
www.EBooksWorld.ir

Mastering Blockchain

Distributed ledgers, decentralization and smart contracts
explained

Imran Bashir

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Mastering Blockchain

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1090317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-544-5

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits

Author

Imran Bashir

Copy Editor

Laxmi Subramanian

Reviewer

Daniel Kraft

Project Coordinator

Shweta H Birwatkar

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Ajith Menon

Indexer

Pratik Shirodkar

Content Development Editors

Sumeet Sawant

Amrita Noronha

Graphics

Tania Dutta

Technical Editor

Nilesh Sawakhande

Production Coordinator

Shraddha Falebhai

www.EBooksWorld.ir

About the Author
Imran Bashir has a M.Sc. in Information Security from Royal Holloway, University of
London, and has a background in software development, solution architecture,
infrastructure management, and IT service management. He is also a member of Institute
of Electrical and Electronics Engineers (IEEE) and British Computer Society (BCS). Imran
has sixteen years of experience in the public and financial sectors. He worked on large scale
IT projects for public sector before moving to financial services industry. Since then he has
worked in various technical roles for different financial companies in Europe’s financial
capital, London. He is currently working for an investment bank in London as Vice
President in the technology department.

I would like to thank the talented team at Packt including Ajith Menon, Nilesh Sawakhande, Sumeet
Sawant, and Tushar Gupta, who provided prompt guidance and very valuable feedback throughout
this project. I am also extremely thankful to the reviewer, Daniel Kraft, who provided constructive
and very useful feedback that helped tremendously to improve the material in this book.

I thank my wife and children for putting up with my all-night and weekend-long writing sessions.

Finally, I would like to thank my parents, whose blessings on me have made everything possible for
me.

www.EBooksWorld.ir

About the Reviewer
Daniel Kraft studied mathematics and physics, and holds a PhD in applied mathematics
from the University of Graz in Austria. He has been involved in development with
cryptocurrencies since 2013, has been the lead developer and chief scientist for both
Namecoin and Huntercoin since 2014, and has published two research papers about
cryptocurrency in peer-reviewed journals. He works as a software engineer and is a co-
founder of Crypto Realities Ltd, a start-up that works on building decentralised multi-
player game worlds with blockchain technology.

www.EBooksWorld.ir

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p ://w w w . a m a z o n . i n /d p /1787125440.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

www.EBooksWorld.ir

http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440
http://www.amazon.in/dp/1787125440

Table of Contents
Preface 1

Chapter 1: Blockchain 101 7

Distributed systems 10
CAP theorem 11
Byzantine Generals problem 12
Consensus 12

Consensus mechanisms 12
Types of consensus mechanism 13

The history of blockchain 14
Electronic cash 14

The concept of electronic cash 14
Introduction to blockchain 16

Various technical definitions of blockchains 18
Generic elements of a blockchain 19

Addresses 19
Transaction 19
Block 19
Peer-to-peer network 20
Scripting or programming language 20
Virtual machine 20
State machine 20
Nodes 21
Smart contracts 21

Features of a blockchain 21
Distributed consensus 21
Transaction verification 21
Platforms for smart contracts 21
Transferring value between peers 21
Generating cryptocurrency 22
Smart property 22
Provider of security 22
Immutability 22
Uniqueness 23
Smart contracts 23

Applications of blockchain technology 23
How blockchains accumulate blocks 24

Tiers of blockchain technology 24
Blockchain 1.0 25
Blockchain 2.0 25

www.EBooksWorld.ir

[ii]

Blockchain 3.0 25
Generation X (Blockchain X) 25

Types of blockchain 25
Public blockchains 25
Private blockchains 26
Semi-private blockchains 26
Sidechains 26
Permissioned ledger 27
Distributed ledger 27
Shared ledger 27
Fully private and proprietary blockchains 27
Tokenized blockchains 27
Tokenless blockchains 27
Consensus in blockchain 28

Proof of Work 28
Proof of Stake 28
Delegated Proof of Stake 29
Proof of Elapsed Time 29
Deposit-based consensus 29
Proof of importance 29
Federated consensus or federated Byzantine consensus 30
Reputation-based mechanisms 30
Practical Byzantine Fault Tolerance 30

CAP theorem and blockchain 30
Benefits and limitations of blockchain 30

Decentralization 31
Transparency and trust 31
Immutability 31
High availability 31
Highly secure 31
Simplification of current paradigms 32
Faster dealings 32
Cost saving 32
Challenges and limitations of blockchain technology 32

Summary 33

Chapter 2: Decentralization 34

Decentralization using blockchain 34
Methods of decentralization 36

Disintermediation 37
Through competition 37

Routes to decentralization 38

www.EBooksWorld.ir

[iii]

How to decentralize 38
Examples 39

Blockchain and full ecosystem decentralization 40
Storage 40
Communication 41
Computation 42

Smart contract 43
Decentralized organizations 44
Decentralized autonomous organizations 44
Decentralized autonomous corporations 45
Decentralized autonomous societies 45
Decentralized applications 46

Requirements of a decentralized application 46
Operations of a DAPP 46

Examples 46
KYC-Chain 47
OpenBazaar 47
Lazooz 47

Platforms for decentralization 47
Ethereum 48
Maidsafe 48
Lisk 48

Summary 49

Chapter 3: Cryptography and Technical Foundations 50

Introduction 51
Mathematics 51

Set 51
Group 51
Field 52
A finite field 52
Order 52
Prime fields 52
Ring 52
A cyclic group 52
An abelian group 52
Modular arithmetic 53

Cryptography 53
Confidentiality 53
Integrity 53
Authentication 53

Entity authentication 53
Data origin authentication 54

www.EBooksWorld.ir

[iv]

Non-repudiation 54
Accountability 55

Cryptographic primitives 56
Symmetric cryptography 57

Stream ciphers 57
Block ciphers 58

Block encryption mode 59
Keystream generation modes 59
Message authentication modes 60
Cryptographic hashes 60
Electronic code book 60
Cipher block chaining 61
Counter mode 61

Data Encryption Standard (DES) 62
Advanced Encryption Standard (AES) 62

AES steps 62
An OpenSSL example of how to encrypt and decrypt using AES 63

Asymmetric cryptography 65
Integer factorization 68
Discrete logarithm 68
Elliptic curves 68

Public and private keys 69
RSA 69

Encryption and decryption using RSA 70
Elliptic curve cryptography (ECC) 70

Mathematics behind ECC 71
Point addition 73
Point doubling 75

Discrete logarithm problem 78
How to generate public and private key pairs 80

Private key 80
Generate public key 81

How to encrypt and decrypt using RSA with OpenSSL 82
Encryption 83
Decrypt 83

ECC using OpenSSL 84
ECC private and public key pair 84
Private key 84
Private key generation 85

Cryptographic primitives 87
Hash functions 87

Compression of arbitrary messages into fixed length digest 88
Easy to compute 88
Pre-image resistance 88
Second pre-image resistance 88

www.EBooksWorld.ir

[v]

Collision resistance 88
Message Digest (MD) 89
Secure Hash Algorithms (SHAs) 89

Design of Secure Hash Algorithms (SHA) 91
SHA-256 91
Design of SHA3 (Keccak) 92
OpenSSL example of hash functions 93
Message Authentication codes (MACs) 93
MACs using block ciphers 94
HMACs (hash-based MACs) 94

Merkle trees 95
Patricia trees 96
Distributed hash tables (DHTs) 96
Digital signatures 96

Sign then encrypt 98
Encrypt then sign 98

Elliptic Curve Digital signature algorithm (ECDSA) 98
How to generate a digital signature 100
ECDSA using OpenSSL 101
Homomorphic encryption 103
Signcryption 104
Zero knowledge proofs 104
Blind signatures 105
Encoding schemes 105

Financial markets and trading 105
Trading 106
Exchanges 106

Orders and order properties 106
Order management and routing systems 107
Components of a trade 107
General attributes 107
Economic 108
Sales 108
Counterparty 108

Trade life cycle 108
Order anticipators 109
Market manipulation 109

Summary 110

Chapter 4: Bitcoin 111

Bitcoin 112
Bitcoin definition 113

Keys and addresses 114
Public keys in bitcoin 115
Private keys in bitcoin 116
Bitcoin currency units 116

www.EBooksWorld.ir

[vi]

Base58Check encoding 116
Vanity addresses 117

Transactions 118
The transaction life cycle 118
The transaction structure 119

The script language 120
Commonly used Opcodes 121

Types of transaction 122
Coinbase transactions 124
What is UTXO? 125

Transaction fee 125
Contracts 125
Transaction malleability 125
Transaction pools 126
Transaction verification 126

Blockchain 127
The structure of a block 127
The structure of a block header 127
The genesis block 129

Mining 131
Task of miners 132
Synching up with the network 132
Proof of Work 133
The mining algorithm 133
The hashing rate 134
Mining systems 135
CPU 135
GPU 135
FPGA 136
ASICs 136
Mining pools 137

The bitcoin network 138
Wallets 145

Wallet types 146
Non-deterministic wallets 146
Deterministic wallets 146
Hierarchical deterministic wallets 146
Brain wallets 146
Paper wallets 147
Hardware wallets 147
Online wallets 147
Mobile wallets 148

Bitcoin payments 148
Bitcoin investment and buying and selling bitcoins 150
Bitcoin installation 152

www.EBooksWorld.ir

[vii]

Setting up a bitcoin node 152
Setting up the source code 153
Setting up bitcoin.conf 154
Starting up a node in testnet 154
Starting up a node in regtest 155
Starting up a node in live mainnet 155
Experimenting with bitcoin-cli 157

Bitcoin programming and the command-line interface 158
Bitcoin improvement proposals (BIPs) 159

Summary 159

Chapter 5: Alternative Coins 160

Theoretical foundations 163
Alternatives to Proof of Work 164

Proof of Storage 165
Proof of Stake 166

Proof of coinage 166
Proof of deposit 166
Proof of burn 166
Proof of activity 167

Non-outsourceable puzzles 167
Difficulty adjustment and retargeting algorithms 167

Kimoto Gravity Well 168
Dark Gravity Wave 169
DigiShield 169
MIDAS 169

Bitcoin limitations 170
Privacy and anonymity 170

Mixing protocols 171
Third-party mixing protocols 171
Inherent anonymity 172

Extended protocols on top of bitcoin 172
Colored coins 172
Counterparty 173

Development of altcoins 174
Consensus algorithms 174
Hashing algorithms 175
Difficulty adjustment algorithms 175
Inter-block time 175
Block rewards 175
Reward halving rate 175
Block size and transaction size 175
Interest rate 175
Coin age 176
Total supply of coins 176

Namecoin 176

www.EBooksWorld.ir

[viii]

Trading Namecoins 178
Obtaining Namecoins 178
Generating Namecoin records 180

Litecoin 182
Primecoin 185

Trading Primecoin 186
Mining guide 186

Zcash 189
Trading Zcash 191
Mining guide 191

Address generation 194
GPU mining 195

Downloading and compiling nheqminer 196
Summary 197

Chapter 6: Smart Contracts 198

History 198
Definition 199
Ricardian contracts 202

Smart contract templates 205
Oracles 206
Smart Oracles 207
Deploying smart contracts on a blockchain 207
The DAO 208

Summary 209

Chapter 7: Ethereum 101 210

Introduction 210
Ethereum clients and releases 210
The Ethereum stack 211

Ethereum blockchain 212
Currency (ETH and ETC) 213
Forks 213
Gas 214
The consensus mechanism 214
The world state 215

The account state 215
Nonce 215
Balance 216
Storageroot 216
Codehash 216

Transactions 217

www.EBooksWorld.ir

[ix]

Nonce 217
gasPrice 217
gasLimit 217
To 217
Value 218
Signature 218
Init 219
Data 219

Contract creation transaction 220
Message call transaction 221

Elements of the Ethereum blockchain 222
Ethereum virtual machine (EVM) 222

Execution environment 224
Machine state 225
The iterator function 226
Runtime byte code 227

Opcodes and their meaning 228
Arithmetic operations 228
Logical operations 229
Cryptographic operations 229
Environmental information 230
Block Information 231
Stack, memory, storage and flow operations 231
Push operations 232
Duplication operations 232
Exchange operations 232
Logging operations 233
System operations 233

Precompiled contracts 233
The elliptic curve public key recovery function 234
The SHA-256 bit hash function 234
The RIPEMD-160 bit hash function 234
The identity function 235

Accounts 235
Types of accounts 236

Block 236
Block header 236

Parent hash 236
Ommers hash 237
Beneficiary 237
State root 237
Transactions root 237
Receipts root 237
Logs bloom 237
Difficulty 237

www.EBooksWorld.ir

[x]

Number 238
Gas limit 238
Gas used 238
Timestamp 238
Extra data 238
Mixhash 238
Nonce 238

The genesis block 239
Transaction receipts 240

The post-transaction state 240
Gas used 240
Set of logs 240
The bloom filter 241

Transaction validation and execution 241
The transaction sub state 241

Suicide set 242
Log series 242
Refund balance 242

The block validation mechanism 242
Block finalization 243

Ommers validation 243
Transaction validation 243
Reward application 243
State and nonce validation 244

Block difficulty 244
Ether 244

Gas 245
Fee schedule 247

Messages 247
Calls 248

Mining 248
Ethash 249
CPU mining 250
GPU mining 250

CPU benchmarking 251
GPU benchmarking 251

Mining rigs 252
Motherboard 252
SSD hard drive 252
GPU 253

Mining pools 254
Clients and wallets 254

Geth 254
Eth 254

www.EBooksWorld.ir

[xi]

Pyethapp 254
Parity 254
Light clients 255
Installation 255

Eth installation 256
Mist browser 256
Geth 259
The geth console 259
Funding the account with bitcoin 260

Parity installation 261
Creating accounts using the parity command line 264

Trading and investment 265
The yellow paper 265

Useful symbols 266
The Ethereum network 267

MainNet 267
TestNet 267
Private net(s) 267
Supporting protocols 267

Whisper 268
Swarm 268

Applications developed on Ethereum 269
Scalability and security issues 269
Summary 270

Chapter 8: Ethereum Development 271

Setting up a development environment 271
Test Net (Ropsten) 272
Setting up a Private Net 272

Network ID 273
The genesis file 273
Data directory 274

Flags and their meaning 274
Static nodes 275

Starting up the private network 275
Running Mist on Private Net 281
Deploying contracts using Mist 282

Development tools and clients 286
Languages 287
Compilers 287

Solc 287
Integrated Development Environments (IDEs) 289

Browser solidity 289

www.EBooksWorld.ir

[xii]

Remix 290
Installation 290

Tools and libraries 293
Node.js version 7 293
Local Ethereum block explorer 294

EthereumJS 296
Contract development and deployment 296

Introducing solidity 297
Types 297

Value types 297
Boolean 297
Integers 298
Address 298
Array value types (fixed size and dynamically sized byte arrays) 299

Literals 299
Integer literals 299
String literals 300
Hexadecimal literals 300

Enums 300
Function types 300

Internal functions 300
External functions 300

Reference types 301
Arrays 301
Structs 301
Data location 301

Mappings 302
Global variables 302
Control structures 302

Events 303
Inheritance 303
Libraries 304
Functions 304
Layout of a solidity source code file 308

Introducing Web3 309
POST requests 315
The HTML and JavaScript frontend 316

Installing web3.js 317
Example 318

Development frameworks 324
Truffle 324

Installation 324
Testing using truffle 333
Build 335
Another example 337
Example project: Proof of Idea 341
Permissioned distributed ledgers 353

www.EBooksWorld.ir

[xiii]

Summary 354

Chapter 9: Hyperledger 355

Projects 355
Fabric 355
Sawtooth lake 356
Iroha 356
Blockchain explorer 356
Fabric chaintool 357
Fabric SDK Py 357
Corda 357

Hyperledger as a protocol 358
Reference architecture 358
Requirements 359

Modular approach 359
Privacy and confidentiality 360
Identity 360
Auditability 360
Interoperability 360
Portability 361

Fabric 361
Hyperledger Fabric 362

Fabric architecture 362
Membership services 363
Blockchain services 363

Consensus manager 363
Distributed ledger 363
Peer to Peer protocol 365
Ledger storage 365

Chaincode services 365
Events 365
APIs and CLIs 366

Components of the Fabric 366
Peers or nodes 366
Applications on blockchain 367

Chaincode implementation 367
Application model 369

Sawtooth lake 369
PoET 370
Transaction families 370
Consensus in Sawtooth 372
Development environment 372

Corda 375

www.EBooksWorld.ir

[xiv]

Architecture 376
State objects 376
Transactions 376
Consensus 377
Flows 377

Components 377
Nodes 377
Permissioning service 378

Network map service 379
Notary service 379
Oracle service 379
Transactions 379
Vaults 380
CorDapp 381

Development environment 381
Summary 382

Chapter 10: Alternative Blockchains 383

Blockchains 384
Kadena 384

Ripple 388
Transactions 390

Payments related 390
Order related 391
Account and security related 391
Application layer 392
Transport layer 392
Interledger layer 393
Ledger layer 393

Stellar 393
Rootstock 394

Drivechain 395
Quorum 395

Transaction manager 395
Crypto Enclave 396
QuorumChain 396
Network manager 396

Tezos 397
Storj 398
Maidsafe 399
BigChainDB 399
Multichain 399
Tendermint 400

Tendermint Core 400
Tendermint Socket Protocol (TMSP) 400

Platforms 401

www.EBooksWorld.ir

[xv]

BlockApps 401
Installation 401
Application development and deployment using BlockApps 402

Eris 409
Summary 411

Chapter 11: Blockchain-Outside of Currencies 412

Internet of Things 412
Physical object layer 413
Device layer 413
Network layer 414
Management layer 414
Application layer 414
IoT blockchain experiment 419

First node setup 423
Raspberry Pi node setup 423
Circuit 428

Government 433
Border control 434
Voting 436
Citizen identification (ID cards) 436
Miscellaneous 438

Health 438
Finance 439

Insurance 439
Post trade settlement 439
Financial crime prevention 440

Media 441
Summary 442

Chapter 12: Scalability and Other Challenges 443

Scalability 444
Block size increase 445
Block interval reduction 445
Invertible Bloom lookup tables 446
Sharding 446
State channels 446
Private blockchain 447
Proof of Stake 447

Sidechains 447
Subchains 448
Tree chains 448

www.EBooksWorld.ir

[xvi]

Privacy 450
Indistinguishability obfuscation 450
Homomorphic encryption 451
Zero knowledge proofs 451
State channels 451
Secure multiparty computation 451
Usage of hardware to provide confidentiality 451
Coinjoin 452
Confidential transactions 453
MimbleWimble 453

Security 454
Smart contract security 454

Why3 formal verification 456
Oyente tool 457

Summary 459

Chapter 13: Current Landscape and What's Next 460

Emerging trends 460
Application-specific blockchains (ASBCs) 461
Enterprise-grade blockchains 461
Private blockchains 461
Start-ups 462
Strong research interest 462
Standardization 462
Enhancements 464
Real-world implementations 464
Consortia 464
Answers to challenges 465
Convergence 465
Education of blockchain technology 465
Employment 465
Crypto-economics 466
Research in cryptography 466
New programming languages 466
Hardware research and development 467
Research in formal methods and security 467
Alternatives to blockchains 468
Interoperability efforts 468
Blockchain as a service 469
Efforts to reduce electricity consumption 469

www.EBooksWorld.ir

[xvii]

Improvement proposals 469
BIPs 469

BIP 152 470
BIP 151 470
BIP 150 470
BIP 147 470
BIP 146 471

EIPs 471
EIP 170 471
EIP 150 471
EIP 161 471
EIP 160 472
EIP 155 472

Other challenges 472
Dark side 474
Blockchain research 475

Smart contracts 475
Centralization issues 475
Limitations in cryptographic functions 475
Consensus Algorithms 476
Scalability 476
Code Obfuscation 477

List of notable projects 477
Zcash on Ethereum 477
CollCo 477
Cello 477
Qtum 478
Bitcoin-NG 478
Solidus 478
Hawk 478
Town-Crier 478
SETLCoin 478
TEEChan 479
Falcon 479
Bletchley 479
Casper 480
Metropolis 480

Miscellaneous Tools 480
Solidity extension for Microsoft Visual studio 480
MetaMask 481
Stratis 481

www.EBooksWorld.ir

[xviii]

Embark 481
DAPPLE 481
Meteor 481
uPort 482
INFURA 482

Convergence with other industries 482
Future 483
Summary 485

Index 486

www.EBooksWorld.ir

Preface
This book has one goal: to provide a comprehensive introduction to the theoretical and
practical aspects of blockchain technology. This book contains all the material that is
required to fully understand blockchain technology. After reading this book, readers will be
able to develop a deep understanding of inner workings of blockchain technology and will
be able to develop blockchain applications. This book covers all topics relevant to
blockchain technology, including cryptography, cryptocurrenices, Bitcoin, Ethereum, and
various other platforms and tools used for blockchain development.

It is recommended that readers have a basic understanding of computer science and basic
programming experience in order to benefit fully from this book. However, if that is not the
case then still this book can be read easily, as relevant background material is provided
where necessary.

What this book covers
Chapter 1, Blockchain 101, introduces the basic concepts of distributed computing on which
blockchain technology is based. It also covers history, definitions, features, types, and
benefits of blockchains along with consensus mechanisms that are at the core of blockchain
technology.

Chapter 2, Decentralization, covers the concepts of decentralization and its relationship with
blockchain technology. Various methods and platforms that can be used to decentralize a
process or system have also been introduced.

Chapter 3, Cryptography and Technical Foundations, introduces the theoretical foundations
cryptography, which is necessary to fully understand blockchain technology. Concepts such
as public and private key cryptography, with practical examples, are included. Finally, an
introduction to financial markets is also included as there are many interesting use cases for
blockchain technology in the financial sector.

Chapter 4, Bitcoin, covers Bitcoin, the first and largest blockchain. It introduces technical
concepts related to bitcoin cryptocurrency in detail.

Chapter 5, Alternative Coins, introduces alternative cryptocurrencies that were introduced
after the invention of Bitcoin. It also presents examples of different altcoins, their properties,
and how they have been developed and implemented.

www.EBooksWorld.ir

Preface

[2]

Chapter 6, Smart Contracts, provides an in-depth discussion on smart contracts. Topics such
as history, the definition of smart contracts, Ricardian contracts, Oracles, and the theoretical
aspects of smart contracts are presented in this chapter.

Chapter 7, Ethereum 101, introduces the design and architecture of the Ethereum blockchain
in detail. It covers various technical concepts related to the Ethereum blockchain that
explains the underlying principles, features, and components of this platform in depth.

Chapter 8, Ethereum Development, provides a detailed practical introduction to development
of decentralized applications and smart contracts using the Ethereum blockchain. An
introduction to solidity and different relevant tools have also been included in this chapter.

Chapter 9, Hyperledger, presents a discussion about the hyperledger project from the Linux
foundation, which includes different blockchain projects introduced by its members.

Chapter 10, Alternative Blockchains, introduces alternative blockchain solutions and
platforms. It provides technical details and features of alternative blockchains.

Chapter 11, Blockchain – Outside of Currencies, provides a practical and detailed introduction
to applications of blockchain technology in fields others than cryptocurrencies, including
Internet of Things, government, media, and finance.

Chapter 12, Scalability and Other Challenges, is dedicated to a discussion of the challenges
faced by blockchain technology and how to address them.

Chapter 13, Current Landscape and What’s Next, is aimed at providing information about the
current landscape, projects, and research efforts related to blockchain technology. Also,
some predictions based on the current state of blockchain technology have also been made.

What you need for this book
All examples in this book have been developed on Ubuntu 16.04.1 LTS (Xenial). As such, it
is recommended to use Ubuntu. However, any appropriate operating system, either
Windows or Linux, can be used, but examples, especially those related to installation, may
need to be changed accordingly.

Examples related to cryptography have been developed using the OpenSSL 1.0.2g 1 Mar
2016 command-line tool.

Ethereum solidity examples have been developed using Browser Solidity, available online
at h t t p s ://e t h e r e u m . g i t h u b . i o /b r o w s e r - s o l i d i t y /.

www.EBooksWorld.ir

https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/

Preface

[3]

Ethereum's homestead release is used to develop Ethereum-related examples. At the time of
writing, this is the latest version available and can be downloaded from h t t p s ://w w w . e t h e

r e u m . o r g /.

Examples related to IoT have been developed using a Raspberry Pi kit by Vilros, but any
latest model or kit can be used. Specifically, Raspberry Pi 3 Model B V 1.2 has been used to
build a hardware example of IoT. Node.js V7.2.1 and npm V3.10.10 have been used to
download related packages and run Node.js server for IoT examples.

The Truffle framework has been used in some examples of smart contract deployment,
and is available at h t t p ://t r u f f l e f r a m e w o r k . c o m /. Any latest version available via npm
should be appropriate.

Who this book is for
This book is for anyone who wants to understand blockchain technology in depth. It can
also be used as a reference by developers who are developing applications for blockchain.
In addition, this book can also be used as a textbook for courses related to blockchain
technology and cryptocurrencies. It can also be used as a learning resource for various
examinations and certifications related to cryptocurrency and blockchain technology.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"This line of code simply uses console.log to print the coinbase by calling
web3.eth.coinbase method."

A block of code is set as follows:

function difference(uint x) returns (uint y)
{
 z=x-5;
 y=z;
}

www.EBooksWorld.ir

https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
https://www.ethereum.org/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/
http://truffleframework.com/

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function difference(uint x) returns (uint y)
{
 z=x-5;
 y=z;
}

Any command-line input or output is written as follows:

$ geth --datadir .ethereum/PrivateNet/ --networkid 786 --rpc --
rpccorsdomain 'http://192.168.0.17:9900'

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

www.EBooksWorld.ir

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - B l o c k c h a i n . We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g B l o c k c h a i n _ C o l o r I m a g e s . p d f .

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://github.com/PacktPublishing/Mastering-Blockchain
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBlockchain_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Blockchain 101

It is very likely that anyone reading this book has already heard about blockchain and has
some basic appreciation of its enormous potential.

With the invention of bitcoin in 2008 the world was introduced to a new concept that is now
likely to revolutionize the whole of society. It's something that has promised to impact
every industry including but not limited to finance, government, and media. Some describe
it as a revolution whereas another school of thought says that it's going to be an evolution
and it will take many years before any practical benefits from blockchain come to fruition.
This is correct to some extent but in my opinion the revolution has already started; many
big organizations all around the world are already writing proofs of concept using
blockchain technology as its disruptive potential has now been fully recognized. However,
some organizations are still at the preliminary exploration stage but are expected to
progress more quickly as the technology is now becoming more mature. It is a technology
that has an impact on current technologies too and possesses the ability to change them at a
fundamental level.

www.EBooksWorld.ir

Blockchain 101

[8]

According to Gartner's technology hype cycle graph shown below, the blockchain
technology is currently at the peak of inflated expectations (as of July 2016) and is expected to
be ready for mainstream adoption in 5 to 10 years:

Gartner's hype cycle for emerging technologies

Interest in blockchain technology has soared in the last few years and, once disregarded by
some as geek money from a cryptocurrency point of view or as something that was not
really considered worthwhile, it is now being researched by the largest companies and
organizations around the world with millions of dollars being spent in order to adopt and
experiment with this technology. A simple trend search on Google reveals the scale of
interest in the blockchain technology over the last few years:

www.EBooksWorld.ir

Blockchain 101

[9]

Google trends for blockchain

Various benefits of this technology are being envisaged such as decentralized trust, cost
savings, transparency, and efficiency. However, there are various challenges too that are an
area of active research such as scalability and privacy. Chapter 12, Scalablity and Other
Challenges is dedicated to a discussion of the limitations and challenges of blockchain
technology.

This chapter is an introduction to blockchain technology, its technical foundations, the
theory behind it, and various technologies that have been combined together in order to
build what is known today as blockchain.

In 2008 a groundbreaking paper Bitcoin: A Peer-to-Peer Electronic Cash System was written on
the topic of peer-to-peer electronic cash under the pseudonym Satoshi Nakamoto and
introduced the term chain of blocks. This term over the years has now evolved into the word
blockchain.

In this chapter, first the theoretical foundations of distributed systems are described, then
the precursors of bitcoin (with which blockchain technology was introduced) such as e-cash
and hashcash, and then finally the blockchain technology is introduced. This is a logical
way of understanding blockchain technology because the roots of blockchain are in
distributed systems.

www.EBooksWorld.ir

Blockchain 101

[10]

Distributed systems
Understanding distributed systems is essential in order to understand blockchain because
basically blockchain at its core is a distributed system. More precisely it is a decentralized
distributed system.

Distributed systems are a computing paradigm whereby two or more nodes work with each
other in a coordinated fashion in order to achieve a common outcome and it's modeled in
such a way that end users see it as a single logical platform.

A node can be defined as an individual player in a distributed system. All nodes are
capable of sending and receiving messages to and from each other. Nodes can be honest,
faulty, or malicious and have their own memory and processor. A node that can exhibit
arbitrary behavior is also known as a Byzantine node. This arbitrary behavior can be
intentionally malicious, which is detrimental to the operation of the network. Generally, any
unexpected behavior of a node on the network can be categorized as Byzantine. This term
arbitrarily encompasses any behavior that is unexpected or malicious:

Design of a distributed system; N4 is a Byzantine node, L2 is broken or a slow network link

The main challenge in distributed system design is coordination between nodes and fault
tolerance. Even if some of the nodes become faulty or network links break, the distributed
system should tolerate this and should continue to work flawlessly in order to achieve the
desired result. This has been an area of active research for many years and several
algorithms and mechanisms has been proposed to overcome these issues.

www.EBooksWorld.ir

Blockchain 101

[11]

Distributed systems are so challenging to design that a theorem known as the CAP theorem
has been proved and states that a distributed system cannot have all much desired
properties simultaneously. In the next section, a basic introduction to the CAP theorem will
be provided.

CAP theorem
This is also known as Brewer's theorem, introduced originally by Eric Brewer as a conjecture
in 1998; in 2002 it was proved as a theorem by Seth Gilbert and Nancy Lynch.

The theorem states that any distributed system cannot have Consistency, Availability, and
Partition tolerance simultaneously:

Consistency is a property that ensures that all nodes in a distributed system have
a single latest copy of data
Availability means that the system is up, accessible for use, and is accepting
incoming requests and responding with data without any failures as and when
required
Partition tolerance ensures that if a group of nodes fails the distributed system
still continues to operate correctly

It has been proven that a distributed system cannot have all the afore mentioned three
properties at the same time. This is strange because somehow blockchain manages to
achieve all these properties, or does it really? This will be explained later in the chapter
where the CAP theorem in the context of blockchain is discussed.

In order to achieve fault tolerance, replication is used. This is a common and widely used
method to achieve fault tolerance. Consistency is achieved using consensus algorithms to
ensure that all nodes have the same copy of data. This is also called state machine
replication. Blockchain is basically a method to achieve state machine replication.

In general there are two types of fault that a node can experience: where a faulty node has
simply crashed and where the faulty node can exhibit malicious or inconsistent behavior
arbitrarily. This is the type which is difficult to deal with since it can cause confusion due to
misleading information.

www.EBooksWorld.ir

Blockchain 101

[12]

Byzantine Generals problem
Before discussing consensus in distributed systems, events in history are presented that are
precursors to the development of successful and practical consensus mechanisms.

In September 1962, Paul Baran introduced the idea of cryptographic signatures with his
paper On distributed communications networks. This is the paper where the concept of
decentralized networks was also introduced for the very first time. Then in 1982 a thought
experiment was proposed by Lamport et al. whereby a group of army generals who are
leading different parts of the Byzantine army are planning to attack or retreat from a city.
The only way of communication between them is a messenger and they need to agree to
attack at the same time in order to win. The issue is that one or more generals can be traitors
and can communicate a misleading message. Therefore there is a need to find a viable
mechanism that allows agreement between generals even in the presence of treacherous
generals so that the attack can still take place at the same time. As an analogy with
distributed systems, generals can be considered as nodes, traitors can be considered
Byzantine (malicious) nodes, and the messenger can be thought of as a channel of
communication between the generals.

This problem was solved in 1999 by Castro and Liskov who presented the Practical
Byzantine Fault Tolerance (PBFT) algorithm. Later on in 2009, the first practical
implementation was made with the invention of bitcoin where the Proof of Work (PoW)
algorithm was developed as a mechanism to achieve consensus.

Consensus
Consensus is a process of agreement between distrusting nodes on a final state of data. In
order to achieve consensus different algorithms can be used. It is easy to reach an
agreement between two nodes (for example in client-server systems) but when multiple
nodes are participating in a distributed system and they need to agree on a single value it
becomes very difficult to achieve consensus. This concept of achieving consensus between
multiple nodes is known as distributed consensus.

Consensus mechanisms
A consensus mechanism is a set of steps that are taken by all, or most, nodes in order to
agree on a proposed state or value. For more than three decades this concept has been
researched by computer scientists in the industry and Academia. Consensus mechanisms
have recently come into the limelight and gained much popularity with the advent of
bitcoin and blockchain.

www.EBooksWorld.ir

Blockchain 101

[13]

There are various requirements which must be met in order to provide the desired results in
a consensus mechanism. The following are their requirements with brief descriptions:

Agreement: All honest nodes decide on the same value.
Termination: All honest nodes terminate execution of the consensus process and
eventually reach a decision.
Validity: The value agreed upon by all honest nodes must be the same as the
initial value proposed by at least one honest node.
Fault tolerant: The consensus algorithm should be able to run in the presence of
faulty or malicious nodes (Byzantine nodes).
Integrity: This is a requirement where by no node makes the decision more than
once. The nodes make decisions only once in a single consensus cycle.

Types of consensus mechanism
There are various types of consensus mechanism; some common types are described as
follows:

Byzantine fault tolerance-based: With no compute intensive operations such as
partial hash inversion, this method relies on a simple scheme of nodes that are
publishing signed messages. Eventually, when a certain number of messages are
received, then an agreement is reached.
Leader-based consensus mechanisms: This type of mechanism requires nodes to
compete for the leader-election lottery and the node that wins it proposes a final
value.

Many practical implementations have been proposed such as Paxos, the most famous
protocol introduced by Leslie Lamport in 1989. In Paxos nodes are assigned various roles
such as Proposer, Acceptor, and Learner. Nodes or processes are named replicas and
consensus is achieved in the presence of faulty nodes by agreement among a majority of
nodes.

Another alternative to Paxos is RAFT, which works by assigning any of three states, that is,
Follower, Candidate, or Leader, to the nodes. A Leader is elected after a candidate node
receives enough votes and all changes now have to go through the Leader, who commits
the proposed changes once replication on the majority of follower nodes is completed.

More details about the theory of consensus mechanisms from a distributed system point of
view is beyond the scope of this chapter. Later in this chapter, a full section is dedicated to
the introduction of consensus protocols. Specific algorithms will be discussed in chapters
dedicated to bitcoin and other blockchains later in this book.

www.EBooksWorld.ir

Blockchain 101

[14]

The history of blockchain
Blockchain was introduced with the invention of bitcoin in 2008 and then with its practical
implementation in 2009. For this chapter, it is sufficient to introduce bitcoin very briefly as
there is a full chapter on bitcoin later on but it is also essential to refer to bitcoin because
without it, the history of blockchain is not complete.

The concept of electronic cash or digital currency is not new. Since the 1980s, e-cash
protocols have existed that are based on a model proposed by David Chaum.

Electronic cash
Just as understanding the concepts of distributed systems is necessary in order to
understand blockchain technology, the idea of electronic cash is also essential to appreciate
the first and astonishingly successful application of blockchain: the bitcoin, or
broadly cryptocurrencies. Theoretical concepts in distributed systems such as consensus
algorithms provided the basis of the practical implementation of Proof of Work algorithms
in bitcoin; moreover, ideas from different electronic cash schemes also paved the way for
the invention of cryptocurrencies, specifically bitcoin.

In this section, the reader will be introduced to the idea of electronic cash and then various
other concepts that existed before cryptocurrencies that led to the development of bitcoin
are presented.

The concept of electronic cash
Fundamental issues that need to be addressed in e-cash systems are accountability and
anonymity. David Chaum addressed both of these issues in his seminal paper in 1984 by
introducing two cryptographic operations, namely blind signatures and secret sharing.
These terminologies and related concepts will be discussed in detail in Chapter 3,
Cryptography and Technical Foundations. At the moment, it is sufficient to say that blind
signatures allow signing a document without actually seeing it and secret sharing is a
concept that allows the detection of using the same e-cash token twice (double spending).

www.EBooksWorld.ir

Blockchain 101

[15]

After this other protocols emerged such as Chaum, Fiat, and Naor (CFN), e-cash schemes
that introduced anonymity and double spending detection. Brand's e-cash is another system
that improved on CFN, made it more efficient, and introduced the concept of security
reduction to prove statements about the e-cash scheme. Security reduction is a technique
used in cryptography to prove that a certain algorithm is secure by using another problem
as a comparison. Put another way, a cryptographic security algorithm is as hard to break as
some other hard problem; thus by comparison it can be deduced that the cryptographic
security algorithm is secure too.

A different but relevant concept called hashcash was introduced by Adam Back in 1997 as a
PoW system to control e-mail spam. The idea is quite simple: if legitimate users want to
send e-mails then they are required to compute a hash as a proof that they have spent a
reasonable amount of computing resources before sending the e-mail. Generating hashcash
is a compute intensive process but does not inhibit a legitimate user from sending the e-mail
because the usual number of e-mails required to be sent by a legitimate user is presumably
quite low. On the other hand, if a spammer wants to send e-mails, usually thousands in
number, then it becomes infeasible to compute hashcash for all e-mails, thus making the
spamming effort expensive; as a result this mechanism can be used to thwart e-mail
spamming. Hashcash takes a considerable amount of computing resources to compute but
is easy and quick to verify. Verification is performed by the user who receives the e-mail.
Hashcash is popularized by its use in the bitcoin mining process. This idea of using
computational puzzles or pricing functions to prevent e-mail spam was introduced
originally in 1992 by Cynthia Dwork and Moni Naor. Pricing function was the name given to
the hard functions that are required to be computed before access to a resource can be
granted. Later, Adam Back invented hashcash independently in 1997, which introduced the
usage of computing hash functions as PoW.

In 1998 b-money was introduced by Wei Dai and proposed the idea of creating money via
solving computational puzzles such as hashcash. It's based on a peer-to-peer network
where each node maintains its own list of transactions.

Another similar idea by Nick Szabo called BitGold was introduced in 2005 and also proposed
solving computational puzzles to mint digital currency. In 2005 Hal Finney introduced the
concept of cryptographic currency by combining ideas from b-money and hashcash puzzles
but it still relied on a centralized trusted authority.

There were multiple issues with the schemes described in infeasible preceding paragraphs.
These problems range from no clear solution of disagreements between nodes to reliance on
a central trusted third party and trusted timestamping.

www.EBooksWorld.ir

Blockchain 101

[16]

In 2009 the first practical implementation of a cryptocurrency named bitcoin was
introduced; for the very first time it solved the problem of distributed consensus in a
trustless network. It uses public key cryptography with hashcash as PoW to provide a
secure, controlled, and decentralized method of minting digital currency. The key
innovation is the idea of an ordered list of blocks composed of transactions and
cryptographically secured by the PoW mechanism. This will be explained in more detail in
Chapter 4, Bitcoin.

Looking at all the aforementioned technologies and their history, it is easy to see how ideas
and concepts from electronic cash schemes and distributed systems were combined
together to invent bitcoin and what now is known as blockchain.

This can also be visualized with the help of the following diagram:

The various ideas that helped with the invention of bitcoin and blockchain

Introduction to blockchain
There are various definitions of blockchain; it depends on how you look at it. If you look at
it from a business perspective it can be defined in that context, if you look at it from a
technical perspective one can define it in view of that.

Blockchain at its core is a peer-to-peer distributed ledger that is cryptographically secure,
append-only, immutable (extremely hard to change), and updateable only via consensus or
agreement among peers.

www.EBooksWorld.ir

Blockchain 101

[17]

Blockchain can be thought of as a layer of a distributed peer-to-peer network running on
top of the Internet, as can be seen below in the diagram. It is analogous to SMTP, HTTP, or
FTP running on top of TCP/IP. This is shown in the following diagram:

The network view of a blockchain

From a business point of view a blockchain can be defined as a platform whereby peers can
exchange values using transactions without the need for a central trusted arbitrator. This is
a powerful concept and once readers understand it they will realize the tsunamic potential
of blockchain technology. This allows blockchain to be a decentralized consensus
mechanism where no single authority is in charge of the database.

A block is simply a selection of transactions bundled together in order to organize them
logically. It is made up of transactions and its size is variable depending on the type and
design of the blockchain in use. A reference to a previous block is also included in the block
unless it's a genesis block. A genesis block is the first block in the blockchain that was
hardcoded at the time the blockchain was started. The structure of a block is also dependent
on the type and design of a blockchain, but generally there are a few attributes that are
essential to the functionality of a block, such as the block header, pointers to previous
blocks, the time stamp, nonce, transaction counter, transactions, and other attributes.

www.EBooksWorld.ir

Blockchain 101

[18]

This is shown in a simple block diagram as follows. This is a general depiction of a
block; specific block structures relative to their blockchain technologies will be discussed
later in the book with more in-depth technical details:

The structure of a block

Various technical definitions of blockchains
Blockchain is a decentralized consensus mechanism. In a blockchain, all peers
eventually come to an agreement regarding the state of a transaction.
Blockchain is a distributed shared ledger. Blockchain can be considered a shared
ledger of transactions. The transaction are ordered and grouped into blocks.
Currently, the real-world model is based on private databases that each
organization maintains whereas the distributed ledger can serve as a single
source of truth for all member organizations that are using the blockchain.
Blockchain is a data structure; it is basically a linked list that uses hash pointers
instead of normal pointers. Hash pointers are used to point to the previous block.

www.EBooksWorld.ir

Blockchain 101

[19]

The structure of a generic blockchain can be visualized with the help of the following
diagram:

Generic structure of a blockchain

Generic elements of a blockchain
In this section, the generic elements of blockchain are presented. More precise elements will
be discussed in the context of their respective blockchains in later chapters, for example, the
Ethereum blockchain.

Addresses
Addresses are unique identifiers that are used in a transaction on the blockchain to denote
senders and recipients. An address is usually a public key or derived from a public key.
While addresses can be reused by the same user, addresses themselves are unique. In
practice, however, a single user may not use the same address again and generate a new
one for each transaction. This newly generated address will be unique. Bitcoin is in fact a
pseudonymous system. End users are usually not directly identifiable but some research in
de-anonymizing bitcoin users have shown that users can be identified successfully. As a
good practice it is suggested that users generate a new address for each transaction in order
to avoid linking transactions to the common owner, thus avoiding identification.

Transaction
A transaction is the fundamental unit of a blockchain. A transaction represents a transfer of
value from one address to another.

www.EBooksWorld.ir

Blockchain 101

[20]

Block
A block is composed of multiple transactions and some other elements such as the previous
block hash (hash pointer), timestamp, and nonce.

Peer-to-peer network
As the name implies, this is a network topology whereby all peers can communicate with
each other and send and receive messages.

Scripting or programming language
This element performs various operations on a transaction. Transaction scripts are
predefined sets of commands for nodes to transfer tokens from one address to another and
perform various other functions. Turing complete programming language is a desirable
feature of blockchains; however, the security of such languages is a key question and an
area of important and ongoing research.

Virtual machine
This is an extension of a transaction script. A virtual machine allows Turing complete code
to be run on a blockchain (as smart contracts) whereas a transaction script can be limited in
its operation. Virtual machines are not available on all blockchains; however, various
blockchains use virtual machines to run programs, for example Ethereum Virtual Machine
(EVM) and Chain Virtual Machine (CVM).

State machine
A blockchain can be viewed as a state transition mechanism whereby a state is modified
from its initial form to the next and eventually to a final form as a result of a transaction
execution and validation process by nodes.

www.EBooksWorld.ir

Blockchain 101

[21]

Nodes
A node in a blockchain network performs various functions depending on the role it takes.
A node can propose and validate transactions and perform mining to facilitate consensus
and secure the blockchain. This is done by following a consensus protocol. (Most commonly
this is PoW.) Nodes can also perform other functions such as simple payment verification
(lightweight nodes), validators, and many others functions depending on the type of the
blockchain used and the role assigned to the node.

Smart contracts
These programs run on top of the blockchain and encapsulate the business logic to be
executed when certain conditions are met. The smart contract feature is not available in all
blockchains but is now becoming a very desirable feature due to the flexibility and power it
provides to the blockchain applications.

Features of a blockchain
A blockchain performs various functions. These are described below in detail.

Distributed consensus
Distributed consensus is the major underpinning of a blockchain. This enables a blockchain
to present a single version of truth that is agreed upon by all parties without the
requirement of a central authority.

Transaction verification
Any transactions posted from nodes on the blockchain are verified based on a
predetermined set of rules and only valid transactions are selected for inclusion in a block.

Platforms for smart contracts
A blockchain is a platform where programs can run that execute business logic on behalf of
the users. As explained earlier, not all blockchains have a mechanism to execute smart
contracts; however, this is now a very desirable feature.

www.EBooksWorld.ir

Blockchain 101

[22]

Transferring value between peers
Blockchain enables the transfer of value between its users via tokens. Tokens can be thought
of as a carrier of value.

Generating cryptocurrency
This is an optional feature depending on the type of blockchain used. A blockchain can
generate cryptocurrency as an incentive to its miners who validate the transactions and
spend resources in order to secure the blockchain.

Smart property
For the first time it is possible to link a digital or physical asset to the blockchain in an
irrevocable manner, such that it cannot be claimed by anyone else; you are in full control of
your asset and it cannot be double spent or double owned. Compare it with a digital music
file, for example, which can be copied many times without any control; on a blockchain,
however, if you own it no one else can claim it unless you decide to transfer it to someone.
This feature has far-reaching implications especially in Digital Rights Management (DRM)
and electronic cash systems where double spend detection is a key requirement. The double
spend problem was first solved in bitcoin.

Provider of security
Blockchain is based on proven cryptographic technology that ensures the integrity and
availability of data. Generally, confidentiality is not provided due to the requirements of
transparency. This has become a main barrier for its adaptability by financial institutions
and other industries that need privacy and confidentiality of transactions. As such it is
being researched very actively and there is already some good progress made. It could be
argued that in many situations confidentiality is not really needed and transparency is
preferred instead. For example, in bitcoin confidentiality is not really required; however, it
is desirable in some scenarios. Research in this area is very ripe and already major progress
has been made towards providing confidentiality and privacy on blockchain. A more recent
example is Zcash, which will be discussed in more detail in later chapters. Other security
services such as nonrepudiation and authentication are also provided by blockchain as all
actions are secured by using private keys and digital signatures.

www.EBooksWorld.ir

Blockchain 101

[23]

Immutability
This is another key feature of blockchain: records once added onto the blockchain are
immutable. There is the possibility of rolling back the changes but this is considered almost
impossible to do as it will require an unaffordable amount of computing resources. For
example, in much desirable case of bitcoin if a malicious user wants to alter the previous
blocks then it would require computing the PoW again for all those blocks that have already
been added to the blockchain. This difficulty makes the records on a blockchain practically
immutable.

Uniqueness
This feature of blockchain ensures that every transaction is unique and has not been spent
already. This is especially relevant in cryptocurrencies where much desirable detection and
avoidance of double spending are a key requirement.

Smart contracts
Blockchain provides a platform to run smart contracts. These are automated autonomous
programs that reside on the blockchain and encapsulate business logic and code in order to
execute a required function when certain conditions are met. This is indeed a revolutionary
feature of blockchain as it allows flexibility, programmability, and much desirable control of
actions that users of blockchain need to perform according to their specific business
requirements.

Applications of blockchain technology
Blockchain technology has a multitude of applications in various sectors including but not
limited to finance, government, media, law, and arts. More light will be shed on these
aspects in Chapter 9, Hyperledger where practical use cases will be discussed in detail for
various industries. It is sufficient to say for now that almost all industries have already
realized the potential and promise of blockchain and have already embarked, or soon will
embark, on the journey to benefit from the blockchain technology.

In the following section, a general scheme of creating blocks is discussed. This is presented
here to give readers a general idea of how blocks are generated and what the relationship is
between transactions and blocks.

www.EBooksWorld.ir

Blockchain 101

[24]

How blockchains accumulate blocks
A node starts a transaction by signing it with its private key.1.
The transaction is propagated (flooded) by using much desirable Gossip protocol2.
to peers, which validates the transaction based on pre-set criteria. Usually, more
than one node is required to validate the transactions.
Once the transaction is validated, it is included in a block, which is then3.
propagated on to the network. At this point, the transaction is considered
confirmed.
The newly created block now becomes part of the ledger and the next block links4.
itself cryptographically back to this block. This link is a hash pointer. At this
stage, the transaction gets its second confirmation and the block gets its first.
Transactions are then reconfirmed every time a new block is created. Usually, six5.
confirmations in the bitcoin network are required to consider the transaction
final.

Steps 4 and 5 can be considered non-compulsory as the transaction itself is finalized in step
3; however, block confirmation and further transaction reconfirmations, if required, are then
carried out in steps 4 and 5.

Tiers of blockchain technology
In this section, various tiers of blockchain technology are discussed. It is envisaged that, due
to the rapid development and progress made in blockchain technology, many applications
will evolve over time. Some have already been realized while some can be envisioned for
the future based on the current rate of advancement in the blockchain technology.

First, the three levels discussed below were originally described by Melanie Swan in her
book Blockchain, Blueprint for a New Economy as tiers of blockchain categorized on the basis
of applications in each category. In addition to this, Tier X or Generation X is discussed
later. This is what the author thinks will become a reality when the blockchain technology
becomes advanced enough.

www.EBooksWorld.ir

Blockchain 101

[25]

Blockchain 1.0
This was introduced with the invention of bitcoin and is basically used for cryptocurrencies.
Also, as bitcoin was the first implementation of cryptocurrencies it makes sense to
categorize Generation 1 of blockchain technology to only include cryptographic currencies.
All alternative coins and bitcoin fall into this category. This includes core applications such
as payments and applications.

Blockchain 2.0
Generation 2.0 blockchains are used by financial services and contracts are introduced in
this generation. This includes various financial assets, for example derivatives, options,
swaps, and bonds. Applications that are beyond currency, finance, and markets are
included at this tier.

Blockchain 3.0
Generation 3 blockchains are used to implement applications beyond the financial services
industry and are used in more general-purpose industries such as government, health,
media, the arts, and justice.

Generation X (Blockchain X)
This is a vision of blockchain singularity where one day we will have a public blockchain
service available that anyone can use just like the Google search engine. It will provide
services in all realms of society. This is a public open distributed ledger with general-
purpose rational agents (Machina Economicus) running on blockchain, making decisions
and interacting with other intelligent autonomous agents on behalf of humans and
regulated by code instead of law or paper contracts. This will be elaborated in detail in
Chapter 13, Current Landscape and What's Next.

Types of blockchain
Based on the way blockchain has evolved over the last few years, it can be divided into
multiple types with distinct but sometimes partly overlapping attributes.

www.EBooksWorld.ir

Blockchain 101

[26]

Public blockchains
As the name suggests, these blockchains are open to the public and anyone can participate
as a node in the decision-making process. Users may or may not be rewarded for their
participation. These ledgers are not owned by anyone and are publicly open for anyone to
participate in. All users of the permission-less ledger maintain a copy of the ledger on their
local nodes and use a distributed consensus mechanism in order to reach a decision
about the eventual state of the ledger. These blockchains are also known as permission-less
ledgers.

Private blockchains
Private blockchains as the name implies are private and are open only to a consortium or
group of individuals or organizations that has decided to share the ledger among
themselves.

Semi-private blockchains
Here part of the blockchain is private and part of it is public. The private part is controlled
by a group of individuals whereas the public part is open for participation by anyone.

Sidechains
More precisely known as pegged sidechains, this is a concept whereby coins can be moved
from one blockchain to another and moved back. Common uses include the creation of new
altcoins (alternative cryptocurrencies) whereby coins are burnt as a proof of adequate stake.
There are two types of sidechain. The example provided above for burning coins is
applicable to a one-way pegged sidechain. The second type is called a two-way pegged
sidechain, which allows the movement of coins from the main chain to the sidechain and
back to the main chain when required.

www.EBooksWorld.ir

Blockchain 101

[27]

Permissioned ledger
A permissioned ledger is a blockchain whereby the participants of the network are known
and already trusted. Permissioned ledgers do not need to use a distributed consensus
mechanism, instead an agreement protocol can be used to maintain a shared version of truth
about the state of the records on the blockchain. There is also no requirement for a
permissioned blockchain to be private as it can be a public blockchain but with regulated
access control.

Distributed ledger
As the name suggests, this ledger is distributed among its participants and spread across
multiple sites or organizations. This type can either be private or public. The key idea is
that, unlike many other blockchains, the records are stored contiguously instead of sorted
into blocks. This concept is used in Ripple.

Shared ledger
This is generic term that is used to describe any application or database that is shared by the
public or a consortium.

Fully private and proprietary blockchains
These blockchains perhaps have no mainstream application as they deviate from the core
idea of decentralization in blockchain technology. Nonetheless in specific private settings
within an organization there might be a need to share data and provide some level of
guarantee of the authenticity of the data. These blockchains could be useful in that scenario.
For example, for collaboration and sharing data between various government departments.

Tokenized blockchains
These blockchains are standard blockchains that generate cryptocurrency as a result of a
consensus process via mining or via initial distribution.

www.EBooksWorld.ir

Blockchain 101

[28]

Tokenless blockchains
These are probably not real blockchains because they lack the basic unit of transfer of value
but are still valuable in situations where there is no need to transfer value between nodes
and only sharing some data among various already trusted parties is required.

In the next section, the idea of consensus from a blockchain perspective will be discussed.
Consensus is the backbone of a blockchain and provides decentralization of control as a
result through an optional process known as mining. The choice of consensus algorithm is
also governed by the type of blockchain in use. Not all consensus mechanisms are suitable
for all types of blockchains. For example, in public permission-less blockchains it would
make sense to use PoW instead of some basic agreement mechanism that perhaps is based
on proof of authority. Therefore it is essential to choose a consensus algorithm
appropriately for a blockchain project.

Consensus in blockchain
Consensus is basically a distributed computing concept that has been used in blockchain in
order to provide a means of agreeing to a single version of truth by all peers on the
blockchain network. This concept was discussed in the distributed systems section earlier in
this chapter.

Roughly, the following two categories of consensus mechanism exist:

Proof-based, leader-based, or the Nakamoto consensus whereby a leader is elected1.
and proposes a final value
Byzantine fault tolerance-based, which is a more traditional approach based on2.
rounds of votes

Consensus algorithms that are available today or are being researched in the context of
blockchain are presented later. This is not an exhaustive list but an attempt has been made
to present all important algorithms.

Proof of Work
This type of consensus mechanism relies on proof that enough computational resources
have been spent before proposing a value for acceptance by the network. This is used in
bitcoin and other cryptocurrencies. Currently, this is the only algorithm that has proven
astonishingly successful against Sybil attacks.

www.EBooksWorld.ir

Blockchain 101

[29]

Proof of Stake
This algorithm works on the idea that a node or user has enough stake in the system; for
example the user has invested enough in the system so that any malicious attempt would
outweigh the benefits of performing an attack on the system. This idea was first introduced
by Peercoin and is going to be used in the Ethereum blockchain. Another important concept
in Proof of Stake (PoS) is coin age, which is a derived from the amount of time and the
number of coins that have not been spent. In this model, the chances of proposing and
signing the next block increase with the coin age.

Delegated Proof of Stake
Delegated Proof of Stake (DPOS) is an innovation over standard PoS whereby each node
that has stake in the system can delegate the validation of a transaction to other nodes by
voting. This is used in the bitshares blockchain.

Proof of Elapsed Time
Introduced by Intel, it uses Trusted Execution Environment (TEE) to provide randomness
and safety in the leader election process via a guaranteed wait time. It requires the Intel
SGX (Software Guard Extensions) processor in order to provide the security guarantee and
for it to be secure. This concept is discussed in more detail in Chapter 9, Hyperledger in the
context of the Intel Sawtooth Lake blockchain project.

Deposit-based consensus
Nodes that wish to participate on the network have to put in a security deposit before they
can propose a block.

Proof of importance
This idea is important and different from Proof of Stake. Proof of importance not only relies
on how much stake a user has in the system but it also monitors the usage and movement of
tokens by the user to establish a level of trust and importance. This is used in Nemcoin.

www.EBooksWorld.ir

Blockchain 101

[30]

Federated consensus or federated Byzantine
consensus
Used in the stellar consensus protocol, nodes in this protocol keep a group of publicly
trusted peers and propagates only those transactions that have been validated by the
majority of trusted nodes.

Reputation-based mechanisms
As the name suggests, a leader is elected on the basis of the reputation it has built over time
on the network. This can be based on the voting from other members.

Practical Byzantine Fault Tolerance
Practical Byzantine Fault Tolerance (PBFT) achieves state machine replication, which
provides tolerance against Byzantine nodes. Various other protocols, including but are not
limited to PBFT, PAXOS, RAFT, and Federated Byzantine Agreement (FBA), are also being
used or have been proposed for use in many different implementations of distributed
systems and blockchains.

CAP theorem and blockchain
Strangely, it seems that the CAP theorem is violated in blockchain, and especially in the
most successful implementation: bitcoin, but this is not the case. In blockchains consistency
is sacrificed in favor of availability and partition tolerance. In this scenario, Consistency (C)
on the blockchain is not achieved simultaneously with Partition tolerance (P) and
Availability (A), but it is achieved over time. This is called eventual consistency, where
consistency is achieved as a result of validation from multiple nodes over time. For this
purpose, the concept of mining was introduced in bitcoin; this is a process that facilitates
the achievement of consensus by using a consensus algorithm called PoW. At a higher level,
mining can be defined as a process that is used to add more blocks to the blockchain.

Benefits and limitations of blockchain
Numerous benefits of blockchain technology are being discussed in the industry and
proposed by thought leaders around the world in blockchain space. The top 10 benefits are
listed and discussed as follows.

www.EBooksWorld.ir

Blockchain 101

[31]

Decentralization
This is a core concept and benefit of blockchain. There is no need for a trusted third party or
intermediary to validate transactions; instead a consensus mechanism is used to agree on
the validity of transactions.

Transparency and trust
As blockchains are shared and everyone can see what is on the blockchain, this allows the
system to be transparent and as a result trust is established. This is more relevant in
scenarios such as the disbursement of funds or benefits where personal discretion should be
restricted.

Immutability
Once the data has been written to the blockchain, it is extremely difficult to change it back.
It is not truly immutable but, due to the fact that changing data is extremely difficult and
almost impossible, this is seen as a benefit to maintaining an immutable ledger of
transactions.

High availability
As the system is based on thousands of nodes in a peer-to-peer network, and the data is
replicated and updated on each and every node, the system becomes highly available. Even
if nodes leave the network or become inaccessible, the network as a whole continues to
work, thus making it highly available.

Highly secure
All transactions on a blockchain are cryptographically secured and provide integrity.

www.EBooksWorld.ir

Blockchain 101

[32]

Simplification of current paradigms
The current model in many industries such as finance or health is rather disorganized,
wherein multiple entities maintain their own databases and data sharing can become very
difficult due to the disparate nature of the systems. But as a blockchain can serve as a single
shared ledger among interested parties, this can result in simplifying this model by
reducing the complexity of managing the separate systems maintained by each entity.

Faster dealings
In the financial industry, especially in post-trade settlement functions, blockchain can play a
vital role by allowing the quicker settlement of trades as it does not require a lengthy
process of verification, reconciliation, and clearance because a single version of agreed upon
data is already available on a shared ledger between financial organizations.

Cost saving
As no third party or clearing houses are required in the blockchain model, this can
massively eliminate overhead costs in the form of fees that are paid to clearing houses or
trusted third parties.

Challenges and limitations of blockchain
technology
As with any technology there are challenges that need to be addressed in order to make a
system more robust, useful, and accessible. Blockchain technology is no exception; in fact a
lot of effort is being made in Academia and Industry to overcome the challenges posed by
blockchain technology. A selection of the most sensitive challenges are presented as follows:

Scalability
Adaptability
Regulation
Relatively immature technology
Privacy

All these and more will be discussed in detail with possible solutions in Chapter 13,
Current Landscape and What's Next.

www.EBooksWorld.ir

Blockchain 101

[33]

This chapter has been kept generic and less technical on purpose. Once cryptography has
been explained in detail in Chapter 3, Cryptography and Technical Foundations, specific
blockchain solutions will be discussed in appropriate technical depth and detail.

Summary
This chapter introduced blockchain technology at a high level to the readers. First some
basic ideas regarding distributed systems were discussed then the history of blockchain was
introduced. Concepts such as electronic cash and hashcash were discussed. Furthermore,
various definitions of blockchain from different points of views were presented. Some
applications of blockchain technology were also discussed briefly. Next in the chapter,
different types of blockchain were introduced. Finally, the benefits and limitations of this
new technology were also introduced. Some topics were introduced only lightly on purpose
as they will be discussed in depth in later chapters. For example, challenges and limitations
were only mentioned in the chapter but no details were provided as there is a full chapter
dedicated to this later in the book. In the next chapter, readers will be introduced to the
concept of decentralization, which is central to the concept of blockchains and their vast
number of applications.

www.EBooksWorld.ir

2
Decentralization

Decentralization is not a new concept; it has been used in strategy, management, and
governance for a long time. The basic idea of decentralization is to distribute control and
authority to peripheries instead of one central authority being in full control of the
organization. This results in several benefits for organizations. such as increased efficiency,
quicker decision making, better motivation, and a reduced burden on top management.

In this chapter, the concept of decentralization will be discussed in the context of
blockchain; the goals of both are similar, whereby no single central authority is in control.
Methods of decentralization and routes to decentralization with some examples will also be
presented. Also, the decentralization of the blockchain ecosystem, decentralized
applications, and platforms for decentralization will be discussed in detail. Many exciting
applications and ideas emerge out of the decentralized blockchain technology, and will be
introduced in this chapter.

Decentralization using blockchain
Decentralization is a core benefit and service provided by the blockchain technology.
Blockchain by design is a perfect vehicle for providing a platform that does not need any
intermediaries and can function with many different leaders chosen via consensus
mechanisms. This model allows anyone to compete to become the decision-making
authority. This competition is governed by a consensus mechanism and the most commonly
used method is known as Proof of Work (PoW).

www.EBooksWorld.ir

Decentralization

[35]

Decentralization is applied in varying degrees from semi-decentralized to fully
decentralized depending on the requirements and circumstances. Decentralization can be
viewed from a blockchain perspective as a mechanism that provides a way to remodel
existing applications and paradigms or build new applications in order to give full control
to users.

Information and communication technology (ICT) has conventionally been based on a
centralized paradigm whereby database or application servers are under the control of a
central authority, such as a system administrator. With bitcoin and the advent of the
blockchain technology, this model has changed and now the technology that allows anyone
to start a decentralized system (and operate it with no single point of failure or single
trusted authority) is available. It can either be run autonomously or by requiring some
human intervention depending on the type and model of governance used in the
decentralized application running on the blockchain.

An upcoming diagram shows different types of system that currently exist, that is, central,
distributed, and decentralized. This concept was first published in 1964 in a paper by Paul
Baran on distributed communication networks in the context of communication networks.

Centralized systems are conventional (client–server) IT systems whereby there is a single
authority that controls the system and is solely in-charge of all operations on the system. All
users of a central system are dependent on a single source of service. Online service
providers, such as eBay, Google, Amazon, Apple's App Store, and the majority of other
providers, use this common model of delivering services. On the other hand, in a
distributed system, the data and computation are spread across multiple nodes in the
network. Sometimes, this term is confused with parallel computing. While there is an
overlap in the definition, the main difference between both these systems is that in a parallel
system, computation is performed by all nodes simultaneously in order to achieve a result,
whereas in a distributed system, computation may not happen in parallel and data is only
replicated on multiple nodes that users view as a single coherent system. Both of these
models are used with variations in order to achieve failure tolerance and speed. In this
model, there is still a central authority that has control over all nodes and governs
processing. This means that the system is still centralized in nature.

www.EBooksWorld.ir

Decentralization

[36]

Different types of network/system

The key difference between a decentralized system and distributed system is that in a
distributed system, there still exists a central authority that governs the entire system,
whereas in a decentralized system, no such authority exists. A decentralized system is a
type of network whereby nodes are not dependent on a single master node; instead, control
is distributed among many nodes. For example, this is analogous to a model where each
department in an organization has its own database server that they are in charge of, thus
taking away the power from the central server and distributing it to the sub-departments
that manage their own databases.

A real innovation in the decentralized paradigm that has started this new era of
decentralization applications is decentralized consensus, which was introduced with
bitcoin. This enables a user to agree on something via a consensus algorithm without the
need for a central trusted third party, intermediary, or service provider.

Methods of decentralization
There are two methods that can be used to achieve decentralization. These methods are
discussed in detail in the following sections.

www.EBooksWorld.ir

Decentralization

[37]

Disintermediation
This can be explained with the help of an example. Imagine you want to send money to
your friend in another country. You go to a bank that will transfer your money to the bank
in the country of your choice for a fee. In this case, the bank keeps a central database that is
updated, confirming that you have sent the money. With blockchain technology, it is
possible to send this money directly to your friend without the need for a bank. All you
need is the address of your friend on the blockchain. This way, the intermediary is no
longer required and decentralization is achieved by disintermediation. However, it is
debatable how practical decentralization is in the financial sector by disintermediation due
to heavy regulatory and compliance requirements. Nevertheless, this model can be used not
only in finance but also in many other different industries.

Through competition
In this method, a group of service providers compete with each other in order to be selected
for the provision of services by the system. This paradigm does not achieve complete
decentralization, but to a certain degree ensures that an intermediary or service provider is
not monopolizing the service. In the context of blockchain technology, a system can be
envisioned in which smart contracts can choose an external data provider from a large
number of providers based on their reputation, previous score, reviews, and quality of
service. This will not result in full decentralization, but it allows smart contracts to make a
free choice based on the criteria mentioned earlier. This way, an environment of
competition is cultivated among service providers, whereby they compete with each other
to become the data provider of choice.

In the following diagram, varying levels of decentralization are shown. On the left-hand
side, there is a conventional approach where a central system is in control; on the right-
hand side, complete disintermediation is achieved; and in middle, competing
intermediaries or service providers are shown. In the middle, intermediaries or service
providers are selected based on reputation or voting, thus achieving partial
decentralization.

www.EBooksWorld.ir

Decentralization

[38]

Scale of decentralization

While there are many benefits of decentralization–including but not limited to
transparency, efficiency, cost saving, development of trusted ecosystems, and in some cases
privacy and anonymity–some challenges, such as security requirements, software bugs, and
human errors, also need to be looked at thoroughly. For example, in a decentralized system
such as bitcoin or Ethereum, where security is usually provided by private keys, how can it
be ensured that a smart property associated with these private keys cannot be rendered
useless if, due to a human error, the private keys are lost or if, due to a bug in the smart
contract code, the decentralized application is vulnerable to attack by adversaries? Before
we embark on a journey to decentralize everything using blockchain and decentralized
applications, it is important to understand that not everything is required to (or can be)
decentralized.

Routes to decentralization
Even though there are systems that existed before bitcoin or blockchain that can be classed
as decentralized to a certain degree, such as BitTorrent or Gnutella file sharing, with the
advent of the blockchain technology many initiatives are being taken in order leverage this
new technology for decentralization. Usually, the bitcoin blockchain is the first choice for
many as it has proven to be the most resilient and secure blockchain with a market cap of
almost 12 billion dollars. An alternative approach is to use other blockchains, such as
Ethereum, which is currently the tool of choice of many developers for building
decentralized applications.

www.EBooksWorld.ir

Decentralization

[39]

How to decentralize
A framework has been proposed by Arvind Narayanan and others that can be used to
evaluate the decentralization requirements of a variety of things in the context of blockchain
technology. The framework basically proposes four questions that, once answered, provide
a clear idea as to how a system can be decentralized. These questions are listed as follows:

What is being decentralized?1.
What level of decentralization is required?2.
What blockchain is used?3.
What security mechanism is used?4.

The first question simply asks what system is being decentralized. This can be any system,
for example an Identity system or trading. The next question can be answered by specifying
the level of decentralization required by looking at the scale of decentralization discussed
earlier. It can be full disintermediation or partial disintermediation. The third question is
quite straightforward, where developers can make a choice as to which blockchain is
suitable for a particular application. It can be bitcoin blockchain, Ethereum blockchain, or
any other blockchain that is deemed fit for a specific application. Finally, a key question
needs to be answered about the security mechanism as to how the security of a
decentralized system can be guaranteed. It can be Atomicity, for example, whereby either
the transaction executes in full or does not execute at all. In other words, it is all or nothing.
This ensures the integrity of the system. Other mechanisms can include reputation, which
allows varying degrees of trust in a system.

Examples
In this section, an example of the application of the afore mentioned framework is provided.

In the first example, a money transfer system is selected, which is required to be
decentralized. In this case, the four questions mentioned earlier can be answered in order to
evaluate the decentralization requirements. The answers are shown as follows:

Answer 1: Money transfer system.1.
Answer 2: Disintermediation.2.
Answer 3: Bitcoin.3.
Answer 4: Atomicity.4.

www.EBooksWorld.ir

Decentralization

[40]

By answering these four questions, it can be shown how a payment system can be
decentralized. Based on the preceding answers, it can be stated that the money transfer
system can be decentralized by removing the intermediary and will be implemented on the
Bitcoin blockchain with security guarantee provided via Atomicity.

Similarly, this framework can be used for any other system that needs to be evaluated for
decentralization. By answering these four simple questions, it becomes quite clear as to
what approach can be taken to decentralize the system.

Blockchain and full ecosystem
decentralization
In order to achieve complete decentralization, it is necessary that the environment around
the blockchain is also decentralized. Blockchain itself is a distributed ledger that runs on top
of conventional systems. These elements include storage, communication, and computation.
There are other factors, such as Identity and Wealth, that are traditionally based on
centralized paradigms and there's a need to decentralize these aspects too in order to
achieve a fully decentralized ecosystem.

Storage
Data can be stored directly in a blockchain, and with this, it does achieve decentralization,
but a major disadvantage of this approach is that blockchain is not suitable for storing large
amounts of data by design. It can store simple transactions and some arbitrary data but is
certainly not suitable for storing images or large blobs of data, as is the case in traditional
database systems. A better alternative is to use distributed hash tables (DHTs). DHTs were
originally used in peer-to-peer file sharing software, such as BitTorrent, Napster, Kazaa,
and Gnutella. DHT research was made popular by CAN, Chord, Pastry, and Tapestry
projects. BitTorrent turns out to be the most scalable and fast network, but the issue is that
there is no incentive for users to keep the files indefinitely. Users do not usually keep files
permanently, and if nodes leave the network that has data required by someone, there is no
way to retrieve it except having the required nodes rejoin the network again so that the files
become available once more. Two main requirements here are high availability and link
stability, which means that data should be available when required and network links
should also always be accessible. Inter Planetary File System (IPFS) by Juan Benet possesses
both of these properties and the vision is to provide a decentralized World Wide Web by
replacing the HTTP protocol. IPFS uses Kademlia DHT and merkle DAG (Directed Acyclic
Graph) to provide the storage and searching functionality, respectively.

www.EBooksWorld.ir

Decentralization

[41]

The incentive mechanism is based on a protocol known as Filecoin that pays incentives to
nodes that store data using the BitSwap mechanism. The BitSwap mechanism allows nodes
to keep a simple ledger of bytes sent or bytes received under a one-to-one relationship.
Also, a Git-based version control mechanism is used in IPFS to provide structure and
control over the versioning of data.

There are other alternatives, such as Ethereum swarm, storj, and maidsafe. Ethereum has its
own decentralized and distributed ecosystem that uses Swarm for storage and the whisper
protocol for communication. Maidsafe is aiming to provide a decentralized World Wide
Web. All these projects will be discussed later in the book in more detail.

BigChainDB is another storage layer decentralization project aimed at providing a scalable,
fast, and linearly scalable decentralized database as opposed to a traditional filesystem.
BigChainDB complements decentralized processing platforms and file systems such as
Ethereum and IPFS.

Communication
It is generally considered that the Internet (the communication layer in blockchain) is
decentralized. This is true to some extent as the original vision of the Internet was to
develop a decentralized system. Services such as e-mail and online storage are all now
based on a paradigm where the service provider is in control and users trust them to give
them access to the service when required. This model is based on the trust of the central
authority (the service provider) and users are not in control of their data; even passwords
are stored on trusted third-party systems. There is a need to provide control to individual
users in such a way that access to their data is guaranteed and is not dependent on a single
third party. Access to the Internet (the communication layer) is based on Internet service
providers (ISPs) that act as a central hub for Internet users. If the ISP is shut down for
political or any other reasons, then no communication is possible in this model. An
alternative is to use mesh networks. Even though they are limited in functionality as
compared to the Internet, they still provide a decentralized alternative where nodes can talk
directly to each other without a central hub such as an ISP.

An example of a Meshnet is Firechat (h t t p ://w w w . o p e n g a r d e n . c o m /f i r e c

h a t . h t m l), which allows iPhone users to communicate with each other
directly in a peer-to-peer fashion without the Internet.

www.EBooksWorld.ir

http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html
http://www.opengarden.com/firechat.html

Decentralization

[42]

Now imagine a network that allows users to be in control of their communication; no one
can shut it down for political or censorship reasons. This could be the next step toward
decentralizing communication networks in the blockchain ecosystem. It must be noted that
this model may only be required in a jurisdiction where the Internet is censored and
controlled by the government.

As mentioned earlier, the original vision of the Internet was to build a decentralized
network; however, over the years, with the advent of large-scale service providers such as
Google, Amazon, and eBay, the control is shifting toward the big players. For example, e-
mail is a decentralized system at its core; anyone can run an e-mail server with minimal
effort and can start sending and receiving e-mails, but there is a better alternative available
that is already providing a managed service for end users, so there is a natural inclination
toward selecting a centralized service as it is more convenient and free. Free services,
however, are being offered at the cost of valuable personal data and many users are not
aware of this fact. This is one example that shows how the Internet has moved toward
centralization. Blockchain has once again given this vision of decentralization to the world
and now concerted efforts are being made to harness this technology and gain the benefits
that it can provide.

Computation
Decentralization of computing or processing is achieved by a blockchain technology such as
Ethereum, where smart contracts with embedded business logic can run on the network.
Other blockchain technologies also provide similar processing layer platforms where
business logic can run over the network in a decentralized manner.

The following diagram shows the decentralized ecosystem overview where, on the bottom
layer, Internet or Meshnets provides a decentralized communication layer, then a storage
layer uses technologies such as IPFS and BigChainDB to enable decentralization, and
finally, you see the blockchain that serves as a decentralized processing layer. Blockchain
can, in a limited way, provide a storage layer too, but that seriously hampers the speed and
capacity of the system; therefore, other solutions such as IPFS and BigChainDB are more
suitable to store large amounts of data in a decentralized way. At the top, the Identity and
Wealth layers are shown. Identity on the Internet is a very big topic and systems such as
bitAuth and OpenID have provided authentication and identification services with varying
degrees of decentralization and security assumptions.

www.EBooksWorld.ir

Decentralization

[43]

Blockchain is capable of providing solutions to various problems. A concept relevant to
Identity known as Zooko's Triangle requires that a naming system in a network protocol be
secure, decentralized, and meaningful to humans. It is conjectured that a system can have
only two of these properties simultaneously, but with the advent of blockchain, in the form
of Namecoin, this problem was resolved. This, however, is not a panacea and comes with its
own challenges, such as reliance on users to store and maintain private keys securely. This
opens up other general questions about the suitability of decentralization. Perhaps
decentralization is not appropriate in every scenario. Well-reputed centralized systems tend
to work better in many cases.

There are many projects underway that are developing solutions for a wider distributed
blockchain system.

With the emergence of the decentralization paradigm, different terminologies and buzz
words are now appearing in the media and in academic literature. With the advent of the
blockchain technology, it is now possible to build software versions of traditional physical
organizations. In the context of decentralization, the upcoming concepts are worth
discussing.

Smart contract
A smart contract can be thought of as a small decentralized program. Smart contracts do not
necessarily need a blockchain to run; however, due to the security benefits that the
blockchain technology provides, it is now becoming almost a standard to use blockchain as
a decentralized execution platform for smart contracts. A smart contract usually contains
some business logic and a limited amount of data. Actors or participants in the blockchain
use these smart contracts or they run autonomously on behalf of the network participants.

www.EBooksWorld.ir

Decentralization

[44]

These small programs reside on the blockchain and execute business logic if some specific
criteria are met. More information on smart contracts will be provided in Chapter 6, Smart
Contracts, which is dedicated to a detailed discussion of smart contracts.

Decentralized organizations
Decentralized organization (DOs) are software programs that run on a blockchain and are
based on the idea of real human organizations with people and protocols. Once a DO, in the
form of a smart contract or a set of smart contracts, is added to the blockchain, it becomes
decentralized and parties interact with each other based on the code defined within the DO
software.

Decentralized autonomous organizations
Just like DOs, a Decentralized autonomous organization (DAO) is also a computer
program than runs on top of a blockchain and embedded within it are governance and
business logic rules. DAO and DO are basically the same thing, but the main difference is
that DAOs are autonomous, which means that they are fully automated and contain
artificially intelligent logic, whereas DOs lack this feature and rely on human input in order
to execute business logic.

Ethereum blockchain led the way with the introduction of DAOs for the first time. In DAO,
the code is considered the governing entity rather than humans or paper contracts. A
Curator, however, is a human entity that participates as someone who maintains this code
and acts as a proposal evaluator for the community. DAOs are capable of hiring external
Contractors if enough input is received from the token holders (participants). The most
famous DAO project is The DAO (h t t p s ://d a o h u b . o r g) as it raised 168 million US dollars
in its crowd-funding phase. The DAO project was designed to be a venture capital fund
which was aimed at providing a decentralized business model with no single entity as an
owner. Unfortunately, this was hacked due to a bug in the DAO code and millions of
dollars' worth of Ether currency (ETH) were siphoned out of the DAO into a child DAO
created by the hackers. It required a hard fork on the Ethereum blockchain to reverse the
impact of the hack and initiate the recovery of the funds. This incident opened up a debate
on the security, quality, and the need for thorough testing of the code in smart contracts in
order to ensure integrity and adequate control. There are projects underway, especially in
Academia, that are looking to formalize smart contract coding.

www.EBooksWorld.ir

https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org
https://daohub.org

Decentralization

[45]

Currently, DAOs do not have any legal status even though they may contain some
intelligent code that enforces some protocols and conditions, but these rules have no value
in the current real-world legal system. One day, perhaps an autonomous agent that is
commissioned and permissioned by a law enforcement agency or a regulator containing
rules and regulations could be embedded in a DAO, to ensure the integrity of the DAO
from a legal and compliance perspective. An Autonomous Agent (AA) is a piece of code
that runs without human intervention. The fact that DAOs are purely decentralized entities
makes it possible to run them in any physical jurisdiction. Therefore, they raise a big
question as to how a current legal system would work with such a varied mix of different
jurisdictions and geographies.

Decentralized autonomous corporations
DAOs, Decentralized autonomous corporations (DACs) are a similar concept but are
considered a smaller subset of DAOs. The definitions of DACs and DAOs can sometimes
overlap, but a general difference is that DAOs are usually considered to be nonprofit,
whereas DACs can make money via shares offered to the participants and by paying
dividends. These corporations can run a business automatically without human
intervention based on the logic programmed within them.

Decentralized autonomous societies
Decentralized autonomous societies (DASs) are a concept whereby entire societies can
function on a blockchain with the help of multiple complex smart contracts and a
combination of DAOs and Decentralized applications (DAPPs) running autonomously.
This model does not mean an outlaw approach, nor is it based on a totally libertarian
ideology; instead, many services that a government offers can be delivered via blockchain,
such as Government Identity Card systems, passport issuance, and records of deeds,
marriages, and births. Another theory is that, if a government is corrupt and central systems
do not provide the satisfactory levels of trust that a society needs, then the society can start
its own virtual society on a blockchain that is driven by decentralized consensus and is
transparent. This might be seen as a libertarian or cypherpunk dream but is entirely
possible on a blockchain.

www.EBooksWorld.ir

Decentralization

[46]

Decentralized applications
All ideas mentioned earlier come under the larger umbrella of decentralized applications.
All DAOs, DACs, and DOs are basically decentralized applications that run on top of a
blockchain in a peer-to-peer network. This is the latest advancement in technology with
regard to decentralization. Decentralized applications or DAPPs are software programs that
can run on their own blockchain, use another already existing established blockchain, or use
only protocols of an existing blockchain solution. These are called Type I, Type II, and Type
III DAPPs.

Requirements of a decentralized application
In order for an application to be considered a decentralized application, it must meet the
following criteria. This definition was provided by David Johnston and others in their
whitepaper called The General Theory of Decentralized Applications, Dapps:

The DAPP should be fully open source and autonomous and no single entity1.
should be in control of a majority of its tokens. All changes to the application
must be consensus-driven based on the feedback given by the community.
Data and records of operations of the application must be cryptographically2.
secured and stored on a public, decentralized blockchain in order to avoid any
central points of failure.
A cryptographic token must be used by the application in order to provide access3.
and rewards to those who contribute value to the applications, for example,
miners in bitcoin.
The tokens must be generated by the decentralized application according to a4.
standard cryptographic algorithm. This generation of tokens acts as a proof of the
value to contributors (for example, miners).

Operations of a DAPP
Establishment of consensus by a DAPP can be achieved using consensus algorithms such as
Proof of Work and Proof of Stake. So far, only PoW has been found to be incredibly
resistant to 51% attacks, as is evident from bitcoin. Furthermore, a DAPP can distribute
tokens (coins) via mining, fundraising, and development.

www.EBooksWorld.ir

Decentralization

[47]

Examples
Examples of some decentralized applications are provided here.

KYC-Chain
This application provides a facility to manage Know Your Customer (KYC) data in a secure
and convenient way based on smart contracts.

OpenBazaar
This is a decentralized peer-to-peer network that allows commercial activities directly
between sellers and buyers instead of relying on a central party, as opposed to conventional
providers such as eBay and Amazon. It should be noted that this system is not built on top
of a blockchain; instead, distributed hash tables are used in a peer-to-peer network in order
to enable direct communication and data sharing between peers. It makes use of bitcoin as a
payment network, however.

Lazooz
This is a decentralized equivalent of Uber. It allows peer-to-peer ride sharing and users can
be incentivized by proof of movement and can earn Zooz coins.

There are many other DAPPS that have been built on the Ethereum
blockchain and are showcased at h t t p ://d a p p s . e t h e r c a s t s . c o m /.

Platforms for decentralization
There are many platforms available for decentralization now. Many companies around the
world have introduced platforms that promise to make distributed application
development easy, accessible, and secure for users. Some prominent names are discussed
here.

www.EBooksWorld.ir

http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/

Decentralization

[48]

Ethereum
Ethereum tops the list as being the first blockchain that introduced a Turing-complete
language and the concept of a virtual machine. This is in contrast to the limited scripting
language in bitcoin and many other cryptocurrencies. With the availability of this Turing-
complete language called Solidity, endless possibilities have opened for the development of
decentralized applications. This was proposed in 2013 by Vitalik Buterin and provides a
public blockchain to develop smart contracts and decentralized applications. Currency
tokens on Ethereum are called Ethers.

Maidsafe
Maidsafe provides a SAFE (Secure Access for Everyone) network that is made up of
unused computing resources, such as storage, processing power, and the data connections
of its users. The files on the network are divided into small chunks of data that are
encrypted and distributed throughout the network randomly. This data can only be
retrieved by its respective owner. One key innovation is that duplicate files are
automatically rejected on the network, which helps reduce the need for additional
computing resources to manage the load. It uses Safecoin as a token to incentivize its
contributors.

Lisk
Lisk is a blockchain application development and cryptocurrency platform. It allows
developers to use JavaScript to build decentralized applications and host them in their own
respective sidechains. Lisk uses the Delegated Proof of Stake (DPOS) mechanism for
consensus whereby 101 nodes can be elected to secure the network and propose blocks. It
uses the Node.js and JavaScript backend whereas the frontend allows the use of standard
technologies, such as CSS3, HTML5, and JavaScript. Lisk uses LSK coin as a currency on the
blockchain. Another derivative of Lisk is Rise, which is a Lisk-based decentralized
application and digital currency platform. It has more focus on the security of the system.

A more practical introduction to these platforms and others will be supplied in later
chapters.

www.EBooksWorld.ir

Decentralization

[49]

Summary
This chapter introduced the concept of decentralization, which is the core service offered by
the blockchain technology. Although the concept of decentralization is not new, it gained
renewed significance in the world of blockchain. As such, various applications based on
decentralized architecture have been introduced recently. The chapter started with an
introduction to the idea of decentralization. Next, decentralization from the blockchain
perspective was discussed. Moreover, ideas related to different layers of decentralization in
the blockchain ecosystem were introduced. There are several new concepts and terms that
have emerged with the advent of the blockchain technology and decentralization from the
blockchain perspective, such as DAOs, DAPPs, and various others. An introduction to all
these terms was also provided in this chapter. Finally, decentralized applications with some
examples were discussed. In the next chapter, fundamental concepts that are necessary to
understand the Blockchain ecosystem will be presented. Mainly, cryptography will be
introduced, which provides a crucial foundation for the blockchain technology.

www.EBooksWorld.ir

3
Cryptography and Technical

Foundations
In this chapter, you will be introduced to the concepts, theory, and practical aspects of
cryptography. More focus will be given to aspects that are specifically relevant in the
context of the blockchain technology. Moreover, concepts from financial markets will also
be discussed in order to provide a basis for the material covered in later chapters.

You will also be introduced to the practical implementations of cryptographic algorithms so
that you can experience the cryptographic functions practically. For this, the OpenSSL
command line is used.

Before starting the theoretical foundations, the installation of OpenSSL is discussed in the
following section so that you can do some practical work as you read through the
theoretical material.

On Ubuntu Linux distribution, OpenSSL is usually already available; however, it can be
installed using the following commands:

$ sudo apt-get install openssl

In the upcoming sections, first, the theoretical foundation will be discussed and then
relevant practical experiments will be introduced.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[51]

Introduction
Cryptography is the science of making information secure in the presence of adversaries. It
provides a means of secure communication in the presence of adversaries with assumed
limitless resources. Ciphers are used to encrypt data so that if intercepted by an adversary,
the data is meaningless to them without decryption, which requires the secret key.

Cryptography is generally used to provide a confidentiality service. On its own, it cannot be
considered a complete solution but serve as a crucial building block within a larger security
system to address a security problem.

Cryptography provides various security services, such as Confidentiality, Integrity,
Authentication, (Entity Authentication and Data origin authentication) and non-
repudiation. Additionally, accountability is also required in various security systems.

Before discussing cryptography further, there are some mathematical terms and concepts
that need to be explained first in order to fully understand the material provided later in
this chapter. The next section introduces these concepts. It should be noted that this section
is intended as a basic introduction. An explanation with proofs and relevant background for
all these terms will require rather involved mathematics, which is beyond the scope of this
book. More details on these topics can be found in any standard number theory, algebra, or
cryptography text book.

Mathematics
As the subject of cryptography is based on mathematics, this section will introduce some
basic concepts that will help you understand the concepts later in the chapter.

Set
A set is a collection of distinct objects, for example, X= {1, 2, 3, 4, 5}.

Group
A group is a commutative set with one operation that combines two elements of the set. The
group operation is closed and associated with an identity element defined. Additionally,
each element in the set has an inverse. Closure (closed) means that if, for example, elements
A and B are in the set, then the resultant element after performing operation on the
elements is also in the set. Associative means that the grouping of elements does not affect
the result of the operation.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[52]

Field
A field is a set that contains both additive and multiplicative groups. More precisely, all
elements in the set form an additive and multiplicative group. It satisfies specific axioms for
addition and multiplication. For all group operations, the distributive law is also applied.
The law dictates that the same sum or product will be produced even if any terms or factors
are reordered.

A finite field
A finite field is a field with a finite set of elements. Also known as Galois fields, these
structures are of particular importance in cryptography as they can be used to produce
accurate and error-free results of arithmetic operations. For example, prime finite fields are
used in elliptic curve cryptography to construct discrete logarithm problem.

Order
This is the number of elements in a field. It is also known as the cardinality of the field.

Prime fields
This is a finite field with a prime number of elements. It has specific rules for addition and
multiplication, and each nonzero element in the field has an inverse. Addition and
multiplication operations are performed modulo p.

Ring
If more than one operation can be defined over an abelian group, that group becomes a
ring. There are also certain properties that need to be satisfied. A ring must have closure
and associative and distributive properties.

A cyclic group
A cyclic group is a type of group that can be generated by a single element called the group
generator. In other words, if the group operation is repeatedly applied to a particular
element in the group, then all elements in the group can be generated.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[53]

An abelian group
An abelian group is formed when the operation on the elements of a set is commutative.
Commutative law basically means that changing the order of the elements does not affect
the result of the operation, for example, A X B = B X A.

Modular arithmetic
Also known as clock arithmetic, numbers in modular arithmetic wrap around when they
reach a certain fixed number. This fixed number is a positive number called modulus and
all operations are performed with regard to this fixed number. In an analogy to a clock,
there are number from 1 to 12. When it reaches 12, the number 1 starts again. In other
words, this arithmetic deals with the remainders after the division operation. For example,
50 mod 11 is 6 because 50 / 11 leaves a remainder of 6.

This completes a basic introduction to some mathematical concepts; in the next section, you
will be introduced to cryptography.

Cryptography
As discussed earlier, cryptography provides various security services, and these security
services are discussed here.

Confidentiality
Confidentiality is the assurance that information is only available to authorized entities.

Integrity
Integrity is the assurance that information is modifiable only by authorized entities.

Authentication
Authentication provides assurance about the identity of an entity or the validity of a
message. There are two types of authentications, discussed here.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[54]

Entity authentication
Entity authentication is the assurance that an entity is currently involved and active in a
communication session. Traditionally, users are issued a username and password, which
are used to gain access to the platforms they are using. This is called single factor
authentication as there is only one factor, namely something you know, that is, the password
and username. This type of authentication is not very secure due to various reasons, such as
password leakage; therefore, additional factors are now commonly used to provide better
security. The use of additional techniques for user identification is known as multifactor
authentication or two-factor authentication if only two methods are used. If more than two
factors are used for authentication, that is called multifactor authentication. Various factors
are described here:

The first factor is something you have, such as a hardware token or smart card. In1.
this case, a user can use a hardware token in addition to login credentials to gain
access to a system. This provides protection by requiring two factors of
authentication. A user who has access to the hardware token and knows the log-
on credentials will be able to access the system. Both factors should be available
in order to gain access to the system, thus making this method a two-factor
authentication mechanism.

The second factor is something you are, which uses biometric features in order to2.
identify the user. In this method, a user uses fingerprint, retina, iris, or hand
geometry to provide an additional factor for authentication. This way, it can be
ensured that a user was indeed present during the authentication mechanism as
biometric features are unique to an individual. However, careful implementation
is required in order to ensure a high level of security as some research has
suggested that biometric systems can be circumvented in certain scenarios.

Data origin authentication
Also known as message authentication, this is an assurance that the source of information is
verified. Data origin authentication implies data integrity because if a source is
corroborated, then data must not have been altered. Various methods, such as Message
Authentication Codes (MACs) and digital signatures are most commonly used. These
terms will be explained in detail later in the chapter.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[55]

Non-repudiation
Non-repudiation is the assurance that an entity cannot deny a previous commitment or
action by providing unforgeable evidence. It is a security service that provides unforgeable
evidence that a particular action has occurred. This property is very necessary in disputable
situations whereby an entity has denied actions performed, for example, placing an order
on an e-commerce system. This service produces cryptographic evidence in electronic
transactions so that in case of disputes, it can be used as a confirmation of an action. Non-
repudiation has been an active research area for many years. Disputes in electronic
transactions are a common issue and there is a need to address them in order to increase the
confidence level of consumers in the service.

The non-repudiation protocol usually runs in a communication network and is used to
provide evidence that an action has been taken by an entity (originator or recipient) on the
network. In this context, there are two communication models that can be used to transfer
messages from originator A to recipient B:

Message is sent directly from originator A to recipient B.1.
Message is sent to a delivery agent from originator A, which then delivers the2.
message to recipient B.

The main requirements of a non-repudiation protocol are fairness, effectiveness, and
timeliness. In many scenarios, there are multiple participants involved in a transaction as
opposed to only two parties. For example, in electronic trading systems, there can be many
entities, such as clearing agents, brokers, and traders that can be involved in a single
transaction. In this case, two-party non-repudiation protocols are not appropriate. To
address this problem Multi-party nonrepudiation protocols (MPNR) has been developed.

Accountability
Accountability is the assurance that actions affecting security can be traced to the
responsible party. This is usually provided by logging and audit mechanisms in systems
where a detailed audit is required due to the nature of the business, for example, in
electronic trading systems. Detailed logs are vital to trace an entity's actions, for example,
when a trade is placed in an audit record with the date and time stamp and the entity's
identity is generated and saved in the log file. This log file can optionally be encrypted and
can be part of the database or a standalone ASCII text log file on a system.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[56]

Cryptographic primitives
Cryptographic primitives are the basic building blocks of a security protocol or system. In
the following section, you are introduced to cryptographic algorithms that are essential for
the building of secure protocols and systems. A security protocol is a set of steps taken in
order to achieve required security goals by utilizing appropriate security mechanisms.

Various types of security protocols are in use, such as authentication protocols, non-
repudiation protocols, and key management protocols.

A generic cryptography model is shown in the following diagram:

A model showing the generic encryption and decryption model

In the preceding diagram, P, E, C, and D represents Plain text, Encryption, Cipher text, and
Decryption, respectively. Also, based on the model shown earlier, it is worth explaining
various concepts such as entity, sender, receiver, adversary, key, and a channel.

Entity: It is either a person or a system that sends, receives, or performs
operations on data
Sender: Sender is an entity that transmits the data
Receiver: Receiver is an entity that takes delivery of the data

www.EBooksWorld.ir

Cryptography and Technical Foundations

[57]

Adversary: This is an entity that tries to circumvent the security service
Key: A key is some data that is used to encrypt or decrypt data
Channel: Channel provides a medium of communication between entities

Cryptography is mainly divided into two categories, namely symmetric and asymmetric
cryptography.

Symmetric cryptography
Symmetric cryptography refers to a type of cryptography whereby the key that is used to
encrypt the data is the same for decrypting the data, and thus it is also known as a shared
key cryptography. The key must be established or agreed on before the data exchange
between the communicating parties. This is the reason it is also called secret key
cryptography.

There are two types of symmetric ciphers, stream ciphers and block ciphers. Data
Encryption Standard (DES) and Advanced Encryption Standard (AES) are common
examples of block ciphers, whereas RC4 and A5 are commonly used stream ciphers.

Stream ciphers
These ciphers are encryption algorithms that apply encryption algorithms on a bit-by-bit
basis to plain text using a key stream. There are two types of stream ciphers: synchronous
and asynchronous. Synchronous stream ciphers are ones where key stream is dependent
only on the key, whereas asynchronous stream ciphers have a key stream that is also
dependent on the encrypted data.

In stream ciphers, encryption and decryption are basically the same function because they
are simple modulo 2 additions or XOR operation. The key requirement in stream ciphers is
the security and randomness of key streams. Various techniques have been developed to
generate random numbers, and it's vital that all key generators be cryptographically secure:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[58]

Operation of a stream cipher

Block ciphers
These are encryption algorithms that break up a text to be encrypted (plain text) into blocks
of fixed length and apply encryption block by block. Block ciphers are usually built using a
design strategy known as Fiestel cipher. Recent block ciphers, such as AES (Rijndael) have
been built using a combination of substitution and permutation called substitution-
permutation network (SPN).

Fiestel ciphers are based on the Fiestel network, which is a structure developed by Horst
Fiestel. This structure is based on the idea of combining multiple rounds of repeated
operations to achieve desirable cryptographic properties knows as confusion and diffusion.
Fiestel networks operate by dividing data into two blocks (left and right) and process these
blocks via keyed round functions.

Confusion makes the relationship between the encrypted text and plaintext complex. This is
achieved by substitution in practice. For example, 'A' in plain text is replaced by 'X' in
encrypted text. In modern cryptographic algorithms, substitution is performed using
lookup tables called S-boxes. The diffusion property spreads the plain text statistically over
the encrypted data, which ensures that even if a single bit is changed in the input text, it
results in changing at least half (on average) of the bits in the cipher text. Confusion is
required to make finding the encryption key very difficult even if many encrypted and
decrypted data pairs are created using the same key. In practice, this is achieved by
transposition or permutation.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[59]

A key advantage of using Fiestel cipher is that encryption and decryption operations are
almost identical and only require a reversal of the encryption process in order to achieve
decryption. DES is a prime example of Fiestel-based ciphers:

Simplified operation of a block cipher

Various modes of operation for block ciphers are Electronic Code Book (ECB), Cipher
block chaining (CBC), Output Feedback Mode (OFB), or Counter mode (CTR). These
modes are used to specify the way in which an encryption function would be applied to the
plain text. These modes will be explained later in this section, but the first four categories of
block cipher encryption modes are introduced here.

Block encryption mode
In this mode, plaintext is divided into blocks of fixed length depending on the type of
cipher used and then the encryption function is applied on each block.

Keystream generation modes
In this mode, the encryption function generates a keystream that is then XORed with the
plaintext stream in order to achieve encryption.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[60]

Message authentication modes
In this mode, a message authentication code is computed as a result of an encryption
function. MAC is basically a cryptographic checksum that provides an integrity service. The
most common method to generate MAC using block ciphers is CBC-MAC, where some part
of the last block of the chain is used as a MAC.

Cryptographic hashes
Hash functions are basically used to compress a message to a fixed length digest. In this
mode, block ciphers are used as a compression function to produce a hash of plain text.

The most common block encryption modes are discussed briefly.

Electronic code book
This is a basic mode of operation in which the encrypted data is produced as a result of
applying the encryption algorithm one by one separately to each block of plain text. This is
the simplest mode but should not be used in practice as it is insecure and can reveal
information:

Electronic code book mode for block ciphers

www.EBooksWorld.ir

Cryptography and Technical Foundations

[61]

Cipher block chaining
In this mode, each block of plain text is XORed with the previous encrypted block. The CBC
mode uses initialization vector IV to encrypt the first block. It is recommended that IV be
randomly chosen:

Cipher block chaining mode

Counter mode
The CTR mode effectively uses a block cipher as a stream cipher. In this case, a unique
nonce is supplied that is concatenated with the counter value in order to produce a key
stream:

Counter mode

There are other modes, such as Cipher Feedback mode (CFB), Galois Counter mode
(GCM), and Output Feedback mode, which are also used in various scenarios.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[62]

In the following section, you will be introduced to the design and mechanism of a currently
dominant block cipher know as AES. First, some history will be presented with regard to
Data Encryption Standard (DES) that led to the development of a new AES standard.

Data Encryption Standard (DES)
DES was introduced by the US National Institute of Standards and Technology (NIST) as
a standard algorithm for encryption and was in main use during 1980s and 1990s, but it has
been not proven to be very resistant against brute force attacks, due to advances in
technology and cryptography research. Especially in July 1998, Electronic Frontier
Foundation (EFF) broke DES using a special purpose machine. DES uses a key of only 56
bits, which has raised some concerns. This problem was addressed with the introduction of
Triple DES (3DES), which proposed the usage of a 168-bit key using three 56-bit keys and
the same number of executions of the DES algorithm, thus making brute force attacks
almost impossible. But other limitations, such as slow performance and 64-bit block size, are
not desirable.

Advanced Encryption Standard (AES)
In 2001, after an open competition, an encryption algorithm named Rijndael that was
invented by cryptographers Joan Daemen and Vincent Rijmen was standardized as AES with
minor modifications by NIST in 2001. So far, no attack has been found against AES that is
better than the brute force method. Original Rijndael allows different key and block sizes of
128-bit, 192-bit, and 256-bits, but in the AES standard, only a 128-bit block size is allowed.
However, key sizes of 128-bit, 192-bit, and 256-bit are allowed.

AES steps
During the AES Algorithm processing, a 4 by 4 array of bytes knows as state is modified
using multiple rounds. Full encryption requires 10 to 14 rounds depending on the size of
the key. The following table shows the key sizes and the required number of rounds:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[63]

Once the state is initialized with the input to the cipher, four operations are performed in
four stages in order to encrypt the input. These stages are AddRoundKey, SubBytes,
ShiftRows, and MixColumns:

In the AddRoundKey step, the state array is XORed with a subkey, which is1.
derived from the master key.
This is the substitution step where a lookup table (S-box) is used to replace all2.
bytes of the state array.
This step is used to shift each row except the first one in the state array to the left3.
in a cyclic and incremental manner.
Finally, all bytes are mixed in this step in a linear fashion column-wise.4.

The preceding steps describe one round of AES. In the final round (either 10, 12, or 14
depending on the key size), stage 4 is replaced with Addroundkey to ensure that the first
three steps cannot be simply inverted back:

AES block diagram, showing 1st round, in last round mixing step is not performed

Various cryptocurrency wallets use AES encryption to encrypt locally stored data.
Especially in bitcoin wallet, AES 256 in the CBC mode is used.

An OpenSSL example of how to encrypt and decrypt using AES
:~/Crypt$ openssl enc -aes-256-cbc -in message.txt -out message.bin
enter aes-256-cbc encryption password:
Verifying - enter aes-256-cbc encryption password:
:~/Crypt$ ls -ltr
total 12

www.EBooksWorld.ir

Cryptography and Technical Foundations

[64]

-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 05:54 message.txt
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 05:57 message.bin
:~/Crypt$ cat message.bin

Note that message.bin is a binary file; sometimes, it is desirable to encode this binary file
into a text format for compatibility/interoperability reasons. The following command can be
used to do that:

:~/Crypt$ openssl enc -base64 -in message.bin -out message.b64
:~/Crypt$ ls -ltr
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 05:54 message.txt
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 05:57 message.bin
-rw-rw-r-- 1 drequinox drequinox 45 Sep 21 06:00 message.b64
:~/Crypt$ cat message.b64
U2FsdGVkX193uByIcwZf0Z7J1at+4L+Fj8/uzeDAtJE=
:~/Crypt$

In order to decrypt an AES-encrypted file, the following commands can be used. An
example of message.bin from a previous example is taken:

:~/Crypt$ openssl enc -d -aes-256-cbc -in message.bin -out message.dec
enter aes-256-cbc decryption password:
:~/Crypt$ ls -ltr
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 05:54 message.txt
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 05:57 message.bin
-rw-rw-r-- 1 drequinox drequinox 45 Sep 21 06:00 message.b64
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 06:06 message.dec
:~/Crypt$ cat message.dec
datatoencrypt
:~/Crypt$

Astute readers would have noticed that no initialization vector has been provided even
though it's required in all block encryption modes of operation except ECB. The reason is
that OpenSSL automatically derives the initialization vector from the given password. Users
can specify the initialization vector using the switch:

-K/-iv , (Initialization Vector) should be provided in Hex.

In order to decode from base64, the following commands are used. Take the message.b64
file from the previous example:

:~/Crypt$ openssl enc -d -base64 -in message.b64 -out message.ptx
:~/Crypt$ ls -ltr
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 05:54 message.txt
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 05:57 message.bin

www.EBooksWorld.ir

Cryptography and Technical Foundations

[65]

-rw-rw-r-- 1 drequinox drequinox 45 Sep 21 06:00 message.b64
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 06:06 message.dec
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 06:16 message.ptx

There are many types of ciphers that are supported in OpenSSL; you can explore these
options based on the examples provided earlier. A list of supported cipher types is shown
in the following screenshot:

Screenshot displaying rich library options available in OpenSSL.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[66]

Asymmetric cryptography
Asymmetric cryptography refers to a type of cryptography whereby the key that is used to
encrypt the data is different from the key that is used to decrypt the data. Also known as
public key cryptography, it uses public and private keys in order to encrypt and decrypt
data, respectively. Various asymmetric cryptography schemes are in use, such as RSA, DSA,
and El-Gammal.

An overview of public key cryptography is shown in the following diagram:

Encryption decryption using public/private key

The diagram explains how a sender encrypts the data using a recipient's public key and is
then transmitted over the network to the receiver. Once it reaches the receiver, it can be
decrypted using the receiver's private key. This way, the private key remains on the
receiver's side and there is no need to share keys in order to perform encryption and
decryption, which is the case with symmetric encryption.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[67]

Another diagram shows how public key cryptography can be used to verify the integrity of
the received message by the receiver. In this model, the sender signs the data using their
private key and transmits the message across to the receiver. Once the message is received
on the receiver's side, it can be verified for its integrity by the sender's public key. Note that
there is no encryption being performed in this model. This model is only used for message
authentication and validation purposes:

Model of a public key cryptography signature scheme

Security mechanisms offered by public key cryptosystem include key establishment, digital
signatures, identification, encryption, and decryption.

Key establishment mechanisms are concerned with the design of protocols that allow
setting up of keys over an insecure channel. Non-repudiation service, a very desirable
property in many scenarios, can be provided using digital signatures. Sometimes, it is
important to not only authenticate a user, but to also identify the entity involved in a
transaction; this can also be achieved by a combination of digital signatures and challenge-
response protocols. Finally, the encryption mechanism to provide confidentiality can also be
realized using public key cryptosystems, such as RSA, ECC, or El-Gammal.

Public key algorithms are slower in computation as compared to symmetric key algorithms.
Therefore, they are not commonly used in the encryption of large files or the actual data
that needs encryption. They are usually used to exchange keys for symmetric algorithms
and once the keys are established securely, symmetric key algorithms can be used to
encrypt the data.

Public key cryptography algorithms are based on various underlying mathematical
problems. There are three main families of asymmetric algorithms that are described here.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[68]

Integer factorization
These schemes are based on the fact that large integers are very hard to factor. RSA is the
prime example of this type of algorithm.

Discrete logarithm
This is based on a problem in modular arithmetic that it is easy to calculate the result of
modulo function but it is computationally infeasible to find the exponent of the generator.
In other words, it is extremely difficult to find the input from the result. This is a one-way
function.

For example, consider the following equation:

32 mod 10 = 9

Now given 9 finding 2, the exponent of the generator 3 is very hard. This hard problem is
commonly used in Diffie-Hellman key exchange and digital signature algorithms.

Elliptic curves
This is based on the discrete logarithm problem discussed earlier, but in the context of
elliptic curves. Elliptic curve is an algebraic cubic curve over a field, which can be defined
by an equation shown here. The curve is non-singular, which means that it has no cusps or
self-intersections. It has two variables a, b, along with a point of infinity.

Here, a, b are integers that can have various values and are elements of the field on which
the elliptic curve is defined. Elliptic curves can be defined over reals, rational numbers,
complex numbers, or finite fields. For cryptographic purposes, elliptic curve over prime
finite fields is used instead of real numbers. Additionally, the prime should be greater than
3. Different curves can be generated by varying the value of a, b.

Mostly prominently used cryptosystems based on elliptic curves are Elliptic Curve Digital
Signatures Algorithm (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key exchange.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[69]

Public and private keys
In order to understand public key cryptography, the first concept that needs to be looked at
is the idea of public and private keys.

A private key, as the names suggests, is basically a randomly generated number that is kept
secret and held privately by the users. Private key needs to be protected and no
unauthorized access should be granted to that key; otherwise, the whole scheme of public
key cryptography will be jeopardized as this is the key that is used to decrypt messages.
Private keys can be of various lengths depending upon the type and class of algorithms
used. For example, in RSA, typically, a key of 1024-bit or 2048-bits is used. 1024-bit key size
is no longer considered secure and at least 2048 bit is recommended to be used in practice.

A public key is the public part of the private-public key pair. A public key is available
publicly and published by the private key owner. Anyone who would then like to send the
publisher of the public key an encrypted message can do so by encrypting the message
using the published public key and sending it to the holder of the private key. No one else
would be able to decrypt the message because the corresponding private key is held
securely by the intended recipient. Once the public key encrypted message is received, the
recipient can decrypt the message using the private key. There are a few concerns regarding
public keys, such as authenticity and identification of the publisher of the public keys.

RSA
A description of RSA is discussed here. RSA was invented in 1977 by Ron Rivest, Adi Shamir,
and Leonard Adelman, hence the name RSA. This is based on the integer factorization
problem, where the multiplication of two large prime numbers is easy but difficult to factor
it back to the two original numbers.

The crux of the work in the RSA algorithm is during the key generation process. An RSA
key pair is generated by performing the steps described here.

Modulus generation:

Select p and q very large primes

Multiply p and q , n=p.q to generate modulus n

Generate co-prime:

Assume a number called e.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[70]

It should satisfy certain conditions, that is, it should be greater than 1 and less
than (p-1) (q-1). In other words, e must be such a number that no number other
than 1 can be divided into e and (p-1) (q-1). This is called co-prime, that is, e is the
co-prime of (p-1)(q-1).

Generate public key:

Modulus generated in step 1 and e generated in step 2 is pair that, together, is a
public key. This part is the public part that can be shared with anyone; however,
p and q need to be kept secret.

Generate private key:

Private key called d here and is calculated from p, q and e. Private key is basically
the inverse of e modulo (p-1)(q-1). In the equation form, it is this:

ed = 1 mod(p-1)(q-1)

Usually, an extended Euclidean algorithm is used to calculate d; this algorithm takes p, q
and e and calculates d. The key idea in this scheme is that anyone who knows p and q can
calculate private key d easily, by applying the extended Euclidean algorithm, but someone
who doesn't know the value of p and q cannot generate d. This also implies that p and q
should be large enough for the modulus n to become very difficult (computationally
infeasible) to factor.

Encryption and decryption using RSA
RSA uses the following equation to produce cipher text:

C = Pe mod n

This means that plain text P is raised to e number of times and then reduced to modulo n.

Decryption in RSA is given by the following equation:

P = Cd mod n

This means that the receiver who has a public key pair (n, e) can decipher the data by
raising C to the value of the private key d and reducing to modulo n.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[71]

Elliptic curve cryptography (ECC)
ECC is based on the discrete logarithm problem that is based on elliptic curves over finite
fields (Galois fields). The main benefit of ECC over other types of public key algorithms is
that it needs a smaller key size while providing the same level of security as, for example,
RSA. Two notable schemes that originate from ECC are Elliptic Curve Diffie-Hellman
(ECDH) for key exchange and Elliptic Curve Digital Signature Algorithm (ECDSA) for
digital signatures. It can also be used for encryption but is not usually used for this purpose
in practice; instead, key exchange and digital signatures are more commonly used. As ECC
needs less space to operate, it is becoming very popular on embedded platforms or in
systems where storage resources are limited. As a comparison, the same level of security
can be achieved in ECC by only using 256-bit operands as compared to 3072-bits in RSA.

Mathematics behind ECC
In order to understand ECC, a basic introduction to the underlying mathematics is
necessary. Elliptic curve is basically a type of polynomial equation known as weierstrass
equation that generates a curve over a finite field. The most commonly used field is where
all arithmetic operations are performed modulo a prime p. Elliptic curve groups consist of
points on the curve over a finite field.

An elliptic curve can be defined as an equation here:

Here, A and B belong to a finite field Zp or FP (prime finite field) along with a special value
called point of infinity. Point of infinity is used to provide identity operations for points
on the curve.

Furthermore, a condition also needs to be met that ensures that the equation mentioned
earlier has no repeated roots. This means that the curve is non-singular.

The condition is described here in the equation, which is a standard requirement that needs
to be met. More precisely, this ensures that the curve is nonsingular:

A real number representation of elliptic curve can be visualized as shown in the following
graph. This is a graph of equation over real numbers:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[72]

The actual curves used in elliptic curve cryptography are over finite prime fields, but here,
they are shown over real number as it becomes easier to visualize the operations when
graphed over R:

Elliptic curve over reals, a = -3 and b = 3

In order to construct the discrete logarithm problem based on elliptic curves, a large enough
cyclic group is required. First, the group elements are identified as a set of points that
satisfy the earlier equation. After this, group operations need to be defined on these points.

Group operations on elliptic curves are point addition and point doubling. Point addition is
a process where two different points are added and point doubling means that the same
point is added to itself. Both of these operations can be visualized as shown in the following
diagrams.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[73]

Point addition
Point addition is shown in the following diagram. This is a geometric representation of
point addition on elliptic curves. In this method, a line is drawn through the curve that
intersects the curve at two points shown below P and Q, which yields a third point between
the curve and the line. This point is mirrored as P+Q, which represent the result of addition
as R. This is shown as P+Q in the following diagram:

Point addition visualized over R

Group operation denoted by sign + for addition yields the following equation:

P + Q = R

In this case, two points are added in order to compute the coordinates of the third point on
the curve:

More precisely, this means that coordinates are added as shown in the following equation:

(x1, y1) + (x2, y2) = (x3, y3)

www.EBooksWorld.ir

Cryptography and Technical Foundations

[74]

The equation of point addition is as follows:

Here, this is the result:

S in the preceding equation depicts the line going through P and Q.

An example of point addition shown here is produced using Certicom's online calculator.
This example shows the addition and solutions for the equation over finite field F23. This is
in contrast to the example shown earlier, which is over real numbers and only shows the
curve but no solutions to the equation:

Example of point addition using Certicom's online calculator tool

www.EBooksWorld.ir

Cryptography and Technical Foundations

[75]

In the example, the graph on the left-hand side shows the points that satisfy the equation
shown here:

There are 27 solutions to the equation shown earlier over a finite field F23. P and Q are
chosen to be added to produce the point R. Calculations are shown on the right-hand side,
which calculates the third point R. Note that here, l is used to depict the line going through
P and Q.

As an example to show how the equation is satisfied by the points shown in the graph, a
point (x, y) is picked up where x = 3 and y = 6.

Using these values in the equation shows that the equation is satisfied indeed. This is
shown as follows:

The next section will introduce the concept of point doubling, which is another operation
that can be performed on elliptic curves.

Point doubling

The other group operation on elliptic curves is called point doubling and is described in the
following diagram. This is a process where P is added into itself. In this method, a tangent
line is drawn through the curve, as shown in the following graph. The second point is
obtained, which is at the intersection of the tangent line drawn and the curve. This point is
then mirrored to yield the result, which is shown as 2P = P + P:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[76]

Graph representing point doubling over real numbers

In case of point doubling, the equation becomes as follows:

Here, S is the slope of tangent (tangent line) going through P. It is the line on top shown in
the preceding figure. In the preceding example, the curve is plotted over reals as a simple
example and no solution to the equation is shown.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[77]

An example is shown here, which shows the solutions and point doubling of elliptic curve
over finite field F23. The graph on the left-hand side shows the points that satisfy the
equation:

Example of point doubling using certicom's online calculator tool

As shown earlier, on the right-hand side, a calculation is shown that finds the R after P is
added into itself (point doubling). There is no Q as here, the same point P is used for
doubling. Note that in the calculation, l is used to depict the tangent line going through P.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[78]

In the next section, an introduction to the discrete logarithm problem will be presented.

Discrete logarithm problem
The discrete logarithm problem in ECC is based on the idea that under certain conditions,
all points on an elliptic curve form a cyclic group.
On an elliptic curve, the public key is a random multiple of the generator point, whereas the
private key is a randomly chosen integer used to generate the multiple. In other words, a
private key is a randomly chosen integer, whereas the public key is a point on the curve.
The discrete logarithm problem is used to find the private key (an integer) where that
integer falls within all points on the elliptic curve. An upcoming equation shows this
precisely.
Consider an elliptic curve E, with two elements P and T. The discrete logarithmic problem
is to find the integer d, where 1 <= d <= #E, such that:

P + P + . . . +P = d P = T

Here, T is the public key (point on the curve) and d is the private key. In other words,
public key is a random multiple of generator, whereas the private key is the integer that is
used to generate the multiple. #E represents the order of the elliptic curve, which basically
means the number of points that are present in the cyclic group of the elliptic curve. A cyclic
group is formed by a combination of points on the elliptic curve and point at infinity.

A key pair is linked with specific domain parameters of an elliptic curve. Domain
parameters include a field size, field representation, two elements from the field a and b,
two field elements Xg and Yg, order n of point G that is calculated as G=(Xg, Yg) and the co-
factor h = #E(Fq)/n. A practical example using OpenSSL will be described later in this
section.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[79]

There are various parameters that are recommended and standardized to use as curves with
ECC. You are shown an example of SECP256K1 specifications here. This is the specification
that has been used in bitcoin:

Specification of SECP256K1 taken from http://www.secg.org/sec2-v2.pdf

An explanation of all these values in the sextuple is given here.

P is the prime p that specifies the size of the finite field.

a and b are the coefficients of the elliptic curve equation.

G is the base point that generates the required subgroup, also known as generator. Base
point can be represented in either compressed or uncompressed form. There is no need to
store all points on the curve in practical implementations. The compressed generator works
because points on the curve can be identified by using only the x coordinate and the least
significant bit of the y coordinate.

n is the order of the subgroup.

h is the cofactor of the subgroup.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[80]

In the following section, an example using OpenSSL is shown to help you understand the
practical aspects of RSA.

In the following section, it is shown how RSA public and private key pairs can be generated
using OpenSSL.

How to generate public and private key pairs
First, it is shown how the RSA private key can be generated using OpenSSL.

Private key
~/Crypt$ openssl genpkey -algorithm RSA -out privatekey.pem -pkeyopt
rsa_keygen_bits:1024
...............................++++++
....................++++++

After executing the command, a file named privatekey.pem is produced, which contains
the generated private key. This is shown as follows:

~/Crypt$ cat privatekey.pem
-----BEGIN PRIVATE KEY-----
MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBAKJOFBzPy2vOd6em
Bk/UGrzDy7TvgDYnYxBfiEJId/r+EyMt/F14k2fDTOVwxXaXTxiQgD+BKuiey/69
9itnrqW/xy/pocDMvobj8QCngEntOdNoVSaN+t0f9nRM3iVM94mz3/C/v4vXvoac
PyPkr/0jhIV0woCurXGTghgqIbHRAgMBAAECgYEAlB3s/N4lJh0l1TkOSYunWtzT
6isnNkR7g1WrY9H+rG9xx4kP5b1DyE3SvxBLJA6xgBle8JVQMzm3sKJrJPFZzzT5
NNNnugCxairxcF1mPzJAP3aqpcSjxKpTv4qgqYevwgW1A0R3xKQZzBKU+bTO2hXV
D1oHxu75mDY3xCwqSAECQQDUYV04wNSEjEy9tYJ0zaryDAcvd/VG2/U/6qiQGajB
eSpSqoEESigbusKku+wVtRYgWWEomL/X58t+K01eMMZZAkEAw6PUR9YLebsm/Sji
iOShV4AKuFdi7t7DYWE5Ulb1uqP/i28zN/ytt4BXKIs/KcFykQGeAC6LDHZyycyc
ntDIOQJAVqrE1/wYvV5jkqcXbYLgV5YA+KYDOb9Y/ZRM5UETVKCVXNanf5CjfW1h
MMhfNxyGwvy2YVK0Nu8oY3xYPi+5QQJAUGcmORe4w6Cs12JUJ5p+zG0s+rG/URhw
B7djTXm7p6b6wR1EWYAZDM9MArenj8uXAA1AGCcIsmiDqHfU7lgz0QJAe9mOdNGW
7qRppgmOE5nuEbxkDSQI7OqHYbOLuwfCjHzJBrSgqyi6pj9/9CbXJrZPgNDwdLEb
GgpDKtZs9gLv3A==
-----END PRIVATE KEY-----

www.EBooksWorld.ir

Cryptography and Technical Foundations

[81]

Generate public key
As the private key is mathematically linked to the public key, it is possible to generate or
derive the public key out of the private key. Taking the example of the preceding private
key, the public key can be generated as shown here:

:~/Crypt$ openssl rsa -pubout -in privatekey.pem -out publickey.pem
writing RSA key

Public key can be viewed using a file reader or any text viewer, as shown here:

:~/Crypt$ cat publickey.pem
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCiThQcz8trznenpgZP1Bq8w8u0
74A2J2MQX4hCSHf6/hMjLfxdeJNnw0zlcMV2l08YkIA/gSronsv+vfYrZ66lv8cv
6aHAzL6G4/EAp4BJ7TnTaFUmjfrdH/Z0TN4lTPeJs9/wv7+L176GnD8j5K/9I4SF
dMKArq1xk4IYKiGx0QIDAQAB
-----END PUBLIC KEY-----

In order to see more details about the various components, such as modulus, prime
numbers that are used in the process, exponents and coefficients of the generated private
key, the following command can be used (the complete output is not shown as it is too
large):

:~/Crypt$ openssl rsa -text -in privatekey.pem
Private-Key: (1024 bit)
modulus:
 00:a2:4e:14:1c:cf:cb:6b:ce:77:a7:a6:06:4f:d4:
 1a:bc:c3:cb:b4:ef:80:36:27:63:10:5f:88:42:48:
 77:fa:fe:13:23:2d:fc:5d:78:93:67:c3:4c:e5:70:
 c5:76:97:4f:18:90:80:3f:81:2a:e8:9e:cb:fe:bd:
 f6:2b:67:ae:a5:bf:c7:2f:e9:a1:c0:cc:be:86:e3:
 f1:00:a7:80:49:ed:39:d3:68:55:26:8d:fa:dd:1f:
 f6:74:4c:de:25:4c:f7:89:b3:df:f0:bf:bf:8b:d7:
 be:86:9c:3f:23:e4:af:fd:23:84:85:74:c2:80:ae:
 ad:71:93:82:18:2a:21:b1:d1
publicExponent: 65537 (0x10001)
privateExponent:
 00:94:1d:ec:fc:de:25:26:1d:25:d5:39:0e:49:8b:
 a7:5a:dc:d3:ea:2b:27:36:44:7b:83:55:ab:63:d1:
 fe:ac:6f:71:c7:89:0f:e5:bd:43:c8:4d:d2:bf:10:
 4b:24:0e:b1:80:19:5e:f0:95:50:33:39:b7:b0:a2:
 6b:24:f1:59:cf:34:f9:34:d3:67:ba:00:b1:6a:2a:
 f1:70:5d:66:3f:32:40:3f:76:aa:a5:c4:a3:c4:aa:
 53:bf:8a:a0:a9:87:af:c2:05:b5:03:44:77:c4:a4:
 19:cc:12:94:f9:b4:ce:da:15:d5:0f:5a:07:c6:ee:
 f9:98:36:37:c4:2c:2a:48:01

www.EBooksWorld.ir

Cryptography and Technical Foundations

[82]

prime1:
 00:d4:61:5d:38:c0:d4:84:8c:4c:bd:b5:82:74:cd:
 aa:f2:0c:07:2f:77:f5:46:db:f5:3f:ea:a8:90:19:
 a8:c1:79:2a:52:aa:81:04:4a:28:1b:ba:c2:a4:bb:
 ec:15:b5:16:20:59:61:28:98:bf:d7:e7:cb:7e:2b:
 4d:5e:30:c6:59
prime2:
 00:c3:a3:d4:47:d6:0b:79:bb:26:fd:28:e2:88:e4:
 a1:57:80:0a:b8:57:62:ee:de:c3:61:61:39:52:56:
 f5:ba:a3:ff:8b:6f:33:37:fc:ad:b7:80:57:28:8b:
 3f:29:c1:72:91:01:9e:00:2e:8b:0c:76:72:c9:cc:
 9c:9e:d0:c8:39

Similarly, the public key can be explored using the following commands. Public and Private
keys are base64-encoded:

~/Crypt$ openssl pkey -in publickey.pem -pubin -text
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCiThQcz8trznenpgZP1Bq8w8u0
74A2J2MQX4hCSHf6/hMjLfxdeJNnw0zlcMV2l08YkIA/gSronsv+vfYrZ66lv8cv
6aHAzL6G4/EAp4BJ7TnTaFUmjfrdH/Z0TN4lTPeJs9/wv7+L176GnD8j5K/9I4SF
dMKArq1xk4IYKiGx0QIDAQAB
-----END PUBLIC KEY-----
Public-Key: (1024 bit)
Modulus:
 00:a2:4e:14:1c:cf:cb:6b:ce:77:a7:a6:06:4f:d4:
 1a:bc:c3:cb:b4:ef:80:36:27:63:10:5f:88:42:48:
 77:fa:fe:13:23:2d:fc:5d:78:93:67:c3:4c:e5:70:
 c5:76:97:4f:18:90:80:3f:81:2a:e8:9e:cb:fe:bd:
 f6:2b:67:ae:a5:bf:c7:2f:e9:a1:c0:cc:be:86:e3:
 f1:00:a7:80:49:ed:39:d3:68:55:26:8d:fa:dd:1f:
 f6:74:4c:de:25:4c:f7:89:b3:df:f0:bf:bf:8b:d7:
 be:86:9c:3f:23:e4:af:fd:23:84:85:74:c2:80:ae:
 ad:71:93:82:18:2a:21:b1:d1
Exponent: 65537 (0x10001)

Now the public key can be shared openly and anyone who wants to send us a message can
use the public key to encrypt the message and send it to us. We can then use the
corresponding private key to decrypt the file.

How to encrypt and decrypt using RSA with OpenSSL
First in the section, an example will presented, which demonstrates how encryption can be
performed using RSA.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[83]

Encryption
Taking the private key generated in the earlier example, the command to encrypt a text file
message.txt can be constructed, as shown here:

:~/Crypt$ openssl rsautl -encrypt -inkey publickey.pem -pubin -in
message.txt -out message.rsa

This will produce a file named message.rsa, which is in a binary format. If we open
message.rsa in the nano editor, it will show some garbage:

message.rsa showing garbage data

Decrypt
In order to decrypt the RSA-encrypted file, the following command can be used:

:~/Crypt$ openssl rsautl -decrypt -inkey privatekey.pem -in message.rsa -
out message.dec

Now if the file is read using cat, decrypted plain text can be seen, as shown here:

:~/Crypt$ cat message.dec
datatoencrypt

www.EBooksWorld.ir

Cryptography and Technical Foundations

[84]

ECC using OpenSSL
OpenSSL provides a very rich library of functions to perform elliptic curve cryptography.
The following section shows how to practically use ECC functions in OpenSSL.

ECC private and public key pair
In this example, first, an example is presented that demonstrates the creation of a private
key using ECC functions available in the OpenSSL library.

Private key
ECC is based on domain parameters defined by various standards. We can see the list of all
available standards' defined and recommended curves available in OpenSSL using the
following command:

Crypt$ openssl ecparam -list_curves
 secp112r1 : SECG/WTLS curve over a 112 bit prime field
 secp112r2 : SECG curve over a 112 bit prime field
 secp128r1 : SECG curve over a 128 bit prime field
 secp128r2 : SECG curve over a 128 bit prime field
 secp160k1 : SECG curve over a 160 bit prime field
 secp160r1 : SECG curve over a 160 bit prime field
 secp160r2 : SECG/WTLS curve over a 160 bit prime field
 secp192k1 : SECG curve over a 192 bit prime field
 secp224k1 : SECG curve over a 224 bit prime field
 secp224r1 : NIST/SECG curve over a 224 bit prime field
 secp256k1 : SECG curve over a 256 bit prime field
 secp384r1 : NIST/SECG curve over a 384 bit prime field
 secp521r1 : NIST/SECG curve over a 521 bit prime field
 prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field
 .
 .
 .
 .
 brainpoolP384r1: RFC 5639 curve over a 384 bit prime field
 brainpoolP384t1: RFC 5639 curve over a 384 bit prime field
 brainpoolP512r1: RFC 5639 curve over a 512 bit prime field
 brainpoolP512t1: RFC 5639 curve over a 512 bit prime field

www.EBooksWorld.ir

Cryptography and Technical Foundations

[85]

As this produces a long output, the complete output is not shown and truncated in
between. In the following example, SECP256k1 is used to demonstrate ECC usage.

Private key generation
~/Crypt$ openssl ecparam -name secp256k1 -genkey -noout -out ec-
privatekey.pem
~/Crypt$ cat ec-privatekey.pem
-----BEGIN EC PRIVATE KEY-----
MHQCAQEEIJHUIm9NZAgfpUrSxUk/iINq1ghM/ewn/RLNreuR52h/oAcGBSuBBAAK
oUQDQgAE0G33mCZ4PKbg5EtwQjk6ucv9Qc9DTr8JdcGXYGxHdzr0Jt1NInaYE0GG
ChFMT5pK+wfvSLkYl5ul0oczwWKjng==
-----END EC PRIVATE KEY-----

The file named ec-privatekey.pem now contains the EC private key that is generated
based on the SECP256K1 curve.

In order to generate a public key out of a private key, issue the following command:

~/Crypt$ openssl ec -in ec-privatekey.pem -pubout -out ec-pubkey.pem
read EC key
writing EC key

Reading the file produces the following output, displaying the generated public key:

~/Crypt$ cat ec-pubkey.pem
-----BEGIN PUBLIC KEY-----
MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAE0G33mCZ4PKbg5EtwQjk6ucv9Qc9DTr8J
dcGXYGxHdzr0Jt1NInaYE0GGChFMT5pK+wfvSLkYl5ul0oczwWKjng==
-----END PUBLIC KEY-----

Now the ec-pubkey.pem file contains the public key derived out of ec-privatekey.pem.

The private key can be further explored using the following command:

~/Crypt$ openssl ec -in ec-privatekey.pem -text -noout
read EC key
Private-Key: (256 bit)
priv:
 00:91:d4:22:6f:4d:64:08:1f:a5:4a:d2:c5:49:3f:
 88:83:6a:d6:08:4c:fd:ec:27:fd:12:cd:ad:eb:91:
 e7:68:7f
pub:
 04:d0:6d:f7:98:26:78:3c:a6:e0:e4:4b:70:42:39:
 3a:b9:cb:fd:41:cf:43:4e:bf:09:75:c1:97:60:6c:
 47:77:3a:f4:26:dd:4d:22:76:98:13:41:86:0a:11:
 4c:4f:9a:4a:fb:07:ef:48:b9:18:97:9b:a5:d2:87:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[86]

 33:c1:62:a3:9e
ASN1 OID: secp256k1

Similarly, the public key can be explored further with the following command:

drequinox@drequinox-OP7010:~/Crypt$ openssl ec -in ec-pubkey.pem -pubin -
text -noout
read EC key
Private-Key: (256 bit)
pub:
 04:d0:6d:f7:98:26:78:3c:a6:e0:e4:4b:70:42:39:
 3a:b9:cb:fd:41:cf:43:4e:bf:09:75:c1:97:60:6c:
 47:77:3a:f4:26:dd:4d:22:76:98:13:41:86:0a:11:
 4c:4f:9a:4a:fb:07:ef:48:b9:18:97:9b:a5:d2:87:
 33:c1:62:a3:9e
ASN1 OID: secp256k1
drequinox@drequinox-OP7010:~/Crypt$

It is also possible to generate a file with the required parameters-in this case, SECP256K1-
and then explore it further to understand the underlying parameters:

 ~/Crypt$ openssl ecparam -name secp256k1 -out secp256k1.pem
 drequinox@drequinox-OP7010:~/Crypt$ cat secp256k1.pem
 -----BEGIN EC PARAMETERS-----
 BgUrgQQACg==
 -----END EC PARAMETERS-----

The file now contains all SECP256K1 parameters and can be analyzed using the following
command:

drequinox@drequinox-OP7010:~/Crypt$ openssl ecparam -in secp256k1.pem -text
-param_enc explicit -noout
Field Type: prime-field
Prime:
 00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
 ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:fe:ff:
 ff:fc:2f
A: 0
B: 7 (0x7)
Generator (uncompressed):
 04:79:be:66:7e:f9:dc:bb:ac:55:a0:62:95:ce:87:
 0b:07:02:9b:fc:db:2d:ce:28:d9:59:f2:81:5b:16:
 f8:17:98:48:3a:da:77:26:a3:c4:65:5d:a4:fb:fc:
 0e:11:08:a8:fd:17:b4:48:a6:85:54:19:9c:47:d0:
 8f:fb:10:d4:b8
Order:
 00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
 ff:fe:ba:ae:dc:e6:af:48:a0:3b:bf:d2:5e:8c:d0:

www.EBooksWorld.ir

Cryptography and Technical Foundations

[87]

 36:41:41
Cofactor: 1 (0x1)

The preceding example shows the prime number used and values of A and B the with
generator, order, and cofactor of the SECP256K1 curve domain parameters.

There is another category of cryptographic primitives that is known as hash functions. Hash
functions are not used to encrypt; data instead, they produce a fixed length digest of text.

Cryptographic primitives
This taxonomy of cryptographic primitives can be visualized as shown here:

Cryptographic primitives

Hash functions
Hash functions are used to create fixed length digests of arbitrarily long input strings. Hash
functions are keyless and provide the data integrity service. They are usually built using
iterated and dedicated hash function construction techniques. Various families of hash
functions are available, such as MD, SHA1, SHA-2, SHA-3, RIPEMD, and Whirlpool. Hash
functions are commonly used in digital signatures and message authentication codes, such
as HMACs. They have three security properties, namely pre-image resistance, second pre-
image resistance, and collision resistance. These properties are explained later in the section.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[88]

Hash functions are typically used to provide data integrity services. These can be used as
one-way functions and to construct other cryptographic primitives, such as MACs and
digital signatures. Some applications used hash functions as a means of generating pseudo
random numbers (PRNGs). Hash functions do not require a key. There are two practical
and three security properties of hash functions that must be met depending on the level of
requirements of integrity.

Compression of arbitrary messages into fixed length
digest
This property is concerned with the fact that a hash function must be able to take a long
input text of any length and output a fixed length compressed message. Hash functions
produce a compressed output in various bit sizes, usually between 128-bits and 512-bits.

Easy to compute
Hash functions are efficient and fast one-way functions. The requirement is that they be
very quick to compute regardless of the message size. The efficiency may decrease if the
message is too big but the function should still be fast enough for practical use.

In the following section, security properties of hash functions are discussed.

Pre-image resistance
Consider an equation:

h(x) = y

Here, h is the hash function, x is the input, and y is the hash. The first security property
requires that y cannot be reverse computed to x. x is considered a pre-image of y, hence the
name pre-image resistance. This is also called one-way property.

Second pre-image resistance
This property requires that given x and h(x) , it is almost impossible to find any other
message m , where m != x and hash of m = hash of x. h(m) = h(x). This property is also known
as weak collision resistance.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[89]

Collision resistance
This property requires that two different input messages should not hash to the same
output. In other words, h(x) != h(z). This property is also known as strong collision
resistance.

Hash functions, due to their very nature, will always have some collisions, and that is
where two different messages hash to the same output, but they should be computationally
infeasible to find. A concept known as avalanche effect is desirable in all hash functions.
Avalanche effect specifies that a small change, even a single character change in the input
text, will result in a totally different hash output.

Hash functions are usually designed by following iterated hash functions approach. In this
method, the input message is compressed in multiple rounds on a block-by-block basis to
produce the compressed output. A popular type of iterated hash function is Merkle-
Damgard construction. This construction is based on the idea of dividing the input data into
equal sizes of blocks and then feeding them through the compression functions in an
iterative manner. The collision resistance of the property of compression functions ensures
that the hash output is also collision-resistant. Compression functions can be built using
block ciphers. In addition to Merkle-Damgard, there are various other constructions of
compression functions proposed by researchers, for example, Miyaguchi-Preneel and Davies-
Meyer.

There are multiple hash function categories. You will be introduced to these categories in
the upcoming section.

Message Digest (MD)
Message Digest functions were very popular in early 1990s. MD4 and MD5 are members of
this category. Both MD functions are found to be insecure and not recommended for use
any more. MD5 is a 128-bit hash function that was commonly used for file integrity checks.

Secure Hash Algorithms (SHAs)
SHA-0: This is a 160-bit function introduced by NIST in 1993.

SHA-1: SHA-1 was introduced later by NIST as a replacement of SHA-0. This is also a 160-
bit hash function. SHA-1 is used commonly in SSL and TLS implementations. It should be
noted that SHA-1 is now considered insecure and is being deprecated by certificate
authorities. Its usage is now discouraged in any new implementations.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[90]

SHA-2: This category includes four functions defined by the number of bits of the hash:
SHA-224, SHA-256, SHA-384 and SHA-512.

SHA-3: This is the latest family of SHA functions. SHA3-224, SHA3-256, SHA3-384 and
SHA3-512 are members of this family. SHA3 is a NIST-standardized version of Keccak.
Keccak uses a new approach called sponge construction instead of the commonly used
Merkle-Damgard transformation.

RIPEMD: RIPEMD is the acronym for RACE Integrity Primitives Evaluation Message Digest. It
is based on the design ideas used to build MD4. There are multiple versions of RIPEMD,
including 128-bit, 160-bit, 256-bit, and 320-bit.

Whirlpool: This is based on a modified version of Rijndael cipher known as W. It uses the
Miyaguchi-Preneel compression function, which is a type of one-way function used for the
compression of two fixed length inputs into a single fixed length output. It is a single block
length compression function:

Three security properties of hash functions

Hash functions have many practical applications ranging from simple file integrity checks
and password storage to be used in cryptographic protocols and algorithms. They are used
in hash tables, distributed hash tables, bloom filters, virus finger printing, peer-to-peer P2P
file sharing, and many other applications.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[91]

In blockchain, hash functions play a very vital role. Especially, the proof of work function
uses SHA-256 twice in order to verify the computational effort spent by miners. RIPEMD
160 is used to produce bitcoin addresses. This will be discussed in more detail in later
chapters.

Design of Secure Hash Algorithms (SHA)
In the following section, you will be introduced to the design of SHA-256 and SHA-3. Both
of these are used in bitcoin and Ethereum, respectively. Ethereum doesn't use NIST
Standard SHA-3 but Keccak, which is the original algorithm presented to NIST. NIST, after
some modifications such as increase in the number of rounds and simpler message
padding, standardized Keccak as SHA-3.

SHA-256
SHA-256 has the input message size < 2^64-bits. Block size is 512-bits and has a word size of
32-bits. Output is 256-bit digest.

The compression function processes a 512-bit message block and a 256-bit intermediate
hash value. There are two main components of this function: compression function and a
message schedule.

The algorithm works as follows:

Pre-processing:

Padding of the message, which is used to make the length of a block to 512-bits if1.
it is smaller than the required block size of 512-bits.
Parsing the message into message blocks that ensure that the message and its2.
padding is divided into equal blocks of 512-bits.
Setting up the initial hash value, which is the eight 32-bit words obtained by3.
taking the first 32-bits of the fractional parts of the square roots of the first eight
prime numbers. These initial values are randomly chosen in order to initialize the
process and gives a level of confidence that no backdoor exists in the algorithm.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[92]

Hash computation:

Each message block is processed in a sequence and requires 64 rounds to1.
compute the full hash output. Each round uses slightly different constants to
ensure that no two rounds are the same.
First, the message schedule is prepared.2.
Then, eight working variables are initialized.3.
Then, the intermediate hash value is calculated.4.
Finally, the message is processed and the output hash is produced:5.

one round of SHA 256 compression function

In the preceding diagram, a, b, c, d, e, f, g, and h are the registers. Maj and Ch are applied
bitwise. performs bitwise rotation. Round constants are Wj and Kj , which are
added mod 2^32.

Design of SHA3 (Keccak)
The structure of SHA-3 is very different from the usual SHA-1 and SHA-2. The key idea
behind SHA-3 is based on un-keyed permutations as opposed to other usual hash functions'
constructions that used keyed permutations. Keccak also does not make use of the Merkle-
Damgard transformation that is commonly used to handle arbitrary length input messages
in hash functions. A newer approach called sponge and squeeze construction is used in
Keccak, which is basically a random permutation model. Different variants of SHA3 have
been standardized, such as SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and
SHAKE256. SHAKE128 and SHAKE256 are extendable output functions that are also
standardized by NIST.XOF functions that allow the output to be extended to any desired
length.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[93]

The following diagram shows the sponge and squeeze model that is the basis of SHA3 or
Keccak. As an analogy to sponge, first, the data is absorbed into the sponge after applying
padding, where it is then changed into a subset of permutation state using XOR and then
the output is squeezed out of the sponge function that represents the transformed state.
Rate is the input block size of a sponge function, whereas capacity determines the generic
security level:

SHA-3 absorbing and squeezing function in SHA3

OpenSSL example of hash functions
The following command will produce a hash of 256-bits of Hello messages using the
SHA256 algorithm:

:~/Crypt$ echo -n 'Hello' | openssl dgst -sha256
(stdin)= 185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969

Note that even a small change in the text, such as changing the case of H, results in a big
change in the output hash. This is known as avalanche effect, as discussed earlier:

:~/Crypt$ echo -n 'hello' | openssl dgst -sha256
(stdin)= 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

Note that both outputs are completely different:

Hello:
18:5f:8d:b3:22:71:fe:25:f5:61:a6:fc:93:8b:2e:26:43:06:ec:30:4e:da:51:80:07:
d1:76:48:26:38:19:69
hello:
2c:f2:4d:ba:5f:b0:a3:0e:26:e8:3b:2a:c5:b9:e2:9e:1b:16:1e:5c:1f:a7:42:5e:73:
04:33:62:93:8b:98:24

www.EBooksWorld.ir

Cryptography and Technical Foundations

[94]

Message Authentication codes (MACs)
MACs are sometimes called keyed hash functions and can be used to provide message
integrity and authentication. In others words, they are used to provide data origin
authentication. These are symmetric cryptographic primitives using a shared key between
the sender and the receiver. MACs can be constructed using block ciphers or hash
functions.

MACs using block ciphers
In this approach, block ciphers are used in the Cipher block chaining mode (CBC mode) in
order to generate a MAC. Any block cipher-for example, AES in the CBC mode-can be used.
The MAC of the message is in fact the output of the last round of the CBC operation. The
length of the MAC output is the same as the block length of the block cipher used to
generate MAC. MACs are verified simply by computing the MAC of the message and
comparing it with the received MAC. If they are the same, then the message integrity is
confirmed; otherwise, the message is considered altered. It should also be noted that MACs
work like digital signatures, but they cannot provide the nonrepudiation service due to
their symmetric nature.

HMACs (hash-based MACs)
Similar to the hash function, they produce a fixed length output and take an arbitrarily long
message as the input. In this scheme, the sender signs a message using MAC and the
receiver verifies it using the shared key. The key is hashed with the message using either of
the two methods known as secret prefix or the secret suffix method. In the first method, the
key is concatenated with the message, that is, the key comes first and the message comes
after, whereas in the latter method, the key comes after the message:

Secret prefix: M = MACk(x) = h(k||x)

Secret suffix: M=MACk(x) = h(x||k)

www.EBooksWorld.ir

Cryptography and Technical Foundations

[95]

There are pros and cons of both methods. Some attacks on both schemes have been
discovered. There are HMAC constructions schemes that use various techniques, such as
ipad and opad (inner padding and outer padding) proposed by researchers that are
considered secure with some assumptions:

Operation of a MAC function

Merkle trees
The concept of Merkle tree was introduced by Ralph Merkle. A visualization of Merkle tree is
shown here, which makes it easy to understand. Merkle trees allow secure and efficient
verification of large data sets.

It is a binary tree in which first, the inputs are placed at the leaves (node with no children),
and then values of pairs of child nodes are hashed together in order to produce a value for
the parent node (internal node) until a single hash value known as Merkle root is achieved:

A Merkle tree

www.EBooksWorld.ir

Cryptography and Technical Foundations

[96]

Patricia trees
In order to understand Patricia trees, first, you will be introduced to the concept of a trie. A
trie or a digital tree is an ordered tree data structure used to store a dataset.

Practical Algorithm to Retrieve Information Coded in Alphanumeric (Patricia), also
known as Radix tree, is a compact representation of a trie in which a node that is the only
child of a parent is merged with its parent.

Merkle-Patricia tree, based on the definitions of Patricia and Merkle, is a tree that has a root
node that contains the hash value of the entire data structure.

Distributed hash tables (DHTs)
A hash table is a data structure that is used to map keys to values. Internally, a hash
function is used to calculate an index into an array of buckets, from which the required
value can be found. Buckets have records stored in them using a hash key and are
organized in a particular order.

With the definition provided earlier in mind, one can think of the distributed hash table as a
data structure where data is spread across various nodes and nodes are equivalent to
buckets in a peer-to-peer to network.

The following diagram visually shows how a DHT works. The example shows that data is
passed through a hash function, which results in generating a compact key. This key is then
linked with the data (values) on the peer-to-peer network. When users on the network
request the data (via the filename), the filename can be hashed again to produce the same
key and any node on the network can then be requested to find the corresponding data.
DHTs provides decentralization, fault tolerance, and scalability:

Distributed hash tables

www.EBooksWorld.ir

Cryptography and Technical Foundations

[97]

Digital signatures
Digital signatures provide a means of associating a message with an entity from which the
message has been originated. Digital signatures are used to provide data origin
authentication and nonrepudiation. They are calculated in two steps. High-level steps of an
RSA digital signature scheme is given as follows:

Calculate the hash value of the data packet. This will provide the data integrity1.
guarantee as hash can be computed at the receiver's end again and matched with
the original hash to check whether the data has been modified in transit.
Technically, message signing can work without hashing the data first, but is not
considered secure.
The second step signs the hash value with the signer's private key. As only the2.
singer has the private key, the authenticity of the signature and the signed data is
ensured.

Digital signatures have some important properties, such as authenticity, unforgeability, and
nonreusability. Authenticity means that the digital signatures are verifiable by a receiving
party. The unforgeability property ensures that only the sender of the message is able to use
the signing functionality using the private key. In other words, no one else should be able to
produce the signed message that has been produced by the legitimate sender. Non
reusability means that the digital signature cannot be separated from a message and used
for another message again.

The operation of a generic digital signature function is shown in the following diagram:

Digital signing (left) and verification process (right) (Example of RSA digital signatures)

www.EBooksWorld.ir

Cryptography and Technical Foundations

[98]

If a sender wants to send an authenticated message to a receiver, there are two methods that
can be used. These two approaches to use digital signatures with encryption are introduced
here.

Sign then encrypt
In this approach, the sender digitally signs the data using the private key, appends the
signature to the data, and then encrypts the data and the digital signature using the
receiver's public key. This is considered a more secure scheme as compared to the encrypt
then sign scheme described next.

Encrypt then sign
In this approach, the sender encrypts the data using the receiver's public key and then
digitally signs the encrypted data.

In practice, a digital certificate that contains the digital signature is issued
by a certificate authority (CA) that associates a public key with an
identity.

Various schemes, such as RSA, Digital Signature Algorithm, and Elliptic Curve Digital
Signature Algorithm-based digital signature schemes are used in practice. RSA is the most
commonly used; however, with the traction of elliptic curve cryptography, ECDSA-based
schemes are also becoming quite popular.

The ECDSA scheme is described in detail here.

Elliptic Curve Digital signature algorithm
(ECDSA)
In order to sign and verify using the ECDSA scheme, the first key pair needs to be
generated:

First, define an elliptic curve E:1.

1. With modulus P.

2. Coefficients a and b.

3. Generator point A that forms a cyclic group of prime order q.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[99]

An integer d is chosen randomly so that 0 < d < q.2.
Calculate public key B so that B = d A.3.

Public key is the sextuple of the form shown here:

Kpb = (p,a,b,q,A,B)

Private key is randomly chosen d in Step 2:

Kpr = d

Now the signature can be generated using the private and public key.

First, an ephemeral key Ke is chosen, where 0 < Ke < q. It should be ensured that1.
Ke is truly random, and no two signatures have the same key; otherwise, the
private key can be calculated.
Another value R is calculated using R = Ke A, that is, by multiplying A (the2.
generator point) and the random ephemeral key.
Initialize a variable r with the x coordinate value of point R. r = xR.3.
The signature can be calculated as follows:4.

Here, m is the message for which the signature is being computed and h(m) is the hash of
the message m.

Signature verification is carried out by following this process.

Auxiliary value w is calculated as w = s-1mod q.1.
Auxiliary value u1 = w. h(m) mod q.2.
Auxiliary value u2 = w. r mod q.3.
Calculate Point P, P = u1A + u2B.4.
Verification is carried out as follows.5.
r, s is accepted as a valid signature if x-coordinate of the point P calculated in Step6.
4 has the same value as the signature parameter r mod q.

that is:

Xp = r mod q means valid signature

www.EBooksWorld.ir

Cryptography and Technical Foundations

[100]

Xp != r mod q means invalid signature

Various practical examples are shown here, which shows how the RSA digital signature can
be generated, used, and verified using OpenSSL.

How to generate a digital signature
The first step is to generate a hash of the message file:

:~/Crypt$ openssl dgst -sha256 message.txt
SHA256(message.txt)=
eb96d1f89812bf4967d9fb4ead128c3b787272b7be21dd2529278db1128d559c

Both hash generation and signing can be done in a single step, as shown here. Note that
privatekey.pem is generated in the steps provided previously:

:~/Crypt$ openssl dgst -sha256 -sign privatekey.pem -out signature.bin
message.txt

Now let's display the directory showing relevant files:

:~/Crypt$ ls -ltr
total 36
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 05:54 message.txt
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 05:57 message.bin
-rw-rw-r-- 1 drequinox drequinox 45 Sep 21 06:00 message.b64
-rw-rw-r-- 1 drequinox drequinox 32 Sep 21 06:16 message.ptx
-rw-rw-r-- 1 drequinox drequinox 916 Sep 21 06:28 privatekey.pem
-rw-rw-r-- 1 drequinox drequinox 272 Sep 21 06:30 publickey.pem
-rw-rw-r-- 1 drequinox drequinox 128 Sep 21 06:43 message.rsa
-rw-rw-r-- 1 drequinox drequinox 14 Sep 21 06:49 message.dec
-rw-rw-r-- 1 drequinox drequinox 128 Sep 21 07:05 signature.bin
:~/Crypt$ cat signature.bin

www.EBooksWorld.ir

Cryptography and Technical Foundations

[101]

In order to verify the signature, the following operation can be performed:

:~/Crypt$ openssl dgst -sha256 -verify publickey.pem -signature
signature.bin message.txt
Verified OK
:~/Crypt$

Similarly, if some other signature file that is not valid is used, the verification will fail, as
shown here:

:~/Crypt$ openssl dgst -sha256 -verify publickey.pem -signature
someothersignature.bin message.txt
Verification Failure

Now you are introduced to an example that shows how OpenSSL can be used to perform
ECDSA-related operations.

ECDSA using OpenSSL
First, the private key is generated using the following commands:

~/Crypt$ openssl ecparam -genkey -name secp256k1 -noout -out
eccprivatekey.pem
~/Crypt$ cat eccprivatekey.pem
-----BEGIN EC PRIVATE KEY-----
MHQCAQEEIMVmyrnEDOs7SYxS/AbXoIwqZqJ+gND9Z2/nQyzcpaPBoAcGBSuBBAAK
oUQDQgAEEKKS4E4+TATIeBX8o2J6PxKkjcoWrXPwNRo/k4Y/CZA4pXvlyTgH5LYm
QbU0qUtPM7dAEzOsaoXmetqB+6cM+Q==
-----END EC PRIVATE KEY-----

Now the public key is generated out of the private key:

~/Crypt$ openssl ec -in eccprivatekey.pem -pubout -out eccpublickey.pem
read EC key
writing EC key
~/Crypt$ cat eccpublickey.pem
-----BEGIN PUBLIC KEY-----
MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEEKKS4E4+TATIeBX8o2J6PxKkjcoWrXPw
NRo/k4Y/CZA4pXvlyTgH5LYmQbU0qUtPM7dAEzOsaoXmetqB+6cM+Q==
-----END PUBLIC KEY-----
~/Crypt$

www.EBooksWorld.ir

Cryptography and Technical Foundations

[102]

Now suppose a file named testsign.txt needs to be signed and verified. This can be
achieved as follows:

Create a test file:1.

 ~/Crypt$ echo testing > testsign.txt
 ~/Crypt$ cat testsign.txt
 testing

Run the following command to generate a signature using a private key for the2.
testsign.txt file:

 ~/Crypt$ openssl dgst -ecdsa-with-SHA1 -sign eccprivatekey.pem
 testsign.txt > ecsign.bin

Finally, the command for verification can be run as shown here:3.

 ~/Crypt$ openssl dgst -ecdsa-with-SHA1 -verify eccpublickey.pem
 -signature ecsign.bin testsign.txt
 Verified OK

A certificate can also be generated using the private key generated earlier:

~/Crypt$ openssl req -new -key eccprivatekey.pem -x509 -nodes -days 365 -
out ecccertificate.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:Cambridge
Locality Name (eg, city) []:Cambridge
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Dr.Equinox!
Organizational Unit Name (eg, section) []:NA
Common Name (e.g. server FQDN or YOUR name) []:drequinox
Email Address []:drequinox@drequinox.com

www.EBooksWorld.ir

Cryptography and Technical Foundations

[103]

The certificate can be explored using the command below:

~/Crypt$ openssl x509 -in ecccertificate.pem -text -noout

X509 certificate that uses ECDSA algorithm with SHA-256

There are other topics in cryptography that are presented here due to their relevance to
blockchain or potential use in future blockchain ecosystems.

Homomorphic encryption
Usually, public key cryptosystems, such as RSA, are multiplicative homomorphic or
additive homomorphic, such as Paillier cryptosystem, and are called partially
homomorphic systems. Additive PHEs are suitable for e-voting and banking applications.
Until recently, there has been no system that supported both operations, but in 2009, a fully
homomorphic system was discovered by Craig Gentry. As these schemes allow the
processing of encrypted data without the need for decryption, they have many different
possible applications, especially in scenarios where privacy is required to be maintained but
data is also required to be processed by potentially untrusted parties, for example, cloud
computing and online search engines. Recent development in homomorphic encryption has
been very promising and researchers are actively working to make it efficient and more
practical. This is of particular interest in the blockchain technology, as described later in the
book, because it can solve the problem of confidentiality and privacy in blockchain.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[104]

Signcryption
Signcryption is a public key cryptography primitive that provides all the functions of the
digital signature and encryption. It was invented by Yuliang Zheng and is now an ISO
standard ISO/IEC 29150:2011. Traditionally, signature then encrypt or encrypt then sign
schemes are used to provide unforgeability, authentication, and nonrepudiation, but with
Signcryption, all services of digital signatures and encryption are provided with cost less
than that of sign then encrypt schemes.

This is Cost (signature & encryption) << Cost (signature) + Cost (Encryption) in a single
logical step.

Zero knowledge proofs
Zero knowledge proofs were introduced by GoldWasser, Micali, and Rackoff. These proofs
are used to prove the validity of an assertion without revealing any information whatsoever
about the assertion. There are three properties of ZKPs that are required, namely
completeness, soundness, and zero-knowledge property.

Completeness ensures that if a certain assertion is true, then the verifier will be convinced of
this claim by the prover. The soundness property makes sure that if an assertion is false,
then no dishonest prover can convince the verifier otherwise. Zero-knowledge property, as
the name implies, is the key property of zero knowledge proofs whereby it is ensured that
absolutely nothing is revealed about the assertion except whether it is true or false.

Zero knowledge proofs have sparked a special interest among researchers in the blockchain
space due to its privacy properties that are very much desirable in financial and many other
fields, such as law and medicine. A recent example of the successful implementation of the
zero knowledge proof mechanism is the Zcash crypto currency. In Zcash, a specific type of
zero knowledge proof, known as zero-knowledge Succinct Non-interactive Argument of
Knowledge (ZK-Snark), is implemented. This will be discussed in detail in Chapter 5,
Alternative Coins.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[105]

Blind signatures
Blind signatures were introduced by David Chaum in 1982 and are based on public key
digital signature schemes, such as RSA. The key idea behind blind signatures is to get the
message signed by the signer without actually revealing the message. This is achieved by
disguising or blinding the message before signing it, hence the name blind signatures. This
blind signature can then be verified against the original message just like a normal digital
signature. Blind signatures were introduced as a mechanism to allow the development of
digital cash schemes.

Encoding schemes
Other than cryptographic primitives, binary to text encoding schemes are also used in
various scenarios. The most common usage is to convert binary data into text so that it can
be either processed, saved, or transmitted via a protocol that does not support the
processing of binary data. For example, sometimes, images are stored in the database as
base64 encoding, which allows a text field to be able to store a picture. A commonly used
encoding scheme is base64. Another encoding named base58 was popularized by its usage
in bitcoin.

Cryptography is a vast field and this section has introduced basic concepts that are essential
to understand cryptography in general and specifically from the blockchain and
cryptocurrency point of view. In the next section, you are introduced to basic financial
markets concepts.

The upcoming section describes general terminologies about trading, exchanges, and trade
life cycle. More relevant information will be provided in later chapters where specific use
cases are discussed.

Financial markets and trading
Financial markets exist to facilitate the transfers of savings from savers to investors. In an
economic system, there are two sectors, namely household and business. Financial markets,
at their core, act as an intermediary between the savers and the investors. Basically, there
are three types of markets, namely money markets, credit markets, and capital markets.
Money markets are short-term markets where money is lent to companies or banks to do
interbank lending. Foreign exchange or FX is another category of money markets where
currencies are traded. Credit markets consist mostly of retail banks where they borrow
money from central banks and loan it to companies or households in the form of mortgages
or loans.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[106]

Capital markets facilitate the buying and selling of financial instruments, mainly stocks and
bonds. Capital markets can be divided into two types, primary and secondary markets.
Stocks are issued directly by the companies to investors in primary markets, whereas in
secondary markets, investors resell their securities to investors via stock exchanges. Various
electronic trading systems are used by exchanges to facilitate the trading of financial
instruments.

Trading
A market is a place where traders come to trade. It can ent asset classes.

Trading can be defined as an activity in which traders buy or sell various financial
instruments to generate profit and hedge risk. Investors, borrowers, hedgers, asset
exchangers, and gamblers are a few types of traders. Traders have a short position when
they owe something, for example, if they have sold a contract and have a long position
when they buy a contract. There are various ways to transact trades, such as through
brokers or directly on the exchange or over the counter. Brokers are agents who arrange
trades for their customers. Brokers act on clients' behalf to deal at a given price or at the best
possible price.

Exchanges
Exchanges are usually considered to be a very safe, regulated, and reliable place for trading.
Recently, electronic trading has gained high popularity as compared to traditional floor-
based trading. Now traders send orders to a central electronic order book from where the
orders, prices, and related attributes are published to all associated systems using
communication networks thus, in essence, creating a virtual marketplace. Exchange trades
can be performed only by members of the exchange. In order to trade without these
limitations, the counter parties can participate in OTC (Over the Counter) trading directly.

Orders and order properties
Orders are instructions to trade and are the main building blocks of a trading system. They
have the following general attributes:

The instrument name.1.
Quantity.2.
Direction (buy or sell).3.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[107]

The type of the order that represents various conditions, for example, limit orders4.
and stop orders, an example of which is 1500 Royal Bank of Scotland ordinary
shares for GBP £15.50.

Orders are traded on the basis of bid prices and offer prices. Traders show their intention to
buy or sell by attaching bid and offer prices to their orders. The price at which a trader will
buy is known as the bid price. The price at which a trader is willing to sell is known as the
offer price.

Order management and routing systems
Order routing systems routes and deliver orders to various destinations depending on the
business logic. Customers use them to send orders to their brokers, who then send these
orders to dealers, clearing houses, and exchanges.

There are different types of orders; the two most common ones are markets orders and limit
orders. A market order is an instruction to trade at the best price currently available in the
market, and these orders get filled immediately at spot prices. On the other hand, a limit
order is an instruction to trade at the best price available but only if it is not lower than the
limit price set by the trader. This can also be higher depending on the direction of the order,
either sell or buy. All these orders are managed in an order book, which is a list of orders
maintained by an exchange, and records the intention of buying or selling by the traders.

A position is a commitment to sell or buy an amount of financial instruments, such as
securities, currencies, or commodities for a given price. The contracts, securities,
commodities, and currencies that traders buy or sell are commonly known as trading
instruments and come under the large umbrella of asset classes. The most common classes
are real assets, financial assets, derivative contracts, and insurance contracts.

Components of a trade
A trade ticket is the combination of all details related to a trade. However, there is some
variation depending on the type of the instrument and asset class, but generally, all
instruments have the attributes discussed in the next section.

The underlying instrument
The underlying instrument is the basis of the trade. It can be a currency, a
bond, interest rate, commodity, or equities.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[108]

General attributes
This includes general identification information and basic features associated with every
trade. Common attributes include a unique ID, instrument name, type, status, trade date,
and time.

Economic
These are features related to the value of the trade, for example, buy or sell value, ticker,
exchange, price, and quantity.

Sales
Sales refers to the sales-characteristic-related details, such as the name of the sales person,
and is just an information field, usually without any impact on the trade life cycle.

Counterparty
Counterparty is an important component of a trade as it shows the other side of the trade
and is required to settle the trade successfully. Usual attributes include counterparty name,
address, payment type, any reference IDs, settlement date, and delivery type.

Trade life cycle
A general trade life cycle includes various stages from order placement to execution and
then settlement. This life cycle is described step by step as follows:

Pre-execution: An order is placed at this stage.
Execution and booking: When the order is matched and executed, it converts
into a trade. At this stage, the contract between counter parties is matured.
Confirmation: This is where both counter parties agree to particulars of the trade.
Post booking: This stage is concerned with various scrutiny and verification
processes to ascertain the correctness of the trade.
Settlement: This is the most vital part during trade and at this stage, the trade is
final.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[109]

Overnight (end of day processing): End of day processes include report
generation, profit and loss calculations, and various risk calculations.

In all the mentioned processes, many people and business functions are involved.
Most commonly, these functions are divided into functions such as front office,
middle office, and back office.

In the following section, you are introduced to some concepts that are essential in order to
understand the strict and necessary rules and regulations that govern the financial industry.
Some concepts are described here and in later chapters when specific use cases are
discussed, and these ideas will help you understand the scenarios described.

Order anticipators
Order anticipators try to make profit before other traders can carry out trading. This is
based on the anticipation where a trader knows how trading activities of other trades will
affect prices. Frontrunners, sentiment-oriented technical traders, and squeezers are some
examples of order anticipators.

Market manipulation
Market manipulation is strictly illegal in the UK and other countries. Fraudulent traders can
spread false information in the market, which can result in price movements thus making
illegal profits. Usually, manipulative market conduct is trade-based and it includes
generalized and time-specific manipulations. Actions that can create an artificial shortage of
stock, impression of false activity, and price manipulation to gain criminal benefit are
included in this category.

Both of the terms discussed earlier are relevant to financial crime. and there is a possibility
of developing blockchain-based systems that can thwart market abuse. This will be
discussed in detail in later chapters, where specific use cases will be discussed.

www.EBooksWorld.ir

Cryptography and Technical Foundations

[110]

Summary
This chapter aimed at introducing concepts of cryptography and financial markets in order
to provide background information for you to be able to understand the material provided
in later chapters. First, you were introduced to the basics of cryptography, and then various
schemes such as symmetric and asymmetric ciphers were introduced. Practical examples
using OpenSSL command line were shown so that you could experiment with various
commands and experience various cryptographic functions firsthand. Also, some
mathematical background was provided at the beginning of the chapter and where
necessary, especially with the elliptic curve cryptography. All cryptography concepts
presented in this chapter are related to the blockchain technology and are implemented or
have been proposed to be implemented in various blockchains, cryptocurrencies, and
relevant ecosystems. Moreover, you were given a quick introduction to the financial
industry as it sets the scene for various examples that will be discussed in relation to the
distributed ledger technology later in the book. As cryptography and finance are vast
subjects, the material covered in his chapter is aimed to be introductory in nature (with
some exceptions) and specific topics will be expanded upon in more detail, where relevant
and required, in the next chapters.

www.EBooksWorld.ir

4
Bitcoin

Bitcoin is the first application of the blockchain technology. In this chapter, readers will be
introduced to bitcoin technology in detail.

Bitcoin has started a revolution with the introduction of the very first fully decentralized
digital currency, and one that has proven to be extremely secure and stable. This has also
sparked a great interest in academic and industrial research and introduced many new
research areas. Since its introduction in 2008, bitcoin has gained much popularity and is
currently the most successful digital currency in the world with billions of dollars invested
in it. It is built on decades of research in the field of cryptography, digital cash, and
distributed computing. In the following section, a brief history is presented in order to
provide the background required to understand the foundations behind the invention of
bitcoin.

Digital currencies have always been an active area of research for many decades. Early
proposals to create digital cash go as far back as the early 1980s. In 1982, David Chaum
proposed a scheme that used blind signatures to build untraceable digital currency. In this
scheme, a bank would issue digital money by signing a blind and random serial number
presented to it by the user. The user could then use the digital token signed by the bank as
currency. The limitation in this scheme was that the bank had to keep track of all used serial
numbers. This was a central system by design and required to be trusted by the users. Later
on in 1990, David Chaum proposed a refined version named e-cash that not only used
blinded signature, but also some private identification data to craft a message that was then
sent to the bank. This scheme allowed the detection of double spending but did not prevent
it. If the same token was used at two different locations, then the identity of the double
spender would be revealed. e-cash could only represent a fixed amount of money. Adam
Back's hashcash, introduced in 1997, was originally proposed to thwart e-mail spam. The
idea behind hashcash was to solve a computational puzzle that was easy to verify but
comparatively difficult to compute.

www.EBooksWorld.ir

Bitcoin

[112]

The idea was that for a single user and a single e-mail, extra computational effort was not
noticeable, but someone sending a large number of spam e-mails would be discouraged as
the time and resources required to run the spam campaign would increase substantially.

B-money was proposed by Wei Dai in 1998, which introduced the idea of using Proof of
Work to create money. A major weakness in the system was that an adversary with higher
computational power could generate unsolicited money without allowing the network to
adjust to an appropriate difficulty level. The system lacked details on the consensus
mechanism between nodes and some security issues such as Sybil attacks were also not
addressed. At the same time, Nick Szabo introduced the concept of BitGold, which was also
based on the Proof of Work mechanism but had the same problems as b-money with the
exception that the network difficulty level was adjustable. Tomas Sander and Ammon
TaShama introduced an e-cash scheme in 1999 that, for the first time, used Merkle trees to
represent coins and zero knowledge proofs to prove the possession of coins. In the scheme,
a central bank was required that kept a record of all used serial numbers. This scheme
allowed users to be fully anonymous albeit at a computational cost. RPOW (Reusable Proof
of Work) was introduced by Hal Finney in 2004 and used the hashcash scheme by Adam
Back as a proof of computational resources spent to create the money. This was also a
central system that kept a central database to keep track of all used POW tokens. This was
an online system that used remote attestation made possible by a trusted computing
platform (TPM hardware).

All the previously mentioned schemes are intelligently designed but were weak from one
aspect or another. Especially, all these schemes rely on a central server that is required to be
trusted by the users.

Bitcoin
In 2008, a paper on bitcoin, Bitcoin: A Peer-to-Peer Electronic Cash System was written by
Satoshi Nakamoto. The first key idea introduced in the paper was that purely peer-to-peer
electronic cash that does need an intermediary bank to transfer payments between peers.

Bitcoin is built on decades of cryptographic research such as the research in Merkle trees,
hash functions, public key cryptography, and digital signatures. Moreover, ideas such as
BitGold, b-money, hashcash, and cryptographic time stamping provided the foundations
for bitcoin invention. All these technologies are cleverly combined in bitcoin to create the
world's first decentralized currency. The key issue that has been addressed in bitcoin is an
elegant solution to the Byzantine Generals problem along with a practical solution of the
double-spend problem.

www.EBooksWorld.ir

Bitcoin

[113]

The value of bitcoin has increased significantly since 2011, as shown in the following graph:

Bitcoin price and volume since 2012 (on logarithmic scale)

The regulation of bitcoin is a controversial subject and as much as it is a libertarian's dream,
law enforcement agencies and governments are proposing various regulations to control it,
such as BitLicense issued by New York's state department of financial services. This is a
license issued to businesses that perform activities related to virtual currencies.

The growth of Bitcoin is also due to so-called Network Effect. Also called demand-side
economies of scale, it is a concept that basically means more users who use the network, the
more valuable it becomes. Over time, an exponential increase has been seen in the Bitcoin
network growth. Even though the price of bitcoin is quite volatile, it has increased
significantly over the last few years. Currently (at the time of writing this), bitcoin price is
815 GBP.

Bitcoin definition
Bitcoin can be defined in various ways; it's a protocol, a digital currency, and a platform. It
is a combination of peer-to-peer network, protocols, and software that facilitate the creation
and usage of the digital currency named bitcoin. Note that Bitcoin with a capital B is used to
refer to the Bitcoin protocol, whereas bitcoin with a lowercase b is used to refer to bitcoin,
the currency. Nodes in this peer-to-peer network talk to each other using the Bitcoin
protocol.

www.EBooksWorld.ir

Bitcoin

[114]

Decentralization of currency was made possible for the first time with the invention of
bitcoin. Moreover, the double spending problem was solved in an elegant and ingenious
way in bitcoin. Double spending problem arises when, for example, a user sends coins to
two different users at the same time and they are verified independently as valid
transactions.

Keys and addresses
Elliptic curve cryptography is used to generate public and private key pairs in the Bitcoin
network. The bitcoin address is created by taking the corresponding public key of a private
key and hashing it twice, first with the SHA256 algorithm and then with RIPEMD160. The
resultant 160-bit hash is then prefixed with a version number and finally encoded with a
Base58Check encoding scheme. The bitcoin addresses are 26-35 characters long and begin
with digit 1 or 3. A typical bitcoin address looks like a string shown here:

1ANAguGG8bikEv2fYsTBnRUmx7QUcK58wt

This is also commonly encoded in a QR code for easy sharing. The QR code of the preceding
address is shown in the following image:

QR code of a bitcoin address 1ANAguGG8bikEv2fYsTBnRUmx7QUcK58wt

Currently, there are two types of addresses, the commonly used P2PKH and another P2SH
type, starting with 1 and 3, respectively. In the early days, bitcoin used direct Pay-to-
Pubkey, which is now superseded by P2PKH. However, direct Pay-to-Pubkey is still used
in bitcoin for coinbase addresses. Addresses should not be used more than once; otherwise,
privacy and security issues can arise. Avoiding address reuse circumvents anonymity
issues to an extent, bitcoin has some other security issues as well, such as transaction
malleability, which requires different approaches to resolve.

www.EBooksWorld.ir

Bitcoin

[115]

From bitaddress.org private key and bitcoin address in a paper wallet

Public keys in bitcoin
In public key cryptography, public keys are generated from private keys. Bitcoin uses ECC
based on the SECP256K1 standard. A private key is randomly selected and is 256-bit in
length. Public keys can be presented in an uncompressed or compressed format. Public keys
are basically x and y coordinates on an elliptic curve and in an uncompressed format and
are presented with a prefix of 04 in a hexadecimal format. X and Y coordinates are both 32-
bit in length. In total, the compressed public key is 33 bytes long as compared to 65 bytes in
the uncompressed format. The compressed version of public keys basically includes only
the X part, since the Y part can be derived from it. The reason why the compressed version
of public keys works is that the bitcoin client initially used uncompressed keys, but starting
from bitcoin core client 0.6, compressed keys are used as the standard.

Keys are identified by various prefixes, described as follows:

Uncompressed public keys used 0x04 as the prefix
Compressed public key starts with 0x03 if the y 32-bit part of the public key is
odd
Compressed public key starts with 0x02 if the y 32-bit part of the public key is
even

The more detailed mathematical description and the reason why it works is described here.
If the ECC graph is visualized, it reveals that the y coordinate can be either below the x axis
or above the x axis and as the curve is symmetric, only the location in the prime field is
required to be stored.

www.EBooksWorld.ir

Bitcoin

[116]

Private keys in bitcoin
Private keys are basically 256-bit numbers chosen in the range specified by the SECP256K1
ECDSA recommendation. Any randomly chosen 256-bit number from 0x1 to 0xFFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4140 is a valid
private key.

Private keys are usually encoded using Wallet Import Format (WIF) in order to make them
easier to copy and use. WIF can be converted into private key and vice versa. The steps are
described here.

Also, Mini Private Key Format is sometimes used to encode the key in under 30 characters
in order to allow storage where physical space is limited, for example, etching on physical
coins or damage-resistant QR codes. The bitcoin core client also allows the encryption of the
wallet that contains the private keys.

Bitcoin currency units
Bitcoin currency units are described as follows. The smallest bitcoin denomination is the
Satoshi.

www.EBooksWorld.ir

Bitcoin

[117]

Base58Check encoding
This encoding is used to limit the confusion between various characters, such as 0OIl as
they can look the same in different fonts. The encoding basically takes the binary byte
arrays and converts them into human-readable strings. This string is composed by utlilizing
a set of 58 alphanumeric symbols. More explanation and logic can be found in the
base58.h source file in the bitcoin source code.

Explanation from the bitcoin source code

Bitcoin addresses are encoded using the Base58check encoding.

Vanity addresses
As bitcoin addresses are based on base 58 encoding, it is possible to generate addresses that
contain human-readable messages. An example is shown as follows:

Public address encoded in QR

www.EBooksWorld.ir

Bitcoin

[118]

Vanity addresses are generated using a purely brute-force method. An example is shown in
the following screenshot:

Vanity address generated from https://bitcoinvanitygen.com/

Transactions
Transactions are at the core of the bitcoin ecosystem. Transactions can be as simple as just
sending some bitcoins to a bitcoin address, or it can be quite complex depending on the
requirements. Each transaction is composed of at least one input and output. Inputs can be
thought of as coins being spent that have been created in a previous transaction and outputs
as coins being created. If a transaction is minting new coins, then there is no input and
therefore no signature is needed. If a transaction is to sends coins to some other user (a
bitcoin address), then it needs to be signed by the sender with their private key and a
reference is also required to the previous transaction in order to show the origin of the
coins. Coins are, in fact, unspent transaction outputs represented in Satoshis.

Transactions are not encrypted and are publicly visible in the blockchain. Blocks are made
up of transactions and these can be viewed using any online blockchain explorer.

The transaction life cycle
A user/sender sends a transaction using wallet software or some other interface.1.

www.EBooksWorld.ir

Bitcoin

[119]

The wallet software signs the transaction using the sender's private key.2.
The transaction is broadcasted to the Bitcoin network using a flooding algorithm.3.
Mining nodes include this transaction in the next block to be mined.4.
Mining starts once a miner who solves the Proof of Work problem broadcasts the5.
newly mined block to the network. Proof of Work is explained in detail later in
this chapter.
The nodes verify the block and propagate the block further, and confirmation6.
starts to generate.
Finally, the confirmations start to appear in the receiver's wallet and after7.
approximately six confirmations, the transaction is considered finalized and
confirmed. However, six is just a recommended number; the transaction can be
considered final even after the first confirmation. The key idea behind waiting for
six confirmations is that the probability of double spending is virtually
eliminated after six confirmations.

The transaction structure
A transaction at a high level contains metadata, inputs, and outputs. Transactions are
combined to create a block. The transaction structure is shown in the following table:

Field Size Description

Version Number 4 bytes Used to specify rules to be used by the miners and nodes for
transaction processing.

Input counter 1 bytes – 9
bytes

The number of inputs included in the transaction.

list of inputs variable Each input is composed of several fields, including Previous
transaction hash, Previous Txout-index, Txin-script length,
Txin-script, and optional sequence number. The first
transaction in a block is also called a coinbase transaction. It
specifies one or more transaction inputs.

Out-counter 1 bytes – 9
bytes

A positive integer representing the number of outputs.

list of outputs variable Outputs included in the transaction.

lock_time 4 bytes This defines the earliest time when a transaction becomes
valid. It is either a Unix timestamp or a block number.

www.EBooksWorld.ir

Bitcoin

[120]

MetaData: This part of the transaction contains some values such as the size of
the transaction, the number of inputs and outputs, the hash of the transaction,
and a lock_time field. Every transaction has a prefix specifying the version
number.
Inputs: Generally, each input spends a previous output. Each output is
considered an Unspent Transaction Output (UTXO) until an input consumes it.
Outputs: Outputs have only two fields, and they contain instructions for the
sending of bitcoins. The first field contains the amount of Satoshis, whereas the
second field is a locking script that contains the conditions that need to be met in
order for the output to be spent. More information on transaction spending using
locking and unlocking scripts and producing outputs is discussed later in this
section.
Verification: Verification is performed using bitcoin's scripting language.

A sample transaction is shown as follows:

A sample decoded transaction, showing various fields described earlier

www.EBooksWorld.ir

Bitcoin

[121]

The script language
Bitcoin uses a simple stack-based language called script to describe how bitcoins can be
spent and transferred. It is not Turing complete and has no loops to avoid any undesirable
effects of long running/hung scripts on the bitcoin network. This scripting language is based
on a Forth-like syntax and uses a reverse polish notation in which every operand is
followed by its operators. It is evaluated from the left to the right using a Last in First
Out (LIFO) stack.

Scripts use various Opcodes or instructions to define their operation. Opcodes are also
known as words, commands, or functions. Earlier versions of the bitcoin node had a few
Opcodes that are no longer used due to bugs discovered in their design.

The various categories of the scripting Opcodes are constants, flow control, stack, bitwise
logic, splice, and arithmetic, cryptography, and lock time.

A transaction script is evaluated by combining ScriptSig and ScriptPubKey. ScriptSig
is the unlocking script, whereas ScriptPubKey is the locking script. This is how a
transaction is evaluated to be spent; first, it is unlocked and then it is spent. ScriptSig is
provided by the user who wishes to unlock the transaction. ScriptPubkey is part of the
transaction output and specifies the conditions that need to be fulfilled in order to spend the
output. In other words, outputs are locked by the ScriptPubKey (Locking script) that
contains the conditions, when met will unlock the output, and coins can then be redeemed.

Commonly used Opcodes
All Opcodes are declared in the script.h file in the bitcoin reference client source code. This
can be accessed from the link at h t t p s ://g i t h u b . c o m /b i t c o i n /b i t c o i n /b l o b /m a s t e r /s r c

/s c r i p t /s c r i p t . h under the following comment:

/** Script opcodes */

www.EBooksWorld.ir

https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h

Bitcoin

[122]

A description of the most commonly used Opcodes is listed here. This table is taken from
the bitcoin developer's guide:

Opcode Description

OP_CHECKSIG This takes a public key and signature and validates the signature of the
hash of the transaction. If it matches, then TRUE is pushed onto the
stack; otherwise, FALSE is pushed.

OP_EQUAL This returns 1 if the inputs are exactly equal; otherwise, 0 is returned.

OP_DUP This duplicates the top item in the stack.

OP_HASH160 The input is hashed twice, first with SHA-256 and then with
RIPEMD-160.

OP_VERIFY This marks the transaction as invalid if the top stack value is not true.

OP_EQUALVERIFY This is the same as OP_EQUAL, but it runs OP_VERIFY afterwards.

OP_CHECKMULTISIG This takes the first signature and compares it against each public key
until a match is found and repeats this process until all signatures are
checked. If all signatures turn out to be valid, then a value of 1 is
returned as a result; otherwise, 0 is returned.

Types of transaction
There are various scripts available in bitcoin to handle the value transfer from the source to
the destination. These scripts range from very simple to quite complex depending upon the
requirements of the transaction. Standard transaction types are discussed here. Standard
transactions are evaluated using IsStandard() and IsStandardTx() tests and only
standard transactions that pass the test are generally allowed to be mined or broadcasted on
the bitcoin network. However, nonstandard transactions are valid and allowed on the
network.

Pay to Public Key Hash (P2PKH): P2PKH is the most commonly used
transaction type and is used to send transactions to the bitcoin addresses. The
format of the transaction is shown as folows:

ScriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

ScriptSig: <sig> <pubKey>

www.EBooksWorld.ir

Bitcoin

[123]

The ScriptPubKey and ScriptSig parameters are concatenated together and
executed. An example will follow shortly in this section, where this is explained in
more detail.

Pay to Script Hash (P2SH): P2SH is used in order to send transactions to a script
hash (that is, the addresses starting with 3) and was standardized in BIP16. In
addition to passing the script, the redeem script is also evaluated and must be
valid. The template is shown as follows:

ScriptPubKey: OP_HASH160 <redeemScriptHash> OP_EQUAL

ScriptSig: [<sig>…<sign>] <redeemScript>

MultiSig (Pay to MultiSig): M of n multisignature transaction script is a complex
type of script where it is possible to construct a script that required multiple
signatures to be valid in order to redeem a transaction. Various complex
transactions such as escrow and deposits can be built using this script. The
template is shown here:

ScriptPubKey: <m> <pubKey> [<pubKey> . . .] <n> OP_CHECKMULTISIG

ScriptSig: 0 [<sig > . . . <sign>]

Raw multisig is obsolete, and multisig is usually part of the P2SH redeem script,
mentioned in the previous bullet point.

Pay to Pubkey: This script is a very simple script that is commonly used in
coinbase transactions. It is now obsolete and was used in an old version of
bitcoin. The public key is stored within the script in this case, and the unlocking
script is required to sign the transaction with the private key.

The template is shown as follows:

<PubKey> OP_CHECKSIG

Null data/OP_RETURN: This script is used to store arbitrary data on the
blockchain for a fee. The limit of the message is 40 bytes. The output of this script
is unredeemable because OP_RETURN will fail the validation in any case.
ScriptSig is not required in this case.

The template is very simple and is shown as follows:

OP_RETURN <data>

www.EBooksWorld.ir

Bitcoin

[124]

A P2PKH script execution is shown as follows:

P2PKH script execution

All transactions are eventually encoded into the hex before transmitting over the bitcoin
network. A sample transaction is shown in hex that is retrieved using bitcoin-cli on the
bitcoin testnet by using the following command:

drequinox@drequinox-OP7010:~$ bitcoin-cli --testnet getrawtransaction
"08af7960ca9255c67686296fb65452ed3f96f18831c9a3d8ea552e4ccee5c4af"
0100000001b008bb28e3fde10a2161a9ae9029ebcfe6156e57b63e04f76048a9a06032553e0
10000006b483045022100cfb31edabc62c82b41d12f651d2e3e013ee1a7ee2bb4526f3dda64
0e6d8d224502207d8d1d8e41350b9cdf36f389f942ab68c12f113fe99014f5d6df661040787
7d20121037bc82d0078993f6943e7ff6e82e82da600f34edc8bca136331a9901c8bb60b0dfe
ffffff028085b50d000000001976a91407e78644a61343068fa8d4940a79976e758ac6ef88a
c95bddc1c000000001976a914dad770cccb1026ebf87acacfe35f2d6f2d336faa88ac33cb0e
00

Coinbase transactions
A coinbase transaction or generation transaction is always created by a miner and is the first
transaction in a block. It is used to create new coins. It includes a special field, also called
coinbase, which acts as an input to the coinbase transaction. This transaction also allows up
to 100 bytes of arbitrary data that can be used to store arbitrary data. In the genesis block,
this included the most famous comment taken from The Times newspaper:

“The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”

This message is proof that the genesis block was not mined earlier than January 3, 2009.

www.EBooksWorld.ir

Bitcoin

[125]

What is UTXO?
Unspent Transaction Output (UTXO) is an unspent transaction output that can be spent as
an input to a new transaction. Other concepts related to transactions in bitcoin are described
below.

Transaction fee
Transaction fees are charged by the miners. The fee charged is dependent upon the size of
the transaction. Transaction fees are calculated by subtracting the sum of the inputs and the
sum of the outputs. The fees are used as an incentive for miners to encourage them to
include a user transaction in the block the miners are creating. All transactions end up in the
memory pool, from where miners pick up transactions based on their priority to include
them in the proposed block. The calculation of priority is introduced later in this chapter;
however, from a transaction fee point of view, a transaction with a higher fee will be picked
up sooner by the miners. There are different rules based on which fee is calculated for
various types of actions, such as sending transactions, inclusion in blocks, and relaying by
nodes. Fees are not fixed by the Bitcoin protocol and are not mandatory; even a transaction
with no fee will be processed in due course but may take a very long time.

Contracts
As defined in the bitcoin core developer guide, contracts are basically transactions that use
the bitcoin system to enforce a financial agreement. This is a simple definition but has far-
reaching consequences as it allows users to design complex contracts that can be used in
many real-world scenarios. Contracts allow the development of a completely decentralized,
independent, and reduced risk platform. Various contracts, such as escrow, arbitration, and
micropayment channels, can be built using the bitcoin scripting language. The current
implementation of a script is very limited, but various types of contracts are still possible to
develop. For example, the release of funds only if multiple parties sign the transaction or
perhaps the release of funds only after a certain time has elapsed. Both of these scenarios
can be realized using multiSig and transaction lock time options.

Transaction malleability
Transaction malleability in bitcoin was introduced due to a bug in the bitcoin
implementation. Due to this bug, it becomes possible for an adversary to change the
Transaction ID of a transaction, thus resulting in a scenario where it would appear that a
certain transaction has not been executed. This can allow scenarios where double deposits
or withdrawals can occur. In other words, this bug allows the changing of the unique ID of
a bitcoin transaction before it is confirmed.

www.EBooksWorld.ir

Bitcoin

[126]

If the ID is changed before confirmation, it would seem that the transaction did not happen
at all, which can then allow double deposits or withdrawal attacks.

Transaction pools
Also known as memory pools, these pools are basically created in local memory by nodes in
order to maintain a temporary list of transactions that are not yet confirmed in a block.
Transactions are included in a block after passing verification and based on their priority.

Transaction verification
This verification process is performed by bitcoin nodes. The following is described in the
bitcoin developer guide:

Check the syntax and ensure that the syntax of the transaction is correct.1.
Verify that inputs and outputs are not empty.2.
Check whether the size in bytes is less than the maximum block size, which is 13.
MB currently.
The output value must be in the allowed money range (0 to 21 million BTC).4.
All inputs must have a specified previous output, except for coinbase5.
transactions, which should not be relayed.
Verify that nLockTime must not exceed 31-bits. For a transaction to be valid, it6.
should not be less than 100 bytes. Also, the number of signature operands in a
standard signature should be less than or not more than 2.
Reject nonstandard transactions; for example, ScriptSig is allowed to only push7.
numbers on the stack. ScriptPubkey not passing the isStandard() checks.
A transaction is rejected if there is already a matching transaction in the pool or in8.
a block in the main branch.
The transaction will be rejected if the referenced output for each input exists in9.
any other transaction in the pool.
For each input, there must exist a referenced output transaction. This is searched10.
in the main branch and the transaction pool to find whether the output
transaction is missing for any input, and this will be considered an orphan
transaction. It will be added to the orphan transactions pool if a matching
transaction is not in the pool already.
For each input, if the referenced output transaction is the coinbase, it must have11.
at least 100 confirmations; otherwise, the transaction will be rejected.
For each input, if the referenced output does not exist or has been spent already,12.
the transaction will be rejected.

www.EBooksWorld.ir

Bitcoin

[127]

Using the referenced output transactions to get input values, verify that each13.
input value, as well as the sum, is in the allowed range of 0-21 million BTC.
Reject the transaction if the sum of input values is less than the sum of output14.
values.
Reject the transaction if the transaction fee would be too low to get into an empty15.
block.

Blockchain
Blockchain is a public ledger of a timestamped, ordered, and immutable list of all
transactions on the bitcoin network. Each block is identified by a hash in the chain and is
linked to its previous block by referencing the previous block's hash.

In the following structure of a block, a block header is described, followed by a detailed
diagram that provides an insight into the blockchain structure.

The structure of a block
Bytes Name Description

80 Block header This includes fields from the block header described in the next
section.

variable Transaction counter The field contains the total number of transactions in the block,
including the coinbase transaction.

variable Transactions All transactions in the block.

The structure of a block header
Bytes Name Description

4 Version The block version number that dictates the block validation rules
to follow.

32 previous block
header hash

This is a double SHA256 hash of the previous block's header.

32 merkle root hash This is a double SHA256 hash of the merkle tree of all transactions
included in the block.

www.EBooksWorld.ir

Bitcoin

[128]

4 Timestamp This field contains the approximate creation time of the block in
the Unix epoch time format. More precisely, this is the time when
the miner has started hashing the header (the time from the
miner's point of view).

4 Difficulty target This is the difficulty target of the block.

4 Nonce This is an arbitrary number that miners change repeatedly in
order to produce a hash that fulfills the difficulty target threshold.

A visualization of blockchain, block, block header, transaction and script

As shown in the preceding diagram, blockchain is a chain of blocks where each block is
linked to its previous block by referencing the previous block header's hash. This linking
makes sure that no transaction can be modified unless the block that records it and all
blocks that follow it are also modified. The first block is not linked to any previous block
and is known as the genesis block.

www.EBooksWorld.ir

Bitcoin

[129]

The genesis block
This is the first block in the bitcoin blockchain. The genesis block was hardcoded in the
bitcoin core software. It is in the chainparams.cpp file.

h t t p s ://g i t h u b . c o m /b i t c o i n /b i t c o i n /b l o b /m a s t e r /s r c /c h a i n p a r a m s . c p p

Bitcoin provides protection against double spending by enforcing strict rules on transaction
verification and via mining. Blocks are added in the blockchain only after strict rule
checking and successful Proof of Work solution. Block height is the number of blocks before
a particular block in the blockchain. The current height (at the time of writing this) of the
blockchain is 434755 blocks. Proof of Work is used to secure the blockchain. Each block
contains one or more transactions, out of which the first transaction is a coinbase
transaction. There is a special condition for coinbase transactions that prevent them to be
spent until at least 100 blocks in order to avoid a situation where the block may be declared
stale later on.

Stale blocks are created when a block is solved and every other miner who is still working
to find a solution to the hash puzzle is working on that block. Mining and hash puzzles will
be discussed later in the chapter in detail. As the block is no longer required to be worked
on, this is considered a stale block.

Orphan blocks are also called detached blocks and were accepted at one point in time by the
network as valid blocks but were rejected when a proven longer chain was created that did
not include this initially accepted block. They are not part of the main chain and can occur
at times when two miners manage to produce the blocks at the same time.

The latest block version is version 4, which was proposed with BIP65 and has been used
since bitcoin core client 0.11.2 since the implementation of BIP9 bits in nVersion field are
being used to indicate softfork changes.

www.EBooksWorld.ir

https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp

Bitcoin

[130]

Because of the distributed nature of bitcoin, network forks can occurs naturally. In cases
where two nodes simultaneously announce a valid b lock can result in a situation where
there are two blockchains with different transactions. This is an undesirable situation but
can be addressed by the bitcoin network only by accepting the longest chain. In this case,
the smaller chain will be considered orphaned. If an adversary manages to gain 51% control
of the network hashrate (computational power), then they can impose their own version of
transaction history.

Forks in blockchain can occur with the introduction of changes in the Bitcoin protocol. In
case of soft fork, only previous valid blocks are no longer acceptable, thus making soft fork
backward compatible. In case of soft fork, only miners are required to upgrade to the new
client software in order to make use of the new protocol rules. Planned upgrades do not
necessarily create forks because all users should have updated already. A hard fork, on the
other hand, invalidates previously valid blocks and requires all users to upgrade. New
transaction types are sometimes added as a soft fork, and any changes such as block
structure change or major protocol changes results in hard fork.

The current size of the bitcoin blockchain as on February 4, 2017, stands at approximately
101 GB. The following figure shows the size increase of blockchain as a function of time:

Current size of blockchain as of 06/02/2017

New blocks are added to the blockchain approximately every 10 minutes and network
difficulty is adjusted dynamically every 2016 blocks in order to maintain a steady addition
of new blocks to the network.

www.EBooksWorld.ir

Bitcoin

[131]

Network difficulty is calculated using the following equation:

Target = Previous target * Time/2016 * 10 minutes

Difficulty and target are interchangeable and represent the same thing. Previous target
represents the old target value, and time is the time spent to generate previous 2016 blocks.
Network difficulty basically means how hard it is for miners to find a new block, that is,
how difficult the hashing puzzle is now.

In the section, mining is discussed, which will explain how a hashing puzzle is solved.

Mining
Mining is a resource-intensive process by which new blocks are added to the blockchain.
Blocks contain transactions that are validated via the mining process by mining nodes and
are added to the blockchain. This process is resource-intensive in order to ensure that the
required resources have been spent by miners in order for a block to be accepted. New coins
are minted by the miners by spending the required computing resources. This also secures
the system against frauds and double spending attacks while adding more virtual currency
to the bitcoin ecosystem.

Roughly one new block is created (mined) every 10 minute. Miners are rewarded with new
coins if and when they create new blocks and are paid transaction fees in return of
including transactions in their blocks. New blocks are created at an approximate fixed rate.
Also, the rate of creation of new bitcoins decreases by 50%, every 210,000 blocks, roughly
every 4 years. When bitcoin was initially introduced, the block reward was 50 bitcoins; then
in 2012, this was reduced to 25 bitcoins. In July 2016, this was further reduced to 12.5 coins
(12 coins) and the next reduction is estimated to be on July 4, 2020. This will reduce the coin
reward further down to approximately six coins.

Approximately 144 blocks, that is, 1,728 bitcoins are generated per day. The number of
actual coins can vary per day; however, the number of blocks remains at 144 per day.
Bitcoin supply is also limited and in 2140, almost 21 million bitcoins will be finally created
and no new bitcoins can be created after that. Bitcoin miners, however, will still be able to
profit from the ecosystem by charging transaction fees.

www.EBooksWorld.ir

Bitcoin

[132]

Task of miners
Once a node connects with the bitcoin network, there are several tasks that a bitcoin miner
performs.

Synching up with the network
Once a new node joins the bitcoin network, it downloads the blockchain by requesting
historical blocks from other nodes. This is mentioned here in the context of the bitcoin
miner; however, this not necessarily a task only for a miner.

Transaction validation: Transactions broadcasted on the network are validated
by full nodes by verifying and validating signatures and outputs.

Block validation: Miners and full nodes can start validating blocks received by
them by evaluating them against certain rules. This includes the verification of
each transaction in the block along with verification of the nonce value.

Create a new block: Miners propose a new block by combining transactions
broadcasted on the network after validating them.

Perform Proof of Work: This task is the core of the mining process and this is
where miners find a valid block by solving a computational puzzle. The block
header contains a 32-bit nonce field and miners are required to repeatedly vary
the nonce until the resultant hash is less than a predetermined target.

Fetch reward: Once a node solves the hash puzzle, it immediately broadcasts the
results, and other nodes verify it and accept the block. There is a slight chance
that the newly minted block will not be accepted by other miners due to a clash
with another block found at roughly the same time, but once accepted, the miner
is rewarded with 12.5 bitcoins (as of 2016) and any associated transaction fees.

www.EBooksWorld.ir

Bitcoin

[133]

Proof of Work
This is a proof that enough computational resources have been spent in order to build a
valid block. Proof of Work (PoW) is based on the idea that a random node is selected every
time to create a new block. In this model, nodes compete with each other in order to be
selected in proportion to their computing capacity. The following equation sums up the
Proof of Work requirement in bitcoin:

H (N || P_hash || Tx || Tx || . . . Tx) < Target

Where N is a nonce, P_hash is a hash of the previous block, Tx represents transactions in the
block, and Target is the target network difficulty value. This means that the hash of the
previously mentioned concatenated fields should be less than the target hash value.
The only way to find this nonce is the brute force method. Once a certain pattern of a certain
number of zeroes is met by a miner, the block is immediately broadcasted and accepted by
other miners.

The mining algorithm
The mining algorithm consists of the following steps.

The previous hash block is retrieved from the bitcoin network.
Assemble a set of potential transactions broadcasted on the network into a block.
Compute the double hash of the block header with a nonce and the previous hash
using the SHA256 algorithm.
If the resultant hash is lower than the current difficulty level (target), then stop
the process.
If the resultant hash is greater than the current difficulty level (target), then
repeat the process by incrementing the nonce. As the hash rate of the bitcoin
network increased, the total amount of 32-bit nonces was exhausted too quickly.
In order to address this issue, the extra nonce solution was implemented, whereby
the coinbase transaction is used as a source of extra nonce to provide a larger
range of nonces to be searched by the miners.

www.EBooksWorld.ir

Bitcoin

[134]

Mining difficulty increased over time and bitcoins that could be mined by single
CPU laptop computers now require dedicated mining centers to solve the hash
puzzle. The current difficulty level can be queried using the bitcoin command
line interface using the following command:

 $ bitcoin-cli getdifficulty
 258522748404.5154

Mining difficulty over time

The value returned by the getdifficulty command.

The hashing rate
The hashing rate basically represents the rate of calculating hashes per second. In early days
of bitcoin, it used to be quite small as CPUs were used, but with dedicated mining pools
and ASICs now, this has gone up exponentially in the last few years. This has resulted in
increased difficulty. The following hash rate graph shows the hash rate increase over time
and is currently measured in Exa hashes. This means that in 1 second, bitcoin network
miners are computing more than 1 000 000 000 000 000 000 hashes per second.

www.EBooksWorld.ir

Bitcoin

[135]

Hashing rate as of 06/02/2017, shown over a period of two years

Mining systems
Over time, bitcoin miners have used various methods to mine bitcoins. As the core principle
behind mining is based on the double SHA256 algorithm, overtime miners have developed
sophisticated systems to calculate the hash faster and faster. The following is a review of the
different types of mining methods used in bitcoin and how they evolved with time.

CPU
CPU mining was the first type of mining available in the original bitcoin client. Users could
even use laptop or desktop computers to mine bitcoins. CPU mining is no longer profitable
and now more advanced mining methods such as ASIC-based mining are used.

GPU
Due to the increased difficulty of the bitcoin network and general tendency of finding faster
methods to mine, miners started to use GPUs or graphics cards available in PCs to perform
mining. GPUs support faster and parallelized calculations that are usually programmed
using the OpenCL language. This turned out to be a faster option as compared to CPUs.
Users also used techniques such as overclocking to gain maximum benefit of the GPU
power. Also, the possibility of using multiple graphics cards increased the popularity of
graphics cards' usage for bitcoin mining. GPU mining, however, has some limitations, such
as overheating and the requirement for specialized motherboards and extra hardware to
house multiple graphics cards.

www.EBooksWorld.ir

Bitcoin

[136]

FPGA
Even GPU mining did not last long, and soon miners found another way to perform mining
using FPGAs. Field Programmable Gate Array (FPGA) is basically an integrated circuit
that can be programmed to perform specific operations. FPGAs are usually programmed in
hardware description languages (HDLs), such as Verilog and VHDL. Double SHA256
quickly became an attractive programming task for FPGA programmers and several open
source projects started too. FPGA offered much better performance as compared to GPUs;
however, issues such as accessibility, programming difficulty, and the requirement for
specialized knowledge to program and configure FPGAs resulted in a short life of the FPGA
era for bitcoin mining. Also, the arrival of ASICs resulted in quickly phased out FPGA-
based systems for mining. Mining hardware such as X6500 miner, Ztex, and Icarus were
developed during the time when FPGA mining was profitable. Various FPGA
manufacturers, such as Xilinx and Altera, produce FPGA hardware and development
boards that can be used to program mining algorithms.

ASICs
Application Specific Integrated Circuit (ASIC) was designed to perform the SHA-256
operation. These special chips were sold by various manufacturers and offered a very high
hashing rate. This worked for some time, but due to the quickly increasing mining difficulty
level, single-unit ASICs are no longer profitable.

Currently, mining is out of the reach of individuals and now professional mining centers
using thousands of ASIC units in parallel are offering mining contracts to users to perform
mining on their behalf. There is no technical limitation, that's why a single user cannot run
thousands of ASICs in parallel, but it will require dedicated data centers and hardware and
cost for a single individual can become prohibitive.

Four types of mining (CPU, GPU, FPGA, and ASIC)

www.EBooksWorld.ir

Bitcoin

[137]

Mining pools
A mining pool forms when group miners work together to mine a block. The Pool manager
receives the coinbase transaction if the block is successfully mined, which is then
responsible for distributing the reward to the group of miners who invested resources to
mine the block. This is profitable as compared to solo mining, where only one sole miner is
trying to solve the partial hash inversion function (hash puzzle) because in mining pools,
the reward is paid to each member of the pool regardless of whether they (more specifically,
their individual node) solved the puzzle or not.

There are various models that a mining pool manager can use to pay to the miners, such as
the pay-per-share model and the proportional model. In the pay per share model, the
mining pool manager pays a flat fee to all miners who participated in the mining exercise,
whereas in the proportional model, the share is calculated based on the amount of
computing resources spent to solve the hash puzzle.

Many commercial pools now exist and provide mining service contracts via the cloud and
easy-to-use web interfaces. The most commonly used ones are AntPool, F2Pool, and
BW.COM. A comparison of hashing power for all major mining pools is shown in the
following image:

Mining pools and their hashing power (hash rate) as of 06/02/2017, taken from https://blockchain.info/pools

www.EBooksWorld.ir

Bitcoin

[138]

Mining centralization is a major concern that can occur if a pool manages to control more
than 51% of the network by generating more than 51% hash rate of the bitcoin network. As
discussed earlier in the introduction section, 51% attack can result in double spending
attacks, and it can impact consensus and in fact impose another version of transaction
history on the bitcoin network.

This has happened once in the bitcoin history, when GHash.IO, a large mining pool,
managed to acquire more than 51% of the network capacity. Theoretical solutions , such as
two-phase Proof of Work, have been proposed in academia to disincentivize large mining
pools. This scheme introduces a second cryptographic puzzle that results in mining pools to
reveal their private keys or providing a considerable portion of the hashrate of their mining
pool, thus reducing the overall hashrate of the pool.

Various types of hardware are commercially available for mining purposes. Currently, the
most profitable one is ASIC mining, and specialized hardware is available from a number of
vendors. Solo mining is not much profitable now unless a vast amount of money and
energy is spent to build your own mining rig or even center. With the current difficulty
factor (Oct 2016), if a user manages to produce a hash rate of 12 TH/s, they can hope to
make 0.01366887 BTC (around $8) per day, which is very low as compared to the
investment required to source the equipment that can produce 12 TH. Including running
costs such as electricity, this turns out to be not very profitable.

The bitcoin network
The bitcoin network is a P2P network where nodes exchange transactions and blocks. There
are different types of nodes on the network. There are two main types of nodes, full nodes
and SPV nodes. Full nodes, as the name implies, are implementations of bitcoin core clients
performing the wallet, miner, full blockchain storage, and network routing functions.
However, it is not necessary to perform all these functions. SPV nodes or lightweight clients
perform only wallet and network routing functionality. The latest version of Bitcoin
protocol is 70014 and was introduced with bitcoin core client 0.13.0.

Some nodes prefer to be full blockchain nodes only and contain complete blockchain and
perform network routing functions but do not perform mining or store private keys (the
wallet function). Another type is solo miner nodes that can perform mining, store full
blockchain, and act as a bitcoin network routing node.

www.EBooksWorld.ir

Bitcoin

[139]

There are a few nonstandard but heavily used nodes that are called pool protocol servers.
These nodes make use of alternative protocols, such as the stratum protocol. Some nodes
perform only mining functions and are called mining nodes. Nodes that only compute
hashes use the stratum protocol to submit their solutions to the mining pool. It is possible to
run an SPV client runs a wallet and network routing function without a blockchain.

Most protocols on the Internet are line-based, which means that each line is delimited by a
carriage return and newline \r \n character. Stratum is also a line-based protocol that
makes use of plain TCP sockets and human-readable JSON-RPC to operate and
communicate between nodes.

Bitcoin network is identified by its different magic values. A list is shown as follows:

Bitcoin network magic values

Magic values are used to indicate the message origin network.

A full node performs four functions: wallet, miner, blockchain, and the network routing
node.

When a bitcoin core node starts up, first, it initiates the discovery of all peers. This is
achieved by querying DNS seeds that are hardcoded into the bitcoin core client and are
maintained by bitcoin community members. This lookup returns a number of DNS A
records. The bitcoin protocol works on TCP port 8333 by default for the main network and
TCP 18333 for testnet.

DNSSeeds in chainparams.cpp

www.EBooksWorld.ir

Bitcoin

[140]

First, the client sends a protocol message Version that contains various fields, such as
version, services, timestamp, network address, nonce, and some other fields. The remote
node responds with its own version message followed by verack message exchange
between both nodes, indicating that the connection has been established.

After this, Getaddr and addr messages are exchanged to find the peers that the client do not
know. Meanwhile, either of the nodes can send a ping message to see whether the
connection is still live.

Now the block download can begin. If the node already has all blocks fully synchronized,
then it listens for new blocks using the Inv protocol message; otherwise, it first checks
whether it has a response to inv messages and have inventories already. If yes, then it
requests the blocks using the Getdata protocol message; if not, then it requests inventories
using the GetBlocks message. This method was used until version 0.9.3.

Protocol visualization node discovery

www.EBooksWorld.ir

Bitcoin

[141]

Initial block download can use blocks first or the headers-first method to synchronize
blocks depending on the version of the bitcoin core client. The blocks-first method is very
slow and was discontinued since version 0.10.0.

Since version 0.10.0, the initial block download method named headers-first was
introduced. This resulted in major performance improvement and the blockchain
synchronization that used to take days to complete started taking only a few hours. The
core idea is that the new node-first asks peers for block headers and validates them. Once
this is completed, blocks are requested in parallel from all available peers as the blueprint of
the complete chain is already downloaded in the form of the block header chain.

In this method, when the client starts up, it checks whether the block chain is fully
synchronized already if the header chain is already synchronized; if not, which is the case
the first time the client starts up, it requests headers from other peers using the getHeaders
message. If the block chain is fully synchronized, it listens for new blocks via Inv messages,
and if it already has a fully synchronized header chain, then it requests blocks using Getdata
protocol messages. The node also checks whether the header chain has more headers than
blocks and then it requests blocks by issuing the Getdata protocol message.

Bitcoin Core Client >= 0.10.0 header and block synchronization, IBD = Initial block download and sync node means the node from where the blocks are being requested from

www.EBooksWorld.ir

Bitcoin

[142]

Getblockchaininfo and getpeerinfo RPCs were updated with a new functionality to
cater for this change. An RPC, getchaintips, is used to list all known branches of the
blockchain. This also includes headers only blocks. Getblockchaininfo is used to
provide the information about the current state of the blockchain. Getpeerinfo is used to
list both the number of blocks and the headers that are in common between peers.

Wireshark can also be used to visualize message exchange between peers and can serve as
an invaluable tool to learn about the Bitcoin protocol. A sample is shown here. This is a
basic example showing the version, verack, getaddr, ping, addr, and inv messages.

In the details, valuable information such as the packet type, command name, and results of
the protocol messages can be seen.

A sample block message in wireshark

A protocol graph showing the flow of data between the two peers is shown here. This can
help you understand when a node starts up and what type of messages are used.

In the following example, the bitcoin dissector is used to analyze the traffic and identify the
Bitcoin protocol commands.

www.EBooksWorld.ir

Bitcoin

[143]

Exchange of messages such as the version, getaddr, and getdata can be seen in the
following example along with the appropriate comment describing the message name. This
exercise can be very useful in order to learn bitcoin and it is recommended that the
experiments be carried out on the bitcoin testnet, where various messages and transactions
can be sent over the network and then be analyzed by Wireshark.

There are 27 types of protocol messages in total, but they're likely to increase over time as
the protocol grows. The most commonly used protocol messages and their explanation
are listed as follows:

Version: This is the first message that a node sends out to the network,
advertising its version and block count. The remote node then replies with the
same information and the connection is then established.
Verack : This is the response of the version message accepting the connection
request.
Inv: This is used by nodes to advertise their knowledge of blocks and
transactions.

www.EBooksWorld.ir

Bitcoin

[144]

Getdata : This is a response to inv, requesting a single block or transaction
identified by its hash.
Getblocks: This returns an inv packet containing the list of all blocks starting
after the last known hash or 500 blocks.
Getheaders : This is used to request block headers in a specified range.
Tx : This is used to send a transaction as a response to the getdata protocol
message.
Block: This sends a block in response to the getdata protocol message.
Headers: This packet returns up to 2,000 block headers as a reply to the
getheaders request.
Getaddr: This is sent as a request to get information about known peers.
Addr: This provides information about nodes on the network. It contains the
number of addresses and address list in the form of IP address and port number.
Full client and SPV client: Full clients are thick clients or full nodes that
download the entire blockchain; this is the most secure method of validating the
blockchain as a client. Bitcoin network nodes can operate in two fundamental
modes: full client or lightweight SPV client. SPV clients are used to verify
payments without requiring the download of a full blockchain. SPV nodes only
keep a copy of block headers of the current valid longest blockchain. Verification
is performed by looking at the merkle branch that links the transactions to the
original block the transaction was accepted in. This is not very practical and
requires a more practical approach, which was implemented with BIP37, where
bloom filters were used to filter out relevant transactions only.

Bloom filters: Bloom filter is basically a data structure (a bit vector with indexes)
that is used to test the membership of an element in a probabilistic manner. It
basically provides probabilistic lookup with false positives but no false negatives.
Elements are added to the bloom filter after hashing them several times and then
set the corresponding bits in the bit vector to 1 via the corresponding index. In
order to check the presence of the element in the bloom filter, the same hash
functions are applied and compared with the bits in the bit vector to see whether
the same bits are set to 1. Not every hash function (such as SHA1) is suitable for
bloom filters as they need to be fast, independent, and uniformly distributed. The
most commonly used hash functions for bloom filters are fnv, mumur, and
Jenkins.

www.EBooksWorld.ir

Bitcoin

[145]

These filters are mainly used by simple payment verification SPV clients to
request transactions and the merkle blocks they are interested in. A merkle block
is a lightweight version of the block, which includes a block header, some hashes,
a list of 1-bit flags, and a transaction count. This information can then be used to
build a merkle tree. This is achieved by creating a filter that matches only those
transaction and blocks that have been requested by the SPV client. Once version
messages have been exchanged and connection has been established between
peers, the nodes can set filters according to their requirements. These probabilistic
filters offer a varying degree of privacy or precision depending upon how
accurately or loosely they have been set. A strict bloom filter will only filter
transactions that have been requested by the node but at the expense of the
possibility of revealing the user addresses to adversaries who can correlate
transactions with their IP addresses, thus compromising privacy. On the other
hand, a loosely set filter can result in retrieving more unrelated transactions but
will offer more privacy. Also, for SPV clients, bloom filters allow them to use low
bandwidth as opposed to downloading all transactions for verification.

BIP 37 proposed the bitcoin implementation of bloom filters and introduced three
new messages to the Bitcoin protocol.
Filterload: This is used to set the bloom filter on the connection.
Filteradd: This adds a new data element to the current filter.
FilterClear: This deletes the currently loaded filter.

More details can be found in the BIP37 specification.

Wallets
The wallet software is used to store private or public keys and bitcoin address. It performs
various functions, such as receiving and sending bitcoins. Nowadays, software usually
offers both functionalities: bitcoin client and wallet. On the disk, the bitcoin core client
wallets are stored as the Berkeley DB file:

:~/.bitcoin$ file wallet.dat

wallet.dat: Berkeley DB (Btree, version 9, native byte-order)

Private keys can be generated in different ways and are used by different types of wallets.
Wallets do not store any coins, and there is no concept of wallets storing balance or coins for
a user. In fact, in the bitcoin network, coins do not exist; instead, only transaction
information is stored on the blockchain (more precisely, UTXO, unspent outputs), which are
then used to calculate the amount of bitcoins.

www.EBooksWorld.ir

Bitcoin

[146]

Wallet types
In bitcoin, there are different types of wallets that can be used to store private keys. As a
software program, they also provide some functions to the users to manage and carry out
transactions on the bitcoin network.

Non-deterministic wallets
These wallets contain randomly generated private keys and are also called Just a Bunch of
Key wallets. The bitcoin core client generates some keys when first started and generates
keys as and when required. Managing a large number of keys is very difficult and an error-
prone process can lead to theft and loss of coins. Moreover, there is a need to create regular
backups of the keys and protect them appropriately in order to prevent theft or loss.

Deterministic wallets
In this type of wallet, keys are derived out of a seed value via hash functions. This seed
number is generated randomly and is commonly represented by human-readable mnemonic
code words. Mnemonic code words are defined in BIP39. This phrase can be used to recover
all keys and makes private key management comparatively easier.

Hierarchical deterministic wallets
Defined in BIP32 and BIP44, HD wallets store keys in a tree structure derived from a seed.
The seed generates the parent key (master key), which is used to generate child keys and,
subsequently, grandchild keys. Key generation in HD wallets does not generate keys
directly; instead, it produces some information (private key generation information) that
can be used to generate a sequence of private keys. The complete hierarchy of private keys
in an HD wallet is easily recoverable if the master private key is known. It is because of this
property that HD wallets are very easy to maintain and are highly portable.

Brain wallets
The master private key can also be derived from the hash of passwords that are memorized.
The key idea is that this passphrase is used to derive the private key and if used in HD
wallets, this can result in a full HD wallet that is derived from a single memorized
password. This is known as brain wallet. This method is prone to password guessing and
brute force attacks but techniques such as key stretching can be used to slow down the
progress made by the attacker.

www.EBooksWorld.ir

Bitcoin

[147]

Paper wallets
As the name implies, this is a paper-based wallet with the required key material printed on
it. It requires physical security to be stored. Paper wallets can be generated online from
various service providers, such as h t t p s ://b i t c o i n p a p e r w a l l e t . c o m / or h t t p s ://w w w . b i

t a d d r e s s . o r g /.

Hardware wallets
Another method is to use a tamper-resistant device to store keys. This tamper-resistant
device can be custom-built or with the advent of NFC-enabled phones, this can also be a
secure element (SE) in NFC phones. Trezor and Ledger wallets (various types) are the most
commonly used bitcoin hardware wallets.

Trezor Wallet

Online wallets
Online wallets, as the name implies, are stored entirely online and are provided as a service
usually via cloud. They provide a web interface to the users to manage their wallets and
perform various functions such as making and receiving payments. They are easy to use but
imply that the user trust the online wallet service provider.

www.EBooksWorld.ir

https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://bitcoinpaperwallet.com/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/
https://www.bitaddress.org/

Bitcoin

[148]

Mobile wallets
Mobile wallets, as the name suggests, are installed on mobile devices. They can provide
various methods to make payments, most notably the ability to use smart phone cameras to
scan QR codes quickly and make payments. Mobile wallets are available for the Android
platform and iOS, for example, breadwallet, copay, and Jaxx.

Jaxx Mobile wallet

Bitcoin payments
Bitcoins can be accepted as payments using various techniques. Bitcoin is not recognized as
a legal currency in many jurisdictions, but it is increasingly being accepted as a payment
method by many online merchants and e-commerce websites. There are a numbers of ways
in which buyers can pay the business that accepts bitcoins. For example, in an online shop,
bitcoin merchant solutions can be used, whereas in traditional physical shops, point of sale
terminals and other specialized hardware can be used. Customers can simply scan the QR
barcode with the seller's payment URI in it and pay using their mobile devices. Bitcoin URIs
allow users to make payments by simply clicking on links or scanning QR codes. URI
(Uniform Resource Idenfier) is basically a string that represents the transaction
information. It is defined in BIP21. The QR code can be displayed near the point of the sale
terminal. Nearly all bitcoin wallets support this feature.

www.EBooksWorld.ir

Bitcoin

[149]

Business can use the following screenshot to advertise that they can accept bitcoins as
payment.

bitcoin accepted here logo

Various payment solutions, such as xbtterminal and 34 bytes bitcoin POS terminal are
available commercially.

34 bytes POS solution.

Bitcoin payment processor, offered by many online service providers, allows integration
with e-commerce websites. A simple Internet search can reveal many options.

www.EBooksWorld.ir

Bitcoin

[150]

Various BIPs have been proposed and finalized in order to introduce and standardize
bitcoin payments. Most notably, BIP 70 (secure payment protocol) describes the protocol for
secure communication between a merchant and customers. This protocol uses X.509
certificates for authentication and runs over HTTP and HTTPS. There are three messages in
this protocol: PaymentRequest, Payment, and PaymentACK. The key features of this
proposal is defence against man-in-the-middle attacks and secure proof of payment. Man
in-the-middle attacks can result in a scenario where the attacker is sitting between the
merchant and the buyer and it would seem to the buyer that they are talking to the
merchant, but in fact, the man in the middle is interacting with the buyer instead of the
merchant. This can result in manipulation of the merchant's bitcoin address to defraud the
buyer.

Several others BIPs, such as BIP71 and BIP72, have also been proposed to standardize
payment message encapsulation and URI scheme to support BIP70.

Bitcoin lightning network, a solution for scalable off-chain instant payments, was
introduced in early 2016, which allows off-blockchain payments. The network makes use of
payments channels that run off the blockchain. This allows greater speed and scalability of
bitcoin. This paper is available at h t t p s ://l i g h t n i n g . n e t w o r k / and interested readers are
encouraged to read the paper in order to understand the theory and rationale behind this
invention.

Bitcoin investment and buying and selling
bitcoins
There are many online exchanges where users can buy and sell bitcoins. This is a big
business on the Internet now and it offers bitcoin trading, CFDs, spread betting, margin
trading, and various other choices. Traders can buy bitcoins or trade by opening long or
short positions to make profit when bitcoin's price goes up or down. Several other features,
such as exchanging bitcoins for other virtual currencies, are also possible, and many online
bitcoin exchanges provide this function. Advanced market data, trading strategies, charts,
and relevant data to support traders is also available. An example is shown from CEX.IO
here. Other exchanges offer similar types of services.

www.EBooksWorld.ir

https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/
https://lightning.network/

Bitcoin

[151]

Example of bitcoin exchange cex.io

The following screenshot shows the order book at the exchange where all buy and sell
orders are listed:

Example of bitcoin order book at exchange cex.io

www.EBooksWorld.ir

Bitcoin

[152]

Bitcoin installation
The bitcoin core client can be installed from h t t p s ://b i t c o i n . o r g /e n /d o w n l o a d . This is
available for different architectures and platforms ranging from x86 windows to ARM
Linux, as shown in the following image:

Setting up a bitcoin node
A sample run of the bitcoin core installation on Ubuntu is shown here; for other platforms,
you can get details from www.bitcoin.org.

www.EBooksWorld.ir

https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
http://www.bitcoin.org/

Bitcoin

[153]

Step 2:

drequinox@drequinox-OP7010:~$ sudo apt-get update

Depending on the client required, users can use either of the following commands, or they
can issue both commands at once:

sudo apt-get install bitcoind
sudo apt-get install bitcoin-qt
drequinox@drequinox-OP7010:~$ sudo apt-get install bitcoin-qt bitcoind
Reading package lists... Done
Building dependency tree
Reading state information... Done
.......

Setting up the source code
The bitcoin source code can be downloaded and compiled if users wish to participate in the
bitcoin code or for learning purpose. Git can be used to download the bitcoin source code:

$ sudo apt-get install git
$ mkdir bcsource
$ cd bcsource
drequinox@drequinox-OP7010:~/bcsource $ git clone
https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Counting objects: 78960, done.

www.EBooksWorld.ir

Bitcoin

[154]

remote: Compressing objects: 100% (3/3), done.
remote: Total 78960 (delta 0), reused 0 (delta 0), pack-reused 78957
Receiving objects: 100% (78960/78960), 72.53 MiB | 1.85 MiB/s, done.
Resolving deltas: 100% (57908/57908), done.
Checking connectivity... done.
drequinox@drequinox-OP7010:~/bcsource$

Change the directory to bitcoin:

drequinox@drequinox-OP7010:~/bcsource$ cd bitcoin

After the preceding steps are completed, the code can be compiled:

drequinox@drequinox-OP7010:~/bcsource/bitcoin$./autogen.sh
drequinox@drequinox-OP7010:~/bcsource/bitcoin$./configure.sh
drequinox@drequinox-OP7010:~/bcsource/bitcoin$ make
drequinox@drequinox-OP7010:~/bcsource/bitcoin$ sudo make install

Setting up bitcoin.conf
bitcoin.conf file is a configuration file that is used by the bitcoin core client to save
configuration settings. All command line options for the bitcoind client with the exception
of -conf switch can be set up in the configuration file, and when bitcoin-qt or bitcoind will
start up, it will take the configuration information from that file.

In Linux systems, this is usually found in $HOME/.bitcoin/, or it can also specified in the
command line using the -conf=<file> switch to bitcoind core client software.

Starting up a node in testnet
The bitcoin node can be started in the testnet mode if you want to test the bitcoin network
and run an experiment. This is a faster network as compared to the live network and has
relaxed rules for mining and transactions.

Various faucet services are available for the bitcoin test network. One example is Bitcoin
TestNet sandbox, where users can request bitcoins to be paid to their testnet bitcoin
address. This can be accessed via h t t p s ://t e s t n e t . m a n u . b a c k e n d . h a m b u r g /. This is very
useful for experimentation with transactions on test net.

The command line to start up test net is as follows:

bitcoind --testnet -daemon
bitcoin-cli --testnet <command>
bitcoin-qt --testnet

www.EBooksWorld.ir

https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/
https://testnet.manu.backend.hamburg/

Bitcoin

[155]

Starting up a node in regtest
The regtest mode (regression testing mode) can be used to create a local blockchain for
testing purposes.

The following commands can be used to start up a node in the reg test mode:

bitcoind -regtest -daemon
Bitcoin server starting

Blocks can be generated using the following command:

bitcoin-cli -regtest generate 200

Relevant log messages can be viewed in the .bitcoin/regtest directory on a Linux
system under debug.log.

After block generation, the balance can be viewed as follows:

drequinox@drequinox-OP7010:~/.bitcoin/regtest$ bitcoin-cli -regtest
getbalance
8750.00000000

The node can be stopped using this:

drequinox@drequinox-OP7010:~/.bitcoin$ bitcoin-cli -regtest stop
Bitcoin server stopping

Starting up a node in live mainnet
Bitcoind is the core client software that can be run as a daemon, and it provides the JSON
RPC interface.

www.EBooksWorld.ir

Bitcoin

[156]

Bitcoin-cli is the command line feature-rich tool to interact with the daemon; the daemon
then interacts with the blockchain and performs various functions. Bitcoin-cli calls only
JSON-RPC functions and does not perform any actions on its own on the blockchain.

Bitcoin-qt is the bitcoin core client GUI. When the wallet software starts up first, it verifies
the blocks on the disk and then starts up and shows the following GUI:

Bitcoin Core QT client, just after installation, showing that blockchain is not in sync

The verification process is not specific to the Bitcoin-qt client; it is performed by the bitcoind
client as well.

www.EBooksWorld.ir

Bitcoin

[157]

Experimenting with bitcoin-cli
Bitcoin-cli is the command-line interface available with the bitcoin core client and can be
used to perform various functions using the RPC interface provided by the bitcoin core
client.

A sample run of bitcoin-cli getinfo; the same format can be used to invoke other commands

A list of all commands can be shown via the following command:

Testnet bitcoin-cli, this is just the first few lines of the output, actual output has many commands

www.EBooksWorld.ir

Bitcoin

[158]

HTTP REST: Starting from bitcoin core client 0.10.0, the HTTP REST interface is
also available. By default, this runs on the same TCP port 8332 as JSON-RPC.

Bitcoin programming and the command-line
interface
Bitcoin programming is a very rich field now. The bitcoin core client exposes various JSON
RPC commands that can be used to construct raw transactions and perform other functions
via custom scripts or programs. Also, the command line tool Bitcoin-cli is available, which
makes use of the JSON-RPC interface and provides a rich toolset to work with Bitcoin.

These APIs are also available via many online service provider in the form of bitcoin APIs,
and they provide a simple HTTP REST interface. Bitcoin APIs, such as blockchain.info
and bitpay, block.io, and many others, offer a myriad of options to develop bitcoin-based
solutions.

Various libraries are available for bitcoin programming. A list is shown as follows, and
those if you interested can further explore the libraries.

Libbitcoin: Available at h t t p s ://l i b b i t c o i n . d y n e . o r g / and provides powerful
command line utilities and clients.
Pycoin: Available at h t t p s ://g i t h u b . c o m /r i c h a r d k i s s /p y c o i n , is a library for Python.

Bitcoinj: This library is available at h t t p s ://b i t c o i n j . g i t h u b . i o / and is implemented in
Java.

There are many online bitcoin APIs available; the most commonly used APIs are listed as
follows:

h t t p s ://b i t c o r e . i o /

h t t p s ://b i t c o i n j s . o r g /

h t t p s ://b l o c k c h a i n . i n f o /a p i

www.EBooksWorld.ir

https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://libbitcoin.dyne.org/
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://github.com/richardkiss/pycoin
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcore.io/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://bitcoinjs.org/
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api
https://blockchain.info/api

Bitcoin

[159]

All APIs offer more or less the same type of functionality, and it gets difficult to choose
which API is the best.

Bitcoin improvement proposals (BIPs)
These documents are used to propose or inform the bitcoin community about the
improvements suggested, the design issues, or information about some aspects of the
bitcoin ecosystem. There are three types of bitcoin improvement proposals, abbreviated as
BIPs:

Standard BIP: Used to describe the major changes that have a major impact on
the bitcoin system, for example, block size changes, network protocol changes, or
transaction verification changes.
Process BIP: A major difference between standard and process BIPs is that
standard BIPs cover protocol changes, whereas process BIPs usually deal with
proposing a change in a process that is outside the core Bitcoin protocol. These
are implemented only after a consensus among bitcoin users.
Informational BIP: These are usually used to just advise or record some
information about the bitcoin ecosystem, such as design issues.

Summary
This chapter introduced bitcoin and related concepts. It started with some history and basic
definitions related to bitcoin. Concepts such as keys and addresses along with public keys
and private keys were introduced. How transactions work in the bitcoin network (and
related concepts such as scripts, Opcodes, and types of transactions) were also discussed.
Moreover, blockchain, which underpins the bitcoin network, was also introduced. Along
with that, related concepts such as mining, proof of work, mining systems, and wallets were
presented. Finally, some practical information regarding setting up bitcoin clients, the usage
of bitcoin-cli, and an introduction to different bitcoin networks was also provided. In the
next chapter, alternative currencies, and related concepts will be introduced.

www.EBooksWorld.ir

5
Alternative Coins

Since the initial success of bitcoin, many alternative currency projects have been launched.
Bitcoin was released in 2009 and the first alternative coin project (named Namecoin) was
introduced in 2011. In 2013 and 2014, the altcoin market grew exponentially and many
different types of alternative coin project were started. A few of those became a success,
whereas many were unpopular and did not succeed. A few were pump and dump scams that
surfaced for some time but soon disappeared. Alternative approaches to bitcoin can be
divided broadly into two categories, based on the primary purpose of their development. If
the primary purpose is to build a decentralized blockchain platform, they are called
alternative chains; if the sole purpose of the alternative project is to introduce a new virtual
currency, it's called an altcoin. Alternative blockchains will be discussed in detail in later
chapters in this book.

This chapter is mainly dedicated to alternative coins (altcoins) whose main purpose is to
introduce a new virtual currency (coin) although some material will also be presented on
the topic of alternate protocols built on top of bitcoin in order to provide various services.
These include concepts such as Namecoin, where the primary purpose is to provide
decentralized naming and identity services instead of currency.

Currently, as of late 2016, there are hundreds of altcoins on the market and they hold a
certain monetary value. Many of these alternative projects are direct forks of bitcoin source
code although some of those have been written from scratch. Some altcoins set out to
address bitcoin limitations such as privacy. Some others offer different types of mining,
changes in block times, and distribution schemes.

www.EBooksWorld.ir

Alternative Coins

[161]

By definition an altcoin is generated in the case of a hard fork. If bitcoin has a hard fork then
the other, older chain is effectively considered another coin. However there is no
established rule as to which chain becomes the altcoin. This has happened recently with
Ethereum, where a hard fork caused a new currency ETC (Ethereum classic) to come into
existence in addition to the Ethereum (ETH) currency. Ethereum classic is the old chain and
Ether is the new chain after the fork. Such a contentious hard fork is not desirable for a
number of reasons. First it is against the true spirit of decentralization as the Ethereum
foundation, a central entity, decided to go ahead with the hardfork even though not
everyone agreed to the proposition; second it also splits the user community due to
disagreement over the hard fork. Although a hard fork in theory generates an altcoin, it is
limited in what it can offer due to the fact that, even if the change results in a hard fork,
usually there are no drastic changes around the fundamental parameters of the coin. They
usually remain the same. For this reason, it is desirable to either write a new coin from
scratch or fork the bitcoin (or another coin's source code) to create a new currency with the
desired parameters and features.

Altcoins must be able to attract new users, trades, and miners otherwise the currency will
have no value. Currency gains its value, especially in the virtual currency space, due to the
network effect and its acceptability by the community. If a coin fails to attract enough users
then soon it will be forgotten. Users can be attracted by providing an initial amount of coins
and can be achieved by using various methods. Methods of providing an initial number of
altcoins are discussed as follows:

Create a new blockchain: Altcoins can create a new blockchain and allocate coins
to initial miners but this approach is now unpopular due to many scam schemes
or pump and dump schemes where initial miners made a profit with the launch of
a new currency and then disappeared.
Proof of burn: Another approach to allocating initial funds to a new altcoin is
Proof of burn, also called a one-way peg or price ceiling. In this method users
permanently destroy a certain quantity of bitcoins in proportion to the quantity of
altcoins to be claimed. For example if 10 bitcoins were destroyed then altcoins can
have a value no greater than the amount of bitcoins destroyed. This basically
means that bitcoins are being converted into altcoins by burning them.
Proof of Ownership: Instead of permanently destroying bitcoins, an alternative
method is to prove that users own a certain number of bitcoins. This proof of
ownership can be used to claim altcoins by tethering altcoin blocks to bitcoin
blocks. For example, this can be achieved by merged mining in which effectively
bitcoin miners can mine altcoin blocks while mining for bitcoin without any extra
work.

www.EBooksWorld.ir

Alternative Coins

[162]

Pegged sidechains: Sidechains, as the name suggests, are blockchains separate
from the bitcoin network but bitcoins can be transferred to them. Altcoins can
also be transferred back to the bitcoin network. This concept is called a two-way
peg.

Investing and trading these alternative coins is also a big business, albeit not as big as
bitcoin but enough to attract new investors and traders and provide liquidity to the market.
Combined altcoin market capitalization is shown as follows in the graph generated from
http://coinmarketcap.com:

This shows that at the time of writing the Combined Altcoin Market Capitalization is more than 2 billion US Dollars

www.EBooksWorld.ir

http://coinmarketcap.com
http://coinmarketcap.com

Alternative Coins

[163]

Current market cap (as of Oct 2016) of the top 10 coins is shown as follows:

The data is taken from https://coinmarketcap.com/

There are various factors and new concepts introduced with alternative coins. Many
concepts were invented even before bitcoin but with bitcoin not only were new concepts,
such as a solution to the Byzantine Generals' problem, introduced for the first time but also
previous concepts such as hashcash and Proof of Work were used in an ingenious way and
came into the limelight. Since then, with the introduction of alternative coin projects,
various new techniques and concepts have been developed and introduced. In order to
appreciate the current landscape of alternative cryptocurrencies, it is essential to
understand some theoretical concepts first. In the following section, some new concepts that
have been introduced with altcoin projects are introduced to the reader.

Theoretical foundations
In this section, various theoretical concepts are introduced to the reader that have been
developed with the introduction of different altcoins in the past few years.

www.EBooksWorld.ir

Alternative Coins

[164]

Alternatives to Proof of Work
The Proof of Work (PoW) scheme in the context of cryptocurrency was first used in bitcoin
and served as a mechanism to provide assurance that a miner had completed the required
number of work in order to find a block. This in return provided decentralization, security,
and stability for the blockchain. Also, this is the main vehicle in bitcoin for providing
decentralized distributed consensus. PoW schemes are required to have a much desired
property called progress freeness, which basically means that the reward for consuming
computational resources should be random and proportional to the contribution made by
the miners. In this case, some chance of winning the block reward is given to even those
miners who have comparatively less computational power. The term progress freeness was
introduced by Arvind Narayanan .et.al in the book Bitcoin and Cryptocurrency Technologies.
Other requirements for mining computational puzzles include adjustable difficulty and
quick verification. Adjustable difficulty ensures that the difficulty target for mining on the
blockchain is regulated in response to increased hashing power and the number of users.
Quick verification is a property which means that mining computational puzzles should be
easy and quick to verify. Another aspect of the PoW scheme, especially the one used in
Bitcoin (Double SHA-256), is that since the introduction of ASICs the power is shifting
towards miners or mining pools who can afford to operate large-scale ASIC farms and this
challenges the core philosophy of the decentralization of bitcoin.

There are a few alternatives that have been proposed such as ASIC-resistant puzzles and are
designed in such a way that building ASICs for solving this puzzle is infeasible and does
not result in a major performance gain over commodity hardware. A common technique
used for this purpose is to apply a class of computational hard problems called memory hard
computational puzzles. The core idea behind this method is that as puzzle solving requires
a large amount of memory, it is not feasible to be implemented on ASIC-based systems.
This technique was initially used in litecoin and Tenebrix where the Scrypt hash function
was used as an ASIC-resistant PoW scheme. Even though this scheme was initially
advertised as ASIC resistant, recently Scrypt ASICs have now become available disproving
the original claim by litecoin.

Another approach to ASIC resistance is where multiple hash functions are required to be
calculated in order to provide PoW. This is also called a chained hashing scheme. The
rationale behind this idea is that designing multiple hash functions on an ASIC is not very
feasible. The most common example is the X11 memory hard function implemented in
Dash. X11 comprises 11 SHA3 contestants where one algorithm outputs the calculated hash
to the next algorithm until all 11 algorithms are used in a sequence. These algorithms
include blake, bmw, groestl, jh, keccak, skein, luffa, cubehash, shavite, simd, and echo.

www.EBooksWorld.ir

Alternative Coins

[165]

This approach did provide some resistance to ASIC development initially but now ASIC
miners are available commercially and support mining of X11 and similar schemes. A
recent example is ASIC Baikal Miner, which supports X11, X13, X14, and X15 mining. Other
examples include miners such as iBeLink DM384M X11 miner and Pinidea X11 ASIC miner.

Perhaps another approach could be to design self-mutating puzzles that intelligently or
randomly change the PoW scheme or its requirements as a function of time. This will make
it almost impossible to be implemented in ASICs as it will require multiple ASICs to be
designed for each function and also randomly changing schemes would be almost
impossible to handle in ASICs. At the moment, it is unclear how this can be achieved
practically.

PoW has various drawbacks and the biggest of all is energy consumption. It is estimated
that the total electricity consumed by bitcoin miners will be equivalent to that of Denmark
by 2020. This is huge and all that power is in a way wasted; in fact no useful purpose is
served except for of mining. Environmentalists have raised real concerns about this
situation.

It has been proposed that PoW puzzles can be designed in such a way that they serve two
purposes. First their primary purpose is in consensus mechanisms and second to perform
some useful scientific computation. This way not only can the schemes be used in mining
but they can also help to potentially solve other scientific problems too. This proof of useful
work has been recently put into practice by Primecoin where the requirement is to find
special prime number chains known as Cunningham chains and bi-twin chains. As the
study of prime number distribution has special significance in scientific disciplines such as
physics, by mining Primecoin miners not only achieve the block reward but also help in
finding the special prime numbers.

Proof of Storage
Also known as proof of irretrievability, this is another type of proof of useful work that
requires storage of large number of data. Introduced by Microsoft Research, this scheme
provides a useful benefit of distributed storage of archival data. Miners are required to store
a pseudo, randomly-selected subset of large data in order to perform mining.

www.EBooksWorld.ir

Alternative Coins

[166]

Proof of Stake
This proof is also called virtual mining. This is another type of mining puzzle that has been
proposed as an alternative to traditional PoW schemes. It was first proposed in PeerCoin in
August, 2012. In this scheme, the idea is that users are required to demonstrate possession
of a certain amount of currency (coins) thus proving that they have a stake in the coin. The
simplest form of stake is where mining is made comparatively easier for those users who
demonstrably own larger amounts of digital currency. The benefits of this scheme are
twofold; first acquiring large amounts of digital currency is relatively difficult as compared
to buying high-end ASIC devices and second it results in saving computational resources.
Various forms of stake have been proposed and are briefly discussed below.

Proof of coinage
The age of a coin is the time since the coins were last used or held. This is a different
approach from the usual form of Proof of Stake where mining is made easier for users who
have the highest stake in the altcoin. In the coin-age-based approach the age of the coin
(coinage) is reset every time a block is mined. The miner is rewarded for holding and not
spending coins for a time period. This mechanism has been implemented in Peercoin
combined with PoW in a creative way. The difficulty of mining puzzles (PoW) is inversely
proportional to the coin-age, meaning that if miners consume some coin-age using coin-stake
transactions then the PoW requirements are relieved.

Proof of deposit
The core idea behind this scheme is that newly minted blocks by miners are made un-
spendable for a certain period of time. More precisely the coins get locked for a set number
of blocks during the mining operation. The scheme works by allowing miners to perform
mining at the cost of freezing a certain number of coins for some time. This is a type of
Proof of Stake.

Proof of burn
As an alternate expenditure to computing power, proof of burn in fact destroys a certain
amount of bitcoins in order to get equivalent altcoins. This is commonly used when starting
up new coin projects as a means to provide a fair initial distribution. This can be considered
an alternative mining scheme where the value of the new coins comes from the fact that
previously a certain number of coins have been destroyed.

www.EBooksWorld.ir

Alternative Coins

[167]

Proof of activity
This scheme is a hybrid of PoW and Proof of Stake. In this scheme, blocks are initially
produced by using PoW but then each block randomly assigns three stakeholders that are
required to digitally sign it. The validity of subsequent blocks is dependent on the
successful signing of previously randomly chosen blocks.

There is, however a possible issue known as the nothing at stake problem where it would be
trivial to create a fork of the blockchain. This is possible because in PoW appropriate
computational resources are required to mine whereas in Proof of Stake there is no such
requirement; as a result, an attacker can try to mine on multiple chains using the same coin.

Non-outsourceable puzzles
The key motivation behind this puzzle is to develop resistance again the development of
mining pools. Mining pools as previously discussed offer rewards to all participants in
proportion to the computing power they consume. However, in this model the mining pool
operator is a central authority to whom all the rewards go and who can enforce certain
rules. Also, in this model all miners only trust each other because they are working towards
a common goal together in the hope of the pool manager getting the reward. Non-
outsourceable puzzles are a scheme that allows miners to claim rewards for themselves;
consequently pool formation becomes unlikely due to inherent mistrust between
anonymous miners.

Difficulty adjustment and retargeting algorithms
Another concept that has been introduced with the advent of bitcoin and altcoins is
difficulty in retargeting algorithms. In bitcoin a difficulty target is calculated simply by the
following equation; however other coins have either developed their own algorithms or
implemented modified versions of the bitcoin difficulty algorithm:

T = Time previous * time actual / 2016 * 10 min

www.EBooksWorld.ir

Alternative Coins

[168]

The idea behind difficulty regulation in bitcoin is that a generation of 2016 blocks should
take roughly around 2 weeks (inter-block time should be around 10 minutes). If it takes
longer than 2 weeks to mine 2016 blocks then the difficulty is decreased and if it takes less
than two weeks to mine 2016 blocks then the difficulty is increased. When ASICs were
introduced due to a high block generation rate the difficulty increased exponentially and
that is one drawback of PoW algorithms that are not ASIC resistant. This leads to mining
power centralization. This also poses another problem; if a new coin starts now with the
same Proof of Work based on SHA256 as bitcoin uses, then it would be easy for a malicious
user to just simply use an ASIC miner and control the entire network. This attack would be
more practical if there is less interest in the new altcoin and someone decides to take over
the network by consuming adequately high computing resources. This may not be a feasible
attack if other miners with similar computing power also join the the altcoin network
because then miners will be competing with each other. Also, multipools pose a greater
threat where a group of miners can automatically switch to the currency that is becoming
profitable. This phenomenon is known as pool hopping and can adversely affect a
blockchain, and consequently the growth of the altcoin. Pool hopping impacts the network
adversely because pool hoppers join the network only when the difficulty is low and they
can gain quick rewards; the moment difficulty goes up (or is readjusted) they hop off and
then come back again when the difficulty is adjusted back. For example if a multipool
consumes its resources in quickly mining a new coin, the difficulty will increase very
quickly; when the multipool leaves the currency network; it becomes almost unusable
because of the fact that now the difficulty has increased to such a level that it is no longer
profitable for solo miners and can no longer be maintained. The only fix for this problem is
to initiate a hard fork which is usually undesirable for the community.

There are a few algorithms that have come into existence to address this issue and are
discussed later. All these algorithms are based on the idea of readjusting various
parameters in response to hash rate changes; these parameters include the number of
previous blocks, difficulty of previous blocks, ratio of adjustment, and the number by which
the difficulty can be readjusted back or up. In the following section, readers will be
introduced to the few difficulty algorithms being used in and proposed for various altcoins.

Kimoto Gravity Well
This algorithm is used in various altcoins to regulate difficulty. This was first introduced in
Megacoin and used to adaptively adjust difficulty of the network every block. The logic of
the algorithm is shown as follows:

KGW = 1 + (0.7084 * pow((double(PastBlocksMass)/double(144)), -1.228))

www.EBooksWorld.ir

Alternative Coins

[169]

Basically, the algorithm runs in a loop that goes through a set of predetermined blocks
(PastBlockMass) and calculates a new readjustment value. The core idea behind this
algorithm is to develop an adaptive difficulty regulation mechanism that can readjust the
difficulty in response to rapid spikes in hash rates. Kimoto Gravity Well (KGW) ensures
that the time between blocks remains approximately the same. In bitcoin the difficulty is
adjusted every 2016 blocks but in KGW the difficulty is adjusted at every block.

This algorithm is vulnerable to time warp attacks, which allow an attacker to temporarily
enjoy less difficulty in creating new blocks. This attack allows a time window where the
difficulty becomes low and the attacker can easily generate many coins at a fast rate.

Dark Gravity Wave
Dark Gravity Wave (DGW) is a new algorithm designed to address certain flaws such as
the time warp attack in the KGW algorithm. This was first introduced in Dash, previously
known as Darkcoin. It makes use of multiple exponential moving averages and simple
move averages to achieve a smoother readjustment mechanism. The formula is shown as
follows:

2222222/ (((Difficulty+2600)/9)^2)

This formula is implemented in Dash coin and various other altcoins as a mechanism to
readjust difficulty.

DGW version 3.0 is the latest implementation of this algorithm and allows improved
difficulty retargeting compared to KGW.

DigiShield
This is another difficulty retargeting algorithm that has recently been used in Zcash with
slight variations and after adequate experimentation. This algorithm works by going
through a fixed number of previous blocks to calculate the time they took to be generated
and then readjusts the difficulty to the difficulty of the previous block by dividing the actual
time span by averaging the target time. In this scheme, the retargeting is calculated much
much rapidly and also the recovery from a sudden increase or decrease in hashrate is quick.
This algorithm protects against multipools, which can result in rapid hashrate increases.
The network difficulty is readjusted every block or every minute depending on the
implementation. The key innovation is faster readjust times as compared to KGW.

www.EBooksWorld.ir

Alternative Coins

[170]

MIDAS
Multi Interval Difficulty Adjustment System (MIDAS) is an algorithm that is
comparatively more complex than the algorithms discussed previously. This method
responds much more rapidly to abrupt changes in hash rates. This algorithm also provides
protection against time warp attacks.

Many currencies have emerged as an attempt to address various limitations in bitcoin. A
brief discussion of bitcoin limitations is provided as follows.

Bitcoin limitations
Various limitations in bitcoin have also sparked some interest in altcoins, which
were developed specifically to address limitations in bitcoin. The most prominent and
widely discussed limitation is the lack of anonymity in bitcoin. This limitation is discussed
in detail as follows.

Privacy and anonymity
As the blockchain is a public ledger of all transactions and is openly available it becomes
trivial to analyse it. Combined with traffic analyses, transactions can be linked back to their
source IP addresses, thus possibly revealing a transaction's originator. This is a big concern
from a privacy point of view. Even though in bitcoin it is a recommended and common
practice to generate a new address for every transaction, thus allowing some level of
unlinkability, this is not enough and various techniques have been developed and
successfully used to trace the flow of transactions throughout the network and link them
back to their originator. Various methods to analyse blockchains such as transaction graphs,
address graphs, and entity graphs have been used by researchers to link users to the
transactions, thus raising privacy concerns. The afore mentioned analysis techniques can be
further enriched by using publicly available information about transactions and linking
them to the actual users. There are open source block parsers available that can be used to
extract transaction information, balances, and scripts from the blockchain database. A
parser available at https://github.com/mikispag/rusty-blockparser is written in Rust
and provides advanced blockchain analysis capabilities. An earlier version of this work is
called BitIodine but is no longer being actively developed.

Various proposals have been made to address the privacy issue in bitcoin. These proposals
fall into three categories: mixing protocols, third-party mixing networks, and inherent
anonymity. A brief discussion of each category is presented as follows.

www.EBooksWorld.ir

https://github.com/mikispag/rusty-blockparser

Alternative Coins

[171]

Mixing protocols
These schemes are used to provide anonymity to bitcoin transactions. In this model, a
mixing service provider (an intermediary or a shared wallet) is used. Users send coins to
this shared wallet as a deposit and the shared wallet then can send some other coins (of the
same value deposited by some other users) to the destination. Users can also receive coins
that were sent by others via this intermediary. This way the link between outputs and
inputs is no longer there and transaction graph analysis will not be able to reveal the true
relationship between senders and receivers.

CoinJoin is one example of mixing protocols, where two transactions are joined together to
form a single transaction while keeping the inputs and outputs unchanged. The core idea
behind CoinJoin is to build a shared transaction that is signed by all participants. This
technique improves privacy for all participants involved in the transactions:

CoinJoin transaction with three users joining their transaction into a single larger CoinJoin transaction

Third-party mixing protocols
Various third-party mixing services are available but if the service is centralized then it
poses the threat of tracing the mapping between senders and receivers, because the mixing
service knows about all inputs and outputs. In addition to this, fully centralized miners
even pose the risk of the administrators of the service stealing the coins.

Various services, with varying degrees of complexity, such as CoinShuffle, Coinmux, and
dark send in Dash (coin) are available that are based on the idea of CoinJoin (mixing)
transactions. CoinShuffle is a decentralized alternative to traditional mixing services as it
does not require a trusted third party.

www.EBooksWorld.ir

Alternative Coins

[172]

CoinJoin-based schemes, however, have some weaknesses, most prominently the possibility
of launching a Denial of Service attack by users who committed to signing the transactions
initially but now are not providing their signature, thus delaying or stopping joint
transaction a altogether.

Inherent anonymity
This category includes coins that support privacy inherently and is built into the design of
the currency. The most popular is Zcash, which is discussed in detail later in the chapter.
Other examples include Monero, which makes use of ring signatures to provide anonymous
services.

The next section introduces various enhancements that have been made, or are proposed, in
order to extend the bitcoin protocol.

Extended protocols on top of bitcoin
Several protocols have been proposed and implemented on top of bitcoin in order to
enhance and extend the bitcoin protocol and use for various other purposes instead of just
as a virtual currency.

Colored coins
Colored coins is a set of methods that have been developed to represent digital assets on the
bitcoin blockchain. Coloring a bitcoin refers colloquially to updating it with some metadata
representing a digital asset (smart property). The coin still works and operates as a bitcoin
but additionally carries some metadata that represents some assets. This mechanism allows
issuing and tracking specific bitcoins. Metadata can be recorded using the bitcoins
OP_RETURN opcode or optionally in multi-signature addresses. This metadata can also be
encrypted if required to address any privacy concerns. Colored coins can be used to
represent a multitude of assets including but not limited to commodities, certificates,
shares, bonds, and voting. It should also be noted that, in order to work with colored coins,
a wallet that interprets colored coins is necessary and normal bitcoin wallets will not work.
Colored coin wallets can be set up online using a service available at
https://www.coinprism.com/. Using this service, any type of digital asset can be created
and issued via a colored coin.

www.EBooksWorld.ir

https://www.coinprism.com/

Alternative Coins

[173]

The idea of colored coins is very appealing as it does not require any modification to the
existing bitcoin protocol and can make use of the already existing secure bitcoin network. In
addition to the traditional representation of digital assets, there is also the possibility of
creating smart assets that behave according to the parameters and conditions defined for
them. These parameters includes time validation, restrictions on transferability, and fees.
This opens the possibility of creating smart contracts.

A major use case can be the issuance of financial instruments on the blockchain. This will
ensure low transaction fees, valid and mathematically secure proof of ownership, fast
transferability without requiring an intermediary, and instant dividend pay outs to the
investors.

A rich API is available for coloured coins at http://coloredcoins.org/.

Counterparty
This is another service that can be used to create custom tokens that act as a cryptocurrency
and can be used for various purposes such as issuing digital assets on top of bitcoin
blockchain. This is quite a powerful platform and runs on bitcoin blockchains at their core
but has developed its own client and other components to support issuing digital assets.
The architecture consists of a counterparty server, counterblock, counter wallet, and
armory_utxsvr. Counterparty works based on the same idea as coloured coins by
embedding data into regular bitcoin transactions but provides a much richer library and set
of powerful tools to support the handling of digital assets. This embedding is also called
embedded consensus because the counterparty transactions are embedded within bitcoin
transactions. The method of embedding the data is by using OP_RETURN opcode in bitcoin.

The currency produced and used by counterparty is known as XCP and is used by smart
contracts as the fee for running the contract. At the time of writing its price is 2.78 USD.
XCPs were created by using the proof of burn method discussed previously.

Counterparty allows the development of smart contracts on Ethereum using solidity
language and allows interaction with bitcoin blockchain. In order to achieve this, BTC Relay
is used as a means to provide interoperability between Ethereum and bitcoin. This is a
clever concept where Ethereum contracts can talk to bitcoin blockchain and transactions
through BTC Relay. The relayers (nodes that are running BTC Relay) fetch the bitcoin block
headers and relay them to a smart contract on the Ethereum network that verifies the PoW.
This process verifies that a transaction has occurred on the bitcoin network. This is available
at http://btcrelay.org/.

www.EBooksWorld.ir

http://coloredcoins.org/
http://btcrelay.org/

Alternative Coins

[174]

Technically, this is basically an Ethereum contract that is capable of storing and verifying
bitcoin block headers just like bitcoin simple payment verification lightweight clients do by
using bloom filters. SPV clients were discussed in detail in the previous chapter. The idea
can be visualized with the following diagram:

BTC relay concept

Counterparty is available at http://counterparty.io/.

Development of altcoins
Altcoin projects can be started very easily from a coding point of view by simply forking the
bitcoin or another coin's source code but this probably is not enough. When a new coin
project is started, there are several things that need to be considered in order to ensure a
successful launch and the coin's longevity. Usually, the code base is written in C++ as was
the case with bitcoin but almost any language can be used to develop coin projects, for
example Golang or Rust.

Writing code or forking the code for an existing coin is the trivial part, the challenging issue
is how to start a new currency so that new investors and users can be attracted to it.
Generally, the following steps are taken in order to start a new coin project.

From a technical point of view, in the case of forking the code of another coin, for example
bitcoin, there are various parameters that can be changed to effectively create a new coin.
These parameters are required to be tweaked or introduced in order to create a new coin.
These parameters can include but are not limited to the following.

Consensus algorithms
There is a choice of consensus algorithm: Proof of Work (PoW) as used in bitcoin or Proof
of Stake (PoS), as in Peercoin.

www.EBooksWorld.ir

http://counterparty.io/

Alternative Coins

[175]

Hashing algorithms
This is either SHA256, Scrypt, X11, X13, X15, or any other hashing algorithm that is
adequate for use as a consensus algorithm.

Difficulty adjustment algorithms
Various options are available in this category to provide difficulty retargeting mechanisms.
The most prominent examples are KGW, DGW, Nite's Gravity Wave, and DigiShield. Also
all these algorithms can be tweaked based on requirements to produce different results;
therefore many variants are possible.

Inter-block time
This is the time elapsed between the generation of each block. For bitcoin the blocks are
generated every 10 minutes, for litecoin it's 2.5 minutes. Any value can be used but an
appropriate value is usually between a few minutes; if the generation time is too fast it
might destabilize the blockchain, if it's too slow it may not attract many users.

Block rewards
A block reward is for the miner who solves the mining puzzle and is allowed to have a
Coinbase transaction that contains the reward. This used to be 50 coins in bitcoin initially
and now many altcoins set this parameter to a very high number; for example in Dogecoin
it is 10,000, currently.

Reward halving rate
This is another important factor; in bitcoin it is halved every 4 years and now is set to 12.5
bitcoins. It's a variable number that can be set to any time period or none at all depending
on the requirements.

Block size and transaction size
This is another important factor that determines how high or low the transaction rate can be
on the network. Block sizes in bitcoin are limited to 1 MB but in altcoins it can vary
depending on the requirements.

www.EBooksWorld.ir

Alternative Coins

[176]

Interest rate
This property applies only to PoS systems where the owner of the coins can earn interest at
a rate defined by the network in return for the amount of coins that are held on the network
as a PoS to protect the network.

Coin age
This parameter defines how long the coin has to remain unspent in order for it to become
eligible to be considered stakeworthy.

Total supply of coins
This number sets the total limit of the coins that can ever be generated. For example in
bitcoin the limit is 21 million, whereas in Dogecoin it's unlimited. This limit is fixed by the
block reward and halving schedule discussed above.

There are two options to create your own virtual currency: forking existing established
cryptocurrency source code or writing a new one from scratch. The latter option is less
popular but the first option is easier and has allowed the creation of many virtual currencies
over the last few years. Fundamentally, the idea is that first a cryptocurrency source code is
forked and then appropriate changes are made at different strategic locations in the source
code to effectively create a new currency.

In the next section, readers are introduced to some altcoin projects. It is not possible to cover
all alternative currencies in this chapter, but a few selected coins are discussed below.
Selection is based on longevity, market cap, and innovation. Each coin is discussed from
different angles such as theoretical foundations, trading, and mining.

Namecoin
Namecoin is the first fork of the bitcoin source code. The key idea behind Namecoin is not
to produce an altcoin but instead to provide improved decentralization, censorship
resistance, privacy, security, and faster decentralized naming. Decentralized naming
services are intended to provide a response to inherent limitations such as slowness and
centralized control in the traditional Domain Name System (DNS) protocols used on the
Internet. Namecoin is also the first solution to Zooko's triangle, which was briefly discussed
in previous chapters.

www.EBooksWorld.ir

Alternative Coins

[177]

Namecoin is used to essentially provide a service to register a key/value pair. One major use
case of Namecoin is that it can provide a decentralized Transport Layer Security (TLS)
certificate validation mechanism, driven by blockchain-based distributed and decentralized
consensus.

It is based on the same technology introduced with bitcoin, but with its own blockchain and
wallet software. The source code for the Namecoin core is available at
https://github.com/namecoin/namecoin-core.

In summary, Namecoin provides the following three services:

Secure storage and transfer of names (keys)
Attachment of some value to the names by attaching up to 520 bytes of data
Production of a digital currency (Namecoin)

Namecoin also for the first time introduced merged mining, which allows a miner to mine
on more than one chain simultaneously. The idea is simple but very effective: miners create
a Namecoin block and produce a hash of that block. Then the hash is added to a bitcoin
block and miners solve that block at equal to or greater than the Namecoin block difficulty
in order to prove that enough work has been contributed towards solving the Namecoin
block.

More precisely the Coinbase transaction is used to include the hash of the transactions from
Namecoin (or any other altcoin). The mining task is to solve bitcoin blocks whose Coinbase
scripSig contains a hash pointer to Namecoin (or any other altcoin) block. This is shown in
the diagram below. If a miner manages to solve a hash at the bitcoin blockchain difficulty
level, the bitcoin block is built and becomes part of the bitcoin network. In this case, the
Namecoin hash is ignored by the bitcoin blockchain. On the other hand, if a miner solves a
block at Namecoin blockchain difficulty level a new block is created in the Namecoin
blockchain. The core benefit of this scheme is that all the computational power spent by the
miners contributes towards securing both Namecoin and bitcoin:

Merged mining diagram

www.EBooksWorld.ir

https://github.com/namecoin/namecoin-core

Alternative Coins

[178]

Trading Namecoins
The current market cap of Namecoin is £2,736,537 as per https://coinmarketcap.com/ and
it can be bought and sold at various exchanges such as https://cryptonit.net/. Various
other exchanges can be found via a simple online search.

Obtaining Namecoins
Even though Namecoins can be mined independently, they are usually mined as part of
bitcoin mining by utilizing the merged mining technique as explained above. This way
Namecoin can be mined as a by-product of bitcoin mining. Solo mining is no longer
profitable as is evident from the following difficulty graph; instead it is recommended to
merge-mine, use a mining pool, or even use a cryptocurrency exchange to buy Namecoin.

Namecoin difficulty as shown at: https://bitinfocharts.com/comparison/difficulty-nmc.html

Various mining pools such https://slushpool.com also offer the option of merged mining.
This allows a miner to mine primarily bitcoin but also as a result earn Namecoin too.

Another method that can be used to quickly get some Namecoins is to swap your existing
coins with Namecoins, for example, if you already have some bitcoins or an other
cryptocurrency that can be used to exchange with Namecoin. An online service,
https://shapeshift.io/, is available that provides this service. This service allows
conversion from one cryptocurrency to another, using a simple user-friendly interface.

www.EBooksWorld.ir

https://coinmarketcap.com/
https://cryptonit.net/
https://slushpool.com/
https://shapeshift.io/

Alternative Coins

[179]

For example, paying BTC to receive NMC is shown as follows:

Once Start Transaction is clicked, the transaction starts and instructs the user to send the
bitcoins to a specific bitcoin address. When the user sends the required amount, the
conversion process starts as shown:

www.EBooksWorld.ir

Alternative Coins

[180]

When the process completes, the transactions can be viewed in the Namecoin wallet:

It may take some time to confirm the transactions; until that time it is not possible to use the
Namecoins to manage names. Once Namecoins are available in the wallet, the Manage
Names option can be used to generate Namecoin records.

Generating Namecoin records
Namecoin records are in the form of key and value pairs. A name is a lower-case string of
the form d/examplename whereas a value is a case-sensitive, UTF-8 encoded JSON object
with a maximum of 520 bytes. The name should be RFC1035
(https://tools.ietf.org/html/rfc1035)-compliant. A general namecoin name can be an
arbitrary binary string up to 255 bytes long with, 1024-bits of associated identifying
information. A record on a Namecoin chain is only valid for around 200 days or 36,000
blocks after which it needs to be renewed. Namecoin also introduced .bit top level domains
that can be registered using Namecoin and can be browsed using specialized Namecoin-
enabled resolvers. Namecoin wallet software as shown in the following screenshot can be
used to register .bit domain names.

www.EBooksWorld.ir

https://tools.ietf.org/html/rfc1035

Alternative Coins

[181]

The name is entered and, after the Submit button is pressed, it will ask for configuration
information such as DNS, IP, or Identity:

As shown in the following screenshot, masteringblockchain will register as
masteringblockchain.bit on the Namecoin blockchain:

www.EBooksWorld.ir

Alternative Coins

[182]

Litecoin
Litecoin is a fork of the bitcoin source code released in 2011. It uses Scrypt as PoW,
originally introduced in the Tenebrix coin. Litecoin allows for faster transactions as
compared to bitcoin due to its faster block generation time of 2.5 minutes. Also difficulty
readjustment is achieved every 3.5 days roughly due to faster block generation time. The
total coin supply is 84 million.

Scrypt is a sequentially memory hard function that is the first alternative to the SHA-256-
based PoW algorithm. It was originally proposed as a password-based key derivation
function PBKDF. The key idea is that if the function requires large number of memory to run
then custom hardware such as ASICs will require more VLSI area, which would be
unfeasible to build. The Scrypt algorithm requires a large array of pseudo random bits to be
held in memory and a key is derived from this in a pseudo random fashion. The algorithm
is based on a phenomenon called Time-Memory Tradeoff (TMTO). If memory
requirements are relaxed then it results in increased computational cost. Put another way,
TMTO shortens the running time of a programme if more memory is given to it. This
tradeoff makes it unfeasible for an attacker to gain more memory because it's expensive and
difficult to implement on custom hardware, or if the attacker chooses to not increase
memory, then it results in the algorithm running slowly due to high processing
requirements.

Scrypt uses the following parameters to generate a derived key (Kd):

Passphrase: This is a string of characters to hash
Salt: This is a random string that is provided to Scrypt functions (generally all
hash functions) in order to provide a defence against brute-force dictionary
attacks using rainbow tables
N: This is a memory/CPU cost parameter that must be a power of 2 > 1
P: The parallelization parameter
R: The block size parameter
dkLen: The intended length of the derived key in bytes

Formally, this function can be written as follows:

Kd = scrypt (P, S, N, P, R, dkLen)

www.EBooksWorld.ir

Alternative Coins

[183]

Before applying the core Scrypt function, the algorithm takes P and S as input and applies
PBKDF2 and SHA-256-based HMAC. Then the output is fed to an algorithm called ROMix,
which internally uses the Blockmix algorithm utilizing the Salsa20/8 core stream cipher to
fill up the memory which requires large memory to operate, thus enforcing the sequentially
memory hard property.

The output from this step of the algorithm is finally fed to the PBKDF2 function again in
order to produce a derived key. This process is shown in the following diagram:

Scrypt algorithm

Scrypt is used in litecoin mining with specific parameters where N= 1024, R = 1, P=1, and S=
random 80 bytes producing a 256-bit output.

It appears that, due to the selection of these parameters, the development of ASICs for
Scrypt for litecoin mining turned out to be not very difficult. In an ASIC for litecoin mining,
a sequential logic can be developed that takes the data and nonce as input and applies the
PBKDF2 algorithm with HMAC-SHA256; then the resultant bit stream is fed into the
SALSA20/8 function which produces a hash that again is fed down to the PBKDF2 and
HMAC-256 functions to produce a 256-bit hash output. As is the case with bitcoin PoW, in
Scrypt also if the output hash is less that the target hash (already passed as input at the
start, stored in memory, and checked with every iteration) then the function terminates;
otherwise, the nonce is incremented and the process is repeated again until a hash is found
that is lower than the difficulty target:

www.EBooksWorld.ir

Alternative Coins

[184]

Scrypt ASIC design simplified flowchart

Trading Litecoin: As with other coins, trading litecoin is easily carried out on
various online exchanges. The current market cap of litecoin is £161,239,005. The
current price of litecoin is £3.25/LTC.
Mining: Litecoin mining can be carried out solo or in pools. At the moment,
ASICs for Scrypt are available that are commonly used to mine litecoin.

Litecoin mining on a CPU is no longer profitable as is the case with many other
digital currencies. There are online cloud mining providers and ASIC miners
available that can be used to mine litecoin. Litecoin mining started from the CPU,
progressed through GPU mining rigs, and eventually now has reached a point
where specialized ASIC miners such as Asic Scrypt Miner Wolf available from
EhsMiner are now required to be used in the hope of being able to make some
coins. Generally, it is true that even with ASICs it is better to mine in pools instead
of solo as solo mining is not as profitable as mining in pools due to the
proportional rewards scheme used by mining pools. These miners are capable of
producing a hashing rate of 2 Gh/s for Scrypt algorithms.

www.EBooksWorld.ir

Alternative Coins

[185]

Software source code and wallet: The source code for litecoin is available at
https://github.com/litecoin-project/litecoin. The litecoin wallet can be
downloaded from https://litecoin.org/ and can be used just like the bitcoin
core client software.

Primecoin
Primecoin is the first digital currency on the market that introduced a useful PoW, as
opposed to bitcoin's SHA256-based PoW. Primecoin uses searching prime numbers as a
PoW. Not all types of prime number meet the requirements to be selected as PoW. Three
types of prime numbers (known as Cunningham chain of first kind, Cunningham chain of
second kind, and bi-twin chains) meet the requirements of a PoW algorithm to be used in
cryptocurrencies. The difficulty is dynamically adjusted via a continuous difficulty
evaluation scheme in Primecoin blockchain. The efficient verification of PoW based on
prime numbers is also of high importance, because if verification is slow then PoW is not
suitable. Therefore prime chains are selected as a PoW because finding prime chains gets
difficult as the chain increases in length whereas verification remains quick enough to
warrant being used as an efficient PoW algorithm. It is also important that once a PoW has
been verified on a block it must not be reusable on another block. This is accomplished in
Primecoin by a combination of Proof of Work certificates and hashing it with the header of the
parent block in the child block. The PoW certificate is produced by linking the prime chain
to the block header hash. It also requires that the block header's origin is divisible by the
block header hash. If it is, it is divided and after division the quotient is used as a PoW
certificate. Another property of the adjustable difficulty of PoW algorithms is met by
introducing difficulty adjustment every block instead of every 2,016, as is the case with
bitcoin. This is a smoother approach as compared to bitcoin and allows readjustment in the
case of sudden increases in hash power. Also the total number of coins generated is
community-driven and there is no concrete limit on the number of coins Primecoin can
generate.

www.EBooksWorld.ir

https://github.com/litecoin-project/litecoin
https://litecoin.org/

Alternative Coins

[186]

Trading Primecoin
Primecoins can be traded on major virtual currency trading exchanges. The current market
cap of Primecoin is £828,002 at the time of writing. It is not very large but, due to the fact
that Primecoin is based on a novel idea and there is a dedicated community behind it, this
continues to hold some market share.

Mining guide
The first step is to download a wallet. Primecoin supports native mining within the wallet,
just like original bitcoin clients, but also can be mined on the cloud via various online
mining service providers.

A quick Windows guide is presented as follows:

The first step is to download the Primecoin wallet from:1.
http://primecoin.io/index.php.

www.EBooksWorld.ir

http://primecoin.io/index.php

Alternative Coins

[187]

Once the wallet is installed and synched with the network, mining can be started2.
by following the next step. A debug window can be opened in the Primecoin
wallet by clicking on the Help menu and selecting the Debug window menu
item. Additional help can be invoked through typing help in the console
window:

Debug window used to enable the Primecoin mining function

www.EBooksWorld.ir

Alternative Coins

[188]

Once the preceding commands are successfully executed mining will start in solo3.
mode. This may not be very profitable but the miner can use mining pools
available online:

Primecoin wallet software, synching with the network

The Primecoin source code is available at https://github.com/primecoin/primecoin.
Although it's a novel concept and the PoW that Primecoin has introduced does have
scientific significance, it seems that no active development is being carried out to further
develop Primecoin. Readers can further explore Primecoin by reading the Primecoin white
paper by Sunny King (pseudonym) at: http://primecoin.io/bin/primecoin-paper.pdf.

www.EBooksWorld.ir

https://github.com/primecoin/primecoin
http://primecoin.io/bin/primecoin-paper.pdf

Alternative Coins

[189]

Zcash
Zcash was launched on 28th of October, 2016. This is the first currency that uses a specific
type of zero knowledge proofs known as zero-knowledge Succinct Non-interactive
Arguments of Knowledge (zk-SNARKs) to provide complete privacy to the user. These
proofs are very short and easy to verify; however, setting up the initial public parameters is
a complex process. The latter include two keys: the proving key and verifying key. The
process requires sampling some random numbers in order to construct the public
parameters. The issue is that these random numbers, also called toxic waste, must be
destroyed after the parameter generation in order to prevent counterfeiting of Zcash. For
this purpose, the Zcash team came up with a multi-party computation protocol to generate
the required public parameters in a collaborative manner from independent locations to
ensure that toxic waste is not created. Due to the fact that these public parameters are
required to be created by the Zcash team, it means that the participants in the ceremony are
trusted. This is the reason why the ceremony was very open and conducted by making use
of a multi-party computation mechanism. This mechanism has a property whereby all of
the participants in the ceremony will have to be compromised in order to compromise the
final parameters. When the ceremony is completed all participants physically destroy the
equipment used for private key generation. This action eliminates any trace of the
participants' part of the private key on the equipment.

zk-SNARKs must satisfy the properties of completeness, soundness, succinctness, and non-
interactivity. Completeness means that there is a definite strategy for a prover to satisfy a
verifier that an assertion is true. On the other hand, soundness means that no prover can
convince the verifier that a false statement is true. Succinctness means that messages passed
between the prover and verifier are very small in size. Finally, the property non-interactive
means that the verification of correctness of an assertion can be carried out without any
interaction or very little interaction. Also, being a zero knowledge proof, the property of
zero-knowledge (discussed in Chapter 3, Cryptography and Technical Foundations) needs to be
met too.

Zcash developers have introduced the concept of a Decentralized Anonymous Payments
scheme (DAP scheme) that is used in the Zcash network to enable direct and private
payments. The transactions reveal no information about the origin, destination, and amount
of the payments. There are two types of addresses available in Zcash, z-addr and t-addr. Z
addresses are based on zero knowledge proofs and provide privacy protection whereas T
addresses are similar to those of bitcoin.

www.EBooksWorld.ir

Alternative Coins

[190]

Zcash uses an efficient PoW scheme named Asymmetric PoW (Equihash), which is based
on the Generalized Birthday Problem. It allows very efficient verification. It is a memory-
hard and ASIC-resistant function. A novel idea (initial slow mining) has been introduced
with Zcash, which means that the block reward increases gradually over a period of time
until it reaches the 20,000th block. This allows for initial scaling of the network and
experimentation by early miners, and adjustment by Zcash developers if required. The slow
start did have an impact on price due to scarcity as the price of ZEC on its first day of
launch reached roughly 25,000 USD. A slightly modified version of the Digishield difficulty
adjustment algorithm has been implemented in Zcash. The formula is shown as follows:

(next difficulty) = (last difficulty) x SQRT [(150 seconds) / (last solve time)]

A snapshot of various attributes of Zcash (after an initial slow start) is shown as follows:

www.EBooksWorld.ir

Alternative Coins

[191]

Trading Zcash
Zcash can be bought on major digital currency exchanges. At the time of writing, the price
of Zcash is very high. As shown in the following graph, the price soared as high as
approximately 10 bitcoins per Zcash. Some exchanges carried out orders as high as 2,500
BTC per ZEC:

Mining guide
There are multiple methods to mine Zcash. Currently, CPU and GPU mining are possible.
Various commercial cloud mining pools also offer contracts for mining Zcash. In order to
perform solo mining using a CPU, the following steps can be followed:

The first step is to install prerequisites using the following command:1.

 sudo apt-get install \
 build-essential pkg-config libc6-dev m4 g++-multilib \
 autoconf libtool ncurses-dev unzip git python \
 zlib1g-dev wget bsdmainutils automake

If the prerequisites are already installed, a message will display indicating that
components are already the newest version. If not already installed or older than
the latest package, then the installation will continue, the required packages will
be downloaded, and the installation will be completed.

www.EBooksWorld.ir

Alternative Coins

[192]

Next, run the commands to clone Zcash from git as shown in the following2.
screenshot:

 $ git clone https://github.com/zcash/zcash.git

This command will clone the Zcash git repository locally. The output is shown in the
following screenshot:

www.EBooksWorld.ir

Alternative Coins

[193]

The next step is to download proving and verifying keys, by using the following3.
command from the screenshot:

Once this command runs it will download around 911 MBs of keys into the4.
~/.zcash-params/ directory. The directory contains files for proving and
verifying keys:

 drequinox@drequinox-OP7010:~/.zcash-params$ pwd
 /home/drequinox/.zcash-params
 drequinox@drequinox-OP7010:~/.zcash-params$ ls -ltr
 -rw-rw-r-- 1 drequinox drequinox 1449 Oct 24 16:46 sprout-
 verifying.key
 -rw-rw-r-- 1 drequinox drequinox 910173851 Oct 24 16:46 sprout-
 proving.key

Once the preceding commands are completed successfully, the source code can5.
be built using the following command:

 ./zcutil/build.sh -j$(nproc)

www.EBooksWorld.ir

Alternative Coins

[194]

This will produce very long output; if everything goes well it will produce a zcashd binary
file. Note that this command takes nproc as the parameter, which is basically a command
that finds the number of cores or processors in the system and displays that number. If you
don't have that command then replace nproc with the number of processors in your
system.

Once the build is completed, the next step is to configure Zcash. This is achieved by creating
a configuration file with the name zcash.conf in the ~/.zcash/ directory.

A sample configuration file is shown as follows:

addnode=mainnet.z.cash
rpcuser=drequinox
rpcpassword=xxxxxxoJNo4o5c+F6E+J4P2C1D5izlzIKPZJhTzdW5A=
gen=1
genproclimit=8
equihashsolver=tromp

The preceding configuration enables various features. The first line adds the mainnet node
and enables mainnet connectivity. rpcuser and rpcpassword are the username and
password for the RPC interface. gen = 1 is used to enable mining. genproclimit is the
number of processors that can be used for mining. The last line enables a faster mining
solver; this is not required if you want to use standard CPU mining.

Now Zcash can be started using the following command:

./zcashd --daemon

Once started this will allow interaction with the RPC interface via the Zcash-cli command-
line interface. This is almost the same as the bitcoin command-line interface. Once the Zcash
daemon is up-and-running, various commands can be run to query different attributes of
Zcash. Transactions can be viewed locally by using the CLI or via a blockchain explorer. A
blockchain explorer for Zcash is available at: h t t p s ://e x p l o r e r . z c h a . i n /.

Address generation
New Z addresses can be generated using the command below:

$:~/zcash/src$./zcash-cli z_getnewaddress
zcPDBKuuwHJ4gqT5Q59zAMXDHhFoihyTC1aLE5Kz4GwgUXfCBWG6SDr45SFLUsZhpcdvHt7nFmC
3iQcn37rKBcVRa93DYrA

www.EBooksWorld.ir

https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/
https://explorer.zcha.in/

Alternative Coins

[195]

Running the Zcash-cli command with the getinfo parameter produces the output shown
in the following screenshot. It displays valuable information such as blocks, difficulty, and
balance:

Screenshot displaying the output of getinfo

New T addresses can be generated using the following command:

drequinox@drequinox-OP7010:~/zcash/src$./zcash-cli getnewaddress
t1XRCGMAw36yPVCcxDUrxv2csAAuGdS8Nny

GPU mining
Other than CPU mining, a GPU mining option is also available. There is no official GPU
miner yet; however open source developers have produced various proofs of concepts and
working miners. The Zcash Company held an open competition to encourage developers to
build and submit CPU and GPU miners. No winning entry has been announced as of the
time of writing. Readers can get more information by visiting the website,
https://zcashminers.org/.

There is another mining: using cloud mining contracts available from various online cloud
mining providers. The cloud mining service providers perform mining on the customers'
behalf. In addition to cloud mining contracts, miners can use their own equipment to mine
via mining pools using stratum or other protocols. One key example is Zcash pool by nice
hash. Using this pool, miners can sell their hash power. An example of building and using a
CPU miner on a Zcash mining pool is shown as follows.

www.EBooksWorld.ir

https://zcashminers.org/

Alternative Coins

[196]

Downloading and compiling nheqminer
The following steps can be used to download and compile nheqminer on an Ubuntu Linux
distribution:

sudo apt-get install cmake build-essential libboost-all-dev
git clone https://github.com/nicehash/nheqminer.git
cd nheqminer/nheqminer
mkdir build
cd build
cmake ..
make

Once all the steps are completed successfully, nhequminer can be run using the following
command:

./nhequminer -l eu -u <btc address> -t <number of threads>

Nhequminer releases are available for Windows at:
https://github.com/nicehash/nheqminer/releases.

Nheqminer takes several parameters such as location (-l), username (-u), and the number
of threads to be used for mining (-t).

A sample run of Windows miner for Zcash is shown as follows:

Using the BTC address to receive pay-outs for selling hash power

www.EBooksWorld.ir

https://github.com/nicehash/nheqminer/releases

Alternative Coins

[197]

Using Zcash T address to receive pay-outs for selling hash power

This completes the introduction to Zcash; readers can explore more about Zcash online as it
is very volatile at the moment and things can change very quickly. One thing is for sure;
Zcash's zero knowledge proofs are a major innovation and they pave the way for future
applications that require inherent privacy, such as banking, medicine, or the law.

Summary
In this chapter, readers have been introduced to the overall cryptocurrency landscape. A
few altcoins have been discussed in detail, especially Zcash and Namecoin.
Cryptocurrencies are a very active area for research, especially around scalability, privacy,
and security aspects. Some research has also been conducted in order to invent new
difficulty retargeting algorithms in order to thwart the threat of centralization in
cryptocurrencies. Further research can be carried out in the areas of privacy and specially
scalability. Readers now should be able to appreciate the concept of altcoins and various
motivations behind them. Some practical aspects, such as mining and starting a new
currency project, have also been discussed, which hopefully will give readers a strong
foundation and enable them to further explore these areas. Altcoins are a fascinating field of
research and open a lot of possibilities for a decentralized future.

www.EBooksWorld.ir

6
Smart Contracts

This chapter provides an introduction to smart contracts. This is not a new concept, but,
with the advent of blockchain, interest in this concept has revived, and this is now an active
area of research in the blockchain space. Due to the cost saving benefits that smart contracts
can bring to the financial services industry by reducing the cost of transactions and
simplifying complex contracts, rigorous research is being carried out by various financial
and academic institutions in order to formalize and make the implementation of smart
contracts easy and practical, as soon as possible.

History
Smart contracts were first theorized by Nick Szabo in the late 1990s, but it was almost 20
years before the true potential and benefits of them were truly appreciated. Smart contracts
are described by Szabo as follows:

“A smart contract is a computerized transaction protocol that executes the terms of a
contract. The general objectives are to satisfy common contractual conditions (such as
payment terms, liens, confidentiality, and even enforcement), minimize exceptions both
malicious and accidental, and minimize the need for trusted intermediaries. Related
economic goals include lowering fraud loss, arbitrations and enforcement costs, and other
transaction costs.”

www.EBooksWorld.ir

Smart Contracts

[199]

This idea of smart contracts was implemented in a limited fashion in bitcoin in 2009, where
bitcoin transactions can be used to transfer the value between users, over a peer-to-peer
network where users do not necessarily trust each other and there is no need for a trusted
intermediary.

Definition
There is no consensus on a standard definition of smart contracts. It is essential to define
what a smart contract is, and the following is the author's attempt to provide a generalized
definition of a smart contract.

A smart contract is a secure and unstoppable computer program
representing an agreement that is automatically executable and
enforceable.

Dissecting this definition further reveals that a smart contract is in fact a computer program
that is written in a language that a computer or target machine can understand. Also, it
encompasses agreements between parties in the form of business logic. Another key idea is
that smart contracts are automatically executed when certain conditions are met. They are
enforceable, which means that all contractual terms are executed as defined and expected,
even in the presence of adversaries. Enforcement is a broader term that encompasses
traditional enforcement in the form of law, along with implementation of certain measures
and controls that make it possible to execute contract terms without requiring any
mediation. It should be noted that true smart contracts should not rely on traditional
methods of enforcement. Instead, they should work on the principle that code is law,
meaning that there is no need for an arbitrator or a third party to control or influence the
execution of the smart contract. Smart contracts are self-enforcing as opposed to legally
enforceable. This might be regarded as a libertarian's dream, but it is entirely possible, and
is in line with the true spirit of smart contracts.

Moreover, they are secure and unstoppable, which means that these computer programmes
are required to be designed in such a fashion that they are fault tolerant and executable in
reasonable amount of time. These programmes should be able to execute and maintain a
healthy internal state, even if external factors are unfavorable. For example, imagine a
normal computer programme which is encoded with some logic and executes according to
the instruction coded within it, but if the environment it is running in or external factors it
relies on deviate from the normal or expected state, the programme may react arbitrarily or
simply abort. It is important that smart contracts are immune to this type of issue.

www.EBooksWorld.ir

Smart Contracts

[200]

Secure and unstoppable may well be considered requirements or desirable features but it
will provide greater benefits in the long run if security and unstoppable properties are
included in the smart contract definition from the beginning. This will allow researchers to
focus on these aspects from the start and will help to build strong foundations on which
further research can then be based. There is also a suggestion by some researchers that
smart contracts need not be automatically executable; instead they can be what's called
automatable, due to manual human input required in certain scenarios. Whilst it's true that in
some cases human input and control is desirable, it is not absolutely necessary; and, for a
contract to be truly smart, in the authors opinion, it has to be fully automated. Certain
inputs that need to be provided by people can and should also be automated via the use of
Oracles. Oracles will be discussed later in this chapter in greater detail.

Smart contracts usually operate by managing their internal state using a state machine
model. This allows development of an effective framework for programming smart
contracts, where the state of a contract is advanced further based on some predefined
criteria and conditions.

There is also on-going debate on the question of whether code is acceptable as a contract in
a court of law. This is totally different in presentation from traditional legal prose, albeit
they do represent and enforce all contractual clauses but a court of law does not understand
code. This raises several questions around how a smart contract can be legally binding: can
it be developed in such a way that it is readily acceptable and understandable in a court of
law? How can dispute resolution be implemented within the code, and is it possible?
Moreover, regulatory and compliance requirements is another topic that needs to be
addressed before smart contracts can be used as effectively as traditional legal documents.

The preceding questions open up various possibilities, such as making smart contract code
readable not only by machines but also by people. If humans and machines can both
understand the code written in a smart contract it might be more acceptable in legal
situations, as opposed to just a piece of code that no-one understands except for
programmers. This desirable property is an area ripe for research and much research effort
has been expended in this area to answer questions around semantics, meaning and
interpretation of a contract.

www.EBooksWorld.ir

Smart Contracts

[201]

Smart contracts are inherently required to be deterministic in nature. This property will
allow a smart contract to be run by any node on a network and achieve the same result. If
the result differs even slightly between nodes, consensus then cannot be achieved and a
whole paradigm of distributed consensus on blockchain can fail. Moreover, it is also
desirable that the contract language itself is deterministic thus ensuring the integrity and
stability of the smart contracts. By which I mean, deterministic in the sense that there are no
non-deterministic functions used in the language which can produce varied results on
different nodes. For example, various floating point operations calculated by various
functions in a variety of programming languages can produce different results in different
runtime environments. Another example is of some math functions in JavaScript which can
produce different results for the same input on different browsers, and which can in turn
lead to various bugs. This is highly undesirable in smart contracts because, if results are
inconsistent between nodes, then consensus will never be achieved. A deterministic feature
ensures that smart contracts always produce the same output for a specific input. In other
words, programs once compiled produce a solid and accurate business logic that is
completely in line with the requirements programmed in the high level code.

In summary, a smart contract has the following four properties:

Automatically executable
Enforceable
Semantically sound
Secure and unstoppable.

The first two properties are required as a minimum, whereas the latter two may not be
required or implementable in certain scenarios and can be relaxed. For example, a
derivatives contract does not perhaps need to be semantically sound and unstoppable but
should at least be automatically executable and enforceable at a basic level. On the other
hand, a title deed needs to be semantically sound and complete therefore, in order for it to
be implemented as a smart contract, the language must be understood by both computers
and people. This issue of interpretation was addressed by Ian Grigg with his invention of
Ricardian contracts, which we will look at in more detail in the next section.

www.EBooksWorld.ir

Smart Contracts

[202]

Ricardian contracts
Ricardian contracts were originally proposed in the Financial Cryptography in 7 Layers paper
by Ian Grigg in late 1990s. These contracts were used initially in a bond trading and
payment system called Ricardo. The key idea is to write a document which is
understandable and acceptable by both a court of law and computer software. Ricardian
contracts address the challenge of issuance of value over the Internet. It identifies the issuer
and captures all the terms and clauses of the contract in a document in order to make it
acceptable as a legally binding contract.
Based on the original definition by Ian Grigg at
http://iang.org/papers/ricardian_contract.html, a Ricardian contract is a document
that has several of the following properties:

A contract offered by an issuer to holders
A valuable right held by holders, and managed by the issuer
Easily readable by people (like a contract on paper)
Readable by programs (parseable, like a database)
Digitally signed
Carries the keys and server information
Allied with a unique and secure identifier

In practice, the contracts are implemented by producing a single document that contains the
terms of the contract in legal prose and the required machine-readable tags. This document
is digitally signed by the issuer using their private key. This document is then hashed using
a message digest function to produce a hash by which the document can be identified. This
hash is then further used and signed by parties during the performance of the contract in
order to link each transaction, with the identifier hash thus serving as evidence of intent.
This is depicted in the diagram below, usually called a bowtie model.

The diagram below shows the World of Law on the left hand side from where the
document originates. It is then hashed and the resultant message digest is used as an
indentifier throughout the World of Accountancy. The World of Accountancy can basically
represent any or multiple accounting, trading and information systems that are being used
in a business to perform various business operations. The idea behind this flow is that the
message digest generated by hashing the document is first used in a so called genesis
transaction, or first transaction, and then used in every transaction as an indentifier
throughout the operational execution of the contract.

www.EBooksWorld.ir

http://iang.org/papers/ricardian_contract.html

Smart Contracts

[203]

This way, a secure link is created between the original written contract and every
transaction in the World of Accounting.

Ricardian contracts, bowtie diagram

A Ricardian contract is different from a smart contract in the sense that a smart contract
does not include any contractual document and is focused purely on the execution of the
contract. A Ricardian contract, on the other hand, is more concerned with the semantic
richness and production of a document that contains contractual legal prose. The semantics
of a contract can be divided into two types: operational semantics and denotational
semantics. The first type defines the actual execution, correctness and safety of the contract,
and the latter is concerned with the real-world meaning of the full contract. Some
researchers have differentiated between smart contract code and smart legal contracts
where a smart contract is only concerned with the execution of the contract and the second
type encompasses both the denotational and operational semantics of a legal agreement. It
makes sense to perhaps categorize smart contracts based on the difference between
semantics, but it is better to consider smart contracts as a standalone entity that is capable of
encoding legal prose and code (business logic) in it.

www.EBooksWorld.ir

Smart Contracts

[204]

At bitcoin, a very simple implementation of a smart contract can be observed which is fully
oriented towards the execution of the contract, whereas a Ricardian contract is more geared
towards producing a document that is understandable by humans, with some parts that a
computer program can understand. This can be viewed as legal semantics vs operational
performance (semantics vs performance) as shown in the following diagram. This was
originally proposed by Ian Grigg in his paper On the intersection of Ricardian and smart
contracts.

Diagram explaining performance v. semantics are orthogonal issues as described by Ian Grigg; slightly modified to show examples of different types of contracts on both axis

A smart contract is made up to have both of these elements (performance and semantics)
embedded together, which completes an ideal model of a smart contract.

A Ricardian contract can be represented as a tuple of three objects, namely Prose, parameters
and code. Prose represents the legal contract in regular language; code represents the
program that is a computer-understandable representation of legal prose; and parameters
join the appropriate parts of the legal contract to the equivalent code.

Ricardian contracts have been implemented in many systems, such as CommonAccord,
OpenBazaar, OpenAssets, and Askemos.

www.EBooksWorld.ir

Smart Contracts

[205]

Smart contract templates
Smart contracts can be implemented for any industry where required but most current use
cases are related to the financial industry. Recent work in smart contract space specific to
the financial industry has proposed the idea of smart contract templates. The idea is to build
standard templates that provide a framework to support legal agreements for financial
instruments. This was proposed by Clack et al in their paper named Smart Contract Templates:
Foundations, design landscape and research directions. The paper also proposed that domain-
specific languages should be built in order to support design and implementation of smart
contract templates. A language named CLACK, a common language for augmented contract
knowledge has been proposed and research has begun to develop the language. This
language is intended to be very rich and provide a large variety of functions ranging from
supporting legal prose to the ability to be executed on multiple platforms and
cryptographic functions.

Contracts in the finance industry is not a new concept and various domain-specific
language DSLs are already in use in the financial industry to provide specific language for a
specific domain. For example, there are DSLs available that support development of
insurance products, represent energy derivatives, or are being used to build trading
strategies. The list goes on and a comprehensive list of financial domain-specific languages
can be found at http://www.dslfin.org/resources.html.

It's important to understand the concept of domain-specific languages. These languages are
developed with limited expressiveness for a particular application or area of interest.
Domain-specific languages (DSLs) are different from general-purpose programming
languages (GPLs): DSLs have a small set of features that are sufficient and optimized for
the domain they are intended to be used in and, unlike GPLs, are usually not used to build
general purpose large application programmes. Based on the design philosophy of DSLs it
can be envisaged that such languages can be developed specifically to write smart contracts.
Some work has already been done and Solidity is one such language that has been
introduced with Ethereum blockchain to write smart contracts. Serpent is another language
that has been introduced with Ethereum even though it's not used as much as Solidity.

This idea of domain-specific languages for smart contract programming can be further
extended to a graphical domain-specific language, a smart contract modelling platform
where a domain expert (not a programmer) can use a graphical user interface and a canvas
to define and draw the semantics and performance of a financial contract. Once the flow has
been drawn and completed, it can be emulated first to test and then to deploy from the
same system to the target platform, which can be a blockchain. This is also not a new
concept and a similar approach is used in the Tibco streambase product, which is a Java
based system used for building event-driven high frequency trading systems.

www.EBooksWorld.ir

http://www.dslfin.org/resources.html

Smart Contracts

[206]

It is proposed that research should also be conducted in the area of developing high level
DSLs that can be used to programme a smart contract in a user friendly graphical user
interface thus allowing a non-programmer to design a smart contract.

Oracles
Oracles are an important component of the smart contract ecosystem. The limitation with
smart contracts is that they cannot access external data which might be required to control
the execution of the business logic; for example, the stock price of a security that is required
by the contract to release the dividend payments. Oracles can be used to provide external
data to smart contracts. An Oracle is an interface that delivers data from an external source
to smart contracts. Depending on the industry and requirements, Oracles can deliver
different types of data ranging from weather reports, real-world news, and corporate
actions to data coming from Internet of Things (IoT) devices. Oracles are trusted entities
that use a secure channel to transfer data to a smart contract.

Oracles are also capable of digitally signing the data proving that the source of the data is
authentic. Smart contracts can then subscribe to the Oracles, and the smart contracts can
either pull the data, or Oracles can push the data to the smart contracts. It is also necessary
that Oracles should not be able to manipulate the data they provide and must be able to
provide authentic data. Even though Oracles are trusted, it may still be possible in some
cases that the data is incorrect due to manipulation. Therefore, it is necessary that Oracles
are unable to change the data. This validation can be provided by using various notary
schemes, discussed later in the chapter. In this approach an issue can already be seen which
perhaps is not desirable in some cases, and that is the issue of trust. How do you trust a
third party about the quality and authenticity of data they provide? This is especially true in
the financial world, where market data must be accurate and reliable. It might be acceptable
for a smart contract designer to accept data for an oracle that is provided by a large
reputable trusted third party, but the issue of centralization still remains. These types of
Oracles can be called standard or simple Oracles.

Another type of Oracle, which essentially emerged due to the decentralization
requirements, can be called decentralized Oracles. These types of Oracles can be built based
on some distributed mechanism. It can also be envisaged that the Oracles can themselves
source data from another blockchain which is driven by distributed consensus, thus
ensuring the authenticity of data. For example, one institution running their own private
blockchain can publish their data feed via an Oracle that can then be consumed by other
blockchains.

www.EBooksWorld.ir

Smart Contracts

[207]

Another concept of hardware Oracles is also introduced by researchers where real-world
data from physical devices is required. For example, this can be used in telemetry and IoT.
However, this approach however requires a mechanism in which hardware devices cannot
be tampered with. This can be achieved by using tamper-proof devices.

There are platforms available now to enable a smart contract to get external data using an
Oracle. There are different methods used by an Oracle to write data into the blockchain
depending on the type of blockchain used. For example in bitcoin blockchain, an oracle can
write data to a specific transaction via an OP_RETURN Opcode, and a smart contract can
monitor that transaction and read the data. Various online services such as
http://www.oraclize.it/ and https://www.realitykeys.com/ are available that provide
oracle services. Also, another service at https://smartcontract.com/ is available which
provides external data and the ability to make payments using smart contracts. The aim of
all these services is to enable the smart contract to get the data it needs to execute and make
decisions. In order to prove the authenticity of the data retrieved by the Oracles from
external sources, mechanisms like TLSnotary can be used which produce proof of
communication between the data source and the oracle. This ensures that the data fed back
to the smart contract is definitely retrieved from the source. More details about TLSnotary
can be found here https://tlsnotary.org/.

The following diagram shows a generic model of an oracle and smart contract ecosystem:

A simplified model of an oracle interacting with smart contract on blockchain

Smart Oracles
An idea of Smart Oracle has also been proposed and implemented in Codius. Smart Oracles
are basically entities just like Oracles, but with the added capability of contract code
execution. Smart Oracles proposed by Codius run using Google Native Client. which is a
sandboxed environment for running untrusted x86 native code. Codius is available at
https://www.codius.org/.

www.EBooksWorld.ir

http://www.oraclize.it/
https://www.realitykeys.com/
https://smartcontract.com/
https://tlsnotary.org/
https://www.codius.org/

Smart Contracts

[208]

Deploying smart contracts on a blockchain
Smart contracts may or may not be deployed on a blockchain but it makes sense to
deploy them on a blockchain due to the distributed consensus mechanism provided by
blockchain. Ethereum is an example of a blockchain that natively supports the development
and deployment of smart contracts. Smart contracts on Ethereum blockchain are usually
part of a larger application such as Decentralized Autonomous organization (DAOs).

As a comparison, in bitcoin blockchain the lock_time field in the bitcoin transaction can be
seen as an enabler of a basic version of a smart contract. The lock_time field enables a
transaction to be locked until a specified time or after a number of blocks, thus enforcing a
basic contract that a certain transaction can only be unlocked if certain conditions (elapsed
time or number of blocks) is met. However, this is very limited in nature and should be only
viewed as an example of a basic smart contract. In addition to the above mentioned
example, bitcoin scripting language, though limited, can be used to construct basic smart
contracts. One possibility is to fund a bitcoin address that can be spent by anyone who
demonstrates a hash collision attack. This idea was presented on the Bitcointalk forum and
more information can be found at https://bitcointalk.org/index.php?topic=293382.0.
This can also be considered a basic form of smart contract.

The DAO
The DAO is one of the highest crowdfunded projects, and started in April 2016. This was
basically a set of smart contracts written in order to provide a platform for investment. Due
to a bug in the code this was hacked in June 2016 and an equivalent of 50 million dollars
was siphoned out of the DAO into another account. This resulted in a hard fork on
Ethereum in order to recover from the attack. It should be noted that the notion of code is
law, or unstoppable smart contracts, should be viewed with some scepticism as the
implementation of these concepts is not mature enough to warrant full and unquestionable
trust. This is evident from the recent events where the Ethereum foundation was able to
stop and change the execution of The DAO by introducing a hard fork. Though this hard
fork was introduced for genuine reasons, it goes against the true spirit of decentralization
and the notion of code is law. On the other hand, resistance against this hard fork and some
miners who decided to keep mining on the original chain resulted in the creation of
Ethereum Classic. This is the original, non-forked Ethereum blockchain where code is still
law.

www.EBooksWorld.ir

https://bitcointalk.org/index.php?topic=293382.0

Smart Contracts

[209]

This attack highlights the dangers of smart contracts and the absolute need to develop a
formal language for smart contracts. The attack also highlighted the importance of thorough
testing. There have been various vulnerabilities discovered in Ethereum recently around the
smart contract development language. Therefore it is of utmost importance that a standard
framework is developed to address all these issues. Some work has already begun as
discussed previously, but this area is ripe for more research in order to address limitations
in smart contract languages.

Summary
This chapter started by introducing a history of smart contracts, and was followed by a
detailed discussion on the definition of a smart contract. As there is no agreement on the
standard definition of a smart contract, we attempted to introduce a definition that
encompasses the crux of smart contracts. An introduction to Ricardian contracts was also
provided, and the difference between Ricardian contracts and smart contracts was
explained, highlighting the fact that Ricardian contracts are concerned with the definition of
the contract whereas smart contracts are geared towards the actual execution of the
contract. The concept of smart contract templates was discussed, on the subject of which
high quality active research is currently being conducted in academia and industry. Some
ideas about the possibility of creating high level domain-specific languages were also
discussed to create smart contracts or smart contract templates. In later sections of the
chapter, the concepts of Oracles was introduced followed by a brief discussion on the DAO,
and security issues in DAO and smart contracts.

www.EBooksWorld.ir

7
Ethereum 101

This chapter is intended to be an introduction to the Ethereum blockchain. You will be
introduced to the fundamentals and advanced theoretical concepts behind Ethereum. A
discussion on various components, protocols, and algorithms relevant to the Ethereum
blockchain will be given in detail so that you can understand the theory behind this
blockchain paradigm. Also, a practical and in-depth introduction to wallet software,
mining, and setting up Ethereum nodes will be covered in this chapter. Some material on
various challenges, such as security and scalability faced by Ethereum, will also be
introduced. Additionally, trading and market dynamics will be discussed.

Introduction
Ethereum was conceptualized by Vitalik Buterin in November 2013. The key idea proposed
was the development of a Turing-complete language that allows the development of
arbitrary programs (smart contracts) for blockchain and decentralized applications. This is
in contrast to bitcoin, where the scripting language is very limited and allows basic and
necessary operations only.

Ethereum clients and releases
Various Ethereum clients have been developed using different languages and currently
most popular are go-Ethereum and parity. go-Ethereum was developed using Golang,
whereas parity was built using Rust. There are other clients available too, but usually, the
go-Ethereum client known as geth is sufficient for all purposes. Mist is a user-friendly
Graphical User Interface (GUI) wallet that runs geth in the background to sync with the
network. More details on this will be provided later in the chapter, in the installation and
mining section.

www.EBooksWorld.ir

Ethereum 101

[211]

The first release of Ethereum was known as Frontier, and the current release of Ethereum is
called homestead release. The next version is named metropolis and it focuses on protocol
simplification and performance improvement. The final release is named serenity, which is
envisaged to have a Proof of Stake algorithm (Casper) implemented with it. Other areas of
research targeted with serenity include scalability, privacy, and Ethereum virtual machine
(EVM) upgrade. As this is a continuous development effort and the Ethereum ecosystem
will undergo constant improvement and development, serenity should not really be
considered a final version but a major milestone in a long journey of continuous
improvement. Further releases are envisaged but have not been named yet. The vision of
web 3.0 has already been proposed and is being discussed in the community. Web 3.0 is a
concept that basically proposes a semantic and intelligent web as an evolution of the
existing web 2.0 technology. This is the vision of an ecosystem where people, applications,
data, and web are all connected together and are able to interact with each other in an
intelligent fashion. With the advent of the blockchain technology, an idea of decentralized
web has also emerged, which in fact was the original vision of the Internet. The core idea is
that all major services, such as DNS, search engines, and identity on the Internet will be
decentralized in web 3.0. This is where Ethereum is being envisaged as a platform that can
help realize this vision.

The Ethereum stack
The Ethereum stack consists of various components. At the core, there is the Ethereum
blockchain running on the P2P Ethereum network. Secondly, there's an Ethereum client
(usually geth) that runs on the nodes and connects to the peer-to-peer Ethereum network
from where blockchain is downloaded and stored locally. It provides various functions,
such as mining and account management. The local copy of the blockchain is synchronized
regularly with the network. Another component is the web3.js library that allows
interaction with geth via the Remote Procedure Call (RPC) interface.

www.EBooksWorld.ir

Ethereum 101

[212]

This can be visualized in the following diagram:

The Ethereum stack showing various components

Ethereum blockchain
Ethereum, just like any other blockchain, can be visualized as a transaction-based state
machine. This is mentioned in the Ethereum yellow paper written by Dr. Gavin Wood. The
idea is that a genesis state is transformed into a final state by executing transactions
incrementally. The final transformation is then accepted as the absolute undisputed version
of the state. In the following diagram, the Ethereum state transition function is shown,
where a transaction execution has resulted in a state transition.

Ethereum State transition function

www.EBooksWorld.ir

Ethereum 101

[213]

In the preceding example, a transfer of 2 Ether from Address 4718bf7a to Address 741f7a2
is initiated. The initial state represents the state before the transaction execution and the
final state is what the morphed state looks like. This will be discussed in more detail later in
the chapter, but the aim of this example is to introduce the core idea of state transition in
Ethereum.

Currency (ETH and ETC)
As an incentive to the miners, Ethereum also rewards its native currency called Ether,
abbreviated as ETH. After the DAO hack (described later), a hard fork was proposed in
order to mitigate the issue; therefore, there are now two Ethereum blockchains: one is called
Ethereum classic and its currency is represented by ETC, whereas the hard-forked version is
ETH, which continues to grow and on which active development is being carried out. ETC,
however, has its own following with a dedicated community that is further developing
ETC, which is the nonforked original version of Ethereum. This chapter is focused mainly
on ETH, which is the currently the most active and official Ethereum blockchain.

Forks
With the latest release of homestead, due to major protocol upgrades, it resulted in a hard
fork. The protocol was upgraded at block number 1,150,000, resulting in the migration from
the first version of Ethereum known as Frontier to the second version of Ethereum called
homestead.

A recent unintentional fork that occurred on November 24, 2016, at 14:12:07 UTC was due
to a bug in the geth client's journaling mechanism. Network fork occurred at block number
2,686,351. This bug resulted in geth failing to revert empty account deletions in the case of
the empty out-of-gas exception. This was not an issue in parity (another popular Ethereum
client). This means that from block number 2686351, the Ethereum blockchain is split into
two, one running with parity clients and the other with geth. This issue was resolved with
the release of geth version 1.5.3.

www.EBooksWorld.ir

Ethereum 101

[214]

Gas
Another key concept in Ethereum is that of gas. All transactions on the Ethereum
blockchain are required to cover the cost of computation they are performing. The cost is
covered by something called gas or crypto fuel, which is a new concept introduced by
Ethereum. This gas as execution fee is paid upfront by the transaction originators. The fuel is
consumed with each operation. Each operation has a predefined amount of gas associated
with it. Each transaction specifies the amount of gas it is willing to consume for its
execution. If it runs out of gas before the execution is completed, any operation performed by
the transaction up to that point is rolled back. If the transaction is successfully executed,
then any remaining gas is refunded to the transaction originator.

This concept should not be confused with mining fee, which is a different concept that is
used to pay gas as a fee to the miners. More information on the concept and calculations
related to gas and operations will be provided later in the chapter.

The consensus mechanism
The consensus mechanism in Ethereum is based on the GHOST protocol originally
proposed by Zohar and Sompolinsky in December 2013. Those of you interested in it can
explore the detailed original paper at h t t p ://e p r i n t . i a c r . o r g /2013/881. p d f .

Ethereum uses a simpler version of this protocol, where the chain that has most
computational effort spent on it in order to build it is identified as the definite version.
Another way of looking at it is to find the longest chain, as the longest chain must have
been built by consuming adequate mining effort. Greedy Heaviest Observed
Subtree (GHOST) was first introduced as a mechanism to alleviate the issues arising out of
fast block generation times that led to stale or orphan blocks. In GHOST, stale blocks are
added in calculations to figure out the longest and heaviest chain of blocks. Stale blocks are
called Uncles or Ommers in Ethereum.

www.EBooksWorld.ir

http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf
http://eprint.iacr.org/2013/881.pdf

Ethereum 101

[215]

The following diagram shows a quick comparison between the longest and heaviest chain:

Longest versus heaviest chain

The world state
The world state in Ethereum represents the global state of the Ethereum blockchain. It is
basically a mapping between Ethereum addresses and account states. The addresses are 20
bytes long. This mapping is a data structure that is serialized using Recursive Length Prefix
(RLP). RLP is a specially developed encoding scheme that is used in Ethereum to serialize
binary data for storage or transmission over the network and also to save the state in a
Patricia tree. The RLP function takes an item as an input, which can be a string or a list of
items, and produces raw bytes that are suitable for storage and transmission over the
network. RLP does not encode data; instead, its main purpose is to encode structures.

The account state
The account state consists of four fields: nonce, balance, storageroot and codehash and is
described in detail here.

Nonce
This is a value that is incremented every time a transaction is sent from the address. In case
of contract accounts, it represents the number of contracts created by the account. Contract
accounts are one of the two types of accounts that exist in Ethereum; they will be explained
later on in the chapter in more detail.

www.EBooksWorld.ir

Ethereum 101

[216]

Balance
This value represents the number of Weis which is the smallest unit of the currency (Ether)
in Ethereum held by the address.

Storageroot
This field represents the root node of a Merkle Patricia tree that encodes the storage
contents of the account.

Codehash
This is an immutable field that contains the hash of the smart contract code that is
associated with the account. In the case of normal accounts, this field contains the Keccak
256-bit hash of an empty string. This code is invoked via a message call.

The world state and its relationship with accounts trie, accounts, and block header can be
visualized in the following diagram. It shows the account data structure in the middle of the
diagram, which contains a storage root hash derived from the root node of the account
storage trie shown on the left. The account data structure is then used in the world state trie,
which is a mapping between addresses and account states. Finally, the root node of the
world state trie is hashed using the Keccak 256-bit algorithm and made part of the block
header data structure, which is shown on the right-hand side of the diagram as state root
hash.

Accounts trie (storage contents of account), account tuple, world state trie, and state root hash and their relationship

www.EBooksWorld.ir

Ethereum 101

[217]

Accounts trie is basically a Merkle Patricia tree used to encode the storage contents of an
account. The contents are stored as a mapping between keccak 256-bit hashes of 256-bit
integer keys to the RLP-encoded 256-bit integer values.

Transactions
A transaction in Ethereum is a digitally signed data packet using a private key that contains
the instructions that, when completed, either result in a message call or contract creation.
Transactions can be divided into two types based on the output they produce:

Message call transactions: This transaction simply produces a message call that
is used to pass messages from one account to another.
Contract creation transactions: As the name suggests, these transactions result in
the creation of a new contract. This means that when this transaction is executed
successfully, it creates an account with the associated code.

Both of these transactions are composed of a number of common fields, which are described
here.

Nonce
Nonce is a number that is incremented by one every time a transaction is sent by the sender.
It must be equal to the number of transactions sent and is used as a unique identifier for the
transaction. A nonce value can only be used once.

gasPrice
The gasPrice field represents the amount of Wei required in order to execute the
transaction.

gasLimit
The gasLimit field contains the value that represents the maximum amount of gas that can
be consumed in order to execute the transaction. The concept of gas and gas limit will be
covered later in the chapter in more detail. For now, it is sufficient to say that this is the
amount of fee in Ether that a user (for example, the sender of the transaction) is willing to
pay for computation.

www.EBooksWorld.ir

Ethereum 101

[218]

To
As the name suggests, the to field is a value that represents the address of the recipient of
the transaction.

Value
Value represents the total number of Wei to be transferred to the recipient; in the case of a
contract account, this represents the balance that the contract will hold.

Signature
Signature is composed of three fields, namely v, r, and s. These values represent the digital
signature (R, S) and some information that can be used to recover the public key (V). Also of
the transaction from which the sender of the transaction can also be determined. The
signature is based on ECDSA scheme and makes use of the SECP256k1 curve. The theory of
elliptic curve cryptography was discussed in Chapter 3, Cryptography and technical
foundations. In this section, ECDSA will be presented in the context of its usage in Ethereum.

V is a single byte value that depicts the size and sign of the elliptic curve point and can be
either 27 or 28. V is used in the ECDSA recovery contract as a recovery ID. This value is
used to recover (derive) the public key from the private key. In secp256k1, the recovery ID
is expected to be either 0 or 1. In Ethereum, this is offset by 27. More details on the
ECDSARECOVER function will be provided later in this chapter.

R is derived from a calculated point on the curve. First, a random number is picked up,
which is multiplied with the generator of the curve to calculate a point on the curve. The x
coordinate part of this point is R. R is encoded as a 32 byte sequence. R must be greater than
0 and less than the secp256k1n limit
(115792089237316195423570985008687907852837564279074904382605163141518161494337).

S is calculated by multiplying R with the private key and adding it into the hash of the
message to be signed and by finally dividing it with the random number chosen to calculate
R. S is also a 32 byte sequence. R and S together represent the signature.

In order to sign a transaction, the ECDSASIGN function is used, which takes the message to
be signed and the private key as an input and produces V, a single byte value; R, a 32 byte
value, and S, another 32 byte value. The equation is as follows:

ECDSASIGN (Message, Private Key) = (V, R, S)

www.EBooksWorld.ir

Ethereum 101

[219]

Init
The Init field is used only in transactions that are intended to create contracts. This
represents a byte array of unlimited length that specifies the EVM code to be used in the
account initialization process. The code contained in this field is executed only once, when
the account is created for the first time, and gets destroyed immediately after that.

Init also returns another code section called body, which persists and runs in response to
message calls that the contract account may receive. These message calls may be sent via a
transaction or an internal code execution.

Data
If the transaction is a message call, then the data field is used instead of init, which
represents the input data of the message call. It is also unlimited in size and is organized as
a byte array.

This can be visualized in the following diagram, where a transaction is a tuple of the fields
mentioned earlier, which is then included in a transaction trie (a modified Merkle-Patricia
tree) composed of the transactions to be included. Finally, the root node of transaction trie is
hashed using a Keccak 256-bit algorithm and is included in the block header along with a
list of transactions in the block.

Transactions can be found in either transaction pools or blocks. When a mining node starts
its operation of verifying blocks, it starts with the highest paying transactions in the
transaction pool and executes them one by one. When the gas limit is reached or no more
transactions are left to be processed in the transaction pool, the mining starts. In this
process, the block is repeatedly hashed until a valid nonce is found that, once hashed with
the block, results in a value less than the difficulty target. Once the block is successfully
mined, it will be broadcasted immediately to the network, claiming success, and will be
verified and accepted by the network. This process is similar to Bitcoin's mining process
discussed in the previous chapter. The only difference is that Ethereum's Proof of Work
algorithm is ASIC-resistant, known as Ethash, where finding a nonce requires large
memory.

www.EBooksWorld.ir

Ethereum 101

[220]

Relationship between transaction, transaction trie and block header

Contract creation transaction
There are a few essential parameters that are required when creating an account. These
parameters are listed as follows:

Sender
Original transactor
Available gas
Gas price
Endowment, which is the amount of ether allocated initially
A byte array of arbitrary length
Initialization EVM code
Current depth of the message call/contract-creation stack (current depth means
the number of items that are already there in the stack)

Addresses generated as a result of contract creation transaction are 160-bit in length.
Precisely, as defined in the yellow paper, they are the rightmost 160-bits of the Keccak hash
of the RLP encoding of the structure containing only the sender and the nonce. Initially, the
nonce in the account is set to zero. The balance of the account is set to the value passed to
the contract. Storage is also set to empty. Code hash is Keccak 256-bit hash of the empty
string.

www.EBooksWorld.ir

Ethereum 101

[221]

The account is initialized when the EVM code (Initialization EVM code) is executed. In the
case of any exception during code execution, such as not having enough gas, the state does
not change. If the execution is successful, then the account is created after the payment of
appropriate gas costs. The current version of Ethereum (homestead) specifies that the result
of contract transaction is either a new contract with its balance, or no new contract is created
with no transfer of value. This is in contrast to previous versions, where the contract could
be created regardless of the contract code deployment being successful or not due to an out-
of-gas exception.

Message call transaction
A message call requires several parameters for execution, which are listed as follows:

Sender
The transaction originator
Recipient
The account whose code is to be executed
Available gas
Value
Gas price
Arbitrary length byte array
Input data of the call
Current depth of the message call/contract creation stack

Message calls result in state transition. Message calls also produce output data, which is not
used if transactions are executed. In cases where message calls are triggered by VM code,
the output produced by the transaction execution is used.

www.EBooksWorld.ir

Ethereum 101

[222]

In the following diagram, the segregation between two types of transaction is shown:

Types of transactions, required parameters for execution

Elements of the Ethereum blockchain
In the following section, you will be introduced to various components of the Ethereum
network and the blockchain. First, the basic concept of the EVM is given in the next section.

Ethereum virtual machine (EVM)
EVM is a simple stack-based execution machine that runs bytecode instructions in order to
transform the system state from one state to another. The word size of the virtual machine is
set to 256-bit. The stack size is limited to 1024 elements and is based on the LIFO (Last in
First Out) queue. EVM is a Turing-complete machine but is limited by the amount of gas
that is required to run any instruction. This means that infinite loops that can result in
denial of service attacks are not possible due to gas requirements. EVM also supports
exception handling in case exceptions occur, such as not having enough gas or invalid
instructions, in which case the machine would immediately halt and return the error to the
executing agent.

EVM is a fully isolated and sandboxed runtime environment. The code that runs on the
EVM does not have access to any external resources, such as a network or filesystem.

www.EBooksWorld.ir

Ethereum 101

[223]

As discussed earlier, EVM is a stack-based architecture. EVM is big-endian by design and it
uses 256-bit wide words. This word size allows for Keccak 256-bit hash and elliptic curve
cryptography computations.

There are two types of storage available to contracts and EVM. The first one is called
memory, which is a byte array. When a contract finishes the code execution, the memory is
cleared. It is akin to the concept of RAM. The other type, called storage, is permanently
stored on the blockchain. It is a key value store.

Memory is unlimited but constrained by gas fee requirements. The storage associated with
the virtual machine is a word addressable word array that is nonvolatile and is maintained
as part of the system state. Keys and value are 32 bytes in size and storage. The program
code is stored in a virtual read-only memory (virtual ROM) that is accessible using the
CODECOPY instruction. The CODECOPY instruction is used to copy the program code
into the main memory. Initially, all storage and memory is set to zero in the EVM.

The following diagram shows the design of the EVM where the virtual ROM stores the
program code that is copied into main memory using CODECOPY. The main memory is
then read by the EVM by referring to the program counter and executes instructions step by
step. The program counter and EVM stack are updated accordingly with each instruction
execution.

EVM operation

www.EBooksWorld.ir

Ethereum 101

[224]

EVM optimization is an active area of research and recent research has suggested that EVM
can be optimized and tuned to a very fine degree in order to achieve high performance.
Research into the possibility of using Web assembly (WASM) is underway already. WASM
is developed by Google, Mozilla, and Microsoft and is now being designed as an open
standard by the W3C community group. The aim of WASM is to be able to run machine
code in the browser that will result in execution at native speed. Similarly, the aim of EVM
2.0 is to be able to run the EVM instruction set (Opcodes) natively in CPUs, thus making it
faster and efficient.

Execution environment
There are some key elements that are required by the execution environment in order to
execute the code. The key parameters are provided by the execution agent, for example, a
transaction. These are listed as follows:

The address of the account that owns the executing code.1.
The address of the sender of the transaction and the originating address of this2.
execution.
The gas price in the transaction that initiated the execution.3.
Input data or transaction data depending on the type of executing agent. This is a4.
byte array; in the case of a message call, if the execution agent is a transaction,
then the transaction data is included as input data.
The address of the account that initiated the code execution or transaction sender.5.
This is the address of the sender in case the code execution is initiated by a
transaction; otherwise, it's the address of the account.
The value or transaction value. This is the amount in Wei. If the execution agent6.
is a transaction, then it is the transaction value.
The code to be executed presented as a byte array that the iterator function picks7.
up in each execution cycle.
The block header of the current block8.
The number of message calls or contract creation transactions currently in9.
execution. In other words, this is the number of CALLs or CREATEs currently in
execution.

www.EBooksWorld.ir

Ethereum 101

[225]

The execution environment can be visualized as a tuple of nine elements, as follows:

Execution environment Tuple

In addition to the previously mentioned nine fields, system state and the remaining gas are
also provided to the execution environment. The execution results in producing the
resulting state, gas remaining after the execution, self-destruct or suicide set (described
later), log series (described later), and any gas refunds.

Machine state
Machine state is also maintained internally by the EVM. Machine state is updated after each
execution cycle of EVM. An iterator function (detailed in the next section) runs in the virtual
machine, which outputs the results of a single cycle of the state machine. Machine state is a
tuple that consist of the following elements:

Available gas
The program counter, which is a positive integer up to 256
Memory contents

www.EBooksWorld.ir

Ethereum 101

[226]

Active number of words in memory
Contents of the stack

The EVM is designed to handle exceptions and will halt (stop execution) in case any of the
following exceptions occur:

Not having enough gas required for execution
Invalid instructions
Insufficient stack items
Invalid destination of jump op codes
Invalid stack size (greater than 1024)

The iterator function
The iterator function mentioned earlier performs various important functions that are used
to set the next state of the machine and eventually the world state. These functions include
the following:

It fetches the next instruction from a byte array where the machine code is stored
in the execution environment.
It adds/removes (PUSH/POP) items from the stack accordingly.
Gas is reduced according to the gas cost of the instructions/Opcodes.
It increments the program counter (PC).

Machine state can be viewed as a tuple shown in the following diagram:

Machine state tuple

www.EBooksWorld.ir

Ethereum 101

[227]

The virtual machine is also able to halt in normal conditions if STOP or SUICIDE or
RETURN Opcodes are encountered during the execution cycle.

Code written in a high-level language such as serpent, LLL, or Solidity is converted into the
byte code that EVM understands in order for it to be executed by the EVM. Solidity is the
high-level language that has been developed for Ethereum with JavaScript such as syntax to
write code for smart contracts. Once the code is written, it is compiled into byte code that's
understandable by the EVM using the Solidity compiler called solc.

LLL (Lisp-like Low-level language) is another language that is used to write smart contract
code. Serpent is a Python-like high-level language that can be used to write smart contracts
for Ethereum.

For example, a simple program in solidity is shown as follows:

pragma solidity ^0.4.0;
contract Test1
 {
 uint x=2;
 function addition1(uint x) returns (uint y) {
 y=x+2;
 }
}

This program is converted into bytecode, as shown here. Details on how to compile solidity
code with examples will be given in the next chapter.

Runtime byte code
606060405260e060020a6000350463989e17318114601c575b6000565b34600057602960043
5603b565b60408051918252519081900360200190f35b600281015b91905056
Opcodes PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x2 PUSH1 0x0 SSTORE CALLVALUE
PUSH1 0x0 JUMPI JUMPDEST PUSH1 0x45 DUP1 PUSH1 0x1A PUSH1 0x0 CODECOPY
PUSH1 0x0 RETURN PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0xE0 PUSH1 0x2 EXP
PUSH1 0x0 CALLDATALOAD DIV PUSH4 0x989E1731 DUP2 EQ PUSH1 0x1C JUMPI
JUMPDEST PUSH1 0x0 JUMP JUMPDEST CALLVALUE PUSH1 0x0 JUMPI PUSH1 0x29 PUSH1
0x4 CALLDATALOAD PUSH1 0x3B JUMP JUMPDEST PUSH1 0x40 DUP1 MLOAD SWAP2 DUP3
MSTORE MLOAD SWAP1 DUP2 SWAP1 SUB PUSH1 0x20 ADD SWAP1 RETURN JUMPDEST
PUSH1 0x2 DUP2 ADD JUMPDEST SWAP2 SWAP1 POP JUMP

www.EBooksWorld.ir

Ethereum 101

[228]

Opcodes and their meaning
There are different opcodes that have been introduced in the EVM. Opcodes are divided
into multiple categories based on the operation they perform. The list of opcodes with their
meaning and usage is presented here.

Arithmetic operations
All arithmetic in EVM is modulo 2^256. This group of opcodes is used to perform basic
arithmetic operations. The value of these operations starts from 0x00 up to 0x0b.

Mnemonic Value POP PUSH Gas Description

STOP 0x00 0 0 0 Halts execution

ADD 0x01 2 1 3 Adds two values

MUL 0x02 2 1 5 Multiplies two values

SUB 0x03 2 1 3 Subtraction operation

DIV 0x04 2 1 5 Integer division operation

SDIV 0x05 2 1 5 Signed integer division operation

MOD 0x06 2 1 5 Modulo remainder operation

SMOD 0x07 2 1 5 Signed modulo remainder operation

ADDMOD 0x08 3 1 8 Modulo addition operation

MULMOD 0x09 3 1 8 Module multiplication operation

EXP 0x0a 2 1 10 Exponential operation (repeated multiplication of
the base)

SIGNEXTEND 0x0b 2 1 5 Extends the length of 2s complement signed integer

Note that STOP is not an arithmetic operation but is categorized in this list of arithmetic
operations due to the range of values (0s) it falls in.

www.EBooksWorld.ir

Ethereum 101

[229]

Logical operations
Logical operations include operations that are used to perform comparisons and Boolean
logic operations. The value of these operations is in the range of 0x10 to 0x1a.

Cryptographic operations
There is only one operation in this category named SHA3. It is worth noting that this is not
the standard SHA3 standardized by NIST but the original Keccak implementation.

www.EBooksWorld.ir

Ethereum 101

[230]

Environmental information
There are a total of 13 instructions in this category. These opcodes are used to provide
information related to addresses, runtime environments, and data copy operations.

Mnemonic Value POP PUSH Gas Description

ADDRESS 0x30 0 1 2 Used to get the address of the currently
executing account

BALANCE 0x31 1 1 20 Used to get the balance of the given account

ORIGIN 0x32 0 1 2 Used to get the address of the sender of the
original transaction

CALLER 0x33 0 1 2 Used to get the address of the account that
initiated the execution

CALLVALUE 0x34 0 1 2 Retrieves the value deposited by the
instruction or transaction

CALLDATALOAD 0x35 1 1 3 Retrieves the input data that was passed a
parameter with the message call

CALLDATASIZE 0x36 0 1 2 Used to retrieve the size of the input data
passed with the message call

CALLDATACOPY 0x37 3 0 3 Used to copy input data passed with the
message call from the current environment to
the memory.

CODESIZE 0x38 0 1 2 Retrieves the size of running the code in the
current environment

CODECOPY 0x39 3 0 3 Copies the running code from current
environment to the memory

GASPRICE 0x3a 0 1 2 Retrieves the gas price specified by the
initiating transaction.

EXTCODESIZE 0x3b 1 1 20 Gets the size of the specified account code

EXTCODECOPY 0x3c 4 0 20 Used to copy the account code to the memory.

www.EBooksWorld.ir

Ethereum 101

[231]

Block Information
This set of instructions is related to retrieving various attributes associated with a block:

Mnemonic Value POP PUSH Gas Description

BLOCKHASH 0x40 1 1 20 Gets the hash of one of the 256 most recently
completed blocks

COINBASE 0x41 0 1 2 Retrieves the address of the beneficiary set in the
block

TIMESTAMP 0x42 0 1 2 Retrieves the time stamp set in the blocks

NUMBER 0x43 0 1 2 Gets the block's number

DIFFICULTY 0x44 0 1 2 Retrieves the block difficulty

GASLIMIT 0x45 0 1 2 Gets the gas limit value of the block

Stack, memory, storage and flow operations
Mnemonic Value POP PUSH Gas Description

POP 0x50 1 0 2 Removes items from the stack

MLOAD 0x51 1 1 3 Used to load a word from the memory.

MSTORE 0x52 2 0 3 Used to store a word to the memory.

MSTORE8 0x53 2 0 3 Used to save a byte to the memory

SLOAD 0x54 1 1 50 Used to load a word from the storage

SSTORE 0x55 2 0 0 Saves a word to the storage

JUMP 0x56 1 0 8 Alters the program counter

JUMPI 0x57 2 0 10 Alters the program counter based on a condition

PC 0x58 0 1 2 Used to retrieve the value in the program counter
before the increment.

MSIZE 0x59 0 1 2 Retrieves the size of the active memory in bytes.

GAS 0x5a 0 1 2 Retrieves the available gas amount

JUMPDEST 0x5b 0 0 1 Used to mark a valid destination for jumps with no
effect on the machine state during the execution.

www.EBooksWorld.ir

Ethereum 101

[232]

Push operations
These operations include PUSH operations that are used to place items on the stack. The
range of these instructions is from 0x60 to 0x7f. There are 32 PUSH operations available in
total in the EVM. PUSH operation, which reads from the byte array of the program code.

Mnemonic Value POP PUSH Gas Description

PUSH1 . . . PUSH
32

0x60 …
0x7f

0 1 3 Used to place N right-aligned big-endian
byte item(s) on the the stack. N is a value
that ranges from 1 byte to 32 bytes (full
word) based on the mnemonic used.

Duplication operations
As the name suggests, duplication operations are used to duplicate stack items. The range
of values is from 0x80 to 0x8f. There are 16 DUP instructions available in the EVM. Items
placed on the stack or removed from the stack also change incrementally with the
mnemonic used; for example, DUP1 removes one item from the stack and places two items
on the stack, whereas DUP16 removes 16 items from the stack and places 17 items.

Mnemonic Value POP PUSH Gas Description

DUP1 . . .
DUP16

0x80 …
0x8f

X Y 3 Used to duplicate the nth stack item, where N
is the number corresponding to the DUP
instruction used. X and Y are the items
removed and placed on the stack,
respectively.

Exchange operations
SWAP operations provide the ability to exchange stack items. There are 16 SWAP
instructions available and with each instruction, the stack items are removed and placed
incrementally up to 17 items depending on the type of Opcode used.

Mnemonic Value POP PUSH Gas Description

SWAP1 . . .
SWAP16

0x90 …
0x9f

X Y 3 Used to swap the nth stack item, where N is
the number corresponding to the SWAP
instruction used. X and Y are the items
removed and placed on the stack,
respectively.

www.EBooksWorld.ir

Ethereum 101

[233]

Logging operations
Logging operations provide opcodes to append log entries on the sub-state tuple's log series
field. There are four log operations available in total and they range from value 0x0a to
0xa4.

Mnemonic Value POP PUSH Gas Description

LOG0 . . .
LOG4

0x0a …
0xa4

X Y (0) 375,
750,
1125,
1500,
1875

Used to append log record with N topics, where
N is the number corresponding to the LOG
Opcode used. For example, LOG0 means a log
record with no topics, and LOG4 means a log
record with four topics. X and Y represent the
items removed and placed on the stack,
respectively. X and Y change incrementally,
starting from 2, 0 up to 6, 0 according to the LOG
operation used.

System operations
System operations are used to perform various system-related operations, such as account
creation, message calling, and execution control. There are six Opcodes available in total in
this category.

Mnemonic Value POP PUSH Gas Description

CREATE 0xf0 3 1 32000 Used to create a new account with the
associated code.

CALL 0xf1 7 1 40 Used to initiate a message call into an account.

CALLCODE 0xf2 7 1 40 Used to initiate a message call into this
account with an alternative account's code.

RETURN 0xf3 2 0 0 Stops the execution and returns output data.

DELEGATECALL 0xf4 6 1 40 The same as CALLCODE but does not change
the current values of the sender and the value.

SUICIDE 0xff 1 0 0 Stops (halts) the execution and the account is
registered for deletion later

In this section, all EVM opcodes have been discussed. There are 129 opcodes available in the
EVM of the homestead release of Ethereum in total.

www.EBooksWorld.ir

Ethereum 101

[234]

Precompiled contracts
There are four precompiled contracts in Ethereum. Here is the list of these contracts and
details.

The elliptic curve public key recovery function
ECDSARECOVER (Elliptic curve DSA recover function) is available at address 1. It is
denoted as ECREC and requires 3000 gas for execution. If the signature is invalid, then no
output is returned by this function. Public key recovery is a standard mechanism by which
the public key can be derived from the private key in elliptic curve cryptography.

The ECDSA recovery function is shown as follows:

ECDSARECOVER(H, V, R, S) = Public Key

It takes four inputs: H, which is a 32 byte hash of the message to be signed and V, R, and S,
which represent the ECDSA signature with the recovery ID and produce a 64 byte public
key. V, R, and S have been discussed in detail previously in this chapter.

The SHA-256 bit hash function
The SHA-256 bit hash function is a precompiled contract that is available at address 2 and
produces a SHA256 hash of the input. It is almost like a pass-through function. Gas
requirement for SHA-256 (SHA256) depends on the input data size. The output is a 32 byte
value.

The RIPEMD-160 bit hash function
The RIPEMD-160 bit hash function is used to provide RIPEMD 160-bit hash and is available
at address 3. The output of this function is a 20-byte value. Gas requirement, similar to
SHA-256, is dependent on the amount of input data.

www.EBooksWorld.ir

Ethereum 101

[235]

The identity function
The identity function is available at address 4 and is denoted by the ID. It simply defines
output as input; in other words, whatever input is given to the ID function, it will output
the same value. Gas requirement is calculated by a simple formula: 15 + 3 [Id/32] where Id is
the input data. This means that at a high level, the gas requirement is dependent on the size
of the input data albeit with some calculation performed, as shown in the preceding
equation.

All the previously mentioned precompiled contracts can become native extensions and can
be included in the EVM opcodes in the future.

Accounts
Accounts are one of the main building blocks of the Ethereum blockchain. The state is
created or updated as a result of the interaction between accounts. Operations performed
between and on the accounts represent state transitions. State transition is achieved using
what's called the Ethereum state transition function, which works as follows:

Confirm the transaction validity by checking the syntax, signature validity, and1.
nonce.
Transaction fee is calculated and the sending address is resolved using the2.
signature. Furthermore, sender's account balance is checked and subtracted
accordingly and nonce is incremented. An error is returned if the account balance
is not enough.
Provide enough ether (gas price) to cover the cost of the transaction. This is3.
charged per byte incrementally according to the size of the transaction.
In this step, the actual transfer of value occurs. The flow is from the sender's4.
account to receiver's account. The account is created automatically if the
destination account specified in the transaction does not exist yet. Moreover, if
the destination account is a contract, then the contract code is executed. This also
depends on the amount of gas available. If enough gas is available, then the
contract code will be executed fully; otherwise, it will run up to the point where it
runs out of gas.
In cases of transaction failure due to insufficient account balance or gas, all state5.
changes are rolled back with the exception of fee payment, which is paid to the
miners.
Finally, the remainder (if any) of the fee is sent back to the sender as change and6.
fee is paid to the miners accordingly. At this point, the function returns the
resulting state.

www.EBooksWorld.ir

Ethereum 101

[236]

Types of accounts
There are two types of accounts in Ethereum:

Externally owned accounts
Contract accounts

The first is externally owned accounts (EOAs) and the other is contract accounts. EOAs are
similar to accounts that are controlled by a private key in bitcoin. Contract accounts are the
accounts that have code associated with them along with the private key. An EOA has ether
balance, is able to send transactions, and has no associated code, whereas a Contract
Account (CA) has ether balance, associated code, and the ability to get triggered and
execute code in response to a transaction or a message. It is worth noting that due to the
Turing-completeness property of the Ethereum blockchain, the code within contract
accounts can be of any level of complexity. The code is executed by EVM by each mining
node on the Ethereum network. In addition, contract accounts are able to maintain their
own permanent state and can call other contracts. It is envisaged that in the serenity release,
the distinction between externally owned accounts and contract accounts may be
eliminated.

Block
As discussed earlier, blocks are the main building blocks of a blockchain. Ethereum blocks
consist of various components, which are described as follows:

The block header
The transactions list
The list of headers of Ommers or Uncles

The transaction list is simply a list of all transactions included in the block. In addition, the
list of headers of Uncles is also included in the block. The most important and complex part
is the block header, which is discussed here.

Block header
Block headers are the most critical and detailed components of an Ethereum block. The
header contains valuable information, which is described in detail here.

www.EBooksWorld.ir

Ethereum 101

[237]

Parent hash
This is the Keccak 256-bit hash of the parent (previous) block's header.

Ommers hash
This is the Keccak 256-bit hash of the list of Ommers (Uncles) blocks included in the block.

Beneficiary
Beneficiary field contains the 160-bit address of the recipient that will receive the mining
reward once the block is successfully mined.

State root
The state root field contains the Keccak 256-bit hash of the root node of the state trie. It is
calculated after all transactions have been processed and finalized.

Transactions root
The transaction root is the Keccak 256-bit hash of the root node of the transaction trie.
Transaction trie represents the list of transactions included in the block.

Receipts root
The receipts root is the keccak 256 bit hash of the root node of the transaction receipt trie.
This trie is composed of receipts of all transactions included in the block. Transaction
receipts are generated after each transaction is processed and contain useful post-
transaction information. More details on transaction receipts are provided in the next
section.

Logs bloom
The logs bloom is a bloom filter that is composed of the logger address and log topics from
the log entry of each transaction receipt of the included transaction list in the block. Logging
is explained in detail in the next section.

www.EBooksWorld.ir

Ethereum 101

[238]

Difficulty
The difficulty level of the current block.

Number
The total number of all previous blocks; the genesis block is block zero.

Gas limit
The field contains the value that represents the limit set on the gas consumption per block.

Gas used
The field contains the total gas consumed by the transactions included in the block.

Timestamp
Timestamp is the epoch Unix time of the time of block initialization.

Extra data
Extra data field can be used to store arbitrary data related to the block.

Mixhash
Mixhash field contains a 256-bit hash that once combined with the nonce is used to prove
that adequate computational effort has been spent in order to create this block.

Nonce
Nonce is a 64-bit hash (a number) that is used to prove, in combination with the mixhash
field, that adequate computational effort has been spent in order to create this block.

www.EBooksWorld.ir

Ethereum 101

[239]

The following figure shows the detailed structure of the block and block header:

Detailed diagram of block structure with block header

The genesis block
The genesis block varies slightly with regard to the data it contains and the way it has been
created from a normal block. It contains 15 items that are described here.

From Etherscan.io, the actual version is shown as follows:

Element Description

Timestamp (Jul-30-2015 03:26:13 PM +UTC)

Transactions 8893 transactions and 0 contract internal transactions in this block

Hash 0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3

Parent hash 0x00

Sha3Uncles 0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347

Mined by 0x00 IN 15 secs

Difficulty 17,179,869,184

Total
Difficulty

17,179,869,184

Size 540 bytes

Gas Limit 5,000

www.EBooksWorld.ir

Ethereum 101

[240]

Gas Used 0

Nonce 0x0000000000000042

Block
Reward

5 Ether

Uncles
Reward

0

Extra Data »èÛN4{NŒ”|ƒpäµí3³ÛiËÛz8áå ‚ú
(Hex:0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa)

Transaction receipts
Transaction receipts are used as a mechanism to store the state after a transaction has been
executed. In other words, these structures are used to record the outcome of the transaction
execution. It is produced after the execution of each transaction. All receipts are stored in an
index-keyed trie. Hash (Keccak 256-bit) of the root of this trie is placed in the block header
as the receipts root. It is composed of four elements that are described here.

The post-transaction state
This item is a trie structure that holds the state after the transaction has executed. It is
encoded as a byte array.

Gas used
This item represents the total amount of gas used in the block that contains the transaction
receipt. The value is taken immediately after the transaction execution is completed. The
total gas used is expected to be a non-negative integer.

Set of logs
This field shows the set of log entries created as a result of transaction execution. Log
entries contain the logger's address, a series of log topics, and the log data.

www.EBooksWorld.ir

Ethereum 101

[241]

The bloom filter
A bloom filter is created from the information contained in the set of logs discussed earlier.
A log entry is reduced to a hash of 256 bytes, which is then embedded in the header of the
block as the logs bloom. Log entry is composed of the logger's address and log topics and
log data. Log topics are encoded as a series of 32 byte data structures. Log data is made up
of a few bytes of data.

This process can be visualized in the following diagram:

Transaction receipts and logs bloom

Transaction validation and execution
Transactions are executed after verifying the transactions for validity. Initial tests are listed
as follows:

A transaction must be well-formed and RLP-encoded without any additional
trailing bytes
The digital signature used to sign the transaction is valid
Transaction nonce must be equal to the sender's account's current nonce
Gas limit must not be less than the gas used by the transaction
The sender's account contains enough balance to cover the execution cost

www.EBooksWorld.ir

Ethereum 101

[242]

The transaction sub state
A transaction sub-state is created during the execution of the transaction that is processed
immediately after the execution completes. This transaction sub-state is a tuple that is
composed of three items.

Suicide set
This element contains the list of accounts that are disposed of after the transaction is
executed.

Log series
This is an indexed series of checkpoints that allow the monitoring and notification of
contract calls to the entities external to the Ethereum environment, such as application
frontends. It works like a trigger mechanism that is executed every time a specific function
is invoked or a specific event occurs. Logs are created in response to events occurring in the
smart contract. It can also be used as a cheaper form of storage. Events will be covered with
practical examples in Chapter 8, Ethereum development.

Refund balance
This is the total price of gas in the transaction that initiated the execution. Refunds are not
immediately executed; instead, they are used to partially offset the total execution cost.

The following diagram describes the transaction sub-state tuple:

Sub-state tuple

www.EBooksWorld.ir

Ethereum 101

[243]

The block validation mechanism
An Ethereum block is considered valid if it passes the following checks:

Consistent with Uncles and transactions. This means that all Ommers (Uncles)
satisfy the property that they are indeed Uncles and also if the Proof of Work for
Uncles is valid.
If the previous block (parent) exists and is valid.
If the timestamp of the block is valid. This basically means that the current block's
timestamp must be higher than the parent block's timestamp. Also, it should be
less than 15 minutes into the future. All block times are calculated in epoch time
(Unix time).

If any of these checks fails, the block will be rejected.

Block finalization
Block finalization is a process that is run by miners in order to validate the contents of the
block and apply rewards. It results in four steps being executed. These steps are described
here in detail.

Ommers validation
Validate Ommers (stale blocks also called Uncles). In the case of mining, determine
Ommers. The validation process of the headers of stale blocks checks whether the header is
valid and the relationship of the Uncle with the current block satisfies the maximum depth
of six blocks. A block can contain a maximum of two Uncles.

Transaction validation
Validate transactions. In the case of mining, determine transactions. The process involves
checking whether the total gas used in the block is equal to the final gas consumption after
the final transaction.

Reward application
Apply rewards, which means updating the beneficiary's account with a reward balance. In
Ethereum, a reward is also given to miners for stale blocks, which is 1/32 of the block
reward. Uncles that are included in the blocks also receive 7/8 of the total block reward. The
current block reward is 5 Ether. A block can have a maximum of two Uncles.

www.EBooksWorld.ir

Ethereum 101

[244]

State and nonce validation
Verify the state and nonce. In the case of mining, compute a valid state and nonce.

Block difficulty
Block difficulty is increased if the time between two blocks decreases, whereas it increases if
the block time between two blocks decreases. This is required to maintain a roughly
consistent block generation time. The difficulty adjustment algorithm in Ethereum's
homestead release is shown as follows:

block_diff = parent_diff + parent_diff // 2048 *
max(1 - (block_timestamp - parent_timestamp) // 10, -99) +
int(2**((block.number // 100000) - 2))

The preceding algorithm means that, if the time difference between the generation of the
parent block and the current block is less than 10 seconds, the difficulty goes up. If the time
difference is between 10 to 19 seconds, the difficulty level remains the same. Finally, if the
time difference is 20 seconds or more, the difficultly level decreases. This decrease is
proportional to the time difference.

In addition to timestamp-difference-based difficulty adjustment, there is also another part
(shown in the last line of the preceding algorithm) that increases the difficulty exponentially
after every 100,000 blocks. This is the so called difficulty time bomb or Ice age introduced in
the Ethereum network, which will make it very hard to mine on the Ethereum blockchain at
some point in the future. This will encourage users to switch to Proof of Stake as mining on
the POW chain will eventually become prohibitively difficult. According to the latest
update and estimates based on the algorithm, the block generation time will become
significantly high during the second half of the year 2017 and in 2021, it will become so high
that it will be virtually impossible to mine on the POW chain. This way, miners will have no
choice but to switch to the Proof of Stake scheme proposed by Ethereum called Casper.

Ether
Ether is minted by miners as a currency reward for the computational effort they spend in
order to secure the network by verifying and with validation transactions and blocks. Ether
is used within the Ethereum blockchain to pay for the execution of contracts on the EVM.
Ether is used to purchase gas as crypto fuel, which is required in order to perform
computation on the Ethereum blockchain.

www.EBooksWorld.ir

Ethereum 101

[245]

The denomination table is shown as follows:

Fees are charged for each computation performed by the EVM on the blockchain. A detailed
fee schedule is shown in the upcoming section.

Gas
Gas is required to be paid for every operation performed on the ethereum blockchain. This
is a mechanism that ensures that infinite loops cannot cause the whole blockchain to stall
due to the Turing-complete nature of the EVM. A transaction fee is charged as some
amount of Ether and is taken from the account balance of the transaction originator. A fee is
paid for transactions to be included by miners for mining. If this fee is too low, the
transaction may never be picked up; the more the fee, the higher are the chances that the
transactions will be picked up by the miners for inclusion in the block. Conversely, if the
transaction that has an appropriate fee paid is included in the block by miners but has too
many complex operations to perform, it can result in an out-of-gas exception if the gas cost
is not enough. In this case, the transaction will fail but will still be made part of the block
and the transaction originator will not get any refund.

Transaction cost can be estimated using the following formula:

Total cost = gasUsed * gasPrice

www.EBooksWorld.ir

Ethereum 101

[246]

Here, gasUsed is the total gas that is supposed to be used by the transaction during the
execution and gasPrice is specified by the transaction originator as an incentive to the miners
to include the transaction in the next block. This is specified in Ether. Each EVM opcode has
a fee assigned to it. It is an estimate because the gas used can be more or less than the value
specified by the transaction originator originally. For example, if computation takes too
long or the behavior of the smart contract changes in response to some other factors, then
the transaction execution may perform more or less operations than originally intended and
can result in consuming more or fewer gas. If the execution runs out of gas, everything is
immediately rolled back; otherwise, if the execution is successful and there is some
remaining gas, then it is returned to the transaction originator.

Each operation costs some gas; a high level fee schedule of a few operations is shown as an
example here:

Based on the preceding fee schedule and the formula discussed earlier, an example
calculation of the SHA3 operation can be calculated as follows:

SHA3 costs 30 gas
Current gas price is 25 GWei, which is 0.000000025 Ether
Multiplying both: 0.000000025 * 30 = 0.00000075 Ether

In total, 0.00000075 Ether is the total gas that will be charged.

www.EBooksWorld.ir

Ethereum 101

[247]

Fee schedule
Gas is charged in three scenarios as a prerequisite to the execution of an operation:

The computation of an operation
For contract creation or message call
Increase in the usage of memory

A list of instructions and various operations with the gas values has been provided
previously in the chapter.

Messages
Messages, as defined in the yellow paper, are the data and value that are passed between
two accounts. A message is a data packet passed between two accounts. This data packet
contains data and value (amount of ether). It can either be sent via a smart contract
(autonomous object) or from an external actor (externally owned account) in the form of a
transaction that has been digitally signed by the sender.

Contracts can send messages to other contracts. Messages only exist in the execution
environment and are never stored. Messages are similar to transactions; however, the main
difference is that they are produced by the contracts, whereas transactions are produced by
entities external (externally owned accounts) to the Ethereum environment.

A message consists of the components mentioned here:

Sender of the message1.
Recipient of the message2.
Amount of Wei to transfer and message to the contract address3.
Optional data field (Input data for the contract)4.
Maximum amount of gas that can be consumed5.

Messages are generated when CALL or DELEGATECALL Opcodes are executed by the
contracts.

www.EBooksWorld.ir

Ethereum 101

[248]

Calls
A call does not broadcast anything to the blockchain; instead, it is a local call to a contract
function and runs locally on the node. It is almost like a local function call. It does not
consume any gas as it is a read-only operation. It is akin to a dry run. Calls are executed
locally on a node and generally do not result in any state change. As defined in the yellow
paper, this is the act of passing a message from one account to another. If the destination
account has an associated EVM code, then the virtual machine will start upon the receipt of
the message to perform the required operations. If the message sender is an autonomous
object, then the call passes any data returned from the virtual machine operation.

State is altered by transactions. These are created by external factors and are signed and
then broadcasted to the Ethereum network.

Mining
Mining is the process by which new currency is added to the blockchain. This is an
incentive for the miners to validate and verify blocks made up of transactions. The mining
process helps secure the network by verifying computations.

At a theoretical level, a miner performs the following functions:

Listens for the transactions broadcasted on the Ethereum network and1.
determines the transactions to be processed.
Determines stale blocks called Uncles or Ommers and includes them in the block.2.
Updates the account balance with the reward earned from successfully mining3.
the block.
Finally, a valid state is computed and block is finalized, which defines the result4.
of all state transitions.

The current method of mining is based on Proof of Work, which is similar to that of bitcoin.
When a block is deemed valid, it has to satisfy not only the general consistency
requirements, but it must also contain the Proof of Work for a given difficulty.

The Proof of Work algorithm is due to be replaced with the Proof of Stake algorithm with
the release of serenity. Considerable research work has been carried out in order to build
the Proof of Stake algorithm suitable for the Ethereum Network.

www.EBooksWorld.ir

Ethereum 101

[249]

An Algorithm named Casper has been developed, which will replace the existing Proof of
Work algorithm in Ethereum. This is a security deposit based on the economic protocol
where nodes are required to place a security deposit before they can produce blocks. Nodes
have been named bonded validators in Casper, whereas the act of placing the security
deposit is named bonding.

Ethash
Ethash is the name of the Proof of Work algorithm used in Ethereum. Originally, this was
proposed as the Dagger-Hashimoto algorithm, but much has changed since the first
implementation and the PoW algorithm has now evolved into what's known as Ethash
now. Similar to bitcoin, the core idea behind mining is to find a nonce that once hashed the
result in a predetermined difficulty level. Initially, the difficulty was low when Ethereum
was new and even CPU and single GPU mining was profitable to a certain extent, but that
is no longer the case. Now either pooled mining is profitable, or large GPU mining farms
are used for mining purposes.

Ethash is a memory-hard algorithm, which makes it difficult to be implemented on
specialized hardware. As in bitcoin, ASICs have been developed, which have resulted in
mining centralization over the years, but memory-hard Proof of Work algorithms are one
way of thwarting this threat and Ethereum implements Ethash to discourage ASIC
development for mining. This algorithm requires choosing subsets of a fixed resource called
DAG (Directed Acyclic Graph) depending on the nonce and block headers. DAG is around
2 GB in size and changes every 30000 blocks. Mining can only start when DAG is
completely generated the first time a mining node starts. The time between every 30000
blocks is around 5.2 days and is called epoch. This DAG is used as a seed by the Proof of
Work algorithm called Ethash. According to current specifications, the epoch time is
defined as 30,000 blocks.

The current reward scheme is 5 Ether for successfully finding a valid nonce. In addition to
receiving 5 Ethers, the successful miner also receives the cost of the gas consumed within
the block and an additional reward for including stale blocks (Uncles) in the block. A
maximum of two Uncles are allowed per block and are rewarded 7/8 of the normal block
reward. In order to achieve a 12 second block time, block difficulty is adjusted at every
block. The rewards are directly proportional to the miner's hash rate, which basically means
how fast a miner can hash.

Mining can be performed by simply joining the Ethereum network and running an
appropriate client. The key requirement is that the node should be fully synced with the
main network before mining can start.

www.EBooksWorld.ir

Ethereum 101

[250]

In the upcoming section, various methods of mining are mentioned.

CPU mining
Even though not profitable on the main net, CPU mining is still valuable on the test
network or even a private network to experiment with mining and contract deployment.
Private and test networks will be discussed with practical examples in the next chapter. A
geth example is shown on how to start CPU mining here. Geth can be started with mine
switch in order to start mining:

geth --mine --minerthreads <n>

CPU mining can also be started using the web 3 geth console. Geth console can be started
by issuing the following command:

geth attach

After this, the miner can be started by issuing the following command, which will return
true if successful, or false otherwise. Take a look at the following command:

Miner.start(4)
True

The preceding command will start the miner with four threads. Take a look at the following
command:

Miner.stop
True

The preceding command will stop the miner. The command will return true if successful.

GPU mining
At a basic level, GPU mining can be performed easily by running two commands:

geth --rpc

www.EBooksWorld.ir

Ethereum 101

[251]

Once geth is up and running and the blockchain is fully downloaded, Ethminer can be run
in order to start mining. Ethminer is a standalone miner that can also be used in the farm
mode to contribute to mining pools. It can be downloaded from h t t p s ://g i t h u b . c o m /G e n o

i l /c p p - e t h e r e u m /t r e e /m a s t e r /r e l e a s e s :

ethminer -G

Running with G switch assumes that the appropriate graphics card is installed and
configured correctly. If no appropriate graphics cards are found, ethminer will return an
error, as shown in the following screenshot:

Error in case no appropriate GPUs can be found

GPU mining requires an AMD or Nvidia graphics card and an applicable OpenCL SDK. For
NVidia chipset, it can downloaded from h t t p s ://d e v e l o p e r . n v i d i a . c o m /c u d a - d o w n l o a d

s . For AMD chipsets, it is available at h t t p ://d e v e l o p e r . a m d . c o m /t o o l s - a n d - s d k s /o p e n c

l - z o n e /a m d - a c c e l e r a t e d - p a r a l l e l - p r o c e s s i n g - a p p - s d k .

Once the graphics cards are installed and configured correctly, the process can be started by
issuing the ethminer -G command.

Ethminer can also be used to run benchmarking, as shown in the following screenshot.
There are two modes that can be invoked for benchmarking. It can either be CPU or GPU.
The commands are shown here.

CPU benchmarking
$ ethminer -M -C

GPU benchmarking
$ ethminer -M -G

www.EBooksWorld.ir

https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://github.com/Genoil/cpp-ethereum/tree/master/releases
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk

Ethereum 101

[252]

The following screenshot example is shown for CPU mining benchmarking:

CPU benchmarking

The GPU device to be used can also be specified in the command line:

$ ethminer -M -G --opencl-device 1

As GPU mining is implemented using OpenCL AMD, chipset-based GPUs tend to work
faster as compared to NVidia GPUs. Due to the high memory requirements (DAG creation),
FPGAs and ASICs will not provide any major advantage over GPUs. This is done on
purpose in order to discourage the development of specialized hardware for mining.

Mining rigs
As difficulty increased over time for mining Ether, mining rigs with multiple GPUs were
starting to be built by the miners. A mining rig usually contains around five GPU cards, and
all of them work in parallel for mining, thus improving the chances of finding valid nonces
for mining.

Mining rigs can be built with some effort and are also available commercially from various
vendors. A typical mining rig configuration includes the components discussed in the
upcoming sections.

Motherboard
A specialized motherboard with multiple PCI-E x1 or x16 slots, for example, BIOSTAR Hi-
Fi or ASRock H81, is required.

www.EBooksWorld.ir

Ethereum 101

[253]

SSD hard drive
An SSD hard drive is required. The SSD drive is recommended because of its much faster
performance over the analog equivalent. This will be mainly used to store the blockchain.

GPU
The GPU is the most important component of the rig as it is the main workhorse that will be
used for mining. For example, it can be a Sapphire AMD Radeon R9 380 with 4 GB RAM.

Linux Ubuntu's latest version is usually chosen as the operating system for the rig. There is
also another variant of Linux available, called EthOS (available at h t t p ://e t h o s d i s t r o . c o m

/), that is especially built for Ethereum mining and supports mining operations natively.

Finally, mining software such as Ethminer and geth are installed. Additionally, some
remote monitoring and administration software is also installed so that rigs can be
monitored and managed remotely, if required. It is also important to put appropriate air
conditioning or cooling mechanisms in place as running multiple GPUs can generate a lot of
heat. This also necessitates the need for using an appropriate monitoring software that can
alert users if there are any problems with the hardware, for example, if the GPUs are
overheating.

A mining rig for Ethereum for sale at eBay

www.EBooksWorld.ir

http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/
http://ethosdistro.com/

Ethereum 101

[254]

Mining pools
There are many online mining pools that offer Ethereum mining. Ethminer can be used to
connect to a mining pool using the following command. Each pool publishes its own
instructions, but generally, the process of connecting to a pool is similar. An example
from ethereumpool.co is shown here:

ethminer -C -F
http://ethereumpool.co/?miner=0.1@0x024a20cc5feba7f3dc3776075b3e60c20eb1459
c@DrEquinox

Screenshot of ethminer

Clients and wallets
As Ethereum is under heavy development and evolution, there are many components,
clients, and tools that have been developed and introduced over the last few years. The
following is a list of all main components, client software, and tools that are available with
Ethereum. This list is provided in order to reduce the ambiguity around many tools and
clients available for Ethereum. The list provided here also explains the usage and
significance of various components.

Geth
This is the Go implementation of the Ethereum client.

Eth
This is the C++ implementation of the Ethereum client.

Pyethapp
This is the Python implementation of the Ethereum client.

www.EBooksWorld.ir

http://ethereumpool.co

Ethereum 101

[255]

Parity
This implementation is built using Rust and developed by EthCore. EthCore is a company
that works on the development of the parity client. Parity can be downloaded from h t t p s

://e t h c o r e . i o /p a r i t y . h t m l .

Light clients
SPV clients download only a small subset of the blockchain. This allows low resource
devices, such as mobile phones, embedded devices, or tablets, to be able to verify the
transactions. A complete ethereum blockchain and node are not required in this case and
SPV clients can still validate the execution of transactions. SPV clients are also called light
clients. This idea is similar to bitcoin SPV clients. There is a wallet available from Jaxx (h t t p

s ://j a x x . i o /), which can be installed on iOS and Android, which provides the SPV
(Simple Payment Verification) functionality.

Installation
The following installation procedure describes the installation of various Ethereum clients
on Ubuntu systems. Instructions for other operating systems are available on Ethereum
Wikis. As Ubuntu systems will be used in examples later on, only installation on Ubuntu
has been described here.

Geth client can be installed by using the following command on an Ubuntu system:

> sudo apt-get install -y software-properties-common
> sudo add-apt-repository -y ppa:ethereum/ethereum
> sudo apt-get update
> sudo apt-get install -y ethereum

After installation is completed. Geth can be launched simply by issuing the geth command
at the command prompt, as it comes preconfigured with all the required parameters to
connect to the live Ethereum network (mainnet):

> geth

www.EBooksWorld.ir

https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/
https://jaxx.io/

Ethereum 101

[256]

Eth installation
Eth is the C++ implementation of the Ethereum client and can be installed using the
following command on Ubuntu:

> sudo apt-get install cpp-ethereum

Mist browser
Mist browser is a user-friendly interface for end users with a feature-rich graphical user
interface that is used to browse DAPPS and for account management and contract
management. Mist installation is covered in the next chapter.

When Mist is launched for the first time, it will initialize geth in the background and will
sync with the network. It can take from a few hours to a few days depending on the speed
and type of the network to fully synchronize with the network. If TestNet is used, then
syncing completes relatively faster as the size of TestNet (Ropsten) is not as big as MainNet.
More information on how to connect to TestNet will be provided in the next chapter.

Mist browser starting up and syncing with the main network

Mist browser is not a wallet; in fact, it is a browser of DAPPS and provides a user-friendly
user interface for the creation and management of contracts, accounts, and browsing
decentralized applications. Ethereum wallet is a DAPP that is released with Mist.

Wallet is a generic program that can store private keys and associated accounts and, based
on the addresses stored within it, it can compute the existing balance of Ether associated
with the addresses by querying the blockchain.

www.EBooksWorld.ir

Ethereum 101

[257]

Other wallets include but are not limited to MyEtherWallet, which is an open source ether
wallet developed in JavaScript. MyEtherWallet runs in the client browser. This is available
at h t t p s ://w w w . m y e t h e r w a l l e t . c o m .

Icebox is developed by Consensys. This is a cold storage browser that provides secure
storage of Ether. It depends on whether the computer on which Icebox is run is connected
to the Internet or not.

Various wallets are available for ethereum for desktop, mobile, and web platforms. A
popular Ethereum iOS Wallet named Jaxx is shown in the following image:

Jaxx Ethereum wallet for iOS showing transactions and current balance

www.EBooksWorld.ir

https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com
https://www.myetherwallet.com

Ethereum 101

[258]

Once the blockchain is synchronized, Mist will launch and show the following interface. In
this example, four accounts are displayed with no balance:

Mist browser

A new accounts can be created in a number of ways. In the Mist browser, it can be created
by clicking on the Accounts menu and selecting the New account or by clicking on the Add
account option in the Mist Accounts Overview screen.

Add new account

www.EBooksWorld.ir

Ethereum 101

[259]

The account will need a password to be set, as shown in the preceding figure; once the
account is set up, it will be displayed in the accounts overview section of the Mist browser.

Accounts can also be added via the command line using the geth or parity command-line
interface. This process is shown in the next section.

Geth
$ geth account new
Your new account is locked with a password. Please give a password. Do not
forget this password.
Passphrase:
Repeat passphrase:
Address: {21c2b52e18353a2cc8223322b33559c1d900c85d}
drequinox@drequinox-OP7010:~$

The list of accounts can be shown using geth using the following command:

$ geth account list

Account #0: {11bcc1d0b56c57aefc3b52d37e7d6c2c90b8ec35}
/home/drequinox/.ethereum/keystore/UTC--2016-05-07T13-04-15.175558799Z-
-11bcc1d0b56c57aefc3b52d37e7d6c2c90b8ec35

Account #1: {e49668b7ffbf031bbbdab7a222bdb38e7e3e1b63}
/home/drequinox/.ethereum/keystore/UTC--2016-05-10T19-16-11.952722205Z--
e49668b7ffbf031bbbdab7a222bdb38e7e3e1b63

Account #2: {21c2b52e18353a2cc8223322b33559c1d900c85d}
/home/drequinox/.ethereum/keystore/UTC--2016-11-29T22-48-09.825971090Z-
-21c2b52e18353a2cc8223322b33559c1d900c85d

The geth console
The geth JavaScript console can be used to perform various functions. For example, an
account can be created by attaching geth.

www.EBooksWorld.ir

Ethereum 101

[260]

Geth can be attached with the running daemon, as shown in the following figure:

Once geth is successfully attached with the running instance of the ethereum client (in this
case, parity), it will display command prompt '>', which provides an interactive command
line interface to interact with the ethereum client using JavaScript notations.

For example, a new account can be added using the following command in the geth
console:

> personal.newAccount()
Passphrase:
Repeat passphrase:
"0xc64a728a67ba67048b9c160ec39bacc5626761ce"
>

The list of accounts can also be displayed similarly:

> eth.accounts
["0x024a20cc5feba7f3dc3776075b3e60c20eb1459c",
"0x11bcc1d0b56c57aefc3b52d37e7d6c2c90b8ec35",
"0xdf482f11e3fbb7716e2868786b3afede1c1fb37f",
"0xe49668b7ffbf031bbbdab7a222bdb38e7e3e1b63",
"0xf9834defb35d24c5a61a5fe745149e9470282495"]

Funding the account with bitcoin
This option is available with the Mist browser by clicking on the account and then selecting
the option to fund the account. The backend engine used for this operation is shapeshift.io
and can be used to fund the account from bitcoin or other currencies, including the fiat
currency option as well.

www.EBooksWorld.ir

Ethereum 101

[261]

Once the exchange is completed, the transferred Ether will be available in the account.

Parity installation
Parity is another implementation of the Ethereum client. It has been written using the Rust
programming language. The main aim behind the development of parity is high
performance, small footprint, and reliability. Parity can be installed using the following
commands on an Ubuntu or Mac system:

bash <(curl https://get.parity.io -Lk)

This will initiate the download and installation of the parity client. After the installation of
parity is completed, the installer will also offer the installation of the netstats client. The
netstat client is a daemon that runs in the background and collects important statistics and
displays them on stats.ethdev.com.

www.EBooksWorld.ir

http://stats.ethdev.com

Ethereum 101

[262]

A sample installation of parity is shown in the following screenshot:

Once the installation is completed successfully, the following message is displayed.
Ethereum parity node can then be started using parity -j. If compatibility with geth is
required in order to use Ethereum wallet (Mist browser) with parity, then the parity -
geth command should be used to run parity. This will run parity in compatibility mode
with the geth client and will consequently allow Mist to run on top of parity.

Parity installation

www.EBooksWorld.ir

Ethereum 101

[263]

The client can optionally be listed on h t t p s ://e t h s t a t s . n e t /. An example is shown as
follows:

All connected clients are listed on the ethstats.net, as shown in the following screenshot.
These clients are listed with relevant attributes, such as the node name, node type, latency,
mining status, number of peers, number of pending transactions, last block, difficultly,
block transactions, and number of Uncles.

Client listed on https://ethstats.net/

Parity also offers a user-friendly web interface from where various tasks, such as account
management, address book management, DAPP management, contract management, and
status and signer operations, can be managed.

This is accessible by issuing the following command:

$ parity ui

www.EBooksWorld.ir

https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/
https://ethstats.net/

Ethereum 101

[264]

This will bring up the interface shown as follows:

Parity user interface.

If parity is running in the geth compatibility mode, the parity UI is disabled. In order to
enable the UI along with geth compatibility, the following command can be used:

$ parity --geth --force-ui

The preceding command will start parity in the geth compatibility mode and also enable the
web user interface.

Creating accounts using the parity command line
The following command can be used to create a new account using parity:

$ parity account new
Please note that password is NOT RECOVERABLE.
Type password:
Repeat password:
2016-11-30 02:18:55 UTC c8c92a910cfbce2e655c88d37a89b6657d1498fb

www.EBooksWorld.ir

Ethereum 101

[265]

Trading and investment
Ether is available at various exchanges for buying and selling. The current market cap of
Ethereum is £680,277,967 at the time of writing this, and an Ether is worth £7.89. Recently,
the price has been very volatile and has dropped down significantly due to recent Ethereum
attacks and subsequent forks on the Ethereum network.

The following chart shows the historical market capitalization details:

Ether historical market capitalization (source Etherscan.io)

Ether can either be purchased on various exchanges, or it can be mined. There are online
services available, such as shapeshift.io, that allow conversion from one currency to
another.

Various online exchanges, such as kraken, coinbase, and many more, offer ether to be
purchased for fiat currency using credit cards or another virtual currency, such as bitcoin.

The yellow paper
The Ethereum yellow paper has been written by Dr. Gavin Wood and serves as a formal
definition of the Ethereum protocol. Anyone can implement an Ethereum client by
following the protocol specifications defined in the paper. This paper can be somewhat
difficult to read, especially for the readers who do not have a background in algebra or
mathematics and are not familiar with mathematical notations.

www.EBooksWorld.ir

http://shapeshift.io

Ethereum 101

[266]

The list of all symbols with their meanings used in the paper is provided here with the
anticipation that it will make reading the paper easier. Once symbol meanings are known, it
becomes quite easy to understand and appreciate the concepts and specifications described
in the yellow paper.

Useful symbols
Symbol Meaning Symbol Meaning

≡ Is defined as ≤ Less than or equal to

= Is equal to Sigma, World state

≠ Is not equal to Mu, Machine state

║…║ Length of Upsilon, Ethereum state
transition function

Is an element of Block level state transition
function

Is not an element of . Sequence concatenation

For all There exists

Union ᴧ Contract creation function

Logical AND Increment

: Such that

{} Set

() Function of tuple

[] Array indexing

Logical OR

> Is greater than

+ Addition

– Subtraction

∑ Summation

{ Describing various cases of if , otherwise

Floor, lowest element

www.EBooksWorld.ir

Ethereum 101

[267]

Ceiling, highest element

No of bytes

Exclusive OR

(a,b) Real numbers >= a and < b

Empty set, null

The Ethereum network
The Ethereum network is a peer-to-peer network where nodes participate in order to
maintain the blockchain and contribute to the consensus mechanism. Networks can be
divided into three types, based on requirements and usage.

MainNet
MainNet is the current live network of ethereum. The current version of MainNet is
homestead.

TestNet
TestNet is also called Ropsten and is the test network for the Ethereum blockchain. This
blockchain is used to test smart contracts and DApps before being deployed to the
production live blockchain. Moreover, being a test network, it allows experimentation and
research.

Private net(s)
As the name suggests, this is the private network that can be created by generating a new
genesis block. This is usually the case in distributed ledger networks, where a private group
of entities start their own blockchain and use it as a permissioned blockchain.

More discussion on how to connect to test net and how to set up private nets will be
discussed in the next chapter.

www.EBooksWorld.ir

Ethereum 101

[268]

Supporting protocols
There are various supporting protocols that are in development in order to support the
complete decentralized ecosystem. This includes whisper and Swarm protocols. In addition
to the contracts layer, which is the core blockchain layer, there are additional layers that
need to be decentralized in order to achieve a complete decentralized ecosystem. This
includes decentralized storage and decentralized messaging. Whisper, being developed for
ethereum, is a decentralized messaging protocol, whereas Swarm is a decentralized storage
protocol. Both of these technologies are being developed currently and have been envisaged
to provide the basis for a fully decentralized web. In the following section, both
technologies are discussed in detail.

Whisper
Whisper provides decentralized peer-to-peer messaging capabilities to the ethereum
network. In essence, whisper is a communication protocol that nodes use in order to
communicate with each other. The data and routing of messages are encrypted within
whisper communications. Moreover, it is designed to be used for smaller data transfers and
in scenarios where real-time communication is not required. Whisper is also designed to
provide a communication layer that cannot be traced and provides “dark communication”
between parties. Blockchain can be used for communication, but that is expensive and
consensus is not really required for messages exchanged between nodes. Therefore, whisper
can be used as a protocol that allows

Whisper is already available with geth and can be enabled using the --shh option while
running the geth ethereum client.

Swarm
Swarm is being developed as a distributed file storage platform. It is a decentralized,
distributed, and peer-to-peer storage network. Files in this network are addressed by the
hash of their content. This is in contrast to the traditional centralized services, where storage
is available at a central location only. This is developed as a native base layer service for the
Ethereum web 3.0 stack. Swarm is integrated with DevP2P, which is the multiprotocol
network layer of Ethereum. Swarm is envisaged to provide a DDOS (Distributed Denial of
service)-resistant and fault-tolerant distributed storage layer for Ethereum Web 3.0. Both
whisper and Swarm are under development and, even though Proof of Concept and alpha
code has been released for Swarm, there is no stable production version available yet.

www.EBooksWorld.ir

Ethereum 101

[269]

The following figure gives a high level overview of how Swarm and whisper fit together
and work with blockchain:

Diagrams shows blockchain, whisper and Swarm

Applications developed on Ethereum
There are various implementations of DAOs and smart contracts in Ethereum, most
notably, the DAO, which was recently hacked and required a hard fork in order for funds to
be recovered. The DAO was created to serve as a decentralized platform to collect and
distribute investments.

Augur is another DAPP that has been implemented on Ethereum, which is a decentralized
prediction market. Various other decentralized applications are listed on h t t p ://d a p p s . e t

h e r c a s t s . c o m /.

Scalability and security issues
Scalability in any blockchain is a fundamental issue. Security is also of paramount
importance. Issues such as privacy and confidentiality have caused some adaptability
issues, especially in the financial sector. However, a great deal of research is being
conducted in these areas. A more detailed discussion regarding all blockchain-related issues
will be carried out in Chapter 12, Scalability and other challenges.

www.EBooksWorld.ir

http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/
http://dapps.ethercasts.com/

Ethereum 101

[270]

Summary
This chapter started with a discussion on the history of Ethereum, the motivation behind
Ethereum development, and Ethereum clients. Then, you were introduced to the core
concepts of the Ethereum blockchain, such as state machine model, world and machine
state, accounts, and types of accounts. Moreover, a detailed introduction to the core
components of the Ethereum virtual machine (EVM) was also presented. Other concepts
such as blocks, block structure, gas, and messages were also introduced and discussed in
detail. The later sections of the chapter introduced the practical installation and
management of ethereum clients. Two most popular clients, geth and parity, were
discussed. Further development-specific discussion on these clients will be carried out in
the next chapter, where development using Ethereum is discussed. Finally, supporting
protocols and topics related to challenges faced by Ethereum were presented. Ethereum is
under continuous development and new improvements are being made by a dedicated
community of developers regularly. Ethereum improvement proposals, available at h t t p s

://g i t h u b . c o m /e t h e r e u m /E I P s , are also an indication of the magnitude of research and
keen interest by the community in this technology. Moreover, a recently launched initiative,
Enterprise Ethereum Alliance (EAA) is aiming to develop enterprise grade Ethereum
platform which will be capable of meeting enterprise level business requirements. With
research being carried out on topics such as scalability, optimization, throughput, capacity,
and security, it is envisaged that over time, Ethereum will evolve into a more robust, user-
friendly, and stable blockchain ecosystem.

www.EBooksWorld.ir

https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs

8
Ethereum Development

This chapter introduces the concepts, techniques, and tools related to Ethereum
development. Several examples will be introduced in this chapter to complement the
theoretical concepts provided in earlier chapters. This chapter will mainly cover the setup of
the development environment and how to create smart contracts using Ethereum
blockchain. Detailed walkthrough examples will be provided that will help you understand
how Ethereum and other supporting tools can be used to develop and deploy smart
contracts on the blockchain.

Setting up a development environment
The first task is to set up a development environment. The upcoming section introduces the
ethereum setup for Test Net and Private Net. Test Net is called Ropsten and is used by
developers or users as a test platform to test smart contracts and other blockchain-related
proposals. The Private Net option in Ethereum allows the creation of an independent
private network that can be used as a distributed ledger between participating entities and
for the development and testing of smart contracts. While there are other clients available
for Ethereum, such as Parity, which was discussed in the previous chapter, geth is the
leading client for Ethereum and the common tool of choice, as such this chapter will use
geth in the examples.

www.EBooksWorld.ir

Ethereum Development

[272]

Test Net (Ropsten)
The Ethereum Go client, geth, can be connected to the test network using the following
command:

 $ geth --TestNet

A sample output is shown in the following screenshot. The screenshot shows the type of the
network chosen and various other pieces of information regarding the blockchain
download.

A blockchain explorer for test net is located at https://testnet.etherscan.io/ and can be
used to trace transactions and blocks on the Ethereum test network.

Output of the geth command connecting to Ethereum test net

Setting up a Private Net
Private Net allows the creation of an entirely new blockchain. This is different from Test
Net or Main Net in the sense that it uses its on-genesis block and Network ID. In order to
create Private Net, three components are needed:

Network ID.1.
Genesis file.2.
Data directory to store blockchain data. Even though data directory is not strictly3.
required to be mentioned, if there is more than one blockchain already active on
the system, then data directory should be specified so that a separate directory is
used for the new blockchain.

www.EBooksWorld.ir

https://testnet.etherscan.io/

Ethereum Development

[273]

Private Net allows the creation of an entirely new blockchain. This is different from Test
Net or Main Net in the sense that it uses its own unique genesis block and Network ID. On
Main Net, geth knows about peers by default and connects automatically, but on Private
Net, geth needs to be configured by specifying appropriate flags and configuration in order
for it to be able to be discoverable by other peers or to discover other peers.

In addition to the previously mentioned three components, it is desirable that you disable
node discovery so that other nodes on the Internet cannot discover your private network
and is truly private. If other networks happen to have the same genesis file and Network
ID, they may connect to your Private Net. The chance of having the same Network ID and
genesis block is very low, but, nevertheless, disabling node discovery is good practice, and
is recommended.

In the following section, all these parameters are discussed in detail with a practical
example.

Network ID
Network ID can be any positive number except 1 and 3, which are already in use by
Ethereum Main Net and Test Net (Ropsten), respectively. Network ID 786 has been chosen
for the example private network discussed later in this section.

The genesis file
The genesis file contains necessary fields required for a custom genesis block. This is the
first block in the network and does not point to any previous block. The Ethereum protocol
performs rigorous checking in order to ensure that no other node on the Internet can
participate in the consensus mechanism, unless they have the same genesis block.

A custom genesis file that will be used later in the example is shown here:

{
 "nonce": "0x0000000000000042",
 "timestamp": "0x0",
"parentHash":"0x000
00000",
 "extraData": "0x0",
 "gasLimit": "0x4c4b40",
 "difficulty": "0x400",
"mixhash":"0x00
00",
 "coinbase": "0x00",
 "alloc": { }

www.EBooksWorld.ir

Ethereum Development

[274]

}

This file can be saved in a text file with the JSON extension; for example,
privategenesis.json. Optionally, ether can be preallocated by specifying beneficiary
addresses and the amount of Wei in alloc, but it is usually not necessary as, being on the
private network, ether can be mined very quickly.

Data directory
This is the directory where the blockchain data for the private Ethereum network will be
saved. For example, in the following example, it is ~/.ethereum/privatenet.

In the geth client, a number of parameters are specified in order to launch, further fine-tune
the configuration, and launch the private network. These flags are listed here.

Flags and their meaning

--nodiscover: This flag ensures that the node is not automatically discoverable
if it happens to have the same genesis file and Network ID.
--maxpeers: This flag is used to specify the number of peers allowed to be
connected to the private net. If it is set to 0, then no one will be able to connect,
which might be desirable in a few scenarios, such as private testing.
--rpc: This is used to enable the RPC interface in geth.
--rpcapi: This flag takes a list of APIs to be allowed as a parameter. For
example, eth,web3 will enable the web3 and eth interface over RPC.
--rpcport: This sets up the TCP RPC port; for example: 9999.
--rpccorsdomain: This flag specifies the URL that is allowed to connect to the
private geth node and perform RPC operations.
--port: This specifies the TCP port that will be used to listen to the incoming
connections from other peers.
--identity: This flag is a string that specifies the name of a private node.

www.EBooksWorld.ir

Ethereum Development

[275]

Static nodes
If there is a need to connect to a specific set of peers, then these nodes can be added to a file
where the chaindata and keystore files are saved, for example, in the
~/.ethereum/privatenet directory. The filename should be static-nodes.json. This
can be valuable in a private network. An example of the json file is shown as follows:

[
"enode://
44352ede5b9e792e437c1c0431c1578ce3676a87e1f588434aff1299d30325c233c8d426fc5
7a25380481c8a36fb3be2787375e932fb4885885f6452f6efa77f@xxx.xxx.xxx.xxx:TCP_P
ORT"
]

Here, xxx is the public IP address and TCP_PORT can be any valid and available TCP port
on the system. The long hex string is the node ID.

Starting up the private network
The initial command to start the private network is shown as follows:

$ geth --datadir ~/.ethereum/privatenet init
./privether/privategenesis.json

This will produce an output similar to what is shown in the following screenshot:

Private network initialization

This output indicates that a genesis block has been created successfully. In order for geth to
start, the following command can be issued:

$ geth --datadir .ethereum/privatenet/ --networkid 786

www.EBooksWorld.ir

Ethereum Development

[276]

This will produce the following output:

Starting geth for a private network

Now geth can be attached via IPC to the running geth client on a private network using the
following command. This will allow you to interact with the running geth session on the
private network:

$ geth attach ipc:.ethereum/privatenet/geth.ipc

As shown here, this will open the interactive JavaScript console for the running Private Net
session:

Starting geth to attach with Private Net 786

You may have noticed that a warning message appears when geth starts up.

WARNING: No etherbase set and no accounts found as default

www.EBooksWorld.ir

Ethereum Development

[277]

This message appears because there are no accounts currently available in the new test
network and no account is set as etherbase to receive mining rewards. This issue can be
addressed by creating a new account and setting that account as etherbase. This will also be
required when mining is carried out on the test network. This is shown in the following
commands. Note that these commands are entered in the geth JavaScript console, as shown
in the preceding figure.

The following command creates a new account. In this context, the account will be created
on the Private Network ID 786:

> personal.newAccount("Password123")
"0x76f11b383dbc3becf8c5d9309219878caae265c3"

Once the account is created, the next step is to set it as an Etherbase/coinbase account so
that the mining reward goes to this account. This can be achieved using the following
command:

> miner.setEtherbase(personal.listAccounts[0])
true

Currently, the etherbase account has no balance, as can be seen using the following
command:

> eth.getBalance(eth.coinbase).toNumber();
0

Finally, mining can start by simply issuing the following command. This command takes
one parameter that is a number of threads. In the following example, two threads will be
allocated to the mining process by specifying 2 as an argument to the start function:

> miner.start(2)
true

After mining starts, the first DAG generation is carried out and output similar to the
following is produced:

DAG generation

www.EBooksWorld.ir

Ethereum Development

[278]

Once DAG generation is finished and mining starts, geth will produce output similar to
that shown in the following screenshot. It can be clearly seen that blocks are being mined
successfully with the Mined 5 blocks . . . message.

Mining output

Mining can be stopped using the following command:

> miner.stop
true

In the JavaScript console, the current balance of total ether can be queried, as shown here.
After mining, a significant amount can be seen in the following example. Mining is
extremely fast as it is a private network and in the genesis file, the network difficulty has
also been set quite low:

> eth.getBalance(eth.coinbase).toNumber();
2.72484375e+21

If two spaces and two tabs are pressed in a sequence, a complete of list of the available
objects will be displayed. This is shown in the following screenshot:

Available objects

www.EBooksWorld.ir

Ethereum Development

[279]

Furthermore, when a command is typed, it can be autocompleted by pressing tab twice. If
two tabs are pressed, then the list of available methods is also displayed. This is shown in
the following screenshot:

Available methods

In addition to the previously mentioned command, in order to get a list of available
methods, after typing any command,; (semicolon) is entered. An example is shown in the
next screenshot, which shows a list of all the methods available for net:

List of methods

There are a few other commands that can be used to query the private network. Some
examples are shown as follows:

Get the current gas price:

 > eth.gasPrice
 20000000000

Get the latest block number:

 > eth.blockNumber
 587

www.EBooksWorld.ir

Ethereum Development

[280]

Debug can come in handy when debugging issues. A sample command is shown here;
however, there are many methods available. The following method will return the RLP of
block 0:

Encode using RLP:

 > debug.getBlockRlp(0)
 "f901f7f901f2a000
 0000000000000000a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a
 7413f0a142fd40d493479400
 a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363
 b421a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5
 e363b421a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc00162
 2fb5e363b421b90100
 00
 00
 00
 00
 00
 00
 00
 000000000000000000000000000000000082020080834c4b40808000a00000
 0088
 0000000000000042c0c0"

Unlock the account before sending transactions:

 > personal.unlockAccount
 ("0x76f11b383dbc3becf8c5d9309219878caae265c3")
 Unlock account 0x76f11b383dbc3becf8c5d9309219878caae265c3
 Passphrase:

Send transactions:

 > eth.sendTransaction({from:
 "0x76f11b383dbc3becf8c5d9309219878caae265c3", to:
 "0xcce6450413ac80f9ee8bd97ca02b92c065d77abc", value: 1000})

Another way is to use listAccounts[] method, this can be done as shown
below:

 > eth.sendTransaction({from: personal.listAccounts[0], to:
 personal.listAccounts[1], value: 1000})

www.EBooksWorld.ir

Ethereum Development

[281]

Get a list of compilers. Note that if no output is shown, it means that no solidity
compiler is installed; solidity compiler installation details are provided later in
the chapter:

 > web3.eth.getCompilers()
 ["Solidity"]

Running Mist on Private Net
It is possible to run Mist on Private Net by issuing the following command. This binary is
usually available in the home folder after the installation of /opt/Ethereum:

$./Ethereum\ Wallet --rpc ~/.ethereum/privatenet/geth.ipc

This will allow a connection to the running Private Net geth session, and it provides all
features, such as wallet, account management, and contract deployment on Private Net via
Mist.

Running Ethereum Wallet to connect to Private Net

www.EBooksWorld.ir

Ethereum Development

[282]

Once Ethereum is launched, it will show the interface shown here, indicating clearly that it's
running in the PRIVATE-NET mode.

Mist on Private Net

Mist can also run over the network using RPC. This is useful if geth is running on a
different node and Mist on another. This can be achieved by running Mist with the flag
shown here:

--rpc http://127.0.0.1:8545

Deploying contracts using Mist
It is very easy to deploy new contracts using Mist. Mist provides an interface where
contracts can be written in solidity and then deployed on the network.

In the exercise, a simple contract that can perform various simple arithmetic calculations on
the input parameter will be used. Steps on how to use Mist to deploy this contract are
shown here. As solidity has not been introduced yet, the aim here is to allow users to
experience the contract deployment and interaction process. More information on coding
and solidity will be provided later in the chapter, after which it will become easy to
understand the code shown. Those of you who are already familiar with JavaScript or any
other similar language will find the code almost self-explanatory.

www.EBooksWorld.ir

Ethereum Development

[283]

The example contract source code is shown as follows:

pragma solidity ^0.4.0;
contract SimpleContract2
{
 uint x;
 uint z;
 function addition(uint x) returns (uint y)
{
 z=x+5;
 y=z;
}
function difference(uint x) returns (uint y)
{
 z=x-5;
 y=z;
}
function division(uint x) returns (uint y)
{
 z=x/5;
 y=z;
}

function currValue() constant returns (uint)
{
 return z;
}
}

This code can simply be copied into Mist under the contracts section, as shown here. On the
left-hand side, the source code can be copied; once verified and when no syntax errors are
detected, the option to deploy the contract will appear in the drop-down menu on the right-
hand side where it says SELLECT CONTRACT TO DEPLOY. Simply select the contract
and press the Deploy button at the bottom of the screen.

Mist browser contract deployment

www.EBooksWorld.ir

Ethereum Development

[284]

Mist will ask for the password of the account and will show a window similar to the one in
the following screenshot:

Create a contract using Mist

Enter the password and click on SEND TRANSACTION to deploy the contract.

Once deployed and mined successfully, it will appear in the list of transactions in Mist, as
shown here:

www.EBooksWorld.ir

Ethereum Development

[285]

List of transactions after creation in Mist

Once the contract is available, it can be interacted with using the execute transaction and
calling available functions via Mist.

Interaction with the contract using read and write options in Mist

www.EBooksWorld.ir

Ethereum Development

[286]

In the preceding screenshot, the READ FROM CONTRACT and WRITE TO CONTRACT
options are available. Also, the function that has been exposed by the contract can be seen
on the right-hand side. Once the required function is selected, the appropriate value is
entered for the function and the account (execute from) is selected; press execute in order to
execute the transaction, which will result in calling the selected function of the contract.

This process is shown in the following screenshot:

Contract execution in Mist

As shown in the screenshot, enter the appropriate password for the account and then press
SEND TRANSACTION to send the transaction to the contract.

Development tools and clients
There are a number of tools available for Ethereum development. The following diagram
shows the taxonomy of various development tools, clients, IDEs, and development
frameworks for Ethereum:

www.EBooksWorld.ir

Ethereum Development

[287]

Taxonomy of Ethereum ecosystem components

In this chapter, the main focus will be on geth, browser solidity, solidity, solc, and truffle.
Rest of the elements will be discussed briefly.

Languages
Contracts can be programmed in a variety of languages. There are four languages that can
be used in order to write contracts:

Mutan: This is a Go-style language, which was deprecated in early 2015 and is no
longer used.
LLL: This is a Lisp-like language, hence the name LLL. This is also not used
anymore.
Serpent: This is a simple and clean Python-like language. It is actively used for
contract development.
Solidity: This language has now become almost a standard for contract writing
for Ethereum. This language is the focus of this chapter and is discussed in detail
in later sections.

Compilers
Compilers are used to convert high-level contract source code into the format that the
Ethereum execution environment understands. The solidity compiler is the most common
one in use and is discussed here.

www.EBooksWorld.ir

Ethereum Development

[288]

Solc
The solidity compiler converts from a high-level solidity language into Ethereum Virtual
Machine (EVM) bytecode so that it can be executed on the blockchain by EVM.

The solidity compiler on a Linux Ubuntu operating system can be installed using the
following commands:

$ sudo apt-get install solc

If PPAs are not already installed, those can be installed by running the following command:

sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update

In order to verify the existing version of the solidity compiler and verify that it is installed,
the following command can be used:

$ solc --version
solc, the solidity compiler commandline interface
Version: 0.4.6+commit.2dabbdf0.Linux.g++

Solc supports a variety of functions. A few examples are shown as follows:

Display contract in a binary format.

Solidity compiler binary output

Estimate gas:

 imran@drequinox-OP7010:~$ solc --gas contract1.sol
 ======= SimpleContract =======
 Gas estimation:
 construction:
 97 + 54600 = 54697
 external:
 division(uint256): 230
 addition(uint256): 231
 difference(uint256): 253

www.EBooksWorld.ir

Ethereum Development

[289]

 internal:

Note that contrat1.sol is shown as an example only; the file can contain any smart
contract solidity code. The code of the file is not shown here.

Solc is used internally by web3 from the geth console in order to compile the contract. The
syntax is shown here, and contractsourcecode is the solidity source code:

web3.eth.compile.solidity(contractsourcecode)

This is discussed in detail later in the chapter when you will be introduced to contract
development.

Integrated Development Environments (IDEs)
There are various IDEs available for solidity development. Most of the IDEs are available
online and are presented via web interfaces. Browser solidity is most commonly used for
smaller contracts and is discussed here.

Browser solidity
Browser solidity is the web-based environment for the development and testing of contracts
using solidity. It does not run on a live blockchain; in fact, it is a simulated environment in
which contracts can be deployed, tested, and debugged. It is available at
https://ethereum.github.io/browser-solidity. An example interface is shown as
follows:

Browser solidity

www.EBooksWorld.ir

https://ethereum.github.io/browser-solidity

Ethereum Development

[290]

On the left-hand side, there is a code editor with syntax highlighting and code formatting,
and on the right-hand side, there are a number of tools available that can be used to deploy,
debug, test, and interact with the contract. Various features, such as transaction interaction,
options to connect to JavaScript VM, configuration of execution environment, debugger,
formal verification, and static analysis, are available. They can be configured to connect to
execution environments such as JavaScript VM, injected Web3–where Mist or a similar
environment has provided the execution environment–or Web3 provider, which allows
connection to the locally running Ethereum client (for example, geth) via IPC or RPC over
HTTP (web3 provider endpoint).

Remix
After the Mix IDE was discontinued in August 2016, the Remix project was started. Remix is
a browser-based IDE that is under heavy development currently and only the debugger
part of it is available as of now. This debugger is very powerful and can be used to perform
detailed level tracing and analysis of the EVM byte code. In the following section,
installation and usage examples of Remix are presented.

Installation
Remix is available at https://github.com/ethereum/remix. The first step is to clone the
GitHub repository:

$ git clone https://github.com/ethereum/remix
Cloning into 'remix'...
remote: Counting objects: 2185, done.
remote: Compressing objects: 100% (213/213), done.
remote: Total 2185 (delta 124), reused 0 (delta 0), pack-reused 1971
Receiving objects: 100% (2185/2185), 1.12 MiB | 443.00 KiB/s, done.
Resolving deltas: 100% (1438/1438), done.
Checking connectivity... done.

After the preceding steps are completed successfully, execute the following command:

cd remix
npm install
npm run build

www.EBooksWorld.ir

https://github.com/ethereum/remix

Ethereum Development

[291]

At this point, either npm run start_node can be run, or geth can be started up using the
appropriate flags. Once geth is up and running, a simple web server can be run in order to
serve the remix web page.
Now geth can be started up with the following command:

$ geth --datadir .ethereum/privatenet/ --networkid 786 --rpc --rpcapi
'web3,eth,debug' --rpcport 8001 --rpccorsdomain 'http://localhost:7777'

Notice the --rpcapi flag; it is required in order to allow web3, eth, debug over RPC.

If npm run start_node is run, the following message may appear:

$ npm run start_node
> ethereum-remix@0.0.2-alpha.0.0.9 start_node /home/imran/remix
> ./runNode.sh
both eth and geth has been found in your system
restart the command with the desired client:
npm run start_eth
or
npm run start_geth

Assuming geth is required, use the following command:

$ npm run start_geth

If geth was opted to be run, then a simple web server is required to browse to the remix
web page. This can be achieved simply by issuing a Python command, as follows. This
should be run from the remix directory.

Python quick web server

www.EBooksWorld.ir

Ethereum Development

[292]

Once the command is successful and the web server is running, remix can be browsed using
the http://localhost:7777 URL, as shown in the following screenshot:

Web browser showing remix running and served via TCP 7777

Remix is also available as part of browser solidity (browser solidity has been discussed
separately earlier). It can be connected to the local Private Net by providing the web3
provider endpoint. This is shown as follows:

www.EBooksWorld.ir

Ethereum Development

[293]

The Web3 Provider option on browser solidity to connect to the local geth node is as
follows:

Remix Debugger in browser solidity

Tools and libraries
There are various tools and libraries available for Ethereum. The most common ones are
discussed here.

www.EBooksWorld.ir

Ethereum Development

[294]

Node.js version 7
As Node js is required for most of the tools and libraries, it can be installed using the
following commands:

curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -
sudo apt-get install -y nodejs

Local Ethereum block explorer
Local Ethereum block explorer is a useful tool that can be used to explore the local
blockchain. This can be installed by following these steps:

On a Linux Ubuntu machine, run the following command in order to install the local
Ethereum block explorer:

$ git clone https://github.com/etherparty/explorer

This will show output similar to the following:

Cloning into 'explorer'...
remote: Counting objects: 253, done.
remote: Total 253 (delta 0), reused 0 (delta 0), pack-reused 253
Receiving objects: 100% (253/253), 51.20 KiB | 0 bytes/s, done.
Resolving deltas: 100% (130/130), done.
Checking connectivity... done.

The next step is to change the directory to the explorer and run the following commands:

imran@drequinox-OP7010:~$ cd explorer/
imran@drequinox-OP7010:~/explorer$ npm start
> EthereumExplorer@0.1.0 prestart /home/imran/explorer
> npm install

Once the installation is finished, output similar to the following will be shown, where the
HTTP server for Ethereum explorer starts up:

Ethereum explorer HTTP server

www.EBooksWorld.ir

Ethereum Development

[295]

Once the web server is up, geth should be started up using the following command:

geth --datadir .ethereum/privatenet/ --networkid 786 --rpc --rpccorsdomain
'http://localhost:8000'

After a successful start up of geth, navigate to the localhost on TCP port 8000, as shown
here, in order to access the local Ethereum block explorer.

Block explorer

Alternatively, the web server can be started up using Python or any other appropriate
provider. In Python, a quick web server can started, as shown in the following code:

imran@drequinox-OP7010:~/explorer/app$ python -m SimpleHTTPServer 9900
Serving HTTP on 0.0.0.0 port 9900 ...

The geth client will need to be started up with appropriate parameters. If not, an error like
that shown in the following screenshot can occur:

Error message Ethereum local block explorer

www.EBooksWorld.ir

Ethereum Development

[296]

Restart geth to allow rpccorsdomain:

geth --datadir .ethereum/PrivateNet/ --networkid 786 --rpc --rpccorsdomain
'http://192.168.0.17:9900'

EthereumJS
At times, it is not possible to test on the Test Net and Main Net is obviously not a place to
test the contracts. Private Net can be time consuming to set up at times. EthereumJS testrpc
comes in handy when quick testing is required and no proper test net is available. It uses
EthereumJS to simulate the Ethereum geth client behavior and allows for faster
development testing. Testrpc is available via npm as a node package.

Before installing testrpc, Node.js should already have been installed and the npm package
manager should also be available.

Testrpc can be installed using this command:

npm install -g ethereumjs-testrpc

In order to start testrpc, simply issue this command and keep it running in the background
and open another terminal to work on contracts.

$testrpc

Contract development and deployment
There are various steps that need to be taken in order to develop and deploy the contracts.
Broadly, these can be divided into four steps: writing, testing, verification, and deployment.
After deployment, the next step is to create the user interface and present it to the end users
via a web server.

The writing step is concerned with writing the contract source code in solidity. This can be
done in any text editor. There are various plugins and add-ons available for Vim in Linux,
Atom, and other editors that provide syntax highlighting and formatting for solidity source
code.

Testing is usually performed by automated means. Later in the chapter, you will be
introduced to truffle, which uses the Mocha framework to test contracts. However, manual
testing can be performed as well. Once the contract is verified, working, and tested on a
simulated environment (for example, EthereumJS testrpc) or on Private Net, it can be
deployed to Ropsten Test Net and finally to live blockchain (Homestead).

www.EBooksWorld.ir

Ethereum Development

[297]

In the next section, you will be introduced to language solidity. This is a brief introduction
to solidity, which should provide the base knowledge required in order to write the
contracts. The syntax is very similar to C and JavaScript, and it is quite easy to program.

Introducing solidity
Solidity is a domain-specific language of choice for programming contracts in Ethereum.
There are, however, other languages, such as serpent, Mutan, and LLL but solidity is the
most popular at the time of writing this. Its syntax is closer to JavaScript and C. Solidity has
evolved into a mature language over the last few years and is quite easy to use, but it still
has a long way to go before it can become advanced and feature-rich like other well-
established languages. Nevertheless, this is the most widely used language available for
programming contracts currently.

It is a statically typed language, which means that variable type checking in solidity is
carried out at compile time. Each variable, either state or local, must be specified with a type
at compile time. This is beneficial in the sense that any validation and checking is completed
at compile time and certain types of bugs, such as interpretation of data types, can be
caught earlier in the development cycle instead of at run time, which could be costly,
especially in the case of the blockchain/smart contracts paradigm. Other features of the
language include inheritance, libraries, and the ability to define composite data types.

Solidity is also a called contract-oriented language. In solidity, contracts are equivalent to
the concept of classes in other object-oriented programming languages.

Types
Solidity has two categories of data types: value types and reference types.

Value types
These are explained in detail here.

Boolean
This data type has two possible values, true or false, for example:

bool v = true;

This statement assigns the value true to v.

www.EBooksWorld.ir

Ethereum Development

[298]

Integers
This data type represents integers. A table is shown here, which shows various keywords
used to declare integer data types.

Keyword Types Details

int Signed integer int8 to int256, which means that keywords are available from
int8 up to int256 in increments of 8, for example, int8, int16,
int24.

uint Unsigned integer uint8 to uint256

For example, in this code, note that uint is an alias for uint256:

uint256 x;
uint y;
int256 z;

These types can also be declared with the constant keyword, which means that no storage
slot will be reserved by the compiler for these variables. In this case, each occurrence will be
replaced with the actual value:

uint constant z=10+10;

State variables are declared outside the body of a function, and they remain available
throughout the contract depending on the accessibility assigned to them and as long as the
contract persists.

Address
This data type holds a 160-bit long (20 byte) value. This type has several members that can
be used to interact with and query the contracts. These members are described here:

Balance

The balance member returns the balance of the address in Wei.

Send

This member is used to send an amount of ether to an address (Ethereum's 160-bit address)
and returns true or false depending on the result of the transaction, for example, the
following:

address to = 0x6414cc08d148dce9ebf5a2d0b7c220ed2d3203da;
address from = this;
if (to.balance < 10 && from.balance > 50) to.send(20);

www.EBooksWorld.ir

Ethereum Development

[299]

Call functions

The call, callcode, and delegatecall are provided in order to interact with functions
that do not have Application Binary Interface (ABI). These functions should be used with
caution as they are not safe to use due to the impact on type safety and security of the
contracts.

Array value types (fixed size and dynamically sized byte arrays)
Solidity has fixed size and dynamically sized byte arrays. Fixed size keywords range from
bytes1 to bytes32, whereas dynamically sized keywords include bytes and strings. bytes
are used for raw byte data and string is used for strings encoded in UTF-8. As these arrays
are returned by the value, calling them will incur gas cost. length is a member of array
value types and returns the length of the byte array.

An example of a static (fixed size) array is as follows:

bytes32[10] bankAccounts;

An example of a dynamically sized array is as follows:

bytes32[] trades;

Get length of trades:

trades.length;

Literals
These are used to represent a fixed value.

Integer literals
Integer literals are a sequence of decimal numbers in the range of 0-9. An example is shown
as follows:

uint8 x = 2;

www.EBooksWorld.ir

Ethereum Development

[300]

String literals
String literals specify a set of characters written with double or single quotes. An example is
shown as follows:

'packt'
"packt"

Hexadecimal literals
Hexadecimal literals are prefixed with the keyword hex and specified within double or
single quotation marks. An example is shown as follows:

(hex'AABBCC');

Enums
This allows the creation of user-defined types. An example is shown as follows:

enum Order{Filled, Placed, Expired };
Order private ord;
ord=Order.Filled;

Explicit conversion to and from all integer types is allowed with enums.

Function types
There are two function types: internal and external functions.

Internal functions
These can be used only within the context of the current contract.

External functions
External functions can be called via external function calls.

A function in solidity can be marked as a constant. Constant functions cannot change
anything in the contract; they only return values when they are invoked and do not cost any
gas. This is the practical implementation of the concept of call as discussed in the previous
chapter.

www.EBooksWorld.ir

Ethereum Development

[301]

The syntax to declare a function is shown as follows:

function <nameofthefunction> (<parameter types> <name of the variable>)
{internal|external} [constant] [payable] [returns (<return types> <name of
the variable>)]

Reference types
As the name suggests, these types are passed by reference and are discussed in the
following section.

Arrays
Arrays represent a contiguous set of elements of the same size and type laid out at a
memory location. The concept is the same as any other programming language. Arrays
have two members named length and push:

uint[] OrderIds;

Structs
These constructs can be used to group a set of dissimilar data types under a logical group.
These can be used to define new types, as shown in the following example:

Struct Trade
{
uint tradeid;
uint quantity;
uint price;
string trader;
}

Data location
Data location specifies where a particular complex data type will be stored. Depending on
the default or annotation specified, the location can be storage or memory. This is applicable
to arrays and structs and can be specified using the storage or memory keywords. As
copying between memory and storage can be quite expensive, specifying a location can be
helpful to control the gas expenditure at times. Calldata is another memory location that is
used to store function arguments. Parameters of external functions use calldata memory. By
default, parameters of functions are stored in memory, whereas all other local variables
make use of storage. State variables, on the other hand, are required to use storage.

www.EBooksWorld.ir

Ethereum Development

[302]

Mappings
Mappings are used for a key to value mapping. This is a way to associate a value with a
key. All values in this map are already initialized with all zeroes, for example, the
following:

mapping (address => uint) offers;

This example shows that offers is declared as a mapping. Another example makes this
clearer:

mapping (string => uint) bids;
bids["packt"] = 10;

This is basically a dictionary or a hash table where string values are mapped to integer
values. The mapping named bids has a packt string value mapped to value 10.

Global variables
Solidity provides a number of global variables that are always available in the global
namespace. These variables provide information about blocks and transactions.
Additionally, cryptographic functions and address-related variables are available as well.

A subset of available functions and variables is shown as follows:

keccak256(...) returns (bytes32)

This function is used to compute the keccak256 hash of the argument provided to the
function:

ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) returns (address)

This function returns the associated address of the public key from the elliptic curve
signature:

block.number

This returns the current block number.

Control structures
Control structures available in solidity are if - else, do, while, for, break, continue,
return. They work in a manner similar to how they work in C-language or JavaScript.

www.EBooksWorld.ir

Ethereum Development

[303]

Events
Events in solidity can be used to log certain events in EVM logs. These are quite useful
when external interfaces are required to be notified of any change or event in the contract.
These logs are stored on the blockchain in transaction logs. Logs cannot be accessed from
the contracts but are used as a mechanism to notify change of state or the occurrence of an
event (meeting a condition) in the contract.

In a simple example here, the valueEvent event will return true if the x parameter passed
to function Matcher is equal to or greater than 10:

contract valueChecker {
 uint8 price=10;
 event valueEvent(bool returnValue);
 function Matcher(uint8 x) returns (bool)
 {
 if (x>=price)
 {
 valueEvent(true);
 return true;
 }
 }
}

Inheritance
Inheritance is supported in solidity. The is keyword is used to derive a contract from
another contract. In the following example, valueChecker2 is derived from the
valueChecker contract. The derived contract has access to all nonprivate members of the
parent contract:

contract valueChecker
{
 uint8 price=10;
 event valueEvent(bool returnValue);
 function Matcher(uint8 x) returns (bool)
 {
 if (x>=price)
 {
 valueEvent(true);
 return true;
 }
 }
}
contract valueChecker2 is valueChecker
{

www.EBooksWorld.ir

Ethereum Development

[304]

 function Matcher2() returns (uint)
 {
 return price + 10;
 }
}

In the preceding example, if uint8 price = 10 is changed to uint8 private price =
10, then it will not be accessible by the valuechecker2 contract. This is because now the
member is declared as private, it is not allowed to be accessed by any other contract.

Libraries
Libraries are deployed only once at a specific address and their code is called via
CALLCODE/DELEGATECALL Opcode of the EVM. The key idea behind libraries is code
reusability. They are similar to contracts and act as base contracts to the calling contracts. A
library can be declared as shown in the following example:

library Addition
{
 function Add(uint x,uint y) returns (uint z)
 {
 return x + y;
 }
}

This library can then be called in the contract, as shown here. First, it needs to be imported
and it can be used anywhere in the code. A simple example is shown as follows:

Import "Addition.sol"
function Addtwovalues() returns(uint)
{
 return Addition.Add(100,100);
}

There are a few limitations with libraries; for example, they cannot have state variables and
cannot inherit or be inherited. Moreover, they cannot receive Ether either; this is in contrast
to contracts that can receive Ether.

Functions
Functions in solidity are modules of code that are associated with a contract. Functions are
declared with a name, optional parameters, access modifier, optional constant keyword,
and optional return type. This is shown in the following example:

function orderMatcher(uint x) private constant returns(bool returnvalue)

www.EBooksWorld.ir

Ethereum Development

[305]

In the preceding example, function is the keyword used to declare the function.
orderMatcher is the function name, uint x is an optional parameter, private is the
access modifier/specifier that controls access to the function from external contracts,
constant is an optional keyword used to specify that this function does not change
anything in the contract but is used only to retrieve values from the contract instead, and
returns (bool returnvalue) is the optional return type of the function.

How to define a function: The syntax of defining a function is shown as follows:

 function <name of the function>(<parameters>) <visibility
 specifier> returns (<return data type> <name of the variable>)
 {
 <function body>
 }

Function signature: Functions in solidity are identified by its signature, which is
the first four bytes of the keccak-256 hash of its full signature string. This is also
visible in browser solidity, as shown in the following screenshot. D99c89cb is the
first four bytes of 32 byte keccak-256 hash of the function named Matcher.

Function hash as shown in browser solidity

In this example function, Matcher has the signature hash of d99c89cb. This information is
useful in order to build interfaces.

Input parameters of a function: Input parameters of a function are declared in
the form of <data type> <parameter name>. This example clarifies the concept
where uint x and uint y are input parameters of the checkValues function:

 contract myContract
 {
 function checkValues(uint x, uint y)
 {
 }
 }

www.EBooksWorld.ir

Ethereum Development

[306]

Output parameters of a function: Output parameters of a function are declared
in the form of <data type> <parameter name>. This example shows a simple
function returning a uint value:

 contract myContract
 {
 Function getValue() returns (uint z)
 {
 z=x+y;
 }
 }

A function can return multiple values. In the preceding example function,
getValue only returns one value, but a function can return up to 14 values of
different data types. The names of the unused return parameters can be omitted
optionally.

Internal function calls: Functions within the context of the current contract can
be called internally in a direct manner. These calls are made to call the functions
that exist within the same contract. These calls result in simple JUMP calls at the
EVM byte code level.
External function calls: External function calls are made via message calls from a
contract to another contract. In this case, all function parameters are copied to the
memory. If a call to an internal function is made using the this keyword, it is
also considered an external call. The this variable is a pointer that refers to the
current contract. It is explicitly convertible to an address and all members for a
contract are inherited from the address.
Fall back functions: This is an unnamed function in a contract with no
arguments and return data. This function executes every time ether is received. It
is required to be implemented within a contract if the contract is intended to
receive ether; otherwise, an exception will be thrown and ether will be returned.
This function also executes if no other function signatures match in the contract.
If the contract is expected to receive ether, then the fall back function should be
declared with the payablemodifier. The payable is required; otherwise, this
function will not be able to receive any ether. This function can be called using
the address.call() method as, for example, in the following:

 function ()
 {
 throw;
 }

www.EBooksWorld.ir

Ethereum Development

[307]

In this case, if the fallback function is called according to the conditions
described earlier; it will call throw, which will roll back the state to what it was
before making the call. It can also be some other construct than throw; for
example, it can log an event that can be used as an alert to feed back the outcome
of the call to the calling application.

Modifier functions: These functions are used to change the behavior of
a function and can be called before other functions. Usually, they are
used to check some conditions or verification before executing the
function. _(underscore) is used in the modifier functions that will be
replaced with the actual body of the function when the modifier is
called. Basically, it symbolizes the function that needs to be guarded.
This concept is similar to guard functions in other languages.
Constructor function: This is an optional function that has the same
name as the contract and is executed once a contract is created.
Constructor functions cannot be called later on by users, and there is
only one constructor allowed in a contract. This implies that no
overloading functionality is available.
Function visibility specifiers (access modifiers): Functions can be
defined with four access specifiers as follows:

External: These functions are accessible from other
contracts and transactions. They cannot be called
internally unless the this keyword is used.
Public: By default, functions are public. They can be
called either internally or using messages.
Internal: Internal functions are visible to other derived
contracts from the parent contract.
Private: Private functions are only visible to the same
contract they are declared in.

Other important keywords/functions throw: throw is used to stop
execution. As a result, all state changes are reverted. In this case, no gas
is returned to the transaction originator because all the remaining gas
is consumed.

www.EBooksWorld.ir

Ethereum Development

[308]

Layout of a solidity source code file
Version pragma

In order to address compatibility issues that may arise from future versions of the solidity
compiler version, pragma can be used to specify the version of the compatible compiler as,
for example, in the following:

pragma solidity ^0.5.0

This will ensure that the source file does not compile with versions smaller than 0.5.0 and
versions starting from 0.6.0.

Import

Import in solidity allows the importing of symbols from the existing solidity files into the
current global scope. This is similar to import statements available in JavaScript, as for
example, in the following:

Import "module-name";

Comments

Comments can be added in the solidity source code file in a manner similar to C-language.
Multiple line comments are enclosed in /* and */, whereas single line comments start with
//.

An example solidity program is as follows, showing the use of pragma, import, and
comments:

Sample solidity program as shown in browser solidity

www.EBooksWorld.ir

Ethereum Development

[309]

This completes a brief introduction to the solidity language. The language is very rich and
under constant improvement. Detailed documentation and coding guidelines are available
online.

Introducing Web3
Web3 is a JavaScript library that can be used to communicate with an Ethereum node via
RPC communication. Web3 works by exposing methods that have been enabled over RPC.
This allows the development of user interfaces that make use of the web3 library in order to
interact with the contracts deployed over the blockchain.

In order to expose the methods via geth, the following command can be used:

$ geth --datadir .ethereum/privatenet/ --networkid 786 --rpc --rpcapi
'web3,eth,debug' --rpcport 8001 --rpccorsdomain 'http://localhost:7777'

Note the --rpcapi flag that allows the web3, eth and debug methods.

This is a powerful library and can be explored further by attaching a geth instance. Later in
the section, you will be introduced to the concepts and techniques of making use of web3
via JavaScript/HTML frontends.

The geth instance can be attached using the following command:

$ geth attach ipc:.ethereum/privatenet/geth.ipc

Once the geth JavaScript console is running, web3 can be queried, for example:

web3 via geth

www.EBooksWorld.ir

Ethereum Development

[310]

A simple contract can be deployed using geth and interacted with using web3 via the
command-line interface that geth provides (console or attach). The following are the steps
to achieve that. As an example, the following source code will be used:

pragma solidity ^0.4.0;
contract valueChecker {
 uint price=10;
 event valueEvent(bool returnValue);
 function Matcher (uint8 x) returns (bool)
 {
 if (x>=price)
 {
 valueEvent(true);
 return true;
 }
 }
}

Now open the geth console that has been opened previously and follow these steps:

Declare a variable named simplecontractsource and assign the program code1.
to it:

 > var simplecontractsource = "pragma solidity ^0.4.0; contract
 valueChecker { uint price=10;event valueEvent(bool returnValue);
 function Matcher (uint8 x) returns (bool) { if (x>=price)
 {valueEvent(true); return true; } } }"

This will display the following output:

 undefined

Note that the source code is required to be in a single line, which means that there
should be no line breaks. This can be achieved in Linux using the following
command:

 $ tr --delete '\n' < valuechecker.sol > valuecheckersingleline.sol

In the preceding example, valuechecker.sol is the file that has the new line \n
character, and valuecheckersingleline.sol is the output file produced after
removing the new line character from the file. The code can then be copied and
pasted from the file into the geth JavaScript console.

www.EBooksWorld.ir

Ethereum Development

[311]

Now verify that the solidity compiler is available, and if it's not available, then2.
refer to the section in the chapter where solidity installation is explained:

 > eth.getCompilers()
 ["Solidity"]

Create a variable and assign and compile the code using solidity:3.

 > var
 simplecontractcompiled=eth.compile.solidity(simplecontractsource)
 undefined

Enter simplecontractcompiled; it will display output similar to the following.4.
as simplecontractcompiled has been assigned the data from preceding step 3.

simplecontractcompiled output

Create a variable to interact with the contract:5.

 >var simplecontractinteractor=eth.contract
 (simplecontractcompiled.valueChecker.info.abiDefinition);
 undefined

www.EBooksWorld.ir

Ethereum Development

[312]

Check the ABI (Application Binary Interface):6.

 > simplecontractinteractor.abi
 [{
 constant: false,
 inputs: [{
 name: "x",
 type: "uint8"
 }],
 name: "Matcher",
 outputs: [{
 name: "",
 type: "bool"
 }],
 payable: false,
 type: "function"
 }, {
 anonymous: false,
 inputs: [{
 indexed: false,
 name: "returnValue",
 type: "bool"
 }],
 name: "valueEvent",
 type: "event"
 }]

Check the code of valueChecker in the hexadecimal format:7.

 > simplecontractcompiled.valueChecker.code

This will return the following output. It can be slightly different for you:

 "0x6060604052600a60005534610000575b60878061001c6000396000f36060604
 05260e060020a6000350463f9d55e218114601c575b6000565b3460005760296004
 35603d565b604080519115158252519081900360200190f35b6000805460ff83161
 0608157604080516001815290517f3eb1a229ff7995457774a4bd31ef7b13b6f449
 1ad1ebb8961af120b8b4b6239c9181900360200190a15060015b5b91905056"

Now enter the following piece of code; note that the data field contains the code8.
for simplecontractcompiled:

 >var simplecontractTransaction = simplecontractinteractor.new({
 from: eth.coinbase,
 data: simplecontractcompiled.valueChecker.code,
 gas: 2000000
 },
 function(err, contract) {

www.EBooksWorld.ir

Ethereum Development

[313]

 if (err) {
 console.error(err);
 } else {
 console.log(contract);
 console.log(contract.address);
 }
 });

Assume that it returns an error message:

 Error: account is locked
 Undefined

If so, then unlock the account using the following commands.

First, list the accounts using the following command to get the account IDs:

 > personal.listAccounts
 ["0x76f11b383dbc3becf8c5d9309219878caae265c3",
 "0xcce6450413ac80f9ee8bd97ca02b92c065d77abc"]

Enter the following command with the account to be unlocked, as shown here:

 > personal.unlockAccount
 ("0x76f11b383dbc3becf8c5d9309219878caae265c3")
 Unlock account 0x76f11b383dbc3becf8c5d9309219878caae265c3

Enter the password of the account:

 Passphrase:
 true

After unlocking the account, enter the preceding code again; say, an error message
appears:

 > Error: The contract code couldn't be stored, please check your
 gas amount.

In this case, try to increase the gas. If too great a gas value is entered, then an error
message will appear, as follows:

 Error: Exceeds block gas limit
 undefined

www.EBooksWorld.ir

Ethereum Development

[314]

Once the account is successfully unlocked, start the miner so that the contract can9.
be mined (it is not necessary to unlock the account to start mining. Account
unlocking is necessary to mine the contract and create it on the blockchain):

 > miner.start()
 true

When the contract is created correctly, it will show output similar to this:

 [object Object]
 undefined
 undefined
 > [object Object]
 0x94a1107f2585f0ab931c71f2f8f02e9f5ab888c0

This shows the address of the newly created contract after the contract has been
mined.

In order to make interaction with the contract easier, the address of the account10.
can be assigned to a variable:

 > var simplecontractaddress=
 "0x94a1107f2585f0ab931c71f2f8f02e9f5ab888c0"
 Undefined

There are a number of methods that are now exposed, and the contract can be11.
further queried now, for example:

 > var deployedaddress=eth.getCode(simplecontractaddress);
 undefined
 > deployedaddress
 "0x606060405260e060020a6000350463f9d55e218114601c575b6000565b346000
 576029600435603d565b604080519115158252519081900360200190f35b6000805
 460ff831610608157604080516001815290517f3eb1a229ff7995457774a4bd31ef
 7b13b6f4491ad1ebb8961af120b8b4b6239c9181900360200190a15060015b5b919
 05056"
 > eth.getBalance(simplecontractaddress)
 0

After this , an object can be created named simplecontractinstance, which12.
will be used to call methods:

 simplecontractinstance = web3.eth.contract(simplecontractcompiled
 .valueChecker.info.abiDefinition).at(simplecontractaddress);

www.EBooksWorld.ir

Ethereum Development

[315]

There are various methods that have been exposed now, and a list can be seen as13.
follows:

 > simplecontractinstance.Matcher.
 simplecontractinstance.Matcher.apply
 simplecontractinstance.Matcher.constructor
 simplecontractinstance.Matcher.request

 simplecontractinstance.Matcher.arguments
 simplecontractinstance.Matcher.estimateGas
 simplecontractinstance.Matcher.sendTransaction

 simplecontractinstance.Matcher.bind
 simplecontractinstance.Matcher.getData
 simplecontractinstance.Matcher.toString

 simplecontractinstance.Matcher.call
 simplecontractinstance.Matcher.length
 simplecontractinstance.Matcher.uint8

 simplecontractinstance.Matcher.caller
 simplecontractinstance.Matcher.prototype

The contract can be further queried as shown here. In the following example, the14.
Matcher function is called with the arguments. Remember that in the code, there
is a condition that checks that, if the value is equal to or greater than 10, then the
function returns true; otherwise, it returns false. This can be seen as follows:

 > simplecontractinstance.Matcher.call(12)
 true
 > simplecontractinstance.Matcher.call(9)
 false
 > simplecontractinstance.Matcher.call(0)
 false
 > simplecontractinstance.Matcher.call(12)
 true

POST requests
It is possible to interact with geth via jsonrpc over HTTP. For this purpose, curl can be
used. Some examples are shown here in order to familiarize you with the POST request and
show how to make post requests using curl. Curl is available at https://curl.haxx.se/.

www.EBooksWorld.ir

https://curl.haxx.se/

Ethereum Development

[316]

Before using the JsonRPC interface over HTTP, geth should be started up with appropriate
switches, as shown here:

--rpcapi web3

This switch will enable the web3 interface over HTTP.

The Linux command curl can be used for the purpose of communicating over HTTP, as
shown here in a few examples.

Retrieve the list of accounts: For example, in order to retrieve the list of accounts
using the personal_listAccounts method, the following command can be
used:

 $ curl --request POST --data
 '{"jsonrpc":"2.0","method":"personal_listAccounts","params":
 [],"id":4}' localhost:8001

This will return the output, a JSON object with the list of accounts:

 {"jsonrpc":"2.0","id":4,"result":
 ["0x76f11b383dbc3becf8c5d9309219878caae265c3","0xcce6450413ac80f9
 ee8bd97ca02b92c065d77abc"]}

In the preceding curl command, the --request is used to specify the request command,
POST is the request, and --data is used specify the parameters and values and,
finally, localhost:8001 is where the HTTP endpoint from geth is opened.

The HTML and JavaScript frontend
It is desirable to interact with the contracts in a user-friendly manner via a web page. It is
possible to interact with the contracts using the web3.js library from HTML/JS/CSS-based
web pages. The HTML content can be served using any HTTP web server, whereas web3.js
can connect via local RPC to the running Ethereum client (geth) and provide an interface to
the contracts on the blockchain. This architecture can be visualized in the following
diagram:

www.EBooksWorld.ir

Ethereum Development

[317]

web3.js, frontend, and blockchain interaction architecture

If web3.js is not already installed, use these steps; otherwise, move to the next step.

Installing web3.js
Web3 can be installed via npm by simply issuing the following command:

$ npm install web3

It can also be directly downloaded from https://github.com/ethereum/web3.js.

web3.min.js, downloaded via npm, can be referred in the HTML files. This can be found
under node_modules, for example,
/home/drequinox/netstats/node_modules/web3/dist/web3.min.js. The file can
optionally be copied into the directory where the main application is and can be used from
there. Once the file is successfully referred in HTML or JS, web3 needs to be initialized by
providing an HTTP provider. This is usually the link to the localhost HTTP endpoint
exposed by the running geth client. This can be achieved using the following code:

web3.setProvider(new web3.providers.HttpProvider('http://localhost:8001'));

Once the provider is set, further interaction with the contracts and blockchain can be done
using the web3 object and its available methods.

The web3 object can be created using the following code:

if (typeof web3 !== 'undefined')
{
 web3 = new Web3(web3.currentProvider);
}
else
{
 web3 = new Web3(new

www.EBooksWorld.ir

https://github.com/ethereum/web3.js

Ethereum Development

[318]

 Web3.providers.HttpProvider("http://localhost:8001"));
}

Example
In the following section, an example will be presented that will make use of web3.js to allow
interaction with the contracts via a web page served over a simple HTTP web server. This
can be achieved by following these steps:

First, create a directory named /simplecontract/app in the home directory.1.
Then, create a file named simplecontractcompiled.js, as shown here:2.

 simplecontractcompiled={
 valueChecker: {
 code:
 "0x6060604052600a60005534610000575b60878061001c6000396000f360606040
 5260e060020a6000350463f9d55e218114601c575b6000565b34600057602960043
 5603d565b604080519115158252519081900360200190f35b6000805460ff83161
 0608157604080516001815290517f3eb1a229ff7995457774a4bd31ef7b13b6f449
 1ad1ebb8961af120b8b4b6239c9181900360200190a15060015b5b91905056",
 info:
 {
 abiDefinition:
 [{
 constant: false,
 inputs:
 [{
 name: "x",
 type: "uint8"
 }],
 name: "Matcher",
 outputs:
 [{
 name: "",
 type: "bool"
 }],
 payable: false,
 type: "function"
 },
 {
 anonymous: false,
 inputs:
 [{
 indexed: false,
 name: "returnValue",
 type: "bool"
 }],

www.EBooksWorld.ir

Ethereum Development

[319]

 name: "valueEvent",
 type: "event"
 }],
 compilerOptions: "--combined-json bin,abi,userdoc,devdoc --add-
 std --optimize",compilerVersion: "0.4.6",
 developerDoc:
 {
 methods: {}
 },
 language: "Solidity",
 languageVersion: "0.4.6",
 source: "pragma solidity ^0.4.0; contract valueChecker { uint
 price=10; event valueEvent(bool returnValue);
 function Matcher (uint8 x) returns (bool) { if (x>=price) {
 valueEvent(true); return true; } } }",
 userDoc: {
 methods: {}
 }
 }
 }
 }

This file contains various elements. The most important is ABI (Application
Binary Interface), which can be queried using geth, as shown earlier in step 6
during the contract deployment process.

Create a file named simplecontract.js, as shown here:3.

 if (typeof web3 !== 'undefined')
 {
 web3 = new Web3(web3.currentProvider);
 }
 else
 {
 web3 = new Web3(new
 Web3.providers.HttpProvider("http://localhost:8001"));
 }
 console.log("Coinbase: " + web3.eth.coinbase);
 var simplecontractaddress = "0x94a1107f2585f0ab931c71f2f8f02e9
 f5ab888c0";
 simplecontractinstance =
 web3.eth.contract(simplecontractcompiled.valueChecker
 .info.abiDefinition).at(simplecontractaddress);
 var code = web3.eth.getCode(simplecontractaddress);
 console.log("Contract balance: " +
 web3.eth.getBalance(simplecontractaddress));
 console.log("simple contract code" + code);
 function callMatchertrue()

www.EBooksWorld.ir

Ethereum Development

[320]

 {
 var txn = simplecontractinstance.Matcher.call(12);{
 };
 console.log("return value: " + txn);
 }
 function callMatcherfalse()
 {
 var txn = simplecontractinstance.Matcher.call(1);{
 };
 console.log("return value: " + txn);
 }

This file is the main JavaScript file that contains the code to create a web3 object. It
also provides methods that are used to interact with the contract on the
blockchain. An explanation of the code is given here.

Creating a web3 object

if (typeof web3 !== 'undefined')
{
 web3 = new Web3(web3.currentProvider);
}
 else
{
 web3 = new Web3(new Web3.providers.HttpProvider("http://localhost:
 8001"));
}

This code first checks whether there is already an available provider; if yes, then it will set
the provider to the current provider. Otherwise, it sets the web3 provider to localhost:
8001; this is where the local instance of geth is running.

Checking availability by calling any web3 method

console.log("Coinbase: " + web3.eth.coinbase);

This line of code simply uses console.log to print the coinbase by calling the
web3.eth.coinbase method. Once this call is successful, it means that the web3 object has
been created correctly and HttpProvider is available. Any other call can be used to verify
the availability, but as a simple example, web3.eth.coinbase has been used in the
preceding example.

Assigning contract address to a variable

var simplecontractaddress = "0x94a1107f2585f0ab931c71f2f8f02e9f5ab888c0
 ";

www.EBooksWorld.ir

Ethereum Development

[321]

This statement will assign the value of the address of the contract deployed on the
blockchain. After successful execution of the statement variable, simplecontractaddress
will contain the address of the contract. This is the address of the contract created in step 9
in the preceding example when the contract is deployed. Simply use that address in the
code here.

Creating the main contract object

simplecontractinstance = web3.eth.contract(simplecontractcompiled
 .valueChecker.info.abiDefinition)
 .at(simplecontractaddress);

This piece of code will create an object that will be used later in the code to interact with the
contract on the blockchain. simplecontractinstance will expose functions of the
contract. web3.eth.contract takes the ABI array as an argument. This can be passed
using simplecontractcompiled.valueChecker.info.abiDefinition. Finally, .at
takes the address of the contract as an argument.

Getting the code of the contract address (optional)

This is shown as an example here and is entirely optional:

var code = web3.eth.getCode(simplecontractaddress);
console.log("simple contract code" + code);

The preceding statements are used to query the code of the contract. This is a simple
web3.eth.getCode call that takes the address of the contract on the blockchain as an
argument. Finally, console.log is used to print the code of the contract by printing the
code variable.

Contract balance

console.log(“Contract balance:” +web3.eth.getBalance(simplecontractaddress));The
preceding code will call web3.eth.getBalance and take the contract address as an
argument and will print the balance of the contract, which is 0 at the moment.

Contract functions

Once the web3 object is correctly created and simplecontractinstance is created, calls to
the contract functions can be made easily as shown in the following example:

function callMatchertrue()
{
 var txn = simplecontractinstance.Matcher.call(12);{
};

www.EBooksWorld.ir

Ethereum Development

[322]

console.log("return value: " + txn);
}

function callMatcherfalse()
{
var txn = simplecontractinstance.Matcher.call(1);{
};
console.log("return value: " + txn);
}

Calls can be made using simplecontractinstance.Matcher.call and then by passing
the value for the argument. Recall the function matcher in solidity code:

function Matcher (uint8 x) returns (bool)

It takes one argument x of type uint8 and returns a Boolean value, either true or false.

Accordingly, the call is made to the contract, as shown here:

var txn = simplecontractinstance.Matcher.call(12);

In the preceding example, console.log is used to print the value returned by the function
call. Once the result of the call is available in the txn variable, it can be used anywhere
throughout the program, for example, as a parameter for another JavaScript function.

Finally, the HTML file named index.html is created with the following code:

<html>
<head>
 <title>SimpleContract Interactor</title>
 <script src="./web3.min.js"></script>
 <script src="./simplecontractcompiled.js"></script>
 <script src="./simplecontract.js"></script>
</head>
<body>
 <button onclick="callMatchertrue()">callTrue</button>
 <button onclick="callMatcherfalse()">callFalse</button>
</body>
</html>

It is recommended that an appropriate web server be running in order to serve the HTML
content (index.html as an example). Alternatively, the file can browsed from the
filesystem but that can cause some issues with larger projects; as good practice, always use
a web server. A quick web server in Python can be started using the following command.
This server will serve the HTML content from the same directory that it has been run from.
Python is not necessary; it can even be an Apache server or any other web container.

www.EBooksWorld.ir

Ethereum Development

[323]

Simple web server in Python

Now any browser can be used to view the web page served over TCP port 7777. This is
shown in the following example. It should be noted that the output shown here is in the
browser's console window. The browser's console must be enabled in order to see the
output.

Interaction with the contract

As the values are hardcoded in the code for simplicity, two buttons have been created in
index.html. Both of these buttons call functions with hardcoded values. This is just to
demonstrate that parameters are being passed to the contract via web3 and values are being
returned accordingly.

There are two functions being called behind the preceding buttons. The
callMatchertrue() method has a hardcoded value of 12, which is sent to the contract
using this:

simplecontractinstance.Matcher.call(12)

The return value is printed in the console using the following code, which first invokes the
Matcher function and then assigns the value to the txn variable to be printed later in the
console:

simplecontractinstance.Matcher.call(1)
function callMatchertrue()
{
 var txn = simplecontractinstance.Matcher.call(12);{
};
console.log("return value: " + txn);
}

www.EBooksWorld.ir

Ethereum Development

[324]

Similarly, the callMatcherfalse() function works by passing a hardcoded value of 1 to
the contract using this:

simplecontractinstance.Matcher.call(1)

The return value is printed accordingly:

console.log("return value: " + txn);
function callMatcherfalse()
{
 var txn = simplecontractinstance.Matcher.call(1);{
};
console.log("return value: " + txn);
}

This example demonstrates how the web3 library can be used to interact with the contracts
on the blockchain.

Development frameworks
There are various development frameworks now available for Ethereum. As seen in the
examples discussed earlier, it can be quite time consuming to deploy the contract via the
usual manual means. This is where truffle and similar frameworks such as embark can be
used to make the process simpler and quicker. The most widely used framework is called
truffle. In the next section, you will be introduced to the truffle framework.

Truffle
Truffle is a development environment that makes it easier and simpler to test and deploy
Ethereum contracts. Truffle provides contract compilation and linking along with an
automated testing framework using Mocha and Chai. It also makes it easier to deploy the
contracts to any PrivateNet, public, or Test Net Ethereum blockchain. Also, asset pipeline is
provided, which makes it easier for all JavaScript files to be processed, making them ready
for use by a browser.

Installation
Before installation, it is assumed that the node is available, which can be queried as shown
here. If the node is not available, then the installation of the node is required first in order to
install truffle:

drequinox@drequinox-OP7010:~/testdapp$ nodejs --version

www.EBooksWorld.ir

Ethereum Development

[325]

v7.2.1
drequinox@drequinox-OP7010:~/testdapp$ node --version
v7.2.1

The installation of truffle is very simple and can be done using the following command via
npm:

$ sudo npm install -g truffle

This will take a while; once it is installed, truffle can be used to display help and make
sure that it is installed correctly.

Truffle help

Alternatively, the repository is available at https://github.com/ConsenSys/truffle,
which can be cloned locally to install truffle. Git can be used to clone the repository using
the following command:

 https://github.com/ConsenSys/truffle.git

Initializing truffle

Truffle can be initialized by running the following command. First, create a directory for the
project, for example:

mkdir testdapp

Then, change to testdapp and run the following command:

~/testdapp$ truffle init

www.EBooksWorld.ir

https://github.com/ConsenSys/truffle

Ethereum Development

[326]

Once the command is successful, it will create the directory structure shown here. This can
be viewed using the tree command in Linux:

drequinox@drequinox-OP7010:~/testdapp$ tree
.
├── app
│ ├── images
│ ├── index.html
│ ├── javascripts
│ │ └── app.js
│ └── stylesheets
│ └── app.css
├── contracts
│ ├── ConvertLib.sol
│ ├── MetaCoin.sol
│ └── Migrations.sol
├── migrations
│ ├── 1_initial_migration.js
│ └── 2_deploy_contracts.js
├── test
│ └── metacoin.js
└── truffle.js
7 directories, 10 files

This command creates four main directories, named app, contracts, migrations, and
test. As seen in the preceding example, a total of 7 directories and 10 files have been
created. In the following section, an explanation of all these files and directories will be
presented.

App: This directory contains all application files including HTML files, images,
style sheets and JavaScript files. This folder contains further subdirectories,
images, javascripts, and stylesheets that contain relevant application files.
Contracts: This directory contains solidity contract source code files. This is
where truffle will look for solidity contract files during migration.
Migration: This directory has all the deployment scripts.
Test: As the name suggests, this directory contains relevant test files for
applications and contracts.

Finally, truffle configuration is stored in the truffle.js file, which is created in the root
folder of the project from where truffle init was run. When truffle init is run, it
will create a sample project named MetaCoin. As an example, you will first be introduced to
how to use various commands in truffle in order to test and deploy MetaCoin. Later, further
examples will be shown on how to use truffle for custom projects.

www.EBooksWorld.ir

Ethereum Development

[327]

Compilation using truffle

Both libraries and contracts can be compiled using truffle. It is expected that the name of the
contract file will be the same as the contract name within the file. For example, from the
sample MetaCoin project created earlier, the file named MetaCoin.sol under the
contracts directory has the same name as the MetaCoin contract in the file. This applies to
library files too and it is case-sensitive.

Filename:

MetaCoin.sol

Contract name within the file:

contract MetaCoin {
 mapping (address => uint) balances;

Compilation can be run as shown here:

~/testdapp$ truffle compile
Compiling ConvertLib.sol...
Compiling MetaCoin.sol...
Compiling Migrations.sol...
Writing artifacts to ./build/contracts
~/testdapp$

Once the compilation is finished successfully, all objects will be written in to the build
directory. The output directory looks like what is shown here:

~/testdapp$ tree build/
build/
└── contracts
 ├── ConvertLib.sol.js
 ├── MetaCoin.sol.js
 └── Migrations.sol.js
1 directory, 3 files

As shown in the preceding example, the build directory is created automatically with the
contracts subdirectory, which contains three JavaScript files.

Migration

This is the process by which truffle deploys contracts to the blockchain. This process relies
on the files available under the migrations directory.

www.EBooksWorld.ir

Ethereum Development

[328]

The process works as shown here:

~/testdapp$ cd migrations/
~/testdapp/migrations$ ls -ltr
-rw-rw-r-- 1 drequinox drequinox 124 Dec 12 12:57 2_deploy_contracts.js
-rw-rw-r-- 1 drequinox drequinox 72 Dec 12 12:57 1_initial_migration.js
~/testdapp/migrations$ cat 2_deploy_contracts.js
module.exports = function(deployer)
{
 deployer.deploy(ConvertLib);
 deployer.autolink();
 deployer.deploy(MetaCoin);
};
drequinox@drequinox-OP7010:~/testdapp/migrations$ cat
1_initial_migration.js
module.exports = function(deployer)
{
 deployer.deploy(Migrations);
};

As shown in the preceding output, there are two files that contain the code that specifies
which contracts are required to be deployed.

The filenames follow a convention where they are required to be prefixed by a number. This
prefix is required in order to keep a record of all migrations. The suffix in the filename can
be any descriptive name. First, it is important to change the truffle.js file in order to
point to the appropriate network. The truffle.js file contains valuable information about
the build and rpc for the application. In this case, geth is already running and it can simply
be pointed to use the available client:

module.exports = {
 build: {
 "index.html": "index.html",
 "app.js": [
 "javascripts/app.js"
],
 "app.css": [
 "stylesheets/app.css"
],
 "images/": "images/"
 },
 rpc: {
 host: "localhost",
 port: 8001
 }
};

www.EBooksWorld.ir

Ethereum Development

[329]

In the preceding file, rpc needs to be changed to point to the appropriate network. Once
rpc is changed (in the example, geth is running on port 8001 as opposed to usual 8545),
truffle migration can be run using the following command. It is also important that mining
be running on the Ethereum node to which rpc has been pointed; otherwise, the contract
will not be mined.

The contract can be deployed using the command shown here:

~/testdapp$ truffle migrate

It might show an error message, as shown here. If this occurs, then it means that the account
that truffle is using to deploy a contract to the blockchain is locked and is required to be
unlocked:

Running migration: 1_initial_migration.js
 Deploying Migrations...
Error encountered, bailing. Network state unknown. Review successful
transactions manually.
Error: account is locked
 at Object.InvalidResponse
(/usr/lib/node_modules/truffle/node_modules/ether-
pudding/node_modules/web3/lib/web3/errors.js:35:16)
 at /usr/lib/node_modules/truffle/node_modules/ether-
pudding/node_modules/web3/lib/web3/requestmanager.js:86:36
 at exports.XMLHttpRequest.request.onreadystatechange
(/usr/lib/node_modules/truffle/node_modules/web3/lib/web3/httpprovider.js:1
14:13)
 at exports.XMLHttpRequest.dispatchEvent
(/usr/lib/node_modules/truffle/node_modules/xmlhttprequest/lib/XMLHttpReque
st.js:591:25)
 at setState
(/usr/lib/node_modules/truffle/node_modules/xmlhttprequest/lib/XMLHttpReque
st.js:610:14)
 at IncomingMessage.<anonymous>
(/usr/lib/node_modules/truffle/node_modules/xmlhttprequest/lib/XMLHttpReque
st.js:447:13)
 at emitNone (events.js:91:20)
 at IncomingMessage.emit (events.js:185:7)
 at endReadableNT (_stream_readable.js:974:12)
 at _combinedTickCallback (internal/process/next_tick.js:74:11)
 at process._tickDomainCallback (internal/process/next_tick.js:122:9)

The account can be unlocked by using the following commands in the geth JavaScript
console.

www.EBooksWorld.ir

Ethereum Development

[330]

First, list the accounts to see all accounts and then select the account that needs to be
unlocked. Truffle assumes the coinbase account by default. Select the appropriate account,
as follows:

> personal.listAccounts
["0x76f11b383dbc3becf8c5d9309219878caae265c3",
"0xcce6450413ac80f9ee8bd97ca02b92c065d77abc"]

The account can be unlocked using following command:

> personal.unlockAccount("0x76f11b383dbc3becf8c5d9309219878caae265c3")
Unlock account 0x76f11b383dbc3becf8c5d9309219878caae265c3
Passphrase:
true

Once the account is unlocked, migration can be run again using the following command:

~/testdapp$ truffle migrate

It will show output similar to that shown here. It should be noted that mining must be
started for the migration to finish. Migration will perform various steps by finding the files
available in the migrations directory. As shown in the example,
1_initial_migration.js and 2_deploy_contracts.js have been used to provide
migration steps and requirements to truffle:

Running migration: 1_initial_migration.js
 Deploying Migrations...
 Migrations: 0xf444cce0cee00cab4d04bcfc0005626b8b02add8
Saving successful migration to network...
Saving artifacts...
Running migration: 2_deploy_contracts.js
 Deploying ConvertLib...
 ConvertLib: 0x2ba8a4a75a6b845bf482923cff29ecc98cd68d90
 Linking ConvertLib to MetaCoin
 Deploying MetaCoin...
 MetaCoin: 0x0be9c5de978fa927b93a5c4faab31312cea5704a
Saving successful migration to network...
Saving artifacts...
~/testdapp$

Once the command is completed successfully, it will return a command prompt displaying
the message saving artefacts.

www.EBooksWorld.ir

Ethereum Development

[331]

Deployment can be verified using a few commands shown here via the geth JavaScript
console:

> eth.getBalance("0x0be9c5de978fa927b93a5c4faab31312cea5704a")
0
> eth.getCode("0x0be9c5de978fa927b93a5c4faab31312cea5704a")
"0x606060405260e060020a60003504637bd703e8811461003457806390b98a111461005657
8063f8b2cb4f1461007d575b610000565b346100005761004460043561009f565b604080519
18252519081900360200190f35b3461000057610069600435602435610119565b6040805191
15158252519081900360200190f35b34610000576100446004356101b1565b6040805191825
2519081900360200190f35b6000732ba8a4a75a6b845bf482923cff29ecc98cd68d906396e4
ee3d6100c4846101b1565b60026000604051602001526040518360e060020a0281526004018
08381526020018281526020019250505060206040518083038186803b156100005760325a03
f415610000575050604051519150505b919050565b600160a060020a0333166000908152602
0819052604081205482901015610142575060006101ab565b600160a060020a033381166000
818152602081815260408083208054889003905593871680835291849020805487019055835
1868152935191937fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df5
23b3ef929081900390910190a35060015b92915050565b600160a060020a038116600090815
2602081905260409020545b91905056"

Note that the address of the newly deployed contract has been taken from the truffle
migrate command output shown earlier. (MetaCoin:
0x0be9c5de978fa927b93a5c4faab31312cea5704a)

Interaction with the contract: Truffle also provides a console (command-line
interface) that allows interaction with the contracts. All deployed contracts are
already instantiated and ready to use in the console. This is an REPL-based
interface that means Read, Evaluate, and Print Loop. Similarly, in the geth client
(via attach or console), REPL is used via exposing JSRE (JavaScript runtime
environment). The console can be accessed by issuing the following command:

 ~/testdapp$ truffle console

This will open a command-line interface, as shown here:

Truffle console

www.EBooksWorld.ir

Ethereum Development

[332]

Once the console is available, various methods can be run in order to query the
contract. A list of methods can be displayed by typing the following command
and tab-completing:

Exposed methods

Other methods can also be called in order to interact with the contract; for
example, in order to retrieve the address of the contract, the following method can
be called in the truffle console:

 truffle(default)> MetaCoin.deployed().address
 '0x0be9c5de978fa927b93a5c4faab31312cea5704a'
 truffle(default)>

Query the balance of the contract:

 truffle(default)>
 MetaCoin.deployed().getBalance.call(web3.eth.accounts[0])
 { [String: '8750'] s: 1, e: 3, c: [8750] }

The output returns a string with the value 8750.

Transfer the balance:

 truffle(default)>
 MetaCoin.deployed().sendCoin("0xcce6450413ac80f9ee8bd97ca02b92c
 065d77abc",50, {from:"0x76f11b383dbc3becf8c5d9309219878caae265c
 3"})
 '0xb8969149fcfb54ec9beac31af1fc86c386f9aa42cb13d2eb9bf946993198
 6e0f'

This will return the hash of the transaction and, when successful, it will result in
increasing the balance of the target by 50. The target account is the argument
passed in the sendCoin function.

www.EBooksWorld.ir

Ethereum Development

[333]

Balance of the target account: It can be retrieved using the following command:

 truffle(default)>
 MetaCoin.deployed().getBalance.call(web3.eth.accounts[1])
 { [String: '1250'] s: 1, e: 3, c: [1250] }
 truffle(default)>

In order to exit from the truffle console, the .exit command is used.

Testing using truffle
Testing is a powerful feature of truffle and can be invoked by running the following
command:

~/testdapp$ truffle test

This will read the tests from test directory and perform tests accordingly. The testing
framework used by truffle is called Mocha, and it uses an assertion framework named Chai.

A sample test run is shown as follows. This test only runs two tests. In the original file, there
are three tests, but for simplicity, only two are used here. Also, the test may fail on most of
the systems; therefore, it has been removed from the file for simplicity. A failed test case
will be discussed later. Also, it should be noted that mining should be running for the tests
to run.

Truffle test output showing two successful tests

www.EBooksWorld.ir

Ethereum Development

[334]

These two tests are based on the file produced by truffle init. In the following file, only one
test is shown for simplification, when truffle creates three tests for the default MetaCoin
project. Tests can be removed from the file by editing the metacoin.js file in a text editor:

contract('MetaCoin', function(accounts)
{
 it("should put 10000 MetaCoin in the first account",
 function()
 {
 var meta = MetaCoin.deployed();
 return meta.getBalance.call(accounts[0]).then(function(balance)
 {
 assert.equal(balance.valueOf(), 10000, "10000 wasn't in the first
 account");
 });
 });
});

All test files are required to be present in the tests directory under the project directory.
Tests are specified within it blocks.

Test based on the file shown earlier with only one test

In the preceding test case, when the contract is, it should have a balance of 10000 in it. This
test basically tests whether the balance of 10000 is available after deploying the contract or
not. In order to explain the concept, the error can be simulated, for example, if the
metacoin.js file is by changing the assertion:

assert.equal(balance.valueOf(), 10000, "10000 wasn't in the first
account");

to

assert.equal(balance.valueOf(), 1000, "10000 wasn't in the first account");

www.EBooksWorld.ir

Ethereum Development

[335]

This will induce an artificial assertion failure because in assert, the expected amount is 1000,
whereas, when the contract is deployed, it has a balance of 10,000. When the test is run, the
following output is shown indicating that the tests have failed. This change is made for
demonstration purposes only in order to allow you to see that tests can fail and, if so, what
type of outputs are produced.

Truffle test failing output

The truffle test command takes few optional parameters, especially --verbose-rpc,
which can be very helpful in understanding the RPC communication between the Ethereum
client and truffle.

At times during test execution, an error message like the one shown here can appear:

Error: timeout of 120000ms exceeded. Ensure the done() callback is being
called in this test.

This error occurs when either the Ethereum node is not mining, or deploying the contracts
is taking longer than 2 minutes. This is why timeout occurs; therefore, it is important that
tests are run through a mining node if on PrivateNet. Also on Ropsten, it can sometimes
take longer than 2 minutes. Alternatively, ethereumjs-testrpc can be used, which is
commonly used with truffle and provides fast simulated Ethereum RPC client.

Build
Build in truffle is used to bootstrap the frontend for browsers. It works by importing
compiled contracts and relevant deployed contract and Ethereum client configurations. All
objects, after building, are saved in the ./build directory. All build configurations are
present in the truffle.js file, which guides truffle on what to build. By default, this file
comes only with build: and rpc: configurations.

www.EBooksWorld.ir

Ethereum Development

[336]

Build can be started by issuing the following command:

~/testdapp$ truffle build

Once the build is completed, the build directory will be created if doesn't exist already and
a tree structure similar to the one shown here will be created. This is created based on the
truffle.js file:

build/
├── app.css
├── app.js
├── contracts
│ ├── ConvertLib.sol.js
│ ├── MetaCoin.sol.js
│ └── Migrations.sol.js
├── images
└── index.html

Once the build is completed successfully, all frontend files will be ready. This can then be
viewed in the browser using truffle's serve command. The serve command creates a web
server in order to present the HTML content. The command can be run as shown here.

Note that the command is run with the -p flag to specify port TCP 7777. This is required as
geth, in the example provided previously, is running with the --rpccorsdomain
'http://localhost:7777' option. This means that only the content served over TCP
7777 is allowed. By default, serve runs on port 8080, which might be in use by some other
process on the system as TCP 8080 is a very common port to be used for web applications.

Truffle serve

Once the truffle server is up and running on an appropriate port, the content can be
browsed using a browser and pointing to URL http://localhost:7777.

www.EBooksWorld.ir

Ethereum Development

[337]

Example MetaCoin frontend

Another example
An example is shown here, where a simple contract in solidity is created with migrations
and tests. The contract is very simple and performs only addition:

Create a directory named simpleTest:1.

 $ mkdir simpleTest

Initialize truffle:2.

 $ truffle init

Remove files from directories. This is required in order to remove the default3.
MetaCoin project files create by truffle.

 rm -r test/* contracts/* migrations/*

Place the two files Addition.sol and Migrations.sol in the contracts4.
directory:

 Addition.sol:

 pragma solidity ^0.4.2;
 contract Addition
 {
 uint8 x;

www.EBooksWorld.ir

Ethereum Development

[338]

 function addx(uint8 y, uint8 z)
 {
 x = y + z;
 }
function retrievex() constant returns (uint8)
{
 return x;
}
}
Migrations.sol:
pragma solidity ^0.4.2;
contract Migrations
{
 address public owner;
 uint public last_completed_migration;
 modifier restricted()
 {
 if (msg.sender == owner) _;
 }
 function Migrations()
 {
 owner = msg.sender;
 }
 function setCompleted(uint completed) restricted
 {
 last_completed_migration = completed;
 }
 function upgrade(address new_address) restricted
 {
 Migrations upgraded = Migrations(new_address);
 upgraded.setCompleted(last_completed_migration);
 }
 }

Place the Addition.js file in the test directory:5.

 contract('Addition', function(accounts)
 {
 it(" 100 + 100 = 200 ", function()
 {
 var AddContract = Addition.deployed();
 AddContract.addx(100, 100,{from:accounts[0],gas:1000000})
 .then(function(a)
 {
 return AddContract.retrievex.call().then(function(Result)
 {
 assert.equal(Result, 200, "100 + 100 = 200 is expected");
 });

www.EBooksWorld.ir

Ethereum Development

[339]

 });
 });
 });

In the migrations folder, place two files:6.

 1_initial_migration.js:

 module.exports = function(deployer)
 {
 deployer.deploy(Migrations);
 };

 2_deploy_contracts.js:

 module.exports = function(deployer)
 {
 deployer.deploy(Addition);
 deployer.autolink();
 };

Once all the files are in place, compile all contracts using truffle compile.7.
Optionally, use the --compile-all flag in order to recompile the contracts even
if they have already been compiled. This is required only if the contracts need to
be recompiled:

 ~/simpleTest$ truffle compile
 Compiling Addition.sol...
 Compiling Migrations.sol...
 Writing artifacts to ./build/contracts

Migrate to the Ethereum test network using truffle migrate. This will deploy the8.
contract on the network. Note that, at this point, truffle.js will need to be
updated again with port 8001 to point to the Private Net:

 ~/simpleTest$ truffle migrate
 Running migration: 2_deploy_contracts.js
 Deploying Addition...
 Addition: 0x73934227a1ce7fc44152b7451626759a00b0275c
 Saving successful migration to network...
 Saving artifacts...

Finally, tests can be performed using the following command. These tests are
based on the Addition.js file shown earlier:

 ~/simpleTest$ truffle test

www.EBooksWorld.ir

Ethereum Development

[340]

This command will first deploy the contract on the Ethereum network (PrivateNet
in this example).

Sample output showing successful truffle test

In order to interact with the contract, the following methods can be used. As the9.
Addition contract is already instantiated and available in the truffle console, it
becomes quite easy to interact with the contract using various methods.

For example, in order to retrieve the address of the deployed contract, the following method
can be called:

 truffle(default)> Addition.address
 '0x73934227a1ce7fc44152b7451626759a00b0275c'

To call the functions from within the contract, the deployed method is used with contract
functions. An example is shown here, in which the addx function is called and two
parameters are passed:

truffle(default)> Addition.deployed().addx(100,100)
 '0xae6f51782c1bcf04ec34dd54ee31da626dc138993ea813bc6c3c1fe0790b130e'
truffle(default)>
'0xb9f8633fbd626466ee2c2f24952a5fca3134f4e7d08f39a4d26ac2689e22b653'

Call the retrievex function from the contract:

truffle(default)> Addition.deployed().retrievex()
{ [String: '200'] s: 1, e: 2, c: [200] }

www.EBooksWorld.ir

Ethereum Development

[341]

Example project: Proof of Idea
The idea behind this program is to provide a service to notarize a document. This can then
be used as proof that, at a certain time in the past, the claimant has had access to a certain
piece of information. This can be very useful for patent documents. For example, if someone
has come up with an idea, he or she can then create a hash of that document and save it on
the blockchain. Due to the immutable nature of blockchain, it can serve as permanent proof
that a certain idea (documents) existed at a certain time. There are many ways in which this
can be achieved, but the key idea is the same and it works on the principle that hash
functions provide a digest of the text or document and are unique.

This can be achieved in several ways; the key idea is to create a hash of the document or text
string and save it on the blockchain. Once the text is hashed and saved, further requests to
save that same text can be disallowed by comparing the hash of the document with the
already stored hash.

For this example, browser solidity, truffle, and TestNet (already running Network ID 786,
created earlier) will be used. First, the code for the contract will be written. This can be done
using any appropriate text editor or integrated development environment. Browser solidity
can also be used as that too provides a simulated environment for the test. This example
will provide you with the opportunity to learn how a contract project can be developed
from an idea into a solidity contract source code and finally to deployment.

Let's look at the code line by line:

pragma solidity ^0.4.0;

This statement ensures that the minimum compiler version is 0.4.0 and the maximum
version cannot be greater than 0.4.9. This ensures compatibility between programs:

contract PatentIdea {

This statement is the start of the contract with name PatentIdea:

mapping (bytes32 => bool) private hashes;

Next, a mapping is defined, which maps byte32 to Boolean, and this is basically a hashmap
(dictionary) of bytes32 mapping to the Boolean value:

bool alreadyStored;

This is a variable declared with the alreadyStored name, which is a Boolean type and can
have a true or false value. This variable is used to hold the return value from the
SaveIdeaHash function:

event ideahashed(bool);

www.EBooksWorld.ir

Ethereum Development

[342]

An event is declared as well, which will be used to capture the failure or success of the
hashing function (SaveIdeaHash). When the event is triggered, it will return a true or false
Boolean value.

A function named saveHash is declared, which takes the hash variable of type bytes32 as
parameters and saves it in the hash map. This will result in a change of the state of the
contract. Note that the function accessibility is changed to private as it is only required
internally in the contract and does not need to be exposed publicly:

 function saveHash(bytes32 hash) private
{
 hashes[hash] = true;
}

Another function, saveIdeaHash, is declared, and it takes the variable idea of type string
and returns a Boolean (true or false) depending on the outcome of the function:

function SaveIdeaHash(string idea) returns (bool)
{
 var hashedIdea = HashtheIdea(idea);
 if (alreadyHashed(HashtheIdea(idea)))
 {
 alreadyStored=true;
 ideahashed(false);
 return alreadyStored;
 }
 saveHash(hashedIdea);
 ideahashed(true);
}

This function has a variable declared hashedIdea, which is assigned a value after calling
the HashtheIdea function described later. Note that this function can also return a value if
saved, but it is not shown here for simplicity.

The next function is the alreadyHashed function, which is declared to take the variable
named hash of type bytes32 and returns a Boolean (either true or false) after checking the
hash in the hash map. This is again declared as a constant and accessibility is set to private:

function alreadyHashed(bytes32 hash) constant private returns(bool)
{
 return hashes[hash];
}
}

www.EBooksWorld.ir

Ethereum Development

[343]

The next function is isAlreadyHashed, which checks whether the idea is already hashed.
This takes the input parameter idea of type string, also declared as a constant, which means
that it cannot change the state of the contract and returns either true or false based on the
outcome of the execution of the function named alreadyHashed. This function then calls
the alreadyHashed function described earlier to check from the hashes map whether the
hash is already stored there. This would mean that the same string (idea) has already been
hashed and stored (patented):

function isAlreadyHashed(string idea) constant returns (bool)
{
 var hashedIdea = HashtheIdea(idea);
 return alreadyHashed(hashedIdea);
}

Finally, the HashtheIdea function is shown here, which takes the idea variable of type
string and is of constant type, which means that it cannot change the state of the contract.
It is also declared as private as there is no need to expose this function publicly because it
is used only internally in the contract. This function returns the bytes32 type value:

 function HashtheIdea(string idea) constant private returns (bytes32) {
 return sha3(idea);
}

This function calls solidity's built-in function sha3 and passes a string to it in a variable
idea. This function returns the sha3 hash of the string. The sha3 function is an alias for the
keccak256() function available in solidity, which computes the Keccak-256 hash of the
string passed to it. Note that this is not NIST standard SHA-3; instead, it is Keccak-256,
which is the original proposal to NIST for the SHA-3 standard competition. It was later
modified slightly and standardized as the SHA-3 standard by NIST. The actual SHA-3
standard hash function will return a different hash compared to Keccak-256 (Ethereum's
sha3 function).

The complete contract source code is shown as follows:

pragma solidity ^0.4.0;
contract PatentIdea
{
 mapping (bytes32 => bool) private hashes;
 bool alreadyStored;
 event ideahashed(bool);
 function saveHash(bytes32 hash) private
 {
 hashes[hash] = true;
 }
 function SaveIdeaHash(string idea) returns (bool)

www.EBooksWorld.ir

Ethereum Development

[344]

 {
 var hashedIdea = HashtheIdea(idea);
 if (alreadyHashed(HashtheIdea(idea)))
 {
 alreadyStored=true;
 ideahashed(false);
 return alreadyStored;
 }
 saveHash(hashedIdea);
 ideahashed(true);
 }
 function alreadyHashed(bytes32 hash) constant private returns(bool)
 {
 return hashes[hash];
 }
 function isAlreadyHashed(string idea) constant returns (bool)
 {
 var hashedIdea = HashtheIdea(idea);
 return alreadyHashed(hashedIdea);
 }
 function HashtheIdea(string idea) constant private returns (bytes32)
 {
 return sha3(idea);
 }
 }

This source code can be simulated in browser solidity in order to verify that it is working
correctly. Some examples are shown here.

Once the contract source code is typed and syntax verification is complete, on the right-
hand side panel, a screen similar to the following one will be shown.

This code can be improved in many ways. For example, the date can also be stored in a
mapping with the document hash and can be returned when queried. It can be expanded by
adding structures and more information related to the patent, but this example was
intended to be simple and easy to understand; therefore, too much complexity was avoided.
Further enhancements to this code are left to you as an exercise.

www.EBooksWorld.ir

Ethereum Development

[345]

Create contract using browser solidity

After clicking on Create, two functions from the contract will be exposed, as shown in the
following screenshot:

Relevant costs and exposes two methods

www.EBooksWorld.ir

Ethereum Development

[346]

Functions can now be invoked as shown in the following example:

Invoking the SaveIdeaHash function

Similarly, isAlreadyHashed can be called.

Execute function isAlreadyHashed

If the same string is passed to the function again, it will not be saved, as shown in the
following screenshot:

Execute function SaveIdeaHash

Also, note that the event has returned false, indicating that the hash could not be saved and
the function returned true, further indicating that the same hash is already saved.

www.EBooksWorld.ir

Ethereum Development

[347]

Once the contract is written and simulated in browser solidity, the next step is to use truffle
to initialize a new project and deploy and test it on the PrivateNet (ID 786), already created
in earlier sections.

The first step is to create a separate directory for the project:

~$ mkdir ideapatent
~$ cd ideapatent/

The next step is to initialize truffle and create a new project:

~/ideapatent$ truffle init

Once the sample project is created, remove the sample contracts:

~/ideapatent/contracts$ rm MetaCoin.sol ConvertLib.sol

Under the contracts folder, create a file named PatentIdea.sol and put the source code
in the file shown earlier.

Edit truffle.js to point to the localhost HTTP endpoint:

rpc:
 {
 host: "localhost",
 port: 8001
 }

Under the ~/ideapatent/migrations folder, edit the 2_deploy_contracts.js file so
that it looks like the following:

module.exports = function(deployer)
{
 deployer.deploy(PatentIdea);
 deployer.autolink();
};

This file is changed in order to specify the name of the contract to be deployed. Take note of
deployer.deploy(PatentIdea);.

Next, run the compilation using truffle, as shown here:

~/ideapatent$ truffle compile
Compiling Migrations.sol...
Compiling PatentIdea.sol...
Writing artifacts to ./build/contracts

www.EBooksWorld.ir

Ethereum Development

[348]

Ensure that mining is running the background and deploy to the network, as shown here:

~/ideapatent$ truffle migrate
Running migration: 1_initial_migration.js
 Deploying Migrations...
 Migrations: 0x34d63de23de9c9b48251cec94fff427b94976109
Saving successful migration to network...
Saving artifacts...
Running migration: 2_deploy_contracts.js
 Deploying PatentIdea...
 PatentIdea: 0x515fd6a5dbc1eb609dc1700f73be040d9db50d4b
Saving successful migration to network...
Saving artifacts...

Once the contract is deployed, it can be interacted with using the truffle console.

Start the truffle console by issuing this command:

~/ideapatent$ truffle console

Once the console is up and running, functions from the deployed contract can be called as
shown here.

For example, register a new idea:

 truffle(default)> PatentIdea.deployed().SaveIdeaHash("MyIdea")
 '0x8644dc66f1173a9103034e17b761f8871ab10ef2a7d19bec9c7eb7164272b8a3'

Check whether MyIdea is hashed:

truffle(default)> PatentIdea.deployed().isAlreadyHashed("MyIdea")
true

Check whether another idea is hashed or not:

truffle(default)> PatentIdea.deployed().isAlreadyHashed("MyOtherIdea")
false
truffle(default)>

This example demonstrated how a contract can be created from scratch, simulated, and
deployed on the private net. In order to deploy this on TestNet (Ropsten) or live blockchain,
a similar exercise can be performed. Simply point to the appropriate RPC and use truffle
migrate to deploy on the blockchain of your choice.

In the next section, various advanced concepts will be discussed.

www.EBooksWorld.ir

Ethereum Development

[349]

Oracles

As discussed in Chapter 6, Smart Contracts, Oracles are real-world data feeds into smart
contracts. There are various services available in order to provide Oracles for smart
contracts. A rather prominent one is Oraclize, which is available at
http://www.oraclize.it/. This is especially useful if the smart contract needs, for example,
live prices from a third-party source or any other real-life data, such as weather conditions
in a particular city. There are many use cases where oracles can provide a trusted data feed
to smart contracts in order to enable them to make decisions according to real-life events.
Oraclize makes it easier for smart contracts to access the Internet in order to get the required
data.

In order to utilize Oraclize on Ethereum, a transaction needs to be sent to the Oraclize
contract along with the appropriate payment and the query. As a result, Oraclize will
retrieve the results based on the query provided in the request transaction and send it back
to the contract address. Once the transaction is sent back to the contract, the call-back
method or fall back function will be called.

At a practical level in solidity, first, the Oraclize library needs to be imported and then all
methods that have been inherited from it can be used. Currently, oraclize is available to be
used only on the PrivateNet (Ropsten) and Live Main Net Ethereum blockchain.

Oraclize processing can be visualized as shown in the following diagram:

Oraclize data flow

www.EBooksWorld.ir

http://www.oraclize.it/

Ethereum Development

[350]

The skeleton structure of a solidity contract using oraclize looks like the one shown here.
Note that import works only on the development environment provided on the Web by
oraclize; usually, this file needs to be imported manually:

import "dev.oraclize.it/api.sol";
contract MyOracleContract is usingOraclize
{
 function MyOracleContract(){
}

A sample request looks like what is shown in the following example:

oraclize_query("URL", "api.somewebsite.net/price?stock=XYZ");

Oraclize can also make use of the TLS notary in order to ensure that the feed is secure and
provably honest.

Deployment on decentralized storage using IPFS

As discussed in Chapter 1, Blockchain 101, in order to fully benefit from decentralized
platforms, it is desirable that you decentralize the storage and communication layer.
Traditionally, the web content is served via centralized servers, but that part can also be
decentralized using distributed file systems.

The HTML content shown in the earlier examples can be stored on a distributed and
decentralized IPFS network in order to achieve enhanced decentralization.

IPFS is available at https://ipfs.io/.

Installing IPFS

IPFS can be installed by following this process:

Download the IPFS package using the following command:1.

 $ curl https://dist.ipfs.io/go-ipfs/v0.4.4/go-
 ipfs_v0.4.4_linux-amd64.tar.gz -O

Decompress the gz file:2.

 $ tar xvfz go-ipfs_v0.4.4_linux-amd64.tar.gz

Move the ipfs file to an appropriate folder in order to make it available in the3.
path:

 $ mv go-ipfs/ipfs /usr/local/bin/ipfs

www.EBooksWorld.ir

https://ipfs.io/

Ethereum Development

[351]

Initialize the IPFS node:4.

 imran@drequinox-OP7010:~$ ipfs init
 initializing ipfs node at /home/imran/.ipfs
 generating 2048-bit RSA keypair...done
 peer identity: Qmbc726pLS9nUQjUbeJUxcCfXAGaXPD41jAszXniChJz62
 to get started, enter:
 ipfs cat
 /ipfs/QmYwAPJzv5CZsnA625s3Xf2nemtYgPpHdWEz79ojWnPbdG/readme

Enter the following command to ensure that IPFS has been successfully installed:5.

Successful IPFS installation

Start the IPFS daemon:6.

 imran@drequinox-OP7010:~$ ipfs daemon
 Initializing daemon...
 Swarm listening on /ip4/127.0.0.1/tcp/4001
 Swarm listening on /ip4/192.168.0.17/tcp/4001
 Swarm listening on /ip4/86.15.44.209/tcp/4001
 Swarm listening on /ip4/86.15.44.209/tcp/41608
 Swarm listening on /ip6/::1/tcp/4001
 API server listening on /ip4/127.0.0.1/tcp/5001
 Gateway (readonly) server listening on /ip4/127.0.0.1/tcp/8080
 Daemon is ready

Copy files onto IPFS using the following command:7.

 ~/sampleproject/build$ ipfs add --recursive --progress .
 added QmVdYdY1uycf32e8NhMVEWSufMyvcj17w3DkUt6BgeAtx7
 build/app.css
 added QmSypieNFeiUx6Sq7moAVCsgQhSY3Bh9ziwXJAxqSG5Pcp
 build/app.js
 added QmaJWMjD767GvuwuaLpt5tck9dTVCZPJa9sDcr8vdcJ8pY
 build/contracts/ConvertLib.sol.js

www.EBooksWorld.ir

Ethereum Development

[352]

 added QmQdz9eG2Qd5kwaU86kWebDGPqXBWj1Dmv9MN4BRzt2srf
 build/contracts/MetaCoin.sol.js
 added QmWpvBjXTP4HutEsYUh3JLDi8VYp73SKNJi4aX1T6jwcmG
 build/contracts/Migrations.sol.js
 added QmQs7j6NpA1NMueTXKyswLaHKq3XDUCRay3VrC392Q4JDK
 build/index.html
 added QmPvWzyTEfLQnozDTfgdAAF4W9BUb2cDq5KUUrpHrukseA
 build/contracts
 added QmUNLLsPACCz1vLxQVkXqqLX5R1X345qqfHbsf67hvA3Nn
 build/images
 added QmSxpucr6J9rX3XQ3MBG8cVzLCrQFFKmMkTmpcNpjbtf3j build

Now it can be accessed in the browser as follows:8.

Browser accessing web pages via IPFS

Note that the URL is pointing to the IPFS filesystem.

Finally, in order to make the changes permanent, the following command can be9.
used:

 /build$ ipfs pin add QmSxpucr6J9rX3XQ3MBG8cVzLCrQFFKmMkTmpcNpjbtf3j
 pinned QmSxpucr6J9rX3XQ3MBG8cVzLCrQFFKmMkTmpcNpjbtf3j recursively

The preceding example demonstrated how IPFS can be used to provide decentralized
storage for the web part (user interface) of smart contracts.

IPFS can be used with blockchains in another way. As storage is a big issue for blockchains,
it is desirable that you are able to save large amounts of data somewhere else and place the
links to that data in the blockchain transaction. This way, there will be no need to store large
amounts of data on the blockchain and bloat it as a result. IPFS can be used to achieve
exactly that by placing the data on IPFS and then storing the IPFS links in blockchain
transactions to reference the stored data.

www.EBooksWorld.ir

Ethereum Development

[353]

Ethereum's own swarm protocol is also under heavy development and works on similar
principles. However, Swarm is currently under development and IPFS is more developed
comparatively and seems a better choice at the moment. IPFS works very well and may well
become the platform of choice for the decentralized storage of deployments. Swarm allows
users to run a light client by storing all the blockchain data on it. This is available with the
current version of geth, and a detailed guide is available at
https://swarm-guide.readthedocs.io/en/latest/introduction.html. As this is under
heavy development, only a light introduction has been given for this technology as it is
likely to evolve very quickly.

For decentralized communication in Ethereum, the Whisper protocol provides the
decentralized communication layer. This will serve as an identity-based messaging layer for
Ethereum. Both swarm and whisper are envisaged to be enabling technologies for Web 3.0.

Permissioned distributed ledgers
The concept of permissioned distributed ledgers is fundamentally different to a public
blockchain. The key idea behind distributed ledgers is that they are permissioned as
opposed to an open public blockchain. DLTs do not perform any mining as all the
participants are already vetted and known to the network and there is no requirement for
mining to secure the network. There is also no concept of digital currency on private
permissioned distributed ledgers because the aim of the permissioned blockchain is
different from a public blockchain. In a public blockchain, access is open to everyone and
requires some form of incentive and network effect in order to grow; on the contrary, in
permissioned DLTs, there are no such requirements. It is possible to build permissioned
DLTs using Ethereum in private consortium settings, especially to work within existing
financial systems. The key benefit of distributed ledger systems is that they are much faster,
governable, and possibly interoperable with the existing financial systems.

www.EBooksWorld.ir

https://swarm-guide.readthedocs.io/en/latest/introduction.html

Ethereum Development

[354]

Summary
This chapter provided detailed and in-depth practical examples on how to set up an
Ethereum development environment and create smart contracts. This chapter started with
an introduction to various methods that can be used to create Private Ethereum networks
for testing and development purposes. After this, an introduction to the solidity language
was presented in order to enable you to understand the language fundamentals and syntax.
Practical deployment techniques using technologies and tools such as geth and web3 were
discussed in detail. Moreover, detailed step-by-step examples of smart contract
development and deployments were presented. Additionally, development frameworks
were discussed with practical examples so that you can experience the smart contract
development life cycle of the Ethereum blockchain. This is a lengthy chapter and by
following exercises closely, you will gain an in-depth understanding of contract
development, testing, and deployment on Ethereum. Finally, various concepts and tools
related to decentralized storage, decentralized communication, and oracles were discussed.
As Ethereum and related technologies and frameworks are under constant and fast
development, it is envisaged that more advanced tools and techniques will evolve over
time; however, the fundamentals discussed in this chapter are likely to remain the same.
Also, it is not possible to discuss each and every tool and framework available for Ethereum
in this chapter, but all tools and techniques discussed are in mainstream use and should
provide a solid basis for you to make a transition to a more advanced level. There are a few
topics that have not been discussed on purpose in this chapter, such as smart contract
security, formal verification of smart contracts, blockchain as a service on cloud, and
specific use cases for smart contracts for various industries. All these concepts will be
discussed in later chapters. I hope you enjoyed reading this chapter as much as I enjoyed
writing it.

www.EBooksWorld.ir

9
Hyperledger

Hyperledger is not a blockchain, but it is a project that was initiated by Linux foundation in
December 2015 to advance blockchain technology. This project is a collaborative effort by its
members to build an open source distributed ledger framework that can be used to develop
and implement cross-industry blockchain applications and systems. The key focus is to
build and run platforms that support global business transactions. The project also focuses
on improving the reliability and performance of blockchain systems.

Projects under Hyperledger undergo various stages of development, starting from proposal
to incubation and graduating to an active state. Projects can also be deprecated or in End of
Life state where they are no longer actively developed. In order for a project to be able to
move into incubation stage, it must have a fully working code base along with an active
community of developers.

Projects
Currently, there are six projects under the Hyperledger umbrella: Fabric, Iroha, Sawtooth
lake, blockchain explorer, Fabric chaintool, and Fabric SDK Py. Corda is the most recent
addition that is expected to be added to the Hyperledger project. The Hyperledger project
currently has 100 members and is very active with more than 120 contributors, with regular
meet-ups and talks being organized around the globe.

A brief introduction of all these projects follows, after which we will provide more details
around the design, architecture, and implementation of Fabric and Sawtooth lake.

www.EBooksWorld.ir

Hyperledger

[356]

Fabric
Fabric is a blockchain project that was proposed by IBM and DAH (Digital Asset
Holdings). This is intended to provide a foundation for the development of blockchain
solutions and is based on pluggable architecture where various components, such as
consensus algorithm, can be plugged into the system as required. It is available at
https://github.com/hyperledger/fabric.

Sawtooth lake
Sawtooth lake is a blockchain project proposed by Intel in April 2016 with some key
innovations focusing on decoupling of ledgers from transactions, flexible usage across
multiple business areas using transaction families, and pluggable consensus. Decoupling can
be explained more precisely by saying that the transactions are decoupled from the consensus
layer by making use of a new concept called Transaction families. Instead of transactions
being individually coupled with the ledger, transaction families are used, which allows for
more flexibility, rich semantics and unrestricted design of business logic. Transactions
follow the patterns and structures defined in the transaction families. Intel has also
introduced a novel consensus algorithm abbreviated as PoET, proof of elapsed time, which
makes use of Intel Software Guard Extensions (Intel's SGX) architecture's trusted
execution environment (TEE) in order to provide a safe and random leader election
process. It also supports permissioned and permission-less setups. This project is available
at h t t p s ://g i t h u b . c o m /h y p e r l e d g e r /s a w t o o t h - c o r e .

Iroha
Iroha was proposed by Soramitsu, Hitachi, NTT Data, and Colu in September 2016. Iroha is
aiming to build a library of reusable components that users can choose to run on their
Hyperledger-based distributed ledgers. Iroha's main goal is to complement other
Hyperledger projects by providing reusable components written in C++ with an emphasis
on mobile development. This project has also proposed a novel consensus algorithm called
Sumeragi, which is a chain based Byzantine fault tolerant consensus algorithm. Iroha is
available at h t t p s ://g i t h u b . c o m /h y p e r l e d g e r /i r o h a . Various libraries have been
proposed and are being worked on by Iroha, including but not limited to a digital signature
library (ed25519), an SHA-3 hashing library, a transaction serialization library, a P2P
library, an API server library, an iOS library, an Android library, and a JavaScript library.

www.EBooksWorld.ir

https://github.com/hyperledger/fabric
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha
https://github.com/hyperledger/iroha

Hyperledger

[357]

Blockchain explorer
This project aims to build a blockchain explorer for Hyperledger that can be used to view
and query the transactions, blocks, and associated data from the blockchain. It also provides
network information and the ability to interact with chain code.

Currently there are two other projects that are in incubation: Fabric chaintool, and Fabric
SDK Py. These projects are aimed at supporting Hyperledger Fabric.

Fabric chaintool
Hyperledger chaincode compiler is being developed to support Fabric chaincode
development. The aim is to build a tool that reads in a high-level Google protocol buffer
structure and produces a chaincode. Additionally, it packages the chaincode so that it can
be deployed directly. It is envisaged that this tool will help developers in various stages of
development, such as compiling, testing, packaging, and deployment. It is available at h t t p

s ://g i t h u b . c o m /h y p e r l e d g e r /f a b r i c - c h a i n t o o l .

Fabric SDK Py
The aim of this project is to build a python based SDK library that can be used to interact
with the blockchain (Fabric). It is available at h t t p s ://g i t h u b . c o m /h y p e r l e d g e r /f a b r i c - s

d k - p y .

Corda
Corda is the latest project that has been contributed by R3 to the Hyperledger project. It was
open sourced on November 30, 2016. Corda is heavily oriented towards the financial
services industry and has been developed in collaboration with major banks and
organizations in the financial industry. At the time of writing it is not yet in incubation
under the Hyperledger project. Technically, Corda is not a blockchain but has key features
similar to those of a blockchain, such as consensus, validity, uniqueness, immutability, and
authentication.

www.EBooksWorld.ir

https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-chaintool
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-py

Hyperledger

[358]

In the following sections of this chapter, Fabric (IBM) and Sawtooth lake (Intel) and Corda
(R3) will be discussed in more detail.

Hyperledger as a protocol
Hyperledger is aiming to build a new blockchain platform that is driven by industry use
cases. As there have been number of contributions made to the Hyperledger project by the
community, Hyperledger blockchain platform is evolving into a protocol for business
transactions. Hyperledger is also evolving into a specification that can be used as a
reference to build blockchain platforms as compared to earlier blockchain solutions that
address only a specific type of industry or requirement. In the following section, a reference
architecture is presented that has been published by the Hyperledger project. As this work
is under continuous and rigorous development some changes are expected in this, but core
services are expected to remain unchanged.

Reference architecture
Hyperledger has published a white paper with reference architecture that can serve as a
guideline to build permissioned distributed ledgers. The reference architecture consists of
two main components: Hyperledger services and Hyperledger APIs, SDKs, and CLI.
Hyperledger services provide various services such as identity services, policy services,
blockchain services, and smart contract services. On the other hand, Hyperledger APIs,
SDKs, and CLIs provide an interface into blockchain services via appropriate application
programming interfaces, software development kits, or command line interfaces. Moreover,
an event stream, which is basically a gRPC channel, runs across all services. It can receive
and send events. Events are either pre-defined or custom. Validating peers or chaincode can
emit events to which external application can respond or listen to.

The reference architecture that has been published in the Hyperledger white paper at the
time of writing is shown in the following diagram. Hyperledger is a rapidly changing and
evolving project, and the architecture shown here is expected to change somewhat.

www.EBooksWorld.ir

Hyperledger

[359]

Hyperledger architecture, as proposed in the latest draft V2.0.0 of Hyperledger white paper. (Source: Hyperledger white paper)

Requirements
There are certain requirements of a blockchain service. The reference architecture is driven
by the needs and requirements raised by the participants of the Hyperledger project and
after studying the industry use cases. There are several categories of requirements that have
been deduced from the study of industrial use cases and are discussed in the following
sections.

Modular approach
The main requirement of Hyperledger is a modular structure. It is expected that, as a cross-
industry fabric (blockchain), it will be used in many business scenarios. As such, functions
related to storage, policy, chaincode, access control, consensus and many other blockchain
services should be pluggable. The modules should be plug and play and users should be
able to easily remove and add a different module that meets the requirements of the
business.

www.EBooksWorld.ir

Hyperledger

[360]

For example, if a business blockchain needs to be run only between already trusted parties
and performs very basic business operations, then perhaps there is no need to have
advanced cryptographic support for confidentiality and privacy, and therefore users should
be able to remove that functionality (module) or replace that with a more appropriate
module that suits their needs. Similarly, if users need to run a cross-industry blockchain,
then confidentiality and privacy can be of paramount importance. In this case, users should
be able to plug an advanced cryptographic and access control mechanism (module) into the
blockchain (fabric).

Privacy and confidentiality
Privacy and confidentiality of transactions and contracts is of utmost importance in a
business blockchain. As such, Hyperledger's vision is to provide a wide range of
cryptographic protocols and algorithms and it is expected that users will be able to choose
appropriate modules according to their business requirements. The fabric should be able to
handle complex cryptographic algorithms without compromising performance.

Identity
In order to provide privacy and confidentiality services, a flexible PKI model that can be
used to handle the access control functionality is also required. The strength and type of
cryptographic mechanisms is also expected to vary according to the needs and
requirements of the users. In certain scenarios it might be required for a user to hide their
identity, and as such the Hyperledger is expected to provide this functionality.

Auditability
Auditability is another requirement of a Hyperledger Fabric. It is expected that an
immutable audit trail of all identities, related operations and any changes is kept.

Interoperability
Currently there are many blockchain solutions available, but they cannot communicate with
each other and this can be a limiting factor in the growth of a blockchain based global
business ecosystem. It is envisaged that many blockchain networks will operate in the
business world for specific needs, but it is important that they are able to communicate with
each other. There should be a common set of standards that all blockchains can follow in
order to allow communication between different ledgers. It is expected that a protocol will
be developed that will allow the exchange of information between many Fabrics.

www.EBooksWorld.ir

Hyperledger

[361]

Portability
The portability requirement is concerned with the ability to run across multiple platforms
and environments without the need to change anything at code level. Hyperledger is
envisaged to be portable, not only at infrastructure level but also at code, libraries, and API
levels so that it can support uniform development across various implementations of
Hyperledger.

Fabric
In order to understand various projects under incubation in Hyperledger project, it is
important to understand the foundations of Hyperledger first. A few terminologies that are
specific to Hyperledger needs some clarification before readers are introduced to more in-
depth material. First there is the concept of Fabric.

Fabric can be defined as a collection of components providing a foundation layer that can be
used to deliver a blockchain network. There are various types and capabilities of a fabric
network, but all fabrics share common attributes such as immutability and are consensus
driven. Some fabrics can provide modular approach towards building blockchain networks.
In this case the blockchain network can have multiple pluggable modules to perform
various function on the network. For example, consensus algorithms can be a pluggable
module in a blockchain network where, depending on the requirements of the network, an
appropriate consensus algorithm can be chosen and plugged into the network. The modules
can be based on some particular specification of the fabric and can include APIs, access
control, and various other components. Fabrics can also be designed either to be private or
public and can allow the creation of multiple business networks. As an example, bitcoin is
an application that runs on top of its fabric (blockchain network). As discussed earlier,
blockchain can either be permissioned or permission-less and the same is true for fabric in
Hyperledger terminology.

Fabric is also the name given to the code contribution made by IBM to the Hyperledger
foundation and is formally called Hyperledger Fabric. IBM also offers blockchain as a
service (IBM Blockchain) via its Bluemix cloud service.

www.EBooksWorld.ir

Hyperledger

[362]

Hyperledger Fabric
Fabric is the contribution originally made by IBM to the Hyperledger project. The aim of
this contribution is to enable a modular, open and flexible approach towards building
blockchain networks. Various functions in the fabric are pluggable, and it also allows use of
any language to develop smart contracts. This is possible because it is based on container
technology which can host any language. Chaincode (smart contract) is sandboxed into a
secure container which includes a secure operating system, chaincode language, runtime
environment and SDKs for Go, Java, and Node.js. Other languages can be supported too if
required. Smart contracts are called chaincode in the Fabric. This is a very powerful feature
compared to domain specific languages in Ethereum, or the very limited scripted language
in bitcoin. It is a permissioned network that aims to address issues such as scalability,
privacy, and confidentiality. The key idea behind this is modular technology, which would
allow for flexibility in design and implementation. This can then result in achieving
scalability, privacy and other desired attributes. Transactions in fabric are private,
confidential and anonymous for general users, but they can still be traced and linked to the
users by authorized auditors. As a permissioned network, all participants are required to be
registered with the membership services in order to access the blockchain network. This
ledger also provided auditability functionality in order to meet the regulatory and
compliance needs.

Fabric architecture
The Fabric is logically organized into three main categories based on the type of service
provided. These include membership services, blockchain services, and chaincode services.
In the following section, all these categories and associated components are discussed in
detail. The current stable version of Hyperledger Fabric is v0.6, however the latest version
v1.0 is available but is not yet stable. In version 1.0, many architectural changes have been
made, and in later sections of this chapter some changes that have been made in version 1.0
will also be discussed.

www.EBooksWorld.ir

Hyperledger

[363]

Membership services
These services are used to provide access control capability for the users of the fabric
network. The following list shows the functions that membership services perform:

User identity validation.1.
User registration.2.
Assign appropriate permissions to the users depending on their roles.3.

Membership services makes use of Public Key Infrastructure (PKI) in order to support
identity management and authorization operations. Membership services are made up of
various components:

Registration authority (RA): A service that authenticates the users and assesses
the identity of the fabric participants for issuance of certificates.
Enrolment certificate authority: Enrolment certificates (Ecerts) are long term
certificates issued by ECA to registered participants in order to provide
identification to the entities participating on the network.
Transaction certificate authority: In order to send transactions on the networks,
participants are required to hold a transaction certificate. TCA is responsible for
issuing transaction certificates to holders of Enrolment certificates and is derived
from Ecerts.
TLS certificate authority: In order to secure the network level communication
between nodes on the Fabric, TLS certificates are used. TLS certificate authority
issues TLS certificates in order to ensure security of the messages being passed
between various systems on the blockchain network.

Blockchain services
Blockchain services are at the core of the Hyperledger Fabric. Components within this
category are as follows.

Consensus manager
Consensus manager is responsible for providing the interface to the consensus algorithm.
This serves as an adapter that receives the transaction from other Hyperledger entities and
executes them under criteria according to the type of algorithm chosen. Consensus is
pluggable and currently there are three types of consensus algorithm available in Fabric,
namely the batch PBFT protocol, SIEVE algorithm, and NOOPS.

www.EBooksWorld.ir

Hyperledger

[364]

Distributed ledger
Blockchain and world state are two main elements of the distributed ledger. Blockchain is
simply a linked list of blocks (as introduced in earlier chapters) and world ledger is a key-
value database. This database is used by smart contracts to store relevant states during
execution by the transactions. The blockchain consists of blocks that contain transactions.
These transactions contain chaincode, which runs transactions that can result in updating
the world state. Each node saves the world state on disk in RocksDB. The following
diagram shows a typical block in the Hyperledger Fabric with the relevant fields:

Block structure

The fields shown in the preceding diagram are as follows:

Version: Used for keeping track of changes in the protocol.
Timestamp: Timestamp in UTC epoch time, updated by block proposer.
Transaction hash: This field contains the Merkle root hash of the transactions in
the block.
State hash: This is the Merkle root hash of the world state.
Previous hash: This is the previous block's hash, which is calculated after
serializing the block message and then creating the message digest by applying
the SHA3 SHAKE256 algorithm.
Consensus metadata: This is an optional field that can be used by the consensus
protocol to provide some relevant information about the consensus.
Non-Hash data: This is some metadata that is stored with the block but is not
hashed. This feature makes it possible to have different data on different peers. It
also provides the ability to discard data without any impact on the blockchain.

www.EBooksWorld.ir

Hyperledger

[365]

Peer to Peer protocol
P2P protocol in the Hyperledger Fabric is built using google RPC (gRPC). It uses protocol
buffers to define the structure of the messages.

Messages are passed between nodes in order to perform various functions. There are four
main types of messages in Hyperledger Fabric: Discovery, transaction, synchronization and
consensus. Discovery messages are exchanged between nodes when starting up in order to
discover other peers on the network.

Transaction messages can be divided into two types: Deployment transactions and
Invocation transactions. The former is used to deploy new chaincode to the ledger, and the
latter is used to call functions from the smart contract. Transactions can be public,
confidential, and confidential chaincode transactions. Public transactions are open and
available to all participants. Confidential transactions are allowed to be queried only by
transaction owners and participants. Confidential chaincode transactions have encrypted
chaincode and can only be decrypted by validating nodes. Validating nodes run consensus,
validate the transactions and maintain the blockchain. Non-validating nodes on the other
hand, provide transaction verification, stream server, and REST services. They also act as a
proxy between the transactors and the validating nodes. Synchronization messages are used
by peers to keep the blockchain updated and in synch with other nodes. Consensus
messages are used in consensus management and broadcasting payloads to validating
peers. These are generated internally by the consensus framework.

Ledger storage
In order to save the state of the ledger, RocksDB is used, and it is stored at each peer.
RocksDB is a high performance database available at h t t p ://r o c k s d b . o r g /.

Chaincode services
These services allow the creation of secure containers that are used to execute the
chaincode. Components in this category are as follows:

Secure container: Chaincode is deployed in Docker containers that provide a
locked down sandboxed environment for smart contract execution. Currently
Golang is supported as the main smart contract language, but any other main
stream language can be added and enabled if required.

Secure registry: This provides a record of all images containing smart contracts.

www.EBooksWorld.ir

http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/
http://rocksdb.org/

Hyperledger

[366]

Events
Events on the blockchain can be triggered by validator nodes and smart contracts. External
applications can listen to these events and react to them if required via event adapters. They
are similar to the concept of events introduced in solidity in the last chapter.

APIs and CLIs
An application programming interface provides an interface into the fabric by exposing
various REST APIs. Additionally, command line interfaces that provide a subset of REST
APIs and allow for quick testing and limited interaction with the blockchain are also
available.

Components of the Fabric
There are various components that can be part of the blockchain. These components include
but are not limited to the ledger, chaincode, consensus mechanism, access control, events,
system monitoring and management, wallets and system integration components.

Peers or nodes
There are two main types of peers that can be run on a fabric network: Validating and non-
validating. Simply put, a validating node runs consensus, creates and validates a
transaction, and contributes towards updating the ledger and maintaining the chaincode.

A non-validating peer does not execute transactions and only constructs transactions that
are then forwarded to validating nodes.

Both nodes manage and maintain user certificates that have been issued by membership
services.

www.EBooksWorld.ir

Hyperledger

[367]

Applications on blockchain
A typical application on Fabric is simply composed of a user interface, usually written in
JavaScript/HTML, that interacts with the backend chaincode (smart contract) stored on the
ledger via an API layer.

Typical blockchain application

Hyperledger provides various APIs and command line interfaces to enable interaction with
the ledger. These APIs include interfaces for identity, transactions, chaincode, ledger,
network, storage, and events.

Chaincode implementation
Chaincode is usually written in Golang or Java. Chaincode can be public, confidential or
access controlled. These codes serve as a smart contract that users can interact with via
APIs. Users can call functions in the chaincode that result in a state change, and
consequently updates the ledger. There are also functions that are only used to query the
ledger and do not result in any state change.

Chaincode implementation is performed by first creating the chaincode shim interface in
the code. It can either be in Java or Golang code. The following four functions are required
in order to implement the chaincode:

Init(): This function is invoked when chaincode is deployed onto the ledger.
This initializes the chaincode and results in making a state change, which
accordingly updates the ledger.

www.EBooksWorld.ir

Hyperledger

[368]

Invoke(): This function is used when contracts are executed. It takes a function
name as parameters along with an array of arguments. This function results in a
state change and writes to the ledger.

Query(): This function is used to query the current state of a deployed
chaincode. This function does not make any changes to the ledger.

Main(): This function is executed when a peer deploys its own copy of the
chaincode. The chaincode is registered with the peer using this function.

The following diagram illustrates the general overview of Hyperledger Fabric:

High-level overview of Hyperledger Fabric

www.EBooksWorld.ir

Hyperledger

[369]

Application model
Any blockchain application for Hyperledger Fabric follows MVC-B architecture. This is
based on the popular MVC design pattern. Components in this model are Model, View,
Control, and Blockchain:

View logic: This is concerned with the user interface. It can be a desktop, web
application or mobile frontend.
Control logic: This is the orchestrator between user interface, data model, and
APIs.
Data model: This model is used to manage the off-chain data.
Blockchain logic: This is used to manage the blockchain via the controller and
the data model via transactions.

Due to the fact that Hyperledger current release v0.6 is under heavy refactoring to build
V1.0, no practical exercises have been introduced in this section.

It is expected that by the time this book is published, the information regarding practical
setup of Hyperledger fabric will be outdated already. As such, readers are encouraged to
keep an eye on the updates at h t t p s ://h y p e r l e d g e r f a b r i c . r e a d t h e d o c s . i o /e n /l a t e s t /.

Moreover, the IBM Bluemix service offers sample applications for blockchain under its
blockchain as a service offering. It is available at h t t p s ://c o n s o l e . n g . b l u e m i x . n e t /d o c s

/s e r v i c e s /b l o c k c h a i n /i b m b l o c k c h a i n _ t u t o r i a l s . h t m l . This service allows users to
create their own blockchain networks in an easy to use environment.

Sawtooth lake
Sawtooth lake can run in both permissioned and non-permissioned modes. It is a
distributed ledger that proposes two novel concepts: The first is the introduction of a new
consensus algorithm called Proof of Elapsed Time (PoET); and the second is the idea of
transaction families. A brief description of these novel proposals is given in the following
section.

www.EBooksWorld.ir

https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://hyperledgerfabric.readthedocs.io/en/latest/
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html
https://console.ng.bluemix.net/docs/services/blockchain/ibmblockchain_tutorials.html

Hyperledger

[370]

PoET
PoET is a novel consensus algorithm that allows a node to be selected randomly based on
the time that the node has waited before proposing a block. This is in contrast to other
leader election and lottery based proof of work algorithms, where an enormous amount of
electricity and computer resources are used in order be elected as a block proposer, for
example in the case of bitcoin. PoET is a type of Proof of Work algorithm but, instead of
spending computer resources, it uses a trusted computing model to provide a mechanism to
fulfill Proof of Work requirements. PoET makes use of Intel's SGX architecture to provide a
trusted execution environment to ensure randomness and cryptographic security of the
process. It should be noted that the current implementation of Sawtooth lake does not
require real hardware SGX based TEE, as it is simulated for experimental purposes only
and as such should not be used in production environments.

Transaction families
A traditional smart contract paradigm provides a solution that is based on a general
purpose instruction set for all domains. For example, in the case of Ethereum, a set of
opcodes has been developed for the Ethereum virtual machine (EVM) that can be used to
build smart contracts to address any type of requirements for any industry. Whilst this
model has its merits, it is becoming clear that this approach is not very secure as it provides
a single interface into the ledger with a powerful and expressive language, which
potentially offers a larger attack surface for malicious code. This complexity and generic
virtual machine paradigm has resulted in several vulnerabilities that were found and
exploited recently by hackers. A recent example is the DAO hack and further Denial of
Services (DoS) attacks that exploited limitations in some EVM opcodes. A model shown in
the following figure describes the traditional smart contract model, where a generic virtual
machine has been used to provide the interface into the blockchain for all domains:

Traditional smart contract paradigm

www.EBooksWorld.ir

Hyperledger

[371]

In order to address this issue, Sawtooth lake has proposed the idea of transaction families.
A transaction family is created by decomposing the logic layer into a set of rules and
a composition layer for a specific domain. The key idea is that business logic is composed
within transaction families, which provides a more secure and powerful way to build smart
contracts. Transaction families contain the domain-specific rules and another layer that
allows for creating transactions for that domain. Another way of looking at it is that
transaction families are a combination of a data model and a transaction language that
implements a logic layer for a specific domain. The data model represents the current state
of the blockchain (ledger) whereas the transaction language modifies the state of the ledger.
It is expected that users will build their own transaction families according to their business
requirements.

The following diagram represents this model, where each specific domain, like financial
services, digital rights management (DRM), supply chain, and the health industry, has its
own logic layer comprised of operations and services specific to that domain. This makes
the logic layer both restrictive and powerful at the same time. Transaction families ensure
that operations related to only the required domain are present in the control logic, thus
removing the possibility of executing needless, arbitrary and potentially harmful
operations.

Sawtooth (transaction families) smart contract paradigm

Intel has provided three transaction families with Sawtooth: Endpoint registry, Integerkey,
and MarketPlace.

Endpoint registry is used for registering ledger services.1.
Integerkey is used for testing deployed ledgers.2.
MarketPlace is used for selling, buying and trading operations and services.3.

www.EBooksWorld.ir

Hyperledger

[372]

Sawtooth_bond has been developed as a proof of concept to demonstrate a bond
trading platform. It is available at h t t p s ://g i t h u b . c o m /h y p e r l e d g e r /s a w t o o t h - c o r e /t r e

e /m a s t e r /e x t e n s i o n s /b o n d .

Consensus in Sawtooth
Sawtooth has two types of consensus mechanisms based on the choice of network. PoET, as
discussed previously, is a trusted executed environment based lottery function that elects a
leader randomly based on the time a node has waited for block proposal. There is another
consensus type called quorum voting, which is an adaptation of consensus protocols built
by Ripple and Stellar. This consensus algorithm allows instant transaction finality, which is
usually desirable in permissioned networks.

Development environment
In this section, a quick introduction is given on how to set up a development environment
for Sawtooth lake. There are few pre-requisites that are required in order to set up the
development environment. Examples in this section assume a running Ubuntu system and
the following:

vagrant, at least version 1.9.0, available at h t t p s ://w w w . v a g r a n t u p . c o m /d o w n l o1.
a d s . h t m l .
Virtual box, at least 5.0.10 r104061, available at h t t p s ://w w w . v i r t u a l b o x . o r g /w i2.
k i /D o w n l o a d s .

Once both of the above pre-requisites are downloaded and installed successfully, the next
step is to clone the repository.

$ git clone https://github.com/IntelLedger/sawtooth-core.git

This will produce an output similar to the one shown in the following screenshot:

GitHub Sawtooth clone

www.EBooksWorld.ir

https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://github.com/hyperledger/sawtooth-core/tree/master/extensions/bond
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Hyperledger

[373]

Once Sawtooth is cloned correctly, the next step is to start up the environment. First, run the
following command to change the directory to the correct location and then start the
vagrant box:

$ cd sawtooth-core/tools
$ vagrant up

This will produce an output similar to the following screenshot:

Vagrant up command

If at any point Vagrant needs to be stopped, the following command can be used:

$ vagrant halt

Or

$ vagrant destroy

Halt will stop the vagrant machine, whereas destroy will stop and delete vagrant
machines.

Finally, the transaction validator can be started by using the following commands. First ssh
into the vagrant Sawtooth box.

$ vagrant ssh

When the vagrant prompt is available, run the following commands.

First build the sawtooth lake core using following command:

$ /project/sawtooth-core/bin/build_all

www.EBooksWorld.ir

Hyperledger

[374]

When the build has completed successfully, in order to run transaction validator issue the
following commands:

$ /project/sawtooth-core/docs/source/tutorial/genesis.sh

This will create the genesis block and clear any existing data files and keys. This should
show an output similar to the following screenshot:

Genesis block and keys generation

The next step is to run the transaction validator, and change the directory as shown follows:

$ cd /project/saw-toothcore

Run the transaction validator:

$./bin/txnvalidator -v -F ledger.transaction.integer_key --config
/home/ubuntu/sawtooth/v0.json

Running transaction validator

The validator node can be stopped by pressing Ctrl + C. Once the validator is up and
running, various clients can be started up in another terminal window to communicate with
the transaction validator and submit transactions.

www.EBooksWorld.ir

Hyperledger

[375]

For example, in the following screenshot the market client is started up to communicate
with the transaction validator. Note that keys under /keys/mkt.wif are created by using
the following command:

./bin/sawtooth keygen --key-dir validator/keys mkt

This demonstration is just a basic example derived from Sawtooth lake documentation.
However, development using Sawtooth lake is quite an involved process and a full chapter
could be dedicated to that.

mktclient for marketplace transaction family

Sawtooth lake is also under continuous development and therefore it is recommended that
readers keep an eye on documentation available at h t t p ://i n t e l l e d g e r . g i t h u b . i o / in
order to keep up with the latest developments.

Corda
Corda is not a blockchain. Traditional blockchain solutions, as discussed before, have the
concept of transactions that are bundled together in a block and each block is linked back
cryptographically to its parent block, which provides an immutable record of transactions.
This is not the case with Corda: Corda has been designed entirely from scratch with a new
model for providing all blockchain benefits, but without a traditional blockchain. It has
been developed purely for the financial industry to solve issues arising from the fact that
each organization manages their own ledgers and thus have their own view of truth, which
leads to contradictions and operational risk. Moreover, data is also duplicated at each
organization which results in an increased cost of managing individual infrastructures and
complexity. These are the types of problems within the financial industry that Corda aims
to resolve by building a decentralized database platform.

www.EBooksWorld.ir

http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/
http://intelledger.github.io/

Hyperledger

[376]

Corda source code is available at h t t p s ://g i t h u b . c o m /c o r d a /c o r d a . It is written in a
language called Kotlin, which is a statically typed language targeting the Java Virtual
Machine (JVM).

Architecture
The main components of the Corda platform include state objects, contract code, legal
prose, transactions, consensus, and flows.

State objects
State objects represent the smallest unit of data that represent a financial agreement. They
are created or deleted as a result of a transaction execution. They refer to contract code and
legal prose. Legal prose is optional and provides legal binding to the contract. However,
contract code is mandatory in order to manage the state of the object. It is required in order
to provide a state transition mechanism for the node according to the business logic defined
in the contract code. State objects contain a data structure that represent the current state of
the object. For example, in the following diagram, a state object represents the current state
of the object. In this case, it is a simple mock agreement between Party A and Party B where
Party ABC has paid Party XYZ 1,000 GBP. This represents the current state of the object;
however the referred contract code can change the state via transactions. State objects can be
thought of as a state machine, which are consumed by transactions in order to create
updated state objects.

An example state object

www.EBooksWorld.ir

https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda
https://github.com/corda/corda

Hyperledger

[377]

Transactions
Transactions are used to perform transitions between different states. For example, the state
object shown in the preceding diagram is created as a result of a transaction. Corda uses a
bitcoin-style UTXO based model for its transaction processing. The concept of state
transition by transactions is same as in bitcoin. Similar to bitcoin, transactions can have
none, single or multiple inputs, and single or multiple outputs. All transactions are digitally
signed. Moreover, Corda has no concept of mining because it does not use blocks to arrange
transactions in a blockchain. Instead, notary services are used in order to provide temporal
ordering of transactions. In Corda, new transaction types can be developed using JVM
bytecode, which makes it very flexible and powerful.

Consensus
The consensus model in Corda is quite simple and is based on notary services that are
discussed in a later section. The general idea is that the transactions are evaluated for their
uniqueness by the notary service and, if they are unique, they are signed as valid. There can
be single or multiple clustered notary services running on a Corda network. Various
consensus algorithms like PBFT or Raft can be used by notaries to reach consensus.

There are two main concepts regarding consensus in Corda: Consensus over state validity,
and consensus over state uniqueness. The first concept is concerned with the validation of
the transaction, ensuring that all required signatures are available and states are
appropriate. The second concept is a means to detect double–spend attack and ensures that
a transaction has not been already been spent and is unique.

Flows
Flows in Corda are a novel idea that allow the development of decentralized workflows. All
communication on the Corda network is handled by these flows. These are transaction-
building protocols that can be used to define any financial flow of any complexity using
code. Flows run as an asynchronous state machine and they interact with other nodes and
users. During the execution, they can be suspended or resumed as required.

Components
The Corda network has multiple components. All these components are described in the
next section.

www.EBooksWorld.ir

Hyperledger

[378]

Nodes
Nodes in a Corda network operated under a trust-less model and run by different
organizations. Nodes run as part of an authenticated peer-to-peer network. Nodes
communicate directly with each other using the Advanced Message Queuing Protocol
(AMQP), which is an approved international standard (ISO/IEC 19464) and ensures that
messages across different nodes are transferred safely and securely. AMQP works over
Transport Layer Security (TLS) in Corda, thus ensuring privacy and integrity of data
communicated between nodes.

Nodes also make use of a local relational database for storage. Messages on the network are
encoded in a compact binary format. They are delivered and managed by using the Apache
Artemis message broker (Active MQ). A node can serve as a network map service, notary,
Oracle, or a regular node. The following diagram shows a high-level view of two nodes
communicating with each other:

Two nodes communicating in a Corda network

In the preceding diagram, Node 1 is communicating with Node 2 over a TLS
communication channel using the AMQP protocol, and the nodes have a local relational
database for storage.

Permissioning service
A Permissioning service is used to provision TLS certificates for security. In order to
participate on the network, participants are required to have a signed identity issued by a
root certificate authority. Identities are required to be unique on the network and the
Permissioning service is used to sign these identities. The naming convention used to
recognise participants is based on the X.500 standard. This ensures the uniqueness of the
name.

www.EBooksWorld.ir

Hyperledger

[379]

Network map service
This service is used to provide a network map in the form of a document of all nodes on the
network. This service publishes IP addresses, identity certificates and a list of services
offered by nodes. All nodes announce their presence by registering to this service when
they first start up, and when a connection request is received by a node, the presence of the
requesting node is checked on the network map first. Put another way, this service resolves
the identities of the participants to physical nodes.

Notary service
In a traditional blockchain, mining is used to ascertain the order of blocks that contain
transactions. In Corda, notary services are used to provide transaction ordering and
timestamping services. There can be multiple notaries in a network and they are identified
by composite public keys. Notaries can use different consensus algorithms like BFT or Raft
depending on the requirements of the applications. Notary services sign the transactions to
indicate validity and finality of the transaction which is then persisted to the database.

Notaries can be run in a load-balanced configuration in order to spread the load across the
nodes for performance reasons; and, in order to reduce latency, the nodes are recommended
to be run physically closer to the transaction participants.

Oracle service
Oracle services either sign a transaction containing a fact, if it is true, or can themselves
provide factual data. They allow real world feed into the distributed ledgers.

Transactions
Transactions in a Corda network are never transmitted globally, but in a semi-private
network. They are shared only between a subset of participants who are related to the
transaction. This is in contrast to traditional blockchain solutions like Ethereum and bitcoin,
where all transactions are broadcasted to the entire network globally. Transactions are
digitally signed and either consume state(s) or create new state(s).

www.EBooksWorld.ir

Hyperledger

[380]

Transactions on a Corda network are composed of the following elements:

Input references: This is a reference to the states the transaction is going to
consume and use as an input.

Output states: These are new states created by the transaction.

Attachments: This is a list of hashes of attached zip files. Zip files can contain
code and other relevant documentation related to the transaction. Files
themselves are not made part of the transaction, instead, they are transferred and
stored separately.

Commands: A command represents the information about the intended
operation of the transaction as a parameter to the contract. Each command has a
list of public keys which represents all parties that are required to sign a
transaction.

Signatures: This represents the signature required by the transaction. The total
number of signatures required is directly proportional to the number of public
keys for commands.

Type: There are two types of transactions namely, Normal or Notary changing.
Notary changing transactions are used for reassigning a notary for a state.

Timestamp: This field represents a bracket of time during which the transaction
has taken place. These are verified and enforced by notary services. Also, it is
expected that if strict timings are required, which is desirable in many financial
services scenarios, notaries should be synched with an atomic clock.

Summaries: This is a text description that describes the operations of the
transaction.

Vaults
Vaults run on a node and are akin to the concept of wallets in bitcoin. As the transactions
are not globally broadcast, each node will have only that part of data in their vaults that is
considered relevant to them. Vaults store their data in a standard relational database and as
such can be queried by using standard SQL. Vaults can contain both on ledger and off
ledger data, meaning that it can also have some part of data that is not on ledger.

www.EBooksWorld.ir

Hyperledger

[381]

CorDapp
The core model of Corda consists of state objects, transactions and transaction protocols,
which when combined with contract code, APIs, wallet plugins, and user interface
components results in constructing a Corda distributed application (CorDapp).

Smart contracts in Corda are written using Kotlin or Java. The code is targeted for JVM.
JVM has been modified slightly in order to achieve deterministic results of execution of JVM
bytecode. There are three main components in a Corda smart contract as follows:

Executable code that defines the validation logic to validate changes to the state1.
objects.
State objects represent the current state of a contract and either can be consumed2.
by a transaction or produced (created) by a transaction.
Commands are used to describe the operational and verification data that defines3.
how a transaction can be verified.

Development environment
The development environment for Corda can be set up easily using the following steps.

Required software includes the following:

JDK 8 which is available at h t t p ://w w w . o r a c l e . c o m /t e c h n e t w o r k /j a v a /j a v a s e1.
/d o w n l o a d s /i n d e x . h t m l .
IntelliJ IDEA community edition which is free and available at h t t p s ://w w w . j e t2.
b r a i n s . c o m /i d e a /d o w n l o a d .
H2 database platform independent zip, and is available at h t t p ://w w w . h 2d a t a b a3.
s e . c o m /h t m l /d o w n l o a d . h t m l .
Git, available at h t t p s ://g i t - s c m . c o m /d o w n l o a d s .4.
Kotlin language, which is available for IntelliJ, and more information can be5.
found at h t t p s ://k o t l i n l a n g . o r g /.
Gradle is another component that is used to build Corda.6.

Once all these tools are installed, smart contract development can be started. CorDapps can
be developed by utilizing an example template available at h t t p s ://g i t h u b . c o m /c o r d a /c o

r d a p p - t e m p l a t e . Detailed documentation on how to develop contract code is available at h
t t p s ://d o c s . c o r d a . n e t /.

www.EBooksWorld.ir

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
http://www.h2database.com/html/download.html
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://github.com/corda/cordapp-template
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/
https://docs.corda.net/

Hyperledger

[382]

Corda can be cloned locally from GitHub using the following command:

$ git clone https://github.com/corda/corda.git

When the cloning is successful, you should see output similar to the following:

Cloning into 'corda'...
remote: Counting objects: 74695, done.
remote: Compressing objects: 100% (67/67), done.
remote: Total 74695 (delta 17), reused 0 (delta 0), pack-reused 74591
Receiving objects: 100% (74695/74695), 51.27 MiB | 1.72 MiB/s, done.
Resolving deltas: 100% (42863/42863), done.
Checking connectivity... done.

Once the repository is cloned, it can be opened in IntelliJ for further development. There are
multiple samples available in the repository, such as a bank of Corda, interest rate swaps,
demo, and traders demo. Readers can find them under the /samples directory under
corda and they can be explored using IntelliJ IDEA IDE.

Summary
In this chapter, we've provided an introduction to the Hyperledger project. Firstly, the core
ideas behind the Hyperledger project were discussed and a brief introduction to all projects
under incubation in Hyperledger was provided. Three main Hyperledger projects were
discussed in detail, namely Hyperledger fabric, Sawtooth lake and Corda. All these projects
are currently under heavy development and changes are expected in the next releases.
Because of this, no in-depth practical exercises were given. However, the core concepts of
all the projects mentioned above are expected to remain unchanged or changed only very
slightly. Readers are encouraged to visit the relevant links provided within the chapter in
order see the latest updates. It is obvious that a lot is going on in this space and projects like
Hyperledger from the Linux foundation are playing a key role in the advancement of
blockchain technology. Each of the projects discussed in this chapter has novel approaches
towards solving the issues faced in various industries, and any current limitations within
the blockchain technology are also being addressed, such as scalability and privacy. It is
expected that more projects will soon be proposed to the Hyperledger project, and it is
envisaged that with this collaborative and open effort blockchain technology will advance
tremendously and will benefit the community as a whole.

www.EBooksWorld.ir

10
Alternative Blockchains

This chapter is intended to provide an introduction to alternative blockchain solutions.
With the success of bitcoin and subsequent realization of the potential of blockchain
technology, a Cambrian explosion started that resulted in the development of various
blockchain protocols, applications, and platforms. Some projects did not gain much traction,
but many have succeeded in creating a solid place in this space.

In this chapter, readers will be introduced to alternative blockchains and platforms that
either are new blockchains on their own or complement other existing blockchains. These
new platforms are based on the idea of providing SDKs and tools to make development and
deployment of blockchain solutions easier. The success of Ethereum and bitcoin has
resulted in various projects that spawned into existence by leveraging the underlying
technologies and concepts introduced by them. These new projects add value by addressing
the limitations in the current blockchains or enhancing the existing solutions by providing
an additional layer of user-friendly tools on top of them.

In the first section of this chapter, an introduction to new blockchain solutions will be given,
and later sections will cover various platforms and development kits that complement
existing blockchains. For example, BlockApps STRATO is an Ethereum-compliant platform
for the development of blockchain applications, and Kadena is a new private blockchain
with novel ideas such as Scalable BFT. Various concepts such as sidechains, drivechains,
and pegging have also been introduced for the first time with this growth of blockchain
technologies. This chapter will cover all these technologies and related concepts in detail. Of
course, it's not possible to cover all alternative chains (altchains) and platforms, but all those
platforms have been included in this chapter that are related to blockchains, covered in the
previous chapters, or are expected to gain traction in the near future.

www.EBooksWorld.ir

Alternative Blockchains

[384]

Blockchains
This section will give an introduction to new blockchain solutions. First, a new blockchain
named Kadena is discussed in the following section.

Kadena
Kadena is a recently-introduced private blockchain that has successfully addressed
scalability and privacy issues in blockchain systems. A new Turing incomplete language
called Pact has also been introduced with Kadena that allows the development of smart
contracts. A key innovation in Kadena is its Scalable BFT consensus algorithm, which has
the potential to scale to thousands of nodes without performance degradation. Scalable BFT
is based on the original Raft algorithm and is a successor of Tangaroa and Juno. Tangaroa,
which is a name given to an implementation of Raft with fault tolerance (a BFT Raft), was
developed to address the availability and safety issues that arose from the behavior of
byzantine nodes in the Raft algorithm, and Juno was a fork of Tangaroa that was developed
by JPMorgan. Consensus algorithms are discussed in Chapter 1, Blockchain 101 in more
detail. Both of these proposals have a fundamental limitation – they cannot scale while
maintaining a high level of high performance. As such, Juno could not gain much traction.
Private blockchains have the more desirable property of maintaining high performance as
the number of nodes increase, but the aforementioned proposals lack this feature. Kadena
solves this issue with its proprietary Scalable BFT algorithm, which is expected to scale up
to thousands of nodes without any performance degradation.

Moreover, confidentiality is another important aspect of Kadena that enables privacy of
transactions on the blockchain. This is achieved by using a combination of key rotation,
symmetric on-chain encryption, incremental hashing, and Double Ratchet protocol.

Key rotation is used as a standard mechanism to ensure security of the private blockchain.
It is used as a best practice to thwart any attacks if the keys have been compromised, by
periodically changing the encryption keys. There is a native support for key rotation in Pact
smart contract language.

Symmetric on chain encryption allows encryption of transaction data on the blockchain.
These transactions can be automatically decrypted by the participants of a particular private
transaction. Double Ratchet protocol is used to provide key management and encryption
functions.

www.EBooksWorld.ir

Alternative Blockchains

[385]

Scalable BFT consensus protocol ensures that adequate replication and consensus has been
achieved before smart contract execution. Consensus is achieved by following the process
described below:

First, a new transaction is signed by the user and broadcasted over the blockchain1.
network, which is picked up by a leader node that adds it to its immutable log. At
this point, an incremental hash is also calculated for the log. Incremental hash is a
type of hash function that basically allows computation of hash messages in the
scenario where, if a previous original message which is already hashed is slightly
changed, then the new hash message is computed from the already existing hash.
This scheme is quicker and less resource intensive compared to a conventional
hash function where an altogether new hash message is required to be generated
even if the original message has only changed very slightly.
Once the transaction is written to the log by the leader node, it signs the2.
replication and incremental hash and broadcasts it to other nodes.
Other nodes, after receiving the transaction, verify the signature of the leader3.
node, add the transaction into their own logs, and broadcast their own calculated
incremental hashes (quorum proofs) to other nodes. Finally, the transaction is
committed into the ledger permanently after an adequate number of proofs are
received from other nodes.

A simplified version of this process is shown in the following diagram, where the leader
node is recording the new transactions and then replicating them to the follower nodes:

Consensus mechanism in Kadena

www.EBooksWorld.ir

Alternative Blockchains

[386]

Once the consensus is achieved, smart contract execution can start and takes a number of
steps, as follows:

First, the signature of the message is verified.1.
Pact smart contract layer takes over.2.
Pact code is compiled.3.
The transaction is initiated and executes any business logic embedded within4.
smart contract. In case of any failures, an immediate rollback is initiated that
reverts that state back to what it was before the execution started.
Finally, the transaction completes and relevant logs are updated.5.

Pact has been open sourced by Kadena and is available for download at
http://kadena.io/pact/downloads.html. This can be downloaded as a standalone binary
that provides a REPL for Pact language. An example is shown below where Pact is run by
issuing the command ./pact in Linux console:

Pact REPL, showing sample commands and error output

Smart contract in Pact is generally composed of three sections: keysets, modules, and tables.
First, keyset defines relevant authorization schemes for tables and modules. Second,
module defines which is the smart contract code encompassing the business logic in the
form of functions and Pacts. Pacts within modules are composed of multiple steps and are
executed sequentially.

Pact can be used in several execution modes. These modes include contract definition,
transaction execution, and querying. Contract definition mode allows a contract to be
created on the blockchain via a single transaction message. Transaction execution mode
entails the execution of modules of smart contract code that represent business logic.
Querying is concerned with simply probing the contract for data and is executed locally on
the nodes for performance reasons.

www.EBooksWorld.ir

http://kadena.io/pact/downloads.html

Alternative Blockchains

[387]

Pact uses LISP-like syntax and represents in the code exactly what will be executed on the
blockchain as it is stored on the blockchain in human-readable format. This is in contrast to
Ethereum's EVM, which compiles into byte code for execution, which makes it difficult to
verify what code is in execution on the blockchain. Moreover, it is Turing incomplete,
supports immutable variables, and does not allow null values, which improves overall
safety of the transaction code execution.

It is not possible to cover the complete syntax and functions of Pact in this chapter,
however, a small example is shown below that shows the general structure of a smart
contract written in Pact. This example shows a simple addition module that defines a
function named addition that takes three parameters. When the code is executed it adds
all three values and displays the result.

The following example has been developed using the online Pact compiler available at
http://kadena.io/try-pact/:

Sample Pact code

When the code is run, it produces the output shown as follows:

Output of the code

www.EBooksWorld.ir

http://kadena.io/try-pact/

Alternative Blockchains

[388]

As shown in the preceding example, the execution output matches exactly with the code
layout and structure, which allows for greater transparency and limits the possibility of
malicious code execution.

Kadena is a new class of private blockchains introducing the novel concept of pervasive
determinism where, in addition to standard public/private key-based data origin security,
an additional layer of fully deterministic consensus is also provided. It provides
cryptographic security at all layers of the blockchain including transactions and consensus
layer.

Relevant documentation and source code for Pact can be found here:
https://github.com/kadena-io/pact.

Ripple
Introduced in 2012, Ripple is a currency exchange and real-time gross settlement system. In
Ripple, the payments are settled without any waiting as opposed to traditional settlement
networks, where it can take days for settlement. It has a native currency called Ripples
(XRP). It also supports non-XRP payments. This system is considered similar to an old
traditional money transfer mechanism known as Hawala. This system works by making use
of agents who take the money and a password from the sender, then contact the payee's
agent and instruct them to release funds to the person who can provide the password. The
payee then contacts the local agent, tells them the password and collects the funds. An
analogy to the agent is Gateway in Ripple. This is just a very simple analogy, the actual
protocol is rather complex but principally it is the same.

The Ripple network is composed of various nodes that can perform different functions
based on their type. First, user nodes: these use in payment transactions and can pay or
receive payments. Second, validator nodes: these participate in the consensus mechanism.
Each server maintains a set of unique nodes, which it needs to query while achieving
consensus. Nodes in the unique node List (UNL) are trusted by the server involved in the
consensus mechanism and will accept votes only from this list of unique nodes. Ripple is
sometimes not considered truly decentralized as there are network operators and regulators
involved. However it can be considered decentralized due to the fact that anyone can
become part of the network by running a validator node. Moreover, the consensus process
is also decentralized because any changes proposed to made on the ledger have to be
decided by following a scheme of super majority voting. However this is a hot topic
amongst researchers and enthusiasts and there are arguments against and in favor of each
school of thought.

www.EBooksWorld.ir

https://github.com/kadena-io/pact

Alternative Blockchains

[389]

Ripple maintains a global distributed ledger of all transactions that is governed by a novel
low-latency consensus algorithm called Ripple Protocol Consensus Algorithm (RPCA).
The consensus process works by achieving an agreement on the state of an open ledger
containing transactions by seeking verification and acceptance from validating servers in an
iterative manner until an adequate number of votes are achieved. Once enough votes are
received (super majority, initially 50% and gradually increasing with each iteration up to at
least 80%) the changes are validated and the ledger is closed. At this point, an alert is sent to
the whole network indicating that the ledger is closed.

In summary, the consensus protocol is a three-phase process. First, the collection phase,
where validating nodes gather all transactions broadcasted on the network by account
owners and validate them. Transactions, once accepted, are called candidate transactions
and can be accepted or rejected based on the validation criteria. Then the consensus process
starts, and after achieving it the ledger is closed. This process runs asynchronously every
few seconds in rounds and, as result, the ledger is opened and closed (updated)
accordingly.

Ripple consensus protocol phases

In a Ripple network there are a number of components that work together in order to
achieve consensus and form a payment network. These components are discussed
individually below:

Server: This component serves as a participant in the consensus protocol. Ripple
server software is required in order to be able to participate in consensus
protocol.
Ledger: This is a main record of balances of all accounts on the network. A ledger
contains various elements such as ledger number, account settings, transactions,
timestamp, and a flag that indicates validity of the ledger.
Last closed ledger: A ledger is closed once consensus is achieved by validating
nodes.

www.EBooksWorld.ir

Alternative Blockchains

[390]

Open ledger: This is a ledger that has not been validated yet and no consensus
has been reached about its state. Each node has its own open ledger, which
contains proposed transactions.
Unique node list: This is a list of unique trusted nodes that a validating server
uses in order to seek votes and subsequent consensus.
Proposer: As the name suggests, this component proposes new transactions to be
included in the consensus process. It is usually a subset of nodes (UNL defined
above) that can propose transactions to the validating server.

Transactions
Transactions are created by network users in order to update the ledger. A transaction is
expected to be digitally signed and valid in order for it to be considered as a candidate in
the consensus process. Each transaction costs a small amount of XRP, which serves as a
protection mechanism against denial of service attacks caused by spamming. There are
different types of transaction in the Ripple network. A single field within the Ripple
transaction data structure called TransactionType is used to represent the type of the
transaction. Transactions are executed by using a four step process. First, transactions are
prepared whereby an unsigned transaction is created by following the standards. Second
step is signing, where the transaction is digitally signed to authorize it. After this, the actual
submission to the network occurs via the connected server. Finally, the verification is
performed to ensure that the transaction is validated successfully.

Roughly, the transactions can be categorized into three types, namely Payments related,
Order related, and Account and security related. All these types are described in the
following section.

Payments related
There are several fields in this category that result in certain actions. All these fields are
described as follows:

Payment: This transaction is most commonly used and allows one user to send1.
funds to another.
PaymentChannelClaim: This is used to claim Ripples (XRP) from a payment2.
channel. A payment channel is a mechanism that allows recurring and
unidirectional payments between parties. This can also be used to set the
expiration time of the payment channel.
PaymentChannelCreate: This transaction creates a new payment channel and3.
adds XRP to it in drops. A single drop is equivalent to 0.000001 of an XRP.

www.EBooksWorld.ir

Alternative Blockchains

[391]

PaymentChannelFund: This transaction is used to add more funds to an existing4.
channel. Similar to PaymentChannelClaim transaction, this can also be used to
modify the expiration time of the payment channel.

Order related
This type of transaction includes following two fields:

OfferCreate: This transaction represents a limit order, which represents an1.
intent for exchange of currency. It results in creating an Offer node in the
consensus ledger if it cannot be completely fulfilled.
OfferCancel: This is used to remove a previously created offer node from the2.
consensus ledger, indicating withdrawal of the order.

Account and security related
This type of transaction include the fields listed as follows. Each field is responsible for
performing a certain function.

AccountSet: This transaction is used to modify the attributes of an account in1.
the Ripple consensus ledger.
SetRegularKey: This is used to change or set the transaction signing key for an2.
account. An account is identified using a base-58 Ripple address derived from the
account's master public key.
SignerListSet: This can be used to create a set of signers for use in multi-3.
signature transactions.
TrustSet: This is used to create or modify a trust line between accounts.4.

A transaction in Ripple is composed of various fields that are common to all transaction
types. These fields are listed as follows with description:

Account , address of the initiator of the transaction.1.
AccountTxnID , this is an optional field which contains the hash of another2.
transaction.
Fee, Amount of XRP.3.
Flags, optional flags for the transaction.4.
LastLedgerSequence, highest sequence number of the ledger in which the5.
transaction can appear.
Memos, optional arbitrary information.6.

www.EBooksWorld.ir

Alternative Blockchains

[392]

Sequence, a number incremented by 1 with each transaction.7.
SigningPubKey, public key.8.
Signers, represent signers in a multisig transaction.9.
SourceTag, represents either sender or reason of the transaction.10.
TransactionType, type of the transaction.11.
TxnSignature, verification signature for the transaction.12.

Various developer's APIs are available with Ripple in order to enable external entities to
connect to the Ripple network. Two key components, Interledger protocol and Ripple
connect, work in harmony in order to enable distributed, secure, scalable, and interoperable
payments network.

Interledger protocol has been specifically developed to enable interoperability between two
different ledgers. It can be used to connect ledgers and blockchains from various different
organizations including, but not limited to, payment networks, financial institutions,
clearing houses, and exchanges.

Interledger is a simple protocol that is composed of four layers: Application, Transport,
Interledger, and Ledger. Each layer is responsible for performing various functions under
certain protocols. These functions and protocols are described in the following section.

Application layer
Protocols running on this layer govern the key attributes of a payment transaction.
Examples of application layer protocols include Simple Payment Setup protocol (SPSP)
and Open Web payment scheme (OWPS). SPSP is an Interledger protocol that allows
secure payment across different ledgers by creating Connectors between them. OWPS is
another scheme that allows consumer payments across different networks. Once the
protocols on this layer have run successfully, protocols from the transport layer will be
invoked in order to start the payment process.

Transport layer
This layer is responsible for managing payment transactions. Protocols such as Optimistic
Transport protocol (OTP), Universal Transport protocol (UTP) and Atomic Transport
protocol (ATP) are available currently for this layer. OTP is the simplest protocol, which
manages payment transfers without any escrow protection, whereas UTP provides escrow
protection. ATP is the most advanced protocol, which not only provides an escrowed
transfer mechanism but in addition makes use of trusted notaries to further secure the
payment transactions.

www.EBooksWorld.ir

Alternative Blockchains

[393]

Interledger layer
This layer provides interoperability and routing services. This layer contains protocols such
as Interledger protocol (ILP), Interledger quoting protocol (ILQP), and Interledger control
protocol (ILCP). ILP packet provides the final target of the transaction in a transfer. ILQP is
used in making quote requests by the senders before the actual transfer. ILCP is used to
exchange data related to routing information and payment errors between connectors on
the payment network.

Ledger layer
This layer contains protocols that enable communication and execution of payment
transactions between connectors. Connectors are basically objects that implement the
protocol for forwarding payments between different ledgers. It can support various
protocols such as Simple Ledger protocol, various blockchain protocols, legacy protocols,
and different proprietary protocols.

Ripple connect consists of various Plug and Play modules that allow connectivity between
ledgers by using the ILP. It enables the exchange of required data between parties before
the transaction, visibility, fee management, delivery confirmation, and secure
communication using Transport layer security. A third-party application can connect to the
Ripple network via various connectors.

Overall, Ripple is a solution that is targeted for financial industry and makes real-time
payments possible without any settlement risk. As this is a very feature-rich platform,
covering all aspects of it are not possible in this chapter. Ripple and very rich
documentation for the platform are available at https://ripple.com/.

Stellar
Stellar is a payment network based on blockchain technology and a novel consensus model
called Federated Byzantine Agreement (FBA). FBA works by creating quorums of trusted
parties. Stellar Consensus Protocol (SCP) is an implementation of FBA.

Key issues identified in the Stellar whitepaper are the cost and complexity of current
financial infrastructure. This limitation warrants the need for a global financial network that
addresses these issues without compromising the integrity and security of the financial
transaction. This requirement has resulted in the invention of Stellar Consensus Protocol
(SCP) which is a provably safe consensus mechanism.

www.EBooksWorld.ir

https://ripple.com/

Alternative Blockchains

[394]

It has four main properties: decentralized control, which allows participation by anyone
without any central party; low latency, which addresses the much desired requirement of
fast transaction processing; flexible trust, which allows users to choose which parties they
trust for a specific purpose, and finally, asymptotic security, which makes use of digital
signatures and hash functions for providing the required level of security on the network.

The Stellar network allows transfer and representation of the value of an asset by its native
digital currency, called Lumens, abbreviated as XLM. Lumens are consumed when a
transaction is broadcasted on the network, which also serves as a deterrent against Denial
of Service (DOS) attacks.

At its core, the Stellar network maintains a distributed ledger that records every transaction
and is replicated on each Stellar server. The consensus is achieved by verifying transactions
between servers and updating the ledger with updates. The Stellar ledger can also act as a
distributed exchange order book by allowing users to store their offers to buy or sell
currencies.

There are various tools, SDKs, and software that make up the Stellar network. The core
software is available at https://github.com/stellar/stellar-core.

Rootstock
Before discussing Rootstock in detail, it's important to define and introduce some concepts
that are fundamental to the design of Rootstock. These concepts include sidechains,
drivechains, and two-way pegging. The concept of the sidechain was originally developed
by Blockstream.

Two way pegging is a mechanism by which value (coins) can transfer between one
blockchain to another and vice versa. There is no real transfer of coin between chains. The
idea revolves around the concept of locking the same amount and value of coins in a bitcoin
blockchain (main chain) and unlocking the equivalent amount of tokens in the secondary
chain.

Bearing this definition in mind, sidechains can be defined as described in the following
section.

Sidechain

This is a blockchain that runs in parallel with a main blockchain and allows transfer of
value between them. This means that tokens from one blockchain can be used in the
sidechain and vice versa. This is also called a pegged sidechain because it supports two-way
pegged assets.

www.EBooksWorld.ir

https://github.com/stellar/stellar-core

Alternative Blockchains

[395]

Drivechain
This is a relatively new concept, where control on unlocking the locked bitcoins (in
mainchain) is given to the miners who can vote when to unlock them. This is in contrast to
sidechains, where consensus is validated though Simple payment verification mechanism in
order to transfer the coins back to the mainchain.

Rootstock is a smart contract platform which has a two-way peg into bitcoin blockchain.
The core idea is to increase the scalability and performance of the bitcoin system and enable
it to work with smart contracts. Rootstock runs a Turing complete deterministic virtual
machine called Rootstock Virtual Machine (RVM). It is also compatible with the Ethereum
virtual machine and allows solidity-compiled contracts to run on Rootstock. Smart contracts
can also run under the time-a tested security of bitcoin blockchain. The Rootstock
blockchain works by merge mining with bitcoins. This allows RSK blockchain to achieve the
same security level as bitcoin. This is especially true for preventing double spends and
achieving settlement finality. It allows scalability, up to 100 transactions per second.

RSK has recently released a test network called Turmeric. It is available at
http://www.rsk.co/.

Quorum
This is a blockchain solution built by enhancing the existing Ethereum blockchain. There are
several enhancements such as transaction privacy and a new consensus mechanism that has
been introduced in Quorum. Quorum has introduced a new consensus model known as
QuorumChain, which is based on a majority voting and time based mechanism. Another
feature called Constellation is also introduced which is a general purpose mechanism for
submitting information and allows encrypted communication between peers. Furthermore,
permissioning at node level is governed by smart contracts. It also provides a higher level of
performance compared to public Ethereum blockchains.

Several components make up the Quorum blockchain ecosystem. These are listed in the
following section.

Transaction manager
This component enables access to encrypted transaction data. It also manages local storage
and communication with other Transaction managers on the network.

www.EBooksWorld.ir

http://www.rsk.co/

Alternative Blockchains

[396]

Crypto Enclave
As the name suggests, this component is responsible for providing cryptographic services
to ensure transaction privacy. It is also responsible for performing key management
functions.

QuorumChain
This is the key innovation in Quorum. It is a Byzantine Fault-tolerant consensus mechanism
which allows verification and circulation of votes via transactions on the blockchain
network. In this scheme, a smart contract is used to manage the consensus process and
nodes can be given voting rights to vote on which new block should be accepted. Once an
appropriate number of votes is received by the voters, the block is considered valid. Nodes
can have two roles, namely Voter or Maker. The Voter node is allowed to vote, whereas
the Maker node is the one that creates a new block. A node can have either rights, none or
only one.

Network manager
This component provides an access control layer for the permissioned network.

A node in the quorum network can take several roles, for example, a Maker node that is
allowed to create new blocks. Transaction privacy is provided using cryptography and the
concept that certain transactions are meant to be viewable only by their relevant
participants. This idea is similar to Corda's idea of private transactions that was discussed
in the last chapter. As it allows both public and private transactions on the blockchain, the
state database has been divided into two databases representing private and public
transactions. As such, there are two separate Patricia-Merkle trees that represent the private
and public state of the network. A private contract state hash is used to provide consensus
evidence in private transactions between transacting parties.

Transaction in a quorum network consists of various elements such as the recipient, the
digital signature of the sender, which is used to identify the transaction originator, optional
ether amount, the optional list of participants that are allowed to see the transaction, and a
field that contains a hash in case of private transactions.

A transaction goes through several steps before it can reach its destination. These steps are
described as follows in detail:

User applications (DAPPs) send the transaction to the quorum node via an API1.
exposed by the blockchain network. This also contains the recipient address and
transaction data.

www.EBooksWorld.ir

Alternative Blockchains

[397]

The API then encrypts the payload and applies any other necessary2.
cryptographic algorithm in order to ensure privacy of the transaction, and is sent
to the Transaction manager. The hash of the encrypted payload is also calculated
at this step.
After receiving the transaction, the Transaction manager validates the signature3.
of the transaction sender and stores the message.
The hash of the previously encrypted payload is sent to the Quorum node.4.
Once the Quorum node starts to validate a block that contains the private5.
transaction, it requests more relevant data from the Transaction manager.
Once this request is received by the Transaction manager, it sends the encrypted6.
payload and relevant symmetric keys to the requestor quorum node.
Once the Quorum node has all the data, it decrypts the payload and sends it to7.
the EVM for execution. This is how Quorum achieves privacy with symmetric
encryption on the blockchain, while it is able to use native Ethereum protocol and
EVM for message transfer and execution respectively.
A similar concept, but quite different in a few aspects, has been proposed before8.
in the form of Hydrachain, which is based on Ethereum blockchain and allows
creation of permissioned distributed ledgers.

Quorum is available for download at https://github.com/jpmorganchase/quorum.

Tezos
Tezos is a generic self-amending cryptographic ledger, which means that it not only allows
decentralized consensus on the state of the blockchain but also allows consensus on how the
protocol and nodes are evolved over time. Tezos has been developed to address limitations
in bitcoin protocol such as issues arising from hard forks, cost, and mining power
centralization due to Proof of Work, limited scripting ability, and security issues. It has been
developed in a purely functional language called OCaml.

The architecture of Tezos distributed ledger is divided into three layers: the network layer,
consensus layer, and transaction layer. This decomposition allows protocol to be evolved in
a decentralized fashion. For this purpose, a generic network shell is implemented in Tezos
that is responsible for maintaining the blockchain, which is represented by a combination of
consensus and transaction layer. This shell provides an interface layer between the network
and the protocol. A concept of seed protocol has also been introduced, which is used as a
mechanism to allow stakeholders on the network to approve any changes to the protocol.
Tezos blockchain starts from a seed protocol compared to a traditional blockchain that starts
from a genesis block.

www.EBooksWorld.ir

https://github.com/jpmorganchase/quorum

Alternative Blockchains

[398]

This seed protocol is responsible for defining procedures for amendments in the blockchain
and even the amendment protocol itself. The reward mechanism in Tezos is based on
a Proof of Stake (PoS) algorithm, therefore there is no mining requirement.

Contract script language has been developed in Tezos for writing smart contracts, which is
a stack-based Turing complete language. Smart contracts in Tezos are formally verifiable,
which allows the code to be mathematically proven for its correctness.

Tezos code is available at https://github.com/tezos/tezos.

Storj
Existing models for cloud-based storage are all centralized solutions, which may or may not
be as secure as users expect them to be. There is a need to have a cloud storage system
that is secure, highly available, and above all decentralized. Storj aims to provide
blockchain based, decentralized, and distributed storage. It is a cloud shared by the
community instead of a central organization. It allows execution of storage contracts
between nodes that act as autonomous agents. These agents (nodes) execute various
functions such as data transfer, validation, and perform data integrity checks. The core
concept is based on Distributed Hash Tables (DHT) -Kademlia, however this protocol has
been enhanced by adding new message types and functionalities in Storj. It also implements
a peer to peer publish/subscribe (pub/sub) mechanism known as Quasar, which ensures
that messages successfully reach the nodes that are interested in storage contracts. This is
achieved via a bloom filter-based storage contract parameters selection mechanism called
topics.

Storj stores files in an encrypted format spread across the network. Before the file is stored
on the network, it is encrypted using AES-256-CTR symmetric encryption and is then stored
piece by piece in a distributed manner on the network. This process of dissecting the file
into pieces is called sharding and results in increased availability, security, performance,
and privacy of the network. Also if a node fails the shard is still available because by default
a single shard is stored at three different locations on the network.

It maintains a blockchain, which serves as a shared ledger and implements standard
security features such as public/private key cryptography and hash functions similar to any
other blockchain. As the system is based on hard drive sharing between peers, anyone can
contribute by sharing their extra space on the drive and get paid with Storj's own
cryptocurrency called Storjcoinx (SJCX). SJCX was developed as a counterparty asset and
makes use of bitcoin blockchain for transactions.

Storj code is available at https://github.com/Storj/.

www.EBooksWorld.ir

https://github.com/tezos/tezos
https://github.com/Storj/

Alternative Blockchains

[399]

Maidsafe
This is another distributed storage system similar to Storj. Users are paid in Safecoin for
their storage space contribution to the network. This mechanism of payment is governed by
proof of resource, which ensures that the disk space committed by a user to the network is
available, if not then the payment of Safecoin will drop accordingly. The files are encrypted
and divided into small portions before being transmitted on to the network for storage.
Another concept of opportunistic caching has been introduced with Maidsafe, which is a
mechanism to create copies of frequently accessed data physically closer to where the access
requests are coming from, which results in high performance of the network. Another novel
feature of the SAFE network is that it automatically removes any duplicate data on the
network, thus resulting in reduced storage requirements. Moreover, the concept of
churning has also been introduced, which basically means that data is constantly moved
across the network so that the data cannot be targeted by malicious adversaries. It also
keeps multiple copies of data across the network to provide redundancy in case a node goes
offline or fails.

BigChainDB
This is a scalable blockchain database. It is not strictly a blockchain itself, but complements
blockchain technology by providing a decentralized database. At its core it's a distributed
database but with the added attributes of a blockchain such as decentralization,
immutability, and handling of digital assets. It also allows usage of NoSQL for querying the
database. It is intended to provide a database in a decentralized ecosystem where not only
processing is decentralized (blockchain) or the file system is decentralized (for example,
IPFS) but the database is also decentralized. This makes the whole decentralized application
ecosystem decentralized. This is available at https://www.bigchaindb.com/.

Multichain
Multichain has been developed as a platform for the development and deployment of
private blockchains. It is based on bitcoin code and addresses security, scalability, and
privacy issues. It is a highly configurable blockchain platform that allows users to set
different blockchain parameters. It supports control and privacy via a granular
Permissioning layer. Installation of Multichain is very quick and links to installation files
are available at http://www.multichain.com/download-install/.

www.EBooksWorld.ir

https://www.bigchaindb.com/
http://www.multichain.com/download-install/

Alternative Blockchains

[400]

Tendermint
Tendermint is a software that provides a Byzantine fault-tolerant consensus mechanism and
state machine replication functionality to an application. Its main motivation is to develop a
general purpose, secure, and high-performance replicated state machine.

There are two components in Tendermint, which are described in following section.

Tendermint Core
This is a consensus engine that enables secure replication of transactions on each node in
the network.

Tendermint Socket Protocol (TMSP)
This is an application interface protocol that allows interfacing with any programming
language to process transactions.

Tendermint allows decoupling of the application process and consensus process, which
allows any application to benefit from the consensus mechanism.

The Tendermint consensus algorithm is a round-based mechanism where validator nodes
propose new blocks in each round. A locking mechanism is used to ensure protection
against a scenario where two different blocks are selected for committing at the same height
of the blockchain. Each validator node maintains a full local replicated ledger of blocks that
contain transactions. Each block contains a header, which consists of the previous block
hash, timestamp of the proposal of block, current block height, and merkle root hash of all
transactions present in the block.

Tendermint has recently been used in Cosmos, which is a network of blockchains that
allows interoperability between different chains running on BFT consensus algorithm.
Blockchains on this network are called zones. The first zone in Cosmos is called Cosmos
hub, which is in fact a public blockchain and is responsible for providing connectivity
service to other blockchains. For this purpose, the hub makes use of Inter Blockchain
Communication protocol (IBC). IBC protocol supports two types of transactions called
IBCBlockCimmitTx and IBCPacketTx. The first type is used to provide proof of the most
recent block hash in a blockchain to any party, whereas the latter type is used to provide
data origin authentication. A packet from one blockchain to another is published by first
posting a proof to the target chain. The receiving (target) chain checks this proof in order to
verify that the sending chain has indeed published the packet. In addition, it has its own
native currency called Atom. This scheme addresses scalability and interoperability issues
by allowing multiple blockchains to connect to the hub.

www.EBooksWorld.ir

Alternative Blockchains

[401]

Tendermint is available at https://tendermint.com/.

Platforms
This section covers various platforms that have been developed to enhance the experience
of existing blockchain solutions. First, an Ethereum-compliant solution named BlockApps
STRATO will be discussed.

BlockApps
BlockApps is a platform that provides a rich set of tools to build blockchain applications.
This platform is written in Haskell and is based on modular architecture. The solution is
scalable and makes it easier to deploy smart contracts and blockchain applications. It is
available at http://www.blockapps.net/.

In the next section, installation and a simple example of deployment will be discussed.

Installation
BlockApps can be installed via npm by using the command shown as follows:

$ sudo npm install -g blockapps-bloc

sudo is optional, if no administrative rights are required. This will produce an output
similar to the one shown in the following screenshot:

bloc installation via npm (output truncated)

Once installation is complete, applications can be created by following the steps shown in
following section. An example is shown below that shows how to initialize a new
application in BlockApps, deploy it on BlockApps TestNet and interact with it.

www.EBooksWorld.ir

https://tendermint.com/
http://www.blockapps.net/

Alternative Blockchains

[402]

Application development and deployment using
BlockApps
The first step is to initialize the BlockApps application using the following command:

$ bloc init

It will ask for several parameters: the name of the app, your name, e-mail, API URL
(apiUrl), and blockchain profile. This is shown in the following screenshot.

Once the command runs and completes successfully, it will create an application directory
with templates and samples. In this instance, a directory named testApp will be created
with relevant directories and sample contracts.

bloc init

The next step is to install the testApp which can be achieved by running the following
command:

$ sudo npm install

www.EBooksWorld.ir

Alternative Blockchains

[403]

testApp installation

Generation of a new key is required in order to sign the transactions. Keys can be generated
by using the following command:

$ bloc genkey

Once issued, a password will have to be entered in order to protect the key. Once provided,
the key will be created and a JSON file will be created. Note that the JSON file name is the
actual address of the account on the blockchain. Also, it will display the message
transaction mined, indicating success and deployment of the key and transaction (account
creation) respectively.

The process is shown in the following screenshot:

Generate key

www.EBooksWorld.ir

Alternative Blockchains

[404]

Now, at this point, the new account can be queried by using curl. Simply pass the address
as an argument in the URL and the result will be returned in JSON format.

Query the new account using curl

Alternatively, a query can be executed via any web browser as shown in the following
screenshot:

BlockApps query via web browser

In the next step, the process to upload the new contract to the test chain will be described.
Note that all the contracts are placed in the ./app/contracts directory under the
testApp directory. As a sample, Greeter.sol contract has been chosen to be deployed to
the network. BlockApps provides an easy method to achieve this deployment.

All contracts needs to be placed under the contracts directory in order for the compile
command to find them and compile.

www.EBooksWorld.ir

Alternative Blockchains

[405]

Greeter contract under contracts directory

www.EBooksWorld.ir

Alternative Blockchains

[406]

Contracts can be compiled by using the command shown in the following screenshot. Note
that it takes that contract file name as an argument. After successful compilation, all
relevant JSON files will be written under ./meta directory.

Compilation of Greeter contract

www.EBooksWorld.ir

Alternative Blockchains

[407]

Finally, the contract can be uploaded using the following command. This command expects
the argument passed to the contract as defined in the contract code. In the example, it
expected a text string as shown in the following example screenshot:

$ bloc upload Greeter "Hello bloc"

Upload of Greeter contract

Note that, in case correct arguments are not passed or missing, an error similar to following
screenshot will occur:

Error in case of wrong or missing arguments

Once the deployment is successful it can be verified that the ether has transferred from the
existing contract to the new contract. Note that the balance has dropped. This is shown in
the following screenshot:

Deployed contract after installation via web browser

www.EBooksWorld.ir

Alternative Blockchains

[408]

After deployment of the contract, it can be queried using a web browser or any CLI tools
such as cURL. The URL
http://strato-dev4.blockapps.net/eth/v1.2/account?address=05ee3af04e903f413402d

5438b9de3827b1f4e70 is required to be passed to the web browser. This is shown in the
following screenshot. Note that the code in binary format is also available in the output.

Browse to the deployed contract, with code in binary format

Furthermore, BlockApps has a feature available to run a local HTTP server, which can be
started by using the following command:

$ bloc start

This will start the web browser, and listen on TCP port 8000.

bloc start

www.EBooksWorld.ir

http://strato-dev4.blockapps.net/eth/v1.2/account?address=05ee3af04e903f413402d5438b9de3827b1f4e70
http://strato-dev4.blockapps.net/eth/v1.2/account?address=05ee3af04e903f413402d5438b9de3827b1f4e70

Alternative Blockchains

[409]

After the web server starts, the compiled contracts can be viewed and queried using the
local web page available as shown in the following screenshot:

Compiled contracts available via browser

As demonstrated in the preceding example it is easier to build, deploy, and manage
contracts using BlockApps. BlockApps aims to provide tools and core infrastructure for
blockchain applications, and not just blockchain.

Eris
Eris is not a single blockchain, it is an open modular platform developed by Monax for
development of blockchain-based ecosystem applications. It offers various frameworks, SDKs,
and tools that allow accelerated development and deployment of blockchain applications.
The core idea behind the Eris application platform is to enable development and
management of ecosystem applications with a blockchain backend. It allows integration with
multiple blockchains and enables various third party systems to interact with various other
systems. This platform makes use of smart contracts written in solidity language. It can
interact with blockchains such as Ethereum or bitcoin. The interaction can include
connectivity commands, start, stop, disconnection, and creation of new blockchains.
Complexity related to setup and interaction with blockchains have been abstracted away in
Eris. All commands are standardized for different blockchains, and the same commands can
be used across the platform regardless of the blockchain type being targeted.

www.EBooksWorld.ir

Alternative Blockchains

[410]

An ecosystem application can consist the Eris platform, enabling the API gateway to allow
legacy applications to connect to key management systems, consensus engines, and
application engines. The Eris platform provides various toolkits that are used to provide
various services to the developers. These modules are described as follows:

Chains: This allows the creation of and interaction with blockchains.
Packages: This allows the development of smart contracts.
Keys: This is used for key management and signing operations.
Files: This allows working with distributed data management systems. It can be
used to interact with file systems such as IPFS and data lakes.
Services: This exposes a set of services that allows the management and
integration of ecosystem applications.

Several SDKs has also been developed by Eris that allow the development and management
of ecosystem applications. These SDKs contain smart contracts that have been fully tested
and address specific needs and requirements of business. For example, a finance SDK,
insurance SDK, and logistics SDK. There is also a base SDK that serves as a basic
development kit to manage the lifecycle of an ecosystem application.

Monax has developed its own permissioned blockchain client called Eris:db. It is a Proof of
Stake-based (PoS) blockchain system that allows integration with a number of different
blockchain networks. Eris:db consist of three components:

Consensus: This is based on the Tendermint consensus mechanism, discussed
before.
Virtual machine: Eris uses Ethereum Virtual Machine (EVM), as such it
supports solidity compiled contracts.
Permissions layer: Being a permissioned ledger, Eris provides an access control
mechanism that can be used to assign specific roles to different entities on the
network.
Interface: This provides various commandline tools and RPC interfaces to enable
interaction with the backend blockchain network.

The key difference between Ethereum blockchain and Eris:db is that Eris:db makes use of a
Practical Byzantine Fault-Tolerance algorithm, which is implemented as a deposit-based
Proof of Stake (DPOS system) whereas Ethereum uses Proof of Work (PoW). Moreover,
Eris:db uses the ECDSA ed22519 curve scheme whereas Ethereum uses the secp256k1
algorithm. Finally, it is permissioned with an access control layer on top whereas Ethereum
is a public blockchain.

www.EBooksWorld.ir

Alternative Blockchains

[411]

Eris is a feature-rich application platform that offers a large selection of toolkits and services
to develop blockchain-based applications. It is available at https://monax.io/.

Summary
This chapter started with the introduction of alternative blockchains and is divided into two
main sections discussing blockchains and platforms. Blockchain technology is a very
thriving area, as such changes are quite rapid in existing solutions and new relevant
technologies or tools are being introduced almost every day. In this chapter, a careful
selection of platforms and blockchains was discussed. Several solutions were discussed that
complement material covered in previous chapters, for example, BlockApps, which
supports Ethereum development. New blockchains such as Kadena, various new protocols
such as Ripple, and concepts such as sidechains and drivechains were also discussed. The
material covered in this chapter is intended to provide a strong foundation for more in-
depth research into areas that readers are interested in. As said before, blockchain is a very
fast moving field and there are many other blockchain proposals projects such as Tauchain,
Hydrachain, Elements, credits, and many more that have not been discussed in this
chapter. Readers are encouraged to keep an eye on the developments in this field in order to
keep themselves up to date with advancement in this rapidly growing area.

www.EBooksWorld.ir

https://monax.io/

11
Blockchain-Outside of

Currencies
Digital currencies were the first ever application of blockchain technology, arguably
without realizing its true potential. With the invention of bitcoin the concept of blockchain
was introduced for the very first time, but it wasn't until 2013, with the advent of Blockchain
2.0 that the real benefits of blockchain were realized with its possible application in many
different industries. Since then a number of use cases of blockchain technology in different
industries, have been proposed including but not limited to finance, the Internet of Things,
digital rights management, government, and law. In this chapter, four main industries
namely the Internet of Things (IoT), government, health, and finance, have been selected
for discussion. Readers will be introduced to all these fields and various related use cases
will be presented.

Internet of Things
The Internet of Things or IoT for short has recently gained much traction due to its potential
for transforming business applications and everyday life. IoT can be defined as a network of
computationally intelligent physical objects that are capable of connecting to the Internet,
sensing real-world events or environments, reacting to those events, collecting relevant
data, and communicating it over the Internet. This simple definition has huge implications
and has led to exciting concepts, such as wearable's, smart homes, smart grids, smart
connected cars, and smart cities, that are all based on this basic concept of an IoT device.
After dissecting the definition of IoT above, there are four functions that come to light as
being performed by an IoT device. These include sensing, reacting, collecting, and
communicating. All these functions are performed by using various components on the IoT
device.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[413]

Sensing is performed by sensors. Reacting or controlling is performed by actuators,
collection is a function of various sensors, and communication is performed by chips that
provide network connectivity. One thing to note is that all these components are accessible
and controllable via the Internet in the IoT. An IoT device on its own is perhaps useful to
some extent but if it is part of a larger IoT ecosystem it is more valuable.

A typical IoT can consist of many physical objects connecting with each other and to a
centralized cloud server. This is shown in the diagram below:

A typical IoT network: source–IBM

Elements of IoT are spread across multiple layers and various reference architectures exist
that can be used to develop IoT systems. Generally, a five layer model can be used to
describe IoT, which contains a physical object layer, device layer, network layer, services
layer, and application layer. Each layer or level is responsible for various functions and
includes various components. These are described in detail below.

Physical object layer
These include any physical real-world objects includes people, animals, cars, trees, fridges,
trains, factories, homes, and in fact anything that is required to be monitored and controlled
can be connected to the IoT.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[414]

Device layer
This layer contains things that make up the IoT such as sensors, transducers, actuators,
smart phones, smart devices, and Radio Frequency Identification tags (RFIDs). There can
be many categories of sensors such as body sensors, home sensors, and environmental
sensors based on the type of work they perform. This is the core of an IoT ecosystem where
various sensors are used to sense real-world environments. This includes sensors that can
monitor temperature, humidity, liquid flow, chemicals, air, pressure, and much more.
Usually, an Analog to Digital Converter (ADC) is required on a device in order to turn the
real-world analog signal into a digital signal that a microprocessor can understand.

Actuators in this layer provide the means to enable control of external environments, for
example, starting a motor or opening a door. These components also require digital to
analog converters in order to convert a digital signal into analogue. This is especially
relevant when control of a mechanical component is required by the IoT device.

Network layer
This layer is composed of various network devices that are used to provide Internet
connectivity between devices and to the cloud or servers that are part of the IoT ecosystem.
These devices can include gateways, routers, hubs, and switches. This layer can include two
types of communication. First is the horizontal means of communication, which includes
radio, Bluetooth, WiFi, Ethernet, LAN, ZigBee, and PAN and can be used to provide a
communication between IoT devices. Second, we have communicating to the next layer,
which is usually through the Internet and provides communication between machines and
people or other upper layers. The first layer can optionally be included in the device layer
as it physically is residing on the device layer where devices can communicate with each
other at the same layer.

Management layer
This layer provides the management layer for the IoT ecosystem. This includes platforms
that enable processing of data gathered from the IoT devices and turn that into meaningful
insights. Also, device management, security management, and data flow management are
included in this layer. It also manages communication between the device and application
layers.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[415]

Application layer
This layer includes applications running on top of the IoT network. This can include a
number of applications depending on the requirements such as transportation, healthcare,
financial, insurance, or supply chain management. This of course is not an exhaustive list by
any stretch of the imagination; there is a myriad of IoT applications that can fall into this
layer:

IoT five-layer model

With the availability of cheap sensors, hardware, and bandwidth, IoT has gained popularity
in recent years and currently has applications in many different areas including healthcare,
insurance, supply chain management, home automation, industrial automation, and
infrastructure management. Moreover, advancements in technology such as the availability
of IPv6, smaller and powerful processors, and better Internet access have also played a vital
role in the popularity of IoT. The benefits of IoT range from cost saving to enabling
businesses to make vital decisions and thus improve performance based on the data
provided by the IoT devices. Raw data from millions of things (IoT devices) is analyzed and
provides meaningful insights that help in making timely and effective business decisions.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[416]

The normal IoT model is based on a centralized paradigm where IoT devices usually
connect with a cloud infrastructure or central servers in order to report and process the
relevant data back. This centralization poses certain possibilities of exploitation including
hacking and data theft. Moreover, not having control of personal data on a single,
centralized service provider also increases the possibility of security and privacy issues.
Whilst there are methods and techniques to build a highly secure IoT ecosystem based on
the normal IoT model there are certain much more desirable benefits that blockchain can
bring to IoT. A blockchain-based IoT model differs from the traditional IoT network
paradigm. According to IBM, blockchain for IoT can help to build trust, reduce costs, and
accelerate transactions. Additionally, decentralization, which is at the very core of
blockchain technology, can eliminate single points of failure in an IoT network. For
example, a central server perhaps is not able to cope with the amount of data that billions of
IoT devices (things) are producing at high frequency. Also the peer-to-peer communication
model provided by blockchain can help to reduce costs because there is no need to build
high-cost centralized data centres or implementation of complex public key infrastructure
for security. Devices can communicate with each other directly or via routers.

As an estimate from various researchers and companies, by 2020 there will be roughly 22
billion devices connected to the Internet. With this explosion of billions of devices
connecting to the Internet, it is hard to imagine that centralized infrastructures will be able
to cope with the high demands of bandwidth, services, and availability without incurring
excessive expenditure. Blockchain-based IoT will be able to solve scalability, privacy, and
reliability issues in the current IoT model.

Blockchain enables things to communicate and transact with each other directly and with
the availability of smart contracts negotiation and financial transactions can also occur
directly between the devices instead of requiring a middleman, authority, or human
intervention. For example, if a room in a hotel is vacant, it can rent itself out, negotiate the
rent, and can open the door lock for a human who has paid the right amount of funds.
Another example could be that if a washing machine runs out of detergent, it could order it
online after finding the best price and value based on the logic programmed in its smart
contract.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[417]

The above mentioned five-layer IoT model can be adapted to a blockchain-based model by
adding a blockchain layer on top of the network layer. This layer will run smart contracts,
and provide security, privacy, integrity, autonomy, scalability, and decentralization services
to the IoT ecosystem. The management layer in this case can consist of only software related
to analytics and processing, and security and control can be moved to the blockchain layer.
This can be visualized in the following diagram:

Blockchain-based IoT model

In this model, other layers would perhaps remain the same but an additional blockchain
layer will be introduced as a middleware between all participants of the IoT network.

It can also be visualized as a peer-to-peer IoT network after abstracting away all the layers
mentioned above. This is shown in the following diagram where all devices are
communicating and negotiating with each other without a central command and control
entity:

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[418]

Blockchain-based direct communication model, source–IBM

It can also result in cost saving which is due to easier device management by using a
blockchain based decentralised approach. The IoT network can be optimized for
performance by using blockchain. In this case there will be no need to store IoT data
centrally for millions of devices because storage and processing requirements can be
distributed to all IoT devices on the blockchain. This can result in completely removing the
need for large data centres for processing and storing the IoT data.

Blockchain-based IoT can also thwart denial of service attacks where hackers can target a
centralized server or data centre more easily but with blockchain's distributed and
decentralized nature, such attacks are no longer possible. Additionally, if as estimated there
will be billions of devices connected to the Internet in the near future, it will become almost
impossible to manage security and updates of all those devices from traditional centrally-
owned servers. Blockchain can provide a solution to this problem by allowing devices to
communicate with each other directly in a secure manner and even request firmware and
security updates from each other. On a blockchain network these communications can be
recorded immutably and securely which will provide auditability, integrity, and
transparency to the system. This is not possible with traditional P2P systems.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[419]

In summary, there are clear benefits that can be reaped with the convergence of IoT and
blockchain and a lot of research and work in academia and industry are already in progress.
There are various projects already proposed providing blockchain-based IoT solutions. For
example, IBM Blue Horizon and IBM Bluemix are IoT platforms supporting blockchain IoT
platforms. Various start-ups such as Filament have already proposed novel ideas on how to
build a decentralised network that enables devices on IoT to transact with each other
directly and autonomously driven by smart contracts.

In the following section, a practical example is provided on how to build a simple IoT
device and connect it to the Ethereum blockchain. This IoT device is connected to the
Ethereum blockchain and is used to open a door (in this case the door lock is represented by
an LED) when the appropriate amount of funds are sent by a user on the blockchain. This is
a simple example and requires a more rigorously-tested version in order to implement it in
production but it demonstrates how an IoT device can be connected, controlled, and
responded to in response to certain events on an Ethereum blockchain.

IoT blockchain experiment
This example makes use of a Raspberry device which is a Single Board Computer (SBC).
Raspberry Pi is a single-board computer developed as a low cost computer to promote
computer education but has also gained much more popularity as a tool of choice for
building IoT platforms. A Raspberry Pi 3 model B is shown in the following figure:

Raspberry Pi model B

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[420]

In the following section, an example will be discussed where a Raspberry Pi will be used as
an IoT device connected to the Ethereum blockchain and will perform an action in response
to a smart contract invocation.

First, the Raspberry Pi needs to be set up. This can be done by using NOOBS which
provides an easy method of installing Raspbian or any other operating system. This can be
downloaded and installed from the link https://www.raspberrypi.org/downloads/noobs/.
Alternatively, only Raspbian can be installed from the link
https://www.raspberrypi.org/downloads/raspbian/. Another alternative available at
https://github.com/debian-pi/raspbian-ua-netinst can also be used to install a
minimal non-GUI version of Raspbian OS. For the purpose of the example, NOOBS has
been used to install Raspbian, as such the rest of the exercise assumes Raspbian is installed
on the SD memory card of the Raspberry Pi.

Once the Raspbian operating system is installed, the next step is to download the
appropriate geth binary for the Raspberry Pi ARM platform. The platform can be
confirmed by running the following command in a terminal window in Raspberry Pi
Raspbian operating system. The command output shows that which architecture the
operating system is running on. In this case it is armv71, therefore ARM-compatible binary
for geth will be downloaded.

Raspberry Pi architecture

The following steps are described in detail:

geth download:, note that in the example below a specific version is downloaded1.
however other versions are available which can be downloaded from
https://geth.ethereum.org/downloads/.

 wget https://gethstore.blob.core.windows.net/builds/geth-linux-
 arm7-1.5.6-2a609af5.tar.gz

Unzip and extract into a directory, the directory named geth-linux-2.
arm7-1.5.6-2a609af5 will be created automatically with that tar command
next:

 tar -zxvf geth-linux-arm7-1.5.6-2a609af5.tar

www.EBooksWorld.ir

https://www.raspberrypi.org/downloads/noobs/
https://www.raspberrypi.org/downloads/raspbian/
https://github.com/debian-pi/raspbian-ua-netinst
https://geth.ethereum.org/downloads/

Blockchain-Outside of Currencies

[421]

This will create a directory named geth-linux-arm7-1.5.6-2a609af5 and will extract
geth binary and related files into that directory. geth binary can be copied into /usr/bin
or the appropriate path on Raspbian to make it available from anywhere in the operating
system. When the download is finished, the next step is to create the genesis block.

The same genesis block needs to be used that was created previously in Chapter 8,
Ethereum Development. The genesis file can be copied from the other node on the network.
This is shown in the following screenshot. Alternatively, an entirely new genesis block can
be generated. This was discussed in detail in Chapter 8, Ethereum Development.

Genesis file

Once the genesis.json file is copied onto the Raspberry Pi, the following command can
be run in order to generate the genesis block. It is important that exactly the same genesis
block is used that was generated previously otherwise the nodes will effectively be running
on separate networks:

$./geth init genesis.json

This will show the output similar to the one shown in the following screenshot:

Initialize genesis file

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[422]

After genesis block creation, there is a need to add peers to the network. This can be
achieved by creating a file named static-nodes.json, which contains the enode ID of the
peer that geth on the Raspberry Pi will connect to for synching.

static nodes configuration

This information can be obtained from the geth JavaScript console by running the following
shown command, this command should be run on the peer to which Raspberry is going to
connect:

> Admin.nodeInfo

This will show the output similar to the one shown in the following screenshot:

geth nodeinfo

After this step, further instructions presented below can be followed in order to connect
Raspberry Pi to the other node on the private network. In the example, the Raspberry Pi
will be connected to the network ID 786 created in Chapter 8, Ethereum Development. The
key is to use the same genesis file created previously and different port numbers. Different
ports are not a strict requirement however. If the two nodes are running under a private
network and access from an environment external to the network is required then a
combination of DMZ/router and port forwarding will be used. Therefore it is recommended
to use different TCP ports to allow port forwarding to work correctly. The identity switch,
which hasn't been introduced previously, in the following command allows for an
identifying name to be specified for the node.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[423]

First node setup
First, geth needs to be started on the first node using the following command:

$ geth --datadir .ethereum/privatenet/ --networkid 786 --maxpeers 5 --rpc -
-rpcapi web3,eth,debug,personal,net --rpcport 9001 --rpccorsdomain "*" --
port 30301 --identity "drequinox"

geth on first node

Once geth is started up it should be kept running and another geth instance should be
started from the Raspberry Pi node.

Raspberry Pi node setup
On Raspberry Pi, the following command is required to be run in order to start geth and
sync it with other nodes (in this case only one node). The following is the command:

$./geth --networkid 786 --maxpeers 5 --rpc --rpcapi
web3,eth,debug,personal,net --rpccorsdomain "*" --port 30302 --identity
"raspberry"

This should produce the output similar to the one shown in the following screenshot. When
the output contains the row displaying Block synchronization started it means that the
node has connected successfully to its peer.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[424]

geth on the Raspberry Pi.

This can be further verified by running commands in the geth console on both nodes as
shown in the following screenshot. geth can be attached by simply running the command
on the Raspberry Pi:

$ geth attach

geth console admin peers command running on Raspberry Pi

Similarly geth can be attached to by running the command below on the first node:

$ geth attach ipc:.ethereum/privatenet/geth.ipc

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[425]

Once the console is available admin.peers can be run to reveal the details about other
connected nodes as shown in the following screenshot:

geth console admin peers command running on the other peer

Once both nodes are up-and-running further prerequisites can be installed in order to set
up the experiment. Installation of Node.js and the relevant JavaScript libraries is required.
The required libraries and dependencies are listed below. First Node.js and npm need to be
updated on the Raspberry Pi Raspbian operating system. For this the following steps can be
followed:

Install latest Node.js on the Raspberry Pi using the following command:1.

 $ curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash
 -

This should display output similar to the following. The output is quite large therefore only
the top part of the output is shown in the following screenshot:

Node.js installation

Run the update via apt-get:2.

 $ sudo apt-get install nodejs

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[426]

Verification can be performed by running the following command to ensure that the correct
versions of Node.js and npm are installed, as shown in the following screenshot below:

npm and node installation verification

It should be noted that these version are not a necessity; any latest version of npm and node
will work. The examples in this chapter makes use of npm 4.0.5 and node v7.4.0.

Install Ethereum web3 npm, which is required to enable JavaScript code to access3.
the blockchain:

npm install web3

Similarly, npm install onoff can be installed, which is required in order to4.
communicate with the Raspberry Pi and control GPIO:

onoff installation

When all prerequisites are installed, hardware setup can be performed. For this purpose a
simple circuit is built using a breadboard and a few electronic components.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[427]

These components are listed as follows:

LED: The abbreviation of Light Emitting Diode, this can be used as visual1.
indication for an event.
Resistor: A 330 ohm component is required which provides resistance to passing2.
current based on its rating. It is not necessary to understand the theory behind it
for this experiment; any standard electronics engineering text covers all these
topics in detail.
Breadboard: This provides a means of building an electronic circuit without3.
requiring soldering.
T-Shaped cobbler: This is inserted on the breadboard as shown in the figure 4.
below and provides a labeled view of all GPIO (General Purpose I/O) pins for
the Raspberry Pi.
Ribbon cable connector: This is simply used to provide connectivity between the5.
Raspberry Pi and the breadboard via GPIO. All these components are shown in
the following image:

Required components

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[428]

Circuit
As shown in the following image, the positive leg (long leg) of the LED is connected to pin
number 21 of the GPIO and the negative (short leg) is connected to the resistor, which is
then connected to the ground (GND) pin of the GPIO. Once the connections are set up the
ribbon cable can be used to simply connect to the GPIO connector on the Raspberry Pi.

Connections for components on the breadboard

Once the connections are set up correctly and the Raspberry Pi has been updated with the
appropriate libraries and geth, the next step is to develop a simple smart contract that
expects a value. If the value provided to it is not what it expects it does not trigger an event;
otherwise, if the value passed matches the correct value, the event triggers which can be
read by the client JavaScript programme running via Node.js. Of course, the solidity
contract can be very complex and can also deal with the ether sent to it and if the amount of
ether is equal to the required amount then the event can trigger; but in this example the aim
is to demonstrate the usage of smart contracts to trigger events that can then be read by
JavaScript programmes running on Node.js, which then in turn can trigger actions on IoT
devices using various libraries.

The smart contract source code is shown as follows:

Solidity code for simple IOT

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[429]

The solidity online compiler can be used to run and test this contract. The Application
Binary Interface (ABI) required for interacting with the contract is also available in the
Interface field as shown in the following screenshot:

Solidity online compiler

There are two methods by which Raspberry node can connect to the private blockchain via
the web3 interface. The first is where the raspberry device is running its own geth and
maintains its own ledger but with resource-constrained devices it is not possible to run a
full geth node, or even a light node in a few circumstances. In that case, the web3 provider
can be initialized to connect to the appropriate RPC channel. This will be shown later in the
client JavaScript Node.js programme. A comparison of both of these approaches is shown in
the following diagram:

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[430]

Application architecture of room rent IoT application (IoT device with local ledger)

Application architecture of room rent IoT application (IoT device without local ledger)

There are obvious security concerns which arise from exposing RPC interfaces publicly,
therefore it is recommended that this option is used only on private networks and if
required to be used on public networks appropriate security measures are put in place, such
as allowing only the known IP addresses to connect to the geth RPC interface. This can be
achieved by a combination of disabling peer discovery mechanisms and HTTP-RPC server
listening interfaces. More information about this can be found in geth help. The traditional
network security measures such as firewalls, Transport Layer Security (TLS) and
certificates can also be used, but have not been discussed in this example.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[431]

Now Truffle can be used to deploy the contract on the private network ID 786 to which at
this point the Raspberry Pi is connected. A truffle deploy can be performed simply by using
the following shown command; it is assumed that truffle init and other preliminaries
discussed in Chapter 8, Ethereum Development have already been performed:

$ truffle migrate

It should produce the output similar to the following screenshot:

Truffle deploy

Once the contract is deployed correctly, JavaScript code can be developed that will connect
to the blockchain via web3, listen for the events from the smart contract in the blockchain,
and turn the LED on via the Raspberry Pi. The JavaScript code is shown as follows:

var Web3 = require('web3');
if (typeof web3 !== 'undefined')
{
 web3 = new Web3(web3.currentProvider);
}
else
{
 web3 = new Web3(new
 Web3.providers.HttpProvider("http://localhost:9002"));
}
var Gpio = require('onoff').Gpio;
var led = new Gpio(21,'out');
var coinbase = web3.eth.coinbase;
var ABIString = '[{"constant":false,"inputs":
[{"name":"x","type":"uint8"}],"name":"getRent","outputs":[{"name":"","type"
:"bool"}],"payable":false,"type":"function"},{"anonymous":false,"inputs":[{
"indexed":false,"name":"returnValue","type":"bool"}],"name":"roomRented","t
ype":"event"}]';
var ABI = JSON.parse(ABIString);
var ContractAddress = '0x151ce17c28b20ce554e0d944deb30e0447fbf78d';
web3.eth.defaultAccount = web3.eth.accounts[0];

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[432]

var simpleiot = web3.eth.contract(ABI).at(ContractAddress);
var event = simpleiot.roomRented({}, function(error, result) {
if (!error)
{
led.writeSync(1);
}
});

Note that in the example above the contract address
0x151ce17c28b20ce554e0d944deb30e0447fbf78d is specific to the deployment and it
will be different when readers run this example. Simply change the address in the file to
what the readers see after deploying the contract. This JavaScript code can be placed in a file
on the Raspberry PI, for example, index.js. It can be run by using the following
command:

$ sudo nodejs index.js

This will start the programme, which will run on Node.js and listen for events from the
smart contract. Once the program is running correctly, the smart contract can be invoked by
using the Truffle console as shown in the following screenshot.

In this case the .getRent function is called with parameter 10, which is the expected value.

Interaction with the contract

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[433]

After the contract is mined, roomRented will be triggered, which will turn the LED on. In
this example it is a simple LED but it can be any physical device such as a room lock that
can be controlled via an actuator. If all works well, the LED will be turned on as a result of
the smart contract function invocation as shown in the following image:

Raspberry Pi with LED control

As demonstrated in the preceding example, a private network of IoT devices can be built
that runs a geth client on each of the nodes and can listen for events from smart contracts
and trigger an action accordingly. The example shown is simple on purpose but
demonstrates the underlying principles of an Ethereum network that can be built using IoT
devices along with smart contract-driven control of the physical devices.

In the next section, other applications of the blockchain technology in government, finance,
and health will be discussed.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[434]

Government
There are various applications of blockchain being researched currently that can support
government functions and take the current model of e-government to the next level. First, in
this section some background for e-government will be provided and then a few use cases
such as e-voting, homeland security (border control), and electronic IDs (citizen ID cards)
will be discussed.

E-government or electronic government is a paradigm where information and
communication technology is used to deliver public services to citizens. The concept is not
new and has been implemented in various countries around the world but with blockchain
a new avenue of exploration has opened up. Many governments are researching the
possibility of using blockchain technology for managing and delivering public services.
Transparency, auditability, and integrity are attributes of blockchain that can go a long way
in effectively managing various government functions.

Border control
Automated border control systems have been in use for decades now in order to thwart
illegal entry into countries and prevent terrorism and human trafficking.

Machine-readable travel documents and specifically biometric passports have paved the
way for automated border control; however current systems are limited to a certain extent
and blockchain technology can provide solutions. A Machine-readable Travel Document
(MRTD) standard is defined in document ICAO 9303 by the International Civil Aviation
Organization (ICAO) and has been implemented by many countries around the world.

Each passport contains various security and identity attributes that can be used to identify
the owner of the passport and also circumvent attempts at tampering with the passports.
These include biometric features such as retina scan, finger prints, facial recognition, and
standard ICAO specified features including Machine Readable Zone (MRZ) and other text
attributes that are visible on the first page of the passport.

One key issue with current border control systems is centralization whereby the systems are
controlled by a single entity and the fact that data is not readily shared between law
enforcement agencies. This makes it difficult to track suspected individuals. Another issue
is related to the immediate implementation of blacklisting of a travel document, for
example, when there is an immediate need to track and control suspected travel documents.
Currently, there is no mechanism available to immediately blacklist or revoke a suspected
passport.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[435]

Blockchain can provide a solution to this problem by maintaining a blacklist in a smart
contract which can be updated as required and any changes will be immediately visible to
all agencies and border control points thus enabling immediate control over the movement
of a suspected travel document. It could be argued that traditional mechanisms like PKIs
and P2P networks can also be used for this purpose but they do not provide the benefits
that a blockchain can provide. With blockchain the whole system can be simplified without
the requirement of complex networks and PKI setups which will also result in cost
reduction. Moreover blockchain based systems will provide cryptographically guaranteed
immutability which helps with auditing and discourages any fraudulent activity.

The full database of all travel documents perhaps cannot be stored on the blockchain
currently due to scalability issues but a backend distributed database such as BigChainDB,
IPFS, or Swarm can be used for that purpose. In this case, a hash of the travel document
with the biometric ID of an individual can be stored in a simple smart contract and a hash
of the document can then be used to refer to the detailed data available on the distributed
file system such as IPFS. This way, when a travel document is blacklisted anywhere on the
network, that information will be available immediately with the cryptographic guarantee
of its authenticity and integrity throughout the distributed ledger. This functionality can
also provide effective support in anti-terrorism activities, thus playing a vital role in the
homeland security function of a government.

A simple contract in solidity can have an array defined for storing identities and associated
biometric records. This array can be used to store the identifying information about a
passport. The identity can be a hash of Machine readable zone (MRZ) of the passport or
travel document concatenated with the biometric record from the RFID chip. A simple
boolean field can be used to identify blacklisted passports. Once this initial check passes,
further detailed biometric verification can be performed by traditional systems and
eventually when a decision is made regarding the entry of the passport holder that decision
can be propagated back to the blockchain, thus enabling all participants on the network to
immediately share the outcome of the decision.

A high-level approach to building a blockchain-based border control system can be
visualized as shown in the following figure. In this scenario, the passport is presented for
scanning to an RFID and page scanner which reads the data page and extracts machine-
readable information along with a hash of the biometric data stored in the RFID chip. At
this stage, a live photo and retina scan of the passport holder is also taken. This information
is then passed on to the blockchain where a smart contract is responsible for verifying the
legitimacy of the travel document by first checking its own list of blacklisted passports and
then requesting more data from the backend IPFS database for comparison. Note that the
biometric data such as photo or retina scan is not stored on the blockchain, instead only a
reference to this data in the backend (IPFS or BigChainDB) is stored in the blockchain.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[436]

If the data from the presented passport matches with what is held in the IPFS as files or in
BigChainDB and also passes the smart contract logical check then the border gate can be
opened.

Automated border control using blockchain

After verification this information is propagated throughout the blockchain and is instantly
available to all participants on the border control blockchain. These participants can be a
worldwide consortium of homeland security departments of various nations.

Voting
Voting in any government is a key function and allows citizens to participate in the
democratic election process. Whilst voting has evolved over time into a much more mature
and secure process, it still has limitations that need to be addressed in order to achieve a
desired level of maturity. Usually, the limitations in current voting systems revolve around
fraud, weaknesses in operational processes, and especially transparency. Over the years,
secure voting mechanisms have been built which make use of specialized voting machines
that promised security and privacy but they still had vulnerabilities that could be exploited
in order to subvert the security mechanisms of those machines. This can lead to serious
implications for the whole voting process and can result in mistrust in the government by
the public.

Blockchain-based voting systems can resolve these issues by introducing end-to-end
security and transparency in the process. Security is provided in the form of integrity and
authenticity of votes by using public key cryptography which comes as standard in a
blockchain. Moreover, immutability guaranteed by blockchain ensures that votes cast once
cannot be cast again. This can be achieved through a combination of biometric features and
a smart contract maintaining a list of votes already cast. For example a smart contract can
maintain a list of already casted votes with the biometric ID (for example a fingerprint) and
can use that to detect and prevent double casting. Secondly, zero knowledge proofs can also
be used on the blockchain to protect voters' privacy on the blockchain.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[437]

Citizen identification (ID cards)
Electronic IDs or national ID cards are issued by various countries around the world at
present. These cards are secure and possess many security features that thwart duplication
or tampering attempts. However, with the advent of blockchain technology there are
several improvements that can be made to this process.

Digital identity is not only limited to just government-issued ID cards, it is a concept that is
applicable in online social networks and forums too. There can be multiple identities used
for different purposes. A blockchain-based online digital identity allows control over
personal information sharing. Users can see who used their data and for what purpose and
can control access to it. This is not possible with the current infrastructures which are
centrally controlled. The key benefit is that a single identity issued by the government can
be used easily and in a transparent manner for multiple services via a single government
blockchain. In this case, the blockchain serves as a platform where government is providing
various services such as pensions, taxation, or benefits and a single ID is being used for
accessing all these services. Blockchain in this case provides an immutable record of every
change and transaction made by a digital ID, thus ensuring integrity and transparency of
the system. Also citizens can notarize birth certificates, marriages, deeds, and many other
documents on the blockchain tied with their digital ID as a proof of existence.

Currently, there are successful implementations of identity schemes in various countries
that work well and there is an argument that perhaps blockchain is not really required in
identity management systems. Although, there are several benefits such as privacy and
control over the usage of identity information but due to the current immaturity of
blockchain technology perhaps it is not ready for use in real-world identity systems.
However, research is being carried out by various governments to explore the usage of
blockchain for identity management.

Moreover, laws such as the right to be forgotten can be quite difficult to incorporate in to
blockchain due to its immutable nature.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[438]

Miscellaneous
Other government functions where blockchain technology can be implemented in order to
improve cost and efficiency include collection of taxes, benefits management and
disbursement, land ownership record management, life event registration (marriages,
births), motor vehicle registration, and licenses. This is not an exhaustive list and over time
many functions and processes of a government can be adapted to a blockchain-based
model. The key benefits of blockchain such as immutability, transparency and
decentralization can help to bring improvements to most of the traditional government
systems.

Health
The health industry has been identified as another major industry that can benefit by
adapting blockchain technology. Blockchain provides an immutable, auditable, and
transparent system that traditional P2P networks cannot. In addition blockchain provides a
cost-effective, simpler infrastructure as compared to traditional complex PKI networks. In
healthcare, major issues such as privacy compromises, data breaches, high costs, and fraud
can arise from lack of interoperability, overly complex processes, transparency, auditability,
and control. Another burning issue is counterfeit medicines; especially in developing
countries, this is a major cause of concern.

With the adaptability of blockchain in the health sector, several benefits can be realized,
ranging from cost saving, increased trust, faster processing of claims, high availability, no
operational errors due to complexity in the operational procedures, and preventing the
distribution of counterfeit medicines.

From another angle, blockchains that are providing a digital currency as an incentive for
mining can be used to provide processing power to solve scientific problems that can help
to find cures for certain diseases. Examples include FoldingCoin, which rewards its miners
with FLDC tokens for sharing their computer's processing power for solving scientific
problems that require particularly large calculations. FoldingCoin is available at
http://foldingcoin.net/. Another similar project is called CureCoin which is available at
https://www.curecoin.net/. It is yet to be seen that how successful these projects will be in
achieving their goals but the idea is very promising.

www.EBooksWorld.ir

http://foldingcoin.net/
https://www.curecoin.net/

Blockchain-Outside of Currencies

[439]

Finance
Blockchain has many applications in the finance industry. Blockchain in finance is the
hottest topic in the industry currently and major banks and financial organizations are
researching to find ways to adapt blockchain technology especially due to its highly-desired
potential to cost-save.

Insurance
In the insurance industry, blockchain technology can help to stop fraudulent claims,
increase the speed of claim processing, and enable transparency. Imagine a shared ledger
between all insurers that can provide a quick and efficient mechanism for handling inter-
company claims. Also with the convergence of IoT and blockchain, an ecosystem of smart
devices can be imagined where all these things are able to negotiate and manage their own
insurance policies controlled by smart contracts on the blockchain.

Blockchain can reduce the overall cost and effort required to process claims. Claims can be
automatically verified and paid via smart contracts and the associated identity of the
insurance policy holder. For example a smart contract with the help of Oracles and possibly
IoT can make sure that when the accident occurred, it can record related telemetry data and
based on this information can release payment. It can also withhold payment if the smart
contract after evaluating conditions of payment concludes that payment should not be
released. For example in a scenario where the vehicle was not repaired by an authorized
workshop or was used outside a designated area and so on and so forth. There can be many
conditions that a smart contract can evaluate to process claims and choice of these rules
depend on the insurer, but the general idea is that smart contracts in combination with IoT
and Oracles can automate the entire vehicle insurance industry.

Several start-ups such as Dynamis have proposed smart contract-based peer-to-peer
insurance platforms that run on Ethereum blockchain. This is initially proposed to be used
for unemployment insurance and does not require underwriters in the model. It is available
at http://dynamisapp.com/.

Post trade settlement
This is the most sought-after application of blockchain technology. Currently, many
financial institutions are exploring the possibility of using blockchain technology to
simplify, automate, and speed up the costly and time-consuming post-trade settlement
process.

www.EBooksWorld.ir

http://dynamisapp.com/

Blockchain-Outside of Currencies

[440]

In order to understand the problem better, the trade lifecycle is described briefly. A trade
lifecycle contains three steps: execution, clearing, and settlement. Execution is concerned
with the commitment of trading between two parties and can be entered into the system via
front office order management terminals or exchanges. Clearing is the next step whereby
the trade is matched between the seller and buyer based on certain attributes such as price
and quantity. At this stage, accounts that are involved in payment are also identified.
Finally, settlement is where eventually the security is exchanged for payment between the
buyer and seller.

In the traditional trade lifecycle model, a central clearing house is required in order to
facilitate trading between parties which bears the credit risk of both parties. The current
scheme is somewhat complicated, whereby a seller and buyer have to take a complex route
in order to trade with each other. This comprises of various firms, brokers, clearing houses,
and custodians but with blockchain a single distributed ledger with appropriate smart
contracts can simplify this whole process and can enable buyers and sellers to talk directly
to each other.

Particularly, the post trade settlement process takes two to three days and has dependency
on central clearing houses and reconciliation systems. With the shared ledger approach, all
participants on the blockchain can immediately see a single version of truth regarding the
state of the trade. Moreover, peer-to-peer settlement is possible, which results in the
reduction of complexity, cost, risk, and the time it takes to settle the trade. Finally,
intermediaries can be totally eliminated by making use of appropriate smart contracts on
the blockchain.

Financial crime prevention
Know your customer (KYC) and Anti Money laundering (AML) are the key enablers for
the prevention of financial crime. In the case of KYC, currently each institution maintains
their own copy of customer data and performs verification via centralized data providers.
This can be a time-consuming process and can result in delays in on-boarding a new client.
Blockchain can provide a solution to this problem by securely sharing a distributed ledger
between all financial institutions that contains verified and accurate identities of customers.
This distributed ledger can only be updated by consensus between the participants thus
providing transparency and auditability. This can not only reduce costs but also enable
meeting regulatory and compliance requirements in a better and consistent manner.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[441]

In the case of AML, due to the immutable, shared, and transparent nature of blockchain,
regulators can easily be granted access to a private blockchain where they can fetch data for
relevant regulatory reporting. This will also result in reducing complexity and costs related
to the current regulatory reporting paradigm where data is fetched from various legacy and
disparate systems and aggregated and formatted together for reporting purposes.
Blockchain can provide a single shared view of all financial transactions in the system that
are cryptographically secure, authentic, and auditable, thus reducing the costs and
complexity associated with the currently employed regulatory reporting methods.

Media
Key issues in the media industry revolve around content distribution, rights management,
and royalty payments to artists. For example, digital music can be copied many times
without any restriction and any attempts to apply copy protection have been hacked in
some way or other. There is no control over the distribution of the content that a musician
or song writer produces; it can be copied as many times as needed without any restriction
and consequently has an impact on the royalty payments. Also, payments are not always
guaranteed and are based on traditional airtime figures. All these issues revolving around
copy protection and royalty payments can be resolved by connecting consumers, artists,
and all players in the industry, allowing transparency and control over the process.
Blockchain can provide a network where digital music is cryptographically guaranteed to
be owned only by the consumers who pay for it. This payment mechanism is controlled by
a smart contract instead of a centralized media agency or authority. The payments will be
automatically made based on the logic embedded within the smart contract and number of
'downloads'. Moreover, illegal copying of digital music files can be stopped altogether
because everything is recorded and owned immutably in a transparent manner on
blockchain. A music file for example can be stored with owner information and timestamp
which can be traced throughout the blockchain network. Furthermore, the consumers who
own a legal copy of some content are cryptographically tied to the content they have and it
cannot be moved to another owner unless permissioned by the owner. Copyrights and
transfers can be managed easily via blockchain once all digital content is immutably
recorded on the blockchain. Smart contracts can then control the distribution and payment
to all concerned parties.

www.EBooksWorld.ir

Blockchain-Outside of Currencies

[442]

Summary
There are many applications of blockchain technology and as discussed in the chapter they
can be implemented in various industries to bring about multiple benefits to existing
solutions. In this chapter, five main industries that can benefit from blockchain have been
discussed. First IoT was discussed, which is another revolutionary technology on its own;
and by combining it with the blockchain several fundamental limitations can be addressed,
which brings about tremendous benefits to the IoT industry. More focus has been given to
IoT as it is the biggest and most ready candidate for adapting blockchain technology.
Already, practical use cases and platforms have emerged in the form of Platform as a
Service (PaaS) for blockchain-based IoT such as the IBM Watson IoT blockchain. IBM Blue
Horizon is also now available for experimentation, which is a decentralized blockchain-
based IoT network. Second, applications in the government sector were discussed whereby
various government processes such as homeland security, identification cards, and benefit
disbursements can be made transparent, secure, and more robust. Furthermore, issues in
the finance sector were discussed with possible solutions that blockchain technology can
provide. Although the finance sector is exploring the possibilities of using blockchain with
high energy and enthusiasm, it is still far away from production-ready blockchain-based
systems. Finally, some aspects of the health sector and music industry were also discussed.
All these use cases and many more in the industry stand on pillars provided by core
attributes of blockchain technology such as decentralization, transparency, reliability, and
security. However, certain challenges need to be addressed before blockchain technology
can be adapted fully; these will be discussed in the next chapter.

www.EBooksWorld.ir

12
Scalability and Other

Challenges
This chapter aims to provide an introduction to various challenges that need to be
addressed before blockchains can become mainstream technology. Even though various use
cases and proof of concept systems have been developed and the technology works well for
many of the scenarios, there still is a need to address some fundamental limitations that are
present in blockchains in order to make this technology more adaptable.

At the top of the list of these issues comes scalability and then privacy. Both of these are
important limitations to address, especially as blockchains are envisioned to be used in
privacy-demanding industries too. There are specific requirements around confidentiality
of transactions in finance, law and health, whereas scalability is generally a concern where
blockchains do not meet the adequate performance levels expected by the users. These two
issues are becoming inhibiting factors toward blockchain technology's wider acceptance. A
review of currently proposed and ongoing research in these two specific areas will be
presented in this chapter. In addition to privacy and security, other challenges include
regulation, integration, adaptability, and security in general. Although, in bitcoin
blockchain security is provably bulletproof and has stood the test of time, there still are
some caveats that may allow security to be compromised to an extent in some subtle
scenarios. Also, there are some reasonable security concerns in other blockchains, such as
Ethereum, regarding smart contracts, denial of service attacks, and large attack surface. All
of these will be discussed in detail in the following sections.

www.EBooksWorld.ir

Scalability and Other Challenges

[444]

Scalability
This problem has been a focus of intense debate, rigorous research, and media attention for
the last few years. This is the single most important problem that could mean the difference
between wider adaptability of blockchains or limited private use only by consortiums. As a
result of substantial research in this area, many solutions have been proposed, which are
discussed in the following section.

From a theoretical perspective, the general approach toward tackling the scalability issue
generally revolves around protocol-level enhancements. For example, a commonly
mentioned solution to bitcoin scalability is to increase its block size. Other proposals include
off-chain solutions that offload certain processing to off-chain networks, for example, off-
chain state networks. Based on the solutions mentioned above, generally, the proposals can
be divided into two categories: on-chain solutions that are based on the idea of changing
fundamental protocols on which the blockchain operates, and off-chain solutions that make
use of network and processing resources off-chain in order to enhance the blockchain.

Another approach to addressing limitations in blockchains has been recently proposed by
Miller and others in their position paper On Scaling Decentralized Blockchains. In this paper, it
is shown that a blockchain can be divided into various abstract layers called planes. Each
plane is responsible for performing specific functions. These include the network plane,
consensus plane, storage plane, view plane, and side plane. This abstraction allows
bottlenecks and limitations to be addressed at each plane individually and in a structured
manner. A brief overview of each layer is given below with some references to the bitcoin
system.

First the network plane is discussed. A key function of the network plane is transaction
propagation. It has been identified in the above-mentioned paper that in bitcoin, this plane
underutilizes the network bandwidth due to the way transaction validation is performed by
a node before propagation and duplication of transaction propagation, first in the
transaction broadcast phase, and then after mining in a block. It should be noted that this
issue was addressed by BIP 152 (Compact Block Relay).

The second layer is called the consensus plane. This layer is responsible for mining and
achieving consensus. Bottlenecks in this layer revolve around limitations in Proof of Work
algorithms whereby increasing consensus speed and bandwidth results in compromising
security of the network due to an increase in the number of forks.

www.EBooksWorld.ir

Scalability and Other Challenges

[445]

The storage plane is the third layer, which stores the ledger. Issues in this layer revolve
around the need for each node to keep a copy of the entire ledger, which leads to certain
inefficiencies, such as increased bandwidth and storage requirements. Bitcoin has a method
available called pruning, which allows a node to operate without the need to download the
full blockchain. This functionality has resulted in major improvements from a storage point
of view.

Next on the list is the view plane, which proposes an optimization which is based on the
proposal that bitcoin miners do not need the full blockchain to operate, and a view can be
constructed out of the complete ledger as a representation of the entire state of the system,
which is sufficient for miners to function. Implementation of views will eliminate the need
for mining nodes to store the full blockchain.

Finally, the side plane has been proposed by the authors of the above-mentioned research
paper. This plane represents the idea of off-chain transactions whereby the concept of
payment or transaction channels is used to offload the processing of transactions between
participants, but is still backed by the main bitcoin blockchain.

The above-mentioned model can be used to describe limitations and improvements in
current blockchain designs in a structured manner. Also, there are several general strategies
that have been proposed over the last few years which can address the limitations in current
blockchain designs such as Ethereum and bitcoin. These approaches are also characterized
and discussed individually in the following section.

Block size increase
This is the most debated proposal for increasing blockchain performance (transaction
processing throughput). Currently, bitcoin can process only about three to seven
transactions per second, which is a major inhibiting factor in adapting the bitcoin
blockchain for processing micro-transactions. Block size in bitcoin is hardcoded to be 1 MB,
but if block size is increased, it can hold more transactions and can result in faster
confirmation time. There are several Bitcoin Improvement Proposals (BIPs) made in favor
of block size increase. These include BIP 100, BIP 101, BIP 102, BIP 103, and BIP 109. In
Ethereum, the block size is not limited by hardcoding; instead, it is controlled by gas limit.
In theory, there is no limit on the size of a block in Ethereum because it's dependent on the
amount of gas, which can increase over time. This is possible because miners are allowed to
increase the gas limit for subsequent blocks if the limit has been reached in the previous
block.

www.EBooksWorld.ir

Scalability and Other Challenges

[446]

Block interval reduction
Another proposal is to reduce the time between each block generation. The time between
blocks can be decreased to achieve faster finalization of blocks but may result in less
security due to the increased number of forks. Ethereum has achieved a block time of
approximately 14 seconds and, at times, it can increase. This is a significant improvement
from the bitcoin blockchain, which takes 10 minutes to generate a new block. In Ethereum,
the issue of high orphaned blocks resulting from smaller times between blocks is mitigated
by using the Greedy Heaviest Observed Subtree (GHOST) protocol whereby orphaned
blocks (uncles) are also included in determining the valid chain. Once Ethereum moves to
Proof of Stake, this will become irrelevant as no mining will be required and almost
immediate finality of transactions can be achieved.

Invertible Bloom lookup tables
This is another approach that has been proposed to reduce the amount of data required to
be transferred between bitcoin nodes. Invertible Bloom lookup tables (IBLTs) were
originally proposed by Gavin Andresen, and the key attraction in this approach is that it does
not result in a hard fork of bitcoin if implemented. The key idea is based on the fact that
there is no need to transfer all transactions between nodes; instead, only those that are not
already available in the transaction pool of the synching node are transferred. This allows
quicker transaction pool synchronization between nodes, thus increasing the overall
scalability and speed of the bitcoin network.

Sharding
Sharding is not a new technique and has been used in distributed databases for scalability
such as MongoDB and MySQL. The key idea behind sharding is to split up the tasks into
multiple chunks that are then processed by multiple nodes. This results in improved
throughput and reduced storage requirements. In blockchains, a similar scheme is
employed whereby the state of the network is partitioned into multiple shards. The state
usually includes balances, code, nonce, and storage. Shards are loosely coupled partitions of
a blockchain that run on the same network. There are a few challenges related to inter-shard
communication and consensus on the history of each shard. This is an open area for
research.

www.EBooksWorld.ir

Scalability and Other Challenges

[447]

State channels
This is another approach proposed for speeding up the transaction on a blockchain
network. The basic idea is to use side channels for state updating and processing
transactions off the main chain; once the state is finalized, it is written back to the main
chain, thus offloading the time-consuming operations from the main blockchain. State
channels work by performing the following three steps:

First, a part of the blockchain state is locked under a smart contract, ensuring the1.
agreement and business logic between participants.
Now off-chain transaction processing and interaction is started between the2.
participants that update the state only between themselves for now. In this step,
almost any number of transactions can be performed without requiring the
blockchain and this is what makes the process fast and a best candidate for
solving blockchain scalability issues. However, it could be argued that this is not
a real on-blockchain solution such as, for example, sharding, but the end result is
a faster, lighter, and robust network which can prove very useful in
micropayment networks, IoT networks, and many other applications.
Once the final state is achieved, the state channel is closed and the final state is3.
written back to the main blockchain. At this stage, the locked part of the
blockchain is also unlocked.

This technique has been used in the bitcoin lightning network and Ethereum's Raiden.

Private blockchain
Private blockchains are inherently fast because no real decentralization is required and
participants on the network do not need to mine; instead, they can only validate
transactions. This can be considered as a workaround to the scalability issue in public
blockchains; however, this is not the solution to the scalability problem. Also, it should be
noted that private blockchains are only suitable in specific areas and setups.

Proof of Stake
Instead of using Proof of Work, Proof of Stake algorithm based blockchains are
fundamentally faster.

www.EBooksWorld.ir

Scalability and Other Challenges

[448]

Sidechains
Sidechains can improve scalability indirectly by allowing many sidechains to run along
with the main blockchain while allowing usage of perhaps comparatively less secure and
faster sidechains to perform transactions but still pegged with the main blockchain. The
core idea of sidechains is called a two-way peg, which allows transfer of coins from a parent
chain to a side chain and vice versa.

Subchains
This is a relatively new technique recently proposed by Peter R. Rizun which is based on the
idea of weak blocks that are created in layers until a strong block is found. Weak blocks can
be defined as those blocks that have not been able to be mined by meeting the standard
network difficulty criteria but have done enough work to meet another weaker difficulty
target. Miners can build subchains by layering weak blocks on top of each other, unless a
block is found that meets the standard difficulty target. At this point, the subchain is closed
and becomes the strong block. Advantages of this approach include reduced waiting time
for the first verification of a transaction. This technique also results in a reduced chance of
orphaning blocks and speeds up transaction processing. This is also an indirect way of
addressing the scalability issue. Subchains do not require any soft fork or hard fork to
implement but need acceptance by the community.

Tree chains
There are also other proposals to increase bitcoin scalability, such as tree chains that change
the blockchain layout from a linearly sequential model to a tree. This tree is basically a
binary tree which descends from the main bitcoin chain. This approach is similar to
sidechain implementation, eliminating the need for major protocol change or block size
increase. It allows improved transaction throughput. In this scheme, the blockchains
themselves are fragmented and distributed across the network in order to achieve
scalability. Moreover, mining is not required to validate the blocks on the tree chains;
instead, users can independently verify the block header. However, this idea is not ready
for production yet and further research is required in order to make it practical.

www.EBooksWorld.ir

Scalability and Other Challenges

[449]

In addition to the above-mentioned general techniques, some bitcoin-specific improvements
have also been proposed by Christian Decker in his book On the Scalability and Security of
Bitcoin. This proposal is based on the idea of speeding up propagation time as the current
information propagation mechanism results in blockchain forks. These techniques include
minimization of verification, pipelining of block propagation, and connectivity increase.
These changes do not require fundamental protocol-level changes; instead, these changes
can be implemented independently in the bitcoin node software. With regards to
verification minimization, it has been noted that the block verification process is
contributing toward propagation delay. The reason behind this is that a node takes a long
time to verify uniqueness of the block and transactions within the block. It has been
suggested that a node can send the inventory message as soon as the initial Proof of Work
and block validation checks are completed. This way, propagation can be improved by just
performing the first difficulty check and not waiting for transaction validation to finish. In
addition to the above proposal, pipelining of block propagation has also been suggested,
which is based on the idea of anticipating the availability of a block. In this scheme, the
availability of a block is already announced without waiting for actual block availability,
thus reducing the round-trip time between nodes. Finally, the problem of long distances
between transaction originator and nodes also contributes toward the slowdown of block
propagation. It has been shown in the research conducted by Christian Decker that
connectivity increase can reduce propagation delay of blocks and transactions. This is
possible because, if at any one time the bitcoin node is connected to many other nodes, it
will result in reducing the distance between nodes and can speed up information
propagation on the network.

An elegant solution to scalability issues will most likely be a combination of some or all of
the above-mentioned general approaches. A number of initiatives taken in order to address
scalability and security issues in blockchains are now almost ready for implementation. For
example, bitcoin segregated witness is a proposal that can help massively with scalability
and only needs a soft fork in order for it to be implemented. The key idea behind so called
segwit is to separate signature data from the transactions, which resolves the transaction
malleability issue and allows block size increase.

Another proposal, Bitcoin NG, which is based on the idea of micro blocks and leader
election, has gained some attention recently. The core idea is to split blocks into two types,
namely leader blocks (also called key blocks) and micro blocks. Leader blocks are
responsible for Proof of Work whereas micro blocks contain actual transactions. Micro
blocks do not require any Proof of Work and are generated by the elected leader every
block-generation cycle. This block-generation cycle is initiated by a leader block. The only
requirement is to sign the micro blocks with the elected leader's private key. The micro
blocks can be generated at a very high speed by the elected leader (miner), thus resulting in
increased performance and transaction speed.

www.EBooksWorld.ir

Scalability and Other Challenges

[450]

On the other hand, recently, an Ethereum mauve paper written by Vitalik Buterin has been
presented at Ethereum Devcon 2 in Shanghai; it describes the vision of a scalable Ethereum.
The mauve proposal is based on a combination of sharding and implementation of Proof of
Stake algorithm. Certain goals such as efficiency gain via Proof of Stake, maximally fast
block time, economic finality, scalability, cross-shard communication, and censorship
resistance have been identified in the paper.

Privacy
Privacy of transactions is a much desired property of blockchains. However, due to its very
nature, especially in public blockchains, everything is transparent, thus inhibiting its usage
in various industries where privacy is of paramount importance, such as finance, health,
and many others. There are different proposals made to address the privacy issue and some
progress has already been made. Several techniques, such as indistinguishability
obfuscation, usage of homomorphic encryption, zero knowledge proofs, and ring
signatures. All these techniques have their merits and demerits and are discussed in the
following sections.

Indistinguishability obfuscation
This cryptographic technique may serve as a silver bullet to all privacy and confidentiality
issues in blockchains but the technology is not yet ready for production deployments.
Indistinguishability obfuscation (IO) allows for code obfuscation, which is a very ripe
research topic in cryptography and, if applied to blockchains, can serve as an unbreakable
obfuscation mechanism that will turn smart contracts into a black box. The key idea behind
IO is what's called by researchers a multilinear jigsaw puzzle, which basically obfuscates
program code by mixing it with random elements, and if the program is run as intended, it
will produce expected output but any other way of executing would render the program
look random and garbage. This idea was first proposed by Sahai and others in their research
paper Candidate Indistinguishability Obfuscation and Functional Encryption for All Circuits.

www.EBooksWorld.ir

Scalability and Other Challenges

[451]

Homomorphic encryption
This type of encryption allows operations to be performed on encrypted data. Imagine a
scenario where the data is sent to a cloud server for processing. The server processes it and
returns the output without knowing anything about the data that it has processed. This is
also an area ripe for research and fully homomorphic encryption that allows all operations
on encrypted data is still not fully deployable in production; however, major progress in
this field has already been made. Once implemented on blockchains, it can allow processing
on cipher text which will allow privacy and confidentiality of transactions inherently. For
example, the data stored on the blockchain can be encrypted using homomorphic
encryption and computations can be performed on that data without the need for
decryption, thus providing privacy service on blockchains. This concept has also been
implemented in a project named Enigma by MIT's Media Lab. Enigma is a peer-to-peer
network which allows multiple parties to perform computations on encrypted data without
revealing anything about the data.

Zero knowledge proofs
Zero knowledge proofs have recently been implemented in Zcash successfully, as seen in
previous chapters. More specifically, SNARKs have been implemented in order to ensure
privacy on the blockchain. The same idea can be implemented in Ethereum and other
blockchains also. Integrating Zcash on Ethereum is already a very active research project
being run by the Ethereum R&D team and the Zcash Company.

State channels
Privacy using state channels is also possible, simply due to the fact that all transactions are
run off-chain and the main blockchain does not see the transaction at all except the final
state output, thus ensuring privacy and confidentiality.

Secure multiparty computation
The concept of secure multiparty computation is not new and is based on the notion that
data is split into multiple partitions between participating parties under a secret sharing
mechanism which then does the actual processing on the data without the need of the
reconstructing data on single machine. The output produced after processing is also shared
between the parties.

www.EBooksWorld.ir

Scalability and Other Challenges

[452]

Usage of hardware to provide confidentiality
Trusted computing platforms can be used to provide a mechanism by which confidentiality
of transaction can be achieved on a blockchain, for example, by using Intel Software Guard
Extension (SGX), which allows code to be run in a hardware-protected environment called
an enclave. Once the code runs successfully in the isolated enclave, it can produce a proof
called a quote that is attestable by Intel's cloud servers. However, it is a concern that trusting
Intel will result in some level of centralization and is not in line with the true spirit of
blockchain technology. Nevertheless, this solution has its merits and, in reality, many
platforms already use Intel chips anyway, therefore trusting Intel may be acceptable in
some scenarios.

If this technology is applied on smart contracts then, once a node has executed the smart
contract, it can produce the quote as a proof of correct and successful execution and other
nodes will only have to verify it. This idea can be further extended by using any Trusted
Execution Environment (TEE) which can provide the same functionality as an enclave and
is available even on mobile devices with Near Field Communication (NFC) and a secure
element.

Coinjoin
Coinjoin is a technique which is used to anonymize the bitcoin transactions by mixing them
interactively. The idea is based on forming a single transaction from multiple entities
without causing any change in inputs and outputs. It removes the direct link between
senders and receivers, which means that a single address can no longer be associated with
transactions, which could lead to identification of the users. Coinjoin needs cooperation
between multiple parties that are willing to create a single transaction by mixing payments.
Therefore, it should be noted that, if any single participant in the Coinjoin scheme does not
keep up with the commitment made to cooperate for creating a single transaction by not
signing the transactions as required, then it can result in a denial of service attack. In this
protocol, there is no need for a single trusted third party. This concept is different from
mixing a service which acts as a trusted third party or intermediary between the bitcoin
users and allows shuffling of transactions. This shuffling of transactions results in the
prevention of tracing and the linking of payments to a particular user.

www.EBooksWorld.ir

Scalability and Other Challenges

[453]

Confidential transactions
Confidential transactions make use of Pedersen commitments in order to provide
confidentiality. Commitment schemes allow a user to commit to some value while keeping
it secret with the capability of revealing it later. Two properties that need to be satisfied in
order to design a commitment scheme are binding and hiding. Binding makes sure that the
committer is unable to change the chosen value once committed, whereas the hiding
property ensures that any adversary is unable to find the original value to which the
committer made commitment. Pedersen commitments also allow addition operations and
preserve commutative property on the commitments, which makes it specifically useful for
providing confidentiality in bitcoin transactions. In other words, it supports homomorphic
encryption of values. Using commitment schemes allows the hiding of payment values in a
bitcoin transaction. This concept is already implemented in the Elements Project (h t t p s ://e

l e m e n t s p r o j e c t . o r g /).

MimbleWimble
The MimbleWimble scheme was proposed somewhat mysteriously on the bitcoin IRC
channel and since then has gained a lot of popularity. MimbleWimble extends the idea of
confidential transactions and Coinjoin, which allows aggregation of transactions without
requiring any interactivity. However, it does not support the use of bitcoin scripting
language along with various other features of standard Bitcoin protocol. This makes it
incompatible with existing Bitcoin protocol. Therefore, it can either be implemented as a
sidechain to bitcoin or on its own as an alternative cryptocurrency.

This scheme can address privacy and scalability issues both at once. The blocks created
using the MimbleWimble technique do not contain transactions as in traditional bitcoin
blockchains; instead, these blocks are composed of three lists: an input list, output list, and
something called excesses which are lists of signatures and differences between outputs and
inputs. The input list is basically references to the old outputs, and the output list contains
confidential transactions outputs. These blocks are verifiable by nodes by using signatures,
inputs, and outputs to ensure the legitimacy of the block. In contrast to bitcoin,
MimbleWimble transaction outputs only contain pubkeys, and the difference between old
and new outputs is signed by all participants involved in the transactions.

www.EBooksWorld.ir

https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/
https://elementsproject.org/

Scalability and Other Challenges

[454]

Security
Even though blockchains are generally secure and make use of asymmetric and symmetric
cryptography as required throughout the blockchain network, there still are few caveats
that can result in compromising the security of the blockchain.

There are a few examples of transaction malleability, eclipse attacks, and possibility of
double spending in bitcoin that, in certain scenarios, have been shown to work by various
researchers. Transaction malleability opens up the possibility of double withdrawal or
deposit by allowing a hacker to change a transaction's Unique ID before the bitcoin network
can confirm it, resulting in a scenario where it would seem that transactions did not occur.
BIP 62 is one of the proposals along with segregated witness (segwit) that have suggested
solutions to solve this issue. It should be noted that this is a problem only in the case of
unconfirmed transactions, that is, scenarios where operational processes rely on
unconfirmed transactions. In the case of normal applications that only rely on confirmed
transactions, this is not an issue.

Information eclipse attacks in bitcoin can result in double spending. The idea behind eclipse
attacks is that the bitcoin node is tricked into connecting only with the attacker node IPs.
This opens up the possibility of a 51 % attack by the attacker. This has been addressed to
some extent in bitcoin client v0.10.1.

Smart contract security
Recently, a lot of work has been started in smart contract security and, especially, formal
verification of smart contracts is being discussed and researched. This was all triggered
especially due to the infamous DAO hack. Formal verification is a process of verifying a
computer program to ensure that it satisfies certain formal statements. This is now a new
concept and there are a number of tools available for other languages that achieve this; for
example, Frama-C is available for analyzing C programs. The key idea behind formal
verification is to convert the source program into a set of statements that is understandable
by the automated provers. For this purpose, Why3 is commonly used, and a formal verifier
for solidity also makes use of that. An experimental but operational verifier is available in
browser solidity already.

www.EBooksWorld.ir

Scalability and Other Challenges

[455]

Smart contract security is of paramount importance now, and many other initiatives have
also been taken in order to devise methods that can analyze solidity programs and find
bugs. A recent and seminal example is Oyente, which is a tool built by researchers and has
been introduced in their paper Making Smart Contracts Smarter. Several security bugs in
smart contracts have been discovered and analyzed in this paper. These include transaction
ordering dependence, time stamp dependence, mishandled exceptions such as call stack
depth limit exploitation, and re-entrance vulnerability. The transaction ordering
dependency bug basically exploits the scenarios where the perceived state of a contract
might not be what the state of the contract changes to after execution. This weakness is a
type of race condition. It is also called frontloading and is possible due to the fact that the
order of transactions within a block can be manipulated. As all transactions first appear in
the memory pool, the transactions there can be monitored before they are included in the
block. This allows a transaction to be submitted before another transaction, thus leading to
controlling the behavior of a smart contract.

Time stamp dependency bugs are possible in scenarios where the time stamp of the block is
used as a source of some decision-making within the contract, but time stamps can be
manipulated by the miners. Call stack depth limit is another bug that can be exploited due
to the fact that the maximum call stack depth of EVM is 1,024 frames. If the stack depth is
reached while the contract is executing then, in certain scenarios, the send or call instruction
can fail, resulting in non-payment of funds. The call stack depth bug was addressed in the
EIP50 hard fork. The re-entrancy bug was exploited in the DAO attack to siphon out
millions of dollars into a child DAO. The re-entrancy bug basically means that a function
can be called repeatedly before the previous (first) invocation of the functions has
completed. This is particularly unsafe in Ether withdrawal functions in solidity smart
contracts.

In additional to the above-mentioned bugs, there are several other problems that should be
kept in mind while writing contracts. These bugs include that fact that if sending funds to
another contract, handle it carefully because send can fail and even if throw is used as a
catch-all mechanism, it will not work.

www.EBooksWorld.ir

Scalability and Other Challenges

[456]

Other standard software bugs such as integer overflow and underflow are also quite
significant and any use of integer variables should be carefully implemented in solidity. For
example, a simple program where uint8 is used to parse through elements of an array with
more than 255 elements can result in an endless loop. This occurs because uint8 is limited to
256 numbers.

In the following sections, two examples of contract verification will be shown using Why3
and Oyente respectively.

Why3 formal verification
Formal verification of solidity code is now available as a feature in the solidity browser.
First the code is converted into Why3 language that the verifier can understand. In the
example below, a simple solidity code that defines the variable z as maximum limit of uint
is shown. When this code runs, it will result in returning 0, because uint z will overrun
and start again from 0. This can also be verified using Why3, which is shown below:

Solidity online compiler with formal verification

Once the solidity is compiled and available in the formal verification tab, it can be copied
into the Why3 online IDE available at h t t p ://w h y 3. l r i . f r /t r y /. The example below
shows that it successfully checks and reports integer overflow errors. This tool is under
heavy development but is still quite useful. Also, this tool or any other similar tool is not a
silver bullet. Even formal verification generally should not be considered a panacea because
specifications in the first place should be defined appropriately:

www.EBooksWorld.ir

http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/
http://why3.lri.fr/try/

Scalability and Other Challenges

[457]

Why3

Oyente tool
Currently, Oyente is available as a Docker image for easy testing and installation. It is
available at h t t p s ://g i t h u b . c o m /e t h e r e u m /o y e n t e , and can be quickly downloaded and
tested. In the example below, a simple contract taken from solidity documentation that
contains a re-entrancy bug has been tested and it is shown that Oyente successfully
analyzes the code and finds the bug:

Contract with re-entrancy bug – source: solidity documentation

www.EBooksWorld.ir

https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente
https://github.com/ethereum/oyente

Scalability and Other Challenges

[458]

This sample code contains a re-entrancy bug which basically means that if a contract is
interacting with another contract or transferring ether, it is effectively handing over the
control to that other contract. This allows the called contract to call back into the function of
the contract from which it has been called without waiting for completion. For example, this
bug can allow calling back into the withdraw function shown in the preceding example
again and again, resulting in getting Ethers multiple times. This is possible because the
share value is not set to 0 until the end of the function, which means that any later
invocations will be successful, resulting in withdrawing again and again.

An example is shown of Oyente running to analyze the contract shown below and as can be
seen in the following output, the analysis has successfully found the re-entrancy bug. The
bug is proposed to be handled by a combination of the Checks-Effects-Interactions pattern
described in the solidity documentation:

Oyente tool detecting solidity bugs

www.EBooksWorld.ir

Scalability and Other Challenges

[459]

Summary
In this chapter, readers have been introduced to the security, confidentiality, and privacy
aspects of blockchain technology. Privacy was discussed, which is another major inhibiting
factor in adapting public blockchains for various industries. Next, smart contract security,
which is a very hot topic currently, was discussed. It is a deep and extensive subject but a
brief introduction on various aspects has been given, which should serve as a solid ground
for further research in this area. For example, formal verification on its own is a vast area for
research. Furthermore, examples of formal verification have also been provided to give
readers an idea of what tools are available. It should be noted that the tools mentioned
above are under heavy development and lack various desirable features. Also,
documentation is quite scarce; therefore, readers are encouraged to keep an eye on
developments, especially around formal verification and developments related to the
Ethereum mauve paper, as it is going to develop rapidly very soon. The field of blockchain
security and especially smart contract security is so ripe now that a whole book can be
written on the subject. There are many experts and researchers in academia and the
commercial sector exploring this area and soon there will be many automated tools
available for the verification of smart contracts.

www.EBooksWorld.ir

13
Current Landscape and

What's Next
Blockchain technology will change the way we conduct our day-to-day business. It has
challenged existing business models and has the promise of great benefits in terms of cost
saving, and greater efficiency and transparency. This chapter will explore the latest
developments, emerging trends, issues, and future predictions about this technology.
Furthermore, some topics related to open research problems and improvements will be
discussed in detail in the chapter.

Emerging trends
Blockchain technology is under rapid change and intense development due to deep interest
in it by academics and the commercial sector. As the technology is becoming mature, a few
trends have started to emerge recently. For example, private blockchains have recently
gained quite a lot of attention due to their specific use cases in finance. Also, enterprise
blockchains are another new trend that is aiming to develop blockchain solutions that meets
enterprise-level efficiency, security, and integration requirements. Some of the trends are
listed below and discussed.

www.EBooksWorld.ir

Current Landscape and Whats Next

[461]

Application-specific blockchains (ASBCs)
Currently, an inclination toward ASBCs is noticed, whereby a blockchain or distributed
ledger is specifically developed for only one application in mind and is focused on a specific
industry, for example, everledger, which is a blockchain that has been developed to be used
for providing an immutable tracing history and audit trail for diamonds and other high-
value items. This approach thwarts any fraud attempts because everything related to
ownership, authenticity, and value of the items is verified and recorded on the blockchain.
This is very valuable for insurance and law enforcement agencies.

Enterprise-grade blockchains
As blockchains in their original form are not ready for use at enterprise level due to privacy
and scalability issues, a recent trend in developing enterprise-grade blockchains has
emerged, whereby various companies have started to provide enterprise-grade blockchain
solutions that are ready to be deployed and integrated at enterprise level. Requirements
such as testing, documentation, integration, and security are all addressed already in this
type of solution and can be implemented with minimal or no change at the enterprise level.
This is in contrast to public blockchains, which are unregulated and do not meet specific
enterprise-level security requirements. This also implies that enterprise-grade blockchains
are usually supposed to be implemented in private configurations; however, public
enterprise-grade blockchain implementation is also a possibility. 2016 has been a year when
many technology start-ups have started to offer enterprise-grade blockchain solutions such
as bloq, tylmez, chain, and many others. This trend continues to grow and 2017 will see
more technology initiatives like this.

Private blockchains
With the need for privacy and confidentiality, a major focus is on developing private
distributed ledgers that can be used within a group of trusted participants. As public
blockchains, due to their open and comparatively less secure nature, are not suitable for
industries such as finance, medicine, and law, private blockchains hold the promise to
address this limitation and bring end users one step closer to reaping the benefits of
blockchains while meeting all security and privacy requirements. Public blockchains are
less secure because generally they do not provide privacy and confidentiality services.
Private blockchains allow the participants or a subset of participants to be in full control of
the system, thus making it desirable for use in finance and other industries where privacy
and control are required.

www.EBooksWorld.ir

Current Landscape and Whats Next

[462]

Ethereum can be used in both private and public modes, whereas there are a few projects
that have been developed solely as private blockchains, such as Hyperledger and Corda.

Start-ups
In recent years, many technology start-ups have emerged that are working on blockchain
projects and are offering solutions specific to this technology. 2016 especially has seen a
significant increase in the number of start-ups that are offering blockchain consultancy and
solutions.

Strong research interest
Blockchain technology has stimulated intense research interest both in academia and the
commercial sector. In recent years, the interest has greatly increased and now major
institutions and researchers around the world are exploring this technology. This growth in
interest is especially due to the fact that blockchain technology can help to make businesses
efficient, reduce costs, and make things transparent. Academic interest is around
addressing hard problems in cryptography, consensus mechanisms, performance, and
addressing other limitations in blockchains. As blockchain technology comes under the
wider umbrella of distributed systems, many researchers from distributed computing
research have focused their research on blockchain technology. For example, UCL has a
dedicated department, the UCL Research Centre for Blockchain Technologies, that focuses on
blockchain technology research. Another example is the ETH Zurich distributed computing
group that has published seminal research regarding blockchain technology. A recent
journal called the Ledger Journal has recently published its first issue of research papers. It
is available at h t t p ://w w w . l e d g e r j o u r n a l . o r g /o j s /i n d e x . p h p /l e d g e r . There are now
teams and departments dedicated to blockchain research and development in various
academic and commercial institutes. Although the above-mentioned initiatives are not an
exhaustive list by any stretch of imagination, it is still a solid indication that this is a subject
of extreme interest for researchers, and more research and development is expected to be
seen in 2017 and beyond. Another organization called The Initiative for CryptoCurrencies
and Contracts (IC3), is also conducting research in smart contract and blockchain
technologies. IC3 aims to address performance, confidentiality, and safety issues in
blockchains and smart contracts and runs multiple projects to address these issues. More
information about projects running in IC3 is available online at h t t p ://w w w . i n i t c 3. o r g /.

www.EBooksWorld.ir

http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.ledgerjournal.org/ojs/index.php/ledger
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/
http://www.initc3.org/

Current Landscape and Whats Next

[463]

Standardization
Blockchain technology is not yet mature enough to be able to readily integrate with existing
systems. Even, as the current technology stands, two blockchain networks cannot easily talk
to each other. Standardization will help to improve interoperability, adoptability, and
integration aspects of blockchain technology. Some attempts have been made recently to
address this and the most notable out of these attempts is the establishment of ISO/TC 307,
which is a technical committee with the scope of standardizing blockchain and distributed
ledger technology. The aim of the committee revolves around increasing interoperability
and data interchange between users, applications, and systems. On the other hand, the
recent creation of consortia and open source collaborative efforts such as R3 and
Hyperledger has helped with standardization of this technology by sharing ideas, tools, and
code with other participants. R3 works with a consortium of more than 80 banks that all
have similar goals, which in a way results in standardization. Hyperledger, on the other
hand, has a reference architecture that can be used to build blockchain systems and is
supported by the Linux foundation and many other participants from the industry. Another
example is the chain open standard, which is a protocol developed for financial networks.
The chain OS1 standard is already available, which was built in collaboration with major
financial institutions around the world. This standard allows faster settlement of
transactions and immediate peer-to-peer transaction routing. It aims to address regulatory,
security, and privacy requirements in blockchain technologies. OS1 also provides a
framework for smart contract development and allows the participant to meet AML and
KYC requirements easily.

Smart contract standardization efforts have also started with a seminal paper authored by
Lee and others, which formally defines the smart contract templates and presents a vision
for future research and necessities in smart contract related research and development. This
paper is available at h t t p s ://a r x i v . o r g /a b s /1608. 00771v 2. Moreover, some discussion
on this topic has been carried out in Chapter 12, Scalability and Other Challenges and Chapter
6, Smart Contracts.

All of the above-mentioned efforts are a clear indication that very soon, standards will
emerge in the industry that will further make adoption of blockchain technology easier and
quicker. Standards will also result in exponential growth of the blockchain industry because
availability of standards will eliminate hurdles such as interoperability.

www.EBooksWorld.ir

https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2
https://arxiv.org/abs/1608.00771v2

Current Landscape and Whats Next

[464]

Enhancements
Various enhancements and suggestions to further develop existing blockchains have been
made over the last few years. Most of these suggestions have been made in response to
security vulnerabilities and to address inherent limitations in blockchain technology. There
are certain limitations in blockchain technology, such as scalability, privacy, and
interoperability, that are required to be addressed before it can become mainstream like any
other technology. Recently, there have been tremendous efforts made toward addressing
scalability issues in blockchain technology, which have been discussed in the previous
chapter. Also blockchain-specific improvement proposals such as BIPs (bitcoin
improvement proposals) and EIPs (Ethereum improvement proposals) are being made
regularly by developers to address various concerns in these systems. Some recent and
notable improvement proposals for both of these chains will be discussed later in the
chapter. Moreover, recent advancements such as state channels are examples that
blockchain technology is improving rapidly and very soon will evolve as a mature and
more practical technology.

Real-world implementations
Many proofs of concept have been developed in recent years, especially in 2016, using
blockchain technology. A few application-specific implementations emerged, such as
everledger for diamond tracking and filament for Internet of Things (IoT), but are still
lacking in various areas. Concrete, real-life, end-to-end implementations are not available
yet, especially in the finance industry. This seems not too far now as many proofs of concept
have already been developed and proved to work; the next stage is to implement these in
real-life scenarios. For example, recently, a group of seven banks agreed to build a Digital
Trade Chain (DTC) that will simplify the trade finance process.

Consortia
2016 has been seen as a year when consortia and shared open source efforts started. This
trend is expected to grow and more and more consortia, committees, and open source
efforts will emerge soon. A prime example is R3,which has developed Corda with a
consortium of the world's largest financial organizations.

www.EBooksWorld.ir

Current Landscape and Whats Next

[465]

Answers to challenges
Already, due to intense research effort and interest from the community in blockchain
technology, answers to various challenges have started to emerge. For example, the concept
of state channels has been developed as a response to scalability and privacy issues on the
blockchain. Using state channels, the bitcoin lightning network and Ethereum's Raiden are
already almost ready for implementation. Moreover, various blockchain solutions emerged,
such as Kadena, that directly addressed the confidentiality issues in blockchains. Other
concepts such as Zcash, Coinjoin, and confidential transactions have also been developed
and were discussed in previous chapters. This trend will also continue to grow in years to
come and even if almost all fundamental challenges are addressed in blockchain
technology, further enhancement and optimization will never stop.

Convergence
Convergence of other technologies with blockchains brings about major benefits. At their
core, blockchains provide resilience, security, and transparency, which, when combined
with other technologies, results in a very powerful technology that complement each other.
For example, the IoT can gain major benefits when implemented via blockchains, such as
integrity, decentralization, and scalability. Artificial intelligence (AI) is expected to gain
benefits from blockchain technology, and in fact, within blockchain technology, AI can be
implemented in the form of Autonomous Agents (AAs). More examples and the above-
mentioned converging technologies will be discussed in detail in later sections in the
chapter.

Education of blockchain technology
Whilst blockchain technology has spurred a great interest among technologists, developers,
and scientists throughout almost every industry around the world, there is a lack of formal
learning resources and educational material. As this is a new technology, various courses
are now being offered by various reputed institutions such as Princeton University that
introduce the technology to anyone who wants to learn about this technology. For example,
Princeton University has started a cryptocurrency and digital currencies course that is
delivered online and is quite popular. Many private organizations are also offering similar
online and classroom training courses. More efforts like this will be seen in the near future
due to the popularity and acceptance of blockchain technology.

www.EBooksWorld.ir

Current Landscape and Whats Next

[466]

Employment
There is a recent trend emerging in the job market whereby recruiters are now looking for
blockchain experts and developers who can program for blockchains. This is especially
relevant to the financial industry and recently many start-ups and large organizations have
started to hire blockchain specialists. This trend is of course expected to grow as the
technology gains more acceptance and maturity. There is also concern about the lack of
blockchain developers, which surely will be addressed as the technology progresses and
more and more developers either gain experience on a self-learning basis or gain formal
training from some training providers.

Crypto-economics
New fields of research are emerging with blockchains, most notably, crypto-economics,
which is the study of protocols governing the decentralized digital economy. With the
advent of blockchains and cryptocurrencies, research in this area has also grown. Crypto-
economics has been defined as a combination of mathematics, cryptography, economics,
and game theory by Vitalik Buterin.

Research in cryptography
Even though cryptography was an area of keen interest and research for many decades
before bitcoin invention, blockchain technology has resulted in renewed interest in this
field. With the advent of blockchains and related technologies, there is a significant increase
in the interest in cryptography also. Especially in the area of financial cryptography, new
research is being carried out and published regularly. Technologies such as zero knowledge
proofs, fully homomorphic encryption, and functional encryption are being researched for
their use in blockchains. In the form of Zcash, already zero knowledge proofs have been
implemented for the first time at a practical level. It can be seen that blockchains and
cryptocurrencies have helped with the advancement of cryptography and especially
financial cryptography.

New programming languages
There is also an increased interest in the development of programming languages for
developing smart contracts. The efforts are more focused on domain-specific languages, for
example, solidity for Ethereum and Pact for Kadena. This is just a start and many new
languages are likely to be developed as the technology advances.

www.EBooksWorld.ir

Current Landscape and Whats Next

[467]

Hardware research and development
When it was realized in 2010 that current methods are not efficient for mining bitcoins,
miners started shifting toward optimizing mining hardware. These initial efforts included
usage of graphical processing units (GPUs) and then field-programmable gate arrays
(FPGAs) were used after GPUs reached their limit. Very quickly after that, application-
specific integrated circuits (ASICs) emerged, which increased the mining power
significantly. This trend is expected to grow further as now there is more research in further
optimizing ASICs by parallelizing and decreasing the die size. Moreover, GPU
programming initiatives are also expected to grow because new cryptocurrencies are
emerging quite regularly now and many of them make use of Proof of Work algorithms that
can benefit from GPU processing capabilities. For example, recently Zcash has spurred
interest in GPU mining rigs and related programming using NVidia CUDA and OpenCL.
The aim is to use multiple GPUs in parallel for optimizing mining operations. Also, some
research has been in the field of using trusted computing hardware such as Intel's Software
Guard extensions (SGX) to address security issues on blockchains. Also Intel's SGX has
been used in a novel consensus algorithm called Proof of Elapsed Time (PoET) which has
been discussed in previous chapters. Another project, the 21 bitcoin computer, has also been
developed, which serves as a platform for developers to learn bitcoin technology and easily
develop applications for the bitcoin platform.

The hardware research and development trend is expected to continue and soon many
more hardware scenarios will be explored.

Research in formal methods and security
With the realization of security issues and vulnerabilities in smart contract programming
languages, there is now keen interest in the formal verification and testing of smart
contracts before production deployments. For this, various efforts are already underway,
including Why3 for Ethereum's Solidity. Hawk is another example that has been developed
to allow smart contract confidentiality.

www.EBooksWorld.ir

Current Landscape and Whats Next

[468]

Alternatives to blockchains
As the blockchain technology advanced in recent years, researchers started to think about
the possibility of creating platforms that can provide guarantees and services which a
blockchain provides but without the need for a blockchain. This has resulted in
development of R3's Corda, which in fact is not really a blockchain because it is not based
on the concept of blocks containing transactions; instead, it is based on the concept of a state
object that transverses throughout the Corda network according to the requirements and
rules of the network participants representing the latest state of the network. Other
examples include IOTA, which is an IoT blockchain which makes use of a Directed Acyclic
Graph (DAG) as a distributed ledger named Tangle, instead of conventional blockchain
with blocks. This ledger is claimed to have addressed scalability issues along with high-
level security which even protects against quantum computing based attacks. It should be
noted that bitcoin is also somewhat protected against quantum attacks because the
quantum attack can only work on exposed public keys which are only revealed on the
blockchain if both send and receive transactions are made. If the public key is not revealed,
which is the case in unused addresses or the addresses that may have only used to receive
bitcoins, then quantum safety can be guaranteed. In other words, using a different address
for each transaction provides protection against quantum attacks. Also, in bitcoin, it is quite
easy to change to another quantum signature protocol if required.

Interoperability efforts
Recent realization of limitations around interoperability of blockchains has resulted in
development of systems that can work across multiple blockchains. A recent example is
Qtum, which is a blockchain that is compatible with both Ethereum and bitcoin
blockchains. It makes use of bitcoin's UTXO mechanism for transfer of value and an
Ethereum virtual machine for smart contracts. This means that Ethereum projects can be
ported onto Qtum without requiring any change.

www.EBooksWorld.ir

Current Landscape and Whats Next

[469]

Blockchain as a service
With the current level of maturity of cloud platforms, many companies have started to
provide Blockchain as a Service (BaaS). The most prominent examples are Microsoft's
Azure, where Ethereum blockchain is provided as a service, and IBM's bluemix platform,
that provides IBM BaaS. This trend is only expected to grow in the next few years and more
companies will emerge that provide BaaS. EgaaS (Electronic Government as a Service) is
another example which is in fact BaaS but provides application-specific blockchains for
governance functions. The aim of this project is to organize and control any activity without
document circulation and bureaucratic overhead.

Efforts to reduce electricity consumption
It is clearly evident from bitcoin's blockchain that the Proof of Work mechanism is very
inefficient. Of course, this computation secures the bitcoin network but there is no other
benefit of this computation and it wastes a lot of electrical energy. In order to reduce this
waste, now there is more focus on greener options such as Proof of Stake algorithms which
do not need enormous resources like bitcoin's Proof of Work algorithm. This trend is
expected to grow, especially with Proof of Stake planned for Ethereum.

Improvement proposals
Two major blockchain technologies, namely bitcoin and Ethereum, have a formal
mechanism of proposing improvements in the existing protocols. These are called
improvement proposals, BIPs and EIPs. Both of these mechanisms have allowed
participation from developers and technology enthusiasts around the world and have
helped bitcoin and Ethereum evolve into a more mature and secure technology over time.
In the sections below, notable improvement proposals for both blockchains are discussed.

BIPs
In this section, some of the latest BIPs will be discussed.

www.EBooksWorld.ir

Current Landscape and Whats Next

[470]

BIP 152
This proposal is an improvement suggestion to introduce compact blocks in the bitcoin
network in order to save bandwidth. In its current state, bitcoin protocol is not bandwidth-
efficient and this proposal is aiming to address that issue by allowing relaying of compact
blocks between nodes. Several changes, such as new data structures and messages, are
required in order to implement this proposal. Currently, this proposal is in draft state. It is
available on GitHub at h t t p s ://g i t h u b . c o m /b i t c o i n /b i p s /b l o b /m a s t e r /b i p - 0152. m e d i

a w i k i .

BIP 151
This improvement proposal has been made to introduce peer-to-peer communication
encryption. This proposal has been made in response to various security issues in Bitcoin
protocol such as possibility of traffic analysis and manipulation. This proposal will help to
thwart the attempts to identify users via source IPs and transaction contents on the bitcoin
network. Several new messages to request and enable encryption among participating
nodes have been proposed in the BIP. It is available at h t t p s ://g i t h u b . c o m /b i t c o i n /b i p s

/b l o b /m a s t e r /b i p - 0151. m e d i a w i k i .

BIP 150
This proposal presents a method for peer authentication. This will allow man-in-the-middle
attacks to be addressed and will provide a guarantee that the peers are connecting to a
legitimate node. This is available on GitHub at h t t p s ://g i t h u b . c o m /b i t c o i n /b i p s /b l o b

/m a s t e r /b i p - 0150. m e d i a w i k i .

BIP 147
This proposal has been made to address dummy stack element malleability. Signature
malleability is a known issue and can be performed by any relay node by simply changing
the signature associated with a transaction. This is a consensus layer level improvement
proposal which will need soft fork to implement. BIP 147 is documented on GitHub at h t t p

s ://g i t h u b . c o m /b i t c o i n /b i p s /b l o b /m a s t e r /b i p - 0147. m e d i a w i k i .

www.EBooksWorld.ir

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki

Current Landscape and Whats Next

[471]

BIP 146
This improvement is made to address the signature encoding malleability issue. This
requires a soft fork to be implemented. If implemented, this will resolve the signature
malleability issue which is related to a fundamental limitation in the ECDSA signature
encoding mechanism. This limitation is inherent in ECDSA. Secondly, due to the fact that if
a signature has failed, verification script evaluation will still continue and would allow for
any value to be set on the signature. This BIP is a proposal to resolve this issue. It is
documented at h t t p s ://g i t h u b . c o m /b i t c o i n /b i p s /b l o b /m a s t e r /b i p - 0146. m e d i a w i k i .

There are many other BIPs made for suggesting improvements in the Bitcoin protocol. In
this section, only the five latest proposals have been introduced. There are almost 90
improvement proposals for bitcoin that have been made in recent years and this process
continues.

EIPs
Ethereum has its own version of improvement proposals, called EIPs. Several of the recent
EIPs are discussed as follows.

EIP 170
This improvement proposal has been made to address certain vulnerabilities that can arise
from excessive usage of gas triggered by large contract code size during the preprocessing
stage or when the code is read from the disk. The proposal is to limit the contract code size
to 23,999 bytes. Further discussion regarding this proposal has resulted in improving this
proposal further and has been accepted. This, however, has not been implemented yet.

EIP 150
This improvement proposal was made in response to denial of service attacks on the
Ethereum blockchain. It has already been implemented as a hard fork since block 2463000 of
the live Ethereum blockchain. This EIP addressed issues arising from transaction spam
attacks, for example, repeatedly calling EXTCODESIZE Opcode, resulting in slowdown of
the validation process of the blockchain. The EIP is to increase the gas cost of several of the
opcodes to thwart denial of service attacks resulting from excessive repeated usage of these
opcodes.

www.EBooksWorld.ir

https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki

Current Landscape and Whats Next

[472]

EIP 161
This proposal has been made to allow the removal of empty accounts from the Ethereum
blockchain. This was put in place as response to a denial of service attack on the Ethereum
blockchain whereby the attacker(s) created a large number of empty accounts. This was
possible due to the low cost of account creation. This is called state trie clearing which will
allow removal of empty accounts by making a CALL instruction to the accounts.

EIP 160
This suggestion has been made to increase EXP Opcode cost. The core idea behind this
improvement proposal is to make cost of EXP operation proportional to the complexity of
the operation. This proposal has helped to thwart denial of service attacks that arose from
invoking computationally expensive operations.

EIP 155
This improvement proposal is made to eliminate the possibility of replaying a transaction
from a different chain on the main live Ethereum blockchain. For example, if a transaction is
made on the Ethereum network then it would be able to be replayed on Ethereum classic
network; this EIP addresses this issue. Also, any transactions that have already been made
on the test network should not be able to replay on the main live network.

All of the above-mentioned improvements have resulted in a hard fork and were
implemented as a response to recent Ethereum denial of service attacks. Improvement
proposals are a key mechanism to introduce new enhancement and protocol level bug fixes
to Ethereum blockchain. There are about 11 improvement proposals implemented or
proposed for Ethereum. All of these are documented on GitHub at h t t p s ://g i t h u b . c o m /e t

h e r e u m /E I P s /.

Other challenges
Apart from security and privacy, discussed in the previous chapter, there are several other
hurdles that should be addressed before mainstream adoption of blockchains can be
realized. These include regulation, government control, immature technology, integration
with existing systems, and implementation costs.

www.EBooksWorld.ir

https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/

Current Landscape and Whats Next

[473]

Regulation is considered one of the biggest challenges that need to be addressed. The core
issue is that blockchains and especially cryptocurrencies are not recognized as a legal
currency by any government. Even though, in some cases, it has been classified as money in
the US and Germany, it is still far from being accepted as a normal currency. Moreover,
blockchains in their current state are not recognized as a platform that can be used by
financial institutions. No financial regulatory body has yet accepted it as a platform that can
be authorized to be used. There are, however, various initiatives taken by regulatory
authorities around the world to research and propose regulations. Bitcoin in its current state
is fully unregulated, even though some attempts have been made by governments to tax the
bitcoin. In the UK, under the EU VAT directive, bitcoin transactions are exempt from Value
Added Tax (VAT) but this may change after Brexit. However, Capital Gains Tax (CGT)
may still be applicable in some scenarios.

Some regulation attempt is expected very soon from financial regulatory authorities
generally regarding blockchain technology, especially after the recent announcement by the
Financial Conduct Authority (FCA) in the UK that it may approve some companies that
are using blockchain.

It is a general concern that the blockchain technology is not really ready for production
deployments. Even though the bitcoin blockchain has evolved into a solid blockchain
platform and is used in production, it is not suitable for every scenario. This is especially
true in the case of sensitive environments such as finance and health. However, it is likely to
change very soon as ample efforts discussed previously in the chapter are being made to
improve the technology and address any technical limitations such as scalability and
privacy. Security is also another general concern which has been highlighted by many
researchers and is especially applicable to the finance and health sectors. A recent report by
the European Union Agency for Network and Information Security (ENISA) has
highlighted distributed ledger specific concerns that should be addressed. Some concerns
highlighted in the report include smart contract management, key management, anti-
money-laundering, and anti-fraud tools. Also, the need for regulation, audit, control, and
governance has been highlighted in the report.

Integration with existing legacy systems is also a prime concern. It is not clear how
blockchains can be integrated with the existing financial systems.

Hurdles toward adoption are more or less related to regulatory, security, and
interoperability. Integration with existing systems can be carried out in several ways.

www.EBooksWorld.ir

Current Landscape and Whats Next

[474]

Dark side
With the key attributes of censorship resistance and decentralization, blockchain technology
can help to improve transparency and efficiency in many walks of life but this somewhat
unregulated nature of this technology means that it can be used by criminals for illegal
activities too. For example, compare a scenario where if some illegal content is published
over the Internet it can be immediately shut down by approaching the concerned
authorities and website service providers but this is not possible in blockchains. Once
something is there on the blockchain, it is almost impossible to revert it back. This means
that any inacceptable content, once published on the blockchain, cannot be removed. If the
blockchain is used for distributing immoral content then there is no way for anyone to shut
it down. This poses a serious challenge and it seems that some regulation and control is
beneficial in this scenario, but how can a blockchain be regulated? That is another important
question. It may not be prudent to create the regulatory laws first and then see if blockchain
technology adapts to that because it might disrupt innovation and progress in this
technology. It would be more sensible to let the blockchain technology grow first, just like
the Internet and when it reaches a critical mass then governing bodies can call for applying
some regulation around the implementation and usage of blockchain technology.

There are various examples where the Dark Web is used in conjunction with bitcoin to
perform illegal activities. For example, SilkRoad, which was used to sell illegal drugs over
the Internet, used bitcoin for payments and the Dark Web using onion URLs which are only
visible with Tor. Although SilkRoad was shut down after months of effort by law
enforcement agencies, new similar sites started to emerge. Now other alternatives are
available that offer similar services; as such, generally, this type of problem still remains a
big concern. Imagine that an illegal website is on IPFS and a blockchain; there is no easy
way of shutting it down. It is clear that absence of control and regulation can encourage
criminal activity and similar issue like SilkRoad will keep arising. Further development in
totally anonymous transaction capabilities such as Zcash could provide another layer of
protection for criminals but at the same time may be quite useful in various legitimate
scenarios. It really depends that who is using the technology; anonymity can be good in
many scenarios, for example in the health industry where patient records should be kept
private and anonymous, but may not be appropriate if it can also be used by criminals to
hide their activities.

www.EBooksWorld.ir

Current Landscape and Whats Next

[475]

One solution might be to introduce intelligent bots or AAs or even contracts that are
programmed with regulatory logic embedded within them. They are most likely to be
programmed by regulators and law enforcement agencies and live on the blockchain as a
means to provide governance and control. For example, a blockchain could be designed in
such a way that every smart contract has to go through a controller contract that scrutinizes
the code logic and provides a regulatory mechanism to control the behavior of the smart
contract. It may also be possible to get each smart contract's code to be inspected by
regulatory authorities and once a smart contract code has a certain level of authenticity
attached to it in the form of certificates issued by a regulator, it can be deployed on the
blockchain network. This concept of binary signing is akin to the concept of already
established concept of code signing where by executables are digitally signed as a means to
confirm that the code is bona fide and is not malicious. This idea is more applicable in the
context of semi-private or regulated blockchains, where a certain degree of control is
required by a regulatory authority, for example, in finance. It means that there is some
degree of trust required to be placed in a trusted third party (regulator) which may not be
desirable due to deviation from the concept of full decentralization. However, to address
this, the blockchain itself can be used to provide a decentralized, transparent, and secure
certificate issuance and digital signing mechanism.

Blockchain research
Whilst major innovations have been made in blockchain technology in recent years, the area
is still very ripe for further research. Some selected research topics are listed as follows with
some information about existing challenges and state of the art. Some ideas are also
presented on how to address these issues.

Smart contracts
Major progress has been made in this area in order to define the key requirements of smart
contracts and development of templates. However, further research is required in the area
of making smart contracts more secure and safe.

Centralization issues
Especially in relation to bitcoin mining centralization, there is a growing concern about how
bitcoin can be really decentralized again.

www.EBooksWorld.ir

Current Landscape and Whats Next

[476]

Limitations in cryptographic functions
Cryptography used in the bitcoin blockchain is extremely secure and has stood the test of
time. In other blockchains, similar security techniques are used and are also very secure.
However, specific security issues such as the possibility of generation and usage of
duplicate signature nonces in elliptic curve digital signature schemes (leading to private key
recovery attack), collisions in Hash functions, and possibility of quantum attacks that may
break the underlying cryptographic algorithms remain an interesting area of research.

Consensus Algorithms
Research in Proof of Stake algorithms or alternatives to Proof of Work is also an important
area of research. This is especially relevant due to the fact the current bitcoin network's
power consumption is expected to reach almost 14 gigawatts by 2020. It has also been
suggested that instead of performing inefficient or single-purpose type of work as is the
case with bitcoin's Proof of Work, the network power can be used to solve some
mathematical or scientific problems. Also, alternatives such as Proof of Stake algorithms
have already gained much traction and are due to be implemented in major blockchains, for
example, Ethereum's Casper. However, so far, Proof of Work remains the best option for
securing a public blockchain.

Scalability
Detailed discussion has already been carried out on scalability in the last chapter; briefly, it
is sufficient to say in this section that while some progress has already been made, still there
is a need for more research to enable on-chain scalability and further improve off-chain
solutions such as state channels. Some initiatives like block size increase and transaction-
only blockchains (without blocks) have been proposed to address scalability issues that
increase the capacity of the blockchain itself instead of using side channels. Examples of
without blocks implementation include IOTA (Tangle). It is a Directed Acyclic Graph (DAG)
which is used to store transactions as compared to traditional blockchain solutions where a
block is used to store transactions. This makes it inherently faster as compared to block-
based blockchains such as bitcoin where waiting time between block generations is at least
approximately 10 minutes.

www.EBooksWorld.ir

Current Landscape and Whats Next

[477]

Code Obfuscation
As discussed in the last chapter, code obfuscation by using indistinguishability obfuscation
can be used as a means to provide confidentiality and privacy in the blockchain. However,
this is still not practical and major research effort is required in order to achieve this.

List of notable projects
Following is a list of notable projects in the blockchain space that are currently in progress.
In addition to these projects, there is also a myriad of start-ups and companies working in
the blockchain space and offering blockchain-related products.

Zcash on Ethereum
A recent project by the Ethereum R&D team is implementation of Zcash on Ethereum. This
is an interesting project whereby developers are trying to create a privacy layer for
Ethereum using zk-SNARKs already used in Zcash project. With Zcash implementation on
Ethereum, the aim is to create a platform that allows applications such as voting where
privacy is of paramount importance. It will also allow creation of anonymous tokens on
Ethereum that can be used in number of applications.

CollCo
This is a project developed by Deutsche B rse which is based the Hyperledger code base
and is used for managing commercial bank cash transfers. Collateralized Coin (CollCo)
provides a blockchain-based platform that allows real-time transfer of commercial bank
money while still relying on traditional capabilities provided by Eurex Clearing CCP. This
is major project that can be used to address inefficiencies in the post trade settlement
processes.

Cello
As of February 2017, this is the most recent addition to Hyperledger project. The aim of this
project is to provide on-demand BaaS which will make deployments and management of
multiple blockchains convenient and easy for users. It is envisioned that Cello will support
all future and current Hyperledger blockchains, such as Fabric and Sawtooth Lake.

www.EBooksWorld.ir

Current Landscape and Whats Next

[478]

Qtum
This project is based on the idea of combining capabilities of bitcoin and Ethereum
blockchains. Qtum makes use of the bitcoin code base but uses Ethereum's EVM for smart
contract execution. Ethereum smart contracts can run using bitcoin's UTXO (unspent
transactions) model. It is available at h t t p s ://q t u m . o r g /.

Bitcoin-NG
This is another proposal for addressing scalability, throughput, and speed issues in the
bitcoin blockchain. Next Generation (NG) protocol is based on a mechanism of leader
election which verifies transactions as soon as they occur, as compared to Bitcoin's
protocols, where time between blocks and block size are the key limitations in relation to
scalability.

Solidus
This is a new cryptocurrency which provides solution for selfish mining while addressing
scaling and performance issues. It also addresses confidentiality issues. It is based on
permissionless Byzantine consensus. The protocol in its current state is comparatively
complex and is an open area for research.

Hawk
This is a project that is aiming to address privacy issues of smart contracts in blockchains. It
is a smart contract system that allows encryption of transactions on the blockchain. Hawk is
able to generate a secure protocol for interaction with blockchains automatically without the
need for manually programming the cryptographic protocol.

Town-Crier
This is a project that is aiming to provide real-world authentic feed into smart contracts.
This system is based on Intel's SGX trusted hardware technology. This is a step further in
Oracle design whereby smart contracts can request data from online sources while
preserving confidentiality.

www.EBooksWorld.ir

https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/
https://qtum.org/

Current Landscape and Whats Next

[479]

SETLCoin
This is a system built by Goldman Sachs and is filed for patent under the Cryptographic
currency for Securities settlement application. As the name suggests, this cryptocurrency
coin can be used for fast and efficient settlement. The technology makes use of virtual
wallets to exchange assets over the network between peers and allows immediate
settlement via ownership of SETLCoin.

TEEChan
This is novel idea of using trusted execution environments (TEEs) to provide a scalable
and efficient solution for scaling the bitcoin blockchain. This is similar to the concept of
payment channels whereby off-chain channels are used for faster transfer of transactions.
The key attraction in this idea is that it is implementable on bitcoin blockchain without the
need for any changes in the bitcoin network because it's an off-the-chain solution. There is,
however, a small caveat that this solution does require trusting Intel for remote attestation
(verification) as Intel's SGX CPUs are used to provide TEEs. This is not a desirable property
in decentralized blockchains; however, it should be noted that the confidentiality of
transactions is still preserved even if remote attestation is used as remote attester (Intel)
cannot see the contents of the communication between users. This limitation makes it
debatable that whether it is a fully decentralized and trustless solution or not.

Falcon
Falcon is a project that helps bitcoin to scale by providing a fast relay network for
broadcasting bitcoin blocks over the network. The core idea revolves around a technique to
reduce orphan blocks, thus helping with overall scalability of the bitcoin network. The
technique used for this purpose has been called application-level cut-through routing.

Bletchley
This project has been introduced by Microsoft, indicating the commitment by Microsoft to
blockchain technology. Bletchley allows use of Azure cloud services to build blockchains in
a user-friendly manner. A major concept introduced by Bletchley is called cryptlets, which
can be thought of as an advanced version of Oracles that reside outside the blockchain and
can be called by smart contracts using secure channels. These can be written in any
language and execute within a secure container.

www.EBooksWorld.ir

Current Landscape and Whats Next

[480]

There are two types of cryptlets: utility cryptlets and contract cryptlets. The first type is
used to provide basic services such as encryption and basic data fetching from external
sources, whereas the latter is a more intelligent version that is created automatically when a
smart contract is created on the chain and resides off the chain but still linked to the on-
chain contract. Due to this off-chain existence, there is no need to execute the contract
cryptlets on all nodes of the blockchain network, therefore this approach results in
increased performance of the blockchain.

Casper
This is the Proof of Stake algorithm for Ethereum in development. Major research has
already been conducted in this area and is expected to be implemented in 2017. The nodes
become bonded validators in a Casper-based Ethereum network and are required to pay a
security deposit in order for them to be able to propose new blocks.

Metropolis
This is the next release of Ethereum for which a lot of work has already been completed. A
hard fork will be required to implement this release. A series of EIPs have been released
which include all major improvements for this release. Improvements include moving the
signature verification and nonce logic into smart contracts, which will provide more
flexibility to the developers with regards to choice of security schemes. Another
improvement is related to block hash and state root changes which result in protocol
simplification and allow parallel transaction processing. Other proposals include big integer
support for cryptographic functions (elliptic curve cryptography). All the above
improvements, along with various others, are covered under EIP86, EIP98, EIP96, EIP100,
EIP101, EIP116, EIP195, EIP140, and EIP 141. There is no release date yet and it's not clear
whether all EIPs will be implemented in the new release; however, the main aim of this
release is protocol simplification, privacy, and flexibility for developers.

Miscellaneous Tools
Some tools that have not been discussed previously are listed below and introduced briefly
in order to make readers aware of the myriad of development options available for
blockchains. This list includes platforms, utilities, and tools that can be used for blockchain
development.

www.EBooksWorld.ir

Current Landscape and Whats Next

[481]

Solidity extension for Microsoft Visual studio
This extension provides Intellisense, auto completion, and templates for decentralized apps,
and works within the familiar Visual Studio IDE, making it easier for developers to
familiarize themselves with Ethereum development.

MetaMask
This is a DAPP browser that is similar to Mist from a DAPP browsing point of view but
allows users to run Ethereum decentralized applications within the browser without the
requirement of running a full Ethereum node. This is available from h t t p s ://m e t a m a s k . i o

/ and can be installed as a Chrome plugin.

Stratis
This is a blockchain development platform that allows creation of custom private
blockchains and works in conjunction with the main Stratis blockchain (Stratis chain) for
security reasons. It allows provisioning of major blockchains such as bitcoin, Ethereum, and
Lisk easy. Also, it allows development using C# .Net technologies. It is also available via
Microsoft Azure as BaaS. This is available at h t t p s ://s t r a t i s p l a t f o r m . c o m /.

Embark
This is a development framework for Ethereum which allows similar functionality to
truffle, discussed in previous chapters. It allows automatic deployment of smart contracts,
easier integration with JavaScript, and, especially, easier integration with IPFS. This is very
feature-rich framework and many more functionalities are available. It can be installed via
npm. This framework is available at GitHub: h t t p s ://g i t h u b . c o m /i u r i m a t i a s /e m b a r k - f r

a m e w o r k .

DAPPLE
This is another framework for Ethereum that allows easier development and deployment of
smart contracts by taking care of more complex tasks. It can be used for package
management, contract building, and deployment scripting. This is also available via npm. It
is also available via GitHub at h t t p s ://g i t h u b . c o m /n e x u s d e v /d a p p l e .

www.EBooksWorld.ir

https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://stratisplatform.com/
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/iurimatias/embark-framework
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple
https://github.com/nexusdev/dapple

Current Landscape and Whats Next

[482]

Meteor
This is a full-stack development framework for single-page applications. It can be used for
Ethereum DAPP development. There is a development environment available in meteor
and it allows easier and manageable development of complex DAPPs. It is available at h t t p

s ://w w w . m e t e o r . c o m / and Ethereum-specific DAPP building information is available at h t

t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w i k i /D a p p - u s i n g - M e t e o r .

uPort
This platform is built on Ethereum and provides a decentralized identity management
system. This allows users to have full control over their identity and personal information.
This is based on the idea of reputation systems enables users to attest each other and build
trust. This is available at h t t p s ://w w w . u p o r t . m e /.

INFURA
This project aims to provide enterprise-level Ethereum and IPFS nodes. INFURA consists of
Ethereum nodes, IPFS nodes, and a service layer named Ferryman which provides routing
and load balancing services.

Convergence with other industries
Convergence of blockchain with IoT has been discussed at length in the last chapter. Briefly,
it can be said that due to the authenticity, integrity, privacy, and shared nature of
blockchains, IoT networks will benefit greatly from blockchain technology. This can be
realized in the form of an IoT network that runs on a blockchain and makes use of a
decentralized mesh network for communication in order to facilitate machine-to-machine
(M2M) communication in real time. All this data which is generated as a result of M2M
communication can be used in the machine learning process to augment the functionality of
Artificially Intelligent DAOs or simple AAs. AAs can act as agents in a Distributed
Artificial Intelligence (DAI) environment provided by a blockchain and can learn over
time using machine learning processes.

www.EBooksWorld.ir

https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://www.meteor.com/
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/
https://www.uport.me/

Current Landscape and Whats Next

[483]

AI is a field of computer science that endeavors to build intelligent agents that can make
rational decisions based on the scenarios and environment that they observe around them.
Machine learning plays a vital role in AI by making use of raw data as a learning resource.
A key requirement in AI-based systems is the availability of authentic data that can be used
for machine learning and model building. The explosion of data coming out IoT devices,
smartphone's, and other data acquisition means that AI and machine learning is becoming
more and more powerful. There is, however, a requirement of authenticity of data. Once
consumers, producers, and other entities are on a blockchain, the data that is generated as a
result of interaction between these entities can be readily used as an input to machine
learning engines with a guarantee of authenticity. This is where AI converges with
blockchains. It could be argued that if an IoT device is hacked, it can send malformed data
to the blockchain. This issue is mitigated because an IoT device is part of the blockchain (as
a node) and has all security properties applied to it as a normal node in the blockchain
network. These properties include incentivization of good behavior, rejection of malformed
transactions, and strict verification of transactions and various other checks that are part of
blockchain protocol. Therefore, even if an IoT device is somehow hacked, it would be
treated as a Byzantine node by the blockchain network and would not cause any adverse
impact on the network.

Moreover, the possibility of combining intelligent Oracles, intelligent smart contracts, and
AAs will give rise to Artificially Intelligent Decentralized Autonomous Organizations
(AIDAOs) that can act on behalf of humans to run entire organizations on their own. This is
another side of AI that can become norm in the future. However, more research is required
in order to realize this vision.

Also, convergence of blockchain technology with other fields such as 3D printing, virtual
reality, augmented reality, and the gaming industry is also envisaged. For example, in a
multiplayer online game, blockchain's decentralized approach allows for more transparency
and can ensure that no central authority is gaining unfair advantage by manipulating the
game rules. All these topics are active areas of research currently and more interest and
development is expected in these areas in the near future.

Future
The year 2017 is predicted to be the year when blockchain technology is implemented in
real-world production environments and move from the Proof of concept and theoretical
stage of previous years. There are few careful predictions being made in the section that are
based on the current advancement and speed of progress in the concerned field. All of these
predictions are likely to come true between the years 2020 and 2050:

www.EBooksWorld.ir

Current Landscape and Whats Next

[484]

The IoT will run on multiple blockchains and will give rise to an M2M economy.
Medical records will be shared securely while preserving the privacy of patients
between various private blockchains run by consortia of health providers. It may
well be a single private blockchain shared among all service providers.
Elections will be held via decentralized web applications with a backend of
blockchains in a transparent and secure manner.
Financial institutions will be running many private blockchains to share data
between participants and for internal processes.
Financial institutions will be making use of semi-private blockchains that will
provide identity information for anti-money-laundering and know-your-
customer functions and will be shared between many or all of the financial
institutions around the world.
Immigration and border control related activities will be recorded on the
blockchain and passport control will be conducted via a blockchain shared
between all ports of entries and border agencies around the world.
Research in cryptography and distributed systems will reach new heights and
universities and educational establishment will be providing dedicated courses
on crypto-economics, cryptocurrencies, and blockchains.
Artificially Intelligent DAOs (Machina Economicus) will prevail on blockchains
that will make rational decisions on behalf of humans.
A publicly available regulated blockchain will be used on day-to-day basis by
citizens to perform their day-to-day activities.
BaaS will be provided as standard to anyone who wishes to run their business or
day-to-day transactions on a blockchain. In fact, it could be envisaged that just
like the Internet, blockchains will seamlessly integrate into our daily lives and
people will be using them without knowing much about the underlying
technology and infrastructure.
Blockchains will be normally used to provide DRM (digital rights management)
services for arts and media and can be used to deliver content to the consumers,
enabling direct communication between consumer and the producer. This will
eliminate the need for any central party to govern the licensing and rights
managing of valuable goods.
Existing cryptocurrencies such as bitcoin will continue to grow in value and with
the availability of state channels and scalability efforts, this trend is only expected
to grow.
Cryptocurrency investment will greatly increase and a new crypto-economic
society will emerge.
Bitcoin value will reach tens of thousands of dollars per coin.

www.EBooksWorld.ir

Current Landscape and Whats Next

[485]

Digital identities will be routinely managed on the blockchain and different
government functions such as voting, taxation, and funds disbursement will be
conducted via blockchain-enabled platforms.
Financial institutions and clearing houses will start to introduce blockchain-based
solutions for their customers in late 2017 or early 2018.

Summary
Blockchains are going to change the world. The revolution has already started and it is only
expected to grow at an exponential scale. This chapter has explored various projects and the
current state of blockchain technology. First, a few trends were discussed that are expected
to continue as the technology progresses further. There is deep research interest in
blockchain technology by many researchers and organizations around the world and some
research topics have also been introduced in this chapter. Furthermore, convergence with
other fields such as the IoT and AI has also been discussed. Finally, some predictions
regarding the growth of blockchain technology have been made. Most of these predictions
are likely to come true within the next decade or so, while some may take a longer time.
Blockchain technology has the potential to change the world and a few positive signs have
already been seen in the form of successful Proof of concept implementations and a
growing number of enthusiasts and developers taking interest in this technology. Very
soon, blockchains will be intertwined with our lives just as the Internet is now. This chapter
is just a modest overview of the vast and tremendous potential of blockchains, and in the
near future, exponential growth in this technology is expected.

www.EBooksWorld.ir

Index

A
abelian group 53
Account related 391
account state, world state
 Balance 216
 Codehash 216
 Nonce 215
 Storageroot 216
accountability 55
accounts
 contract account (CA) 236
 externally owned accounts (EOAs) 236
addresses
 public keys in 115
Advanced Encryption Standard (AES) 57
 about 62
 OpenSSL example, decrypting 64
 OpenSSL example, encrypting 64
 steps 62
Advanced Message Queuing Protocol (AMQP)

378

algorithms
 Dark Gravity Wave (DGW) 169
 DigiShield 169
 Kimoto Gravity Well (KGW) 168
 Multi Interval Difficulty Adjustment System

(MIDAS) 170
 retargeting 168
altcoins
 block reward 175
 block size 175
 blockchain, creating 161
 coin age 176
 consensus algorithms 174
 development 174
 difficulty adjustment algorithms 175

 hashing algorithms 175
 inter-block time 175
 interest rate 176
 pegged sidechains 162
 proof of burn 161
 proof of ownership 161
 reward halving rate 175
 total supply of coins 176
 transaction size 175
alternatives
 to blockchain 468
Analog to Digital Converter (ADC) 414
anonymity 170
Anti Money laundering (AML) 440
Apache Artemis message broker (Active MQ) 378
APIs 366
Application Binary Interface (ABI) 299, 319, 429
application layer 415, 416, 417, 419
Application layer 392
application model
 blockchain logic 369
 control logic 369
 data model 369
 view logic 369
Application Specific Integrated Circuit (ASIC) 136
application-specific blockchains (ASBCs) 461
application-specific integrated circuits (ASICs) 467
arbitrary message
 compression, into fixed length digest 88
Artificial intelligence (AI) 465
asymmetric cryptography
 about 66
 discrete logarithm 68
 Elliptic curves 68
 integer factorization 68
Asymmetric PoW (Equihash) 190
Atomic Transport protocol (ATP) 392

www.EBooksWorld.ir

[487]

authentication
 about 53
 data origin authentication 54
 entity authentication 54
Automated Agent (AA) 45
Autonomous Agents (AAs) 465
avalanche effect 89

B
BigChainDB
 about 399
 reference link 399
BIP 146
 about 471
 reference link 471
BIP 147
 about 470
 reference link 470
BIP 150
 about 470
 reference link 470
BIP 151
 about 470
 reference link 470
BIP 152 (Compact Block Relay) 444
BIP 152
 about 470
 reference link 470
bitcoin APIs
 references 158
bitcoin core client
 URL, for installation 152
Bitcoin Improvement Proposals (BIPs)
 about 159, 445, 464, 469
 BIP 146 471
 BIP 147 470
 BIP 150 470
 BIP 151 470
 BIP 152 470
 informational BIP 159
 process BIP 159
 standard BIP 159
bitcoin network 138, 139, 141, 142
Bitcoin TestNet sandbox
 reference link 154

Bitcoin-NG 478
bitcoin
 about 112, 113
 addresses 114
 altcoins, development 174
 anonymity 170
 Base58Check encoding 117
 Bitcoin Improvement Proposals (BIPs) 159
 bitcoin, buying 150
 bitcoin, installing 152
 bitcoin, investment 150
 bitcoin, selling 150
 bitcoin-cli, experimenting 157
 bitcoin.conf, setting up 154
 buying 150
 command-line interface 158
 currency units 116
 definition 113, 114
 extended protocols on 172
 genesis block 130
 installing 152
 investment 150
 keys 114
 limitations 170
 node, setting up 152
 node, setting up in live mainnet 155, 156
 node, setting up in testnet 154
 node, starting in regtest 155
 payments 148, 149, 150
 privacy issue 170
 private keys in 116
 programming 158
 selling 150
 source code, setting up 153
 URL 152
 vanity addresses 117
Bitcoinj
 reference link 158
bletchley 479, 480
block ciphers
 about 58
 Block encryption mode 59
 Cipher block chaining 61
 Cipher block chaining (CBC) 59
 Counter mode 61

www.EBooksWorld.ir

[488]

 Counter mode (CTR) 59
 cryptographic hashes 60
 Electronic code book 60
 Electronic Code Book (ECB) 59
 Keystream generation mode 59
 message authentication mode 60
 Output Feedback Mode (OFB) 59
block finalization, block validation mechanism
 nonce, validating 244
 Ommers, validating 243
 reward application 243
 state, validating 244
 transaction, validating 243
block header
 about 236
 beneficiary field 237
 difficulty 238
 extra data 238
 gas limit 238
 gas, used 238
 logs bloom 237
 mixhash field 238
 nonce 238
 number 238
 parent hash 237
 receipts root 237
 state root field 237
 timestamp 238
 transactions root 237
block interval reduction 446
block parser
 reference link 170
block reward 175
block size increase 445
block validation mechanism
 about 243
 block difficulty 244
 block finalization 243
BlockApps
 about 401
 installation 401
 reference link 401
 used, for application development 402, 404,

406, 407, 408, 409
 used, for deployment 402, 404, 406, 407, 408,

409

Blockchain as a Service (BaaS) 469
blockchain experiment, Internet of Things (IoT)
 circuit 428, 431, 433
 first node, setting up 423
 Raspberry Pi node, setting up 423, 425, 427
blockchain explorer 357
blockchain services
 about 363
 consensus manager 363
 distributed ledger 364
 ledger storage 365
 peer to peer protocol 365
blockchain technology 465
 implementing 465, 483, 485
blockchain, features
 cryptocurrency, generating 22
 distributed consensus 21
 immutability 23
 security, providing 22
 smart contract 23
 smart contracts, platforms 21
 smart property 22
 transaction verification 21
 uniqueness 23
 value, transferring between peers 22
blockchain, generic elements
 addresses 19
 block 20
 nodes 21
 peer-to-peer network 20
 programming language 20
 scripting 20
 smart contract 21
 state machine 20
 transaction 19
 virtual machine 20
blockchain, tiers
 blockchain 1.0 25
 blockchain 2.0 25
 blockchain 3.0 25
 generation X (Blockchain X) 25
blockchain
 about 16, 18, 30, 40, 127, 384
 application model 369

www.EBooksWorld.ir

[489]

 applications on 367
 benefits 30
 block header, structure 127
 BlockApps 401
 blocks, accumulating 24
 centralization issues 475
 Chaincode, implementing 367
 code obfuscation 477
 communication 41
 computation 42
 consensus 28
 consensus algorithms 476
 cost saving 32
 cryptographic functions, limitations 476
 current paradigms, simplification 32
 decentralization 31
 decentralization used 34
 distributed ledger 27
 electronic cash 14
 Eris platform 409, 410, 411
 faster dealings 32
 features 21
 fully private 27
 generic elements 19
 genesis block 129, 131
 high availability 31
 highly secure 31
 history 14
 immutability 31
 Kadena 384, 385, 387, 388
 limitations 30
 permissioned ledger 27
 platforms 401
 private blockchain 26
 proprietary 27
 public blockchain 26
 research 475
 scalability 476
 semi-private blockchain 26
 shared ledger 27
 sidechains 26
 smart contract 475
 smart contracts on 208
 storage 40
 technical definition 18, 19

 technology, application 23
 technology, challenges 32
 technology, limitations 32
 technology, tiers 24
 tokenized 27
 tokenless 28
 transparency 31
 types 25
 wallet 145
bond trading platform
 reference link 372
border control 435, 436
brain wallet 146
browser solidity
 about 289, 290
 reference link 289
Byzantine Generals problem 12

C
calldata memory 301
CAP theorem
 about 11, 30
 availability 11
 consistency 11
 partition tolerance 11
Capital Gains Tax (CGT) 473
casper 480
Cello 477
centralization issues 475
certificate authority (CA) 98
Chain Virtual Machine (CVM) 20
chaincode services
 about 365
 secure container 365
 secure registry 365
Chaum, Fiat, and Naor (CFN) 15
churning concept 399
Cipher block chaining (CBC) 59
cipher block chaining mode (CBC mode) 94
Cipher Feedback mode (CFB) 61
circuit 428, 431, 433
citizen identification (ID cards) 437
CLI tools
 reference link 408
code obfuscation 477

www.EBooksWorld.ir

[490]

coin age 176
coinbase transaction 124
Coinjoin 452
Collateralized Coin (CollCo) 477
collision resistance 89
colored coins
 references 172
compilers
 about 287
 EthereumJS 296
 Integrated Development Environments (IDEs)

289

 libraries 293
 solidity compiler 288
 tools 293
components, Hyperledger Fabric
 applications, on blockchain 367
 nodes 366
 peers 366
confidential transactions 453
confidentiality 53
consensus algorithms 476
consensus mechanism 214
consensus, blockchain
 Delegated Proof of Stake (DPOS) 29
 deposit-based consensus 29
 federated Byzantine consensus 30
 federated consensus 30
 Practical Byzantine Fault Tolerance (PBFT) 30
 Proof of Elapsed Time 29
 Proof of importance 29
 Proof of Stake (PoS) 29
 Proof of Work (PoW) 28
 reputation-based mechanisms 30
consensus
 about 12
 agreement 13
 Byzantine fault tolerance-based 13
 fault tolerant 13
 integrity 13
 Leader-based consensus mechanisms 13
 mechanisms 12, 13
 termination 13
 types 13
consortia 464

contract account (CA) 236
contract code 376
contract creation transaction 220
contracts 125
control structures, solidity compiler
 events 303
 function 304
 inheritance 303
 libraries 304
 solidity source code file, layout 308
convergence 465
 with Internet of Things (IoT) 482, 483
Corda 357
Corda distributed application (CorDapp) 381
Corda
 about 375, 376
 architecture 376
 components 377
 consensus 377
 development environment 381, 382
 flows 377
 nodes 378
 permissioning service 378
 reference link 358, 376
 state objects 376
 transactions 377
Counter mode (CTR) 59
counterparty
 references 173
CPU mining 250
crypto enclave 396
Crypto-Currency Market Capitalizations
 references 162
crypto-economics 466
cryptographic functions
 limitations 476
cryptographic primitives
 about 56, 87
 Advanced Encryption Standard (AES) 62
 Data Encryption Standard (DES) 62
 symmetric cryptography 57
cryptography
 about 51, 53
 accountability 55
 authentication 53

www.EBooksWorld.ir

[491]

 confidentiality 53
 integrity 53
 mathematics 51
 non-repudation 55
CureCoin
 reference link 438
Currency (ETH and ETC) 213

D
dapple
 about 481
 reference link 481
Dark Gravity Wave (DGW) 169
Dark Web 474, 475
data directory
 about 274
 flags 274
Data Encryption Standard (DES) 57, 62
data field 219
data origin authentication 54
data types, solidity compiler
 control structures 302
 enums 300
 function types 300
 global variables 302
 literals 299
 mapping 302
 reference type 301
 value types 297
decentralization
 disintermediation 37
 Ethereum 48
 evaluating 39
 example 39
 Lisk 48
 Maidsafe 48
 platforms 47
 routes to 38
 through competition 37
 used, in blockchain 34
Decentralized Anonymous Payments scheme (DAP

scheme) 189
Decentralized applications (DAPPs)
 about 45, 46
 example 47

 KYC-Chain 47
 Lazooz 47
 openBazar 47
 operations 46
 reference link 47
 requisites 46
Decentralized autonomous corporations (DACs) 45
Decentralized autonomous organizations (DAO) 44
Decentralized autonomous organizations (DAOs)

208

Decentralized autonomous societies (DASs) 45
decentralized ecosystem 40
Decentralized organization (DOs) 44
Delegated Proof of Stake (DPOS) 29, 48
Denial of Service (DOS) 394
Denial of Services (DoS) 370
deterministic wallet 146
development 467
development environment 372, 374, 375
development frameworks, Web3
 truffle 324
device layer 414
difficulty adjustment algorithms 175
DigiShield 169
Digital Asset Holdings (DAH) 356
Digital Rights Management (DRM) 22
digital rights management (DRM) 371, 484
digital signatures
 about 97
 encrypt then sign 98
 sign then encrypt 98
Digital Trade Chain (DTC) 464
Directed Acyclic Graph (DAG) 40, 249, 468, 476
discrete logarithm
 about 68
 Elliptic curve cryptography (ECC), used with

OpenSSL 84
 issues 78
 private key 80
 private key, generating 80
 public key, generating 80, 81
 RSA algorithm, decrypting with OpenSSL 82
 RSA algorithm, encrypting with OpenSSL 82
disintermediation 37
Distributed Artificial Intelligence (DAI) 482

www.EBooksWorld.ir

[492]

Distributed Denial of service (DDOS) 268
distributed hash tables (DHTs) 40, 96, 398
distributed ledger
 consensus metadata 364
 non-hash data 364
 previous hash 364
 state hash 364
 timestamp 364
 transaction hash 364
 version 364
distributed systems
 about 10
 Byzantine Generals problem 12
 CAP theorem 11
 consensus 12
Domain Name System (DNS) 176
domain-specific languages (DSLs)
 about 205
 reference link 205
drivechain 395
Dynamis
 reference link 439

E
EIP 150 471
EIP 155 472
EIP 160 472
EIP 161 472
EIP 170 471
electricity consumption
 reducing 469
electronic cash
 about 14
 concept 14, 15, 16
Electronic Code Book (ECB) 59
Electronic Frontier Foundation (EFF) 62
Electronic Government as a Service (EgaaS) 469
electronic government
 about 434
 border control 434, 435, 436
 citizen identification (ID cards) 437
 miscellaneous 438
 voting 436
Elements Project
 URL 453

Elliptic curve cryptography (ECC)
 about 71
 mathematics 71
 point addition 73
 point doubling 75
 private key pair 84
 private key, generating 84, 85
 public key pair 84
 used, with OpenSSL 84
Elliptic Curve Diffie-Hellman (ECDH) 68, 71
Elliptic Curve Digital Signature Algorithm (ECDSA)
 about 71, 98
 blind signatures 105
 digital signature, generating 100
 encoding schemes 105
 homomorphic encryption 103
 OpenSSL used 101
 signcryption 104
 zero knowledge proofs 104
Elliptic Curve Digital Signatures Algorithm

(ECDSA) 68
Elliptic curve DSA recover function

(ECDSARECOVER) 234
elliptic curve public key recovery function 234
Elliptic curves 68
embark framework
 about 481
 reference link 481
emerging trends
 about 460
 alternatives, to blockchain 468
 application-specific blockchains (ASBCs) 461
 Blockchain as a Service (BaaS) 469
 blockchain technology 465
 blockchain technology, implementing 465
 consortia 464
 convergence 465
 crypto-economics 466
 cryptography, research in 466
 development 467
 electricity consumption, reducing 469
 employment 466
 enhancements 464
 enterprise-grade blockchains 461
 formal methods, research in 467

www.EBooksWorld.ir

[493]

 hardware research 467
 interoperability efforts 468
 private blockchains 461, 462
 programming languages 466
 real-world implementations 464
 security, in research 467
 standardization 463
 start-ups 462
 strong research interest 462
employment 466
enhancements 464
Enrolment certificates (Ecerts) 363
enterprise-grade blockchains 461
entity authentication 54
Eris platform
 about 409, 410
 chains 410
 files 410
 keys 410
 packages 410
 reference link 411
 services 410
Eris
 db:about 410
 db:consensus 410
 db:interface 410
 db:permissions layer 410
 db:virtual machine 410
eth client 254
Ethash 249
Ether currency (ETH) 44
Ether
 about 244
 fee schedule 247
 gas 245
Ethereum 48
Ethereum accounts
 about 235
 types 236
Ethereum block
 about 236
 block header 236
 block validation mechanism 243
 genesis block 239
 transaction receipts 240

 transaction, executing 241
 transaction, validating 241
Ethereum blockchain
 about 212
 consensus mechanism 214
 contract creation transaction 220
 Currency (ETH and ETC) 213
 elements 222
 forks 213
 gas 214
 message call transaction 221
 transaction 217
 world state 215
Ethereum classic (ETC) 161
Ethereum clients
 about 254
 eth client 254
 geth client 254
 Geth client, installing 255
 light clients 255
 parity client 255
 Parity, installing 261
 pyethapp client 254
Ethereum development
 clients 286
 compilers 287
 contract development 296
 deployment 296
 environment, setting up 271
 private network, setting up 272, 273
 private network, starting 275, 276, 277, 278,

279, 280, 281
 programming languages 287
 test net (Ropsten) 272
 tools 286
Ethereum Improvement Proposals (EIPs)
 about 464, 471
 EIP 150 471
 EIP 155 472
 EIP 160 472
 EIP 161 472
 EIP 170 471
 reference link 472
Ethereum investment 265
Ethereum network

www.EBooksWorld.ir

[494]

 about 267
 private nets 267
 protocols, supporting 268
Ethereum normal Ether (ETH) 161
Ethereum trading 265
Ethereum virtual machine (EVM) 211, 370
Ethereum Virtual Machine (EVM) 20, 288, 410
Ethereum virtual machine (EVM)
 about 222
 execution environment 224
 opcodes 228
Ethereum yellow paper 265
 symbols 266
Ethereum
 about 210
 application developed on 269
 clients 210
 MainNet 267
 releases 211
 stack 211
 Zcash on 477
EthereumJS 296
Ethminer
 reference link 251
EthOS
 URL 253
European Union Agency for Network and

Information Security (ENISA) 473
events 366
exchnages, trading
 counterparty 108
 economic 108
 general attributes 108
 order management 107
 order properties 106
 orders 106
 routing systems 107
 sales 108
 trade, components 107
execution environment
 about 224
 iterator function 226
 machine state 225
 runtime byte code 227
extended protocols, bitcoin

 colored coins 172
 counterparty 173
externally owned accounts (EOAs) 236

F
Fabric chaintool
 about 357
 reference link 357
Fabric SDK Py
 about 357
 reference link 357
Fabric
 about 361
 reference link 356
falcon 479
Federated Byzantine Agreement (FBA) 30, 393
fee schedule 247
field 52
Field Programmable Gate Array (FPGA) 136
field-programmable gate arrays (FPGAs) 467
finance industry
 about 439
 financial crime, preventing 440, 441
 insurance 439
 post trade settlement 440
Financial Conduct Authority (FCA) 473
financial crime
 preventing 440, 441
financial markets 105
finite field 52
Firechat
 reference link 41
first node
 setting up 423
FoldingCoin
 reference link 438
forks 213
fully homomorphic system 103
function types, solidity compiler
 external functions 300, 301
 internal functions 300
function visibility specifiers
 external 307
 internal 307
 private 307

www.EBooksWorld.ir

[495]

 public 307
function
 about 305
 constructor function 307
 defining 305
 external function calls 306
 fall back functions 306, 307
 function visibility specifiers 307
 input parameters 305
 internal function calls 306
 keywords/functions throw 307
 modifier functions 307
 output parameters 306
 signature 305

G
Galois Counter mode (GCM) 62
gas 214, 245
gasLimit field 217
gasPrice field 217
General Purpose I/O (GPIO) pins 427
general-purpose programming languages (GPLs)

205

genesis block 130, 131, 239
 about 129, 131
 Application Specific Integrated Circuit (ASIC)

136

 bitcoin network 138, 139, 141, 142
 CPU mining 135
 Field Programmable Gate Array (FPGA) 136
 GPU mining 135
 hashing rate 134
 miners, task of 132
 mining 131
 mining algorithm 133, 134
 mining pool 137
 mining systems 135
 network, synchronizing 132
 Proof of Work (PoW) 133
 reference link 129
genesis file 273
geth client
 about 254, 255, 259
 bitcoin, account funding 260, 261
 Eth, installing 256

 geth JavaScript console 260
 installing 255
 Mist browser 256
 reference link 420
google RPC (gRPC) 365
GPU mining 250
 CPU benchmarking 251
 GPU benchmarking 252
graphical processing units (GPUs) 467
Graphical User Interface (GUI) 210
Greedy Heaviest Observed Subtree (GHOST) 214
Greedy Heaviest Observed Subtree (GHOST)

protocol 446
ground (GND) pin 428
group 51

H
hardware description languages (HDLs) 136
hardware research 467
hardware wallet 147
hardware
 usage, for confidentiality 452
hash collision attack
 reference link 208
hash functions 87, 88
 arbitrary messages, compression into fixed length

digest 88
 collision resistance 89
 computing 88
 digital signatures 97
 distributed hash tables (DHTs) 96
 Merkle tree 95
 Message Digest (MD) 89
 Patricia tree 96
 pre-image resistance 88
 second pre-image resistance 88
 Secure Hash Algorithms (SHAs) 89
hashcash 15
hashing algorithms 175
hashing rate 134
hawk 478
health industry
 benefits 438
hierarchical deterministic wallet 146
homomorphic encryption 451

www.EBooksWorld.ir

[496]

HTML frontend 316
HTTP REST 158
Hyperledger Fabric
 about 362
 APIs 366
 architecture 362
 blockchain services 363
 chaincode services 365
 CLIs 366
 components 366
 events 366
 membership services 363
Hyperledger
 about 355
 as protocol 358
 blockchain explorer 357
 Corda 357, 358
 Fabric 356
 Fabric chaintool 357
 Fabric SDK Py 357
 Iroha 356
 reference architecture 358
 requisites 359
 Sawtooth lake 356

I
identity function 235
improvement proposals
 about 469
 Bitcoin Improvement Proposals (BIPs) 469
 Ethereum Improvement Proposals (EIPs) 471
indistinguishability obfuscation (IO) 450
Information and communication technology (ICT)

35

infura 482
Initiative for CryptoCurrencies and Contracts (IC3)

462

 reference link 462
insurance 439
integer factorization 68
Integrated Development Environments (IDEs)
 about 289
 browser solidity 289, 290
 installation 290, 291, 292, 293
 Remix 290

integrity 53
Intel Software Guard Extensions (Intel's SGX) 356
Inter Blockchain Communication protocol (IBC)

400

Inter Planetary File System (IPFS) 40
inter-block time 175
interest rate 176
Interledger control protocol (ILCP) 393
Interledger layer 393
Interledger protocol 392
Interledger protocol (ILP) 393
Interledger quoting protocol (ILQP) 393
International Civil Aviation Organization (ICAO)

434

Internet of Things (IoT) 206
 about 412, 413, 464
 application layer 415, 416, 417, 419
 blockchain experiment 419, 422
 convergence with 482, 483
 device layer 414
 management layer 414
 network layer 414
 physical object layer 413
interoperability efforts 468
invertible bloom lookup tables (IBLTs) 446
Iroha
 about 356
 reference link 356

J
Java Virtual Machine (JVM) 376
JavaScript frontend
 about 316
 web3.js, installing 317
JavaScript runtime environment (JSRE) 331
Jaxx
 reference link 255

K
Kadena
 about 384, 385, 386, 387, 388
 BigChainDB 399
 Maidsafe 399
 Multichain 399
 Quorum 395

www.EBooksWorld.ir

[497]

 Ripples (XRP) 388, 389
 Rootstock 394
 Stellar 393, 394
 Storj 398
 Tendermint 400
 Tezos 397
 transaction 390
 URL, for downloading 386
key stream 61
Kimoto Gravity Well (KGW) 169
Know your customer (KYC) 440
Know Your Customer (KYC) 47

L
Last in First Out (LIFO) 121, 222
Ledger Journal
 reference link 462
Ledger layer 393
legal prose 376
Libbitcoin
 reference link 158
lightning network
 reference link 150
Lisp-like Low-level language (LLL) 227
Litecoin 182
literals, solidity compiler
 hexadecimal literals 300
 integer literals 299
 string literals 300
Local Ethereum block explorer 294

M
Machine Readable Zone (MRZ) 434, 435
Machine-readable Travel Document (MRTD) 434
machine-to-machine (M2M) 482
Maidsafe 48
MainNet 267
management layer 414
market manipulation 109
mathematics, concepts
 abelian group 53
 cyclic group 52
 field 52
 finite field 52
 group 51

 modular arithmetic 53
 order 52
 ring 52
 set 51
mathematics
 about 51
 cyclic group 52
 prime fields 52
media industry 441
membership services
 about 363
 enrolment certificate authority 363
 registration authority (RA) 363
 TLS certificate authority 363
 transaction certificate authority 363
Merkle tree 95
Message Authentication Codes (MACs) 54
message call transaction 221
Message Digest (MD) 89
message
 about 247
 call 248
MetaMask
 about 481
 reference link 481
meteor
 about 482
 references 482
metropolis 480
Microsoft Visual Studio
 solidity extension for 481
MimbleWimble 453
miners
 task of 132
Mini Private Key Format 116
minimal non-GUI version of Raspbian OS
 URL, for installation 420
mining algorithm 133, 134
mining pool 137
mining pools 254
 reference link 178
mining rigs
 about 252
 GPU 253
 motherboard 252

www.EBooksWorld.ir

[498]

 SSD hard drive 253
mining
 about 248
 CPU mining 250
 Ethash 249
 GPU mining 250
Mist
 executing, on private network 281, 282
 used, for deploying contracts 282, 283
mobile wallet 148
modular arithmetic 53
Multi Interval Difficulty Adjustment System

(MIDAS) 170
multi-party nonrepudiation protocols (MPNR) 55
Multichain 399
 URL, for installation 399
MultiSig (Pay to MultiSig) 123
MyEtherWallet
 reference link 257

N
Namecoin
 about 176
 obtaining 178
 records, generating 180
 reference link 177
 trading 178
National Institute of Standards and Technology

(NIST) 62
Near Field Communication (NFC) 452
network ID 273
network layer 414
network
 block validation 132
 block, creating 132
 fetch reward 132
 Proof of Work (PoW), performing 132
 synchronizing 132
 transaction validation 132
Next Generation (NG) 478
nhequminer
 reference link 196
Node.js version 7 294
nodes 366, 378
non-deterministic wallet 146

non-repudation 55
Nonce 217
NOOBS
 reference link 420
notable projects
 Bitcoin-NG 478
 bletchley 479, 480
 casper 480
 Cello 477
 Collateralized Coin (CollCo) 477
 falcon 479
 hawk 478
 list 477
 metropolis 480
 Qtum 478
 SETLCoin 479
 solidus 478
 TEEChan 479
 town-crier 478
 Zcash, on Ethereum 477
Null data 123
NVidia chipset
 reference link 251

O
online wallet 147
OP_RETURN 123
opcodes
 about 228
 arithmetic operations 228
 block information 231
 cryptographic operations 229
 duplication operations 232
 environmental information 230
 exchange operations 232
 flow operations 231
 logging operations 233
 logical operations 229
 memory 231
 push operations 232
 stack 231
 storage 231
 system operations 233
Open Web payment scheme (OWPS) 392
opportunistic caching concept 399

www.EBooksWorld.ir

[499]

Optimistic Transport protocol (OTP) 392
Oracles
 about 206
 reference link 207
order 52
order anticipators 109
Order related
 OfferCancel 391
 OfferCreate 391
Output Feedback Mode (OFB) 59
Over the Counter (OTC) 106
Oyente tool 457, 458
 reference link 457

P
Pact
 about 386
 contract definition 386
 querying 386
 references 387
 transaction execution 386
paper wallet 147
 references 147
parity client
 about 255
 command line, used for creating account 264
 installing 261
 URL, for downloading 255
partially homomorphic system 103
Patricia tree 96
Pay to Pubkey 123
Pay to Public Key Hash (P2PKH) 122, 123
Pay to Script Hash (P2SH) 123
Payments related 390
peers 366
permissioning service 378
 Corda distributed application (CorDapp) 381
 network map service 379
 Notary service 379
 Oracle service 379
 transactions 379, 380
 vaults 380
planes 444
pluggable consensus 356
point addition 73

pool hopping 168
POST request 315, 316
post trade settlement 440
Practical Byzantine Fault Tolerance (PBFT) 12, 30
pre-image resistance 88
precompiled contracts
 about 234
 elliptic curve public key recovery function 234
 identity function 235
 RIPEMD-160 bit hash function 234
 SHA-256 bit hash function 234
prime fields 52
Primecoin
 about 185
 mining guide 186
 references 188
 trading 186
privacy issue 170
privacy
 about 450
 Coinjoin 452
 confidential transactions 453
 hardware, usage for confidentiality 452
 homomorphic encryption 451
 indistinguishability obfuscation (IO) 450
 MimbleWimble 453
 secure multiparty computation 451
 state channels 451
 zero knowledge proofs 451
private blockchain 447
private blockchains 461, 462
private keys 69
private nets 267
private network
 contracts, deploying Mist used 282, 283
 data directory 274
 genesis file 273
 Mist, executing 281, 282
 network ID 273
 setting up 272, 273
 starting 275, 276, 277, 278, 279, 280, 281
 static nodes 275
program counter (PC) 226
programming languages 466
 about 287

www.EBooksWorld.ir

[500]

 LLL 287
 Mutan 287
 Serpent 287
 Solidity 287
proof of activity 167
proof of burn 166
proof of coinage 166
proof of deposit 166
Proof of Elapsed Time (PoET) 369, 370, 467
Proof of Stake (PoS) 398, 410
 about 166, 174, 447
 proof of activity 167
 proof of burn 166
 proof of coinage 166
 proof of deposit 166
 sidechains 448
 subchains 448
 tree chains 448, 449
Proof of Storage 165
Proof of Work (PoW) 410
 about 12, 34, 133, 164
 non-outsourceable puzzles 167
 Proof of Stake (PoS) 166
 Proof of Storage 165
proposals, for addressing privacy issue in bitcoin
 inherent anonymity 172
 mixing protocols 171
 third-party mixing protocols 171
protocol messages
 addr 144
 block 144
 bloom filter 144, 145
 filteradd 145
 filterclear 145
 filterload 145
 full client 144
 getaddr 144
 getblocks 144
 getdata 144
 getheaders 144
 headers 144
 inv 143
 SPV client 144
 tx 144
 verack 143

 version 143
protocols
 supporting 268
 swarm 268
 whisper 268
pseudo random numbers (PRNGs) 88
Public Key Infrastructure (PKI) 363
public keys 69
Pycoin
 reference link 158
pyethapp client 254

Q
Qtum
 reference link 478
Quorum
 about 395
 crypto enclave 396
 network manager 396, 397
 QuorumChain 396
 reference link 397
 transaction manager 395

R
Radio Frequency Identification tags (RFIDs) 414
ransaction families
 endpoint registry 371
 intergerkey 371
 marketplace 371
Raspberry Pi node
 Breadboard 427
 Light Emitting Diode (LED) 427
 Resistor 427
 Ribbon cable connector 427
 setting up 423, 425, 427
 T-Shaped cobbler 427
Raspbian
 reference link 420
real-world implementations 464
Recursive Length Prefix (RLP) 215
reference type, solidity compiler
 arrays 301
 data location 301
 structs 301
regulation 472, 473

www.EBooksWorld.ir

[501]

Remix
 reference link 290
Remote Procedure Call (RPC) 211
requisites, Hyperledger
 Auditability 360
 confidentiality 360
 identity 360
 interoperability 360
 modular approach 359, 360
 portability 361
 privacy 360
research
 in cryptography 466
 in formal methods 467
 in security 467
Reusable Proof of Work (RPOW) 112
reward halving rate 175
Ricardian contracts
 about 202
 Decentralized autonomous organization (DAOs)

208

 Oracles 206
 reference link 202
 smart contract templates 205
 Smart Oracles 207
ring 52
RIPEMD-160 bit hash function 234
Ripple connect 392
Ripple Protocol Consensus Algorithm (RPCA) 389
Ripples (XRP)
 about 388, 389, 390
 last closed ledger 389
 ledger 389
 open ledger 390
 proposer 390
 server 389
 unique node list 390
RocksDB
 URL 365
Rootstock Virtual Machine (RVM) 395
Rootstock
 about 394
 drivechain 395
 sidechain 394
RSA algorithm

 about 69
 decrypting 70, 83
 Elliptic curve cryptography (ECC) 71
 encrypting 70, 83

S
Sawtooth lake
 about 369
 consensus in 372
 Corda 375
 development environment 372, 374, 375
 Proof of Elapsed Time (PoET) 370
 reference link 356
 transaction families 370
scalability 476
 about 444, 445
 block interval reduction 446
 block size increase 445
 invertible bloom lookup tables (IBLTs) 446
 private blockchain 447
 Proof of Stake (PoS) 447
 sharding 446
 state channels 447
script.h file
 reference link 121
second pre-image resistance 88
secret key cryptography 57
Secure Access for Everyone (SAFE) 48
secure element (SE) 147
Secure Hash Algorithms (SHAs)
 about 89
 design 91
 hash functions, OpenSSL example 93
 hash-based MACs (HMACs) 94
 Message Authentication codes (MACs) 94
 Message Authentication codes (MACs), used with

block ciphers 94
 SHA-256 91
 SHA3 (Keccak), design 92
secure multiparty computation 451
security issues 269
security protocol
 about 56
 authentication protocols 56
 key management protocols 56

www.EBooksWorld.ir

[502]

 non-repudiation protocols 56
security related 391
security
 about 454
 smart contract security 454, 455, 456
set 51
SETLCoin 479
SHA-256 bit hash function 234
sharding 398, 446
sidechain 394
sidechains 448
signature 218
Simple Payment Setup protocol (SPSP) 392
simple payment verification (SPV) 255
Single Board Computer (SBC) 419
smart contract security
 about 454, 455, 456
 Oyente tool 458
 Why3 formal verification 456
smart contract templates 205
 reference link 463
smart contract
 about 43, 475
 definition 199
 history 198
Smart Oracles 207
Software Guard extensions (SGX) 467
Software Guard Extensions (SGX) 29
solidity compiler
 about 288, 297
 data types 297
solidus 478
standardization 463
start-ups 462
state channels 447
state machine replication 11
Stellar 393, 394
Stellar Consensus Protocol (SCP) 393
Stellar
 reference link 394
Storj
 about 398
 reference link 398
Storjcoinx (SJCX) 398
stratis

 about 481
 reference link 481
stream ciphers 57
strong research interest 462
subchains 448
substitution-permutation network (SPN) 58
Swarm
 reference link 353
symmetric cryptography
 about 57
 block ciphers 58
 stream ciphers 57

T
TEEChan 479
Tendermint
 about 400
 Tendermint Core 400
 Tendermint Socket Protocol (TMSP) 400
test net (Ropsten)
 about 272
 reference link 272
TestNet 267
Tezos
 about 397, 398
 reference link 398
theoretical foundations
 about 163
 algorithms, retargeting 167
 Proof of Work (PoW) 164
through competition 37
Time-Memory Tradeoff (TMTO) 182
TLSnotary
 reference link 207
to field 218
tools, compilers
 Local Ethereum block explorer 294
 Node.js version 7 294
tools
 about 480
 dapple 481
 embark 481
 infura 482
 MetaMask 481
 meteor 482

www.EBooksWorld.ir

[503]

 solidity extension, for Microsoft Visual Studio 481
 stratis 481
 uPort 482
topics 398
total supply of coins 176
town-crier 478
trade life cycle
 about 108
 confirmation 108
 execution and booking 108
 overnight 109
 post booking 108
 pre-execution 108
 settlement 108
trading 106
 about 106
 exchanges 106
 life cycle 108
 market manipulation 109
 order anticipators 109
transaction families 370
transaction fee 125
transaction malleability 125, 126
transaction pools 126
transaction receipts
 about 240
 bloom filter 241
 gas, used 240
 log entries 240
 post-transaction state 240
transaction sub state
 about 242
 Log series 242
 Refund balance 242
 Suicide set 242
transaction verification 126
transaction, types
 coinbase transaction 124
 MultiSig (Pay to MultiSig) 123
 Null data 123
 OP_RETURN 123
 Pay to Pubkey 123
 Pay to Public Key Hash (P2PKH) 122
 Pay to Script Hash (P2SH) 123
 Unspent Transaction Output (UTXO) 125

transaction
 about 118, 217, 390
 Account related 391
 Application layer 392
 contract creation trasactions 217
 data field 219
 executing 241
 gasLimit field 217
 gasprice field 217
 init field 219
 inputs 120
 Interledger layer 393
 Ledger layer 393
 life cycle 118
 message call transactions 217
 metadata 120
 Nonce 217
 Opcodes 121, 122
 Order related 391
 outputs 120
 Payments related 390
 script language 121
 security related 391
 signature 218
 structure 119
 to field 218
 Transport layer 392
 types 122
 validating 241
 value 218
 verification 120
transactions, permissioning service
 attachments 380
 commands 380
 input references 380
 output states 380
 signatures 380
 summaries 380
 timestamp 380
 type 380
Transport layer 392
Transport Layer Security (TLS) 177, 378, 430
tree chains 448, 449
Triple DES (3DES) 62
truffle, development frameworks

www.EBooksWorld.ir

[504]

 build 335
 distributed ledgers 353
 example 337
 installation 324, 326, 328, 330, 331, 332
 proof of idea 341, 343, 346, 348, 349
 testing 333, 334
truffle
 reference link 325
trusted computing platform (TPM hardware) 112
Trusted Execution Environment (TEE) 29, 452
trusted execution environment (TEE) 356
trusted execution environments (TEEs) 479

U
Uniform Resource Idenfier (URI) 148
unique node list (UNL) 388
Universal Transport protocol (UTP) 392
Unspent Transaction Output (UTXO)
 about 120, 125, 478
 contracts 125
 transaction fee 125
 transaction malleability 125, 126
 transaction pools 126
 transaction verification 126
uPort
 about 482
 reference link 482

V
vagrant
 reference link 372
value 218
Value Added Tax (VAT) 473
value types, solidity compiler
 address 298
 array value types 299
 boolean 297
 integers 298
virtual read-only memory (virtual ROM) 223
VirtualBox
 reference link 372
voting 436

W
Wallet Import Format (WIF) 116
wallet
 about 145
 brain wallet 146
 deterministic wallet 146
 hardware wallet 147
 hierarchical deterministic wallet 146
 mobile wallet 148
 non-deterministic wallet 146
 online wallet 147
 paper wallet 147
 types 146
Web assembly (WASM) 224
web3.js
 example 318, 321
 installing 317
 reference link 317
Web3
 about 309, 312, 314, 315
 development frameworks 324
 HTML frontend 316
 JavaScript frontend 316
 POST request 315, 316
Why3 formal verification 456
 Oyente tool 457
Why3 online IDE
 reference link 456
world state
 about 215
 account state 215

Z
Zcash
 about 189
 address generation 194
 GPU mining 195
 mining guide 191
 nheqminer, compiling 196
 nheqminer, downloading 196
 on Ethereum 477
 reference link 195
 trading 191
zero knowledge proofs 451

www.EBooksWorld.ir

zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) 104,
189

www.EBooksWorld.ir

	Cover
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Blockchain 101
	Distributed systems
	CAP theorem
	Byzantine Generals problem
	Consensus
	Consensus mechanisms
	Types of consensus mechanism

	The history of blockchain
	Electronic cash
	The concept of electronic cash

	Introduction to blockchain
	Various technical definitions of blockchains
	Generic elements of a blockchain
	Addresses
	Transaction
	Block
	Peer-to-peer network
	Scripting or programming language
	Virtual machine
	State machine
	Nodes
	Smart contracts

	Features of a blockchain
	Distributed consensus
	Transaction verification
	Platforms for smart contracts
	Transferring value between peers
	Generating cryptocurrency
	Smart property
	Provider of security
	Immutability
	Uniqueness
	Smart contracts

	Applications of blockchain technology
	How blockchains accumulate blocks

	Tiers of blockchain technology
	Blockchain 1.0
	Blockchain 2.0
	Blockchain 3.0
	Generation X (Blockchain X)

	Types of blockchain
	Public blockchains
	Private blockchains
	Semi-private blockchains
	Sidechains
	Permissioned ledger
	Distributed ledger
	Shared ledger
	Fully private and proprietary blockchains
	Tokenized blockchains
	Tokenless blockchains
	Consensus in blockchain
	Proof of Work
	Proof of Stake
	Delegated Proof of Stake
	Proof of Elapsed Time
	Deposit-based consensus
	Proof of importance
	Federated consensus or federated Byzantine consensus
	Reputation-based mechanisms
	Practical Byzantine Fault Tolerance

	CAP theorem and blockchain
	Benefits and limitations of blockchain
	Decentralization
	Transparency and trust
	Immutability
	High availability
	Highly secure
	Simplification of current paradigms
	Faster dealings
	Cost saving
	Challenges and limitations of blockchain technology

	Summary

	Chapter 2: Decentralization
	Decentralization using blockchain
	Methods of decentralization
	Disintermediation
	Through competition

	Routes to decentralization
	How to decentralize
	Examples

	Blockchain and full ecosystem decentralization
	Storage
	Communication
	Computation

	Smart contract
	Decentralized organizations
	Decentralized autonomous organizations
	Decentralized autonomous corporations
	Decentralized autonomous societies
	Decentralized applications
	Requirements of a decentralized application
	Operations of a DAPP
	Examples
	KYC-Chain
	OpenBazaar
	Lazooz

	Platforms for decentralization
	Ethereum
	Maidsafe
	Lisk

	Summary

	Chapter 3: Cryptography and Technical Foundations
	Introduction
	Mathematics
	Set
	Group
	Field
	A finite field
	Order
	Prime fields
	Ring
	A cyclic group
	An abelian group
	Modular arithmetic

	Cryptography
	Confidentiality
	Integrity
	Authentication
	Entity authentication
	Data origin authentication

	Non-repudiation
	Accountability

	Cryptographic primitives
	Symmetric cryptography
	Stream ciphers
	Block ciphers
	Block encryption mode
	Keystream generation modes
	Message authentication modes
	Cryptographic hashes
	Electronic code book
	Cipher block chaining
	Counter mode

	Data Encryption Standard (DES)
	Advanced Encryption Standard (AES)
	AES steps
	An OpenSSL example of how to encrypt and decrypt using AES

	Asymmetric cryptography
	Integer factorization
	Discrete logarithm
	Elliptic curves

	Public and private keys
	RSA
	Encryption and decryption using RSA
	Elliptic curve cryptography (ECC)
	Mathematics behind ECC
	Point addition
	Point doubling

	Discrete logarithm problem
	How to generate public and private key pairs
	Private key
	Generate public key

	How to encrypt and decrypt using RSA with OpenSSL
	Encryption
	Decrypt

	ECC using OpenSSL
	ECC private and public key pair
	Private key
	Private key generation

	Cryptographic primitives
	Hash functions
	Compression of arbitrary messages into fixed length digest
	Easy to compute
	Pre-image resistance
	Second pre-image resistance
	Collision resistance
	Message Digest (MD)
	Secure Hash Algorithms (SHAs)
	Design of Secure Hash Algorithms (SHA)
	SHA-256
	Design of SHA3 (Keccak)
	OpenSSL example of hash functions
	Message Authentication codes (MACs)
	MACs using block ciphers
	HMACs (hash-based MACs)

	Merkle trees
	Patricia trees
	Distributed hash tables (DHTs)
	Digital signatures
	Sign then encrypt
	Encrypt then sign

	Elliptic Curve Digital signature algorithm (ECDSA)
	How to generate a digital signature
	ECDSA using OpenSSL
	Homomorphic encryption
	Signcryption
	Zero knowledge proofs
	Blind signatures
	Encoding schemes

	Financial markets and trading
	Trading
	Exchanges
	Orders and order properties
	Order management and routing systems
	Components of a trade
	General attributes
	Economic
	Sales
	Counterparty

	Trade life cycle
	Order anticipators
	Market manipulation

	Summary

	Chapter 4: Bitcoin
	Bitcoin
	Bitcoin definition
	Keys and addresses
	Public keys in bitcoin
	Private keys in bitcoin
	Bitcoin currency units
	Base58Check encoding
	Vanity addresses

	Transactions
	The transaction life cycle
	The transaction structure
	The script language
	Commonly used Opcodes

	Types of transaction
	Coinbase transactions
	What is UTXO?
	Transaction fee
	Contracts
	Transaction malleability
	Transaction pools
	Transaction verification

	Blockchain
	The structure of a block
	The structure of a block header
	The genesis block
	Mining
	Task of miners
	Synching up with the network
	Proof of Work
	The mining algorithm
	The hashing rate
	Mining systems
	CPU
	GPU
	FPGA
	ASICs
	Mining pools

	The bitcoin network
	Wallets
	Wallet types
	Non-deterministic wallets
	Deterministic wallets
	Hierarchical deterministic wallets
	Brain wallets
	Paper wallets
	Hardware wallets
	Online wallets
	Mobile wallets

	Bitcoin payments
	Bitcoin investment and buying and selling bitcoins
	Bitcoin installation
	Setting up a bitcoin node
	Setting up the source code
	Setting up bitcoin.conf
	Starting up a node in testnet
	Starting up a node in regtest
	Starting up a node in live mainnet
	Experimenting with bitcoin-cli

	Bitcoin programming and the command-line interface
	Bitcoin improvement proposals (BIPs)

	Summary

	Chapter 5: Alternative Coins
	Theoretical foundations
	Alternatives to Proof of Work
	Proof of Storage
	Proof of Stake
	Proof of coinage
	Proof of deposit
	Proof of burn
	Proof of activity

	Non-outsourceable puzzles

	Difficulty adjustment and retargeting algorithms
	Kimoto Gravity Well
	Dark Gravity Wave
	DigiShield
	MIDAS

	Bitcoin limitations
	Privacy and anonymity
	Mixing protocols
	Third-party mixing protocols
	Inherent anonymity

	Extended protocols on top of bitcoin
	Colored coins
	Counterparty

	Development of altcoins
	Consensus algorithms
	Hashing algorithms
	Difficulty adjustment algorithms
	Inter-block time
	Block rewards
	Reward halving rate
	Block size and transaction size
	Interest rate
	Coin age
	Total supply of coins

	Namecoin
	Trading Namecoins
	Obtaining Namecoins
	Generating Namecoin records

	Litecoin
	Primecoin
	Trading Primecoin
	Mining guide

	Zcash
	Trading Zcash
	Mining guide
	Address generation
	GPU mining
	Downloading and compiling nheqminer

	Summary

	Chapter 6: Smart Contracts
	History
	Definition
	Ricardian contracts
	Smart contract templates
	Oracles
	Smart Oracles
	Deploying smart contracts on a blockchain
	The DAO

	Summary

	Chapter 7: Ethereum 101
	Introduction
	Ethereum clients and releases
	The Ethereum stack

	Ethereum blockchain
	Currency (ETH and ETC)
	Forks
	Gas
	The consensus mechanism
	The world state
	The account state
	Nonce
	Balance
	Storageroot
	Codehash

	Transactions
	Nonce
	gasPrice
	gasLimit
	To
	Value
	Signature
	Init
	Data

	Contract creation transaction
	Message call transaction

	Elements of the Ethereum blockchain
	Ethereum virtual machine (EVM)
	Execution environment
	Machine state
	The iterator function
	Runtime byte code

	Opcodes and their meaning
	Arithmetic operations
	Logical operations
	Cryptographic operations
	Environmental information
	Block Information
	Stack, memory, storage and flow operations
	Push operations
	Duplication operations
	Exchange operations
	Logging operations
	System operations

	Precompiled contracts
	The elliptic curve public key recovery function
	The SHA-256 bit hash function
	The RIPEMD-160 bit hash function
	The identity function

	Accounts
	Types of accounts

	Block
	Block header
	Parent hash
	Ommers hash
	Beneficiary
	State root
	Transactions root
	Receipts root
	Logs bloom
	Difficulty
	Number
	Gas limit
	Gas used
	Timestamp
	Extra data
	Mixhash
	Nonce

	The genesis block
	Transaction receipts
	The post-transaction state
	Gas used
	Set of logs
	The bloom filter

	Transaction validation and execution
	The transaction sub state
	Suicide set
	Log series
	Refund balance

	The block validation mechanism
	Block finalization
	Ommers validation
	Transaction validation
	Reward application
	State and nonce validation

	Block difficulty

	Ether
	Gas
	Fee schedule

	Messages
	Calls

	Mining
	Ethash
	CPU mining
	GPU mining
	CPU benchmarking
	GPU benchmarking

	Mining rigs
	Motherboard
	SSD hard drive
	GPU

	Mining pools

	Clients and wallets
	Geth
	Eth
	Pyethapp
	Parity
	Light clients
	Installation
	Eth installation
	Mist browser
	Geth
	The geth console
	Funding the account with bitcoin

	Parity installation
	Creating accounts using the parity command line

	Trading and investment
	The yellow paper
	Useful symbols

	The Ethereum network
	MainNet
	TestNet
	Private net(s)
	Supporting protocols
	Whisper
	Swarm

	Applications developed on Ethereum
	Scalability and security issues
	Summary

	Chapter 8: Ethereum Development
	Setting up a development environment
	Test Net (Ropsten)
	Setting up a Private Net
	Network ID
	The genesis file
	Data directory
	Flags and their meaning

	Static nodes

	Starting up the private network
	Running Mist on Private Net
	Deploying contracts using Mist

	Development tools and clients
	Languages
	Compilers
	Solc
	Integrated Development Environments (IDEs)
	Browser solidity
	Remix
	Installation

	Tools and libraries
	Node.js version 7
	Local Ethereum block explorer

	EthereumJS

	Contract development and deployment

	Introducing solidity
	Types
	Value types
	Boolean
	Integers
	Address
	Array value types (fixed size and dynamically sized byte arrays)

	Literals
	Integer literals
	String literals
	Hexadecimal literals

	Enums
	Function types
	Internal functions
	External functions

	Reference types
	Arrays
	Structs
	Data location

	Mappings
	Global variables
	Control structures
	Events
	Inheritance
	Libraries
	Functions
	Layout of a solidity source code file

	Introducing Web3
	POST requests
	The HTML and JavaScript frontend
	Installing web3.js
	Example

	Development frameworks
	Truffle
	Installation
	Testing using truffle
	Build
	Another example
	Example project: Proof of Idea
	Permissioned distributed ledgers

	Summary

	Chapter 9: Hyperledger
	Projects
	Fabric
	Sawtooth lake
	Iroha
	Blockchain explorer
	Fabric chaintool
	Fabric SDK Py
	Corda

	Hyperledger as a protocol
	Reference architecture
	Requirements
	Modular approach
	Privacy and confidentiality
	Identity
	Auditability
	Interoperability
	Portability

	Fabric
	Hyperledger Fabric
	Fabric architecture
	Membership services
	Blockchain services
	Consensus manager
	Distributed ledger
	Peer to Peer protocol
	Ledger storage

	Chaincode services
	Events
	APIs and CLIs

	Components of the Fabric
	Peers or nodes
	Applications on blockchain
	Chaincode implementation
	Application model

	Sawtooth lake
	PoET
	Transaction families
	Consensus in Sawtooth
	Development environment

	Corda
	Architecture
	State objects
	Transactions
	Consensus
	Flows

	Components
	Nodes
	Permissioning service
	Network map service
	Notary service
	Oracle service
	Transactions
	Vaults
	CorDapp

	Development environment

	Summary

	Chapter 10: Alternative Blockchains
	Blockchains
	Kadena
	Ripple
	Transactions
	Payments related
	Order related
	Account and security related
	Application layer
	Transport layer
	Interledger layer
	Ledger layer

	Stellar
	Rootstock
	Drivechain

	Quorum
	Transaction manager
	Crypto Enclave
	QuorumChain
	Network manager

	Tezos
	Storj
	Maidsafe
	BigChainDB
	Multichain
	Tendermint
	Tendermint Core
	Tendermint Socket Protocol (TMSP)

	Platforms
	BlockApps
	Installation
	Application development and deployment using BlockApps

	Eris

	Summary

	Chapter 11: Blockchain-Outside of Currencies
	Internet of Things
	Physical object layer
	Device layer
	Network layer
	Management layer
	Application layer
	IoT blockchain experiment
	First node setup
	Raspberry Pi node setup
	Circuit

	Government
	Border control
	Voting
	Citizen identification (ID cards)
	Miscellaneous

	Health
	Finance
	Insurance
	Post trade settlement
	Financial crime prevention

	Media
	Summary

	Chapter 12: Scalability and Other
Challenges
	Chapter 13: Current Landscape and Whats Next
	Emerging trends
	Application-specific blockchains (ASBCs)
	Enterprise-grade blockchains
	Private blockchains
	Start-ups
	Strong research interest
	Standardization
	Enhancements
	Real-world implementations
	Consortia
	Answers to challenges
	Convergence
	Education of blockchain technology
	Employment
	Crypto-economics
	Research in cryptography
	New programming languages
	Hardware research and development
	Research in formal methods and security
	Alternatives to blockchains
	Interoperability efforts
	Blockchain as a service
	Efforts to reduce electricity consumption

	Improvement proposals
	BIPs
	BIP 152
	BIP 151
	BIP 150
	BIP 147
	BIP 146

	EIPs
	EIP 170
	EIP 150
	EIP 161
	EIP 160
	EIP 155

	Other challenges
	Dark side
	Blockchain research
	Smart contracts
	Centralization issues
	Limitations in cryptographic functions
	Consensus Algorithms
	Scalability
	Code Obfuscation

	List of notable projects
	Zcash on Ethereum
	CollCo
	Cello
	Qtum
	Bitcoin-NG
	Solidus
	Hawk
	Town-Crier
	SETLCoin
	TEEChan
	Falcon
	Bletchley
	Casper
	Metropolis

	Miscellaneous Tools
	Solidity extension for Microsoft Visual studio
	MetaMask
	Stratis
	Embark
	DAPPLE
	Meteor
	uPort
	INFURA

	Convergence with other industries
	Future
	Summary

	Index

