, RelativeSource={RelativeSource TemplatedParent}, Mode=TwoWay}"

 Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding BorderBrush}"

www.EBooksWorld.ir

 BorderThickness="{TemplateBinding

 BorderThickness}"

 Foreground="{TemplateBinding Foreground}"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"/>

6. Once this is done, open the MainWindow.xaml and register the SearchButtonClick event of the
SearchControl:

<controls:SearchControl

 SearchTerm="my search term"

 Background="#2200FF00"

 BorderThickness="2"

 BorderBrush="GreenYellow"

 Foreground="Green"

 SearchButtonClick="OnSearchButtonClicked"/>

7. Open the code behind MainWindow.xaml.cs and modify the event implementation to show a
message box to the user, with the text that we passed as a search term. You can find it as
e.SearchTerm, as passed to the event argument. Here's the code for your reference:

private void OnSearchButtonClicked(object sender,

 SearchEventArgs e)

{

 MessageBox.Show("You searched for: "" +

 e.SearchTerm + """);

}

8. That's all! Let's build the application and run it. As we already have a default value set to
the control, click on the Search button. You will see a message box with the default search
term. Now, change the value to have a different search term. To do so, click on the TextBox
control and replace the string. Now, click on the Search button once again, which will
show the new search term inside the message box. Here's a screenshot of the same
operation:

www.EBooksWorld.ir

How it works...
When the application loads with the control on the UI, the first thing that it does is to load its
defined template and call the OnApplyTemplate() method. OnApplyTemplate() is a virtual method
present inside the System.Windows.FrameworkElement class, which gets invoked when application
code or internal processes call the System.Windows.FrameworkElement.ApplyTemplate().

As you can see in the OnApplyTemplate() method implementation, it finds out the template child
named PART_Button using the GetTemplateChild method call, and registers its associated Click
event:

public override void OnApplyTemplate()

{

 base.OnApplyTemplate();

 if (GetTemplateChild("PART_Button") is Button searchButton)

 {

 searchButton.Click += OnSearchButtonClicked_Internal;

 }

}

The Click event then invokes the custom event (SearchButtonClick), passing the SearchTerm as
SearchEventArgs. Now, when you click on the button in the application UI, it fires the
OnSearchButtonClicked_Internal event and bubbles up to the application UI. The
OnSearchButtonClicked event handler then triggers due to its subscription to the custom event and
performs the operation. In our case, it shows a message to the user with the search term passed
to the search box.

www.EBooksWorld.ir

Extending the functionality of a
control using behavior
Behavior is a concept to extend the functionality of a control using a reusable component. These
components can be attached to any control or a specific type of control to provide designers with
the flexibility to design complex user interactions without writing any additional code.

In this recipe, we will learn how to create a behavior and the way to apply it to a control without
writing extra code in the code-behind file.

www.EBooksWorld.ir

Getting ready
To get started, we need to open the Visual Studio IDE. Create a new project
called CH05.ControlBehaviorDemo, based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Let's start by creating a component which will add a Size Grow effect to a TextBlock control
when hovering over with the mouse cursor. To do this, perform the following steps:

1. To create and/or use behaviors in an application, you will need to set up the project to have
a reference to the System.Windows.Interactivity.dll assembly file. To do this, right-click on
the project and click Add | Reference... from the context menu.

2. From the Reference Manager dialog, search for interactivity to find the
System.Windows.Interactivity assembly in the list of assemblies. Select the latest version,
as shown in the following screenshot, and click OK. Make sure you verify the added
reference in the project:

3. Now open the MainWindow.xaml page and add a TextBlock control inside the default Grid.
Assign a string to its Text property:

<Grid>

 <TextBlock Text="Hover to Grow the size!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 </TextBlock>

</Grid>

4. If you run the application now, it will have a text in the window. Hovering your mouse on
top of that will not have any effect. For that, we need to create the behavior and register it
with the TextBlock control.

5. Let's create a new class, called GrowTextBehavior, inside the project.
6. Mark the class as public and extend it from the Behavior class. As we are going to create

this component for TextBlock control, we will extend the class from Behavior<TextBlock>, as
shown here:

public class GrowTextBehavior : Behavior<TextBlock>

www.EBooksWorld.ir

7. You will need to add the System.Windows.Interactivity namespace as a using statement to
resolve the class declaration. Alternatively, you can resolve the namespace by clicking the
light bulb and selecting using System.Windows.Interactivity;, as shown in the following
screenshot:

8. Add a public property inside the class to take dynamic input of the size to grow by. Give it
a name:

public int GrowBySize { get; set; }

9. Now, inside the class, type override and enter a space. From the list of overridable
methods, select OnAttached and hit the Enter key. This will override the OnAttached() method
inside the class.

10. Similarly, override the method OnDetaching() inside the class.
11. Inside OnAttached(), register the MouseEnter and MouseLeave events for the associated object,

which is a TextBlock in our case. Similarly, inside the OnDetaching(), unregister the
preceding two events. Here's the code that you may like to take as reference:

protected override void OnAttached()

{

 base.OnAttached();

 AssociatedObject.MouseEnter +=

 AssociatedObject_MouseEnter;

 AssociatedObject.MouseLeave +=

 AssociatedObject_MouseLeave;

}

protected override void OnDetaching()

{

 base.OnDetaching();

 AssociatedObject.MouseEnter -=

 AssociatedObject_MouseEnter;

 AssociatedObject.MouseLeave -=

 AssociatedObject_MouseLeave;

}

12. Now it's time to write our logic to grow and shrink the size of the associated TextBlock
control on mouse over and mouse leave events, respectively. To do so, add the following
code block inside the class:

www.EBooksWorld.ir

private void AssociatedObject_MouseLeave(object sender,

 MouseEventArgs e)

{

 AssociatedObject.FontSize -= GrowBySize;

}

private void AssociatedObject_MouseEnter(object sender,

 MouseEventArgs e)

{

 AssociatedObject.FontSize += GrowBySize;

}

13. That ends the implementation of the behavior component for our TextBlock control. Now
it's time to register it with the control in the UI. To do so, open the MainWindow.xaml again
and add the following XMLNS namespace declaration:

xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"

14. Now modify the TextBlock control to register the association with the behavior component
that we created. Replace the existing markup with the following:

<Grid>

 <TextBlock Text="Hover to Grow the size!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <i:Interaction.Behaviors>

 <b:GrowTextBehavior GrowBySize="10"/>

 </i:Interaction.Behaviors>

 </TextBlock>

</Grid>

15. Let's build the application and run it. You will see a text message in the application
window. Hover over it to see the growing effect on its size:

16. Take your mouse away from the text to see how it moves back to the original state.

www.EBooksWorld.ir

How it works...
The property, AssociatedObject, returns the object to which the
System.Windows.Interactivity.Behavior is attached. In our case, it's the TextBlock control passed as
Behavior of type T (Behavior<TextBlock>), which is associated in the XAML code block, as
mentioned here:

<TextBlock Text="Hover to Grow the size!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <i:Interaction.Behaviors>

 <b:GrowTextBehavior GrowBySize="10"/>

 </i:Interaction.Behaviors>

</TextBlock>

When the association happens between the control and the component, it registers the two
events (MouseEnter and MouseLeave) in our example. Now, when you hover over the mouse on top
of the TextBlock, it gets the dynamic association of the events and triggers them. This way, it gets
notification of the event and performs based on the logic specified.

You can now associate this behavior to any number of controls of type TextBlock, without
writing additional code behind. The XAML designers can easily pick and associate it with the
controls that they want to provide a grow effect on mouse hover.

If you want to associate the behavior to any control, you need to extend it from
Behavior, instead of Behavior<TextBlock>. Similarly, to change the type to any other
specific control (let's say, Label), change the T to Label as shown here
—Behavior<Label>.

www.EBooksWorld.ir

Creating a User Control
interface
Typically, a User Control is a group of elements and controls joined together to create a reusable
component. This is often used to show the same UI in multiple places, either on the same
window or in a different window.

In this recipe, we will learn how to create a User Control interface with all its typical features.

www.EBooksWorld.ir

Getting ready
Get started by creating a new project. Open the Visual Studio IDE and create a new project
based on the WPF application template. Name it CH05.UserControlDemo.

www.EBooksWorld.ir

How to do it...
To demonstrate the complete use of User Control, we will be creating a color mixer control,
exposing some properties from it and binding data using converters. Perform the following
simple steps:

1. Once the project has been created, add a new User Control element inside the project. To
do this, right-click on the project and select Add | User Control... from the context menu
entry.

2. From the Add New Item dialog, select User Control (WPF) as the template to create a
blank User Control. Name the control ColorMixer. Click on the Add button to create a User
Control file called ColorMixer.xaml:

3. Once the User Control has been created, open the code-behind file (ColorMixer.xaml.cs) and
add a property SelectedColor of type Color inside it. Give it a default color (let's
say, Colors.OrangeRed):

public Color SelectedColor

{

 get { return (Color)GetValue(SelectedColorProperty); }

 set { SetValue(SelectedColorProperty, value); }

}

public static readonly DependencyProperty

 SelectedColorProperty =

 DependencyProperty.Register("SelectedColor",

 typeof(Color), typeof(ColorMixer),

 new PropertyMetadata(Colors.OrangeRed));

www.EBooksWorld.ir

4. Let's open the ColorMixer.xaml file to provide a UI to the control. We will be adding four
TextBox controls to assign the color in RGB mode (Red, Green, Blue, and Alpha) and a
Border to show the output from the RGB mixer.

5. First, give the User Control a name, so that we can easily set its DataContext to access its
code-behind properties. To do this, add the attribute x:Name="userControl" to the UserControl
tag.

6. Set the DataContext of the Grid to have an element binding. Add the following attribute
inside the Grid tag:

DataContext="{Binding ElementName=userControl}"

7. Now let's divide the default Grid panel into a few rows and columns. Copy the following
row and column definitions inside the Grid tag to create the structure:

<Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

8. Now it's time to add the controls inside the Grid to create the UI layout of our User Control.
Add a Border at the first cell of the Grid and bind its Background property with the
SelectedColor property of the User Control that we have created:

<Border BorderThickness="1" BorderBrush="Gray"

 Grid.Row="0" Grid.Column="0">

 <Border.Background>

 <SolidColorBrush Color="{Binding SelectedColor}"/>

 </Border.Background>

</Border>

9. Now add a StackPanel inside the second cell of the Grid, which is Row=0, Column=1. Add four
TextBox controls and their associated labels inside the panel. Here's the XAML block,
which you can copy and place just after the Border control:

<StackPanel Orientation="Vertical"

 Grid.Row="0" Grid.Column="1"

 Margin="8 4">

 <TextBlock Text="R:"/>

 <TextBox Width="100" />

 <TextBlock Text="G:"/>

 <TextBox Width="100" />

 <TextBlock Text="B:"/>

 <TextBox Width="100" />

 <TextBlock Text="A:"/>

 <TextBox Width="100" />

</StackPanel>

10. As the basic UI design is ready, let's place the User Control inside the application window.
Open MainWindow.xaml and add the following XMLNS attribute to the Window tag:

xmlns:local="clr-namespace:CH05.UserControlDemo"

11. Now replace the default Grid panel with a StackPanel, so that we can place multiple controls
in a stack.

www.EBooksWorld.ir

12. Place <local:ColorMixer /> inside the StackPanel and run the application. You will see the
following UI on the screen:

13. The main advantage of a User Control is its ease of use. Creating many instances of it is
easy, and there is full design-time support in Visual Studio. Similar to the preceding point,
if you place multiple controls of the ColorMixer instance inside the StackPanel, you will see
multiple copies in the UI. Let's not do it, but if you want to try, replace the entire StackPanel
with the following code block and check out how it places the controls:

<StackPanel Orientation="Horizontal"

 Margin="4">

 <local:ColorMixer />

 <local:ColorMixer />

</StackPanel>

14. Now let's add the bindings to the TextBox controls with the SelectedColor property. As the
type of the property is Color, we will need to create a value converter. So, right-click on the
project and add a class by following the context menu path Add | Class..., name
it ColorToByteConverter, and hit OK.

15. As we need to access the class from the XAML, we will need to mark it as public.

16. Now inherit the class from IValueConverter, to make it a value converter. Click on the
lightbulb icon, as shown in the following screenshot, and resolve the namespace.
Alternatively, you can add the using statement to resolve the System.Windows.Data
namespace:

www.EBooksWorld.ir

17. Now click on the light bulb again and implement the interface. It will add two methods,
called Convert and ConvertBack, inside the class, as shown in the following screenshot:

18. Replace the Convert method with the following code block, which will break the specified
color into an RGBA byte value:

public object Convert(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

{

 if (value is Color color &&

 parameter is string parameterValue) //C# 7.x syntax

 {

 oldColor = color;

 switch (parameterValue)

 {

 case "r":

 return color.R;

 case "g":

 return color.G;

 case "b":

 return color.B;

 default:

 return color.A;

 }

 }

 return value;

}

www.EBooksWorld.ir

19. Similarly, replace the ConvertBack method to construct the Color object from the RGBA
values, which you can enter by the TextBox.Text property:

public object ConvertBack(object value,

 Type targetType,

 object parameter,

 CultureInfo culture)

{

 var color = oldColor;

 var colorValue = System.Convert.ToByte(value);

 if (parameter is string parameterValue) //C# 7.x syntax

 {

 switch (parameterValue)

 {

 case "r":

 color.R = (byte)colorValue;

 break;

 case "g":

 color.G = (byte)colorValue;

 break;

 case "b":

 color.B = (byte)colorValue;

 break;

 default:

 color.A = (byte)colorValue;

 break;

 }

 }

 oldColor = color;

 return color;

}

20. Once this is done, open the ColorMixer.xaml file and add the following XMLNS attribute
under the UserControl tag:

xmlns:local="clr-namespace:CH05.UserControlDemo"

21. Now create a <UserControl.Resources> tag inside the UserControl element and register the
value converter as a resource. Here's the code that you can copy inside the UserControl tag:

<UserControl.Resources>

 <local:ColorToByteConverter

 x:Key="ColorToByteConverter"/>

</UserControl.Resources>

22. Let's modify the Text property of all the four TextBox controls to have a TwoWay data binding
with the SelectedColor property, and associate them with the converter that we have added.
Pass the proper parameter to the converter, as ConverterParameter, as mentioned in the
following code. You can copy the following code and replace the existing StackPanel:

<StackPanel Orientation="Vertical"

 Grid.Row="0" Grid.Column="1"

 Margin="8 4">

 <TextBlock Text="R:"/>

 <TextBox Width="100"

 Text="{Binding SelectedColor, Converter={StaticResource ColorToByteConverter}, ConverterParameter=r, Mode=TwoWay}"/>

 <TextBlock Text="G:"/>

 <TextBox Width="100"

 Text="{Binding SelectedColor, Converter={StaticResource ColorToByteConverter}, ConverterParameter=g, Mode=TwoWay}"/>

 <TextBlock Text="B:"/>

 <TextBox Width="100"

www.EBooksWorld.ir

 Text="{Binding SelectedColor, Converter={StaticResource ColorToByteConverter}, ConverterParameter=b, Mode=TwoWay}"/>

 <TextBlock Text="A:"/>

 <TextBox Width="100"

 Text="{Binding SelectedColor, Converter={StaticResource ColorToByteConverter}, ConverterParameter=a, Mode=TwoWay}"/>

</StackPanel>

23. At the end, build the project and run the application. You will see the following UI on the
screen, where the rectangular Border control has an OrangeRed background and the associated
TextBox control has the RGBA byte value of the color:

24. Now modify the values of the TextBox controls to have a range (0–255) between 0 to 255 and
press TAB to reflect the change in the UI. Let's replace the values, Red by 120, Green by 75,
Blue by 200, and Alpha by 77, as shown in the following screenshot, which will result in a
light violet background color for the Border control:

www.EBooksWorld.ir

How it works...
A User Control wraps the UI with appropriate properties and events to make it a reusable
component. In this User Control, named ColorMixer, we created a dependency property
called SelectedColor of type Color. The user (the developer or the designer) can also set a default
value to it, by accessing the property, while adding it to the application UI.

The Text property of the TextBox controls, inside the ColorMixer.xaml, is bound with the
SelectedColor property. As the types of Text and SelectedColor properties are different, we
required the value converter here.

ConverterParameter is used to define whether we need to break the R, G, B, or A value of the
color composition. The Convert method of the converter class breaks the color according to the
parameter and returns, which gets displayed in the appropriate TextBox control:

switch (parameterValue)

{

 case "r":

 return color.R;

 case "g":

 return color.G;

 case "b":

 return color.B;

 default:

 return color.A;

}

Similarly, when you modify the value in the TextBox, due to its TwoWay binding mode, the
ConvertBack method of the converter triggers. This constructs the color object based on the values
available in all the TextBox controls and returns, which gets filled in the SelectedColor property
and reflects in the Background property of the Border control.

www.EBooksWorld.ir

Exposing events from a User
Control
In the previous recipe, we learned about User Control, how to create it, and how to expose a
dependency property and utilize it. In this recipe, we will learn how to expose events from a
User Control, as you will need it in most cases.

www.EBooksWorld.ir

Getting ready
Let's open the same project, CH05.UserControlDemo, inside the Visual Studio to proceed with this
recipe.

www.EBooksWorld.ir

How to do it...
To demonstrate the usage of the event, we will add two buttons inside our ColorMixer User
Control and expose the OK and Cancel button events from it. To implement the same, perform the
following steps:

1. Open the ColorMixer.xaml file and add the following StackPanel inside the Grid, which will
place it at row index 1 and column index 0. The panel consists of two buttons with labels OK
and Cancel:

<StackPanel Orientation="Horizontal"

 Grid.Row="1" Grid.Column="0"

 Grid.ColumnSpan="2"

 Margin="4 10 4 4"

 HorizontalAlignment="Right">

 <Button Content="OK" Margin="4"

 Width="50" Click="OnOkClicked"/>

 <Button Content="Cancel" Margin="4"

 Width="50" Click="OnCancelClicked"/>

</StackPanel>

2. Open the ColorMixer.xaml.cs file and register the button click events (OnOkClicked and
OnCancelClicked) inside it.

3. Inside the ColorMixer class, register the following two delegates and events to handle the
OK and Cancel button events from outside the control:

public delegate void OnOkButtonClick(object sender,

 EventArgs e);

public delegate void OnCancelButtonClick(object sender,

 EventArgs e);

public event OnOkButtonClick OkButtonClick;

public event OnCancelButtonClick CancelButtonClick;

4. Now update the OK button and the Cancel button event handlers to route the event to the
place where the control has been used. Here's the code to replace the button click event
implementations:

private void OnOkClicked(object sender, RoutedEventArgs e)

{

 OkButtonClick?.Invoke(sender, e);

}

private void OnCancelClicked(object sender, RoutedEventArgs e)

{

 CancelButtonClick?.Invoke(sender, e);

}

5. To register the associated events, in the application window, open the MainWindow.xaml file
and register the OkButtonClick and CancelButtonClick events as follows:

<local:ColorMixer OkButtonClick="OnOkClicked"

 CancelButtonClick="OnCancelClicked"/>

6. Navigate to the MainWindow.xaml.cs file to implement the associated event handlers. As

www.EBooksWorld.ir

shared in the following code, show a message box to the UI from the event
implementation:

private void OnOkClicked(object sender, EventArgs e)

{

 MessageBox.Show("OK button clicked");

}

private void OnCancelClicked(object sender, EventArgs e)

{

 MessageBox.Show("Cancel button clicked");

}

7. Let's compile the project and run the application. You will see two buttons on the UI. Click
on the OK and Cancel buttons to see the output:

www.EBooksWorld.ir

How it works...
When you hit the OK button in the application window, it triggers the event associated with the
button click. In our case, it's the OnOkClicked event, inside the ColorMixer class. It then routes the
event to the custom event OkButtonClick, which gets caught in the originating place. It's the
OnOkClicked event listener in our MainWindow.xaml.

Similarly, when you click on the Cancel button, it raises the Click event inside the ColorMixer
class and then routes to the MainWindow. If the association is present, it gets called. In our case, it's
the OnCancelClicked handler in MainWindow which triggers the message box.

www.EBooksWorld.ir

Customizing the XMLNS
namespace
XAML namespace is an extension of XML namespace and conventionally written as xmlns in
XAML pages. It is used in all the XAML-related technologies to refer to the assemblies and/or
namespaces within the XAML page.

Till now, we have seen how to add the XMLNS attribute entry in XAML to refer to custom
controls, User Controls, converters, behaviors, and so on, but all that used an
assembly/namespace system to define the entry.

For local declaration, we use the clr-namespace:[namespace] format, as shown in the following
code:

xmlns:localBehaviors="clr-namespace:CH05.NamespaceCustomizationDemo.Behaviors"

For declarations from a different assembly, we use the clr-namespace:[namespace];assembly=
[assembly] format, as shown in the following code:

xmlns:behaviors="clr-namespace:CH05.NamespaceCustomizationLibraryDemo.Behaviors;assembly=CH05.NamespaceCustomizationLibraryDemo"

In this recipe, we will learn how to customize the namespace to give a URL representation.

www.EBooksWorld.ir

Getting ready
Let's get started by creating a project called CH05.NamespaceCustomizationDemo. In this example, you
can either choose a WPF application template or a WPF class library template.

www.EBooksWorld.ir

How to do it...
Perform the following steps steps to proceed:

1. Let's create two folders, called Behaviors and Converters, inside the project.
2. Now create one or more behaviors and converters in the respective folders. These will have

CH05.NamespaceCustomizationDemo.Behaviors and CH05.NamespaceCustomizationDemo.Converters as
the namespace for all the behaviors and converters in the respective modules.

3. To create the URL schema for the namespace representation, open the AssemblyInfo.cs file
present in the Properties folder of each project.

4. Now, to create the schema to represent the namespace of the behaviors
(CH05.NamespaceCustomizationDemo.Behaviors), let's add the following inside the file:

[assembly: XmlnsPrefix("http://schemas.kunal-chowdhury.com/xaml/behaviors", "behaviors")]

[assembly: XmlnsDefinition("http://schemas.kunal-chowdhury.com/xaml/behaviors", "CH05.NamespaceCustomizationDemo.Behaviors")]

5. Similarly, to define the URL schema for the converters
(CH05.NamespaceCustomizationDemo.Behaviors), add the following inside the same file:

[assembly: XmlnsPrefix("http://schemas.kunal-chowdhury.com/xaml/converters", "converters")]

[assembly: XmlnsDefinition("http://schemas.kunal-chowdhury.com/xaml/converters", "CH05.NamespaceCustomizationDemo.Converters")]

6. Navigate to the MainWindow.xaml file. To add the XMLNS declaration, you can write
xmlns:behaviors="http://schemas.kunal-chowdhury.com/xaml/behaviors" instead of
xmlns:localBehaviors="clr-namespace:CH05.NamespaceCustomizationDemo.Behaviors".

7. It is a similar case for all the declarations that you have made in the AssemblyInfo.cs file to
represent the namespace as a URL schema.

www.EBooksWorld.ir

How it works...
The XmlnsPrefix attribute defines the prefix name that you suggest using in the XAML, while
declaring the module namespace. Though it is optional to use the same prefix name, while using
the Visual Studio IntelliSense, it automatically adds it.

When you define the XML namespace as URL format, it has multiple benefits over the
traditional representation:

If you follow the same structure, it is easy to remember.
When you are using custom libraries, you don't have to write the complete namespace and
assembly every time in each file. Thus, uses of xmlns:behaviors="clr-
namespace:CH05.NamespaceCustomizationLibraryDemo.Behaviors;assembly=CH05.NamespaceCustomizationLibraryDemo"

can be reduced to xmlns:behaviors="http://schemas.kunal-chowdhury.com/xaml/behaviors".
You can define the prefix, so that you can follow the same convention in all the files while
defining the XMLNS attribute.

www.EBooksWorld.ir

Using Styles, Templates, and
Triggers
In this chapter, we will cover the following recipes:

Creating the Style of a control
Creating the Style of a control based on another Style
Applying Style to a control automatically
Editing the template of any control
Creating a property trigger
Creating a multi trigger
Creating a data trigger
Creating a multi data trigger
Creating an event trigger

www.EBooksWorld.ir

Introduction
When designing a user interface for an application, you need to ensure the consistency of the
look and feel of the controls across the application. For example, if you are using buttons, they
should look the same—similar colors, the same margins, and so on.

Styles are objects that hold the Setter properties to provide a bunch of settings to elements and
controls. Style also provides control templates, which are used to customize the control template
to have a distinctive look and feel.

In the Win32/WinForms model, the look and the behavior of the controls were tightly bundled;
but in WPF world a control template is created in XAML using designer-oriented tools, and this
applies styles to produce a similar look. You can also inherit a style from a different style.

In this chapter, we will discuss styles, templates, triggers, and their relationships with the
controls to which they are applied.

www.EBooksWorld.ir

Creating the style of a control
Styles provide you with a convenient way to group a set of properties and triggers within a
single object and apply it to the elements. You can do this selectively to a set of controls, or you
can apply it to all the controls automatically, based on the control type.

In this recipe, we'll begin with the default style of a button and set its various style properties to
give it a new look. We will then apply it selectively to set the style of multiple button controls.

www.EBooksWorld.ir

Getting ready
Let's get started by creating a new project called CH06.ControlStyleDemo. Make sure you create the
project based on the WPF application template.

www.EBooksWorld.ir

How to do it...
In this recipe, we will get started by creating two buttons inside the application window. Then
we will create a style for the button and apply it to both of the controls. Follow these steps to try
it on your own:

1. From the Solution Explorer, open the MainWindow.xaml and replace the existing Grid panel by
a StackPanel.

2. Set the Orientation property of the StackPanel to Vertical, so that we can stack the child
controls vertically.

3. Now add a few buttons inside it and assign a content. Here's our markup of the StackPanel
with two buttons:

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button Content="Click Here"/>

 <Button Content="Click Here"/>

</StackPanel>

4. Build and run the application. You will see the following UI:

5. Close the application and return to the MainWindow.xaml page. Inside the Window tag, add
<Window.Resources></Window.Resources> to add the button style inside it.

6. Copy the following style inside the resources to define a style called ButtonBaseStyle, for
our button controls:

<Style x:Key="ButtonBaseStyle"

 TargetType="{x:Type Button}">

 <Setter Property="Height"

 Value="30"/>

 <Setter Property="MinWidth"

 Value="180"/>

 <Setter Property="FontSize"

 Value="16"/>

 <Setter Property="HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Padding"

 Value="8 0"/>

</Style>

7. Now apply the defined style to both of the buttons by adding the attribute Style="
{StaticResource ButtonBaseStyle}". Here's the code, for your reference:

www.EBooksWorld.ir

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button Content="Click Here"

 Style="{StaticResource ButtonBaseStyle}"/>

 <Button Content="Click Here"

 Style="{StaticResource ButtonBaseStyle}"/>

</StackPanel>

8. Once this is done, build the project, and run the application again. You will see that the
buttons are now shaped properly with some padding between the text and the edge. Also,
the font size has increased, as defined in the style. Here's how it looks now:

9. Let's add a few additional Setter properties to the style. We will now define a 4px margin, a
hand cursor, and a border, as shared here:

<Setter Property="Margin"

 Value="4"/>

<Setter Property="Cursor"

 Value="Hand"/>

<Setter Property="BorderThickness"

 Value="2"/>

10. Here's the complete style that we have built up to this point:

<Window.Resources>

 <Style x:Key="ButtonBaseStyle"

 TargetType="{x:Type Button}">

 <Setter Property="Height"

 Value="30"/>

 <Setter Property="MinWidth"

 Value="180"/>

 <Setter Property="FontSize"

 Value="16"/>

 <Setter Property="HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Padding"

 Value="8 0"/>

 <Setter Property="Margin"

 Value="4"/>

 <Setter Property="Cursor"

 Value="Hand"/>

 <Setter Property="BorderThickness"

 Value="2"/>

 </Style>

</Window.Resources>

11. Let's compile the project and run the application again. You will now see a better UI with
proper styling of the button controls, as shown in the following screenshot:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
When you create a Style object, you set a bunch of Setter objects to it to define various
properties to change the look and feel of the control. This may include the height, width,
positions, alignments, colors, fonts, control template, triggers, and more.

The FrameworkElement class exposes a Style property that can be filled by a Style object. Styles are
always built as resources, as you see them inside the <Window.Resources> tag in our example. It
contains an x:Key property, which defines the name/key of the style. By using this Key, you can
perform a binding from any other resources/controls within the scope. The TargetType property of
a Style object is typically set, which makes the Style applicable to that type, which can be any
type, even a type of a custom control.

In this example, the applied style works on Button objects. Trying to apply the same to some
other element type will cause a runtime exception.

www.EBooksWorld.ir

There's more...
You can omit defining the TargetType of a Style, but, for that to work, you must define the
property with a fully qualified name. For example, the preceding Style can be written as shown
here to get the same result:

<Style x:Key="ButtonBaseStyle">

 <Setter Property="Button.Height"

 Value="30"/>

 <Setter Property="Button.MinWidth"

 Value="180"/>

 <Setter Property="Button.FontSize"

 Value="16"/>

 <Setter Property="Button.HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Button.Padding"

 Value="8 0"/>

 <Setter Property="Button.Margin"

 Value="4"/>

 <Setter Property="Button.Cursor"

 Value="Hand"/>

 <Setter Property="Button.BorderThickness"

 Value="2"/>

</Style>

As this makes the property name redundant, to define a qualified name people prefer to use the
first one with a TargetType defined. Then, what is the use of the second type of declaration? Yes,
the question is valid. With this type of styling, by specifying the fully qualified name of the
property, you can define a style targeting various types of controls where the said properties are
available.

A point to note is that if you explicitly define a property to a control, it will
override the property value defined in the Style.

www.EBooksWorld.ir

Creating the Style of a control
based on another Style
Styles support inheritance. That means, you can derive a Style from another Style. This can be
done using the BasedOn property, which must point to another Style to inherit from. In this recipe,
we will learn how to create a Style of a button control based on another Style of the same type.

www.EBooksWorld.ir

Getting ready
Let's get started by creating a project named CH06.StyleInheritanceDemo. To do this, open your
Visual Studio instance and create a project based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a base style for a button control and then derive it to create different
button styles:

1. Open the MainWindow.xaml file and create a <Window.Resources></Window.Resources> section
inside the Window tag.

2. Now, inside the window resources, add the following style definition, which we discussed
in the previous recipe of this chapter:

<Style x:Key="ButtonBaseStyle"

 TargetType="{x:Type Button}">

 <Setter Property="Height"

 Value="30"/>

 <Setter Property="MinWidth"

 Value="180"/>

 <Setter Property="FontSize"

 Value="16"/>

 <Setter Property="HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Padding"

 Value="8 0"/>

 <Setter Property="Margin"

 Value="4"/>

 <Setter Property="Cursor"

 Value="Hand"/>

 <Setter Property="BorderThickness"

 Value="2"/>

</Style>

3. Replace the default Grid to have the following StackPanel with four button controls, having
the same style that we have created:

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button x:Name="baseButton"

 Content="Base Button Style"

 Style="{StaticResource ButtonBaseStyle}"/>

 <Button x:Name="redButton"

 Content="Red Button Style"

 Style="{StaticResource ButtonBaseStyle}"/>

 <Button x:Name="greenButton"

 Content="Green Button Style"

 Style="{StaticResource ButtonBaseStyle}"/>

 <Button x:Name="blueButton"

 Content="Blue Button Style"

 Style="{StaticResource ButtonBaseStyle}"/>

</StackPanel>

4. Build the project and run it. You will see the following UI has the same style applied to all
the button controls:

www.EBooksWorld.ir

5. To demonstrate the Style inheritance, let's create another Style, based on the base Style.
Give it a new Key name, RedButtonStyle, set the TargetType to Button, and add a new attribute
BasedOn="{StaticResource ButtonBaseStyle}" to create the inheritance.

6. Add some additional Setter values to the newly created style to define its border,
background, and foreground color. Here's the markup for the RedButtonStyle:

<Style x:Key="RedButtonStyle"

 TargetType="{x:Type Button}"

 BasedOn="{StaticResource ButtonBaseStyle}">

 <Setter Property="BorderBrush"

 Value="DarkRed"/>

 <Setter Property="Foreground"

 Value="White"/>

 <Setter Property="Background"

 Value="OrangeRed"/>

</Style>

7. Now change the Style property of the redButton to point itself to RedButtonStyle:

<Button x:Name="redButton"

 Content="Red Button Style"

 Style="{StaticResource RedButtonStyle}"/>

8. Let's run the application once again, which will have the following UI, where the second
button will have a reddish background color and a white font color:

9. Now, add two more styles, based on the ButtonBaseStyle, and name them as
GreenButtonStyle and BlueButtonStyle.

10. Set their BorderBrush, Foreground, and Background properties to have a greenish and bluish
color, respectively. To do this, copy the following styles inside the <Window.Resources> tag:

<Style x:Key="GreenButtonStyle"

 TargetType="{x:Type Button}"

 BasedOn="{StaticResource ButtonBaseStyle}">

www.EBooksWorld.ir

 <Setter Property="BorderBrush"

 Value="ForestGreen"/>

 <Setter Property="Foreground"

 Value="ForestGreen"/>

 <Setter Property="Background"

 Value="GreenYellow"/>

</Style>

<Style x:Key="BlueButtonStyle"

 TargetType="{x:Type Button}"

 BasedOn="{StaticResource ButtonBaseStyle}">

 <Setter Property="BorderBrush"

 Value="DarkSlateBlue"/>

 <Setter Property="Foreground"

 Value="DarkSlateBlue"/>

 <Setter Property="Background"

 Value="SkyBlue"/>

</Style>

11. To apply the preceding styles, modify the Style property of the greenButton and
the blueButton as follows:

<Button x:Name="greenButton"

 Content="Green Button Style"

 Style="{StaticResource GreenButtonStyle}"/>

<Button x:Name="blueButton"

 Content="Blue Button Style"

 Style="{StaticResource BlueButtonStyle}"/>

12. Here's the code snippet for the entire StackPanel, which will now have four buttons. Among
which the first button is following the base style, whereas the other three buttons are
following the new red, green, and blue button styles, respectively:

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button x:Name="baseButton"

 Content="Base Button Style"

 Style="{StaticResource ButtonBaseStyle}"/>

 <Button x:Name="redButton"

 Content="Red Button Style"

 Style="{StaticResource RedButtonStyle}"/>

 <Button x:Name="greenButton"

 Content="Green Button Style"

 Style="{StaticResource GreenButtonStyle}"/>

 <Button x:Name="blueButton"

 Content="Blue Button Style"

 Style="{StaticResource BlueButtonStyle}"/>

</StackPanel>

13. Time to build the project and run the application. Now, when the application launches, it
will have the following UI, but with unique styles. As mentioned earlier, the colors of the
buttons will be as per the values we set to the different styles:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
An inherited style can have additional Setter properties to set, or it can provide a different value
for a property that has been set by the base Style. In the preceding example, the RedButtonStyle,
GreenButtonStyle, and BlueButtonStyle inherit from the first (ButtonBaseStyle), and add BorderBrush,
Foreground, and Background setter properties to it.

www.EBooksWorld.ir

Applying Style to a control
automatically
In the previous two recipes, we learned about creating styles and applying them to controls by
using the x:Key name. It's not always feasible to manually assign the style to a set of huge
controls within the same application. For this reason, we need to apply it automatically to all the
elements within the scope of a specific window or the entire application.

For example, we may want all buttons within the same app to have the same look and feel. This
makes creating new buttons easier, as the developer/designer doesn't have to know what style to
apply. If the auto styling is configured, it will make the work far smoother.

Let's see how this can be done with a simple example.

www.EBooksWorld.ir

Getting ready
To start this recipe, open your Visual Studio instance and create a new WPF application project
called CH06.StyleUsageDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to create styles for button controls and apply them to controls within the same
window, followed by applying them across the application:

1. Open the MainWindow.xaml and replace the existing Grid with the following StackPanel,
containing four button controls:

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

</StackPanel>

2. Create a <Window.Resources></Window.Resources> section inside the Window tag and add the
following style inside it:

<Style TargetType="{x:Type Button}">

 <Setter Property="Height"

 Value="30"/>

 <Setter Property="MinWidth"

 Value="180"/>

 <Setter Property="FontSize"

 Value="16"/>

 <Setter Property="HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Padding"

 Value="8 0"/>

 <Setter Property="Margin"

 Value="4"/>

 <Setter Property="Cursor"

 Value="Hand"/>

 <Setter Property="BorderThickness"

 Value="2"/>

 <Setter Property="BorderBrush"

 Value="DarkRed"/>

 <Setter Property="Foreground"

 Value="White"/>

 <Setter Property="Background"

 Value="OrangeRed"/>

</Style>

3. Inside the Solution Explorer, right-click on the project. Follow the path Add | Window...
from the context menu entry to open the Add New Item dialog window.

4. Enter the name as SecondaryWindow and click Add. This will create SecondaryWindow.xaml and
SecondaryWindow.xaml.cs files inside the project.

5. Open the SecondaryWindow.xaml file and replace Grid with the same StackPanel to create the
UI, having four buttons inside it. Here's the markup that you need to copy:

<StackPanel Orientation="Vertical"

 Margin="10">

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

 <Button Content="Red Button Style"/>

</StackPanel>

www.EBooksWorld.ir

6. Now, navigate to the App.xaml file and remove the StartupUri="MainWindow.xaml" attribute, as
shown in the following screenshot:

7. Now go to its code-behind file, that is, the App.xaml.cs, and insert the following code block
inside the class implementation to create instances of both the MainWindow and
the SecondaryWindow to show on the screen:

protected override void OnStartup(StartupEventArgs e)

{

 base.OnStartup(e);

 new MainWindow().Show();

 new SecondaryWindow().Show();

}

8. Once this is done, compile your project, and run the application.
9. As shown in the following screenshot, you will have two windows on the screen. One

window (MainWindow) will have the styles applied to the button controls, whereas the other
window (SecondaryWindow) will have the default look and feel:

10. Now close the application and navigate to the MainWindow.xaml file. Copy the style that we
have there and delete/comment the entire Window.Resources section.

11. Now open the App.xaml file and paste the copied content inside the Application.Resources
tag, as shared here:

<Application.Resources>

 <Style TargetType="{x:Type Button}">

 <Setter Property="Height"

 Value="30"/>

 <Setter Property="MinWidth"

 Value="180"/>

 <Setter Property="FontSize"

 Value="16"/>

 <Setter Property="HorizontalAlignment"

 Value="Center"/>

 <Setter Property="Padding"

 Value="8 0"/>

 <Setter Property="Margin"

www.EBooksWorld.ir

 Value="4"/>

 <Setter Property="Cursor"

 Value="Hand"/>

 <Setter Property="BorderThickness"

 Value="2"/>

 <Setter Property="BorderBrush"

 Value="DarkRed"/>

 <Setter Property="Foreground"

 Value="White"/>

 <Setter Property="Background"

 Value="OrangeRed"/>

 </Style>

</Application.Resources>

12. Let's build and run the application. You will now see that the styles are applied to both
windows. Here's a screenshot of the same:

www.EBooksWorld.ir

How it works...
The automatic styling works when you create a style without specifying an x:Key value. Any
element that does not set its style explicitly obtains it automatically.

In the preceding example, we had the buttons in both the windows (MainWindow and
SecondaryWindow), and no Style was manually applied to any one of them, but still the controls in
the MainWindow got the style of Red Button, as the Style within that window was created without
specifying any key (<Style TargetType="{x:Type Button}">).

For SecondaryWindow, we had no Style element defined, and, thus, it applied the default style of the
button.

When we moved the Style definition to the Application.Resources tag in App.xaml, it registered the
Style to the application level. Now, when you run the application, both the windows will receive
the style from the application resource, and all controls of type Button will apply that style
automatically.

If an element wishes to revert to its default style, it can set its Style property to
null. This is generally written as {x:Null} in XAML.

www.EBooksWorld.ir

Editing the template of any
control
WPF allows you to customize the template of any control. Using Visual Studio, you can easily
edit any template to meet your requirements. In this recipe, we will discuss how to edit the
template of a ProgressBar control.

www.EBooksWorld.ir

Getting ready
Let's get started with creating a project called CH06.ControlTemplateDemo. Make sure you select the
right WPF application template while creating the project.

www.EBooksWorld.ir

How to do it...
Follow these steps to edit the progress bar template:

1. Open the MainWindow.xaml file and replace the default Grid control with a vertical StackPanel.
2. Add two ProgressBar controls inside the StackPanel and set their Height, Width, and Value

properties, as shared here:

<StackPanel Orientation="Vertical">

 <ProgressBar Height="30"

 Margin="10"

 Value="40"/>

 <ProgressBar Height="30"

 Margin="10"

 Value="60"/>

</StackPanel>

3. If you run the application, you will see the application window contains two progress bar
controls. Both the controls will have the default style applied to them. Here's a screenshot
of the same:

4. Now, we will create a custom template for the ProgressBar control and apply it to the
second progress bar. To do this, add the following markup inside the Window tag to define
the template under the Window.Resources.

5. Make sure you set the proper TargetType and assign an x:Key name to it:

<Window.Resources>

 <ControlTemplate TargetType="{x:Type ProgressBar}"

 x:Key="ProgressBarTemplate">

 <Grid>

 <Rectangle x:Name="PART_Track"

 Fill="AliceBlue"/>

 <Rectangle x:Name="PART_Indicator"

 StrokeThickness="0"

 HorizontalAlignment="Left">

 <Rectangle.Fill>

 <LinearGradientBrush

 EndPoint=".08,0"

 SpreadMethod="Repeat">

 <GradientStop

 Offset="0"

 Color="Green" />

 <GradientStop

 Offset=".8"

 Color="Green" />

 <GradientStop

www.EBooksWorld.ir

 Offset=".8"

 Color="Transparent" />

 <GradientStop

 Offset="1"

 Color="Transparent" />

 </LinearGradientBrush>

 </Rectangle.Fill>

 </Rectangle>

 <TextBlock FontSize="20"

 FontWeight="Bold"

 Foreground="White"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Grid>

 </ControlTemplate>

</Window.Resources>

6. Now apply the template to the second control by adding the Template="{StaticResource
ProgressBarTemplate}" attribute value. After doing this, the XAML will look as follows:

<StackPanel Orientation="Vertical">

 <ProgressBar Height="30"

 Margin="10"

 Value="40"/>

 <ProgressBar Height="30"

 Margin="10"

 Value="60"

 Template="{StaticResource

 ProgressBarTemplate}"/>

</StackPanel>

7. Let's run the application once again. You will see the second control has our custom
template applied to it, and it looks like this:

www.EBooksWorld.ir

How it works...
When you assign the Template="{StaticResource ProgressBarTemplate}" to the control, it applies the
template to the associated control. The progress bar control contains two major parts defined in
its template, and they are, PART_Track and PART_Indicator. The first one is used to define the base
track of the control, whereas the second one defines the progress indicator.

In our template, we assigned a LinearGradientBrush as the PART_Indicator rectangle's Fill color to
design the progress indication in a bar format. GradientStop is used to define the Offset of the
selected color, as follows:

<LinearGradientBrush EndPoint=".08,0"

 SpreadMethod="Repeat">

 <GradientStop Offset="0"

 Color="Green" />

 <GradientStop Offset=".8"

 Color="Green" />

 <GradientStop Offset=".8"

 Color="Transparent" />

 <GradientStop Offset="1"

 Color="Transparent" />

</LinearGradientBrush>

Now, when the application runs, because of its repeat behavior (SpreadMethod="Repeat") of
LinearGradientBrush, the stacked bars will spread across the control based on the value.

www.EBooksWorld.ir

There's more...
It's not easy to remember the default template body of the controls. It is also not possible to
remember each control part, defined as PART_Name. Visual Studio provides an effortless way to
modify the template.

To do this, right-click on the control and follow the context menu entry Edit Template | Edit a
Copy..., as shown in the following screenshot:

This will open up a dialog window to specify the file where you want to create the style. If you
select Application, it will be created under the Application.Resources tag and will be accessible
throughout the application.

If you choose This document, it will get created under the Window.Resources tag:

www.EBooksWorld.ir

From this screen, you also have an option of whether to create an implicit or explicit style.
Select Apply to all to create an implicit style, and all controls of that type will get the same style
within that scope. In another case, give it a Key name. Once you click OK, it will create the
default template in the same XAML. You can customize it based on your requirements.

Never remove any PART controls of a template, which is defined by PART_, as the
controls internally need them.

www.EBooksWorld.ir

Creating a property trigger
A trigger enables you to change property values when certain conditions are satisfied. It can also
enable you to take actions based on property values by allowing you to dynamically change the
appearance and/or the behavior of your control without writing additional codes in the code-
behind classes.

The most common trigger is the property trigger, which can be simply defined in XAML with
a <Trigger> element. It triggers when a specific property on the owner control changes to match a
specified value.

In this recipe, we will learn about property triggers with a suitable example.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio instance and create a new WPF application project
called CH06.PropertyTriggerDemo.

www.EBooksWorld.ir

How to do it...
To work with the property trigger, we will use a Label control in this example and trigger the
system to change its various properties on mouse hover. Follow these simple steps:

1. Open the MainWindow.xaml page and add the following Label control inside the grid:

<Grid>

 <Label Content="Hover over the text"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

</Grid>

2. Inside the Window tag, create a Window.Resources tag to hold the style of the Label control.
Create a Style inside the resources and set its TargetType to Button.

3. Add the following trigger inside the style:

<Style.Triggers>

 <Trigger Property="IsMouseOver"

 Value="True">

 <Setter Property="FontSize"

 Value="30"/>

 <Setter Property="Foreground"

 Value="Red"/>

 <Setter Property="Background"

 Value="LightYellow"/>

 <Setter Property="Effect">

 <Setter.Value>

 <DropShadowEffect

 RenderingBias="Performance"

 BlurRadius="1"/>

 </Setter.Value>

 </Setter>

 </Trigger>

</Style.Triggers>

4. Here's the complete style containing the trigger for the Label control, which will change the
mentioned properties on mouse hover:

<Window.Resources>

 <Style TargetType="{x:Type Label}">

 <Style.Triggers>

 <Trigger Property="IsMouseOver"

 Value="True">

 <Setter Property="FontSize"

 Value="30"/>

 <Setter Property="Foreground"

 Value="Red"/>

 <Setter Property="Background"

 Value="LightYellow"/>

 <Setter Property="Effect">

 <Setter.Value>

 <DropShadowEffect

 RenderingBias="Performance"

 BlurRadius="1"/>

 </Setter.Value>

 </Setter>

 </Trigger>

 </Style.Triggers>

 </Style>

www.EBooksWorld.ir

</Window.Resources>

5. Now, build the project and run it. You will see a Hover over the text label on the
application window. Mouse hover on the text to see the effect on the screen, as shown
here:

www.EBooksWorld.ir

How it works...
The style of the Label creates a Trigger that fires on mouse hover by checking
the IsMouseOver="True" property value. When the condition satisfies, it sets the Setter properties
as defined under it.

When the condition becomes false, the setters are logically removed, reverting the properties to
their original values. This means that it is not required to provide an opposite trigger.

www.EBooksWorld.ir

Creating a multi trigger
It is not mandatory to use a trigger to perform only an action based on a single condition.
Sometimes you need to create it with a composition of multiple conditions that activate the
entire trigger, if all the conditions are met. This is what the multi trigger does. Let's see how to
create a multi trigger.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE and create a new WPF application called CH06.MultiTriggerDemo.

www.EBooksWorld.ir

How to do it...
In the following steps, we will build a simple application that will create and execute a multi
trigger based on some conditions and change the Foreground and Background properties of the
TextBox controls:

1. Open the MainWindow.xaml file.
2. Replace the default Grid panel with a vertical StackPanel.
3. Add two TextBox controls inside the panel and set their Text property to represent some text.

Here's the XAML that we will be using in this example:

<StackPanel>

 <TextBox Text="Focus your cursor here"

 FontSize="20"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Center"

 Height="30"

 Margin="4"/>

 <TextBox Text="Focus your cursor here"

 FontSize="20"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Center"

 Height="30"

 Margin="4"/>

</StackPanel>

4. Now, under the window resources (Window.Resources), create a Style that targets a TextBox:

<Style TargetType="{x:Type TextBox}">

</Style>

5. Create a style trigger with MultiTrigger, based on one or more conditions, and apply the
setters, as follows:

<Style.Triggers>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition Property="IsEnabled"

 Value="True" />

 <Condition Property="IsKeyboardFocused"

 Value="True" />

 </MultiTrigger.Conditions>

 <MultiTrigger.Setters>

 <Setter Property="Foreground"

 Value="Green" />

 <Setter Property="Background"

 Value="LightGreen" />

 </MultiTrigger.Setters>

 </MultiTrigger>

</Style.Triggers>

6. Let's execute the application and focus on the TextBox controls to see the behavior:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
This is almost like the Property Trigger, but here it is used to set an action on multiple property
changes, and will execute it when all the conditions within the MulitTrigger.Conditions are
satisfied. The MultiTrigger object hosts a collection of these Condition objects.

Here, in this example, we have MultiTrigger associated with TextBox controls. When the control is
enabled and gets keyboard focus, it changes its Foreground and Background properties. When either
of them is false, it returns the property values to its original state.

www.EBooksWorld.ir

Creating a data trigger
As the name says, the data trigger applies property values to perform a set of actions on the
Data that has been bound to the UIElement. This is represented by the <DataTrigger> element.

In this recipe, we will learn how to create a trigger that acts on the underlying data.

www.EBooksWorld.ir

Getting ready
Let's get started with creating a new WPF project. Open the Visual Studio and create a project
called CH06.DataTriggerDemo.

www.EBooksWorld.ir

How to do it...
Follow these simple steps to create a data trigger that will act to change the Background and
Content property of a Label, based on the radio button selection:

1. From the Solution Explorer, open the MainWindow.xaml file.

2. Let's divide the Grid panel into two columns:

<Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

</Grid.ColumnDefinitions>

3. Now insert a Label of 150 x 100 dimension at column 0 (zero) and set its Foreground property
to White:

<Label Width="150"

 Height="100"

 Grid.Column="0"

 Foreground="White"

 FontSize="20"

 BorderBrush="Gray"

 BorderThickness="1"/>

4. Insert a vertical StackPanel at Column 1 and add three radio buttons inside it. Make sure
you set their names and the GroupName. The x:Name property is used to define the name of the
controls and the GroupName="colors" is used to define a single group for the radios. Here's
the complete XAML markup:

<StackPanel Grid.Column="1"

 Margin="10">

 <RadioButton x:Name="rdoRed"

 GroupName="colors"

 Content="Red (#FFFF0000)"/>

 <RadioButton x:Name="rdoGreen"

 GroupName="colors"

 Content="Green (#FF00FF00)"/>

 <RadioButton x:Name="rdoBlue"

 GroupName="colors"

 Content="Blue (#FF0000FF)"/>

</StackPanel>

5. Inside the Window.Resources tag of the window, create a Style that targets Label control:

<Style TargetType="{x:Type Label}">

</Style>

6. Insert the following trigger inside the Style. The <Style.Triggers> contains three DataTrigger
bound to the checkbox controls:

<Style.Triggers>

 <DataTrigger Binding="{Binding ElementName=rdoRed,

www.EBooksWorld.ir

 Path=IsChecked}"

 Value="True">

 <Setter Property="Content"

 Value="Red"/>

 <Setter Property="Background"

 Value="Red"/>

 </DataTrigger>

 <DataTrigger Binding="{Binding ElementName=rdoGreen,

 Path=IsChecked}"

 Value="True">

 <Setter Property="Content"

 Value="Green"/>

 <Setter Property="Background"

 Value="Green"/>

 </DataTrigger>

 <DataTrigger Binding="{Binding ElementName=rdoBlue,

 Path=IsChecked}"

 Value="True">

 <Setter Property="Content"

 Value="Blue"/>

 <Setter Property="Background"

 Value="Blue"/>

 </DataTrigger>

</Style.Triggers>

7. As the trigger is ready, let's build the project and run it. Change the radio button selection
and observe how it works, as shown in the following screenshot:

www.EBooksWorld.ir

How it works...
When you click on the first radio button (rdoRed), it triggers the first data trigger, as it satisfies
the IsChecked property of rdoRed control and modifies the Setter properties—Content and
Background.

Similarly, when you change the selection to the second or third radios, the respective DataTrigger
will fire and update the Label control, according to the Setter properties.

www.EBooksWorld.ir

Creating a multi data trigger
A multi data trigger is the same as the data trigger, with the only difference being that you
can set property values based on multiple conditions defined in the MultiDataTrigger.Conditions.
Property values are defined in the MultiDataTrigger.Setters.

Let's learn about the multi data trigger usages in this recipe.

www.EBooksWorld.ir

Getting ready
To get started with the multi data trigger, let's start by creating a project
called CH06.MultiDataTriggerDemo. Make sure you select the proper project template.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a UI with two checkboxes and a button, and then apply a multi data
trigger to enable/disable the button, based on the check state:

1. Let's begin by replacing the Grid with a StackPanel, having two checkbox (chkLicense and
chkTerms) controls and one button:

<StackPanel HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <CheckBox x:Name="chkLicense"

 Content="Yes, I accept license agreement" />

 <CheckBox x:Name="chkTerms"

 Content="Yes, I accept Terms & Conditions" />

 <Button HorizontalAlignment="Center"

 Margin="0,20,0,0"

 FontSize="20"

 Content="Register">

 </Button>

</StackPanel>

2. Now, modify the Button to expose its style, as follows:

<Button HorizontalAlignment="Center"

 Margin="0,20,0,0"

 FontSize="20"

 Content="Register">

 <Button.Style>

 </Button.Style>

</Button>

3. Add the following button style inside it, which contains a MultiDataTrigger to
enable/disable the button:

<Style TargetType="{x:Type Button}">

 <Setter Property="IsEnabled"

 Value="False"/>

 <Style.Triggers>

 <MultiDataTrigger>

 <MultiDataTrigger.Conditions>

 <Condition Binding="{Binding

 ElementName=chkLicense,

 Path=IsChecked}"

 Value="True" />

 <Condition Binding="{Binding

 ElementName=chkTerms,

 Path=IsChecked}"

 Value="True" />

 </MultiDataTrigger.Conditions>

 <Setter Property="IsEnabled"

 Value="True" />

 </MultiDataTrigger>

 </Style.Triggers>

</Style>

4. Now run the application, which will have two checkboxes and a button on the screen.
www.EBooksWorld.ir

Change the selections of the checkbox controls to see the behavior:

www.EBooksWorld.ir

How it works...
A multi data trigger works based on the conditions set to it, which acts on the underlying data. In
our example, we have a MultiDataTrigger with two conditions.

According to the conditions, if both the checkbox controls are checked, it will trigger and enable
the button by setting the IsEnabled property to True. When any of the preceding conditions are not
satisfied, it will automatically set the IsEnabled property to the previous value, which is False in
our case.

www.EBooksWorld.ir

Creating an event trigger
Till now, we have seen property triggers and data triggers, which work based on comparing a
property to a value. In this recipe, we will learn about event triggers which fire when a routed
event occurs.

www.EBooksWorld.ir

Getting ready
Inside your Visual Studio IDE, create a new project called CH06.EventTriggerDemo, based on the
WPF application template.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a simple event trigger on a TextBlock control:

1. Open the MainWindow.xaml and add the following TextBlock inside the Grid:

<TextBlock Text="Hover here"

 FontSize="30"

 Opacity="0.2"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Style>

 </TextBlock.Style>

</TextBlock>

2. Add the following style, containing EventTrigger, to the TextBlock.Style attribute:

<Style TargetType="TextBlock">

 <Style.Triggers>

 <EventTrigger RoutedEvent="MouseEnter">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation

 Duration="0:0:0.500"

 Storyboard.TargetProperty="FontSize"

 To="50" />

 <DoubleAnimation

 Duration="0:0:0.500"

 Storyboard.TargetProperty="Opacity"

 To="1.0"/>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 <EventTrigger RoutedEvent="MouseLeave">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation

 Duration="0:0:0.500"

 Storyboard.TargetProperty="FontSize"

 To="30" />

 <DoubleAnimation

 Duration="0:0:0.500"

 Storyboard.TargetProperty="Opacity"

 To="0.2"/>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 </Style.Triggers>

</Style>

3. Build the application and run it. Hover your mouse on top of the text and you will see that
the font size of the text gradually increases, and the visibility becomes 100%:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
The event triggers are generally used to perform actions when the Routed Events of the
associated FrameworkElement raises. This is mainly used in animations to control the look and feel
when a certain UI event is raised.

In this example, when you hover over the mouse cursor on the TextBlock control, the MouseEnter
event fires and that triggers EventTrigger, which we have defined in the XAML. It then animates
the text to have a bigger font size and a higher opacity to give a bigger, better visible content.

When the MouseLeave event fires, it reduces the size of the font and brings the control opacity to
20%. More about the Storyboard animations will be discussed in Chapter 8, Working with
Animations.

www.EBooksWorld.ir

Using Resources and MVVM
Patterns
In this chapter, we will cover the following recipes:

Using binary resources inside a WPF application
Using binary resources from another assembly
Accessing binary resources in code
Using static logical resources in WPF
Using dynamic logical resources in WPF
Managing logical resources
Using user selected colors and fonts
Building an application using the MVVM pattern
Using routed commands in a WPF application

www.EBooksWorld.ir

Introduction
While binary resources play a vital role in any application, WPF also provides a different kind
of resource, called a logical resource. These logical resources are objects that can be shared
throughout the application and can be accessed across multiple assemblies. These can be of two
types, static logical resources and dynamic logical resources.

On the other hand, MVVM (Model-View-ViewModel) is a pattern that keeps a separation
between the UI and the code, giving the designers and developers the flexibility to work on a
single window without depending on each other.

In this chapter, we will first cover binary resources, logical resources, and then move forward to
learn building applications using the MVVM pattern. We will also cover how to use
RoutedCommands to demonstrate the Command Design Pattern in WPF applications, which
can be invoked from multiple locations.

www.EBooksWorld.ir

Using binary resources inside a
WPF application
Binary resources are chunks of bytes added to a project with Build Action defined for it.
Generally, these are images, logos, fonts, files, and so on, which are required by the application
and are bundled with it.

In this recipe, we will learn how to use binary resources in a WPF application.

www.EBooksWorld.ir

Getting ready
To get started, open your Visual Studio IDE and create a new project
called CH07.BinaryResourceDemo. Make sure you select the WPF app as the project template.

www.EBooksWorld.ir

How to do it...
Follow these steps to add images as binary resources inside a WPF application and load them
into the application window:

1. Right-click on the project to add a new folder. Follow the context menu path Add | New
Folder. Rename the newly created folder as Images:

2. Now right-click on the Images folder to add a few images. From the context menu entry,
select Add | Existing Item... and add two images of your choice. In this example, we have
added two existing images, image1.png and image2.png, for demonstration:

www.EBooksWorld.ir

3. From the Solution Explorer, right-click on the image1.png and go to its Properties. Set the
Build Action of the image to Resource, which is the default:

4. Now right-click on the image2.png from Solution Explorer, and go to its Properties. Set its
Build Action to Content.

5. Change the Copy to Output Directory to Copy Always:

6. From the Solution Explorer, open the MainWindow.xaml and replace the Grid with a horizontal
StackPanel.

7. Now insert the two images inside the StackPanel, and set their Source property to
Images/image1.png and Images/image2.png, respectively:

<StackPanel Orientation="Horizontal">

 <Image Source="Images/image1.png"

 Width="150"

 Margin="8"/>

 <Image Source="Images/image2.png"

 Width="150"

 Margin="8"/>

</StackPanel>

8. Build the project and run the application. You will see the following UI on the screen:

www.EBooksWorld.ir

9. Now go to the project's bin | Debug directory. You will see a folder named
Images containing the image (image2.png) that we defined as Build Action = Content and Copy
to Output Directory = Copy Always.

10. Now replace the image2.png with a different image.
11. Run the application now, directly from the bin | Debug folder, instead of recompiling the

project. Observe the output on the screen. You will see that the second image now points
to the new image that we have placed in the bin | Debug | Images folder:

www.EBooksWorld.ir

How it works...
When the Build Action is set to Resource, the file is stored as a resource inside the compiled
assembly. In our case, image1.png was set to Resource inside the project binary, which makes the
actual image file unnecessary while deploying the application.

When the Build Action is set to Content, the resource is not included in the assembly. To make it
available to the application, Copy to Output Directory needs to be set to either Copy Always or Copy
if Newer.

This makes it more appropriate for when the resource needs to change often and a rebuild would
be undesirable. If the resource is not available in the output directory, this will render a blank
image while executing. If the resource is large and not always needed, it's better to leave it to the
resulting assembly.

www.EBooksWorld.ir

There's more...
While inserting the image in the XAML, we often use the relative URI (Images/image1.png, in our
case) as it is relative to the application. You can also assign it more verbosely as
pack://application:,,,/Images/image1.png, which is generally used while assigning the image
source from the code behind.

You can also use the Visual Studio editor to assign the image source. To do so, right-click on the
image from the XAML designer view and go to its Properties. From the Properties panel, click
the dropdown arrow, as shown in the following screenshot, to select the desired image from the
available items in the list:

www.EBooksWorld.ir

Using binary resources from
another assembly
It is not mandatory to have the resources defined in the same assembly where they are going to
be used. Sometime, on an as-needed basis, the binary resources are defined in one assembly
(generally, a class library), and used in another assembly.

WPF provides a uniform way of accessing these resources defined in other assemblies. To work
with this, we need to use the pack URI scheme. In this recipe, we will learn how to use binary
resources from another assembly.

www.EBooksWorld.ir

Getting ready
Let's begin with creating a new project called CH07.RemoteBinaryResourceDemo. Make sure you
select the WPF app template while creating this project.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a class library to define the binary resource and use it from the
application that we have already created:

1. Create another project within the same solution. Let's name it CH07.ResourceLibrary, and
make sure you select Class Library (.NET Framework) as the project template:

2. Remove the autogenerated class file Class1.cs.
3. Now right-click on the project CH07.ResourceLibrary and create a new folder named Images.
4. Now right-click on the newly created folder and add an existing image (image1.png, in our

case) into that folder.
5. Then right-click on the image (image1.png) and navigate to its Properties pane.
6. As demonstrated in the previous recipe, change its Build Action to Resource. Compile the

project CH07.ResourceLibrary to make sure that the build is successful.
7. From the Solution Explorer, right-click on the other project named

CH07.RemoteBinaryResourceDemo and navigate through the context menu entry Add |
Reference... to add the assembly reference of the class library in this project.

8. From the Reference Manager dialog window, navigate to Projects and select the class
library (CH07.ResourceLibrary) that we created. As shown in the following screenshot,
click OK once you are done. This will add our class library as a reference to our
application project:

www.EBooksWorld.ir

9. Now, from the Solution Explorer, navigate to the MainWindow.xaml file of the
CH07.RemoteBinaryResourceDemo project and add the following image inside the Grid:

<Image Source="/CH07.ResourceLibrary;component/

Images/image1.png"/>

10. Let's compile the solution and run the application. You will see that the application
window launches with an image, which is present in a different assembly. Here's a
screenshot, based on our demo application:

www.EBooksWorld.ir

How it works...
When you are using a referenced assembly, the WPF pack URI recognizes it as
/AssemblyReference;component/ResourceName format. In the preceding example, the
AssemblyReference is the name of the assembly, which is CH07.ResourceLibrary in our case, and
the ResourceName is the complete path of the resource relative to the project component.

www.EBooksWorld.ir

There's more...
An AssemblyReference may also include a version and/or the public key token (in case the
assembly is strongly named). The version is denoted by prefixing it with a v, as shown in the
following example:

/<AssemblyName>;v<VersionNo>;<Token>;component/<ResourcePath>

"/CH07.ResourceLibrary;v1.0;3ca44a7f7ca54f49;component/Images/image1.png"

This does not work with resources marked with Build Action as Content. To work with this, we
need to use the full pack URI with a siteOfOrigin base, as follows:

<Image Source="pack://siteOfOrigin:,,,/Images/image1.png" />

Please note that the Visual Studio Designer window will fail to load the image
when siteOfOrigin is used, but this will work fine in runtime.

www.EBooksWorld.ir

Accessing binary resources in
code
Accessing binary resources in XAML is very simple, but there is an option to read a binary
resource from the code behind. In this recipe, we will learn how to read a binary resource in
code and set it in the UI. We will be using an image as an example.

www.EBooksWorld.ir

Getting ready
Open your Visual Studio IDE. Let's begin with creating a new WPF project
called CH07.BinaryResourceFromCodeDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to read an image file, embedded as a Resource, and display it in the UI:

1. First, create a folder named Images inside the project and add an image inside it. Let's name
the image image1.png.

2. Open the MainWindow.xaml file by navigating to Solution Explorer.
3. Add an image tag inside the Grid panel and name it img:

<Grid>

 <Image x:Name="img" />

</Grid>

4. Go to the MainWindow.xaml.cs file and, inside the constructor of the class, just after the
InitializeComponent() call, create the streamResourceInfo from the resource stream of the
image. Here's the code to get the stream info:

var streamResourceInfo = Application.GetResourceStream(new Uri("Images/image1.png", UriKind.RelativeOrAbsolute));

5. Now we need to create the instance of BitmapImage from that stream. Copy the following
content and pass the streamResourceInfo.Stream to the StreamSource property of the
BitmapImage:

var bitmapImage = new BitmapImage();

bitmapImage.BeginInit();

bitmapImage.CacheOption = BitmapCacheOption.OnLoad;

bitmapImage.StreamSource = streamResourceInfo.Stream;

bitmapImage.EndInit();

bitmapImage.Freeze();

6. Now set the bitmapImage instance to the Source property of the image::

img.Source = bitmapImage;

7. Here's the complete code for accessing the stream and assigning it to the image source:

public MainWindow()

{

 InitializeComponent();

 var streamResourceInfo = Application.GetResourceStream(

 new Uri("Images/image1.png",

 UriKind.RelativeOrAbsolute));

 var bitmapImage = new BitmapImage();

 bitmapImage.BeginInit();

 bitmapImage.CacheOption = BitmapCacheOption.OnLoad;

 bitmapImage.StreamSource = streamResourceInfo.Stream;

 bitmapImage.EndInit();

 bitmapImage.Freeze();

 img.Source = bitmapImage;

}

8. Once done, build the project and run it. You will see that the assigned image is loaded into

www.EBooksWorld.ir

the application window:

www.EBooksWorld.ir

How it works...
The static method Application.GetResourceStream provides an easy way of accessing a resource
using its relative URI. It returns a StreamResourceInfo object. The Stream property of the
StreamResourceInfo object provides access to the actual binary data, which has been set as the
image source property by converting it to an instance of BitmapImage.

For the Application.GetResourceStream method to work, the resource must be
marked as a Resource in Build Action.

If the resource has been marked as Content in the Build Action property, then the
Application.GetContentStream method should be used to get the resource stream.

www.EBooksWorld.ir

Using static logical resources in
WPF
Logical resources in WPF are the objects that can be shared and reused across some part of a
Visual Tree or an entire application. These can be colors, brushes, geometrics, styles, or any
other .NET objects (int, string, List<T>, T, and more) defined by the .NET Framework or
developer. These objects are typically placed inside a ResourceDictionary.

In this recipe, we will learn how to use logical resources using the binding key StaticResource.

www.EBooksWorld.ir

Getting ready
Make sure that Visual Studio is running. Create a project called CH07.StaticResourceDemo, based
on the WPF application template.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a logical resource and use it inside the application window:

1. Open the MainWindow.xaml file and replace the Grid with a horizontal StackPanel.
2. Insert a Border control inside the StackPanel. Set its Height and Width properties to 80 and 150,

respectively:

<Border Height="80"

 Width="150"

 Margin="8">

</Border>

3. Let's add a background color to the Border control. We will be using a linear gradient brush
to decorate the background color. Let's modify it as shared here:

<Border Height="80"

 Width="150"

 Margin="8">

 <Border.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0"

 Color="LightYellow"/>

 <GradientStop Offset="0.2"

 Color="Yellow"/>

 <GradientStop Offset=".5"

 Color="YellowGreen"/>

 <GradientStop Offset="1"

 Color="Green"/>

 </LinearGradientBrush>

 </Border.Background>

</Border>

4. Copy the same border with the preceding background and paste it inside the same panel.
Now the StackPanel will have two border controls with the same properties.

5. Let's build the project and run it. You will see two rectangular shapes with a nice gradient
color as the background:

6. As you can see, we have added the same background brush twice to represent the color; it's
sometimes difficult to manage, and unnecessarily increases the XAML code as well as the
complexity. To resolve this, we can now move the brush object as a logical resource, and
access it within the same window or throughout the application. Let's move it to the
window level. Insert the LinearGradientBrush inside the window resource (Window.Resources)
and assign a key (myLinearBrush) to it:

www.EBooksWorld.ir

<Window.Resources>

 <LinearGradientBrush x:Key="myLinearBrush">

 <GradientStop Offset="0"

 Color="LightYellow"/>

 <GradientStop Offset="0.2"

 Color="Yellow"/>

 <GradientStop Offset=".5"

 Color="YellowGreen"/>

 <GradientStop Offset="1"

 Color="Green"/>

 </LinearGradientBrush>

</Window.Resources>

7. Now remove the background definition in both the controls and replace it with a binding to
the previously mentioned brush. As it is defined within the resource, we will be using
{StaticResource} to access it. Here's the modified version of the border controls inside the
panel:

<StackPanel Orientation="Horizontal">

 <Border Height="80"

 Width="150"

 Margin="8"

 Background="{StaticResource myLinearBrush}"/>

 <Border Height="80"

 Width="150"

 Margin="8"

 Background="{StaticResource myLinearBrush}"/>

</StackPanel>

8. Let's run the application once again. You will see the same background applied to the
rectangular shaped border controls. In this case, we have used just one definition of the
brush.

www.EBooksWorld.ir

How it works...
Every UI element derived from the FrameworkElement has a property called Resources, which is of
type ResourceDictionary. Thus, every element can have resources associated with it. In XAML,
we need to define the x:Key attribute to the resource to access it, either from the XAML or from
the code-behind file.

In our example, we defined myLinearBrush as an element of the ResourceCollection of the Window.
Thus, it will be accessible by any control within the same window. If you move the definition
inside the StackPanel, it will be accessible within that panel:

<Window.Resources>

 <LinearGradientBrush x:Key="myLinearBrush">

 <GradientStop Offset="0"

 Color="LightYellow"/>

 <GradientStop Offset="0.2"

 Color="Yellow"/>

 <GradientStop Offset=".5"

 Color="YellowGreen"/>

 <GradientStop Offset="1"

 Color="Green"/>

 </LinearGradientBrush>

</Window.Resources>

To use this resource in XAML, we need to use the markup extension, {StaticResource}, along
with the resource key provided, Background="{StaticResource myLinearBrush}", which will create
the binding between them.

www.EBooksWorld.ir

There's more...
It is possible to manage the logical resources from the code behind. You can call the FindResource
method, passing the resource key to it, to get the instance of the resource. Here's how you can
find the resource named myLinearBrush:

var resource = FindResource("myLinearBrush") as Brush;

You can also programmatically add or remove a resource to the collection. Call the methods
Resources.Add and Resources.Remove to add or remove a specific resource, as shown in the
following code snippet:

Resources.Add("myBrush", new SolidColorBrush(Colors.Red));

Resources.Remove("myBrush");

As the Resources property is basically a Dictionary object, make sure you check whether the
specified key is already present before doing any operation, such as Add/Remove, on it.

www.EBooksWorld.ir

Using dynamic logical resources
in WPF
In the previous recipe, we learned how to use logical resources using the StaticResource markup
extension. In this recipe, we will learn how to use logical resources using the DynamicResource
markup extension and will also learn the difference between them.

www.EBooksWorld.ir

Getting ready
Get started by creating a new project. Open the Visual Studio IDE and create a new WPF
application project called CH07.DynamicResourceDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to use logical resources dynamically and modify the values of the resource as
per the need:

1. Open the MainWindow.xaml file and replace the Grid with a StackPanel.
2. Add a border inside the StackPanel and set its dimensions.
3. Add another StackPanel inside the panel and add a group of three radio buttons inside it.

Label them as Red, Green, and Blue. Here's the complete XAML code:

<StackPanel Orientation="Horizontal">

 <Border Height="80"

 Width="150"

 Margin="8"/>

 <StackPanel Margin="10">

 <RadioButton GroupName="colorGroup"

 Content="Red"

 Margin="4"/>

 <RadioButton GroupName="colorGroup"

 Content="Green"

 IsChecked="True"

 Margin="4"/>

 <RadioButton GroupName="colorGroup"

 Content="Blue"

 Margin="4"/>

 </StackPanel>

</StackPanel>

4. Now add a LinearGradientBrush to the window resources and set its key name as
myLinearBrush. Add some GradientStop to define a nice gradient brush, as follows:

<Window.Resources>

 <LinearGradientBrush x:Key="myLinearBrush">

 <GradientStop Offset="0"

 Color="LightYellow"/>

 <GradientStop Offset="1"

 Color="Green"/>

 </LinearGradientBrush>

</Window.Resources>

5. It's time to bind the defined brush with the Border control. Modify the XAML to have a
StaticResource binding between them, as follows:

<Border Height="80"

 Width="150"

 Margin="8"

 Background="{StaticResource myLinearBrush}"/>

6. Register Checked events for all three radio buttons, so that we can perform some changes on
the checked status change:

<StackPanel Orientation="Horizontal">

 <Border Height="80"

 Width="150"

 Margin="8"

 Background="{StaticResource myLinearBrush}"/>

 <StackPanel Margin="10">

www.EBooksWorld.ir

 <RadioButton GroupName="colorGroup"

 Content="Red"

 Margin="4"

 Checked="OnRedRadioChecked"/>

 <RadioButton GroupName="colorGroup"

 Content="Green"

 IsChecked="True"

 Margin="4"

 Checked="OnGreenRadioChecked"/>

 <RadioButton GroupName="colorGroup"

 Content="Blue"

 Margin="4"

 Checked="OnBlueRadioChecked"/>

 </StackPanel>

</StackPanel>

7. Navigate to the MainWindow.xaml.cs and add the following implementation for all the radio
buttons' Checked event:

private void OnRedRadioChecked(object sender,

 RoutedEventArgs e)

{

 var brush = Resources["myLinearBrush"];

 if (brush is LinearGradientBrush lBrush)

 {

 lBrush = new LinearGradientBrush

 {

 GradientStops = new GradientStopCollection

 {

 new GradientStop

 (Colors.LightGoldenrodYellow, 0),

 new GradientStop(Colors.Red, 1)

 }

 };

 Resources["myLinearBrush"] = lBrush;

 }

}

private void OnGreenRadioChecked(object sender,

 RoutedEventArgs e)

{

 var brush = Resources["myLinearBrush"];

 if (brush is LinearGradientBrush lBrush)

 {

 lBrush = new LinearGradientBrush

 {

 GradientStops = new GradientStopCollection

 {

 new GradientStop(Colors.LightYellow, 0),

 new GradientStop(Colors.Green, 1)

 }

 };

 Resources["myLinearBrush"] = lBrush;

 }

}

private void OnBlueRadioChecked(object sender,

 RoutedEventArgs e)

{

 var brush = Resources["myLinearBrush"];

 if (brush is LinearGradientBrush lBrush)

 {

 lBrush = new LinearGradientBrush

 {

 GradientStops = new GradientStopCollection

 {

 new GradientStop(Colors.LightBlue, 0),

 new GradientStop(Colors.Blue, 1)

 }

www.EBooksWorld.ir

 };

 Resources["myLinearBrush"] = lBrush;

 }

}

8. Once this has been done, run the application. You will see a rectangle with three radio
buttons. By default, the Green radio button will be selected. Change the selection to Red or
Blue to observe the behavior. You will see that the color always stays Green, irrespective
of the selection:

9. Let's close the application and navigate back to MainWindow.xaml.
10. Change the StaticResource to DynamicResource, as shared in the following code snippet:

<Border Height="80"

 Width="150"

 Margin="8"

 Background="{DynamicResource myLinearBrush}"/>

11. Now, run the application once again. By default, Green will be selected, and the rectangle
will have a green gradient background. Change the selection to Red or Blue to observe the
color change:

www.EBooksWorld.ir

How it works...
When you bind the logical resource as a StaticResource, it causes the binding to occur at
construction time. On the other hand, the DynamicResource markup extension binds to a resource
dynamically, only when it is needed.

In the preceding example, when we registered the resource to the Background property of the
Border control as a StaticResource, we were not able to see the change reflected in the UI, even
though we replaced the resource with a new object on selection of the radio button. But when we
changed the binding to DynamicResource, the change was automatically reflected. This is because
the dynamic resource binding refreshes itself if the object changes. But this is not same with the
static resource binding, as it always keeps referencing the old object.

www.EBooksWorld.ir

There's more...
The StaticResource binding throws an error at design time if the object specified by the x:Key is
not present. On the other hand, DynamicResource does not throw any exception, and displays as
blank. Later, when it finds the Key, it binds itself with that resource.

StaticResource should be used most of the time, unless there is a need to replace
resources dynamically. DynamicResource should be used by the themes that can
easily swap the resources.

Having a large collection of DynamicResource on a complex UI can impact the
performance of the UI. Wherever possible, mark them as StaticResource.

www.EBooksWorld.ir

Managing logical resources
There could be several types of logical resources in a single application, and placing them inside
a single XAML file (for example, App.xaml) will increase problems while maintaining them. To
resolve this problem, you can separate the resources of different types into their own respective
files and reference them in App.xaml.

In this recipe, we will learn how to manage these logical resources with a simple example.
Though this will be shown with a single file, you can create separate files and reference them.

www.EBooksWorld.ir

Getting ready
Assuming that you have opened Visual Studio, now create a new WPF application project
called CH07.ManagingLogicalResourceDemo.

www.EBooksWorld.ir

How to do it...
Follow these simple steps to create separate resource files and reference them in the application:

1. As we want to create a separate resource file, we need to create a file of type Resource
Dictionary. Inside the Solution Explorer, right-click on the project node and create a new
folder named Themes.

2. Now right-click on the Themes folder and select Add | Resource Dictionary... from the
context menu entry:

3. In the Add New Item dialog, make sure that the Resource Dictionary (WPF) template is
selected. Name it Brushes.xaml, and click Add:

www.EBooksWorld.ir

4. From the Solution Explorer, open the newly created file Brushes.xaml and add the following
LinearGradientBrush inside the ResourceDictionary element with a x:Key name
of myLinearBrush. You can add multiple elements inside the ResourceDictionary to have a
resource collection. Make sure you assign a unique key name to each one of them:

<LinearGradientBrush x:Key="myLinearBrush">

 <GradientStop Offset="0"

 Color="Yellow"/>

 <GradientStop Offset="1"

 Color="OrangeRed"/>

</LinearGradientBrush>

5. Open the MainWindow.xaml and replace the Grid with the following markup to have a Border
control inside it. Set the size of the element and bind the Background property with the
myLinearBrush that we have created:

<Grid>

 <Border Height="100"

 Width="280"

 Margin="8"

 Background="{DynamicResource myLinearBrush}"/>

</Grid>

6. If you run the application now, you won't see any elements inside the window, because the
mapping of the file has not been created yet. As we have the binding as DynamicResource,
you won't see any error.

7. Let's close the application and open the App.xaml file.
8. Inside the Application.Resources, add an element named ResourceDictionary. Inside this,

create another element named ResourceDictionary.MergedDictionaries and load the
ResourceDictionary that we have created. Here's how it will look:

<Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary

 Source="Themes/Brushes.xaml" />

 </ResourceDictionary.MergedDictionaries>

www.EBooksWorld.ir

 </ResourceDictionary>

</Application.Resources>

9. Now run the application once again. You will see a rectangular shaped border control in
the application window with a nice gradient color, which we have created in the
Brushes.xaml file. Here a screenshot of the application window:

www.EBooksWorld.ir

How it works...
A ResourceDictionary can load one or more resource dictionaries using its MergedDictionaries
property (ResourceDictionary.MergedDictionaries), which is a collection. It's not always mandatory
to have a reference to other resource dictionaries, but it can also have its own resources as well:

<Application.Resources>

 <ResourceDictionary>

 <SolidColorBrush Color="Red" x:Key="redBrush" />

 <SolidColorBrush Color="Green" x:Key="greenBrush" />

 <SolidColorBrush Color="Blue" x:Key="blueBrush" />

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary

 Source="Themes/SolidBrushes.xaml" />

 <ResourceDictionary

 Source="Themes/GradientBrushes.xaml" />

 <ResourceDictionary Source="Themes/Fonts.xaml" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

</Application.Resources>

The Source property of the ResourceDictionary element must point to the location of the
ResourceDictionary. If that location is within a subfolder, that subfolder must be included.

www.EBooksWorld.ir

There's more...
When there exist two or more resources with the same key name that originated from multiple
merged dictionaries, it will not throw any error or exception. Instead, it will load the one from
the Resource Dictionary that was added last in the element tree.

www.EBooksWorld.ir

Using user selected colors and
fonts
Sometimes, it is useful to use the system theme in an application UI to have a synchronous flow
of colors and fonts between the operating system and the application. In these cases, we can
dynamically load those values and apply them to our UI elements. This is achievable by
accessing some special resource keys within the SystemColors and SystemFonts classes. In this
recipe, we will learn how to use them.

www.EBooksWorld.ir

Getting ready
Let's get started by creating a new project called CH07.SystemResourcesDemo. Make sure you select
the WPF application template from the available list.

www.EBooksWorld.ir

How to do it...
We will now build an application that uses system colors and fonts. Follow these steps to
proceed with it:

1. Open the MainWindow.xaml file and insert the following Rectangle inside the Grid panel:

<Rectangle Height="100"

 Width="300"/>

2. We want to fill the rectangle with the color of the desktop brush. Add the following
markup to fill the background color of the rectangle Fill="{DynamicResource {x:Static
SystemColors.DesktopBrushKey}}". Now the XAML will look like the following:

<Rectangle Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

 Height="100"

 Width="300"/>

3. Let's run the application now. You will see that a background color for the rectangle has
been picked up by the application. This is based on the selection that you have for the
DesktopBrush in your system:

4. To confirm this, right-click on your desktop and select Personalize. If you are using
Windows 10, you will see the Settings app navigates to the Background Settings page.
Check the color that is selected in the Background settings and the color applied to your
application. Both will be the same:

www.EBooksWorld.ir

5. Let's select a different color from the Background Settings. You will see that the color will
automatically get applied to your application:

6. Now select the + symbol (Custom color) to select another color of the default colors in the
palette:

www.EBooksWorld.ir

7. As shown here, pick a custom background color for your desktop and click Done:

8. Check the application window now. You will see that the color selected on the Settings
app is applied to the rectangle background. Navigate to your desktop, the same color will
be applied there too:

www.EBooksWorld.ir

How it works...
It is not mandatory to provide a string type key name to a resource binding. You can also
provide a static object to the binding. In this example, we used the static value
SystemColors.DesktopBrushKey in combination with the {x:Static} markup extension:

Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

As we have learned about the dynamic resource binding in the previous recipes, this example
also follows the same method, and thus you can see the selected color is automatically applied to
the rectangle.

There are many static keys under the SystemColors class, which you can reference in your design.
This is often useful when you want your application to be in sync with the operating system's
theme.

www.EBooksWorld.ir

There's more...
Just like SystemColors, we have the SystemFonts class too, which exposes font related static
properties. You can define FontFamily, FontSize, and FontWeight styles from the system palette, as
follows:

<TextBlock FontFamily="{DynamicResource {x:Static SystemFonts.CaptionFontFamily}}"

 FontSize="{DynamicResource {x:Static SystemFonts.CaptionFontSizeKey}}"

 FontWeight="{DynamicResource {x:Static SystemFonts.CaptionFontWeightKey}}"

 Text="Hello World!"/>

www.EBooksWorld.ir

Building an application using
the MVVM pattern
MVVM stands for Model, View, and ViewModel, which is a pattern that facilitates the
separation between the GUI (Graphical user interface) from the business logic. It means that a
designer and developer can work together, without any hassle.

In this pattern, the model is the data that gets displayed in the view with the help of ViewModel.
In this recipe, we will learn how to create an MVVM application, expose the properties from the
ViewModel to the associated view, and display records without writing any code in the XAML
code behind file.

www.EBooksWorld.ir

Getting ready
Let's open the Visual Studio IDE and create a new project, called CH07.MVVMDemo, based on the
WPF app template.

www.EBooksWorld.ir

How to do it...
Once the project has been created, follow these steps to construct the project for the MVVM
standard (not mandatory) and build a sample demo using the MVVM pattern:

1. Each WPF app project has a MainWindow.xaml. From the Solution Explorer, let's delete the
default file.

2. Inside the project, create three folders named Models, Views, and ViewModels. This is just to
create a proper structure for all our code files.

3. Now right-click on the Views folder, create a new Window by following the context menu
path Add | Window..., and name it MainWindow.xaml.

4. Open the App.xaml file and modify the StartupUri to point to the correct file. As shown in
the following screenshot, change the StartupUri to ViewsMainWindow.xaml:

5. Open the MainWindow.xaml file from the Views folder and replace the Grid with a DockPanel.
6. Add two StackPanel inside the Dock and design the UI, as follows:

<DockPanel Margin="10">

 <StackPanel Orientation="Vertical"

 DockPanel.Dock="Left">

 <ListBox Width="180" Height="110">

 </ListBox>

 <TextBlock>

 </TextBlock>

 </StackPanel>

 <StackPanel Orientation="Vertical"

 Margin="4 0"

 DockPanel.Dock="Right">

 <TextBlock Text="Firstname"/>

 <TextBox Text=""/>

 <TextBlock Text="Lastname"/>

 <TextBox Text=""/>

 <Button Content="Add"

 Margin="0 8"/>

 </StackPanel>

</DockPanel>

7. If you run the application now, you will see the application window looks like this:

www.EBooksWorld.ir

8. Now, right-click on the Models folder and create a class file named UserModel.cs and
modify the class to have two properties of type string. As shown here, name
them Firstname and Lastname:

public class UserModel

{

 public string Firstname { get; set; }

 public string Lastname { get; set; }

}

9. Right-click on the ViewModels folder and add another class file. Name
it MainWindowViewModel.cs.

10. Open the MainWindowViewModel.cs file and add the following namespaces inside it:

using CH07.MVVMDemo.Models;

using System.Collections.ObjectModel;

using System.ComponentModel;

11. Now inherit the MainWindowViewModel class from INotifyPropertyChanged interface, which is
present under the System.ComponentModel namespace.

public class MainWindowViewModel : INotifyPropertyChanged

12. As we already know, the INotifyPropertyChanged interface exposes the PropertyChanged event
handler; we need to register that inside the class. Copy the following code to implement
the interface:

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged(string propertyName)

{

 PropertyChanged?.Invoke(this,

 new PropertyChangedEventArgs(propertyName));

}

13. Once this has been done, create two properties inside the ViewModel. Name one SelectedUser,
which is of type UserModel and the other UserCollection, which is of type
ObservableCollection<UserModel>. Make sure you call the OnPropertyChanged(str) method from
both the setters, so that the value change can be automatically reported to the UI. Here are
the properties that we are going to refer to in this demonstration:

private UserModel m_selectedUser;

public UserModel SelectedUser

{

 get { return m_selectedUser; }

 set

 {

 m_selectedUser = value;

www.EBooksWorld.ir

 OnPropertyChanged("SelectedUser");

 }

}

private ObservableCollection<UserModel> m_userCollection;

public ObservableCollection<UserModel> UserCollection

{

 get { return m_userCollection; }

 set

 {

 m_userCollection = value;

 OnPropertyChanged("UserCollection");

 }

}

14. Inside the constructor of the ViewModel, initialize the UserCollection property with some
dummy data:

public MainWindowViewModel()

{

 UserCollection = new ObservableCollection<UserModel>

 {

 new UserModel

 {

 Firstname = "User", Lastname = "One"

 },

 new UserModel

 {

 Firstname = "User", Lastname = "Two"

 },

 new UserModel

 {

 Firstname = "User", Lastname = "Three"

 },

 new UserModel

 {

 Firstname = "User", Lastname = "Four"

 },

 };

}

15. As the viewmodel is ready, having all the properties that we need, let's associate it with the
view as its DataContext. You can do this either from the code behind or from the XAML
itself. As our target is to keep the code behind as small as possible, let's do it from the
XAML. Open the MainWindow.xaml and add the following XMLNS entry to it, so that we can
access the viewmodel that we have created:

xmlns:viewmodels="clr-namespace:CH07.MVVMDemo.ViewModels"

16. Inside the Window.Resources tag, add our viewmodel as a resource and define it as
x:Key="ViewModel", as follows:

<Window.Resources>

 <viewmodels:MainWindowViewModel x:Key="ViewModel"/>

</Window.Resources>

17. As the viewmodel has been registered as a resource, set the DataContext of the DockPanel to the
ViewModel that we defined. The binding needs to be done using the {StaticResource} markup
extension. Here's how it will look:

<DockPanel DataContext="{StaticResource ViewModel}"

 Margin="10">

18. Now set the ItemsSource and the SelectedItem properties of the ListBox control to have a data
www.EBooksWorld.ir

binding with the properties inside our viewmodel.

<ListBox Width="180" Height="110"

 ItemsSource="{Binding UserCollection}"

 SelectedItem="{Binding SelectedUser}">

19. Similarly, set the DataContext property of the TextBlock to SelectedUser and create the data
binding, as shown, here to display the selected full name of the user:

<TextBlock DataContext="{Binding SelectedUser}">

 <Run Text="Selected:"/>

 <Run Text="{Binding Firstname}"/>

 <Run Text="{Binding Lastname}"/>

</TextBlock>

20. Let's run this application now. You will see the following UI, where the values in ListBox
control will be shown as the fully qualified name of the model class:

21. To resolve this, we need to create the DataTemplate of the ListBox. Define the
ListBox.ItemTemplate as follows, to have a TextBlock with the user's full name, by
concatenating the Firstname and Lastname properties:

<ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock>

 <Run Text="{Binding Firstname}"/>

 <Run Text="{Binding Lastname}"/>

 </TextBlock>

 </DataTemplate>

</ListBox.ItemTemplate>

22. Once this has been done, the XAML code of the application UI will look similar to this:

<StackPanel Orientation="Vertical"

 DockPanel.Dock="Left">

 <ListBox Width="180" Height="110"

 ItemsSource="{Binding UserCollection}"

 SelectedItem="{Binding SelectedUser}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock>

 <Run Text="{Binding Firstname}"/>

 <Run Text="{Binding Lastname}"/>

 </TextBlock>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 <TextBlock DataContext="{Binding SelectedUser}">

 <Run Text="Selected:"/>

 <Run Text="{Binding Firstname}"/>

 <Run Text="{Binding Lastname}"/>

 </TextBlock>

www.EBooksWorld.ir

</StackPanel>

23. Let's run the application now. You will see the correct values inside the ListBox:

24. Select any of the ListBox items to see the selected username in the TextBox. Change the
selection to update the UI automatically:

www.EBooksWorld.ir

How it works...
MVVM consists of three important parts—Model, View, and the ViewModel. The Model
represents the data; the View is the actual UI, which displays the relevant parts of the model; and
the ViewModel is the mechanism that hands out the required data to the view. A ViewModel
basically exposes properties and commands, and maintains the relevant state of the view.

If we compare the MVVM pattern with a bike (as represented in the following screenshot), the
bike Body is the View, the Fuel is the Model and the Engine of the bike is the ViewModel,
which moves the View (bike body) by burning/using the Model (Fuel):

In our application, we used the DataContext to define the binding between the View and the
ViewModel, which we then used to access the properties. If you now navigate to the
MainWindow.xaml.cs file, you won't see any additional code except the constructor of the code-
behind class.

In the MVVM pattern, our intention is to keep the code-behind file (MainWindow.xaml.cs) code
free (or less code), so that the direct binding between the UI and the code will be reduced. Note
that the MVVM is not a framework, but in using this pattern you can create a framework. For
example, the MVVMLight (http://www.mvvmlight.net) from GalaSoft provides a fully customized
framework, which you can use in your application to keep the development hassle free.

www.EBooksWorld.ir

http://www.mvvmlight.net

Using routed commands in a
WPF application
Routed commands are used to navigate a route through the element hierarchy. This process is
also well known as bubbling and tunneling. The class RoutedCommand implements the ICommand
interface and allows the attaching of input gestures, such as mouse input and keyboard shortcuts,
to the target.

In this recipe, we will learn how to use routed commands with a simple example.

www.EBooksWorld.ir

Getting ready
To work on this recipe, we will be using the previous MVVM demo application. Launch your
Visual Studio IDE and open the project CH07.MVVMDemo. In this example, we will be using
RoutedCommand for the Add button click event.

www.EBooksWorld.ir

How to do it...
Follow these simple steps to register the routed command to the button click and perform the
operation:

1. From the Solution Explorer, right-click on the project node and create a folder named
Commands.

2. Right-click on the Commands folder and create a new class named RoutedCommands.cs by
following the Add | Class... context menu path.

3. Inside the class implementation, declare a static member of type RoutedCommand and name
it AddCommand. Here's the code implementation:

public class RoutedCommands

{

 public static RoutedCommand AddCommand =

 new RoutedCommand();

}

4. Add the following namespace to resolve the RoutedCommand class:

using System.Windows.Input;

5. Once that has been done, navigate to the MainWindowViewModel.cs file, present under the
ViewModels folder, and add a property named NewUserDetails of type UserModel. We will be
using this property to bind with the Text property of the TextBox controls present in the UI.
The property implementation is as follows:

private UserModel m_newUserDetails;

public UserModel NewUserDetails

{

 get { return m_newUserDetails; }

 set

 {

 m_newUserDetails = value;

 OnPropertyChanged("NewUserDetails");

 }

}

6. Now, inside the constructor of our ViewModel, initialize the NewUserDetails property:

public MainWindowViewModel()

{

 UserCollection = new ObservableCollection<UserModel>

 {

 new UserModel

 {

 Firstname = "User", Lastname = "One"

 },

 new UserModel

 {

 Firstname = "User", Lastname = "Two"

 },

www.EBooksWorld.ir

 new UserModel

 {

 Firstname = "User", Lastname = "Three"

 },

 new UserModel

 {

 Firstname = "User", Lastname = "Four"

 },

 };

 NewUserDetails = new UserModel();

}

7. Navigate to MainWindow.xaml now, which is present under the Views folder. Modify the
XAML as follows, to set a DataContext for the StackPanel and create data bindings with the
TextBox controls. Make sure you set the data binding mode to TwoWay, else the code will not
receive the updated value received from the UI:

<StackPanel Orientation="Vertical"

 Margin="4 0"

 DockPanel.Dock="Right"

 DataContext="{Binding NewUserDetails}">

 <TextBlock Text="Firstname"/>

 <TextBox Text="{Binding Firstname, Mode=TwoWay}"/>

 <TextBlock Text="Lastname"/>

 <TextBox Text="{Binding Lastname, Mode=TwoWay}"/>

 <Button Content="Add"

 Margin="0 8"/>

</StackPanel>

8. Now add the following XMLNS attribute to the XAML page, so that we can access the classes
present under the CH07.MVVMDemo.Commands namespace:

xmlns:commands="clr-namespace:CH07.MVVMDemo.Commands"

9. What next? We need to create the command binding under the Window tag. Add the
following XAML code block inside the Window tag:

<Window.CommandBindings>

 <CommandBinding Command="{x:Static commands:RoutedCommands.AddCommand}"

 CanExecute="CanExecute_AddCommand"

 Executed="Execute_AddCommand"/>

</Window.CommandBindings>

10. Register the CanExecute and Executed events, named CanExecute_AddCommand and
Execute_AddCommand, respectively, inside the code-behind class file, which is
MainWindow.xaml.cs in our case.

11. Navigate back to the MainWindow.xaml and associate the command with the Button control, as
follows:

<Button Content="Add"

 Margin="0 8"

 Command="{x:Static commands:RoutedCommands.AddCommand}"/>

12. The complete markup changes will look like this:

<StackPanel Orientation="Vertical"

 Margin="4 0"

 DockPanel.Dock="Right"

 DataContext="{Binding NewUserDetails}">

 <TextBlock Text="Firstname"/>

 <TextBox Text="{Binding Firstname, Mode=TwoWay}"/>

 <TextBlock Text="Lastname"/>

www.EBooksWorld.ir

 <TextBox Text="{Binding Lastname, Mode=TwoWay}"/>

 <Button Content="Add"

 Margin="0 8"

 Command="{x:Static commands:RoutedCommands.AddCommand}"/>

</StackPanel>

13. Now open the MainWindow.xaml.cs file and create a member variable of type
MainWindowViewModel. Name it ViewModel and initialize it as null. This will be used to store the
reference of the ViewModel from the window resources:

private MainWindowViewModel ViewModel = null;

14. Inside the constructor, grab the associated ViewModel reference from the Resources:

public MainWindow()

{

 InitializeComponent();

 ViewModel = Resources["ViewModel"] as

 MainWindowViewModel;

 if (ViewModel == null)

 {

 throw new NullReferenceException("ViewModel

 can't be NULL");

 }

}

15. The CanExecute_AddCommand event passes an argument of type CanExecuteRoutedEventArgs. It
contains a property named CanExecute, which is responsible for holding a boolean value,
indicating whether the System.Windows.Input.RoutedCommand associated with this event can be
executed on the command target. As we have associated the AddCommand with the button,
e.CanExecute = true will enable the button. In other cases, it will be disabled. So, let's
modify the CanExecute_AddCommand event to implement this logic:

private void CanExecute_AddCommand(object sender,

 CanExecuteRoutedEventArgs e)

{

 if (ViewModel != null)

 {

 var userDetails = ViewModel.NewUserDetails;

 e.CanExecute =

 !string.IsNullOrWhiteSpace(userDetails.Firstname) &&

 !string.IsNullOrWhiteSpace(userDetails.Lastname);

 }

}

16. Once that has been done, we need to implement the Execute command. Modify the
Execute_AddCommand event handler, as follows:

private void Execute_AddCommand(object sender,

 ExecutedRoutedEventArgs e)

{

 ViewModel.UserCollection.Add(ViewModel.NewUserDetails);

 ViewModel.SelectedUser = ViewModel.NewUserDetails;

 ViewModel.NewUserDetails = new Models.UserModel();

}

17. Let's run the application now. You will see that the Add button is disabled. This is because,
as per our logic, the e.CanExecute property has been set to false as both the TextBox fields are
empty:

www.EBooksWorld.ir

18. Enter some strings into both the TextBox fields and press the TAB key. It will automatically
enable the button control, as follows:

19. Click on Add, which will add the entered value to the collection and reset the TextBox
fields. As soon as it resets the fields to empty, the button will automatically become
disabled until the user fills the fields again:

www.EBooksWorld.ir

How it works...
The RoutedCommand class falls under the System.Windows.Input namespace, and provides two
methods named CanExecute and Execute. The CanExecute method indicates whether the command is
available, whereas the Execute method executes the command.

The RoutedCommand objects are basically empty shells and can't contain the implementation. For
this to work, they look for a CommandBinding object from a target element that indicates the handler
of the command. It registers the CanExecute and Execute methods to fire when the command
associates with any control.

For example, in this demonstration, the AddCommand associated with the Button control has a
CommandBinding, which denotes its CanExecute and Execute handler as CanExecute_AddCommand and
Execute_AddCommand. When the button fires the Click event, it routes to the command binding to
execute the associate command interface.

www.EBooksWorld.ir

Working with Animations
In this chapter, we will cover the following recipes:

Scaling an element while rendering
Rotating an element while rendering
Skewing an element while rendering
Moving an element while rendering
Grouping multiple transforms
Creating property-based animations
Creating path-based animations
Creating key-frame-based animations
Adding easing effects to animations

www.EBooksWorld.ir

Introduction
Windows Presentation Foundation (WPF) is well-known for its rich graphical user interface
(GUI) and layout features, which enables you to create stunning desktop applications.
Animations can be used to create an attractive user interface (UI) by just animating UI
elements, transformations, screen transitions, and more.

In this chapter, we will learn how to create animations using storyboards. We will first start
with recipes that will help you to understand various transformations, such as ScaleTransform,
RotateTransform, SkewTransform, and TranslateTransform. Then we will proceed towards recipes to
learn various kinds of animations, such as property-based animations, path-based animations,
and key-frame-based animations.

At the end, we will learn various easing functions introduced in WPF 4, which can be used to
create easing effects on your linear animations to give them a non-linear look.

www.EBooksWorld.ir

Scaling an element while
rendering
The ScaleTransform is used to scale (stretch or shrink) an object horizontally or vertically. The
ScaleX property is used to specify how much to stretch or shrink the object along the X axis,
whereas the ScaleY property is used to specify how much to stretch or shrink the object along the
Y axis. Using the CenterX and CenterY properties, the operations are performed based on the center
pointing at certain coordinate points.

In this recipe, we will learn how to stretch or shrink an element using the scale transform.

www.EBooksWorld.ir

Getting ready
First, open your Visual Studio instance and create a new WPF App project named
CH08.ScaleTransformDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to add Image controls to the application UI, and apply ScaleTransform to scale
the image:

1. From the Solution Explorer, right-click on the project node and create a new folder. Name
it as Images.

2. Now, right-click on the Images folder and add an existing image from your system. Name it
as image1.png:

3. Navigate to the MainWindow.xaml page and replace the default Grid with a horizontal
StackPanel.

4. Inside the StackPanel, add the following Grid with two image controls. Both, the image
controls should be pointing to the Images/image1.png image file. The second image will have
a transform set to it to scale the image to 80%, as shown in the following code snippet:

<Grid>

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png"/>

 <Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <ScaleTransform ScaleX="0.8"

 ScaleY="0.8"/>

 </Image.RenderTransform>

 </Image>

</Grid>

5. Let's add one more Grid inside the StackPanel with the following XAML mark-up, where
the two images are scaled to 50% and mark the scaling center position to (0,0) and
(100,100), respectively:

<Grid Margin="110 0 0 0">

www.EBooksWorld.ir

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <ScaleTransform ScaleX="0.5"

 ScaleY="0.5"

 CenterX="0"

 CenterY="0"/>

 </Image.RenderTransform>

 </Image>

 <Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <ScaleTransform ScaleX="0.5"

 ScaleY="0.5"

 CenterX="100"

 CenterY="100"/>

 </Image.RenderTransform>

 </Image>

</Grid>

6. Let's run the application now and check the scaling behavior of the various images on the
screen.

www.EBooksWorld.ir

How it works...
The RenderTransform attribute helps you to set runtime transformation to any UI Element. In this
example, we used ScaleTransform to scale the image on the application window.

When you run the application, the first one is the default image with an opacity set to 20%,
whereas the second one is scaled to 80% with an opacity of 100%. The ScaleX and ScaleY
properties are used to scale an element, which takes a decimal value to represent the ratio. For
example, 0.8 denotes 80%, whereas 1.2 denotes 120% of the scaling:

For the third and fourth images, both are scaled to 50%. But, as you see on the UI, the positions
of the said images are different. The properties CenterX and CenterY are used to set the scaling
center position. The third image has the scaling center set at (0,0), whereas the fourth one has its
center position set at (100,100):

<ScaleTransform ScaleX="0.5"

 ScaleY="0.5"

 CenterX="100"

 CenterY="100"/>

www.EBooksWorld.ir

Rotating an element while
rendering
When you want to rotate an element at runtime, the RotateTransform is used. It rotates the element
around a center position denoted by CenterX and CenterY, at an angle in degrees specified by the
Angle property.

Let's learn how to use RotateTransform to rotate a UI element at a specified angle. In this recipe,
we are going to discuss this.

www.EBooksWorld.ir

Getting ready
Open Visual Studio and create a new project named CH08.RotateTransformDemo. Make sure to
select the WPF App template while creating the project.

www.EBooksWorld.ir

How to do it...
Follow the steps mentioned here to apply rotation to an Image control:

1. From Solution Explorer, right-click on the project node and create a new folder. Name it as
Images.

2. Now right-click on the Images folder and add an existing image from your system. Name
it image1.png.

3. Open the MainWindow.xaml file and replace the existing Grid with a horizontal StackPanel.
4. Insert the following XAML mark-up inside the StackPanel to add two images the

application window. The first image will have an opacity set to 20%, and the second image
will have a RotateTransform set at an angle of 45 degrees:

<Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png"/>

<Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <RotateTransform Angle="45"/>

 </Image.RenderTransform>

</Image>

5. Let's add one more Grid inside the StackPanel.
6. Add two more images into the new Grid panel. Set the RenderTransform attribute of both the

images to have a RotateTransform set to it at an angle of 45 degrees.
7. As shown in the following XAML snippet, set the center position of the rotation of the

images using the CenterX and CenterY properties. In this demonstration, we will set (0,0) and
(30,30) as the rotation center of the respective images:

<Grid Margin="80 0 0 0">

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <RotateTransform Angle="45"

 CenterX="0"

 CenterY="0"/>

 </Image.RenderTransform>

 </Image>

 <Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <RotateTransform Angle="45"

 CenterX="30"

 CenterY="30"/>

 </Image.RenderTransform>

 </Image>

</Grid>

8. Once this is done, build the project and run it. You will see four images on the screen,
which will look like the following screenshot:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
RotateTransform allows you to rotate an element at a certain degree specified by the Angle
property. In the first image, no transformation was applied and thus it will look as default. If you
compare this with the other images on the screen, the second image is rotated clockwise at an
angle of 45 degrees. The third and fourth images are also rotated at an angle of 45 degrees, but
with a small difference.

For the third image, the rotation was done at the center position (0,0). For the fourth image, it
was done at the center position (30,30). Here's how the difference will look:

www.EBooksWorld.ir

Skewing an element while
rendering
SkewTransform is used in a WPF platform to shear an element so that it has a 3D look in a 2D plate
by adding depth to it. The AngleX and AngleY properties are used to specify the skew angle of the
X axis and the Y axis, while the CenterX and CenterY properties are used to specify the X and Y
coordinates of the center point.

In this recipe, we will learn how to apply skew transform to an image.

www.EBooksWorld.ir

Getting ready
To get started, open your Visual Studio IDE and create a new project named
CH08.SkewTransformDemo, based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Let's add some images to the application window and apply skew to those at a certain angle and
certain center positions. Follow these steps:

1. From Solution Explorer, right-click on the project node and create a new folder. Name
it Images.

2. Now right-click on the Images folder and add an existing image from your system. Name it
as image1.png.

3. Open the MainWindow.xaml file and replace the existing Grid with a horizontal StackPanel.
4. Insert the following Grid inside the StackPanel to have two images. The first one will have

opacity set to 20%, whereas the other will have a Skew applied to it at an angle of 50
degrees and 5 degrees on the X and Y axes. To set these, use the AngleX and AngleY
properties, as follows:

<Grid>

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png"/>

 <Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <SkewTransform AngleX="50"

 AngleY="5"/>

 </Image.RenderTransform>

 </Image>

</Grid>

5. Add one more Grid inside the StackPanel and insert two images inside the new Grid. Set
SkewTransform to both of the images at the X and Y axes as 30 degrees and 5 degrees,
respectively. For one of the images, set the skew center position at (0,0), and for the other
image, set the skew center position at (200,-100) by specifying the CenterX and CenterY
properties as follows:

<Grid Margin="200 0 0 0">

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.2"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <SkewTransform AngleX="30"

 AngleY="5"

 CenterX="0"

 CenterY="0"/>

 </Image.RenderTransform>

 </Image>

 <Image Height="300" Width="260"

 Margin="4" Opacity="1.0"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <SkewTransform AngleX="30"

 AngleY="5"

 CenterX="200"

 CenterY="-100"/>

 </Image.RenderTransform>

 </Image>

</Grid>

www.EBooksWorld.ir

6. Let's run the application. You will see images on the screen, such as the following ones:

www.EBooksWorld.ir

How it works...
When you set AngleX and AngleY to a SkewTransform, the associated element skews/shears
counterclockwise from the Y axis and the X axis, respectively, at an angle specified, which is
measured in degrees.

The CenterX property is used to set the X coordinate of the transform center, whereas the CenterY
property is used to set the Y coordinate of the transform center. In the preceding example, when
we specified CenterX and CenterY to the image, it changed the skew position centered at (200,-100)
coordinate point, as shown in the following screenshot:

www.EBooksWorld.ir

Moving an element while
rendering
TranslateTransform is used to move an element from one position to another in the 2D interface.
The X and Y properties are used to move an element towards the X and Y axes. In this recipe, we
will learn how to apply this transforming to an element.

www.EBooksWorld.ir

Getting ready
Open Visual Studio and create a project named CH08.TranslateTransformDemo based on the WPF
application template.

www.EBooksWorld.ir

How to do it...
Follow these simple steps to move an image from a certain coordinate location specified by the X
and Y properties:

1. Before working on this, we need to add an image file to the project. From Solution
Explorer, right-click on the project node and create a new folder. Name it Images.

2. Now right-click on the Images folder and add an existing image from your system. Name
it image1.png.

3. Open the MainWindow.xaml file and add two images inside the Grid panel. Set the first one
with a transparency of 30%. For the second image, add a TranslateTransform to it at a
(300,80) location specified by the X and Y properties, as shared in the following screenshot:

<Grid VerticalAlignment="Top"

 HorizontalAlignment="Left">

 <Image Height="300" Width="260"

 Margin="4" Opacity="0.3"

 Source="Images/image1.png"/>

 <Image Height="300" Width="260"

 Margin="4"

 Source="Images/image1.png">

 <Image.RenderTransform>

 <TranslateTransform X="300"

 Y="80"/>

 </Image.RenderTransform>

 </Image>

</Grid>

4. That's it! Let's build and run the application.

www.EBooksWorld.ir

How it works...
When you run the application, you will see two images on the screen. The first one, which has a
20% opacity level, is placed at the far left of the window. The second image, which was placed
on top of it, has been moved to a coordinate point (300, 80), as shown in the following
screenshot:

To set the distance to translate along the X axis, the X property of the TranslateTransform is used,
which is 300 here. Similarly, to set the distance to translate along the Y axis, the Y property of the
TranslateTransform is used. It is 80 in our case.

www.EBooksWorld.ir

Grouping multiple transforms
It is not mandatory to have a single transform to a single element. You can group multiple
transforms to it, by using the <TransformGroup></TransformGroup> tag. In this recipe, we will learn
how to group multiple transforms.

www.EBooksWorld.ir

Getting ready
To get started, open Visual Studio and create a new project named CH08.GroupedTransformsDemo
based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to add two images to the application window and flip the second image
to give a reflection effect. This will be done by grouping multiple transforms to that image:

1. First, we need to add an image to the project. To do this, create a folder named Images in
the project root directory.

2. Right-click on the Images folder and add an existing image to it. Name it image1.png, which
will be accessible from XAML as Images/image1.png.

3. From the Solution Explorer, navigate to the MainWindow.xaml file.
4. Replace the existing Grid panel with a horizontal StackPanel.
5. Insert two Image controls inside it and set their names as originalImage and flippedImage.
6. Now set the image source of both the controls to Images/image1.png and then set their size.

This is how the XAML will look:

<StackPanel Orientation="Horizontal"

 Margin="10">

 <Image x:Name="originalImage"

 Source="Images/image1.png"

 Height="200" Width="250"/>

 <Image x:Name="flippedImage"

 Source="Images/image1.png"

 Height="200" Width="250"/>

</StackPanel>

7. Run the application, which will give the following output:

8. Close the application and return to the MainWindow.xaml file.
9. Now we will flip the second image (flippedImage) to give a reflection effect. To do so, first

set the RenderTransformOrigin of the Image control to 0.5,0.5.
10. Now add <Image.RenderTransform> to add the transforms mark-up. In this case, as we are

going to add multiple transforms, add a <TransformGroup> tag inside it.
11. Let's add ScaleTransform, SkewTransform, RotateTransform, and TranslateTransform inside the

<TransformGroup> tag to flip the image. This is how the RenderTransform of the Image will look:

<Image x:Name="flippedImage"

 Source="Images/image1.png"

 Height="200" Width="250"

 RenderTransformOrigin="0.5,0.5">

 <Image.RenderTransform>

www.EBooksWorld.ir

 <TransformGroup>

 <ScaleTransform ScaleY="1" ScaleX="-1"/>

 <SkewTransform AngleY="0" AngleX="0"/>

 <RotateTransform Angle="0"/>

 <TranslateTransform/>

 </TransformGroup>

 </Image.RenderTransform>

</Image>

Once done with the changes, your XAML will look as the following code:

<StackPanel Orientation="Horizontal"

 Margin="10">

 <Image x:Name="originalImage"

 Source="Images/image1.png"

 Height="200" Width="250"/>

 <Image x:Name="flippedImage"

 Source="Images/image1.png"

 Height="200" Width="250"

 RenderTransformOrigin="0.5,0.5">

 <Image.RenderTransform>

 <TransformGroup>

 <ScaleTransform ScaleY="1" ScaleX="-1"/>

 <SkewTransform AngleY="0" AngleX="0"/>

 <RotateTransform Angle="0"/>

 <TranslateTransform/>

 </TransformGroup>

 </Image.RenderTransform>

 </Image>

</StackPanel>

12. Let's build the project and run the application again. What did you see? There's a reflection
of the first image created by flipping the second image. Here's a screenshot of the output:

www.EBooksWorld.ir

How it works...
It works by defining the transformation mark-up inside the <TransformGroup> tag. In our example,
we applied the ScaleTransform, which created a flip effect. The rest of the other transforms that
we applied here use default values. You can modify their values and check how this works in the
UI.

www.EBooksWorld.ir

There's more...
Visual Studio provides you with a straightforward way to add transforms to any UI element.
From the designer view, select the element for which you want to apply the transform and
navigate to its Properties pane. Here, you can find an expander pane with the title Transform.
This is used to set various values to different transforms available in XAML.

As shown in the following screenshot, you can define TranslateTransform, RotateTransform,
ScaleTransform, SkewTransform, and Flip. Each tab/section consists of different values that it can
accept:

www.EBooksWorld.ir

Creating property-based
animations
Property-based animations are used to change a dependency property from one value to
another in a duration specified. There exists various animation classes under the namespace
System.Windows.Media.Animation, which includes DoubleAnimation, ColorAnimation, and
PointAnimation. These are used to create animation based on the type of property being animated.

In this recipe, we will learn how to create property-based animations. Keep in mind that only
Dependency Properties can be modifiable during an animation.

www.EBooksWorld.ir

Getting ready
To get started with this recipe, let's first create a project. Open Visual Studio IDE and create a
project named CH08.PropertyBasedAnimationDemo, based on the WPF application template.

www.EBooksWorld.ir

How to do it...
In this demonstration, we will add a square box to the application window. On mouse hover, we
will run a storyboard to change the size and color of the box and then reset it to the initial value
on mouse leave. Follow these steps:

1. From Solution Explorer, navigate to the MainWindow.xaml file.
2. Inside the XAML file, you will find a Grid panel placed by default. Let's add a Rectangle

control inside it and set its Height and Width properties to 100 to give it a square look.
3. Give the rectangle the name squareBox so that we can identify it from our Storyboard.
4. Add a SolidColorBrush to fill the background of the Rectangle. Set a color to the brush and

name it squareBoxFillBrush. Here's the XAML snippet:

<Grid>

 <Rectangle x:Name="squareBox"

 Height="100"

 Width="100">

 <Rectangle.Fill>

 <SolidColorBrush x:Name="squareBoxFillBrush"

 Color="Black"/>

 </Rectangle.Fill>

 </Rectangle>

</Grid>

5. As we need to add a Storyboard animation to the MouseEnter and MouseLeave events of the
Rectangle, let's control these using triggers. As shown, add a <Rectangle.Triggers>
</Rectangle.Triggers> element to our Rectangle control:

<Grid>

 <Rectangle x:Name="squareBox"

 Height="100"

 Width="100">

 <Rectangle.Fill>

 <SolidColorBrush x:Name="squareBoxFillBrush"

 Color="Black"/>

 </Rectangle.Fill>

 <Rectangle.Triggers>

 </Rectangle.Triggers>

 </Rectangle>

</Grid>

6. As we will be triggering the animation on MouseEnter and MouseLeave events, add an
EventTrigger inside the <Rectangle.Triggers></Rectangle.Triggers> element that we have
added.

7. Now expand the trigger to have Actions to begin a Storyboard animation. Modify your
XAML mark-up as follows:

<Rectangle.Triggers>

 <EventTrigger RoutedEvent="MouseEnter">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 </Storyboard>

www.EBooksWorld.ir

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

</Rectangle.Triggers>

8. Inside the Storyboard animation for the MouseEnter event, we will be changing the size and
color of the squareBox rectangle control. By using DoubleAnimation, we will be changing the
Height and Width properties of the rectangle, and by using the ColorAnimation we will be
changing the Fill color. Update the Storyboard as follows:

<Storyboard>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Height"

 To="200"/>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Width"

 To="400"/>

 <ColorAnimation

 Storyboard.TargetName="squareBoxFillBrush"

 Storyboard.TargetProperty="Color"

 To="OrangeRed"

 Duration="0:0:1"/>

</Storyboard>

9. Similarly, add another EventTrigger to the Rectangle control to trigger another Storyboard on
the MouseLeave event to reset the size and the color. This new mark-up will look as follows:

<EventTrigger RoutedEvent="MouseLeave">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation

 Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Height"

 To="100"/>

 <DoubleAnimation

 Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Width"

 To="100"/>

 <ColorAnimation

 Storyboard.TargetName="squareBoxFillBrush"

 Storyboard.TargetProperty="Color"

 To="Black"

 Duration="0:0:1"/>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

</EventTrigger>

10. Run the application now. You will see a square with a Black background, as shown in the
following screenshot:

www.EBooksWorld.ir

11. Mouse hover on the square. This will resize the square to a rectangle and change the color
to OrangeRed. Check the transition of the size and color, which will have a nice animation:

12. Now hover out your mouse cursor from the rectangle. What happens now? With a nice
animation, the rectangle will reset back to a square. Also, the background color will
change from OrangeRed to Black.

www.EBooksWorld.ir

How it works...
Animations may be created manually by constructing the appropriate animation type, specifying
properties, and then calling BeginStoryboard on the element to animate. The properties must be of
type dependency property, which you want to animate on the animation object.

In this example, when the MouseEnter event triggers, the following Storyboard animation runs.
DoubleAnimation and ColorAnimation accepts the attached properties, Storyboard.TargetName and
Storyboard.TargetProperty, which allows the Storyboard to change the said property of the targeted
element at runtime:

<Storyboard>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Height"

 To="200"/>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Width"

 To="400"/>

 <ColorAnimation Storyboard.TargetName="squareBoxFillBrush"

 Storyboard.TargetProperty="Color"

 To="OrangeRed"

 Duration="0:0:1"/>

</Storyboard>

From and To properties are used to change the property from a specified value to another. Though
it is optional to set the From field, you need to specify the To field in order to have the change in
effect for the Storyboard. In the preceding example, the animation will change the Height, Width,
and Color from its initial value.

You can also set a TimeSpan to the animation to set the time for the transition to occur. You can
use the Duration property to set the value. In the preceding example, it will take 1 second for the
transition to happen from a Black color to an OrangeRed color.

Similarly, when the MouseLeave event triggers, the following Storyboard responsible for resetting
the value will trigger, which will set the To field to its initial value. When the Storyboard runs,
you will see a nice transitional animation on the screen:

<Storyboard>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Height"

 To="100"/>

 <DoubleAnimation Storyboard.TargetName="squareBox"

 Storyboard.TargetProperty="Width"

 To="100"/>

 <ColorAnimation Storyboard.TargetName="squareBoxFillBrush"

 Storyboard.TargetProperty="Color"

 To="Black"

 Duration="0:0:1"/>

</Storyboard>

These are some common properties that you will find in most of the animation types:

From: It is used to indicate the starting value of the animation. If you omit the From field, it

www.EBooksWorld.ir

will use the current value of the dependency property.
To: It is the target value of the animation, which you should fill. If you omit it or put the
current value, the said animation will have no effect.
Duration: It is the duration of the animation. Apart from a TimeSpan type value in
hh:mm:ss.ms format, it can also contain two special values—Duration.Automatic (default
value) and Duration.Forever. When you specify Duration.Forever, it will run for an infinite
length. In XAML, hh:mm:ss.ms format is mostly used.
FillBehavior: It indicates the animation's behavior when it ends. The default value FillEnd
asks to keep the last animation value; the previous value, which was used before the
animation, will have no effect. The other value, Stop, destroys the animation and reverts the
property to its value without the animation.
BeginTime: When you want to set a delay before the animation begins, you can use this
attribute to define the delay time.
AutoReverse: If you want to automatically reverse the animation, after it ends, you can set it
to true. The total animation duration will be effectively doubled when enabled.
SpeedRatio: It allows you to speed up or slow down the animation duration.
RepeatBehavior: This attribute specifies the count or the time you want to repeat the
animation, after it ends. This is often useful when you set AutoReverse to true.

www.EBooksWorld.ir

Creating path-based animations
Along with property-based animations, which we learned about in the previous recipe, WPF also
supports path-based animations that run along a path specified by the PathGeometry.

In this recipe, we will learn how to use a PathGeometry to animate an element along its way.

www.EBooksWorld.ir

Getting ready
Let's begin with creating a new WPF application project. Name it CH08.PathBasedAnimationDemo.

www.EBooksWorld.ir

How to do it...
In this demonstration, we will use a circle to animate it on the click of a button. The animation
will be performed based on a path specified by a set of geometry coordinates. Let's build this by
following the steps mentioned here:

1. From Solution Explorer, navigate to the MainWindow.xaml file.

2. A default Grid panel will be present inside the file. Let's divide it into two rows by
specifying the row definition as follows:

<Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

3. Let's place a Canvas panel inside the first row. Add an Ellipse of Height="30" and Width="30"
to form the circle. Give it a name circle.

4. Set the fill color of the Ellipse and position it at the (100, 100) coordinate location of the
canvas. Here's the complete mark-up for your reference:

<Canvas Grid.Row="0">

 <Ellipse x:Name="circle"

 Height="30"

 Width="30"

 Canvas.Left="100"

 Canvas.Top="100"

 Fill="OrangeRed"/>

</Canvas>

5. We will be using this Ellipse to animate inside the canvas along a path. For this, we will
need a PathGeometry defined. To do so, add the following inside the Window tag as Resources
to define the PolyLineSegment points as a collection of coordinates:

<Window.Resources>

 <PathGeometry x:Key="animationPath">

 <PathFigure IsClosed="True"

 StartPoint="100,100">

 <PolyLineSegment Points="150,150 400,200 300,50 200,200 100,100 400,100 50,50 400,150 100,250, 100,50" />

 </PathFigure>

 </PathGeometry>

</Window.Resources>

6. Let's add a Button control inside the Window, which will be used to trigger the animation.
Surround the button with a horizontal StackPanel and place it inside the second row of the
Grid:

<StackPanel Grid.Row="1"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 Margin="10">

 <Button Content="Animate"

www.EBooksWorld.ir

 Width="100">

 </Button>

</StackPanel>

7. Now we need to catch the Button.Click event. For this, we will need an EventTrigger to
define against the Button control. And, once the trigger fires, the action is to begin a
Storyboard to perform an animation. Let's modify the Button control to have this trigger set
to start a storyboard. Here's the code to refer to:

<Button Content="Animate"

 Width="100">

 <Button.Triggers>

 <EventTrigger RoutedEvent="Button.Click">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard x:Name="Animate"

 AutoReverse="True">

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 </Button.Triggers>

</Button>

8. Now it's time to add some path animations to the Storyboard that we have added inside the
Button.Click event handler. Let's use DoubleAnimationUsingPath to bind the PathGeometry that
we added to the Window.Resources tag.

9. Set the Storyboard.TargetName to circle and the Storyboard.TargetProperty to
(Canvas.Left) and (Canvas.Top) to create an animation in both the X and Y axes. Here's the
code:

<DoubleAnimationUsingPath Duration="0:0:5"

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 PathGeometry="{StaticResource animationPath}"

 Source="X"/>

<DoubleAnimationUsingPath Duration="0:0:5"

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Top)"

 PathGeometry="{StaticResource animationPath}"

 Source="Y"/>

10. Let's build the application and run it. You will see the following UI with a circle and a
button:

www.EBooksWorld.ir

11. Click on the Animate button and observe the positions of the circle. You will see a nice
animated flow on the screen:

www.EBooksWorld.ir

How it works...
The path-based animations use a PathGeometry as a path to create the animation. In our example,
we defined it under the Window.Resources tag as an animationPath, which represents the path in a
2D interface as a collection of coordinate points. See the following code snippet:

<PathGeometry x:Key="animationPath">

 <PathFigure IsClosed="True"

 StartPoint="100,100">

 <PolyLineSegment Points="150,150 400,200 300,50 200,200 100,100 400,100 50,50 400,150 100,250, 100,50" />

 </PathFigure>

</PathGeometry>

The DoubleAnimationUsingPath that we used in our storyboard animation uses Canvas.Left and
Canvas.Top as the target properties to animate along the X and Y axes. When the Storyboard plays,
the target element moves from one coordinate point to another, having a smooth animation
between the two points.

www.EBooksWorld.ir

Creating key-frame-based
animations
Key frame animations in WPF enable you to animate an element using more than two target-
values and control an animation's interpolation method. A key frame animation has no From/To
properties with which we can set its target values.

The animation's target values are described using key frame objects, which you need to add to
the animation's KeyFrames collection. When the animation runs, it transitions between the key
frames that you specified.

In this recipe, we will learn how to create a key-frame-based animation and use it in our
application.

www.EBooksWorld.ir

Getting ready
We need to create a project first. Open Visual Studio IDE and create a new project named
CH08.KeyFrameBasedAnimationDemo, based on the WPF application template.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to create a key-frame-based animation:

1. Open the MainWindow.xaml file.
2. Add two rows inside the Grid, by specifying RowDefinitions:

<Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

3. Add a Canvas panel at 0th row of the Grid.
4. Insert an Ellipse inside the canvas and set its Height and Width properties to 30, so that it

displays as a circle.
5. Provide a name to the Ellipse, and position it to the (50,100) coordinate position on the

Canvas panel, and fill the background with an OrangeRed color.

6. Insert a Button control inside a horizontal StackPanel, and place the panel inside the second
row. Here's the complete XAML of the UI that we have generated for this demonstration:

<Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <Canvas Grid.Row="0">

 <Ellipse x:Name="circle"

 Height="30"

 Width="30"

 Canvas.Left="50"

 Canvas.Top="100"

 Fill="OrangeRed"/>

 </Canvas>

 <StackPanel Grid.Row="1"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 Margin="10">

 <Button Content="Animate"

 Width="100">

 </Button>

 </StackPanel>

</Grid>

7. On pressing the button, we need to animate the circle around the application window. To
do this, we will be using an EventTrigger. Define the trigger for a Button.Click event and set
its action to begin a storyboard.

8. Set the AutoReverse property of the Storyboard to True. Here's the code for launching the
storyboard when a user triggers the button click event:

<Button Content="Animate"

 Width="100">

www.EBooksWorld.ir

 <Button.Triggers>

 <EventTrigger RoutedEvent="Button.Click">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard x:Name="Animate"

 AutoReverse="True">

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 </Button.Triggers>

</Button>

9. Inside the storyboard, we need to define an animation that will run based on the key frame
specified. This is done by adding one or more LinearDoubleKeyFrame(s) inside a
DoubleAnimationUsingKeyFrames element. Insert two instances of DoubleAnimationUsingKeyFrames
inside the Storyboard definition.

10. Set the Storyboard.TargetName property of DoubleAnimationUsingKeyFrames to circle.
11. Set AutoReverse to True and RepeatBehavior to Forever.
12. For the first DoubleAnimationUsingKeyFrames, set the Storyboard.TargetProperty to

(Canvas.Left). For the other one, set it to (Canvas.Top).
13. Define key frames by adding one or more LinearDoubleKeyFrame instances to the

DoubleAnimationUsingKeyFrames. Set their KeyTime and Value. Here's the complete code:

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 AutoReverse="True"

 RepeatBehavior="Forever">

 <LinearDoubleKeyFrame Value="50"

 KeyTime="0:0:0" />

 <LinearDoubleKeyFrame Value="450"

 KeyTime="0:0:1" />

 <LinearDoubleKeyFrame Value="450"

 KeyTime="0:0:3" />

 <LinearDoubleKeyFrame Value="250"

 KeyTime="0:0:5" />

</DoubleAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Top)"

 AutoReverse="True"

 RepeatBehavior="Forever">

 <LinearDoubleKeyFrame Value="100"

 KeyTime="0:0:0" />

 <LinearDoubleKeyFrame Value="200"

 KeyTime="0:0:1" />

 <LinearDoubleKeyFrame Value="50"

 KeyTime="0:0:3" />

 <LinearDoubleKeyFrame Value="150"

 KeyTime="0:0:5" />

</DoubleAnimationUsingKeyFrames>

14. Once done, let's run the application. You will see a circle on the screen at the (50, 100)
coordinate point. There also exists a button labeled Animate, as shown in the following
screenshot:

www.EBooksWorld.ir

15. Click on the Animate button to start the defined storyboard. See the movement and the
speed of the circle:

www.EBooksWorld.ir

How it works...
When a key frame animation begins, it iterates through the specified key frames in the order
they were defined by their KeyTime properties. If there exists no key frame at time 0 (initial point),
the animation creates a transition between the target property's current value and the Value of the
first key frame defined in the collection.

If the animation's Duration is Automatic or set to the time of the last key frame, the animation
ends.

In the preceding demonstration, the first key frame (at time 0) sets the animation's output value
to Canvas.Left="50" and Canvas.Top="100". In the next key frame (at time 1 sec), the output value
sets to the (450,200) coordinate point, and you will see a smooth transition between the (50,100)
and the (450,200) points. Similarly, in the third and fourth seconds, the circle transitions from
(450,200) to (450,50) and then to the (250,150) coordinate points.

As the defined Storyboard has an AutoReverse property set to True, the animation will have a
reverse transition to move the circle from the end point (250,150) to the initial start point (50,100)
via the (450,50) and the (450,200) coordinate points.

www.EBooksWorld.ir

There's more...
The key-frame-based animation class type is not limited to only DoubleAnimationUsingKeyFrames.
You can use any of the following key frame animation classes to construct your storyboard:

Boolean: BooleanAnimationUsingKeyFrames
Byte: ByteAnimationUsingKeyFrames
Color: ColorAnimationUsingKeyFrames
Decimal: DecimalAnimationUsingKeyFrames
Double: DoubleAnimationUsingKeyFrames
Int16: Int16AnimationUsingKeyFrames
Int32: Int32AnimationUsingKeyFrames
Int64: Int64AnimationUsingKeyFrames
Matrix: MatrixAnimationUsingKeyFrames
Object: ObjectAnimationUsingKeyFrames
Point: PointAnimationUsingKeyFrames
Quaternion: QuaternionAnimationUsingKeyFrames
Rect: RectAnimationUsingKeyFrames
Rotation3D: Rotation3DAnimationUsingKeyFrames
Single: SingleAnimationUsingKeyFrames
String: StringAnimationUsingKeyFrames
Size: SizeAnimationUsingKeyFrames
Thickness: ThicknessAnimationUsingKeyFrames
Vector3D: Vector3DAnimationUsingKeyFrames
Vector: VectorAnimationUsingKeyFrames

www.EBooksWorld.ir

Adding easing effects to
animations
Property-based animations are linear, whereas the key-frame-based animations are non-linear
and are used to create Beizer-based interpolations. But creation of such effects is not so easy. To
overcome this, WPF 4 introduces easing functions to turn a linear animation into a non-linear
one and add some easing effects to those animation objects.

In this recipe, we will learn how to do this with a suitable example.

www.EBooksWorld.ir

Getting ready
To get started with adding easing effects to an animation, let's open Visual Studio and create a
new project named CH08.EasingEffectDemo. Select a WPF application template while creating the
project.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to create an animation with various kinds of easing effects:

1. From Solution Explorer, open the MainWindow.xaml file.
2. Divide the existing Grid panel into two columns, by applying ColumnDefinition to it:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

3. Now, inside the Grid, place a Canvas panel, and set its Grid.Column attribute to 0 (zero).

4. Inside the canvas, add an Ellipse (name it as circle) and set its Height and Width properties
to 80 to give it a circular look. Set its Fill color property, and position it to a (150,80)
location. Here's the code snippet:

<Canvas Grid.Column="0">

 <Ellipse x:Name="circle"

 Height="80"

 Width="80"

 Fill="OrangeRed"

 Canvas.Left="150"

 Canvas.Top="80"/>

</Canvas>

5. Now add a vertical StackPanel inside the Grid and set its Grid.Column attribute to 1.
6. Add three radio buttons (GroupName="AnimationSelector") inside the StackPanel, and add a

Storyboard animation to fire when the RadioButton.Checked event is triggered.
7. Add a simple DoubleAnimation to move the circle horizontally by setting its

Storyboard.TargetProperty to (Canvas.Left).
8. Now expand the animation to add an easing effect to it. Insert

a <DoubleAnimation.EasingFunction></DoubleAnimation.EasingFunction> attribute to hold the
effect that we are going to add.

9. Let's add a BackEase effect to the three radio buttons. This type of effect represents an
easing function that retracts the motion of an animation slightly before it begins to animate
in the path indicated, and is denoted by the following function—f(t) = t3 - t * a * sin(t

* pi). Set the Amplitude property of the function to 0.3 and the EasingMode property to EaseIn,
EaseOut, and EaseInOut, respectively. The complete code will look as follows:

<StackPanel Grid.Column="1"

 Margin="10">

 <RadioButton GroupName="AnimationSelector"

 Content="BackEase - EaseIn"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger

 RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

www.EBooksWorld.ir

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <BackEase EasingMode="EaseIn"

 Amplitude="0.3"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

 </RadioButton>

 <RadioButton GroupName="AnimationSelector"

 Content="BackEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger

 RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <BackEase EasingMode="EaseInOut"

 Amplitude="0.3"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

 </RadioButton>

 <RadioButton GroupName="AnimationSelector"

 Content="BackEase - EaseOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger

 RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <BackEase EasingMode="EaseOut"

 Amplitude="0.3"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

 </RadioButton>

</StackPanel>

10. Let's run the application. You will see the following UI on the screen:

www.EBooksWorld.ir

11. Now change the selection of the radios and observe the effects added to the animation of
the circular object.

www.EBooksWorld.ir

How it works...
Animation easing applies a function to the animation value to alter a linear animation to form a
non-linear one. A mode option, defined by the EasingMode property, allows you to set when to
apply the easing function. This could be at the beginning (EaseIn), at the end (EaseOut), or both
(EaseInOut).

In the preceding example, we defined a BackEase function to the animation with different easing
modes, which will animate when the Checked event of the radio buttons trigger.

The following graph demonstrates different values of EasingMode, for the BackEase effect:

www.EBooksWorld.ir

There's more...
It's not limited to only the BackEase function, but it can have any of the 11 built-in easing
functions defined in WPF. The complete list is as follows:

BackEase

BounceEase

CircleEase

CubicEase

ElasticEase

ExponentialEase

PowerEase

QuadraticEase

QuarticEase

QuinticEase

SineEase

All these listed easing functions derive from the abstract class EasingFunctionBase, which
implements the IEasingFunction interface. It contains an Ease method and adds the
EasingMode property, which indicates whether the function should be applied at the start of the
animation (EaseIn), the end of the animation (EaseOut), or both ways (EaseInOut).

Let's modify our existing UI to have some more built-in easing functions added to the animation.
To demonstrate this, we are going to add 10 more radio buttons inside the StackPanel and apply
the easing functions to each one of them, as discussed in the following section.

www.EBooksWorld.ir

BounceEase
This type of function creates an animated bouncing effect to the target. The Bounces and
Bounciness properties can be used to control the bounces. The Bounces property denotes the
number of bounces and the Bounciness property defines how bouncy the bounce animation is.
The lower the value of Bounciness, the higher the bouncing animation; the higher the value of
Bounciness, the lower the bounces of the animation.

In the following example, let's apply a BounceEase function to the DoubleAnimation to create a
bouncing effect. Let's add the following RadioButton inside the StackPanel:

<RadioButton GroupName="AnimationSelector"

 Content="BounceEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <BounceEase EasingMode="EaseInOut"

 Bounces="2"

 Bounciness="2"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the BounceEase effect:

www.EBooksWorld.ir

CircleEase
This represents an easing function that creates an animation that accelerates/decelerates using a
circular function, and is denoted by the following function f(t) = 1 - sqrt(1 - t2).

Let's add the following RadioButton inside the StackPanel to create an animation with a circular
easing effect:

<RadioButton GroupName="AnimationSelector"

 Content="CircleEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <CircleEase EasingMode="EaseInOut"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the CircleEase effect:

www.EBooksWorld.ir

CubicEase
This creates an animation that accelerates/decelerates using the formula f(t) = t3, where
EasingMode can be applied to control acceleration, deceleration, or both, by setting the value
EaseIn, EaseOut, or EasInOut.

Let's add the following RadioButton inside the StackPanel to create an animation with an
accelerating CubicEase function:

<RadioButton GroupName="AnimationSelector"

 Content="CubicEase - EaseIn"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <CubicEase EasingMode="EaseIn"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the CubicEase effect:

www.EBooksWorld.ir

ElasticEase
As the name says, it represents an easing function that creates an animation that resembles a
spring oscillating back and forth until it comes to rest. The Oscillations property can be used to
get/set the number of times the target slides back and forth over the animation destination.
The Springiness property can be used to define the stiffness of the spring. The smaller the value
of Springiness, means a stiffer spring in action.

To demonstrate, let's add the following RadioButton inside the StackPanel to create an animation
with ElasticEase, having Oscillations="3" and Springiness="1":

<RadioButton GroupName="AnimationSelector"

 Content="ElasticEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <ElasticEase EasingMode="EaseInOut"

 Oscillations="3"

 Springiness="1"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the ElasticEase effect:

www.EBooksWorld.ir

ExponentialEase
This type of easing function creates an animation that accelerates/decelerates using an
exponential formula f(t) = [[e(at) - 1] / [e(a) - 1]]. The Exponent property is used to
determine the interpolation of the animation; whereas the EasingMode property is used to
accelerate and decelerate the animation of the target control.

To demonstrate this, add the following RadioButton control inside the StackPanel, which will
create a decelerate exponential easing effect with the interpolation value 5:

<RadioButton GroupName="AnimationSelector"

 Content="ExponentialEase - EaseOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <ExponentialEase EasingMode="EaseOut"

 Exponent="5"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the ExponentialEase effect:

www.EBooksWorld.ir

PowerEase
It defines an easing function that creates an animation that accelerates/decelerates using the
formula f(t) = tp, where p is equal to the value of the Power property. As with other easing
functions, you can add an easing mode to specify whether the animation will accelerate or
decelerate.

In this demonstration, add the following RadioButton that defines the PowerEase easing function to
the DoubleAnimation specified:

<RadioButton GroupName="AnimationSelector"

 Content="PowerEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <PowerEase EasingMode="EaseInOut"

 Power="12"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

You can use PowerEase to substitute QuadraticEase [f(t) = t2], CubicEase [f(t) = t3],
QuarticEase [f(t) = t4], and QuinticEase [f(t) = t5] type of easing functions.

The following graph demonstrates different values of EasingMode, for the PowerEase effect:

www.EBooksWorld.ir

QuadraticEase
It creates an animation that accelerates/decelerates using the formula f(t) = t2. You can use
PowerEase to create the same behavior by specifying Power="2". In this example, we will learn how
to add the QuadraticEase function to an animation. Add the following mark-up inside the
StackPanel that we have defined:

<RadioButton GroupName="AnimationSelector"

 Content="QuadraticEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <QuadraticEase

 EasingMode="EaseInOut"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the QuadraticEase effect:

www.EBooksWorld.ir

QuarticEase
Like QuadraticEase, you can also define QuarticEase to create an animation that
accelerates/decelerates using the formula f(t) = t4. You can use PowerEase to create the same
behavior by specifying Power="4". Let's add the following mark-up inside our StackPanel to define
the animation with the said easing function:

<RadioButton GroupName="AnimationSelector"

 Content="QuarticEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <QuarticEase EasingMode="EaseInOut"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the QuarticEase effect:

www.EBooksWorld.ir

QuinticEase
If you want to add the QuinticEase effect to your easing function, add it to your animation. It
accelerates/decelerates using the formula f(t) = t5. You can use PowerEase to create the same by
specifying Power="5". Add the following RadioButton to define an animation with the QuinticEase
easing function in our StackPanel:

<RadioButton GroupName="AnimationSelector"

 Content="QuinticEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <QuinticEase EasingMode="EaseInOut"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the QuinticEase effect:

www.EBooksWorld.ir

SineEase
This represents an easing function that creates an animation that accelerates and/or decelerates
using a sine formula f(t) = [1 - [sin(1 - t) * [pi / 2]]]. Add the EasingMode property to
accelerate and/or decelerate the effect. Let's add the following code inside the StackPanel:

<RadioButton GroupName="AnimationSelector"

 Content="SineEase - EaseInOut"

 Margin="4">

 <RadioButton.Triggers>

 <EventTrigger RoutedEvent="RadioButton.Checked">

 <BeginStoryboard>

 <Storyboard AutoReverse="True">

 <DoubleAnimation

 Storyboard.TargetName="circle"

 Storyboard.TargetProperty="(Canvas.Left)"

 To="350">

 <DoubleAnimation.EasingFunction>

 <SineEase EasingMode="EaseInOut"/>

 </DoubleAnimation.EasingFunction>

 </DoubleAnimation>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </RadioButton.Triggers>

</RadioButton>

The following graph demonstrates different values of EasingMode, for the SineEase effect:

Once you are ready, let's build the project and run it. You will now see the following UI, which
contains additional radio buttons inside the right-hand panel:

Change the selection of the radios to see the animations for each easing function associated with

www.EBooksWorld.ir

them.

www.EBooksWorld.ir

Using WCF Services
In this chapter, we will cover the following recipes:

Creating a WCF service
Self-hosting a WCF service
Hosting a WCF service in IIS Server
Integrating a WCF service in a WPF application

www.EBooksWorld.ir

Introduction
In the modern world, enterprise applications are the key to consumer-centric enterprises. Users
access one or multiple devices to connect to the external world. And to succeed at this, the
business needs shared services, which can be consumed by all such devices.

The service-oriented architecture (SOA) is a design principle that enterprises follow to outline
well-defined services, using a common set of contracts. Each of these services can be
individually modified independently of one another and consumed by the external world.

Windows Communication Foundation (WCF) is a framework to build such service-oriented
applications. Using WCF, you can send data/messages asynchronously from one endpoint to the
other. You can host a service endpoint in IIS, or in an application directly. The messages passed
via this service endpoint can be a single character or a word sent as XML, or a complex stream
of binary data.

WCF has been widely accepted as a standard to create web services, which offers support to
multiple protocols and endpoints. In WCF, there are three important things that you need to
remember; these things are generally known as the ABC of WCF. The ABC of WCF endpoints
defines the following elements:

A for Address, which specifies where the service resides. This generally follows the URL
format as schema://domain[:port]/path, for example http://www.kunal-
chowdhury.com:8080/Services, https://www.kunal-chowdhury.com:8050/Services, or
http://192.168.0.1/Services.
B stands for Binding, which is basically a group of elements that corresponds to the
transport and protocol channels located in the channel stack, to define how the messages
are handled in the service side and the client side.
C stands for Contract, which is nothing but an agreement between the client and the
server about the structure (data contract) and content (message contract) being passed
through the channel.

In this chapter, we will learn how to create WCF services, host them, and integrate them into a
WPF application to give a service call to the defined endpoint. As this book is not about WCF,
we will just be discussing basic concepts to get you started with it.

Please ensure that ASP.NET and WCF are correctly installed and registered. To confirm, open
the Visual Studio 2017 Installer, and make sure that the ASP.NET and web development
workload, as well as the Windows Communication Foundation components, are already
installed.

If they're not there already, select them, and modify the installation:

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a WCF service
A WCF service is a secure service to process business transactions, which supplies current data
to others, exposing a workflow implemented using Windows Workflow Foundation as a WCF
service. It provides a single programming model to leverage the features to create a unified
solution to all distributed technologies. That means you can write the service once and expose
different endpoints to exchange messages using any format (default is SOAP) over any transport
protocol, that is, HTTP, TCP, MSMQ, Named Pipes, and so on.

SOAP (Simple Object Access Protocol) is one of the preferred models, where
communication between the server and the client happens by using XML-based
data.

In this recipe, we will learn about data contract, data member, service contract, operation
contract, you need to consider these when creating and connecting to WCF services. When a
service reference is taken into an application project, the developer only needs to configure the
service with a proper endpoint address. Let's start demonstrating it by creating a simple, basic
WCF service.

www.EBooksWorld.ir

Getting ready
To get started, open Visual Studio IDE with administrative privileges. This is often useful while
deploying the service in a server.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a simple WCF service, which we will integrate into a WPF
application later in this chapter:

1. First, create a new project named EmployeeService. Use the WCF Service Application
template while creating the project. You can find this under the WCF template category, as
shown in the following screenshot:

2. Visual Studio, by default, creates three service files (IService1.cs, Service1.svc, and
Service1.svc.cs) inside the project. As we will create our own services from scratch,
from Solution Explorer, let's delete all three of the files:

www.EBooksWorld.ir

3. Let's create two folders inside the project node and name them DataModels and Services.
This is optional, but it is a good idea to keep the code files organized:

4. Now, right-click on the DataModels folder, and follow the context menu entry Add |
Class... to create a new class file named Employee.

5. Inside the class implementation of the Employee.cs file, add a few public properties of type
string, and name them ID, FirstName, LastName, and Designation.

6. Set the attribute [DataContract] to the class level to specify that the type defines or
implements a data contract and is serializable by a serializer, such as
System.Runtime.Serialization.DataContractSerializer.

7. Set the attribute [DataMember] to the properties that you want to be part of the data contract,
and mark it to serializable by the System.Runtime.Serialization.DataContractSerializer.

8. You need to resolve the namespace System.Runtime.Serialization, in order to use the
DataContract and DataMember attributes:

9. Here's the complete code:

using System.Runtime.Serialization;

namespace EmployeeService.DataModels

{

 [DataContract]

 public class Employee

 {

 [DataMember]

 public string ID { get; set; }

 [DataMember]

 public string FirstName { get; set; }

www.EBooksWorld.ir

 [DataMember]

 public string LastName { get; set; }

 [DataMember]

 public string Designation { get; set; }

 }

}

10. Now, right-click on the Services folder, and follow the context menu entry Add | New
Item... to create a new service definition.

11. From the Add New Item dialog window, select the WCF Service as the template. Give it a
name (in our case, it is EmployeeService), and click on the Add button, as shown in the
following screenshot:

12. This will create three files under the Services folder: IEmployeeService.cs,
EmployeeService.svc, and EmployeeService.svc.cs:

www.EBooksWorld.ir

13. From Solution Explorer, navigate to the IEmployeeService.cs file, and add the following
using namespace declarations:

using EmployeeService.DataModels;

using System.Collections.Generic;

using System.ServiceModel;

14. Now replace the class definition with the following code snippet, which will have three
operation contracts GetEmployeeByID, GetEmployees, and InsertEmployee. Mark the interface as
[ServiceContract] and the methods as [OperationContract]. Here's the code snippet for
reference:

[ServiceContract]

public interface IEmployeeService

{

 [OperationContract]

 Employee GetEmployeeByID(string empID);

 [OperationContract]

 List<Employee> GetEmployees();

 [OperationContract]

 void InsertEmployee(Employee employee);

}

15. Now, from Solution Explorer, navigate to the EmployeeService.svc.cs file, and create a
static member variable of type List<Employee>. Let's name it m_employees, which will be
used as a static data source of our demo application:

private static List<Employee> m_employees = new List<Employee>();

16. Let's implement the interface IEmployeeService, as follows:

www.EBooksWorld.ir

17. Modify the method definitions to perform the operations as per the name/functionality.
Let's modify them, which will look like this:

public class EmployeeService : IEmployeeService

{

 private static List<Employee> m_employees = new List<Employee>();

 public Employee GetEmployeeByID(string empID)

 {

 return m_employees.First(emp => emp.ID.Equals(empID));

 }

 public List<Employee> GetEmployees()

 {

 return m_employees;

 }

 public void InsertEmployee(Employee employee)

 {

 m_employees.Add(employee);

 }

}

18. That's it! Your WCF service named EmployeeService is now ready to host, so that
applications can consume it. To check whether the service can run properly, build the
project and then right-click on the EmployeeService.svc file, from Solution Explorer, and
click on View in Browser (Browser_Name), which is View in Browser (Firefox) in our case:

www.EBooksWorld.ir

19. This will start the service and show you the message Service is hosted on the server.

A point to note is that if you are running the service from Visual Studio, it will
require administrative permission to open the specified port and host the service.
In case you haven't provided the admin privileges yet, please restart Visual
Studio using Run as administrator.

20. Once the service has been hosted on localhost, this will load the SVC file in a browser
window, and it will look like the following screenshot, which tells us that the service is up
and running without any issues:

www.EBooksWorld.ir

21. Each service provides a Web Services Description Language (WSDL) that defines the
public interfaces including the metadata, which is similar to interface definition language
(IDA). Click on the link to generate the WSDL of the service. In case your browser does
not show the generated WSDL on the screen, copy the link, and run it inside the Internet
Explorer, which will give you the following XML output:

www.EBooksWorld.ir

How it works...
In this simple WCF service, we have used few attributes. Let's learn more about each one of
them.

www.EBooksWorld.ir

The DataContract attribute
A data contract is a formal agreement between a client and a service that abstractly describes the
data to be exchanged. In WCF, this is the most common way to serialize an object and make it
ready to be available for passing between client and service. This is done by marking the class
with the [DataContract] attribute.

It is worth mentioning that the serialization is not restricted to exactly match the
class name and/or the property names in the class. You can simply use the
DataContract and DataMember attributes to define their names in serialization. For
example, consider the following code snippet:
[DataContract (Name = "Employee")]

public class EmployeeModel { ... }

In the preceding code snippet, though the class name is EmployeeModel, the class
will be exposed to serialization as Employee as the name mapping has been done
using the Name property of the attribute.

www.EBooksWorld.ir

The DataMember attribute
The [DataMember] attribute, on the other hand, specifies that the member is part of a data contract
and is serializable by the DataContractSerializer. You can use the following properties while
defining the data member attribute:

Name: It defines the name of the data member
Order: It sets the order of serialization and deserialization of the member
TypeId: It sets a unique identifier for this attribute in the derived class
IsRequired: This property gets or sets a value that instructs the serialization that the member
must be present during deserializing
EmitDefaultValue: When defined, this property value is specified whether to serialize the
default value of the data member

You should apply the [DataMember] attribute in conjunction with the [DataContract]
attribute to identify the members of a type that are part of the data contract.

www.EBooksWorld.ir

The ServiceContract attribute
The [ServiceContract] attribute is used to define an interface that provides the service. A service
should have at least one service contract, decorated by the [ServiceContract] attribute. The
following properties can be used with the ServiceContractAttribute:

ConfigurationName: It specifies the name of the service element in the configuration file.
Name: This specifies the name of the contract in the WSDL element.
Namespace: This specifies the namespace of the contract in the WSDL element.
SessionMode: This specifies whether the contract requires a binding that supports sessions. It
can have either of the following three values: Allowed (specifies that the contract supports
the session), NotAllowed (specifies that the contract does not support the session), and
Required (specifies that the contract does not require the session).
CallbackContract: This property specifies the return contract in a duplex conversation.
ProtectionLevel: This specifies the message-level security that an operation requires during
runtime. It can be one of three types: None (only simple authentication), Sign (Sign data to
help ensure data integrity), and EncryptAndSign (Encrypt and Sign data to ensure integrity and
confidentiality of transmitted data).
HasProtectionLevel: This indicates whether the ProtectionLevel property has been explicitly
set.

www.EBooksWorld.ir

The OperationContract
attribute
The [OperationContract] attribute is used to define the methods of the service contract. This is
placed on the methods that you want to include as part of the service contract. The following
properties can be used to control the structure of the operation:

Action: This property specifies the action that uniquely identifies the operation.
ReplyAction: This specifies the action of the reply message of the operation.
AsyncPattern: This indicates that the operation can be called asynchronously.
ProtectionLevel: This specifies the message-level security that an operation requires during
runtime. It can be one of three types—None (only simple authentication), Sign (sign data to
help ensure data integrity), and EncryptAndSign (encrypt and sign data to ensure integrity
and confidentiality of transmitted data).
HasProtectionLevel: This indicates whether the ProtectionLevel property has been explicitly
set.
IsOneWay: This property indicates that the operation consists of a single input message and
has no associated output message.
IsInitiating: This specifies whether this operation can be the initial operation in a session.
IsTerminating: This specifies whether WCF will attempt to terminate the current session
after the operation completes.

www.EBooksWorld.ir

Self-hosting a WCF service
To use a WCF service, you need to host it in a runtime environment, so that the service host can
listen for requests from clients, direct those requests to the service, and send responses back to
the client. Using the host, you can start and stop the service.

If you want to self-host a service, you must create an instance of the
System.ServiceModel.ServiceHost class and configure it with endpoints. This can be done in code
or in a configuration file. Once the host is ready, any client can access the service by the URL
specified.

Self-hosting can be done in any managed application, such as a console application, a Windows
service, a Windows Forms application, or a Windows Presentation Foundation (WPF)
application. In this recipe, we will learn how to self-host a WCF service in a console application
and execute it.

www.EBooksWorld.ir

Getting ready
To get started, let's launch Visual Studio with administrative privileges. Now, open the project
CH09.EmployeeService, which we created in the previous recipe. Ensure that the project builds
successfully, and that the service launches properly in the browser. Mark down the service URL
for reference, which we will be using later in this recipe.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to create a self-hosted console application:

1. First, add a new project of type Console Application, inside the solution, and name
it CH09.SelfHostingDemo.

2. Now, right-click on the References node, and add the project reference of the service
(CH09.EmployeeService):

3. Also add the assembly reference of System.ServiceModel into the console application project.
4. From Solution Explorer, navigate to the Program.cs file.
5. Add the following using namespaces inside the class file:

using CH09.EmployeeService.Services;

using System;

using System.ServiceModel;

using System.ServiceModel.Description;

6. Now we need to define the service URL so that we can access it from the host. Create a
static member variable inside the Program.cs class file, as follows:

private static Uri serviceUrl = new Uri(

 "http://localhost:59795/Services/EmployeeService");

7. The Program class contains a static Main method. Replace the definition with the following
code block:

static void Main(string[] args)

{

 // create Service Host

 using (var serviceHost = new ServiceHost(

www.EBooksWorld.ir

 typeof(EmployeeService.Services.EmployeeService),

 serviceUrl))

 {

 // add the service endpoint

 serviceHost.AddServiceEndpoint(

 typeof(IEmployeeService),

 new BasicHttpBinding(), "");

 serviceHost.Description.Behaviors.Add(

 new ServiceMetadataBehavior

 {

 HttpGetEnabled = true

 });

 // start the Service host

 serviceHost.Open();

 Console.WriteLine("Service hosting time: " +

 DateTime.Now.ToString());

 Console.WriteLine();

 Console.WriteLine("Service Host is running...");

 Console.WriteLine("Press [Enter] key to stop the host...");

 Console.ReadLine();

 // close the Service host

 serviceHost.Close();

 }

}

8. Build the solution, and run the console application. You will see the following output in
the console output window:

9. The service is now hosted through the host process. Press the Enter key to stop the service.

www.EBooksWorld.ir

How it works...
To host the service, the host application uses the ServiceHost class from the System.ServiceModel
namespace. It gets instantiated based on the type of service that you have implemented. In the
preceding example, the ServiceHost class creates an object of
EmployeeService.Services.EmployeeService and removes it from memory whenever the service
completes execution.

If you check the ServiceHost object in the QuickWatch Window, you will notice that the object
exposes several properties. The BaseAddress property defines the URL of the service, which
maintains a runtime socket listener that listens to the port for the created service for any
incoming requests. Once it receives any request, it parses the whole message passed to it and
calls the service object.

Here's a screenshot of the QuickWatch Window, showing the number of properties exposed by
the ServiceHost object:

www.EBooksWorld.ir

The serviceHost.AddServiceEndpoint adds a service endpoint to the hosted service with a specified
contract, binding, and endpoint address. You can use any binding type based on your
requirement, but here we have used BasicHttpBinding to create the service endpoint.

In case of BasicHttpBinding, SOAP messages are transferred. The SOAP message contains a well-
defined envelop with a header and body of the message inside it. When a client calls the service,
the ServiceHost class parses the message and calls the service by creating the context.

To see the endpoints used by the ServiceHost object, expand the Description property in the
QuickWatch Window and navigate to Endpoints. Expand the first endpoint of the service and
check the Address, Binding, Contract ("ABC") properties of it. This will look as follows:

You can see that the Address points to the BaseAdress of the service, the Binding denotes the
BasicHttpBinding that we created, and the Contract exposes service Name, ConfigurationName,
ContractType, SessionMode, ProtectionLevel, HasProtectionLevel, and other properties.

When you are ready, the serviceHost.Open() method starts the service. It causes the

www.EBooksWorld.ir

communication object to transition from the created state to the opened state. When you are
done, calling the serviceHost.Close() method stops the service. This causes the communication
object to transition from its current state to the closed state.

In case you want your service object to be reused, you can add a ServiceBehavior attribute to the
service class, as follows:

[ServiceBehavior(InstanceContextMode =

 InstanceContextMode.Single)]

public class EmployeeService : IEmployeeService

{

 ...

 ...

}

When you apply this attribute, it specifies the internal execution behavior of the service contract
implementation. The specified InstanceContextMode can be one of three types:

PerSession: A new System.ServiceModel.InstanceContext object is created for each session.
PerCall: A new System.ServiceModel.InstanceContext object is created prior to and recycled
subsequent to each call. If the channel does not create a session, this value behaves as
PerCall.
Single: Only one System.ServiceModel.InstanceContext object is used for all incoming calls
and is not recycled subsequent to the calls. If a service object does not exist, a new one will
be created.

www.EBooksWorld.ir

There's more...
If you don't have administrative rights on your system, the application will crash with
System.ServiceModel.AddressAccessDeniedException, saying that the HTTP could not register the
URL. The error log will look like this:

If you encounter this error, run the application under admin privileges. If you are running the
application directly from Visual Studio, relaunch Visual Studio with admin privileges. To do so,
right-click on the Visual Studio icon and click on Run as administrator.

www.EBooksWorld.ir

Hosting a WCF service in an IIS
server
Another way to host a WCF service is in an IIS (Internet Information Services). It requires a
physical file with a .svc extension to host the service properly. Unlike the previous recipe, you
won't need to write any code to create the instance of ServiceHost. IIS automatically creates it for
you while hosting the service.

In this recipe, we will learn how to publish an already created service to host inside the IIS
server of Windows.

www.EBooksWorld.ir

Getting ready
To get started, launch the Visual Studio IDE with administrative rights. To do so, right-click on
the icon and click Run as administrator. Now open the existing project CH09.EmployeeService,
which we have created earlier. Alternatively, you can also open the solution.

To proceed further, we assume that you are familiar with IIS and understand how to use the IIS
management tool to create and manage IIS applications.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to host our service in an IIS server:

1. First, you need to check whether the IIS (Internet Information Services) is already
installed on the system, where you are going to host the service. To check this, open the
Control Panel and navigate to Turn Windows features on or off, as shown in the following
screenshot:

2. From the Windows Features dialog, which pops up on the screen, make sure that
the Internet Information Services feature is checked. If not, check it, and click OK. This
will install the IIS server on that system.

3. Now, click on Start (), type inetmgr, and click the Internet Information Services (IIS)
Manager app shortcut to launch it. Make sure that the Default Web Site is up and running.
In the next steps, we will be deploying our service on this website:

www.EBooksWorld.ir

4. Once the IIS is installed (in case it was not already) and the Default Web Site in IIS is up
and running, navigate back to Visual Studio.

5. From the Solution Explorer, right-click on the service project (CH09.EmployeeService) node,
and click Publish:

6. This will open the publishing wizard inside Visual Studio. Navigate to the Publish tab,
select publishing template as IIS, FTP, etc, and click the Publish button, demonstrated as
follows:

www.EBooksWorld.ir

7. This will open the Publish dialog. Make sure that the Connection tab is selected:

1. Select Web Deploy as the publishing method type.

2. Enter the name of the server. In our case, as we are deploying it to the same
system, it will be localhost.

3. Enter the name of the site where we are going to deploy our service. In our
case, it is Default Web Site. To deploy it in a specific web app inside the website,
enter the name of the web app after the site name. For example, to deploy in
the MyApp web application inside the Default Web Site, the site name here will be
Default Web Site/MyApp.

4. Enter the User name and Password of your web server, where you are going
to deploy it. In our case, as it is localhost, we will not need to enter any
credentials. Those two fields will be by default disabled.

5. Click on Validate Connection to confirm about the publishing details that
you entered. On success, you will see a green tick mark beside the Validate
Connection button.

8. Once done, click on Next to proceed to the Settings page:

www.EBooksWorld.ir

9. Inside the Settings page, select Release as the Configuration. Optionally, select File
Publish Options based on your requirement.

10. Once you are done, click Save to start the publishing:

11. Once the Visual Studio IDE builds the solution and completes the deployment to the
selected website, navigate back to the Internet Information Services (IIS) Manager
application (inetmgr).

www.EBooksWorld.ir

12. Refresh the Default Web Site node, which will now list two folders, named bin and
Services. Click on the Services folder, and switch to Content View. This will list the
EmployeeService.svc file, which is present inside it. Here's a screenshot of this:

13. As shown in the preceding screenshot, right-click on the EmployeeService.svc file, and then
click Browse from the context menu entry. Alternatively, you can click on the Browse link
present at the right-side Actions pane.

14. This will open the service URL in the browser window as follows:

www.EBooksWorld.ir

How it works...
IIS hosting is integrated with ASP.NET and uses the features such as process recycling, process
health monitoring, message-based activation, and more. IIS also offers integrated manageability,
which makes it an enterprise-grade server.

To host a service in IIS, the IIS needs to be configured properly. For hosting in IIS, no
additional code needs to be written. The WCF services hosted in IIS are represented as .svc files
inside the IIS application. A .svc file contains a WCF-specific processing directive, that is,
an @ServiceHost, which creates the service host and allows the hosting structure of the WCF
service to activate in response to incoming messages:

<%@ ServiceHost

 Language="C#"

 Debug="true"

 Service="CH09.EmployeeService.Services.EmployeeService"

 CodeBehind="EmployeeService.svc.cs"

%>

The value of the Service attribute is the fully qualified CLR type name (in our case, it's
CH09.EmployeeService.Services.EmployeeService) of the service implementation. The CodeBehind
attribute defines the relative path of the code behind the file of the .svc, which is
EmployeeService.svc.cs in our example.

When you deploy a service, the precompiled .dll file gets deployed in the application's bin
directory and updates only when a latest version of the class library gets deployed.

The uncompiled source file gets deployed in the application's App_Code directory. When the
application gets the first request, these uncompiled source files dynamically load into the
memory. Any changes to these deployed source files causes the entire application to be recycled.
A fresh recompilation happens automatically when a new request happens to the application.

www.EBooksWorld.ir

Integrating a WCF service in a
WPF application
Once you create a WCF service, you probably would like to integrate it into a client application.
But before that, you will have to create a WCF client proxy, so that you can communicate with
the service through the WCF client proxy.

In this recipe, we will learn how to create the proxy client and give a call to the service to pass
messages between the service and the client.

www.EBooksWorld.ir

Getting ready
Before going into the steps to integrate the service, we need to create a client application. Open
your Visual Studio IDE, and create a new WPF project. Name it CH09.ClientDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to create the service proxy and integrate the service call in the client
application:

1. Right-click on the project node (CH09.ClientDemo), and follow the context menu path Add |
Service Reference..., which will open the Add Service Reference dialog on the screen:

2. In the Add Service Reference dialog, enter the service URL
(http://localhost:59795/Services/EmployeeService.svc) inside the Address field and click on
the Go button:

www.EBooksWorld.ir

3. This will resolve the service address and show the details about it.

4. As shown in the following screenshot, enter EmployeeServiceReference as the Namespace for
the service proxy and click OK:

www.EBooksWorld.ir

5. This will create the service proxy as Connected Services under the project:

6. Build the project to make sure that there are no compilation issues.
7. Once the build gets succeeded, navigate to the MainWindow.xaml.cs file.
8. Create a dependency property of type ObservableCollection<Employee>, and name it as

Employees. The property implementation will look as follows:

public ObservableCollection<Employee> Employees

{

 get

 {

 return (ObservableCollection<Employee>)

 GetValue(EmployeesProperty);

www.EBooksWorld.ir

 }

 set

 {

 SetValue(EmployeesProperty, value);

 }

}

public static readonly DependencyProperty

 EmployeesProperty =

 DependencyProperty.Register(

 "Employees",

 typeof(ObservableCollection<Employee>),

 typeof(MainWindow),

 new PropertyMetadata(null));

9. Now, resolve the reference of the Employee class, which will add
CH09.ClientDemo.EmployeeServiceReference as the using namespace:

10. Make sure the following using namespaces are added to the class file:

using CH09.ClientDemo.EmployeeServiceReference;

using System.Collections.ObjectModel;

using System.Windows;

11. Inside the class, create the following static instance of the proxy client, so that we can call
the service APIs:

private static EmployeeServiceClient client =

 new EmployeeServiceClient();

12. Now, add the following two methods inside the class, and make sure that the methods are
marked as async:

private async void RefreshListAsync()

{

 var result = await client.GetEmployeesAsync();

 Employees = new ObservableCollection<Employee>(result);

}

private async void AddNewEmployeeAsync()

{

 var employee = new Employee

 {

 ID = "EMP00" + (Employees.Count + 1),

 FirstName = "User",

 LastName = (Employees.Count + 1).ToString(),

 Designation = "Software Engineer"

 };

 await client.InsertEmployeeAsync(employee);

}

www.EBooksWorld.ir

13. From Solution Explorer, navigate to the MainWindow.xaml file.
14. Give a name to the Window instance by adding the x:Name="window" attribute.
15. Split the default Grid into two rows, as follows:

<Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

16. In the first row of the Grid panel, add a DataGrid, and create a data binding between the
ItemsSource property and the Employees collection. This will populate the DataGrid with the
values from the Employees collection.

17. Set AutoGenerateColumns="False", CanUserAddRows="False", and CanUserDeleteRows="False", as
follows:

<DataGrid ItemsSource="{Binding Employees,

 ElementName=window}"

 Grid.Row="0"

 AutoGenerateColumns="False"

 CanUserAddRows="False"

 CanUserDeleteRows="False">

 <DataGrid.Columns>

 </DataGrid.Columns>

</DataGrid>

18. As we have already asked the DataGrid not to generate the columns automatically, we need
to manually create them, based on the need. In this demonstration, we will only display the
ID, Name, and Designation columns in the DataGrid. Let's add the following columns, among
which, the Name column will have a multi-binding with the FirstName and LastName
properties of the Employee class to display the full name of the employee. Here's the code
for your reference:

<DataGrid.Columns>

 <DataGridTextColumn Header="ID"

 Width="80"

 Binding="{Binding ID}"/>

 <DataGridTextColumn Header="Name"

 Width="200">

 <DataGridTextColumn.Binding>

 <MultiBinding StringFormat="{}{0} {1}">

 <Binding Path="FirstName"/>

 <Binding Path="LastName"/>

 </MultiBinding>

 </DataGridTextColumn.Binding>

 </DataGridTextColumn>

 <DataGridTextColumn Header="Designation"

 Width="150"

 Binding="{Binding Designation}"/>

</DataGrid.Columns>

19. In the second row of the Grid panel, let's add a horizontal StackPanel with two buttons in it.
Label them as Refresh and Add. Also, expose the Click event of both the two buttons:

<StackPanel Orientation="Horizontal"

 Grid.Row="1"

 Margin="8">

 <Button Content="Refresh"

 Margin="4"

 Height="26"

 Width="80"

 Click="OnRefreshClicked"/>

 <Button Content="Add"

www.EBooksWorld.ir

 Margin="4"

 Height="26"

 Width="80"

 Click="OnAddClicked"/>

</StackPanel>

20. In the code behind the file of the MainWindow.xaml (that is, in MainWindow.xaml.cs), write the
Click event implementation for both the two buttons. The OnRefreshClicked event will call
the RefreshListAsync() method to fetch the employees list. The OnAddClicked event will call
the AddNewEmployeeAsync() method to give a call to the service to insert a new employee
record, and then call the RefreshListAsync() method to fetch the current employee list from
the service:

private void OnRefreshClicked(object sender,

 RoutedEventArgs e)

{

 RefreshListAsync();

}

private void OnAddClicked(object sender,

 RoutedEventArgs e)

{

 AddNewEmployeeAsync();

 RefreshListAsync();

}

21. Let's build the project and run the application. Make sure that the service is already
running and accessible.

22. You will see the following application UI on the screen:

23. Click the Add button. This will create a new employee record and pass it to the service to
store in the database, which is the static m_employees instance in our case.

24. After inserting the record, it will again give a call to the service to fetch the newly inserted
details and populate the DataGrid in the UI. Clicking the Add button multiple times will add
the number of records and fill the DataGrid accordingly:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
The WCF client proxy can be generated manually by using the SVCUtil.exe (Service Model
Metadata Utility Tool). It is a command-line tool for generating the code from the service
metadata. The following command can be used to generate the proxy code: svcutil.exe <Service
URL>.

If you want to create the proxy client for the service that we created earlier, you can enter the
following command in a console window:

svcutil.exe http://localhost:59795/Services/

EmployeeService.svc?wsdl

Alternatively, you can also generate the client proxy from Visual Studio. As demonstrated
previously, the Add Service Reference feature generates the proxy code automatically. Once you
click the Go button after inserting the service address, the dialog displays a list of services
available at the address specified. It starts generating the code when you click the OK button.

In our case, the Service Model Metadata Utility Tool and the Add Service Reference dialog of
Visual Studio (you can use either of them) generates the following WCF client class
(EmployeeServiceClient) for our service, which inherits from the generic
System.ServiceModel.ClientBase<TChannel> class and implements the
CH09.ClientDemo.EmployeeServiceReference.IEmployeeService interface:

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.CodeDom.Compiler.GeneratedCodeAttribute(

 "System.ServiceModel", "4.0.0.0")]

public partial class EmployeeServiceClient : System.ServiceModel.ClientBase<CH09.ClientDemo.EmployeeServiceReference.IEmployeeService>, CH09.ClientDemo.EmployeeServiceReference.IEmployeeService

{

 public EmployeeServiceClient() {

 }

 public EmployeeServiceClient(string

 endpointConfigurationName)

 : base(endpointConfigurationName) {

 }

 public EmployeeServiceClient(string

 endpointConfigurationName,

 string remoteAddress)

 : base(endpointConfigurationName, remoteAddress) {

 }

 public EmployeeServiceClient(string

 endpointConfigurationName,

 System.ServiceModel.EndpointAddress remoteAddress)

 : base(endpointConfigurationName, remoteAddress) {

 }

 public EmployeeServiceClient

 (System.ServiceModel.Channels.Binding binding,

 System.ServiceModel.EndpointAddress remoteAddress)

 : base(binding, remoteAddress) {

 }

 public CH09.ClientDemo.EmployeeServiceReference.Employee

 GetEmployeeByID(string empID) {

www.EBooksWorld.ir

 return base.Channel.GetEmployeeByID(empID);

 }

 public System.Threading.Tasks.Task<CH09.

 ClientDemo.EmployeeServiceReference.Employee>

 GetEmployeeByIDAsync(string empID) {

 return base.Channel.GetEmployeeByIDAsync(empID);

 }

 public CH09.ClientDemo.EmployeeServiceReference.Employee[]

 GetEmployees() {

 return base.Channel.GetEmployees();

 }

 public System.Threading.Tasks.Task<CH09.

 ClientDemo.EmployeeServiceReference.Employee[]>

 GetEmployeesAsync() {

 return base.Channel.GetEmployeesAsync();

 }

 public void InsertEmployee(CH09.ClientDemo.

 EmployeeServiceReference.Employee employee) {

 base.Channel.InsertEmployee(employee);

 }

 public System.Threading.Tasks.Task InsertEmployeeAsync

 (CH09.ClientDemo.EmployeeServiceReference.Employee employee) {

 return base.Channel.InsertEmployeeAsync(employee);

 }

}

Once the service proxy gets created, you can create the instance of the service client and call the
methods of the service. In our example, we created the following service client instance and
marked it as static:

private static EmployeeServiceClient client =

 new EmployeeServiceClient();

The client consists of two API method types for each operation contract that the service has
exposed. One of them is a synchronous method, whereas the other is asynchronous. For
example, you could see GetEmployees() and GetEmployeesAsync() methods, as listed in the following
screenshot:

When you want to call the service in a synchronous way, call the GetEmployees() method. In case
you want to operate in asynchronous mode, call the GetEmployeesAsync() method. Similarly, to get
the employee details by ID, you can select between GetEmployeeByID and GetEmployeeByIDAsync,
based on synchronous and asynchronous modes. It is a similar case for other service methods.

www.EBooksWorld.ir

There's more...
A WCF service client may throw one or more exceptions, which you must handle in your code.
Some of the most common exceptions are:

SocketException: This may occur when an existing connection was forcibly closed by the
remote host
CommunicationException: This may occur when the underlying connection was unexpectedly
closed
CommunicationObjectAbortedException: This may occur when the socket connection was
aborted due to an error processing your message, a timeout while processing the request, or
an underlying network issue

www.EBooksWorld.ir

Debugging and Threading
In this chapter, we will cover the following recipes:

Enabling the UI debugging tool for XAML
Navigating through XAML elements using Live Visual Tree
Inspecting XAML properties using Live Property Explorer
Updating the UI from a non-UI thread
Adding cancelation support to long running threads
Using the background worker component
Using a timer to periodically update the UI

www.EBooksWorld.ir

Introduction
When it comes to application development, debugging plays a vital role. It is a process that
helps you to quickly look at the current state of your program by walking through the code line
by line. While writing the code, developers start debugging their applications. Sometimes,
developers start debugging even before writing the first line of code to know the existing logic.

Visual Studio provides us with details about running programs as much as possible and helps
you to change some values while the application is running. As a developer, you must already
know this. As the focus of this book is on Windows Presentation Foundation (WPF), we will
be discussing XAML UI debugging using Live Visual Tree and Live Property Explorer.

Later in this chapter, we will discuss threading and learn how to update a UI thread from a non-
UI thread, a background worker process, and a timer that is used to periodically update the UI.

www.EBooksWorld.ir

Enabling the UI debugging tool
for XAML
To begin debugging your XAML application UI, you will first need to enable a few settings in
Visual Studio. If the settings are disabled, you won't be able to view the Live Visual Tree and
the Live Properties window, which we will be discussing in the next few recipes.

These settings are by default enabled in Visual Studio 2017, but in case are disabled; this recipe
will help you to get started with that.

www.EBooksWorld.ir

Getting ready
Make sure that you have Visual Studio 2017. Open it to get started with the settings changes.

www.EBooksWorld.ir

How to do it...
Follow the steps mentioned here to verify and enable the UI Debugging Tools for XAML in
Visual Studio 2017:

1. Inside the Visual Studio IDE, navigate to the Tools | Options... menu, as shown in the
following screenshot:

2. This will open the Visual Studio Options window. From this page, navigate to the
Debugging | General section.

3. Select the checkbox labeled Enable UI Debugging Tools for XAML, and switch it ON if it
is not already:

www.EBooksWorld.ir

4. Once you switch ON the functionality to debug the XAML application UI, you will enable
a few more settings to use the Live Visual Tree and modifications of XAML properties
when the debugger is already attached.

5. From the same page, select the other checkboxes labeled Preview selected elements in
Live Visual Tree and Show runtime tools in application.

6. To be able to change the XAML elements and their properties when the application is
already running in debug mode, check Enable XAML Edit and Continue, as shown in the
preceding screenshot.

7. Click OK to save the changes and restart the debugging process for the changes to take
effect. You will now be able to debug your XAML UI.

www.EBooksWorld.ir

Navigating through XAML
elements using Live Visual Tree
Live Visual Tree is a debugger tool that helps you to perform XAML debugging more easily.
Using this, you can inspect the XAML at runtime and visualize the layout to show alignments
and space for UI elements.

Basically, Live Visual Tree provides you a tree view of the UI elements of your running XAML
application, and provides information about the number of XAML elements inside each
container. If the interface changes from one state to another, Live Visual Tree also changes in
runtime.

In this recipe, we will learn more about Live Visual Tree and how to use it to visualize the actual
control rendering on the UI.

www.EBooksWorld.ir

Getting ready
To get started, open Visual Studio 2017 IDE and create a new WPF project named
CH10.XamlDebuggingDemo.

www.EBooksWorld.ir

How to do it...
Follow the steps mentioned here to create our sample demo application and then learn how to
use Live Visual Tree to navigate through the XAML elements while debugging the application:

1. Let's first design our application UI. Open the MainWindow.xaml file from Solution Explorer.
2. Divide the default Grid panel to have five rows in the following manner:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

3. Inside the Grid, add the following XAML code block to create a login screen with a few
textblocks, textboxes, and button controls. Place them in appropriate rows as follows:

<TextBlock Text="Username:"

 Grid.Row="0"

 Margin="0 4 0 0"/>

<TextBlock Text="Password:"

 Grid.Row="2"

 Margin="0 4 0 0"/>

<TextBox x:Name="username"

 Grid.Row="1"/>

<TextBox x:Name="password"

 Grid.Row="3"/>

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Grid.Row="4">

 <Button Content="Login"/>

 <Button Content="Cancel"/>

</StackPanel>

4. Now, inside the <Window> tag, add <Window.Resources> and add the following styles for the
TextBox and Button controls to give them a proper look:

<Window.Resources>

 <Style TargetType="TextBox">

 <Setter Property="Height"

 Value="24"/>

 </Style>

 <Style TargetType="Button">

 <Setter Property="Margin"

 Value="4"/>

 <Setter Property="Width"

 Value="60"/>

 <Setter Property="Height"

 Value="30"/>

 </Style>

</Window.Resources>

5. Once the UI is ready, let's run the application. You will see the following output on the

www.EBooksWorld.ir

screen:

6. Now, close the application and run it in debug mode. To do this, either click on the Start
button () on the Visual Studio Toolbar or navigate to the Visual Studio Debug
menu and click Start Debugging.

7. Alternatively, you can press the keyboard shortcut F5 to run the application in debug
mode.

8. Once the application launches, you will see the following output with a toolbar on the
screen:

9. In case the toolbar is not present in the UI, navigate to Visual Studio's Debugging options
and enable Show runtime tools in application, as shown in the following screenshot. Also
make sure that the other checkboxes (marked here) are already checked:

www.EBooksWorld.ir

10. When the application is running in debug mode, click on the second button on the runtime
toolbar to enable the control selection:

11. Now, hover over on any control on the application UI, and you will see a red dotted border
on the hovered control (just like the IE Developer Tools), as shown in the following
screenshot:

12. Click on any control to open Live Visual Tree inside the Visual Studio editor. In case it is
not visible, navigate back to the application UI, and as shown in the following screenshot,
click the first button on the runtime toolbar to launch the Live Visual Tree dialog panel:

www.EBooksWorld.ir

13. Alternatively, you can navigate to the Visual Studio 2017 menu Debug | Windows | Live
Visual Tree to launch this dialog window.

14. Click on the input box, labeled Password. Live Visual Tree will show you the currently
selected visual element within the visual tree. Check out the following screenshot:

15. Let's click on the button control (labeled Login) and, as shown in the following screenshot,
the appropriate Button control will be automatically selected in the Visual Tree:

www.EBooksWorld.ir

16. Now, click on the Login label inside the button. You will see that the Button control
contains a TextBlock element, which is present inside a ContentPresenter, wrapped inside a
Border control:

www.EBooksWorld.ir

How it works...
When you launch a WPF application in debug mode, the floating toolbar also gets loaded on the
screen, which allows you to easily select the element in the running instance of the application
and inspect its Visual Element in Live Visual Tree.

The floating toolbar contains four buttons—Go to Live Visual Tree, Enable Selection, Display
layout adorners, and Track focused element, as shown in the following screenshot:

In MainWindow.xaml, we have added just the Button control inside StackPanel, but when you see it
on Live Visual Tree, you will notice that the Button control consists of other UI elements to
represent the control. It contains a Border, a ContentPresenter, and a TextBlock to visualize the
Button content:

Like this, each UI control consists of one or more UI elements that are only visible in a Visual
Tree and can be inspected via Live Visual Tree when the debugger is attached to the application.

Please note that this is how the XAML controls actually render in the UI. The

www.EBooksWorld.ir

more levels of elements you have in a Visual Tree, the more performance issues
it may hit. Detecting and eliminating unnecessary elements in the Visual Tree is
one of the major advantages of a Live Visual Tree debugger window.

Visual Studio 2017 also supports modification of the selected element in the Live Visual Tree
window, which we will be demonstrating in the next recipe.

www.EBooksWorld.ir

There's more...
You can also ask the XAML debugger to display the layout adorners. While the runtime
debugger tool is visible on the application window, click on the third button (as shown in the
following screenshot), titled Display layout adorners. It will cause the application window to
show horizontal and vertical lines along the bounds of the selected object, so you can see what it
aligns to. It also displays rectangles showing the margins:

When enabled, hover over or click any UI element on the application window. You will see the
layout adorner for that control, as shown in the following screenshot:

www.EBooksWorld.ir

Inspecting XAML properties
using Live Property Explorer
In the previous recipe, we learnt about Live Visual Tree, which is used to get a real-time view
of your running XAML code by inspecting the visual elements. Visual Studio 2015 and above
also provide a Live Property Explorer window, which allows you to temporarily modify the
XAML properties at runtime to see the visual effect.

In this recipe, we will learn about Live Property Explorer. We will use Visual Studio 2017 to
demonstrate it.

www.EBooksWorld.ir

Getting ready
Let's begin with a demo project creation. Open your Visual Studio 2017 instance and create a
new project named CH10.LivePropertyExplorerDemo. Make sure to select the WPF application
template during project creation.

www.EBooksWorld.ir

How to do it...
Follow these steps to design our application UI with a simple button and then utilize Live
Property Explorer to view and modify the XAML properties at runtime:

1. From Solution Explorer, open the MainWindow.xaml file.
2. Replace the content of the XAML with the following code to have a basic Button with

default style:

<Window x:Class="CH10.LivePropertyExplorerDemo.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Live Property Explorer Demo" Height="150" Width="400">

 <Grid>

 <Button x:Name="myButton"

 Content="Click here"/>

 </Grid>

</Window>

3. Let's run the application. You will see that the button automatically arranges itself to cover
the entire application. This is because we have placed the button inside a Grid and haven't
specified its dimensions and margins, as shown in the following screenshot:

4. Now, close the application and run it in debug mode.
5. Once the application launches in debug mode, navigate to the Visual Studio menu—Debug

| Windows | Live Property Explorer to open said explorer window.
6. The Live Property Explorer window will look as follows:

www.EBooksWorld.ir

7. As you can see in the preceding screenshot, Live Property Explorer is showing the
properties of the selected Button control, named myButton. You will find that most of the
properties are disabled. This is because they are either inherited from implicit/explicit
styles or have default values.

8. To experiment with the UI element properties, you should modify the properties inside the
Local panel.

9. To override an existing property value of the selected element (in our case, it is myButton)
from Live Visual Tree, click on the New button, as shown in the following screenshot:

10. This will add a drop-down list in the panel, where you will be able to select the property
that you would like to modify. Let's select Width from the property list:

www.EBooksWorld.ir

11. When you select the property, the panel will get populated with the appropriate property
boxes to fill it. Enter 120 as the value against the Width property.

12. Notice the running application window. The Button control in the window will be
automatically resized to a width of 120 pixels.

13. Observe the actual element in the XAML designer window. The change was not performed
in the XAML code:

www.EBooksWorld.ir

14. Let's modify a few more properties of the Button control. Click on the New button and
select Height from the property list. Set its value to 30.

15. Click on the New button once again and select Background from the property list. Now enter
Red as its value. You can alternatively enter #FFFF0000 to apply a red color as the button
background.

16. Once you perform these changes, look at the running application window. The new height
and the background color have already been applied to the button:

17. Let's change a few more properties. Add the FontSize and Foreground properties in your
local property list. Set their values to 16 and White, respectively.

18. Check the application window for the changes. It will now look as follows:

www.EBooksWorld.ir

How it works...
Live Property Explorer only gives you a preview of what you want to modify in runtime.
Based on that, you can change the original UI in the XAML view or designer view for
permanent changes.

If you end the debugging session, the changes that you performed in the Live Property Explorer
window won't be saved and you will lose those changes. When you restart the application, you
will see fresh values as per the default.

This is often useful when you want to see the changes live at runtime for any element inside the
Visual Tree.

www.EBooksWorld.ir

There's more...
To permanently set the properties of any UI element while the application is running in debug
mode, use either the XAML code view or the XAML designer view. The running application
will automatically get the update of the style changes.

To modify the XAML code while the application is running in debug mode, make
sure that the Enable UI Debugging Tools for XAML and the Enable XAML Edit
and Continue settings are enabled (checked) in the Visual Studio Options
window, under the Debugging | General section.

Let's run the application once again in debug mode and start modifying the control properties
directly in the XAML view. Once you have made some changes, check the running application
and you will see that it already has been updated with the modified data:

Here's the modified XAML code of the button, which we used in the preceding screenshot.
When applied, it will result in the addition of a nice linear gradient color to the button
background:

<Button x:Name="myButton"

 Content="Click here"

 Height="30"

 Width="200"

 FontSize="18"

 FontWeight="Bold"

 Foreground="Red">

 <Button.Background>

 <LinearGradientBrush>

 <GradientStop Color="#FFFF5454"

 Offset="0"/>

 <GradientStop Color="#FFFFF754"

 Offset="0.3"/>

 <GradientStop Color="#FFFFF754"

 Offset="0.8"/>

 <GradientStop Color="#FFFF5454"

www.EBooksWorld.ir

 Offset="1"/>

 </LinearGradientBrush>

 </Button.Background>

</Button>

www.EBooksWorld.ir

Updating the UI from a non-UI
thread
In WPF, the UI is managed by a single thread, called a UI thread, which that creates an instance
of a window and processes the UI messages for that window. This is known as message
pumping.

When the UI thread is performing a lot of operations, it enters in to a wait state and stops
processing further UI messages. This causes the application to enter Not Responding mode,
which is commonly known as UI freezing.

To resolve this issue, you need to offload that long running operation into another thread. This
keeps the UI thread free and allows it to perform the UI updates and stay responsive.

In this recipe, we will learn how to offload a long running process into a separate thread in a
thread pool and perform the UI updates once it completes the execution.

www.EBooksWorld.ir

Getting ready
Let's begin by creating a WPF project. Name it CH10.ThreadingDemo1. Make sure to select the right
WPF App template during project creation.

www.EBooksWorld.ir

How to do it...
We will create a simple application that will count odd and even numbers in a numeric range.
This will be done on a non-UI thread and once the result is available we will update the UI.
Follow these steps:

1. From Solution Explorer, open the MainWindow.xaml file.
2. Replace the existing Grid with the following simple user interface to provide the numeric

range, and a button to calculate and display the result:

<Grid Margin="10">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal"

 Grid.Row="0"

 Margin="4">

 <TextBlock Text="From:"

 Margin="4"/>

 <TextBox x:Name="fromValue"

 Text="100"

 Width="100"

 MaxLength="10"

 Margin="4"/>

 <TextBlock Text="To:"

 Margin="4"/>

 <TextBox x:Name="toValue"

 Text="1000000000"

 Width="100"

 MaxLength="10"

 Margin="4"/>

 <Button x:Name="calculateButton"

 Content="Calculate"

 Margin="4"

 Padding="8 2"

 Click="OnCalculateClicked"/>

 </StackPanel>

 <TextBlock x:Name="oddResultBlock"

 Grid.Row="1"

 Text="Total odd numbers: 0"

 Margin="4"/>

 <TextBlock x:Name="evenResultBlock"

 Grid.Row="2"

 Text="Total even numbers: 0"

 Margin="4"/>

</Grid>

3. Navigate to the MainWindow.xaml.cs file and add the following two member-variables to
store the total count of odd and even numbers:

private int totalOdd = 0;

private int totalEven = 0;

4. We will now create a method to calculate the odd and even numbers. Inside the MainWindow

www.EBooksWorld.ir

class, create a method named CalculateOddEven, and implement the code block as shown in
this following code snippet:

private void CalculateOddEven(int from, int to)

{

 for (int i = from; i <= to; i++)

 {

 if (i % 2 == 0) { totalEven++; }

 else { totalOdd++; }

 }

}

5. Now, we need to invoke the call. Let's implement the button click event OnCalculateClicked
to call the CalculateOddEven method and display the result:

private void OnCalculateClicked(object sender,

 RoutedEventArgs e)

{

 totalOdd = 0;

 totalEven = 0;

 if (int.TryParse(fromValue.Text, out int from) &&

 int.TryParse(toValue.Text, out int to))

 {

 calculateButton.IsEnabled = false;

 CalculateOddEven(from, to);

 oddResultBlock.Text = "Total odd numbers: " +

 totalOdd;

 evenResultBlock.Text = "Total even numbers: " +

 totalEven;

 calculateButton.IsEnabled = true;

 }

}

6. Run the application and click on the Calculate button. The UI will freeze for some time
while the long running operation is in-progress, as it finds out the odd and even numbers
between the 100 - 1000000000 range. Once the calculation completes, it will unfreeze the UI
and display the result:

7. To resolve this issue, we should move the long running process to a different thread so that
the UI thread keeps responding. We will be using a thread pool to move the process to a
different thread. You can also perform this by creating a new Thread instance or by using
Task.

8. In this example, we will be using thread pool. This can be done by
calling ThreadPool.QueueUserWorkItem, as shown in the following code snippet:

ThreadPool.QueueUserWorkItem(_ =>

{

 CalculateOddEven(from, to);

});

www.EBooksWorld.ir

9. Now, we need to update the UI once the operation gets completed. This can't be done
outside the ThreadPool.QueueUserWorkItem block, as the operation will run in a different
thread. The same can't be done directly inside the ThreadPool.QueueUserWorkItem block too, as
the update should be performed in the UI thread. For this to work,
the Dispatcher.BeginInvoke block can be used within the ThreadPool.QueueUserWorkItem block,
as shown in the following code snippet:

ThreadPool.QueueUserWorkItem(_ =>

{

 CalculateOddEven(from, to);

 Dispatcher.BeginInvoke(new Action(() =>

 {

 oddResultBlock.Text = "Total odd numbers: " +

 totalOdd;

 evenResultBlock.Text = "Total even numbers: " +

 totalEven;

 calculateButton.IsEnabled = true;

 }));

});

10. Let's run the application once again. Click on the Calculate button. You will observe that
the UI is responsive while the long running operation is in progress.

www.EBooksWorld.ir

How it works...
Each and every element in WPF inherits from DispatcherObject, and thus, the UI thread is always
associated with System.Windows.Threading.Dispatcher. This is the reason why the Dispatcher object
can be accessed any time by using the DispatcherObject.Dispatcher property.

ThreadPool.QueueUserWorkItem causes a delegate to execute on the CLRs thread pool. Thus, the
operation performed within that delegate never executes on the UI thread.

Once the operation completes, and you need to update the UI, you must update this from the UI
thread. The call to Dispatcher.BeginInvoke causes the delegate to run on the UI thread and make
the necessary changes to the UI.

A point to note is that the dispatcher is also accessible from the UI thread, using
the static property Dispatcher.CurrentDispatcher.

www.EBooksWorld.ir

There's more...
There are two kinds of invocations by Dispatcher—BeginInvoke and Invoke. We have already seen
the uses of BeginInvoke, which basically invokes delegate and returns to perform other operations
while delegate is still running on the UI thread.

On the other side, the Invoke operation does not return until delegate completes its execution on
the UI thread.

BeginInvoke is always preferable unless there is a specific reason to wait for the
UI operation to complete.

Dispatcher maintains a queue of requests that need to be processed on the UI thread. This is
basically handled by setting DispatcherPriority. The default priority is DispatcherPriority.Normal,
but you can set a lower or a higher priority based on the importance of the operation.

www.EBooksWorld.ir

Adding cancelation support to
long running threads
When you execute a long running process on a different thread, to keep the UI responsive during
the operation, you may want to provide a functionality to cancel the operation. This can be done
on an on-demand basis.

In this recipe, we will learn how to add cancellation support to the existing long running
operation that we have built in the previous recipe.

www.EBooksWorld.ir

Getting ready
We will be using the same example that we used in the previous recipe. You can copy the
entire CH10.ThreadingDemo1 project folder and give it a new name, CH10.ThreadingDemo2. Launch
Visual Studio and open the new (CH10.ThreadingDemo2) project inside it.

www.EBooksWorld.ir

How to do it...
Follow these steps to update the existing project and to have cancellation support during the
long running process:

1. Navigate to the MainWindow.xaml file and modify the UI to have a Cancel button in it. Add the
following button control inside StackPanel, and label it as Cancel:

<Button x:Name="cancelButton"

 Content="Cancel"

 IsEnabled="False"

 Margin="4"

 Padding="8 2"

 Click="OnCancelClicked"/>

2. Make sure to set its IsEnabled property to False.
3. Now, navigate to the MainWindow.xaml.cs file and add the following member variable inside

the class:

private CancellationTokenSource tokenSource = null;

4. On the Cancel button click, we need to cancel the running operation. Let's modify the
OnCancelClicked event to perform the same as the following code snippet:

private void OnCancelClicked(object sender,

 RoutedEventArgs e)

{

 if (tokenSource != null)

 {

 tokenSource.Cancel();

 tokenSource = null;

 }

}

5. Let's navigate to the CalculateOddEven method and modify it to accept a third parameter of
type CancellationToken:

private void CalculateOddEven(int from,

 int to,

 CancellationToken token)

6. Inside the for loop of the CalculateOddEven method, check whether the
CancellationToken.IsCancellationRequested is true, and if so, return immediately after setting
the totalOdd and totalEven values to -1:

for (int i = from; i <= to; i++)

{

 if (token.IsCancellationRequested)

 {

 totalOdd = -1;

 totalEven = -1;

 return;

 }

7. For reference, here's the modified code of the CalculateOddEven method implementation:

www.EBooksWorld.ir

private void CalculateOddEven(int from,

 int to,

 CancellationToken token)

{

 for (int i = from; i <= to; i++)

 {

 if (token.IsCancellationRequested)

 {

 totalOdd = -1;

 totalEven = -1;

 return;

 }

 if (i % 2 == 0) { totalEven++; }

 else { totalOdd++; }

 }

}

8. On OnCalculateClicked event implementation, we need to perform some changes. First
create the instance of CancellationTokenSource and assign it to the tokenSource variable.

9. Then, pass the instance to the CalculateOddEven method as the third parameter value.

10. Then, inside the Dispatcher.BeginInvoke call, modify the code to display Operation
canceled! based on the value of totalOdd and totalEven variables. Display the message only
if either of them is -1. Here's the complete implementation:

tokenSource = new CancellationTokenSource();

ThreadPool.QueueUserWorkItem(_ =>

{

 CalculateOddEven(from, to, tokenSource.Token);

 Dispatcher.BeginInvoke(new Action(() =>

 {

 if (totalOdd < 0 || totalEven < 0)

 {

 oddResultBlock.Text = "Operation canceled!";

 evenResultBlock.Text = string.Empty;

 }

 else

 {

 oddResultBlock.Text = "Total odd numbers: " +

 totalOdd;

 evenResultBlock.Text = "Total even numbers: " +

 totalEven;

 }

 calculateButton.IsEnabled = true;

 cancelButton.IsEnabled = false;

 }));

});

11. Once done, let's run the application. Click the Calculate button to start the process in a
separate thread in the thread pool:

www.EBooksWorld.ir

12. While the operation is in progress, click the Cancel button. You will see that the process
immediately stops and the Operation canceled! message gets displayed in the UI:

13. Let's click on the Calculate button once again and wait until the process ends. What can
you see now? It displays the total count of odd and even numbers on the UI.

www.EBooksWorld.ir

How it works...
CancellationTokenSource represents a logical operation that can be canceled. The Token property
of CancellationTokenSource provides the token object that provides the part of the logical
operation.

Whenever the Cancel() method gets called on the CancellationTokenSource object, all distributed
tokens from that source get their IsCancellationRequested property set as true.

In our example, the for loop inside our CalculateOddEven method polls the IsCancellationRequested
property and fills the totalOdd and totalEven member variables with -1, which can be used to
understand that a cancellation call was performed. Based on that value, the Operation
canceled! message gets displayed on the screen.

www.EBooksWorld.ir

Using the background worker
component
In the previous recipes, we used thread pool to perform long running operations in a different
thread. From there, we had to update the UI by marshalling the code to the UI thread, which
required additional work.

To overcome this explicit thread pooling and the marshalling of the UI updation on the UI
thread, we can use the System.ComponentModel.BackgroundWorker class. It provides automatic
management of long running operations on a background thread.

In this recipe, we will use that BackgroundWorker to do the asynchronous operations without
blocking the UI thread.

www.EBooksWorld.ir

Getting ready
We will be using the same example that we have used in previous recipes. You can copy the
entire CH10.ThreadingDemo1 project folder and create a new one with the name CH10.ThreadingDemo3.
Launch Visual Studio and open the new project.

www.EBooksWorld.ir

How to do it...
Follow these steps to use a background worker, to perform the long running process, and to
count the odd and even numbers within a range:

1. From Solution Explorer, navigate to the MainWindow.xaml.cs file.
2. Add the following using namespace—System.ComponentModel, so that we can use the

BackgroundWorker class.
3. Inside the OnCalculateClicked event, instead of calling ThreadPool to execute the operation,

create an instance of the BackgroundWorker class.
4. Register the worker events DoWork and RunWorkerCompleted.
5. Call the RunWorkerAsync method of the background worker by passing the numeric range as

an argument. The argument accepts objects, hence, we will use Tuple<int, int> as the data
type for simplicity. The complete code looks as follows:

private void OnCalculateClicked(object sender,

 RoutedEventArgs e)

{

 totalOdd = 0;

 totalEven = 0;

 if (int.TryParse(fromValue.Text, out int from) &&

 int.TryParse(toValue.Text, out int to))

 {

 calculateButton.IsEnabled = false;

 var worker = new BackgroundWorker();

 worker.DoWork += OnWorker_DoWork;

 worker.RunWorkerCompleted +=

 OnWorker_WorkCompleted;

 worker.RunWorkerAsync(new Tuple<int, int>(from, to));

 }

}

6. Let's modify the OnWorker_DoWork event implementation to extract the argument first. Then,
call the long running method (CalculateOddEven) by passing the values extracted from the
argument:

private void OnWorker_DoWork(object sender,

 DoWorkEventArgs e)

{

 var argument = (Tuple<int, int>)e.Argument;

 CalculateOddEven(argument.Item1, argument.Item2);

}

7. In the OnWorker_WorkCompleted event implementation, release the BackgroundWorker instance
and then update the UI based on the values. Here's the code for your reference:

private void OnWorker_WorkCompleted(object sender,

 RunWorkerCompletedEventArgs e)

{

 if (sender is BackgroundWorker worker)

 {

 worker.RunWorkerCompleted -=

 OnWorker_WorkCompleted;

 worker.DoWork -= OnWorker_DoWork;

www.EBooksWorld.ir

 worker = null;

 }

 oddResultBlock.Text = "Total odd numbers: " +

 totalOdd;

 evenResultBlock.Text = "Total even numbers: " +

 totalEven;

 calculateButton.IsEnabled = true;

}

8. Once this is done, let's run the application. You will see the same application UI as we saw
in the first example:

9. Click on the Calculate button. You will observe that the application is responding while the
execution is happening in the background worker process.

10. Once the execution completes, it displays the result in the UI.

www.EBooksWorld.ir

How it works...
BackgroundWorker exposes events to coordinate the work. When you call the RunWorkerAsync
method, the DoWork event is raised on the thread pool thread. You can pass an optional Argument to
the RunWorkerAsync method, which can be retrieved from the DoWorkEventArgs.Argument property
inside the DoWork event handler.

As the DoWork event handler executes on a thread pool thread, accessing UI
controls inside the DoWork handler will throw Exception. For this reason, pass the
value from the UI as an argument to the RunWorkerAsync method.

When the DoWork event handler completes its execution, BackgroundWorker raises the
RunWorkerCompleted event. This runs on the UI thread, and thus, you can perform UI operations
from this event handler. If you have passed any value from the DoWork handler, you can retrieve it
here from the RunWorkerCompletedEventArgs.Result property.

www.EBooksWorld.ir

There's more...
To show the current progress indication of the long running background operation, you can raise
the ProgressChanged event on the worker process and update the UI directly from here. The
ProgressChanged handler runs in the UI thread and occurs when
BackgroundWorker.ReportProgress(System.Int32) is called from the DoWork handler. For this to work,
make sure that you have set the WorkerReportsProgress property of the worker to true.

You can also check whether BackgroundWorker is running an asynchronous operation. The IsBusy
property will return true if it is running the background operation.

In case you want to cancel a running background worker, you can call the CancelAsync() method
of the worker to request cancellation of a pending background operation.
If BackgroundWorker.WorkerSupportsCancellation is set as false, it will throw
InvalidOperationException.

www.EBooksWorld.ir

Using a timer to periodically
update the UI
It is often require to update a portion of the user interface periodically. In that case, a timer
object is beneficial to keep the UI refreshed. For example, in your application, you may want to
show the current time at some part of the UI. For this, you can use a timer to periodically update
the UI without the need to create a different thread.

The System.Windows.Threading.DispatcherTimer class can be used to integrate into the Dispatcher
queue, and can process at a specified interval of time and at a specified priority.

In this recipe, we will use the DispatcherTimer class to implement a timer, which will execute its
subscribed Tick event each time the specified Interval is met.

www.EBooksWorld.ir

Getting ready
Open Visual Studio and create a new WPF application project. Name it CH10.DispatcherTimerDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to create a digital clock experience with a timer:

1. From Solution Explorer, navigate to the MainWindow.xaml page.
2. Divide the default Grid into three rows, as follows:

<Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="20"/>

 <RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

3. Add a TextBlock control at the Grid.Row="0" position and align it to the center:

<TextBlock x:Name="clock"

 Grid.Row="0"

 Text="00:00:00"

 FontSize="80"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

4. Add a StackPanel at Grid.Row="2" and insert two buttons inside it. Name the
buttons startButton and stopButton. Also, register the Click events for both the buttons as
OnStartTimer and OnStopTimer, respectively:

<StackPanel Grid.Row="2"

 Margin="10"

 Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <Button x:Name="startButton"

 Content="Start"

 Margin="4"

 Height="26"

 Width="100"

 Click="OnStartTimer"/>

 <Button x:Name="stopButton"

 Content="Stop"

 Margin="4"

 Height="26"

 Width="100"

 IsEnabled="False"

 Click="OnStopTimer"/>

</StackPanel>

5. Now, navigate to MainWindow.xaml.cs to add the code behind the logic.
6. First, add the following namespaces in the class file:

using System;

using System.Windows;

using System.Windows.Threading;

7. Inside the class, declare a private member variable (dispatcherTimer) of type
DispatcherTimer:

private DispatcherTimer dispatcherTimer = null;

www.EBooksWorld.ir

8. Inside the constructor of the class, let's create the instance of DispatcherTimer and raise its
Tick event to trigger after every 1 second of interval. Here's the code:

public MainWindow()

{

 InitializeComponent();

 dispatcherTimer = new DispatcherTimer();

 dispatcherTimer.Interval = TimeSpan.FromSeconds(1.0);

 dispatcherTimer.Tick += OnTimerTick;

}

9. Now, inside the Tick event implementation, set the Text property of the TextBlock control
(clock) to the current time in hh:mm:ss format:

private void OnTimerTick(object sender,

 EventArgs e)

{

 clock.Text = DateTime.Now.ToString("hh:mm:ss");

}

10. When a user clicks on the Start button, the OnStartTimer event handler will fire. Inside it,
let's start the timer by calling the Start() method on the dispatcherTimer instance.
Alternatively, you can also set the dispatcherTimer.IsEnabled property to true to start the
timer:

private void OnStartTimer(object sender,

 RoutedEventArgs e)

{

 if (dispatcherTimer != null)

 {

 dispatcherTimer.Start();

 startButton.IsEnabled = false;

 stopButton.IsEnabled = true;

 }

}

11. When the handler OnStopTimer raises, on a click of the Stop button we will call the Stop()
method of the dispatcherTimer instance. Here, also, you can set the
dispatcherTimer.IsEnabled property as an alternate method to stop the timer, but in this case,
you will have to set it as false:

private void OnStopTimer(object sender,

 RoutedEventArgs e)

{

 if (dispatcherTimer != null)

 {

 dispatcherTimer.Stop();

 startButton.IsEnabled = true;

 stopButton.IsEnabled = false;

 }

}

12. Now run the application. You will see the following output on the screen:

www.EBooksWorld.ir

13. Observe the text in the UI, where it is being displayed as 00:00:00. Now click on the Start
button. This will now change the text to the current time of your system, and it will refresh
after every second:

14. As the time is ticking on the UI, after every second of interval, click on the Stop button.
This will cause the running timer on the screen to stop.

15. Clicking on the Start button again will start the timer and show the current time on the
screen. The time displayed on the UI will refresh after every second.

www.EBooksWorld.ir

How it works...
When you use a DispatcherTimer object, it represents a timer that is bound to the UI thread. The
Interval property of the DispatcherTimer class indicates the period of the timer for the Tick event
to raise, and continues ticking until explicitly stopped.

To start the timer, you can call its Start() method, or set the IsEnabled property to true. Similarly,
to stop a timer, you can call the Stop() method, or set the IsEnabled property to false.

Never perform any lengthy operations in the Tick event, as it runs on the UI
thread. Long running operations may block the UI from responding.

www.EBooksWorld.ir

Interoperability with Win32 and
WinForm
In this chapter, we will cover the following recipes:

Hosting WinForm controls in WPF applications
Hosting WPF controls in WinForm applications
Calling Win32 APIs from WPF applications
Embedding ActiveX controls in WPF applications

www.EBooksWorld.ir

Introduction
The term interoperability describes the capability of different applications to exchange data via
a common set of exchangeable formats. It is a characteristic of the product or system, whose
interfaces are completely understood, to work with other products or systems.

WPF and Windows Forms present two different architectures for creating application interfaces.
The WindowsFormsHost and ElementHost classes are used to implement the interoperation
capabilities between these two.

Similarly, WPF provides interoperability with Win32 programs, which are written in
unmanaged C++ code:

In this chapter, we will start with interoperation between WPF and WinForm, demonstrating the
way to host a WinForm control in a WPF application and a WPF control in a WinForm
application. Then, we will move forward to learn interoperability between WPF and Win32,
followed by embedding ActiveX controls inside WPF.

www.EBooksWorld.ir

Hosting WinForm controls in
WPF applications
Though Windows Platform Foundation (WPF) provides a huge set of controls with a rich set
of features, there can still be chances of various cases when you have some Windows Form
(WinForm) controls that are not available in WPF. There could be some cases too, when you
are porting your WinForm application to WPF, where you have no other choice than reusing
existing controls and/or forms, as the reimplementation will burn huge efforts. So, what needs to
be done in such cases?

WPF provides a way to reuse existing controls from Windows Forms and host them inside it
(whether in a control, a window, or a page). This is called interoperation between the two
platforms as they present two different architectures for creating application interfaces.

The System.Windows.Forms.Integration namespace provides you with the classes that enable the
common interoperation scenarios, whereas the WindowsFormsHost class provides you with the
capability to implement the interoperation.

When implementing interoperation between the two technologies to host a Windows Forms
control inside WPF, the following scenarios may occur applicable:

One or more WinForm controls can be hosted in WPF
One or more composite controls can be hosted in a WPF element
One or more ActiveX controls can also be hosted in WPF
The WinForm container controls containing other WinForm controls can also be hosted
You can also host a master/detail form with WPF as master, WinForm as details, and/or
WinForm as master, and WPF as details

A point to note is that multilevel hybrid controls are not supported. A multilevel
hybrid control contains a control from one technology inside a control from
another technology.

In this recipe, we will take WinForm's PropertyGrid control as an example, which is not available
in WPF, and will host it inside a WPF window using the WindowsFormsHost control.

www.EBooksWorld.ir

Getting ready
Let's start by creating a new WPF application. Open your Visual Studio IDE, and create a new
project named CH11.WinFormInWpfXamlDemo. Make sure to select WPF App as the project template.

www.EBooksWorld.ir

How to do it...
Follow these steps to host a WinForm control inside a WPF application window and map its
properties:

1. Begin with opening the WPF application window. From Solution Explorer, open the
MainWindow.xaml file.

2. Let's split the default Grid panel to have two columns. The second column will have a
width based on its child elements, and the first column will accommodate the rest of the
space. Add the following XAML mark-up inside Grid to split it by the specific
requirement:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

3. Place a TextBlock control inside the first cell (0th column) of Grid, name it as txtBlock, and
set Hello World! as its Text property:

<TextBlock x:Name="txtBlock"

 Grid.Column="0"

 Margin="8"

 Text="Hello World!"/>

4. Now, after the TextBlock control, add a <WindowsFormsHost> </WindowsFormsHost> element.
When added, this will throw the following design-time error message
—WindowsFormsHost is not supported in a Windows Presentation Foundation (WPF)
project. This is because the required assembly to resolve the WindowsFormsHost element is not
referenced in this project:

5. To add the dependent assembly references in the project, right-click on the project node

www.EBooksWorld.ir

and select Add | Reference... from the context menu entries.
6. From the Reference Manager dialog window, check the following two assembly references

(System.Windows.Forms and WindowsFormsIntegration) and click OK, which will add
the references in the project:

7. Check the XAML file now. The preceding design-time error will now go away, as the
required assembly reference has been established.

8. Position the <WindowsFormsHost> in the second column (Grid.Column="1") and set its Width
property to 300.

9. Now, inside the WindowsFormsHost element, place another element of type PropertyGrid.

10. You need to add the XMLNS namespace for the PropertyGrid to resolve from the
System.Windows.Forms assembly. As shown in the following screenshot, click the lightbulb
icon, or simply press CTRL + to add the required XMLNS entry to the MainWindow.xaml file:

11. Alternatively, you can add the following XMLNS declaration to the Window tag:

xmlns:forms="clr-namespace:System.Windows.Forms;

 assembly=System.Windows.Forms"

www.EBooksWorld.ir

12. Add x:Name="propertyGrid" to the PropertyGrid element to define it with a name. This will be
useful later when we want to access it from the code. Here's the complete XAML markup
of the Grid that we will be using here:

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBlock x:Name="txtBlock"

 Grid.Column="0"

 Margin="8"

 Text="Hello World!"/>

 <WindowsFormsHost Width="300"

 Grid.Column="1">

 <forms:PropertyGrid x:Name="propertyGrid"/>

 </WindowsFormsHost>

</Grid>

13. Once done, let's run the application. You will see the following output, having text and an
empty property grid:

14. Let's navigate to the code behind file (MainWindow.xaml.cs) of the application window.
15. Just after the InitializeComponent() call inside the constructor of MainWindow, add the

following line, propertyGrid.SelectedObject = txtBlock;, to set the SelectionObject property
of the property grid that we have already added in the UI. After this change, the code will
look as follows:

public partial class MainWindow : Window

{

 public MainWindow()

 {

 InitializeComponent();

 propertyGrid.SelectedObject = txtBlock;

 }

}

16. Let's run the application again. This time you will see that the property grid contains a set
of properties, pointing to the txtBlock control placed in the window:

www.EBooksWorld.ir

17. Scroll up the property grid and change the FontSize property inside the grid to 40. This will
have immediate effect to the font-size of the text that we have added in the UI:

18. Similarly, change some other properties such as HorizontalAlignment, VerticalAlignment,
FontStyle, FontWeight, Foreground, and so on, and see the effect on the screen:

www.EBooksWorld.ir

How it works...
The PropertyGrid control, part of the .NET Framework, allows you to browse, view, and edit the
properties of one or more objects. It uses reflection to retrieve and display properties of any
object or type.

Reflection is a technology that allows you to retrieve the type information at
runtime.

If you are using WinForm, you will be able to use the PropertyGrid control easily from the
control toolbar. But, unfortunately, this control is not available in WPF. To use this inside a
WPF application, you will need to use the interoperability of WPF and WinForm. For this to
work, we need to use the WindowsFormsHost class.

The WindowsFormsHost class allows you to host a Windows Forms control on a WPF page. It is
part of the System.Windows.Forms.Integration namespace and it is available inside the
WindowsFormsIntegration.dll assembly. That's the reason why we had to reference the
System.Windows.Forms and WindowsFormsIntegration assemblies inside the project.

The default location for the WindowsFormsIntegration.dll assembly is
%programfiles%Reference AssembliesMicrosoftFrameworkv3.0, which comes with the
other WPF assemblies.

Once the hosting of the WinForm control is successful inside a WPF window, you can then
set/get its properties. In the preceding example, we assigned the txtBlock control (which is a
WPF control) as the SelectedObject property of the propertyGrid control (which is a WinForm
control). Thus, when you run the application, it uses reflection to retrieve all the properties
exposed by the TextBlock control (txtBlock) and populates those inside the PropertyGrid with the
default values set to each one of them. When you modify a property value at runtime, it changes
the associated control based on the selection. Hence, you can see a change in the UI of TextBlock,
when you change the FontSize, Foreground, and other properties.

www.EBooksWorld.ir

There's more...
Though most of the properties work with WindowsFormsHost, there are some limitations with z-
order and transformations when used in a hybrid application. By default, the WindowsFormsHost
elements are drawn on top of other WPF elements, and thus there exists no-effect of the z-order
property on that.

If you want to enable z-ordering, set the IsRedirected property of the WindowsFormsHost to True, and
the CompositionMode property to either CompositionMode.Full or CompositionMode.OutputOnly.

As the WinForm controls do not support proper scaling and rotating features, the
WindowsFormsHost element does not scale or rotate with other WPF elements. To enable these
transforming features, such as z-ordering, set the IsRedirected property to True and the
CompositionMode property to either CompositionMode.Full or CompositionMode.OutputOnly.

www.EBooksWorld.ir

Hosting WPF controls in
WinForm applications
As WPF provides a rich user interface to applications, you may want to apply the same to your
existing applications. But when you have a large Windows Form application project, where you
already made a large investment, you won't like to reinvest on the same to scrap it and rewrite
the entire project in WPF.

In such cases, WPF interoperation with WinForms is ideal. Using this, you can embed a WPF
control inside a form and leverage the additional features of WPF, wherever possible.

In the previous recipe, we learned how to host WinForm controls into a WPF application. But in
this recipe, we will learn the reverse, that is, how to host a WPF composite control in a
Windows Forms application. We will learn this by following some simple walkthrough steps.
You can extend this procedure later to host more complex applications and controls.

This walkthrough will basically be divided into two logical parts. In the first part, we will build
a WPF UserControl, and in the second part, we will host it inside a form window.

www.EBooksWorld.ir

Getting ready
Before we start with this recipe to host a WPF control in a Windows Form, make sure that
Visual Studio is up and running.

www.EBooksWorld.ir

How to do it...
Let's follow these steps to create a WPF composite control and host it inside the Windows Form:

1. First, let's create a WPF User Control Library project. To do this, from Solution
Explorer, right-click on the existing solution and select Add | New Project... from the
context menu.

2. Select WPF User Control Library (.NET Framework) as the project template, name it as
CH11.WpfUserControlLibrary, and click the OK button, as shown in the following screenshot:

3. Once the project gets created by Visual Studio, you will find a user control named
UserControl1.xaml, inside the project folder. From Solution Explorer, double-click on it to
open it.

4. Divide the default Grid of the UserControl1 into two columns. Set the first column as
stretchable to occupy maximum available space and set the second column as Auto:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

5. Place a TextBox control inside the first column and name it as searchBox:

<TextBox x:Name="searchBox"

 Grid.Column="0"

 MinWidth="100"

 Margin="4"/>

www.EBooksWorld.ir

6. Place a Button control, named searchButton, and place it inside the second column of the
Grid. Set its Content property to Search and register its Click event with
OnSearchButtonClicked:

<Button x:Name="searchButton"

 Content="Search"

 Grid.Column="1"

 Padding="8 2"

 Margin="4"

 Click="OnSearchButtonClicked"/>

7. Here's the complete XAML of Grid:

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBox x:Name="searchBox"

 Grid.Column="0"

 MinWidth="100"

 Margin="4"/>

 <Button x:Name="searchButton"

 Content="Search"

 Grid.Column="1"

 Padding="8 2"

 Margin="4"

 Click="OnSearchButtonClicked"/>

</Grid>

8. Now, press F7 to navigate to the code behind the UserControl1.xaml.cs file.
9. Insert the following event implementation inside the class:

private void OnSearchButtonClicked(object sender,

 RoutedEventArgs e)

{

 MessageBox.Show("You searched for: {" +

 searchBox.Text + "}");

}

10. Now, it's time to integrate the created user control inside a Windows Form. For this, we
need a WinForm project. Let's add the new project inside the solution. To do this,
from Solution Explorer, right-click on the solution file and select Add | New Project...
from the context menu. Use the following Windows Forms App (.NET Framework)
template during project creation. Name it as CH11.WpfInWinFormDemo and click the OK button:

www.EBooksWorld.ir

11. Once the project gets created, you need to add the reference of the UserControl Library
into this project. To do so, right-click on the References node of the CH11.WpfInWinFormDemo
project and then click Add Reference... from the context menu.

12. From the Reference Manager dialog, as shown in the following screenshot, expand the
Projects entry, select the desired library project (in our case, it is
CH11.WpfUserControlLibrary), and click OK. This will add the reference of the library
into the project:

13. Also, add the following assembly references—PresentationCore, PresentationFramework,
System.Xaml, WindowsBase, and WindowsFormsIntegration inside the project. These are required
to use WPF controls and host them.

14. Rebuild the solution and make sure that the solution is building without any errors. This
step also ensures that the library project gets compiled and becomes discoverable in the
main project.

15. From Solution Explorer, double-click on the Form1.cs file to open it.

www.EBooksWorld.ir

16. Now, open the Toolbox, and as shown in the following screenshot, drag the ElementHost
element to the form (Form1.cs), from the WPF Interoperability section:

17. Expand the small arrow-head of the ElementHost element to select the hosted content. As
shown in the following screenshot, click on the Select Hosted Content combo and
select UserControl1 to host inside it:

18. Alternatively, you can also drag UserControl1 from the toolbox. In this case, Visual Studio
will add the ElementHost and configure it to load the UserControl that you have dragged to
the form. Once done, resize the control and position it inside the form:

www.EBooksWorld.ir

19. Now rebuild the solution again and run the form application (CH11.WpfInWinFormDemo). You
will see a form window on the screen, containing the WPF UserControl that we have
created. It basically consists of a TextBox and a Button.

20. Enter some text in the search box and click the button. You will see the message box pop
up on the screen, containing the text that you have entered:

www.EBooksWorld.ir

How it works...
To host the WPF composite control, the ElementHost object is used inside the Windows Forms
host application. The ElementHost class is part of the System.Windows.Forms.Integration namespace,
and thus you will need to reference the WindowsFormsIntegration.dll in the project.

To host a WPF element in a Windows Form, you must assign it to the Child property of the
ElementHost control. If it is required, use the PropertyMap property to assign the custom mappings
between an ElementHost and its hosted WPF element. Optionally, you can use the boolean
BackColorTransparent property to set a transparent background to the hosted element.

www.EBooksWorld.ir

Calling Win32 APIs from WPF
applications
Windows Presentation Foundation and Win32 interpolation can work as different approaches.
You can either host a Win32 application in a WPF application, a WPF application in a Win32
application, or call a Win32 API from WPF by importing the specified system DLL. These are
often useful when you have already invested a lot in Win32 applications and now you would
like to build a rich WPF application by utilizing the existing code.

In this recipe, we will learn how to call a Win32 API from a WPF. We will use a simple
example to launch a browser window and then activate/refresh the browser window from our
WPF code.

www.EBooksWorld.ir

Getting ready
Get started by creating a WPF application. Open your Visual Studio IDE, and create a new
project named CH11.Win32ApiCallDemo. Make sure to select WPF App (.NET Framework) as the
project template.

www.EBooksWorld.ir

How to do it...
Follow these steps to give a call to Win32 APIs from WPF applications:

1. First, we need to set up the project. Once the project gets created by Visual Studio, right-
click on the References node of the project.

2. Select the context menu entry Add Reference... to add assembly references.

3. From the Reference Manager dialog, search for forms, and select System.Windows.Forms
from the list. Click OK to add the reference:

4. Now, from Solution Explorer, navigate to the MainWindow.xaml file.
5. Replace the existing Grid panel with the following markup, which contains a TextBox

(address) and three Button controls (goButton, bringToFrontButton, and refreshButton):

<StackPanel Margin="10">

 <TextBlock Text="Enter website URL:"

 Foreground="Gray"

 Margin="4 0"/>

 <StackPanel Orientation="Horizontal">

 <TextBox x:Name="address"

 Text="http://www.kunal-chowdhury.com"

 Width="250"

 Margin="4"/>

 <Button x:Name="goButton"

 Content="Go..."

 Padding="8 2"

 Margin="4"

 Click="OnGoClicked"/>

 <Button x:Name="bringToFrontButton"

 Content="BringToFront"

 Padding="8 2"

 Margin="4"

 Click="OnBringToFrontClicked"/>

www.EBooksWorld.ir

 <Button x:Name="refreshButton"

 Content="Refresh"

 Padding="8 2"

 Margin="4"

 Click="OnRefreshClicked"/>

 </StackPanel>

</StackPanel>

6. Once the UI is ready, it's time to create the button click event implementations. Press F7
within the XAML page to navigate to its code behind. Alternatively, you can open the
MainWindow.xaml.cs file from Solution Explorer.

7. In the code behind the file, add the following namespaces:

using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

using System.Windows;

using System.Windows.Forms;

8. Now, inside the MainWindow class, add the following declarations and make sure that the
DllImport attribute and the Process class are discoverable:

[DllImport("User32.dll")]

static extern int SetForegroundWindow(IntPtr hWnd);

private static Process process = new Process();

9. Let's implement the OnGoClicked event handler. Copy the following code to launch Internet
Explorer with the specified URL address, which is http://www.kunal-chowdhury.com in our
case:

private void OnGoClicked(object sender,

 RoutedEventArgs e)

{

 goButton.IsEnabled = false;

 process.StartInfo.FileName = "iexplore.exe";

 process.StartInfo.Arguments = address.Text;

 process.Start();

}

10. Let's implement the OnBringToFrontClicked event handler to bring the launched Internet
Explorer window to the front, if it lost its focus. Copy the following code to get the
MainWindowHandle of the process instance and call the Win32 API
method, SetForegroundWindow:

private void OnBringToFrontClicked(object sender,

 RoutedEventArgs e)

{

 if (process != null)

 {

 var ptr = process.MainWindowHandle;

 SetForegroundWindow(ptr);

 }

}

11. Now, let's add the event implementation of the Refresh button. Add the following
OnRefreshClicked handler inside the class file to activate the Internet Explorer window and
then call the F5 key of the keyboard to refresh the said browser window:

private void OnRefreshClicked(object sender,

 RoutedEventArgs e)

www.EBooksWorld.ir

{

 if (process != null)

 {

 IntPtr ptr = process.MainWindowHandle;

 SetForegroundWindow(ptr);

 SendKeys.SendWait("{F5}");

 }

}

12. As the code implementation is done, let's run the application. You will see the following
UI on the screen:

13. As the address field of the application is already populated, click on the Go... button. This
will launch Internet Explorer and will navigate to the address specified:

14. Now, click on the application window. This will bring the application to the front.
15. Now click the BringToFront button, which will activate Internet Explorer and bring it to

the front.

16. Similarly, click on the application window, and then click on the Refresh button. This
time, Internet Explorer will activate and refresh the content of the window:

www.EBooksWorld.ir

www.EBooksWorld.ir

How it works...
When you click the Go... button of the application window, this creates the new process of the
Internet Explorer (iexplore.exe) window and opens the URL specified to the process as its
Arguments, once we call the process.Start() method.

When you click the BringToFront button, it retrieves the handle of the main window of the
process and passes it as parameter to the SetForegroundWindow Win32 API method. The said API
method brings the thread into the foreground and activates the window.

A process can set the foreground window only if one of the following conditions
is satisfied:

The process itself is a foreground process
It was started by a foreground process
The process is being debugged
The foreground process is not a Modern Application or the Start screen
No menus are active

The DllImport attribute indicates that the attributed method is exposed by an unmanaged
dynamic-link library (DLL) as a static entry point. In our case, it's the User32.dll file.

When you click on the Refresh button, just like the BringToFront button, it first activates the
Internet Explorer window by bringing it to the front. The keyboard input is then being directed
to the window.

Note that an application can't force a window to the foreground if the user is
working on another window. In this case, the window will flash in the task bar to
notify the user.

The SendKeys.SendWait("{F5}") method call sends the given key (F5, in our case) to the active
application, and then waits for the messages to be processed. As we have passed the F5 key
here, it will call the refresh method of the browser. Make sure that System.Windows.Forms is
properly referenced in the project, for the SendKeys.SendWait method to work.

www.EBooksWorld.ir

Embedding ActiveX controls in
WPF applications
WPF also supports ActiveX, which you can easily embed in a WPF application. This is not
feature specific to WPF, but it works because of interoperability with Windows Forms. The
WinForm acts as an intermediate layer between the two.

There are several ActiveX controls present, which can be easily embedded in any WPF
application. In this recipe, we will learn how to embed an ActiveX control by following some
simple steps. We will demonstrate it using the Microsoft Terminal Services Control that ships
with Windows.

www.EBooksWorld.ir

Getting ready
Make sure Visual Studio is up and running. Create a new WPF project and name it
as CH11.ActiveXDemo.

www.EBooksWorld.ir

How to do it...
Follow these steps to generate the required libraries for the Microsoft Terminal Services
ActiveX control and embed it inside our WPF application:

1. The first step is to generate the required libraries of our ActiveX control. This is required
to get a managed and Windows Forms compatible definition of the relevant type. To do
this, open Visual Studio Developer Command Prompt and navigate to an empty folder
(let's say, D:libs).

2. Now, in the Command Prompt, enter the following command to generate the managed
definitions of the Terminal Service DLL:

 aximp c:WindowsSystem32mstscax.dll

3. This will generate two DLL files, named MSTSCLib.dll and AxMSTSCLib.dll, in the same
folder (D:libs, in our case):

4. Let's copy those DLLs in our project folder. Create a folder named libs, inside the root
folder of our project, and copy both files there.

5. Now, add the references of those binaries into our project. Navigate back to Visual Studio,
and from Solution Explorer, right-click on the References node. Then, click Add
Reference... from the context menu.

6. From the Reference Manager dialog window, click Browse... to add the references.
7. Select both MSTSCLib.dll and AxMSTSCLib.dll, as shown in the following screenshot

and click Add, which will add the selection to the Reference Manager:

www.EBooksWorld.ir

8. Search for forms, inside the Reference Manager dialog, and select System.Windows.Forms
and WindowsFormsIntegration dlls.

9. Click OK to confirm adding the references of the four assembly files.
10. Now open the MainWindow.xaml file and add the following XMLNS attribute to it:

xmlns:lib="clr-namespace:AxMSTSCLib;assembly=AxMSTSCLib"

11. Replace the existing Grid panel with the following markup:

<Grid>

 <WindowsFormsHost>

 <lib:AxMsTscAxNotSafeForScripting

 x:Name="terminal"

 Height="500" Width="1000"/>

 </WindowsFormsHost>

</Grid>

12. Go to the code behind the file by pressing the F7 key. Alternatively, you can
open MainWindow.xaml.cs from Solution Explorer.

13. Inside the constructor of the MainWindow class, add the following, just after the
InitializeComponent() method call, and replace the IP with the one that you want to
connect:

terminal.Server = "192.168.0.10";

terminal.Connect();

14. Now, run the application. You will see the terminal host launched in our WPF application
embedded inside it, and pointing to the remote machine for which the IP address has been
provided as the terminal.Server name. Here's how the application will look:

www.EBooksWorld.ir

15. Within that application window, you can now log in to the system and access the desktop,
files, and programs remotely.

www.EBooksWorld.ir

How it works...
The ActiveX DLL for Microsoft Terminal Services (the mstscax.dll file) resides in the
%WINDIR%System32 directory. The ActiveX Importer (AXIMP.EXE), which is part of the .NET
Framework component of the Windows SDK, generates two DLLs
(MSTSCLib.dll and AxMSTSCLib.dll) from that ActiveX DLL.

The first DLL, MSTSCLib.dll, contains the managed definitions of the unmanaged interfaces,
classes, structures, and enums, defined in the type library contained inside the ActiveX DLL
(mstscax.dll). This is generally named with the library name from the original type library.

The second DLL, AxMSTSCLib.dll, is named the same but with an Ax prefix. This contains a
Windows Forms control corresponding to each ActiveX class. The Windows Forms
representation of the ActiveX control is added to WindowsFormsHost.

In our example, the AxMsTscAxNotSafeForScripting control is used in XAML,
inside WindowsFormsHost, to perform the interaction. Its Server property, from the code behind the
class, has been set to a simple string, pointing to the remote system's IP address or machine
name, discoverable from the host.

When you are ready, the Connect() call to the instance of the terminal control
(AxMsTscAxNotSafeForScripting) connects to the remote system. You can additionally provide
Domainname , Username, and other properties to the terminal instance, before calling the Connect()
method.

www.EBooksWorld.ir

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Windows Presentation Foundation
Sheridan Yuen

ISBN: 978-1-78588-300-2

Use MVVM to improve workflow
Create visually stunning user interfaces
Perform data binds proficiently
Implement advanced data validation
Locate and resolve errors quickly
Master practical animations
Improve your applications' performance

Mastering Visual Studio 2017
Kunal Chowdhury

ISBN: 978-1-78839-980-7

Learn what's new in the Visual Studio 2017 IDE, C# 7.0, and how it will help developers
to improve their productivity
Learn the workloads and components of the new installation wizard and how to use the
online and offline installer
Build stunning Windows apps using Windows Presentation Foundation (WPF) and

www.EBooksWorld.ir

https://www.packtpub.com/application-development/mastering-windows-presentation-foundation
https://www.packtpub.com/application-development/mastering-visual-studio-2017

Universal Windows Platform (UWP) tools
Get familiar with .NET Core and learn how to build apps targeting this new framework
Explore everything about NuGet packages
Debug and test your applications using Visual Studio 2017
Accelerate cloud development with Microsoft Azure
Integrate Visual Studio with most popular source control repositories, such as TFS and
GitHub

www.EBooksWorld.ir

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review on
this book's Amazon page. This is vital so that other potential readers can see and use your
unbiased opinion to make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

www.EBooksWorld.ir

Table of Contents

Title Page 2
Copyright and Credits 3

Windows Presentation Foundation Development Cookbook 4
Packt Upsell 5

Why subscribe? 6
PacktPub.com 7

Contributors 8
About the author 9
About the reviewer 10
Packt is searching for authors like you 11

Preface 23
Who this book is for 25
What this book covers 26
To get the most out of this book 28

Download the example code files 29
Download the color images 30
Conventions used 31

Get in touch 32
Reviews 33

WPF Fundamentals 34
Introduction 35

The WPF Architecture 36
Presentation Framework 37
Presentation Core 38
Common Language Runtime 39
Media Integration Library 40
OS Core 41

Types of WPF applications 42
The XAML overview 43
XAML syntax terminologies 45

Object element syntax 46
Property Attribute syntax 47
Property Element syntax 48
Content syntax 49

www.EBooksWorld.ir

Collection syntax 50
Event Attribute syntax 51

Installing WPF Workload with Visual Studio 2017 52
Getting ready 53
How to do it... 54

Creating WPF applications 57
Getting ready 58
How to do it... 59
There's more... 61

Creating and navigating from one window to another 63
Getting ready 64
How to do it... 65
How it works... 68
There's more... 69

Creating and navigating from one page to another 70
Getting ready 71
How to do it... 72
How it works... 75
There's more... 76

Creating a dialog box 77
Getting ready 78
How to do it... 79
How it works... 81
There's more... 82

Using the open file dialog 83
Using the save file dialog 84
Using the print dialog 85
Other common dialogs 86

Creating ownership between windows 87
Getting ready 88
How to do it... 89
How it works... 91
There's more... 92

Creating a single instance application 93
Getting ready 94
How to do it... 95
How it works... 97
There's more... 98

www.EBooksWorld.ir

Passing arguments to WPF applications 100

Getting ready 101
How to do it... 102
How it works... 104
There's more... 105

Handling unhandled exceptions 106
Getting ready 107
How to do it... 108
How it works... 111
There's more... 112

Using WPF Standard Controls 113
Introduction 114
Using the TextBlock control to add plain text 115

Getting ready 116
How to do it... 117
How it works... 118
There's more... 119

Using Label to add other controls in text 121
Getting ready 122
How to do it... 123
How it works... 124
There's more... 125

Providing a user option to input text 127
Getting ready 128
How to do it... 129
How it works... 130
There's more... 131

Windows Clipboard support 132
Adding spellcheck support 133

Adding images to your application UI 134
Getting ready 135
How to do it... 136
How it works... 137
There's more... 138

Working with ready-to-use 2D shapes 139
Getting ready 140
How to do it... 141

www.EBooksWorld.ir

How it works... 143
There's more... 144

Adding tooltips to show additional information 145
Getting ready 146
How to do it... 147
How it works... 148
There's more... 149

Adding a standard menu to the WPF application 150
Getting ready 151
How to do it... 152
How it works... 153
There's more... 154

Adding an access key to menus 155
Adding icons to menus 156
Adding checkable menu items 157
Adding click-event handlers to menus 158

Providing extra functionalities using the context menu 159
Getting ready 160
How to do it... 161
How it works... 162

Adding user options with radio buttons and checkboxes 163
Getting ready 164
How to do it... 165
How it works... 167
There's more... 168

Working with the progress bar control 169
Getting ready 170
How to do it... 171
How it works... 173

Using the Slider control to pick a numeric value 174
Getting ready 175
How to do it... 176
How it works... 177
There's more... 178

Using the Calendar control in your application 179
Getting ready 180
How to do it... 181

www.EBooksWorld.ir

How it works... 183
There's more... 184

The SelectionModes property 185

The DisplayDate property 186
The DisplayMode property 187
The BlackoutDates property 188

Listing items in a Listbox control 189
Getting ready 190
How to do it... 191
How it works... 193
There's more... 194

Implementing multi selection 195
Customizing the ListBoxItem with multiple controls 196

Providing options to select from a ComboBox 198
Getting ready 199
How to do it... 200
How it works... 202
There's more... 203

Adding a status bar to your window 204
Getting ready 205
How to do it... 206
How it works... 208

Adding a toolbar panel to perform quick tasks 209
Getting ready 210
How to do it... 211
How it works... 213

Layouts and Panels 214
Introduction 215
Building a UI layout using a Grid 216

Getting ready 217
How to do it... 218
How it works... 219
There's more... 220

Creating a resizable Grid 221
Spanning elements across multiple rows and/or columns 222

Placing elements in uniform cells 223
Getting ready 224

www.EBooksWorld.ir

How to do it... 225
How it works... 226
There's more... 227

Setting the row and column count 228

Defining the first cell of the UniformGrid 229
Filling elements from right to left 230

Automatically repositioning controls using WrapPanel 231
Getting ready 232
How to do it... 233
How it works... 234
There's more... 235

Placing controls in a Stack 236
Getting ready 237
How to do it... 238
How it works... 239
There's more... 240

Positioning controls inside a Canvas 241
Getting ready 242
How to do it... 243
How it works... 244
There's more... 245

Wrapping UI elements using a Border 246
Getting ready 247
How to do it... 248
How it works... 249

Creating a scrollable panel 250
Getting ready 251
How to do it... 252
How it works... 253

Docking controls using the DockPanel 254
Getting ready 255
How to do it... 256
How it works... 257
There's more... 258

Rescaling UI elements using a ViewBox 259
Getting ready 260
How to do it... 261

www.EBooksWorld.ir

How it works... 262
There's more... 263

Creating a tabbed layout 264
Getting ready 265
How to do it... 266

How it works... 268
Dynamically adding/removing elements in a panel 269

Getting ready 270
How to do it... 271
How it works... 273
There's more... 274

Implementing the drag and drop feature 275
Getting ready 276
How to do it... 277
How it works... 280
There's more... 281

Working with Data Bindings 282
Introduction 283
Working with CLR properties and UI notifications 284

Getting ready 285
How to do it... 286
How it works... 289
There's more... 290

Working with dependency properties 291
Getting ready 292
How to do it... 293
How it works... 296
There's more... 297

Working with attached properties 298
Getting ready 299
How to do it... 300
How it works... 302

Data binding to an object 303
Getting ready 304
How to do it... 305
How it works... 307

Data binding to a collection 308

www.EBooksWorld.ir

Getting ready 309
How to do it... 310
How it works... 312
There's more... 313

Element-to-element data binding 314
Getting ready 315

How to do it... 316
How it works... 317

Sorting data in a DataGrid control 318
Getting ready 319
How to do it... 320
How it works... 323

Grouping data in a DataGrid control 324
Getting ready 325
How to do it... 326
How it works... 328
There's more... 329

Filtering data in a DataGrid control 330
Getting ready 331
How to do it... 332
How it works... 334

Using static bindings 335
Getting ready 336
How to do it... 337
How it works... 339

Using value converters 340
Getting ready 341
How to do it... 342
How it works... 344
There's more... 345

Using multi-value converters 347
Getting ready 348
How to do it... 349
How it works... 352

Using Custom Controls and User Controls 353
Introduction 354
Creating a custom control 355

www.EBooksWorld.ir

Getting ready 356
How to do it... 357
How it works... 360
There's more... 361

XMLNS attribute declaration 362
Default styling 363
Toolbox integration 364

Customizing the template of a custom control 365
Getting ready 366
How to do it... 367
How it works... 369

Exposing properties from the custom control 370
Getting ready 371
How to do it... 372
How it works... 374

Exposing events from a custom control 375
Getting ready 376
How to do it... 377
How it works... 379

Extending the functionality of a control using behavior 380
Getting ready 381
How to do it... 382
How it works... 385

Creating a User Control interface 386
Getting ready 387
How to do it... 388
How it works... 394

Exposing events from a User Control 395
Getting ready 396
How to do it... 397
How it works... 399

Customizing the XMLNS namespace 400
Getting ready 401
How to do it... 402
How it works... 403

Using Styles, Templates, and Triggers 404
Introduction 405

www.EBooksWorld.ir

Creating the style of a control 406
Getting ready 407
How to do it... 408
How it works... 411
There's more... 412

Creating the Style of a control based on another Style 413
Getting ready 414
How to do it... 415
How it works... 419

Applying Style to a control automatically 420
Getting ready 421
How to do it... 422
How it works... 425

Editing the template of any control 426
Getting ready 427
How to do it... 428
How it works... 430
There's more... 431

Creating a property trigger 433
Getting ready 434
How to do it... 435
How it works... 437

Creating a multi trigger 438
Getting ready 439
How to do it... 440
How it works... 442

Creating a data trigger 443
Getting ready 444
How to do it... 445
How it works... 447

Creating a multi data trigger 448
Getting ready 449
How to do it... 450
How it works... 452

Creating an event trigger 453
Getting ready 454
How to do it... 455
How it works... 457

www.EBooksWorld.ir

Using Resources and MVVM Patterns 458
Introduction 459
Using binary resources inside a WPF application 460

Getting ready 461
How to do it... 462
How it works... 465
There's more... 466

Using binary resources from another assembly 467
Getting ready 468
How to do it... 469
How it works... 471
There's more... 472

Accessing binary resources in code 473
Getting ready 474
How to do it... 475
How it works... 477

Using static logical resources in WPF 478
Getting ready 479
How to do it... 480
How it works... 482
There's more... 483

Using dynamic logical resources in WPF 484
Getting ready 485
How to do it... 486
How it works... 489
There's more... 490

Managing logical resources 491
Getting ready 492
How to do it... 493
How it works... 496
There's more... 497

Using user selected colors and fonts 498
Getting ready 499
How to do it... 500
How it works... 503
There's more... 504

Building an application using the MVVM pattern 505
Getting ready 506

www.EBooksWorld.ir

How to do it... 507
How it works... 512

Using routed commands in a WPF application 513
Getting ready 514
How to do it... 515
How it works... 519

Working with Animations 520

Introduction 521
Scaling an element while rendering 522

Getting ready 523
How to do it... 524
How it works... 526

Rotating an element while rendering 527
Getting ready 528
How to do it... 529
How it works... 531

Skewing an element while rendering 532
Getting ready 533
How to do it... 534
How it works... 536

Moving an element while rendering 537
Getting ready 538
How to do it... 539
How it works... 540

Grouping multiple transforms 541
Getting ready 542
How to do it... 543
How it works... 545
There's more... 546

Creating property-based animations 547
Getting ready 548
How to do it... 549
How it works... 552

Creating path-based animations 554
Getting ready 555
How to do it... 556

www.EBooksWorld.ir

How it works... 559
Creating key-frame-based animations 560

Getting ready 561
How to do it... 562
How it works... 565
There's more... 566

Adding easing effects to animations 567
Getting ready 568
How to do it... 569

How it works... 572
There's more... 573

BounceEase 574
CircleEase 575
CubicEase 576
ElasticEase 577
ExponentialEase 578
PowerEase 579
QuadraticEase 580
QuarticEase 581
QuinticEase 582
SineEase 583

Using WCF Services 585
Introduction 586
Creating a WCF service 588

Getting ready 589
How to do it... 590
How it works... 597

The DataContract attribute 598
The DataMember attribute 599
The ServiceContract attribute 600
The OperationContract attribute 601

Self-hosting a WCF service 602
Getting ready 603
How to do it... 604
How it works... 606
There's more... 609

Hosting a WCF service in an IIS server 610

www.EBooksWorld.ir

Getting ready 611
How to do it... 612
How it works... 617

Integrating a WCF service in a WPF application 618
Getting ready 619
How to do it... 620
How it works... 627
There's more... 629

Debugging and Threading 630
Introduction 631

Enabling the UI debugging tool for XAML 632
Getting ready 633
How to do it... 634

Navigating through XAML elements using Live Visual Tree 636
Getting ready 637
How to do it... 638
How it works... 643
There's more... 645

Inspecting XAML properties using Live Property Explorer 646
Getting ready 647
How to do it... 648
How it works... 652
There's more... 653

Updating the UI from a non-UI thread 655
Getting ready 656
How to do it... 657
How it works... 660
There's more... 661

Adding cancelation support to long running threads 662
Getting ready 663
How to do it... 664
How it works... 667

Using the background worker component 668
Getting ready 669
How to do it... 670
How it works... 672
There's more... 673

www.EBooksWorld.ir

Using a timer to periodically update the UI 674
Getting ready 675
How to do it... 676
How it works... 679

Interoperability with Win32 and WinForm 680
Introduction 681
Hosting WinForm controls in WPF applications 682

Getting ready 683
How to do it... 684
How it works... 688
There's more... 689

Hosting WPF controls in WinForm applications 690
Getting ready 691
How to do it... 692
How it works... 697

Calling Win32 APIs from WPF applications 698
Getting ready 699
How to do it... 700
How it works... 704

Embedding ActiveX controls in WPF applications 705
Getting ready 706
How to do it... 707
How it works... 710

Other Books You May Enjoy 711
Leave a review - let other readers know what you think 713

www.EBooksWorld.ir

	Title Page
	Copyright and Credits
	Windows Presentation Foundation Development Cookbook

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	WPF Fundamentals
	Introduction
	The WPF Architecture
	Presentation Framework
	Presentation Core
	Common Language Runtime
	Media Integration Library
	OS Core

	Types of WPF applications
	The XAML overview
	XAML syntax terminologies
	Object element syntax
	Property Attribute syntax
	Property Element syntax
	Content syntax
	Collection syntax
	Event Attribute syntax

	Installing WPF Workload with Visual Studio 2017
	Getting ready
	How to do it...

	Creating WPF applications
	Getting ready
	How to do it...
	There's more...

	Creating and navigating from one window to another
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and navigating from one page to another
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a dialog box
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using the open file dialog
	Using the save file dialog
	Using the print dialog
	Other common dialogs

	Creating ownership between windows
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a single instance application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Passing arguments to WPF applications
	Getting ready
	How to do it...
	How it works...
	There's more...

	Handling unhandled exceptions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using WPF Standard Controls
	Introduction
	Using the TextBlock control to add plain text
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Label to add other controls in text
	Getting ready
	How to do it...
	How it works...
	There's more...

	Providing a user option to input text
	Getting ready
	How to do it...
	How it works...
	There's more...
	Windows Clipboard support
	Adding spellcheck support

	Adding images to your application UI
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with ready-to-use 2D shapes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding tooltips to show additional information
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding a standard menu to the WPF application
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding an access key to menus
	Adding icons to menus
	Adding checkable menu items
	Adding click-event handlers to menus

	Providing extra functionalities using the context menu
	Getting ready
	How to do it...
	How it works...

	Adding user options with radio buttons and checkboxes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with the progress bar control
	Getting ready
	How to do it...
	How it works...

	Using the Slider control to pick a numeric value
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the Calendar control in your application
	Getting ready
	How to do it...
	How it works...
	There's more...
	The SelectionModes property
	The DisplayDate property
	The DisplayMode property
	The BlackoutDates property

	Listing items in a Listbox control
	Getting ready
	How to do it...
	How it works...
	There's more...
	Implementing multi selection
	Customizing the ListBoxItem with multiple controls

	Providing options to select from a ComboBox
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding a status bar to your window
	Getting ready
	How to do it...
	How it works...

	Adding a toolbar panel to perform quick tasks
	Getting ready
	How to do it...
	How it works...

	Layouts and Panels
	Introduction
	Building a UI layout using a Grid
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a resizable Grid
	Spanning elements across multiple rows and/or columns

	Placing elements in uniform cells
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting the row and column count
	Defining the first cell of the UniformGrid
	Filling elements from right to left

	Automatically repositioning controls using WrapPanel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Placing controls in a Stack
	Getting ready
	How to do it...
	How it works...
	There's more...

	Positioning controls inside a Canvas
	Getting ready
	How to do it...
	How it works...
	There's more...

	Wrapping UI elements using a Border
	Getting ready
	How to do it...
	How it works...

	Creating a scrollable panel
	Getting ready
	How to do it...
	How it works...

	Docking controls using the DockPanel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Rescaling UI elements using a ViewBox
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a tabbed layout
	Getting ready
	How to do it...
	How it works...

	Dynamically adding/removing elements in a panel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing the drag and drop feature
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with Data Bindings
	Introduction
	Working with CLR properties and UI notifications
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with dependency properties
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with attached properties
	Getting ready
	How to do it...
	How it works...

	Data binding to an object
	Getting ready
	How to do it...
	How it works...

	Data binding to a collection
	Getting ready
	How to do it...
	How it works...
	There's more...

	Element-to-element data binding
	Getting ready
	How to do it...
	How it works...

	Sorting data in a DataGrid control
	Getting ready
	How to do it...
	How it works...

	Grouping data in a DataGrid control
	Getting ready
	How to do it...
	How it works...
	There's more...

	Filtering data in a DataGrid control
	Getting ready
	How to do it...
	How it works...

	Using static bindings
	Getting ready
	How to do it...
	How it works...

	Using value converters
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using multi-value converters
	Getting ready
	How to do it...
	How it works...

	Using Custom Controls and User Controls
	Introduction
	Creating a custom control
	Getting ready
	How to do it...
	How it works...
	There's more...
	XMLNS attribute declaration
	Default styling
	Toolbox integration

	Customizing the template of a custom control
	Getting ready
	How to do it...
	How it works...

	Exposing properties from the custom control
	Getting ready
	How to do it...
	How it works...

	Exposing events from a custom control
	Getting ready
	How to do it...
	How it works...

	Extending the functionality of a control using behavior
	Getting ready
	How to do it...
	How it works...

	Creating a User Control interface
	Getting ready
	How to do it...
	How it works...

	Exposing events from a User Control
	Getting ready
	How to do it...
	How it works...

	Customizing the XMLNS namespace
	Getting ready
	How to do it...
	How it works...

	Using Styles, Templates, and Triggers
	Introduction
	Creating the style of a control
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating the Style of a control based on another Style
	Getting ready
	How to do it...
	How it works...

	Applying Style to a control automatically
	Getting ready
	How to do it...
	How it works...

	Editing the template of any control
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a property trigger
	Getting ready
	How to do it...
	How it works...

	Creating a multi trigger
	Getting ready
	How to do it...
	How it works...

	Creating a data trigger
	Getting ready
	How to do it...
	How it works...

	Creating a multi data trigger
	Getting ready
	How to do it...
	How it works...

	Creating an event trigger
	Getting ready
	How to do it...
	How it works...

	Using Resources and MVVM Patterns
	Introduction
	Using binary resources inside a WPF application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using binary resources from another assembly
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing binary resources in code
	Getting ready
	How to do it...
	How it works...

	Using static logical resources in WPF
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using dynamic logical resources in WPF
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing logical resources
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using user selected colors and fonts
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building an application using the MVVM pattern
	Getting ready
	How to do it...
	How it works...

	Using routed commands in a WPF application
	Getting ready
	How to do it...
	How it works...

	Working with Animations
	Introduction
	Scaling an element while rendering
	Getting ready
	How to do it...
	How it works...

	Rotating an element while rendering
	Getting ready
	How to do it...
	How it works...

	Skewing an element while rendering
	Getting ready
	How to do it...
	How it works...

	Moving an element while rendering
	Getting ready
	How to do it...
	How it works...

	Grouping multiple transforms
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating property-based animations
	Getting ready
	How to do it...
	How it works...

	Creating path-based animations
	Getting ready
	How to do it...
	How it works...

	Creating key-frame-based animations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding easing effects to animations
	Getting ready
	How to do it...
	How it works...
	There's more...
	BounceEase
	CircleEase
	CubicEase
	ElasticEase
	ExponentialEase
	PowerEase
	QuadraticEase
	QuarticEase
	QuinticEase
	SineEase

	Using WCF Services
	Introduction
	Creating a WCF service
	Getting ready
	How to do it...
	How it works...
	The DataContract attribute
	The DataMember attribute
	The ServiceContract attribute
	The OperationContract attribute

	Self-hosting a WCF service
	Getting ready
	How to do it...
	How it works...
	There's more...

	Hosting a WCF service in an IIS server
	Getting ready
	How to do it...
	How it works...

	Integrating a WCF service in a WPF application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Debugging and Threading
	Introduction
	Enabling the UI debugging tool for XAML
	Getting ready
	How to do it...

	Navigating through XAML elements using Live Visual Tree
	Getting ready
	How to do it...
	How it works...
	There's more...

	Inspecting XAML properties using Live Property Explorer
	Getting ready
	How to do it...
	How it works...
	There's more...

	Updating the UI from a non-UI thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding cancelation support to long running threads
	Getting ready
	How to do it...
	How it works...

	Using the background worker component
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using a timer to periodically update the UI
	Getting ready
	How to do it...
	How it works...

	Interoperability with Win32 and WinForm
	Introduction
	Hosting WinForm controls in WPF applications
	Getting ready
	How to do it...
	How it works...
	There's more...

	Hosting WPF controls in WinForm applications
	Getting ready
	How to do it...
	How it works...

	Calling Win32 APIs from WPF applications
	Getting ready
	How to do it...
	How it works...

	Embedding ActiveX controls in WPF applications
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

