John Callaway, Clayton Hunt

Foreword by:

John Sonmez
Founder, Simple Programmer

Practical Test-Driven

Development
using C#.7

Unleash the power of TDD by implementing real world
examples under .NET environment and JavaScript

Ll Packt

Practical Test-Driven Development using C# 7

Unleash the power of TDD by implementing real world examples under .NET
environment and JavaScript

John Callaway
Clayton Hunt

Packt

www.EBooksWorld.ir

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Practical Test-Driven
Development using C# 7

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Shweta Pant

Content Development Editor: Aditi Gour
Technical Editor: Shweta Jadhav

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Jason Monteiro

Production Coordinator: Aparna Bhagat

First published: February 2018
Production reference: 1090218

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-878-7

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

www.EBooksWorld.ir

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos from
over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

www.EBooksWorld.ir

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.packtpub.com

Foreword

I'll be honest, when I first looked at the title of this book, Practical Test-Driven Development
Using C# 7, 1 thought "do we really need another book outlining the basics of unit testing and
TDD?" I mean at this point, TDD isn't really that new, and plenty of authors have written about
what TDD is and have given us countless examples of how to score a bowling or a tic-tac-toe
game using TDD to drive the creation of the application.

The problems most developers run into when learning or trying to implement TDD is not
understanding what TDD itself is and what "red, green, refactor" means, but how to practically
implement it in real-world situations. Most real-world applications are messy and don't conform
easily to the usual TDD shoehorn that many well-meaning TDD books and examples try to
demonstrate. The real difficulty in successfully implementing TDD arises when you try to use it
to develop a non-trivial application—an application with databases and multiple layers and
external services you need to call.

As a consultant, I spent a large amount of time teaching teams who were supposedly doing TDD
how to actually do TDD. I saw countless examples of teams who would hardcode tests with fake
data or call out directly to a database, because they didn't really understand what a mock was
and how to isolate their tests. Moreover, I found many development teams that understood the
basics of TDD, but didn't understand how to take business requirements and user stories and
convert them into working unit tests that they can actually use to develop the system they were
trying to create.

I've never had a difficult time teaching software developers the basics of TDD. It's fairly easy to
explain how TDD works and how to get started doing it—and there have always been plenty of
resources available to teach all that. No, what companies paid me the big bucks for was to sit
down with their teams and explain all the nuances of TDD. What do you do when you have to
mock a class that directly uses the database? How do you handle 15 test cases that have different
input values but are essentially testing the same thing? Where do we start with TDD—which
tests do we write first?

That's where Practical Test-Driven Development comes into the picture. For the first time ever,
all that "real tricky shit," that I thought only I knew about and was esoteric and complicated to
explain in a book, well it's explained—with plenty of examples—right here in the one you are
holding.

When I first cracked open Practical Test-Driven Development, I was amazed. Not only did it
explain the right concept of what TDD was (a design activity, not a testing one), and give an
absolute beginner a step-by-step approach to learning and understanding TDD, but it took it far,
far from there and showed you how to practically and pragmatically apply the concepts to a real-
world, non-trivial application and did it in a way that didn't try and gloss over the messy stuff.
Instead, Practical Test-Driven Development plows right into all the nooks and crannies of TDD
and tells you exactly the kinds of problem you will encounter and how to get past them.

www.EBooksWorld.ir

Here's the best part—you don't even have to know a thing about TDD to get huge value out of
this book and become a better TDD practitioner than 90% of software developers who claim
they are already doing TDD. Practical Test-Driven Development is laid out in such a way that it
assumes that you don't know anything about TDD and shows you step-by-step, example-by-
example, everything you need to know to go from complete beginner to expert in a way that I
honestly didn't think was possible, until I sat down and read the book myself.

All in all, T am extremely happy with this book and I have a feeling I'm going to be
recommending it as the go-to resources for learning TDD for many years to come. Every
developer should be doing TDD and doing it the right way. Therefore, every developer should
read this book.

John Sonmez
Founder, Simple Programmer

www.EBooksWorld.ir

Contributors

EBooksWorld.ir

About the authors

John Callaway, a Microsoft MVP, has been a professional developer since 1999. He has
focused primarily on web technologies and has experience with everything from PHP to C# to
ReactJS to SignalR. Clean code and professionalism are particularly important to him, along
with mentoring and teaching others what he has learned along the way.

Clayton Hunt has been programming professionally since 2005, doing mostly web
development with an emphasis on JavaScript and C#. He has a focus on Software Craftsmanship
and is a signatory of both the Agile Manifesto and the Software Craftsmanship manifesto. He
believes that through short iterations and the careful gathering of requirements, we can deliver
the highest quality and most value in the shortest time. He enjoys learning and encouraging
others to continuously improve themselves.

www.EBooksWorld.ir

About the reviewer

Tomi Juhola is a versatile software development professional from Finland. He has wide
experience, from embedded systems through distributed enterprise systems to a reinvention of
IT in manufacturing in various roles. The key thing for him is to be agile and to help others
grow.

Currently, he works in an industry-leading manufacturing company and is responsible for all
things software and electric. He likes to spend his free time with new interesting development
languages, technologies, and frameworks as well as with novel thoughts on organizations and
personal growth.

I would like to thank my dear wife, Jonna, and daughter, Isla, for letting daddy reserve some
time for reviewing. Love you both.

www.EBooksWorld.ir

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author for, or submit your
own idea.

www.EBooksWorld.ir

http://authors.packtpub.com

Table of Contents

Preface
Who this book is for

What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. Why TDD is Important

First, a little background
John's story on TDD
Clayton's story on TDD

So, what is TDD?
An approach to TDD

An alternative approach
The process

Red, green, and refactor
Coder's block

Why should we care?
Arguments against TDD

Testing takes time
Testing is expensive
Testing is difficult

We don't know how
Arguments in favor of TDD

Reduces the effort of manual testing
Reduces bug count

Ensures some level of correctness
Removes the fear of refactoring

A better architecture

Faster development
Different types of test

Unit tests
Acceptance tests

Integration tests
End to end tests

Quantity of each test type
Parts of a unit test

Arrange
Act
Assert
Requirements
Why are they important?
User stories
Role
Request
Reason

www.EBooksWorld.ir

Gherkin
Givens
When
Then
Our first tests in C#
Growing the application with tests
Our first tests in JavaScript
Why does it matter?
Summary

2. Setting Up the .NET Test Environment
Installing the .NET Core SDK
Getting set up with VS Code

Downloading the IDE
Installing the VS Code
Adding extensions

Creating a project in VS Code
Setting up Visual Studio Community

Downloading Visual Studio Community

Installing Visual Studio Community
Switching to xUnit
Code katas

FizzBuzz
Creating the test project
The Given3ThenFizz test
The Given5ThenBuzz test
The Given15ThenFizzBuzz test
The Given1Then1 test
Theories
Solution to the FizzBuzz Problem
What is Speaker Meet?
Web API project
Listing Speakers (API)
Requirements
A new test file
Summary
3. Setting Up a JavaScript Environment
Node.js
What is Node?
Why do we need Node?
Installing Node
Linux
Mac OSX
Windows
NPM
What is NPM?
Why do we need NPM?
Installing NPM?

A quick introduction to JavaScript IDEs
Visual Studio Code

Why Visual Studio Code?
Installing Visual Studio Code
Linux

www.EBooksWorld.ir

Mac
Windows
Installing the plugins you will need

Configuring the testing environment
WebStorm

Why WebStorm?
Installing WebStorm
Linux
Mac
Windows
Installing the plugins you will need

Configuring the testing environment
Create React App

What is Create React App?

Installing the global module
Creating a React application

Running the Create React App script
Mocha and Chai

Jest

Mocha

Chai

Sinon

Enzyme

Ejecting the React app

Configuring to use Mocha and Chai
A quick kata to check our test setup

The requirements
The execution
Starting the kata
Summary

4. What to Know Before Getting Started
Untestable code
Dependency Injection

Static

Singleton

Global state
Abstracting third-party software
Test doubles

Mocking frameworks
The SOLID principles

The Single Responsibility Principle
The Open/Closed principle
The Liskov Substitution principle
The Interface Segregation principle
The Dependency Inversion principle
Timely greeting
Fragile tests
False positives and false failures
Abstract DateTime
Test double types
Dummies

www.EBooksWorld.ir

Dummy logger
Example in C#

Example in JavaScript
Stubs

Example in C#

Example in JavaScript
Spies

Example in C#

Example in JavaScript
Mocks

Example in C#

Example in JavaScript
Fakes

Example in C#
Example in JavaScript
N-Tiered example

Presentation layer

Moq

Business layer

Summary
5. Tabula Rasa — Approaching an Application with TDD in Mind

Where to begin
Yak shaving

Big design up front
A clean slate
One bite at a time
Minimum Viable Product
Different mindset
YAGNI - you aren't gonna need it
Test small
Devil's advocate

Test negative cases first
When testing is painful

A spike
Assert first
Stay organized
Breaking down Speaker Meet
Speakers
Communities
Conferences
Technical requirements
Summary
6. Approaching the Problem

Defining the problem
Digesting the problem
Epics, features, and stories; oh my!

Epics
Features
Stories

Maintain your backlog
The Speaker Meet problem

www.EBooksWorld.ir

Meaningful separation
Speakers
Communities
Conferences
Separate by team function
Technical separations
Technical requirements
React web user interface
.NET Core
.NET Web API
Entity Framework
Azure
Database
An N-Tiered hexagonal architecture
Hexagonal architecture
Basic yet effective N-Tiered divisions
Service layer
Microservices
Data access layer
Repository Pattern
Generic repository
User interface adapter layer
User interface layer
Front-end business layer
Front-end user interface layer
Front-end data source layer

Testing direction
Back-to-front

Defining a data source
Creating a business layer
Building a user interface
Front-to-back
Defining a user interface
Creating a business layer
Building a data source
Inside out
Defining a business layer
Summary
7. Test-Driving C# Applications
Reviewing the requirements
Speaker listing
API
API tests

Moq

Testing exception cases
Service
Service tests

Clean tests

Repository
The IRepository interface
FakeRepository

www.EBooksWorld.ir

Using factories with the FakeRepository

Soft delete
Speaker details

API

API tests

Service

Service tests

Clean the tests

More from the repository

Additional factory work

Testing exception cases
Summary

8. Abstract Away Problems
Abstracting away problems
Gravatar

Starting with an interface
Implementing a test version of the interface
Implementing the production version of the interface

Future planning
Abstracting the data layer
Extending the repository pattern

The Get method

The GetAll method

The Create method

The Delete method

The Update method
Ensuring functionality

Creating a speaker

Getting a single speaker

Getting multiple speakers

Updating a speaker

Deleting a speaker

Genericizing the repository

Step one — abstract interface
Step two — abstract the concrete class

Converting Create to a generic method
Converting Get to a generic method

Converting GetAll to a generic method
Converting Update to a generic method

Converting Delete to a generic method
Step three — reorient the tests to use the generic repository

InMemoryRepository Create tests
InMemoryRepository Get tests
InMemoryRepository GetAll tests

InMemoryRepository Update tests
Entity Framework

DbContext
Models

Generic repository
Dependency Injection
Wire it all up

www.EBooksWorld.ir

Postman
Summary
9. Testing JavaScript Applications
Creating a React app
Ejecting the app
Configuring Mocha, Chai, Enzyme, and Sinon
The plan
Considering the React component
Looking at Redux testability
The store
Actions
Reducers

Unit-testing an API service
Speaker listing

A mock API service

The Get All Speakers action
Testing a standard action
Testing a thunk

The Get All Speakers reducer

The Speaker listing component
Speaker detail

Adding to the mock API Service

The Get Speaker action

The Get Speaker reducer

The Speaker Detail component
Summary

10. Exploring Integrations
Implementing a real API service

Replacing the mock API with the real API service
Using Sinon to mock Ajax responses

Fixing existing tests
Mocking the server
Application configuration
End-to-end integration tests
Benefits
Detriments
How much end-to-end testing should you do?
Configuring the API project
Integration test project
Where to begin?
Verifying the repository calls into the DB context
InMemory database
Adding speakers to the InMemory database
Verify that the service calls the DB through the repository
ContextFixture
Verify the API calls into the service
TestServer
ServerFixture
Summary

11. Changes in Requirements
Hello World

www.EBooksWorld.ir

A change in requirements

Good evening
FizzBuzz
A new feature

Number not found
TODO app

Mark complete

Adding tests
Production code

But don't remove from the list!
Adding tests

Production code
Changes to Speaker Meet

Changes to the back-end
Changes to the front-end

Sorted by rating on client side
What now?

Premature optimization
Summary
12. The Legacy Problem
What is legacy code?
Why does code go bad?
When does a project become legacy?

What can be done to prevent legacy decay?
Typical issues resulting from legacy code
Unintended side effects

Open Closed Principle and legacy code
Liskov Substitution Principle and legacy code
Over-optimization
Overly clever code

Tight coupling to third-party software
Issues that prevent adding tests

Direct dependence on framework and third-party code
Law of Demeter

Work in the constructor

Global state

Static methods

Large classes and functions
Dealing with legacy problems
Safe refactoring

Converting values to variables
Extracting a method
Extracting a class

Abstracting third-party libraries and framework code
Early tests

Gold standard tests

Testing all potential outcomes
Moving forward

Fixing bugs
Free to do unsafe refactoring
Summary

www.EBooksWorld.ir

13. Unraveling a Mess
Inheriting code
The game

A change is requested
Life sometimes hands you lemons

Getting started
Abstracting a third-party class
Unexpected Input
Making sense of the madness
Final beautification
Ready for enhancements
Summary
14. A Better Foot Forward

What we've covered
Moving forward

TDD is a personal practice
You don't need permission

Grow applications through tests
Introducing TDD to your team

Don’t force TDD on anyone
Gamification of TDD
Showing your team the benefits
Review the results

Rejoining the world as a TDD expert
Seek a mentor
Becoming a mentor
Practice, practice, practice

Summary
Other Books You May Enjoy

Leave a review - let other readers know what you think

www.EBooksWorld.ir

Preface

As software projects grow in size and complexity, it can often become more difficult, time-
consuming, and expensive to maintain them. Through Test Driven Development (TDD), you
can learn to develop testable, extensible, and maintainable software applications.

www.EBooksWorld.ir

Who this book is for

This book is for software developers who have cursory knowledge of TDD and are looking to
gain a thorough understanding of how TDD can benefit them and the applications they produce.
Software developers with an intermediate understanding of C# and the .NET Framework and/or
a thorough understanding of JavaScript and React will likely be able to follow along with all the
code examples used throughout the book.

www.EBooksWorld.ir

What this book covers

The book covers everything from why TDD is important to setting up testing environments, and
how to get started testing a green-field application. As the reader grows more comfortable, they
will be exposed to more advanced TDD topics such as abstracting away third-party code,
approaching a problem from a TDD perspective, and how to deal with legacy code that wasn't
written with testability in mind.

Chapter 1, Why TDD is Important, asks what is TDD and why should you care? In this chapter,
you will learn what TDD is and why it matters. A compelling argument for TDD will be made
and the benefits, and more importantly, the execution will be shown.

Chapter 2, Setting Up the .NET Test Environment, explains how to set up your IDE and configure
the testing framework so that you can easily run your tests in C# and .NET, with more detail and
many more examples of growing complexity in the Speaker Meet API.

Chapter 3, Setting Up a JavaScript Environment, configures the JavaScript testing framework so
that you can easily run your tests in your IDE. It provides more detail and many more examples
of growing complexity in the Speaker Meet React application.

Chapter 4, What to Know Before Getting Started, dives deeper into the why and how of TDD. you
will learn the importance of defining and testing boundaries and abstracting away third-party
code (including the .NET Framework), and you'll discover more advanced concepts such as
spies, mocks, and fakes, and how to avoid pitfalls along the way.

Chapter 5, Tabula Rasa - Approaching an Application with TDD in Mind, explains how to get
started with a new application. You'll apply what you've learned in the previous chapters and
take the same approach with a full-sized application using Speaker Meet as an example.

Chapter 6, Approaching the Problem, takes the broader problem of the overall application and
breaks it into meaningful chunks that can be developed independently. You'll learn different
approaches to developing an application, such as front to back, back to front, and inside out.

Chapter 7, Test-Driving C# Applications, takes requirements and assembled user stories and turns
them into working software using TDD. It explains how to utilize all the skills you've assembled
so far to test the boundaries, testing small, individual units.

Chapter 8, Abstract Away Problems, explores abstracting away third-party libraries, including the
.NET Framework. It covers removing dependencies on things such as DateTime and Entity
Framework. It explains how to decouple their application from specific implementations to not
only allow your application to be testable but much more flexible and easy to modify in the
future.

Chapter 9, Testing JavaScript Applications, now that you have a working API, focuses on creating
a Single Page Application in JavaScript using React. It focuses on test-driven actions and

www.EBooksWorld.ir

reducers and any functionality within the application.

Chapter 10, Exploring Integrations, explains how to write integration tests to ensure that your
application is functioning properly.

Chapter 11, Changes in Requirements, focuses on what happens when the requirements change.
What happens if a bug is discovered? No problem, change a test or write a new one to cover the
new requirement or to defend against the discovered bug. Now, write some new code or change
some existing code to make all of the new/modified tests pass. If you do everything correctly,
you should feel safe to make these changes as your existing test suite will prevent you from
introducing new bugs.

Chapter 12, The Legacy Problem, explains that there are a lot of applications out there without
sufficient (any?) test coverage, and even fewer were written test-first. You'll discover some of
the major problems with legacy applications that weren't written with testability in mind; they
will be identified, and also how best to recover will be covered.

Chapter 13, Unraveling a Mess, dives into how to go about safely modifying a legacy application
that wasn't written with testing in mind. How can you add tests to minimize the potential for
introducing new bugs when modifying the existing code? An extreme example will be used to
explore these topics and more.

Chapter 14, A Better Foot Forward, emphasizes that TDD is a personal choice. You don't need
anyone's permission to do good work. Advice on how to continue a successful journey of TDD,
how to introduce TDD to your team, and how to rejoin the world as a TDD expert will be
covered in this chapter.

www.EBooksWorld.ir

To get the most out of this book

Readers wanting to follow along with the examples in the book should have the following:

e An intermediate understanding of C# and/or JavaScript
e Prior exposure to React will be beneficial though not required
e Familiarity with N-tier architecture

www.EBooksWorld.ir

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com.
If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have
the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Practical-
Test-Driven-Development. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Practical-Test-Driven-Development
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: http://www.packtpub.com/sites/default/files/downloads/Practical TestDrivenDevelo
pment_ColorIlmages.pdf.

www.EBooksWorld.ir

http://www.packtpub.com/sites/default/files/downloads/PracticalTestDrivenDevelopment_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
"Mount the downloaded webstorm-16*.dmg disk image file as another disk in your system."

A block of code is set as follows:

"babel": {
"presets": [
"react-app"
]
3

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(ul00)
exten => s,102,Voicemail(bh100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:
| >npm install mocha chai sinon enzyme

Bold: Indicates a new term, an important word, or words that you see onscreen. For example,
words in menus or dialog boxes appear in the text like this. Here is an example: "Select System
info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

www.EBooksWorld.ir

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your
message. If you have questions about any aspect of this book, please email us at

questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this
to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the
site that you purchased it from? Potential readers can then see and use your unbiased opinion to
make purchase decisions, we at Packt can understand what you think about our products, and
our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

www.EBooksWorld.ir

https://www.packtpub.com/

Why TDD is Important

You've picked up this book because you want to learn more about Test-Driven Development
(TDD). Maybe you've heard the term before. Perhaps you've known software developers who
write unit tests and want to learn more. We'll introduce you to the terms, the structure, and the
ideology around TDD. By the end of this book, you'll have sufficient knowledge to re-enter the
world as a Test-Driven Developer and feel confident about using your skills throughout your
long and prosperous career.

Why this book? Certainly, there are many other books on the topic of TDD. We have written
this book with the hope that it provides you, the reader, with low-level insight into the mindset
we use when doing TDD. We also hope that this book provides an updated view of some of the
concepts and lessons we have learned while doing TDD over the last 10 years.

So, why is TDD so important? As more businesses and industries rely on software solutions, it's
increasingly important that those solutions be robust and error-free. The cheaper and more
consistent, they are the better. Applications developed with TDD in mind are inherently more
testable, easier to maintain, and demonstrate a certain level of correctness not easily achieved
otherwise.

In this chapter, we will gain an understanding of:

Defining TDD and exploring the basics

Creating our first tests in C# and JavaScript
Exploring the basic steps of Red, Green, Refactor
Growing complexity through tests

www.EBooksWorld.ir

First, a little background

It's possible that you've had some exposure to unit tests in your career. It's highly likely that
you've written a test or two. Many developers, unfortunately, haven't had the opportunity to
experience the joys of Test-Driven Development.

www.EBooksWorld.ir

John's story on TDD

I was first introduced to TDD about five years ago. I was interviewing for a lead developer
position for a small startup. During the interview process, the CTO mentioned that the
development team was practicing TDD. I informed him that I didn't have any practical TDD
experience, but that I was sure I could adapt.

In all honesty, I was bit nervous. Up to that point, I had never even written a single unit test!
What had I gotten myself into? An offer was extended and I accepted. Once I joined the small
company I was told that, while TDD was the goal, they weren't quite there yet. Phew; crisis
averted. However, I was still intrigued. It wasn't until a few months later that the team delved
into the world of TDD, and the rest, as they says, is history.

www.EBooksWorld.ir

Clayton's story on TDD

My introduction to TDD is a little different from John's. I have been writing code since I was in
middle school in the early 1990s. From then until 2010, I always struggled with writing
applications that didn't require serious architectural changes when new requirements were
introduced. In 2010, I finally got fed up with the constant rewrites and began researching tools
and techniques to help me with my problem. I quickly found TekPub, an e-learning site that
was, at the time, owned and operated by Rob Conery. Through TekPub I began learning the
SOLID principles and TDD. After banging my head against the wall for close to six months, I
started to grasp what TDD was and how I could use those principles. Coupled with the SOLID
principles, TDD helped me to write easy to understand code that was flexible enough to stand up
to any requirements the business could throw at me. I eventually ended up at the same company
where John was employed and worked with him and, as he said, the rest is history.

The SOLID principles, which will be explained in detail later, are guiding
principles that help produce clean, maintainable, and flexible code. They help
reduce rigidity, fragility, and complexity. Generally thought of as object-oriented
principles, I have found them to be applicable in all coding paradigms.

www.EBooksWorld.ir

So, what is TDD?

Searching online, you will certainly find that TDD is an acronym for Test-Driven Development.
In fact, the title of this book will tell you that. We, however, use a slightly more meaningful
definition. So, what is TDD? In the simplest terms, TDD is an approach to software
development that is intended to reduce errors and enable flexibility within the application. If
done correctly, TDD is a building block for rapid, accurate, and fearless application
development.

Test-Driven Development is a means of letting your tests drive the design of the system. What
does that mean, exactly? It means that you mustn't start with a solution in mind, you must let
your tests drive the code being written. This helps minimize needless complexity and avoid
over-architected solutions. The rules of Test-Driven Development

Staunch proponents of TDD dictate that you may not write a single line of production code
without writing a failing unit test, and failing to compile is a failure. This means that you write a
simple test, watch it fail, then write some code to make it pass. The system slowly evolves as the
tests and the production application grow in functionality.

8 TDD is not about testing, it's about design.

Many would argue that TDD is about testing, and by extension, about test coverage of an
application. While these are great side-effects of TDD, they are not the driving force behind the
practice.

Additionally, if code coverage and metrics become the goal, then there is a risk that developers
will introduce meaningless tests just to inflate the numbers. Perhaps it is less a risk and more a
guarantee that this will happen. Let delivered functionality and happy customers be the metrics
with which you measure success.

TDD is about design. Through TDD, an application will grow in functionality without
introducing needless complexity. It's incredibly difficult to introduce complexity if you write
small tests and only enough production code to make the test pass. Refactoring, modifying the
structure of the code without adding or changing behavior, should not introduce complexity,
either.

www.EBooksWorld.ir

An approach to TDD

TDD is also referred to as Test First Development. In both names, the key aspect is that the test
must be written before the application code. Robert C. Martin, affectionately called "Uncle Bob"
by the developer community, has created The Three Laws of TDD. They are as follows:

1. You are not allowed to write any production code unless it is to make a failing unit test
pass

2. You are not allowed to write any more of a unit test than is sufficient to fail, and
compilation failures are failures

3. You are not allowed to write any more production code than is sufficient to pass the one
failing unit test

You can learn more about these laws at http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

By following these rules, you will ensure that you have a very tight feedback loop between your
test code and your production code. One of the main components of Agile software development
is working to reduce the feedback cycle. A small feedback cycle allows the project to make a
course correction at the first sign of trouble. The same applies to the testing feedback cycle. The
smaller you can make your tests, the better the end result will be.

and Massimo Fascinari (https://www.packtpub.com/application-development/getting-started

For a video on Agile, check out Getting Started with Agile by Martin Esposito
0 -agile-video).

www.EBooksWorld.ir

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
https://www.packtpub.com/application-development/getting-started-agile-video

An alternative approach

The original approach to TDD has caused some confusion over the years. The problem is that
the principles and approaches just weren't structured enough. In 2006, Dan North wrote an
article in Better Software magazine (https://www.stickyminds.com/better-software-magazine/behavior-modi
fication). The purpose of the article was to clear up some of this confusion and help to reduce the
pitfalls that developers fell into while learning the TDD process. This new approach to TDD is
called Behavior Driven Development (BDD). BDD provides a structure for testing, and a
means of communicating between business requirements and unit tests, that is almost seamless.

www.EBooksWorld.ir

https://www.stickyminds.com/better-software-magazine/behavior-modification

The process

It's difficult to start any journey without a goal in mind. There are a few tips and tricks that can
be used to help get you started in TDD. The first is red, green, refactor.

www.EBooksWorld.ir

Red, green, and refactor

We already discussed writing a failing test before writing production code. The goal is to build
the system slowly through a series of tiny improvements. This is often referred to as red, green,
refactor. We write a small test (red), then we make it pass by writing some production code
(green), then we refactor our code (refactor) before we start the process again.

Many TDD practitioners advocate an It Exists test first. This will help determine that your
environment is set up properly and you won't receive false positives. If you write an It Exists test
and don't receive a failure right off the bat, you know something is wrong. Once you receive
your first failure, you're safe to create the class, method, or function under test. This will also
ensure that you don't dive in too deeply right off the bat with lines and lines of code before
you're sure your system is working properly.

Once you have your first failure and the first working example, it's time to grow the application,
slowly. Choose the next most interesting step and write a failing test to cover this step.

At each iteration, you should pause and evaluate whether there is any cleanup that can happen.
Can you simplify a code block? Perhaps a more descriptive variable name is in order? Can any
sins committed in the code be corrected, safely, at this time? It's important that you evaluate
both the production code and the test suite. Both should be clean, accurate, and maintainable.
After all, if it's such a mess that no one would be able to make head or tail of it, what good is the
code?

www.EBooksWorld.ir

Coder's block

TDD will also help you avoid what writers often call writer's block and what we're calling
coder's block. Coder's block happens when you sit down at the keyboard in an attempt to solve a
problem but don't know where to begin. We begin at the beginning. Write the easiest, simplest
test you can imagine. Write It EXists.

www.EBooksWorld.ir

Why should we care?

We're professionals. We want to do a good job. We feel bad if someone finds fault with our
code. If QA finds a bug, it makes us sad. If a user of our system encounters an error, we may
cry. We should strive to deliver quality, error-free code and a fully functional, feature-rich
application.

We're also lazy, but it's the good kind of lazy. We don't want to have to run the entire application
just to validate that a simple function returns the proper value.

www.EBooksWorld.ir

Arguments against TDD

There are arguments against TDD, some valid and some not. It's quite possible that you've heard
some of them before, and likely that you've repeated some of these yourself.

www.EBooksWorld.ir

Testing takes time

Of course, testing takes time. Writing unit tests takes time. Adhering to the red, green, refactor
cycle of TDD does take time. But, how else do you check your work if not through tests?

Do you validate that the code you wrote works? How do you do this without tests? Do you
manually run the application? How long does that take? Are there conditional scenarios that you
need to account for within the application? Do you have to set up those scenarios while
manually testing the application? Do you skip some and just trust that they work?

What about regression testing? What if you make a change a day, a week, or a month later? Do
you have to manually regression-test the entire application? What if someone else makes a
change? Do you trust that they were also as thorough in their testing, as I’m sure you are?

How much time would you save if your code were covered by a test suite that you could run at
the click of a button?

www.EBooksWorld.ir

Testing Is expensive

By writing tests, you're effectively doubling the amount of code you're writing, right? Well, yes
and no. Okay, in an extreme case, you might approach double the code. Again, in an extreme
case.

9 Don't make tests a line item.

In some instances, consulting companies have written unit tests into a contract with a line item
and dollar amount attached. Inevitably, this allows the customer the chance to argue to have this
line item removed, thus saving them money. This is absolutely the wrong approach. Testing will
be done, period, whether manually by the developer running the application to validate her
work, by a QA tester, or by an automated suite of tests. Testing is not a line item that can be
negotiated or removed (yikes!).

You would never buy an automobile that didn’t pass quality control. Light bulbs must pass
inspection. A client, customer, or company will never, ever, save money by foregoing testing.
The question becomes, do you write the tests early, while the code is being authored, or
manually, at a later date?

www.EBooksWorld.ir

Testing is difficult

Testing can be difficult. This is especially true with an application that was not written with
testability in mind. If you have static methods and implementations using concrete references
scattered throughout your code, you will have difficulty adding tests at a later date.

www.EBooksWorld.ir

We don't know how

I don't know how to test is really the only acceptable answer, assuming it is quickly followed by,
but I'm willing to learn. We're developers. We're the experts in the room. We're paid to know the
answers. It's scary to admit that we don't know something. It's even scarier to start something
new. Rest assured, it will be OK. Once you get the hang of TDD, you’ll wonder how you
managed before. You'll refer to those times as the dark ages, before the discovery of the wheel.

www.EBooksWorld.ir

Arguments in favor of TDD

What we would like to focus on here are the positives, the arguments in favor of TDD.

www.EBooksWorld.ir

Reduces the effort of manual
testing

We already mentioned that we, as professionals, will not ship anything without first determining
that it works. Throwing something over the wall to QA, to our users, or to the general public and
hoping that it all works as expected just isn't how we do business. We will verify that our code
and our applications work as expected. In the beginning, while the application is small and has
little functionality, we can manually test everything we can think of. But, as the application
grows in size and complexity, it just isn't feasible for developers or anyone else to manually test
an entire application. It’s too time-consuming and costly to do this manually. We can save
ourselves time and our clients and companies money by automating our testing. We can do so
quite easily, from the beginning, through TDD.

www.EBooksWorld.ir

Reduces bug count

As our application grows, so do our tests. Or shall we say, our test suite has grown, and by
making our tests pass, our application has grown. As both have grown, we've covered the happy
path (for example: 2 + 2 = 4) as well as potential failures (for example: 2 + banana = exception).
If the method or function under test can accept an input parameter, there is a potential for failure.
You can reduce the potential for unexpected behavior, bugs, and exceptions by writing code to
guard against these scenarios. As you write tests to express potential failures, your production
code will inherently become more robust and less prone to errors. If a bug does slip by and make
it to QA, or even to a production environment, then it's easy enough to add a new test to cover
the newly discovered defect.

The added benefit of approaching bugs in this fashion is that the same bug rarely crops up again
at some later date, as the new tests guard against this. If the same bug does appear, you know
that, while the same result has happened, the bug occurred in a new and different way. With the
addition of another test to cover this new scenario, this will likely be the last time you see the
same old bug.

www.EBooksWorld.ir

Ensures some level of
correctness

With a comprehensive suite of tests, you can demonstrate some level of correctness. At some
point, someone somewhere will ask you whether you are done. How will you show that you
have added the desired functionality to an application?

www.EBooksWorld.ir

Removes the fear of refactoring

Let's face it, we've all worked on legacy applications that we were scared to touch. Imagine if
the class you were tasked with modifying were covered by a comprehensive set of unit tests.
Picture how easy it would be to make a change and know that all was right with the world

because all of the unit tests still passed.

www.EBooksWorld.ir

A better architecture

Writing unit tests tends to push your code towards a decoupled design. Tightly coupled code
quickly becomes burdensome to test, and so, to make one's life easier, a Test-Driven Developer
will begin to decouple the code. Decoupled code is easier to swap in and out, which means that,
instead of modifying a tangled knot of production code, often all that a developer needs to do to
make the necessary changes is swap out a subcomponent with a new module of code.

www.EBooksWorld.ir

Faster development

It may not feel like it at first (in fact, it definitely will not feel like it at first), but writing unit
tests is an excellent way to speed up development. Traditionally, a developer receives
requirements from the business, sits down, and begins shooting lightning from her fingertips,
allowing the code to pour out until an executable application has been written. Before TDD, a
developer would write code for a few minutes and then launch the application so that she could
see if the code worked or not. When a mistake was found, the developer would fix it and launch
the application once again to check whether the fix worked. Often, a developer would find that
her fix had broken something else and would then have to chase down what she had broken and
write another fix. The process described is likely one that you and every other developer in the
world are familiar with. Imagine how much time you have lost fixing bugs that you found while
doing developer testing. This does not even include the bugs found by QA or in production by
the customer.

Now, let's picture another scenario. After learning TDD, when we receive requirements from the
business, we quickly convert those requirements directly into tests. As each test passes we know
that, as per the requirements, our code does exactly what has been asked of it. We might
discover some edge cases along the way and create tests to ensure the code has the correct
behavior for each one. It would be rare to discover that a test is failing after having made it pass.
But, when we do cause a test to fail, we can quickly fix it by using the undo command in our
editor. This allows us to hardly even run the application until we are ready to submit our
changes to QA and the business. Still, we try to verify that the application behaves as required
before submitting, but now we don't do this manually, every few minutes. Instead, let your unit
tests verify your code each time you save a file.

www.EBooksWorld.ir

Different types of test

Over the course of this book, we will be leaning towards a particular style of testing, but it is
important to understand the terminology that others will use so that you can relate when they
speak about a certain type of test.

www.EBooksWorld.ir

Unit tests

Let's jump right in with the most misused and least understood test type. In Kent Beck's

book, Test-Driven Development by Example, he defines a unit test as simply a test that runs in
isolation from the other tests. All that means is that for a test to be a unit test, all that has

to happen is that the test must not be affected by the side-effects of the other tests. Some
common misconceptions are that a unit test must not hit the database, or that it must not use
code outside the method or function being tested. These simply aren't true. We tend to draw the
line in our testing at third-party interactions. Any time that your tests will be accessing code that
is outside the application you are writing, you should abstract that interaction. We do this for
maximum flexibility in the design of the test, not because it wouldn't be a unit test. It is the
opinion of some that unit tests are the only tests that should ever be written. This is based on the
original definition, and not on the common usage of the term.

www.EBooksWorld.ir

Acceptance tests

Tests that are directly affected by business requirements, such as those suggested in BDD, are
generally referred to as acceptance tests. These tests are at the outermost limit of the application
and exercise a large swathe of your code. To reduce the coupling of tests and production code,
you could write this style of test almost exclusively. Our opinion is, if a result cannot be
observed outside the application, then it is not valuable as a test.

www.EBooksWorld.ir

Integration tests

Integration tests are those that integrate with an external system. For instance, a test that
interacts with a database would be considered an integration test. The external system doesn't
have to be a third-party product; however, sometimes, the external system is just an imported
library that was developed independently from the application you are working on but is still
considered in-house software. Another example that most don't consider is interactions with the
system or language framework. You could consider any test that uses the functions of

C#'s pateTime Object to be an integration test.

www.EBooksWorld.ir

End to end tests

These tests validate the entire configuration and usage of your application. Starting from the
user interface, an end to end test will programmatically click a button or fill out a form. The UI
will call into the business logic of the application, executing all the way down to the data source
for the application. These tests serve the purpose of ensuring that all external systems are
configured and operating correctly.

www.EBooksWorld.ir

Quantity of each test type

Many developers ask the question: How many of each type of test should be used? Every test
should be a unit test, as per Kent Beck's definition. We will cover variations on testing later that
will have some impact on specific quantities of each type; but, generally, you might expect an
application to have very few end to end tests, slightly more integration tests, and to consist

mostly of acceptance tests.

www.EBooksWorld.ir

Parts of a unit test

The simplest way to get started and ensure that you have human-readable code is to structure
your tests using Arrange, Act, and Assert.

www.EBooksWorld.ir

Arrange

Also known as the context of a unit test, Arrange includes anything that exists as a prerequisite
of the test. This includes everything from parameter values, stored in variables to improve
readability, all the way to configuring values in a mock database to be injected into your
application when the test is run.

For more information on Mocking, see Chapter 3, Setting Up the JavaScript
0 Environment, the Abstract Third Party Software and Test Double Types sections.

www.EBooksWorld.ir

Act

An action, as part of a unit test, is simply the piece of production code that is being tested.
Usually, this is a single method or function in your code. Each test should have only a single
action. Having more than one action will lead to messier tests and less certainty about where the
code should change to make the test pass.

www.EBooksWorld.ir

Assert

The result, or assertion (the expected result), is exactly what it sounds like. If you expect that the
method being tested will return a 3, then you write an assertion that validates that expectation.
The Single Assert Rule states that there should be only one assertion made per test. This does
not mean that you can only assert once; instead, it means that your assertions should only
confirm one logical expectation. As a quick example, you might have a method that returns a list
of items after applying a filter. After setting up the test context, calling the method will result in
a list of only one item, and that item will match the filter that we have defined. In this case, you
will have a programmatic assert for the count of items in the list and one programmatic assert
for the filter criterion we are testing.

www.EBooksWorld.ir

Requirements

While this book is not about business analysis or requirement generation, requirements will have
a huge impact on your ability to effectively test-drive an application. We will be providing
requirements for this book in a format that lends itself very well to high-quality tests. We will
also cover some scenarios where the requirements are less than optimal, but for most of this
book the requirements have been labored over to ensure a high-quality definition of the systems
we are testing.

www.EBooksWorld.ir

Why are they important?

We firmly believe that quality requirements are essential to a well-developed solution. The
requirements inform the tests and the tests shape the code. This axiom means that with poor
requirements, the application will result in a lower quality architecture and overall design. With
haphazard requirements, the resulting tests and application will be chaotic and poorly factored.
On the bright side, even poorly thought out or written requirements aren't the death knoll for
your code. It is our responsibility, as professional software developers, to correct bad
requirements. It is our task to ask questions that will lead to better requirements.

www.EBooksWorld.ir

User stories

User stories are commonly used in Agile software development for requirement definitions. The
format for a user story is fairly simple and consists of three parts: Role, Request, and reason.

As a <Role>
I want <Request>
So that <Reason>

www.EBooksWorld.ir

Role

The role of the user story can provide a lot of information. When specifying the role, we have
the ability to imply the capabilities of the user. Can the user access certain functionalities, or are
they physically impaired in such a way that requires an alternate form of interaction with the
system? We can also communicate the user's mindset. Having a new user could have an impact
on the design of the user interface, in contrast to what an experienced user might expect. The
role can be a generic user, a specific role, a persona, or a specific user.

Generic users are probably the most used and, at the same time, the least useful. Having a story
that provides no insight into the user limits our decision making for this story by not restricting
our context. If possible, ask your business analyst or product owner for a more specific
definition of who the requirement is for.

Defining a specific role, such as Admin, User, or Guest, can be very helpful. Specific roles
provide user capability information. With a specific role, we can determine if a user should even
be allowed into the section of the application we are defining functionality for. It is possible that
a user story will cause the modification of a user's rights within the system, simply because we
specified a role instead of a generic user.

Using a persona is the most telling of the wide-reaching role types. A persona is a full definition
of an imaginary user. It includes a name, any important physical attributes, preferences,
familiarity with the subject of the application, familiarity with computers, and anything else that
might have an impact on the imaginary user's interactions with the software. By having all

this information, we can start to roleplay the user's actions within the system. We can start to
make assumptions or decisions about how that user would approach or feel about a suggested
feature and we can design the user interface with that user in mind.

www.EBooksWorld.ir

Request

The request portion of the user story is fairly simple. We should have a single feature or a small
addition to functionality that is being requested. Generally, the request is too large if it includes
any joining words, such as and or or.

www.EBooksWorld.ir

Reason

The reason is where the business need is stated. This is the opportunity to explain how the
feature will add value to the company. By connecting the reason to the role, we can enhance the
impact of the feature's usefulness.

A complete user story might look like the following:

As a Conference Speaker
I want to search for nearby conferences by open submission date
So that I may plan the submission of my talks

www.EBooksWorld.ir

Gherkin

Gherkin is a style of requirements definitions that is often used for acceptance criteria. We can
turn these requirements directly into code, and QA can turn them directly into test cases. The
Gherkin format is generally associated with BDD, and it is used in Dan North's original article
on the subject.

The Gherkin format is just as simple as the user story format. It consists of three parts: iven,
When, and Then.

Given <Context>
And Given <More Context>
When <Action>
Then <Result>
And Then <More Results>

www.EBooksWorld.ir

Givens

Because the Gherkin format is fairly simple, givens are broken out to one per

contextual criterion. As part of specifying the context, we want to see any and all preconditions
of this scenario. Is the user logged in? Does the user have any special rights? Does this scenario
require any settings to be put into force before execution? Has the user provided any input on
this scenario? One more thing to consider is that there should only be a small number of givens.

The more givens that are present in a scenario, the more likely it is that the scenario is too big or
that the givens can somehow be logically grouped to reduce the count.

9 When we start writing our tests, a Given is analogous to the Arrange section of a
test.

www.EBooksWorld.ir

When

The when is the action taken by the user. There should be one action and only one action. This
action will depend on the context defined by the Given and output the result expected by the
Then. In our applications, this is equivalent to a function or method call.

8 When we start writing our tests, a When is analogous to the Act section of a test.

www.EBooksWorld.ir

Then

Thens equate to the output of the action. Thens describe what can be verified and tested from the
output of a method or function, not only by developers but also by QA. Just like with

the Givens, we want our Thens to be singular in their expectation. Also like Givens, if we find
too many Thens, it is either a sign that this scenario is getting too big, or that we are over-
specifying our expectations.

When we start writing our tests, a Then is analogous to the Assert section of a
test.

Complete acceptance criteria based on the user story presented earlier might look like the
following:

Given I am a conference speaker

And Given a search radius of 25 miles

And Given an open submission start date

And Given an open submission end date

When I search for conferences

Then I receive only conferences within 25 miles of my location

And Then I receive only conferences that are open for submission within the specified date re

Just like in life, not everything in this book is going to be perfect. Do you see anything wrong
with the preceding acceptance criteria? Go on and take a few minutes to examine it; we'll wait.

If you've given up, we'll tell you. The above acceptance criteria are just too long. There are too
many Givens and too many Thens. How did this happen? How could we have created such a
mistake? When we wrote the user story, we accidentally included too much information for the
reason that we specified. If you go back and look at the user story, you will see that we

threw nearby in the request. Adding nearby seemed harmless; it even seemed more correct. I, as
the user, wasn't so interested in traveling too far for my speaking engagements.

When you start to see user stories or acceptance criteria getting out of hand like this, it is your
responsibility to speak with the business analyst or product owner and work with them to reduce
the scope of the requirements. In this case, we can extract two user stories and several
acceptance criteria.

Here is a full example of the requirements we have been examining:

As a conference speaker

I want to search for nearby conferences

So that I may plan the submission of my talks

Given I am a conference speaker

And Given search radius of five miles

When I search for conferences

Then I receive only conferences within five miles of my location
Given I am a conference speaker

And Given search radius of 10 miles

When I search for conferences

Then I receive only conferences within 10 miles of my location

www.EBooksWorld.ir

Given I am a conference speaker

And Given search radius of 25 miles

When I search for conferences

Then I receive only conferences within 25 miles of my location

As a conference speaker

I want to search for conferences by open submission date

So that I may plan the submission of my talks

Given I am a conference speaker

And Given open submission start and end dates

When I search for conferences

Then I receive only conferences that are open for submission within the specified date range
Given I am a conference speaker

And Given an open submission start date

And Given an empty open submission end date

When I search for conferences

Then an INVALID_DATE_RANGE error occurs for open submission date
Given I am a conference speaker

And Given an empty open submission start date

And Given an open submission end date

When I search for conferences

Then an INVALID_DATE_RANGE error occurs for open submission date

One thing that we have not discussed is the approach to the content of the user stories and
acceptance criteria. It is our belief that requirements should be as agnostic about the user
interface and data storage mechanism as possible. For that reason, in the requirement examples,
you'll notice that there is no reference to any kind of buttons, tables, modals/popups, clicking,

or typing. For all we know, this application is running in a Virtual Reality Helmet with a Natural
User Interface. Then again, it could be running as a RESTful web API, or maybe a phone
application. The requirements should specify the system interactions, not the deployment
environment.

In software development, it is everyone's responsibility to ensure high-quality requirements. If
you find the requirements you have received to be too large, vague, user interface-dependent, or
just unhelpful, it is your responsibility to work with your business analyst or product owner to
make the requirements better and ready for development and QA.

www.EBooksWorld.ir

Our first tests in C#

Have you ever created a new MVC project in Visual Studio? Have you noticed the checkbox
towards the bottom of the dialog box? Have you ever selected, Create Unit Test Project? The
tests created with this Unit Test Project are largely of little use. They do little more than validate
that the default MVC controllers return the proper type. This is perhaps one step beyond,
1texists. Let's look at the first set of tests created for us:

using System.Web.Mvc;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using SampleApplication.Controllers;

namespace SampleApplication.Tests.Controllers

[TestClass]
public class HomeControllerTest
{
[TestMethod]
public void Index()
{
// Arrange
HomeController controller = new HomeController();

// Act
ViewResult result = controller.Index() as ViewResult;

// Assert
Assert.IsNotNull(result);

}

[TestMethod]
public void About()
{
// Arrange
HomeController controller = new HomeController();

// Act
ViewResult result = controller.About() as ViewResult;

// Assert
Assert.AreEqual("Your application..", result.ViewBag.Message);

}

[TestMethod]
public void Contact()
{
// Arrange
HomeController controller = new HomeController();

// Act
ViewResult result = controller.Contact() as ViewResult;

// Assert
Assert.IsNotNull(result);

Here, we can see the basics of a test class, and the test cases contained within. Out of the box,
Visual Studio ships with MSTest, which is what we can see here. The test class must be
decorated with the [Testclass] attribute. Individual tests must likewise also be decorated with the

www.EBooksWorld.ir

[TestMethod] attribute. This allows the test runner to determine which tests to execute. We'll
cover these attributes and more in future chapters. Other testing frameworks use similar
approaches that we'll discuss later, as well.

For now, we can see that the Homecontroller is being tested. Each of the public methods has a
single test, for which you may want to create additional tests and/or extract tests to separate files
in the future. Later we'll be covering options and best practices to help you arrange your files in
a much more manageable fashion. All of this should be part of your refactor step in your red,
green, refactor cycle.

www.EBooksWorld.ir

Growing the application with
tests

Perhaps you want to accept a parameter for one of your endpoints. Maybe you will take a
visitor's name to display a friendly greeting. Let's take a look at how we might make that

happen:

[TestMethod]
public void ItTakesOptionalName()
{
// Arrange
HomeController controller = new HomeController();

// Act
ViewResult result = controller.About("") as ViewResult;

// Assert
Assert.AreEqual("Your application description page.", result.ViewBag.Message);

We start by creating a test to allow for the about method to accept an optional string parameter.
We're starting with the idea that the parameter is optional since we don't want to break any
existing tests. Let's see the modified method:

public ActionResult About(string name = default(string))
{

ViewBag.Message = "Your application description page.";
return View();

}

Now, let's use the name parameter and just append it to our viewBag.Message. Wait, not the
controller. We need a new test first:

[TestMethod]
public void ItReturnsNameInMessage()
{
// Arrange
HomeController controller = new HomeController();

// Act
ViewResult result = controller.About("Fred") as ViewResult;

// Assert
Assert.AreEqual("Your application description page.Fred", result.ViewBag.Message);

And now we'll make this test pass:

public ActionResult About(string name = default(string))
{

ViewBag.Message = $"Your application description page.{name}";
return View();

}

www.EBooksWorld.ir

Our first tests in JavaScript

To get the ball rolling in JavaScript, we are going to write a simple calculator class. Our
calculator only has the requirement to add or subtract a single set of numbers. Much of the code
you write in TDD will start very simply, just like this example:

import { expect } from 'chai'

class SimpleCalc {
add(a, b) {
return a + b;

}

subtract(a, b) {
return a - b;
}
}

describe('Simple Calculator', () => {
"use strict";

it('exists', () => {
// arrange
// act
// assert
expect(SimpleCalc).to.exist;

i

describe('add function', () => {
it('exists', () => {
// arrange
let calc;

// act
calc = new SimpleCalc();

// assert
expect(calc.add).to.exist;

i3k

it('adds two numbers', () => {
// arrange
let calc = new SimpleCalc();

// act

let result = calc.add(1, 2);

// assert

expect(result).to.equal(3);
1),

i3

describe('subtract function', () => {
it('exists', () => {
// arrange
let calc;

// act
calc = new SimpleCalc();

// assert
expect(calc.subtract).to.exist;

1

www.EBooksWorld.ir

it('subtracts two numbers', () => {
// arrange
let calc = new SimpleCalc();

// act
let result = calc.subtract(3, 2);
// assert
expect(result).to.equal(l);

1)

If the preceding code doesn't make sense right now, don't worry; this is only intended to be a
quick example of some working test code. The testing framework used here is Mocha, and the
assertion library used is chai. In the JavaScript community, most testing frameworks are built
with BDD in mind. Each described in the code sample above represents a scenario or a higher-
level requirements abstraction; whereas, each it represents a specific test. Within the tests, the
only required element is the expect, without which the test will not deliver a valuable result.

Continuing this example, say that we receive a requirement that the add and subtract methods
must be allowed to chain. How would we tackle that requirement? There are many ways, but in
this case, I think I would like to do a quick redesign and then add some new tests. First, we will
do the redesign, again driven by tests.

By placing only on a describe Or a test, we can isolate that describe/test. In this case, we want to
isolate our add tests and begin making our change here:

it.only('adds two numbers', () => {
// arrange
let calc = new SimpleCalc(1);

// act
let result = calc.add(2).result;

// assert
expect(result).to.equal(3);

1)

Previously, we have changed the test to use a constructor that takes a number. We have also
reduced the number of parameters of the add function to a single parameter. Lastly, we have
added a result value that must be used to evaluate the result of adding.

The test will fail because it does not use the same interface as the class, so now we must make a
change to the class:

class SimpleCalc {
constructor(value) {
this._startingPoint = value || O;

}

add(value) {
return new SimpleCalc(this._startingPoint + value);

}

get result() {
return this._startingPoint;

}

}

This change should cause our test to pass. Now, it's time to make a similar change for the

www.EBooksWorld.ir

subtract method. First, remove the on1y that was placed in the previous example:

it('subtracts two numbers', () => {
// arrange
let calc = new SimpleCalc(3);

// act
let result = calc.subtract(2).result;

// assert
expect(result).to.equal(1);
1),

Now for the appropriate change in the class:

subtract(value) {
return new SimpleCalc(this._startingPoint - value);
}

Out tests now pass again. The next thing we should do is create a test that verifies everything
works together. We will leave this test up to you as an exercise, should you want to attempt it.

www.EBooksWorld.ir

Why does it matter?

So, why does all this matter? Why write more code than we have to? Because it's worth it. And
to be honest, most of the time it isn't more code. As you take the time to grow your application
with tests, simple solutions are produced. Simple solutions are almost always less code than the
slick solution you might have come up with otherwise. And inevitably, slick solutions are error-
prone, difficult to maintain, and often just plain wrong.

www.EBooksWorld.ir

Summary

If you didn't before, you should now have a good idea of what TDD is and why it is important.
You have been exposed to unit tests in C# and JavaScript and how writing tests first can help

grow an application.

As we continue, we'll learn more about TDD. We'll explore what it means to write testable code.

In Chapter 2, Setting Up the .NET Test Environment, we'll set up your development environment
and explore additional aspects of a unit test.

www.EBooksWorld.ir

Setting Up the .NET Test
Environment

In this chapter, we'll explore setting up your development environment. We'll be covering both
C# and .NET. In the following chapter, we will focus on setting up a JavaScript and React
environment. We'll delve into more examples, starting with the classic code kata entitled
FizzBuzz, and then into more real-world samples from the Speaker Meet site.

In this chapter, you will gain an understanding of:
¢ Installing your IDE

e How to set up your testing framework
e Writing your first tests in C#

www.EBooksWorld.ir

Installing the .NET Core SDK

Before you get started with the development environments, you will want to install the .NET
Core SDK. You'll need to navigate to the .NET Core download page on the Microsoft website (h
ttps://www.microsoft.com/net/download/core). Select the proper installer for your system. For Windows
machines, the .exe download is recommended.

Follow the onscreen instructions for the install wizard to install the .NET Core SDK.

www.EBooksWorld.ir

https://www.microsoft.com/net/download/core

Getting set up with VS Code

One benefit of choosing VS Code for your development is that it is an excellent IDE for both
.NET and JavaScript. To get started using VS Code, you must first download the IDE.

www.EBooksWorld.ir

Downloading the IDE

Visit the VS Code website (https://code.visualstudio.com/) and choose the proper version for your
operating system:

Dq Visual Studio Code ; Updates Blog : ns Search Docs ¢ Download

b www.ts - node-express-ts - Visual Studio Code

File Edit View Goto Help

Code editing.
Redefined.

Download for Windows 55

©master 011131 QOAD Ln9,Col21 Spaces? UTF-8 IF TypeScipe @

www.EBooksWorld.ir

https://code.visualstudio.com/

Installing the VS Code

Follow the instructions in the wizard to install the VS Code:

4 Setup - Visual Studio Code —. X

Welcome to the Visual Studio
Code Setup Wizard

This will install Microsoft Visual Studio Code on your computer.

1t is recommended that you close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Be sure to read and accept the License Agreement:

4 Setup - Visual Studio Code — X

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

MICROSOFT SOFTWARE LICENSE TERMS
MICROSOFT VISUAL STUDIO CODE

These license terms are an agreement between Microsoft Corporation (or based on
where you live, one of its affiliates) and you. They apply to the software named
above. The terms also apply to any Microsoft services or updates for the software,
except to the extent those have different terms.

IF YOU COMPLY WITH THESE LICENSE TERMS, YOU HAVE THE RIGHTS BELOW.

1. INSTALLATION AND USE RIGHTS. v

@I accept the agreement
OI do not accept the agreement

< Back Cancel

Choose a location on your hard drive to install VS Code. The default path is usually acceptable:

www.EBooksWorld.ir

g Setup - Visual Studio Code — X

Select Destination Location
Where should Visual Studio Code be installed?

Setup will install Visual Studio Code into the following folder.

To continue, click Next. If you would like to select a different folder, click Browse.

‘C:\Program Files (x86)\Microsoft VS Code| Browse...

At least 191.3 MB of free disk space is required.

< Back Cancel

Choose to create a Start menu folder for the application, select a location, or choose to not create
a Start menu folder:

4 Setup - Visual Studio Code — X

Select Start Menu Folder
Where should Setup place the program's shortcuts?

[‘ Setup will create the program's shortcuts in the following Start Menu folder.

To continue, dick Next. If you would like to select a different folder, click Browse.

‘Visual Studio Code| Browse...

[]Don't create a Start Menu folder

< Back Cancel

Select additional tasks. The default should be fine for our purposes, as shown in the following
screenshot:

4 Setup - Visual Studio Code = X

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Visual Studio
Code, then dick Next.

Additional icons:

[]Create a desktop icon

Other:

[] Add "Open with Code" action to Windows Explorer file context menu

[] Add "Open with Code" action to Windows Explorer directory context menu
[Register Code as an editor for supported file types

Add to PATH (available after restart)

< Back Cancel

Review your installation settings and click on Install:

www.EBooksWorld.ir

b4 Setup - Visual Studio Code = X
Ready to Install
Setup is now ready to begin installing Visual Studio Code on your computer.

Click Install to continue with the installation, or dlick Back if you want to review or
change any settings.

Destination location:
C:\Program Files (x86)\Microsoft VS Code

Start Menu folder:
Visual Studio Code

Additional tasks:
Additional icons:
Create a desktop icon
Other:
Add to PATH (available after restart)

< Back Install . Cancel

Once the install is finished, you're OK to launch the application:

24 Setup - Visual Studio Code —

Completing the Visual Studio
Code Setup Wizard

Setup has finished installing Visual Studio Code on your
computer. The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

[v|iLaunch Visual Studio Code:

www.EBooksWorld.ir

Adding extensions

VS Code is a fairly lightweight and bare-bones IDE. You'll need to install C# to get started.
When you launched VS Code for the first time, your browser should have opened to the Getting
Started page on the VS Code website. If it didn't, go there now (https://code.visualstudio.com/docs).

There are a variety of useful extensions that you can install from the marketplace. For now, all
you will need is C#. At the time of writing, C# was listed near the top of the Top Extensions list.
Click on the C# tile (or find it by searching in the marketplace) to learn more about this
extension.

You should see that the installation instructions direct you to launch VS Code Quick Open (Ctrl-
P) and paste the following command:

| ext install csharp

From within VS Code, paste the command into the Quick Open section and press Enter. Find
the C# version powered by OmniSharp and choose Install. Once the C# extension is installed,
you will need to reload VS Code to activate the C# extension (choose reload).

www.EBooksWorld.ir

https://code.visualstudio.com/docs

Creating a project in VS Code

Now that your VS Code IDE is properly installed with the C# extension enabled, you are ready
to create your first project.

With VS Code open, choose Open Folder from the File menu. Choose a location that is easily
accessible. Many developers will create a pevelopment folder on the root of their drive. Whatever
convention you're used to will be fine. You now need to create an MSTest project.

Create a new folder named samp1e. Open the Integrated Terminal window from the View menu
or by using the shortcut keys (Ctrl +). From within the Terminal window, type dotnet new
mstest and hit Enter. Now, you need to restore your packages by typing dotnet restore into the
Terminal window and hitting Enter.

You should now see a file named unitTest1.cs within the samp1e folder. If you open the file, it
should look something like this:

using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace Sample

[TestClass]

public class UnitTest1l

{
[TestMethod]
public void TestMethodl()
{
}

}

}

Change the first test method to an 1texists test. Do this by changing the name to 1texists and
trying to declare an instance to a class that does not yet exist:

|var sampleClass = new SampleClass();

You should see that your sample application will not compile and you will have received the
error message, The type or namespace 'SampleClass' could not be found (are you missing a using

directive or an assembly reference?).

Now that you have a test failure (remember, failing to compile counts as a failing test in this
instance), it's safe to move on to the Green step in our red, green, refactor cycle. Make the test
pass by creating a definition for samp1eciass. Feel free to create the class in the same file as your
unit tests, just to get you started. This can always be extracted and moved to a more appropriate
location later:

public class SampleClass

{
}

Now that you've made the change, run the test command dotnet test and see the results:

www.EBooksWorld.ir

|Tota1 tests: 1. Passed: 1. Failed: 0. Skipped: 0.

Continue exploring VS Code and growing your new class through tests. The C# and .NET
examples throughout the rest of the book will be using Visual Studio Community. If you prefer,
you may choose to stick with VS Code.

www.EBooksWorld.ir

Setting up Visual Studio
Community

Most C# and .NET developers will be familiar with Visual Studio. There are a variety of
versions available, ranging from free to many thousands of dollars annually. As of this writing,
the Enterprise version was the most fully featured version, offering some of the best features for
tests and testing. For our purposes, we'll be using Visual Studio Community. This is a free, fully
featured development environment that should suit us well.

The Community edition does have some very important caveats. There are limitations to the
software license and the use of the Community edition, based on the terms of the license
agreement. Please make sure to read the terms before deciding to use Visual Studio Community
edition to develop software that you intend to sell. The current terms can be found at https:/www.

visualstudio.com/license-terms/mlt553321/.

www.EBooksWorld.ir

https://www.visualstudio.com/license-terms/mlt553321/

Downloading Visual Studio
Community

To get started, download Visual Studio Community (https://www.visualstudio.com/downloads/). Feel
free to explore and compare the different versions of Visual Studio while you're there:

=. Microsoft Technologies Documentation « Resources S Signin

Visual Studio Products v Downloads Marketplace Support v Subscriber Access Free Visual Studio >

Visual Studio Downloads

Visual Studio Visual Studio Visual Studio Visual Studio
Community 2017 Professional 2017 Enterprise 2017 Code

Free, fully-featured IDE for Professional developer End-to-end solution to Code editing, redefined.
students, open-source and tools, services, and meet demanding quality Free, open source, and runs
individual developers subscription benefits for and scale needs of teams of everywhere.
small teams all sizes

Free download & Free trial & Free trial & Free download &

Release Notes & Docs > Release Notes & Docs > Release Notes & Docs »

T | 1] T | acoc HE
] am -1 nacOS um (‘_\

www.EBooksWorld.ir

https://www.visualstudio.com/downloads/

Installing Visual Studio
Community

The wizard for installing Visual Studio Community is a little different from the install wizard
for VS Code. Of course, to get started, you'll need to read and agree to the license agreement.

At a minimum, you'll want to choose ASP.NET and web development and .NET Core cross-
platform development if you plan to follow along with the book. We've also chosen to include
ASP.NET MVC 4, NET Framework 4.6.2 development tools, and .NET Framework 4.7
development tools from the right pane, or from the Individual components tab. You might want
to explore other components and/or language packs, as well.

www.EBooksWorld.ir

Switching to xUnit

MSTest has long shipped with Visual Studio. There are a few other options when it comes to
testing frameworks for C# and .NET. Many of these frameworks have feature parity and differ
only slightly in their choices of attributes, assertions, and exception handling. Among the top
contenders for testing frameworks is xUnit. Many developers actually prefer this to MSTest and
would argue that it is more feature-rich and has stronger community support. Arguments aside,
we'll be using xUnit for our C# and .NET tests from here on out.

Feel free to stick with MSTest if you prefer. Just know that you'll need to account for the
semantic differences (such as TestMethod vs Fact) and slight differences in functionality.

www.EBooksWorld.ir

Code katas

What is a code kata? Code katas are nothing more than repeatable exercises. Generally, these
exercises are meant to take no more than 20 minutes to complete. Most code katas are directed
at a specific classification of a problem to solve. We'll be utilizing the classic example,
FizzBuzz, as a way to get you more comfortable with TDD using xUnit.

www.EBooksWorld.ir

FizzBuzz

The rules of FizzBuzz are quite simple. If the number provided is divisible by 3, then you must

return rizz. If the number supplied is divisible by 5, then you must return Buzz. If the number is

divisible by both 3 and 5, then you must return rizzBuzz. If it is divisible by neither 3 nor 5, then
simply return the number itself.

There are a plethora of options in which to solve the problem. It can be solved in nearly every
programming language, in a variety of different ways. What's important here is to practice the
techniques of solving the problem simply and effectively.

Let's get started.

www.EBooksWorld.ir

Creating the test project

Within Visual Studio Community, create an xUnit test project by choosing New | Project from
the File menu or by using the shortcut keys (Ctrl - Shift - N). Under .NET Core, choose xUnit
Test Project. Give your project the name codekata and click on OK. You will see a filename
unitTest1.cs. This file is fine to get you started. Let's create our first test.

www.EBooksWorld.ir

The Given3ThenFizz test

The first test method in the unitTest1.cs file is named Test1. Let's change the name of this
method to Given3ThenFrizz and write our first test:

[Fact]
public void Given3ThenFizz()

{
// Arrange

// Act
var result = FizzBuzz(3);

// Assert
Assert.Equal("Fizz", result);

}

Note that the Fact attribute and Assert.equal assertion differ only slightly from our previous
MSTest example. We're leaving the Arrange, Act, and Assert comments in place, and recommend
you do the same. These comments will help you as you get started. They'll also serve to help
describe the process to any developers that come behind you in the future.

Now, run the test to see whether it passes by selecting Run | All Tests from the Test menu, or by
using the shortcut keys (Ctrl + R, A). You should see a compilation error. Let's resolve the error
by creating a FizzBuzz method preceding our test class. Once you've created the Fizzsuzz method,
rerun your test to see it pass. Remember, based on the third law of TDD, you should only write
enough code to make it pass:

private object FizzBuzz(int value)

{
3

return "Fizz";

www.EBooksWorld.ir

The Given5ThenBuzz test

Our next requirements state that we must return suzz when 5 is supplied. Let's write that test:

[Fact]
public void Given5ThenBuzz()
{

// Arrange

// Act

var result = FizzBuzz(5);

// Assert
Assert.Equal("Buzz", result);

}

How might we make that test pass? Perhaps a simple ternary operator? Let's take a look at what
that might look like:

private object FizzBuzz(int value)

{

return value == 3 ? "Fizz" : "Buzz";

}

You might see a problem with our algorithm already. That's OK! We're not done yet. We've
only gotten as far as the tests have guided us, and so far we're passing all of our tests. Let’s
move on to the next most interesting test.

www.EBooksWorld.ir

The Givenl15ThenFizzBuzz test

You might want to write a test method entitled GivenpivisibleBy3andsThenFizzBuzz, but that may be
too large of a leap at this point. We know that the first such number divisible by 3 and 5 is 15, so

it might make more sense to start with this:

[Fact]
public void Givenl15ThenFizzBuzz()
{

// Arrange

// Act

var result = FizzBuzz(15);

// Assert
Assert.Equal("FizzBuzz", result);

}

How would you choose to make this test pass? Would you use an if/else statement? Perhaps a
switch statement? We’ll leave this one as an exercise for the reader. Feel free to make this test
pass in any way that you're comfortable with implementing. Remember to run your tests along
the way to ensure you don't introduce a breaking change. If you do experience a test failure, feel
free to ignore a test (Ignore attribute in MSTest, Skip parameter in xUnit), but only one test,
while you fix your error(s).

www.EBooksWorld.ir

The GivenlThen1 test

We've covered Fizz. We've covered Buzz. And, we've covered rFizzBuzz. Now we must account for
numbers that are divisible by neither 3 nor 5. Remember, in the event that a number is divisible
by neither 3 nor 5, we simply return the number supplied. Let's take a look at this test:

[Fact]
public void GiveniThen1()
{
// Arrange
// Act
var result = FizzBuzz(1);

// Assert
Assert.Equal(1, result);

www.EBooksWorld.ir

Theories

This is great! Things are going quite smoothly. Hopefully, you're starting to get the hang of
Test-Driven Development. Now, let's look into a slightly more advanced test method using the
Theory and InlineData attributes.

Looking back at our tests, we see that we have a test method named civen15ThenFizzBuzz. While
this is fine, it's a little too specific. Remember, our requirement was that, if the number is
divisible by 3 and 5, then we should return rizzBuzz. Let's ensure we didn't take too big a leap in
logic by writing a new test. This time, we’ll supply a number of values, expecting the same
results:

[Theory]
[InlineData(0)]
[InlineData(15)]
[InlineData(30)]
[InlineData(45)]
public void GivenDivisibleBy3And5ThenFizzBuzz(int number)
{
// Arrange
// Act
var result = FizzBuzz(number);

// Assert
Assert.Equal("FizzBuzz", result);

}

When you run the test suite, you should now see four new passed test results. If you do
experience a failure, the results pane in the Test Explorer window should provide a detailed
explanation as to which test failed.

Now, do the same thing for rFizz and Buzz by creating two more test cases using Theories and
Inlinepata. Go ahead and add GivenDivisibleBy3ThenFizz, GivenDivisibleBy5ThenBuzz, and
GivenNotDivisibleBy3or5ThenNumber. Be sure to run your test suite after adding each test and
Inlinepata Value, fixing any failures along the way.

www.EBooksWorld.ir

Solution to the FizzBuzz
Problem

What we came up with looks something like this:

private object FizzBuzz(int value)

if (value % 15 == 0)
return "FizzBuzz";

if (value % 5 == 0)
return "Buzz";

if (value % 3 == 0)
return "Fizz";

return value;

}

Don't worry if you chose to solve the problem a different way. The important thing is that you
gained knowledge and understanding during this exercise. Additionally, you now have a
comprehensive set of tests and you're comfortable refactoring and/or adding functionality.

www.EBooksWorld.ir

What is Speaker Meet?

We're using the Speaker Meet application as a case study in Test-Driven Development. Speaker
Meet is a website dedicated to connecting technology speakers, user groups, and conferences.
Anyone who has helped organize a user group or tech conference knows it’s often difficult to
find speakers. And as technology speakers, it's often difficult to coordinate speaking
engagements outside your immediate area. Speaker Meet helps bring technology speakers and
communities together.

At the time of writing, the application is still in development, but it is a terrific platform to
explore TDD concepts and principles as they relate to real-world applications. Speaker Meet
consists of a RESTful API in .NET with a Single Page Application (SPA) in JavaScript,
utilizing the React library.

www.EBooksWorld.ir

Web API project

For our first exercise, we'll be creating a new API endpoint. This new endpoint will return a list
of speakers based on a supplied search term. We'll be utilizing this endpoint in our React
examples in a later chapter.

www.EBooksWorld.ir

Listing Speakers (API)

A list of Speakers will be returned from the database by accessing the back-end API. Before
starting on writing the code, a set of requirements must first be established. It's difficult to know
where to begin if an agreed upon set of functionality hasn't been defined.

www.EBooksWorld.ir

Requirements

Below are the requirements, you might expect to receive from a business analyst or product
owner. These are often a good starting point for a broader conversation. If something is not
clear, it's best to resolve any ambiguity before you begin.

As a conference organizer
I want to search for available speakers
So that I may contact them about my conference

Given I am a conference organizer

And Given a speaker in mind

When I search for speakers by name

Then I receive speakers with a matching first name

Given I am a conference organizer

And Given a speaker in mind

When I search for speakers by name

Then I receive speakers with a matching last name

Upon speaking with our product owner, we determined that by the requirement of matching,
what was truly desired was a starts-with match. If a conference organizer were to search for the
string "Jos," the results for Josh, Joshua, Joseph, should be returned by the search routine.

www.EBooksWorld.ir

A new test file

We’ll start by creating a new test file. Let's name this file speakercontrollersearchTests.cs. Now,
create the first test, 1texists:

[Fact]
public void ItExists()

{
}

var controller = new SpeakerController();

To make this compile, you'll need to create a Web API controller called speakermeetcontroller.
Add a new ASP.NET Core Web Application project to your solution. Give your project a name
of speakermeet.Ar1 and choose the Web API template to get started. Add a reference to this
project from your test project and add the appropriate using statement.

Now, let's ensure that there is a search endpoint available. Let's create another test:

[Fact]
public void ItHasSearch()

{
// Arrange

var controller = new SpeakerController();

// Act
controller.Search("Jos");

}

Make this test pass by creating a search method that accepts a string.

Let's confirm that the search action result returns an okobjectResult:

[Fact]
public void ItReturnsOkObjectResult()
{
// Arrange
var controller = new SpeakerController();

// Act
var result = controller.Search("Jos");

// Assert
Assert.NotNull(result);
Assert.IsType<OkObjectResult>(result);

}

Note the multiple asserts. While we want to limit our tests to a single Act, sometimes it is
acceptable, even necessary, to have multiple Asserts.

Once the 1treturnsokobjectResult test passes, you should delete the 1tExists and 1tHassearch tests.
Remember, we want to finish the red, green, refactor cycle and keep our code neat and clean.
This includes the test suite, so if you have tests that are no longer valid or add no value, then you
should feel free to remove them. You don't want to have to maintain more code than is required.
This will help your test suite stay relevant and run nice and fast.

www.EBooksWorld.ir

Now, let’s test that the result is a collection of speakers:

[Fact]
public void ItReturnsCollectionOfSpeakers()
{

// Arrange

var controller = new SpeakerController();

// Act
var result = controller.Search("Jos") as OkObjectResult;

// Assert

Assert.NotNull(result);
Assert.NotNull(result.Value);
Assert.IsType<List<Speaker>>(result.Value);

We're starting to get a little redundant here. Now is a good time to refactor our tests to make
them cleaner. Let's extract the creation of the speakercontroller and initialize this value in the
constructor. Be sure to remove the creation in your tests and use this new instance:

private readonly SpeakerController _controller;

public SpeakerControllerSearchTests()
{

_controller = new SpeakerController();

}

Finally, we're ready to start testing the value of the results. Let's write a test entitled

GivenExactMatchThenOneSpeakerInCollection:

[Fact]

public void GivenExactMatchThenOneSpeakerInCollection()

{
// Arrange
// Act
var result = _controller.Search("Joshua") as OkObjectResult;
// Assert
var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(1l, speakers.Count);

}

To get this test to work, we'll need to hard-code some data. Don't worry, we're building this
application slowly. The hard-coded data will be removed at a later point:

[Fact]
public void GivenExactMatchThenOneSpeakerInCollection()
{
// Arrange
// Act
var result = _controller.Search("Joshua") as OkObjectResult;
// Assert
var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(1, speakers.Count);
Assert.Equal("Joshua", speakers[0].Name);
}

Ensure that our search string is not case-sensitive:

[Theory]

[InlineData("Joshua")]

[InlineData("joshua")]

[InlineData("JoShua")]

public void GivenCaseInsensitveMatchThenSpeakerInCollection (string searchString)

www.EBooksWorld.ir

// Arrange
// Act
var result = _controller.Search(searchString) as OkObjectResult;

// Assert

var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(1, speakers.Count);

Assert.Equal("Joshua", speakers[Q].Name);

Next, we need to test to verify that, if the string provided does not match any of our data, then an

empty collection is returned:

[Fact]
public void GivenNoMatchThenEmptyCollection()
{
// Arrange
// Act
var result = _controller.Search("Zzz") as OkObjectResult;

// Assert
var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(@, speakers.Count);

And finally, we'll test that any speaker that begins with our search string will be returned:

[Fact]
public void Given3MatchThenCollectionWith3Speakers()
{
// Arrange
// Act
var result = _controller.Search("jos") as OkObjectResult;

// Assert
var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(3, speakers.Count);

Assert.True(speakers.Any(s => s.Name == "Josh"));
Assert.True(speakers.Any(s => s.Name == "Joshua"));
Assert.True(speakers.Any(s => s.Name == "Joseph"));

Here's what the code we came up with looks like. Your implementation may vary somewhat:

using System;

using System.Collections.Generic;
using System.Linq;

using Microsoft.AspNetCore.Mvc;

namespace SpeakerMeet.Api.Controllers
{
[Route("api/[controller]")]
public class SpeakerController : Controller
{
[Route("search")]
public IActionResult Search(string searchString)

{

var hardCodedSpeakers = new List<Speaker>

{

new Speaker{Name = "Josh"},
new Speaker{Name = "Joshua"},
new Speaker{Name = "Joseph"},
new Speaker{Name = "Bill"},

i

return Ok(speakers);

www.EBooksWorld.ir

var speakers = hardCodedSpeakers.Where(x => x.Name.StartsWith(searchString, StringCompar

b
b

public class Speaker

{
public string Name { get; set; }

}
}

www.EBooksWorld.ir

Summary

You should now feel quite comfortable with your .NET development environment. The .NET
Core SDK should now be installed and your IDE configured. You've had some exposure to unit
tests and continuous test runners in Visual Studio and VS Code.

In Chapter 3, Setting Up the JavaScript Environment, we'll focus on getting our JavaScript
environment set up.

www.EBooksWorld.ir

Setting Up a JavaScript
Environment

In this chapter, we'll explore setting up your JavaScript development environment with
examples in pure JavaScript and React.

In this chapter, you will gain an understanding of:
e Installing your IDE

e How to set up your testing framework
e Writing your first tests in JavaScript

www.EBooksWorld.ir

Node.js

Node.js, commonly called Node, is practically a requirement for doing modern web application
development. In this section, we will discuss what Node is exactly, provide reasons why you
need Node, and, finally, talk about where you can get Node installation instructions.

If you are already familiar with these subjects, then feel free to jump to the next section, where
we discuss NPM in a similar fashion.

www.EBooksWorld.ir

What is Node?

Node was created in late 2009 by Ryan Dahl. Based on Chrome's V8 engine, Node provides a
JavaScript runtime built for the purpose of providing evented, non-blocking I/O (input/output)
for serving web applications.

At the time, Chrome had created the fastest JavaScript engine available. At the same time, they
had decided to open-source the code for it. For these two extremely compelling reasons, Node
decided to use the V8 engine.

Ryan Dahl was unhappy with the performance, at the time, of the very popular Apache HTTP
server. One of the problems with the way that Apache was handling concurrent connections was
that it was creating a new thread for each connection. Task creation and task switching between
these threads are both CPU-and memory-intensive. For these reasons, instead of using threads
for concurrent connections, Dahl decided to write Node with the intent of using an event loop
coupled with a callback paradigm.

www.EBooksWorld.ir

Why do we need Node?

To perform TDD in JavaScript for a modern web application, we absolutely need Node. When
writing a modern web application, you will very likely be using one of these popular
frameworks: React]JS, Angular, Ember.js, Vue.js, or Polymer. The majority of these applications
require a compilation step in Node.

Another reason for using Node is that we want to take advantage of new features in JavaScript.
Node doesn’t support these features itself, but libraries have been written that will allow you to
transpile the newer versions of JavaScript, ECMAScript 2015+, into a version of JavaScript that
is supported by your target browsers.

Lastly, for the purposes of this book, we need Node so that we can run our tests. Later, we will

discuss how we can also run our tests continuously while we are writing our code. This is known
as continuous testing and is a must-have for rapid development.

www.EBooksWorld.ir

Installing Node

There are several options for installing Node on your machine. We will cover installing
manually and installing from a package management repository.

The benefits of using a package management repository are many. The main reason that you
would want to install this way would be the benefit of version management. Node updates
versions frequently, and using a package manager can help to notify you of available updates. It
can also help install those updates in a simple and efficient manner. We will start with a manual
install, followed by installing using a Linux package manager, a Mac OSX package manager,
and finally a Windows package manager.

To install Node manually, open your favorite browser and go to http://nodejs.org. You should see
something similar to the following screenshot. Regardless of your operating system, the Node
website will have a download link for both current and Long Term Support (LTS) versions of
Node installation files. For Windows and Mac, the Node website provides installers. For Linux,
Node provides binaries and source code. Assuming you are familiar with your operating system,
the installation process is fairly straightforward and shouldn't present any issues.

n de

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'

package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for Windows (x64)

8.9.4 LTS 9.4.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APl Docs Other Downloads | Changelog | API Docs

Or have a look at the LTS schedule.

Package managers greatly simplify the installation of many applications. If you are unfamiliar
with package managers in general, they are based on the concept of having a repository of
applications and tools that are available for installation on the system the package manager is
for. Almost every system available has a package manager for it now. Linux has a different
package manager for many distributions. Mac uses a system called Homebrew, and Windows
has a package manager named Chocolatey.

www.EBooksWorld.ir

http://nodejs.org

Linux

First, we will cover using the Ubuntu package manager, called apt, as Ubuntu is one of the most
popular Linux systems. If you are using a different distribution, the process should be very
similar. The only difference is the name of your package manager. Open a terminal window and
enter the following commands to install Node for Ubuntu:

$ sudo apt-get update
$ sudo apt-get install nodejs

It's that simple; now the latest version of Node is installed and ready for you to begin using.
These same commands will update Node when a new version is available.

www.EBooksWorld.ir

Mac OSX

Mac doesn't come with a package manager preinstalled. To install Homebrew, you must open a
Terminal and execute the following command:

|ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now that you have Homebrew installed, you also have one more requirement that you must

fulfill. You must install Apple's Xcode, which can be found by searching the App Store. Just
like any other application on a Mac, once you have found it, just click the Install application
button, and Xcode will download and install:

jate * BE B % O

Featurad Top Charts Categories Purchased Updates

Xcode

APOESEEFTOSNe®ST my

Open v

i Xcode [+]
| [Essentials J
| i ;
|
1

App License Agreement
...Maore

i What's New in Version 9.2 Privacy Policy
Information

...More
ory: Developer Tools

% Simulstor Fie Edt Marcwws Detug Window Melp = TesnaM O O

Rated 4+
uIkit Compatibility
spritenit palgignp 4 1
{ ravitySisulatoryiewCentrall

Now that we have both prerequisites for Node installed on the system, installation is extremely
simple. From a Terminal window, execute the following command:

| $ brew install node

Updating Node is also just as simple. Occasionally, when you want to update, execute the
following command:

$ brew update
$ brew upgrade node

You now have the latest version of Node installed on your Mac.

www.EBooksWorld.ir

Windows

Windows also has a package manager. Just like Mac, the Windows package manager does not
come preinstalled. The package manager for Windows is named Chocolatey and can be found
at https://chocolatey.org:

Y S i e a0 e e e O

The package manager for Windows

Chocolatey - Software Management Automation

The sane way to manage software on
Windows

Trusted by Business

To install Chocolatey, open a Command Prompt (cmd.exe) as administrator and execute the
following command:

| @"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -ExecutionPolicy Byj

After the Chocolatey installation has finished, you may need to restart the command window
before you can use it. Restart the Command Prompt as an administrator, and then execute the
following commands to install Node on windows using the Chocolatey package manager:

C:\>choco install nodejs
C:\>refreshenv

Once you've executed the first command, you will be prompted to execute a script. You will
need to agree to run the script to install Node.

To upgrade Node using Chocolatey, execute the following command:

|c:\>choco upgrade nodejs
You may need to agree to run the installation script. If prompted, simply hit the Y key and press

www.EBooksWorld.ir

https://chocolatey.org

Enter. You now have the latest version of Node.

www.EBooksWorld.ir

NPM

NPM is a critical piece of the Node environment and community. Without NPM, Node would
not have taken off quite like it has. In this section, we will discuss what NPM is, what NPM
isn't, why you need NPM for doing Node development, and finally, where you can get NPM and
how to install it.

www.EBooksWorld.ir

What is NPM?

Initially released in early 2010, NPM (Node Package Manager). NPM was written by Isaac Z.
Schlueter, and is now maintained by a team of developers. Although NPM has Node in the
acronym, it can also be used to manage packages for the browser.

In the past few years, many package managers were created specifically for browser packages.
One of the most prominent is Bower. These secondary package managers were created because
NPM was perceived as a package manager best suited for, or perhaps only suited for, managing
Node packages. This belief has subsided; however, Bower’s own website now suggests that it
not be used.

www.EBooksWorld.ir

Why do we need NPM?

While you do need to install NPM, you don't necessarily have to use it. In late 2016, Facebook
released an alternative package manager named Yarn, which uses the NPM registry, so all of
your favorite packages are available.

There are likely other package management alternatives to NPM as well. These alternative
package managers are important because they drive improvements in NPM, but ultimately,
they will likely fade and NPM will continue to be the preferred package manager for Node, and
for JavaScript in general. If you do decide to use an alternative package manager such as Yarn,
you will need to install it using NPM.

www.EBooksWorld.ir

Installing NPM?

Good news; you already have NPM installed if you have gone through the process of installing
Node. You may occasionally want to upgrade NPM outside Node's release cycle. To attempt an
upgrade, simply open your operating system's preferred console or Terminal window and
execute the following command:

| >npm install -g npm

NPM is just another executable on your computer. It takes a list of arguments or parameters. In
this case, we are asking NPM to install a package. The second argument, -g, tells NPM that we
want to install the requested package globally. Lastly, the package we are asking NPM to install
is NPM.

www.EBooksWorld.ir

A quick introduction to
JavaScript IDEs

While you don't need an IDE (Integrated Development Environment) per se, you will need a
text editor. Why not have a text editor that does a little bit of the heavy lifting for you? There
are, essentially, two types of IDEs available for JavaScript development. The first kind is really
more of a text editor than anything else, whereas the second kind is a full-blown editor with
compiling and source control built in.

While you can work on JavaScript with only a simple text editor and a console/Terminal
window, we recommend using something with at least a little more power.

www.EBooksWorld.ir

Visual Studio Code

Visual Studio Code, as described in the C# section, is a lightweight editor based on the Electron
framework and developed in TypeScript, a language designed by Microsoft to extend JavaScript
with static types. TypeScript compiles to JavaScript, so ultimately Visual Studio Code is a
JavaScript application.

www.EBooksWorld.ir

Why Visual Studio Code?

For working with JavaScript, there are several reasons why you might choose Visual Studio
Code or one of the other Electron-based editors. VSCode is lightweight, has an extensive plugin
architecture, is integrated with source control, and is very easy to set up and use.

www.EBooksWorld.ir

Installing Visual Studio Code

Installing VSCode is extremely simple. If you have already followed along in the C# section,
then you likely have VSCode installed already. If not, here are some alternative ways to install it

that were not discussed there.

www.EBooksWorld.ir

Linux

To install on Linux (again, this is an example for Ubuntu), simply execute the following
commands:

sudo apt-get update
sudo apt-get install code # or code-insiders

www.EBooksWorld.ir

Mac

Unfortunately, I don't have a fancy command-line way to install VSCode on a Mac. Instead, go
to the Visual Studio Code homepage at https://code.visualstudio.com and follow the installation
instructions there.

www.EBooksWorld.ir

https://code.visualstudio.com

Windows

For Windows, just like with Node, we can install VSCode using Chocolatey. To install
using Chocolatey (https://chocolatey.org/install), execute the following command in a console
window. Remember, you may want to run the console as an administrator:

| €:\> choco install visualstudiocode

www.EBooksWorld.ir

https://chocolatey.org/install

Installing the plugins you will
need

The two plugins that we would recommend getting are npm and npm-intellisense because they
will aid in the flow and provide hints when you are not 100% sure that you are using the correct

package name.

www.EBooksWorld.ir

Configuring the testing
environment

Visual Studio Code offers built-in test running capabilities. We are not going to choose those
options for JavaScript development, however. For the purposes of test driving our application
and demonstrating our approach to testing, we think using the available Terminal inside VSCode

will be more appropriate and better suited to the flow that will be used.

www.EBooksWorld.ir

WebStorm

WebStorm is a full-blown IDE written by JetBrains in Java.

www.EBooksWorld.ir

Why WebStorm?

WebStorm basically comes with everything you need to develop a JavaScript-based application.
It also supports many of the JavaScript ecosystem alternatives to JavaScript, such as TypeScript,
Flow, and React JSX. WebStorm also integrates seamlessly with many code-quality tools such
as ESLine, TSLint, and JSHint.

The only downside to WebStorm is that it does cost money. But, when you look at it, a paid
product is actually a good thing. The company making the paid product has a good reason to
continue maintaining it. JetBrains offers the purchase of WebStorm through a single purchase or
through a subscription. We suggest the subscription, as the upfront cost to you is minimized and
JetBrains has more motivation to keep you happy this way.

www.EBooksWorld.ir

Installing WebStorm

To install WebStorm, we are going to use a newer program created by JetBrains called The
JetBrains Toolbox App. The Toolbox App is designed to track version updates and provide a
common launching point for all JetBrains products. Once installed, it becomes very easy to
install any of the JetBrains tools.

www.EBooksWorld.ir

Linux

There does not appear to be, at the time of writing, a way to install ToolBox or WebStorm

from apt-get. So, we will have to do it the hard way. Go to the ToolBox download page at https:/
www.jetbrains.com/toolbox/app/ and download the Linux tarball. Then, open a Terminal to your
download directory. Once there, execute the following commands:

mv jetbrains-toolbox-<version>.tar.gz <application directory root>/jetbrains-toolbox-<version:
cd <application directory root>

tar -xj jetbrains-toolbox-<version>.tar.gz

chmod -R 777 jetbrains-toolbox-<version>

cd jetbrains-toolbox-<version>

./jetbrains-toolbox

www.EBooksWorld.ir

https://www.jetbrains.com/toolbox/app/

Mac

On Mac, we can again use Homebrew for installation. Just execute the following command:

| brew cask install jetbrains-toolbox

www.EBooksWorld.ir

Windows

On Windows, we are able to use Chocolatey to install Toolbox. Execute the following command
and then launch the app:

| choco install jetbrainstoolbox

Our ultimate goal when installing the Toolbox was to install WebStorm. So, with the Toolbox
open, either sign in if you have purchased any JetBrains products or skip the sign in if you just
want to try them out. Next, find WebStorm in the products list and click the button to install it.
Once the install has finished, you will be able to click a Launch button that will replace the
Install button.

www.EBooksWorld.ir

Installing the plugins you will
need

We've got good news for plugins with WebStorm. WebStorm offers a great plugin community,
with every plugin you could possibly want accessible through a plugin management system built
into the application. For the purposes of this book, however, you don't actually need any. So, we
are done installing plugins! In fact, if anything, WebStorm has too much functionality built in,
and we will be ignoring or even turning off some of it so that we can work the way we want to.

www.EBooksWorld.ir

Configuring the testing
environment

Just as in Visual Studio Code, for WebStorm we are not going to cover setting up any of the
built-in test running capability. WebStorm offers a Terminal display that can be turned on and

supports having multiple contexts open at the same time.

www.EBooksWorld.ir

Create React App

Now that you have Node and NPM installed and up-to-date, turn your attention to the
application you want to test drive. Due to its constantly increasing popularity, we are choosing
to explain and demonstrate Test-Driven Development by testing a React application.

According to the React website, React is A JavaScript library for building user interfaces. We
are going to focus on using it for a front-end browser application, but it can be used to create
mobile and desktop applications as well.

React was created and is maintained by Facebook. React was created to solve issues that

Facebook had in its own user interface, and it is now taking the internet by storm. Facebook has
also created a library called Create React App to quickly get a React application going.

www.EBooksWorld.ir

What is Create React App?

Create React App is an NPM package created by Facebook for the purpose of providing a zero-
configuration way to create a react application. React requires quite a lot to get started, and it
can take days to configure a React application manually. Create React App can reduce that time
to under a minute.

www.EBooksWorld.ir

Installing the global module

Create React App has a global NPM package that must be installed before you can use the
command-line utility to actually create a React application. To install the latest version of the
Create React App global script, execute the following command in a console or Terminal

window:

|>npm install -g create-react-app

www.EBooksWorld.ir

Creating a React application

Once the global module is installed, you will be ready to start using Create React App. Creating
a React application is extremely streamlined and simple. On my system, I have a directory
\projects that I use to house all my front-end application projects. Open a console/Terminal
window to a similarly purposed directory on your machine and execute the following command
to create a new React application:

|\projects>create-react-app <projectName>

In our case, the name of our test case is Speaker Meet, so as an example, my command is
displayed as follows:

|\projects>create-react-app speakermeet -spa

SpeakerMeet, as mentioned in the C# section, has both a back-end (the RESTful Web API) and
a front-end (a React-based SPA (Single Page Application)).

www.EBooksWorld.ir

Running the Create React App
script

When the create-react-app script finishes running, a list of available commands is displayed.
You want to make sure that everything was successfully created. You can launch the application
by executing the following command:

| >npm start

If everything installed correctly, your default browser will open and a new React application will
be running.

www.EBooksWorld.ir

Mocha and Chai

Create React App supports testing right out of the box. Initially, Create React App uses a testing
library named Jest. We want to use Mocha and Chai due to their popularity in the JavaScript
community.

www.EBooksWorld.ir

Jest

Jest is a testing framework written by Facebook. Just like Create React App, Jest is designed to
be a zero-configuration tool. Jest also supports continuous testing and code coverage analysis.

Jest is designed to work within the common BDD (behavior-driven development) paradigms,
as are many other JavaScript testing frameworks. As such, the testing
functions describe and it can both be used to write your tests.

www.EBooksWorld.ir

Mocha

Mocha is another JavaScript testing framework and is the one we would like to use. As for
library interaction differences, there doesn't appear to be much different in terms of base
interactions. The differences come down to the assertion library and the mocking library.

Getting Started, is essentially a way to provide alternative implementations of

Mocking, which will be covered in detail in Chapter 4, What to Know Before
0 objects, classes, and functions, specifically to aid the testing process.

Mocha itself doesn't come with an assertion library, so one must be provided. The assertion
library is what controls test results and how to verify that your code is executing correctly. Most
developers who use Mocha rely on Chai for assertions.

As mentioned previously, another consideration is what mocking library you want to use. For
many Mocha users, that library is unquestionably Sinon.

We will explain the purpose of any and all parts of Mocha that we use in this book. If you want
to know more or want the documentation for quick reference while you are developing, you can
go to the Mocha home page at https://mochajs.org.

Mocha can be installed into a JavaScript application using the following command:

| >npm install mocha

www.EBooksWorld.ir

https://mochajs.org

Chai

Chai is a BDD assertion library. Chai uses a fluent API to allow for extremely flexible
assertions. The two most popular ways that Chai is used are through

the should and expect interfaces provided. The way that Chai works, and in fact, the way that
every testing frameworks assertion works, is by throwing an exception when the check done by
the assertion fails.

For instance, if you had a variable named foo with a value 3 and your assertion
was expect (foo).to.equal(5) when the test ran, that assertion would throw an exception with a
message that says expected 3 to equal 5.

To install Chai into your project, run the following command:

| >npm install chai

Once you have Chai installed, there is one more step that must be taken to be able to use it
within your project. You must include the following import at the top of each test file in your
application:

|import { expect } from ‘chai’;

If you wish to use should assertions, you can either replace expect with should or
add shou1d inside the curly braces, separating it from expect with a comma.

For more information or to refer to the documentation, the Chai home page is https:/chaijs.com.

www.EBooksWorld.ir

https://chaijs.com

Sinon

We won't be getting into mocking until Chapter 4, What to Know Before Getting Started, but
Sinon is the generally preferred mocking library among Mocha + Chai users. Some testing
frameworks, such as Jest and Jasmine, come with their own mocking library features, but Mocha
does not, and Sinon provides an excellent mocking experience.

To install Sinon into your project, execute the following command:
| >npm install sinon

Once installed, you will need to import Sinon before you can use it. Use the following import
statement to enable the use of Sinon:

| import sinon from ‘sinon’;

www.EBooksWorld.ir

Enzyme

Enzyme is a library designed to aid in the testing of React components.

To install Enzyme into your project, execute the following command:

|>npm install enzyme react-test-renderer react-dom

The extra libraries listed, react-test-renderer and react-dom, are dependencies of Enzyme that it
needs to function correctly.

As with the other testing utilities mentioned in this section, we will get into usage as needed,
while we discuss the topics covered in this book. But here is a quick example of a test using
Enzyme from the Enzyme documentation at https://github.com/airbnb/enzyme:

import React from 'react';
import { expect } from 'chai';
import { render } from 'enzyme';
import Foo from './Foo';

describe('<Foo />', () => {
it('renders three ".foo-bar's', () => {
const wrapper = render(<Foo />);

expect(wrapper.find('.foo-bar').length).to.equal(3);
1)

it('renders the title', () => {
const wrapper = render(<Foo title="unique" />);

expect(wrapper.text()).to.contain('unique');

3)i})i

www.EBooksWorld.ir

https://github.com/airbnb/enzyme

Ejecting the React app

Unfortunately, this is where we part company with Create React App. In order to use Mocha, we
will need to find an alternative way to work with the application. Because of the zero-
configuration setup of Create React App, we cannot simply update the testing framework being
used, and that is a problem for us.

Thankfully, Create React App gives us an out in the form of ejecting the application. Ejecting
the React application will install all the necessary configuration files and utilities into our project
and remove Create React App. Once the ejection process is finished, we will have access to all
the configuration files and we will have the ability to switch to using Mocha.

To eject Create React App, execute the following command:

| >npm run eject

If you take a look at the package.json in the root of the project, you will see that a lot of
information and configuration have been added.

After any major modification to package. json, it is a good idea to delete
8 node_modules and package-lock.json and then re-run npm install.

www.EBooksWorld.ir

Configuring to use Mocha and
Chai

After you have ejected the React app, before you make any further modifications, you should
make sure everything still works. Execute the following command before making any further
modifications:

| >npm start

Now check that a browser launched and that the application is running correctly. You will have
to Ctrl + C to exit the running process:

| >npm run build

After this command, check that a build folder was created at the root of your project and that
there were no errors displayed in the console:

| >npm test

Even though you are about to change the test configuration, you will be using some of the
libraries that were provided by Create React App. You want to make sure that those
prerequisites transitioned properly when you ejected. As with npm start, you will have to Ctrl +
C to exit this process.

Assuming all of the commands executed without issues, you can now start the process of
switching the test environment over to Mocha. Execute the following command to ensure the
installation of the necessary dependencies:

|>npm install mocha chai sinon enzyme

Open package. json and update the following lines:

"babel": {
"presets": [
"react-app"
]
3

Change the preceding code to:

"babel": {
"presets": [
"react",
"es2015"

]
3

You will also need to install the BabelJS preset for ES2015:

| >npm install babel-preset-es2015

www.EBooksWorld.ir

Next, find and delete the jest setting in package.json. You are now ready to change the test script
to execute Mocha instead of Jest. Find NPM scripts and update the test script as follows:

|"test": "node scripts/test.js --env=jsdom"

Change the preceding code to:

|"test": "mocha --require babel-core/register ./scripts/test.js --require babel-core/register

The change you just made will cause Mocha to execute all of your tests. It will only execute
them once, though. You want a way to have your tests running continuously while you work, so
you need to add an additional script. Add a comma to the end of the line you just modified and
then add the following script just beneath test:

| "test:watch": "npm test -- -w"

Now, you need to update the test.js file provided when you ejected. Open <project
root>/scripts/test.js and replace all the code inside with the following:

'use strict';
import jsdom from 'jsdom';

global.document = jsdom.jsdom('<html><body></body></html>");
global.window = document.defaultView;
global.navigator = window.navigator;

function noop() {
return {};

}

// prevent mocha tests from breaking when trying to require a css file
require.extensions['.css'] = noop;
require.extensions['.svg'] = noop;

This file just sets up the base environment for your tests to execute inside. Make note of

the noop function and usage. Currently, you are ignoring the css and svg extensions that are
required by your production code when you are testing. In the course of testing, if you run into
issues while requiring a different extension, you might have to come back to this file and add the
troublesome extension to the list.

You are almost done; you only have one more modification to make before you are officially
switched over to Mocha. Find the file app.test.js in your src directory, and change its name
to App.spec. js, then update the contents to the following:

import React from 'react';
import ReactDOM from 'react-dom';
import { expect } from 'chai';

import App from './App';

describe('(Component) App', () => {
it('renders without crashing', () => {
const div = document.createElement('div');
ReactDOM.render (<App />, div);
1)
1),

All you have really done here is import Chai and add a describe block. The rest of this test has
remained unchanged and is the default test provided with Create React App.

www.EBooksWorld.ir

A quick kata to check our test
setup

For this setup test, you are going to do the Palindrome code kata. This code kata can get
complex, but you are only going to concern yourself with the most basic form.

www.EBooksWorld.ir

The requirements

The requirements for this kata are as follows:

Given a string value

And Given the provided string is not a palindrome
When checked

Then return false

Given a string value

And Given the provided string is a palindrome
When checked

Then return true

www.EBooksWorld.ir

The execution

As you always should, you will begin with a templated test file designed to verify that the unit
testing framework is configured correctly:

import { expect } from 'chai';

describe('Test Framework', () => {
it('is configured correctly', () => {
expect(1).to.equal(0Q);
}
}

We have shown a failing version of this template. Before you begin writing the tests that are
actually for the kata, run the test:watch NPM script and verify that the test fails. Also, verify that
it fails for the right reason. It should fail because 1 was expected but 0 was the actual result.
After the test properly fails, change the zero to a one and verify that the test now passes. As long
as these two validations work correctly, we will continue and begin working through the code
kata.

www.EBooksWorld.ir

Starting the kata

The first thing you will do for the kata is write an 1texists test. Again, these types of test help to
get the ball rolling and prevent writer's block. You will replace the code for checking the
framework with the following.

Red phase; write a failing test that expects an ispalindrome function to exist:

describe('Is Palindrome', () => {
it('exists', () => {
expect(isPalindrome).to.exist;

¥
DE

Verify that this test fails. It's important to see a failure before moving on to making the test pass.
This will help confirm that your test setup is working properly.

And now the green phase; make the test pass. Define an ispalindrome function and run the test
once more to see it pass.

function isPalindrome() {

}

For the next test, we want to think of the simplest test case that would produce a result. Again,
we are skipping bad data issues. The simplest test case we can think of that would product a
result is a single letter. For the definition of palindrome that you will be using for these tests, a
single letter is a palindrome. Add the following test under the previous one:

it('a single letter is a palindrome', () => {
// arrange
const value = 'a';

// act
const result = isPalindrome(value);

// assert
expect(result).to.be.true;

K

Now, to make it pass:

function isPalindrome() {
return true;
}

Now you have a passing test, but you are always returning true. You want the next test to fail
when you write it. So, you should write a test for when the value passed in is not a palindrome.
The simplest non-palindrome would be two letters that are not the same:

it('two non-matching letters is not a palindrome', () => {
// arrange
const value = 'at';

www.EBooksWorld.ir

// act
const result = isPalindrome(value);

// assert
expect(result).to.be.false;

1)
Now, make it pass:

function isPalindrome(value) {
if(value.length === 1) {
return true;
}

return false;

}

Okay, so now you only return true single letters. This opens us up for our next test, flipping back
to something that is a palindrome; write a test for two letters that are the same:

it('two matching letters are a palindrome', () => {
// arrange

const value = 'oo';
// act
const result = isPalindrome(value);
// assert
expect(result).to.be.true;

1)

Now, to make it pass:

function isPalindrome(value) {
if(value.length === 1) {
return true;
}
if(value.length === 2 && value[0] === value[1l]) {
return true;
}
return false;
}

The next test is to have a three-letter word that is a palindrome. Currently, this should fail:

it('three letter palindrome', () => {
// arrange

const value = 'mom';
// act
const result = isPalindrome(value);
// assert
expect(result).to.be.true;

1)

To make this test pass, think about what you have so far. One algorithm for checking a
palindrome is to simply start on the outsides and check the two outermost letters. If those two
letters are a match, then move in one letter on each side. Repeat this check until you get to the
center of the word or phrase. If the center is one letter, then it's a palindrome; otherwise, check if
the two center-most characters are a match. Let's try this concept out by using recursion to make
the latest test pass:

www.EBooksWorld.ir

function isPalindrome(value) {
if(value.length === 1) {
return true;
}
if(value.length === 2 && value[0] === value[1l]) {
return true;
}
if(value[0] === value[value.length -1]) {
return isPalindrome(value.substring(1, value.length - 1));
}
return false;
}

We now need to check if a four-letter palindrome will pass:

it('four letter palindrome', () => {
// arrange

const value = 'abba';

// act

const result = isPalindrome(value);
// assert
expect(result).to.be.true;

1)

It passes; excellent! We will end this code kata with two exercises for you. The first exercise is
to add a test for "a man a plan a canal panama" and make it pass. The second exercise is to
refactor the code for ispalindrome. While this is a small function, it could still do with some
tidying up, and potentially some optimizations.

www.EBooksWorld.ir

Summary

You should now have Node installed and your JavaScript development environment configured.
JavaScript examples throughout the rest of the book will assume your use of WebStorm.

But, before diving right in, Chapter 4, What to Know Before Getting Started, will focus on what
more you need to know before getting started.

www.EBooksWorld.ir

What to Know Before Getting
Started

You're off to a pretty good start. By now, you should be starting to feel comfortable with the
basic concepts behind Test-Driven Development. You know the basic premise behind TDD and
how to write a unit test in C# and JavaScript.

In this chapter:

e We'll cover more of the practices behind TDD

e Specific advice will be given on how to avoid pitfalls along the way

e We'll explain the importance of defining and testing boundaries, abstracting away third-
party code (including the .NET Framework)

e We'll begin to introduce more advanced concepts, such as spies, mocks, and fakes

First, let's cover some issues you may run into while trying to test an existing application.
Hopefully, this will help you avoid problems in your next green-field application.

www.EBooksWorld.ir

Untestable code

There are a variety of telltale signs that an application, class, or method will be difficult, or even
impossible, to test. Sure, there are ways around some of the following examples but it's usually
best to just avoid workarounds and programmatic acrobatics. Simple is usually best, and your
future self and/or future maintainers will thank you for keeping things simple.

www.EBooksWorld.ir

Dependency Injection

If you're creating instances of external resources within your constructors or inside methods
instead of having them passed in, it will be very difficult to write tests to cover these classes and
methods. Generally, in today's modern applications, Dependency Injection frameworks are used
to create and provide the external dependencies to a class. Many choose to define an interface as
the contract for the dependency, providing a more flexible method for testing and the coupling
to external resources.

www.EBooksWorld.ir

Static

You may have a need to access static third-party classes or methods. Instead of accessing static
resources directly, it would be better to access these through an interface. In the example of
pateTime in C#, Now is a static property, which prevents you from being able to control the
pateTime value used by the class or method being tested. This makes it more difficult to verify
your test cases and ensure your program's logic is behaving correctly, based on specific dates or
times.

www.EBooksWorld.ir

Singleton

Singletons are the essence of the shared state. In order to ensure your tests run in an isolated
environment, it would be best to avoid them. If a singleton is required (for example, Logging, Data
context, and so on), most Dependency Injection frameworks allow for the substitution of a non-
singleton class as a single instance, which gives the functionality and flexibility of effectively
having a singleton. For production code, this allows you to control the scope of the singleton

instance.

www.EBooksWorld.ir

Global state

It has long been understood that global state within an application will wreak havoc on a system
and cause unexpected behavior that is difficult to trace. Changing the code in one place will
possibly have far-reaching side-effects on the rest of your system. For testability, this often
means much more effort in setup and slower test execution.

www.EBooksWorld.ir

Abstracting third-party
software

As your application grows, you'll likely introduce external dependencies. Assuredly, the
developers of these systems, applications, and libraries have thoroughly tested their offerings.
You should focus your attention on testing your application, not on testing third-party code.
Your application should be robust enough to handle edge cases, and you'll want to account for
expected and unexpected behavior. You'll want to abstract away the details of the third-party
code and test for expected (and unexpected) results.

So, what is third-party code? Anything you didn't write. That includes the .NET Framework
itself. One way to achieve the abstraction of third-party code is with the use of test doubles.

www.EBooksWorld.ir

Test doubles

Test doubles are functions and classes that aid in the testing process by allowing you to either
verify functionality or bypass a dependency that would otherwise be difficult to test. Test
doubles are used at all levels to isolate the code being tested. Many times, the need for a test
double drives the architecture of the code.

The pateTime object in C# is an example of when this is the case. system.pateTime is part of the
.NET Framework, and normally you wouldn’t think that you would abstract this in your code.
The instinct of most developers is to simply reference it in a using statement and then access
pateTime.Now directly within their code.

9 A test that can't be repeated is a bad test.

This is usually difficult to test. If we were to try to test a method using pateTime.Now, we would
be unable to prevent pateTime.Now default functionality. pateTime.Now returns the current date and
time stored in a pateTime object. Not having the ability to manipulate the return of this object
causes our tests to be unpredictable and unrepeatable. A test that can't be repeated is a bad test.

Many developers already understand the need for predictability. You may have heard the phrase,
If it can't be reproduced, it's not a bug or a similar sentiment. This is because, in order to verify
that we have fixed a bug, we must be able to predictably repeat the error. This way, once the
steps to reproduce it no longer produce the bug, we can confidently say that the bug is fixed. At
least we can for that series of steps.

Testing is no different from bug fixing; it follows all the same steps. We just know exactly what
caused the bug; the code hasn't been written yet, or the refactoring we just attempted failed.

Creating test doubles can get a little involved at times. For this reason, frameworks to support
the creation of these test doubles have been created for nearly every language that has a testing
framework. The frameworks are generally referred to as mocking frameworks or libraries. In
C#, the predominant framework currently in use is Moq, pronounced mock. Similarly, in
JavaScript, the most referenced mocking library seems to be Sinon, pronounced sign on.

www.EBooksWorld.ir

Mocking frameworks

Mocking frameworks are a great utility to alleviate some of the pressure of testing in a large
project. They are especially useful when trying to wrap tests around a legacy system. A legacy
system, in this case, is defined as an application that does not already have tests around it. This
definition is from Michael Feather's book, Working Effectively with Legacy Code.

Use caution while learning Test-Driven Development and using mocking frameworks. Mocking
frameworks provide a very attractive alternative to carefully considering your code. It is possible
to write a complete set of tests that, in the end, only really test the mocking framework.

Many mocking frameworks are overpowered in this respect. In C#, a classification of mocking
frameworks exists that allows you to replace external code. This external code includes
pateTime.Now and any other class that you don’t control. In JavaScript, this is called monkey
patching, and every framework allows you to do it.

What's the harm, you ask? One of the benefits of TDD is that it encourages smart architectural
choices. When you have the power to override the functionality of the third-party code, you no
longer have the need to abstract in order to test.

Why is that a problem? Abstraction of the third-party is necessary if we want to keep the code
flexible and if we want to follow the SOLID principles.

www.EBooksWorld.ir

The SOLID principles

The SOLID principles are a collection of concepts originally put together by Robert C. Martin,
aka "Uncle Bob." Usually advertised as Object-Oriented Principles, you should think of them as
just plain good architectural choices. The SOLID principles consist of five principles: the Single
Responsibility Principle, the Open/Closed principle, the Liskov Substitution principle, the
Interface Segregation Principle, and the Dependency Inversion Principle.

The original articles on the SOLID principles are available at http://butunclebob.com/ArticleS.UncleBo
b.PrinciplesOfOod.

www.EBooksWorld.ir

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

The Single Responsibility
Principle

In Uncle Bob's article, the Single Responsibility Principle (SRP) is defined as, "A class should
have only one reason to change."

What does this mean? That is the tough part; there are many approaches to understanding the
meaning. One way to look at it is that the class should only support one business user. Another
is that, within the application, the class should only be used with a limited or specific scope.
Another is that the class should have a limited range of functionality. These are all correct, and
yet insufficient. One way to ensure you are following it is to use what we will refer to as the
"Rule of Three to Five."

If we're discussing requirements, for example, when a requirement has between three to five
acceptance criteria, then it is most likely appropriately sized for its level of detail. Similarly, if
we are discussing a method or function, then three to five lines of code is probably appropriately
sized.

The Rule of Three to Five is a generic way to know that you are honoring the SRP. The rule
states, "Less than three is good. Between three and five is fine. Above five is strongly consider
refactoring." It's not quite as elegant as many other laws, principles, and rules, but the rule of
three to five is easy to follow. This rule is just a guideline and should not be used as an
ultimatum. You should try to apply this rule to just about everything in software development.
You have already seen it in action in this book. This rule was used to determine the scope of the
requirements in Chapter 1, Why TDD is Important, and in all the code samples that have been
included so far.

If you use the Rule of Three to Five, it nearly guarantees that you are following SRP, and it
keeps your code, file structure, and requirements small and maintainable.

www.EBooksWorld.ir

The Open/Closed principle

The Open/Closed principle states, "Software entities (classes, modules, functions, and so on)
should be open for extension, but closed for modification." The second of the SOLID principles
doesn't sound like it is saying much, but it has a large impact.

There are many ways to honor this principle. You or your development team could put into
place a rule that only allows for new development. That is, any existing functionality cannot be
updated or changed, only replaced by new methods or classes. When we get to creating dividing
lines in the code, you could use those dividing lines to create a place for this functionality swap
to take place.

The Open/Closed principle also enables continuous integration and deployment. This is because,

if your application never breaks a contract it has with the user, itself, or a third party, then it can
always be deployed without fear of causing a production issue.

www.EBooksWorld.ir

The Liskov Substitution
principle

The Liskov Substitution principle may be difficult to understand at first due to its somewhat
complex and mathematical definition. From Barbara Liskov's Data Abstraction and Hierarchy [
https://pdfs.semanticscholar.org/36be/babeb72287ad9490e1ebab84e7225ad6a9e5.pdf], the principle is stated
as follows:

What is wanted here is something like the following substitution property. If for each object o1
of type S there is an object 02 of type T, such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o2, then S is a subtype of T.

Uncle Bob has simplified this definition to be, Functions that use pointers or references to base
classes must be able to use objects of derived classes without knowing it. Looking at this
principle, it seems like it would just be inheritance. Except, it's not just inheritance. This
principle implies that not only does the object replacing the other have to implement the same
interface or contract as the original, it must also adhere to the same expectations as the original.

The classic example of a violation of this principle is the use of a square class in the place of a
rectangle class. A typical rectangle class would need to have both length and width properties.
In mathematics, a square is just a special type of rectangle. So, many would assume that creating
a square class with length and width would be an acceptable swap for the rectangle class.

The problem here is that a square requires that both length and width have the same value. So,
when you change either one on the square class, the class will update the other to have the same
value. This is a problem because the application using the object doesn't expect this behavior.
Therefore, the application must be aware of the possibility of the length or width changing
without notice.

A failure to meet the expectations of the application is known as a refused bequest. A refused
bequest can cause inconsistent behavior in an application and, at the very least, requires more
code to compensate for the mismatch.

www.EBooksWorld.ir

https://pdfs.semanticscholar.org/36be/babeb72287ad9490e1ebab84e7225ad6a9e5.pdf

The Interface Segregation
principle

The Interface Segregation principle is about keeping to the contract of interaction presented by
your class small. More than small, the contract presented by your class should have a single
responsibility.

Sometimes, having a class with a small single responsibility contract is difficult or not desired.
In those instances, the class should implement multiple contracts instead of creating a combined
contract. We want multiple contracts to reduce the number of far-reaching dependencies.

Every time a base class or interface is modified, the child classes must also be modified. At the
very least, the child classes must now be recompiled. By limiting the scope of a contract, we can
reduce the impact of changing that contract and improve the overall system architecture.

www.EBooksWorld.ir

The Dependency Inversion
principle

Inversion of dependencies is important for several reasons, among which are that inverted
dependencies increase flexibility, decrease fragility, and help the code to be potentially reused.

Inversion of dependencies allows for a plugin type architecture. By defining a contract of
interaction, a module can determine how it wants to interact with dependencies. Then the
dependencies depend on that contract.

Because the top-level module has no outgoing dependencies, it can be deployed independently.
Deploying a piece of an application independently almost never happens, but having an
independently deployable library has the tremendous benefit of not needing to be recompiled
when a dependency changes.

In normal development, the dependencies fluctuate a lot more than the higher-level modules.
This fluctuation causes the need to recompile. When your application dependencies flow
downward, a dependency recompile also triggers a recompile of the dependent library. So, in
effect, changing a utility helper class in a tiny, but common, library will trigger a recompile of
your entire application.

If you are inverting your dependencies, however, a change like this will only trigger a recompile
of the utility helper library and the application library. It will not trigger a recompile of every
library between.

That does it for the SOLID principles. Please keep them in mind if you choose to use a mocking
framework. Make sure you don't allow the mocking framework to trick you into building a rigid,
fragile, immobile system.

www.EBooksWorld.ir

Timely greeting

Expanding on the classic Hello World example, what if you wanted to change your greeting
based on the time of day? An example is as follows:

As a visitor to the site
I want to receive a time-appropriate greeting
So that I may plan the submission of my talks

Given it is before noon
When greeting is requested
Then morning message is returned

Given it is afternoon
When greeting is requested
Then afternoon message is returned

You might think to yourself, This is simple; I can just write a quick method to return the proper
message. Of course, you would be right. This is a pretty easy task. You might come up with
something like this:

public string GetGreeting()
{

if (DateTime.Now.Hour < 12)
return "Good morning";

return "Good afternoon";

}

Remember, back in Chapter 1, Why TDD is Important, we discussed the Three laws of TDD. The
all-important first law states that you aren't allowed to write a single line of production code
without a failing test.

www.EBooksWorld.ir

Fragile tests

"But, this is such a simple method," you might say. What if you encountered a bug? What if you
wanted to write some tests for this method after the fact? Would you have to run your test suite
at a specific time of day to ensure a passing test? Would you have to alter your tests based on the
time of day that you ran them?

www.EBooksWorld.ir

False positives and false failures

If we left the code in our Message example as-is and wrote a test to cover the method, it might
look something like this:

[Fact]
public void GivenEvening_ThenAfternoonMessage()

{
// Arrange

// Act
var message = GetGreeting();

// Assert
Assert.Equal("Good afternoon", message);

}

Can you spot the problem with this test? There's nothing inherently wrong with the test, per se.
The problem is that the production code will return a different message, based on the time of
day. This means that if you ran the test in the afternoon, it would pass. If you ran the test in the
morning, it would fail.

www.EBooksWorld.ir

Abstract DateTime

pateTime is part of the .NET Framework, and therefore, it should be abstracted away from our
system. Typically, we want our system to depend on interfaces, allowing us to substitute
implementations at runtime.

Following is an example of 1TimeManager:

public interface ITimeManager

{
}

DateTime Now { get; }

For testing purposes, you might end up with an implementation of 1Timemanager that looks like
this:

public class TestTimeManager : ITimeManager

{

public Func<DateTime> CurrentTime = () => DateTime.Now;

public void SetDateTime(DateTime now)

{

CurrentTime = () => now;

}

public DateTime Now => CurrentTime();

This allows us to set the value for now so that we can supply a known value to our test methods.
Now, let's revisit our tests:

[Theory]

[InlineData(12)]

[InlineData(13)]

[InlineData(14)]

[InlineData(15)]

[InlineData(16)]

[InlineData(17)]

[InlineData(18)]

[InlineData(19)]

[InlineData(20)]

[InlineData(21)]

[InlineData(22)]

[InlineData(23)]

public void GivenAfternoon_ThenAfternoonMessage(int hour)

{
// Arrange
var afternoonTime = new TestTimeManager();
afternoonTime.SetDateTime(new DateTime(2017, 7, 13, hour, 0, 0));
var messageUtility = new MessageUtility(afternoonTime);

// Act
var message = messageUtility.GetGreeting();

// Assert
Assert.Equal("Good afternoon", message);

}

[Theory]
[InlineData(0)]

www.EBooksWorld.ir

[InlineData(1)]

[InlineData(2)]

[InlineData(3)]

[InlineData(4)]

[InlineData(5)]

[InlineData(6)]

[InlineData(7)]

[InlineData(8)]

[InlineData(9)]

[InlineData(10)]

[InlineData(11)]

public void GivenMorning_ThenMorningMessage(int hour)

{
// Arrange
var morningTime = new TestTimeManager();
morningTime.SetDateTime(new DateTime (2017, 7, 13, hour, 0, 0));
var messageUtility = new MessageUtility(morningTime);

// Act
var message = messageUtility.GetGreeting();

// Assert
Assert.Equal("Good morning", message);

Our production code would end up looking something like this:

public class MessageUtility
{

private readonly ITimeManager _timeManager;

public MessageUtility(ITimeManager timeManager)

{

_timeManager = timeManager;

}

public string GetMessage()
{

if (_timeManager .Now.Hour < 12)
return "Good morning";

return "Good afternoon";

}

}

www.EBooksWorld.ir

Test double types

Test doubles come in many varieties. Those varieties can generally be grouped as dummies,
stubs, spies, mocks, and fakes. Coming up, we will discuss the different types and provide
examples in C# and in JavaScript for each.

www.EBooksWorld.ir

Dummies

Dummies are the simplest form of test double. A dummy has no appreciable functionality. We
don't actually expect the dummy class or method to be used in the result of the class or method we
are testing.

Dummies are most often used when the class you are testing has a dependency that the method
or function you are testing does not use.

You create a dummy by creating a new copy or instance of a class or method and then doing
absolutely nothing in the body of the code. Void methods will be empty and methods or
functions expecting a return value will either throw when called or return the simplest form of
that return value.

www.EBooksWorld.ir

Dummy logger

A Logging service is a perfect example of something that can be replaced with a dummy. While
you are testing specific methods it is unlikely (and not recommended) to also test logging
functionality.

www.EBooksWorld.ir

Example in C#

The following is an example of a bummyLogger in C#. You'll note that when Log is called nothing
happens.

enum LogLevel
{
None = O
Error =
Warning
sSuccess
Info = 4

i~
N

w

}

interface ILogger

{
3

class DummylLogger: ILogger

{

void Log(LogLevel type, string message);

public void Log(LogLevel type, string message)

{
// Do Nothing

}

}

www.EBooksWorld.ir

Example in JavaScript

The following is an example of a pummyLogger in JavaScript. You'll note that
when info, warn, error, and success are called nothing happens.

export class DummyLogger {
info(message) {

warn(message) {

error(message) {

}

success(message) {

}

www.EBooksWorld.ir

Stubs

Stubs are the next level up from dummies. A Stub test double will provide the same response
regardless of the parameters passed into it.

Stubs are used when you want to test different paths of execution in your code. One instance is
an error that must be thrown under a particular condition.

Stubs are created by creating a copy or override of the class or method that needs to return the
stub value and then setting it to return the needed value. Remember, stubs don't evaluate
parameters, so you need to just return the desired value.

www.EBooksWorld.ir

Example in C#

The following is an example of a stubspeakercontactserviceError in C#. You'll note that, when
MessageSpeakeriS called then a new UnableToContactSpeakerException €ITOI is thrown.

class StubSpeakerContactServiceError : ISpeakerContactService

{

public void MessageSpeaker(string message)

{

throw new UnableToContactSpeakerException();

}

}

www.EBooksWorld.ir

Example in JavaScript

The following is an example of a stubspeakerreducer in JavaScript. You'll note that regardless of
the action passed in, a new UNABLE_To_RETRIEVE_SPEAKERS error is pushed to the error array in the
state.

import { SpeakerErrors } from './errors';
import { SpeakerFilters } from './actions';

const initialState = {
speakerFilter: SpeakerActions.SHOW_ALL,
speakers: [],
errors: []

i

export function stubSpeakerReducer(state, action) {
state = state || initialState;

state.speakerFilter = action.filter || SpeakerFilters.SHOW_ALL;
state.errors.push(SpeakerErrors.UNABLE_TO_RETRIEVE_SPEAKERS);

return state;

www.EBooksWorld.ir

Spies

Spies are the next evolution in test doubles. A spy returns a value similar to a stub but has an
extremely important and helpful difference. Spies can report back on the information related to
the function call.

Spies are most often used when you want to verify that a function was called with specific
parameters. This is most useful at third-party boundaries in your application. For instance, it is
important to know whether your application is correctly configuring a database connection using
the credentials supplied by some configuration service. Also, in some cases, it is difficult to
measure the side-effects of the method or function being tested. In those cases, you can use a
spy to just make sure you are calling the method or function in the first place.

Spies are created by starting with a stub and adding the functionality to determine whether a
function has been called, how many times a function is called, or reporting what values were
passed into that function.

www.EBooksWorld.ir

Example in C#

The following is an example of a spyspeakercontactservice in C#. The
spyspeakercontactService allows you to determine if the service has been called and how many
times it might have been called.

class SpySpeakerContactService : ISpeakerContactService
public bool MessageSpeakerHasBeenCalled { get; private set; }
public int MessageSpeakerCallCount { get; private set; }

public void MessageSpeaker(string message)
{
MessageSpeakerHasBeenCalled = true;
MessageSpeakerCallCount++;
}
}

www.EBooksWorld.ir

Example in JavaScript

The following is an example of a spyspeakerreducer in JavaScript. The spyspeakerreducer allows
you to determine how many times it might have been called.

import { speakerReducer as original_speakerReducer } from './reducers';
export let callCounter = 0;

export function spySpeakerReducer(state, action) {
callCounter++;

return original_speakerReducer(state,action);

}

www.EBooksWorld.ir

Mocks

Mocks are essentially programmable spies. Mocks are useful when you want to use the same test
double in multiple tests. Mocks have the ability to return whatever values you set them to return.
It is important to note that mocks are still not doing any logic. They return the value that is
specified and do not check the parameters passed to the function.

Mocks are used in all the situations where dummies, stubs, and spies are used. Mocks are a
heavier implementation of a test double, which is why you may not want to use them all the
time. Mocks get less reuse than the previous test doubles because a mock's data must be set for
each test, whereas a dummy, stub, or spy has a set return value that does not need to be
configured. Setting up the test data that gets returned is often more difficult than simply creating
a whole stub or spy class.

Mocks are created by making a copy of a class or method and creating a property that can be set
as the return value for a method; then, in the method being mocked, the property value is
returned. Once created, before each test, the mock's return value must be set.

www.EBooksWorld.ir

Example in C#

The following is an example of a MockpateTimeservice in C#. The MockpateTimeservice allows you
to set the pateTime to be returned by the service in order to reliably test how other parts of the
system might behave based on specific pateTime.

class MockDateTimeService

{

public DateTime CurrentDateTime { get; set; } = new DateTime();

public DateTime UTCNow()
{

return CurrentDateTime.ToUniversalTime();
}
}

www.EBooksWorld.ir

Example in JavaScript

The following is an example of a MockpateTimeservice in JavaScript. Much like the
MockDateTimeservice in C#, this allows you to set the pateTime to be returned by the service in
order to reliably test how other parts of the system might behave based on specific pateTimes.

export class MockDateTimeService {
constructor() {
this.currentDateTime = new Date(2000, 0, 1);

3
now() {

return this.currentDateTime;

}

www.EBooksWorld.ir

Fakes

Fakes are the last and most powerful type of test double. A fake is a class that attempts to
behave as if it weren't a test double. While a fake will not connect with a database, it will
attempt to behave just like it is connecting to a database. A fake will not use the system clock,
but it will attempt to have an internal clock that behaves as close to the system clock as possible.

Fakes either add extra testing functionality or prevent external interference from third-party
libraries and systems. Most applications are connected to some data source. A fake repository
can be created that uses its own in-memory data source but otherwise behaves just like a normal
data connection.

Fakes are created by generating a whole new class or method and then writing enough
functionality to be indistinguishable from the production class or method. The only important
distinction for a fake versus a production class or method is that the fake does not make external
connections and likely has the ability for the tester to control the underlying data set.

www.EBooksWorld.ir

Example in C#

The following is an example of a Fakerepository and associated interfaces. The Fakerepository is
a fake implementation of a generic repository.

public interface IRepository<T>

{
T Get(Func<T, bool> predicate);

IQueryable<T> GetAll();
T Save(T item);
IRepository<T> Include(Expression<Func<T, object>> path);

}

public interface IIdentity

int Id {get;set;}
}

public class FakeRepository<T> : IRepository<T> where T : IIdentity
{

private int _identityCounter = 0;
public IList<T> DataSet { get; set; } = new List<T>();

public T Get(Func<T, bool> predicate)

{
return GetAll().wWhere(predicate).FirstOrDefault();
}
public IQueryable<T> GetAll()
{
return DataSet.AsQueryable();
}
public T Save(T item)
{
return item.Id == default(int) ? Create(item) : Update(item);
}
public IRepository<T> Include(Expression<Func<T, object>> path)
{

// Nothing to do here since this function is for EntityFramework
// We are using Ling to Objects so there is not need for Include
return this;

}

private T Create(T item)

{
item.Id = ++_identityCounter;
DataSet.Add(item);
return item;

}
private T Update(T item)
{
var found = Get(x => x.Id == item.Id);

if(found == null)
{
throw new KeyNotFoundException($"Item with Id {item.Id} not
found!");
}

DataSet.Remove(found);
DataSet.Add(item);

www.EBooksWorld.ir

return item;
}
}

www.EBooksWorld.ir

Example in JavaScript

The following is an example of a Fakepatacontext in JavaScript.

export class FakeDataContext {
_identityCounter = 1;
_dataSet = [];

get DataSet() {
return this._dataSet;

}

set DataSet(value) {
this._dataSet = value;

}
get(predicate) {
if (typeof(predicate) !== 'function') {
throw new Error('Predicate must be a function');
}
const resultSet = this_dataSet.filter(predicate);
return resultSet.length >= 1 ? {...resultSet[0]} : null;
}
getAll() {
return this._dataSet.map((x) => {
return {...x};
1)
}

save(item) {
return item.id ? this.update(item) : this.create(item);

}
update(item) {
if (!'this._dataSet.some(x => x.id === item.id)) {
this._dataSet.push({...item});
} else {
let itemIndex = this._dataSet.findIndex(x => x.id === item.id);
this._dataSet[itemIndex] = {...item};
}
return {...item};
}

create(item) {
let newItem = {...item};
newItem.id = this._identityCounter++;
this._dataSet.push({...newItem});

return {...newItem};

}

www.EBooksWorld.ir

N-Tiered example

Now, turn your attention back to the API controller in Chapter 2, Setting Up the .NET Test
Environment. Hard-coded data being returned directly from the controller does not make for a
solid foundation on which to build an application. Most modern .NET applications of any size
are written in some sort of N-tiered architecture. You'll want to separate your business logic
from your presentation, in this instance, the presentation in the API endpoint.

We'll introduce an interface for a speaker service in preparation for using Dependency Injection
to provide the concrete implementation to the controller, then verify that the proper method in
the new service is being called. You'll need to rearrange some tests in order to remove the
business logic from the controller.

www.EBooksWorld.ir

Presentation layer

To get started, add a new test to verify that the controller accepts an interface of 1speakerservice:

[Fact]
public void ItAcceptsInterface()
{
// Arrange
ISpeakerService testSpeakerService = new TestSpeakerService();
// Act
var controller = new SpeakerController(testSpeakerService);
// Assert
Assert.NotNull(controller);

Now, make your test pass by creating a constructor in the speakercontroller to accept the
IspeakersService interface, introducing a field variable and a constructor in your speaker controller
class:

public SpeakerController(ISpeakerService speakerService)

{
}

Your test project should now fail to compile. This is because in our previous example from Chapt
er 2, Setting up the .NET Test Environment, we're defining the controller instance in the
constructor of the test class. Modify the constructor to create an instance of Testspeakerservice,
which implements the 1speakerservice interface, and pass this to the speakercontrolier. Feel free
to create the Testspeakerservice in your test class:

public SpeakerControllerSearchTests()
{

var testSpeakerService = new TestSpeakerService();

_controller = new SpeakerController(testSpeakerService);

}

Now, you'll want to verify that the search method of the speakerservice is called from the
controller. But, how do you do that? One way is to use a mocking framework called Moq.

www.EBooksWorld.ir

Moq

To add Moq to your unit test project, right-click on your test project and choose Manage NuGet
Packages. Browse for Moq, and choose to install the latest stable version. We won't delve too
deeply into Mog, but we will show how mocking frameworks help facilitate testing the
boundaries of your application.

Add a test to verify that the search method of the speakerservice is called once from the search
action result of the controller:

[Fact]
public void ItCallsSearchServiceOnce()
{

// Arrange

// Act

_controller.Search("jos");

// Assert
_speakerServiceMock.Verify(mock => mock.Search(It.IsAny<string>()),
Times.Once());

In order to make the test pass, you will also be required to do a little more setup in the
constructor of the test class:

private readonly SpeakerController _controller;
private static Mock<ISpeakerService> _speakerServiceMock;

public SpeakerControllerSearchTests()

{
var speaker = new Speaker
{
Name = "test"
1

// define the mock
_speakerServiceMock = new Mock<ISpeakerService>();

// when search is called, return list of speakers containing speaker
speakerServiceMock.Setup(x => x.Search(It.IsAny<string>()))
.Returns(() => new List<Speaker> { speaker });

// pass mock object as ISpeakerService
_controller = new SpeakerController(_speakerServiceMock.0Object);

}

Be sure to modify the interface so that the application will compile:

public interface ISpeakerService

{

IEnumerable<Speaker> Search(string searchString);

}

Now, make your test pass by ensuring the search method of the speakerservice is called from the
search action result of the controller. If you haven't done so already, create a field variable for
_speakerservice that is assigned in the constructor by the speakerservice parameter:

www.EBooksWorld.ir

private readonly ISpeakerService _speakerService;

public SpeakerController(ISpeakerService speakerService)

{
3

[Route("search")]
public IActionResult Search(string searchString)

_speakerService = speakerService;

{
var hardCodedSpeakers = new List<Speaker>
{
new Speaker{Name = "Josh"},
new Speaker{Name = "Joshua"},
new Speaker{Name = "Joseph"},
new Speaker{Name = "Bill"},
}i
_speakerService.Search("foo");
var speakers = hardCodedSpeakers.Where(x =>
x.Name.Startswith(searchString,
StringComparison.OrdinalIgnoreCase)).ToList();
return Ok(speakers);
}

Next, add a test to validate that the searchstring supplied to the search action result of the
controller is the searchstring being passed to the search method of the speakerservice:

[Fact]

public void GivenSearchStringThenSpeakerServiceSearchCalledwithString(){
// Arrange
var searchString = "jos";
// Act

_controller.Search(searchString);

// Assert
_speakerServiceMock.Verify(mock => mock.Search(searchString),
Times.Once());

And make the test pass by supplying searchstring to the search method on the _speakerservice:

| _speakerService.Search(searchString);

Now, ensure that the results of the search method from the speakerservice are what is being
returned by the action result:

[Fact]
public void GivenSpeakerServiceThenResultsReturned()
{
// Arrange
var searchString = "jos";
// Act
var result = _controller.Search(searchString) as OkObjectResult;
// Assert
Assert.NotNull(result);
var speakers = ((IEnumerable<Speaker>)result.Value).ToList();
Assert.Equal(_speakers, speakers);
}

Remember, the results returned by the search method of the speakerservice are being defined by
the mock. You'll need to extract a field in order to test that the results being returned by the action

www.EBooksWorld.ir

result are the same as those being defined for our mock:

private readonly SpeakerController _controller;
private static Mock<ISpeakerService> _speakerServiceMock;
private readonly List<Speaker> _speakers;

public SpeakerControllerSearchTests()
{

_speakers = new List<Speaker> { new Speaker

{

Name = "test"
Yy
_speakerServiceMock = new Mock<ISpeakerService>();
_speakerServiceMock.Setup(x => x.Search(It.IsAny<string>()))
.Returns(() => _speakers);

_controller = new SpeakerController(_speakerServiceMock.0Object);

}

There's still the problem of the hard-coded data. Don't forget to remove unnecessary and
unneeded code while you're making your test pass. Remember red, green, refactor. This applies
to your production code as well as your tests.

You may encounter some failing tests once you remove the hard-coded data. For now, skip these
tests, as we'll be moving this logic to another part of the application. Now it's time to create a

SpeakerService:

xunit

[Fact(Skip="Reason for skipping")]
MSTest

[Skip]

www.EBooksWorld.ir

Business layer

You might want to start thinking about how to organize your tests effectively. As your
application grows, and the number of test files increases, you may find it more and more
cumbersome to navigate your solution. One answer might be to create individual folders per
class under test and a single file per public method within the class folder. This might look
something like this:

|SpeakerService -> Search

You don't necessarily need to tackle this now, but it wouldn't hurt to have a plan for the future.
Applications tend to grow quite quickly, and before you know it you will have thirteen projects
within your solution. You may choose to go ahead and create a services project with a
servicesTest project at this time, to separate your business layer and associated tests from your
presentation layer and its tests. That will be left as an exercise for the reader.

Now, create a new test class for the speakerservice. Here is where you'll be creating all of your
test methods for search in the speakerservice:

[Fact]
public void ItExists()

{

var speakerService = new SpeakerService();

}

Once you make this test pass, create a few new tests to confirm the search method exists and that
it returns a collection of speakers:

[Fact]
public void ItHasSearchMethod()

{

var speakerService = new SpeakerService();

speakerService.Search("test");

}

Next, test that the speakerservice implements the 1speakerservice interface:

[Fact]
public void ItImplementsISpeakerService()

{

var speakerService = new SpeakerService();

Assert.True(speakerService is ISpeakerService);

}

Your speakerservice should now look something like this:

public class SpeakerService : ISpeakerService

{

public IEnumerable<Speaker> Search(string searchString)

{

}
3

return new List<Speaker>();

www.EBooksWorld.ir

Remember, take slow and methodical steps. You are not allowed to write a line of production
code without writing a failing test, and you're not to write more production code than is
sufficient to make the tests pass.

Now, begin to move the skipped tests from the controlier test file to the speaker service search
Test file. Start with civenExactMatchThenOneSpeakerInCollection:

[Fact]
public void GivenExactMatchThenOneSpeakerInCollection()
{
// Arrange
// Act
var result = _speakerService.Search("Joshua");
// Assert
var speakers = result.ToList();
Assert.Equal(1l, speakers.Count);
Assert.Equal("Joshua", speakers[Q].Name);
}

Make this test pass, then move on to GivencaseInsensitveMatchThenSpeakerInCollection:

[Theory]
[InlineData("Joshua")]
[InlineData("joshua")]
[InlineData("JoShua")]
public void GivenCaseInsensitveMatchThenSpeakerInCollection(string searchString)
{
// Arrange
// Act
var result = _speakerService.Search(searchString);

// Assert

var speakers = result.TolList();
Assert.Equal(1l, speakers.Count);
Assert.Equal("Joshua", speakers[Q@].Name);

[&n(lfh1aﬂ5a GivenNoMatchThenEmptyCollection an(lGiven3MatchThenCollectionwith3$peakers!

[Fact]
public void GivenNoMatchThenEmptyCollection()
{

// Arrange

// Act

var result = _speakerService.Search("zzz");

// Assert
var speakers = result.ToList();
Assert.Equal(@, speakers.Count);

}

[Fact]
public void Given3MatchThenCollectionwith3Speakers()
{

// Arrange

// Act

var result = _speakerService.Search("jos");

// Assert
var speakers = result.ToList();
Assert.Equal(3, speakers.Count);

Assert.True(speakers.Any(s => s.Name == "Josh"));

Assert.True(speakers.Any(s => s.Name == "Joshua"));

Assert.True(speakers.Any(s => s.Name == "Joseph"));
}

www.EBooksWorld.ir

As you get more comfortable with the practice and gain more experience with TDD, you may
find it helpful to list the tests which you want to implement. This could be simply jotting them
down on a piece of paper, or stubbing out some skipped or ignored tests in your IDE.

If done correctly, your code should look something like this:

public class SpeakerService : ISpeakerService
{
public IEnumerable<Speaker> Search(string searchString)
{
var hardCodedSpeakers = new List<Speaker>
{
new Speaker{Name
new Speaker{Name
new Speaker{Name
new Speaker{Name

i

IIJOShI|},
"Joshua"},
"Joseph"},
"Bill"},

var speakers = hardCodedSpeakers.Where(x =>
x.Name.StartswWith(searchString,
StringComparison.OrdinalIgnoreCase)).ToList();

return speakers;

}

}

We’ve now moved the hard-coded data out of our controller and into our business layer in the
Speakerservice. You may think that a lot of effort was expended simply to move the problem into
a new file! While this is true to an extent, this actually puts us in a better place for future
development. The "logic", such as it is, has been moved into a class that can be reused by other
parts of the application, and by potential new interfaces (think native and/or mobile applications)
that would not have access to our original controller.

We'll continue with this example in future chapters. We will finally rid ourselves of hard-coded

data and implement a data access layer using the Entity framework. All of this can be
accomplished with Test-Driven Development.

www.EBooksWorld.ir

Summary

In this chapter, we covered some pitfalls that will hinder TDD, such as dependence on third-
party libraries, direct instantiation of classes, and fragile tests. We also discussed ways to avoid
or work around those issues. We introduced and discussed each of the SOLID principles. We
also discussed the different types of test double and when each type is appropriate. Lastly, we
gave a short example of an N-tiered application and how it could be tested.

In Chapter 5, Tabula Rasa — Approaching an Application with TDD in Mind, we'll explore how to
approach and application with a TDD in mind, turning theory into practice, and how better to
grow an application through tests.

www.EBooksWorld.ir

Tabula Rasa — Approaching an
Application with TDD in Mind

It might seem a daunting task to develop an entire application with Test-Driven Development
(TDD). Until now, all of the examples have been relatively small. The functions and methods
have had a tiny, limited scope. How does TDD translate when developing full-fledged
applications? Quite well, actually.

Topics discussed in this chapter include:

Yak shaving

Big design up front
YAGNI

Test small

Devil's advocate

www.EBooksWorld.ir

Where to begin

The best place to begin is at the beginning. Before a developer can start coding, they must know
what the goal of the program is. What is the purpose of the application? Without a clear
understanding of the problem that they are attempting to solve, it can be difficult to get started.
At the very least, it is ill-advised to begin without some kind of plan.

The sooner you start to code, the longer the program will take.
— Roy Carlson, University of Wisconsin

Have you ever started a craft project without any objective in mind? How did you know what it
was you were making? Did the project turn out well? If it did, you more than likely picked a
direction at some point and set out to achieve a goal. You may have even had to start over or
make adjustments along the way in order to complete the project.

Now, imagine starting the same craft project with the desired result defined ahead of time.
Perhaps you wanted to make a drawing. Maybe you developed a set of plans.It isn't until a clear
understanding is achieved before you start the physical act of beginning the project. In this
example, the likelihood of success is much greater. The chance for stumbling blocks along the
way are minimized.

Does this mean that all questions need to be asked ahead of time? Should all answers be
obtained before you begin? Certainly not. Sometimes just a cursory understanding of a problem
is enough to get started. But, the clearer the objectives, the better the likelihood of developing
the proper solution.

www.EBooksWorld.ir

Y ak shaving

In the examples provided in previous chapters, you may have noticed there was a lot of moving
around of code that didn't seem to have any immediate benefit. In TDD, especially at the
beginning of a project, some work must be done that doesn't seem to make much sense. Tests
are written that do nothing more than prove the existence of a class or method. The code is
refactored in a way that only pushes hard-coded values into another dependency. This means
that more files are created, and you may find yourself writing a significant amount of helper
classes. All of these activities are referred to as yak shaving.

Yak shaving has two meanings that pertain to software development. The first and the one to be
avoided is writing things that aren't needed as a means of procrastination. The second is the act
of doing all the things that must be done to prepare the code. The difference between the two is a
fine line. The side of the line you are on is determined by your intent in writing your code. Are
you avoiding the code that you should be writing or are you laying the groundwork for efficient
and effective software development using TDD?

In our case, as discussed in earlier chapters, we are either laying the groundwork for future tests,
or we are implementing a known technique for preventing writer's block in our tests. Sometimes,
the process of preparing an application for being tested can take quite a while.

When working in a legacy application, you could spend the better part of a week simply creating
factories, adding interfaces to existing classes, writing test doubles, or doing safe refactoring
techniques. All of these activities can help to improve testability and ensure a smooth testing
experience. It is important to avoid getting carried away with these activities though. We only
want to do them as a means of driving the next test forward.

www.EBooksWorld.ir

Big design up front

It used to be common practice to have a lengthy, and expensive, Software Development Life
Cycle (SDLC). Large teams were assembled. Meetings were scheduled and discussions had, ad
nauseam. Requirements were gathered and documents were created which consumed reams of
paper that would fill the filing cabinets of each and every team member. A design for the system
would often be democratically assembled and a plan laid out for the system.

Once management and/or executive teams were satisfied, development could start. This long
and cumbersome process often meant that budgets had already been significantly depleted with
the cost of everyone’s time in the planning stages. If for some reason, a flaw in the design was
discovered during the development cycle, change orders and a slew of meetings would often
occur.

Should the requirements change due to a change in markets or other external conditions it could
potentially derail an entire program. If the SDLC did not allow for quick adaptation to change
and rapid course correction, it would often spell doom for the entire project. Worse, if the
change were significant enough it could render the need for the application obsolete.

Unfortunately, developing software in this manner was quite costly and would end in failure
more often than success. The cost of change was too great and the resulting disruption was often
detrimental to the process. These days software projects are more likely to be developed in some
sort of Agile fashion.

www.EBooksWorld.ir

A clean slate

So where do we begin a new application with TDD? Starting with TDD in mind is really no
different from beginning any software development project. A developer must have some idea
as to the goal of the application. The basic requirements should be understood. Just as we grow
our application with tests, the requirements should grow with time.

www.EBooksWorld.ir

One bite at a time

How do you eat an elephant? One bite at a time.

It is a massive undertaking to try to define and develop a monolithic application all at once. If
you were tasked with creating Facebook you might not know where to begin. But, if you break
the application down into logical portions such as Login, User Dashboard, and News Feed, it
becomes much more manageable.

www.EBooksWorld.ir

Minimum Viable Product

Each definition of work should be broken down into small deliverables. The concept of a
Minimum Viable Product can apply to all aspects of our code. As the requirements for the
monolithic application are broken down into manageable chunks, it might be possible to start
coding. If a programming task is small enough to take only a couple of hours to complete, it's
quite difficult to deliver something that wildly misses the mark. However, if a change is
required, feedback should be given, and adjustments can be made quickly.

www.EBooksWorld.ir

Different mindset

As an application is being developed with a view towards TDD, you should take the same
approach to small deliverables. Write a little test, write just enough code to make it pass, then
refactor. If you're constantly running your test suite, or better yet, you are using a continuous test
runner such as NCrunch, your feedback cycles should be quite quick indeed.

9 Never leave an ignored test, or ignore more than one test at a time.

If a test begins to fail during the development cycle it should be easy to recover. The code just
written must be at fault. Pause the current effort and evaluate. Is the change necessary? Does the
failing test need to change? Skip (xUnit) or Ignore (MSTest) your current test, if needed. Fix the
code and resume by un-ignoring your test. Never leave an ignored test, or ignore more than one
test at a time. Doing so will only risk the test (or worse, tests) never being completed, fixed, or
recovered. An ignored test has no value. If a test is un-ignored at a later date by you or someone
else and is now (or still) failing, it may be difficult to determine if the test is valid and indicates
a true failure, or invalid and possibly sending you on a wild goose chase. Make sure your tests
are valid, accurate, and provide value.

www.EBooksWorld.ir

YAGNI - you aren't gonna need
it

At times, you might be compelled to write some code because you think you'll need it. It's just a
simple method. If you have a table full of data you'll probably need a ceta11 method and a
cetByld method. A word of caution here: don't write any code until you have a true need for it.
The more code that is written, the more code needs to be maintained. If you write code that you
think you might need, but never actually use, you've wasted effort. Worse yet, you've introduced
code that must be maintained until or unless it is removed.

Don't write code in anticipation of a future need. This is wasteful and often costly
8 to develop and maintain.

www.EBooksWorld.ir

Test small

One of the most important things to consider when doing TDD is the size and scope of your
tests. TDD is an exercise in fully understanding the problem you are trying to solve and being
able to break the solution up into as many tiny little pieces as possible.

As an example, let us consider something simple: an application to manage a list of items that
need to be done. How can we break up the use cases for this application?

First, using what we discussed with yak shaving, we can verify that the application even exists.

public class ToDoApplicationTests
{
[Fact]
public void TodoListExists()
{
var todo = new TodoList();
Assert.NotNull(todo);
}
}
internal class TodoList
{
public TodoList()
{
}
}

Next, verify that you are able to retrieve a listing of items to be done.

[Fact]

public void CanGetTodos()

{
// Arrange
var todo = new TodoList();
// Act
var result = todo.Items;
// Assert
Assert.NotNull(result);

www.EBooksWorld.ir

Devil's advocate

We will continue to demonstrate testing small, but already we have hit our next example.
Playing devil's advocate is a useful technique in many circumstances. The way that we play
devil's advocate in TDD is by imagining the simplest, and possibly most erroneous, approach to
making the test pass. We want to force the test to make the code right instead of writing the code
that we believe to be correct. For instance, in this case the desire is to make the test that was just
written pass by adding an Items list. But the test doesn't require that at this point. It only requires
that Items exists as a property on the class. There is no designation of a type in the test. So, to
play devil's advocate, make the test pass by using Object as the type and setting the 1tems object
to a simple non-null value.

internal class TodolList

{
public object Items { get; } = new object();

public TodoList()
{
}

}

Okay, now all the tests pass but that clearly isn't a proper solution. Thinking small steps, we
could force the implementation to have a count, surely that will require it to be a list of Todos.
Add the following to the last test:

| Assert.Empty();

To make that pass, 1tems must change:

|public IEnumerable<Object> Items { get; } = new List<Object>();

Remember what we discussed about the SOLID principles in Chapter 4, What to Know Before
Getting Started. We want to use interface segregation and limit ourselves only to the interface
we need. We don't need the full 1List interfaces capability so we don't need to use it. All that is
needed is the ability to iterate over a collection of items. The simplest interface for doing this is

IEnumerable.

We still have a problem though: we are using an object as our enumerable type. We want to use
only a specific class. Let's fix that now. Modify the last test one more time to include a type
assertion.

[Fact]
public void CanGetTodos()

{
// Arrange

var todo = new TodoList();

// Act
var result = todo.Items;

// Assert
Assert.NotNull(result);
Assert.IsAssignableFrom<IEnumerable<Todo>>(result);

www.EBooksWorld.ir

Assert.Empty();
}

Now, update the class, shown as follows:

internal class TodolList

{

public IEnumerable<Todo> Items { get; } = new List<Todo>();

public TodoList()
{
}

}

public class Todo

{
b

As you can see, we added what seemed to be a fairly small test and ended up creating a property,
assigning a default value, and creating a class. Can you think of any way we could have made
this smaller?

Our next test might verify that the Todo items start as empty, but if we think back to the laws of
TDD, the first law is to write a failing test. Right now, if we wrote a test that verified 1tems to be
empty we would expect that test to pass. So, what test should we write?

The test we have decided to write next is a test to verify a means to add a Todo item.

[Fact]
public void AddTodoExists()
{
// Arrange
var todo = new TodoList();
var item = new Todo();
// Act
todo.AddTodo(item);
}
internal class TodolList
{
public IEnumerable<Todo> Items { get; } = new List<Todo>();
public TodoList()
{
}
internal void AddTodo(Todo item)
{
}
}

Up to this point, we have been taking steps that would likely resemble the same steps you would
take in normal development, cutting giant swathes of functionality into the code. This is the first
test where we stop before we have actually achieved valuable functionality. This is part of
taking those small steps though. We could deploy the application right now. It wouldn't be very
useful but we do have that option. If we had reached the end of our sprint, the product owner
might request that, in order to deploy as soon as possible, we hard-code in some Todo items just
so something is available in the UI.

Our next test seems to be fairly straightforward. We will verify that we can actually add a Todo
using our new method. There is a catch though because this test is testing functionality and not

www.EBooksWorld.ir

general class structure. We suggest having a test class specifically for this method.

public class TodoListAddTests

{
[Fact]
public void ItAddsATodoItemToTheTodoList()
{
// Arrange
var todo
var item

new TodoList();
new Todo();

// Act
todo.AddTodo(item);

// Assert
Assert.Single(todo.Items);

3
3

internal class TodolList

{

private List<Todo> _items = new List<Todo>();

public IEnumerable<Todo> Items

{
get

{

return _items;

b
b

public TodoList()

{
}

public void AddTodo(Todo item)

{
_items.Add(item);

}

}

Now, that really was a flying leap off a cliff. That one test nearly changed all of our application
code. We just completely changed the implementation of 1tems, and we added code to the AddTodo
method. Is there a way that we could have broken those into two or more steps? We still have a
lot to do with this application, and we will cover some of it. But, before we go on, write down
the next few tests that you think you would write. Try not to skip this exercise because breaking
up functionality into small chunks like this is one of the areas where most developers struggle
when learning TDD.

We are going to temporarily pause the forward progress of this sample application because we
have already begun to work ourselves into a corner. To prevent getting blocked, we should be
testing negative cases first.

www.EBooksWorld.ir

Test negative cases first

What does it mean to test negative cases first? In many computer games, especially role-playing
games, it is common for the game designers to make it very difficult to win the game if you
simply go straight to the boss. Instead, you must make side quests, make wrong turns, and get
lost in the story before you can fight the boss. Testing is no different. Before the problem can be
solved, we must first handle bad input, prevent exceptions, and resolve conflicts in the business
requirements.

In the Todo application, we mistakenly flew through and added an item to the Todo list without
verifying that the item was valid. Now, the sprint is over and our user interface developers are
mad at us because they do not know what to do with a Todo item that has no details at all. What
we should have done is handle the cases where we receive bad data first. Let's rewind and
temporarily skip the test we just made.

[Fact(Skip="Forgot to test negative cases first")]
public void ItAddsATodoItemToTheTodoList()

The test we need to write now should go above the test that was just ignored, but in the same
file. Remembering that we need to have small test increments, we can write a test that guards
against the simplest bad data, nu11.

[Fact]
public void OnNullAnArgumentNullErrorOccurs()

{
// Arrange

var todo = new TodoList();
Todo item = null;

// Act
var exception = Record.Exception(() => todo.AddTodo(item));

// Assert
Assert.NotNull(exception);
Assert.IsType<ArgumentNullException>(exception);

}

public void AddTodo(Todo item)
{

}

throw new ArgumentNullException();

Notice that we have removed the code that was in place for addTodo. We could have left the code
in place, but at this point it is clutter and there is currently no test that forces that code to be
present. Sometimes, when you ignore a test, it is easier to remove the functionality that test was
verifying instead of working around the functionality. There are times when the clutter could
restrict your refactoring efforts and could result in worse code. Don't be afraid to delete code for
tests that are being skipped, and don't be afraid to delete skipped tests that make their way into
source control.

One other issue that we encountered when making this change is that the AddTodoexists method
defined earlier in the TodoApplicationTests class is now failing. This test was a yak shaving test to

www.EBooksWorld.ir

start with and does not add any real value to the test suite, so just remove it.

Now that we have the null case covered by our method, what is the next thing that could go
wrong? Thinking about it, are there any required fields for a Todo? We should probably make
sure the Todo has a title or description at least before we add it to the list.

First, before we can verify that the field has been populated, we need to verify that the field
exists on the model. Writing model tests might seem a bit like overkill to you, but we find that
having these tests helps to better define the application for others coming into it. They also
provide a good attachment point for field validation tests later on when your business decides
that the description field of a Todo has a maximum length of 255 characters. Let's create a new
class for the Todo model tests.

public class TodoModelTests
{
[Fact]
public void ItHasDescription()
{
// Arrange
var todo = new Todo();
// Act
todo.Description = "Test Description";
}
}
public class Todo
{
public string Description { get; set; }
}

As you can see, there is no real assert for this type of test. Simply verifying that we can set the
description value without throwing an error will suffice.

Now that we have a description field, we can verify that it is required.

[Fact]
public void OnNullADescriptionRequiredValidationErrorOccurs()
{

// Arrange

var todo = new TodoList();

var item = new Todo()

{

Description = null
3
// Act

var exception = Record.Exception(() => todo.AddTodo(item));

// Assert
Assert.NotNull(exception);
Assert.IsType(typeof(DescriptionRequiredException), exception);

}

internal class TodolList

{

public void AddTodo(Todo item)
{

item = item ?? throw new ArgumentNullException();

item.Description = item.Description ?? throw new
DescriptionRequiredException();

www.EBooksWorld.ir

}

We are long overdue for some refactoring and this is a good place to pause our testing efforts
and refactor. We would like to move the model validation into the model. Let's create a quick
test for a validation method on the Todo model and then move that logic into the Todo class.

public class TodoModelValidateTests

[Fact]
public void ItExists()
{
// Arrange
var todo = new Todo();

// Act
todo.Vvalidate();
}
}

public class Todo

{

public string Description { get; set; }

internal void Validate()

{
b

}

Now, at least for the moment, we want to move our validation logic over from the Todo list into

the model. In creating the validation test and moving the logic, we have caused our yak shaving
test to fail. The test is failing because, although the required method exists, it is throwing an
exception because we have not populated the description of our Todo. We will have to remove
this test as it no longer adds value.

public class TodoModelValidateTests
{
[Fact]
public void OnNullADescriptionRequiredValidationErrorOccurs()
{
// Arrange
var item = new Todo()
{

Description = null

}

// Act
var exception = Record.Exception(() => item.Validate());

// Assert
Assert.NotNull(exception);
Assert.IsType(typeof(DescriptionRequiredException), exception);

3
3

public class Todo

{

public string Description { get; set; }

internal void Validate()

{

Description = Description ?? throw new DescriptionRequiredException();

}

}

Finally, the tests we needed to write before we could make the refactoring change we wanted to

www.EBooksWorld.ir

make are complete. Now we can simply replace the exception logic dealing with model
validation in the TodoList class with a call to validate on the model.

public void AddTodo(Todo item)
{

item = item ?? throw new ArgumentNullException();

item.validate();
}

This change should have no effect on our tests or our resulting logic. We are simply relocating
the validation code. There are many more validations that could happen. Can you think of a few
that might be valuable?

It is now time to add back in our skipped test, with some minor modifications to pass validation.

[Fact]
public void ItAddsATodoItemToTheTodoList()

{
// Arrange

var todo = new TodoList();
var item = new Todo

{

Description = "Test Description"
3
// Act
todo.AddTodo(item);

// Assert
Assert.Single(todo.Items);
}

public void AddTodo(Todo item)
{

item = item ?? throw new ArgumentNullException();

item.validate();

_items.Add(item);
}

www.EBooksWorld.ir

When testing is painful

There may come a time when you may encounter some pain. Perhaps you've forced yourself into
a corner with your design. Maybe you're unsure what the next, most interesting test would be.
Sure, you didn't mean to, but conceivably you could have taken too great a leap between tests.
Whatever the case may be, there may come a time when testing becomes painful.

www.EBooksWorld.ir

A spike

If you find that you're stuck or you're debating between options on how to proceed, it might be
beneficial to run a spike. A spike is a means with which you can investigate an idea. Give
yourself a time-limit or some other limiting metric. Once sufficient knowledge or insight has
been gained by the exercise, throw away the results. The purpose of the spike is not to walk
away with working code. The goal should be to gain understanding and provide a better idea of
a path forward.

www.EBooksWorld.ir

Assert first

At times, you may know the next test you want to write without being quite sure how to start. If
this happens, start with Assert to determine the expected result. With the expectation defined, set
out to make the actual value match the expected value. You might want to take this approach
more often to assure that you’re only writing enough code to make the desired test pass.

www.EBooksWorld.ir

Stay organized

Remember, tests are the first consumer of your application. The best and most accurate
documentation you can provide is a thorough and well-maintained set of tests. Within your test
suite, create folders, nested classes, or utilize features of your test framework to make your tests
more readable. Remember, if you do encounter a test failure at a later date, a descriptive test
name and proper assertion will go a long way in describing how the result came to be.

Use pescribe to better organize your JavaScript tests. Nest multiple levels by using more than
one pescribe within your tests.

www.EBooksWorld.ir

Breaking down Speaker Meet

The Speaker Meet application started with a simple goal: connecting technology speakers,
communities, and conferences. The idea was simple but could evolve into broad complexity. It
was decided at an early stage to start small and add features if and when it made sense. New
ideas should be able to be implemented and tested with little effort. If an idea turned out to be
the wrong direction for the site, the new functionality could easily be removed and abandoned.
Start simply and release small features for quick feedback.

Three main sections of the initial site were defined as Speakers, Communities, and Conferences.
Each would need to have a listing of all speakers/communities/conferences, provide a way to
view details about a selected item, and provide a way to search items based on a predefined set
of criteria. This would be the Minimum Viable Product for the initial release.

www.EBooksWorld.ir

Speakers

In the beginning, it was decided that speakers would be the initial focus. Speakers would contain
a name, email address, technology selections, and location. Gravatar would be used to provide
an avatar. Future enhancements that were excluded from the Minimum Viable Product include a
list of talks, travel distance, and ratings. By focusing on this limited functionality, initial
feedback can be collected and future effort can be directed appropriately.

www.EBooksWorld.ir

Communities

The secondary focus of the Speaker Meet application revolved around technology communities.
Meetups and user groups are typically run by dedicated volunteers that are always looking for
new and interesting speakers for their meetings. The main goal of the community section of the
website is to define a name, location, meeting day/times, and technology selections of member

communities.

www.EBooksWorld.ir

Conferences

Technology conferences are the third and final focus of the Speaker Meet site. Conferences have
similar requirements to communities, in that they require a name, location, dates, and
technology selections. They differ primarily in size, scope, and dates. User groups typically will
have one meeting per month where one speaker may present to a small crowd. Conferences
typically occur once a year, from one to many days, with many speakers presenting to many
more attendees.

www.EBooksWorld.ir

Technical requirements

The technologies to be used for this project were decided early on, based on the knowledge and
experience of the team. JavaScript and React]JS were to be utilized for the front-end website. The
back-end would utilize C# and WebAPI with .NET Core, Entity Framework, and SQL Server.
All would be hosted in Azure. Knowing these technical requirements before coding starts goes
long way towards defining parts of your system.

www.EBooksWorld.ir

Summary

Now, you should have a basic understanding of Yak shaving and how it might help you get
started. You've been cautioned about Big design up front and creating things that you might not
need in anticipation of a time when they might be needed (YAGNI). Be sure to test small, play
devil's advocate, and test negative cases.

In Chapter 6, Approaching the Problem, the three sections of the Speaker Meet site will be
discussed in much greater detail. More effort will be put into breaking down these initial
statements into meaningful requirements and manageable units of work.

www.EBooksWorld.ir

Approaching the Problem

In Chapter 5, Tabula Rasa — Approaching an Application with TDD in Mind, the details of the
Speaker Meet application were discussed. The requirements have been defined at a very high
level. A picture has been painted with very, very broad strokes. This is often how the concept for
many applications begins, with a high-level description and an important key functionality
defined. It may have started with a bar napkin or a whiteboard sketch, but somewhere, somehow
an idea was formed.

In this chapter, we'll cover:

e Defining the Speaker Meet application
e Architectural choices
e Testing direction

www.EBooksWorld.ir

Defining the problem

To define the problem, first the vision must be defined. Clear objectives should be described and
outlined. The Speaker Meet problem came about as a result of technology speakers looking for a
single, centralized place in which to find speaking opportunities and venues. It was determined
that user group and conference organizers were equally in need of a solution to seek and find
speakers for their meetings.

Thus, the idea for Speaker Meet was born. But, how would the application work? Should it be a
mobile application or a website? How would the data be collected and managed? Would users
be allowed to create their own profiles? Could users submit speaker, community, and conference
information? Where would the application live and how would it be hosted? And where in the
world do we begin?

www.EBooksWorld.ir

Digesting the problem

The problem the application will be designed to solve has been defined. Speaker Meet will bring
technology speakers, communities, and conferences together. Now that the purpose has been
defined, it must be digested.

As was suggested before in a previous chapter, attacking a new application from all directions is
ill-advised. It can be quite a daunting task to attempt to approach a new software project by
implementing each and every desired feature all at once. It can also be a large chore to define
every want and need of the system.

It would be far better to define small, manageable chunks of the application that can be delivered
quickly in order to evaluate their correctness and effectiveness. The trouble is, how does one
define what can be separated into small pieces and determine that this small piece is of sufficient
value?

www.EBooksWorld.ir

Epics, features, and stories; oh
my!

Many software development projects will maintain what is referred to as a product backlog.
This is where everything that the system might be asked to do is compiled. The product backlog
might contain the largest of ideas down to the most minute detail. The important thing is that
these ideas are recorded.

The backlog should be regularly groomed and maintained. Items should be evaluated for their
importance and ordered appropriately. If it is determined that an item is the next most important
thing on which to be worked, it should be broken down into appropriately sized stories for the
team to effectively deliver in a timely manner.

www.EBooksWorld.ir

Epics

Larger, broader ideas are defined as epics. These could potentially be quite significant and wide-
ranging in scope and size. Speakers would be defined as an epic. The speakers epic is a segment
of the application devoted to anything and everything related to technology speakers.

The term epic is used to signify that the features and stories contained within the epic all revolve
around a single, central idea. These essentially start life as a single, large user story, and are
broken down into smaller features and stories. Epics can often take several sprints to complete.

www.EBooksWorld.ir

Features

Features are generally smaller than epics and are contained within epics. A feature will usually
contain many stories related to the subject matter it is responsible for. Think of features the same
way you think of epics, they are just a smaller grouping.

A feature might comprise a speaker catalog or speaker detail. The speaker catalog might
contain everything associated with displaying, sorting, filtering, and searching for speakers
within the system. The speaker detail feature might define details and functionality regarding
single, individual speaker information and how it is displayed within the application.

www.EBooksWorld.ir

Stories

Depending on team preference, a story might be as small as seeing a speaker's name when
viewing their details. A word of caution: it is possible to have too small a story. It is better to
break a story down so it's just small enough and begin work than to waste time on minute
details. If done correctly, the details will emerge during the development cycle.

Determining what is small enough should be left to the team to decide. A good rule of thumb is
that stories should take from half a day to three days to complete. Less than half a days' worth of
work and the story will likely be broken down into pieces that are too small. More than three
day's work and there is likely an opportunity to break the story into two or more stories.

0 It is possible to have too small a story.

Don't fall into the trap of breaking down stories into piece that are too small. Effort can be
wasted by trying to compose smaller and smaller stories. If you're practicing Scrum, remember
that small improvements can and should be proposed at the conclusion of each sprint. During the
retrospective, story size and its effectiveness should be discussed. If it is decided that the size
was not appropriate, whether that be too large or too small, adjustments should be made before
the next sprint begins.

www.EBooksWorld.ir

Maintain your backlog

So why is it so important to maintain the product backlog? A well-maintained backlog will
define what the team should work on and help them plan for known, upcoming tasks. This will
also help a team put together forecasting in order to plan for when a particular feature might be
completed.

Stories g -'
Backlog Board Forecast Off Parents Hide In progress items Show Mapping Off * Ve
New = Create query Column options = Y
Type User Story X
Title Add

Order Work Item Type Title State Value Area Iteration Path Story ...

1 User Story Ml Speaker Listing @ Resolved Business SpeakerMeet_New 3

2 User Story Wl Speaker Detail ® Resolved Business SpeakerMeet_New 2

3 User Story I Speaker Search ® Active Business SpeakerMeet New 2

4 User Story Ml Conference Listing ® Active Business SpeakerMeet_New 3

5 User Story [l Conference Detail New Business SpeakerMeet_New 2

6 User Story] Conference Search New Business SpeakerMeet_New 2

7 User Story Ml Community Listing New Business SpeakerMeet_New 3

8 User Story Ml Community Search New Business SpeakerMeet_New 2

If appropriate metrics are captured, a well-disciplined team can deliver a reliable velocity in
each sprint. With appropriately sized and estimated stories a reasonable timeline can be
predicted for upcoming items in the backlog. For example, if a team has reliably delivered 20
points per sprint and the next five stories have been estimated at 8 points each it would not be
unreasonable to expect these five stories to be completed in about two sprints. Of course, this is
not a commitment; it is merely an estimate.

www.EBooksWorld.ir

The Speaker Meet problem

Remember that the application scope will initially be kept small and limited in functionality.
Some features might be identified now as an item for the future, but the limited scope for the
Minimum Viable Product still needs to be better defined. More features will continue to be
added to the product backlog and prioritized quite low if it is determined that they are not
needed for a first release. Consider, though, that a minimum viable product still needs to deliver
some value. A software application that doesn't do anything isn't worth much to anyone.

Taking the time to prioritize the potential value of features and stories will help decide what
should be included in an initial release, and what can wait. By determining the effort involved to
deliver specific functionality and combining that information with the proposed value, an
educated decision can be made regarding which features will be delivered first.

www.EBooksWorld.ir

Meaningful separation

Brainstorming the proposed features of the application will help to describe the system. Finding
meaningful, logical separation will help define the scope of particular sections of the software
solution. Logical boundaries could include epics and features as defined in the product backlog.
They could also be determined by divisions in technology.

www.EBooksWorld.ir

Speakers

The speaker epic will be made up of all of the features and stories surrounding the speakers
portion of the application. This will include the speaker catalog and speaker details. This section
will also contain any future enhancements and features that might be added at a later date.
Future functionality might include speaker ratings and reviews, slide decks, and presentations,
YouTube or Vimeo videos, and so on. These have yet to be determined and can be evaluated at a
later date when a proposed value can be weighed.

Not all functionality needs to be decided up front. Remember, work towards a
Minimum Viable Product and build functionality as it's needed.

Here are some basic features stories for the speaker epic:

As user group organizer
I want to see a listing of all speakers
So that I can find speakers for my user group.

As conference organizer
I want to see details of a particular speaker
So that I might view more information about them.

We are using a story format to describe detail at all levels of the application.
That is, epics are presented as a story, themes or features are presented as a
story, and specific requirements are presented as a story. In the hierarchy, only
the specific requirements are called user stories though. The reason for giving
them all the story format is simple. We want to be able to write a requirement and
be able to transition it from user story to feature or even to epic with minimal
hassle. So, we use the same format for a requirement regardless of the
abstraction level of that requirement.

These feature stories are a good start. This will provide the business with an opportunity to
grade and prioritize features before determining what should be worked on first. When presented
to the team, these will likely need to be broken down into smaller, more detailed user stories
with acceptance criteria.

Good acceptance criteria will help the team determine when a story can be marked complete. If
all conditions have been met, then the story is done and can be delivered. If at some point, it is
decided that more work is needed in order to deliver the requested functionality, additional
criteria should be included or new stories added to the backlog.

As user group organizer
I want to see a listing of all speakers
So that I can find speakers for my user group.

Given system contains speakers
When viewing speaker catalog
Then a listing of all speaker summaries is returned.

As conference organizer

www.EBooksWorld.ir

I want to see details of a particular speaker
So that I might view more information about them.

Given
When
Then

Given
when
Then

specified speaker exists
speaker selected
speaker details are returned.

specified speaker does not exists

speaker selected
a friendly error message should be returned.

www.EBooksWorld.ir

Communities

User groups and meetups comprise the community section of the application. The main purpose
of this portion of the application is to provide a place for speakers and potential members and
attendees to find and discover technical communities in their area. Anyone traveling to a
specific city might also be interested in learning which user groups or meetups are available to
them, whether for speaking purposes or general attendance. The community segment of the
application will include the community directory and user group details. If any future
enhancements are proposed, they can be added as new features or user stories to the community
epic.

At some point in the near future, location search will be added to the community portion of the
system. This would allow the user to search for communities based on distance, perhaps
allowing speakers to determine communities within a 200-mile radius at which they may be
interested in speaking. This feature was determined to be unnecessary for an initial release of the
Speaker Meet application.

A small list of community feature stories can be found here:

As a speaker
I want to see a listing of all communities
So that I can find potential user groups at which to speak.

As a speaker
I want to see details of a particular community
So that I can learn more about the user group.

Much like the speaker feature stories, the community feature stories will help the product owner
prioritize the functionality to be developed. These, too, will likely need to be broken down into
smaller, more detailed user stories with acceptance criteria. Take a look at the stories here:

As a speaker
I want to see a listing of all communities
So that I can find potential user groups at which to speak.

Given system contains communities
When viewing community catalog
Then a listing of all user groups is returned.

As a speaker
I want to see details of a particular community
So that I can learn more about the user group.

Given community selected
When specified community exists
Then community detail returned.

Given community selected
When specified community does not exists
Then a friendly error message should be returned.

www.EBooksWorld.ir

Conferences

The details and functionality within the application regarding conferences are defined and
described in the conferences epic. This will include the conference catalog and conference
details. Future enhancements and features proposed at a later date may be added to the
conferences epic.

Conferences, too, may utilize location search. There are a variety of third-party services
available and they can be evaluated for inclusion in a future release. Like all third-party code,
these will be abstracted away from the main application, so that the system is insulated from
potential changes.

As a speaker
I want to see a listing of all conferences
So that I can find conferences at which to speak.

As a speaker
I want to see details of a particular conference
So that I can learn more about the conference.

Conferences differ from communities in that they happen only once per year and often have
many speakers and sessions for the event. The conference feature stories will help the product
owner prioritize the functionality to be developed. These, too, will likely need to be broken
down into smaller, more detailed user stories with acceptance criteria. Take a look at the stories
here:

As a speaker
I want to see a listing of all conferences
So that I can find conferences at which to speak.

Given system contains conferences
When viewing conference catalog
Then a listing of all conferences is returned.

As a speaker
I want to see details of a particular community
So that I can learn more about the user group.

Given specified conference exists
when conference selected
Then conference detail returned.

Given specified conference does not exists
When conference selected
Then a friendly error message should be returned.

www.EBooksWorld.ir

Separate by team function

Many self-organizing teams split themselves by expertise. This might mean that members divide
themselves into front-end developers, back-end developers, QA, and so on. Likewise, stories
and tasks can be separated by functionality.

It is best left up to the team to decide how to effectively organize themselves and their body of
work. For example, Sally may be the most knowledgeable developer when it comes to the .NET
framework, while Steve may have more expertise with React. It might prove better to let Sally
take a majority of the back-end stories and let Steve focus on front-end functionality.

Note that it is an easy pitfall to prioritize stories in such a manner that each team member has the
most suitable work for them available. This will be efficient but not effective. Instead, priorities
should focus on value delivered and optimized later on. There's no harm in letting someone (for
example, Sally) work on UI features together with Steve when for example large Ul design
changes are needed.

www.EBooksWorld.ir

Technical separations

There may be a time when you must perform some work that doesn't fit neatly into the epics
defined previously. Non-functionality requirements may include items related to the technology
chosen for parts of the system. Stories could comprise purely web or front-end functionality,
such as bundling JavaScript files. Alternatively, back-end or server-side functionality may need
to be defined outside the previous epics.

There will likely be a number of non-functional or system specifications that will also need to be
evaluated. Examples of these requirements might include response times, throughput, or
memory consumption. These are commonly added to the checklist for Definition of Done so that
each story should confirm the non-functional requirements.

Many modern web-enabled applications are built as a Single Page Application (SPA) using
JavaScript. These applications are hosted by a web server and delivered to a web browser on
request. The entire application, or rather large pieces of the application, are delivered all at once.
As requests are made by the client browser, the SPA will update the data on screen or mimic a
page transition. Full-page postbacks and page reloading are not used with an SPA. This provides
a perceptible increase in performance and increases in responsiveness for the end user. It also
allows for distributing some of the processing of an application to client machines.

With this division of the SPA, much of the functionality can be split into web and non-web
designations. A team may choose to write their stories in this way. Similarly, a team may choose
to designate web specialists to work primarily on web-related functionality. One issue with this
split is that the single story with just a front-end or back-end is not potentially shippable
software. They do not separately deliver value. Instead, the story could be split by stripping out
special case handling, offering only one purpose, keeping the UI simpler, and so on.

Like the web designation, a team may decide to separate stories into server-side or back-end
functionality. This might cover all functionality from the API to the database and everything in
between. The back-end of the Speaker Meet application is written in .NET with C# and Entity
Framework Core and a SQL Server database. These technologies provide an excellent
opportunity to create technical separations.

Defining a consistent API, for example, is an excellent place to start. How the back-end might
be further subdivided is discussed later in this chapter.

www.EBooksWorld.ir

Technical requirements

The Speaker Meet application has an assortment of technical requirements. Language choices
and platform decisions can have an immense effect on an application. These decisions will
determine how an application is delivered to a client and how many parts of the application are
expected to behave.

Technology specifications can have a big impact on an application. Whether LAMP (Linux,
Apache, MySQL, PHP/Perl/Python), MEAN (MongoDB, Express, Angular, Node), or in the
case of Speaker Meet .NET and React, programming languages and frameworks can play a big
role in a software system.

www.EBooksWorld.ir

React web user interface

The first user interface defined for the Speaker Meet application is an SPA using React, a
JavaScript library. React was written by the Facebook team for the purpose of developing
modern web applications. This equates to the View in the traditional Model-View-Controller
template. By using a one-way data flow model along with the Virtual DOM, React is an
extremely powerful library that performs well and scales nicely.

Many additional libraries will be included using the JavaScript package manager NPM.
Additional libraries include webpack, a bundler for JavaScript, CSS, and other such files. More
will be introduced in the following chapters.

www.EBooksWorld.ir

NET Core

The primary language for the server-side application will be C# in .NET Core. With the release
of the latest overhaul to the .NET Framework, developers can choose which parts of the
framework to include within their application and keep core level libraries to a minimum.

www.EBooksWorld.ir

.NET Web API

The way to expose internal information and behavior to an external system, and the SPA is
considered an external system, is to provide an Application Programming Interface (API).
The API layer exposes data functionality to the outside world. The primary gateway into the
application is an assemblage of APIs using .NET Web API.

www.EBooksWorld.ir

Entity Framework

For the Speaker Meet application, an Object-Relational Mapper (ORM) is utilized to convert
database objects into C# objects. There are many such ORMSs available for a variety of different
languages and platforms. In .NET alone there is NHibernate, LLBLGen, Dapper, and many
more. For the Speaker Meet application, Entity Framework (EF) Core was selected.

Choosing an ORM mapper such as EF Core in and of itself is a requirement that will affect
architectural choices for an application. The team will likely need to determine the pros and cons
of ORM options available to them, and whether to use an ORM at all.

www.EBooksWorld.ir

Azure

The Speaker Meet application is hosted using Microsoft Azure. Choosing Azure allows the team
to scale up or down parts of the application as demand arises. Of course, there are architectural
decisions that must be made to effectively leverage the available functionality that Azure
provides.

Knowing about upcoming or desired future functionality can allow a team to
0 make wise decisions while developing parts of an application.

Future enhancements are planned to employ the power of Azure Search. The core search
functionality was written in such a way that switching to Azure Search would have minimal
impact on the rest of the system. Implementing Azure Search, of course, would be developed
using TDD.

www.EBooksWorld.ir

Database

Microsoft SQL Azure is utilized to persist speaker information, user group and community
particulars, information about conferences, as well as user login details. SQL Azure is very
similar to using SQL Server on-premise, with a few caveats. For example, SQL Azure requires
clustered indexes on each table. Knowing the requirements and differences of available database
options allows the team to make an informed decision about their data storage choices.

www.EBooksWorld.ir

An N-Tiered hexagonal
architecture

In a previous chapter, the N-Tiered architecture was discussed, where a software application is
divided up into layers. N-Tiered applications are typically separated in successive layers, like the
layers of a cake, from A to B to C and so on. There is a danger in defining an application in this
way, as sometimes pieces of functionality don't cleanly fall into one layer. As long as the layers
remain loosely coupled and functionality does not cross the boundaries, your application should
remain well-structured and organized.

www.EBooksWorld.ir

Hexagonal architecture

The hexagonal architecture was first described by Alistair Cockburn in the 2000s. Hexagonal
architecture has also been referred to as ports and adapters, in which ports are abstractions and
adapters are the implementations. This approach to designing applications changes the concept
of layers to one of internal and external pieces to the application.

Some may argue that the hexagonal architecture and N-Tiered architecture are one and the same.
While it's possible to achieve a hexagonal architecture using an N-Tiered linear layered
approach, the main distinction lies in how the layers interact with one another—Ilinear or
through specific ports and adapters: two distinct zones, internal and external bits. In the simplest
of terms, a hexagonal method will save you in the event that something doesn’t fit neatly into a
series of sequential layers and helps to prevent tight coupling between layers.

The main thing to remember is that there are things that need to be separated—data source, user
interface, third-party libraries, frameworks—essentially anything that isn't written by your team,
possibly even the layers themselves. With the use of the Dependency Inversion Principle, as
discussed in a previous chapter, and the Repository Pattern, coupling can be kept to a minimum.
This allows for greater flexibility, maintainability, and testability.

Greater flexibility can be provided by minimizing coupling between parts. New features can be
plugged into the existing application. Existing parts of an application can be swapped out in
favor of something else entirely. This simply cannot be done if existing parts of your application
are tightly coupled to other parts.

If an application is segmented properly, it becomes much easier to maintain. By strictly adhering
to the SOLID Principles as outlined in a previous chapters, this becomes almost effortless. With
the strict adherence to hexagonal design and by keeping internal logic free from outside
dependencies, it is simple to make modifications without impacts on other parts of the system.

Testing a loosely coupled system is much easier than the alternative. By limiting the
dependencies, tests can be limited to the functionality of the method, function, or system under
test.

www.EBooksWorld.ir

Basic yet effective N-Tiered
divisions

Typical layers in a three-tiered application include presentation, business logic, and data access.
These can be and often are subdivided even further, but this is a basic starting point for many
applications.

By dividing an application in this way, the first separation of concerns is born. Business logic
should not be found in the presentation layer. Data access code should not be found in the
business logic layer.

A place for everything and everything in its place.

-Mary Poppins

www.EBooksWorld.ir

Service layer

The business layer, or service layer, is where the business logic for the application resides.
Whether you choose to use the idea of individual services, managers, or domain objects, the idea
is effectively the same. The logic of the application should reside in a separate place from the
presentation information and data access code.

www.EBooksWorld.ir

Microservices

You may have heard the term microservices at some point in your development career. These
are typically very small, independent applications that serve one and only one purpose for the
rest of the system. Whether they be standalone APIs or executables deployed to Azure Service
Fabric, they can be developed and deployed independently from the rest of the application.
Microservices tend to be small, reusable functions, often consumed by a number of different
applications or deployed user interfaces.

www.EBooksWorld.ir

Data access layer

Instead of littering the rest of the application with data persistence code, many applications rely
on a data access layer of some sort. This allows for a centralized location of all data retrieval and
storage procedures.

As the Speaker Meet application relies on EF Core, the data access layer is where much of this
information will reside.

www.EBooksWorld.ir

Repository Pattern

The Repository Pattern allows for abstraction between the domain layer and the data access
layer. This allows for the rest of the application to be agnostic to the way data is persisted or
retrieved. This allows for improved testability and for code reuse within the repositories
themselves.

www.EBooksWorld.ir

Generic repository

As much of the data access functionality is the same across database models, a generic
repository is used to minimize duplication of code. Many standard CRUD (Create, Read,
Update, Delete) operations are used across all database objects. This provides the opportunity to
create a generic repository to be used across all models and this will be covered in Chapter 7, Test
Driving C# Applications.

As in life, often one size does not fit all. While the generic repository fits most cases, there may
come a time when you need to create a specific repository or to extend the generic repository.
These instances should be carefully evaluated and a proper solution should be put in place for
them.

www.EBooksWorld.ir

User interface adapter layer

The user interface adapter layer is where a user interface can "plug in" to the rest of the
application. The Speaker Meet application provides a collection of web APIs to provide data and
functionality to external systems. The first such external system is the React SPA. Utilizing a
user interface adapter layer allows for the replacement or addition of a new UI application. This
could be in the form of native mobile application, a Facebook application, or integration with
another external site such as Meetup.

www.EBooksWorld.ir

User interface layer

Modern applications have a dual N-Tiered approach with architectures on both the back-end and
front-end. This means that as much planning and separation as is done on the server side, the
same amount of effort could also be spent architecting a UI application.

With much of the functionality of an entire system being delivered to the client, the SPA in the
case of the Speaker Meet system can be treated as a wholly independent application. It, too,
must have its own application architecture specification.

www.EBooksWorld.ir

Front-end business layer

Using Redux action creators allows for front-end business logic to be contained in a single layer
or location. Within an action creator, behavior can be encapsulated and concerns separated.
Reusable functions may be exposed, minimizing code duplication.

www.EBooksWorld.ir

Front-end user interface layer

React components and containers provide the presentation to the end user. Reusable components
should be created and kept small, and without external dependencies.

www.EBooksWorld.ir

Front-end data source layer

Using React with Redux, data will be stored in state on the client's machine by way of a reducer.
The shape of the data store should be carefully planned and evaluated. If something is not shared
by more than one component, then it should likely not be placed in state. If you need the same
data to take on many shapes, consider the use of something such as React Reselect, which
provides a way to transform or compute derived data for use throughout your application.

www.EBooksWorld.ir

Testing direction

Now that you have a basic plan for your architecture you have to think about where you should
begin your testing. There are a few options for where to start:

e You could choose to start testing at the data access or data source layers and work your
way up to the user interface layers. This method is a back-to-front approach to testing.

e You could start at the user interface layers and work your way to the data access layers.
Approaching the tests in this manner is a front-to-back method of testing.

e Lastly, you could start testing in the business layers and work your way out to the
hexagonal boundaries of the system. This method is an inside-out testing approach.

As a demonstration of the three testing directions to be examined, the same scenario of user
login will be used.

www.EBooksWorld.ir

Back-to-front

Most back-end developers have been taught to think in a database-first manner. This style of
thinking will lead them to find that a back-to-front style of testing makes more sense. As
mentioned previously, in back-to-front testing you start at the data access layers. Mentally you
really start by imagining the data structure within the data source. Once a data source has been
defined, you can move up a layer and begin thinking about the business layer's design. Finally,
you can apply the models and functionality you have created to a user interface.

www.EBooksWorld.ir

Defining a data source

By starting in the data layer, you are presented with defining your data model as early as
possible. For this application and the requirements you have received, we suggest you go with a
SQL database and use an entity framework for your data connections. Since you are working in
a relational database, you will need some kind of primary key. These keys are for relational
database concerns and are often not mentioned in the system requirements. In a situation like
this you might end up with a table that looks something like this.

UserProfile
ID Integer Primary Key, Identity
Username Varchar(255) | Unique, Not Null

PasswordHash | Binary(64) Not Null

FirstName varchar(255) | Not Null

Now that you have a table defined, you can see that, instead of having a simple password field,
you must use a password hash for security reasons. The next step is to create the data access
layer code that will interact with this table.

Start with tests to properly define the model. These tests will provide some of the validations
defined in your requirements and put you in a good place to define the entity framework model
builder relationships.

public class UserProfileDtoTests

{
[Fact]
public void ItExists()
{

var dto = new UserProfileDto();

}

[Fact]
public void ItHasAnId()
{
// Arrange
var dto = new UserProfileDto();

www.EBooksWorld.ir

dto.Id = 1;

// Act
// Assert
Assert.Equal(1, dto.Id);

}

}

These are the tests that will get you started testing the model, the rest is up to you as an exercise.
At the end of it, you should have a model that looks similar to this one.

public class UserProfileDto

{
public int Id { get; set; }
public string Username { get; set; }
public string FirstName {get; set;}
public byte[] PasswordHash { get; set; }

}

As you can see, this model is not too complicated, but could get that way quickly if the number
of database fields needed to expand. This is only a partial example of what a user profile would
look like. Before moving on, think about what other fields would be needed and how they might
need to be tested.

Now that you have a data transfer object, you need to be able to read that model into the
application from the database. As mentioned in Chapter 3, Setting up a JavaScript Environment,
in the What to Know Before Getting Started section, we prefer to use a repository pattern for
this. As a quick recap, the repository pattern is a simple pattern that helps us deal with create,
read, update, and delete operations on a data source.

We are only going to use as much of the Fakerepository as is needed. For now that means that we
will only implement et and cetA11.

public class FakeRepository<T> : IRepository<T> where T : class

{
public IList<T> DataSet { get; set; } = new List<T>();

public T Get(Func<T, bool> predicate)
{

}

public IQueryable<T> GetAll()
{

}

return GetAll().where(predicate).FirstOrDefault();

return DataSet.AsQueryable();

}

Now that we are using a Fakerepository, we can move on to business layer integration.

www.EBooksWorld.ir

Creating a business layer

Using the userprofilepto defined previously, you can now focus on the service needed to log on.
As you will be dealing with the userprofilepto and repository, call this the userprofileservice. It
will house all the interactions in the app with user profile objects.

Right now, you only need to worry about the logon capabilities of the system. You will create a
cetuser method which will consume a username and return a userprofile. Then you will use the

userprofile and a password to authenticate.

First, here is the starting test to create a userprofileService.

public class UserProfileServiceTests
{
[Fact]
public void ItExists()
{
var service = new UserProfileService();
}
}
public class UserProfileService
{
public UserProfileService()
{
}
}

What we normally do at this point is create a new class and a folder structure to support tests
related to the userprofileservice. Our next test class with be for testing the cetuserprofile
method, so we will create the folder structure and add that test class.

Folder structure:

4 5 UserProfileServiceTests
P +C* GetUserProfileTests.cs

P +C* UserProfileServiceTests.cs

Now write tests for a Getuserprofile method.

public class GetUserProfileTests
{
[Fact]
public void ItReturnsNullForNonExistentUsers()

{
// Arrange

var repository = new FakeRepository<UserProfileDto>();
var service = new UserProfileService(repository);

// Act

var profile = service.GetUserProfile("NonExistantUser@email.com");
// Assert

Assert.Null(profile);

www.EBooksWorld.ir

[Fact]
public void ItReturnsUserProfileForUsersThatExist()

{
// Arrange

var repository = new FakeRepository<UserProfileDto>();
var service = new UserProfileService(repository);

repository.DataSet.Add(new UserProfileDto

Username = "ExistingUser@email.com"

i3

// Act
var profile = service.GetUserProfile("ExistingUser@email.com");

// Assert
Assert.NotNull(profile);
Assert.IsAssignableFrom<UserProfileDto>(profile);

In this case, we will let you implement the class method that will pass these tests. Remember,
we only want to the write a minimal amount of code to pass the tests. You will also want to
create tests to verify case insensitivity, if that is something you believe the system needs.

Now that you have a user profile, you need to verify that the password supplied by the user is
the correct password. We won't be getting into security concerns too much as part of this book,
but you should know that passwords should be a one-way hash. Now, write the test to check the
password before you move on to creating a user interface for logging in.

public class IsUserPasswordValid

{
private readonly UserProfileService _service;
private readonly UserProfileDto _profile;

public IsUserPasswordvValid()
{
// Arrange
var repository = new FakeRepository<UserProfileDto>();
_service = new UserProfileService(repository);
_profile = new UserProfileDto
{
Username = "ValidUser@email.com",
// This should be an encryption helper utility. Try to write and
test a utility to replace this code.
PasswordHash = SHA512.Create().ComputeHash(Encoding.ASCII.GetBytes('"VvValidPassword"))

3
repository.DataSet.Add(_profile);
}
[Fact]
public void ItReturnsFalseForInvalidPasswords()
{
// Act
var result = _service.IsUserPasswordvValid(_profile, "InvalidPassword");
// Assert
Assert.False(result);
}
[Fact]
public void ItReturnsTrueForValidPasswords()
// Act
var result = _service.IsUserPasswordvalid(_profile, "ValidPassword");
// Assert

www.EBooksWorld.ir

}

Assert.True(result);

}

public class UserProfileService

{

}

private readonly IRepository<UserProfileDto> _repository;

public UserProfileService(IRepository<UserProfileDto> repository)

{

_repository = repository;

}
public object GetUserProfile(string username)
{
return _repository.GetAll().FirstOrDefault(u => u.Username == username);
}

public bool IsUserPasswordValid(UserProfileDto profile, string password)

// Now we have the same code in production code as we do in our tests.
var hash = SHA512.Create().ComputeHash(Encoding.ASCII.GetBytes(password));

return profile.PasswordHash.SequenceEqual(hash);

}

www.EBooksWorld.ir

Building a user interface

Now there is enough functionality for you to begin working on your user interface. In a C# web
API, the user interface is an API controller. The basic tests needed for an API controller are that
it exists and that it inherits correctly from the controller class.

public class UserProfileControllerTests
{
[Fact]
public void ItExists()
{
var controller = new UserProfileController();
}
[Fact]
public void ItIsAController()
{
var controller = new UserProfileController();
Assert.IsAssignableFrom<Controller>(controller);
}
}
public class UserProfileController : Controller
{
}

Next, you need to make sure it has a logon method that accepts a username and password. That
same method must also return either a 200 OK or 401 NOT AUTHORIZED, depending on the
validity of the user information:

public class UserLogon

{

private readonly UserProfileController _controller;

public UserLogon()

{
// Arrange
var repository = new FakeRepository<UserProfileDto>();
var service = new UserProfileService(repository);
_controller = new UserProfileController(service);

repository.DataSet.Add(new UserProfileDto

{
Username = "TestUser@email.com",
PasswordHash = SHA512.Create().ComputeHash(Encoding.UTF8.GetBytes("ValidPassword"))
1),
}
[Fact]
public void ItExists()
{
// Act
var response = _controller.LogonUser("TestUser@email.com", "Password");
}
[Fact]
public void ItReturnsAnActionResult()
{
// Act
var response = _controller.LogonUser("TestUser@email.com", "Password");

www.EBooksWorld.ir

// Assert
Assert.IsAssignableFrom<IActionResult>(response);
}
[Fact]
public void ItReturnsNotAuthorizedForBadUsername()
{
// Act
var response = (StatusCodeResult) _controller.LogonUser("BadUser@email.com", "ValidPasswor
// Assert
Assert.Equal(HttpStatusCode.Unauthorized, (HttpStatusCode)response.StatusCode);
}
[Fact]
public void ItReturnsOkForValidUsernameAndPassword()
// Act
var response = (StatusCodeResult)_controller.LogonUser("TestUser@email.com", "ValidPasswor
// Assert
Assert.Equal(HttpStatusCode.OK, (HttpStatusCode)response.StatusCode);
}
[Fact]
public void ItReturnsUnauthorizedForInvlalidPassword()
{
// Act
var response = (StatusCodeResult)_controller.LogonUser("TestUser@email.com", "InvalidPassv
// Assert
Assert.Equal(HttpStatusCode.Unauthorized, (HttpStatusCode)response.StatusCode);
}
}
public class UserProfileController : Controller
{
private readonly UserProfileService _service;
public UserProfileController(UserProfileService service)
{
_service = service;
}
public IActionResult LogonUser(string username, string password)
{
var user = _service.GetUserProfile(username);
if (user != null && _service.IsUserPasswordValid(user, password))
return 0Ok();
}
return Unauthorized();
}
}

One of the downsides to approaching the application in this manner is that now almost all of our
layers are concerned with an object that is almost an exact representation of the database.
Normally, this is not a real problem. But database tables do change so what if our user profile
table needs some touching up in the future? Our entire application will need to be updated at this
point. Did you pick up on some of the side-effects of thinking about the application in a back-to-
front way? If not, that is okay, but keep an eye open as you explore the two other directional
approaches.

www.EBooksWorld.ir

Front-to-back

Another way that some developers choose to approach application design and implementation is
from a user experience perspective. First, think about how the user would want to interact with
the system, then design the system around that concept.

www.EBooksWorld.ir

Defining a user interface

To attack the application in this way, first you must determine what you think the best user
experience would be. It would probably be best if the user not only got notified whether the
logon was accepted, but also received a message explaining to them the current status.

What would you call our controller when testing from this direction? The user is wanting to log
on so, you should call it a logon controller.

As before, you need to test that your controller exists. Then test that it properly inherits from the
controller.

public class LogonControllerTests
{

[Fact]

public void ItExists()

{

var controller = new LogonController();

}

[Fact]
public void ItIsAnIActionResult()
{
// Act
var controller = new LogonController();

// Assert
Assert.IsAssignableFrom<Controller>(controller);
}
}

public class LogonController : Controller

{
3

Now, you can test for your API method. What should it be called? Think again about the user.
They are trying to log on so, again, we should probably stick with something simple related to
logon. The default post action on this controller should probably be the method used to activate
a logon.

public class Post

{
[Fact]

public void ItExists()

{
// Arrange

var controller = new LogonController();

// Act
var response = controller.Post(null);

}

[Fact]
public void ItReturnsAnIActionResult()

{
// Arrange

var controller = new LogonController();

// Act

www.EBooksWorld.ir

var response = controller.Post(null);

// Assert
Assert.IsAssignableFrom<IActionResult>(response);

}

[Fact]
public void ItReturnsUnauthorizedForInvalidUser ()
{

// Arrange

var controller = new LogonController();

var attempt = new LoginAttempt

{
Username = "InvalidUser@email.com",
Password = "BadPassword"

i

// Act

var response = (ObjectResult)controller.Post(attempt);

// Assert
Assert.NotNull(response.StatusCode);
Assert.Equal(HttpStatusCode.Unauthorized, (HttpStatusCode)response.StatusCode);

}

[Fact]

public void ItReturnsOkForvalidUser ()

{
// Arrange
var controller = new LogonController();
var attempt = new LoginAttempt

{
Username = "ValidUser@email.com",
Password = "validPassword"

i

// Act

var response = (ObjectResult)controller.Post(attempt);

// Assert
Assert.NotNull(response.StatusCode);
Assert.Equal(HttpStatusCode.OK, (HttpStatusCode)response.StatusCode);

}

[Fact]
public void ItReturnsUnauthorizedForInvalidPassword()
{

// Arrange

var controller = new LogonController();

var attempt = new LoginAttempt

{
Username = "ValidUser@email.com",
Password = "InvalidPassword"

iy

// Act

var response = (ObjectResult)controller.Post(attempt);

// Assert
Assert.NotNull(response.StatusCode);
Assert.Equal(HttpStatusCode.Unauthorized, (HttpStatusCode)response.StatusCode);

}

[Fact]
public void ItReturnsSuccessfullLogonMessageWhenSuccessful()
{
// Arrange
var controller = new LogonController();
var attempt = new LoginAttempt
{
Username
Password

iy

"ValidUser@email.com",
"ValidPassword"

www.EBooksWorld.ir

// Act
var response = (ObjectResult)controller.Post(attempt);

// Assert
Assert.Equal("Logon Successful", response.Value);

}

[Fact]
public void ItReturnsUnauthorizedLogonMessageWhenUnauthorized()
{

// Arrange

var controller = new LogonController();

var attempt = new LoginAttempt

{
Username = "InvalidUser@email.com",
Password = "Password"
}
// Act
var response = (ObjectResult)controller.Post(attempt);
// Assert
Assert.Equal("Username or Password invalid", response.Value);
}
}
public class LoginAttempt
{

public string Username { get; set; }
public string Password { get; set; }

}
public class LogonController : Controller
{
[HttpPost]
public IActionResult Post(LoginAttempt attempt)
{
if (attempt != null && attempt.Username == "ValidUser@email.com" && attempt.Password == "\
{
return Ok('"Logon Successful");
}
return new ObjectResult("Username or Password invalid") {
StatusCode = (int?)HttpStatusCode.Unauthorized
3
}
}

With the front-to-back directional approach, you don't yet have any of your dependencies
defined so you have no choice but to hardcode decisions. You can push those decisions back
slightly, though.

www.EBooksWorld.ir

Creating a business layer

Create an interface and move your valid user login into a fake logon service for that interface.

public class LogonController : Controller

{

private readonly ILogonService _service;

public LogonController(ILogonService service)

{
_service = service;
}
public IActionResult Post(LoginAttempt attempt)
{

return _service.IsLogonValid(attempt) ?
Ok("Logon Successful")
new ObjectResult("Username or Password invalid") {
StatusCode = (int?)HttpStatusCode.Unauthorized
3

}
}

public interface ILogonService

{
bool IsLogonValid(LoginAttempt attempt);
}

class FakeLogonService : ILogonService

public bool IsLogonValid(LoginAttempt attempt)

{
return attempt != null &&
attempt.Username == "ValidUser@email.com" &&
attempt.Password == "ValidPassword";
}

If you are following along, you will need to update all the controller references in the tests to use
this new fake logon service.

Now that you have an interface defined, you can write tests to create a service layer.

public class IsValidLogon
{

private readonly LogonService _service;

public IsValidlLogon()
{
var repository = new FakeRepository<UserLogonDto>();
_service = new LogonService(repository);
var userLogon = new UserLogonDto
{
Username = "ValidUser@email.com",
PasswordHash = SHA512.Create().ComputeHash(Encoding.ASCII.GetBytes("ValidPassword"))
3

repository.DataSet.Add(userLogon);
}

[Fact]
public void ItExists()
{

www.EBooksWorld.ir

var repository = new FakeRepository<UserLogonDto>();
var service = new LogonService(repository);
var attempt = new LoginAttempt();

service.IslLogonVvalid(attempt);

}
[Fact]
public void ItReturnsTrueForValidAttempt()
{
// Arrange
var attempt = new LoginAttempt
{
Username = "ValidUser@email.com",
Password = "ValidPassword"
3
// Act
var result = _service.IsLogonVvalid(attempt);
// Assert
Assert.True(result);
}
[Fact]
public void ItReturnsFalseForInvalidUsername()
{
// Arrange
var attempt = new LoginAttempt
{
Username = "InvalidUser@email.com",
Password = "ValidPassword"
3
// Act
var result = _service.IsLogonValid(attempt);
// Assert
Assert.False(result);
}
[Fact]
public void ItReturnsFalseForInvalidPassword()
{
// Arrange
var attempt = new LoginAttempt
{
Username = "ValidUser@email.com",
Password = "InvalidPassword"
3
// Act
var result = _service.IsLogonvValid(attempt);
// Assert
Assert.False(result);
}
}
public class LogonService : ILogonService
{

private readonly IRepository<UserLogonDto> _repository;

public LogonService(IRepository<UserLogonDto> repository)

{
_repository = repository;
}
public bool IsLogonValid(LoginAttempt attempt)
{

attempt = attempt ?? new LoginAttempt();

var user = _repository.GetAll().FirstOrDefault(u => u.Username == attempt.Username);

www.EBooksWorld.ir

var hash = SHA512.Create().ComputeHash(Encoding.ASCII.GetBytes(attempt.Password ?? ""));

return user != null && user.PasswordHash.SequenceEqual(hash);
}
}

public class UserLogonDto : IIdentity
{
public int Id { get; set; }
public string Username { get; set; }
public byte[] PasswordHash { get; set; }
}

www.EBooksWorld.ir

Building a data source

Now that you have a service, you can focus on the data layer. Believe it or not, this part is not
really any different from what we did at this stage for the back-to-front approach.

We have managed to do one thing differently. We have created a contract for our data
interaction. The rest of the table, if we are using a relational data store, could be anything and we
don't care. We only care about the username and password hash. We only have ID because the
FakeRepository requires it.

There are ways to program the repository that do not require this feature. We are
0 not going to recreate the table from the previous example. It is the same table.

www.EBooksWorld.ir

Inside out

The last directional approach that we are going to cover in this chapter is the inside-out
approach. With the inside-out approach, you begin, not with the UI or the data source, but
instead with the business rules defined in the requirements.

www.EBooksWorld.ir

Defining a business layer

Looking back at our requirements, we can build tests and logic that are a one-to-one match for
our requirements such as:

Given a registered speaker

And given an invalid username

When attempting login

Then an INVALID USERNAME_OR_PASSWORD error occurs

public class LoginTests
{
[Fact]
public void GivenAnInvalidUsername()
{
// Arrange/Given
var username = "InvalidUser@email.com";

// Act/When
var exception = Record.Exception(() => Account.Logon(username));

// Assert/Then
Assert.IsAssignableFrom<InvalidUsernameOrPasswordException>(exception);
Assert.Equal("Invalid Username or Password", exception.Message);

3
3

public class InvalidUsernameOrPasswordException: Exception

{
public InvalidUsernameOrPasswordException() : base("Invalid Username or Password")
{
}

}

public class Account
{
public object Logon(string username)
{
throw new InvalidUsernameOrPasswordException();
}
}

Some significant changes are made by the next requirement in order to provide some latitude
going forward.

Given a registered speaker

And given a valid username

And given a valid password

When attempting login

Then the user is granted access to the application

public class LoginTests

{

private readonly string _accessKey;
private readonly Account _account;

public LoginTests()
{

www.EBooksWorld.ir

_accessKey = "GrantedAccessKey";
var repository = new FakeRepository<UserCredentials>();
_account = new AccountTestDouble(repository);

repository.DataSet.Add(new UserCredentials {
Username = "ValidUser@email.com"
1)
}

[Fact]

public void GivenAnInvalidUsername()

{
// Arrange/Given
var username = "InvalidUser@email.com";
var password "UnimportantPassword";

// Act/When
var exception = Record.Exception(() => _account.Logon(username, password));

// Assert/Then
Assert.IsAssignableFrom<InvalidUsernameOrPasswordException>(exception);
Assert.Equal("Invalid Username or Password", exception.Message);

}

[Fact]
public void GivenAValidUsernameAndPassword()
{

// Arrange/Given

var username = "ValidUser@email.com";

var password = "ValidPassword";

// Act/When
var result = _account.Logon(username, password);

// Assert/Then
Assert.IsAssignableFrom<string>(result);
Assert.Equal(_accessKey, result);
}
}

public class InvalidUsernameOrPasswordException : Exception

{

public InvalidUsernameOrPasswordException() : base("Invalid Username or Password")

{
3
3

public class Account

{

private readonly IRepository<UserCredentials> _repository;

public Account(IRepository<UserCredentials> repository)

{
_repository = repository;
}
public string Logon(string username, string password)
{
var uc =_repository.GetAll().FirstOrDefault(u => u.Username == username);
if (uc == null)
{
throw new InvalidUsernameOrPasswordException();
}
return GenerateAccessKey(uc);
}

protected virtual string GenerateAccessKey(UserCredentials userCredentials)

{

// Here we would need to actually generate an access token
return "DefaultKey";

}

www.EBooksWorld.ir

|3

public class AccountTestDouble : Account

{

public AccountTestDouble(IRepository<UserCredentials> repository) : base(repository) { }

protected override string GenerateAccessKey(UserCredentials userCredentials)

{

return "GrantedAccessKey";

}
}

public class UserCredentials : IIdentity

{
public int Id { get; set; }
public string Username { get; set; }

}

Now for the last requirement that we were provided:

e Given a registered speaker

e And given a valid username

And given an invalid password

When attempting login

Then an INVALID_USERNAME_OR_PASSWORD error occurs

[Fact]

public void GivenAnInvalidPassword()

{
// Arrange/Given
var username = "ValidUser@email.com";
var password = "InvalidPassword";

// Act/When
var exception = Record.Exception(() => _account.Logon(username, password));

// Assert/Then
Assert.IsAssignableFrom<InvalidUsernameOrPasswordException>(exception);
Assert.Equal("Invalid Username or Password", exception.Message);

This last test was quite simple and closely resembles the first test we wrote for inside-out
development. One thing to note, but which we are not showing here, is that we had to extend our
Usercredentials class with the password hash property.

Creating the user interface and data layers from this point is almost exactly like what we have
shown in the earlier examples, so we will not show them here.

The tasks left for this example are abstracting the business layer behind an interface, using the
business object in the UI, and creating the appropriate data configuration for the data layer.

www.EBooksWorld.ir

Summary

In this chapter, we've defined the Speaker Meet application in more detail. Architectural choices
were discussed and a path has been set. Epics, features, and user stories have been covered in
enough detail that we're now ready to take the next steps with the Speaker Meet application.

In Chapter 7, Test Driving C# Applications, we'll focus on test driving the C# API. Topics such
as fakes, stubs, and mocks will be introduced to help you navigate the testing world.

www.EBooksWorld.ir

Test-Driving C# Applications

The two most important features for the Speaker Meet application were determined to be the
speaker listing and the ability to see an individual speaker's details. The speaker listing and
speaker details will deliver the most value for our Minimum Viable Product.

Conference organizers, user group administrators, and the general public would likely care most
about finding information on speakers. With that in mind, the speakers epic is where
development for the Speaker Meet application begins.

In this chapter, we cover:

e Speaker Meet requirements
e API, service, and repository tests
e The speaker detail and speaker listing APIs

www.EBooksWorld.ir

Reviewing the requirements

In order to get started, the foundation of the speaker section of the Speaker Meet application is
laid by defining the initial set of requirements. These will help eliminate ambiguity and develop
a common understanding of the requirements, as well as defining a common vocabulary used
throughout the project.

The abstract is where a projects, purpose and value can be presented. Any project, before it can
be approved to be worked on, must prove the value that it can provide to the company. This is
true whether you are working for a Fortune 500 company or a startup with two people.

A data dictionary is important because it provides a common, ubiquitous language for the
project. The term, ubiquitous language, is from Domain Driven Design and denotes a shared or
common language. The idea is that the shared jargon of the business and development team is
solidified in a codex that can be viewed and used by all.

Last, and certainly not least, the requirements must be presented in an agreed upon format. The
specific format is less important than the format agreement. Regardless of the format, good
requirements provide a context of interaction, the interaction taking place, and the expected
results given the context and specific action.

www.EBooksWorld.ir

Speaker listing

The speakers section of the Speaker Meet website contains a listing of all speakers in the
system. The listing of speakers will present value to multiple groups including conference and
user group organizers as well as conference and user group attendees. From a user interaction
perspective, the speaker listing allows entry to the speaker details. The speaker details are where
the real value is delivered in the form of availability, upcoming engagements, and contact
information for a given speaker.

Initially, the speaker listing will aid organizers by providing quick access to speaker discovery.
Organizers will be able to find speakers they know of and discover speakers of whom they are
unaware. Once found or discovered, the organizer will be able to view details for specific
speakers and, eventually, organizers will be able to contact the speakers using the available
contact information.

Attendees will benefit from the speaker list in a similar fashion to the organizers. Attendees have
one important difference, however: they are looking for the events a speaker is already attached
to as a presenter. This information, similar to the contact information, will be available in the
speaker details.

www.EBooksWorld.ir

API

The API is the main gateway into the core system of the Speaker Meet application. The speaker
listing API should return a listing of speaker summary ViewModels. These ViewModels contain
only the information necessary for this portion of the application. The ViewModels represent the
speaker, but should not necessarily be direct copies of the speaker objects persisted to a
database.

The speakersummary ViewModel will be defined based on the requirements of the system. This
ViewModel will grow to contain only the properties required for its limited use.

To get started, a new method will need to be added to an API. For the first new piece of
functionality to be added, a new method ceta11 will need to be created in the speakercontrolier.
But first, a test must be created.

www.EBooksWorld.ir

API tests

To revisit, code in the speakercontroller may not be written without a failing unit test. To begin,
a new test file should be created named ceta11. This is where all the tests associated with the
Getall method of the speakercontroller will be contained.

There is duplication in how testing the speakercontroller is set up. Try to come up
with ways that this duplication can be minimized.

The first such test should be the standard 1texists test. Building on the example from previous
chapters, the speakercontroller accepts an Ispeakerservice in the constructor. The same method of
providing a moq object can be applied here as well.

[Fact]
public void ItExists()
{
// Arrange
var speakerServiceMock = new Mock<ISpeakerService>();
var controller = new SpeakerController(speakerServiceMock.Object);

// Act
controller.GetAll();

Comparing this first test with the first test written for the search method in the speakercontrolzier,
you may notice there's a bit of duplication happening already. Remember, duplication should be
avoided. Don't forget the acronym, DRY (Don't Repeat Yourself).

In order to make this first test pass, a void ceta11 method should be added to the
speakercontroller. This will allow the application to compile, thereby passing this test.
Remember, a failure to compile is a failing test.

public void GetAll()

{
}

Next, ensure that the ceta11 method of speakercontroller returns an okobjectResult by creating a
new test. Don't worry about the type of the result itself. That will be covered by the next test.

[Fact]
public void ItReturnsOkObjectResult()
{
// Arrange
var speakerServiceMock = new Mock<ISpeakerService>();
var controller = new SpeakerController(speakerServiceMock.Object);

// Act
var result = controller.GetAll();

// Assert
Assert.NotNull(result);
Assert.IsType<OkObjectResult>(result);

www.EBooksWorld.ir

In order to get this test to pass, the method should return an 1actionresult instead of void. The
method should also be changed to return ok() in order to make the test pass. The method does
not need to return anything else in order to make the test pass as written. Do not write more code
than is required to make the test pass.

public IActionResult GetAll()
{

}

return Ok();

Now, determine that the method returns a collection of speakersummary.

[Fact]
public void ItReturnsCollectionOfSpeakerSummary()
{
// Arrange
var speakerServiceMock = new Mock<ISpeakerService>();
var controller = new SpeakerController(speakerServiceMock.Object);

// Act
var result = controller.GetAll() as OkObjectResult;

// Assert

Assert.NotNull(result);

Assert.NotNull(result.value);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(result.Value);

Create a speakersummary class to fulfill the requirement defined by this test. Give some thought to
where the new speakersummary lives. This is a ViewModel that will need to be accessed by the
tests, but should not be available to the other layers of the application. More about proper
separation in a future chapter.

Modify the ceta11 method of the speakercontrolier to return a set of speakersummary objects as the
return value.

public IActionResult GetAll()
{

return Ok(new List<SpeakerSummary>());

}

www.EBooksWorld.ir

Moq

In previous chapters, Moq was used to provide a stand-in set of functionalities for the item under
test. The results provided for the mocked instance were required, but the implementation was
not vital to what was being tested.

Like the examples in previous chapters, the logic for ceta11 should not be found in the controller
itself. Instead, the logic will be contained within the business layer, specifically the
SpeakersService implementation of 1speakerservice. When the cetall method in speakercontroller is
called it is expected that the ceta11 method of the speakerservice will be called.

The ceta11 method does not exist within the speakerservice, so the following test should fail.

[Fact]
public void ItCallsGetAllServiceOnce()
{
// Arrange
var speakerServiceMock = new Mock<ISpeakerService>();
var controller = new SpeakerController(_speakerServiceMock.Object);

// Act
controller.GetAll();

// Assert
speakerServiceMock.Verify(mock => mock.GetAll(), Times.Once());

}

Creating the previous test has forced the creation of a new method signature in the
Ispeakerservice interface. The following method signature should be added to the
ISpeakerService interface.

|IEnumerable<SpeakerSummary> GetAll();

To get the application to compile, ceta11 will also need to be added to the speakerservice class.
For now, this should throw an exception.

public IEnumerable<SpeakerSummary> GetAll()
{

}

throw new NotImplementedException();

To get the 1tcallsGetAllserviceonce test to pass, make sure that the ceta11 method of the
speakerservice is called. The return value from the call is not yet needed for the test to pass, so
simply calling the method is all that is required.

public IActionResult GetAll()

{
_speakerService.GetAll();

return Ok(new List<SpeakerSummary>());

}

Note that this will make the test pass, but it is not exactly the correct solution yet. A new test is
required to force the code to do something with the return value of the service. Moving on, it's

www.EBooksWorld.ir

time to do something with the result of the speakerservice.cetal1 call.

[Fact]
public void GivenSpeakerServiceThenResultsReturned()
{
// Arrange
var speakers = new List<SpeakerSummary> { new SpeakerSummary
{
Name = "Speaker"
I

var speakerServiceMock = new Mock<ISpeakerService>();
speakerServiceMock.Setup(x => x.GetAll()).Returns(() => _speakers);

var controller = new SpeakerController(speakerServiceMock.Object);

// Act
var result = controller.GetAll() as OkObjectResult;
var speakers = ((IEnumerable<SpeakerSummary>)result.Value).ToList();

// Assert
Assert.Equal(_speakers, speakers);

Don't forget to refactor the tests as well as the code. For readability, the Arrange methods have
been included in the previous examples. Likely, these would be extracted and defined as fields
and assigned in the constructor.

private readonly SpeakerController _controller;
private static Mock<ISpeakerService> _speakerServiceMock;
private readonly List<SpeakerSummary> _speakers;

public GetAll()
{

_speakers = new List<SpeakerSummary> { new SpeakerSummary

{

Name = "test"

Yy

_speakerServiceMock = new Mock<ISpeakerService>();
_speakerServiceMock.Setup(x => x.GetAll()).Returns(() => _speakers);

_controller = new SpeakerController(_speakerServiceMock.Object);

}

www.EBooksWorld.ir

Testing exception cases

In the event that a speaker is requested that does not exist, it would be best to return a friendly
error message to the consumer of the API.

[Fact]
public void GivenSpeakerNotFoundExceptionThenNotFoundObjectResult()

{
// Arrange

// Act
var result = _controller.Get(-1);

// Assert
Assert.IsAssignableFrom<NotFoundObjectResult>(result);

Create a new exception class named speakerNotFoundException. This will be the specific exception
returned by the moq call below. Like the speakersummary class file before, give some thought to
where the speakernotrFoundexception class file should be saved.

public class SpeakerNotFoundException : Exception

{
}

"Throwing" a new exception when a specific ID is supplied requires a little bit of setup in moq.
This is similar to what was already defined by the x.cet (1t.1IsAny<int>) definition.

| _speakerServiceMock.Setup(x => x.Get(-1)).Returns(() => throw new SpeakerNotFoundException());

Make sure this is added after the previous setup, as moq will process the last value first. Avoid a
false positive by understanding how moq will evaluate what has been set up within its context.

Next, modify the cet method of the controller to catch the exception and return the proper
response code.

public IActionResult Get(int id)

{
try
{
var speaker = _speakerService.Get(id);
return Ok(speaker);
}

catch (SpeakerNotFoundException)

return NotFound();

by
b

The initial requirements stated that a friendly error message be returned to the client. Create a
test that ensures a friendly message is returned to the consumer in the event a speaker is not
found with the supplied ID.

[Fact]
public void GivenSpeakerNotFoundExceptionThenMessageReturned()

{
// Arrange

www.EBooksWorld.ir

// Act
var result = _controller.Get(-1) as NotFoundObjectResult;

// Assert
Assert.NotNull(result);
Assert.Equal("Speaker Not Found", result.Value);

In order to make this test pass, the speakerNotFoundexception class must be modified in order to
return a friendly error message.

public class SpeakerNotFoundException : Exception

public SpeakerNotFoundException() : base("Speaker Not Found")

{
b
}

And finally, modify the cet method in the controller to return the message.

public IActionResult Get(int id)
{
try
{
var speaker = _speakerService.Get(id);
return Ok(speaker);

}

catch (SpeakerNotFoundException ex)

{

return NotFound(ex.Message);

}
}

www.EBooksWorld.ir

Service

The business logic for the ceta11 method should be housed in the speakerservice. As before, in
order to write a line of code a test must first be written.

www.EBooksWorld.ir

Service tests

To build on the previous example, start with an 1texists test.

[Fact]
public void ItHasGetAllMethod()

{

var speakerService = new SpeakerService();
speakerService.GetAll();

}

Since this method was previously added to the speakerservice, although with a
NotImplementedException, it would be best to see this test fail for the proper reason. Delete the
cetAll method from the speakerservice so that the application will fail to compile. Now, add the
method back to see that the application once again compiles, and therefore this test passes. This
time, have the method return nu11 instead of throwing a new notImplementedException.

public IEnumerable<SpeakerSummary> GetAll()
{

}

return null;

Now, ensure that the ceta11 method returns a collection of speakersummary by creating a new test.

[Fact]
public void ItReturnsCollectionOfSpeakerSummary()
{
// Arrange
// Act
var speakers = _speakerService.GetAll();
// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);
}

Modify the ceta11 method of the speakerservice in order to make this test pass. The minimum
amount of code required to make this test pass involves returning a new List Of speakersummary
objects. Do not add more code than is required to make this test pass.

public IEnumerable<SpeakerSummary> GetAll()
{

return new List<SpeakerSummary>();

}

Building on the examples from a previous chapter, use the hardcoded data from before. Extract
hardcodedspeakers into a field in order to use the data in both the search method as well as the
cetAll method:

public readonly List<Speaker> HardCodedSpeakers = new List<Speaker>

{

new Speaker {Name = "Josh"},
new Speaker {Name = "Joshua"},
new Speaker {Name = "Joseph"},
new Speaker {Name = "Bill"}

H

www.EBooksWorld.ir

Note that the field was made public. This will allow tests to use this data for comparison for
Asserts. Don’t worry, this field and the hardcoded data contained therein will be short-lived.
Once these are no longer needed they can be safely deleted.

Now, create a test to ensure that all of the data contained in Hardcodedspeakers is returned by the
cetAll method in the speakerservice. Start by verifying that the same number of speakers in the
hardcoded data is returned by the method.

[Fact]
public void ItReturnsAllSpeakers()
{
// Arrange
// Act
var speakers = _speakerService.GetAll();
// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);
Assert.Equal(_speakerService.HardCodedSpeakers.Count, speakers.Count());
}

To get this to pass, simply iterate over the hardcoded values and return a new speakersummary for
each entry. As the test is not yet checking the values of the speakers returned, all that is required
is that the proper count of speakersummary objects is returned.

public IEnumerable<SpeakerSummary> GetAll()
{

}

return HardCodedSpeakers.Select(speaker => new SpeakerSummary());

Now, ensure that the speakers are properly converted to speakersummary objects. First, check that
the name properties are the same.

[Fact]
public void ItReturnsAllSpeakerswWithName()
{
// Arrange
// Act
var speakers = _speakerService.GetAll().ToList();

// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);

for (var i = 0; i < speakers.Count; i++)

{
Assert.NotNull(_speakerService.HardCodedSpeakers[i].Name);
Assert.Equal(_speakerService.HardCodedSpeakers[i].Name, speakers[i].Name);

3
3

And now, make this test pass by assigning the name within the ceta11 method.

public IEnumerable<SpeakerSummary> GetAll()
{

return HardCodedSpeakers.Select(speaker => new SpeakerSummary
{

Name = speaker.Name

3K
}

Continue to build up the speakersummary object with the required properties. The name property has
been added. Now, add an ID and ensure that it is being assigned and returned properly.

www.EBooksWorld.ir

[Fact]
public void ItReturnsAllSpeakersWithId()
{
// Arrange
// Act
var speakers = _speakerService.GetAll().ToList();

// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);

for (var i = 0; i < speakers.Count; i++)

Assert.NotNull(_speakerService.HardCodedSpeakers[i].Id);
Assert.Equal(_speakerService.HardCodedSpeakers[i].Id, speakers[i].Id);
}
}

In order to make this pass, an ID will need to be mapped in the ceta11 method of the
SpeakerService, and an ID property added to the speaker and speakersummary ObjECtS.

public IEnumerable<SpeakerSummary> GetAll()
{

return HardCodedSpeakers.Select(speaker => new SpeakerSummary

{
Id = speaker.Id,
Name = speaker.Name

1)

}

Next, add a Location to be returned by the ceta11 method. This, too, will require the speaker and
speakersummary objects to be modified. Give the new Location property in the Hardcodedspeakers
collection distinct values to ensure that the values are being returned properly.

[Fact]
public void ItReturnsAllSpeakersWithLocation()
{
// Arrange
// Act
var speakers = _speakerService.GetAll().ToList();

// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);

for (var i = 0; i < speakers.Count; i++)
{
Assert.NotNull(_speakerService.HardCodedSpeakers[i].Location);
Assert.Equal(_speakerService.HardCodedSpeakers[i].Location, speakers[i].Location);
}
}

Add some locations to the hardcoded data.

public readonly List<Speaker> HardCodedSpeakers = new List<Speaker>

{

new Speaker {Id = 1, Name = "Josh", Location = “Tampa, FL"},

new Speaker {Id = 2, Name = "Joshua", Location = “Louisville, KY"},
new Speaker {Id = 3, Name = "Joseph", Location = “Las Vegas, NV"},
new Speaker {Id = 4, Name = "Bill", Location = “New York, NY"},

i
Finally, map the location to the speakersummary ViewModel.

public IEnumerable<SpeakerSummary> GetAll()
{

return HardCodedSpeakers.Select(speaker => new SpeakerSummary

www.EBooksWorld.ir

{
Id = speaker.Id,

Name = speaker.Name,
Location = speaker.Location,

1
}

As has been discussed before, tests should have a single action. That does not preclude them
from having multiple asserts. In order to minimize duplication, the property tests should be
collapsed.

www.EBooksWorld.ir

Clean tests

A test suite should be well maintained. This is the first consumer of the application and provides
the most comprehensive documentation of the functionality of the system. To clean up the tests
that were just created, it is time to do some refactoring.

Collapse the speakersummary properties into single act, with multiple asserts. This will help to
make the test suite smaller, easier to read and maintain, and quite possibly it will execute
execute more quickly. A test suite that executes quickly is far more likely to be run often by the

developers.

Rename ItReturnsAllSpeakerswithName tO ItReturnsAllSpeakerswithProperties and,colkn)sethe ID
and Location tests into this one.

[Fact]

{

// Act

for (var

{

Assert
Assert

// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);

Assert.
Assert.
.NotNull(_speakerService.HardCodedSpeakers[i].Id);

.Equal(_speakerService.HardCodedSpeakers[i].Id, speakers[i].Id);
Assert.
Assert.

public void ItReturnsAllSpeakersWithProperties()
// Arrange

var speakers = _speakerService.GetAll().ToList();

i =0; 1 < speakers.Count; i++)

NotNull(_speakerService.HardCodedSpeakers[i].Name);
Equal(_speakerService.HardCodedSpeakers[i].Name, speakers[i].Name);

NotNull(_speakerService.HardCodedSpeakers[i].Location);
Equal(_speakerService.HardCodedSpeakers[i].Location, speakers[i].Location);

www.EBooksWorld.ir

Repository

In a previous chapter, the data was hard-coded within the speakercontroller class. The data has
since moved to a hardcoded collection in the speakerservice. Ultimately the data will be persisted
in a database. For now, moving the data out of the speakerservice will be enough.

A repository layer will be used to separate the data access layer from the rest of the application.
To achieve this, a repository must be introduced. In order for a repository to be created, a need
must be established. Start slowly by requiring the speakerservice to accept an 1repository.

[Fact]
public void ItAcceptsIRepository()

{
// Arrange
IRepository fakeRepository = new FakeRepository();

// Act
var service = new SpeakerService(fakeRepository);

// Assert
Assert.NotNull(service);

This, of course, will cause the application to fail to compile. Create an 1repository interface, a
FakeRepository class, and modify the speakerservice to accept an 1repository.

public SpeakerService(IRepository repository)

{
3

www.EBooksWorld.ir

The IRepository interface

The 1repository interface will be where the method signatures for interacting with the data
access layer will be defined. This interface will be grown slowly, guided by tests. In Chapter 8,
Abstract Away Problems, more details will be provided and additional concepts will be
introduced. For now, the interface will merely be a contract for the Fakerepository used for the
SpeakerService tests.

www.EBooksWorld.ir

FakeRepository

Now that the Fakerepository has been created, the Hardcodedspeakers can be moved into the
FakeRepository. First, several iterative tests need to be created.

Interacting with a Fakerepository of your own creation allows you to substitute values and create
additional functionality for testing purposes.

[Fact]

public void ItCallsRepository()

{
// Arrange
FakeRepository fakeRepository = new FakeRepository();
var service = new SpeakerService(fakeRepository);

// Act

var speakers = service.GetAll();

// Assert
Assert.True(fakeRepository.GetAllCalled);

By introducing a public field, the same functionality seen with moq can be applied here in the

FakeRepository.

public bool GetAllCalled { get; private set; }

public void GetAll()

{
GetAllCalled = true;

}

Now ensure that the Fakerepository returns the Hardcodedspeakers when cetal1 is called by
modifying the existing tests for 1tReturnsallspeakers and ItReturnsAllSpeakerswithProperties.

[Fact]
public void ItReturnsAllSpeakers()
{
// Arrange
// Act
var speakers = _speakerService.GetAll();

// Assert

Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);
Assert.Equal(_fakeRepository.HardCodedSpeakers.Count, speakers.Count());

}

[Fact]
public void ItReturnsAllSpeakersWithProperties()
{
// Arrange
// Act
var speakers = _speakerService.GetAll().ToList();

// Assert
Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);

for (var i = 0; i < speakers.Count; i++)

www.EBooksWorld.ir

Assert.
Assert.
Assert.
Assert.
Assert.
Assert.

NotNull(_fakeRepository.HardCodedSpeakers[i].Name);
Equal(_fakeRepository.HardCodedSpeakers[i].Name, speakers[i].Name);
NotNull(_fakeRepository.HardCodedSpeakers[i].Id);
Equal(_fakeRepository.HardCodedSpeakers[i].Id, speakers[i].Id);
NotNull(_fakeRepository.HardCodedSpeakers[i].Location);
Equal(_fakeRepository.HardCodedSpeakers[i].Location, speakers[i].Location);

It may seem like a lot of effort has been expended to just kick the can down the road. This has
all been necessary effort to successfully work towards a truly functional and maintainable
application. However, there's still more work to be done.

www.EBooksWorld.ir

Using factories with the
FakeRepository

So far this has been a relatively straight-forward exercise. The speaker class represents the shape
of the object that will be persisted to the database. The Hardcodedspeakers collection represents
the entire set of speakers from a database.

It's not entirely ideal to have or maintain a set of hardcoded data, whether it's in a test file or not.
It would be far more flexible to provide a way for the test writer to define the data with which to
test.

Using a factory to create speakers and add them to the Fakerepository provides a much cleaner
and easier-to-maintain way of managing the state of the tests that require specific data scenarios.

public static class SpeakerFactory
{

public static Speaker Create(FakeRepository fakeRepository, int id = 1, string name = "Josht

{

var speaker = new Speaker

{
Id = id,
Name = name,
Location = location

+
fakeRepository.Speakers.Add(speaker);

return speaker;

3
b

Note that default values defined for id, name, and location have been provided. This allows the
user to supply specific values if they want, or proceed without the need for supplying them.

The FakeRrepository must also be modified to remove the Hardcodedspeakers and expose a public
collection of speakers.

public class FakeRepository : IRepository

{

public List<Speaker> Speakers = new List<Speaker>();
public bool GetAllCalled { get; private set; }

public IEnumerable<Speaker> GetAll()

{
GetAllCalled = true;

return Speakers;

3
b

Now, for each test a specific set of data can be provided with which to test. All that is required is
that the factory be called to create one or more speakers to add to the Fakerepository.

www.EBooksWorld.ir

public GetAll()

{
_fakeRepository = new FakeRepository();
SpeakerFactory.Create(_fakeRepository);
_speakerService = new SpeakerService(_fakeRepository);
}

If you have been following along with the same solution from previous chapters, you may need
to modify the Search tests as well.

public Search()

{
var fakeRepository = new FakeRepository();
SpeakerFactory.Create(fakeRepository);
SpeakerFactory.Create(fakeRepository, name:"Josh");
SpeakerFactory.Create(fakeRepository, name:"Joseph");
SpeakerFactory.Create(fakeRepository, name:"Bill");
_speakerService = new SpeakerService(fakeRepository);

}

www.EBooksWorld.ir

Soft delete

It was decided that it would be useful to be able to "soft delete" a speaker from the system. A
"soft delete" allows for the record to be marked as deleted without physically deleting the
record. This will help maintain referential integrity while achieving the desired result.

First, add an extension method to the SpeakerFactory called 1speleted that will set the speaker to
be deleted.

public static Speaker IsDeleted(this Speaker speaker)
{

speaker.IsDeleted = true;

return speaker;

}
Now, create a test to ensure that this speaker is not returned when cetal1 is called.

[Fact]
public void GivenSpeakerIsDeletedSpeakerIsNotReturned()
{
// Arrange
var fakeRepository = new FakeRepository();
SpeakerFactory.Create(fakeRepository).IsDeleted();
var speakerService = new SpeakerService(fakeRepository);

// Act
var speakers = speakerService.GetAll().ToList();

// Assert

Assert.NotNull(speakers);
Assert.IsAssignableFrom<IEnumerable<SpeakerSummary>>(speakers);
Assert.Equal(@, speakers.Count);

Finally, modify the code to guarantee the "deleted" speaker is not returned.

public IEnumerable<SpeakerSummary> GetAll()
{
return _repository.GetAll()
.Where(x => !x.IsDeleted)
.Select(speaker => new SpeakerSummary

Id = speaker.Id,
Name = speaker.Name,
Location = speaker.Location

s

www.EBooksWorld.ir

Speaker details

Next up we come to the speaker details. We've chosen to continue in the back-end application as
we'll tie the entire program together in up coming chapters.

As stated earlier, this is where the real value is delivered for the first set of requirements. User
groups and conference organizers will be able to contact a speaker using the information

provided in the details view.

www.EBooksWorld.ir

API

To return the details of an individual speaker, a new endpoint is needed. A new method cet is
required which will take an integer ID and return a speakerpetail ViewModel.

www.EBooksWorld.ir

API tests

To get started, add a new test class named cet. Now, add a test to check that the cet method
exists.

[Fact]
public void ItExists()
{
// Arrange
var speakerServiceMock = new Mock<ISpeakerService>();
var controller = new SpeakerController(speakerServiceMock.Object);

// Act
var result = controller.Get();

Make this test pass by adding a cet method to the speakercontroller. Note that, in the following
example, the Arrange test setup has been moved to the constructor of the test class.

[Fact]
public void ItExists()

// Arrange
// Act
_controller.Get();

}

Next, ensure that the cet method accepts an integer.

[Fact]
public void ItAcceptsInteger()
{

// Arrange

// Act

_controller.Get(1);

}

In order to make this test pass, an integer parameter will need to be added to the cet method. At
this time, it is safe to delete the 1texists method. This test would need to be modified to
accommodate the change, and its existence would be verified with the new test.

public void Get(int id)
{
}

Now that the tests confirm that the et method accepts an integer, now confirm that it returns an
ok result.

[Fact]
public void ItReturnsOkObjectResult()
{

// Arrange

// Act

var result = _controller.Get(1);

// Assert
Assert.IsType<OkObjectResult>(result);

www.EBooksWorld.ir

Now, ensure that the result is a speakerbetail.

[Fact]
public void ItReturnsSpeakerDetail()
{
// Arrange
// Act
var result = _controller.Get(1) as OkObjectResult;

// Assert

Assert.NotNull(result);
Assert.NotNull(result.Value);
Assert.IsType<SpeakerDetail>(result.Value);

In order to get this test to pass, a speakerbetail object is required. Create an empty object with no
properties, as none are yet required by the tests.

public IActionResult Get(int id)
{

}

return Ok(new SpeakerDetail());

Just like with the ceta11 method, the logic for this action should reside in the Service. Create a
test to check that the cet method in the speakerservice is called using moq.

[Fact]
public void ItCallsGetServiceOnce()
{

// Arrange

// Act

_controller.Get(1);

// Assert
_speakerServiceMock.Verify(mock => mock.Get(), Times.Once());

}

To get the application to compile a cet method, a signature will need to be added to the 1service
interface.

| void Get();
The speakerservice will need to be modified in order to get the application to compile.

public void Get()
{

}

throw new NotImplementedException();

To make this test pass, simply call the cet method of the speakerservice.

public IActionResult Get(int id)
{

_speakerService.Get();

return Ok(new SpeakerDetail());

}

The method signature of the cet method in the 1speakerservice will need to be modified to return
a speakerbetail instead of void.

| SpeakerDetail Get();

www.EBooksWorld.ir

Now ensure that the ID passed into the et method in the speakercontrolier is what is provided to
the cet method in the speakerservice.

[Fact]
public void ItCallsGetServiceWithProvidedId()

{
// Arrange
const int id = 1;

// Act
_controller.Get(id);

// Assert
_speakerServiceMock.Verify(mock => mock.Get(id),Times.Once());

}

This will require modifications to the 1speakerservice interface as well as the speakerservice
class.

SpeakerDetail Get(int id);

public SpeakerDetail Get(int id)
{

throw new NotImplementedException();

}

Now return the result of the cet method of the speakerservice.

[Fact]
public void GivenSpeakerServiceThenResultIsReturned()
{

// Arrange

// Act
var result = _controller.Get(1) as OkObjectResult;

// Assert
Assert.NotNull(result);

var speaker = ((SpeakerDetail)result.Value);
Assert.Equal(_speaker, speaker);

In order to make this test pass, simply return the result of the et method.

public IActionResult Get(int id)
{

var speaker = _speakerService.Get();

return Ok(speaker);

}

Here is what the final results of the speakercontroller currently look like:

using Microsoft.AspNetCore.Mvc;
using SpeakerMeet.Api.Services;

namespace SpeakerMeet.Api.Controllers

[Route("api/[controller]")]
public class SpeakerController : Controller

{

private readonly ISpeakerService _speakerService;

public SpeakerController(ISpeakerService speakerService)

{

_speakerService = speakerService;

www.EBooksWorld.ir

}

}

}

[Route("search")]
public IActionResult Search(string searchString)

{

var speakers = _speakerService.Search(searchString);

return Ok(speakers);

}
public IActionResult GetAll()
{
var speakers = _speakerService.GetAll();

return Ok(speakers);

}
public IActionResult Get(int id)
{
var speaker = _speakerService.Get(id);

return Ok(speaker);

}

www.EBooksWorld.ir

Service

Now that the controller is calling the cet method of the moq service, it's time to implement this
method in the speakerservice.

www.EBooksWorld.ir

Service tests

The cet method was declared as a result of previous tests. Create a new Itexists test and delete
the implementation to see it fail.

[Fact]
public void ItHasGetMethod()

// Act
// Arrange
_speakerService.Get();

}

Make this test pass by implementing the cet method.

public void Get()

{
3

Now ensure the cet method accepts an integer.

[Fact]
public void ItAcceptsAnInteger()
{
// Act
// Arrange
_speakerService.Get(1);

}

Modify the cet method to accept an integer.

public SpeakerDetail Get(int id)

{
}

Test that the cet method returns a speakerbetail object.

[Fact]
public void ItReturnsSpeakerDetail()
{
// Arrange
// Act
var speaker = _speakerService.Get(1);
// Assert
Assert.NotNull(speaker);
Assert.IsType<SpeakerDetail>(speaker);
}

To make this test pass, simply return a new speakerbetail object.

public SpeakerDetail Get(int id)
{

return new SpeakerDetail();

}

Verify that the speakerbetail returned contains an ID.

www.EBooksWorld.ir

[Fact]
public void GivenSpeakerReturnsId()
{
// Arrange
// Act
var speaker = _speakerService.Get(1);

// Assert
Assert.Equal(1, speaker.Id);

Now make the test pass.

public SpeakerDetail Get(int id)
{

return new SpeakerDetail

"Joshua"

Confirm that the speakerpetail contains a name.

[Fact]
public void GivenSpeakerReturnsName()
{
// Arrange
// Act
var speaker = _speakerService.Get(1);

// Assert
Assert.Equal("Joshua", speaker.Name);

And make the test pass.

public SpeakerDetail Get(int id)
{

return new SpeakerDetail

"Joshua"

Finally, ensure that Location is returned.

[Fact]
public void GivenSpeakerReturnsLocation()
{

// Arrange

// Act

var speaker = _speakerService.Get(1);

// Assert
Assert.Equal("Tampa, FL", speaker.Location);

And make the test pass by returning the location.

public SpeakerDetail Get(int id)

{
return new SpeakerDetail
{
Id = 1,
Name = "Joshua",

www.EBooksWorld.ir

Location = "Tampa, FL"
}
}

www.EBooksWorld.ir

Clean the tests

Don’t forget to clean and refactor the tests. Collapse the property tests.

[Fact]
public void GivenSpeakerReturnsSpeakerWithProperties()
{
// Arrange
// Act
var speaker = _speakerService.Get(1);
// Assert
Assert.Equal(1, speaker.Id);
Assert.Equal("Joshua", speaker.Name);
}

www.EBooksWorld.ir

More from the repository

Now, verify that the repository is called.

[Fact]
public void ItCallsRepository()
{
// Arrange
var fakeRepository = new FakeRepository();
var service = new SpeakerService(fakeRepository);

// Act
service.Get(-1);

// Assert
Assert.True(fakeRepository.GetCalled);

Now ensure the test passes by implementing the necessary modification.

public SpeakerDetail Get(int id)
{

_repository.Get();

return new SpeakerDetail
{
Id = 1,

Name "Joshua"

i
}

www.EBooksWorld.ir

Additional factory work

As before, it would be ideal if the values weren't hardcoded. Use the factory to create a speaker
and have the repository return the designated speaker.

[Fact]
public void ItReturnsSpeakerFromRepository()
{
// Arrange
var fakeRepository = new FakeRepository();
var expectedSpeaker = SpeakerFactory.Create(fakeRepository, 2, "Bill");
var service = new SpeakerService(fakeRepository);

// Act
var actualSpeaker = service.Get(expectedSpeaker.Id);

// Assert

Assert.True(fakeRepository.GetCalled);
Assert.Equal(expectedSpeaker.Id, actualSpeaker.Id);
Assert.Equal(expectedSpeaker.Name, actualSpeaker.Name);

To get this to pass requires a modification to IrRepository, FakeRepository, and Service.

IRepository:

| Speaker Get(int id);

FakeRepository.

public Speaker Get(int id)

{
GetCalled = true;

return Speakers.Find(x => x.Id == id);

}

Service.

public SpeakerDetail Get(int id)
{

var speaker = _repository.Get(id);

return new SpeakerDetail

{
Id = speaker.Id,

Name = speaker.Name

3

}

All previous tests to 1trReturnsspeakerFromRepository can now be deleted. These were all yak
shaving in order to get to this point.

Now, to ensure that this will work with numerous values, convert the last test to a set of theories.

[Theory]
[Inlinebata(1, "Joshua")]
[InlinebData(2, "Bill")]

www.EBooksWorld.ir

[InlineData(3, "Suzie")]

public void ItReturnsSpeakerFromRepository(int id, string name)

{
// Arrange
var expectedSpeaker = SpeakerFactory.Create(_fakeRepository, id, name);
var service = new SpeakerService(_fakeRepository);

// Act
var actualSpeaker = service.Get(expectedSpeaker.Id);

// Assert
Assert.True(_fakeRepository.GetCalled);
Assert.Equal(expectedSpeaker.Id, actualSpeaker.Id);
Assert.Equal(expectedSpeaker.Name, actualSpeaker.Name);

All the tests should pass. If for some reason a failing test is encountered, do not proceed until the
failing test is resolved.

www.EBooksWorld.ir

Testing exception cases

Testing exception cases is a very important step. In this case, the business has defined a case
where we will return a SPEAKER NOT FOUND error if the speaker does not exist. It is also
important for the developer to consider any significant edge cases the business has missed.
Discuss them with the business if you can and get them added to the spec.

Now test that the speaker must exist.

[Fact]
public void GivenSpeakerNotFoundThenSpeakerNotFoundException()
{
// Arrange
var service = new SpeakerService(_fakeRepository);
// Act
var exception = Record.Exception(() => service.Get(-1));
// Assert
Assert.IsAssignableFrom<SpeakerNotFoundException>(exception);

And make it pass.

public SpeakerDetail Get(int id)
{

var speaker = _repository.Get(id);

if (speaker == null)

{

throw new SpeakerNotFoundException();

}

return new SpeakerDetail

{

Id = speaker.Id,
Name = speaker.Name

3

Now, verify that the speaker is not deleted. If it is deleted, throw the same

SpeakerNotFoundException.

[Fact]
public void GivenSpeakerIsDeletedThenSpeakerNotException()

{
// Arrange
var expectedSpeaker = SpeakerFactory.Create(_fakeRepository).IsDeleted();
var service = new SpeakerService(_fakeRepository);

// Act
var exception = Record.Exception(() => service.Get(expectedSpeaker.Id));
// Assert
Assert.IsAssignableFrom<SpeakerNotFoundException>(exception);
}

The simplest, most effective way to make this test pass is to throw an exception if the speaker
found has been deleted. Make the necessary change to the cet method.

www.EBooksWorld.ir

public SpeakerDetail Get(int id)
{

var speaker = _repository.Get(id);
if (speaker == null || speaker.IsDeleted)

throw new SpeakerNotFoundException();

}

return new SpeakerDetail

{
Id = speaker.Id,

Name = speaker.Name

3

www.EBooksWorld.ir

Summary

Now, you should feel fairly comfortable with the requirements surrounding the Speaker Meet
application and have had a decent introduction to the API, Service, and Repository layers for the
Speaker section of the back-end application. Mocks and Fakes continue to play a role in the
Test-Driving of the program.

In Chapter 8, Abstract Away Problems, more will be discussed with respect to abstractions. The
models for speakersummary and speakerpetail will be grown to include more properties. Additional
details will be provided on how best to increase the functionality, and with it the complexity, of
the application.

www.EBooksWorld.ir

Abstract Away Problems

These days, it is quite easy to find resources on the internet to integrate into your application.
Many provide functionality that would be perfectly suited to any number of applications. After
all, why spend time reinventing the wheel when someone else has already done the bulk of the
work for you?

In this chapter, we will gain an understanding of:

e Abstracting a Gravatar service
e Extending the repository pattern
e Using a generic repository and Entity Framework

www.EBooksWorld.ir

Abstracting away problems

There is an abundance of utilities and libraries these days to help make a full-featured
application. It can be quite easy to integrate these third-party systems within your application. At
times, however, you may need to replace one third-party library with another. Alternatively, you
may find yourself relying on the implementation that a third-party system provides, only to find
that the implementation has changed with a later update. How can you avoid these potential
problems?

Creating a dependency on code that is outside your control can create problems for you in the
future. If a change is introduced in a library that you depend on, it could potentially break your
system. Or, if your requirements change and the system no longer fits your specific needs you
may have to rewrite large portions of your application.

Don't depend directly on any third-party system. Abstract away the details so that your
application depends only on an interface that you define. If you define the interface and expose
only the functionality that you need, it can become trivial to make changes when they are
required. Changes could include minor updates or replacing whole libraries. You want these
changes to have minimal impact on the rest of your application.

8 Don't rely on third-party implementations; focus on test driving your code.

While developing an application with Test-Driven Development in mind, it can often be
tempting to test third-party software. While it is important to ensure that any third-party library
or utility works well when integrated into your system, it is best to focus on the behavior of your
system. Ensure that your system behaves well with the functionality that you wish to expose.

This means that you should handle the happy path as well as any possible exceptions that may
be thrown. Gracefully recovering from an error that crops up will allow your application to
continue to function in the event that a third-party service is not functioning as you expect.

www.EBooksWorld.ir

Gravatar

The Speaker Meet application uses Gravatar to display speaker, community, and conference
avatar images. Gravatar is an online service that associates an email address with an image.
Users can create an account and add an image that they wish to be shown by any service that
requests their image. The image is retrieved from the Gravatar service by creating an MD5 hash
of the user's email address and requesting an image from Gravatar by supplying the hashed
value. By relying on the hashed value, the user's email address is not exposed.

The Gravatar service allows the consumer to supply optional parameters to the HTTP call in
order to request a specific size, rating, or default image if none is found. Some of these options
include:

e s: The requested size of the image; by default, this is 80 x 80 pixel

e d: The default image if none is found; options include 404, mm (mystery-man) ,
identicon, and so on

e f: Force default; always return the default icon, even if an image is found

e r: Rating; users can label their image as G, PG, R, and X

By supplying these values, you have some control over the size and types of image you wish to
display within your application. The Speaker Meet application relies on the default offerings
from Gravatar.

www.EBooksWorld.ir

Starting with an interface

Looking at the Gravatar site, it appears that there a number of options available. In order to
shield the rest of the application, the functionality of Gravatar will be exposed through a class
contained within the Speaker Meet application. This functionality will first be defined by an
interface.

The desired interface might look something like this:

public interface IGravatarService

{
string GetGravatar(string emailAddress);
string GetGravatar(string emailAddress, int size);
string GetGravatar(string emailAddress, int size, string rating);
string GetGravatar(string emailAddress, int size, string rating,
string imageType);

}

To get started, you must first write some tests. Remember, you should not write a line of
production code without a failing unit test.

www.EBooksWorld.ir

Implementing a test version of
the interface

In order to create an interface named 1Gravatarservice, there first must be a need within the
application. Create a test within a speakerserviceTests Get class entitled 1tTakesGravatarservice:

[Fact]
public void ItTakesGravatarService()
{
// Arrange
var fakeGravatarService = new FakeGravatarService();
var service = new SpeakerService(_fakeRepository, fakeGravatarService);

}

This will cause a compilation error. Create an 16ravatarservice and modify the constructor of the
Speakerservice SO that this is a parameter.

Interface:

public interface IGravatarService

{
3

speakerservice method:

public SpeakerService(IRepository repository, IGravatarService gravatarService)

{

_repository = repository;

}

In order to get the tests to compile, create a FakeGravatarservice that can be supplied to the
speakerservice under test. Remember, you're not testing the rFakeGravatarservice, merely that the
SpeakerService acCepts an IGravatarService instance.

Now, ensure that the FakecravatarservicegetGravatar method is called when an individual Speaker
is requested.

[Fact]
public void ItCallsGravatarService()
{
// Arrange
var expectedSpeaker = SpeakerFactory.Create(_fakeRepository);
var service = new SpeakerService(_fakeRepository, _fakeGravatarService);

// Act
service.Get(expectedSpeaker.Id);

// Assert
Assert.True(_fakeGravatarService.GetGravatarCalled);

Modify the interface to add a cetGravatar method:

www.EBooksWorld.ir

public interface IGravatarService

{
}

void GetGravatar();

And implement this method in the rFakecravatarservice. This is similar to the cetcalied check of
the FakeRepository from Chapter 7, Test Driving C# Applications:

{

}

public class FakeGravatarService : IGravatarService

public bool GetGravatarCalled { get; set; }

public void GetGravatar()

{

GetGravatarCalled = true;

}

Next, ensure that the ceteravatar function is executed when the speakerservice Get(id) is called:

{

}

{

private readonly IRepository _repository;
private readonly IGravatarService _gravatarService;

public SpeakerService(IRepository repository, IGravatarService gravatarService)

_repository = repository;
_gravatarService = gravatarService;

public Models.SpeakerDetail Get(int id)

var speaker = _repository.Get(id);

if (speaker == null || speaker.IsDeleted)

{
throw new SpeakerNotFoundException();
}
var gravatar = _gravatarService.GetGravatar();

return new Models.SpeakerDetail
{

Id = speaker.Id,

Name = speaker.Name,

Location = speaker.Location

H

The test should now pass. However, the FakeGravatarservice isn't providing any real value at the
moment. The ceteravatar method should be executed with a provided email address:

{

[Fact]
public void ItCallsGravatarServiceWithEmail()

// Arrange
var expectedSpeaker = SpeakerFactory.Create(_fakeRepository, emailAddress: "example@test.con
var service = new SpeakerService(_fakeRepository, _fakeGravatarService);

// Act
service.Get(expectedSpeaker.Id);

// Assert
Assert.True(_fakeGravatarService.WithEmailCalled);
Assert.Equal(expectedSpeaker.EmailAddress, _fakeGravatarService.CalledWith);

You will need to modify the speakerFactory to accept an email address and the speaker model

www.EBooksWorld.ir

class to house an email address property.

Modify the etcravatar method in the rFakeGravatarservice and the 16ravatarservice interface to
accept a string emailAddress. Make sure you set the calledwith property when the cetcravatar is
executed:

public string Calledwith { get; set; }

public void GetGravatar(string emailAddress)

{

GetGravatarCalled = true;
Calledwith = emailAddress;

}

And ensure the ceteravatar method is called with the speaker's email address:

public Models.SpeakerDetail Get(int id)
{

var speaker = _repository.Get(id);

if (speaker == null || speaker.IsDeleted)

{

throw new SpeakerNotFoundException();

}

var gravatar = _gravatarService.GetGravatar(speaker.EmailAddress);

return new Models.SpeakerDetail
{

Id = speaker.Id,

Name = speaker.Name,

Location = speaker.Location,

i

Finally, set the return value of the cetGravatar method to a new property on the speakerpetail
object Gravatar:

[Fact]

public void GivenGravatarServiceThenItSetsGravatar()

{
// Arrange
var expectedSpeaker = SpeakerFactory.Create(_fakeRepository);
var service = new SpeakerService(_fakeRepository,
_fakeGravatarService);

// Act

var actualSpeaker = service.Get(expectedSpeaker.Id);

var expectedGravatar =

_fakeGravatarService.GetGravatar (expectedSpeaker.EmailAddress);

// Assert
Assert.True(_fakeGravatarService.WithEmailCalled);
Assert.Equal(expectedSpeaker.Id, actualSpeaker.Id);
Assert.Equal(expectedSpeaker.Name, actualSpeaker.Name);
Assert.Equal(expectedGravatar, actualSpeaker.Gravatar);

You will need to modify the rFakecravatarservice and its interface, and the speakerservice et
method to return a string, and the speakerpetail class to add a cravatar property:

public string GetGravatar(string emailAddress)

{
wWithEmailCalled = true;

Calledwith = emailAddress;

www.EBooksWorld.ir

return System.Reflection.MethodBase.GetCurrentMethod().Name;

}

The return value of the cetcravatar method doesn't matter, so long as it is a known value.
Remember, you're not testing that the Fakecravatarservice returns a valid Gravatar image URL,
just that the method returns something and that the return value is set to the cravatar property on
the speakerbetail object.

www.EBooksWorld.ir

Implementing the production
version of the interface

So far, an 16ravatarservice interface has been created with one method, cetGravatar. There are a
number of options available to interact with Gravatar. You could choose to write your own
methods to communicate directly with its public API. The Speaker Meet application uses one of
the available nNuget packages, GravatarHelper.NetStandard.

Install the latest version of GravatarHelper.Netstandard through nuget in order to follow along.

While reviewing the Gravatar website, it appears that they offer a variety of optional parameters.
To grow the 16ravatarservice interface and its implementation, create a new test class,

GetGravatar.

public class GetGravatar

{
}

Now test that the cravatarservice exists:

[Fact]
public void ItExists()

{
}

var gravatarService = new GravatarService();

Make this test pass by creating a cravatarservice class in the same location as the speakerservice:

namespace SpeakerMeet.Api.Services

public class GravatarService

{3
3

Now, ensure that the cravatarservice implements the 16ravatarinterface:

[Fact]
public void ItImplementsIGravatarInterface()

{
// Arrange

// Act
var gravatarService = new GravatarService();

// Assert
Assert.IsAssignableFrom<IGravatarService>(gravatarService);

From the previous set of tests, a cetGravatar method has already been defined within the
interface. Make the test pass by implementing the interface:

public class GravatarService : IGravatarService

{

public string GetGravatar(string emailAddress)

www.EBooksWorld.ir

{

throw new System.NotImplementedException();

}
}

Verify that the cetcravatar method exists with a new test:

[Fact]
public void ItHasGetGravatarMethod()
{
// Arrange
IGravatarService gravatarService = new GravatarService();

// Act
gravatarService.GetGravatar ("example@test.com");

Allow this test to pass by returning an empty string:

public string GetGravatar(string emailAddress)

{
3

return string.Empty;

The following tests are classified as integration tests as they're testing how the Speaker Meet
application interacts with a third-party system. Decorate the class as such:

[Trait("Category", "Integration")]
public class GetGravatar

Many test runners will allow you to conditionally run or exclude these tests based on trait
categories. Once the integration tests are defined and known to run successfully, you may
choose to ignore or disable them on change or only run them before check-in.

Now, test that the Gravatar service returns a known value when an email address is supplied. If
you have a Gravatar account, feel free to supply your own email address and test for your
Gravatar URL:

[Fact]
public void GivenEmailAddressThenGravatarReturned()
{
// Arrange
IGravatarService gravatarService = new GravatarService();

// Act
var actual = gravatarService.GetGravatar ("example@test.com");

// Assert
Assert.Equal("http://www.gravatar.com/avatar/29e3f53ee49fae541ee0f48fb712c231", actual);

Now, make this test pass by calling the static method supplied by the ravatarHelper:

public string GetGravatar(string emailAddress)

{
}

return Gravatar.GetGravatarImageUrl(emailAddress);

The test should now pass. You can see how the implementation has been hidden from the rest of
the application. The interface was designed out of necessity through a series of tests in the

SpeakerService.

www.EBooksWorld.ir

So, why not just call the eravatartelper methods directly from the speakerservice and elsewhere?
Remember, you shouldn't rely on third-party implementations. If the cravatarHelper is changed

or swapped out for something else entirely, then any class that is calling it directly may need to
change. By using an interface and a facade, the only class that would potentially need to change

is the Gravatarservice.

www.EBooksWorld.ir

Future planning

Future planning can be bad. If you're writing code now in anticipation of future problems, you
could be wasting effort. Don't write code you don't need. This could add complexity that can
slow development.

Remember the term YAGNI (you ain't gonna need it) as this applies to any code written
without an immediate need. The additional cravatarservice methods previously, could be used as
an illustration of exactly that. Of the examples provided so far, none require the additional
methods that were just created. If for some reason the implementation of the ravatarHelper
changes, the code that has already been written may need to change. If it is not currently being
used, this is a waste of effort.

So, where does future planning start and good abstraction end? Abstract away third-party
systems. Only expose methods and functionalities that are an immediate need. Minimize the
pain of change by shielding the rest of the application from the details of any third-party system.
That includes things such as the .NET Framework and ORMs such as Entity Framework.

www.EBooksWorld.ir

Abstracting the data layer

The data layer abstraction has already begun with the implementation of a repository pattern. In
this section, we will work to create a valid abstraction for connecting to an Entity Framework.
After we can communicate with the Entity Framework, we will then focus on making the
repository more generic and able to work with multiple data models.

www.EBooksWorld.ir

Extending the repository
pattern

The first step in creating a valid data layer abstraction is to make sure CRUD has been handled.
CRUD (Create, Read, Update, and Delete) are the basic operations that can be performed on
any dataset. The 1repository does not yet provide access to all of these capabilities so we will
begin by extending it.

First create a folder to contain the tests for a speakerrepository. The folder should be named in
line with the folders containing the speakerservice tests and speakercontroller tests. As usual, we
start with a failing test. In this case, the test is failing to compile:

[Trait("Category", "SpeakerRepository")]
public class Class

{
[Fact]
public void ItExists()

{

3
b

var repo = new SpeakerRepository();

Create the speakerrepository and the test should pass:

public class SpeakerRepository

{
}

The speakerrepository needs to inherit from 1repository so either transform the existence test into
a test for type, or create a new test:

[Fact]
public void ItIsARepository()

{
// Arrange / Act
var repo = new SpeakerRepository();

// Assert
Assert.IsAssignableFrom<IRepository<Speaker>>(repo);

}

Now, make the test pass by inheriting from 1repository. We don't have tests for functionality at
this point, so leave the repository methods as not implemented:

public class SpeakerRepository : IRepository<Speaker>

public Speaker Get(int id)
{

throw new System.NotImplementedException();

}

public IQueryable<Speaker> GetAll()
{

throw new System.NotImplementedException();

www.EBooksWorld.ir

}

www.EBooksWorld.ir

The Get method

Now that speakerrepository properly inherits from 1repository, the two methods currently defined
by 1Repository need to be implemented. As we did for speakerservice, we need to create a new
test class specifically for the cet method. Again, while it might seem to be overkill at this point,
creating a file per method will help with organization as the test suite grows:

[Trait("Category", "SpeakerRepository")]
public class Get

{
}

Now that the class exists, the first test method that can be written is a simple exists method:

[Fact]
public void ItHasGetMethod()
{
// Arrange
var repo = new SpeakerRepository();
// Act
var result = repo.Get(0);

}

Initially this test will fail because the stub implementation provided by Visual Studio just throws
a NotImplementedException. To fix this, we have to return something; so what should be returned?
There is no test to explain what result is expected so we must go with something that will
compile but is almost certainly incorrect. In this situation the correct, incorrect value to return is
probably nu11:

public Speaker Get(int id)
{

}

return null;

www.EBooksWorld.ir

The GetAll method

The test now passes. Let us pause here and get the same amount of testing around the cetal11
method enforced by the interface. As previously, create a new class for cetAl1:

[Trait("Category", "SpeakerRepository")]
public class GetAll

{
}

Create an exists method which will just ensure the method doesn't throw when called:

[Fact]
public void ItHasGetAllMethod()
{
// Arrange
var repo = new SpeakerRepository();

// Act
var result = repo.GetAll();

www.EBooksWorld.ir

The Create method

It will probably be easier to test the repository pattern if all the repository methods are assumed
to exist. Unfortunately, a repository presents a chicken and egg scenario. How can we test et or
cetAll without some way of creating entries in the repository? At the same time, how can we test
Ccreate Or Delete without some way of retrieving entries from the repository?

Next create a new class for create:

[Trait("Category", "SpeakerRepository")]
public class Create

{
}

As before, write a method to check for existence. In this test, we need to be sure to test against
the repository, not the create class implementation. This will force us to add to the interface:

[Fact]
public void ItHasCreateMethod()
{
// Arrange
IRepository<Speaker> repo = new SpeakerRepository();
// Act
var result = repo.Create(new Speaker());
}

You may have noticed, in this test, that we receive a result from the create method. This may not
be obvious since we received values from the et and ceta11 methods, but we are choosing to
break CQRS (Command Query Responsibility Separation) in favor of a more RESTful
approach. In REST (Representational State Transfer), because it must remain stateless and
cannot provide information about an action that has already finished, a service will generally
return either the object created or a way to retrieve that object in the future.

In this case, you might think that we are now providing a leaky abstraction of the web. It could
be interpreted that way. I prefer to look at this choice as opening options instead of limiting
them. It will be easier to hide a CQRS implementation behind a RESTful interface than it would
be to work things the other way around.

Now, to pass the currently failing test, a method definition will need to be added to the
IRepository interface, a method implementation will need to be added to the speakerrepository,
and the speakerrepository implementation will need to be amended to not throw:

public interface IRepository<T>

{
T Get(int id);
IQueryable<T> GetAll();
T Create(T item);

}

Speaker save method:

www.EBooksWorld.ir

public Speaker Save(Speaker speaker)

{

return null;

}

A stub implementation will also have to be added to the rFakerepository that was defined in Chapte
r 7, Test Driving C# Applications.

www.EBooksWorld.ir

The Delete method

Next, we will add the pelete method. Just as before, create a new test class:

[Trait("Category", "SpeakerRepository")]
public class Delete

{
b

Just like for the create method, we need to treat the speakerrepository as an Irepository. Create a
Delete exists method:

[Fact]
public void ItHasDeleteMethod()

{
// Arrange

IRepository<Speaker> repo = new SpeakerRepository();
var speaker = new Speaker();

// Act
repo.Delete(speaker);

Implementing this method will be slightly easier as it is a void method and we are not expecting
a result. There are some decisions that will have to be made later regarding how the method
should behave when it is passed to a speaker that does not exist. For now, we can just assume
that nothing happens and the method is successful.

As before, modify the 1repository to contain a pelete method:

public interface IRepository<T>
{

T Get(int id);

IQueryable<T> GetAll();

T Create(T item);

void Delete(T item);

}

And now create the stub method in the speakerRrepository and the Fakerepository:

public void Delete(Speaker speaker)
{
}

www.EBooksWorld.ir

The Update method

There is one last method required for a valid repository pattern and any useful system. We need
the ability to update the models we are working with. As with the last two methods, this one
does not yet exist in the repository, so let's add it.

As before, begin by creating a test class for it:

[Trait("Category", "SpeakerRepository")]
public class Update

{

}

Just like the others, create an 1texists test referencing the 1repository:

[Fact]

public void ItHasUpdateMethod()

{
// Arrange
IRepository<Speaker> repo = new SpeakerRepository();
var speaker = new Speaker();

// Act
var result = repo.Update(speaker);

}

As before, we are just stubbing functionality here so we don't yet have an actual speaker to
update. This test, and the others, will almost certainly have to change as we begin testing for
actual functionality. For now, they will suffice to ensure the interface and class have the
appropriate methods.

As before, add the method to the interface and then to the speakerrepository and the

FakeRepository:

public interface IRepository
{
TGet(int id);
IQueryable<T> GetAll();
T Create(T item);
T Update(T item);
void Delete(T item);

}
Speaker Update method:

public Speaker Update(Speaker speaker)
{

}

return null;

www.EBooksWorld.ir

Ensuring functionality

Now that all the methods have been defined, we can begin writing tests for functionality. We
will begin with create and work our way down to pelete.

www.EBooksWorld.ir

Creating a speaker

The chicken and egg scenario mentioned earlier has us in a predicament. We can't read a speaker
from the repository if no speakers have been created. We also can't verify that a speaker has in
fact been created unless we can retrieve a speaker from the repository.

One way to solve this problem is by using a special kind of test double that exposes the internal
functionality of a class for the purposes of asserting on that information. For create, we will use
this approach. In the create.cs file, let's add a test that assumes the testable class already exists:

[Fact]
public void ItAddsASpeakerToTheRepository()
{
// Arrange
var repo = new TestableSpeakerRepository();
// Act
var result = repo.Create(new Speaker());
// Assert
Assert.Equal(1l, repo.SpeakersCollection.Count);

}

To get past the compilation error, the testable class must be created. Create this class in the same
file, for now, to make working with it more efficient:

public class TestableSpeakerRepository : SpeakerRepository

{
3

Now the class is created and the initial compilation error is resolved, but a new error has risen:

// Assert
Assert.Equal(1, repo.SpeakersCollection.Count);

This error is slightly more difficult to resolve. In reality, we want a collection of speakers to
exist in the real repository. However, we have had no reason to expose that collection. No
collection has actually been created as a result. Now, in this test we are asking whether a
collection exists. The test requires that a collection exists for the Testablespeakerrepository but
we know we need one for the real speakerrepository. Let's play devil's advocate and actually do
the thing we know is not quite right:

public class TestableSpeakerRepository : SpeakerRepository

{
public IQueryable<Speaker> SpeakersCollection { get; set; }

}

This change doesn't quite make the test pass; when writing the test we hastily accessed the count
property on Speakers. The count property is only on a list, but to limit the exposure of an
interface until we actually can require it with tests, we should really be using an 1queryable. We
can quickly update the test to reflect this choice:

// Assert

www.EBooksWorld.ir

|Assert.Equal(1, repo.SpeakersCollection.Count);

Now, execute the tests and it finally fails with an actual message. The solution to this failure is
to add an entry to the speakers collection when create is called. The problem is that Speakers is
in a different class from create. So, we must have a collection in speakerrepository as well:
protected readonly IList<Speaker> Speakers = new List<Speaker>();
public Speaker Create(Speaker speaker)
{

Speakers.Add(speaker);

return speaker;

}

What's important to note is the scope and type of _speakers. It is an 1List, because we need to
add an item to it; an 1qQueryable will not do. It is also protected; _speakers must be hidden from
the outside world but also must be accessible from the testable class. The scope operator that
gives us this functionality is protected.

We must also make changes in the testable class in order to make this test pass:

internal class TestableSpeakerRepository : SpeakerRepository

{
3

public IList<Speaker> SpeakersCollection => Speakers;

Continuing with create, we now need to verify that, when a new speaker is created, it receives a
unique ID:

[Fact]
public void ItAssignsUniqueIdsToEachSpeaker ()
{

// Arrange

var repo = new TestableSpeakerRepository();

// Act
var speakeril

repo.Create(new Speaker());
var speaker2));

repo.Create(new Speaker(

// Assert
Assert.NotEqual(speakerl1.Id, speaker2.Id);

To make this test pass, we must come up with some kind of ID generation system. There are
many options, but one of the simplest is to create a private field and increment the value each
time create is called:

private int _currentlId = 0;
public Speaker Create(Speaker speaker)
{

speaker.Id = ++_currentId;

Speakers.Add(speaker);

return speaker;

}

With that test passing, we can now turn our attention to a leak in the abstraction. We are simply
placing the passed-in object into the dataset. This could cause an issue in an application that
needs to be fixed.

www.EBooksWorld.ir

The repository should isolate its object from the rest of the application by passing and storing
clones, instead of directly accessing and providing objects:

[Fact]

public void ItReturnsANewSpeaker ()

{
// Arrange
var repo = new TestableSpeakerRepository();
var speaker = new Speaker { Id = 0 };

// Act
var result = repo.Create(speaker);

// Assert
Assert.Equal(0, speaker.Id);

To make this test pass, we will need some cloning mechanism. To make this test pass as soon as
possible, we can simply use a new object and object initializer:

public Speaker Create(Speaker speaker)
{
var newSpeaker = new Speaker
{
Id = ++_currentlId,
Name = speaker.Name,
Location = speaker.Location,
IsDeleted = speaker.IsDeleted

}
Speakers.Add(newSpeaker);

return newSpeaker;

}

Now, we must handle the other direction for reference passing. The value stored in the speakers
collection should not directly be handed back to us from the create method:

[Fact]
public void ItProtectsAgainstObjectChangesAfterCreation()
{

// Arrange

var repo = new TestableSpeakerRepository();

var speaker = repo.Create(new Speaker());

// Act

speaker.Name = "test name";

// Audit

var result = repo.SpeakersCollection.First();
// Assert

Assert.NotEqual("test name", result.Name);

Notice the extra auditing step. Sometimes, you will need to take an action and then assert on a
deeply nested value or a distant value. In those cases, you can keep a clean single-step action by
adding an audit step.

To make this test pass, we must take a similar action to what we are already doing at the top of
the create method:

public Speaker Create(Speaker speaker)

{

var newSpeaker = new Speaker

www.EBooksWorld.ir

Id = ++_currentlId,

Name = speaker.Name,

Location = speaker.Location,

IsDeleted = speaker.IsDeleted
3

Speakers.Add(newSpeaker);

var returnableSpeaker = new Speaker
{

Id = newSpeaker.Id,

Name = newSpeaker.Name,

Location = newSpeaker.Location,

IsDeleted = newSpeaker.IsDeleted
}

return returnableSpeaker;

That completes the functionality required for the create method. Now we should really do some
long overdue refactoring. Firstly, let's focus on the tests and reduce the duplicated calls to create
a new repository.

Create a constructor and a private repo field:

private readonly TestableSpeakerRepository _repo;

public Create()
{

_repo = new TestableSpeakerRepository();

}

Then replace all repository references in the tests with _repo. After reducing the number of
repositories being created in the tests, the tests look pretty good. Now we can focus on the
SpeakerRepository class.

One of the immediate standouts in the speakerrepository is the code we are using to clone a
speaker. The same code has essentially been typed twice in the same method. Let's abstract this
to a private function inside the repository for now. We may end up making a more sophisticated
solution later on, but for now that should be good enough.

At the bottom of the class, after all the public methods, we can create a clonespeaker method:

private Speaker CloneSpeaker(Speaker speaker)
{
return new Speaker
{
Id = speaker.Id,
Name = speaker.Name,
Location = speaker.Location,
IsDeleted = speaker.IsDeleted
1

}

Then we use the clonespeaker method in create:

public Speaker Create(Speaker speaker)

{

var newSpeaker = CloneSpeaker (speaker);

newSpeaker.Id = ++_currentId;

Speakers.Add(newSpeaker);

www.EBooksWorld.ir

return CloneSpeaker (newSpeaker);

}

www.EBooksWorld.ir

Getting a single speaker

With the existence of create, we can now very easily assert on the retrieval of an existing or non-
existing speaker. According to Uncle Bob's Transformation Priority Premise, it is easier and
simpler to test a singular item rather than a plural item, so while it doesn't completely fulfil the
intent of the premise, we will test the retrieval of a singular speaker next.

We already have an exists test, so what will the next test be? The simplest test would be the
retrieval of a single speaker, but if we are trying to avoid the gold standard, the most appropriate
test would be examining what happens when a speaker does not exist.

For non-existing speakers, we have a few immediately apparent options. We could throw an
error stating that the requested speaker is not in the system. Another option would be returning a
null object. And the last would be simply returning nu11.

Throwing an error is probably the most straightforward, so let's examine this option first:

[Fact]
public void ItThrowsWhenSpeakerIsNotFound()
{
// Arrange
var repo = new SpeakerRepository();
// Act
var result = Record.Exception(() => repo.Get(-1));
// Assert
Assert.IsType<SpeakerNotFoundException>(result.GetBaseException());

}

To make this test pass, first we must make it compile. The speakerNotFoundException in this case is
not the same as the one we are using in the speakerservice. So, it will need to be created:

public class SpeakerNotFoundException : Exception

{
public SpeakerNotFoundException()

{
b
}

Now that the test is correctly compiling and failing, we can add the appropriate code to the
repository to make the test pass:

public Speaker Get(int id)
{

if (id == -1)

{

throw new SpeakerNotFoundException();

}

return null;

}

Another guideline for tests, to help you know you are on the right path and not digging yourself

www.EBooksWorld.ir

into a hole, is again from Uncle Bob, As the tests get more specific the code gets more

generic. If we look at the code we just wrote, it seems more specific then generic. Let's refactor
it to maintain a trend towards generics:

public Speaker Get(int id)

if (id > -1)
{

}

throw new SpeakerNotFoundException();

}

return null;

The change here is subtle, but important. Thinking about the operation of this method in
production, the default case really is to throw. There is only a small subset in the set containing
all the integers that we actually have a speaker for, so the generic case is to throw. The specific
case is actually to find a speaker.

One issue with the method of throwing when a speaker is not found is that it brings a possibly
unexpected and abrupt end to the application flow. The entire logic path the application took to
get to this method is now destroyed and the exception must be handled. Even when we handle
the exception, C# uses extra CPU cycles on the first-chance exception error handling process.
Sometimes throwing is definitely the right decision; however, exceptions should be reserved for
truly exceptional events. As discussed earlier, it is far more likely that a cet could be called with
an invalid ID than with a valid one. So, in this case it is not necessarily a properly exceptional
event for an invalid speaker to be requested.

Let's explore the alternative of a NullObject. First, we need to revert our code to where it was
when we started working on the cet method. We are using source control so we can very simply
revert our code. If you are not using source control, I would suggest you start. Here is the state
the cet method should be in before we begin again:

public Speaker Get(int id)
{

return null;

}

We can just delete the test that asserts an exception was thrown.

The NullObject pattern is a simple pattern with a slightly more complicated implementation.
Basically, you create an object that inherits from the class needed, but it does absolutely nothing
in just the right way.

Thinking about this from our eventual website usage, a speaker null object would possibly have
a name such as "Mr. Unknown" and would speak at conferences like "Mid-Nowhere Tech Fest."
We could create a funny profile picture and fill out harmless user information that would let the
user know they had requested a non-existent speaker. All of that information could be
determined and filled out later. The important part of a null object is that it represents a fully
capable object, but does absolutely nothing in the right way to not cause harm within your
application:

[Fact]
public void ItReturnsANullSpeakerWhenNotFound()
{

www.EBooksWorld.ir

// Arrange
var repo = new SpeakerRepository();

// Act

var result = repo.Get(-1);

// Assert
Assert.IsType<NullSpeaker>(result);

}

To fix the compilation error, create the nullspeaker class and have it inherit from speaker:

public class NullSpeaker : Speaker

{
}

Making the test pass is fairly simple. In this case we don't have to worry about existing tests that
could break from returning the null object:

public Speaker Get(int id)
{

}

return new NullSpeaker();

Superficially, the null object pattern seems like a pretty good solution. In reality, this is not
always the case. It is very difficult to properly do nothing within a system. In the case of getting
a speaker, the null object pattern would probably work just fine. We have one more option to
explore though.

The last option is to simply return nu11. Well, simply may not be the best word choice. nu11 can
cause a lot of trouble within a system. It will wreak havoc if you do not handle the null that was
received and a distant part of the system tries to use the null as if it weren't null. Earlier, when
we were designing the service, we decided to expect null as a possible result from calling the
repository; thus, in this case the range of effects should be short and null should not cause
significant negative side-effects within the system. Let's revert the code one more time and
explore simply returning nu11:

[Fact]
public void ItReturnsNullWhenNotFound()
{
// Arrange
var repo = new SpeakerRepository();
// Act
var result = repo.Get(-1);
// Assert
Assert.Null(result);

}

There is nothing to do in the speakerrepository because we are already returning nu11. Normally,
this test would not be written here. We would wait to write this test until we had a test that was
returning a valid speaker. The reason we want to delay this test is because we can't fail it. You
will not see this test go red and that is generally a problem. Either the test is not needed because
it is extraneous and covered elsewhere or the test is flawed because it can't fail.

The test we should write before this one is a test that should retrieve a valid value. For the
moment, ignore this test and we will come back and watch it fail after the next test:

www.EBooksWorld.ir

[Fact(Skip = "Can't fail")]
public void ItReturnsNullWhenNotFound()

{
// Arrange
var repo = new SpeakerRepository();
// Act
var result = repo.Get(-1);
// Assert
Assert.Null(result);
}

So, if we are about to test the retrieval of an existing speaker, which we called the gold standard
before, why did we avoid it in the first place? The reason we are going to test the gold standard
first now is solely because of implementation choices. If we were going to use either as an
exception or a null object, we would have done those first. The problem right now is that our
code is already returning nu11 so testing for null would not have done us any good.

To test for an existing speaker, a speaker must first exist. In the arrange section of our test, we
will need to make sure we create a speaker:

[Fact]
public void ItReturnsASpeakerWhenFound()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Speaker"});
// Act
var result = repo.Get(speaker.Id);
// Assert
Assert.NotNull(result);

The first step is to simply assert that the result is not null. This of course fails because all we are
doing right now is returning nu11. Let's fix that:

public Speaker Get(int id)
{

}

return new Speaker();

Even though we are now forced to go down the gold-standard path, we can still avoid it as much
as possible. One way to do this is by playing devil's advocate, which we can do by returning a
speaker, just not the right speaker.

We must now modify the test to make sure the values we care about are correct:

// Assert
Assert.NotNull(result);
Assert.Equal("Test Speaker'", result.Name);

Now to modify the code. We could continue to play devil's advocate, but at this point that would
only cause more unnecessary work in the tests:

public Speaker Get(int id)
{

}

return Speakers.SingleOrDefault(s => s.Id == id);

www.EBooksWorld.ir

At this point, we are left with a conundrum. We can't call single or First because they will throw
an exception if the requested speaker is not found. We do have a system rule to return nu11 when
the speaker is not found though. The system is behaving correctly by default. We could simply
put our test back into play and accept that the null test just won't be properly verifiable. Another
option is to purposely write code to return a new speaker in the event that the speakers collection
is missing the requested speaker. Taking the second option would allow us to see the null test
fail, but we would just be removing it to make the test pass.

In this case, the second option is probably the most appropriate. Many of you will probably
think that there is no reason to add the code that forces a non-null; many others will probably
think that the test is not needed as it doesn't seem to provide value. Both groups are correct and
incorrect at the same time. They are correct: putting in code just to remove it two seconds later
is stupid. Adding a test that can't really fail is stupid too.

However, we need the test because at some point in the future a requirement could come in that
would cause a null to be accidentally impossible and we need a record of the business
requirement stating that the value should be null. We also need to see every test fail. In this
particular case, we could probably get away with skipping that part, but if we get into a habit of
skipping test failures it will quickly bite you.

So, let's make the appropriate change to force the null test to fail and then fix our "error:"

public Speaker Get(int id)
{

}

return Speakers.SingleOrDefault(s => s.Id == id) ?? new Speaker();

We can now remove the skip attribute on the null test and then come back here and remove the
null coalescing operator.

We have one more test needed for cet. We must ensure the pointer for the returned speaker is
not the same as the speaker in the repository:

[Fact]
public void ItProtectsAgainstObjectChanges()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker { Name = "Test Speaker" });
var retrievedSpeaker = repo.Get(speaker.Id);
retrievedSpeaker.Name = "New Speaker Name";
// Act
var result = repo.Get(speaker.Id);
// Assert
Assert.NotEqual(retrievedSpeaker.Name, result.Name);
}

This test is significantly harder to follow, but necessary. We first have to create a speaker. Then
we retrieve the speaker we created, update the retrieved speaker's name, and retrieve the
speaker again. Finally, we verify that the modified speaker is not the same as the retrieved
speaker. They should not be the same because we have not saved the data, so no updates should
have occurred.

The fix for this issue has already been created and just needs to be implemented:

www.EBooksWorld.ir

public Speaker Get(int id)

{
var speaker = Speakers.SingleOrDefault(s => s.Id == id);
if (speaker !'= null)
{
speaker = CloneSpeaker(speaker);
}

return speaker;

Lastly, we should refactor. Follow the same steps as you did for create and extract the repository

creation into the constructor. The simplicity of this test class means it doesn't require any further
refactoring.

www.EBooksWorld.ir

Getting multiple speakers

Getting many speakers is much easier than getting a single speaker. We are not going to have to
worry about not finding speakers. We are not going to have to handle any error conditions. All
we have to test for is retrieving the correct number of speakers, and ensuring data safety the
same as we have done for the other methods so far.

Let's start with retrieving all the speakers when there are no speakers:

[Fact]
public void ItReturnsNoSpeakersWhenThereAreNoSpeakers()
{

// Arrange

var repo = new SpeakerRepository();

// Act
var result = repo.GetAll();

// Assert
Assert.NotNull(result);

This is an easy fix in the repository:

public IQueryable<Speaker> GetAll()
{

}

return new List<Speaker>().AsQueryable();

Remember, we are playing devil's advocate; this is the correct response for its purpose.

Now, we need to assert the type and size of the method's response:

// Assert

Assert.NotNull(result);
Assert.IsAssignableFrom<IQueryable<Speaker>>(result);
Assert.Equal(®, result.Count());

I know we have already mentioned the single assert rule and how it doesn't mean what it sounds
like it means. This test is still following the rule because we are asserting that cetAll returns a
non-null empty collection of speakers.

Next, we test for a single speaker present in the repository:

[Fact]
public void ItReturnsASingleSpeakerWhenOnlyOneSpeakerExists()
{

// Arrange

var repo = new SpeakerRepository();

repo.Create(new Speaker { Name = "Test Speaker"});

// Act

var result = repo.GetAll();

// Assert

Assert.Equal(1l, result.Count());

www.EBooksWorld.ir

Again, making the appropriate adjustment in the repository is fairly simple:

public IQueryable<Speaker> GetAll()
{

}

return Speakers.AsQueryable();

Next, we want to close off this line of testing by making sure that the speaker returned is the
speaker we created. We expect this to pass right way because we already know that is the case.
This assertion is important to ensure the future integrity of the repository.

// Act
var result = repo.GetAll().ToList();

// Assert
Assert.Single(result);
Assert.Equal("Test Speaker", result.First().Name);

Notice the change to the action. Executing a count and retrieving the first element in the
collection both cause an enumeration. Enumerations equal CPU cycles. To reduce test time and
production execution time, we want to reduce the number of enumerations. Converting the
IQueryable to a list will enforce a single enumeration.

Let's do one final test to ensure the proper return values and check that multiple speakers come
back correctly:

[Fact]
public void ItReturnsManySpeakersWhenManySpeakerseExists()
{

// Arrange

var repo = new SpeakerRepository();

repo.Create(new Speaker());

repo.Create(new Speaker());

repo.Create(new Speaker());

// Act
var result = repo.GetAll().ToList();

// Assert
Assert.Equal(3, result.Count);

This test is just a sanity check and passes right away. Our next test is going to check data
integrity:

[Fact]

public void ItProtectsAgainstObjectChanges()

{
// Arrange
var repo = new SpeakerRepository();
repo.Create(new Speaker {Name = "Test Name"});
var speakers = repo.GetAll().ToList();
speakers.First().Name = "New Name";

// Act
var result = repo.GetAll();

// Assert
Assert.NotEqual(speakers.First().Name, result.First().Name);

The update in the repository is similar to what we have done for the other methods with one
exception. We are operating on an entire collection, instead of just a single item:

www.EBooksWorld.ir

public IQueryable<Speaker> GetAll()

{
return Speakers.Select(CloneSpeaker).AsQueryable();

}

Some of you may have seen this syntax before. What we have done is to pass the function
pointer of the clonespeaker method in as the Lambda expression required by the select method in
ling. The preceding line is exactly the same, functionally, as the following:

public IQueryable<Speaker> GetAll()

{
return Speakers.Select(CloneSpeaker).AsQueryable();

}

Time to clean up. We have the same clean-up steps as before. The only real refactoring needed
is extracting the repository creation.

www.EBooksWorld.ir

Updating a speaker

We can now create and retrieve speakers. We have also ensured that we cannot update them by

accident. So, let's make sure we can update them on purpose:

[Fact]
public void ItUpdatesASpeaker ()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Name"});
speaker.Name = "New Name";
// Act
var result = repo.Update(speaker);
// Assert
Assert.Equal(speaker.Name, result.Name);
}

Playing devil's advocate again, this is a simple update to the repository:

public Speaker Update(Speaker speaker)
{

}

return speaker;

This is clearly the wrong solution; let's write another, more specific test:

[Fact]
public void ItUpdatesASpeakerInTheRepository()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Name"});
speaker.Name = "New Name";
// Act
var updatedSpeaker = repo.Update(speaker);
// Audit
var result = repo.Get(speaker.Id);
// Assert
Assert.Equal("New Name", result.Name);

Making this test pass is a little tricky, but not too bad:

public Speaker Update(Speaker speaker)
{

var oldSpeaker = Speakers.FirstOrDefault(s => s.Id == speaker.Id);
var index = Speakers.IndexOf(oldSpeaker);
Speakers[index] = speaker;

return speaker;

However, making this change causes the exists test to fail. Looking at that test, it is failing for a

good reason and should not really pass given our current understanding of how update is

www.EBooksWorld.ir

supposed to work. Let's make a small but significant update to that test:

[Fact]

public void ItHasUpdateMethod()

{
// Arrange
IRepository<Speaker> repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker());

// Act
var result = repo.Update(speaker);

Next up on our testing timeline, is handling the error that was highlighted by the failure of the
exists test. If someone asks to update a speaker that doesn't exist, the repository blows up. This
could be the required behavior, but it should blow up with an informative exception, not an
index out of bounds exception:

[Fact]
public void ItThrowsNotFoundExceptionWhenSpeakerDoesNotExist()
{

// Arrange

var repo = new SpeakerRepository();

var speaker = new Speaker {Id = 5, Name = "Test Name"};

// Act

var result = Record.Exception(() => repo.Update(speaker));

// Assert
Assert.IsAssignableFrom<SpeakerNotFoundException>(result.GetBaseException());

A speakerNotFoundexception already exists within the system, but this comes from a different layer
so we need to create a new exception:

public class SpeakerNotFoundException : Exception

{
public SpeakerNotFoundException(int id) : base($"Speaker {id} not found.")

{
}
3

As an exercise, see if you can cover this exception with tests. Being able to work backwards and
write tests after the fact, as we will discuss in upcoming chapters, is a valuable skill to have.

Now, let's continue and make this test pass:

public Speaker Update(Speaker speaker)
{

var oldSpeaker = Speakers.FirstOrDefault(s => s.Id == speaker.Id);
var index = Speakers.IndexOf(oldSpeaker);
if (index == -1)

throw new SpeakerNotFoundException(speaker.Id);

}
Speakers[index] = speaker;

return speaker;

As with the other tests, we must now ensure data integrity:

www.EBooksWorld.ir

[Fact]
public void ItProtectsAgainstObjectChanges()

{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Name"});
speaker.Name = "New Name";

var updatedSpeaker = repo.Update(speaker);

// Act

updatedSpeaker.Name = "Updated Name";

// Audit

var result = repo.Get(updatedSpeaker.Id);

// Assert

Assert.NotEqual("Updated Name", result.Name);

We are bordering on test complexity that is too high. If these tests get much more complex, we
will want to consider rethinking our approach. This test confirms what we thought: the returned

speaker is not protected against change. Let's fix that:

public Speaker Update(Speaker speaker)
{

var oldSpeaker = Speakers.FirstOrDefault(s => s.Id == speaker.Id);
var index = Speakers.IndexOf(oldSpeaker);

if (index == -1)
{

throw new SpeakerNotFoundException(speaker.Id);
}

Speakers[index] = speaker;

return CloneSpeaker (speaker);

A fairly simple solution: just wrap the return with a clonespeaker call. Do you see another
potential data integrity issue? What are we doing to protect against further changes to the

speaker that was passed? Let's write a test to ensure that changes after the fact to the speaker that

was passed in don't affect the repository:

[Fact]
public void ItProtectsAgainstOriginalObjectChanges()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker { Name = "Test Name" });
speaker.Name = "New Name";

var updatedSpeaker = repo.Update(speaker);

// Act
speaker.Name = "Updated Name";

// Audit
var result = repo.Get(updatedSpeaker.Id);

// Assert
Assert.NotEqual("Updated Name", result.Name);

This test looks almost identical to the previous test. The only significant change is the action.

Instead of changing the value on the updatedspeaker, we are now changing the value on the

original speaker. To make this test pass, the change to the repository is similar to the previous

fix:

www.EBooksWorld.ir

public Speaker Update(Speaker speaker)

{
var oldSpeaker = Speakers.FirstOrDefault(s => s.Id == speaker.Id);
var index = Speakers.IndexOf(oldSpeaker);
if (index == -1)
{
throw new SpeakerNotFoundException(speaker.Id);
}

Speakers[index] = CloneSpeaker (speaker);

return CloneSpeaker (speaker);

All that is left to refactor and clean up are the tests and repository.

www.EBooksWorld.ir

Deleting a speaker

We are finally at the last method in this repository. For Speaker Meet, we don't really want to
delete the speakers; we might flag a speaker as deleted, but we don't really want to remove them
from the dataset. So, our pelete method will be more like an update.

We don't have any strange behavior or constraints for pelete, so we should start with the failure
case. What should happen if we ask to delete a user that doesn't exist? Should we throw an
exception? In this case, we can actually just assume that the job is done. If there is no speaker
with the given ID then the deletion of that speaker could be considered a success.

Well, now that we have considered the failure case, we see that it does have special behavior
that would cause the failure case to simply pass straight away. Let's take a look at the success
case and see if it would cause a failing test:

[Fact]
public void ItMarksTheGivenSpeakerAsDeleted()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Name"});
// Act
repo.Delete(speaker);
// Audit
var result = repo.Get(speaker.Id);
// Assert
Assert.True(result.IsDeleted);

}

Making this test pass should be fairly easy: we can just call into the local update method after
changing the isbeleted flag to true:

public void Delete(Speaker speaker)

{

speaker.IsDeleted = true;

Update(speaker);
}

Don't forget to fix any other tests that fail as a result of adding this code, after making sure the
failure is for a valid reason. If tests fail while we are writing more tests we need to check the
requirements and make sure they are not in disagreement with each other. We never want to
break existing requirements unintentionally.

We now have to deal with what happens if the speaker didn't exist in the context. As decided
earlier, we are okay with just ignoring this request as a failure to delete a non-existing speaker
results in the same situation as successfully deleting an existing speaker:

[Fact]
public void ItDoesNothingWhenDeletingANonexistingSpeaker ()

{

www.EBooksWorld.ir

// Arrange
var repo = new SpeakerRepository();
var speaker = new Speaker();

// Act
var result = Record.Exception(() => repo.Delete(speaker));
// Assert
Assert.Null(result);
}

To pass this one we have to do something that is normally not recommended or preferred. We
have to swallow an exception. Before taking a step like this and ignoring an exception, make

sure you only ignore a specific exception and make sure you have thought it through thoroughly:

public void Delete(Speaker speaker)

{

speaker.IsDeleted = true;
try
{

Update(speaker);

catch (SpeakerNotFoundException ex)

// We can assume non-existing speakers are deleted

}

}

And for the last test for this method, we must make sure that we don't accidently pollute the
object that was passed in:

[Fact]
public void ItProtectsAgainstPassedObjectChanges()
{
// Arrange
var repo = new SpeakerRepository();
var speaker = repo.Create(new Speaker {Name = "Test Name"});
// Act
repo.Delete(speaker);
// Assert
Assert.False(speaker.IsDeleted);

We can use the same method we have been using to ensure data integrity:

speaker = CloneSpeaker(speaker);
speaker.IsDeleted = true;

www.EBooksWorld.ir

Genericizing the repository

This repository is great, but do we really want to repeat this logic and all these tests for every
single data model that we need to be retrieved from some data source? The answer is no; if you
find yourself doing the same thing over and over as a developer, you are doing something
wrong.

So, how can we protect ourselves from that drudgery?
One way is to use generics. Let's refactor the speakerrepository to use generics, this will also

involve refactoring many of the tests to make them apply to the enericrepository instead of the
concrete speakerRepository.

www.EBooksWorld.ir

Step one — abstract interface

In the 1repository, everywhere we use speaker we need to replace it with C# generics:

public interface IRepository<T>
{

T Create(T item);

T Get(int id);

IQueryable<T> GetAll();

T Update(T item);

void Delete(T item);

}

This change will cause a break in the speakerrepository that we need to fix. Right now, we are
chasing the compiler and leaning on it to tell us what we are breaking. Once the tests pass again,
we will know we are back to good:

| public class SpeakerRepository : IRepository<Speaker>

Now we have to make some changes in the SpeakerService as it is no longer able to reference a
simple IRepository but instead needs an 1rRepository<speaker>:

public class SpeakerService : ISpeakerService

{

private readonly IRepository<Speaker> _repository;

public SpeakerService(IRepository<Speaker> repository)

{

_repository = repository;

}

We must update the fake repository to use the correct generic repository type.

public class FakeRepository : IRepository<Speaker>

And lastly, we have several tests that need to be updated. No secret code there; just update
IRepository {O IRepository<Speaker>.

www.EBooksWorld.ir

Step two — abstract the concrete
class

Now that the interface is generic, we can start to work on the speakerrepository. First let's rename
it to InMemoryspeakerRepository. NOw, we want to start using generics. Create a new class,
InMemoryRepository<T> and have the speaker repository inherit from it:

public abstract class InMemoryRepository<T> : IRepository<T>
{

public abstract T Create(T speaker);

public abstract T Get(int id);

public abstract IQueryable<T> GetAll();

public abstract T Update(T speaker);

public abstract void Delete(T speaker);

In order to move slow and have the tests passing as much as possible, we are using abstract and
will have to have each method in the speaker repository override the base class methods. This
gives us the ability to move each method individually into the abstract as we discover what
needs to be done, instead of trying to tackle the whole problem all at once.

Inherit from the in-memory repository and add override to each inherited method:

public class InMemorySpeakerRepository : InMemoryRepository<Speaker>
public overrideSpeaker Create(Speaker speaker)

public override Speaker Get(int id)

public override IQueryable<Speaker> GetAll()

public override Speaker Update(Speaker speaker)

public override void Delete(Speaker speaker)

www.EBooksWorld.ir

Converting Create to a generic
method

We will begin our generic method journey with create. The first step is to copy the body of the
create method from the speaker repository to the generic repository. In order to do this, we must
change the abstract create method to a virtual create method:

public virtual T Create(T speaker)

{
var newSpeaker = CloneSpeaker (speaker);
newSpeaker.Id = ++Currentld;
Speakers.Add(newSpeaker);

return CloneSpeaker(newSpeaker);

Instantly, we run into trouble. We don't have a generic clone method. For now let's fake it until
we make it.

Add the following protected abstract method to the generic repository:

| protected abstract T CloneEntity(T entity);

Now, we can make similar changes in the code we copied from the speaker repository's create
method:

protected readonly IList<T> Entities = new List<T>();
protected int CurrentId;

public virtual T Create(T entity)
{

var newSpeaker = CloneEntity(entity);
newSpeaker.Id = ++Currentld;
Entities.Add(newSpeaker);

return CloneEntity(newSpeaker);

Its's looking much better now, but we still have one issue. We can't expect 1d to exist on just any
object. The compiler is quite mad about this right now. There are several solutions, but we are
going to create a simple data model interface and place a constraint on T that it must inherit from
that interface. The only thing in the interface will be a property of 1d with an integer type:

public interface IIdentity

{
int Id { get; set; }

}

public abstract class InMemoryRepository<T> : IRepository<T> where T: IIdentity

This causes a break in the speaker repository. We must also have Speaker inherit from 11dentity.
Now, we have relocated all of the logic in the create method into the generic repository. Delete

www.EBooksWorld.ir

the create method in the speaker repository.

Many tests fail because we need to repoint the other methods in the speaker repository to use the
backing objects from the generic repository. Go through the speaker repository and update all
the references to Speakers to Entities, instead.

We also need to make an adjustment to the TestablespeakerrRepository class:

internal class TestableSpeakerRepository : InMemorySpeakerRepository

public IQueryable<Speaker> SpeakersCollection => Entities;

}

www.EBooksWorld.ir

Converting Get to a generic
method

Next on the list is the cet method. Just like with the create method, copy all the contents into the
generic repository and fix any errors that occur:

public virtual T Get(int id)
{

var entity = Entities.SingleOrDefault(e => e.Id == id);

if (entity != null)

{
entity = CloneEntity(entity);
}
return entity;
}

This method turns out to be an easy one to copy. Now, delete the existing method in the speaker
repository. No tests break this time so we can move on to the next method.

www.EBooksWorld.ir

Converting GetAll to a generic
method

cetAll is the easiest of the methods to convert. It doesn't even reference speakers textually:

public virtual IQueryable<T> GetAll()

{
return Entities.Select(CloneEntity).AsQueryable();

}

Delete the existing method in the speaker repository and move on to the next method, update.

www.EBooksWorld.ir

Converting Update to a generic
method

The process for update is the same as with the other methods. Copy the body of the existing
code, rename any speaker references to entity references, and then delete the existing method:

public virtual T Update(T entity)

{
var oldeEntity = Entities.FirstOrDefault(s => s.Id == entity.Id);

var index = Entities.IndexOf(oldEntity);

if (index == -1)
{

throw new EntityNotFoundException(entity.Id);
}

Entities[index] = CloneEntity(entity);

return CloneEntity(entity);

www.EBooksWorld.ir

Converting Delete to a generic
method

pelete is a different story: every object is likely to have different requirements for deleting it.
Some will actually be deleted and others, such as Speaker, will merely be flagged as deleted. For
this and many other reasons, we choose to leave the pelete implementation up to concrete
repositories and the generic repository will throw a not implemented exception instead.

Let's write a pelete test class just for this functionality. It should be short and quick:

public class Delete
{
[Fact]
public void ItThrowsNotImplementException()
{
// Arrange
var repo = new InMemoryRepository<TestEntity>();

// Act
var result = Record.Exception(() => repo.Delete(new TestEntity()));

// Assert
Assert.IsAssignableFrom<NotImplementedException>
(result.GetBaseException());
Assert.Equal("Delete is not avaliable for TestEntity",
result.Message);
}
}

public class TestEntity : IIdentity
{

public int Id { get; set; }
}

Writing this test also makes us change the generic repository from an abstract class to a normal
class. Changing the class type makes us change the cloneentity method from abstract to virtual:

protected virtual T CloneEntity(T entity)
{

return entity;

}
Now, we can write the method that will pass the test:

public virtual void Delete(T speaker)

{

throw new NotImplementedException($"Delete is not avaliable for {typeof(T).Name}");

}

www.EBooksWorld.ir

Step three — reorient the tests to
use the generic repository

We began this process when we dealt with the pelete method. But let's continue with the other
methods. All the methods that were moved into the generic repository can have most of their
tests moved as well.

We will be leaving the data integrity tests because they are directly tied to the functionality in
the speaker repository. We will leave all the delete tests for the same reason.

www.EBooksWorld.ir

InMemoryRepository Create
tests

To implement the rest of the functionality for the 1nMemoryrepository, we will start with the tests
for the create method:

public class Create

{

private readonly TestableEntityRepository _repo;

public Create()

{
_repo = new TestableEntityRepository();
}

[Fact]
public void ItExists()

{
// Act

var result = _repo.Create(new TestEntity());

}

[Fact]
public void ItAddsAEntityToTheRepository()

{
// Act

var result = _repo.Create(new TestEntity());

// Assert
Assert.Equal(1l, _repo.EntityCollection.Count());
}

[Fact]
public void ItAssignsUniqueIdsToEachEntity()

{
// Act

var entityil
var entity2

_repo.Create(new TestEntity(
_repo.Create(new TestEntity(

)i
));

// Assert
Assert.NotEqual(entityl.Id, entity2.Id);

}
3

internal class TestableEntityRepository : InMemoryRepository<TestEntity>

{
}

public IQueryable<TestEntity> EntityCollection => Entities;

www.EBooksWorld.ir

InMemoryRepository Get tests

Now that we can create using the InmemoryRepository, we should be able to accurately test the cet
method:

public class Get
{
private readonly InMemoryRepository<TestEntity> _repo;
public Get()
{
_repo = new InMemoryRepository<TestEntity>();
}
[Fact]
public void ItExists()
// Act
var result = _repo.Get(0);
}
[Fact]
public void ItReturnsAnEntityWhenFound()
{
// Arrange
var entity = _repo.Create(new TestEntity() { Name = "Test Entity" });
// Act
var result = _repo.Get(entity.Id);
// Assert
Assert.NotNull(result);
Assert.Equal("Test Entity", result.Name);
}
[Fact]
public void ItReturnsNullwWhenNotFound()
{
// Act
var result = _repo.Get(-1);
// Assert
Assert.Null(result);
}
}

www.EBooksWorld.ir

InMemoryRepository GetAll
tests

With getting a single object working, lets test getting all the objects:

public class GetAll
{

private readonly InMemoryRepository<TestEntity> _repo;

public GetAll()
{

_repo = new InMemoryRepository<TestEntity>();

}

[Fact]
public void ItExists()
{
// Act
var result = _repo.GetAll();

}

[Fact]
public void ItReturnsNoEntitiesWhenThereAreNoEntities()
{

// Act

var result = _repo.GetAll();

// Assert

Assert.NotNull(result);
Assert.IsAssignableFrom<IQueryable<TestEntity>>(result);
Assert.Equal(@, result.Count());

}

[Fact]
public void ItReturnsASingleEntityWhenOnlyOneEntityExists()
{

// Arrange

_repo.Create(new TestEntity { Name = "Test Entity" });

// Act
var result = _repo.GetAll().ToList();

// Assert
Assert.Equal(1, result.Count);
Assert.Equal("Test Entity", result.First().Name);

}

[Fact]
public void ItReturnsManyEntitiesWhenManyEntitiesExist()
{
// Arrange
_repo.Create(new TestEntity())
_repo.Create(new TestEntity())
_repo.Create(new TestEntity())

4
4

4

// Act
var result = _repo.GetAll().ToList();

// Assert
Assert.Equal(3, result.Count);

www.EBooksWorld.ir

InMemoryRepository Update
tests

Last but not least, we will add the ability to update records using the 1nMemoryRrepository:

public class Update
{
private readonly InMemoryRepository<TestEntity> _repo;
public Update()
{
_repo = new InMemoryRepository<TestEntity>();
}
[Fact]
public void ItExists()
{
// Arrange
var entity = _repo.Create(new TestEntity());
// Act
var result = _repo.Update(entity);
}
[Fact]
public void ItUpdatesAnEntity()
{
// Arrange
var entity = _repo.Create(new TestEntity(){ Name = "Test Name" });
entity.Name = "New Name";
// Act
var result = _repo.Update(entity);
// Assert
Assert.Equal(entity.Name, result.Name);
}
[Fact]
public void ItUpdatesAnEntityInTheRepository()
{
// Arrange
var entity = _repo.Create(new TestEntity() { Name = "Test Name" });
entity.Name = "New Name";
// Act
var updatedEntity = _repo.Update(entity);
// Audit
var result = _repo.Get(entity.Id);
// Assert
Assert.Equal("New Name", result.Name);
}
[Fact]
public void ItThrowsNotFoundExceptionwWhenEntityDoesNotExist()
{
// Arrange
var entity = new TestEntity { Id = 5, Name = "Test Name" };
// Act
var result = Record.Exception(() => _repo.Update(entity));
// Assert
Assert.IsAssignableFrom<EntityNotFoundException>(result.GetBaseException());
}
}

www.EBooksWorld.ir

We now have a generic repository that can be used with any data model as long as that data
model has an ID. We also have a way to ensure data integrity if we need to, by inheriting and
creating a method to clone the data object that we need to protect.

www.EBooksWorld.ir

Entity Framework

Object-Relation Mapping (ORM) frameworks such as Entity Framework help increase
productivity and optimize code reuse and maintainability. However, you should not tightly
couple your application to the ORM. Abstract away ORMs such as Entity Framework just as
you would any third-party library or system.

Speaker Meet uses Entity Framework through a generic repository; in order to get started, add a
NuGet reference to Entity Framework — Sql Server.

|Microsoft.EntityFrameworkCore.SqlServer

Next, add a connection string to the appsettings.json:

"ConnectionStrings": {"DefaultConnection":
"Server=.;Database=SpeakerMeetBook; Trusted_Connection=True;MultipleAct
iveResultSets=true"}

www.EBooksWorld.ir

DbContext

The latest version of Entity Framework, EF Core 2.0, has added DbContext pooling, which
helps improve performance by saving some of the cost of initializing a new instance of the
pbcontext with each request.

Modify the startup.cs ConfigureServices to reference the connection string:

var connectionString =
Configuration.GetConnectionString("DefaultConnection");
services.AddDbContextPool<SpeakerMeetContext>(options =>
options.UseSqlServer(connectionString));

Add a pbcontext to your application. Create a new file named speakermeetcontext with options as
follows:

using Microsoft.EntityFrameworkCore;
namespace SpeakerMeet.Api.Entities

public class SpeakerMeetContext : DbContext
{

public SpeakerMeetContext(DbContextOptions<SpeakerMeetContext> options) : base(options)

{1
public virtual DbSet<Speaker> Speakers { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
modelBuilder.Entity<Speaker>().ToTable("Speaker");
}
}

}

www.EBooksWorld.ir

Models

Entity Framework models may contain additional information that you might not necessarily
want to expose to other parts of the system or application consumers. Create a new model
named speaker. This will be the model used by Entity Framework and the generic repository.
The services or business layer will be responsible for converting the Entity Framework models
to Data Transfer Objects (DTOs) or ViewModels used by the rest of the application:

using System.ComponentModel.DataAnnotations;

namespace SpeakerMeet.Api.Entities

{

public class Speaker

{
public int Id { get; set; }

[Required]
[StringLength(50)]
public string Name { get; set; }

[Required]
[StringLength(50)]
public string Location { get; set; }

[Required]
[StringLength(255)]
public string EmailAddress { get; set; }

public bool IsDeleted { get; set; }

www.EBooksWorld.ir

Generic repository

In order to see the Entity Framework specific Generic repository run you may want to add the
following class to your application:

using System;
using System.Ling;
using Microsoft.EntityFrameworkCore;

namespace SpeakerMeet.Api.Repository

public class Repository<T> : IRepository<T> where T : class

{
private readonly DbSet<T> _dbSet;
protected readonly DbContext Context;

public Repository(DbContext context)
{

Context = context;
_dbSet = context.Set<T>();

}
public T Create(T entity)
{
throw new NotImplementedException();
}
public T Get(int id)
{
return _dbSet.Find(id);
}
public IQueryable<T> GetAll()
{
return _dbSet;
}
public T Update(T speaker)
{
throw new NotImplementedException();
}
public void Delete(T entity)
{
throw new NotImplementedException();
}

}

}

www.EBooksWorld.ir

Dependency Injection

In order to wire everything up, the Speaker Meet application leverages the built in Dependency
Injection (DI) container. Dependency Injection allows the system to be loosely coupled. There
are ways to achieve this without the use of a container (poor man’s DI, and so on) which will be
covered in a later chapter. The tests themselves do not rely on DI, instead opting to instantiate
classes as needed.

www.EBooksWorld.ir

Wire it all up

In order to configure the DI container, add the following to ConfigureServices in startup.cs:

services.AddSingleton(typeof (DbContext), typeof(SpeakerMeetContext));
services.AddScoped(typeof(IRepository<>), typeof(Repository<>));
services.AddTransient<ISpeakerService, SpeakerService>();
services.AddTransient<IGravatarService, GravatarService>();

This will avoid the need to instantiate the speakerservice from within the speakercontroller. The
DI container handles this for you.

If you've created your database and populated the speaker table, you now should be able to run
the application and hit the speakercontroller endpoints. Give it a shot!

® http://localhost:41436/api/speaker/

® http://localhost:41436/api/speaker/1
® http://localhost:41436/api/speaker/search?searchString=test

www.EBooksWorld.ir

Postman

There are a variety of tools available for manually exercising an API. Postman is just one such
tool and is a favorite in the industry. Postman offers a lot of functionality to help you with your
API development and testing. It's worth a look if you're interested.

To install Postman, simply visit the website (http://www.getpostman.com) and follow the
instructions. With the Speaker Meet application running, enter the URL (example:
http://localhost:41436/api/speaker/search) into the box, add params (example:
[{"key":"searchsString", "value":"te", "description":""3}]), and hit Send. The response shows as
JSON by default in the body of the message.

This can be an extremely powerful tool. As the complexity and feature set of the Speaker Meet

API grows, more complex messages can be sent with posT, puT, PaTCH, and peLeTE. These will be
covered in a later chapter.

www.EBooksWorld.ir

http://www.getpostman.com

Summary

This chapter was all about abstraction: when and how to use it. You should now see why it's so
important to create abstractions between code you write yourself and that of a third party. You
should also have a good idea of how those abstractions can be achieved.

In this chapter, we abstracted a Gravatar service, extended the repository pattern, and used a
generic repository for Entity Framework.

In Chapter 9, Testing JavaScript Applications, we'll focus on testing JavaScript applications. We'll

walk through creating a React application and discuss different approaches to testing a
JavaScript application.

www.EBooksWorld.ir

Testing JavaScript Applications

To get started testing in JavaScript, we will need to create a ReactJS application and configure it
for testing using the Mocha, Chai, Enzyme, and Sinon libraries.

These steps were discussed in detail in Chapter 3, Setting up the JavaScript Environment, so here,
we will simply walk through the steps and not explain them in detail.

The goals for this chapter are:

e Create the Speaker Meet React application
e Talk through our plan of attack for testing the application:
e What is our approach?
e What parts of the app can we even test?
e What part of the app do we start with?
e Write tests and complete a couple of features for the application:
e Speaker listing
e Speaker detail

Once this chapter is finished, you should be capable of unit-testing any React-based
application.

www.EBooksWorld.ir

Creating a React app

For the application in this book, to maintain compatibility, you will want to use Node.js version
8.5.0, NPM version 5.4.2, and create-react-app version 1.4.0.

Execute the following commands to install and execute the app:

>npm install
>npm test
>npm start

All three commands should run successfully. After running npm test, you will need to exit the
test run by hitting <q>. After running npm start, you will need to exit the server by hitting Ctrl +

C.

www.EBooksWorld.ir

Ejecting the app

Assuming the previous step went without a hitch, we can proceed to eject the React app. Again,
as it has already been explained in detail in Chapter 3, Setting up the JavaScript Environment, we
will only do a short review here.

There is only a single command to eject the application. After ejection, we will want to rerun the
commands in the previous section to ensure that the application still works as expected.

Execute the following command to eject:

| >npm run eject

www.EBooksWorld.ir

Configuring Mocha, Chali,
Enzyme, and Sinon

Now, we are ready to add the testing facilities that we would like to use for this app. As before,
the addition of these utilities has been covered in detail in a previous chapter. So, we will only
be providing the commands to execute and the versions of the packages to install.

Execute the following commands to install the libraries we are going to use:

>npm install mocha@3.5.3
>npm install chai@4.1.2
>npm install enzyme@2.9.1
>npm install sinon@3.2.1

There are also a few other libraries we will be using as part of our Redux workflow:

>npm install nock@9.0.1

>npm install react-router-dom@4.2.2
>npm install redux@3.7.2

>npm install redux-mock-store@1.3.0
>npm install redux-thunk@2.2.0

Including the version in the install command will ensure that you are using the same version of
the libraries that we are and will reduce the number of potential issues.

To use the libraries we have just installed, we will also need to install an extra preset for babel:

|>npm install babel-preset-es2015@6.24.1

Update your babel config in package.json to remove react-app and include react and es2015.

"babel": {
"presets": [
"react",
"es2015"

]
iy

As described in Chapter 3, Setting up the JavaScript Environment, delete the test configuration
section from package. json. Then, update the test script to:

|"test": "mocha --require ./scripts/test.js --compilers babel-core/register ./src/**/*.spec.js

And add a test watch script:

| "test:watch": "npm test -- -w"

We are now ready to update the test execution file test.js in the scripts folder so it's compatible
with Mocha. Change all the contents of the file to:

|‘use strict';

www.EBooksWorld.ir

import jsdom from 'jsdom';

global.document = jsdom.jsdom('<html><body></body></html>");
global.window = document.defaultView;

global.navigator = window.navigator;

function noop() {
return {};
}

// prevent mocha tests from breaking when trying to require a css file
require.extensions['.css'] noop;
require.extensions['.svg'] noop;

The last step before we can use our new testing libraries is to update the App.test.js file to match
the conventions used with Mocha and Chai. So, change the filename to App.spec.js and update
the contents to match the code shown here:

import React from 'react';
import ReactDOM from 'react-dom';
import { expect } from 'chai';

import App from './App';

describe('(Component) App', () => {
it('renders without crashing', () => {
const div = document.createElement('div');
ReactDOM.render (<App />, div);
1),
1)

Now, as before, execute the test script and start the application to make sure nothing broke
during our transformation to Mocha.

>npm test
>npm run test:watch
>npm start

All three of those commands should work. If you have an issue, check all the steps we have just
discussed and look to Chapter 3, Setting Up a JavaScript Environment, for a more detailed
explanation.

www.EBooksWorld.ir

The plan

Now that our testing config has been updated and is working correctly, we can begin thinking
about test-driving our first feature.

In earlier chapters, we discussed where to start testing and decided that if possible an inside-out
approach is preferred. To keep with that approach, we want to determine the different parts of
our React app so that we can target the purest business logic we can.

Right off the bat, regardless of any other architectural choices, we can identify the React
component and a service representing communication with our data source. We are planning to
use Redux in this app so that makes up the missing piece and connects our component with our
data.

Which one of these is the business logic though? Out of those base options, what would we even
test? Let's examine each one a little more closely and see what we could test that would be
considered a unit test.

www.EBooksWorld.ir

Considering the React
component

Generally, we want to avoid unit-testing third-party libraries. So, let's separate the third-party
aspects of a React component from the parts that we would potentially unit-test.

The third-party aspects include any inherited features and functionality; this includes to some
degree any life cycle methods and the JSX. So, what's left? The answer to this question depends
on whether the component in question is a presentational component or a container component.

Presentational components are almost pure HTML and view mechanisms. There is almost no
traditionally unit-testable behavior. Certainly, there is no real business logic.

Container components are where the real action happens in a React application. These
components can manipulate data and make business decisions that can control the flow of the
application. So, let's keep container components in the list of possible places to start our unit-
testing efforts.

www.EBooksWorld.ir

Looking at Redux testability

Redux is a third-party library, that controls data flow throughout the application and manages
quite a bit of the normal data shuffling that we may want to unit test. Because it is third-party
though, on the surface there doesn't seem to be too much that we can unit test. Let's take a closer
look at the aspects of the Redux data flow to determine if there really is nothing to test or if we
still need to unit test parts of Redux.

www.EBooksWorld.ir

The store

The Redux store is where all the data lives after it has been acquired by the application.
Typically, there is only one store for each application using Redux. The store is almost
completely contained within the Redux library and we have very few direct interactions with it.
For this reason, there doesn't seem to be much we would or could test for the store and it falls
squarely in the realm of third-party code that we must simply trust.

www.EBooksWorld.ir

Actions

Actions in Redux represent an event carrying a data packet. The event is usually a command to
either retrieve or update data within the data source which should be reflected by the store.
Because actions are just a key with some data attached, there doesn't seem to be much to test
here.

www.EBooksWorld.ir

Reducers

If there is anything to test within the Redux interactions, it is likely in the reducers. Reducers
receive the actions and determine what to do, if anything, based on the actions requested and the
data provided as part of those actions.

Typically, the reducer is going to simply call the API service once the appropriate service call is
determined. It is possible that a reducer might also map the received data into a format that is
more appropriate to the service call that must be made.

So, if the reducer is, in all reality, just going to call the service, what would we test for the
reducer? Other than ensuring that the appropriate service method is called with the appropriate
data there doesn't seem to be much. For completeness, we would want to test those things, but
they do not represent the core of our business logic.

In conclusion, it doesn't appear that much is testable in Redux and what is testable doesn't
represent the core of our business logic.

www.EBooksWorld.ir

Unit-testing an API service

Lastly, let's look at the API service. Normally, the service in a front-end application behaves
much like the repository in a back-end application. The service's main function is to abstract
data interactions with some data source. Those interactions don't necessarily contain any
definable business logic. The real logic, if any, for a service exists on the server and doesn't need
to be tested as part of a front-end application. At least it doesn't need to be tested the way you
might think it does.

So, if the service doesn't contain any business logic, and Redux doesn't contain much business
logic, and the components don't contain much business logic, what do we test and how can it be
unit-tested?

The short answer is that we are not off the hook for testing, but we will have to jump through
some hoops to do any testing because it is difficult to remove ourselves from integration testing.
In a typical front-end application, unlike in C#, there is no clear division between our code and
their code. So, we will have to make some concessions and write quite a bit of code to abstract
parts of third-party code to allow us to test what we need to be testing.

So, where does this leave us when it comes to a testing direction? Unfortunately, there doesn't
seem to be a clear winner. For the purposes of this application, we will work from the data
source up so that we have a clear understanding of the data manipulations available to us while
we write user interface aspects of the application.

www.EBooksWorld.ir

Speaker listing

Following the functionality in our C# backend, we will start by testing a listing of the speakers
available. We are not yet ready to connect to the backend and, for any of the tests we will write
here as unit tests, we will need to mock the behaviors that the backend would normally present.

For the moment, we are not going to concern ourselves with any kind of authentication. So, the
important functionality we will be looking to implement is that when no speakers exist we
should let the user know, and when speakers do exist we should list them.

The way that we will produce both situations is through a mock API. As strange as it may seem,
most of our business logic will be in the mock API. Because it will be crucial to all of the other
tests we will write, we must unit test the mock API as if it were production code.

www.EBooksWorld.ir

A mock API service

To begin testing the mock API service, let's create a new services folder and add a
mockSpeakerService.spec.js file.

Inside that file, we need to import our assertion library, create our initial describe, and write an
existence test.

import { expect } from 'chai';

describe('Mock Speaker Service', () => {
it('exits', () => {
expect(MockSpeakerService).to.exist;
1)
1)

Start the npm test script with watch. The test we just wrote should fail. To make the test pass, we
must create a Mockspeakerservice object. Let's play devil's advocate a little and create an object in
this file, but only enough of an object to make the test pass.

| let MockSpeakerService = {};

This line passes the currently failing test, but clearly isn't what we are after. It does, however,
force us to write more robust tests. The next test we can write is one that proves that the
MockSpeakerservice can be constructed. This test should ensure that we have defined the
MockSpeakerService as a class.

it('can be constructed', () => {
// arrange
let service = new MockSpeakerService();

// assert
expect(service).to.be.an.instanceof (MockSpeakerService);

1K

This test fails, stating that Mockspeakerservice is not a constructor. The way to fix this is to change
MockSpeakerService into a class.

class MockSpeakerService {

}

Now that we have a class that can be instantiated, the next test we write can start to test actual
functionality. So, what functionality are we going to test? Looking at the requirements, we can
see that the first scenario involves requesting all the speakers and receiving no speakers. That's a
reasonably simple scenario to test. What would we call the function in the mockspeakerservice that
would get all the speakers? Because we are trying to get all the speakers, a simple name that
would not be redundant and fits the repository pattern we discussed in the C# backend is simply
getall. Let's create a nested describe and an existence test for a geta1l class method.

describe('Get All', () => {
it('exists', () => {
// arrange
let service = new MockSpeakerService();

www.EBooksWorld.ir

// assert
expect(service.getAll).to.exist;

1
1K

As per usual, this test should fail and it should fail with expected undefined to exist. Making this
test pass is relatively simple, just add a geta11 method to the Mockspeakerservice class.

class MockSpeakerService {
getAll() {

b
b

The next thing we need to decide is the result we should expect when there are no speakers.
Looking back at the backend, we should be receiving an empty array when no speakers are
present. Looking at the requirements, the system should present a No_SPEAKERS_AVAILABLE message.
Should the service be responsible for displaying that message? In this case, the answer is no.
The react component should be responsible for displaying the no_sPEAKERS_AVAILABLE message
when we get to that portion of the code. For now, we should expect, when no speakers exist, to
receive an empty data set.

Because we are extending the context of the test, let's create another describe for that context
extension.

describe('No Speakers Exist', () => {
it('returns an empty array', () => {
// arrange
let service = new MockSpeakerService();

// act
let promise = service.getAll();

// assert
return promise.then((result) => {
expect(result).to.have.lengthof(0);
1)
1)
1),

Notice the syntax we used for this test. We return the promise and make our assertions inside the
then function. This is because we want our test to operate on asynchronous code from our
service. The majority of backend operations will need to be asynchronous and one convention
for dealing with that asynchronicity is to use promises. Asynchronous tests, that is, tests dealing
with promises, in Mocha require that the promise be returned from the test so that Mocha can
know to wait for the promise to resolve before closing out the test.

And now, to make the test pass, all we need to do is return a promise that resolves with an empty
array from the geta11 method. We are going to use a zero delay setTimeout here which will set us
up to implement some kind of delay for development purposes later on. The reason we want a
delay is so that we can test the operation of the UI in the event of a slow network response.

getAll() {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve(Object.assign([], this._speakers));
}, 0);
1),
}

www.EBooksWorld.ir

Now we have the first scenario passing and enough code to warrant a refactoring. We are
declaring the service variable in multiple places and we don't have a context that represents a
baseline instantiation of that variable. Let's create a describe to wrap all the post instantiation
tests and add a beforeEach to initialize a service variable scoped to that describe and available to
all the tests within it.

Here are the tests after the refactoring:

describe('Mock Speaker Service', () => {
it('exits', () => {
expect(MockSpeakerService).to.exist;

3);

it('can be constructed', () => {
// arrange
let service = new MockSpeakerService();

// assert
expect(service).to.be.an.instanceof (MockSpeakerService);

ioF

describe('After Initialization', () => {
let service = null;

beforeEach(() => {
service = new MockSpeakerService();

)i

describe('Get All', () => {
it('exists', () => {
// assert
expect(service.getAll).to.exist;

)i

describe('No Speakers Exist', () => {
it('returns an empty array', () => {
// act
let promise = service.getAll();

// assert
return promise.then((result) => {
expect(result).to.have.lengthof(0);
1),
1)

The next scenario, the speaker listing, is for when speakers do exist. The first test for this
scenario will need to add at least one speaker to the mock API. Let's create a new describe inside
GetAll but separate from No Speakers Exist.

describe('Speaker Listing', () => {
it('returns speakers', () => {
// arrange
service.create({});

// act
let promise = service.getAll();

// assert
return promise.then((result) => {
expect(result).to.have.lengthof(1);
i9F
3);
1)

www.EBooksWorld.ir

We have added, as part of the setup for this test, a reference to a create method. This method
does not yet exist and our test can't pass without it. So, we need to temporarily ignore this test
and write tests for create. We can ignore this test by skipping it.

| it.skip('returns speakers', () => {

Now, we can write a new describe block inside the after Initialization block for create.

describe('Create', () => {
it('exists', () => {
expect(service.create).to.exist;

iOF
1

And to make the test pass we add the create method to the mock service class.

class MockSpeakerService {
create() {

}

We could, from this point, write a few tests to add validation logic to the create method.
However, we don't currently have any scenarios that reference a create method on the API.
Since this method exists only for testing purposes, we are going to leave it alone with just an
exists test. Let's move back to our scenario test.

Now that create exists, we should receive the failure that the test is expecting, which is that we
expected a length of 1 but instead we have a length of 0. Remove skip from the test and verify.

To make this test pass, we essentially have to implement the basic logic for create and make a
modification to getAll.

class MockSpeakerService {
constructor() {
this._speakers = [];

}

create(speaker) {
this._speakers.push(speaker);

}

getAll() {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve(Object.assign([], this._speakers));
3 9);
1)
}
}

We can consider the current tests sufficient to move forward and start testing our data flow.

www.EBooksWorld.ir

The Get All Speakers action

To begin testing with Redux, there are a few testing entry points we could start with. We could
begin by testing actions, reducers, or even interactions with the store. The store tests would be
more integration tests and we want to concentrate on unit tests in this chapter. That leaves
actions and reducers. Either is a fine place to start, but we will start with actions because they
are extremely simple and uncomplicated as a concept for testing.

The action that we need right now is one to request the retrieval of speaker information; in
essence, a get all speakers action. As stated earlier, actions can be extremely simple; however,
we have an issue in that our get all speakers service call is asynchronous. Actions were not
really designed to handle asynchronous calls. For that reason, let’s start with something a little
bit simpler and we will come back to this problem after we understand how to test a normal
action.

www.EBooksWorld.ir

Testing a standard action

We will need an action to notify Redux that we have the speakers after they have been loaded.
There is no reason why we can't start there. So, let's write a test for the successful retrieval of
speakers.

import { expect } from 'chai';

describe('Speaker Actions', () => {
describe('Sync Actions', () => {
describe('Get Speakers Success', () => {
it('exists', () => {
expect(getSpeakersSuccess).to.exist;

¥

Running this test should fail. To make the test pass, define a function named getspeakerssuccess.

function getSpeakersSuccess() {

}

Because of the simplicity of a typical action, our next test will essentially test the functionality
of the action. We could break this into multiple tests, but all we are really doing is asserting on
the structure of the data returned. Concerning the single assert rule, we are still only asserting
one thing.

it('is created with correct data', () => {
// arrange
const speakers = [{
id: 'test-speaker',
firstName: 'Test',
lastName: 'Speaker'

11

// act
const result = getSpeakersSuccess(speakers);

// assert
expect(result.type).to.equal(GET_SPEAKERS_SUCCESS);
expect(result.speakers).to.have.lengthOf(1);
expect(result.speakers).to.deep.equal(speakers);

ioF

To make this test pass, we need to make significant changes to our current implementation of
the getspeakerssuccess function.

const GET_SPEAKERS_SUCCESS = 'GET_SPEAKERS_SUCCESS';

function getSpeakersSuccess(speakers) {
return { type: GET_SPEAKERS_SUCCESS, speakers: speakers };

}

In Redux, actions have an expected format. They must contain a type property and usually
contain some data structure. In the case of getspeakerssuccess, our type is a
constant, GET_SPEAKERS_succEss, and the data is an array of speakers passed into the action. To

www.EBooksWorld.ir

make them available to the application, let's move the action and the constant into their own
files. We need a speakeractions file and an actionTypes file,

src/actions/speakerActions.js:

import * as types from '../reducers/actionTypes';

export function getSpeakersSuccess(speakers) {
return { type: types.GET_SPEAKERS_SUCCESS, speakers: speakers };

}

src/reducers/actionTypes.js.

| export const GET_SPEAKERS_SUCCESS = 'GET_SPEAKERS_SUCCESS';

Add import statements to the test and all the tests should pass. For a typical action, this is the
format for testing. The placement of the action types in the reducers folder is for dependency
inversion reasons. From a SOLID standpoint, the reducers are defining a contract of interaction,
which is represented by the action types. The actions are fulfilling that contract.

www.EBooksWorld.ir

Testing a thunk

Because the getspeakerssuccess action is intended to be the resulting action of a successful
service call, we need a special kind of action to represent the service call itself. Redux does not
inherently support asynchronous actions, as stated before. So, we need some other way to
accomplish communication with the backend. Thankfully, Redux does support middleware and
much middleware has been designed to add asynchronous capability to Redux. We are going to
use redux-thunk for simplicity.

To start the next test, we need to first import redux-thunk and redux-mock-store to our speaker
action tests.

import thunk from 'redux-thunk';
import configureMockStore from 'redux-mock-store';

Then we can test the getting speakers.

describe('Async Actions', () => {
describe('Get Speakers', () => {
it('exists', () => {
expect(speakerActions.getSpeakers).to.exist;

1)

As usual, we start with a test for existence. And, as usual, it is fairly easy to make this test pass.
In the speaker actions file, add a definition for the getspeakers function and export it.

export function getSpeakers() {

}

The next test is slightly more complicated than the tests we have been working on, so we will
explain it in rather more detail.

The first thing we will need to do is configure a mock store and add the thunk middleware. We
need to do this because to properly test a thunk we will have to pretend that Redux is actually
running so that we can dispatch our new action and retrieve the results. So, let's add our mock
store configuration to the Async Actions describe:

const middleware = [thunk];
let mockStore;

beforeEach(() => {
mockStore = configureMockStore(middleware);

iOF

Now that we have a store available to us, we are ready to begin writing the test.

it('creates GET_SPEAKERS_SUCCESS when loading speakers', () => {
// arrange
const speaker = {
id: 'test-speaker',
firstName: 'Test',

www.EBooksWorld.ir

lastName: 'Speaker'

H

const expectedActions = speakerActions.getSpeakersSuccess([speaker]);
const store = mockStore({
speakers: []

1

In the arrange, we are configuring a bare minimum speaker. Then, we call the action we
previously tested to build the proper data structure. Finally, we define a mock store and its initial
state.

// act
return store.dispatch(speakerActions.getSpeakers()).then(() => {
const actions = store.getActions();

// assert
expect(actions[0].type).to.equal(types.GET_SPEAKERS_SUCCESS);
3);
});

Now, when testing asynchronously in Mocha, we can return a promise and Mocha will
automatically know that test is asynchronous. Our assertions, for asynchronous tests, go in the
resolve or the reject function of the promise. In the case of the get speaker action, we are going
to assume a successful server interaction and test the resolved promise.

Because we are not returning anything from our getspeakers action, the mockstore throws an error
stating that the action may not be an undefined. To move the test forward, we must return
something. To move in the direction of using a thunk, we need to return a function.

export function getSpeakers() {
return function(dispatch) {
Iy

3

Adding the return of a function that does nothing else moves the test failure message forward
and now presents us with a failure to read the property then of undefined. So, now we need to
return a promise from our action. We already have the service endpoint built in the mock API
service, so let's call that now.

export function getSpeakers() {
return function(dispatch) {
return new MockSpeakerService().getAll().then(speakers => {
dispatch(getSpeakersSuccess(speakers))
}).catch(err => {
throw(err);
1)

14

}

Now the test passes and we have written our first test dealing with thunks. As you can see, both
the test and the code to pass the test are fairly easy to write.

www.EBooksWorld.ir

The Get All Speakers reducer

Now that we have tested the actions related to getting all the speakers, it's time to move on to
testing the reducers. As usual, let's begin with an exists test.

describe('Speaker Reducers', () => {
describe('Speakers Reducer', () => {
it('exists', () => {
expect(speakersReducer).to.exist;

}i

To make this test pass, all we need to do is define a function named speakersreducer.

function speakersReducer() {

}

Our next test will check the functionality of the reducer.

it('Loads Speakers', () => {
// arrange
const initialState = [];

const speaker = {
id: 'test-speaker',
firstName: 'Test',
lastName: 'Speaker'
Iy

const action = actions.getSpeakersSuccess([speaker]);

// act
const newState = speakersReducer(initialState, action);

// assert

expect(newState).to.have.lengthOf(1);

expect(newState[0]).to.deep.equal(speaker);
1)

This test is larger than we normally prefer, so let's walk through it. In the arrange, we configure
the initial state and create an action result consisting of an array of a single speaker. When a
reducer is called, the previous state of the application and the result of an action are passed to it.
In this case, we start with an empty array and the modification is the addition of a single
speaker.

Next, in the Act section of the test, we call the reducer passing in the initialstate and the result
of our action call. The reducer returns a new state for us to use in the application.

Lastly, in the assert, we expect that the new state consists of a single speaker and that the
speaker has the same data as the speaker we created for the action.

To make the test pass we need to handle the action being passed into the reducer.

function speakersReducer(state = [], action) {
switch(action.type) {
case types.GET_SPEAKERS_SUCCESS:

www.EBooksWorld.ir

return action.speakers;
default:
return state;
}

}
Because, in an application using Redux, reducers are called for every action, we need to

determine what to do for any action that is not the action we want to handle. The proper
response in those cases is to simply return the state with no modification.

For the action type that we do want to handle, in this case we are returning the actions speakers
array. In other reducers, we might combine the initial state with the actions result, but for get
speakers success we want to replace the state with the value we receive.

The last step, now that all our tests are passing, is to extract the speaker reducer from the test file
and move it to speakerReducer.js

www.EBooksWorld.ir

The Speaker listing component

Another piece of the application that we can test is the components. There are two types of
component in a typical React + Redux application. We have container and presentational
components.

Container components don't typically hold any real HTML in them. The render function for a
container component simply references a single presentational component.

Presentational components don't typically have any business logic in them. They receive
properties and display those properties.

In our journey from the back-end to the front-end, we have been covering the retrieval and
updating of data. Next, let's look at the container component that will use this data.

Our container component is going to be a simple one. Let's start with the typical existence test.

import { expect } from 'chai';
import { SpeakersPage } from './SpeakersPage';

describe('Speakers Page', () => {
it('exists', () => {
expect(SpeakersPage).to.exist;
3);
1)

Simple and straightforward; now to make it pass.

export class SpeakersPage {

}
Next is the render function of the component.

import React from 'react';

import Enzyme, { mount, shallow } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16"';
import { SpeakersPage } from './SpeakersPage';

describe('Render', () => {
beforeEach(() => {
Enzyme.configure({ adapter: new Adapter() });

1)

it('renders', () => {
// arrange
const props = {
speakers: [{
id: 'test-speaker',
firstName: 'Test',
lastName: 'Speaker'
1]
3

// act
const component = shallow(<SpeakersPage { ...props } />);

// assert

www.EBooksWorld.ir

expect(component.find('SpeakerList')).to.exist;
expect(component.find('SpeakerList').props().speakers)
.to.deep.equal(props.speakers);

1)
iOF

This test introduces some new concepts. Starting at the act portion of the test. We are using
Enzyme's shallow render. A shallow render will render the React component but not the
component's children. In this case, we are expecting that a speakerList component exists and that
this component is rendering it. The Enzyme adapter configuration is shown here, but it can also
be moved to test.js after the tests pass.

We are also checking the props to make sure we pass the speakers into the presentational
component. To make this test pass, we must make modifications to the speakerspage component,
but we must also create a speakerList component. Let's do that now.

export class SpeakersPage extends Component {
render () {
return (
<SpeakerList speakers={this.props.speakers} />
)
}
}

And then in a new file, we need to add the speakerList.

| export const SpeakerList = ({speakers}) => {}

You may have noticed that our container component doesn't have any logic. In fact, all it does is
render the speakerList component. If that is all it does, why is it a container component? The
reason is that this component is going to be a Redux-connected component. We want to keep the
Redux code in our business logic and out of our display components. So, we are treating this as
a higher order component and just using it to pass data through to the presentational
components. Later, when we get to the speaker detail component you will see a container
component with a little business logic.

For now, our speakerList component looks a little anemic and doesn't really work as part of a
React Redux app. Time to test our presentational components.

describe('Speaker List', () => {
it('exists', () => {
expect(SpeakerList).to.exist;

1)
1)

Because of the last test, this test will automatically pass. Normally we would not write this test if
we followed to progression what we just did. In reality, what we should have done is ignore the
previous test, create this test, and then create the speakerList component. After which, we could
have re-enabled the previous test and gotten it to pass.

The next step is to test that a message of no speakers available is rendered when the speakers
array is empty.
function setup(props) {
const componentProps = {

speakers: props.speakers || []

3

www.EBooksWorld.ir

return shallow(<SpeakerList {...componentProps} />);

}

describe('On Render', () => {
describe('No Speakers Exist', () => {
it('renders no speakers message', () => {
// arrange
const speakers = [];

// arrange
const component = setup({speakers});

// assert
expect(component.find('#no-speakers').text())
.to.equal('No Speakers Available.');
1)
3);
1)

For this test, we created a helper function to initialize the component with the props that we
need. To make the test pass we just need to return a div with the correct text.

export const SpeakerList = ({speakers}) => {

return (
<div>
<hi>Speakers</h1>
<div id="no-speakers">No Speakers Available.</div>
</div>

)i

}i

While we are only testing for the no-speakers div, we can have decoration that we decide not to
test. In this case, we want a header on the page. Our tests should pass regardless.

So, now we are ready to test for when speakers do exist.

describe('Speakers Exist', () => {
it('renders a table when speakers exist', () => {

// arrange

const speakers = [{
id: 'test-speaker-1',
firstName: 'Test',
lastName: 'Speaker 1'

A
id: 'test-speaker-2',
firstName: 'Test',
lastName: 'Speaker 2'

31

// act
const component = setup({speakers});

// assert
expect(component.find('.speakers')
.children()).to.have.lengthof(2);
expect(component.find('.speakers')
.childAt(0).type().name).to.equal('SpeakerListRow');
3);
1)

In this test, we check for two things. We want the correct number of speaker rows to display and
we want them to be rendered by a new speakerListRow cOmponent.

export const SpeakerList = ({speakers}) => {
let contents = <div>Error!</div>;

www.EBooksWorld.ir

);
}

),
b

if(speakers.length === 0) {
contents = <div id="no-speakers'">No Speakers Available.</div>;
} else {
contents = (
<table className="table">

<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody className="speakers">
{
speakers.map(speaker =>
<SpeakerListRow key={speaker.id} speaker={speaker} />)

}
</tbody>

</table>

return (
<div>
<hi>Speakers</h1>
{ contents }
</div>

The component code has changed significantly because of our latest test. We had to add some
logic, and we also added a default error case if somehow the content were to make it through
without being assigned.

There is one more component to make the code work correctly for this section. We are not going
to test that component in this book, though. The component has no logic inside it and is left as
an exercise to you to create.

In order to create that component, it would be nice if the application ran. Right now, we have
not wired up Redux so the application won't render anything. Let's walk through the
configuration we are using for Redux now.

Inside index.js, we need to add a few items to let Redux work. Your index should look similar to

this:

import
import
import
import
import
import
import
import
import
import

)i

React from 'react';

ReactDOM from 'react-dom';

{BrowserRouter} from 'react-router-dom';

{Provider} from 'react-redux';

registerServicewWorker from './registerServiceWorker';
configureStore from './store/configureStore';

{ getSpeakers } from './actions/speakerActions';
'bootstrap/dist/css/bootstrap.min.css’;
'./index.css';

App from './components/App.js';

const store = configureStore();
store.dispatch(getSpeakers());

ReactDOM.render (
<Provider store={store}>
<BrowserRouter>
<App/>
</BrowserRouter>
</Provider>,
document.getElementById('root')

www.EBooksWorld.ir

registerServiceWorker();

The two parts that we have added are the Redux store including an initial call to dispatch the
load speakers action, and markup to add the Redux provider.

Where your other routes are defined, you will need to add routes for the speaker section. We are
placing the Routes in App. js.

<Route exact path='/speakers/:id' component={SpeakerDetailPage}/>
<Route exact path='/speakers' component={SpeakersPage}/>

Lastly, we have to convert our component to a Redux component. Add the following lines to the
bottom of your speaker's page component file.

import { connect } from 'react-redux';

function mapStateToProps(state) {
return {

speakers: state.speakers

3

}

function mapDispatchToProps(dispatch) {
return bindActionCreators(speakerActions, dispatch);

}

export default connect(mapStateToProps, mapDispatchToProps)(SpeakersPage);

Starting at the bottom of the code sample, the connect function is provided by Redux and will
wire up all the Redux functionality into our component. The two functions passed in,
mapStateToProps and mapDispatchToProps, are passed in as a way to populate state and provide
actions for our component to execute.

Inside mappispatchTopProps we are calling bindActionCreators; this is another Redux-provided
function and will give us an object containing all the actions. By returning that object directly
from mappispatchToprops, we are adding the actions directly to props. We could also create our
own object containing an actions property and then assign the result of the bindActioncreators to
that property.

Anywhere inside the application that references speakerspage can now be changed to just
speakerspage, which will grab our new default export. Do not make this change in the tests.
Inside the tests we still want the named import.

With those things done, we should be able to run the application and navigate to the speakers
route. If you have not added a link to the speakers route, now would be a good time so that you
don't have to type the route directly in the URL every time.

Once you arrive at the speakers route, you should see that there are no speakers and we receive
our message. We need some way to populate the speakers so that we can test the listing. We will
cover a way to populate speakers in the next section. For now, in the mock API modify the
constructor to contain a couple of speakers. Modifying the service in this way will cause a few
tests to break, so after you have visually verified that everything is looking good, be sure to
remove or at least comment out the code you added.

www.EBooksWorld.ir

Speaker detail

Now that we have our speakers listing nicely, it would be nice to be able to view a bit more
information about a specific speaker. Let's look at the tests involved in retrieving and viewing a
speakers-detailed information.

www.EBooksWorld.ir

Adding to the mock API Service

In the mock API, we need to add a call to get the details for a specific speaker. We can assume
that the speaker has an ID field that we can use to gather that information. As usual, let's start
our tests with a simple exists check. We will need to add a new describe inside the after
Initialization describe for getting a speaker by ID.

describe('Get Speaker By Id', () => {
it('exists', () => {
// assert
expect(service.getById).to.exist;
1);
1),

To make this test pass, we need to add a method to the mock API.

getById() {
b

Now, we can write a test to verify the functionality we expect when a matching speaker cannot
be found. The functionality we want in this case is for a sPEAKER_NoT_FounD message to be shown
once we get to the user interface. At the mock API level, we could assume that a 404 will be
sent from the server. We can respond from the mock API with an error containing

the speaker_NoT_rFounp type. This is similar to the way an action would be used.

Let’s create another describe for our speaker not found scenario.

describe('Speaker Does Not Exist', () => {
it ('SPEAKER_NOT_FOUND error is generated', () => {
// act
const promise = service.getById('fake-speaker');

// assert
return promise.catch((error) => {
expect(error.type).to.equal(errorTypes.SPEAKER_NOT_FOUND);
1)
1)
1)

You may have noticed that we snuck in errortypes. The errortypes are in their own folder, but
build exactly like actionTypes.

To make this test pass, we must add a rejected promise to our mock API.

getById(id) {
return new Promise((resolve, reject) => {
setTimeout (() => {
reject({ type: errorTypes.SPEAKER_NOT_FOUND });
}, 0);
1)
}

We don't have any tests that enforce a positive result from this method, so we can reject every
time for now.

www.EBooksWorld.ir

That brings us to our next test. What happens if the speaker is found? Ideally, the speaker and all
the speakers details would be delivered back to the caller. Let's write that test now.

describe('Speaker Exists', () => {
it('returns the speaker', () => {
// arrange
const speaker = { id: 'test-speaker' };
service.create(speaker);

// act
let promise = service.getById('test-speaker');

// assert
return promise.then((speaker) => {
expect(speaker).to.not.be.null;
expect(speaker.id).to.equal('test-speaker');
1)
1);
3);

To pass this test we will have to add some logic to the production code.

getById(id) {
return new Promise((resolve, reject) => {
setTimeout(() => {

let speaker = this._speakers.find(x => x.id === id);

if(speaker) {
resolve(Object.assign({}, speaker));

} else {
reject({ type: errorTypes.SPEAKER_NOT_FOUND });

}
}, 0);
)i
}

To make the test pass, we need to first check to see if the speaker exists. If the speaker does
exist, we return that speaker. If the speaker does not exist, we reject the promise and provide our
error result.

www.EBooksWorld.ir

The Get Speaker action

We now have a mock API to call that behaves the way we want it to. Next on our list is creating
the actions that will handle the results from our mock API. For the process of getting a speaker,
we will need two actions. One of the actions will notify the application about a successful find
and provide the found speaker to the reducers. The other action will notify the application about
the failure to find the requested speaker.

Let's write a test to confirm its existence. This test should be inside the synchronous tests section
of the speaker actions tests. We will also want to create a new describe for the get speaker
success action.

describe('Find Speaker Success', () => {
it('exists', () => {
expect(speakerActions.getSpeakerSuccess).to.exist;
3);
1),

To make this test pass, we just create the action function.

export function getSpeakerSuccess() {

}

Now we need to verify the return value of the action. Just like our get all speakers success
action, the get speaker success action will receive the found speaker and return an object
containing a type and the speaker data. Let's write the test for that now.

it('is created with correct data', () => {
// arrange
const speaker = {
id: 'test-speaker',
firstName: 'Test',
lastName: 'Speaker'

i

// act
const result = speakerActions.getSpeakerSuccess(speaker);

// assert
expect(result.type).to.equal(types.GET_SPEAKER_SUCCESS);
expect(result.speaker).to.deep.equal(speaker);

1

This test is fairly straightforward so let's look at the production code to pass it.

export function getSpeakerSuccess(speaker) {
return { type: types.GET_SPEAKER_SUCCESS, speaker: speaker };
}

Again, this code is straightforward. Next, let's handle the failure action. We will need to create a
new describe for this test as well.

describe('Get Speaker Failure', () => {
it('exists', () => {
expect(speakerActions.getSpeakerFailure).to.exist;

www.EBooksWorld.ir

1)
1)

Nothing new here, you should be starting to get a feel for the flow by now. Let's keep going and
make this test pass.

export function getSpeakerFailure() {

}

The data we should be getting back for a failure to retrieve a speaker should be the
SPEAKER_NOT_FOUND error type. In our next test, we will receive that error and create the action type
from it.

it('is created with correct data', () => {
// arrange
const error = {
type: errorTypes.SPEAKER_NOT_FOUND

}

// act
const result = speakerActions.getSpeakerFailure(error);

// assert
expect(result.type).to.equal(types.GET_SPEAKER_FAILURE);
expect(result.error).to.deep.equal(error);

1

Making this test pass is very similar to the implementation for the other synchronous actions.

export function getSpeakerFailure(error) {
return { type: types.GET_SPEAKER_FAILURE, error: error }

}

Looking at the code, there is one important difference. This code doesn't have speaker data. The
reason is because this action will need to be handled by a different reducer, an error reducer. We
will create the error reducer and error component shortly. But first, we need to create the
asynchronous action that will make the call to the mock API.

In testing the asynchronous action to get speakers, we should start with the failure case. In this
case, the failure case is ceT_speaker_FAILURE. Here is a test to ensure the correct secondary action
is triggered.

it('creates GET_SPEAKER_FAILURE when speaker is not found', () => {
// arrange
const speakerId= 'not-found-speaker';
const store = mockStore({
speaker: {}

1)

// act
return (
store.dispatch(speakerActions.getSpeaker(speakerId)).then(() => {
const actions = store.getActions();

// assert
console.log(actions);
expect(actions[0].type).to.equal(types.GET_SPEAKER_FAILURE);
1)
)
1)

The code to make this test pass is similar to the code we have for getting all the speakers.

www.EBooksWorld.ir

export function getSpeaker(speakerId) {
return function(dispatch) {
return new MockSpeakerService().getById(speakerId).catch(err => {
dispatch(getSpeakerFailure(err));
1)
3
}

Here, we have called the mock API and we expect it to reject the promise, resulting in the
dispatching of the getspeakerrailure action.

Our next test is the successful retrieval of a specific speaker. We do have a problem though. You
may have noticed that we are creating a new mockspeakerservice for each asynchronous action.
This is problematic because it prevents us from pre-populating our mock API with values for the
test. Later in the development of this application, the back-end will be ready and we will want to
point our front-end code to a real back-end. We can't do that as long as we are directly
referencing and creating a mock API service.

There are many solutions for the problem that we are facing. We will explore making a factory
to decide what back-end to provide for us. A factory will also allow us to treat the mock API as
a singleton. Treating the service as a singleton will allow us to prepopulate the service as part of
the test setup.

In the services folder, let's create a new set of tests for creating the factory class and
functionality.

import { expect } from 'chai';
import { ServiceFactory as factory } from './serviceFactory';

describe('Service Factory', () => {
it('exits', () => {
expect(factory).to.exist;

1),

1),

All we need to make this test pass is a class definition.

export class ServiceFactory {

}
Now we want a method to create a speaker service. Add a new describe to the factory tests.

describe('Create Speaker Service', () => {
it('exists', () => {
expect(factory.createSpeakerService).to.exist;

1)
1)

Notice the way we are using the factory, we are not initializing it. We want the factory to be a
class with static methods. Having static functions will give us the singleton ability we want.

static createSpeakerService() {

}

Next up, we want to ensure that the createspeakerservice factory method will provide us with an
instance of the mock API.

it('returns a speaker service', () => {
// act

www.EBooksWorld.ir

let result = factory.createSpeakerService();

// assert
expect(result).to.be.an.instanceof(MockSpeakerService);

1)
Making this test pass is easy, just return a new mock speaker service from the factory method.

static createSpeakerService() {
return new MockSpeakerService();

}

This isn't a singleton though. So, we still have some more work to do here. Let's write one more
test in the factory before we swap out all the service calls in the application for factory calls. To
verify that something is a singleton, we have to make sure it is the same throughout the
application. We can do that by doing reference comparisons on successive calls. Another option
is to create the speaker service, add a speaker to it, create a new speaker service, and try to pull
the speaker from the second service. If we have done things correctly, the second option is the
most thorough. We will do the first option here, but it would be a good exercise to do the second
option on your own.

it('returns the same speaker service', () => {
// act
let servicel = factory.createSpeakerService();
let service2 = factory.createSpeakerService();

// assert
expect(servicel).to.equal(service2);

3);

To pass the test, we must ensure that the same instance of the speaker service is returned every
time.

export default class ServiceFactory {
constructor() {
this._speakerService = null;

}

static createSpeakerService() {
return this._speakerService = this._speakerService ||
new MockSpeakerService();

The factory will now return the current value or create a new speaker service if the current value
IS null.

The next step is to go to each place where we are directly instantiating a mock speaker service
and swap it out with a factory call. We will leave that as an exercise for you to do, but know that
going forward we will assume that it has been done.

Now that we have the factory swapped out and it is generating a singleton, we can write the next
action test. We want to test a successful retrieval of a speaker.

it('creates GET_SPEAKER_SUCCESS when speaker is found', () => {
// arrange
const speaker = {
id: 'test-speaker',
firstName: 'Test',
lastName: 'Speaker'

}

www.EBooksWorld.ir

const store = mockStore({ speaker: {} });

const expectedActions = [
speakerActions.getSpeakerSuccess([speaker.id])

1;

let service = factory.createSpeakerService();
service.create(speaker);

// act
return store.dispatch(
speakerActions.getSpeaker('test-speaker')).then(() => {
const actions = store.getActions();

// assert
expect(actions[0].type).to.equal(types.GET_SPEAKER_SUCCESS);
expect(actions[0].speaker.id).to.equal('test-speaker');
expect(actions[0].speaker.firstName).to.equal('Test');
expect(actions[0].speaker.lastName).to.equal('Speaker');

});

iOF

There is a lot going on in this test; let's walk through it. First in the arrange, we create a speaker
object to be placed in the service, and used for the assertions. Next, still in the arrange, we create
and configure the mock store. Lastly, in the arrange, we create the speaker service and we create
our test speaker using the service.

Next, in the act, we dispatch a call to get the test speaker. Remember, this call is asynchronous.
So, we must subscribe to then.

When the promise is resolved, we store the actions in a variable and assert that the first action
has the correct type and payload.

Now to make this test pass we need to make some modifications to the getByrd method on the
service.

export function getSpeaker(speakerId) {
return function(dispatch) {
return factory.createSpeakerService().getById(speakerId).then(
speaker => {
dispatch(getSpeakerSuccess(speaker));
}).catch(err => {
dispatch(getSpeakerFailure(err));
1)
3
}

All we have really done here is add a then to handle the resolving of the promise. We now have,
for all current intents and purposes, a working speaker service. Let's move on to creating the
reducers for handling the get speaker actions.

www.EBooksWorld.ir

The Get Speaker reducer

To handle the actions related to getting a speaker, we must create two reducers. The first reducer
is extremely similar to the reducer we made for the get speakers actions. The second is going to
need to be slightly different and is for handling the error case.

Let's begin with the simplest of the two and create the speaker reducer.

describe('Speaker Reducer', () => {
it('exists', () => {
expect(speakerReducer).to.exist;
1)
1)

Our typical existence test is easily passed.

export function speakerReducer() {

}

The next test ensures that the reducer updates state properly, and will close out the tests needed
for this reducer.

it('gets a speaker', () => {
// arrange
const initialState = { id: '', firstName: '', lastName: '' };
const speaker = { id: 'test-speaker', firstName: 'Test',6 lastName: 'Speaker'};
const action = actions.getSpeakerSuccess(speaker);

// act
const newState = speakerReducer(initialState, action);
// assert
expect(newState).to.deep.equal(speaker);
1)

The changes from this test are the inputs to the reducer, and the output of a state. Let's make this
test pass by modeling our reducer after the speakers reducer.

export function speakerReducer(state = {
id: '',
firstName: '',
lastName: ''
}, action) {
switch(action.type) {
case types.GET_SPEAKER_SUCCESS:
return action.speaker;
default:
return state;

Similar to the speakers reducer, this reducer simply checks the action type for
GET_SPEAKER_success and, if found, returns the speaker attached to the action as the new state.
Otherwise, we just return the state object we received.

Next up, we need an error reducer.

www.EBooksWorld.ir

describe('Error Reducer', () => {
it('exists', () => {
expect(errorReducer).to.exist;
1)
1)

Passing this test is just as easy as all the other existence tests.

import * as types from './actionTypes';
import * as errors from './errorTypes';

export function errorReducer() {

}

The error reducer will have some interesting functionality. In the event that an error is received,
we want multiple errors to stack up so we won't be replacing the state. Instead, we will be
cloning and adding to the state. However, when an action is received that is not an error we will
want to clear the errors and allow normal program execution to continue. We will also want to
ignore duplicate errors. First, we will handle the error we know about.

it('returns error state', () => {
// arrange
const initialState = [];
const error = { type: errorTypes.SPEAKER_NOT_FOUND };
const action = actions.getSpeakerFailure(error);

// act
const newState = errorReducer(initialState, action);
// assert
expect(newState).to.deep.equal([error]);
1)

Our test is slightly different from the previous reducer test. The main difference is that we are
wrapping our expected value in an array. We are doing this to meet the need for having multiple
errors potentially stack up and display for the user.

To make this test pass we follow the familiar reducer pattern we have been using.

export function errorReducer(state = [], action) {
switch(action.type) {
case types.GET_SPEAKER_FAILURE:
return [...state, action.error];
default:
return state;

For the same reasons as stated previously, notice how we use the rest of the parameter syntax to
spread the existing state into a new array, effectively cloning state.

We have two more tests for the error reducer; the first is to ensure duplicate errors are not added.
The second test will be to clear the errors when a non-error action is called.

it('ignores duplicate errors', () => {
// arrange
const error = { type: errorTypes.SPEAKER_NOT_FOUND };
const initialState = [error];
const action = actions.getSpeakerFailure(error);

// act
const newState = errorReducer(initialState, action);

www.EBooksWorld.ir

// assert
expect(newState).to.deep.equal([error]);

s

In the test, to set the condition of having a prepopulated state, all we had to do was modify the
initialState parameter.

export function errorReducer(state = [], action) {
switch(action.type) {
case types.GET_SPEAKER_FAILURE:
let newState = [...state];

if(newState.every(x => x.type !== action.error.type)) {
newState.push(action.error);

}

return newState;
default:
return state;

All we must do to make this test pass is make sure that the error type is not already present in
the state array. There are many ways to do this; we have chosen to use the every function as a
check that none of the existing errors match. It is likely that this method is not extremely
performant, but there should only be a couple errors at most so it shouldn't be a performance
issue.

The next test is to clear the error state when a non-error is received.

it('clears when a non-error action is received', () => {
// arrange
const error = { type: errorTypes.SPEAKER_NOT_FOUND };
const initialState = [error];
const action = { type: 'ANY_NON_ERROR' };

// act
const newState = errorReducer(initialState, action);
// assert
expect(newState).to.deep.equal([]);
1)

Making this test pass is exceedingly simple. All we have to do is replace the default
functionality where the existing state is returned.

default:
return [];

www.EBooksWorld.ir

The Speaker Detail component

We are now ready to create our speakerbetailPage. There isn't much to this component. It will
need to be another container component so that it can use the get speaker action. Because it is a
container component, we will not be placing any markup directly into this component. The good
news for us is that it means our tests will be short and simple.

To get the tests started, create an existence test.

describe('Speaker Detail Page', () => {
it('exists', () => {
expect(SpeakerDetailPage).to.exist;
3);
1)

Create a speakerbetailPage file and add a component to it.

export class SpeakerDetailPage extends Component {
render () {
return (<div></div>);
}
}

The next thing we want to test, the only other thing we can test without directly specifying the
design, is that the model is received and somehow makes it to the screen. We only need to test
one property of the model for now. We will write a test that shows that the first name of the
speaker is displayed.

describe('Render', () => {
it('renders', () => {
// arrange
const props = {
match: { params: { id: 'test-speaker' } },
actions: { getSpeaker: (id) => { return Promise.resolve(); } 1},
speaker: { firstName: 'Test' }

}i

// act

const component = mount(<SpeakerDetailPage { ...props } />);

// assert

expect(component.find('first-name').text()).to.contain('Test');
});

1)

If you are paying attention, you might have wondered why the get speaker action is just
returning an empty resolved promise. We are not attached to Redux, so kicking off the action
doesn't trigger a reducer, which doesn't update the store and doesn't trigger a refresh of the
component state. We still want to complete the contract of the component in the test setup
though and this component will call that function. We could leave this line out, but we will be
adding it back as soon as we wire up Redux.

To make the test pass, we will need to make a couple of simple changes in the speakerpetailpage
component, and create a whole new component. Following are the changes to this component,

www.EBooksWorld.ir

but it will be an exercise for you to create the next component. It is only for display and we are
testing that it gets populated here so all you have to do is write the presentational component.

export class SpeakerDetailPage extends Component {
constructor(state, context) {
super(state, context);

this.state = {

speaker: Object.assign({}, this.props.speaker)
}
}

render () {
return (
<SpeakerDetail speaker={this.state.speaker} />

);
3

The previous code will make the test pass, but now we have to connect the component to Redux.
We will be adding a call to the getspeaker action, binding to the componentwillReceiveProps life
cycle event, and mapping props and dispatch using the connect function. Here is the final
SpeakerDetailPage cOmponent.

export class SpeakerDetailPage extends Component {
constructor(state, context) {
super(state, context);
this.state = {
speaker: Object.assign({}, this.props.speaker)
3
this.props.actions.getSpeaker(this.props.match.params.id)
}
componentWillReceiveProps(nextProps) {
if(this.props.speaker.id !== nextProps.speaker.id) {
this.setState({ speaker: Object.assign({}, nextProps.speaker) 1});
}
}
render () {
return (
<SpeakerDetail speaker={this.state.speaker} />
)i
}
}
function mapStateToProps(state, ownProps) {
let speaker = { id: '', firstName: '', lastName: '' }
return {
speaker: state.speaker || speaker
Iy
}
function mapDispatchToProps(dispatch) {
return {
actions: bindActionCreators(speakerActions, dispatch)
}
}
export default connect(
mapStateToProps,
mapDispatchToProps
) (SpeakerDetailPage);

Now that everything passes the tests, we have one last thing we need to do before we can

www.EBooksWorld.ir

properly develop further. Earlier we replaced the mock API with a call to a factory. We did this
so that the tests could affect the state of the mock API in the actions. That same modification has
made it possible to configure a starting point for our application. In the index.js file, add the
following code after the store has been configured; now, when you run the app, you will have
speakers available to test the UI with.

const speakers = [{
id: 'clayton-hunt',
firstName: 'Clayton',
lastName: 'Hunt'

3 A{
id: 'john-callaway',
firstName: 'John',
lastName: 'Callaway'

11

let service = factory.createSpeakerService();
speakers.forkEach((speaker) => {
service.create(speaker);

1)

www.EBooksWorld.ir

Summary

That does it for unit-testing a React application, for now. We still don't have an example of
testing some kind of input. Try to test and implement a createspeakerpage. What would you need
to do from a React standpoint? What would Redux cause you to do? In this chapter, we have
attacked the React components as if they were components. For display-only components, which
is what these have been, this approach is probably better. However, for a component with some
real functionality you might want to try testing the functionality as a plain old JavaScript class
before even attaching it to React. We also left quite a bit of work for you to do in this chapter.
Don't be shy about looking at the source related to this chapter if you get lost or need a hint
while you are filling in the blanks to complete the code.

www.EBooksWorld.ir

Exploring Integrations

In this chapter, we'll explore integration-testing the Speaker Meet application. The React front-
end application will be tested and configured to hit the real back-end API, and the .NET
application will be tested to ensure that it functions properly from controller to database.

In this chapter, we cover:

e Implementing a real API service
e Removing mocked API calls

e End-to-end integration

e Integration tests

www.EBooksWorld.ir

Implementing a real API service

The time has come to actually receive data from the server. Our current data model is still not
100% correct, but the groundwork is there. When we receive the correct data structure from the
server, we will need to update our views accordingly. We will leave that part as an exercise for
you.

In this section, we will look at pulling our mocked API out of the factory that we created and
replacing it with a real API. In our existing tests, we will use Sinon to override the default
functionality of our Ajax component with the functionality from our mock API.

Lastly, we will need to create an application configuration object to manage the base path for the
API to determine the correct path in both dev and prod.

www.EBooksWorld.ir

Replacing the mock API with
the real API service

To keep things as simple as possible, we will be using the fetch API to get data from the server.
We will begin by breaking all the tests that are currently using the mock API. That is because
we are going to create a stub class that implements the same interface as the mock API, but it
will not be doing anything:

src/services/fetchSpeakerService.js

import * as errorTypes from '../reducers/errorTypes';

export default class FetchSpeakerService {
constructor() { }

create(speaker) {
return;

}

getAll() {
return;

}

getById(id) {
return;
}
}

Now, replace the mock service that is created by the factory with the creation of the fetch based
service:

import FetchSpeakerService from './fetchSpeakerService';

export default class ServiceFactory {
constructor() {
this._speakerService = null;

}
static createSpeakerService() {

return this._speakerService =
this._speakerService || new FetchSpeakerService();
}

}

Thankfully, only four tests are failing because of that change. Looking at the failed tests, three
of them are failing because we did not return a promise. One test, however, is failing because we
are no longer returning the mock API. We are going to ignore the failing tests caused by missing
promises by excluding them temporarily. Then, we will focus on test checking for a specific
instance.

The test that is failing is in the service factory tests. We don't actually want the service factory to
return a Mockspeakerservice. We want it to return a retchspeakerservice. Even more accurately, we
want any implementation of a speakerservice. Let's create a base class that will behave like an

www.EBooksWorld.ir

interface or abstract class from C#:
/src/services/speakerService.js

export default class SpeakerService {
create(speaker) {
throw new Error("Not Implemented!")

}
getAll() {

throw new Error("Not Implemented!")
}

getById(id) {
throw new Error("Not Implemented!")
}

}

Now we have an abstract base class, we need to inherit from that base class in both our existing
service classes:
import SpeakerService from './speakerService';
export default class MockSpeakerService extends SpeakerService {
constructor() {

super();

this._speakers = [];

import SpeakerService from './speakerService';

export default class FetchSpeakerService extends SpeakerService {
constructor() {
super();

}

And then we need to modify the factory tests to expect an instance of the base class instead of
the derived class:

it('returns a speaker service', () => {
// act
let result = factory.createSpeakerService();

// assert
expect(result).to.be.an.instanceOf(SpeakerService);

s

www.EBooksWorld.ir

Using Sinon to mock Ajax
responses

Now, it is time to tackle the three tests that we have ignored. They are expecting actual
responses from our service. Right now, our service is completely empty. Keep in mind, those
tests were written to be unit tests and we need to protect them from the changes in the response
that the real endpoint will experience over time. For that reason, we are going to, finally,
introduce Sinon.

We will use Sinon to return the results from our mock API instead of the real API. This will
allow us to continue to use the work we have already put into the mock API.

After we have our existing tests covered, we are going to introduce integration tests by using
Sinon to mock the back-end server. Using Sinon in that way will allow us to test-drive our fetch
based speaker service.

www.EBooksWorld.ir

Fixing existing tests

First things first; we must make our existing tests pass. In the speakeractions.spec.js file, find the
first test that we skipped and remove the skip. This will cause that test to fail with:

Cannot read property 'then' of undefined

Back in the beforeEach method, where we are creating the speaker service, we need to create a
new Sinon stub for a service method. Looking at the test, we can see that the first service call we
make is to get all speakers. So, let's start there:

beforeEach(() => {
let service = factory.createSpeakerService();
let mockService = new MockSpeakerService();

getAll = sinon.stub(service, "getAll");
getAll.callsFake(mockService.getAll.bind(mockService));

mockStore = configureMockStore(middleware);

iOF

Looking at this code, what we have done is to create a new Sinon stub and redirect calls to the
service getall method to the mockservice getall method. Lastly, we bind the mockservice call to
the mockservice to preserve access to private variables in the mockservice.

Running the tests again, we get a new error:

Attempted to wrap getAll which is already wrapped

What this error is telling us is that we have already created a stub for the method we are trying to
stub. At first, this error may not make any sense. But, if you look we are doing this in a
beforeEach. Sinon is a singleton and we are running our mocking commands inside a beforeEach,
so it already has a geta11 stub registered by the time the second test is preparing to run. What we
must do is remove that registration before we try to register it again. Another way to say this is
that we must remove the registration after each test run. Let’s add an aftereach method and
remove the registration there:

aftereach(() => {
getAll.restore();

iOF

That fixes the first failing test that we had, now to fix the other two. The process will be largely
the same, so let's get started.

Remove the skip from the next test. The test fails. We are calling the getspeaker action in this test
and if we look at the speaker actions, we can see that it uses the getBy1d service method. As
before we will need to stub this method in the beforeeach.

getById = sinon.stub(service, "getById");
getById.callsFake(mockService.getById.bind(mockService));

www.EBooksWorld.ir

As before, we are now getting the already wrapped message:

Attempted to wrap getById which is already wrapped

We can fix this one the same way we fixed the last one, by removing the stub in the aftertach
function.

getById.restore();

We are back to all passing tests with one skipped. The last test is the exact same process. Here
are the full beforeeach and aftereach functions when we are done:

beforeEach(() => {
let service = factory.createSpeakerService();
let mockService = new MockSpeakerService();

getAll = sinon.stub(service, "getAll");
getAll.callsFake(mockService.getAll.bind(mockService));

getById = sinon.stub(service, "getById");
getById.callsFake(mockService.getById.bind(mockService));

create = sinon.stub(service, '"create");
create.callsFake(mockService.create.bind(mockService));

mockStore = configureMockStore(middleware);

iOF

aftertach(() => {
create.restore();
getAll.restore();
getById.restore();

s

Don't forget to remove the skip from the last test. When all is said and done you should have 42
passing tests and 0 skipped tests.

www.EBooksWorld.ir

Mocking the server

Now that we have fixed our existing tests, we are ready to start writing tests for our real service,
the fetchspeakerservice. Let's get started by looking at the test we used for our mock service. The
tests will largely be the same as we are trying to achieve the same pattern of functionality.

First, we will want to create the test file fetchspeakerservice.spec.js. Once the file is created, we
can add the standard existence test:

describe('Fetch Speaker Service', () => {
it('exits', () => {
expect(FetchSpeakerService).to.exist;
3);
1),

Because we stubbed out the fetch speaker service earlier, this test should just pass after we add
the appropriate import.

Following the mock speaker service tests, the next test is a construction and type verification
test:

it('can be constructed', () => {
// arrange
let service = new FetchSpeakerService();

// assert
expect(service).to.be.an.instanceof (FetchSpeakerService);

1

This test, too, should pass right away, because when we stubbed the fetch service we created it
as a class. Continuing to follow the progression of the mock service tests, we have an after
Initialization section with a create section inside it. The only test in the Create section is an
exists test for the create method. Writing this test, it should pass:

describe('After Initialization', () => {
let service = null;

beforekach(() => {
service = new FetchSpeakerService();

1

describe('Create', () => {
it('exists', () => {
expect(service.create).to.exist;

Because we are copying the flow from the mock service tests, we have already extracted the
service to a beforekach instantiation.

In the next section, our tests will start to get interesting and won't just pass right away. Before
we move on, to verify that the tests are doing what they should be doing, it is a good idea to
comment out parts of the fetch service and see the appropriate tests pass.

www.EBooksWorld.ir

Moving on to the et A1l section, still inside the After Initialization Section, we have an
existence test checking the getA11 method:

describe('Get All', () => {
it('exists', () => {
// assert
expect(service.getAll).to.exist;
1)
1)

As with the other tests so far, to fail this test you will have to comment out the getal1 method in
the fetch service to see it fail. Immediately following this test are two more sections: No Speakers
Exist and speaker Listing. We will add them one at a time starting with No Speakers Exist:

describe.skip('No Speakers Exist', () => {
it('returns an empty array', () => {
// act
let promise = service.getAll();

// assert
return promise.then((result) => {
expect(result).to.have.lengthof(0);
1)
});
1)

Finally, we have a failing test. The failure is complaining because it doesn't look like we
returned a promise. Let's begin the proper implementation of the fetch service and we will use
Sinon in the tests to mock the back-end. In the fetch service, add the following:

constructor(baseUrl) {
super();

this.baseUrl = baseUrl;

}

getAll() {
return fetch(${this.baseUrl}/speakers’).then(r => {
return r.json();
1)
}

This is a very basic fetch call. We are use the HTTP verb, ceT, so there is no reason to call a
method on fetch; by default it will use ceT.

In our tests, we are now getting a meaningful result. fetch is not defined. This result is because
fetch does not exist as part of our testing setup yet. We will need to import a new NPM package
to handle fetch calls in testing. The package we want to import is fetch-ponyfill.

| >npm install fetch-ponyfill

After installing the ponyfi1l library, we must modify our test setup file scripts/test.js:

import { JSDOM } from'jsdom';

import Enzyme from 'enzyme';

import Adapter from 'enzyme-adapter-react-16"';
import fetchPonyfill from 'fetch-ponyfill';
const { fetch } = fetchPonyfill();

const jsdom = new JSDOM('<!doctype html><html><body></body></html>");
const { window } = jsdom;
window.fetch = window.fetch || fetch;

www.EBooksWorld.ir

global.window = window;
global.document = window.document;
global.fetch = window.fetch;

After those modifications, we must restart our tests for the changes to take effect. We are now
getting a test failure telling us that only absolute URLSs are supported. We are getting this
message because when we instantiate our fetch service we aren't passing a baseURL. For the
tests it doesn't matter what the URL is so let's just use localhost:

beforeEach(() => {
service = new FetchSpeakerService('http://localhost');

iOF

After making this change we have moved the error forward and now we are getting a fetch error
to the effect that localhost refused a connection. We are now ready to replace the back-end with
Sinon. We will start in the beforeeach and aftereach:

let fetch = null;

beforeEach(() => {
fetch = sinon.stub(global, 'fetch');
service = new FetchSpeakerService('http://localhost');

1

afterEach(() => {
fetch.restore();

1

In the test, we will need some items from the fetch-ponyfill package so let's add the import
statements while we are close to the top of the file.

import fetchPonyfill from 'fetch-ponyfill';
const {

Response,

Headers
} = fetchPonyfill();

And now in the test, we need to configure the response from the server:

it('returns an empty array', () => {

// arrange

fetch.returns(new Promise((resolve, reject) => {
let response = new Response();
response.headers = new Headers({

'Content-Type': 'application/json'

13K
response.ok = true;
response.status = 200;
response.statusText = 'OK';
response.body = JSON.stringify([]);

resolve(response);

3));

// act
let promise = service.getAll();

// assert
return promise.then((result) => {
expect(result).to.have.lengthof(0);
1)
1)

www.EBooksWorld.ir

That finishes the no speakers Exist scenario. We will refactor the server response once we have a
better idea about what data will be changing.

We are now ready for the speaker listing scenario. As before, we start by copying the test from
the mock service tests. Remove the arrange from the mock service test and copy the arrange
from our previous test.

After adding the arrange from the no speakers test, we get a message expecting a length of 1
instead of 0. This is an easy fix and for the purposes of this test we can simply add an empty
object to the body array of the response. Here is what the test should look like, once it is
passing:

describe('Speaker Listing', () => {
it('returns speakers', () => {
// arrange
fetch.returns(new Promise((resolve, reject) => {
let response = new Response();
response.headers = new Headers({
'Content-Type': 'application/json'
1)
response.ok = true;
response.status = 200;
response.statusText = 'OK';
response.body = JSON.stringify([{}]);

resolve(response);

)

// act
let promise = service.getAll();

// assert

return promise.then((result) => {
expect(result).to.have.lengthOf(1);

1

1)

Now that we are using basically the same arrange twice, it's time to refactor our tests. The only
thing that has really changed is the body. Let's extract an okresponse function to use:

function okResponse(body) {
return new Promise((resolve, reject) => {
let response = new Response();
response.headers = new Headers({
'Content-Type': 'application/json'

)
response.ok = true;
response.status = 200;
response.statusText = 'OK';
response.body = JSON.stringify(body);

resolve(response);
1)
}

We have placed this helper function at the top of the After Initialization describe. Now in each
test, replace the arrange with a call to the function, passing in the body that is specific to that
test.

The get all speakers functionality is now covered by the tests. Let's move on to getting a specific
speaker by ID. Copy the tests for getBy1d from the mock service tests and apply a skip to the

www.EBooksWorld.ir

describes. Now, remove the skip from the outer-most describe. This should enable the existence
test, which should pass.

The next test is for when a speaker is not found; removing skip from that test results in a
message indicating that we are not returning a promise. Let's go into the body of the getBy1d
function and use fetch to get a speaker:

getById(id) {
return fetch(${this.baseUrl}/speakers/${id}");
}

Adding fetch to our function should have fixed