
www.EBooksWorld.ir

Learning	Angular	2

www.EBooksWorld.ir

Table	of	Contents

Learning	Angular	2
Credits
About	the	Author
Acknowledgments
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Creating	Our	Very	First	Component	in	Angular	2
A	fresh	start

Web	components
Why	TypeScript	over	other	syntaxes?

Setting	up	our	workspace
Installing	dependencies
Installing	TypeScript
Installing	TypeScript	typings

Hello,	Angular	2!
TypeScript	classes
Introducing	metadata	decorators
Compiling	TypeScript	into	browser-friendly	JavaScript
The	HTML	container
Serving	the	examples	of	this	book
Putting	everything	together

Enhancing	our	IDE
Sublime	Text	3
Atom
Visual	Studio	Code
WebStorm
Leveraging	Gulp	with	other	IDEs

Diving	deeper	into	Angular	2	components

www.EBooksWorld.ir

Improving	productivity
Component	methods	and	data	updates
Adding	interactivity	to	the	component
Improving	the	data	output	in	the	view	and	polishing	the	UI

Summary
2.	Introducing	TypeScript

Understanding	the	case	for	TypeScript
The	benefits	of	TypeScript
Introducing	TypeScript	resources	in	the	wild

The	TypeScript	official	site
The	TypeScript	Wiki

Types	in	TypeScript
String

Declaring	our	variables	the	ECMAScript	6	way
Number

Boolean
Array

Dynamic	typing	with	the	any	type
Enum

Void
Type	inference

Functions,	lambdas,	and	execution	flow
Annotating	types	in	our	functions
Function	parameters	in	TypeScript

Optional	parameters
Default	parameters
Rest	parameters
Overloading	the	function	signature

Better	function	syntax	and	scope	handling	with	lambdas
Classes,	interfaces,	and	class	inheritance

Anatomy	of	a	class	–	constructors,	properties,	methods,	getters,	and	setters
Interfaces	in	TypeScript
Extending	classes	with	class	inheritance

Decorators	in	TypeScript
Class	decorators

Extending	the	class	decorator	function	signature
Property	decorators
Method	decorators
Parameter	decorators

Organizing	our	applications	with	modules
Internal	modules
External	modules

The	road	ahead
Summary

www.EBooksWorld.ir

3.	Implementing	Properties	and	Events	in	Our	Components
A	better	template	syntax

Data	bindings	with	input	properties
Some	extra	syntactic	sugar	when	binding	expressions
Event	binding	with	output	properties
Input	and	output	properties	in	action

Setting	up	custom	values	declaratively
Communicating	between	components	through	custom	events

Emitting	data	through	custom	events
Local	references	in	templates
Alternative	syntax	for	input	and	output	properties

Configuring	our	template	from	our	component	class
Internal	and	external	templates
Encapsulating	CSS	styling

The	styles	property
The	styleUrls	property
Inline	style	sheets

Managing	view	encapsulation
Summary

4.	Enhancing	Our	Components	with	Pipes	and	Directives
Directives	in	Angular	2

Core	directives
NgIf
NgFor
NgStyle
NgClass
NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault

Manipulating	template	bindings	with	Pipes
The	uppercase/lowercase	pipe
The	number,	percent,	and	currency	pipes

The	number	pipe
The	percent	pipe
The	currency	pipe

The	slice	pipe
The	date	pipe
The	JSON	pipe
The	replace	pipe
The	i18n	pipes

The	i18nPlural	pipe
The	i18nSelect	pipe

The	async	pipe
Putting	it	all	together	in	the	Pomodoro	task	list

Setting	up	our	main	HTML	container
Building	our	task	list	table	with	Angular	directives

www.EBooksWorld.ir

Toggling	tasks	in	our	task	list
Displaying	state	changes	in	our	templates
Embedding	child	components

Building	our	own	custom	pipes
Anatomy	of	a	custom	pipe
A	custom	pipe	to	better	format	time	output
Filtering	out	data	with	custom	filters

Building	our	own	custom	directives
Anatomy	of	a	custom	directive
Building	a	task	tooltip	custom	directive

A	word	about	naming	conventions	for	custom	directives	and	pipes
Summary

5.	Building	an	Application	with	Angular	2	Components
Introducing	the	component	tree
Common	conventions	for	scalable	applications

File	and	module	naming	conventions
Ensuring	seamless	scalability	with	facades	or	barrels

How	dependency	injection	works	in	Angular	2
Injecting	dependencies	across	the	component	tree

Restricting	dependency	injection	down	the	component	tree
Restricting	provider	lookup

Overriding	providers	in	the	injector	hierarchy
Extending	injector	support	to	custom	entities
Initializing	applications	with	bootstrap()

Switching	between	development	and	production	modes
Enabling	Angular	2's	built-in	change	detection	profiler

Introducing	the	Pomodoro	App	directory	structure
Refactoring	our	application	the	Angular	2	way

The	shared	context
Services	in	the	shared	context
Configuring	application	settings	from	a	central	service

Creating	a	facade	module	including	a	custom	providers	barrel
Creating	our	components

The	timer	context
The	tasks	context
Defining	the	top	root	component

Bootstrapping	the	application
Summary

6.	Asynchronous	Data	Services	with	Angular	2
Strategies	for	handling	asynchronous	information

Observables	in	a	nutshell
Reactive	functional	programming	in	Angular	2

The	RxJS	library
Introducing	the	HTTP	API

www.EBooksWorld.ir

When	to	use	the	Request	and	RequestOptionsArgs	classes
The	Response	object
Handling	errors	when	performing	Http	requests
Injecting	the	Http	class	and	the	HTTP_PROVIDERS	modules	symbol

A	real	case	study	–	serving	Observable	data	through	HTTP
Adding	tasks	to	our	tasks	service

Summary
7.	Routing	in	Angular	2

Adding	support	for	the	Angular	2	router
Setting	up	the	router	service

Building	a	new	component	for	demonstration	purposes
Configuring	the	RouteConfig	decorator	with	the	RouteDefinition	instances
The	router	directives	–	RouterOutlet	and	RouterLink
Triggering	routes	imperatively
CSS	hooks	for	active	routes

Handling	route	parameters
Passing	dynamic	parameters	in	our	routes
Parsing	route	parameters	with	the	RouteParams	service

Defining	child	routers
Linking	to	child	routes

The	Router	lifecycle	hooks
The	CanActivate	hook
The	OnActivate	Hook
The	CanDeactivate	and	OnDeactivate	hooks
The	CanReuse	and	OnReuse	hooks

Advanced	tips	and	tricks
Redirecting	to	other	routes
Tweaking	the	base	path
Finetuning	our	generated	URLs	with	location	strategies
Loading	components	asynchronously	with	AsyncRoutes

Summary
8.	Forms	and	Authentication	Handling	in	Angular	2

Two-way	data	binding	in	Angular	2
The	NgModel	directive
Binding	a	type	to	a	form	with	NgModel

Bypassing	the	CanDeactivate	router	hook	upon	submitting	forms
Tracking	control	interaction	and	validating	input

Tracking	changes	with	local	references
Controls,	ControlGroups,	and	the	FormBuilder	class

Introducing	Controls	and	Validators
Controls	in	the	DOM	–	the	ngControl	directive
Grouping	controls	in	the	DOM	with	NgControlGroup
Defining	control	groups	imperatively	with	ControlGroup
Connecting	the	DOM	and	the	controller	with	ngFormModel

www.EBooksWorld.ir

A	real	example	–	our	login	component
The	login	feature	context
The	login	form	template
The	login	component
Applying	custom	validation	to	our	controls
Watching	state	changes	in	our	controls

Mocking	a	client	authentication	service
Exposing	our	new	service	to	other	components
Blocking	unauthorized	access
Making	the	UI	reactive	to	the	user	authentication	status

Running	the	extra	mile	on	access	management
Building	our	own	secure	RouterOutlet	directive

Summary
9.	Animating	Components	with	Angular	2

Creating	animations	with	plain	vanilla	CSS
Handling	animation	with	CSS	class	hooks

Class	hooks	available
Animating	components	with	the	AnimationBuilder

The	CssAnimationBuilder	API
Tracking	animation	state	with	the	Animation	class

Developing	custom	animation	directives
Interacting	with	our	directive	from	the	template

Looking	into	the	future	with	ngAnimate	2.0
Summary

10.	Unit	testing	in	Angular	2
Why	do	we	need	tests?
Parts	of	a	unit	test	in	Angular	2

Dependency	injection	in	unit	tests
Setting	up	our	test	environment

Implementing	our	test	runner
Setting	up	NPM	commands

Angular	2	custom	matcher	functions
Testing	pipes
Testing	components

Testing	components	with	dependencies
Overriding	component	dependencies	for	refined	testing

Testing	routes
Testing	routes	by	URL
Testing	redirections

Testing	services
Testing	asynchronous	services
Mocking	Http	responses	with	MockBackend

Testing	directives
The	road	ahead

www.EBooksWorld.ir

Using	Jasmine	in	combination	with	Karma
Introducing	code	coverage	reports	in	your	test	stack
Implementing	E2E	tests

Summary
Index

www.EBooksWorld.ir

Learning	Angular	2

www.EBooksWorld.ir

Learning	Angular	2
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	May	2016

Production	reference:	2260516

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-207-4

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits
Author

Pablo	Deeleman

Reviewer

Johannes	Weber

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Samantha	Gonsalves

Technical	Editor

Mohita	Vyas

Copy	Editors

Roshni	Banerjee

Akshata	Lobo

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

www.EBooksWorld.ir

Kirk	D'Penha

Production	Coordinator

Nilesh	R.	Mohite

Cover	Work

Nilesh	R.	Mohite

www.EBooksWorld.ir

About	the	Author
Pablo	Deeleman	is	a	former	UX	designer	and	frontend	engineer	who	discovered	the	Web
back	in	the	90s,	when	a	14,400	bps	modem	was	the	key	to	an	unparalleled	world	of	marvels
and	a	build-your-own-website	was	the	name	of	the	game.

After	getting	his	BA	(Hons)	degree	in	marketing	and	moving	through	different	roles	in	the
advertising	arena,	he	took	his	chance	and	evolved	into	a	self-taught,	passionate	UX	designer
and	frontend	developer	with	a	crunch	for	beautifully	crafted	CSS	layouts	and	JavaScript	thick
clients,	having	produced	countless	interactive	designs	and	web	desktop	and	mobile
applications	ever	since.

During	these	years,	he	has	fulfilled	his	career	as	both	an	UX	designer	and	frontend	developer
by	successfully	leading	Internet	projects	for	a	wide	range	of	clients	and	teams,	encompassing
European	online	travel	operators,	Silicon	Valley-based	start-ups,	international	heavy-traffic
tube	websites,	global	banking	portals,	or	gambling	and	mobile	gaming	companies,	just	to
name	a	few.	At	some	point	along	this	journey,	the	rise	of	Node.js	and	single-page-application
frameworks	became	a	turning	point	in	his	career,	being	currently	focused	on	building
JavaScript-driven	web	experiences.

After	having	lived	and	worked	in	several	countries,	Pablo	Deeleman	currently	lives	in
Barcelona,	Spain,	where	he	leads	the	frontend	endeavor	in	the	Barcelona	studio	of	Gameloft,
the	world	leader	in	mobile	gaming,	and	the	home	of	internationally	acclaimed	games,	such	as
Despicable	Me:	Minions	Rush	and	Asphalt	8.

When	not	writing	books	or	taking	part	in	industry	events	and	talks,	he	spends	most	of	his	time
fulfilling	his	other	passion:	playing	piano	and	guitar.

www.EBooksWorld.ir

Acknowledgments
The	book	you	hold	in	your	hands	right	now	is	the	result	of	a	lot	of	time,	effort,	and	sacrifice.
Someone	wisely	said	once	that	writing	a	book	about	a	framework	in	the	alpha	stage	is	like
aiming	at	a	moving	target,	and	indeed	it	is.	During	the	writing,	the	author	and	the	team
involved	in	this	project	wound	up	losing	track	of	how	many	times	we	had	rewritten
everything	to	conform	to	the	latest	incarnation	of	the	framework.	In	the	heat	of	the	battle,	it	is
quite	easy	to	fall	under	the	weight	of	frustration	and	seriously	consider	whether	such	a	project
is	worth	the	effort	or	not.	In	that	sense,	this	is	why	I	only	have	words	of	appreciation	for	the
team	at	Packt	and	most	particularly	for	Samantha	Gonsalves.	Her	kind	words	of	support
fueled	the	energy	I	needed	to	move	this	project	ahead.

I	would	also	like	to	specially	thank	my	friend	and	tech	author	Jorge	Ferrando	for	his
guidance	and	hints	during	the	production	process	for	this	book.	His	expertise	in	Angular	2
became	priceless	when	assessing	the	different	courses	of	action	to	deliver	the	best	learning
experience.	A	mention	is	required	as	well	for	our	other	fellow	developers	Javier	Gómez,
Alfonso	Fernández,	Fran	Iruela,	and	Pedro	Narciso.

I'd	like	to	also	thank	the	people	who	have	mentored	me	and	accompanied	me	along	this
professional	journey	over	these	years,	with	a	special	mention	for	the	people	at	Casumo	and
Gameloft,	and	most	specifically	and	in	no	particular	order,	for	Razmus	Svenningson,	Kim
Larsen,	Josef	Galea,	Steve	Attard,	Iden	Azzopardi,	Renald	Dalli,	Matthew	Borg,	Mark
Busuttil,	Gerard	Giné,	Antonio	González,	Albert	Puértolas,	Rafael	Marfil	and	the	always
inspiring	Stuart	Langridge.

www.EBooksWorld.ir

About	the	Reviewer
Johannes	Weber	is	a	passionate	developer	and	adviser	in	the	field	of	web	technologies
spotlighted	on	enterprise	JS	apps.	He	works	for	Mayflower	GmbH	(Munich,	Germany),
where	he	focuses	on	the	migration	of	SPA	and	MPA.	In	his	free	time,	he	(co)organizes	the
AngularJS	Munich	meetups,	AngularCamp	and	JS-Kongress.de.	Johannes	cofounded
ESnextNews.com,	where	you	get	five	great	ECMAScript.next	links	every	week	in	your	inbox.

www.EBooksWorld.ir

www.PacktPub.com

www.EBooksWorld.ir

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

www.EBooksWorld.ir

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

This	book	is	dedicated	to	my	parents	Paul	and	Pepa,	and	in	the	loving	memory	of	my
brother	José	Raúl.

You	will	live	forever	in	our	hearts.

www.EBooksWorld.ir

Preface
Over	the	past	years,	Angular	1.x	has	became	one	of	the	most	ubiquitous	JavaScript
frameworks	for	building	cutting	edge	web	applications,	either	big	or	small.	At	some	point,	its
shortcomings	with	regard	to	performance	and	scalability	became	too	prominent	as	soon	as
applications	grew	in	size	and	complexity.	Angular	2	was	then	conceived	as	a	full	rewrite	from
scratch	to	fulfill	the	expectations	of	modern	developers,	who	demand	blazing	fast
performance	and	responsiveness	in	their	web	applications.

Angular	2	has	been	designed	with	modern	web	standards	in	mind	and	allows	full	flexibility
when	picking	up	your	language	of	choice,	providing	full	support	for	ES6	and	TypeScript,	but
working	equally	well	with	today's	ES5,	Dart,	or	CoffeeScript.	Its	built-in	dependency	injection
functionalities	let	the	user	build	highly	scalable	and	modular	applications	with	an	expressive
and	self-explanatory	code,	turning	maintainability	tasks	into	a	breeze,	while	simplifying	test-
driven	development	to	the	max.	However,	where	Angular	2	stands	out	is	when	it	shows	off	its
unparalleled	level	of	speed	and	performance,	thanks	to	its	new	change	detection	system	that	is
up	to	five	times	faster	than	its	previous	incarnation.	Cleaner	views	and	an	unsurpassed
standards-compliant	templating	syntax	compound	an	endless	list	of	powerful	features	for
building	the	next	generation	of	web	mobile	and	desktop	apps.

Angular	2	is	here	to	stay	and	will	become	a	game	changer	in	the	way	modern	web
applications	are	envisioned	and	developed	in	the	years	to	come.	However,	and	due	to	its
disruptive	design	and	architecture,	learning	Angular	2	might	seem	a	daunting	effort	to
newcomers.

This	is	where	this	book	comes	in—its	goal	is	to	avoid	bloating	the	reader	with	API	references
and	framework	descriptions,	but	to	embrace	a	hands-on	approach,	helping	the	reader	learn
how	to	leverage	the	framework	to	build	stuff	that	matters	right	from	day	one.	This	is	learning
by	doing	right	from	the	start.

This	book	aims	to	give	developers	a	complete	walkthrough	of	this	new	platform	and	its
TypeScript-flavored	syntax	by	building	a	web	project	from	back	to	forth,	starting	from	the
basic	concepts	and	sample	components	and	iterating	on	them	to	build	up	more	complex
functionalities	in	every	chapter	until	we	launch	a	complete,	tested,	production-ready	sample
web	application	by	the	end	of	the	book.

www.EBooksWorld.ir

What	this	book	covers
Chapter	1,	Creating	Our	Very	First	Component	in	Angular	2,	introduces	the	reader	to	web
components,	which	are	the	building	blocks	of	all	Angular	2	applications.

Chapter	2,	Introducing	TypeScript,	instructs	the	reader	about	the	syntax	and	particularities	of
this	typed	superset	of	ECMAScript	6,	being	in	fact	the	syntax	of	choice	of	the	Angular	team
for	building	Angular	2.

Chapter	3,	Implementing	Properties	and	Events	in	Our	Components,	describes	how	our
components	behave	like	state	machines	that	can	change	their	state	by	receiving	data	through
their	input	properties	and	emit	data	as	events	through	their	output	properties.

Chapter	4,	Enhancing	our	Components	with	Pipes	and	Directives,	gives	a	complete
walkthrough	of	the	framework's	built-in	pipes	used	to	digest	data	output	in	our	templates,	and
also	the	built-in	directives	that	provide	advanced	functionality	to	our	component.	The	reader
will	also	learn	how	to	create	custom	pipes	or	directives

Chapter	5,	Building	an	Application	with	Angular	2	Components,	devotes	an	entire	chapter	to
recap	what	we	have	learned	so	far	and	orchestrates	everything	to	ensure	our	Angular	2
projects	scale	well	regardless	their	size	and	conform	to	the	community	coding	and	naming
conventions.

Chapter	6,	Asynchronous	Data	Services	with	Angular	2,	teaches	the	reader	how	to	implement
and	deploy	HTTP	connections	with	other	data	services	by	means	of	the	Http	module,	so	we
can	create	our	own	data	service	clients.

Chapter	7,	Routing	in	Angular	2,	introduces	the	reader	to	Angular	2's	router	and	its	built-in
directives,	providing	a	complete	walkthrough	the	different	strategies	we	have	to	load
components	from	routes	and	handle	the	state	through	the	History	API.

Chapter	8,	Forms	and	Authentication	Handling	in	Angular	2,	illustrates	the	different	strategies
we	have	at	our	disposal	to	build	web	forms	with	Angular	2,	manage	two-way	data	binding	on
input	controls,	and	create	complex	forms	and	validations.

Chapter	9,	Animating	Components	with	Angular	2,	covers	the	currently	available	tools	and
classes	for	implementing	animations	on	our	components,	from	pure	CSS	animations	handled
with	Angular	2	directives	to	more	complex	transitions	purely	managed	through	JavaScript,
thanks	to	Angular	2	animation	builders.

Chapter	10,	Unit	Testing	in	Angular	2,	will	guide	the	reader	through	the	steps	required	for
implementing	a	sound	testing	foundation	in	our	application,	and	the	general	patterns	for
deploying	unit	tests	on	components,	directives,	pipes,	routes,	and	services.

www.EBooksWorld.ir

What	you	need	for	this	book
In	order	to	develop	the	examples	contained	in	this	book,	you	will	primarily	need	a	web
browser	updated	to	its	latest	version.	We	recommend	Google	Chrome	or	Mozilla	Firefox,
although	Angular	2	is	meant	to	be	supported	in	all	evergreen	browsers.

You	will	also	need	terminal	software	installed	on	your	OS,	since	many	operations	are	handled
through	npm	commands	to	the	console.	In	this	sense,	having	Node.js	and	npm	installed	on
your	system	will	be	required	to	run	most	of	the	console	commands	mentioned	in	the	book.
The	rest	of	modules	required	and	their	installation	procedure	will	be	described	as	we	go.

Last,	but	not	least,	you	will	require	a	text	editor	to	code	your	Angular	2	modules,	although
Chapter	1,	Creating	Our	Very	First	Component	in	Angular	2	will	provide	a	thorough
walkthrough	of	all	the	best	IDE	alternatives	in	store	nowadays	for	developing	Angular	2
applications.

www.EBooksWorld.ir

Who	this	book	is	for
This	book	is	targeted	at	web	developers	who	want	to	build	the	next	generation	of	state-of-the-
art	mobile	and	desktop	web	applications	with	Angular	2.	This	book	does	not	require	you	to
have	prior	exposure	to	either	Angular	1.x	or	2,	although	comprehensive	knowledge	of
JavaScript	is	assumed.	It's	great	for	newcomers	to	Angular	who	learn	best	through	clear
explanations	and	definition	of	concepts.

www.EBooksWorld.ir

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"As	a	result	of	this
action,	we	will	find	a	new	tsconfig.json	file	at	the	root	of	our	project,	including	the	settings
required	by	the	TypeScript	compiler	to	transpile	the	component	code	into	plain	ECMAScript
5	JavaScript	code	readable	by	current	browsers."

A	block	of	code	is	set	as	follows:

<body>

		<nav	class="navbar	navbar-default	navbar-static-top">

				<div	class="container">

						<div	class="navbar-header">

								<strong	class="navbar-brand">My	Pomodoro	Timer

						</div>

				</div>

		</nav>

		<pomodoro-timer></pomodoro-timer>

</body>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

<body>

		<nav	class="navbar	navbar-default	navbar-static-top">

				<div	class="container">

						<div	class="navbar-header">

								<strong	class="navbar-brand">My	Pomodoro	Timer

						</div>

				</div>

		</nav>

		<pomodoro-timer></pomodoro-timer>

</body>

Any	command-line	input	or	output	is	written	as	follows:

$	npm	install	angular2	es6-shim	es6-promise	reflect-metadata	rxjs	zone.js	--

save

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"The	learn	section	gives	us
access	to	a	quick	tutorial	to	get	up	to	speed	with	the	language	in	no	time."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

www.EBooksWorld.ir

Tip

Tips	and	tricks	appear	like	this.

www.EBooksWorld.ir

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.EBooksWorld.ir

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

www.EBooksWorld.ir

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	GitHub	at
https://github.com/deeleman/	learning-angular2.

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

www.EBooksWorld.ir

https://github.com/deeleman/
http://learning-angular2
http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.EBooksWorld.ir

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.EBooksWorld.ir

mailto:questions@packtpub.com

Chapter	1.	Creating	Our	Very	First	Component
in	Angular	2
Unless	you	were	lost	in	space	for	the	past	couple	of	years,	chances	are	you	are	well	aware	of
the	momentum	that	modern	JavaScript	web	frameworks	and	libraries	have	got	in	the	frontend
arena	nowadays.	We	have	even	reached	a	stage	where	a	new	framework	is	born	every	day,
forcing	frontend	developers	to	assess	carefully	whether	this	new	cutting-edge	code	toolkit
adds	enough	value	to	justify	the	time	and	effort	required	to	face	its	learning	curve	and	put	it	to
good	use	in	our	next	project.

Eventually,	a	handful	of	names	ended	up	gaining	more	relevance	than	the	rest.	We	are
obviously	referring	to	client-side	frameworks	that	will	probably	sound	pretty	familiar	to	you
already:	Backbone,	Ember,	Knockout,	Angular	1,	and	so	on.

As	the	battle	for	supremacy	in	the	JavaScript	world	carried	on,	new	frameworks	such	as	React
or	Aurelia	entered	the	game,	favoring	web	components	and	harnessing	the	power	of	Shadow
DOM	as	the	cornerstone	of	its	architecture.	Applications	built	this	way	proved	to	be	more
modular,	scalable,	and	maintainable,	let	alone	their	unparalleled	level	of	performance.

Angular	1	had	come	a	long	way	already	since	its	inception	and	its	shortcomings	had	become
too	prominent	to	be	overlooked	any	longer.	It	was	time	for	something	better	and	a	simple
revamp	of	codebase	did	not	suffice.	A	more	ambitious	approach	was	required	and	Angular	2
was	developed—a	new	framework	engineered	from	scratch,	which	fully	embraces	the	newest
trends	in	the	industry.	It	has	web	components	at	the	heart	of	its	design	and	it	harnesses	the
power	of	Shadow	DOM	to	maximize	the	responsiveness	of	our	web	entities	against	state
changes.	On	top	of	that,	Angular	2	offers	a	state-of-the-art	change	detection	system	baked	in
to	each	component,	which	is	responsible	for	propagating	bindings	throughout	the	tree	of
components	that	comprise	our	applications.

The	defining	traits	of	Angular	2	go	beyond	the	concept	of	just	being	a	mere	web	components
framework,	since	its	features	encompass	pretty	much	everything	you	need	in	a	modern	web
application:	component	interoperability,	universal	support	for	multiple	platforms	and	devices,
a	top-notch	dependency	injection	machinery,	a	flexible	but	advanced	router	mechanism	with
support	for	decoupling	and	componentization	of	route	definitions,	advanced	HTTP
messaging,	and	animation	or	internationalization,	just	to	name	a	few.

In	this	chapter,	we	will:

Learn	why	Angular	2	is	so	unique	in	comparison	to	its	previous	versions
Learn	how	to	set	up	our	code	environment	to	work	with	Angular	2	and	TypeScript
Enhance	our	IDE	of	choice	to	provide	a	better	experience	coding	Angular	2	apps
Build	our	very	first	Angular	2	web	component	and	learn	how	to	embed	it	on	a	web	page
Add	basic	interactivity	features	to	our	web	component
Discover	some	basic	helpers	to	better	format	the	data	output

www.EBooksWorld.ir

A	fresh	start
As	mentioned	before,	Angular	2	represents	a	full	rewrite	of	the	Angular	1.x	framework,
introducing	a	brand	new	application	architecture	completely	built	from	scratch	in	TypeScript,
a	strict	superset	of	JavaScript	that	adds	optional	static	typing	and	support	for	interfaces	and
decorators.

In	a	nutshell,	Angular	2	applications	are	based	on	an	architecture	design	that	comprises	trees
of	web	components	interconnected	between	them	by	their	own	particular	I/O	interface.	Each
component	takes	advantage	under	the	covers	of	a	completely	revamped	dependency	injection
mechanism.	To	be	fair,	this	is	a	simplistic	description	of	what	Angular	2	really	is.	However,
the	simplest	project	ever	made	in	Angular	is	cut	out	by	these	definition	traits.	We	will	focus
on	learning	how	to	build	interoperable	components	and	manage	dependency	injection	in	the
next	chapters,	before	moving	on	to	routing,	web	forms,	or	HTTP	communication.	This	also
explains	why	we	will	not	make	explicit	references	to	Angular	1.x	throughout	the	book.
Obviously,	it	makes	no	sense	to	waste	time	and	pages	referring	to	something	that	will	not
provide	any	useful	insights	on	the	topic,	besides	the	fact	we	assume	that	you	might	not	know
about	Angular	1.x,	so	such	knowledge	does	not	have	any	value	here.

www.EBooksWorld.ir

Web	components
Web	components	is	a	concept	that	encompasses	four	technologies	designed	to	be	used
together	to	build	feature	elements	with	a	higher	level	of	visual	expressivity	and	reusability,
thereby	leading	to	a	more	modular,	consistent,	and	maintainable	web.	These	four	technologies
are	as	follows:

Templates:	These	are	pieces	of	HTML	that	structure	the	content	we	aim	to	render
Custom	Elements:	These	templates	not	only	contain	traditional	HTML	elements,	but	also
the	custom	wrapper	items	that	provide	further	presentation	elements	or	API
functionalities
Shadow	DOM:	This	provides	a	sandbox	to	encapsulate	the	CSS	layout	rules	and
JavaScript	behaviors	of	each	custom	element
HTML	Imports:	HTML	is	no	longer	constrained	to	host	HTML	elements,	but	to	other
HTML	documents	as	well

In	theory,	an	Angular	2	component	is	indeed	a	custom	element	that	contains	a	template	to	host
the	HTML	structure	of	its	layout,	the	latter	being	governed	by	a	scoped	CSS	style	sheet
encapsulated	within	a	Shadow	DOM	container.	Let's	try	to	rephrase	this	in	plain	English.
Think	of	the	range	input	control	type	in	HTML5.	It	is	a	handy	way	to	give	our	users	a
convenient	input	control	for	entering	a	value	ranging	between	two	predefined	boundaries.	If
you	have	not	used	it	before,	insert	the	following	piece	of	markup	in	a	blank	HTML	template
and	load	it	in	your	browser:

<input	id="mySlider"	type="range"	min="0"	max="100"	step="10">

You	will	see	a	nice	input	control	featuring	a	horizontal	slider	in	your	browser.	Inspecting
such	control	with	the	browser	developer	tools	will	unveil	a	concealed	set	of	HTML	tags	that
were	not	present	at	the	time	you	edited	your	HTML	template.	There	you	have	an	example	of
Shadow	DOM	in	action,	with	an	actual	HTML	template	governed	by	its	own	encapsulated	CSS
with	advanced	dragging	functionality.	You	will	probably	agree	that	it	would	be	cool	to	do	that
yourself.	Well,	good	news	is	that	Angular	2	gives	you	the	toolset	required	for	delivering	this
very	same	functionality,	so	we	can	build	our	own	custom	elements	(input	controls,
personalized	tags,	and	self-contained	widgets)	featuring	the	inner	HTML	markup	of	our
choice	and	a	very	own	stylesheet	that	does	not	affect	(nor	is	impacted)	by	the	CSS	of	the	page
hosting	our	component.

www.EBooksWorld.ir

Why	TypeScript	over	other	syntaxes?
Angular	2	applications	can	be	coded	in	a	wide	variety	of	languages	and	syntaxes:
ECMAScript	5,	Dart,	ECMAScript	6,	TypeScript,	or	ECMAScript	7.

TypeScript	is	a	typed	superset	of	ECMAScript	6	(also	known	as	ECMAScript	2015)	that
compiles	to	plain	JavaScript	and	is	widely	supported	by	modern	OSes.	It	features	a	sound
object-oriented	design	and	supports	annotations,	decorators,	and	type	checking.

The	reason	why	we	picked	(and	obviously	recommend)	TypeScript	as	the	syntax	of	choice	for
instructing	how	to	develop	Angular	2	applications	in	this	book	is	based	on	the	fact	that
Angular	2	itself	is	written	in	this	language.	Being	proficient	in	TypeScript	will	give	the
developer	an	enormous	advantage	when	it	comes	to	understanding	the	guts	of	the	framework.

On	the	other	hand,	it	is	worth	remarking	that	TypeScript's	support	for	annotations	and	type
introspection	turns	out	to	be	paramount	when	it	comes	to	managing	dependency	injection	and
type	binding	between	components	with	a	minimum	code	footprint,	as	we	will	see	further
down	the	line	in	this	book.

Ultimately,	you	can	carry	out	your	Angular	2	projects	in	plain	ECMAScript	6	syntax	if	that	is
your	preference.	Even	the	examples	provided	in	the	book	can	be	easily	ported	to	ES6	by
removing	type	annotations	and	interfaces,	or	replacing	the	way	dependency	injection	is
handled	in	TypeScript	with	the	most	verbose	ES6	way.

Note

For	the	sake	of	brevity,	we	will	only	cover	examples	written	in	TypeScript	and	actually
recommend	its	use	because	of	its	higher	expressivity	thanks	to	type	annotations,	and	its	neat
way	of	approaching	dependency	injection	based	on	type	introspection	out	of	such	type
annotations.

www.EBooksWorld.ir

Setting	up	our	workspace
Before	jumping	into	the	implementation	of	our	very	first	and	shiny	Angular	2	component,	we
need	to	bring	in	all	the	tools	we	will	require	to	implement	software	based	on	TypeScript,	let
alone	the	Angular	2	framework	modules	themselves.

First	and	foremost,	create	a	folder	and	double	check	that	the	NPM	CLI	is	available	in	your
system	and	is	properly	updated	to	the	latest	stable	version.	Otherwise,	please	go	to
https://nodejs.org	and	install	the	latest	Node.js	runtime.

Note

At	the	time	of	writing,	the	Angular	2	framework	is	in	Release	Candidate	1	version,	so	the
requirements	for	building	and	deploying	the	examples	contained	in	this	book	might	have
changed	overnight.	The	author	maintains	a	code	repository	at
https://github.com/deeleman/learning-angular2,	where	you	can	check	the	most	up-to-date
version	of	each	example	contained	in	this	book.	The	repository	is	divided	into	chapter	folders
and	each	folder	contains	the	incremental	version	of	the	project	as	it	is	at	the	end	of	each
chapter.	Please	refer	to	the	code	repository	should	any	problem	arise	upon	installing	or
deploying	the	examples	in	the	book.

www.EBooksWorld.ir

https://nodejs.org
https://github.com/deeleman/learning-angular2

Installing	dependencies
Our	first	requirement	will	obviously	be	to	install	Angular	2	onto	our	workspace,	including	its
own	peer	dependencies.	The	Angular	2	team	has	made	a	great	effort	to	ensure	the	installation
is	modular	enough	to	allow	us	to	bring	only	what	we	need,	becoming	our	projects	more	or
less	lean	depending	on	the	requirements.

In	this	sense,	Angular	2	does	not	come	in	the	form	of	a	single	installable	package,	but	many.
This	gives	the	smart	developer	the	opportunity	to	pick	only	those	modules	that	are	required
for	its	project,	minifying	the	overall	dependencies	footprint.	Some	of	these	packages,	such	as
common	or	core,	are	required	regardless	the	type	of	project	we	want	to	ship.	Some	others,	such
as	platform-browser-dynamic,	are	bound	to	the	type	of	project	and	target	platform	addressed.
A	nonthorough	list	of	the	most	common	packages	that	you	will	require	in	your	projects	is
given	here:

@angular/core:	This	is	the	most	relevant	package,	encompassing	the	backbone	of
Angular	and	its	most	common	elements,	such	as	directives	and	components.	You	will
need	to	rely	on	this	module	on	a	common	basis	to	import	the	basic	elements	of	Angular
2	into	your	project.
@angular/common:	You	will	seldom	need	to	explicitly	import	tokens	from	this	module,
but	it	is	worth	remarking	that	this	package	contains	the	definitions	of	all	the	directives,
services,	and	pipes	contained	by	Angular	2,	among	other	relevant	classes.
@angular/compiler:	Same	as	common,	you	will	rarely	import	tokens	explicitly	from	this
module,	although	it	is	the	one	responsible	for	compiling	the	HTML	templates	and
turning	them	into	code	that	can	render	the	application's	UI	output.
@angular/platform-browser:	This	module	contains	classes	and	functions	required	for
composing	and	interacting	with	the	DOM	in	a	web	browser	context.	Updating	the	page
title	or	configuring	the	touch	gestures	setup	are	common	actions	made	possible	by	this
module.	This	package	also	contains	the	functions	required	to	compile	templates	offline
in	production	environments.
@angular/platform-browser-dynamic:	We	will	rely	thoroughly	on	this	module	during
the	course	of	the	book,	since	it	will	provide	us	with	the	bootstrapping	function	we	will
require	to	initialize	our	applications	on	development.
@angular/http:	It	is	the	Angular	2	HTTP	client,	which	we	will	cover	in	detail	in	Chapter
6,	Asynchronous	Data	Services	with	Angular	2.
@angular/router:	It	is	the	Angular	2	built-in	router	still	under	Beta	at	the	time	of	this
writing.
@angular/router-deprecated:	A	snapshot	of	the	previous	incarnation	of	the	Angular	2
built-in	router,	made	available	to	ensure	backward	compatibility	with	existing
applications.	Chapter	7,	Routing	in	Angular	2,	will	cover	it	in	detail	and	explain	some	of
its	most	remarkable	differences	with	the	new	router	still	under	development.

At	the	time	of	writing,	these	are	all	the	different	third-party	libraries	that	are	required	as	peer
dependencies	in	an	Angular	2	project,	apart	from	the	Angular	2	modules:

www.EBooksWorld.ir

es6-shim:	This	introduces	ECMAScript	6	compatibility	polyfills	for	legacy	JavaScript
engines	(mostly	Microsoft	Internet	Explorer).	This	dependency	is	now	required	because
many	major	browsers	still	do	not	provide	wide	support	for	ECMAScript	6	features,	but
hopefully,	this	will	change	soon.	Some	other	implementations	use	the	core-js	standard
library	instead.	Ultimately,	pick	the	one	you	like	the	most	as	long	as	it	properly	polyfills
the	core	ES2015	APIs	required	by	Angular	2.
zone.js:	This	is	a	polyfill	for	the	Zone	specification	that	is	used	to	handle	change
detection	in	Angular	2	applications.
reflect-metadata:	This	brings	support	for	decorators	in	our	Angular	2	classes	and
metadata	reflection	in	our	components.	We	will	see	decorators	in	action	later	on	in	this
chapter	and	a	broader	overview	of	its	different	types	and	implementations	in	Chapter	2,
Introducing	TypeScript.	Decorators	are	a	core	part	of	Angular	2.
rxjs:	This	library	was	developed	by	Microsoft	Open	Technologies,	Inc.	According	to
Microsoft,	it	is	a	set	of	libraries	to	compose	asynchronous	and	event-based	programs
using	observable	collections	and	Array#extras	style	composition	in	JavaScript.	In	short,
RxJS	is	a	library	for	managing	Observables,	which	allow	us	to	make	our	applications
fully	reactive	to	asynchronous	state	changes.	The	Observables	spec	will	be	standardized
by	modern	browsers	in	the	future,	so	we	will	be	able	to	rule	out	this	dependency	by	then.

These	dependencies	may	evolve	without	prior	notice	so	please	refer	to	the	GitHub	repository
for	the	most	up-to-date	list	of	requirements.

Note

You	will	be	probably	surprised	by	the	amount	of	libraries	that	Angular	2	does	need	and	the
fact	that	these	dependencies	are	not	part	of	the	Angular	bundle	itself.	This	is	because	these
requisites	are	not	specific	to	Angular	2,	but	of	a	vast	majority	of	modern	JavaScript
applications	nowadays.

With	all	these	dependencies	and	third-party	libraries	in	mind,	you	can	run	the	following	set	of
bash	commands	in	your	terminal	console,	once	you	have	created	a	folder	for	the	project	we
will	cover	in	this	book:

$	mkdir	learning-angular2

$	cd	learning-angular2

$	npm	init

$	npm	install	@angular/common	@angular/core	@angular/compiler	--save

$	npm	install	@angular/platform-browser	@angular/platform-browser-dynamic	--

save

$	npm	install	@angular/router	@angular/router-deprecated	--save

$	npm	install	@angular/http	--save

$	npm	install	es6-shim	reflect-metadata	rxjs	zone.js	--save

Apart	from	the	dependencies	enlisted	previously,	we	will	also	need	to	install	the	systemjs
universal	module	loader	package	in	order	to	support	module	loading	between	code	units	once
transpiled	into	ES5.	The	systemjs	package	is	not	the	only	option	available	for	managing
module	loading	in	Angular	2.	In	fact,	we	can	swap	it	for	other	module	loaders,	such	as

www.EBooksWorld.ir

WebPack	(https://webpack.github.io/),	although	all	the	examples	provided	in	this	book	make
use	of	SystemJS	for	handling	code	injection.	We	will	install	SystemJS,	flagging	it	as	a
development	dependency	by	executing	the	following	command:

$	npm	install	systemjs	–save

Last,	but	not	least,	we	will	also	install	Bootstrap	in	our	application	so	that	we	can	easily	craft
a	nice	UI	for	the	example	application	we	will	build	incrementally	in	each	chapter.	This	is	not
an	Angular	2	requirement,	but	a	particular	dependency	of	the	project	we	will	carry	out
throughout	this	book:

$	npm	install	bootstrap	–save

The	installation	can	throw	different	alerts	and	warnings	depending	on	the	versions	of	each
peer	dependency	required	by	Angular	2	at	this	moment	in	time,	so	in	case	of	issues,	I	strongly
recommend	to	fetch	the	latest	version	of	the	package.json	file	available	in	this	book's	code
repository	https://github.com/deeleman/learning-
angular2/blob/master/chapter_01/package.json.

Download	the	file	to	your	directory	workspace	and	run	the	npm	install	command.	NPM	will
find	and	install	all	the	dependencies	for	you	automatically.

Note

Mac	OS	users,	who	have	not	claimed	ownership	rights	on	the	npm	directory	located	at
/usr/local/bin/npm	(or	/usr/local/npm	for	those	users	on	OS	versions	prior	to	Mac	OS	El
Capitan),	might	need	to	execute	the	npm	install	command	with	sudo	privileges.

www.EBooksWorld.ir

https://webpack.github.io/
https://github.com/deeleman/learning-angular2/blob/master/chapter_01/package.json

Installing	TypeScript
We	have	now	a	complete	set	of	Angular	2	sources	and	their	dependencies,	plus	the	Bootstrap
module	to	beautify	our	project	and	SystemJS	to	handle	module	loading	and	bundle
generation.

However,	TypeScript	is	probably	not	available	on	your	system	yet.	Let's	install	TypeScript
and	make	it	globally	available	on	your	environment	so	that	we	can	leverage	its	convenient
CLI	to	compile	our	files	later	on:

$	npm	install	-g	typescript

Great!	We're	almost	done.	One	last	step	entails	informing	TypeScript	about	how	we	want	to
use	the	compiler	within	our	project.	To	do	so,	just	execute	the	following	one-time	command:

$	tsc	--init	--experimentalDecorators	--emitDecoratorMetadata	--target	ES5	-

-module	system	--moduleResolution	node

Basically,	we	have	just	initialized	a	TypeScript	project	(which	is	our	Angular	2	project	itself)
with	support	for	experimental	decorators	(as	we	mentioned	already,	these	are	a	new	feature	in
ES7	and	TypeScript	that	Angular	2	uses	extensively)	and	set	SystemJS	as	the	default
mechanism	for	importing	modules	and	dependencies	between	files.

As	a	result	of	this	action,	we	will	find	a	new	tsconfig.json	file	at	the	root	of	our	project,
including	the	settings	required	by	the	TypeScript	compiler	to	transpile	the	component	code
into	plain	ECMAScript	5	JavaScript	code	readable	by	current	browsers.

Note

Please	remember	that	our	browsers	do	not	provide	support	for	TypeScript	or	ECMAScript	6
out	of	the	box,	so	we	will	transpile	our	code	to	some	flavor	of	JavaScript	that	is	widely
supported	by	our	target	browsers.

A	sneak	peek	on	such	file	will	yield	the	following:

{

		"compilerOptions":	{

				"experimentalDecorators":	true,

				"emitDecoratorMetadata":	true,

				"target":	"es5",

				"module":	"system",

				"moduleResolution":	"node",

				"noImplicitAny":	false,

				"outDir":	"built",

				"rootDir":	".",

				"sourceMap":	false

		},

		"exclude":	[

				"node_modules"

]

www.EBooksWorld.ir

}

Simple,	right?	The	set	of	properties	included	in	our	config	manifest	is	self-descriptive
enough,	but	we	can	highlight	three	interesting	properties.	They	are	as	follows:

rootDir:	This	points	to	the	folder	the	compiler	will	use	to	scan	for	TypeScript	files	to
compile	(currently	the	base	folder	in	our	example).
outDir:	This	defines	where	the	compiled	files	will	be	moved	unless	we	define	our	own
output	path	by	means	of	the	--outDir	parameter	in	the	command	line,	the	compiler	will
default	to	the	built	folder	created	at	runtime	in	the	same	location	where	the
tsconfig.json	file	lives.
sourceMap:	This	sets	the	source	code	mapping	preferences	to	help	debugging.

Toggle	its	value	to	true	if	you	want	source	map	files	to	be	generated	at	runtime	to	back	trace
the	code	to	its	source	through	the	browser's	dev	tools	in	case	exceptions	arise.

Besides	these	properties,	we	also	can	see	that	we	have	marked	the	node_modules	folder	as
excluded,	which	means	that	the	tsc	command	will	skip	that	folder	and	all	its	contents	when
transpiling	TypeScript	files	to	ES5	throughout	the	application	tree.

Tip

I	would	encourage	you	to	refer	to	the	TypeScript	compiler	wiki	at
https://github.com/Microsoft/TypeScript/wiki/Compiler-Options	for	a	full	rundown	of
options	available	in	the	compiler	API.

www.EBooksWorld.ir

https://github.com/Microsoft/TypeScript/wiki/Compiler-Options

Installing	TypeScript	typings
Besides	the	project	dependencies,	such	as	Bootstrap	and	Angular	2's	own	dependencies,
TypeScript	does	require	some	additional	libraries	so	we	can	get	the	best	out	of	it.	Specifically,
ES6	extends	the	JavaScript	environment	with	methods	and	APIs	that	need	to	be	described	to
the	TypeScript	compiler.	Otherwise,	it	will	not	recognize	them	as	part	of	the	syntax	and	will
throw	errors	upon	compiling.	Whenever	we	need	to	instruct	the	TypeScript	compiler	about	a
JavaScript	API,	either	a	native	one	or	any	other	API	belonging	to	a	third	party	library,	we	will
want	to	use	a	TypeScript	type	definition	file.

A	TypeScript	type	definition	file	is	basically	a	file	with	the	d.ts	file	extension	that	contains
TypeScript	interfaces	(more	on	this	in	Chapter	2,	Introducing	TypeScript)	so	we	can	better
perform	real-time	type	checking	and	prevent	compiler	errors.	Installing	type	definition	files
in	our	projects	is	not	a	big	deal	and	just	requires	having	a	typings	tool	installed	in	our
environment.	In	fact,	we	need	to	install	a	type	definition	file	to	ensure	that	the	TypeScript
compiler	is	acquainted	with	the	most	up-to-date	ES6	API.	Good	news	is	that	we	can	install	a
TypeScript	definitions	manager	tool	right	from	the	NPM	registry,	so	we	can	automate	the
process	of	searching,	installing	and	deploying	type	definition	files.	Therefore,	return	to	the
console	and	proceed	with	the	following	commands:

$	npm	install	-g	typings

$	typings	install	es6-shim	--ambient	--save

First,	we	install	the	typings	tool	globally	and	then	we	leverage	the	typings	CLI	to	install	the
es6-shim	types	definition	file	into	our	project,	creating	the	typings.json	file	that	will	store
the	references	to	the	source	origin	for	all	type	definition	files	we	will	install	now	and	later	on.
A	new	folder	named	typings	is	created	and	it	contains	the	definition	files	we	require.	Without
them,	basic	ES6	features	like	the	new	functional	methods	of	the	Array	class	would	not	be
available.

Before	moving	forward,	we	need	to	tackle	one	more	step	regarding	the	TypeScript	typings.
When	installing	type	definition	files,	two	façade	files	are	generated	by	the	CLI:
typings/main.d.ts	and	typings/browser.d.ts.	However,	only	one	should	be	exposed	to	the
TypeScript	compiler.	Otherwise,	it	will	raise	an	exception	after	finding	duplicated	type
definitions.	Since	we	are	building	frontend	applications,	we	will	stick	to	browser.d.ts	and
exclude	main.d.ts	and	its	linked	definition	files	by	marking	it	as	excluded	at	tsconfig.json:

{

		"compilerOptions":	{

				"experimentalDecorators":	true,

				"emitDecoratorMetadata":	true,

				"target":	"es5",

				"module":	"system",

				"moduleResolution":	"node",

				"noImplicitAny":	false,

				"outDir":	"built",

				"rootDir":	".",

				"sourceMap":	false

www.EBooksWorld.ir

		},

		"exclude":	[

				"node_modules",

				"typings/main.d.ts",

				"typings/main"

]

}

On	the	other	hand,	it	is	actually	recommended	to	exclude	the	typings	folder	from	your
project	distribution	by	including	it	in	your	.gitignore	file,	same	as	we	usually	do	with	the
node_modules	folder.	You	only	want	to	include	the	typings.json	manifest	when	distributing
your	app	and	then	have	all	the	installation	processes	handled	by	npm,	so	it	is	very	convenient
to	include	the	type	definition	files	installation	as	an	action	handled	by	the	postinstall	script
in	the	package.json	file.	This	way,	we	can	install	the	npm	dependencies	and	the	definition	files
in	one	shot.	The	code	is	as	follows:

"scripts":	{	

		"typings":	"typings",

		"postinstall":	"typings	install"

},

When	taking	this	approach,	the	typings	package	should	be	included	in	the	package.json	as
part	of	the	development	dependencies.	Thus,	reinstall	it	with	the	--save-dev	flag.	Again,
please	refer	to	the	book	code	repository	at	GitHub	to	fetch	the	latest	version	of	the
package.json	file	for	this	chapter.

www.EBooksWorld.ir

Hello,	Angular	2!
With	the	Angular	2	library	bundle	in	place	and	full	support	for	TypeScript	now	available,	the
time	has	come	to	put	everything	to	the	test.	First,	create	and	empty	file	named	hello-
angular.ts	(.ts	is	the	natural	extension	for	TypeScript	files)	at	the	root	of	our	working
folder.

Note

Here,	we	stumble	upon	the	first	of	many	coding	conventions	we	will	cover	in	this	book:	file
naming.	We	name	our	module	files	using	lower	kebab	case.	In	Chapter	5,	Building	an
Application	with	Angular	2	Components,	we	will	delve	deeper	into	naming	conventions	and
best	practices	for	coding	Angular	2	applications.	Until	then,	we	will	concur	into	some	anti-
patterns	for	learning	purposes,	as	those	more	experienced	readers	will	soon	notice.

Now,	open	that	file	and	write	the	following	at	the	top:

import	{	Component	}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

We	have	just	imported	the	most	basic	type	and	function	we	will	need	to	scaffold	a	very	basic
component	in	the	next	section.	The	importing	syntax	will	be	familiar	to	those	who	are	already
familiar	with	ECMAScript	6.	For	those	who	are	not	familiar	with	its	code	paradigm,	don't
worry.	We	will	discuss	more	on	this	in	Chapter	2,	Introducing	TypeScript.

www.EBooksWorld.ir

TypeScript	classes
Let's	now	define	a	class:

class	HelloAngularComponent	{

		greeting:	string;

		constructor()	{

				this.greeting	=	'Hello	Angular	2!';

		}

}

ECMAScript	6	(and	TypeScript	as	well)	introduced	classes	as	one	of	the	core	parts	of	its
building	blocks.	Our	example	features	a	class	field	property	named	greeting	typed	as	string,
which	is	populated	within	the	constructor	with	a	text	string,	as	you	can	see	in	the	preceding
code.	The	constructor	function	is	called	automatically	when	an	instance	of	the	class	is	created,
and	each	and	every	property	(and	functions	as	well)	should	be	annotated	with	the	type	it
represents	(or	returns	in	the	case	of	functions).

Do	not	worry	about	all	this	now.	Chapter	2,	Introducing	TypeScript,	will	give	you	the	insights
you	need	to	better	understand	the	mechanics	of	TypeScript.	Now,	let's	focus	on	the	actual
layout	of	our	component.	You	have	probably	noticed	the	name	structure,	which	conforms	to
another	common	coding	convention	in	Angular	2.	We	define	each	and	every	class	in	Pascal
casing	by	appending	a	suffix	pointing	out	its	type	(will	it	be	a	component,	directive,	pipe,	and
so	on),	which	is	Component	for	this	case.

www.EBooksWorld.ir

Introducing	metadata	decorators
The	controller	class	we	have	just	created	gives	us	the	machinery	we	need	to	instance	an	object
exposing	a	greeting	property,	but	we	still	need	to	apply	some	Angular	2	sugar	to	turn	it	into
an	actual	component.	We	already	imported	the	Component	metadata	class,	remember?	Let's	put
it	to	work	and	decorate	our	class	like	this:

@Component({

		selector:	'hello-angular',

		template:	'<h1>	{{greeting}}	</h1>'

})

class	HelloAngularComponent	{

		greeting:	string;

		constructor()	{

				this.greeting	=	'Hello	Angular	2!';

		}

}

A	decorator	is	a	very	interesting	experimental	feature	proposed	by	ECMAScript	7	that	was
later	embraced	and	implemented	by	TypeScript	in	order	to	decorate	classes	with	metadata.
There	are	several	types	of	decorators	and	all	of	them	are	easily	recognizable	by	the	@
symbol	prefix.	Although	Chapter	2,	Introducing	TypeScript,	will	give	you	an	idea	about
decorators,	delving	deeper	into	its	core	logic	is	out	of	the	scope	of	this	book.	However,	we
will	get	used	to	them	as	we	advance	through	the	book.

In	this	example,	we	are	telling	the	compiler	that	the	HelloAngularComponent	class	is,	in	fact,
an	Angular	2	component.	The	component	is	meant	to	be	encapsulated	by	the	<hello-angular>
custom	element	and	the	template	property	defines	the	internal	HTML	structure	of	our
component.	As	we	already	mentioned	previously,	custom	elements	encapsulating	HTML
templates	are	the	foundation	of	web	components.

www.EBooksWorld.ir

Compiling	TypeScript	into	browser-friendly	JavaScript
We	are	done	with	our	primer	on	TypeScript,	but	unfortunately	it	is	quite	likely	that	our
browser	of	choice	will	not	support	TypeScript.	So,	we	need	to	compile	our	source	code	into
good	old	ECMAScript	5	JavaScript	code.

The	good	news	is	that	the	TypeScript	CLI	contains	tools	to	compile	TypeScript	into
JavaScript	code	out	of	the	box.	To	do	this,	just	open	a	terminal	window	and	type	the	following
command	at	the	location	of	the	hello-angular.ts	file:

$	tsc	--watch

A	new	hello-angular.js	file	will	show	up	within	the	built	directory	(or	the	path	you	have
defined	in	the	outDir	property	at	tsconfig.json),	and	it	will	contain	an	ECMAScript	5
version	of	the	TypeScript	code	we	just	built.	This	file	already	contains	some	functional	code
to	implement	support	for	the	Metadata	decorator	we	configured.

Tip

Please	note	the	--watch	flag	in	our	command.	This	parameter	informs	the	compiler	that	we
want	the	compilation	to	be	automatically	triggered	again	upon	changing	any	file.	Disregard
the	flag	when	you	just	need	to	compile	your	stuff	once	and	do	not	need	to	watch	the	code	for
changes.

Our	component	is	looking	better	by	the	minute	and	now	we	are	in	a	good	state	to	start	using
it,	but	we	still	need	to	embed	it	somewhere	in	order	to	see	it	live.	It's	time	to	define	the	HTML
shell	or	web	container	where	it	will	live.

www.EBooksWorld.ir

The	HTML	container
Create	an	HTML	file	at	the	root	of	our	workspace	and	name	it	index.html.	Then,	populate	it
with	the	following	code:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Hello	Angular	2!</title>

				<script	src="node_modules/es6-shim/es6-shim.min.js"></script>

				<script	src="node_modules/zone.js/dist/zone.js"></script>

				<script	src="node_modules/reflect-metadata/Reflect.js"></script>

				<script	src="node_modules/systemjs/dist/system.js"></script>

				<script	src="node_modules/rxjs/bundles/Rx.js"></script>

				<script	src="systemjs.config.js"></script>

		</head>

		<body>

				

		</body>

</html>

This	is	the	most	basic,	barebones	version	of	an	HTML	container	for	an	Angular	2	application
we	can	come	up	with.	This	is	great	because	most	of	the	presentation	logic	and	dependency
management	will	be	handled	by	our	component	itself.

However,	two	things	catch	our	attention	in	this	template.	On	one	hand,	we	find	a	block	of
script	includes.	This	block	contains	all	the	peer	dependencies	we	require	to	polyfill	ES2015
(ES6)	functionalities;	the	Zone	and	Observables	specifications	ensure	full	support	for
metadata	decorators	and	last,	but	not	least,	implement	dynamic	module	loading	functionalities
to	our	application.

Note

Do	not	try	to	reshuffle	the	sorting	layout	of	these	code	blocks	unless	you	want	to	face
unexpected	exceptions.

Then,	we	introduce	a	script	include	pointing	to	a	new	file	named	systemjs.config.js.	This
file	is	yet	to	be	written,	so	let's	create	it	in	the	root	of	our	project	folder	with	the	following
implementation.	We	will	break	down	this	setup	in	the	next	paragraphs:

(function()	{

		var	pathMappings	=	{

				'@angular':	'node_modules/@angular',

				'rxjs':	'node_modules/rxjs',

www.EBooksWorld.ir

		};

		var	packages	=	[

				'@angular/common',

				'@angular/compiler',

				'@angular/core',

				'@angular/http',

				'@angular/platform-browser',

				'@angular/platform-browser-dynamic',

				'@angular/router',

				'@angular/router-deprecated',

				'@angular/testing',

				'rxjs',

				'built',

];

		var	packagesConfig	=	{};

		packages.forEach(function(packageName)	{

				packagesConfig[packageName]	=	{

						main:	'index.js',

						defaultExtension:	'js'

				};

		});

		System.config({

				map:	pathMappings,

				packages:	packagesConfig,

		});

})();

As	we	can	see,	the	systemjs.config.js	file	contains	primarily	an	immediately	invoked
function	expression.	This	means	that	this	block	of	code	will	be	executed	as	soon	as	it	is	parsed
by	the	browser.	Let's	overview	each	and	every	piece	of	this	routine:

var	pathMappings	=	{

		'@angular':	'node_modules/@angular',

		'rxjs':	'node_modules/rxjs',

};

Here,	we	defined	an	object	literal	containing	key/value	pairs	of	indexes	containing	full	paths.
We	will	use	this	object	literal	to	configure	the	path	aliases	in	SystemJS	later	on	in	this	same
file.	Therefore,	executing	the	import	'@angular/core'	statement	will	instruct	SystemJS	to
actually	import	the	core	package	from	node_modules/@angular/core.	However,	packages	are
not	imported	as	a	whole	as	is.	We	need	an	entry	point	to	such	package	and,	therefore,	we	need
to	inform	SystemJS	what	façade	file	it	should	seek	when	importing	an	entire	module.	This	we
will	do	by	defining	an	array	of	modules	and	then	creating	an	object	literal,	where	each
module	path	is	the	key	of	a	property	containing	the	main	entry	point	and	the	default	file
extension	configuration	object	for	such	paths:

var	packages	=	[

		'@angular/common',

www.EBooksWorld.ir

		'@angular/compiler',

		'@angular/core',

		'@angular/http',

		'@angular/platform-browser',

		'@angular/platform-browser-dynamic',

		'@angular/router',

		'@angular/router-deprecated',

		'@angular/testing',

		'rxjs',

		'built',

];

var	packagesConfig	=	{};

packages.forEach(function(packageName)	{

		packagesConfig[packageName]	=	{

				main:	'index.js',

				defaultExtension:	'js'

		};

});

The	resulting	packagesConfig	variable	represents	the	aforementioned	configuration	object
literal.	It	also	includes	main	entry	file	and	default	extension	data	for	the	built	folder,	which	is
the	folder	where	the	TypeScript	compiler	will	go	saving	the	transpiled	files	while	we	develop
our	application.

With	all	this	configuration	in	place,	our	last	step	is	to	finally	configure	SystemJS	with	these
path	mappings,	entry	point,	and	default	file	extension	expected	for	each	package	represented
by	the	previous	paths:

System.config({

		map:	pathMappings,

		packages:	packagesConfig,

});

This	concludes	all	the	configuration	required	for	SystemJS.	With	this	in	place,	we	can	both
kickstart	our	application	and	leverage	the	ES2015	module	import	syntax	in	our	code,	as	we
will	see	in	the	next	sections.

www.EBooksWorld.ir

Serving	the	examples	of	this	book
Before	moving	on	with	our	example,	we	need	a	local	web	server	to	execute	the	examples
contained	in	this	book.	If	you	already	have	a	working	web	server	that	you	can	configure	to
point	to	your	working	directory,	then	skip	to	the	next	section.	Otherwise,	set	up	a	web	server
in	your	workspace.	As	an	easy	workaround,	we	recommend	you	install	the	extraordinarily
powerful	and	lightweight	lite-server	node	module	from	NPM:

$	npm	install	-g	lite-server

Then,	you	can	run	a	web	server	with	live-reloading	functionality	by	running	the	following
command	in	a	terminal	shell	after	moving	into	your	project	folder:

$	lite-server

After	executing	the	preceding	command,	a	browser	window	will	be	fired,	pointing	to	your
working	directory.	Please	refer	to	the	NPM	module	official	repository	in	order	to	check	out
all	the	options	available	(https://github.com/johnpapa/lite-server).

Tip

It	is	actually	recommended	to	install	the	lite-server	package	paired	up	with	the	typescript
and	concurrently	packages,	all	of	them	as	development	dependencies	installed	with	the	--
save-dev	flag.	This	way,	you	can	run	the	TypeScript	compiler	in	watch	mode	and	the	local
server	at	the	same	time	with	a	single	command	that	can	be	wrapped	in	the	start	script	of
package.json.	Then,	you	can	start	building	stuff	right	away	by	accessing	your	working	folder
and	executing	npm	start.	This	book's	code	repository	in	GitHub	implements	this	approach,
so	feel	free	to	borrow	the	package.json	example	for	your	convenience.

www.EBooksWorld.ir

https://github.com/johnpapa/lite-server

Putting	everything	together
Our	HTML	file	is	now	ready	to	host	our	Angular	2	component.	To	do	so,	let's	edit	the
template	again	and	drop	a	custom	element	with	the	same	tag	name	we	defined	in	the	selector
property	of	our	component.	Then,	import	the	actual	file	that	contains	the	component	class
declaration,	leveraging	the	API	of	SystemJS	for	that.	Check	out	these	changes	in	the	following
example:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Hello	Angular	2!</title>

				<script	src="node_modules/es6-shim/es6-shim.min.js"></script>

				<script	src="node_modules/zone.js/dist/zone.js"></script>

				<script	src="node_modules/reflect-metadata/Reflect.js"></script>

				<script	src="node_modules/systemjs/dist/system.js"></script>

				<script	src="node_modules/rxjs/bundles/Rx.js"></script>

				<script	src="systemjs.config.js"></script>

						//	Here	we	import	the	component	module

						//	with	no	file	extension

						System.import	('built/hello-angular');

				</script>

		</head>

		<body>

				<!--	This	is	our	custom	element	tag	-->

				<hello-angular></hello-angular>

		</body>

</html>

How	cool	is	that?	Now,	we	can	create	our	own	custom	elements	that	render	whatever	we
define	in	them.	Let's	bring	up	the	page	in	our	web	server	and	see	it	in	action	by	going	to
http://localhost:3000/	(or	whatever	host	and	port	your	local	web	server	operates	in).

Unfortunately,	if	we	reload	the	browser,	nothing	will	happen	and	we	will	only	see	a	blank
page	with	nothing	in	there.	This	is	because	we	still	need	to	bootstrap	our	component	to
instantiate	it	on	the	HTML	page.

Let's	return	to	our	component	file	hello-angular.ts	and	add	a	final	line	of	code:

import	{	Component	}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

@Component({

		selector:	'hello-angular',

		template:	'<h1>	{{greeting}}	</h1>'

})

class	HelloAngularComponent	{

		greeting:	string;

		constructor()	{

				this.greeting	=	'Hello	Angular	2!';

www.EBooksWorld.ir

		}

}

bootstrap(HelloAngularComponent);	//	Component	is	bootstrapped!

The	bootstrap	command	instances	the	controller	class	we	pass	as	an	argument	and	uses	it	to
lay	out	a	complete	application	scaffold.	Basically,	the	bootstrap	method	kickstarts	the
following	actions:

Analyzes	the	component	configured	as	its	first	argument	and	checks	its	type.
Searches	the	DOM	after	an	element	with	a	tag	matching	the	component	selector.
Creates	a	child	injector	that	will	handle	the	injection	of	dependencies	in	that	component
and	all	the	child	directives	(including	components,	which	are	directives	too)	that	such	a
component	might	host,	in	a	very	similar	way	a	tree	has	ramifications.
It	creates	a	new	Zone.	We	will	not	cover	Zones	in	this	book,	but	let's	just	say	that	Zones
are	in	charge	of	managing	the	change	detection	mechanism	of	each	instance	of	a
bootstrapped	component	in	an	isolated	fashion.
It	creates	a	Shadow	DOM	context	in	the	custom	element	identified	by	the	component
selector	and	renders	within	the	HTML	defined	in	the	component	template.
The	component	controller	class	is	instantiated	straight	away	and	the	change	detection
machinery	is	fired.	Now	that	we	have	the	Shadow	DOM	placeholders	in	place,	data
providers	are	initiated	and	data	is	injected	where	required.

Later	in	this	book,	we	will	cover	how	we	can	leverage	the	bootstrap	command	to	display
debugging	information	or	how	application	providers	can	be	globally	overridden	throughout
the	whole	application	so	the	dependency	injector	baked	in	Angular	2	picks	the	right
dependency	where	required.

Hopefully,	you	are	running	the	TypeScript	compiler	in	watch	mode.	Otherwise,	please	execute
the	tsc	command	to	transpile	our	code	to	ES5	and	reload	the	browser.	We	can	delight
ourselves	with	the	rendered	content	of	our	very	first	Angular	2	component.	Yay!

www.EBooksWorld.ir

www.EBooksWorld.ir

Enhancing	our	IDE
Before	moving	on	with	our	journey	through	Angular	2,	it's	time	to	take	a	look	at	IDEs	too.
Our	favorite	code	editor	can	become	an	unparalleled	ally	when	it	comes	to	undertaking	an
agile	workflow	entailing	TypeScript	compilation	at	runtime,	static	type	checking	and
introspection,	and	code	completion	and	visual	assistance	for	debugging	and	building	our	app.
That	being	said,	let's	highlight	some	major	code	editors	and	take	a	bird's	eye	view	of	how
each	one	of	them	can	assist	us	when	developing	Angular	2	applications.	If	you're	just	happy
with	triggering	the	compilation	of	your	TypeScript	files	from	the	command	line	and	do	not
want	to	have	visual	code	assistance,	feel	free	to	skip	to	the	next	section.	Otherwise,	jump
straight	to	the	following	section	that	covers	the	IDE	of	your	choice.

www.EBooksWorld.ir

Sublime	Text	3
This	is	probably	one	of	the	most	widespread	code	editors	nowadays,	although	it	has	lost	some
momentum	lately	with	users	favoring	other	rising	competitors	such	as	GitHub's	very	own
Atom.	If	this	is	your	editor	of	choice,	we	will	assume	that	it's	already	installed	on	your	system
and	you	also	have	Node	(which	is	obvious,	otherwise,	you	could	have	not	installed	TypeScript
in	first	place	through	NPM).	In	order	to	provide	support	for	TypeScript	code	editing,	you
need	to	install	Microsoft's	TypeScript	plugin,	available	at
https://github.com/Microsoft/TypeScript-Sublime-Plugin.	Please	refer	to	this	page	to	learn
how	to	install	the	plugin	and	all	the	shortcuts	and	key	mappings.

Once	successfully	installed,	it	only	takes	Ctrl	+	space	bar	to	display	code	hints	based	on	type
introspection	(see	the	following	screenshot).	On	top	of	that,	we	can	trigger	the	build	process
and	compile	the	file	to	the	JavaScript	we	are	working	on	by	hitting	the	F7	function	key.	Real
time	code	error	reporting	is	another	fancy	functionality	you	can	enable	from	the	command
menu.

www.EBooksWorld.ir

https://github.com/Microsoft/TypeScript-Sublime-Plugin

Atom
Developed	by	GitHub,	the	highly	customizable	environment	and	ease	of	installation	of	new
packages	has	turned	Atom	into	the	IDE	of	choice	for	a	lot	of	people.	It	is	worth	mentioning
that	the	code	examples	provided	in	this	book	were	actually	coded	using	Atom	only.

In	order	to	optimize	your	experience	with	TypeScript	when	coding	Angular	2	apps,	you	need
to	install	the	Atom	TypeScript	package.	You	can	install	it	by	means	of	the	APM	CLI	or	just	use
the	built-in	package	installer.	The	functionalities	included	are	pretty	much	the	same	as	we	have
in	Sublime	after	installing	the	Microsoft	package:	automatic	code	hints,	static	type	checking,
code	introspection,	or	automatic	build	upon	save	to	name	a	few.	On	top	of	that,	this	package
also	includes	a	convenient	built-in	tsconfig.json	generator.

www.EBooksWorld.ir

Visual	Studio	Code
Visual	Studio	Code,	a	relatively	new	code	editor	backed	by	Microsoft,	is	gaining	momentum
as	a	serious	contender	in	the	Angular	2	medium,	mostly	because	of	its	great	support	for
TypeScript	out	of	the	box.	TypeScript	has	been,	to	a	greater	extent,	a	project	driven	by
Microsoft,	so	it	makes	sense	that	one	of	its	popular	editors	was	conceived	with	built-in
support	for	this	language.	This	means	that	all	the	nice	features	we	might	want	are	already
baked	in,	including	syntax	and	error	highlighting	and	automatic	builds.

www.EBooksWorld.ir

WebStorm
This	excellent	code	editor	supplied	by	IntelliJ	is	also	a	great	pick	for	coding	Angular	2	apps
based	on	TypeScript.	The	IDE	comes	with	built-in	support	for	TypeScript	out	of	the	box	so
that	we	can	start	developing	Angular	2	components	from	day	one.	WebStorm	also	implements
a	built-in	transpiler	with	support	for	file	watching,	so	we	can	compile	our	TypeScript	code
into	pure	vanilla	JavaScript	without	relying	on	any	third-party	plugins.

www.EBooksWorld.ir

Leveraging	Gulp	with	other	IDEs
May	be	your	IDE	is	not	listed	here	and	you	do	not	want	to	switch	from	your	favorite	code
editor	now,	not	having	the	chance,	for	whatever	reason,	to	automate	TypeScript	compilation
for	your	project.	Or	perhaps	you	do	not	feel	very	comfortable	messing	around	with	the
TypeScript	commands	on	the	console.

If	this	is	not	the	case,	feel	free	to	skip	to	the	next	section.	However,	if	you	relate	to	this	case
scenario,	don't	worry.	Modern	JavaScript	task	runners	have	your	back.	Let's	pick	Gulp
(http://gulpjs.com)	and	see	how	we	can	create	a	super	simple	script	to	automate	TypeScript
compilation	in	our	project.

First,	let's	proceed	with	the	dependencies	installation.	Basically,	we	will	install	Gulp	and	then
gulp-typescript,	a	typescript	compiler	for	gulp	with	incremental	compilation	support.	On
your	console	window,	type	the	following	commands:

$	npm	install	-g	gulp

$	npm	install	gulp	gulp-typescript	--save-dev

Let's	create	a	JavaScript	file	named	gulpfile.js	at	the	root	of	your	project	with	the
following	content:

var	gulp	=	require('gulp');

var	ts	=	require('gulp-typescript');

var	tsProject	=	ts.createProject('tsconfig.json');

gulp.task('build',	function()	{

		var	tsResult	=	tsProject.src().pipe(ts(tsProject));

		return	tsResult.js.pipe(gulp.dest('./built'));

});

You	will	need	a	tsconfig.json	file	at	the	root	of	your	project,	so	our	Gulp	task	can	fetch	our
compilation	preferences	from	it.	From	this	moment	onwards,	we	can	launch	the	build
processing	over	the	files	listed	at	the	files'	array	property	in	our	tsconfig.json	file	by
executing	the	following	command:

$	gulp	build

Unfortunately,	the	gulp-typescript	plugin	does	not	support	file	watching,	so	if	we	want	to
trigger	the	build	processing	automatically	every	time	a	TypeScript	file	change,	we	need	to
rely	on	Gulp's	native	watch	method.	To	do	so,	just	add	the	following	chunk	of	code	at	the	end
of	our	gulpfile.js	file:

gulp.task('watch',	['build'],	function()	{

		gulp.watch('./**/*.ts',	['build']);

});

Now,	you	can	launch	the	build	process	and	watch	the	file	changes	by	executing	the	following
command:

www.EBooksWorld.ir

http://gulpjs.com

$	gulp	watch

www.EBooksWorld.ir

Diving	deeper	into	Angular	2	components
We	have	come	a	long	way	now,	from	tapping	on	TypeScript	for	the	first	time	to	learning	how
to	code	the	basic	scripting	schema	of	an	Angular	2	component.	However,	before	jumping
onto	more	abstract	topics,	let's	flesh	out	our	current	component	with	more	functionalities	and
take	an	overview	of	the	most	common	traits	of	Angular	apps	and	components.

www.EBooksWorld.ir

Improving	productivity
Sometimes,	we	need	some	helpers	to	boost	our	focus,	especially	when	we	deal	with	too
abstract	stuff	that	requires	additional	attention.	A	widely	accepted	approach	is	the	Pomodoro
technique,	in	which	we	put	together	a	task	list	and	then	split	the	deliverables	into	to-do	items
that	won't	require	us	more	than	25	minutes	to	accomplish.	When	we	pick	any	of	those	to-do
items,	we	focus	under	distraction-free	mode	on	its	delivery	for	25	minutes	with	the	help	of	a
countdown	timer.	You	can	grab	more	information	about	this	technique	at
http://pomodorotechnique.com.

In	this	book,	we	are	going	to	build	a	major	component	that	represents	this	functionality	and
fill	the	component	with	additional	functionalities	and	UI	items	wrapped	inside	their	own
components.	To	do	so,	we	will	use	the	Pomodoro	technique,	so	let's	start	by	creating	a
Pomodoro	timer.

www.EBooksWorld.ir

http://pomodorotechnique.com

Component	methods	and	data	updates
Create	a	new	pomodoro-timer.ts	file	in	the	same	folder	and	populate	it	with	the	following
basic	implementation	of	a	very	simple	component.	Don't	worry	about	the	added	complexity,
we	will	review	each	and	every	change	made	after	the	code	block:

import	{	Component	}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

@Component({

		selector:	'pomodoro-timer',

		template:	'<h1>	{{	minutes	}}:{{	seconds	}}	</h1>'

})

class	PomodoroTimerComponent	{

		minutes:	number;

		seconds:	number;

		constructor()	{

				this.minutes	=	24;

				this.seconds	=	59;

		}

}

bootstrap(PomodoroTimerComponent);

Our	new	component	is,	in	fairness,	not	that	much	different	from	the	one	we	previously	had.
We	updated	the	names	to	make	them	more	self-descriptive	and	then	defined	two	property
fields,	statically	typed	as	numbers	in	our	PomodoroTimerComponent	class.	These	are	rendered
in	the	contained	view,	wrapped	inside	an	<h1>	element.	Now,	open	the	index.html	file	and
replace	the	<hello-angular></hello-angular>	custom	element	with	our	new	<pomodoro-
timer></pomodoro-timer>	tag.	You	can	duplicate	index.html	and	save	it	under	a	different
name	if	you	do	not	want	to	loose	the	HTML	side	of	our	fancy	"Hello	World"	component.

Note

A	note	about	naming	custom	elements

Selectors	in	Angular	2	are	case	sensitive.	As	we	will	see	later	in	this	book,	components	are	a
sub	set	of	directives	that	can	support	a	wide	range	of	selectors.	When	creating	components,
we	are	supposed	to	set	a	custom	tag	name	in	the	selector	property	by	enforcing	a	dash-casing
naming	convention.	When	rendering	that	tag	in	our	view,	we	should	always	close	the	tag	as	a
non-void	element.	So	<custom-element></custom-element>	is	correct,	while	<custom-
element	/>	will	trigger	an	exception.	Last	but	not	least,	certain	"common"	camel	case	names
might	conflict	with	the	Angular	2	implementation,	so	avoid	names	like	AppView	or
AppElement.

You	will	want	to	update	the	reference	in	your	System.import(...)	block	at	index.html	to
point	to	our	new	component	as	well:

www.EBooksWorld.ir

System.import('built/pomodoro-timer').then(null,	console.error.bind(console));

Now,	it	is	a	good	time	to	mention	that	the	import	method	of	SystemJS	is	asynchronous	and
returns	a	promise	once	the	module	has	been	successfully	loaded.	We	can	leverage	this
promise	to	throw	any	eventual	error	message	to	the	console,	which	will	become	quite	handy
whenever	we	have	to	debug	our	code.	You	will	see	this	practice	later	in	this	book.

If	you	bring	up	a	browser	window	and	load	this	file,	you	will	see	a	representation	of	the
numbers	defined	in	the	component	class.	But	we	want	to	do	more	than	just	display	a	handful
of	numbers,	right?	We	actually	want	them	to	represent	a	time	countdown,	and	we	can	achieve
that	by	introducing	these	changes.	Let's	first	introduce	a	function	we	can	iterate	on	in	order	to
update	the	countdown.	Add	this	function	after	the	constructor	function:

tick():	void	{

		if	(--this.seconds	<	0)	{

				this.seconds	=	59;

				if	(--this.minutes	<	0)	{

						this.minutes	=	24;

						this.seconds	=	59;

				}

		}

}

As	you	can	see	here,	functions	in	TypeScript	need	to	be	annotated	with	the	type	of	the	value
they	return,	or	just	void	if	none.	Our	function	assesses	the	current	value	of	both	minutes	and
seconds,	and	then	either	decreases	their	value	or	just	resets	it	to	the	initial	value.	Then	this
function	is	called	every	second	by	triggering	a	time	interval	from	the	class	constructor:

constructor()	{

		this.minutes	=	24;

		this.seconds	=	59;

		setInterval(()	=>	this.tick(),	1000);

}

Here,	we	spot	for	the	first	time	in	our	code	an	arrow	function	(also	known	as	a	lambda
function,	fat	arrow,	and	so	on),	a	new	syntax	for	functions	brought	by	ECMAScript	6	that	we
will	cover	in	more	detail	in	Chapter	2,	Introducing	TypeScript.	The	tick	function	is	also
marked	as	private,	so	it	cannot	be	inspected	or	executed	outside	a	PomodoroTimerComponent
object	instance.

So	far	so	good!	We	have	a	working	Pomodoro	timer	that	countdowns	from	25	minutes	to	0,
and	then	starts	all	over	again.	The	problem	is	that	we	are	replicating	code	here	and	there.	So,
let's	refactor	everything	a	little	bit	to	prevent	code	duplication.

constructor()	{

		this.resetPomodoro();

		setInterval(()	=>	this.tick(),	1000);

}

resetPomodoro():	void	{

www.EBooksWorld.ir

		this.minutes	=	24;

		this.seconds	=	59;

}

private	tick():	void	{

		if	(--this.seconds	<	0)	{

				this.seconds	=	59;

				if	(--this.minutes	<	0)	{

						this.resetPomodoro();

				}

		}

}

We	have	wrapped	the	initialization	(and	reset)	of	minutes	and	seconds	inside	our	function
resetPomodoro,	which	is	called	upon	instantiating	the	component	or	reaching	the	end	of	the
countdown.	Wait	a	moment	though!	According	to	the	Pomodoro	technique,	pomodoro
practitioners	are	allowed	to	rest	in	between	pomodoros	or	even	pause	them	should	an
unexpected	circumstance	gets	on	the	way.	We	need	to	provide	some	sort	of	interactivity	so	the
user	can	start,	pause,	and	resume	the	current	pomodoro	timer.

www.EBooksWorld.ir

Adding	interactivity	to	the	component
Angular	2	provides	a	top-notch	support	for	events	through	a	declarative	interface	that
reminds	the	one	in	other	frameworks	such	as	React.	Let's	first	modify	our	template	definition:

@Component({

		selector:	'pomodoro-timer',

		template:	`

				<h1>	{{	minutes	}}:{{	seconds	}}	</h1>

				<p>

						<button	(click)="togglePause()">

								{{	buttonLabel	}}

						</button>

				</p>

		`

})

We	used	a	multiline	text	string!	ECMAScript	6	introduced	the	concept	of	template	strings,
which	are	string	literals	with	support	for	embedded	expressions,	interpolated	text	bindings,
and	multiline	content.	We	will	look	into	them	in	more	detail	in	Chapter	2,	Introducing
TypeScript.

In	the	meantime,	just	focus	on	the	fact	that	we	introduced	a	new	chunk	of	HTML	that	contains
a	button	with	an	event	handler	that	listens	to	click	events	and	executes	the	togglePause	method
upon	clicking.	This	(click)	attribute	is	something	you	might	not	have	seen	before,	even
though	it	is	fully	compliant	with	the	W3C	standards.	Again,	we	will	cover	this	in	more	detail
in	Chapter	3,	Implementing	Properties	and	Events	in	Our	Components.	Let's	focus	on	the
togglePause	method	and	the	new	buttonLabel	binding.	First,	let's	modify	our	class	properties
so	that	they	look	like	this:

class	PomodoroTimerComponent	{

		minutes:	number;

		seconds:	number;

		isPaused:	boolean;

		buttonLabel:	string;

			

		//	…	Rest	of	code	will	remain	as	it	is	below	this	point

}

We	introduced	two	new	fields.	First	is	buttonLabel	that	contains	the	text	that	will	be	later	on
displayed	on	our	newly-created	button.	isPaused	is	a	newly-created	variable	that	will	assume
a	true/false	value,	depending	on	the	state	of	our	timer.	So,	we	might	need	a	place	to	toggle	the
value	of	such	a	field.	Let's	create	the	togglePause	method	we	mentioned	earlier:

togglePause():	void	{

		this.isPaused	=	!this.isPaused;

		//	if	countdown	has	started

		if	(this.minutes	<	24	||	this.seconds	<	59)	{	

				this.buttonLabel	=	this.isPaused	?	'Resume'	:	'Pause';

		}

}

www.EBooksWorld.ir

In	a	nutshell,	the	togglePause	method	just	switches	the	value	of	isPaused	to	its	opposite	and
then,	depending	on	such	new	value	and	whether	the	timer	has	started	(which	would	entail	that
any	of	the	time	variables	has	a	value	lower	than	the	initialization	value)	or	not,	we	assign	a
different	label	to	our	button.

Now,	we	need	to	initialize	these	values,	and	it	seems	there	is	no	better	place	for	it.	So,	the
resetPomodoro	function	is	the	place	where	variables	affecting	the	state	of	our	class	are
initialized:

resetPomodoro():	void	{

		this.minutes	=	24;

		this.seconds	=	59;

		this.buttonLabel	=	'Start';

		this.togglePause();

}

By	executing	togglePause	every	time,	we	reset	the	Pomodoro	to	make	sure	that	whenever	the
Pomodoro	reaches	a	state	where	it	requires	to	be	reset,	the	countdown	behavior	will	switch	to
the	opposite	state	it	had	previously.	There	is	only	one	tweak	left	in	the	controller	method	that
handles	the	countdown:

private	tick():	void	{

		if	(!this.isPaused)	{

				this.buttonLabel	=	'Pause';

				if	(--this.seconds	<	0)	{

						this.seconds	=	59;

						if	(--this.minutes	<	0)	{

								this.resetPomodoro();

						}

				}

		}

}

Obviously,	we	do	not	want	the	countdown	to	continue	when	the	timer	is	supposed	to	be
paused,	so	we	wrap	the	whole	script	in	a	conditional.	In	addition	to	this,	we	will	want	to
display	a	different	text	on	our	button	whenever	the	countdown	is	not	paused	and	once	again
when	the	countdown	reaches	its	end,	stopping	and	then	resetting	the	pomodoro	to	its	initial
values	will	be	the	expected	behavior.	This	reinforces	the	need	of	invoking	the	togglePause
function	within	resetPomodoro.

www.EBooksWorld.ir

Improving	the	data	output	in	the	view	and	polishing	the	UI
So	far,	we	reloaded	the	browser	and	played	around	with	the	newly	created	toggle	feature.
However,	there	is	apparently	something	that	still	requires	some	polishing:	when	the	seconds
counter	is	less	than	10,	it	displays	a	single-digit	number	instead	of	the	usual	two-digit
numbers	we	are	used	to	see	in	digital	clocks	and	watches.	Luckily,	Angular	2	implements	a	set
of	declarative	helpers	that	format	the	data	output	in	our	templates.	We	call	them	Pipes,	and	we
will	cover	them	in	detail	later	in	Chapter	3,	Implementing	Properties	and	Events	in	Our
Components.	For	the	time	being,	let's	just	introduce	the	number	pipe	in	our	component
template	and	configure	it	to	format	the	seconds	output	to	display	two	digits	all	the	times.
Update	our	template	so	that	it	looks	like	this:

@Component({

		selector:	'pomodoro-timer',

				template:	`

						<h1>	{{	minutes	}}:{{	seconds	|	number:	'2.0'	}}	</h1>

						<p>

								<button	(click)="togglePause()">

										{{	buttonLabel	}}

								</button>

						</p>

				`

})

Basically,	we	appended	the	pipe	name	to	the	interpolated	binding	in	our	template	separated	by
a	pipe	(|)	symbol,	hence	the	name.	Reload	the	template	and	you	will	see	how	the	seconds
figure	always	displays	two	digits,	regardless	of	the	value	it	assumes.

We	have	created	a	fully	functional	Pomodoro	Timer	widget	that	we	can	reuse	or	embed	in
more	complex	applications.	Chapter	5,	Building	an	Application	with	Angular	2	Components,
will	guide	us	through	the	process	of	embedding	and	nesting	our	components	in	the	context	of
larger	component	trees.

In	the	meantime,	let's	add	some	UI	beautification	to	make	our	component	more	appealing.	We
already	introduced	a	class	attribute	in	our	button	tag	as	an	anticipation	of	the	implementation
of	the	Bootstrap	CSS	framework	in	our	project.	Let's	import	the	actual	stylesheet	we
downloaded	through	NPM	when	installing	the	project	dependencies.	Open	pomodoro-
timer.html	and	add	this	snippet	at	the	end	of	the	<HEAD>	element:

<link	rel="stylesheet"	href="node_modules/bootstrap/dist/css/bootstrap.min.css">

Now,	let's	beautify	our	UI	by	inserting	a	nice	page	header	right	before	our	component:

<body>

		<nav	class="navbar	navbar-default	navbar-static-top">

				<div	class="container">

						<div	class="navbar-header">

								<strong	class="navbar-brand">My	Pomodoro	Timer

www.EBooksWorld.ir

						</div>

				</div>

		</nav>

		<pomodoro-timer></pomodoro-timer>

</body>

Tweaking	the	component	button	with	a	Bootstrap	button	class	will	give	it	more	personality
and	wrapping	the	whole	template	in	a	centering	container	and	appending	a	nice	icon	at	the	top
will	definitely	compound	up	the	UI.	So	let's	update	the	template	in	our	template	to	look	like
this:

<div	class="text-center">

		

		<h1>	{{	minutes	}}:{{	seconds		|	number:	'2.0'	}}	</h1>

		<p>

				<button	(click)="togglePause()"

						class="btn	btn-danger">

						{{	buttonLabel	}}

				</button>

		</p>

</div>

For	the	icon,	we	picked	a	bitmap	icon	depicting	a	pomodoro.	You	can	use	any	bitmap	image
of	your	choice	or	you	can	just	skip	the	icon	for	now,	even	though	we	will	need	an	actual
pomodoro	icon	in	the	forthcoming	chapters.	This	is	how	our	Pomodoro	timer	app	looks	after
implementing	all	these	visual	tweaks:

www.EBooksWorld.ir

Tip

Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	GitHub	at
https://github.com/deeleman/learning-angular2.

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.

www.EBooksWorld.ir

https://github.com/deeleman/learning-angular2
http://www.packtpub.com
http://www.packtpub.com/support

Select	the	book	for	which	you're	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

www.EBooksWorld.ir

Summary
We	looked	at	web	components	according	to	modern	web	standards	and	how	Angular	2
components	provide	an	easy	and	straightforward	API	to	build	our	own	components.	We
covered	TypeScript	and	some	basic	traits	of	its	syntax	as	a	preparation	for	Chapter	2,
Introducing	TypeScript.	We	saw	how	to	set	up	our	working	space	and	where	to	go	to	find	the
dependencies	we	need	to	bring	TypeScript	into	the	game	and	use	the	Angular	2	library	in	our
projects,	going	through	the	role	of	each	dependency	in	our	application.

Our	first	component	gave	us	the	opportunity	to	discuss	the	form	of	a	controller	class
containing	property	fields,	constructor,	and	utility	functions,	and	why	metadata	annotations
are	so	important	in	the	context	of	Angular	2	applications	to	define	how	our	component	will
integrate	itself	in	the	HTML	environment	where	it	will	live.	Now,	we	also	know	how	to	deploy
web	server	tools	and	enhance	our	code	editors	to	make	our	lives	easier	when	developing
Angular	2	apps,	leveraging	type	introspection	and	checking	on	the	go.	Our	first	web
component	features	its	own	template	and	such	templates	host	property	bindings	declaratively
in	the	form	of	variable	interpolations,	conveniently	formatted	by	pipes.	Binding	event
listeners	is	now	easier	than	ever	and	its	syntax	is	standards-compliant.

The	next	chapter	will	cover,	in	detail,	all	the	TypeScript	features	we	need	to	know	to	get	up	to
speed	with	Angular	2	in	no	time.

www.EBooksWorld.ir

Chapter	2.	Introducing	TypeScript
In	the	previous	chapter,	we	built	our	very	first	component	and	we	used	TypeScript	to	shape	the
code	scripts,	which	gave	form	to	it.	All	the	examples	included	in	this	book	use	its	syntax.	As
we	will	see	later	in	this	book,	writing	our	scripts	in	TypeScript	and	leveraging	its	static	typing
will	give	us	a	remarkable	advantage	over	the	other	scripting	languages.

This	chapter	is	not	a	thorough	overview	of	the	TypeScript	language.	We	will	just	focus	on	the
core	elements	of	the	language	and	study	them	in	detail	on	our	journey	through	Angular	2.	The
good	news	is	that	TypeScript	is	not	all	that	complex,	and	we	will	manage	to	cover	most	of	its
relevant	parts.

In	this	chapter,	we	will:

Look	at	the	background	and	rationale	behind	TypeScript
Discover	online	resources	to	practice	while	we	learn
Recap	on	the	concept	of	typed	values	and	how	to	represent	them
Build	our	own	types,	based	on	classes	and	interfaces
Learn	to	better	organize	our	application	architecture	with	modules

www.EBooksWorld.ir

Understanding	the	case	for	TypeScript
The	natural	evolution	of	the	early	JavaScript-driven	small	web	applications	into	thick
monolithic	clients	unveiled	the	shortcomings	of	the	ECMAScript	5	JavaScript	specification.	In
a	nutshell,	large-scale	JavaScript	applications	suffered	from	serious	maintainability	and
scalability	problems	as	soon	as	they	grew	up	in	size	and	complexity.

This	issue	became	more	relevant	as	new	libraries	and	modules	required	seamless	integration
onto	our	applications.	The	lack	of	good	mechanisms	for	interoperability	led	to	really
cumbersome	solutions	that	never	seemed	to	fit	the	bill.

As	a	response	to	these	concerns,	ECMAScript	6	(also	called	as	ES6	or	ES2015)	promised	to
solve	these	maintainability	and	scalability	issues	by	introducing	better	module	loading
functionalities,	an	improved	language	architecture	for	better	handling	of	scope,	and	a	wide
variety	of	syntactic	sugar	to	better	manage	types	and	objects.	The	introduction	of	class-based
programming	turned	into	an	opportunity	to	embrace	a	more	OOP	approach	when	building
large-scale	applications.

Microsoft	took	the	challenge	and	spent	nearly	2	years	building	a	superset	of	the	language,
combining	the	conventions	of	ES6	and	borrowing	some	proposals	from	ES7.	The	idea	was	to
launch	something	that	helped	out	with	building	enterprise	applications	with	a	lower	error
footprint	by	means	of	static	type	checking,	better	tooling,	and	code	analysis.

After	2	years	of	development	led	by	Anders	Hejlsberg,	lead	architect	of	C#	and	creator	of
Delphi	and	Turbo	Pascal,	TypeScript	0.8	was	finally	introduced	in	2012	and	it	reached
Version	1.0	two	years	later.	TypeScript	was	not	only	running	ahead	of	ECMAScript	6,	but	it
also	implemented	the	same	features	and	provided	a	solid	environment	for	building	large-
scale	applications	by	introducing,	among	other	features,	optional	static	typing	through	type
annotations,	thereby	ensuring	type	checking	at	compile	time.	This	contributes	to	catching
errors	in	earlier	stages	of	the	development	process.	The	support	for	declaration	files	also
gives	developers	the	opportunity	to	describe	the	interface	of	their	modules,	so	other
developers	can	better	integrate	them	into	their	code	workflow	and	tooling.

www.EBooksWorld.ir

The	benefits	of	TypeScript
The	following	infographic	provides	a	bird's	eye	view	of	the	different	features	that
distinguishes	ECMAScript	6	from	ECMAScript	5,	and	then	differentiates	TypeScript	from	the
two.

As	a	superset	of	ECMAScript	6,	one	of	the	main	advantages	of	embracing	TypeScript	in	your
next	project	is	the	low	entry	barrier.	If	you	know	ECMAScript	6,	you	are	pretty	much	all	set,
since	all	the	additional	features	in	TypeScript	are	optional.	You	can	pick	and	introduce	in	your
practice	the	features	that	help	you	to	achieve	your	goal.	All	in	all,	there	is	a	long	list	of	strong
arguments	for	advocating	for	TypeScript	in	your	next	project	and	all	of	them	obviously	apply
to	Angular	2	as	well.	Here	is	a	short	rundown	of	arguments,	just	to	name	a	few:

Annotating	our	code	with	types	ensures	a	consistent	integration	of	our	different	code
units	and	improves	code	readability	and	comprehension.
The	TypeScript's	built-in	type-checker	will	analyze	your	code	at	runtime	and	help	you
prevent	errors	even	before	executing	your	code.
The	use	of	types	ensures	consistency	across	your	applications.	In	combination	with	the
previous	two,	the	overall	code	errors	footprint	gets	minimized	in	the	long	run.
TypeScript	extends	classes	with	longtime	demanded	features	such	as	class	fields,	private
members,	enums,	and	so	on.
The	use	of	decorators	opens	the	door	to	extend	our	classes	and	implementations	in

www.EBooksWorld.ir

unparalleled	ways.
Creating	interfaces	and	type	definition	files	(which	we	will	not	cover	in	this	book
though)	ensures	a	smooth	and	seamless	integration	of	our	libraries	in	other	systems	and
codebases.
TypeScript	support	across	the	different	IDEs	on	store	is	terrific,	and	we	can	benefit	from
code	highlighting,	real-time	type	checking,	and	automatic	compilation	at	no	cost.
The	TypeScript	syntax	will	definitely	please	developers	coming	from	other	backgrounds
such	as	Java,	C#,	C++,	and	so	on.

www.EBooksWorld.ir

Introducing	TypeScript	resources	in	the	wild
In	the	previous	chapter,	we	saw	how	to	install	TypeScript	in	our	system	and	use	the	compiler
for	transpiling	our	TypeScript	files	into	ES5	script	files.	Now,	we	are	going	to	take	a	look	at
where	can	we	get	further	support	to	learn	and	test-drive	our	new	knowledge	of	TypeScript.

The	TypeScript	official	site

Obviously,	our	first	stop	is	the	official	site	for	the	language:	http://www.typescriptlang.org.
There,	we	can	find	a	more	extensive	introduction	to	the	language	and	links	to	IDEs	and
corporate	supporters	of	this	project.	Nevertheless,	the	most	important	sections	that	we	will
definitely	revisit	more	often	are	the	learn	section	and	the	play	sandbox.

The	learn	section	gives	us	access	to	a	quick	tutorial	to	get	up	to	speed	with	the	language	in	no
time.	It	might	be	interesting	as	a	recap	on	what	we	discussed	in	the	previous	chapter,	but	we
would	suggest	you	to	skip	it	in	favor	of	the	sample	pages	and	the	language	spec,	the	latter
being	a	direct	link	to	the	full	extensive	documentation	of	the	language	at	GitHub.	This	is	a

www.EBooksWorld.ir

http://www.typescriptlang.org

priceless	resource	for	both	new	and	experienced	users.

The	play	section	offers	a	convenient	sandbox,	including	some	readymade	code	examples,
covering	some	of	the	most	common	traits	of	the	language.	We	encourage	you	to	leverage	this
tool	to	test	out	the	code	examples	we	will	see	throughout	this	chapter.

The	TypeScript	Wiki

We	made	a	reference	to	the	TypeScript	Wiki	in	the	previous	chapter	when	speaking	about	the
most	basic	parameters	we	need	to	know	when	executing	commands	with	the	TypeScript
compiler	API.

The	code	for	TypeScript	is	fully	open	sourced	at	GitHub,	and	the	Microsoft	team	has	made	a
good	effort	at	documenting	the	different	facets	of	the	code	in	the	Wiki	available	on	the
repository	site.	We	encourage	you	to	go	take	a	look	at	it	any	time	you	have	a	question	or	want
to	delve	deeper	into	any	of	the	language	features	or	form	aspects	of	its	syntax.

The	Wiki	is	located	at	https://github.com/Microsoft/TypeScript/wiki.

www.EBooksWorld.ir

https://github.com/Microsoft/TypeScript/wiki

Types	in	TypeScript
Working	with	TypeScript	or	any	other	coding	language	means	basically	working	with	data,
and	such	data	can	represent	different	sorts	of	content.	This	is	what	we	know	as	types,	a	noun
used	to	represent	the	fact	that	such	data	can	be	a	text	string,	an	integer	value,	or	an	array	of
these	value	types,	among	others.	This	is	nothing	new	to	JavaScript,	since	we	have	always	been
working	implicitly	with	types,	but	in	a	flexible	manner.	This	means	that	any	given	variable
could	assume	(or	return	in	the	case	of	functions)	any	type	of	value.	Sometimes,	this	led	to
errors	and	exceptions	in	our	code	because	of	type	collisions	between	what	our	code	returned
and	what	we	expected	it	to	return	type-wise.	While	this	flexibility	can	still	be	enforced	by
means	of	any	type	that	we	will	see	later	on	in	this	chapter,	statically	typing	our	variables	gives
us	and	our	IDEs	a	good	picture	of	what	kind	of	data	we	are	supposed	to	find	on	each	instance
of	code.	This	becomes	an	invaluable	way	to	help	debug	our	applications	at	compile	time
before	it's	too	late.

www.EBooksWorld.ir

String
Probably	one	of	the	most	widely	used	primitive	types	in	our	code	will	be	the	string	type,
where	we	populate	a	variable	with	a	piece	of	text:

var	brand:	string	=	'Chevrolet';

Check	out	the	type	assignation	next	to	the	variable	name,	which	is	separated	by	a	colon
symbol.	This	is	how	we	annotate	types	in	TypeScript,	as	we	already	saw	in	the	previous
chapter.

Back	to	the	string	type,	we	can	use	either	single	or	double	quotes,	and	it	is	same	as
ECMAScript6.	We	can	define	multiline	text	strings	with	support	for	text	interpolation	with
placeholder	variables	by	using	the	same	type:

var	brand:	string	=	'Chevrolet';

var	message:	string	=	`Today	it's	a	happy	day!	

		I	just	bought	a	new	${brand}	car`;

Declaring	our	variables	the	ECMAScript	6	way

TypeScript,	as	a	superset	of	ECMAScript	6,	supports	expressive	declaration	nouns	such	as
let,	which	informs	us	that	the	variable	is	scoped	to	the	nearest	enclosing	block	(either	a
function	for	loop	or	any	enclosing	statement).	On	the	other	hand,	const	is	an	indicator	that	the
values	declared	this	way	are	meant	to	feature	always	the	same	type	or	value	once	populated.
For	the	rest	of	this	chapter,	we	will	enforce	the	traditional	var	notation	for	declaring
variables,	but	remember	that

www.EBooksWorld.ir

Number
Number	is	probably	the	other	most	widespread	primitive	data	type	along	with	string	and
boolean.	The	same	as	in	JavaScript,	number	defines	a	floating	point	number.	The	number	type
also	defines	hexadecimal,	decimal,	binary,	and	octal	literals:

var	age:	number	=	7;

var	height:	number	=	5.6;

Boolean

The	boolean	type	defines	data	that	can	be	True	or	False,	representing	the	fulfillment	of	a
condition:

var	isZeroGreaterThanOne:	boolean	=	false;

Array

Assigning	wrong	member	types	to	arrays	and	handling	exceptions	that	arise	by	that	can	be
now	easily	avoided	with	the	Array	type,	where	we	describe	an	array	containing	certain	types
only.	The	syntax	just	requires	the	postfix	[]	in	the	type	annotation,	as	follows:

var	brands:	string[]	=	['Chevrolet',	'Ford',	'General	Motors'];

var	childrenAges:	number[]	=	[8,	5,	12,	3,	1];

If	we	try	to	add	a	new	member	to	the	childrenAges	array	with	a	type	other	than	number,	the
runtime	type	checker	will	complain,	making	sure	our	typed	members	remain	consistent	and
our	code	is	error-free.

www.EBooksWorld.ir

Dynamic	typing	with	the	any	type
Sometimes,	it	is	hard	to	infer	the	data	type	out	of	the	information	we	have	at	some	point,
especially	when	we	are	porting	legacy	code	to	TypeScript	or	integrating	loosely	typed	third-
party	libraries	and	modules.	Don't	worry,	TypeScript	supplies	us	with	a	convenient	type	for
these	cases.	The	any	type	is	compatible	with	all	the	other	existing	types,	so	we	can	type	any
data	value	with	it	and	assign	any	value	to	it	later	on.	This	great	power	comes	with	a	great
responsibility	though.	If	we	bypass	the	convenience	of	static	type	checking,	we	are	opening
the	door	to	type	errors	when	piping	data	through	our	modules,	and	it	will	be	up	to	us	to
ensure	type	safety	throughout	our	application:

var	distance:	any;

//	Assigning	different	value	types	is	perfectly	fine

distance	=	'1000km';

distance	=	1000;

//	Allows	us	to	seamlessly	combine	different	types

var	distances:	any[]	=	['1000km',	1000];

The	null	and	undefined	JavaScript	literals	require	special	mention.	In	a	nutshell,	they	are
typed	under	the	any	type.	This	makes	it	possible	later	on	to	assign	these	literals	to	any	other
variable,	regardless	its	original	type.

Enum

Enum	is	basically	a	set	of	unique	numeric	values	that	we	can	represent	by	assigning	friendly
names	to	each	one	of	them.	The	use	of	enums	goes	beyond	assigning	an	alias	to	a	number.	We
can	use	them	as	a	way	to	list,	in	a	convenient	and	recognizable	way,	the	different	variations
that	a	specific	type	can	assume.

Enums	are	declared	using	the	enum	keyword,	without	var	or	any	other	variable	declaration
noun,	and	they	begin	numbering	members	starting	at	0	unless	explicit	numeric	values	are
assigned	to	them:

enum	Brands	{	Chevrolet,	Cadillac,	Ford,	Buick,	Chrysler,	Dodge	};

var	myCar:	Brands	=	Brands.Cadillac;

Inspecting	the	value	of	myCar	will	return	1	(which	is	the	index	held	by	Cadillac	in	the	enum).
As	we	mentioned	already,	we	can	assign	custom	numeric	values	in	the	enum:

enum	BrandsReduced	{	Tesla	=	1,	GMC,	Jeep	};

var	myTruck:	BrandsReduced	=	BrandsReduced.GMC;

Inspecting	myTruck	will	yield	2,	since	the	first	enumerated	value	was	set	as	1	already.	We	can
extend	value	assignation	to	all	the	enum	members	as	long	as	such	values	are	integers:

enum	StackingIndex	{	

		None	=	0,

www.EBooksWorld.ir

		Dropdown	=	1000,

		Overlay	=	2000,

		Modal	=	3000	

};

var	mySelectBoxStacking:	StackingIndex	=	LayerStackingIndex.Dropdown;

One	last	trick	worth	mentioning	is	the	possibility	to	look	up	the	enum	member	mapped	to	a
given	numeric	value:

enum	Brands	{	Chevrolet,	Cadillac,	Ford,	Buick,	Chrysler,	Dodge	};

var	myCarBrandName:	string	=	Brands[1];

www.EBooksWorld.ir

Void
The	void	type	definitely	represents	the	absence	of	any	type	and	its	use	is	constrained	to
annotating	functions	that	do	not	return	an	actual	value.	Therefore,	there	is	no	return	type
either.	We	already	had	the	chance	to	see	this	with	an	actual	example	in	the	previous	chapter:

resetPomodoro():	void	{

		this.minutes	=	24;

		this.seconds	=	59;

}

www.EBooksWorld.ir

Type	inference
Typing	our	data	is	optional	since	TypeScript	is	smart	enough	to	infer	the	data	type	of	our
variables	and	function	return	values	out	of	context	with	a	certain	level	of	accuracy.	When	no
type	inference	is	possible,	TypeScript	will	assign	the	dynamic	any	type	to	the	loosely	typed
data	at	the	cost	of	reducing	type	checking	to	a	bare	minimum.

However,	it	is	always	a	good	practice	to	ensure	that	the	information	we	handle	is	conveniently
described	by	explicitly	annotating	its	type,	so	we	can	harness	the	benefit	of	having	the
compiler	verifying	correctness	throughout	our	code.

www.EBooksWorld.ir

Functions,	lambdas,	and	execution	flow
The	same	as	in	JavaScript,	functions	are	the	processing	machines	where	we	analyze	input,
digest	information,	and	apply	the	necessary	transformations	to	the	data	provided	to	either
transform	the	state	of	our	application	or	return	an	output	that	will	be	used	to	shape	our
application's	business	logic	or	user	interactivity.

Functions	in	TypeScript	are	not	that	different	from	regular	JavaScript,	except	for	the	fact	that
functions,	just	as	everything	else	in	TypeScript,	can	be	annotated	with	static	types	and	thus,
they	better	inform	the	compiler	of	the	information	they	expect	in	their	signature	and	the	data
type	they	aim	to	return,	if	any.

www.EBooksWorld.ir

Annotating	types	in	our	functions
The	following	example	showcases	how	a	regular	function	is	annotated	in	TypeScript:

function	sayHello(name:	string):	string	{

				return	'Hello,	'	+	name;

}

We	can	clearly	see	two	main	differences	from	the	usual	function	syntax	in	regular	JavaScript.
First,	we	annotate	with	type	information	the	parameters	declared	in	the	function	signature.
This	makes	sense	since	the	compiler	will	want	to	check	whether	the	data	provided	when
executing	the	function	holds	the	correct	type.	In	addition	to	this,	we	also	annotate	the	type	of
the	returning	value	by	adding	the	postfix	string	to	the	function	declaration.	In	these	cases,
where	the	given	function	does	not	return	any	value,	the	type	annotation	void	will	give	the
compiler	the	information	it	requires	to	provide	a	proper	type	checking.

As	we	mentioned	in	the	previous	section,	the	TypeScript	compiler	is	smart	enough	to	infer
types	when	no	annotation	is	provided.	In	this	case,	the	compiler	will	look	into	the	arguments
provided	and	the	return	statements	to	infer	a	returning	type	from	it.

Functions	in	TypeScript	can	also	be	represented	as	expressions	of	anonymous	functions,
where	we	bind	the	function	declaration	to	a	variable:

var	sayHello	=	function(name:	string):	string	{

				return	'Hello,	'	+	name;

};

However,	there	is	a	downside	of	this	syntax.	Although	typing	function	expressions	this	way	is
allowed,	thanks	to	type	inference,	the	compiler	is	missing	the	type	definition	in	the	declared
variable.	We	might	assume	that	the	inferred	type	of	a	variable	that	points	to	a	function	typed	as
string	is	obviously	a	string.	Well,	it's	not.	A	variable	that	points	to	an	anonymous	function
ought	to	be	annotated	with	a	function	type.	Basically,	the	function	type	informs	about	both
the	types	expected	in	the	function	payload	and	the	type	returned	by	the	function	execution,	if
any.	This	whole	block,	in	the	form	of	(arguments:	type)	=>	returned	type,	becomes	the
type	annotation	our	compiler	expects:

var	sayHello:	(name:	string)	=>	string	=	function(name:	string):	string{

		return	'Hello,	'	+	name;

};

Why	such	a	cumbersome	syntax,	you	might	ask?	Sometimes,	we	will	declare	variables	that
might	depend	on	factories	or	function	bindings.	Then,	it	is	always	a	good	practice	to	provide
as	much	information	to	the	compiler	as	we	can.	This	simple	example	might	help	you	to
understand	better:

//	Two	functions	with	the	same	typing	but	different	logic

function	sayHello(input:	string):	string	{

				return	'Hello	'	+	input;

www.EBooksWorld.ir

}

function	sayHi(input:	string):	string	{

		return	'Hi	'	+	input;

}

								

//	Here	we	declare	the	variable	with	its	function	type

var	greetMe:	(name:	string)	=>	string;

//	Last,	we	assign	a	function	to	the	variable

greetMe	=	sayHello;

This	way,	we	also	ensure	that	later	function	assignations	conform	to	the	type	annotations	set
when	declaring	variables.

www.EBooksWorld.ir

Function	parameters	in	TypeScript
Due	to	the	type	checking	performed	by	the	compiler,	function	parameters	require	special
attention	in	TypeScript.

Optional	parameters

Parameters	are	a	core	part	of	the	type	checking	applied	by	the	TypeScript	compiler.	In	other
words,	we	cannot	declare	parameters	and	then	do	not	included	in	the	payload	when	executing
the	function	afterwards.	The	same	applies	to	even	to	those	arguments	in	the	function	payload,
which	were	not	originally	declared	and	annotated	when	defining	the	function.	We	obviously
need	a	way	to	cope	with	this	case	scenario,	so	TypeScript	offers	this	functionality	by	adding
the	?	symbol	as	a	postfix	to	the	parameter	name	we	want	to	make	optional:

function	greetMe(name:	string,	greeting?:	string):	string	{

				if	(!greeting)	{

								greeting	=	'Hello';

				}

				return	greeting	+	',	'	+	name;

}

Note

When	a	parameter	is	marked	as	optional	and	not	provided	when	executing	the	function,
TypeScript	will	assign	the	null	value	to	it.	On	the	other	hand,	the	rule	of	thumb	is	to	put
required	parameters	first	and	then	optional	parameters	last.

Default	parameters

TypeScript	gives	us	another	feature	to	cope	with	the	scenario	depicted	earlier	in	the	form	of
default	parameters,	where	we	can	set	a	default	value	the	parameter	will	assume	when	not
explicitly	populated	upon	executing	the	function.	The	syntax	is	pretty	straightforward	as	we
can	see	when	we	refactor	the	previous	example	here:

function	greetMe(name:	string,	greeting:	string	=	'Hello'):	string	{

				return	greeting	+	',	'	+	name;

}

Just	as	with	optional	parameters,	default	parameters	must	be	put	right	after	the	non-default
parameters	in	the	function	signature.

Rest	parameters

One	of	the	big	advantages	of	the	flexibility	of	JavaScript	when	defining	functions	is	the
functionality	to	accept	an	unlimited	non-declared	array	of	parameters	in	the	form	of	the
arguments	object.	In	a	statically	typed	context	such	as	TypeScript,	this	might	be	not	possible,
but	it	actually	is	by	means	of	the	Rest	parameter's	object.	Here,	we	can	define,	at	the	end	of	the
arguments	list,	an	additional	parameter	prefixed	by	ellipsis	and	typed	as	an	array:

www.EBooksWorld.ir

function	greetPeople(greeting:	string,	...names:	string[]):	string	{

				return	greeting	+	',	'	+	names.join('	and	')	+	'!';

}

alert(greetPeople('Hello',	'John',	'Ann',	'Fred'));

Note

It's	important	to	note	that	the	Rest	parameters	must	be	put	at	the	end	of	the	arguments	list	and
can	be	left	off	whenever	not	required	upon	executing	the	function.

Overloading	the	function	signature

Method	and	function	overloading	is	a	common	pattern	in	other	languages	such	as	C#.
However,	implementing	this	functionality	in	TypeScript	clashes	with	the	fact	that	JavaScript,
which	TypeScript	is	meant	to	compile	to,	does	not	implement	any	elegant	way	to	integrate	this
functionality	out	of	the	box.	So,	the	only	workaround	possibly	requires	writing	function
declarations	for	each	of	the	overloads	and	then	writing	a	general-purpose	function	that	will
wrap	the	actual	implementation	and	whose	list	of	typed	arguments	and	returning	types	are
compatible	with	all	the	others:

function	hello(name:	string):	string;

function	hello(names:	string[]):	string;

function	hello(names:	any,	greeting?:	string):	string	{

		var	namesArray:	string[];

		

		if(Array.isArray(names))	{

				namesArray	=	names;

		}	else	{

				namesArray	=	[names];

		}

		

		if(!greeting)	{

				greeting	=	'Hello';

		}

		

		return	greeting	+	',	'	+	namesArray.join('	and	')	+	'!';

}

In	the	preceding	example,	we	are	exposing	three	different	function	signatures	and	each	of
them	features	different	type	annotations.	We	could	even	define	different	returning	types	if
there	was	a	case	for	that.	For	doing	so,	we	should	have	just	annotated	the	wrapping	function
with	an	any	return	type.

www.EBooksWorld.ir

Better	function	syntax	and	scope	handling	with	lambdas
ECMAScript	6	introduced	the	concept	of	fat	arrow	functions	(also	called	lambda	functions	in
other	languages	such	as	Python,	C#,	Java,	or	C++)	as	a	way	to	both	simplify	the	general
function	syntax	and	also	to	provide	a	bulletproof	way	to	handle	the	scope	of	the	functions	that
are	traditionally	handled	by	the	infamous	scope	issues	of	tackling	with	the	this	keyword.

The	first	impression	is	its	minimalistic	syntax,	where,	most	of	the	time,	we	will	see	arrow
functions	as	single-line,	anonymous	expressions:

var	double	=	x	=>	x	*	2;

The	function	computes	the	double	of	a	given	number,	x,	and	returns	the	result,	although	we	do
not	see	any	function	or	return	statements	in	the	expression.	If	the	function	signature	contains
more	than	one	argument,	we	just	need	to	wrap	them	all	between	braces:

var	add	=	(x,	y)	=>	x	+	y;

This	makes	this	syntax	extremely	convenient	when	developing	functional	operations	such	as
map,	reduce,	and	others:

var	reducedArray	=	[23,	5,	62,	16].reduce((a,	b)	=>	a	+	b,	0);

Arrow	functions	can	also	contain	statements.	In	that	case,	we	will	want	to	wrap	the	whole
implementation	in	curly	braces:

var	addAndDouble	=	(x,	y)	=>	{

		var	sum	=	x	+	y;

		return	sum	*	2;

}

Still,	what	does	this	have	to	do	with	scope	handling?	Basically,	the	value	of	this	can	point	to	a
different	context,	depending	on	where	we	execute	the	function.	This	is	a	big	deal	for	a
language	that	prides	itself	on	an	excellent	flexibility	for	functional	programming,	where
patterns	such	as	callbacks	are	paramount.	When	referring	to	this	inside	a	callback,	we	lose
track	of	the	upper	context	and	that	usually	forces	us	to	use	conventions	such	as	assigning	the
value	of	this	to	a	variable	named	self	or	that,	which	will	be	used	later	on	within	the
callback.	Statements	containing	interval	or	timeout	functions	make	a	perfect	example	of	this:

function	delayedGreeting(name):	void	{

				this.name	=	name;

				this.greet	=	function()	{

						setTimeout(function()	{

								alert('Hello	'	+	this.name);

						},	0);

				}

}

var	greeting	=	new	delayedGreeting('Peter')

greeting.greet();	//	alerts	'Hello	undefined'

www.EBooksWorld.ir

When	executing	the	preceding	script,	we	won't	get	the	expected	Hello	Peter	alert,	but	an
incomplete	string	highlighting	a	pesky	greeting	to	Mr.	Undefined!	Basically,	this	construction
screws	the	lexical	scoping	of	this	when	evaluating	the	function	inside	the	timeout	call.
Porting	this	script	to	arrow	functions	will	do	the	trick	though:

function	delayedGreeting(name):	void	{

				this.name	=	name;

				this.greet	=	function()	{

						setTimeout(()	=>	alert('Hello	'	+	this.name),	0);

				}

}

Even	if	we	break	down	the	statement	contained	in	the	arrow	function	into	several	lines	of	code
wrapped	by	curly	braces,	the	lexical	scoping	of	this	will	keep	pointing	to	the	proper	context
outside	the	setTimeout	call,	allowing	a	more	elegant	and	clean	syntax.

www.EBooksWorld.ir

Classes,	interfaces,	and	class	inheritance
Now	that	we	have	overviewed	the	most	relevant	bits	and	pieces	of	TypeScript,	it's	time	to	see
how	everything	falls	into	place	to	build	TypeScript	classes.	These	classes	are	the	building
blocks	of	TypeScript	and	Angular	2	applications.

Although	the	noun	class	was	a	reserved	word	in	JavaScript,	the	language	itself	never	had	an
actual	implementation	for	traditional	POO-oriented	classes	as	other	languages	such	as	Java	or
C#	did.	JavaScript	developers	used	to	mimic	this	kind	of	functionality,	leveraging	the	function
object	as	a	constructor	type,	which	would	be	later	on	instanced	with	the	new	operator.	Other
common	practices	such	as	extending	our	function	objects	were	implemented	by	applying
prototypal	inheritance	or	by	using	composition.

Now	we	have	an	actual	class	functionality,	which	is	flexible	and	powerful	enough	to
implement	the	functionality	our	applications	require.	We	already	had	the	chance	to	tap	into
classes	in	the	previous	chapter.	Let's	look	at	them	in	more	detail	now.

www.EBooksWorld.ir

Anatomy	of	a	class	–	constructors,	properties,	methods,
getters,	and	setters
The	following	piece	of	code	illustrates	how	a	class	could	be.	Please	note	that	the	class
property	members	come	first	and	then	we	include	a	constructor	and	several	methods	and
property	accessors.	None	of	them	features	the	reserved	word	function	and	all	the	members
and	methods	are	properly	annotated	with	a	type	except	constructor:

class	Car	{

		private	distanceRun:	number	=	0;

		color:	string;

		constructor(public	isHybrid:	boolean,	color:	string	=	'red')	{

				this.color	=	color;

		}

		getGasConsumption():	string	{

				return	this.isHybrid	?	'Very	low'	:	'Too	high!';

		}

		drive(distance:	number):	void	{

				this.distanceRun	+=	distance;

		}

		static	honk():	string	{

				return	'HOOONK!';

		}

		get	distance():	number	{

				return	this.distanceRun;

		}

}

This	class	layout	will	probably	remind	us	of	the	component	class	we	built	back	in	Chapter	1,
Creating	Our	Very	First	Component	in	Angular	2.	Basically,	the	class	statement	wraps	several
elements	that	we	can	break	down	into:

Members:	Any	instance	of	the	Car	class	will	feature	two	properties:	color	typed	as
string,	and	distanceRun	typed	as	a	number	and	only	accessible	from	within	the	class
itself.	If	we	instance	this	class,	distanceRun	or	any	other	member	or	method	marked	as
private	won't	be	publicly	exposed	as	part	of	the	object	API.
Constructor:	The	constructor	function	is	executed	right	away	when	an	instance	of	the
class	is	created.	Usually,	we	want	to	initialize	the	class	members	here,	with	the	data
provided	in	the	constructor	signature.	We	can	also	leverage	the	constructor	signature
itself	to	declare	class	members,	as	we	did	with	the	isHybrid	property.	To	do	so,	we	just
need	to	prefix	the	constructor	parameter	with	an	access	modifier	such	as	private	or
public.	Same	as	we	saw	when	analyzing	functions	in	the	previous	sections,	we	can
define	rest,	optional,	or	default	parameters	as	depicted	in	the	previous	example	with	the
color	argument,	which	fallbacks	to	"red"	when	not	explicitly	defined.
Methods:	A	method	is	a	special	kind	of	member	which	represents	a	function	and

www.EBooksWorld.ir

therefore,	can	return,	or	not,	a	typed	value.	Basically,	it	is	a	function	that	becomes	part	of
the	object	API.	Methods	can	be	private	as	well.	In	that	case,	they	are	basically	used	as
helper	functions	within	the	internal	scope	of	the	class	to	achieve	the	functionalities
required	by	other	class	members.
Static	members:	Members	marked	as	static	are	associated	with	the	class	and	not	with
the	object	instances	of	that	class.	This	means	that	we	can	consume	static	members
directly,	without	having	to	instantiate	an	object	first.	In	fact,	static	members	are	not
accessible	from	the	object	instances	and	thus,	they	cannot	access	other	class	members
using	this.	These	members	are	usually	included	in	the	class	definition	as	helper	or
factory	methods	in	order	to	provide	a	generic	functionality	not	related	to	any	specific
object	instance.
Property	accessors:	In	ES5,	we	could	define	custom	setters/getters	in	a	very	verbose
way	with	Object.defineProperty.	Now,	things	have	become	quite	simpler.	In	order	to
create	property	accessors	(usually	pointing	to	internal	private	fields	as	in	the	example
provided),	we	just	need	to	prefix	a	typed	method	named	as	the	property	we	want	to
expose	with	set	(in	order	to	make	it	writable)	and	get	(in	order	to	make	it	readable).

As	a	personal	exercise,	why	don't	you	copy	the	preceding	piece	of	code	at	the	playground
page	(http://www.typescriptlang.org/Playground)	and	execute	it?	We	can	even	see	an	instance
object	of	the	Car	class	in	action	by	appending	this	snippet	right	after	the	class	definition	and
running	the	code	and	inspecting	the	output	in	the	browser's	developer	tools	console:

var	myCar	=	new	Car(false);

console.log(myCar.color);					//	'red'

//	Public	accessor	returns	distanceRun:

console.log(myCar.distance);		//	0	

myCar.drive(15);

console.log(myCar.distance);		//	15	(0	+	15)

myCar.drive(21);

console.log(myCar.distance);		//	36	(15	+	21)

//	What's	my	carbon	footprint	according	to	my	car	type?

myCar.getGasConsumption();				//	'Too	high!'	

Car.honk();			//	'HOOONK!'	no	object	instance	required

We	can	even	perform	an	additional	test	and	append	the	following	illegal	statements	to	our
code,	where	we	attempt	to	access	the	private	property	distanceRun	or	even	apply	a	value
through	the	distance	member,	which	does	not	have	a	getter.

console.log(myCar.distanceRun);

myCar.distance	=	100;

Right	after	inserting	these	code	statements	in	the	playground	text	field,	a	red	underline	will
remark	that	we	are	attempting	to	do	something	that	is	not	correct.	Nevertheless,	we	can	carry
on	and	transpile	and	run	the	code,	since	ES5	will	honor	these	practices.	All	in	all,	if	we
attempt	to	run	the	tsc	compiler	on	this	file,	the	runtime	will	exit	with	the	following	error

www.EBooksWorld.ir

http://www.typescriptlang.org/Playground

trace:

example_26.ts(21,7):	error	TS1056:	Accessors	are	only	available	when	

targeting	ECMAScript	5	and	higher.

example_26.ts(29,13):	error	TS2341:	Property	'distanceRun'	is	private	and	

only	accessible	within	class	'Car'.

www.EBooksWorld.ir

Interfaces	in	TypeScript
As	applications	scale	and	more	classes	and	constructs	are	created,	we	need	to	find	ways	to
ensure	consistency	and	rules	compliance	in	our	code.	One	of	the	best	ways	to	address	the
consistency	and	type	validation	issue	is	to	create	interfaces.

In	a	nutshell,	an	interface	is	a	code	blueprint	defining	a	certain	fields	schema	and	any	types
(either	classes,	function	signatures)	implementing	these	interfaces	are	meant	to	comply	with
this	schema.	This	becomes	quite	useful	when	we	want	to	enforce	strict	typing	on	classes
generated	by	factories,	when	we	define	function	signatures	to	ensure	that	a	certain	typed
property	is	found	in	the	payload,	or	other	situations.

Let's	get	down	to	business!	Here,	we	define	the	Vehicle	interface.	Vehicle	is	not	a	class	but	a
contractual	schema	that	any	class	which	implements	it	must	comply	with:

interface	Vehicle	{

		make:	string;	

}

Any	class	implementing	the	Vehicle	interface	must	feature	a	member	named	make,	which
must	be	typed	as	a	string	according	to	this	example.	Otherwise,	the	TypeScript	compiler	will
complain:

class	Car	implements	Vehicle	{

	//	Compiler	will	raise	a	warning	if	'make'	is	not	defined

				make:	string;

}

Interfaces	are	therefore	extremely	useful	to	define	the	minimum	set	of	members	any	type
must	fulfill,	becoming	an	invaluable	method	for	ensuring	consistency	throughout	our
codebase.

Note

It	is	important	to	note	that	interfaces	are	not	used	just	to	define	minimum	class	schemas,	but
any	type	out	there.	This	way,	we	can	harness	the	power	of	interfaces	for	enforcing	the
existence	of	certain	fields	and	methods	in	classes	and	properties	in	objects	used	later	on	as
function	parameters,	function	types,	types	contained	in	specific	arrays,	and	even	variables.	An
interface	may	contain	optional	members	as	well	and	even	members	typed	as	other	interfaces.

Let's	create	an	example.	To	do	so,	we	will	prefix	all	our	interface	types	with	an	I	(uppercase).
This	way,	it	will	be	easier	to	find	its	type	when	referencing	them	with	our	IDE	code
autocompletion	functionality.

First,	we	define	an	IException	interface	that	models	a	type	with	a	mandatory	message
property	member	and	an	optional	ID	number	member:

interface	IException	{

www.EBooksWorld.ir

				message:	string;

				id?:	number;

}

We	can	define	interfaces	for	array	elements	as	well.	To	do	so,	we	must	define	an	interface
with	a	sole	member,	defining	index	as	either	a	number	or	string	(for	dictionary	collections)
and	then	the	type	we	want	that	array	to	contain.	In	this	case,	we	want	to	create	an	interface	for
arrays	containing	IException	types.	This	is	a	type	comprising	a	string	message	property	and
an	optional	ID	number	member,	as	we	said	in	the	previous	example:

interface	IExceptionArrayItem	{

				[index:	number]:	IException;

}

Now	we	define	the	blueprint	for	our	future	class,	with	a	typed	array	and	a	method	with	its
returning	type	defined	as	well:

interface	IErrorHandler	{

				exceptions:	IExceptionArrayItem[];

				logException(message:	string,	id?:	number):	void;

}

We	can	also	define	interfaces	for	standalone	object	types.	This	is	quite	useful	when	it	comes	to
defining	a	templated	constructor	or	method	signatures,	which	we	will	see	later	in	this
example:

interface	IExceptionHandlerSettings	{

				logAllExceptions:	boolean;

}

Last	but	not	least,	in	the	following	class	we	will	implement	all	these	interface	types:

class	ErrorHandler	implements	IErrorHandler	{

				exceptions:	IExceptionArrayItem[];

				logAllExceptions:	boolean;

				constructor(settings:	IExceptionHandlerSettings)	{

								this.logAllExceptions	=	settings.logAllExceptions;

				}

				logException(message:	string,	id?:	number):	void	{

								this.exceptions.push({	message,	id	});

				}

}

Basically,	we	are	defining	an	error	handler	class	here	that	will	manage	an	internal	array	of
exceptions	and	expose	a	method	to	log	new	exceptions	by	saving	them	into	the
aforementioned	array.	These	two	elements	are	defined	by	the	IErrorHandler	interface	and
are	mandatory.	The	class	constructor	expects	the	parameters	defined	by	the
IExceptionHandlerSettings	interface	and	uses	them	to	populate	exception	member	with
items	typed	as	IException.	Instancing	the	ErrorHandler	class	without	the	logAllExceptions

www.EBooksWorld.ir

parameter	in	the	payload	will	trigger	an	error.

Let's	wrap	up	this	section	about	interfaces	by	highlighting	that	classes	can	implement	more
than	one	interface.

www.EBooksWorld.ir

Extending	classes	with	class	inheritance
Just	like	a	class	can	be	defined	by	an	interface,	it	can	also	extend	the	members	and
functionality	of	other	class	as	if	they	were	its	own.	We	can	make	a	class	inherit	from	another
by	appending	the	keyword	extends	to	the	class	name,	including	the	name	of	the	class	we	want
to	inherit	its	members	from:

class	Sedan	extends	Car	{

		model:	string;

		constructor(make:	string,	model:	string)	{

								super(make);

								this.model	=	model;

				}

}

Here,	we	extend	from	a	parent	class,	Car,	which	already	exposed	a	make	member.	We	can
populate	the	members	already	defined	by	the	parent	class	and	even	execute	their	own
constructor	by	executing	the	super()	method,	which	points	to	the	parent	constructor.	We	can
also	override	methods	from	the	parent	class	by	appending	a	method	with	the	same	name.
Nevertheless,	we	will	still	be	able	to	execute	the	original	parent's	class	methods	as	it	will	be
still	accessible	from	the	super	object.	Coming	back	to	the	interface,	they	can	also	inherit
definition	from	other	interfaces.	Simply	put,	an	interface	can	inherit	from	an	other	interface.

Note

As	a	word	of	caution,	ES6	and	TypeScript	do	not	provide	support	for	multiple	inheritance.
So,	you	may	want	to	use	composition	or	middleman	classes	instead,	in	case	you	want	to
borrow	functionalities	from	different	sources.

www.EBooksWorld.ir

Decorators	in	TypeScript
Decorators	are	a	very	cool	functionality,	originally	proposed	by	Google	in	AtScript	(a
superset	of	TypeScript	that	finally	got	merged	into	TypeScript	back	in	early	2015)	and	also	a
part	of	the	current	standard	proposition	for	ECMAScript	7.	In	a	nutshell,	decorators	are	a	way
to	add	metadata	to	class	declarations	for	use	by	dependency	injection	or	compilation
directives	(http://blogs.msdn.com/b/somasegar/archive/2015/03/05/typescript-lt-3-
angular.aspx).	By	creating	decorators,	we	are	defining	special	annotations	that	may	have	an
impact	on	the	way	our	classes,	methods,	or	functions	behave	or	just	simply	altering	the	data
we	define	in	fields	or	parameters.	In	that	sense,	decorators	are	a	powerful	way	to	augment	our
type's	native	functionalities	without	creating	subclasses	or	inheriting	from	other	types.

This	is,	by	far,	one	of	the	most	interesting	features	of	TypeScript.	In	fact,	it	is	extensively	used
in	Angular	2	when	designing	directives	and	components	or	managing	dependency	injection,
as	we	will	see	from	Chapter	4,	Enhancing	our	Components	with	Pipes	and	Directives,
onwards.

Note

Decorators	can	be	easily	recognized	by	the	@	prefix	to	their	name,	and	they	are	usually
located	as	standalone	statements	above	the	element	they	decorate,	including	a	method	payload
or	not.

We	can	define	up	to	four	different	types	of	decorators,	depending	on	what	element	each	type
is	meant	to	decorate:

Class	decorators
Property	decorators
Method	decorators
Parameter	decorators

Let's	take	a	look	at	each	of	them!

www.EBooksWorld.ir

http://blogs.msdn.com/b/somasegar/archive/2015/03/05/typescript-lt-3-angular.aspx

Class	decorators
Class	decorators	allow	us	to	augment	a	class	or	perform	operations	over	any	of	its	members,
and	the	decorator	statement	is	executed	before	the	class	gets	instanced.

Creating	a	class	decorator	just	requires	defining	a	plain	function,	whose	signature	is	a	pointer
to	the	constructor	belonging	to	the	class	we	want	to	decorate,	typed	as	Function	(or	any	other
type	that	inherits	from	Function).	The	formal	declaration	defines	a	ClassDecorator	as
follows:

declare	type	ClassDecorator	=	<TFunction	extends	Function>(Target:	TFunction)	=>	

TFunction	|	void;

Yes,	it	is	really	difficult	to	grasp	what	this	gibberish	means,	right?	Let's	put	everything	in
context	through	a	simple	example,	like	this:

function	Greeter(target:	Function):	void	{

				target.prototype.greet	=	function():	void	{

								console.log('Hello!');

				}

}

@Greeter

class	Greeting	{

				constructor()	{

								//	Implementation	goes	here...

				}

}

var	myGreeting	=	new	Greeting();

myGreeting.greet();			//	console	will	output	'Hello!'

As	we	can	see,	we	have	gained	a	greet()	method	that	was	not	originally	defined	in	the
Greeting	class	just	by	properly	decorating	it	with	the	Greeter	decorator.

Extending	the	class	decorator	function	signature

Sometimes,	we	might	need	to	customize	the	way	our	decorator	operates	upon	instancing	it.
No	worries!	We	can	design	our	decorators	with	custom	signatures	and	then	have	them
returning	a	function	with	the	same	signature	we	define	when	designing	class	decorators	with
no	parameters.	As	a	rule	of	thumb,	decorators	taking	parameters	just	require	a	function	whose
signature	matches	the	parameters	we	want	to	configure.	Such	a	function	must	return	another
function,	whose	signature	matches	that	of	the	decorator	we	want	to	define.

The	following	piece	of	code	illustrates	the	same	functionality	as	the	previous	example,	but
allows	developers	to	customize	the	greeting	message:

function	Greeter(greeting:	string)	{

				return	function(target:	Function)	{

								target.prototype.greet	=	function():	void	{

www.EBooksWorld.ir

												console.log(greeting);

									}

				}

}

@Greeter('Howdy!')

class	Greeting	{

				constructor()	{

								//	Implementation	goes	here...

				}

}

var	myGreeting	=	new	Greeting();

myGreeting.greet();				//	console	will	output	'Howdy!'

www.EBooksWorld.ir

Property	decorators
Property	decorators	are	meant	to	be	applied	on	class	fields	and	can	be	easily	defined	by
creating	a	PropertyDecorator	function,	whose	signature	takes	two	parameters:

target:	This	is	the	prototype	of	class	we	want	to	decorate
key:	This	is	the	name	of	the	property	we	want	to	decorate

Possible	use	cases	for	this	specific	type	of	decorator	may	encompass	from	logging	the	value
assigned	to	class	fields	when	instancing	objects	of	such	a	class	and	even	reacting	to	data
changes	on	such	fields.	Let's	see	an	actual	example	that	encompasses	both	these	behaviors:

function	LogChanges(target:	Object,	key:	string)	{

				var	propertyValue:	string	=	this[key];

				if	(delete	this[key])	{

								Object.defineProperty(target,	key,	{

										get:	function()	{

														return	propertyValue;

										},

										set:	function(newValue)	{

														propertyValue	=	newValue;

														console.log(`${key}	is	now	${propertyValue}`);

										}

								});

				}

}

class	Fruit	{

				@LogChanges

				name:	string;

}

var	fruit	=	new	Fruit();

fruit.name	=	'banana';	 			//	console	outputs	'name	is	now	banana'

fruit.name	=	'plantain';	//	console	outputs	'name	is	now	plantain'

The	same	logic	for	parametrized	class	decorators	applies	here,	although	the	signature	of	the
returned	function	is	slightly	different	in	order	to	match	that	of	the	parameter-less	decorator
declaration	we	already	saw.

The	following	example	depicts	how	we	can	log	changes	on	a	given	class	property	and	trigger
a	custom	function	when	this	occurs:

function	LogChanges(callbackObject:	any):	Function	{

				return	function(target:	Object,	key:	string):	void	{

								var	propertyValue:	string	=	this[key];

								if	(delete	this[key])	{

												Object.defineProperty(target,	key,	{

														get:	function()	{

																		return	propertyValue;

														},

www.EBooksWorld.ir

														set:	function(newValue)	{

																		propertyValue	=	newValue;

																		callbackObject.onchange.call(this,								

																																															propertyValue);

														}

												});

								}

				}

}

class	Fruit	{

				@LogChanges({

								onchange:	function(newValue:	string):	void	{

												console.log(`The	fruit	is	${newValue}	now`);

								}

				})

				name:	string;

}

var	fruit	=	new	Fruit();

fruit.name	=	'banana';				//	console:	'The	fruit	is	banana	now'

fruit.name	=	'plantain';	//	console:	'The	fruit	is	plantain	now'

www.EBooksWorld.ir

Method	decorators
These	special	decorators	can	detect,	log,	and	intervene	in	how	methods	are	executed.	To	do
so,	we	just	need	to	define	a	MethodDecorator	function	whose	payload	takes	the	following
parameters:

target:	This	is	typed	as	an	object	and	represents	the	method	being	decorated.
key:	This	is	a	string	that	gives	the	actual	name	of	the	method	being	decorated.
value:	This	is	a	property	descriptor	of	the	given	method.	In	fact,	it's	a	hash	object
containing,	among	other	things,	a	property	named	value	with	a	reference	to	the	method
itself.

Let's	see	how	we	can	leverage	the	MethodDecorator	function	in	an	actual	example.	Suppose	we
want	to	build	a	multipurpose,	signature-agnostic	logger	that	will	keep	track	of	the	output
returned	by	each	method	in	our	class	upon	execution,	including	some	additional	data	such	as
the	timestamp	when	the	method	was	executed:

function	LogOutput(target:	Function,	key:	string,	descriptor:	any)	{

				var	originalMethod	=	descriptor.value;

				var	newMethod	=	function(...args:	any[]):	any	{

								var	result:	any	=	originalMethod.apply(this,	args);

								if(!this.loggedOutput)	{

												this.loggedOutput	=	new	Array<any>();

								}	

								this.loggedOutput.push({

												method:	key,

												parameters:	args,

												output:	result,

												timestamp:	new	Date()

								});

								return	result;

				};

				descriptor.value	=	newMethod;

}

As	we	mentioned	earlier,	the	descriptor	parameter	contains	a	reference	to	the	method	we	want
to	decorate.	With	this	in	mind,	nothing	prevents	us	from	replacing	such	a	method	by	our	own.
We	can	take	advantage	of	this	newly	created	method	to	execute	the	former	by	passing	along	to
it	the	same	parameters.

Note

Remember	that	decorator	functions	are	scoped	within	the	class	represented	in	the	target
parameter,	so	we	can	take	advantage	of	that	for	augmenting	the	class	with	our	own	custom
members.	Be	careful	when	doing	this,	since	this	might	override	the	already	existing	members
though.	For	the	sake	of	this	example,	we	won't	apply	any	due	diligence	over	this,	but	handle
this	with	care	in	your	code	in	the	future.

www.EBooksWorld.ir

As	we	can	see,	our	code	is	pretty	simple	and	straightforward.	We	are	basically	storing	a
reference	to	the	original	method	in	the	originalMethod	variable,	borrowing	it	from
descriptor.value.	Then,	we	are	building	a	new	method	with	a	rest	argument	that	ensures	we
cover	any	possible	method	signature	out	there.	Internally,	this	new	method	executes	the
previous	one	and	stores	the	result	alongside	some	other	data	(such	as	the	name	of	the	method
executed,	the	parameters	used,	and	the	time	and	date	it	occurred	on)	in	a	newly	created	class
array	field,	which	is	created	on	the	spot	in	case	it	didn't	exist	yet.	We	then	return	the	computed
result,	if	any,	as	we	would	expect	from	the	original	method	we	have	just	overridden.

Let's	put	our	Shiny	decorator	to	the	test!	Let's	create	a	class	with	a	method	performing	method
computations	and	logging	and	see	what	happens:

class	Calculator	{

				@LogOutput

				double	(num:	number):	number	{

								return	num	*	2;

				}

}

var	calc	=	new	Calculator();

calc.double(11);

console.log(calc.loggedOutput);	//	Check	[Object]	array	in	console

Here,	our	Shiny	Calculator	class	exposes	a	method	that	will	double	up	any	number	we	pick
as	an	input.	But,	is	it	properly	logging	the	operations	made?	Let's	inspect	in	the	value	of
calc.loggedOutput	in	the	browser	dev	tools	console	and	see	what	happens.

We	can	even	run	the	extra	mile	and	add	a	different	method	with	a	completely	different	type
and	signature	and	see	whether	everything	keeps	working	fine.	Add	this	to	the	body	of	the
Calculator	class:

				@LogOutput

				doNothing	(input:	any):	any	{

								return	input;

				}

Now,	execute	the	following	in	the	DevTools	console	command	line:

calc.doNothing(['Learning	Angular	2',	2016]);

If	you	check	the	value	of	calc.loggedOutput,	you	will	see	the	new	object	along	with	the
previous	computation	we	made	showing	up	at	the	console.

The	following	line	in	our	example	must	have	caught	your	attention:

this.loggedOutput	=	new	Array<any>();

We	need	to	properly	type	the	member	we	aim	to	create	in	our	class.	To	do	so,	and	since	we
cannot	annotate	the	type	the	normal	way	here,	we	leverage	the	generic	constructor	of	the

www.EBooksWorld.ir

Array	object	passing	the	any	type	along	between	the	angle	brackets.

This	chapter	will	not	cover	Generics	since	they	are	kind	of	out	of	the	scope	of	an	introductory
book	like	this,	but	we	encourage	you	to	refer	to	the	official	site
(http://www.typescriptlang.org/Handbook#generics)	and	delve	deeper	into	the	topic.	For	the
time	being,	you	just	need	to	know	that	generics	allow	us	to	enforce	a	certain	type	when
executing	certain	custom	methods	or	using	specific	classes	such	as	arrays.	We	will	see	strictly
typed	arrays	or	newly	created	empty	objects	that	are	meant	to	enforce	a	certain	interface
thanks	to	the	functionalities	provided	by	the	use	of	generics.	Again,	please	refer	to	the	official
site	of	the	TypeScript	language	for	further	information.

www.EBooksWorld.ir

http://www.typescriptlang.org/Handbook#generics

Parameter	decorators
Our	last	round	of	decorators	will	cover	the	ParameterDecorator	function,	which	taps	into
parameters	located	in	function	signatures.	This	sort	of	decorator	is	not	intended	to	alter	the
parameter	information	or	the	function	behavior,	but	to	look	into	the	parameter	value	and	then
perform	operations	elsewhere,	such	as,	for	argument's	sake,	logging	or	replicating	data.	The
ParameterDecorator	function	takes	the	following	parameters:

target:	This	is	the	object	prototype	where	the	function,	whose	parameters	are	decorated,
usually	belongs	to	a	class
key:	This	is	the	name	of	the	function	whose	signature	contains	the	decorated	parameter
parameterIndex:	This	is	the	index	in	the	parameters	array	where	this	decorator	has	been
applied

The	following	example	shows	a	working	example	of	a	parameter	decorator:

function	Log(target:	Function,	key:	string,	parameterIndex:	number)	{

				var	functionLogged	=	key	||	target.prototype.constructor.name;

				console.log(`

												The	parameter	in	position	${parameterIndex}	at	${functionLogged}	has	

been	decorated

					`);

}

class	Greeter	{

				greeting:	string;

				constructor(@Log	phrase:	string)	{

								this.greeting	=	phrase;

				}

}

//	The	console	will	output	right	after	the	class	above	is	defined:

//	'The	parameter	in	position	0	at	Greeter	has	been	decorated'

You	have	probably	noticed	the	weird	assignation	of	the	functionLogged	variable.	This	is
because	the	value	of	the	target	parameter	will	vary	depending	on	the	function	whose
parameters	are	being	decorated.	Therefore,	it	is	different	if	we	decorate	a	constructor
parameter	or	a	method	parameter.	The	former	will	return	a	reference	to	the	class	prototype
and	the	latter	will	just	return	the	constructor	function.	The	same	applies	for	the	key
parameter,	which	will	be	undefined	when	decorating	the	constructor	parameters.

As	we	mentioned	in	the	beginning	of	this	section,	parameter	decorators	are	not	meant	to
modify	the	value	of	the	parameters	decorated	or	alter	the	behavior	of	the	methods	or
constructors	where	these	parameters	live.	Their	purpose	is	usually	to	log	or	prepare	the
container	object	for	implementing	additional	layers	of	abstraction	or	functionality	through
higher-level	decorators,	such	as	method	or	class	decorators.	Usual	case	scenarios	for	this
encompass	logging	component	behavior	or	managing	dependency	injection,	as	we	will	see	in
Chapter	4,	Enhancing	Our	Components	with	Pipes	and	Directives.

www.EBooksWorld.ir

Organizing	our	applications	with	modules
As	our	applications	scale	and	grow	in	size,	there	will	be	a	time	when	we	will	need	to	better
organize	our	code	to	make	it	sustainable	and	more	reusable.	Modules	are	the	response	for	this
need,	so	let's	take	a	look	at	how	they	work	and	how	we	can	implement	them	in	our	application.
Modules	can	be	either	internal	or	external.	In	this	book,	we	will	mostly	focus	on	external
modules,	but	it	is	a	good	idea	to	overview	the	two	types	now.

www.EBooksWorld.ir

Internal	modules
In	a	nutshell,	internal	modules	are	singleton	wrappers	containing	a	range	of	classes,
functions,	objects,	or	variables	that	are	scoped	internally,	away	from	the	global	or	outer
scope.	We	can	publicly	expose	the	contents	of	a	module	by	prefixing	the	keyword	export	to
the	element	we	want	to	be	accessible	from	the	outside,	like	this:

module	Greetings	{

				export	class	Greeting	{

								constructor(public	name:	string)	{

												console.log(`Hello	${name}`);

								}

				}

				export	class	XmasGreeting	{

								constructor(public	name:	string)	{

												console.log(`Merry	Xmas	${name}`);

								}

				}

}

Our	Greetings	module	contains	two	classes	that	will	be	accessible	from	outside	the	module
by	importing	the	module	and	accessing	the	class	we	want	to	use	by	its	name:

import	XmasGreeting	=	Greetings.XmasGreeting;

var	xmasGreeting	=	new	XmasGreeting('Joe');	

//	console	outputs	'Merry	Xmas	Joe'

After	looking	at	the	preceding	code,	we	can	conclude	that	internal	modules	are	a	good	way	to
group	and	encapsulate	elements	in	a	namespace	context.	We	can	even	split	our	modules	into
several	files,	as	long	as	the	module	declaration	keeps	the	same	name	across	these	files.	In
order	to	do	so,	we	will	want	to	reference	the	different	files	where	we	have	scattered	objects
belonging	to	this	module	with	reference	tags:

///	<reference	path="greetings/XmasGreeting.ts"	/>

The	major	drawback	of	internal	modules	though	is	that	in	order	to	put	them	to	work	outside
the	domain	of	our	IDE,	we	need	to	have	all	of	them	in	the	same	file	or	application	scope.	We
can	include	all	the	generated	JavaScript	files	as	script	inserts	in	our	web	pages,	leverage	task
runners	such	as	Grunt	or	Gulp	for	that,	or	even	use	the	--outFile	flag	in	the	TypeScript
compiler	to	have	all	the	.ts	files	found	in	your	workspace	compiled	into	a	single	bundle
using	a	bootstrap	file	with	reference	tags	to	all	the	other	modules	as	the	starting	point	for	our
compilation:

tsc	--outFile	app.js	module.ts

This	will	compile	all	the	TypeScript	files	following	the	trail	of	dependent	files	referenced
with	reference	tags.	If	we	forget	to	reference	any	file	this	way,	it	will	not	be	included	in	the
final	build	file,	so	another	option	is	to	enlist	all	the	files	containing	standalone	modules	in	the

www.EBooksWorld.ir

compiling	command	or	just	add	a	.txt	file	containing	a	comprehensive	list	of	the	modules	to
bundle.	Alternatively,	we	can	just	use	external	modules	instead.

www.EBooksWorld.ir

External	modules
External	modules	are	pretty	much	the	solution	we	need	when	it	comes	to	building	applications
designed	to	grow.	Basically,	each	external	module	works	at	a	file	level,	where	each	file	is	the
module	itself	and	the	module	name	will	match	the	filename	without	the	.js	extension.	We	do
not	use	the	module	keyword	anymore	and	each	member	marked	with	the	export	prefix	will
become	part	of	the	external	module	API.	The	internal	module	depicted	in	the	previous
example	would	turn	into	this	once	conveniently	saved	in	the	Greetings.ts	file:

				export	class	Greeting	{

								constructor(public	name:	string)	{

												console.log(`Hello	${name}`);

								}

				}

				export	class	XmasGreeting	{

								constructor(public	name:	string)	{

												console.log(`Merry	Xmas	${name}`);

								}

				}

Importing	this	module	and	using	its	exported	classes	would	require	the	following	code:

import	greetings	=	require('Greetings');

var	XmasGreetings	=	greetings.XmasGreetings();

var	xmasGreetings	=	new	XmasGreetings('Pete');

//	console	outputs	'Merry	Xmas	Pete'

Obviously,	the	require	function	is	not	supported	by	traditional	JavaScript,	so	we	need	to
instruct	the	compiler	about	how	we	want	that	functionality	to	be	implemented	in	our	target
JavaScript	files.	Fortunately,	the	TypeScript	compiler	includes	the	--module	parameter	in	its
API,	so	we	can	configure	the	dependency	loader	of	choice	for	our	project:	commonjs	for	node-
style	imports,	amd	for	RequireJS-based	imports,	umd	for	a	loader	implementing	the	Universal
Module	Definition	specification,	or	system	for	SystemJS-based	imports.	We	will	focus	on	the
SystemJS	module	loader	throughout	this	book:

tsc	--outFile	app.js	--module	commonjs

The	resulting	file	will	be	properly	shimmed,	so	modules	can	load	dependencies	across	files
using	our	module	loader	of	choice.

www.EBooksWorld.ir

The	road	ahead
We	reached	now	the	end	of	this	chapter.	However,	we	barely	scratched	the	surface	of
TypeScript.	Its	huge	potential	goes	way	beyond	the	scope	of	this	shallow	introduction	and
there	is	definitely	more	of	this	which	is	worth	being	explored	and	analyzed	in	detail.
Unfortunately,	that	is	out	of	the	scope	of	this	book	and	such	information	is	not	even	required
to	learn	and	understand	Angular	2,	although	this	knowledge	will	obviously	expand	the
boundaries	of	your	code	practice.	We	would	suggest	you	to	check	the	following	aspects	of	the
language	specification	as	a	starting	point:

Generics
Mixins
Intersection	types
Union	types
Tuples
Creating	declaration	type	files

If	you	want	to	delve	deeper	into	TypeScript,	I	would	recommend	you	read	TypeScript
Essentials	by	Christopher	Nance,	Learning	TypeScript	by	Remo	H.	Jansen,	or	the	more
advanced	Mastering	TypeScript	by	Nathan	Rozentals,	all	by	Packt	Publishing.

www.EBooksWorld.ir

Summary
This	was	definitely	a	long	read,	but	this	introduction	to	TypeScript	was	absolutely	necessary
in	order	to	understand	the	logic	behind	many	of	the	most	brilliant	parts	of	Angular	2.	It	gave
us	the	chance	to	not	only	introduce	the	language	syntax,	but	also	explain	the	rationale	behind
its	success	as	the	syntax	of	choice	for	building	the	Angular	2	framework.	We	reviewed	its	type
architecture	and	how	we	can	create	advanced	business	logic	designing	functions	with	a	wide
range	of	alternatives	for	parametrized	signatures	and	even	discovered	how	to	bypass	the
issues	related	with	scope	by	using	the	powerful	new	arrow	functions.	Probably	the	most
relevant	part	of	this	chapter	encompassed	the	overview	of	classes,	methods,	properties,	and
accessors	and	how	we	can	handle	inheritance	and	better	application	design	through	interfaces.
Modules	and	decorators	were	some	other	major	features	explored	in	this	chapter	and,	as	we
will	see	very	soon,	having	a	sound	knowledge	of	these	mechanisms	is	paramount	to
understand	how	dependency	injection	works	in	Angular	2.

With	all	this	knowledge	at	our	disposal,	we	can	now	resume	our	investigation	of	Angular	2
and	confront	with	confidence	the	relevant	parts	of	component	creation	such	as	style
encapsulation,	output	formatting,	and	so	on.	Chapter	3,	Implementing	Properties	and	Events	in
Our	Components,	will	expose	us	to	advanced	template	creation	techniques,	data-binding
techniques,	directives,	and	pipes.	All	these	features	will	allow	us	to	put	in	practice	all	this
newly	gained	knowledge	of	TypeScript.

www.EBooksWorld.ir

Chapter	3.	Implementing	Properties	and	Events
in	Our	Components
So	far,	we	have	had	the	opportunity	to	take	a	bird's	eye	overview	of	what	a	component	is	in
the	new	Angular	ecosystem,	what	is	its	role,	how	it	behaves,	and	what	tools	are	required	to
start	building	our	own	components	to	represent	widgets	and	pieces	of	functionality.	In
addition,	TypeScript	turns	out	to	be	the	perfect	companion	for	this	endeavor,	so	we	seem	to
have	everything	that	we	need	to	further	explore	the	possibilities	that	Angular	2	brings	to	the
game	with	regards	to	creating	interactive	components	that	expose	properties	and	emit	events.

In	this	chapter,	we	will:

Discover	all	the	syntactic	possibilities	at	our	disposal	to	bind	content	in	our	templates
Create	public	APIs	for	our	components	so	that	we	can	benefit	from	their	properties	and
event	handlers
See	how	to	implement	data	binding	in	Angular	2
Reduce	the	complexity	of	CSS	management	with	view	encapsulation

www.EBooksWorld.ir

A	better	template	syntax
In	Chapter	1,	Creating	Our	Very	First	Component	in	Angular	2,	we	saw	how	to	embed	HTML
templates	in	our	components,	but	we	didn't	even	scratch	the	surface	of	template	development
for	Angular	2.	As	we	will	see	later	in	this	book,	template	implementation	is	tightly	coupled
with	the	principles	of	Shadow	DOM	design	and	brings	forth	a	lot	of	syntactic	sugar	to	ease
the	task	of	binding	properties	and	events	in	our	views	in	a	declarative	fashion.

In	a	nutshell,	Angular	components	may	expose	a	public	API	that	allows	them	to	communicate
with	other	components	or	containers.	This	API	may	encompass	input	properties,	which	we	use
to	feed	the	component	with	data.	It	also	may	expose	output	properties	we	can	bind	event
listeners	to,	thereby	getting	prompt	information	about	changes	in	the	state	of	the	component.

Let's	take	a	look	at	the	way	Angular	solves	the	problem	of	injecting	data	in	and	out	of	our
components	through	quick	and	easy	examples.	Please	focus	on	the	philosophy	behind	these
properties.	We	will	have	a	chance	to	see	them	in	action	later	on	when	we	follow	up	with	our
pomodoro	project.

www.EBooksWorld.ir

Data	bindings	with	input	properties
Let's	revisit	the	pomodoro	functionality	that	we	already	saw	in	Chapter	1,	Creating	Our	Very
First	Component	in	Angular	2,	and	let's	imagine	that	we	want	our	component	to	have	a
configurable	attribute	so	that	we	can	increase	or	decrease	the	countdown	time:

<pomodoro-timer	[seconds]="25"></pomodoro-timer>

Please	note	the	attribute	wrapped	between	brackets.	This	informs	Angular	that	this	is	an	input
property.	The	class	that	models	the	pomodoro-timer	component	will	contain	a	setter	function
for	the	seconds	property,	which	will	react	to	changes	in	that	value	by	updating	its	own
countdown	duration.	We	can	inject	a	data	variable	or	an	actual	hardcoded	value,	in	which	case
we	will	have	to	wrap	it	around	single	quotes	within	the	double	quotes	should	such	a	value	be	a
text	string.

Sometimes,	we	will	see	this	syntax	while	injecting	data	into	our	component's	custom
properties,	while	at	other	times,	we	will	use	this	very	bracket	syntax	to	make	native	HTML
attributes	reactive	to	component	fields,	like	this:

<h1	[hidden]="hideMe">

		This	text	will	not	be	visible	if	'hideMe'	is	true

</h1>

www.EBooksWorld.ir

Some	extra	syntactic	sugar	when	binding	expressions
The	Angular	team	has	made	available	some	shortcuts	for	performing	common
transformations	in	our	component	directives	and	DOM	elements,	such	as	tweaking	attributes
and	class	names	or	applying	styles.	Here,	we	have	some	examples	of	great	time-savers	when
declaratively	defining	bindings	in	our	properties:

<div	[attr.hidden]="isHidden">...</div>

<input	[class.is-valid]="isValid">

<div	[style.width.px]="myWidth">...</div>

In	the	first	case,	div	will	enable	the	hidden	attribute	should	the	isHidden	expression	evaluate
to	true.	Besides	Boolean	values,	we	can	bind	any	other	data	type,	such	as	a	string	value.	In	the
second	case,	the	is-valid	class	name	will	be	injected	in	the	class	attribute	if	the	isValid
expression	evaluates	to	true.	In	our	third	example,	div	will	feature	a	style	attribute	that
shows	off	a	width	property	meant	to	be	set	with	the	value	of	the	myWidth	expressions	in
pixels.	You	can	find	more	examples	of	this	syntactic	sugar	in	the	Angular	2	cheat	sheet
(https://angular.io/cheatsheet)	available	at	the	official	Angular	site.

www.EBooksWorld.ir

https://angular.io/cheatsheet

Event	binding	with	output	properties
Let's	imagine	we	want	our	pomodoro	timer	component	to	notify	us	when	the	countdown	is
finished	so	that	we	can	perform	some	other	actions	outside	the	realm	of	the	component.	We
can	achieve	such	functionality	with	an	output	property	like	this:

<pomodoro-timer	(countdownComplete)="onCountownCompleted()"></pomodoro-timer>

Note	the	attribute	wrapped	between	braces.	This	informs	Angular	that	such	an	attribute	is,	in
fact,	an	output	property	that	will	trigger	the	event	handler	we	bind	to	it.	In	this	case,	we	will
want	to	create	an	onCountownCompleted	event	handler	on	the	container	object	that	wraps	this
component.

Tip

By	the	way,	the	camel	case	is	not	a	coincidence.	It	is	a	naming	convention	applied	to	all	output
and	input	property	names	in	Angular	2.

We	will	find	output	properties	mapped	to	interaction	events	that	we	already	know,	such	as
click,	mouseover,	mouseout,	focus,	and	more.

<button	(click)="doSomething()">Click	me</button>

www.EBooksWorld.ir

Input	and	output	properties	in	action
The	best	way	to	grasp	the	concepts	detailed	in	the	earlier	sections	is	by	practice.	Let's	strip
down	the	pomodoro	timer	example	that	we	saw	in	Chapter	1,	Creating	Our	Very	First
Component	in	Angular	2,	and	discuss	a	simpler	example.	Open	the	pomodoro-timer.ts	file	and
replace	its	contents	with	the	following	component	class:

import	{	Component	}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

@Component({

		selector:	'countdown',

		template:	'<h1>Time	left:	{{seconds}}</h1>'

})

class	CountdownComponent	{

		seconds:	number	=	25;

		intervalId:	number;

		constructor()	{

				this.intervalId	=	setInterval(()	=>	this.tick(),	1000);

		}

		private	tick():	void	{

				if	(--this.seconds	<	1)	{

						clearInterval(this.intervalId);

				}

		}

}

Great!	We	have	just	defined	a	simple	but	highly	effective	countdown	timer	component	that
will	count	down	to	0	from	25	seconds.	(Do	you	see	the	seconds	field	up	there?	TypeScript
supports	the	initialization	of	members	upon	declaring	them).	A	simple	setInterval	loop
executes	a	custom	private	function	named	tick()	that	decreases	the	value	of	seconds	until	it
reaches	zero,	in	which	case	we	just	clear	the	interval.

Please	notice	that	we	did	not	include	any	call	to	the	bootstrap	function	to	instantiate	this
component	in	a	HTML	document,	even	though	we	are	effectively	importing	the	function.	This
is	actually	pretty	common,	since	we	only	call	the	bootstrap	function	to	instantiate	the	top
parent	component	(also	known	as	root	component)	and	all	the	other	components,	defined	as
child	components	of	the	former,	will	be	automatically	instantiated	in	cascade.

However,	now	we	just	need	to	embed	this	component	somewhere,	so	let's	create	another
component	with	no	functionality	other	than	acting	as	a	HTML	wrapper	host	for	the	previous
component.	Create	this	new	component	right	after	the	CountdownComponent	class	in	its	same
file:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		template:	'<countdown></countdown>'

www.EBooksWorld.ir

})

class	PomodoroTimerComponent	{}

bootstrap(PomodoroTimerComponent);

As	we	can	see	there,	we	introduced	a	new	property	named	directives	in	the	component
initialization	and	declared	CountdownComponent	there.	Components	in	Angular	2	are	basically
directives	with	a	view	template.	We	can	also	find	directives	with	no	view,	which	basically	add
new	functionalities	to	their	host	element;	or	they	just	act	as	custom	elements	without	a	UI	that
wraps	other	elements.	Alternatively,	they	simply	provide	further	functionalities	to	other
components	by	means	of	their	API.

We	will	explore	directives	in	detail	in	the	next	chapter	and	also	along	the	book.	For	now,	let's
just	point	out	that	when	we	define	a	component	containing	other	components,	as	we	have	just
done,	we	will	have	to	explicitly	declare	the	immediate	children	components'	classes	in	the
directives	array	parameter.	You	must	be	wondering	why	have	we	created	this	host	or	parent
PomodoroTimerComponent	component	with	no	implementation.	Soon,	we	will	flesh	it	out	with
some	more	features,	but	for	now	let's	use	it	as	a	proof	of	concept	for	how	to	initiate	a
component	tree.

Setting	up	custom	values	declaratively

You	will	probably	agree	on	the	fact	that	having	the	functionality	of	setting	up	custom
countdown	timers	would	be	nice,	right?	Input	properties	turn	out	to	be	an	excellent	way	to
achieve	this.	In	order	to	leverage	this	functionality,	we	will	have	to	tweak	the	import	statement
at	the	top	of	the	file:

import	{	Component,	Input	}	from	'@angular/core';

Let's	update	our	pomodoro	timer	accordingly:

@Component({

		selector:	'countdown',

		template:	'<h1>Time	left:	{{seconds}}</h1>'

})

class	CountdownComponent	{

		@Input()	seconds:	number;

		intervalId:	number;

		//	Rest	of	implementation	remains	the	same...

}

You	might	have	already	noticed	that	we	are	no	longer	initializing	the	seconds	field,	and	it	is
now	decorated	with	a	property	decorator	(as	we	saw	in	Chapter	2,	Introducing	TypeScript).	We
have	just	started	to	define	the	API	of	our	component.

Note

Property	naming	is	case	sensitive,	and	the	convention	enforced	by	Angular	2	is	to	apply

www.EBooksWorld.ir

camel	case	to	component	input	and,	as	we	will	see	shortly,	output	properties	alike.

Next,	we	just	need	to	add	the	desired	property	in	our	container	component's	template:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		template:	`<div	class="container	text-center">

															

															<countdown	[seconds]="25"></countdown>

													</div>`

})

Please	note	that	we	have	not	updated	the	PomodorotimerComponent	at	all.	We	only	updated	its
CountdownComponent	children	component.	However,	its	brand	new	API	becomes	available	to
any	component	that	eventually	includes	it	in	its	own	template	as	a	child	component,	so	we	can
setup	its	properties	declaratively	right	from	the	template,	or	even	bind	a	value	imperatively
from	a	property	located	at	the	PomodorotimerComponent	controller	class	if	we	wish.

Tip

When	flagging	a	class	property	with	@Input(),	we	can	configure	the	name	we	want	this
property	to	have	upon	instantiating	the	component	in	the	HTML.	To	do	so,	we	just	need	to
introduce	our	name	of	choice	in	the	decorator	signature,	like	this
@Input('name_of_the_property').	In	any	event,	this	practice	is	discouraged	since	exposing
property	names	in	the	component	API	distinct	from	the	ones	defined	in	its	controller	class	can
only	lead	to	confusion.

Communicating	between	components	through	custom	events

Now	that	our	child	component	is	being	configured	by	its	parent	component,	how	can	we
achieve	communication	from	the	child	to	the	parent?	This	is	where	custom	events	come	to	the
rescue!	In	order	to	create	proper	event	bindings,	we	just	need	to	configure	an	output	property
in	our	component	and	attach	an	event	handler	function	to	it.

In	order	to	trigger	custom	events,	we	will	need	to	bring	EventEmitter	to	the	party,	along	with
the	@Output	decorator,	whose	functionality	is	exactly	the	opposite	to	what	we	learned
regarding	the	@Input	decorator:

import	{	Component,	Input,	Output,	EventEmitter	}	from	'@angular/core';

EventEmitter	is	the	built-in	event	bus	of	Angular	2.	In	a	nutshell,	the	EventEmitter	class
provides	support	for	emitting	Observable	data	and	subscribing	Observer	consumers	to	data
changes.	Its	simple	interface,	which	basically	encompass	two	methods,	emit()	and
subscribe(),	can	therefore	be	used	to	trigger	custom	events	and	listen	to	events	as	well,	both
synchronously	or	asynchronously.	We	will	discuss	Observables	in	more	in	detail	in	Chapter
6,	Asynchronous	Data	Services	with	Angular	2.	For	the	time	being,	we	can	get	away	with	the

www.EBooksWorld.ir

idea	that	we	will	be	using	the	EventEmitter	API	to	spawn	events	that	listener	methods	in	the
components	hosting	our	event-emitting	component	can	observe	and	attach	event	handlers	to.
These	events	acquire	visibility	outside	the	scope	of	the	component	through	any	of	its
properties	annotated	with	the	@Input()	decorator.

The	following	code	shows	an	actual	implementation	that	follows	up	from	the	previous
example:

@Component({

		selector:	'countdown',

		template:	'<h1>Time	left:	{{seconds}}</h1>'

})

class	CountdownComponent	{

		@Input()	seconds:	number;

		intervalId:	number;

		@Output()	complete:	EventEmitter<any>	=	new	EventEmitter();

		constructor()	{

				this.intervalId	=	setInterval(()	=>	this.tick(),	1000);

		}

		private	tick():	void	{

				if	(--this.seconds	<	1)	{

						clearTimeout(this.intervalId);

						//	An	event	is	emitted	upon	finishing	the	countdown

						this.complete.emit(null);	

				}

		}

}

A	new	property	named	complete	is	conveniently	annotated	with	the	EventEmitter	type	and
initialized	on	the	spot.	Later	on	we	will	access	its	emit	method	to	spawn	a	custom	event	as
soon	as	the	countdown	ends.	The	emit()	method	needs	one	mandatory	parameter	of	any	type,
so	we	can	send	a	data	value	to	the	event	subscribers	(or	null	if	not	required).

Now,	we	just	need	to	set	up	our	host	component	so	that	it	will	listen	to	this	complete	event	or
output	property	and	subscribe	an	event	handler	to	it:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		template:	`<div	class="container	text-center">

															

															<countdown	[seconds]="25"

																	(complete)="onCountdownCompleted()">

															</countdown>

												</div>`

})

class	PomodoroTimerComponent	{

		onCountdownCompleted():	void	{

				alert('Time	up!');

		}

}

www.EBooksWorld.ir

Tip

Why	complete	and	not	onComplete?

Angular	2	provides	support	for	an	alternative	syntax	named	canonical	form	for	both	input	and
output	properties.	In	the	case	of	input	properties,	a	property	represented	as	[seconds]	could
be	represented	as	bind-seconds,	without	the	need	for	brackets.	With	regards	to	output
properties,	these	can	be	represented	as	on-complete	instead	of	(complete).	That	is	why	we
never	prefix	output	property	names	with	an	on	prefix,	since	that	would	concur	on	output
properties	such	as	on-on-complete	in	case	we	eventually	decide	to	favor	the	canonical	syntax
form	in	our	projects.

www.EBooksWorld.ir

Emitting	data	through	custom	events
Now	that	we	know	how	to	emit	custom	events	from	our	component	API,	why	don't	we	take	a
step	further	and	send	data	signals	beyond	the	scope	of	the	component?	We	already	discussed
that	the	emit()	event	of	the	EventEmitter<T>	class	accepts	in	its	signature	any	given	data	of
the	type	represented	by	the	T	annotation.	Let's	extend	our	example	to	notify	the	progress	of	the
countdown.	Why	would	we	ever	want	to	do	this?	Basically,	our	component	displays	on	screen
a	visual	countdown,	but	we	might	want	to	watch	the	countdown	progress	programmatically	in
order	to	take	action	once	the	countdown	is	finished	or	reaches	a	certain	point.

Let's	update	our	timer	component	with	another	output	property	that	matches	the	original	and
emits	a	custom	event	on	each	iteration	of	the	seconds	property,	as	follows:

class	CountdownComponent	{

		@Input()	seconds:	number;

		intervalId:	number;

		@Output()	complete:	EventEmitter<any>	=	new	EventEmitter();

		@Output()	progress:	EventEmitter<number>	=	new	EventEmitter();

		constructor()	{

				this.intervalId	=	setInterval(()	=>	this.tick(),	1000);

		}

		private	tick():	void	{

				if	(--this.seconds	<	1)	{

						clearTimeout(this.intervalId);

						this.complete.emit(null);

				}

				this.progress.emit(this.seconds);

		}

}

Now,	let's	rebuild	our	host	component's	template	to	reflect	the	actual	progress	of	the
countdown.	We	already	do	so	by	displaying	the	countdown,	but	that	is	a	feature	handled
internally	by	the	CountdownComponent.	Now,	we	will	keep	track	of	the	countdown	outside	this
component:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		template:	`<div	class="container	text-center">

															

															<countdown	[seconds]="25"

																	(progress)="timeout	=	$event"

																	(complete)="onCountdownCompleted()">

															</countdown>

															<p	*ngIf="timeout	<	10">

																	Beware!	Only	{{timeout}}	seconds	left.

															</p>

												</div>`

})

class	PomodoroTimerComponent	{

www.EBooksWorld.ir

		timeout:	number;

		onCountdownCompleted():	void	{

				alert('Time	up!');

		}

}

We	took	advantage	of	this	round	of	changes	to	formalize	the	timeout	value	as	a	property	of
the	host	component.	This	allows	us	to	bind	new	values	to	that	property	in	our	custom	event
handlers,	as	we	did	in	the	preceding	example.	Rather	than	binding	an	event	handler	method	to
the	(progress)	handler,	we	refer	to	the	$event	reserved	variable.	It	is	a	pointer	to	the	payload
of	the	progress	output	property	that	reflects	the	value	we	pass	to	the	emit()	function	when
executing	this.progress.emit(this.seconds).	In	short,	$event	is	the	value	assumed	by
this.seconds	inside	CountdownComponent.	By	assigning	such	value	to	the	timeout	class
property	within	the	template,	we	are	also	updating	the	binding	expressed	in	the	paragraph	we
just	inserted	in	the	template.	This	paragraph	will	only	become	visible	when	timeout	is	lower
than	10.

<countdown	[seconds]="25"

		on-progress="timeout	=	$event"

		on-complete="onCountdownCompleted()">

</countdown>	

www.EBooksWorld.ir

Local	references	in	templates
We	have	previously	seen	how	we	can	bind	data	to	our	templates	using	data	interpolation	with
the	double	curly	braces	syntax.	Besides	this,	we	will	quite	often	spot	named	identifiers
prefixed	by	a	hash	symbol	(#)	in	the	elements	belonging	to	our	components	or	even	regular
HTML	controls.	These	reference	identifiers,	namely	local	names,	are	used	to	refer	to	the
components	flagged	with	them	in	our	template	views	and	then	access	them	programmatically.
They	can	also	be	used	by	components	to	refer	to	other	elements	in	the	virtual	DOM	and
access	its	properties.

In	the	previous	section,	we	saw	how	we	could	subscribe	to	the	countdown	progress	through
the	progress	event.	But,	what	if	we	could	inspect	the	component	in	depth,	or	at	least	its	public
properties	and	methods,	and	read	the	value	that	the	seconds	property	takes	on	each	tick
interval	without	having	to	listen	to	the	progress	event?	Well,	setting	a	local	reference	on	the
component	itself	will	open	the	door	to	its	public	façade.

Let's	flag	the	instance	of	our	CountdownComponent	in	the	PomodoroTimerComponent	template
with	a	local	reference	named	#counter.	From	that	very	moment,	we	will	be	able	to	directly
access	the	component's	public	properties,	such	as	seconds,	and	even	bind	it	in	other	locations
of	the	template.	This	way,	we	do	not	even	need	to	rely	on	the	progress	event	emitter	or	the
timeout	class	field,	and	we	can	even	manipulate	the	value	of	such	properties.	This	is	shown	in
the	following	code:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		encapsulation:	ViewEncapsulation.None,

		template:	`<div	class="container	text-center">

															

															<countdown	[seconds]="25"	

																	(complete)="onCountdownCompleted()"

																	#counter>

															</countdown>

															<p>

																	<button	class="btn	btn-default"	(click)="counter.seconds	=	

25">Reset	countdown	to	25	seconds

																	</button>

															</p>

															<p	*ngIf="counter.seconds	<	10">

																	Beware!	Only	

																	{{counter.seconds}}	seconds	

																	left.

															</p>

												</div>`

})

class	PomodoroTimerComponent	{

		//	timeout:	number;	/*	No	longer	required	*/

		onCountdownCompleted():	void	{

				alert('Time	up!');

		}

www.EBooksWorld.ir

}

www.EBooksWorld.ir

Alternative	syntax	for	input	and	output	properties
Besides	the	@Input()	and	@Output()	decorators,	there	is	an	alternative	syntax	where	we	can
define	input	and	output	properties	in	our	components	by	means	of	the	@Component	decorator.
Its	metadata	implementation	provides	support	for	both	features	through	the	inputs	and
outputs	property	names,	respectively.

The	CountdownComponent	API	could	therefore	be	implemented	like	this:

@Component({

		selector:	'countdown',

		template:	'<h1>Time	left:	{{seconds}}</h1>',

		inputs:	['seconds'],

		outputs:	['complete',	'progress']

})

class	CountdownComponent	{

		seconds:	number;

		intervalId:	number;

		complete:	EventEmitter<any>	=	new	EventEmitter();

		progress:	EventEmitter<number>	=	new	EventEmitter();

		//	Etc...

}

All	in	all,	this	syntax	is	discouraged	and	has	been	included	here	for	reference	purposes	only.
In	the	first	place,	we	duplicate	code	by	defining	the	names	of	our	API	endpoints	in	two	places
at	the	same	time,	increasing	the	risk	of	errors	when	refactoring	code.	It	is	also	a	common
convention	to	keep	the	decorator	implementations	as	lean	as	possible	in	order	to	improve
readability.

Tip

I	strongly	suggest	that	you	stick	to	the	@Input	and	@Output	decorators.

www.EBooksWorld.ir

Configuring	our	template	from	our	component
class
The	Component	metadata	also	supports	several	settings	that	contribute	to	easy	template
management	and	configuration.	On	the	other	hand,	Angular	2	takes	advantage	of	the	CSS
encapsulation	functionalities	of	Web	Components.

www.EBooksWorld.ir

Internal	and	external	templates
As	our	applications	grow	in	size	and	complexity,	chances	are	that	our	templates	will	grow	as
well,	hosting	other	components	and	bigger	chunks	of	HTML	code.	Embedding	all	this	code	in
our	component	class	definitions	will	become	a	cumbersome	and	unpleasant	task	and	quite
prone	to	errors	by	the	way.	In	order	to	prevent	this	from	happening,	we	can	leverage	the
templateUrl	property,	pointing	to	a	standalone	HTML	file	that	contains	our	component
HTML	markup.

Back	to	our	previous	example,	we	can	refactor	the	@Component	decorator	of	our
PomodoroTimerComponent	class	to	point	to	an	external	html	file	containing	our	template.
Create	a	new	file	named	pomodoro-timer.html	in	the	same	workspace	where	our	pomodoro-
timer.ts	file	lives	and	populate	it	with	the	same	HTML	we	configured	in	our
PomodoroTimerComponent	class:

<div	class="container	text-center">

		

		<countdown	

				[seconds]="25"

				(complete)="onCountdownCompleted()"

				#counter>

		</countdown>

		<p>

				<button	class="btn	btn-default"(click)="counter.seconds	=	25">

						Reset	countdown	to	25	seconds

				</button>

		</p>

		<p	*ngIf="counter.seconds	<	10">

				Beware!	Only

				{{	counter.seconds	}}	seconds

				left.

		</p>

</div>

Now,	we	can	polish	our	@Component	decorator	to	point	to	that	file	instead	of	defining	the
HTML	inside	the	decorator	metadata:

@Component({

		selector:	'pomodoro-timer',

		directives:	[CountdownComponent],

		templateUrl:	'./pomodoro-tasks.html'

})

class	PomodoroTimerComponent	{

		//	Class	follows	below...

}

Note

External	templates	follow	a	certain	convention	in	Angular	2,	enforced	by	the	most	popular
Angular	2	coding	style	guides	out	there,	which	is	to	share	the	same	filename	than	the
component	they	belong	to,	including	any	filename	prefix	or	suffix	we	might	append	to	the

www.EBooksWorld.ir

component	filename.	We	will	see	this	when	exploring	component	naming	conventions	in
Chapter	5,	Building	an	Application	with	Angular	2	Components.	This	way,	it	is	easier	to
recognize,	or	even	search	with	your	IDE	search	built-in	fuzzy	finder	tool,	what	HTML	file	is
in	fact	the	template	of	a	specific	component.

What	is	the	threshold	for	creating	standalone	templates	rather	than	keeping	the	template
markup	inside	the	component?	It	depends	on	the	complexity	and	size	of	the	template.
Common	sense	will	be	your	best	advisor	in	this	case.

www.EBooksWorld.ir

Encapsulating	CSS	styling
In	order	to	better	encapsulate	our	code	and	make	it	more	reusable,	we	can	define	CSS	styling
within	our	components.	These	internal	style	sheets	are	a	good	way	to	make	our	components
more	shareable	and	maintainable.	There	are	three	different	ways	of	defining	CSS	styling	for
our	components.

The	styles	property

We	can	define	styles	for	our	HTML	elements	and	class	names	through	the	style	property	in	the
component	decorator,	like	this:

@Component({

		selector:	'my-component',

		styles:	[`

				p	{

						text-align:	center;

				}

				table	{

						margin:	auto;

				}`]

})

This	property	will	take	an	array	of	strings	containing	CSS	rules	each	and	apply	them	to	the
template	markup	by	embedding	those	rules	at	the	head	of	the	document	as	soon	as	we
bootstrap	our	application.	We	can	either	inline	the	styling	rules	in	a	single	line,	or	take
advantage	of	ES2015	template	strings	to	indent	the	code	and	make	it	more	readable	as
depicted	in	the	example	above.

The	styleUrls	property

Just	like	styles,	styleUrls	will	accept	an	array	of	strings,	although	each	one	will	represent	a
link	to	an	external	style	sheet	though.	This	property	can	be	used	alongside	the	styles	property
as	well,	defining	different	sets	of	rules	where	required:

@Component({

		selector:	'my-component',

		styleUrls:	['path/to/my-stylesheet.css'],

		styles:	[`

				p	{

						text-align:	center;

				}

				table	{

						margin:	auto;

				}`]

})

Inline	style	sheets

We	can	also	attach	the	styling	rules	to	the	template	itself,	no	matter	whether	it's	an	inline
template	or	a	template	served	through	the	templateUrl	parameter:

www.EBooksWorld.ir

@Component({

		selector:	'app',

		template:	`

				<style>	p	{	color:	red;	}	</style>

				<p>I	am	a	red	paragraph</p>`

})

www.EBooksWorld.ir

Managing	view	encapsulation
All	the	preceding	sections	(styles,	styleUrls,	and	inline	style	sheets)	will	be	governed	by	the
usual	rules	of	CSS	specificity	(https://developer.mozilla.org/en/docs/Web/CSS/Specificity).
CSS	management	and	specificity	becomes	a	breeze	on	browsers	that	support	Shadow	DOM,
thanks	to	scoped	styling.	CSS	styles	apply	to	the	elements	contained	in	the	component	but	do
not	spread	beyond	its	boundaries.

On	top	of	that,	Angular	will	embed	these	style	sheets	at	the	head	of	the	document,	so	they
might	affect	other	elements	of	our	application.	In	order	to	prevent	this	from	happening,	we
can	set	up	different	levels	of	view	encapsulation.

In	a	nutshell,	encapsulation	is	the	way	Angular	needs	to	manage	CSS	scoping	within	the
component	for	both	Shadow	DOM-compliant	browsers	and	those	that	do	not	support	it.	For
all	this,	we	leverage	the	ViewEncapsulation	enum,	which	can	take	any	of	these	values:

Emulated:	This	is	the	default	option,	and	it	basically	entails	an	emulation	of	native
scoping	in	Shadow	DOM	through	sandboxing	the	CSS	rules	under	a	specific	selector	that
points	to	our	component.	This	option	is	preferred	to	ensure	that	our	component	styles
will	not	be	affected	by	other	existing	libraries	on	our	site.
Native:	Use	the	native	Shadow	DOM	encapsulation	mechanism	of	the	renderer,	and	it
only	works	on	browsers	that	support	Shadow	DOM.
None:	Template	or	style	encapsulation	is	not	provided.	The	styles	will	be	injected	as	is
into	the	document's	header.

Let's	check	out	an	actual	example.	First,	import	the	ViewEncapsulation	enum	into	the	script,
and	then	create	an	encapsulation	property	with	the	Emulated	value.	Then,	let's	create	a	style
rule	for	our	countdown	text	so	any	<h1>	(!)	tag	is	rendered	in	dark	red:

import	{	

		Component,

		EventEmitter,

		Input,

		Output,	

		ViewEncapsulation

}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

@Component({

		selector:	'countdown',

		template:	'<h1>Time	left:	{{seconds}}</h1>',

		styles:	['h1	{	color:	#900	}'],

		encapsulation:	ViewEncapsulation.Emulated

})

class	CountdownComponent	{	

		//	Etc...	

}	

Now,	click	on	the	browser's	dev	tools	inspector	and	check	the	generated	HTML	to	discover

www.EBooksWorld.ir

https://developer.mozilla.org/en/docs/Web/CSS/Specificity

how	Angular	2	injected	the	CSS	inside	the	page	<HEAD>	block.	The	just	injected	style	sheet	has
been	sandboxed	to	ensure	that	the	global	CSS	rule	we	defined	at	the	component	setup	in	a	very
non-specific	way	for	all	<h1>	elements	only	applies	to	matching	elements	scoped	by	the
CountdownComponent	component	exclusively.

We	recommend	that	you	try	out	different	values	and	see	how	the	CSS	code	is	injected	into	the
document.	You	will	immediately	notice	the	different	grades	of	isolation	that	each	variation
provides.

www.EBooksWorld.ir

Summary
This	chapter	guided	us	through	the	options	available	in	Angular	2	for	creating	powerful	APIs
for	our	components,	so	we	can	provide	high	levels	of	interoperability	between	components,
configuring	its	properties	by	assigning	either	static	values	or	managed	bindings.	We	also	saw
how	a	component	can	act	as	a	host	component	for	another	child	component,	instantiating	the
former's	custom	element	in	its	own	template,	setting	the	ground	up	for	larger	component
trees	in	our	applications.	Output	parameters	give	the	layer	of	interactivity	we	need	by	turning
our	components	into	event	emitters	so	they	can	properly	communicate	in	an	agnostic	fashion
with	any	parent	component	that	might	eventually	host	them.	Template	references	paved	the
way	to	create	references	in	our	custom	elements	that	we	can	use	as	accessors	to	their
properties	and	methods	from	within	the	template	in	a	declarative	fashion.	We	also	discussed
how	we	could	isolate	the	component's	HTML	template	in	an	external	file	in	order	to	ease	its
future	maintainability	and	how	to	do	the	same	with	any	style	sheet	we	wanted	to	bind	to	the
component,	in	case	we	do	not	want	to	bundle	the	component	styles	inline.	An	overview	of	the
built-in	features	for	handling	view	encapsulation	in	Angular	2	gave	us	some	additional
insights	on	how	we	can	benefit	from	Shadow	DOM's	CSS	scoping	on	a	per	component	basis
and	how	we	can	polyfill	it	when	not	supported.

We	still	have	much	more	to	learn	regarding	template	management	in	Angular	2,	mostly	with
regards	to	the	two	concepts	that	you	will	use	extensively	along	your	journey	with	Angular.	I
am	referring	to	Directives	and	Pipes,	which	we	will	cover	extensively	in	Chapter	4,
Enhancing	our	Components	with	Pipes	and	Directives.

www.EBooksWorld.ir

Chapter	4.	Enhancing	Our	Components	with
Pipes	and	Directives
In	the	previous	chapters,	we	built	several	components	that	rendered	data	on	screen	with	the
help	of	input	and	output	properties.	We	will	leverage	the	knowledge	in	this	chapter	to	take	our
components	to	the	next	level	with	the	use	of	directives	and	pipes.	In	a	nutshell,	while	pipes
give	us	the	opportunity	to	digest	and	transform	the	information	we	bind	in	our	templates,
directives	allow	us	to	conduct	more	ambitious	functionalities	where	we	can	access	the	host
element	properties	and	also	bind	our	very	own	custom	event	listeners	and	data	bindings.

In	this	chapter,	we	will:

Have	a	comprehensive	overview	of	the	built-in	directives	of	Angular	2
Discover	how	we	can	refine	our	data	output	with	pipes
See	how	we	can	design	and	build	our	own	custom	pipes	and	directives
Leverage	built-in	objects	for	manipulating	our	templates
Put	all	the	preceding	topics	and	many	more	into	practice	by	following	up	on	our
pomodoro	project	to	build	a	fully	interactive	to-do	items	table

www.EBooksWorld.ir

Directives	in	Angular	2
Angular	2	defines	directives	as	components	without	views.	In	fact,	a	component	is	a	directive
with	an	associated	template	view.	This	distinction	is	used	because	directives	are	a	prominent
part	of	the	Angular	2	core	and	each	(plain	directives	and	component	directives)	needs	the
other	to	exist.	Directives	can	basically	affect	the	way	HTML	elements	or	custom	elements
behave	and	display	their	content.

www.EBooksWorld.ir

Core	directives
Let's	take	a	closer	look	at	the	framework's	core	directives,	and	then	you	will	learn	how	to
build	your	own	directives	later	on	in	this	chapter.

NgIf

As	the	official	documentation	states,	the	NgIf	directive	removes	or	recreates	a	portion	of	the
DOM	tree	based	on	an	expression.	If	the	expression	assigned	to	the	NgIf	directive	evaluates	to
false,	then	the	element	is	removed	from	the	DOM.	Otherwise,	a	clone	of	the	element	is
reinserted	into	the	DOM.	We	could	enhance	our	countdown	timer	by	leveraging	this	directive,
like	this:

<pomodoro-timer	[seconds]="timeout"></pomodoro-timer>

<p	*ngIf="timeout	===	0">Time	up!</p>

When	our	pomodoro	timer	reaches	0,	the	paragraph	that	displays	the	Time	up!	text	will	be
rendered	on	the	screen.	You	have	probably	noticed	that	asterisk	that	prepends	the	directive.
This	is	because	Angular	embeds	the	HTML	control	marked	with	the	NgIf	directive	(and	all	its
HTML	subtrees,	if	any)	in	a	<template>	tag,	which	will	be	used	later	on	to	render	the	content
on	the	screen.	Covering	how	Angular	treats	templates	is	definitely	out	of	the	scope	of	this
book,	but	let's	just	point	out	that	this	is	syntactic	sugar	provided	by	Angular	to	act	as	a
shortcut	to	that	other,	more	verbose	syntax	based	on	template	tags.

Perhaps	you	are	wondering	what	difference	does	it	make	to	render	some	chunk	of	HTML	on
screen	with	*ngIf="conditional"	rather	than	with	[hidden]="conditional".	The	former	will
clone	and	inject	pieces	of	templated	HTML	snippets	in	the	markup,	removing	it	from	the
DOM	when	the	condition	evaluates	to	false,	while	the	latter	does	not	inject	or	remove	any
markup	from	the	DOM.	It	simply	sets	the	visibility	of	the	already	existing	chunk	of	HTML
annotated	with	that	DOM	attribute.

NgFor

The	NgFor	directive	allows	us	to	iterate	through	a	collection	(or	any	other	iterable	object)	and
bind	each	of	its	items	to	a	template	of	our	choice,	where	we	can	define	convenient
placeholders	to	interpolate	the	item	data.	Each	instantiated	template	is	scoped	to	the	outer
context,	where	the	loop	directive	is	placed,	so	we	can	access	other	bindings.	Let's	imagine	we
have	a	component	named	Staff:	it	features	a	field	named	employees,	which	represents	an
array	of	Employee	objects.	We	can	enlist	those	employees	and	job	titles	in	this	way:

		<li	*ngFor="let	employee	of	employees;	let	i	=	index;	let	last	=	last">

				Employee	#{{i}}:	-	{{employee.name}},	{{employee.position}}

				
End	of	list

		

As	we	can	see	in	the	example	provided,	we	turn	each	item	fetched	from	the	iterable	object	on

www.EBooksWorld.ir

each	loop	into	a	local	reference	so	that	we	can	easily	bind	this	item	in	our	template.	Here,	we
also	use	the	syntax	sugar	that	we	used	in	the	previous	section,	and	Angular	gives	us	the
opportunity	to	assign	index	to	a	scoped	variable	that	will	be	set	to	the	current	loop	iteration	in
the	template	context.	We	can	also	assign	last	to	a	scoped	variable	that	will	inform	whether	the
item	is	the	last	one	in	the	iteration.

This	directive	observes	changes	in	the	underlying	iterable	object	and	will	add,	remove,	or
sort	the	rendered	templates	as	items	are	added,	removed,	or	reordered	in	the	collection.

NgStyle

As	you	probably	have	guessed	already,	this	directive	allows	us	to	bind	CSS	styles	by
evaluating	a	custom	object	or	expression.	We	can	bind	an	object	whose	keys	and	values	map
CSS	properties,	or	just	define	specific	properties	and	bind	data	to	them:

<p	[ngStyle]="{	'color':	myColor,	'font-weight':	myFontWeight	}">I	am	red	and	

bold</p>

If	our	component	defines	the	myColor	and	myFontWeight	properties	with	the	red	and	bold
values,	respectively,	the	color	and	weight	of	the	text	will	change	accordingly.	The	directive
will	always	reflect	the	changes	made	within	the	component,	and	we	can	also	pass	an	object
instead	of	binding	data	on	a	per	property	basis:

<p	[ngStyle]="myCssConfig">I	am	red	and	bold</p>

NgClass

Similar	to	NgStyle,	NgClass	allows	us	to	define	and	toggle	class	names	programmatically	in
a	DOM	element	using	a	convenient	declarative	syntax.	This	syntax	has	its	own	intricacies,
however.	Let's	see	each	one	of	the	three	case	scenarios	available	for	this	example:

<p	[ng-class]="{{myClassNames}}">Hello	Angular!</p>

For	instance,	we	can	use	a	string	type	so	that	if	myClassNames	contains	a	string	with	one	or
several	classes	delimited	by	a	space,	all	of	them	will	be	bound	to	the	paragraph.

We	can	use	an	array	as	well	so	that	each	element	will	be	added.

Last	but	not	least,	we	can	use	an	object	in	which	each	key	corresponds	to	a	CSS	class	name
referred	to	by	a	Boolean	value.	Each	key	name	marked	as	true	will	become	an	active	class.
Otherwise,	it	will	be	removed.	This	is	usually	the	preferred	way	of	handling	class	names.

NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault

The	NgSwitch	directive	is	used	to	switch	templates	within	a	specific	set	depending	on	the
condition	required	for	displaying	each	one.	The	implementation	follows	several	steps,
therefore	three	different	directives	are	explained	in	this	section.

www.EBooksWorld.ir

NgSwitch	will	evaluate	a	given	expression	and	then	toggle	and	display	those	child	elements
marked	with	an	ngSwitchWhen	attribute	directive,	whose	value	matches	the	value	thrown	by
the	expression	defined	in	the	parent	ngSwitch	element.	A	special	mention	is	required	about	the
children	element	marked	with	the	ngSwitchDefault	directive	attribute.	This	attribute	qualifies
the	template	that	will	be	displayed	when	no	other	value	defined	by	its	ngSwitchWhen	siblings
matches	the	parent	conditional	expression.

We'll	see	all	of	this	in	an	example:

<div	[ngSwitch]="weatherForecastDay">

				<template	ngSwitchWhen="today">{{weatherToday}}</template>

				<template	ngSwitchWhen="tomorrow">

						{{weatherTomorrow}}</template>

				<template	ngSwitchDefault>

								Pick	a	day	to	see	the	weather	forecast

				</template>

</div>

The	parent	[ngSwitch]	parameter	evaluates	the	weatherForecastDay	context	variable,	and
each	nested	ngSwitchWhen	directive	will	be	tested	against	it.	We	can	use	expressions	instead,
but	we	want	to	wrap	ngSwitchWhen	in	brackets	so	that	Angular	can	properly	evaluate	its
content	as	context	variables	instead	of	taking	it	as	a	text	string.

Note

At	the	time	of	closing	the	writing	of	this	book,	the	Angular	core	team	is	discussing	the
convenience	of	renaming	ngSwitchWhen	to	ngSwitchCase	in	order	to	keep	consistent	with
JavaScript	and	TypeScript	switch/case	keywords,	and	also	with	other	i18n	directives	such	as
NgPlural	and	NgPluralCase.	It	is	quite	likely	that	this	breaking	change	will	make	it	to
Angular	2	final	so	please	refer	to	the	online	documentation	to	double	check	the	final	syntax
for	NgSwitch	template	cases.

Coverage	for	the	NgPlural	and	NgPluralCase	sits	outside	of	the	scope	of	this	book,	but
basically	provide	a	convenient	way	to	render	or	remove	templates	DOM	blocks	that	match	a
switch	expression,	either	strictly	numeric	or	just	a	string,	in	a	similar	fashion	to	how	the
NgSwitch	and	NgSwitchWhen	directives	do.

www.EBooksWorld.ir

Manipulating	template	bindings	with	Pipes
So,	we	saw	how	we	can	use	directives	to	render	content	depending	on	the	data	that	our
component	classes	manage,	but	there	is	another	powerful	feature	that	we	will	be	using
thoroughly	in	our	daily	practice	with	Angular.	We	are	talking	about	Pipes.

Pipes	allow	us	to	filter	and	funnel	the	outcome	of	our	expressions	on	a	view	level	to
transform	or	just	better	display	the	data	we	are	binding.	Their	syntax	is	pretty	simple,
basically	consisting	of	the	pipe	name	following	the	expression	that	we	want	to	transform,
separated	by	a	pipe	symbol	(hence	the	name):

@Component({

		selector:	"greeting",

		template:	"HELLO	{{	name	|	uppercase	}}"

})

class	GreetingComponent	{

		name:	string;

}

In	the	preceding	example,	we	are	displaying	an	uppercase	greeting	on	the	screen.	Since	we	do
not	know	whether	the	name	will	be	in	uppercase	or	not,	we	ensure	a	consistent	output	by
transforming	the	value	of	the	name	whenever	it	is	not	an	uppercase	version	at	the	view	level.
Pipes	are	chainable,	and	Angular	has	a	wide	range	of	pipe	types	already	baked	in.	As	we	will
see	further	in	this	chapter,	we	can	also	build	our	own	pipes	to	fine-grain	data	output	in	cases
where	the	built-in	pipes	are	simply	not	enough.

www.EBooksWorld.ir

The	uppercase/lowercase	pipe
The	name	uppercase/lowercase	pipe	says	it	all.	As	in	the	example	provided	previously,	this
pipe	sets	the	string	output	in	uppercase	or	lowercase.	Insert	the	following	code	anywhere	in
your	view	and	check	out	the	output	for	yourself:

<p>{{	'hello	world'	|	uppercase	}}</p>

<!--	outputs	'HELLO	WORLD'	-->

<p>{{	'wEIrD	hElLo'	|	lowercase	}}</p>

<!--	output	is	'weird	hello'	-->

www.EBooksWorld.ir

The	number,	percent,	and	currency	pipes
Numeric	data	can	come	in	a	wide	range	of	flavors,	and	this	pipe	is	especially	convenient	when
it	comes	to	better	formatting	and	localizing	the	output.	These	pipes	use	the
Internationalization	API,	and	therefore	they	are	reliable	in	Chrome	and	Opera	browsers	only.

The	number	pipe

The	number	pipe	will	help	us	define	the	grouping	and	sizing	of	numbers	using	the	active
locale	in	our	browser.	Its	format	is	as	follows:

expression	|	number[:digitInfo]

Here,	expression	is	a	number	and	digitInfo	has	the	following	format:

{minIntegerDigits}.{minFractionDigits}-{maxFractionDigits}

Each	binding	would	correspond	to	the	following:

minIntegerDigits:	The	minimum	number	of	integer	digits	to	use.	It	defaults	to	1.
minFractionDigits:	The	minimum	number	of	digits	after	the	fraction.	It	defaults	to	0.
maxFractionDigits:	The	maximum	number	of	digits	after	the	fraction.	It	defaults	to	3.

Note

Keep	in	mind	that	the	acceptable	range	for	each	of	these	numbers	and	other	details	will
depend	on	your	native	internationalization	implementation.

The	percent	pipe

The	percent	pipe	formats	a	number	as	local	percent.	Other	than	this,	it	inherits	from	the
Number	pipe	so	that	we	can	further	format	the	output	to	provide	a	better	integer	and	decimal
sizing	and	grouping.	Its	syntax	is	as	follows:

expression	|	percent[:digitInfo]

The	currency	pipe

Formats	a	number	as	a	local	currency,	providing	support	for	selecting	the	currency	code	such
as	USD	for	the	US	dollar	or	EUR	for	the	euro	and	setting	up	how	we	want	the	currency	info	to
be	displayed.	Its	syntax	is	as	follows:

expression	|	currency[:currencyCode[:symbolDisplay[:digitInfo]]]

In	the	preceding	statement,	currencyCode	is	obviously	the	ISO	4217	currency	code,	while
symbolDisplay	is	a	Boolean	that	indicates	whether	to	use	the	currency	symbol	(for	example,
$)	or	the	currency	code	(for,	example	USD)	in	the	output.	The	default	for	this	value	is	false.
Similar	to	the	number	and	percent	pipes,	we	can	format	the	output	to	provide	a	better	integer
and	decimal	sizing	and	grouping	through	the	digitInfo	value:

www.EBooksWorld.ir

<p>{{	11256.569	|	currency:"GBP":true:'4.1-2'	}}</p>	

<!--	output	is	'£11,256.57'	-->

www.EBooksWorld.ir

The	slice	pipe
The	purpose	of	this	pipe	is	equivalent	to	the	role	played	by	Array.prototype.slice()	and
String.prototype.slice()when	it	comes	to	subtracting	a	subset	(slice)	of	a	collection	list,
array,	or	string,	respectively.	Its	syntax	is	pretty	straightforward	and	follows	the	same
conventions	as	those	of	the	aforementioned	slice()	methods:

expression	|	slice:start[:end]

Basically,	we	configure	a	starting	index	where	we	will	begin	slicing	either	the	items	array	or
the	string	on	an	optional	end	index,	which	will	fall	back	to	the	last	index	on	the	input	when
omitted.

Note

Both	start	and	end	arguments	can	take	positive	and	negative	values,	as	the	JavaScript	slice()
methods	do.	Refer	to	the	JavaScript	API	documentation	for	a	full	rundown	on	all	the	available
scenarios.

Last	but	not	least,	please	note	that	when	operating	on	a	collection,	the	returned	list	is	always	a
copy—even	when	all	elements	are	being	returned.

www.EBooksWorld.ir

The	date	pipe
You	must	have	already	guessed	that	the	Date	pipe	formats	a	date	value	as	a	string	based	on	the
requested	format.	The	time	zone	of	the	formatted	output	will	be	the	local	system	time	zone	of
the	end	user's	machine.	Its	syntax	is	pretty	simple:

expression	|	date[:format]

The	expression	input	must	be	a	date	object	or	a	number	(milliseconds	since	the	UTC	epoch).
The	format	argument	is	highly	customizable	and	accepts	a	wide	range	of	variations	based	on
date-time	symbols.	For	our	convenience,	some	aliases	have	been	made	available	as	shortcuts
to	the	most	common	date	formats:

'medium':	This	is	equivalent	to	'yMMMdjms'	(for	example,	Sep	3,	2010,	12:05:08	PM	for	en-
US)
'short':	This	is	equivalent	to	'yMdjm'	(for	example,	9/3/2010,	12:05	PM	for	en-US)
'fullDate':	This	is	equivalent	to	'yMMMMEEEEd'	(for	example,	Friday,	September	3,	2010
for	en-US)
'longDate':	This	is	equivalent	to	'yMMMMd'	(for	example,	September	3,	2010)
'mediumDate':	This	is	equivalent	to	'yMMMd'	(for	example,	Sep	3,	2010	for	en-US)
'shortDate':	This	is	equivalent	to	'yMd'	(for	example,	9/3/2010	for	en-US)
'mediumTime':	This	is	equivalent	to	'jms'	(for	example,	12:05:08	PM	for	en-US)
'shortTime':	This	is	equivalent	to	'jm'	(for	example,	12:05	PM	for	en-US)

www.EBooksWorld.ir

The	JSON	pipe
JSON	is	probably	the	most	straightforward	pipe	in	its	definition;	it	basically	takes	an	object	as
an	input	and	outputs	it	in	JSON	format:

{{	{	name:	'Eve',	age:	43	}	|	json	}}	

Here	is	the	output:

{	"name":	"Eve",	"age":	43	}

www.EBooksWorld.ir

The	replace	pipe
The	replace	pipe	operates	pretty	much	like	the	String.prototype.replace()	function	of	the
JavaScript	API,	and	it	will	evaluate	a	string	expression,	or	a	number	that	will	be	treated	as	a
string	either	way,	against	a	given	pattern.	All	matches	found	will	be	then	replaced	by	a	given
string	replacement.	We	can	also	introduce	a	function,	or	a	reference	to	a	function,	that	will
receive	the	match	string	found.	The	overall	syntax	is	as	follows:

expression	|	replace:pattern:replacement

It	is	important	to	note	that	the	pattern	can	be	configured	as	a	regular	expression.	In	fact,
Angular	2	uses	regular	expressions	under	the	hood	to	find	string	matches	so	make	sure	you
escape	any	special	character	like	parentheses,	brackets,	and	so	on.

www.EBooksWorld.ir

The	i18n	pipes
As	part	of	Angular's	strong	commitment	to	providing	a	strong	internationalization	toolset,	a
reduced	set	of	pipes	targeting	common	i18n	use	cases	have	been	made	available.	This	book
will	only	cover	the	two	major	ones,	but	it	is	quite	likely	that	more	pipes	will	be	released	in	the
future.	Please	refer	to	the	official	documentation	for	further	information	after	finishing	this
chapter.

The	i18nPlural	pipe

The	i18nPlural	pipe	has	a	simple	usage,	where	we	just	evaluate	a	numeric	value	against	an
object	mapping	different	string	values	to	be	returned	depending	on	the	result	of	the
evaluation.	This	way,	we	can	render	different	strings	on	our	template	depending	if	the
numeric	value	is	zero,	one,	two,	more	than	N,	and	so	on.	Talking	about	pomodoros,	we	could
slide	this	in	our	template:

<h1>	{{	pomodoros	|	i18nPlural:pomodorosWarningMapping	}}	</h1>

Then,	we	can	have	this	mapping	as	a	field	of	our	component	controller	class:

class	MyPomodorosComponent	{

		pomodoros:	number;

		pomodorosWarningMapping:	any	=	{

				'=0':	'No	pomodoros	for	today',

				'=1':	'One	pomodoro	pending',

				'other':	'#	pomodoros	pending'

		}

}

We	even	bind	the	numeric	value	evaluated	in	the	expression	by	introducing	the	'#'	placeholder
in	the	string	mappings.	When	no	matching	value	is	found,	the	pipe	will	fall	back	to	the
mapping	set	with	the	key	'other'.

The	i18nSelect	pipe

The	i18nSelect	pipe	is	similar	to	i18nPlural	pipe,	but	evaluates	a	string	value	instead.	This
pipe	is	perfect	for	localizing	text	interpolations	or	providing	distinct	labels	depending	on
state	changes,	for	instance.	For	example,	we	could	recap	on	our	pomodoro	timer	and	serve
the	UI	in	different	languages:

<button	(click)="togglePause()">

		{{	languageCode	|	i18nSelect:	localizedLabelsMap	}}

</button>

In	our	controller	class,	we	can	populate	localizedLabelsMap	as	follows:

class	PomodoroTimerComponent	{

		languageCode:	string	=	'fr';

		localizedLabelsMap:	any	=	{

				'en':	'Start	timer',

www.EBooksWorld.ir

				'es':	'Comenzar	temporizador',

				'fr':	'Démarrer	une	séquence',

				'other':	'Start	timer'

		}

		...

}

It	is	important	to	note	that	we	can	put	this	convenient	pipe	to	use	in	use	cases	other	than
localising	components,	but	to	provide	string	bindings	depending	on	map	keys	and	the	like.
Same	as	the	i18nPlural	pipe,	when	no	matching	value	is	found,	the	pipe	will	fall	back	to	the
mapping	set	with	the	key	'other'.

www.EBooksWorld.ir

The	async	pipe
Sometimes,	we	manage	observable	data	or	only	data	that	is	handled	asynchronously	by	our
component	class,	and	we	need	to	ensure	that	our	views	promptly	reflect	the	changes	in	the
information	once	the	observable	field	changes	or	asynchronous	loading	has	been
accomplished	after	the	view	has	been	rendered.	The	async	pipe	subscribes	to	an	observable	or
promise	and	returns	the	latest	value	it	has	emitted.	When	a	new	value	is	emitted,	the	async	pipe
marks	the	component	to	be	checked	for	changes.

www.EBooksWorld.ir

Putting	it	all	together	in	the	Pomodoro	task	list
Now	that	you	have	learned	all	the	elements	that	allow	you	to	build	full-blown	components,	it's
time	to	put	all	of	this	fresh	knowledge	into	practice.	In	the	next	pages	we	are	going	to	build	a
simple	task	list	manager	for	our	pomodoro	application.	In	it,	we	will	see	a	tasks	table
containing	the	to-do	items	we	need	to	achieve:

We	will	also	queue	up	tasks	straight	from	the	backlog	of	tasks	available.	This	will	help
showing	the	time	required	to	accomplish	all	the	queued	tasks	and	see	how	many	pomodoros
are	defined	in	our	working	agenda.

www.EBooksWorld.ir

Setting	up	our	main	HTML	container
Before	building	the	actual	component	we	need	to	set	up	our	work	environment	first	and	in
order	to	do	so	we	will	reuse	the	same	HTML	boilerplate	file	we	used	in	the	previous
component.	Please	set	aside	the	work	you've	done	so	far	and	keep	the	package.json,
tsconfig.json,	typings.json	and	index.html	files	we	used	in	previous	examples.	Feel	free
to	reinstall	the	modules	required	in	case	you	need	to,	and	replace	the	contents	of	the	body	tag
in	our	index.html	template:

				<nav	class="navbar	navbar-default	navbar-static-top">

						<div	class="container">

								<div	class="navbar-header">

										<strong	class="navbar-brand">My	Pomodoro	Tasks

								</div>

						</div>

				</nav>

				<pomodoro-tasks></pomodoro-tasks>

In	a	nutshell,	we	have	just	updated	the	title	of	the	header	layout	above	our	new	<pomodoro-
tasks>	custom	elements,	which	replaces	the	previous	<pomodoro-timer>.	You	might	want	to
update	the	configuration	of	the	System.import()	command	to	point	to	our	new	compiled
component	class:

System.import('built/pomodoro-tasks')

						.then(null,	console.error.bind(console));

www.EBooksWorld.ir

Building	our	task	list	table	with	Angular	directives
Create	an	empty	pomodoro-tasks.ts	file.	You	might	want	to	use	this	newly	created	file	to	build
our	new	component	from	scratch	and	embed	on	it	the	definitions	of	all	the	accompanying
pipes,	directives,	and	components	we	will	see	later	in	this	chapter.

Note

Real-life	projects	are	never	implemented	this	way,	since	our	code	must	conform	to	the	"one
class,	one	file"	principle,	taking	advantage	of	ECMAScript	modules	for	gluing	things
together.	Chapter	5,	Building	an	Application	with	Angular	2	Components	will	introduce	you	to
a	common	set	of	good	practices	for	building	Angular	2	applications,	including	strategies	for
organizing	your	directory	tree	and	your	different	elements	(components,	directives,	pipes,
services,	and	so	on)	in	a	sustainable	way.	This	chapter,	on	the	contrary,	will	leverage
pomodoro-tasks.ts	to	include	all	the	code	in	a	central	location	and	then	provide	a	bird's	eye
view	of	all	the	topics	we	will	cover	now	without	having	to	go	switching	across	files.	Bear	in
mind	that	this	is	in	fact	an	anti-pattern,	but	for	instructional	purposes	we	will	take	this
approach	in	this	chapter	for	the	last	time.	The	order	in	which	elements	are	declared	within	the
file	is	important.	Refer	to	the	code	repository	in	GitHub	if	exceptions	rise.

Before	moving	on	with	our	component,	we	need	to	import	the	dependencies	required,
formalize	the	data	model	we	will	use	to	populate	the	table,	and	then	scaffold	some	data	that
will	be	served	by	a	convenient	service	class.

Let's	begin	by	adding	to	our	pomodoro-tasks.ts	file	the	following	code	block,	importing	all
the	tokens	we	will	require	in	this	chapter.	Pay	special	attention	to	the	tokens	we	are	importing
from	the	Angular	2	library.	We	have	covered	Component	and	Input	already,	but	all	the	rest
will	be	explained	later	in	this	chapter:

import	{

		Component,

		Input,

		Pipe,

		PipeTransform,

		Directive,

		OnInit,

		HostListener

}	from	'@angular/core';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

With	the	dependency	tokens	already	imported,	let's	define	the	data	model	for	our	tasks,	next	to
the	block	of	imports:

///	Model	interface	

interface	Task	{

		name:	string;

		deadline:	Date;

		queued:	boolean;

		pomodorosRequired:	number;

www.EBooksWorld.ir

}

The	schema	of	a	Task	model	interface	is	pretty	self-explanatory.	Each	task	has	a	name,	a
deadline,	a	field	informing	how	many	pomodoros	need	to	be	shipped,	and	a	Boolean	field
named	queued	that	defines	if	that	task	has	been	tagged	to	be	done	in	our	next	pomodoro
session.

Tip

You	might	be	surprised	that	we	define	a	model	entity	with	an	interface	rather	than	a	class,	but
this	is	perfectly	fine	when	the	entity	model	does	not	feature	any	business	logic	requiring
implementation	of	methods	or	data	transformation	in	a	constructor	or	setter/getter	function.
When	the	latter	is	not	required,	an	interface	just	suffices	since	it	provides	the	static	typing	we
require	in	a	simple	and	more	lightweight	fashion.

Now,	we	need	some	data	and	a	service	wrapper	class	to	deliver	such	data	in	the	form	of	a
collection	of	Task	objects.	The	TaskService	class	defined	here	will	do	the	trick,	so	append	it
to	your	code	right	after	the	Task	interface:

///	Local	Data	Service

class	TaskService	{

		public	taskStore:	Array<Task>	=	[];

		constructor()	{

				const	tasks	=	[

						{

								name:	"Code	an	HTML	Table",

								deadline:	"Jun	23	2015",

								pomodorosRequired:	1

						},	{

								name:	"Sketch	a	wireframe	for	the	new	homepage",

								deadline:	"Jun	24	2016",

								pomodorosRequired:	2

						},	{

								name:	"Style	table	with	Bootstrap	styles",

								deadline:	"Jun	25	2016",

								pomodorosRequired:	1

						},	{

								name:	"Reinforce	SEO	with	custom	sitemap.xml",

								deadline:	"Jun	26	2016",

								pomodorosRequired:	3

						}

];

				this.taskStore	=	tasks.map(task	=>	{

						return	{

								name:	task.name,

								deadline:	new	Date(task.deadline),

								queued:	false,

								pomodorosRequired:	task.pomodorosRequired

						};

				});

		}

www.EBooksWorld.ir

}

This	data	store	is	pretty	self-explanatory:	it	exposes	a	taskStore	property	returning	an	array
of	objects	conforming	to	the	Task	interface	(hence	benefiting	from	static	typing)	with
information	about	the	name,	deadline,	and	time	estimate	in	pomodoros.

Now	that	we	have	a	data	store	and	a	model	class,	we	can	begin	building	an	Angular
component	which	will	consume	this	data	source	to	render	the	tasks	in	our	template	view.
Insert	the	following	component	implementation	after	the	code	you	wrote	before:

///	Component	classes	

///	-	Main	Parent	Component

@Component({

		selector:	'pomodoro-tasks',

		styleUrls:	['pomodoro-tasks.css'],

		templateUrl:	'pomodoro-tasks.html'

})

class	TasksComponent	{

		today:	Date;

		tasks:	Task[];

		constructor()	{

				const	TasksService:	TasksService	=	new	TasksService();

				this.tasks	=	taskService.taskStore;

				this.today	=	new	Date();

		}

};

bootstrap(TasksComponent);

As	you	can	see,	we	have	defined	and	instantiated	through	the	bootstrap	function	a	new
component	named	TasksComponent	with	the	selector	<pomodoro-tasks>	(we	already	included
it	when	we	were	populating	the	main	index.html	file,	remember?).	This	class	exposes	two
properties:	today's	date	and	a	tasks	collection	that	will	be	rendered	in	a	table	contained	in	the
component's	view,	as	we	will	see	shortly.	To	do	so,	it	instantiates	in	its	constructor	the	data
source	that	we	created	previously,	mapping	it	to	the	array	of	models	typed	as	Task	objects
represented	by	the	tasks	field.	We	also	initialize	the	today	property	with	an	instance	of	the
JavaScript	built-in	Date	object,	which	contains	the	current	date.

Tip

As	you	have	seen,	the	component	selector	does	not	match	its	controller	class	naming.	We	will
delve	deeper	into	naming	conventions	at	the	end	of	this	chapter,	as	a	preparation	for	Chapter
5,	Building	an	Application	with	Angular	2	Components.

Let's	create	the	stylesheet	file	now,	whose	implementation	will	be	really	simple	and
straightforward.	Create	a	new	file	named	pomodoro-tasks.css	at	the	same	location	where	our
component	file	lives.	You	can	then	populate	it	with	the	following	styles	ruleset:

www.EBooksWorld.ir

h3,	p	{

		text-align:	center;

}

table	{

		margin:	auto;

		max-width:	760px;

}

This	newly	created	stylesheet	is	so	simple	that	it	might	seem	a	bit	too	much	to	have	it	as	a
standalone	file.	However,	this	comes	as	a	good	opportunity	to	showcase	in	our	example	the
functionalities	of	the	styleUrls	property	of	the	component	metadata.

Things	are	quite	different	in	regards	of	our	HTML	template.	This	time	we	will	not	hardcode
our	HTML	template	in	the	component	either,	but	we	will	point	to	an	external	HTML	file	to
better	manage	our	presentation	code.	Please	create	an	HTML	file	and	save	it	as	pomodoro-
tasks.html	in	the	same	location	where	our	main	component's	controller	class	exists.	Once	it
is	created,	fill	it	in	with	the	following	HTML	snippet:

<div	class="container	text-center">

		

		<div	class="container">

				<h4>Tasks	backlog</h4>

				<table	class="table">

						<thead>

								<tr>

										<th>Task	ID</th>

										<th>Task	name</th>

										<th>Deliver	by</th>

										<th>Pomodoros</th>

										<th>Actions</th>

								</tr>

						</thead>

						<tbody>

								<tr	*ngFor="let	task	of	tasks;	let	i	=	index">

										<th	scope="row">{{i}}</th>

										<td>{{task.name	|	slice:	0:35	}}

												<span	[hidden]="task.name.length	<	35">...

										</td>

										<td>{{task.deadline	|	date:	'fullDate'	}}

												<span	*ngIf="task.deadline	<	today"	class="label	label-danger">		

Due

												

										</td>

										<td	class="text-center">{{task.pomodorosRequired}}</td>

										<td>

												[Future	options...]

										</td>

								</tr>

						</tbody>

				</table>

		</div>

</div>

We	are	basically	creating	a	table	that	features	a	neat	styling	based	on	the	Bootstrap

www.EBooksWorld.ir

framework.	Then,	we	render	all	our	tasks	using	the	always	convenient	NgFor	directive,
extracting	and	displaying	the	index	of	each	item	in	our	collection	as	we	explained	while
overviewing	the	NgFor	directive	earlier	in	this	chapter.

Please	look	at	how	we	formatted	the	output	of	our	task's	name	and	deadline	interpolations	by
means	of	pipes,	and	how	conveniently	we	display	(or	not)	an	ellipsis	to	indicate	when	the	text
exceeds	the	maximum	number	of	characters	we	allocated	for	the	name	by	turning	the	HTML
hidden	property	into	a	property	bound	to	an	Angular	expression.	All	this	presentation	logic	is
topped	with	a	red	label,	indicating	whether	the	given	task	is	due	whenever	its	end	date	is	prior
to	this	day.	If	you	execute	the	preceding	code,	this	page	will	show	up	on	the	screen:

You	have	probably	noticed	that	those	action	buttons	do	not	exist	in	our	current
implementation.	We	will	fix	this	in	the	next	section,	playing	around	with	state	in	our
components.	Back	in	Chapter	1,	Creating	Our	Very	First	Component	in	Angular	2,	we	touched
upon	the	click	event	handler	for	stopping	and	resuming	the	pomodoro	countdown,	and	then
delved	deeper	into	the	subject	in	Chapter	3,	Implementing	Properties	and	Events	in	Our
Components,	where	we	covered	output	properties.	Let's	continue	on	our	research	and	see	how
we	can	hook	up	DOM	event	handlers	with	our	component's	public	methods,	adding	a	rich
layer	of	interactivity	to	our	components.

www.EBooksWorld.ir

Toggling	tasks	in	our	task	list
Add	the	following	method	to	your	TasksComponent	controller	class.	Its	functionality	is	pretty
basic;	we	just	literally	toggle	the	value	of	the	queued	property	for	a	given	Task	object
instance:

toggleTask(task:	Task):	void	{

		task.queued	=	!task.queued;

}

Now,	we	just	need	to	hook	it	up	with	our	view	buttons.	Update	our	view	to	include	a	click
attribute	(wrapped	in	braces	so	that	it	acts	as	an	output	property)	in	the	button	created	within
the	NgFor	loop.	Now	that	we	will	have	different	states	in	our	Task	objects,	let's	reflect	this	in
the	button	labels	by	implementing	a	NgSwitch	structure	all	together:

<table	class="table">

		<thead>

				<tr>

						<th>Task	ID</th>

						<th>Task	name</th>

						<th>Deliver	by</th>

						<th>Pomodoros</th>

						<th>Actions</th>

				</tr>

		</thead>

		<tbody>

				<tr	*ngFor="#task	of	tasks;	#i	=	index">

						<th	scope="row">{{i}}

								

										Queued

								

						</th>

						<td>{{task.name	|	slice:	0:35	}}

								<span	[hidden]="task.name.length	<	35">...

						</td>

						<td>{{task.deadline	|	date:	'fullDate'	}}

								<span	*ngIf="task.deadline	<	today"	class="label	label-danger">

										Due

								

						</td>

						<td	class="text-center">{{task.pomodorosRequired}}</td>

						<td>

								<button

										type="button"

										class="btn	btn-default	btn-xs"

										(click)="toggleTask(task)"

										[ngSwitch]="task.queued">

										<template	[ngSwitchWhen]="false">

												<i	class="glyphicon	glyphicon-plus-sign"></i>

												Add

										</template>

										<template	[ngSwitchWhen]="true">

												<i	class="glyphicon	glyphicon-minus-sign"></i>

												Remove

www.EBooksWorld.ir

										</template>

										<template	ngSwitchDefault>

												<i	class="glyphicon	glyphicon-plus-sign"></i>

												Add

										</template>

								</button>

						</td>

				</tr>

		</tbody>

</table>

Our	brand	new	button	can	execute	the	toggleTask	method	in	our	component	class,	passing	as
an	argument	the	Task	object	that	corresponds	to	that	iteration	of	NgFor.	On	the	other	hand,	the
preceding	NgSwitch	implementation	allows	us	to	display	different	button	labels	and	icons
depending	on	the	state	of	the	Task	object	at	any	given	time.

Tip

We	are	decorating	the	newly	created	buttons	with	font	icons	fetched	from	the	Glyphicons	font
family.	The	icons	are	part	of	the	Bootstrap	CSS	bundle	we	installed	previously	and	are	in	no
means	related	to	Angular	2.	Feel	free	to	skip	its	use	or	to	replace	it	by	another	icon	font
family.

Execute	the	code	as	it	is	now	and	check	out	the	results	yourself.	Neat,	isn't	it?	But	maybe	we
can	get	more	juice	from	Angular	2	by	adding	more	functionality	to	the	task	list.

www.EBooksWorld.ir

Displaying	state	changes	in	our	templates
Now	that	we	can	pick	the	tasks	to	be	done	from	the	table,	it	would	be	great	to	have	some	kind
of	visual	hint	of	how	many	pomodoro	sessions	we	are	meant	to	achieve.	The	logic	is	as
follows:

The	user	reviews	the	tasks	on	the	table	and	picks	the	ones	to	be	done	by	clicking	on	each
one.
Every	time	a	row	is	clicked,	the	underlying	Task	object	state	changes	and	its	Boolean
queued	property	is	toggled.
The	state	change	is	reflected	immediately	on	the	surface	by	displaying	a	"queued"	label
on	the	related	task	item.
The	user	gets	prompt	information	of	the	amount	of	pomodoro	sessions	required	and	a
time	estimation	to	deliver	them	all.
We	see	how	a	row	of	pomodoro	icons	are	displayed	above	the	table,	displaying	the	sum
of	pomodoros	from	all	the	tasks	set	to	be	done.

This	functionality	will	have	to	react	to	the	state	changes	of	the	set	of	Task	objects	we're
dealing	with.	The	good	news	is	that	thanks	to	Angular	2's	very	own	change	detection	system,
making	components	fully	aware	of	state	changes	is	extremely	easy.

Thus,	our	very	first	task	will	be	to	tweak	our	TasksComponent	class	to	include	some	way	to
compute	and	display	how	many	tasks	are	queued	up.	We	will	use	that	information	to	render	or
not	a	block	of	markup	in	our	component	where	we	will	inform	how	many	pomodoros	we
have	lined	up	and	how	much	aggregated	time	it	will	take	to	accomplish	them	all.

The	new	queuedPomodoros	field	of	our	class	will	provide	such	information,	and	we	will	want
to	insert	a	new	method	named	updateQueuedPomodoros()	in	our	class	that	will	update	its
numeric	value	upon	instantiating	the	component	or	enqueueing	tasks.	On	top	of	that,	we	will
create	a	key/value	mapping	we	can	use	later	on	to	render	a	more	expressive	title	header
depending	on	the	amount	of	queued	pomodoros	thanks	to	the	I18nPlural	pipe:

class	TasksComponent	{

		today:	Date;

		tasks:	Task[];

		queuedPomodoros:	number;

		queueHeaderMapping:	any	=	{

				'=0':	'No	pomodoros',

				'=1':	'One	pomodoro',

				'other':	'#	pomodoros'

		};

		constructor()	{

				const	TasksService:	TasksService	=	new	TasksService();

				this.tasks	=	taskService.taskStore;

				this.today	=	new	Date();

				this.updateQueuedPomodoros();

		}

www.EBooksWorld.ir

		toggleTask(task:	Task):	void	{

				task.queued	=	!task.queued;

				this.updateQueuedPomodoros();

		}

		private	updateQueuedPomodoros():	void	{

				this.queuedPomodoros	=	this.tasks

						.filter((task:	Task)	=>	task.queued)

						.reduce((pomodoros:	number,	queuedTask:	Task)	=>	{

						return	pomodoros	+	queuedTask.pomodorosRequired;

				},	0);

		}

};

The	updateQueuedPomodoros()	method	makes	use	of	JavaScript's	native	Array.filter()	and
Array.reduce()	methods	to	build	a	list	of	queued	tasks	out	of	the	original	tasks	collection
property.	The	reduce	method	applied	over	the	resulting	array	gives	us	the	total	number	of
pomodoros	required.	With	a	stateful	computation	of	the	number	of	queued	pomodoros	now
available,	it's	time	to	update	our	template	accordingly.	Go	to	pomodoro-tasks.html	and	inject
the	following	chunk	of	HTML	right	before	the	<h4>Tasks	backlog</h4>	element.	The	code
is	as	follows:

			<div>

		<h3>

				{{	queuedPomodoros	|	i18nPlural:queueHeaderMapping	}}	for	today

					0">(Estimated	time:	{{	

queuedPomodoros	*	25	}})

		</h3>

			</div>

			<h4>Tasks	backlog</h4>

			<!--	rest	of	template	remains	the	same	-->

The	preceding	block	renders	an	informative	header	title	at	all	times,	even	when	no
pomodoros	have	been	queued	up.	We	also	bind	that	value	in	the	template	and	use	it	to	estimate
through	an	expression	binding	the	amount	of	minutes	required	to	go	through	each	and	every
pomodoro	session	required.

Tip

We	are	hardcoding	the	duration	of	each	pomodoro	in	the	template.	Ideally,	such	constant
value	should	be	bound	from	an	application	variable	or	a	centralized	setting.	Don't	worry,	we
will	see	how	we	can	improve	this	implementation	in	the	next	chapters.

Save	your	changes	and	reload	the	page,	and	then	try	to	toggle	some	task	items	on	the	table	to
see	how	the	information	changes	in	real	time.	Exciting,	isn't	it?

www.EBooksWorld.ir

Embedding	child	components
Now,	let's	start	building	a	tiny	pomodoro	icon	component	that	will	be	nested	inside	the
TasksComponent	component.	This	new	component	will	display	a	smaller	version	of	our	big
pomodoro	icon,	which	we	will	use	to	display	on	the	template	the	amount	of	pomodoros	lined
up	to	be	done,	as	we	described	earlier	in	this	chapter.	Let's	pave	the	way	towards	component
trees,	which	we	will	analyze	in	detail	in	Chapter	5,	Building	an	Application	with	Angular	2
Components.	For	now,	just	include	the	following	component	class	before	the	TasksComponent
class	you	built	earlier:

Our	component	will	expose	a	public	property	named	task	in	which	we	can	inject	a	Task
object.	The	component	will	use	this	Task	object	binding	to	replicate	the	image	rendered	in	the
template	as	many	times	as	pomodoro	sessions	are	required	by	this	task	in	its
pomodorosRequired	property,	all	this	by	means	of	a	NgFor	directive.

In	our	pomodoro-tasks.ts	file,	inject	the	following	block	of	code	before	our	TasksComponent:

@Component({

		selector:	'pomodoro-task-icons',

		template:	`<img	*ngFor="let	icon	of	icons"

																		src="/assets/img/pomodoro.png"

																		width="50">`

})

class	TaskIconsComponent	implements	OnInit	{

		@Input()	task:	Task;

		icons:	Object[]	=	[];

		ngOnInit()	{

				this.icons.length	=	this.task.pomodorosRequired;

				this.icons.fill({	name:	this.task.name	});

		}

}

Our	new	TaskIconsComponent	features	a	pretty	simple	implementation,	with	a	very	intuitive
selector	matching	its	camel-cased	class	name	and	a	template	where	we	duplicate	the	given
	tag	as	many	times	as	objects	are	populated	in	the	icons	array	property	of	the	controller
class,	which	is	populated	with	the	native	fill	method	of	the	Array	object	in	the	JavaScript	API
(the	fill	method	fills	all	the	elements	of	an	array	with	a	static	value	passed	as	an	argument),
within	ngOnInit().	Wait,	what	is	this?	Shouldn't	we	implement	the	loop	populating	the	icons
array	member	in	the	constructor	instead?

This	method	is	one	of	the	lifecycle	hooks	we	will	overview	in	the	next	chapter,	and	probably
the	most	important	one.	The	reason	why	we	populate	the	icons	array	field	here	and	not	in	the
constructor	method	is	because	we	need	each	and	every	data-bound	properties	to	be	properly
initialized	before	proceeding	to	run	the	for	loop.	Otherwise,	it	will	be	too	soon	to	access	the
input	value	task	since	it	will	return	an	undefined	value.

Tip

www.EBooksWorld.ir

The	OnInit	interface	demands	an	ngOnInit()	method	to	be	integrated	in	the	controller	class
that	implements	such	-interface,	and	it	will	be	executed	once	all	input	properties	with	a
binding	defined	have	been	checked.	We	will	take	a	bird's	eye	overview	of	component	lifecycle
hooks	in	Chapter	5,	Building	an	Application	with	Angular	2	Components.

Still,	our	new	component	needs	to	find	its	way	to	its	parent	component.	So,	let's	insert	a
reference	to	the	component	class	in	the	directives	property	of	the	TasksComponent	decorator
settings:

@Component({

		selector:	'pomodoro-tasks',

		directives:	[TaskIconsComponent],

		styleUrls:	['pomodoro-tasks.css'],

		templateUrl:	'pomodoro-tasks.html'

})

Do	you	remember	that	we	mentioned	that	components	are	basically	directives	with	custom
views?	If	so,	then	we	will	want	to	use	the	directives	property	of	each	component	every	time
we	want	to	nest	another	component	within.	This	explains	the	case	for	using	the	directives
property	here.

Our	next	step	will	be	to	inject	the	<pomodoro-task-icons>	element	in	the	TasksComponent
template.	Go	back	to	pomodoro-tasks.html	and	update	the	code	located	inside	the	conditional
block	meant	to	be	displayed	when	queuedPomodoros	is	greater	than	zero.	The	code	is	as
follows:

<div>

		<h3>

				{{	queuedPomodoros	|	i18nPlural:queueHeaderMapping	}}	for	today

					0">(Estimated	time:	{{	

queuedPomodoros	*	25	}})

		</h3>

		<p>

				

						<pomodoro-task-icons

								[task]="queuedTask"

								(mouseover)="tooltip.innerText	=	queuedTask.name"

								(mouseout)="tooltip.innerText	=	'Mouseover	for	details'">

						</pomodoro-task-icons>

				

		</p>

		<p	#tooltip	*ngIf="queuedPomodoros	>	0">Mouseover	for	details</p>

</div>

<h4>Tasks	backlog</h4>

<!--	rest	of	template	remains	the	same	-->

There	is	still	some	room	for	improvement	though.	Unfortunately,	the	icon	size	is	hardcoded
in	the	TaskIconsComponent	template	and	that	makes	it	harder	to	reuse	that	component	in	other
contexts	where	a	different	size	might	be	required.	Obviously,	we	could	refactor	the
TaskIconsComponent	class	to	expose	a	size	input	property	and	then	bind	the	value	received
straight	into	the	component	template	in	order	to	resize	the	image	accordingly:

www.EBooksWorld.ir

@Component({

		selector:	'pomodoro-task-icons',

		template:	`<img	*ngFor="let	icon	of	icons"

																		src="/assets/img/pomodoro.png"

																		width="{{size}}">`

})

class	TaskIconsComponent	implements	OnInit	{

		@Input()	task:	Task;

		icons:	Object[]	=	[];

		@Input()	size:	number;

		ngOnInit()	{

				...

		}

}

Then,	we	just	need	to	update	the	implementation	of	pomodoro-tasks.html	to	declare	the	value
we	need	for	the	size:

		<pomodoro-task-icons

				[task]="queuedTask"

				size="50"

				(mouseover)="tooltip.innerText	=	queuedTask.name"

				(mouseout)="tooltip.innerText	=	'Mouseover	for	details'">

		</pomodoro-task-icons>

Please	note	that	the	size	attribute	is	not	wrapped	between	brackets	because	we	are	binding	a
hardcoded	value.	If	we	wanted	to	bind	a	component	variable,	that	attribute	should	be	properly
declared	as	[size]="{{mySizeVariable}}".

Let's	summarize	what	we	did:

We	inserted	a	new	DOM	element	that	will	show	up	only	when	we	have	pomodoros
queued	up.
We	displayed	an	actual	header	telling	us	how	many	pomodoros	we	are	meant	to	achieve,
by	binding	the	queuedPomodoros	property	in	an	H3	DOM	element,	plus	a	total	estimation
in	minutes	for	accomplishing	all	of	this	contained	in	the	{{	queuedPomodoros*25	}}
expression.
The	NgFor	directive	allows	us	to	iterate	through	the	tasks	array.	In	each	iteration,	we
render	a	new	<pomodoro-task-icons>	element.
We	bound	the	Task	model	object	of	each	iteration,	represented	by	the	queuedTask
reference,	in	the	task	input	property	of	the	<pomodoro-task-icons>	in	the	loop	template.
We	took	advantage	of	the	<pomodoro-task-icons>	element	to	include	additional	mouse
event	handlers	that	point	to	the	following	paragraph,	which	has	been	flagged	with	the
#tooltip	local	reference.	So,	every	time	the	user	hovers	the	mouse	over	the	pomodoro
icon,	the	text	beneath	the	icons	row	will	display	the	respective	pomodoro's	task	name.

We	ran	the	extra	mile,	turning	the	size	of	the	icon	rendered	by	<pomodoro-task-icons>	into	a

www.EBooksWorld.ir

configurable	property	as	part	of	the	component	API.	We	now	have	pomodoro	icons	that	get
updated	in	real	time	as	we	toggle	the	information	on	the	table.	New	problems	have	arisen,
however.	Firstly,	we	are	displaying	pomodoro	icon	components	matching	the	required
pomodoros	of	each	task,	without	filtering	out	those	which	are	not	queued.	On	the	other	hand,
the	overall	estimation	of	time	required	to	achieve	all	our	queued	pomodoros	displays	the
gross	number	of	minutes,	and	this	information	will	make	no	sense	as	we	add	more	and	more
pomodoros	to	the	working	plan.

Perhaps,	it's	time	to	amend	this.	It's	a	good	thing	that	custom	pipes	have	come	to	the	rescue!

www.EBooksWorld.ir

Building	our	own	custom	pipes
We	have	already	seen	what	pipes	are	and	what	their	purpose	is	in	the	overall	Angular
ecosystem,	but	now	we	are	going	to	dive	deeper	into	how	we	can	build	our	own	set	of	pipes	to
provide	custom	transformations	to	data	bindings.

www.EBooksWorld.ir

Anatomy	of	a	custom	pipe
Pipes	are	very	easy	to	define.	First	of	all,	we	need	to	import	the	Pipe	decorator	from	the
Angular	core	library	and	create	a	new	class	decorated	with	this	decorator.	This	new	class	has
to	be	named	with	our	selector	of	choice	in	the	decorator	configuration	and	implement	the
PipeTransform	interface.

The	class	implementation	is	pretty	simple	as	well.	It	just	consists	of	a	mandatory	method
required	by	the	PipeTransform	interface,	named	transform,	which	will	return	a	type	of	our
choice	(usually	the	type	corresponding	to	the	input	that	we	feed	the	pipe	with)	and	two
parameters.	The	input	itself	is	the	first	parameter,	followed	by	an	optional	spread	argument
(refer	to	Chapter	2,	Introducing	TypeScript	to	look	into	spread	arguments	in	TypeScript)
containing	the	settings	that	configure	the	pipe	in	our	view:

import	{	Pipe,	PipeTransform	}	from	'@angular/core';

@Pipe({

		name:	'myPipeName',

		pure:	false	//	optional,	default	is	true

})

class	MyPipe	implements	PipeTransform	{

		transform(value:	any,	...args:	any[]):	any	{

				//	We	apply	transformations	to	the	input	value	here

				return	something;

		}

}

@Component({

		selector:	'my-selector',

		pipes:	[MyPipe],

		template:	'<p>{{	myVariable	|	myPipeName:	"bar"	}}</p>'

})

class	myComponent	{

		myVariable:	string	=	'Foo';

}

Tip

In	the	preceding	example,	we	created	an	impure	pipe	named	MyPipe	that	would	apply	some
transformations	to	its	input	according	to	the	parameters	provided	when	applying	it	in	the
component	defined	next.

Just	as	with	custom	directives,	components	must	explicitly	state	in	the	pipes	property	what
custom	pipes	are	implementing.

Regarding	the	optional	pure	property	in	the	Pipe	decorator,	we	must	clarify	that	pipes	are
stateless.	This	means	that	an	instance	of	a	pipe	will	be	reused	and	the	pipe	will	be	called	only
when	its	arguments	change.	In	other	words,	when	the	pipe	transforms	the	input,	it	disregards
the	original	input	and	focuses	on	the	copy	that	was	just	made.	If	the	original	input	changes
later	on,	the	changes	will	not	be	reflected	in	the	view.	Fortunately,	we	can	enable	the	state	on

www.EBooksWorld.ir

pipes	through	the	pure	Boolean	property.	When	set	to	false,	the	pipe	will	keep	the	state	of	the
values	it	transforms,	and	it	will	parse	and	transform	the	underlying	expression	again	as	soon
as	Angular's	change	detection	system	checks	that	the	source	data	has	changed.

Let's	put	this	concept	to	work	by	creating	a	couple	of	custom	pipes	for	our	component.

www.EBooksWorld.ir

A	custom	pipe	to	better	format	time	output
Watching	the	gross	number	of	minutes	summed	up	when	lining	up	tasks	to	be	done	is	not	very
intuitive,	so	we	need	a	way	to	deconstruct	this	value	into	hours	and	minutes.	Our	pipe	will
have	the	name	pomodoroFormattedTime	and	will	be	implemented	by	the	FormattedTimePipe
class,	whose	unique	transform	method	receives	a	number	representing	a	total	number	of
minutes	and	returns	a	string	(proving	that	pipes	do	not	need	to	return	the	same	type	as	they
receive	in	the	payload)	in	a	readable	time	format:

@Pipe({

		name:	'pomodoroFormattedTime'

})

class	FormattedTimePipe	implements	PipeTransform	{

		transform(totalMinutes:	number):	string	{

				let	minutes:	number	=	totalMinutes	%	60;

				let	hours:	number	=	Math.floor(totalMinutes	/	60);

				return	`${hours}h:${minutes}m`;

		}

}

Tip

We	should	not	skip	the	opportunity	to	highlight	that	the	naming	convention	for	Pipes	is,	same
as	we	saw	with	Components,	the	name	of	the	pipe	class	with	the	Pipe	suffix	plus	a	selector
matching	that	name	without	the	suffix.	The	difference	here	is	that	we	represent	the	pipe
selector	in	camel	case	and	prefix	it	with	pomodoro	for	our	example.	Why	this	mismatch
between	the	pipe	controller's	class	name	and	the	selector?	It	is	common	practice	to	prefix	the
selector	strings	of	our	custom	pipes	and	directives	with	a	custom	prefix	in	order	to	prevent
collisions	with	other	selectors	defined	by	third	party	pipes	and	directives.

Please	remember	that	custom	pipes	do	not	become	available	in	our	templates	automatically;
they	have	to	be	explicitly	declared	in	the	pipes	property	of	the	decorator	configuration	of
each	component	that	wants	to	use	them.	In	our	case,	it	is	the	TasksComponent:

@Component({

		selector:	'pomodoro-tasks',

		directives:	[PomodoroIconComponent],

		pipes:	[FormattedTimePipe],

		styleUrls:	['pomodoro-tasks.css'],

		templateUrl:	'pomodoro-tasks.html'

})

class	PomodoroTasksComponent	{

		//	Class	implementation	remains	the	same

}

Finally,	we	just	need	to	tweak	the	HTML	in	the	pomodoro-tasks.html	template	file	to	ensure
that	our	EDT	expression	is	properly	formatted:

		(Estimated	time:	{{queuedPomodoros*25	|	pomodoroFormattedTime}})

www.EBooksWorld.ir

Now	reload	the	page	and	toggle	some	tasks.	The	estimated	time	will	be	properly	rendered	in
hours	and	minutes.

www.EBooksWorld.ir

Filtering	out	data	with	custom	filters
As	we	noticed	already,	we	are	displaying	at	this	moment	a	pomodoro	icon	component	for
each	and	every	task	in	the	collection	served	from	the	tasks	service,	without	filtering	out	what
tasks	are	marked	as	queued	and	which	aren't.	Pipes	provide	a	convenient	way	to	map,
transform	and	digest	data	bindings,	so	we	can	leverage	its	functionalities	for	filtering	out	the
tasks	binding	in	our	NgFor	loop	to	return	only	those	tasks	that	are	marked	as	queued.

The	logic	will	be	pretty	simple:	since	the	tasks	binding	is	an	array	of	Task	objects,	we	just
need	to	make	use	of	the	Array.filter()	method	to	fetch	only	those	Task	objects	whose
queued	property	is	set	to	true.	We	might	run	the	extra	mile	and	configure	our	pipe	to	take	one
Boolean	argument	indicating	whether	we	want	to	filter	out	queued	or	unqueued	tasks.	The
implementation	of	these	requirements	is	as	follows,	where	you	can	see	again	the	conventions
in	place	for	the	selector	and	class	names:

@Pipe({

		name:	'pomodoroQueuedOnly',

		pure:	false

})

class	QueuedOnlyPipe	implements	PipeTransform	{

		transform(task:	Task],	...args:	any[]):	Task[]	{

				return	tasks.filter((task:	Task)	=>	{

						return	task.queued	===	args[0];

				});

		}

}

The	implementation	is	pretty	straightforward,	so	we	will	not	get	into	detail	about	it	here.
However,	there	is	something	that	is	worth	highlighting	at	this	stage:	this	is	an	impure	pipe.
Bear	in	mind	that	the	tasks	binding	is	a	collection	of	stateful	objects	that	will	change	in	length
and	content	as	the	user	toggles	tasks	on	the	table.	For	that	reason,	we	need	to	instruct	the	pipe
to	take	advantage	of	Angular's	change	detection	system	so	its	output	is	checked	by	the	latter
on	every	cycle	regardless	of	whether	its	input	has	changed	or	not.	Configuring	the	pure
property	of	the	pipe	decorator	as	false	will	do	the	trick	then.

Now,	we	just	need	to	update	the	pipes	property	of	the	component	using	this	pipe:

@Component({

		selector:	'pomodoro-tasks',

		directives:	[PomodoroIconComponent],

		pipes:	[FormattedTimePipe,	QueuedOnlyPipe],

		styleUrls:	['pomodoro-tasks.css'],

		templateUrl:	'pomodoro-tasks.html'

})

class	PomodoroTasksComponent	{

		//	Class	implementation	remains	the	same

}

Then,	update	the	NgFor	block	in	pomodoro-tasks.html	to	properly	filter	out	the	unqueued

www.EBooksWorld.ir

tasks:

		<pomodoro-task-icons

				[task]="queuedTask"

				(mouseover)="tooltip.innerText	=	queuedTask.name"

				(mouseout)="tooltip.innerText	=	'Mouseover	for	details'">

		</pomodoro-task-icons>

Please	check	how	we	configured	the	pipe	as	pomodoroQueuedOnly:	true.	Replacing	the
Boolean	parameter	value	by	false	will	give	us	the	chance	to	enlist	the	pomodoros	pertaining
to	the	queues	we	have	not	picked.

Save	all	your	work	and	reload	the	page,	toggling	some	tasks	then.	You	will	see	how	our
overall	UI	reacts	to	the	latest	changes	accordingly,	and	we	only	enlist	the	pomodoro	icons
pertaining	to	the	amount	of	pomodoros	required	of	queued	tasks	only.

www.EBooksWorld.ir

Building	our	own	custom	directives
Custom	directives	encompass	a	vast	world	of	possibilities	and	use	cases,	and	we	would	need
an	entire	book	for	showcasing	all	the	intricacies	and	possibilities	they	offer.

In	a	nutshell,	directives	allow	you	to	attach	advanced	behaviors	to	elements	in	the	DOM.	If	a
directive	has	a	template	attached,	then	it	becomes	a	component.	In	other	words,	components
are	Angular	directives	with	a	view,	but	we	can	build	directives	with	no	attached	views	that	will
be	applied	to	already	existing	DOM	elements,	making	its	HTML	contents	and	standard
behavior	immediately	accessible	to	the	directive.	This	applies	to	Angular	components	as	well,
where	the	directive	will	just	access	its	template	and	custom	attributes	and	events	when
necessary.

www.EBooksWorld.ir

Anatomy	of	a	custom	directive
Declaring	and	implementing	a	custom	directive	is	pretty	easy.	We	just	need	to	import	the
Directive	class	to	provide	decorator	functionalities	to	its	accompanying	controller	class:

import	{	Directive	}	from	'@angular/core';

Then	we	define	a	controller	class	annotated	by	the	Directive	decorator,	where	we	will	define
the	directive	selector,	input	and	output	properties	(if	required),	optional	events	applied	to	the
host	element,	and	injectable	provider	tokens,	should	our	directive's	constructor	require
specific	types	to	be	instantiated	by	the	Angular	2	injector	when	instancing	itself	(we	will	cover
this	in	detail	in	Chapter	5,	Building	an	Application	with	Angular	2	Components):

@Directive({

		selector:	'[selector]',

		inputs:	['inputPropertyName'],

		outputs:	['outputPropertyName'],

		host:	{

				'(event1)':	'onMethod1($event)',

				'(target:event2)':	'onMethod2($event)',

				'[prop]':	'expression',

				'attributeName':	'attributeValue'

		},

		providers:	[MyCustomType]

})

class	myDirective	{

		@Input()	otherInputPropertyName:	any;

		@Output()	otherOutputPropertyName:	any;

		constructor(myCustomType:	MyCustomType)	{

				//	implementation...

		}

}

Properties	and	decorators'	such	as	selector,	@Input(),	or	@Output()	(same	with	inputs	and
outputs)	will	probably	resonate	to	you	from	the	time	when	we	overviewed	the	component
decorator	spec.	Although	we	haven't	mentioned	all	the	possibilities	in	detail	yet,	the	selector
may	be	declared	as	one	of	the	following:

element-name:	Select	by	element	name
.class:	Select	by	class	name
[attribute]:	Select	by	attribute	name
[attribute=value]:	Select	by	attribute	name	and	value
not(sub_selector):	Select	only	if	the	element	does	not	match	the	sub_selector
selector1,	selector2:	Select	if	either	selector1	or	selector2	matches

In	addition	to	this,	we	will	find	the	host	parameter,	which	specifies	the	events,	actions,
properties,	and	attributes	pertaining	to	the	host	element	(that	is,	the	element	where	our
directive	takes	action)	that	we	want	to	access	from	within	the	directive.	We	can	therefore	take
advantage	of	this	parameter	to	bind	interaction	handlers	against	the	container	component	or

www.EBooksWorld.ir

any	other	target	element	of	our	choice,	such	as	window,	document,	or	body.	In	this	way,	we	can
refer	to	two	very	convenient	local	variables	when	writing	a	directive	event	binding:

$event:	This	is	the	current	event	object	that	triggered	the	event.
$target:	This	is	the	source	of	the	event.	This	will	be	either	a	DOM	element	or	an
Angular	directive.

Besides	events,	we	can	update	specific	DOM	properties	that	belong	to	the	host	component.	We
just	need	to	link	any	specific	property	wrapped	in	braces	with	an	expression	handled	by	the
directive	as	a	key-value	pair	in	our	directive's	host	definition.

Note

The	optional	host	parameter	can	also	specify	static	attributes	that	should	be	propagated	to	a
host	element,	if	not	present	already.	This	is	a	convenient	way	of	injecting	HTML	properties
with	computed	values.

The	Angular	team	has	also	made	available	a	couple	of	convenient	decorators	so	that	we	can
more	expressively	declare	our	host	bindings	and	listeners	straight	on	the	code,	like	this:

@HostBinding('[class.valid]')	

isValid:	boolean;	//	The	host	element	will	feature	class="valid"

																		//	is	the	value	of	'isValid'	is	true.

@HostListener('click',	['$event'])

onClick(e)	{

			//	This	function	will	be	executed	when	the	host	//	component	triggers	a	

'click'	event.

}

In	the	next	chapters,	we	will	cover	the	configuration	interface	of	directives	and	components	in
more	detail,	paying	special	attention	to	its	life	cycle	management	and	how	we	can	easily	inject
dependencies	into	our	directives.	For	now,	let's	just	build	a	simple,	yet	powerful,	directive	that
will	make	a	huge	difference	to	how	our	UI	is	displayed	and	maintained.

www.EBooksWorld.ir

Building	a	task	tooltip	custom	directive
Let's	put	in	practice	some	of	the	settings	described	above	in	a	custom	directive.	So	far,	we
have	been	displaying	a	tooltip	text	upon	hovering	over	our	pomodoro	icons.	To	do	so,	we
attached	a	pair	of	event	bindings	to	the	<pomodoro-task-icons>	element.	While	this	approach
is	not	wrong,	the	output	is	a	bit	verbose	and	not	reusable	at	all.	At	some	point	we	may	even
need	to	apply	the	same	[task]	binding	elsewhere	as	well	and	taking	advantage	of	the	same
tooltip	on	mouseover	would	be	quite	convenient.	Let's	automate	such	functionality	in	a
directive	that	will	get	automatically	applied	to	any	element	featuring	a	[task]	attribute,	as	our
<pomodoro-task-icons>	elements	do.	This	directive	will	define	input	properties	to	refer	to
that	very	same	property	binding	and	also	the	target	element	we	will	use	as	a	placeholder.	If	not
available,	the	directive	will	just	do	nothing	and	will	not	yield	any	exception	whatsoever.	When
available,	the	directive	will	bind	mouseover	and	mouseout	event	listeners	to	the	host	element
(<pomodoro-task-icons>	in	our	example).	These	listeners	will	toggle	the	text	inside	the	DOM
element	represented	by	the	local	reference	bound	to	the	placeholder	property.	Before	doing
so,	we	will	cache	the	original	value	in	order	to	reuse	it	upon	moving	the	mouse	out	from	the
element.

The	preceding	description	takes	form	in	the	following	directive	that	you	should	implement
before	our	components	in	the	pomodoro-tasks.ts	file:

@Directive({

		selector:	'[task]'

})

class	TaskTooltipDirective	{

		private	defaultTooltipText:	string;

		@Input()	task:	Task;

		@Input()	taskTooltip:	any;

		@HostListener('mouseover')	

		onMouseOver()	{

				if(!this.defaultTooltipText	&&	this.taskTooltip)	{

						this.defaultTooltipText	=	this.taskTooltip.innerText;

				}

				this.taskTooltip.innerText	=	this.task.name;

		}

		@HostListener('mouseout')	

		onMouseOut()	{

				if(this.taskTooltip)	{

						this.taskTooltip.innerText	=	this.defaultTooltipText;

				}

		}

}

Please	note	the	selector	in	use:	[task].	We	have	not	configured	the	more	logical	<pomodoro-
task-icons>	element	or	created	a	new	selector	of	our	own.	We	obviously	could	have	done
that,	but	our	goal	in	this	exercise	is	different.	We	want	to	bind	a	special	behavior	to	any	DOM
element	and	component	that	features	a	[task]	attribute	with	a	data	binding	on	it.	Precisely
because	this	directive	will	take	action	on	all	elements	featuring	such	property,	we	can	include

www.EBooksWorld.ir

it	as	an	input	property	in	the	directive	implementation	itself.	Then	we	just	need	to	provide	a
way	to	configure	what	DOM	element	will	become	our	tooltip	placeholder	with	the
taskTooltip	input	property	and	we	are	all	set.

As	we	saw	in	the	previous	section,	thanks	to	the	@HostListener()	decorators,	we	can	bind	a
listener	function	in	our	directive	to	an	event	occurred	in	the	host	component.	This	time	we
bound	the	mouseover	and	mouseout	event	so	toggle	the	text	of	the	target	tooltip	placeholder,
caching	its	current	text	beforehand.

In	order	to	see	this	directive	in	action,	we	need	to	add	support	for	it	first	at	the
PomodoroTasksComponent	decorator:

@Component({

		selector:	'pomodoro-tasks',

		directives:	[PomodoroIconComponent,	TaskTooltipDirective],

		pipes:	[FormattedTimePipe,	pomodoroQueuedOnlyPipe],

		styleUrls:	['pomodoro-tasks.css'],

		templateUrl:	'pomodoro-tasks.html'

})

class	PomodoroTasksComponent	{

		//	No	more	changes	apply	

}

Now,	we	can	update	our	pomodoro-tasks.html	template:

<p>

		

				<pomodoro-task-icons

						[task]="queuedTask"

						[taskTooltip]="tooltip"

						size="50">

				</pomodoro-task-icons>

		

</p>

<p	#tooltip>Mouseover	for	details</p>

One	of	the	most	exciting	takeaways	of	this	code	example	is	the	low	code	footprint	required
for	extending	elements	with	this	new	functionality,	and	its	huge	reusability.

After	all	the	latest	changes,	reload	your	browser,	toggle	any	task,	move	your	mouse	over	the
newly	rendered	pomodoro	icon	and...	voilà!

www.EBooksWorld.ir

A	word	about	naming	conventions	for	custom
directives	and	pipes
Talking	about	reusability,	the	common	convention	is	to	prepend	a	custom	prefix	to	the
selector.	This	prevents	conflicts	with	other	selectors	defined	by	other	libraries	we	might	be
using	in	our	project.	Same	applies	to	Pipes	as	well,	as	we	highlighted	already	when
introducing	our	very	first	custom	pipe.

We	have	used	pomodoro	as	our	custom	prefix	and	will	keep	on	using	it	throughout	the	book
but	I	advise	to	use	a	shorter	but	recognizable	prefix	in	your	custom	directives	and	pipes'
selectors.

Ultimately,	it	is	up	to	you	and	the	name	convention	you	embrace	but	it	is	generally	a	good
idea	to	establish	a	naming	convention	that	prevents	this	from	happening.	A	custom	prefix	is
definitely	the	easier	way.

www.EBooksWorld.ir

Summary
Now	that	we	have	reached	this	point,	it	is	fair	to	say	that	you	know	almost	everything	it	takes
to	build	Angular	2	components,	which	are	indeed	the	wheels	and	the	engine	of	all	Angular	2
applications.	In	the	forthcoming	chapters,	we	will	see	how	we	can	design	our	application
architecture	better,	and	therefore	manage	dependency	injection	throughout	our	components
tree,	consume	data	services,	leverage	the	new	Angular	router	to	show	and	hide	components
when	required,	and	manage	user	input	and	authentication.

Nevertheless,	this	chapter	is	the	backbone	of	Angular	2	development,	and	we	hope	that	you
enjoyed	it	as	much	as	we	did	when	writing	about	template	syntax,	component	APIs	based	on
properties	and	events,	view	encapsulation,	pipes,	and	directives.	Now,	get	ready	to	assume
new	challenges—we	are	about	to	move	from	learning	how	to	write	components	to
discovering	how	we	can	use	them	to	build	bigger	applications,	while	enforcing	good
practices	and	rational	architectures.	We	will	see	all	this	in	the	next	chapter.

www.EBooksWorld.ir

Chapter	5.	Building	an	Application	with
Angular	2	Components
We	have	reached	a	point	in	our	journey	where	we	can	successfully	develop	more	complex
applications	by	nesting	components	within	other	components,	in	a	sort	of	component	tree.
However,	bundling	all	our	component	logic	in	a	unique	file	is	definitely	not	the	way	to	go.
Our	application	might	become	unmaintainable	very	soon	and,	as	we	will	see	later	in	the
chapter,	we	would	be	missing	the	advantages	that	Angular's	dependency	management
mechanism	can	bring	to	the	game.

In	this	chapter,	we	will	see	how	to	build	application	architectures	based	on	trees	of
components,	and	how	the	new	Angular	2	dependency	injection	mechanism	will	help	us	to
declare	and	consume	our	dependencies	across	the	application	with	minimum	effort	and
optimal	results.

In	this	chapter,	we	will	cover	these	topics:

Best	practices	for	directory	structures	and	naming	conventions
Different	approaches	to	dependency	injection
Injecting	dependencies	into	our	custom	types
Overriding	global	dependencies	throughout	the	component	tree
Interacting	with	the	host	component
Overviewing	the	directive	life	cycle

www.EBooksWorld.ir

Introducing	the	component	tree
Modern	web	applications	based	on	web	component	architectures	often	conform	to	a	sort	of
tree	hierarchy,	wherein	the	top	main	component	(usually	dropped	somewhere	in	the	main
HTML	index	file)	acts	as	a	global	placeholder	where	child	components	turn	into	hosts	for
other	nested	child	components,	and	so	on	and	so	forth.

There	are	obvious	advantages	to	this	approach.	On	one	hand,	reusability	does	not	get
compromised	and	we	can	reuse	components	throughout	the	component	tree	with	little	effort.
Secondly,	the	resulting	granularity	reduces	the	burden	required	for	envisioning,	designing,
and	maintaining	bigger	applications.	We	can	simply	focus	on	a	single	piece	of	UI	and	then
wrap	its	functionality	around	new	layers	of	abstraction	until	we	wrap	up	a	full-blown
application	from	the	ground	up.

Alternatively,	we	can	approach	our	web	application	the	other	way	around,	and	start	from	a
more	generic	functionality	just	to	end	up	breaking	down	the	app	into	smaller	pieces	of	UI	and
functionality,	which	become	our	web	components.	The	latter	has	become	the	most	common
approach	when	building	component-based	architectures.	We	will	stick	to	it	for	the	rest	of	the
book,	undertaking	architectures	as	the	one	depicted	here:

Application	bootstrap

			└──	Application	component

						├──	Component	A

						├──	Component	B

						│			├──	Component	B-I

						│			└──	Component	B-II

						├──	Component	C

						└──	Component	D

For	the	sake	of	clarity,	this	chapter	will	just	borrow	the	code	we	wrote	in	the	previous
chapters,	and	we	will	deconstruct	it	into	a	component	hierarchy.	We	will	also	allocate	some
room	in	the	resulting	application	for	all	the	supporting	classes	and	models	required	to	give
shape	to	our	pomodoro	tool.	This	will	turn	into	a	perfect	opportunity	to	learn	the	intricacies
of	the	dependency	injection	machinery	baked	into	Angular	2,	as	we	will	see	later	in	this
chapter.

www.EBooksWorld.ir

Common	conventions	for	scalable	applications
In	all	fairness,	we	have	already	tackled	a	good	number	of	the	common	concerns	that	modern
web	developers	confront	when	building	applications,	small	and	large	alike,	nowadays.
Therefore,	it	makes	sense	to	define	an	architecture	that	will	separate	the	aforementioned
concerns	into	separate	domain	folders,	catering	to	media	assets	and	shared	code	units.

At	the	time	of	writing,	a	commonly	agreed	pattern	for	defining	project	directories	embraces
the	idea	of	structuring	files	by	features,	or	contexts.	Sometimes,	two	contexts	may	require
sharing	the	same	entities,	and	that	is	fine	(as	long	as	it	does	not	become	a	common	thing	in
our	project,	which	would	denote	a	serious	design	issue).	The	following	example,	applied	to
our	previous	work	on	pomodoro	components,	depicts	this	scheme:

.

├──	tasks	feature

│			├──	Task	model

│			├──	Tasks	service

│			├──	Task	table	component

│			├──	

Task	pomodoros	component

│			└──	Task	tooltip	directive

├──	timer	feature

│			└──	Timer	component

├──	admin

│			├──	Authentication	service

│			├──	Login	component

│			└──	Editor	component

└──	shared

				├──	components	shared	across	features

				├──	pipes	shared	across	features

				├──	directives	shared	across	features

				├──	global	models	and	services

				└──	shared	media	assets

As	we	can	see,	the	first	step	is	to	define	the	different	features	our	application	needs,	keeping	in
mind	that	each	one	should	make	sense	on	its	own	in	isolation	from	the	others.	Once	we	define
the	set	of	features	required,	we	will	create	a	folder	for	each	one.	Each	folder	will	be	filled
then	with	the	components,	directives,	pipes,	models,	and	services	that	shape	the	feature	it
represents.	Always	remember	the	principles	of	encapsulation	and	reusability	when	defining
your	features	set.

If	the	number	of	files	required	for	any	given	feature	exceeds	a	logical	threshold,	then	it	is	fine
to	organize	things	a	bit	and	split	our	files	into	different	folders	by	type.	Let's	figure	out	that
our	tasks	feature	has	grown	out	of	control	and	we	have	up	to	30	files	in	the	folder,	between
components,	directives,	pipes,	services,	test	specs,	and	the	like.	Identifying	code	units	would

www.EBooksWorld.ir

become	a	burden,	so	applying	an	additional	layer	or	organization	by	type	would	definitely
help:

.

├──	tasks	feature

│			├──	components/

│			│			└──	component	files...

│			├──	directives/

│			│			├──	directive	X

│			│			└──	directive	Y

│			├──	pipes/

│			│			└──	pipe	files...

│			├──	models/

│			│			└──	models...

│			└──	services/

│							└──	services...

├──	timer	feature

│			└──	Timer	component

├──	admin

│			├──	Authentication	service

│			├──	Login	component

│			└──	Editor	component

└──	shared

				├──	...

				└──	Etc

As	we	can	see,	it	is	perfectly	fine	to	have	in	the	same	project	feature	folders	with	all	files	at
the	same	level	and	feature	folders	containing	an	additional	level	of	nesting	by	type.	Where	to
set	the	threshold	is	up	to	you	but	common	sense	says	that	12	or	15	code	units	in	the	same
feature	folder	make	a	good	case	for	an	additional	nesting	level	based	on	types.	We	can	also
combine	them	by	introducing	additional	nesting	levels	based	on	multiple	features	that	fall
under	the	umbrella	of	an	upper	context	as	well,	hosting	its	implementation	in	a	sub-tree	by
type:

.

├──	tasks	feature

│			├──	tasks	component	and	template

│			├──	tasks-editor	feature/

│			│			└──	task-editor	components	and	templates

│			├──	tasks-list	feature/

│			│			├──	components/

│			│			│			└──	tasks-list	components	and	templates

│			│			└──	pipes/

│			│			│			└──	tasks-list-specific	pipes

│			└──	task-reports	feature/

│							└──	services...

...

www.EBooksWorld.ir

File	and	module	naming	conventions
Each	one	of	our	feature	folders	will	host	a	wide	range	of	files	so	we	need	a	consistent	naming
convention	to	prevent	filename	collisions	while	we	ensure	that	the	different	code	units	are
easy	to	locate.

The	following	list	summarizes	the	current	conventions	enforced	by	the	community:

Each	file	should	contain	a	single	code	unit.	Simply	put,	each	component,	directive,
service,	pipe,	and	so	on	should	live	in	its	own	file.	This	way,	we	contribute	to	a	better
organization	of	code.
Files	and	directories	are	named	in	lower-kebab-case.
Files	representing	components,	directives,	pipes,	and	services	should	append	a	type
suffix	to	their	name:	video-player.ts	will	become	video-player.component.ts.
Any	component's	external	HTML	template	or	CSS	style	sheet	filename	will	match	the
component	filename,	including	the	suffix.	Our	video-player.component.ts	might	be
accompanied	by	video-player.component.css	and	video-player.component.html.
Directive	selectors	and	pipe	names	are	camelCased,	while	component	selectors	are
lower-kebab-cased.	Plus,	it	is	strongly	advised	to	add	a	custom	prefix	of	our	choice	to
prevent	name	collisions	with	other	component	libraries.	For	example,	following	up	our
video	player	component,	it	may	be	represented	as	<vp-video-player>,	where	vp-
(which	stands	for	video-player)	is	our	custom	prefix.
Modules	are	named	by	following	the	rule	of	taking	a	PascalCased	self-descriptive	name,
plus	the	type	it	represents.	For	example,	if	we	see	a	module	named
VideoPlayerComponent,	we	can	easily	tell	it	is	a	component.	The	custom	prefix	in	use	for
selectors	(vp-	in	our	example)	should	not	be	part	of	the	module	name.

Models	and	interfaces	require	special	attention	though.	Depending	on	your	application
architecture,	model	types	will	feature	more	or	less	relevance.	Architectures	such	as	MVC,
MVVM,	Flux,	or	Redux	tackle	models	from	different	standpoints	and	grades	of	importance.
Ultimately,	it	will	be	up	to	you	and	your	architectural	design	pattern	of	choice	to	approach
models	and	their	naming	convention	in	one	way	or	another.	This	book	will	not	be	opinionated
in	that	sense,	although	we	do	enforce	interface	models	in	our	example	application	and	will
create	modules	for	them.

www.EBooksWorld.ir

Ensuring	seamless	scalability	with	facades	or	barrels
Each	component	and	shared	context	of	business	logic	in	our	application	is	intended	to
integrate	with	the	other	pieces	of	the	puzzle	in	a	simple	and	straightforward	way.	Clients	of
each	subdomain	are	not	concerned	about	the	internal	structure	of	the	subdomain	itself.	If	our
timer	feature,	for	example,	evolves	to	the	point	of	having	two	dozen	components	and
directives	that	need	to	be	reorganized	into	different	folder	levels,	external	consumers	of	its
functionalities	should	remain	unaffected.

This	can	be	done	using	facade	modules	that	conceal	the	internal	structure	of	the	code	by
exposing	always	the	same	layer	of	endpoints,	hiding	the	implementation	details	outside	the
boundaries	of	the	feature.

In	our	previous	example,	the	tasks	feature	evolves	from	being	a	handful	of	files	inside	the
same	folder	into	a	type-driven	set	of	folders.	What	if	we	are	using	several	of	its	components
elsewhere	in	our	application?	No	worries!	A	facade	module	like	this	would	definitely	help:

app/tasks/tasks.ts

import	TaskComponent	from	'./task.component';

import	TaskDetailsComponent	from	'./task-details.component';

export	{

		TaskComponent,

		TaskDetailsComponent

}

Then,	we	can	import	any	of	these	components	from	any	other	distant	corner	of	our
application,	like	this:

app/example/example.ts

import	{	TaskDetailsComponent	}	from	'../tasks/tasks'

What	if	the	tasks	feature	keeps	growing	and	needs	to	be	refactored	into	different	folders?	We
would	just	update	the	path	references	in	our	app/tasks/tasks.ts	facade	module,	and	our
client	code	at	app/example/example.ts	would	remain	the	same.

In	the	Angular	lingo,	this	kind	of	design	pattern	also	receives	the	name	of	barrel.	In	Angular's
own	words:

A	barrel	is	an	Angular	library	module	consisting	of	a	logical	grouping	of	single-purpose
modules	such	as	Component	and	Directive.

Take	that	into	account	in	order	to	avoid	confusion	when	bumping	into	this	term	in	the	future.
Barrels	are	also	usually	grouped	and	distributed	in	larger	packages	named	bundles.	An
example	of	this	is	the	angular2/bundles/router.js	bundle,	for	instance.	We	will	not	create

www.EBooksWorld.ir

packaged	bundles	in	this	book,	but	we	will	thoroughly	use	the	ones	that	come	with	Angular	2
when	implementing	HTTP	connection,	routing,	or	animation	functionalities.

www.EBooksWorld.ir

How	dependency	injection	works	in	Angular	2
As	our	applications	grows	and	evolves,	each	one	of	our	code	entities	will	internally	require
instances	of	other	objects,	which	are	better	known	as	dependencies	in	the	world	of	software
engineering.	The	action	of	passing	such	dependencies	to	the	dependent	client	is	known	as
injection,	and	it	also	entails	the	participation	of	another	code	entity,	named	the	injector.	The
injector	will	take	responsibility	for	instantiating	and	bootstrapping	the	required	dependencies
so	they	are	ready	for	use	from	the	very	moment	they	are	successfully	injected	in	the	client.
This	is	very	important	since	the	client	knows	nothing	about	how	to	instantiate	its	own
dependencies	and	is	only	aware	of	the	interface	they	implement	in	order	to	use	them.

Angular	2	features	a	top-notch	dependency	injection	mechanism	to	ease	the	task	of	exposing
required	dependencies	to	any	entity	that	might	exist	in	an	Angular	2	application,	regardless	of
whether	it	is	a	component,	a	directive,	a	pipe,	or	any	other	custom	service	or	provider	object.
In	fact,	as	we	will	see	later	in	this	chapter,	any	entity	can	take	advantage	of	dependency
injection	(usually	referred	to	as	DI)	in	an	Angular	2	application.	Before	delving	deeper	into
the	subject,	let's	look	at	the	problem	that	Angular's	DI	is	trying	to	address.

Let's	figure	out	we	have	a	music	player	component	that	relies	on	a	playlist	object	to	broadcast
music	to	its	users:

import	{	Component	}	from	'@angular/core';

import	{	Playlist	}	from	'./playlist';

@Component({

		selector:	'music-player',

		templateUrl:	'./music-player.component.html'

})

class	MusicPlayerComponent	{

		playlist:	Playlist;

		constructor()	{

				this.playlist	=	new	Playlist();

		}

}

The	Playlist	type	could	be	a	generic	class	that	returns	in	its	API	a	random	list	of	songs	or
whatever.	That	is	not	relevant	now,	since	the	only	thing	that	matters	is	that	our
MusicPlayerComponent	entity	does	need	it	to	deliver	its	functionality.	Unfortunately,	the
implementation	above	means	that	both	types	are	tightly	coupled,	since	the	component
instantiates	the	playlist	within	its	own	constructor.	This	prevents	us	from	altering,	overriding,
or	mocking	up	in	a	neat	way	the	Playlist	class	if	required.	It	also	entails	that	a	new	Playlist
object	is	created	every	time	we	instantiate	a	MusicPlayerComponent.	This	might	be	not	desired
in	certain	scenarios,	especially	if	we	expect	a	singleton	to	be	used	across	the	application	and
thus	keep	track	of	the	playlist's	state.

Dependency	injection	systems	try	to	solve	these	issues	by	proposing	several	patterns,	and	the

www.EBooksWorld.ir

constructor	injection	pattern	is	the	one	enforced	by	Angular	2.	The	previous	piece	of	code
could	be	rethought	like	this:

@Component({

		selector:	'music-player',

		templateUrl:	'./music-player.component.html'

})

class	MusicPlayerComponent	{

		playlist:	Playlist;

		constructor(playlist:	Playlist)	{

				this.playlist	=	playlist;

		}

}

Now,	the	Playlist	is	instantiated	outside	our	component.	On	the	other	hand,	the
MusicPlayerComponent	expects	such	an	object	to	be	already	available	before	the	component	is
instantiated	so	it	can	be	injected	through	its	constructor.	This	approach	gives	us	the
opportunity	to	override	it	or	mock	it	up	if	we	wish.

Basically,	this	is	how	dependency	injection,	and	more	specifically	the	constructor	injection
pattern,	works.	However,	what	has	this	to	do	with	Angular	2?	Does	Angular's	dependency
injection	machinery	work	by	instantiating	types	by	hand	and	injecting	them	through	the
constructor?	Obviously	not,	mostly	because	we	do	not	instantiate	components	by	hand	either
(except	when	writing	unit	tests).	Angular	features	its	own	dependency	injection	framework,
which	can	be	used	as	a	standalone	framework	by	other	applications,	by	the	way.

The	framework	offers	an	actual	injector	that	can	introspect	the	tokens	used	to	annotate	the
parameters	in	the	constructor	and	return	a	singleton	instance	of	the	type	represented	by	each
dependency,	so	we	can	use	it	straight	away	in	the	implementation	of	our	class,	as	in	the
previous	example.	The	injector	ignores	how	to	create	an	instance	of	each	dependency,	so	it
relies	on	the	list	of	providers	registered	upon	bootstrapping	the	application.	Each	one	of	those
providers	actually	provides	mappings	over	the	types	marked	as	application	dependencies.
Whenever	an	entity	(let's	say	a	component,	a	directive,	or	a	service)	defines	a	token	in	its
constructor,	the	injector	searches	for	a	type	matching	that	token	in	the	pool	of	registered
providers	for	that	component.	If	no	match	is	found,	it	will	then	delegate	the	search	on	the
parent	component's	provider,	and	will	keep	conducting	the	provider's	lookup	upwards	until	a
provider	resolves	with	a	matching	type	or	the	top	component	is	reached.	Should	the	provider
lookup	finish	with	no	match,	Angular	2	will	throw	an	exception.

Note

The	latter	is	not	exactly	true,	since	we	can	mark	dependencies	in	the	constructor	with	the
@Optional	parameter	decorator,	in	which	case	Angular	2	will	not	throw	any	exception	and	the
dependency	parameter	will	be	injected	as	null	if	no	provider	is	found.	The	topmost
component	is	not	the	last	dead-end	of	the	provider	lookup,	since	we	can	also	declare	global
dependencies	in	the	bootstrap()	function,	as	we	will	see	later	in	this	chapter.

www.EBooksWorld.ir

Whenever	a	provider	resolves	with	a	type	matching	that	token,	it	will	return	such	type	as	a
singleton,	which	will	be	therefore	injected	by	the	injector	as	a	dependency.	In	fairness,	the
provider	is	not	just	a	collection	of	key/value	pairs	coupling	tokens	with	previously	registered
types,	but	a	factory	that	instantiates	these	types	and	also	instantiates	each	dependency's	very
own	dependencies	as	well,	in	a	sort	of	recursive	dependency	instantiation.

So,	instead	of	instantiating	the	Playlist	object	manually,	we	could	do	this:

import	{	Component	}	from	'@angular/core';

import	{	Playlist	}	from	'./playlist';

@Component({

		selector:	'music-player',

		templateUrl:	'./music-player.component.html',

		providers:	[Playlist]

})

class	MusicPlayerComponent	{		

		constructor(public	playlist:	Playlist)	{}

}

The	providers	property	of	the	@Component	decorator	is	the	place	where	we	can	register
dependencies	on	a	component	level.	From	that	moment	onwards,	these	types	will	be
immediately	available	for	injection	at	the	constructor	of	that	component	and,	as	we	will	see
next,	at	its	own	child	components	as	well.

www.EBooksWorld.ir

Injecting	dependencies	across	the	component	tree
We	have	seen	that	the	provider	lookup	is	performed	upwards	until	a	match	is	found.	A	more
visual	example	might	help,	so	let's	figure	out	that	we	have	a	music	app	component	that	hosts
in	its	directives	property	(and	hence	its	template)	a	music	library	component	with	a
collection	of	all	our	downloaded	tunes	which	also	hosts,	in	its	own	directives	property	and
template,	a	music	player	component	so	we	can	playback	any	of	the	tunes	in	our	library.

.

├──	MusicAppComponent()

│		└──	MusicLibraryComponent()

│					└──	MusicPlayerComponent()

...

Our	music	player	component	requires	an	instance	of	the	Playlist	object	we	mentioned
before,	so	we	declare	it	as	a	constructor	parameter,	conveniently	annotated	with	the	Playlist
token.

.

├──	MusicAppComponent()

│		└──	MusicLibraryComponent()

│					└──	MusicPlayerComponent(playlist:	Playlist)

...

When	the	MusicPlayerComponent	entity	is	instantiated,	the	Angular	DI	mechanism	will	go
through	the	parameters	in	the	component	constructor	with	special	attention	to	their	type
annotations.	Then,	it	will	check	if	that	type	has	been	registered	in	the	component's	provider
property	of	the	component	decorator	configuration.	The	code	is	as	follows:

@Component({

		selector:	'music-player',

		providers:	[Playlist]

})

class	MusicPlayerComponent	{

		constructor(public	playlist:	Playlist)	{}

}

But,	what	if	we	want	to	reuse	the	Playlist	type	in	other	components	throughout	the	same
component	tree?	Maybe	the	Playlist	type	contains	functionalities	in	its	API	that	are	required
by	different	components	at	once	across	the	application.	Do	we	have	to	declare	the	token	in	the
provider's	property	for	each	one?	Fortunately	not,	since	Angular	2	anticipates	that	necessity
and	brings	transversal	dependency	injection	through	the	component	tree.

Note

In	the	previous	section,	we	mentioned	that	components	conduct	a	provider	lookup	upwards.
This	is	because	each	component	has	its	own	built-in	injector,	which	is	specific	to	it.
Nevertheless,	that	injector	is	in	reality	a	child	instance	of	the	parent's	component	injector	(and
so	on	so	forth),	so	it	is	fair	to	say	that	an	Angular	2	application	has	not	a	single	injector,	but

www.EBooksWorld.ir

many	instances	of	the	same	injector,	so	to	say.

We	need	to	extend	the	injection	of	the	Playlist	object	to	other	components	in	the	component
tree	in	a	quick	and	reusable	fashion.	Knowing	beforehand	that	components	perform	a
provider	lookup	starting	from	itself	and	then	passing	up	the	request	to	its	parent	component's
injectors,	we	can	then	address	the	issue	by	registering	the	provider	in	the	parent	component,
or	even	the	top	parent	component,	so	the	dependency	will	be	available	for	injection	for	each
and	every	child	component	found	underneath	it.	In	this	sense,	we	could	register	the	Playlist
object	straight	at	MusicAppComponent,	regardless	it	might	not	need	it	for	its	own
implementation:

@Component({

		selector:	'music-app',

		providers:	[Playlist],

		directives:	[MusicLibraryComponent],

		template:	'<music-library></music-library>'

})

class	MusicAppComponent	{}

The	immediate	child	component	might	not	require	the	dependency	for	its	own	implementation
either.	Since	it	has	been	already	registered	in	its	parent	MusicAppComponent	component,	there
is	no	need	to	register	it	there	again.

@Component({

		selector:	'music-library',

		directives:	[MusicPlayerComponent],

		template:	'<music-player></music-player>'

})

class	MusicLibraryComponent	{}

We	finally	reach	our	music	player	component,	but	now	it	no	longer	features	the	Playlist
type	as	a	registered	token	in	its	providers	property.	In	fact,	our	component	does	not	feature	a
providers	property	at	all.	It	no	longer	requires	this,	since	the	type	has	been	already	registered
somewhere	above	the	component's	hierarchy,	being	immediately	available	for	all	child
components,	no	matter	where	they	are.

@Component({

		selector:	'music-player'

})

class	MusicPlayerComponent	{

		constructor(public	playlist:	Playlist)	{}

}

Now,	we	see	how	dependencies	are	injected	down	the	component	hierarchy	and	how	the
provider	lookup	is	performed	by	components	just	by	checking	their	own	registered	providers
and	bubbling	up	the	request	upwards	in	the	component	tree.	However,	what	if	we	want	to
constrain	such	injection	or	lookup	actions?

Restricting	dependency	injection	down	the	component	tree

www.EBooksWorld.ir

In	our	previous	example,	we	saw	how	the	music	app	component	registered	the	Playlist	token
in	its	providers	collection,	making	it	immediately	available	for	all	child	components.
Sometimes,	we	might	need	to	constrain	the	injection	of	dependencies	to	reach	only	those
directives	(and	components)	that	are	immediately	next	to	a	specific	component	in	the
hierarchy.	We	can	do	that	by	registering	the	type	token	in	the	viewProviders	property	of	the
component	decorator,	instead	of	using	the	providers	property	we've	seen	already.	In	our
previous	example,	we	can	restrain	the	downwards	injection	of	Playlist	one	level	only:

@Component({

		selector:	'music-app',

		viewProviders:	[Playlist],

		directives:	[MusicLibraryComponent],

		template:	'<music-library></music-library>'

})

class	MusicAppComponent	{}

We	are	informing	Angular	2	that	the	Playlist	provider	should	only	be	accessible	by	the
injectors	of	the	directives	and	components	located	in	the	MusicAppComponent	view,	but	not	for
the	children	of	such	components.	The	use	of	this	technique	is	exclusive	of	components,	since
only	they	feature	views.

Restricting	provider	lookup

Just	like	we	can	restrict	dependency	injection,	we	can	constrain	dependency	lookup	to	the
immediate	upper	level	only.	To	do	so,	we	just	need	to	apply	the	@Host()	decorator	to	those
dependency	parameters	whose	provider	lookup	we	want	to	restrict:

Import	{	Component,	Host	}	from	'@angular/core';

@Component({

		selector:	'music-player'

})

class	MusicPlayerComponent	{

		constructor(@Host()	playlist:	Playlist)	{}

}

According	to	the	preceding	example,	the	MusicPlayerComponent	injector	will	look	up	for	a
Playlist	type	at	its	parent	component's	providers	collection	(MusicLibraryComponent	in	our
example)	and	will	stop	there,	throwing	an	exception	because	Playlist	has	not	been	returned
by	the	parent's	injector	(unless	we	also	decorate	it	with	the	@Optional()	parameter	decorator).

www.EBooksWorld.ir

Overriding	providers	in	the	injector	hierarchy
We've	seen	so	far	how	Angular's	DI	framework	uses	the	dependency	token	to	introspect	the
type	required	and	return	it	right	from	any	of	the	provider	sets	available	along	the	component
hierarchy.	However,	we	might	need	to	override	the	class	instance	corresponding	to	that	token
in	certain	cases	where	a	more	specialized	type	is	required	to	do	the	job.	Angular	provides
special	tools	to	override	the	providers	or	even	implement	factories	that	will	return	a	class
instance	for	a	given	token,	not	necessarily	matching	the	original	type.

We	will	not	cover	all	the	use	cases	in	detail	here,	but	let's	look	at	a	simple	example.	In	our
example,	we	assumed	that	the	Playlist	object	was	meant	to	be	available	across	the
component	tree	for	use	in	different	entities	of	the	application.	What	if	our	MusicAppComponent
directive	hosts	another	component	whose	child	directives	require	a	more	specialized	version
of	the	Playlist	object?	Let's	rethink	our	example:

.

├──	MusicAppComponent()

│		├──	MusicChartsComponent()

│		│		└──	MusicPlayerComponent()

│		└──	MusicLibraryComponent()

│						└──	MusicPlayerComponent()

...

This	is	a	bit	contrived	example	but	will	definitely	help	us	to	understand	the	point	of
overriding	dependencies.	The	Playlist	instance	object	is	available	right	from	the	top
component	downwards.	The	MusicChartsComponent	directive	is	a	specialized	component	that
caters	only	for	music	featured	in	the	top	seller's	charts	and	hence	its	player	must	playback	big
hits	only,	regardless	of	the	fact	it	uses	the	same	component	as	MusicLibraryComponent.	We
need	to	ensure	that	each	player	component	gets	the	proper	playlist	object,	and	this	can	be	done
at	the	MusicChartsComponent	level	by	overriding	the	object	instance	corresponding	to	the
Playlist	token.	The	following	example	depicts	this	scenario,	leveraging	the	use	of	the
provide	function:

import	{	Component,	provide	}	from	'@angular/core';

import	{	Playlist	}	from	'./playlist';

import	{	TopHitsPlaylist	}	from	'./top-hits-playlist';

@Component({

		selector:	'music-charts',

		directives:	[MusicPlayerComponent],

		template:	'<music-player></music-player>',

		providers:	[provide(Playlist,	{	useClass:	TopHitsPlaylist	})]

})

class	MusicChartsComponent	{}

The	provide()	function	creates	a	provider	mapped	to	the	token	specified	in	the	first	argument
(Playlist	in	this	example)	and	the	implementation	configured	in	the	second	argument,	which
in	this	case	points	to	using	the	TopHitsPlaylist	type	as	the	reference	class.

www.EBooksWorld.ir

We	could	refactor	the	block	of	code	to	use	viewProviders	instead,	so	we	ensure	that	(if
required)	the	child	entities	still	receive	an	instance	of	Playlist	instead	of	TopHitsPlaylist.
Alternatively,	we	can	go	the	extra	mile	and	use	a	factory,	to	return	the	specific	object	instance
we	need	depending	on	other	requirements.	The	following	example	will	return	a	different
object	instance	for	the	Playlist	token	depending	on	the	evaluation	of	a	Boolean	condition
variable:

@Component({

		selector:	'music-charts',

		directives:	[MusicPlayerComponent],

		template:	'<music-player></music-player>',

		providers:	[

				provide(Playlist,	{	useFactory:	()	=>	{

								if(condition)	{

										return	new	TopHitsPlaylist();

								}	else	{

										return	new	Playlist();

								}

						}

				})

]

})

class	MusicChartsComponent	{}

Moving	out	from	the	preceding	pseudo-code	example,	how	can	we	provide	a	better	logic
flow	when	using	the	useFactory	function?	It	turns	out	that	the	method	signature	can	take
arguments	that	operate	pretty	much	the	same	as	dependencies	do	when	in	the	constructor	of
any	given	Angular	entity.	We	just	need	to	point	Angular	to	the	type	each	argument	token	of	the
useFactory	lambda	function	has	by	declaring	them	in	the	deps	property	as	follows:

@Component({

		selector:	'music-charts',

		directives:	[MusicPlayerComponent],

		template:	'<music-player></music-player>',

		providers:	[

				ConditionalService,

				provide(Playlist,	{	useFactory:	(conditionalService)	=>	{

								if(conditionalService.isTopHits)	{

										return	new	TopHitsPlaylist();

								}	else	{

										return	new	Playlist();

								}

						},

						deps:	[ConditionalService]

				})

]

})

class	MusicChartsComponent	{}

In	the	preceding	example,	we	are	injecting	an	object	instance	of	an	imaginary
ConditionalService	class,	which	exposes	a	Boolean	property	named	isTopHits	that	will
inform	about	the	playlist	to	be	used.	Keep	in	mind	that	these	types	will	have	to	be	registered	as

www.EBooksWorld.ir

well,	either	in	the	providers	property	of	the	current	component	or	at	any	of	its	parent
components.

www.EBooksWorld.ir

Extending	injector	support	to	custom	entities
Directives	and	components	require	dependencies	to	be	introspected,	resolved,	and	injected.
Other	entities	such	as	service	classes	often	require	quite	such	functionality	too.	In	our
example,	our	Playlist	class	might	rely	on	a	dependency	on	a	HTTP	client	to	communicate
with	a	third	party	to	fetch	the	songs.	The	action	of	injecting	such	dependency	should	be	as
easy	as	declaring	the	annotated	dependencies	in	the	class	constructor	and	have	an	injector
ready	to	fetch	the	object	instance	by	inspecting	the	class	provider	or	any	other	provider
available	somewhere.

It	is	only	when	we	think	hard	about	the	latter	that	we	realize	there	is	a	gap	in	this	idea:	custom
classes	and	services	do	not	belong	to	the	component	tree.	Hence,	they	do	not	benefit	from
anything	such	as	a	built-in	injector	or	a	parent	injector.	We	cannot	even	declare	a	providers
property,	since	we	do	not	decorate	these	types	of	class	with	a	@Component	or	@Directive
decorator.	Let's	take	a	look	at	an	example:

class	Playlist	{

		songs:	string[];

		constructor(songsService:	SongsService)	{

				this.songs	=	songsService.fetch();	

		}

}

We	might	try	the	above	in	the	hope	of	having	Angular	2's	DI	mechanism	introspecting	the
songsService	parameter	of	the	Playlist	class	constructor	when	instantiating	this	class	in
order	to	inject	it	into	MusicPlayerComponent.	Unfortunately,	the	only	thing	we	will	eventually
get	is	an	exception	like	this:

Cannot	resolve	all	parameters	for	Playlist(?).	Make	sure	they	all	have	valid	

type	or	annotations.

This	is	kind	of	misleading,	since	all	constructor	parameters	in	Playlist	have	been	properly
annotated,	right?	As	we	said	before,	the	Angular	DI	machinery	resolves	dependencies	by
introspecting	the	types	of	the	constructor	parameters.	To	do	so,	it	needs	some	metadata	to	be
created	beforehand.	Each	and	every	Angular	entity	class	decorated	with	a	decorator	features
this	metadata	as	a	by-product	of	the	way	TypeScript	compiles	the	decorator	configuration
details.	However,	dependencies	that	also	require	other	dependencies	have	no	decorator
whatsoever	and	no	metadata	is	then	created	for	them.	This	can	be	easily	fixed	thanks	to	the
@Injectable()	decorator,	which	will	give	visibility	to	these	service	classes	for	the	DI
mechanism:

import	{	Injectable	}	from	'@angular/core';

@Injectable()

class	Playlist	{

		songs:	string[];

		constructor(songsService:	SongsService)	{

				this.songs	=	songsService.fetch();	

		}

www.EBooksWorld.ir

}

You	will	get	used	to	introducing	that	decorator	in	your	service	classes,	since	they	will	quite
often	rely	on	other	dependencies	not	related	to	the	component	tree	in	order	to	deliver	the
functionality.

Tip

It	is	actually	a	good	practice	to	decorate	all	your	service	classes	with	the	@Injectable()
decorator,	irrespective	of	whether	its	constructor	functions	have	dependencies	or	not.	This
way,	we	prevent	errors	and	exceptions	because	of	skipping	this	requirement	once	the	service
class	grows	and	requires	more	dependencies	in	the	future.

www.EBooksWorld.ir

Initializing	applications	with	bootstrap()
As	we	have	seen	in	this	chapter,	the	dependency	lookup	bubbles	up	until	the	first	component	at
the	top.	This	is	not	exactly	true,	since	there	is	an	additional	step	that	the	DI	mechanism	will
check	on:	the	bootstrap()	function.

As	far	as	we	know,	we	use	the	bootstrap()function	to	kickstart	our	application	by	declaring
in	its	first	argument	the	root	component	that	initiates	the	application's	component	tree.
However,	the	bootstrap	function	takes	a	second	argument	in	the	form	of	a	providers	array,
where	we	can	explicit	dependencies	as	well,	that	will	become	available	throughout	the	injector
tree.	However,	this	is	a	bad	practice	because	it	couples	the	availability	of	any	provider	to	the
application	itself,	constraining	the	encapsulation	and	reusability	of	our	components,
moreover	when	the	bootstrap	initialization	function	is	platform-specific.

Where	shall	we	declare	our	application	dependencies	then?	Always	use	our	top	root
component	instead.	The	providers	argument	of	the	bootstrap	function	should	only	be	used
when	we	need	to	override	existing	Angular	2	providers	on	an	application	level,	leveraging
the	provide()	function,	for	instance.

Always	keep	in	mind	that	we	can	have	multiple	root	components,	each	one	of	them	the	result
of	multiple	executions	of	the	bootstrap()	function	declaring	a	different	root	component	each
time.	Each	one	of	these	root	components	will	feature	its	own	set	of	injectors	and	service
singletons,	with	no	relationship	whatsoever	amongst	them.

Switching	between	development	and	production	modes

Angular	2	applications	are	bootstrapped	and	initialized	by	default	in	development	mode.	In	the
development	mode,	the	Angular	2	runtime	will	throw	warning	messages	and	assertions	to	the
browser	console.	While	this	is	quite	useful	for	debugging	our	application,	we	do	not	want
those	messages	to	be	displayed	when	the	application	is	in	production.	The	good	news	is	that
the	development	mode	can	be	disabled	in	favor	of	the	more	silent	production	mode.	This
action	is	usually	performed	before	bootstrapping	our	application:

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	{	enableProdMode	}	from	'angular/core';

import	AppComponent	from	'./app.component';

enableProdMode();

bootstrap(AppComponent,	[]);

Enabling	Angular	2's	built-in	change	detection	profiler

We	can	also	access	advanced	tools	from	the	browser	console	by	enabling	the	Angular	Debug
Tools.	To	do	so,	just	import	the	enableDebugTools	function,	which	is	specific	in	to	the
browser	platform,	and	execute	it	as	soon	as	you	get	hold	of	an	instance	of	the	component	you
want	to	profile.	The	code	is	as	follows:

www.EBooksWorld.ir

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	{	enableDebugTools	}	from	'@angular/platform-browser';

import	{	ComponentRef	}	from	'angular/core';

import	AppComponent	from	'./app.component';

//	The	bootstrap()	function	returns	a	promise	with	

//	a	reference	to	the	bootstrapped	component

bootstrap(AppComponent,	[]).then((ref:	ComponentRef)	=>	{

		enableDebugTools(ref);

});

When	the	enableDebugTools()	function	is	triggered,	you	just	need	to	follow	the	following
steps	to	access	the	change	detection	profiler:

1.	 Open	the	browser	dev	tools	and	switch	to	the	console	view.
2.	 Type	ng.profiler.timeChangeDetection({record:	true})	and	then	press	Enter.
3.	 The	Angular	2	runtime	will	exercise	change	detection	in	a	loop	and	will	print	the

average	amount	of	time	a	single	round	of	change	detection	takes	for	the	current	state	of
the	UI.	A	CPU	profile	recording	will	be	conducted	while	the	change	detector	is	exercised.

Hopefully,	the	debug	tools	will	be	fleshed	out	with	more	functionalities	in	the	future.	Stay
tuned	and	refer	to	the	official	documentation.

www.EBooksWorld.ir

Introducing	the	Pomodoro	App	directory
structure
In	the	previous	chapters	and	sections	in	this	chapter,	we	have	seen	different	approaches	and
good	practices	for	laying	out	Angular	2	applications.	These	guidelines	encompassed	from
naming	conventions	to	pointers	about	how	to	organize	files	and	folders.	From	this	point
onwards,	we	are	going	to	put	all	this	knowledge	to	practice	by	refactoring	all	the	different
interfaces,	components,	directives,	pipes,	and	services	in	an	actual	Angular	2	architecture,
conforming	to	the	most	commonly	agreed	community	conventions.

By	the	end	of	this	chapter,	we	will	have	a	final	application	layout	that	wraps	everything	we
have	seen	so	far	in	the	following	site	architecture:

.

├──	app/

│			├──	shared/	

│			│			├──	assets/	←	Global	CSS	or	image	files	are	stored	here

│			│			├──	directives/

│			│			├──	interfaces/

│			│			├──	pipes/

│			│			├──	services/

│			│			└──	shared.ts	←	facade	for	the	'shared'	context

│			├──	tasks/

│			│			├──	(tasks-related	components	and	directives)

│			│			└──	tasks.ts	←	facade	for	the	'tasks'	context

│			├──	timer/

│			│			├──	(timer-related	components	and	directives)

│			│			└──	timer.ts	←	facade	for	the	'timer'	context

│			│			

│			├──	app.component.ts	←	top	root	application	component

│			└──	main.ts	←	here	we	bootstrap	the	top	root	component

│						

├──	index.html

├──	package.json

├──	tsconfig.json

└──	typings.json						

It	is	easy	to	understand	the	whole	rationale	of	the	project.	Now,	we	will	put	together	an
application	that	features	two	main	contexts:	a	timer	feature	and	a	tasks	listing	feature.	Each
feature	can	encompass	a	different	range	of	components,	pipes,	directives,	or	services.	The
inner	implementation	of	each	feature	is	opaque	to	the	other	features	or	contexts.	Each	feature
context	exposes	a	facade	that	exports	the	pieces	of	functionality	(that	is,	the	component,	one	or
many)	that	each	context	delivers	to	the	upper-level	context	or	application.	All	the	other	pieces
of	functionality	(inner	services	or	directives)	are	concealed	from	the	rest	of	the	application.

It	is	fair	to	say	that	it	is	difficult	to	draw	a	line	in	the	sand	differentiating	what	belongs	to	a
specific	context	or	another.	Sometimes,	we	build	pieces	of	functionality,	such	as	certain
directives	or	pipes,	which	can	be	reused	throughout	the	application.	So,	locking	them	down	to

www.EBooksWorld.ir

a	specific	context	does	not	make	much	sense.	For	those	cases,	we	do	have	the	shared	context,
where	we	store	any	code	unit	which	is	meant	to	be	reusable	at	an	application	level,	apart	from
media	files	such	as	style	sheets	or	bitmap	images	that	are	component-agnostic.

The	main	app.component.ts	file	contains	and	exports	the	application	root	component,	which
declares	and	registers	in	its	own	injector	the	dependencies	required	by	its	child	components.
As	you	know	already,	all	Angular	2	applications	must	have	at	least	one	root	component,
initialized	by	the	bootstrap()	function.	This	operation	is	actually	performed	in	the	main.ts
file,	which	is	fired	by	the	index.html	file.

Defining	a	component	or	a	group	of	related	components	within	a	context	like	this	improves
reusability	and	encapsulation.	The	only	component	that	is	tightly	coupled	with	the	application
is	the	top	root	component,	whose	functionality	is	usually	pretty	limited	and	entails	basically
rendering	the	other	child	components	in	its	template	view	or	acting	as	a	router	component,	as
we	will	see	in	the	next	chapters.

The	last	bit	of	the	puzzle	is	the	JSON	files	that	contain	the	TypeScript	compiler,	typings,	and
npm	configuration.	Since	versioning	on	the	Angular	2	framework	keeps	evolving,	we	will	not
look	at	the	actual	content	of	these	files	here.	You	are	supposed	to	know	their	purpose,	but
some	specifics	such	as	the	peer	dependency	versions	change	quite	often	so	you	better	refer	to
the	book's	GitHub	repository	for	the	latest	up-to-date	version	of	each	one.	The	package.json
file	requires	a	special	mention	though.	There	are	a	few	common	industry	conventions	and
popular	seed	projects,	like	the	one	provided	by	the	Angular	official	site	itself.	We	have
provided	several	npm	commands	to	ease	the	overall	installation	process	and	the	development
endeavor:

1.	 Go	to	https://github.com/deeleman/angular2-essentials	and	download	package.json,
typings.json	and	tsconfig.json	into	a	folder	of	your	choice.	We	recommend	you	to
download	index.html	as	well.

2.	 Open	up	your	console	in	the	folder	where	you	saved	the	preceding	files	and	run	npm
install.	Angular	2	and	all	its	peer	dependencies	and	required	typings	will	be
downloaded	and	installed	in	the	project	workspace.

3.	 Now,	you	can	just	run	npm	start	in	the	console,	enable	the	TypeScript	compiler	in	watch
mode,	and	fire	a	local	server	pointing	to	this	project	folder.	We	recommend	you	to
create	the	application	files	before	executing	this	command	or	an	exception	will	be
triggered.

www.EBooksWorld.ir

https://github.com/deeleman/angular2-essentials

Refactoring	our	application	the	Angular	2	way
In	this	section,	we	will	split	the	code	we	created	in	Chapters	1,	3,	and	4	into	code	units,
following	the	single	responsibility	principle.	So,	do	not	expect	many	changes	in	the	code,
apart	from	allocating	each	module	in	its	own	dedicated	file.	This	is	why	we	will	focus	more
on	how	to	split	things	rather	than	explaining	each	module,	whose	purpose	you	should	know
already.	In	any	event,	we	will	take	a	minute	to	discuss	changes	if	required.

Let's	begin	by	creating	in	your	work	folder	the	same	directory	structure	we	saw	in	the
previous	section.	We	will	populate	each	folder	with	files	on	the	go.

www.EBooksWorld.ir

The	shared	context
The	shared	context	is	where	we	store	any	module	whose	functionality	is	meant	to	be	used	by
not	one	but	many	contexts	at	once,	as	it	is	agnostic	to	those	contexts	as	well.	A	good	example
is	the	pomodoro	bitmap	we've	been	using	to	decorate	our	components,	which	should	be
stored	in	the	app/shared/assets/img	path	(please	do	save	it	there,	by	the	way).

Another	good	example	is	the	interfaces	that	model	data,	mostly	when	their	schema	can	be
reused	across	a	different	context	of	functionality.	For	instance,	when	we	defined	the
QueuedOnlyPipe	in	Chapter	3,	Implementing	Properties	and	Events	in	Our	Components,	we
actioned	only	over	the	queued	property	of	items	in	the	recordset.	We	can	then	seriously
consider	implementing	a	Queued	interface	that	we	can	use	later	on	to	provide	type-checking
for	modules	that	feature	that	property.	This	will	make	our	pipes	more	reusable	and	model-
agnostic.	The	code	is	as	follows:

app/shared/interfaces/queuable.ts

interface	Queueable	{

		queued:	boolean;

}

export	default	Queueable;

Tip

Pay	attention	to	this	workflow:	first	we	define	the	module	corresponding	to	this	code	unit,	and
then	we	export	it,	flagging	it	as	default	so	we	can	import	it	by	name	from	elsewhere.
Interfaces	need	to	be	exported	this	way,	but	for	the	rest	of	the	book	we	will	usually	declare	the
module	and	export	it	in	the	same	statement.

With	this	interface	in	place,	we	can	now	safely	refactor	the	QueuedOnlyPipe	to	make	it	fully
agnostic	from	the	Task	interface	so	that	it	is	fully	reusable	on	any	context	where	a	recordset,
featuring	items	implementing	the	Queued	interface,	needs	to	be	filtered,	regardless	of	what
they	represent.	The	code	is	as	follows:

app/shared/pipes/queued-only.pipe.ts

import	{	Pipe,	PipeTransform	}	from	'angular/core';

import	{	Queueable	}	from	'../shared';

@Pipe({

		name:	'pomodoroQueuedOnly',

		pure:	false

})

export	default	class	QueuedOnlyPipe	implements	PipeTransform	{

		transform(

				queueableItems:	Queueable[],

				...args):	Queueable[]	{

				return	queueableItems.filter((queueableItem:	Queueable)	=>	{

www.EBooksWorld.ir

						return	queueableItem.queued	===	args[0]

				});

		}

}

As	you	can	see,	each	code	unit	contains	a	single	module.	This	code	unit	conforms	to	the
naming	conventions	set	for	Angular	2	filenames,	clearly	stating	the	module	name	in	camel
case,	plus	the	type	suffix	(.pipe	in	this	case).	The	implementation	does	not	change	either,
apart	from	the	fact	that	we	have	annotated	all	queue-able	items	with	the	Queuable	type,	instead
of	the	Task	annotation	we	had	earlier.	Now,	our	pipe	can	be	reused	wherever	a	model
implementing	the	Queued	interface	is	present.

However,	there	is	something	that	should	draw	your	attention:	we're	not	importing	the
Queuable	interface	from	its	source	location,	but	from	a	file	named	shared.ts	located	in	the
upper	level.	This	is	the	facade	file	for	the	shared	context,	and	we	will	expose	all	public	shared
modules	from	that	file	not	only	to	the	clients	consuming	the	shared	context	modules,	but	to
those	inside	the	shared	context	as	well.	There	is	a	case	for	this:	if	any	module	within	the
shared	context	changes	its	location,	we	need	to	update	the	facade	so	that	any	other	element
referring	to	that	module	within	the	same	context	remains	unaffected,	since	it	consumes	it
through	the	facade.	This	is	actually	a	good	moment	to	start	beefing	up	our	very	first	facade
then:

app/shared/shared.ts

import	Queueable	from	'./interfaces/queueable';

export	{

		Queueable

};

As	you	can	see,	facades	have	no	business	logic	implementation	and,	in	their	simplest
incarnation,	are	just	a	summarized	block	of	imports	publicly	exposed	in	a	single	export.	Now
that	we	have	a	working	Queuable	interface	and	a	facade,	we	can	create	the	other	interface	we
will	require	throughout	the	book,	corresponding	to	the	Task	entity,	along	with	the	other	pipe
we	required—both	exposed	through	the	facade	as	well:

app/shared/interfaces/task.ts

import	{	Queueable	}	from	'../shared';

interface	Task	extends	Queueable	{

		name:	string;

		deadline:	Date;

		pomodorosRequired:	number;

}

export	default	Task;

We	implement	an	interface	onto	another	interface	in	TypeScript	by	using	extends	(instead	of

www.EBooksWorld.ir

implements).	Now,	for	the	FormattedTimePipe:

app/shared/pipes/formatted-time.pipe.ts

import	{	Pipe,	PipeTransform	}	from	'@angular/core';

@Pipe({

		name:	'pomodoroFormattedTime'

})

export	default	class	FormattedTimePipe	implements	PipeTransform	{

		transform(totalMinutes:	number):	string	{

				let	minutes:	number	=	totalMinutes	%	60;

				let	hours:	number	=	Math.floor(totalMinutes	/	60);

				return	`${hours}h:${minutes}m`;

		}

}

Obviously,	both	modules	will	be	made	available	publicly	from	the	facade,	as	we	did
previously.

Services	in	the	shared	context

There	is	no	rule	of	thumb	for	services	with	regard	to	where	they	should	go.	Some	schools	of
thought	assume	that	services	are	mere	data	and	logic	providers	and,	as	such,	should	be
agnostic	of	what	actually	consumes	them,	irrespective	of	whether	it	is	a	component,	directive,
or	any	other	service.	Services	become	then	first-class	citizens	that	can	easily	be	promoted	to
their	own	project	workspace	for	greater	reusability	across	different	projects.	Some	other
practitioners	prefer	to	bind	services	to	the	feature	context	they	belong	to,	if	only	a	single
context	applies,	favoring	encapsulation.	Ultimately,	it	will	depend	on	the	level	of	reusability
versus	encapsulation	you	aim	to	achieve	in	your	application,	and	what	entity	actually	makes
use	of	the	data	and	logic	of	those	services.

We	built	a	data	service	in	the	previous	chapter	to	serve	a	tasks	dataset	to	populate	our	data
table	with.	As	we	will	see	later	in	this	book,	the	data	service	will	be	consumed	by	other
contexts	of	the	application.	So,	we	will	allocate	it	in	the	shared	context,	exposing	it	through
the	facade	as	usual:

app/shared/services/task.service.ts

import	{	Injectable	}	from	'@angular/core';

import	{	Task	}	from	'../shared';

@Injectable()

export	default	class	TaskService	{

		public	taskStore:	Task[]	=	[];

		constructor()	{

				const	tasks	=	[

						{

								name:	"Code	an	HTML	Table",

								deadline:	"Jun	23	2015",

www.EBooksWorld.ir

								pomodorosRequired:	1

						},	{

								name:	"Sketch	a	wireframe	for	the	new	homepage",

								deadline:	"Jun	24	2016",

								pomodorosRequired:	2

						},	{

								name:	"Style	table	with	Bootstrap	styles",

								deadline:	"Jun	25	2016",

								pomodorosRequired:	1

						},	{

								name:	"Reinforce	SEO	with	custom	sitemap.xml",

								deadline:	"Jun	26	2016",

								pomodorosRequired:	3

						}

];

				this.taskStore	=	tasks.map(task	=>	{

						return	{

								name:	task.name,

								deadline:	new	Date(task.deadline),

								queued:	false,

								pomodorosRequired:	task.pomodorosRequired

						};

				});

		}

}

Please	pay	attention	to	how	we	imported	the	Injectable()	decorator	and	implemented	it	on
our	service.	It	does	not	require	any	dependency	in	its	constructor,	so	other	modules	depending
on	this	service	will	not	have	any	issues	anyway	when	declaring	it	in	its	constructors.	The
reason	is	simple:	it	is	actually	a	good	practice	to	apply	the	@Injectable()	decorator	in	our
services	by	default	to	ensure	they	keep	being	injected	seamlessly	as	long	as	they	begin
depending	on	other	providers,	just	in	case	we	forget	to	decorate	them	then.

Configuring	application	settings	from	a	central	service

In	the	previous	chapters,	we	hardcoded	a	lot	of	stuff	in	our	components:	labels,	pomodoro
durations,	plural	mappings,	and	so	on.	Sometimes,	our	contexts	are	meant	to	have	a	high	level
of	specificity	and	and	it's	fine	to	have	that	information	there.	At	other	times,	we	might	require
more	flexibility	and	a	more	convenient	way	to	update	these	settings	application-wide.	For	this
example,	we	will	make	all	the	l18n	pipes	mappings	and	pomodoro	settings	available	from	a
central	service	located	in	the	shared	context	and	exposed,	as	usual,	from	the	shared.ts	facade.

app/shared/services/settings.service.ts

import	{	Injectable	}	from	'@angular/core';

@Injectable()

export	default	class	SettingsService	{

		timerMinutes:	number;

		labelsMap:	any;

		pluralsMap:	any;

www.EBooksWorld.ir

		constructor()	{

				this.timerMinutes	=	25;

				this.labelsMap	=	{

						'timer':	{

								'start':	'Start	Timer',

								'pause':	'Pause	Timer',

								'resume':	'Resume	Countdown',

								'other':	'Unknown'

						}

				};

				this.pluralsMap	=	{

						'tasks':	{

								'=0':	'No	pomodoros',

								'=1':	'One	pomodoro',

								'other':	'#	pomodoros'

						}

				}

		}

}

Please	note	how	we	expose	context-agnostic	mapping	properties,	which	are	actually
namespaced,	to	better	group	the	different	mappings	by	context.

It	would	be	perfectly	fine	to	split	this	service	into	two	specific	services,	one	per	context,	and
locate	them	inside	their	respective	context	folders,	at	least	with	regard	to	the	l18n	mappings.
Keep	in	mind	that	data	such	as	the	time	duration	per	pomodoro	will	be	used	across	different
contexts	though,	as	we	will	see	later	in	this	chapter.

www.EBooksWorld.ir

Creating	a	facade	module	including	a	custom	providers	barrel
With	all	the	latest	changes,	our	shared.ts	facade	should	look	like	this:

app/shared/shared.ts

import	Queueable	from	'./interfaces/queueable';

import	Task	from	'./interfaces/task';

import	FormattedTimePipe	from	'./pipes/formatted-time.pipe';

import	QueuedOnlyPipe	from	'./pipes/queued-only.pipe';

import	SettingsService	from	'./services/settings.service';

import	TaskService	from	'./services/task.service';

export	{

		Queueable,

		Task,

		FormattedTimePipe,

		QueuedOnlyPipe,

		SettingsService,

		TaskService

};

Our	facade	exposes	interface	typings,	pipes,	and	service	providers.	As	we	will	see	when
injecting	our	dependencies	globally	from	the	root	component,	it	is	actually	quite	common	and
convenient	to	group	services	(and	directives	as	well,	including	components	in	the	same
group)	into	grouping	alias	tokens,	usually	named	after	the	context	name	followed	by	the
_PROVIDERS	suffix,	all	in	uppercase.	With	regard	to	the	facade,	we	could	introduce	this	block
of	code	right	above	the	export	statement:

//	import	statements	remain	unchanged	above

const	SHARED_PIPES:	any[]	=	[

		FormattedTimePipe,

		QueuedOnlyPipe

];

const	SHARED_PROVIDERS:	any[]	=	[

		SettingsService,

		TaskService

];

export	{

		Queueable,

		Task,

		FormattedTimePipe,

		QueuedOnlyPipe,

		SHARED_PIPES,

		SettingsService,

www.EBooksWorld.ir

		TaskService,

		SHARED_PROVIDERS

};

This	way,	we	can	register	all	our	providers	through	a	single	token	where	required.	The	same
applies	to	directives	and	components,	where	the	rule	of	thumb	is	to	export	in	the	context
facade	a	token	with	the	name	{CONTEXTNAME}_DIRECTIVES.	This	gives	us	the	opportunity	to
inject	support	for	all	required	components	and	directives	from	a	context	in	another
component	by	means	of	a	single	token.	If	such	context	winds	up	exposing	more	components
and	directives	in	the	future	or	the	names	of	its	existing	logical	modules	change,	we	will	not
need	then	to	follow	the	trail	of	module	tokens	registered	in	the	directives	property	of	our
components	throughout	the	application.	We	will	see	all	this	in	action	further	up	in	this	chapter.

www.EBooksWorld.ir

Creating	our	components
With	our	shared	context	sorted	out,	time	has	come	to	cater	with	our	other	two	contexts:	timer
and	tasks.	Their	names	are	self-descriptive	enough	of	the	scope	of	their	functionalities.	Each
context	folder	will	allocate	the	component,	HTML	view	template,	CSS,	and	directive	files
required	to	deliver	their	functionality,	plus	a	facade	file	that	exports	the	public	components	of
this	feature.

The	timer	context

Our	first	context	is	the	one	belonging	to	the	timer	functionality,	which	happens	to	be	the
simpler	one	as	well.	It	comprises	a	unique	component	with	the	countdown	timer	we	built	in
the	previous	chapters:

app/timer/timer-widget.component.ts

import	{	Component,	Input,	OnInit	}	from	'@angular/core';

import	{	SettingsService	}	from	'../shared/shared';

@Component({

		selector:	'pomodoro-timer-widget',

		template:	`

				<div	class="text-center">

						

						<h1>	{{	minutes	}}:{{	seconds		|	number:	'2.0'	}}	</h1>

						<p>

								<button	(click)="togglePause()"	class="btn	btn-danger">

								{{	buttonLabelKey	|	i18nSelect:	buttonLabelsMap	}}

								</button>

						</p>

				</div>`

})

export	default	class	TimerWidgetComponent	{

		minutes:	number;

		seconds:	number;

		isPaused:	boolean;

		buttonLabelKey:	string;

		buttonLabelsMap:	any;

		constructor(private	settingsService:	SettingsService)	{

				this.buttonLabelsMap	=	settingsService.labelsMap.timer;

		}

		ngOnInit():	void	{

				this.resetPomodoro();

				setInterval(()	=>	this.tick(),	1000);

		}

		resetPomodoro():	void	{

				this.isPaused	=	true;

				this.minutes	=	this.settingsService.timerMinutes	-	1;

				this.seconds	=	59;

				this.buttonLabelKey	=	'start';

www.EBooksWorld.ir

		}

		private	tick():	void	{

				if	(!this.isPaused)	{

						this.buttonLabelKey	=	'pause';

						if	(--this.seconds	<	0)	{

								this.seconds	=	59;

								if	(--this.minutes	<	0)	{

										this.resetPomodoro();

								}

						}

				}

		}

		togglePause():	void	{

				this.isPaused	=	!this.isPaused;

				if	(this.minutes	<	this.settingsService.timerMinutes	||	this.seconds	<	59)	{

						this.buttonLabelKey	=	this.isPaused	?	'resume'	:	'pause';

				}

		}

}

As	you	can	see,	the	implementation	is	pretty	much	the	same	we	saw	already	back	in	Chapter	1,
Creating	Our	Very	First	Component	in	Angular	2,	with	the	exception	of	initializing	the
component	at	the	init	life	cycle	stage	through	the	OnInit	interface	hook.	We	leverage	the
l18nSelect	pipe	to	better	handle	the	different	labels	required	for	each	state	of	the	timer,
consuming	the	label	information	from	the	SettingsService	provider,	which	is	injected	by	the
component	injector	through	an	annotated	argument	in	the	constructor.	Later	on	in	this	chapter,
we	will	see	where	to	register	that	provider.	The	pomodoro	duration	in	minutes	is	also
consumed	from	the	service,	once	the	latter	is	bound	to	a	class	field.

The	component	is	exported	publicly	through	a	facade,	saving	its	client	components	from
having	to	know	the	actual	path	and	filename	of	the	component.	The	code	is	as	follows:

app/timer/timer.ts

import	TimerWidgetComponent	from	'./timer-widget.component';

const	TIMER_DIRECTIVES:	any[]	=	[

		TimerWidgetComponent

];

export	{

		TIMER_DIRECTIVES,

		TimerWidgetComponent

};

Please	note	that	the	TIMER_DIRECTIVES	alias	token	is	included	for	our	convenience	should	the
component	range	grow	in	the	future	and	we	wish	to	take	advantage	of	a	single	entry	point	to
all	components	and	directives	publicly	available.

www.EBooksWorld.ir

The	tasks	context

The	tasks	context	encompasses	some	more	logic,	since	it	entails	two	components	and	a
directive.	Let's	begin	by	creating	the	core	unit	required	by	TaskTooltipDirective:

app/tasks/task-tooltip.directive.ts

import	{	Task	}	from	'../shared/shared';

import	{	Input,	Directive,	HostListener	}	from	'@angular/core';

@Directive({

		selector:	'[task]'

})

export	default	class	TaskTooltipDirective	{

		private	defaultTooltipText:	string;

		@Input()	task:	Task;

		@Input()	taskTooltip:	any;

		@HostListener('mouseover')

		onMouseOver()	{

				if(!this.defaultTooltipText	&&	this.taskTooltip)	{

						this.defaultTooltipText	=	this.taskTooltip.innerText;

				}

				this.taskTooltip.innerText	=	this.task.name;

		}

		@HostListener('mouseout')

		onMouseOut()	{

				if(this.taskTooltip)	{

						this.taskTooltip.innerText	=	this.defaultTooltipText;

				}

		}

}

The	directive	keeps	all	the	original	functionality	in	place	and	just	imports	the	Angular	2	core
types	and	task-typing	it	requires.	Let's	look	at	the	TaskIconsComponent	now:

app/tasks/task-icons.component.ts

import	{	Component,	Input,	OnInit	}	from	'@angular/core';

import	{	Task	}	from	'../shared/shared';

@Component({

		selector:	'pomodoro-task-icons',

		template:	`<img	*ngFor="let	icon	of	icons"

																		src="/app/shared/assets/img/pomodoro.png"

																		width="{{size}}">`

})

export	default	class	TaskIconsComponent	implements	OnInit	{

		@Input()	task:	Task;

		@Input()	size:	number;

		icons:	Object[]	=	[];

		ngOnInit()	{

				this.icons.length	=	this.task.pomodorosRequired;

www.EBooksWorld.ir

				this.icons.fill({	name:	this.task.name	});

		}

}

So	far	so	good.	Now,	let's	jump	to	TasksComponent.	This	component	will	require	some	more
overhead,	since	it	features	external	HTML	templates	and	style	sheets,	which	are	basically	the
same	we	already	built	back	in	Chapter	4,	Enhancing	our	Components	with	Pipes	and
Directives:

app/tasks/tasks.component.css

h3,	p	{

				text-align:	center;

}

.table	{

				margin:	auto;

				max-width:	860px;

}

app/tasks/tasks.component.html

<div	class="container	text-center">

		<h3>

				{{	queuedPomodoros	|	i18nPlural:	queueHeaderMapping	}}	for	today

					0">(Estimated	time:

				{{	queuedPomodoros	*	timerMinutes	|	pomodoroFormattedTime	}})

				

		</h3>

		<p>

				<span*ngFor="let	queuedTask	of	tasks	|	pomodoroQueuedOnly:	true">

						<pomodoro-task-icons

								[task]="queuedTask"

								[taskTooltip]="tooltip"

								size="50">

						</pomodoro-task-icons>

				

		</p>

		<p	#tooltip	[hidden]="queuedPomodoros	===	0">Mouseover	for	details</p>

		<h4>Tasks	backlog</h4>

		<table	class="table">

				<thead>

						<tr>

								<th>Task	ID</th>

								<th>Task	name</th>

								<th>Deliver	by</th>

								<th>Pomodoros</th>

								<th>Actions</th>

						</tr>

				</thead>

				<tbody>

						<tr	*ngFor="let	task	of	tasks;	let	i	=	index">

								<th	scope="row">{{i}}

										

												Queued

www.EBooksWorld.ir

										

								</th>

								<td>{{task.name	|	slice:	0:35	}}

										<span	[hidden]="task.name.length	<	35">...

								</td>

								<td>{{task.deadline	|	date:	'fullDate'	}}

										<span	*ngIf="task.deadline	<	today"class="label	label-danger">

												Due

										

								</td>

								<td	class="text-center">{{task.pomodorosRequired}}</td>

								<td>

										<button	type="button"	class="btn	btn-default	btn-xs"

												[ngSwitch]="task.queued"

												(click)="toggleTask(task)">

												<template	[ngSwitchWhen]="false">

														<i	class="glyphicon	glyphicon-plus-sign"></i>

														Add

												</template>

												<template	[ngSwitchWhen]="true">

														<i	class="glyphicon	glyphicon-minus-sign"></i>

														Remove

												</template>

												<template	ngSwitchDefault>

														<i	class="glyphicon	glyphicon-plus-sign"></i>

														Add

												</template>

										</button>

								</td>

						</tr>

				</tbody>

		</table>

</div>

Please	take	a	moment	to	check	out	the	naming	convention	applied	to	the	external	component
files,	whose	filename	matches	the	component's	own	to	identify	which	file	belongs	to	what	in
flat	structures	inside	a	context	folder.	Also,	please	note	how	we	removed	the	main	pomodoro
bitmap	from	the	template	and	replaced	the	hardcoded	pomodoro	time	durations	with	a
variable	named	timerMinutes	in	the	binding	expression	that	computes	the	time	estimation	to
accomplish	all	queued	tasks.	We	will	see	how	that	variable	is	populated	in	the	following
component	class:

app/tasks/tasks.component.ts

import	{	Component,	OnInit	}	from	'@angular/core';

import	TaskIconsComponent	from	'./task-icons.component';

import	TaskTooltipDirective	from	'./task-tooltip.directive';

import	{

		TaskService,

		SettingsService,

		Task,

		SHARED_PIPES

}	from	'../shared/shared';

www.EBooksWorld.ir

@Component({

		selector:	'pomodoro-tasks',

		directives:	[TaskIconsComponent,	TaskTooltipDirective],

		pipes:	[SHARED_PIPES],

		styleUrls:	['app/tasks/tasks.component.css'],

		templateUrl:	'app/tasks/tasks.component.html'

})

export	default	class	TasksComponent	implements	OnInit	{

		today:	Date;

		tasks:	Task[];

		queuedPomodoros:	number;

		queueHeaderMapping:	any;

		timerMinutes:	number;

		constructor(

				private	taskService:	TaskService,

				private	settingsService:	SettingsService)	{

				this.tasks	=	this.taskService.taskStore;

				this.today	=	new	Date();

				this.queueHeaderMapping	=	settingsService.pluralsMap.tasks;

				this.timerMinutes	=	settingsService.timerMinutes;

		}

		ngOnInit():	void	{

				this.updateQueuedPomodoros();

		}

		toggleTask(task:	Task):	void	{

				task.queued	=	!task.queued;

				this.updateQueuedPomodoros();

		}

		private	updateQueuedPomodoros():	void	{

				this.queuedPomodoros	=	this.tasks

						.filter((Task:	Task)	=>	Task.queued)

						.reduce((pomodoros:	number,	queuedTask:	Task)	=>	{

						return	pomodoros	+	queuedTask.pomodorosRequired;

				},	0);

		}

};

Several	aspects	of	the	TasksComponent	implementation	are	worth	highlighting:

We	import	the	component's	required	child	component	and	directives	relatively.	If	we
tried	to	bring	them	from	the	facade,	we	would	get	an	undefined	value	because	of	a
circular	reference.
We	do	not	import	all	the	required	pipes,	just	its	SHARED_PIPES	alias	token,	registering	it
in	the	pipe's	component	decorator	property.
We	inject	the	TaskService	and	SettingsService	providers	in	the	component,	leveraging
Angular's	DI	system.	The	dependencies	are	injected	with	accessors	right	from	the
constructor,	becoming	private	class	members	on	the	spot.
The	tasks	dataset	and	the	pomodoro	time	duration	are	then	populated	from	the	bound
services.

www.EBooksWorld.ir

Our	last	step	is	to	expose	the	facade	required	for	this	feature	context.	In	all	fairness,	we	are
not	meant	to	export	everything	on	every	context.	We	can	simply	get	away	with	exporting	only
the	main	context	component,	while	leaving	any	other	sub	component	or	directive	outside	the
scope	of	the	context	facade.	That	is	actually	what	we	will	do	in	here,	since	it	is	quite	unlikely
that	any	host	component	would	ever	need	to	include	in	its	own	view	the	TaskIconsComponent.
We	will	nevertheless	export	the	TaskTooltipDirective,	since	its	implementation	might	be
reused	in	the	future	by	some	other	component	dealing	with	the	[task]	input	properties.

app/tasks/tasks.ts

import	TasksComponent	from	'./tasks.component';

import	TaskTooltipDirective	from	'./task-tooltip.directive';

const	TASKS_DIRECTIVES:	any[]	=	[

		TasksComponent,

		TaskTooltipDirective

];

export	{

		TASKS_DIRECTIVES,

		TasksComponent,

		TaskTooltipDirective

};

Please	check	how	we	conform	to	the	naming	convention	for	alias	tokens	when	grouping
components	and	directives	in	their	own	alias	token.

Defining	the	top	root	component

With	all	our	feature	contexts	ready,	time	has	come	to	define	the	top	root	component,	which
will	kickstart	the	whole	application	as	a	cluster	of	components	laid	out	in	a	tree	hierarchy.	The
root	component	usually	has	a	minimum	implementation.	Basically,	its	goal	is	to	register	the
dependency	providers	the	application	will	require	as	singletons	at	different	levels	of	the
component	hierarchy,	and	instantiate	in	its	view	template	the	main	child	components	that	will
eventually	evolve	into	branches	of	child	components.

app/app.component.ts

import	{	Component	}	from	'@angular/core';

import	{	TIMER_DIRECTIVES	}	from	'./timer/timer';

import	{	TASKS_DIRECTIVES	}	from	'./tasks/tasks';

import	{	SHARED_PROVIDERS	}	from	'./shared/shared';

@Component({

		selector:	'pomodoro-app',

		directives:	[TIMER_DIRECTIVES,	TASKS_DIRECTIVES],

		providers:	[SHARED_PROVIDERS],

		template:	`

				<nav	class="navbar	navbar-default	navbar-static-top">

						<div	class="container">

								<div	class="navbar-header">

www.EBooksWorld.ir

										<strong	class="navbar-brand">My	Pomodoro	App

								</div>

						</div>

				</nav>

				

				<pomodoro-timer-widget></pomodoro-timer-widget>

				<pomodoro-tasks></pomodoro-tasks>

				`

})

export	default	class	AppComponent	{}

Please	check	how	we	conveniently	import	the	alias	tokens	and	register	them	in	the	providers
and	directives	properties	of	the	component	decorator.	The	SHARED_PROVIDERS	token
deserves	a	special	mention.	All	the	providers	grouped	by	it	are	now	available	down	the	tree	of
components	that	hangs	from	this	top	root	component,	so	there's	no	need	to	register	it	again
and	the	state	of	each	provider	will	remain	consistent	across	the	application	domain.

The	only	exception	to	this	would	be	to	have	one	component	at	some	level	registering,	for
argument's	sake,	the	TaskService	as	a	provider.	That	would	turn	into	a	new	instance	of	the
service	at	that	component	level	and	for	all	its	child	components	as	well.

www.EBooksWorld.ir

Bootstrapping	the	application
We	now	have	a	full-blown	application	featuring	different	functionality	contexts,	wrapped	by	a
top	root	component.	The	last	step	of	our	endeavor	will	be	to	bootstrap	the	application,	by
importing	the	main	top	root	component	and	passing	it	over	to	the	bootstrap()	function:

app/main.ts

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	AppComponent	from	'./app.component';

bootstrap(AppComponent);

This	file	must	be	imported	from	the	main	index.html	file	in	order	to	trigger	the	whole
process,	by	using	a	standard	module	loader	such	as	SystemJS	or	WebPack.	In	the	book
repository,	we	use	SystemJS	so	please	refer	to	the	chapter	code	there	for	further	reference.	In
the	index.html	file,	we	will	expect	a	custom	element	matching	the	top	root	component
selector,	as	shown	in	the	following	index.html	transcription:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>My	Angular	2	Pomodoro	Application</title>

				<script	src="node_modules/es6-shim/es6-shim.min.js"></script>

				<script	src="node_modules/zone.js/dist/zone.js"></script>

				<script	src="node_modules/reflect-metadata/Reflect.js"></script>

				<script	src="node_modules/systemjs/dist/system.js"></script>

				<script	src="node_modules/rxjs/bundles/Rx.js"></script>

				<script	src="systemjs.config.js"></script>

				<script>

						System.import	('built/app/main')

						.then(null,	console.error.bind(console));

				</script>

				<link	rel="stylesheet"	

href="node_modules/bootstrap/dist/css/bootstrap.min.css">

				<base	href="/">

		</head>

		<body>

				<pomodoro-app>Loading...</pomodoro-app>

		</body>

</html>

With	all	the	files	in	place,	we	can	safely	compile	the	project	and	see	the	results	served	by	a
web	server	in	a	browser	window.	If	you	have	downloaded	package.json	(and	related	JSON
files)	from	the	book	repo,	please	run	npm	start	from	your	terminal	window	and	enjoy.	You

www.EBooksWorld.ir

made	a	fantastic	pomodoro	application	by	yourself!

www.EBooksWorld.ir

Summary
This	chapter	has	definitely	set	the	foundation	for	all	the	great	applications	that	you	will	be
building	on	top	of	Angular	2	from	now	on.	The	Angular	2	dependency	management
implementation	is	in	fact	one	of	the	gems	of	this	framework	and	a	time	saver.	Application
architectures	based	on	component	trees	are	not	rocket	science	anymore,	and	we	have
followed	this	pattern	to	some	extent	while	building	web	software	in	other	frameworks	such	as
Angular	1.x	and	React.

This	chapter	concludes	our	trip	through	the	core	of	Angular	2	and	its	application	architecture,
setting	up	the	standards	that	we	will	follow	from	now	on	while	building	applications	on	top	of
this	new	and	exciting	framework.

In	the	next	chapters,	we	will	focus	on	very	specific	tools	and	modules	that	we	can	use	to	solve
everyday	problems	when	crafting	our	web	projects.	We	will	see	how	to	develop	better	HTTP
networking	clients	with	Angular	2.

www.EBooksWorld.ir

Chapter	6.	Asynchronous	Data	Services	with
Angular	2
Connecting	to	data	services	and	APIs	and	handling	asynchronous	information	is	a	common
task	in	our	everyday	life	as	developers.	In	this	sense,	Angular	2	provides	an	unparalleled	tool
set	to	help	its	enthusiastic	developers	when	it	comes	to	consuming,	digesting,	and
transforming	all	kinds	of	data	fetched	from	data	services.

There	are	so	many	possibilities	that	it	would	require	an	entire	book	to	describe	all	that	you
can	do	to	connect	to	APIs	or	consume	information	from	the	filesystem	asynchronously
through	HTTP.	In	this	book,	we	will	only	scratch	the	surface,	but	the	insights	covered	in	this
chapter	about	the	HTTP	API	and	its	companion	classes	and	tools	will	give	you	all	that	you
need	to	connect	your	applications	to	HTTP	services	in	no	time,	leaving	to	your	creativity	all
that	you	can	do	with	them.

In	this	chapter,	we	will:

Look	at	the	different	strategies	for	handling	asynchronous	data
Introduce	Observables	and	Observers
Discuss	functional	reactive	programming	and	RxJS
Review	the	HTTP	class	and	its	API,	as	part	of	the
Cover	the	HTTP_PROVIDERS	module
See	all	of	the	preceding	points	in	action	through	actual	code	examples

www.EBooksWorld.ir

Strategies	for	handling	asynchronous
information
Consuming	information	from	an	API	is	a	common	operation	in	our	daily	practice.	We
consume	information	over	HTTP	all	the	time—when	authenticating	users	by	sending	out
credentials	to	an	authentication	service,	or	when	fetching	the	latest	tweets	in	our	favorite
Twitter	widget.	Modern	mobile	devices	have	introduced	an	unparalleled	way	of	consuming
remote	services,	deferring	the	requests	and	response	consumption	until	mobile	connectivity	is
available.	Responsivity	and	availability	have	become	big	deals.	And	although	modern	Internet
connections	are	ultra-fast,	there	is	always	a	response	time	involved	when	serving	such
information	that	forces	us	to	put	in	place	mechanisms	to	handle	state	in	our	applications	in	a
transparent	way	for	the	end	user.

This	is	not	specific	to	scenarios	where	we	need	to	consume	information	from	an	external
resource.	Sometimes,	we	might	need	to	build	functionalities	that	depend	on	time	as	a
parameter	of	something,	and	we	need	to	introduce	code	patterns	that	handle	this	deferred
change	in	the	application	state.

For	all	these	scenarios,	we	have	always	used	code	patterns,	such	as	the	callback	pattern,	where
the	function	that	triggers	the	asynchronous	action	expects	another	function	in	its	signature,
which	will	emit	a	sort	of	notification	as	soon	as	the	asynchronous	operation	is	completed:

function	notifyCompletion()	{

		console.log('Our	asynchronous	operation	has	been	completed');

}

function	asynchronousOperation(callback)	{

		setTimeout(callback,	5000);

}

asynchronousOperation(notifyCompletion);

The	problem	with	this	pattern	is	that	code	can	become	quite	confusing	and	cumbersome	as	the
application	grows	and	more	and	more	nested	callbacks	are	introduced.	In	order	to	avoid	this
scenario,	Promises	introduced	a	new	way	of	envisioning	asynchronous	data	management	by
conforming	to	a	neater	and	more	solid	interface,	in	which	different	asynchronous	operations
can	be	chained	at	the	same	level	and	even	be	split	and	returned	from	other	functions:

function	notifyCompletion()	{

		console.log('Our	asynchronous	operation	has	been	completed');

}

function	asynchronousOperation()	{

		var	promise	=	new	Promise((resolve,	reject)	=>	{

				setTimeout(resolve,	5000);				

		});

		return	promise;

www.EBooksWorld.ir

}

asynchronousOperation().then(notifyCompletion);

The	preceding	code	example	is	perhaps	a	bit	more	verbose,	but	it	definitely	produces	a	more
expressive	and	elegant	interface	for	our	asynchronousOperation	function.

So,	Promises	took	over	the	coding	arena	by	storm	and	no	developer	out	there	seems	to
question	the	great	value	they	bring	to	the	game.	So	why	do	we	need	another	paradigm?	Well,
because	sometimes	we	might	need	to	produce	a	response	output	that	follows	a	more	complex
digest	process	as	it	is	being	returned,	or	even	cancel	the	whole	process.	This	cannot	be	done
with	Promises,	because	they	are	triggered	as	soon	as	they're	instanced.	In	other	words,
Promises	are	not	lazy.	On	the	other	hand,	the	possibility	of	tearing	down	an	asynchronous
operation	after	it	has	been	fired	but	not	completed	yet	can	become	quite	handy	in	certain
scenarios.	Promises	only	allow	us	to	resolve	or	reject	an	asynchronous	operation,	but
sometimes	we	might	want	to	abort	everything	before	getting	to	that	point.	On	top	of	that,
promises	behave	as	a	one-time	operation.	Once	they	are	resolved,	we	cannot	expect	to	receive
any	further	information	or	state	change	notification	unless	we	rerun	everything	from	scratch.
Moreover,	we	sometimes	need	a	more	proactive	implementation	of	async	data	handling.	This
is	where	Observables	come	into	the	game.

www.EBooksWorld.ir

Observables	in	a	nutshell
An	Observable	is	basically	an	async	event	emitter	that	informs	another	element,	called	the
Observer,	the	state	has	changed.	In	order	to	do	so,	the	Observable	implements	all	of	the
machinery	that	it	needs	to	produce	and	emit	such	async	events,	and	it	can	be	fired	and	canceled
at	any	time	regardless	of	whether	it	has	emitted	the	expected	data	events	already	or	not.

This	pattern	allows	concurrent	operations	and	more	advanced	logic,	since	the	Observers	that
subscribe	to	the	Observable	async	events	will	react	to	reflect	the	state	change	of	the
Observable	they	subscribe	to.

These	subscribers,	which	are	the	Observers	we	mentioned	earlier,	will	keep	listening	to
whatever	happens	in	the	Observable	until	the	Observable	is	disposed,	if	that	ever	happens
eventually.	In	the	meantime,	information	will	be	updated	throughout	the	application	with	no
intervention	whatsoever	of	triggering	routines.

We	can	probably	see	all	this	with	more	transparency	in	an	actual	example.	Let's	refactor	the
example	we	covered	when	assessing	promise-based	async	operations	and	replace	the
setTimeout	command	with	setInterval:

function	notifyCompletion()	{

		console.log('Our	asynchronous	operation	has	been	completed');

}

function	asynchronousOperation()	{

		var	promise	=	new	Promise((resolve,	reject)	=>	{

				setInterval(resolve,	2000);				

		});

		return	promise;

}

asynchronousOperation().then(notifyCompletion);

Copy	and	paste	the	preceding	snippet	in	your	browser's	console	window	and	see	what
happens:	the	text	Our	asynchronous	operation	has	been	completed	will	show	up	at	the	dev
tools'	console	only	once	after	2	seconds	and	will	never	be	rendered	again.	The	promise
resolved	itself	and	the	entire	async	event	was	terminated	at	that	very	moment.

Now,	point	your	browser	to	an	online	JavaScript	code	playground	such	as	JSBIN
(https://jsbin.com/),	and	create	a	new	code	snippet	enabling	just	the	JavaScript	and	the
Console	tabs.	Then,	make	sure	you	add	the	RxJS	library	from	the	Add	library	option
dropdown	(we	will	need	this	library	to	create	observables,	but	don't	panic;	we	will	cover	this
later	in	the	chapter)	and	insert	the	following	code	snippet:

var	observable	=	Rx.Observable.create(observer	=>	{

		setInterval(()	=>	{

				observer.onNext('My	async	operation');

		},	2000);

});

www.EBooksWorld.ir

https://jsbin.com/

observable.subscribe(response	=>	console.log(response));

Run	it	and	expect	some	message	to	appear	on	the	right	pane.	2	seconds	later,	we	will	see	the
same	message	showing	up,	and	then	again	and	again.	In	this	simple	example,	we	created	an
observable	and	then	subscribed	to	its	changes,	throwing	to	the	console	whatever	it	emits	(a
simple	message	in	this	example)	as	a	sort	of	push	notification.

The	Observable	returns	a	stream	of	events	and	our	subscribers	receive	prompt	notification	of
those	streamed	events,	acting	accordingly.	This	is	what	the	magic	of	Observables	relies	on—
Observables	do	not	perform	an	async	operation	and	die	(although	we	can	configure	them	to
do	so),	but	start	a	stream	of	continuous	events	we	can	subscribe	our	subscribers	to.

If	we	comment	out	the	last	line,	nothing	will	happen.	The	Console	pane	will	remain	silent	and
all	the	magic	will	begin	only	when	we	subscribe	our	source	object.

That's	not	all,	however.	This	stream	can	be	the	subject	of	many	operations	before	hitting	the
Observers	subscribed	to	them.	Just	as	we	can	grab	a	collection	object,	such	as	an	array,	and
apply	functional	methods	over	it	such	as	map()	or	filter()	in	order	to	transform	and	play
around	with	the	array	items,	we	can	do	the	same	with	the	stream	of	events	that	are	emitted	by
our	Observables.	This	is	what	is	known	as	reactive	functional	programming,	and	Angular	2
makes	the	most	of	this	paradigm	to	handle	asynchronous	information.

www.EBooksWorld.ir

Reactive	functional	programming	in	Angular	2
The	Observable	pattern	stands	at	the	core	of	what	we	know	as	reactive	functional
programming.	Basically,	the	most	basic	implementation	of	a	reactive	functional	script
encompasses	several	concepts	that	we	need	to	become	familiar	with:

An	Observable
An	Observer
A	timeline
A	stream	of	events	featuring	the	same	behavior	as	an	objects	collection
A	set	of	composable	operators,	also	known	as	Reactive	Extensions

Sounds	daunting?	It's	not.	Believe	us	when	we	tell	you	that	all	of	the	code	you	have	gone
through	so	far	is	much	more	complex	than	this.	The	big	challenge	here	is	to	change	your
mindset	and	learn	to	think	in	a	reactive	fashion,	and	that	is	the	main	goal	of	this	section.

If	we	want	to	put	it	simply,	we	can	just	say	that	reactive	programming	entails	applying
asynchronous	subscriptions	and	transformations	to	Observable	streams	of	events.	We	can
imagine	your	poker	face	now,	so	let's	put	together	a	more	descriptive	example.

Think	about	an	interaction	device	such	as	a	keyboard.	A	keyboard	has	keys	that	the	user
presses.	Each	one	of	those	key	strokes	triggers	a	key	press	event.	That	key	press	event
features	a	wide	range	of	metadata,	including—but	not	limited	to—the	numeric	code	of	the
specific	key	the	user	pressed	at	a	given	moment.	As	the	user	continues	hitting	keys,	more
keyUp	events	are	triggered	and	piped	through	an	imaginary	timeline.	Congratulations!	You
have	an	Observable	sequence	in	the	works	here:	the	keyboard	assumes	the	role	of	an
Observable	and	emits	a	sequence	of	events	that	inform	of	the	keys	pressed	no	matter	what
happens	next.	Each	keystroke	event	is	agnostic	from	the	rest	and	they	follow	a	sequence	along
time.	Now	we	mention	events,	one	occurring	after	another.	If	we	grab	a	group	of	elements	of
a	given	type	(not	necessarily	the	same	type	though)	and	wrap	them	in	an	object	(which	is	what
that	timeline	is),	isn't	it	a	collection?	Moreover,	that	collection	is	spanned	along	time.	So	isn't
that	a	stream?	Indeed	it	is,	so	congratulations!	You	now	have	an	event	stream	emitted	by	the
Observable	for	your	listening	delight:

www.EBooksWorld.ir

Our	stream	of	key	press	events	is	looking	really	good,	but	we	are	getting	notifications	for	all
the	keys	pressed.	What	if	we	want	to	subscribe	to	a	subset	of	the	stream	that	observes	the
events	represented	by	cursor	keys?	We	could	be	coding	a	simple	game	and	those	are	the	keys
that	control	our	avatar	in	the	game,	while	other	key	events	are	completely	useless	for	the
purpose	of	the	game.	Our	ideal	stream	should	contain	only	cursor	keys'	events	then.	This	is
where	the	functional	part	of	the	reactive	paradigm	comes	into	play.

Let's	imagine	we	are	grabbing	that	event	stream	and	filtering	it	to	include	only	the	key	press
events	that	pertain	to	interactions	with	the	cursor	keys,	disregarding	all	the	others.	On	top	of
that,	we	are	going	to	throttle	the	stream	to	allow	a	key	press	event	to	pass	through	only	every
500	milliseconds,	so	we	do	not	overflow	whatever	is	listening	at	the	other	end	of	the	wire.
Now	we	have	a	new	event	stream,	which	is	the	by-product	of	the	previous	one,	but	represents
only	a	subset	of	the	information	with	a	very	specific	goal:

www.EBooksWorld.ir

If	we	subscribe	to	this	last	stream,	we	can	take	action	on	each	cursor	key	press	and	apply
some	gamification	logic	to	whatever	game	we	are	developing	at	this	time.	We	can	even	hook
up	several	subscribers	to	that	stream,	or	apply	further	transformations	using	other	Reactive
Extensions	to	create	brand	new	streams	that	other	subscribers	can	subscribe	to	in	order	to
perform	other	business	or	presentation	logic	not	related	whatsoever	to	that	performed	by	the
original	subscriber.

This	logic	can	be	ported	to	the	realm	of	components	to	handle	interaction	events,
asynchronous	behavior,	or	(as	this	chapter	aims	to	describe)	the	consumption	and	digestion	of
information	served	by	an	API	service	or	data	store.	In	order	to	do	so,	Angular	2	relies	on
RxJS,	whose	core	module	is	required	as	a	peer	dependency	when	installing	Angular	2.	The
RxJS	API	provides	all	that	we	need	to	put	the	aforementioned	things	to	work	on	our
asynchronous	operations	with	Angular	2.

www.EBooksWorld.ir

The	RxJS	library
As	mentioned	previously,	Angular	2	comes	with	a	peer	dependency	on	RxJS,	the	JavaScript
flavor	of	the	ReactiveX	library	that	allows	us	to	create	Observables	and	Observable
sequences	out	of	a	large	variety	of	scenarios,	such	as	interaction	events,	promises,	or	callback
functions,	just	to	name	a	few.	In	that	sense,	reactive	programming	does	not	aim	to	replace
asynchronous	patterns	such	as	promises	or	callbacks.	All	the	way	around,	it	can	leverage	them
as	well	to	create	Observable	sequences.

RxJS	comes	with	built-in	support	for	a	wide	range	of	composable	operators	to	transform,
filter,	and	combine	the	resulting	event	streams.	Its	API	provides	convenient	methods	to
subscribe	Observers	to	these	streams	so	that	our	scripts	and	components	can	respond
accordingly	to	state	changes	or	interaction	inputs.	While	its	API	is	so	massive	that	covering	it
in	detail	is	out	of	the	scope	of	this	book,	we	will	highlight	some	bits	of	its	most	basic
implementation	in	order	for	you	to	better	understand	how	HTTP	connections	are	handled	by
Angular	2.

Before	jumping	onto	the	HTTP	API	provided	by	Angular	2,	let's	create	a	simple	example	of
an	Observable	event	stream	that	we	can	transform	with	Reactive	Extensions	and	subscribe
observers	to.	To	do	so,	let's	pick	the	scenario	described	in	the	previous	section.

We	envisioned	how	a	user	interacting	with	our	application	through	the	keyboard	can't	turn
into	a	timeline	of	keystrokes	and,	therefore,	an	event	stream.	Go	back	to	JSBIN,	delete	the
contents	of	the	JavaScript	pane,	and	then	write	down	the	following	snippet:

var	keyboardStream	=	Rx.Observable

		.fromEvent(document,	'keyup')

		.map(x	=>	x.which);

The	preceding	code	is	pretty	self-descriptive.	We	leverage	the	Rx.Observable	class	and	its
fromEvent	method	to	create	an	event	emitter	that	streams	the	keyup	events	that	take	place	in
the	scope	of	the	document	object.	Each	of	the	event	objects	emitted	is	a	complex	object,	so	we
simplify	the	streamed	objects	by	mapping	the	event	stream	onto	a	new	stream	that	contains
only	the	key	codes	pertaining	to	each	keystroke.	The	map	method	is	a	Reactive	Extension	that
features	the	same	behavior	as	the	JavaScript	map	functional	method.	This	is	why	we	usually
refer	to	this	code	style	as	reactive	functional	programming.

All	right,	so	now	we	have	an	event	stream	of	numeric	keystrokes,	but	we	are	only	interested
in	observing	those	events	that	inform	of	hits	on	the	cursor	keys.	We	can	build	a	new	stream
out	of	an	existing	stream	by	applying	more	Reactive	Extensions.	So,	let's	do	it	with
keyboardStream	by	filtering	such	a	stream	and	returning	only	those	events	that	are	related	to
cursor	keys.	We	will	also	map	those	events	to	their	text	correspondence	for	the	sake	of	clarity.
Append	the	following	chunk	of	code	right	below	the	previous	snippet:

var	cursorMovesStream	=	keyboardStream.filter(x	=>	{

				return		x	>	36	&&	x	<	41;

www.EBooksWorld.ir

		})

		.map(x	=>	{

				var	direction;

				switch(x)	{

						case	37:

								direction	=	'left';

								break;

						case	38:

								direction	=	'up';

								break;

						case	39:

								direction	=	'right';

								break;

						default:

								direction	=	'down';

				}

				return	direction;	

		});

We	could	have	done	all	of	this	in	a	single	action	by	chaining	the	filter	and	map	methods	to
the	keyboardStream	Observable	and	then	subscribing	to	its	output,	but	it's	generally	a	good
idea	to	separate	concerns.	By	shaping	our	code	in	this	way,	we	have	a	generic	keyboard	events
stream	that	we	can	reuse	later	on	for	something	completely	different.	So,	our	application	can
scale	up	while	keeping	the	code	footprint	to	a	minimum.

Now	that	we	have	mentioned	subscribers,	let's	subscribe	to	our	cursor	moves	stream	and
throw	the	move	commands	at	the	console.	We	type	the	following	statement	at	the	end	of	our
script,	then	clear	the	Console	pane,	and	click	on	the	Output	tab	so	that	we	can	have	a
document	available:

cursorMovesStream.subscribe(e	=>	console.log(e));

Click	anywhere	on	the	Output	pane	to	put	the	focus	on	it	and	start	typing	random	keyboard
keys	and	cursor	keys:

www.EBooksWorld.ir

You	are	probably	wondering	how	we	can	apply	this	pattern	to	an	asynchronous	scenario	such
as	consuming	information	from	a	HTTP	service.	Basically,	you	have	so	far	become	used	to
submitting	async	requests	to	AJAX	services	and	then	delegating	the	response	handling	to	a
callback	function	or	just	piping	it	through	a	promise.	Now,	we	will	handle	the	call	by
returning	an	Observable.	This	Observable	will	emit	the	server	response	as	an	event	in	the
context	of	a	stream,	which	will	be	funneled	through	Reactive	Extensions	to	better	digest	the
response.

www.EBooksWorld.ir

Introducing	the	HTTP	API
The	Http	class	provides	a	powerful	API	that	abstracts	all	the	operations	required	to	handle
asynchronous	connections	through	a	variety	of	HTTP	methods,	handling	the	responses	in	an
easy	and	comfortable	way.	Its	implementation	has	been	made	with	a	lot	of	care	to	ensure	that
programmers	will	feel	at	ease	while	developing	solutions	that	take	advantage	of	this	class	to
connect	to	an	API	or	a	data	resource.

In	a	nutshell,	instances	of	the	Http	class	(which	has	been	implemented	as	an	Injectable
resource	and	can	therefore	be	used	in	our	classes	constructors	just	by	injecting	it	as	a
dependency	provider)	expose	a	connection	method	named	request()	to	perform	any	type	of
http	connection.	The	Angular	2	team	has	created	some	syntax	shortcuts	for	the	most	common
request	operations,	such	as	GET,	POST,	PUT,	and	every	existing	HTTP	verb.	So,	creating	an
async	Http	request	is	as	easy	as	this:

var	requestOptions	=	new	RequestOptions({

		method:	RequestMethod.Get,

		url:	'/my-api/my-data-store.json'

});

var	request	=	new	Request(requestOptions);

var	myHttpRequest:	Observable<Response>	=	http.request(request);

Also,	all	of	this	can	be	simplified	into	a	single	line	of	code:

var	myHttpRequest:	Observable<Response>	=	http.get('/my-api/my-data-store.json');

As	we	can	see,	the	Http	class	connection	methods	operate	by	returning	an	Observable	stream
of	Response	object	instances.	This	allows	us	to	map	and	digest	the	output	of	the	Http	call	as
soon	as	it	is	available	and	subscribe	Observers	to	the	stream,	which	will	process	the
information	accordingly	once	it	is	returned,	as	many	times	as	required:

myHttpRequest.map(response:	Response	=>	response.json())

		.subscribe(data	=>	console.log(data));

In	the	preceding	example,	we	map	the	responses	emitted	by	the	Observable	event	stream	(as
we	can	see,	those	are	basically	instances	of	the	Response	class	provided	by	Angular	2)	to	a
new	collection	of	events	representing	JSON	instances	of	each	response.	This	is	done	by
leveraging	the	json()	method	of	the	Response	class,	which	we	will	cover	later	on	in	this
chapter.	Then	we	subscribe	to	the	resulting	stream	and	throw	the	output	of	the	HTTP	call	to
the	Console	once	our	Observer	receives	the	data	notification.

By	doing	this,	we	can	respawn	the	Http	request	as	many	times	as	we	need,	and	the	rest	of	our
machinery	will	react	accordingly.	We	can	even	merge	the	event	stream	represented	by	the
Http	call	with	other	related	calls,	and	compose	more	complex	Observable	streams	and	data
threads.	The	possibilities	are	endless.

www.EBooksWorld.ir

When	to	use	the	Request	and	RequestOptionsArgs	classes
We	mentioned	the	Request	and	RequestOptions	classes	while	introducing	the	Http	class	at
first.	On	a	regular	basis,	you	will	not	need	to	make	use	of	these	low-level	classes,	mostly
because	the	shortcut	methods	provided	by	the	Http	class	abstract	the	need	to	declare	the	HTTP
verb	in	use	(GET,	POST,	and	so	on)	and	the	URL	we	want	to	consume.	With	this	being	said,	you
will	sometimes	want	to	introduce	special	HTTP	headers	in	your	requests	or	append	query
string	parameters	automatically	to	each	request,	for	argument's	sake.	That	is	why	these	classes
can	become	quite	handy	in	certain	scenarios.	Think	of	a	use	case	where	you	want	to	add	an
authentication	token	to	each	request	in	order	to	prevent	unauthorized	users	from	reading	data
from	one	of	your	API	endpoints.

In	the	following	example,	we	read	an	authentication	token	and	append	it	as	a	header	to	our
request	to	a	data	service.	Contrary	to	our	example,	we	will	inject	the	options	hash	object
straight	into	the	Request	constructor,	skipping	the	step	of	creating	a	RequestOptions	object
instance.	Angular	2	provides	a	wrapper	class	for	defining	custom	headers	as	well,	and	we	will
take	advantage	of	it	in	this	scenario.	Let's	figure	out	that	we	do	have	an	API	that	expects	all
requests	to	include	a	custom	header	named	Authorization,	attaching	the	authToken	that	we
received	when	logging	into	the	system,	which	was	then	persisted	in	the	browser's	local
storage	layer,	for	instance:

var	authToken	=	window.localStorage.getItem('auth_token');

var	headers	=	new	Headers();

headers.append('Authorization',	`Token	${authToken}`);

var	request	=	new	Request({

		method:	RequestMethod.Get,

		url:	'/my-api/my-secured-data-store.json',

		headers:	headers

});	

var	authRequest:	Observable<Response>	=	http.request(request);

Again,	we	would	like	to	note	that	apart	from	this	scenario,	you	will	seldom	need	to	create
custom	request	configurations,	unless	you	want	to	delegate	the	creation	of	request
configurations	in	a	factory	class	or	method	and	reuse	the	same	Http	wrapper	all	the	time.
Angular	2	gives	you	all	the	flexibility	to	go	as	far	as	you	wish	when	abstracting	your
applications.

www.EBooksWorld.ir

The	Response	object
As	we	have	already	seen,	the	HTTP	requests	performed	by	the	Http	class	return	an	observable
stream	of	Response	class	instances.	Similar	to	the	Request	object,	you	will	rarely	find
yourself	in	need	of	instantiating	this	class.	However,	understanding	the	Response	class
interface	is	quite	useful	in	order	to	understand	the	status	of	our	request,	handle	connection
errors,	and	properly	digest	the	information	returned	in	the	stream.

In	our	first	example,	we	mapped	the	content	of	the	stream	as	a	stream	of	JSON	objects	by
executing	the	json()	method.	This	method	parses	the	response	body	as	a	JSON	object,	or
raises	an	exception	if	such	a	body	cannot	be	parsed.	Besides	this	method,	the	Response	class
exposes	the	text()	method,	which	will	parse	and	return	the	response	body	as	a	plain	string.

Let's	figure	this	out:	we	have	a	component	that	exposes	a	string	field	named	bio,	which	is
rendered	in	the	component's	template.	We	might	want	to	serve	this	bio	property	from	a	REST
API.	Hence,	we	could	implement	such	functionality	in	a	few	lines	of	code,	like	this:

http.get('/api/bio')

		.map(res:	Response	=>	res.txt)

		.subscribe(bio	=>	this.bio	=	bio);

The	Response	object	exposes	other	minor	methods	and	some	interesting	properties,	such	as
the	numeric	status	property,	which	informs	of	the	status	code	returned	by	the	server.	The
bytesLoaded	and	totalBytes	numeric	properties	become	quite	useful	when	scaffolding
preload	notifiers	in	progress	events.	Special	mention	goes	to	the	headers	property,	which
returns	an	object	based	on	the	Headers	class	(https://fetch.spec.whatwg.org/#headers-class)	of
the	Fetch	API.

Coverage	for	all	the	methods	and	properties	available	in	the	Response	class	API	is	definitely
beyond	the	scope	of	this	book,	as	you	will	not	be	using	those	on	a	regular	basis,	but	we
encourage	you	to	expand	your	knowledge	on	the	subject	by	visiting	the	official
documentation	(https://angular.io/docs).

www.EBooksWorld.ir

https://fetch.spec.whatwg.org/#headers-class
https://angular.io/docs

Handling	errors	when	performing	Http	requests
Handling	errors	raised	in	our	requests	by	inspecting	the	information	returned	in	the	Response
object	is	actually	quite	simple.	We	just	need	to	inspect	the	value	of	its	Boolean	property,	which
will	return	false	if	the	HTTP	status	of	the	response	falls	somewhere	out	side	of	the	2xx
range,	clearly	indicating	that	our	request	could	not	be	accomplished	successfully.	We	can
double-check	that	by	inspecting	the	status	property	to	understand	the	error	code	or	the	type
property,	which	can	assume	the	following	values:	basic,	cors,	default,	error,	or	opaque.
Inspecting	the	response	headers	and	the	statusText	property	of	the	Response	object	will
provide	insightful	information	about	the	origin	of	the	error.

All	in	all,	we	are	not	meant	to	inspect	those	properties	on	every	response	message	we	get.
Angular	2	provides	an	Observable	operator	to	catch	errors,	injecting	in	its	signature	the
Response	object	we	require	to	inspect	the	previous	properties:

http.get('/api/bio')

		.map(res:	Response	=>	res.txt)

		.subscribe(bio	=>	this.bio	=	bio)

		.catch(error:	Response	=>	console.error(error));

In	a	normal	scenario,	you	would	want	to	inspect	more	data	rather	than	the	error	properties,
aside	from	logging	that	information	in	a	more	solid	exception	tracking	system.

www.EBooksWorld.ir

Injecting	the	Http	class	and	the	HTTP_PROVIDERS	modules
symbol
The	Http	class	can	be	injected	in	our	own	components	and	custom	classes	by	leveraging
Angular's	unique	dependency	injection	system.	So,	if	we	ever	need	to	implement	HTTP	calls,
we	need	to	import	the	class	and	bind	it	as	a	dependency	in	the	list	of	component	or	directive
providers,	like	this:

import	{	Component	}	from	'@angular/core';

import	{	Http	}	from	'@angular/http';

@Component({

		selector:	'bio',

		providers:	[Http],

		template:	'<div>{{bio}}</div>'

})

class	Biography	{

		bio:	string;

		constructor(http:	Http)	{

				http.get('/api/bio')

						.map((res:	Response)	=>	res.text())

						.subscribe((bio:	string)	=>	this.bio	=	bio);

		}

}

In	the	code	provided,	we	just	follow	up	with	the	bio	example	that	we	pointed	out	in	the
previous	section.	Note	how	we	are	importing	the	Http	type	and	injecting	it	as	a	dependency
through	the	providers	collection	property	of	the	Component	decorator.

Usually,	we	need	to	perform	multiple	HTTP	calls	in	different	parts	of	our	application,	so	it's
usually	recommended	to	include	the	Http	class	in	the	root	injector	rather	than	on	a	per
component	injector	basis.	To	do	so	and	keeping	in	mind	that	the	Http	class	might	require
other	providers	such	as	the	RequestOptions	class,	Angular	2	provides	a	set	of	injectable
symbols	wrapped	inside	the	HTTP_PROVIDERS	token.

We	recommend	that	you	use	this	set	instead	of	the	Http	class	to	inject	the	dependencies
required	to	perform	HTTP	requests	throughout	your	application.	For	your	convenience,	it	is
advised	to	do	so	at	the	root	component	providers	property,	so	its	injector	will	make	the
provider	available	throughout	its	child	components	tree.	Taking	our	pomodoro	app	as	an
example,	we	would	need	to	import	it	at	the	AppComponent	code	unit	and	inject	it	into	the
component	providers	right	away:

app/app.component.ts

import	{	Component	}	from	'@angular/http';

import	{	TIMER_DIRECTIVES	}	from	'./timer/timer';

import	{	TASKS_DIRECTIVES	}	from	'./tasks/tasks';

import	{	SHARED_PROVIDERS	}	from	'./shared/shared';

import	{	HTTP_PROVIDERS	}	from	'@angular/http';

www.EBooksWorld.ir

@Component({

		selector:	'pomodoro-app',

		directives:	[TIMER_DIRECTIVES,	TASKS_DIRECTIVES],

		providers:	[SHARED_PROVIDERS,	HTTP_PROVIDERS],

		...

})

export	default	class	AppComponent	{}

www.EBooksWorld.ir

A	real	case	study	–	serving	Observable	data
through	HTTP
In	the	previous	chapter,	we	refactored	our	entire	app	into	models,	services,	pipes,	directives,
and	component	files.	One	of	those	services	was	precisely	the	TaskService	class,	which	is	the
bread	and	butter	of	our	app,	since	it	delivers	the	data	that	we	need	to	build	our	task	list	and
other	related	components.

In	our	example,	the	TaskService	class	was	contained	within	the	information	we	wanted	to
deliver.	In	a	real-world	scenario,	you	need	to	fetch	that	information	from	a	server	API	or
backend	service.	Let's	update	our	example	to	emulate	this	scenario.	First,	we	will	remove	the
task	information	from	the	TaskService	class	and	wrap	it	into	an	actual	JSON	file.	Let's	create
a	new	JSON	file	inside	the	shared	folder	and	populate	it	with	the	task	information	that	we	had
hardcoded	in	the	original	TaskService.ts	file,	now	in	JSON	format,	though:

app/shared/data/raw-tasks.json

[{

				"name":	"Code	an	HTML	Table",

				"deadline":	"Jun	23	2015",

				"pomodorosRequired":	1

},	{

				"name":	"Sketch	a	wireframe	for	the	new	homepage",

				"deadline":	"Jun	24	2016",

				"pomodorosRequired":	2

},	{

				"name":	"Style	table	with	Bootstrap	styles",

				"deadline":	"Jun	25	2016",

				"pomodorosRequired":	1

},	{

				"name":	"Reinforce	SEO	with	custom	sitemap.xml",

				"deadline":	"Jun	26	2016",

				"pomodorosRequired":	3

}]

With	the	data	properly	wrapped	in	its	own	file,	we	can	consume	it	as	if	it	were	an	actual
backend	service	from	our	TaskService	client	class.	However,	we	will	need	to	conduct
relevant	changes	in	our	main.ts	file	for	that.	The	reason	is	that	despite	installing	the	RxJS
bundle	when	installing	all	the	Angular	2	peer	dependencies,	the	reactive	functional	operators,
like	map(),	do	not	become	available	straight	away.	We	could	import	all	of	them	at	once	by
inserting	the	following	line	of	code	at	some	step	at	the	beginning	of	our	application
initialization	flow,	such	as	the	bootstrapping	stage	in	main.ts:

import	'rxjs/Rx';

However,	that	would	import	all	the	reactive	functional	operators,	which	will	not	be	used	at	all
and	will	consume	an	unnecessarily	huge	amount	of	bandwidth	and	resources.	Instead,	the

www.EBooksWorld.ir

convention	marks	to	import	only	what	is	needed,	so	append	the	following	import	line	at	the
top	of	the	main.ts	file:

app/main.ts

import	'rxjs/add/operator/map';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	AppComponent	from	'./app.component';

bootstrap(AppComponent,	[]);

When	a	reactive	operator	is	imported	this	way,	it	gets	automatically	added	to	the	Observable
prototype,	being	then	available	for	use	throughout	the	entire	application.

With	all	the	dependencies	properly	in	place,	the	time	has	come	to	refactor	our
TaskService.ts	file.	Open	the	service	file	and	let's	update	the	import	statements	block:

app/shared/services/task.service.ts

import	{	Injectable	}	from	'@angular/code';

import	{	Task	}	from	'../shared';

import	{	Http,	Response	}	from	'@angular/http';

import	{	Observable	}	from	'rxjs/Observable';

First,	we	import	in	the	Http	and	Response	symbols	so	that	we	can	annotate	our	objects	later
on.	Remember	anyway	that	the	HTTTP_PROVIDERS	token	has	already	been	injected	at	the	top
root	component.	The	Observable	symbol	is	imported	from	the	RxJS	library	so	that	we	can
properly	annotate	the	return	types	of	our	async	Http	requests.

Now	we	will	replace	the	existing	implementation	with	the	following	one.	Basically,	the
TaskService	modules	evolve	into	a	service	with	state	that	keeps	exposing	a	taskStore
property	where	we	can	fetch	the	tasks	dataset.	It	also	features	an	Observable	property
representing	a	task	feed	we	can	subscribe	to	in	order	to	keep	up	to	date	of	any	new	task	that
could	be	created	in	the	future.

The	constructor	now	features	the	Http	dependency	injected	and	bound	as	a	private	member	to
the	http	field:

app/shared/services/task.service.ts

@Injectable()

export	default	class	TaskService	{

		taskStore:	Task[]	=	[];

		taskFeed:	Observable<Task>;

		private	taskObserver:	any;

		private	dataUrl	=	'/app/shared/data/raw-tasks.json';

		constructor(private	http:	Http)	{

				this.taskFeed	=	new	Observable(observer	=>	{

						this.taskObserver	=	observer;

www.EBooksWorld.ir

				});

				this.fetchTasks();

		}

		private	fetchTasks():	void	{

				this.http.get(this.dataUrl)

						.map(response	=>	response.json())

						.map(stream	=>	stream.map(res	=>	{

								return	{

										name:	res.name,

										deadline:	new	Date(res.deadline),

										pomodorosRequired:	res.pomodorosRequired,

										queued:	res.queued

								}

						}))

						.subscribe(

								tasks	=>	{

										this.taskStore	=	tasks;

										tasks.forEach(task	=>	this.taskObserver.next(task))

								},

								error	=>	console.log(error)

);

		}

}

Let's	take	a	minute	to	examine	the	new	service	implementation.	We	keep	the	taskStore
property	as	usual,	and	we	populate	it	once	we	fetch	the	whole	graph	of	tasks	available	upon
instantiating	the	service	by	calling	the	fetchTasks()	private	method	from	the	constructor.	But
we	have	introduced	an	Observable	member	and	an	Observer	field	too.

Let's	explain	their	role	in	detail.	In	the	constructor,	we	initialize	the	Observable	instance	and
also	assign	the	Observable's	built-in	observer	to	our	Observer	member.	This	way,	every	time
we	want	to	notify	a	new	task	in	the	tasks	Observable	sequence	to	the	service	subscribers,	we
just	need	to	proceed	to	execute	the	next()	method	of	the	Observer	member.	Therefore,	as	a
singleton,	the	tasks	service	exposes	a	data	store	that	is	populated	the	moment	it	is	instantiated
for	the	first	time,	becoming	such	data	fully	available	for	all	components	that	will	eventually
consume	it.

On	the	other	hand,	external	consumers	of	the	service	can	subscribe	to	the	taskFeed	property
and	receive	prompt	notifications	every	time	a	new	task	is	added	to	the	sequence.	We	could
spawn	a	web	sockets	client	and	leverage	the	Observer	API	to	emit	new	tasks	through	our
Observable	sequence	every	time	a	new	task	is	created	on	the	server	side.	The	components
subscribing	to	that	Observable	sequence	would	receive	the	changes	and	reflect	those	changes
in	their	state	automatically	with	no	additional	logic	required.

As	we	can	see,	this	data	handling	pattern	goes	a	step	beyond	the	mere	asynchronous	data
consumption	flow	we	are	used	to	with	promises	and	callbacks,	easing	data	updates	and
allowing	for	a	better	management	of	information	offline.

Let's	finish	our	implementation	by	updating	the	TaskComponent	module.	Since	we	are	using

www.EBooksWorld.ir

the	same	API	we	already	had	previously,	the	changes	are	minimal	and	are	limited	to	tweaking
the	ngOnInit	hook	method:

app/tasks/tasks.component.ts

ngOnInit():	void	{

		this.updateQueuedPomodoros();

		this.taskService.taskFeed.subscribe(newTask	=>	{

				this.tasks.push(newTask);

				this.updateQueuedPomodoros();

		});

}

We	need	to	subscribe	to	the	tasks	feed	since	Observables	are	cold.	They	are	not	initialized
until	some	client	actually	subscribes	to	them,	and	the	underlying	Observer	of	the	taskFeed
Observable	at	TaskService	is	actually	required	within	the	internal	subscription	to	the
http.get()	connection.	Not	subscribing	to	it	would	turn	into	an	exception.	With	this	change,
we	also	ensured	that	our	tasks	table	will	remain	up	to	date	should	a	new	task	added	to	the
overall	tasks	data	store,	without	having	to	repopulate	the	whole	tasks	property.	The	call	to
updateQueuedPomodoros()	is	introduced	in	the	callback	as	well	should	any	new	task	be	queued
by	default.

Now,	execute	the	code	and	you	will	see	the	tasks	seamlessly	rendered	on	the	table.

www.EBooksWorld.ir

Adding	tasks	to	our	tasks	service
Unfortunately,	our	code	works	in	one	way	only	now:	we	can	consume	data	from	the	tasks
JSON	file	but	we	cannot	append	new	tasks	if	required.	Ideally,	we	should	be	able	to	append
our	own	tasks	upon	request	and	have	the	whole	system	reacting	to	these	changes,	so	let's
update	our	implementation	for	the	TaskService	class	to	insert	and	add	a	task	method.	Append
the	following	method	at	the	end	of	the	service	class:

app/shared/services/task.service.ts

addTask(task:	Task):	void	{

		this.taskObserver.next(task);

}

This	new	method	aligns	with	what	we	pointed	out	already	about	reactive	service	interfaces.
Adding	a	new	task	object	will	turn	into	a	new	event	published	in	the	Observable	events	stream
of	tasks,	so	any	active	component	which	is	already	consuming	the	data	graph	and	is
subscribed	to	its	changes	will	receive	a	prompt	notification	of	the	new	task	created	and
therefore	can	update	its	state	accordingly.

Try	it	out	yourself!

Tip

In	all	fairness,	any	new	item	request	should	be	handled	by	means	of	a	POST	request	and	all	the
previous	operations	should	be	performed	upon	resolving	the	Http.post()	request,	like	this:

const	body	=	JSON.stringify(task);

const	headers	=	new	Headers();

headers.append('Content-Type',	'application/json');

addTask(task:	Task):	void	{

				this.http.post(this.dataUrl,	body,	headers)

						.map(response	=>	response.json())

						.subscribe((task:	Task)	=>

								this.taskObserver.next(task);

								}

);

		}

Since	server-side	implementations	are	out	of	the	scope	of	this	book,	we	will	leave	it	up	to	you
to	experiment	with	the	Http	module	against	RESTful	APIs.

www.EBooksWorld.ir

Summary
As	we	pointed	out	at	the	beginning	of	this	chapter,	it	takes	much	more	than	a	single	chapter	to
cover	in	detail	all	the	great	things	that	can	be	done	with	the	Angular	2	HTTP	connection
functionalities,	but	the	good	news	is	that	we	have	covered	pretty	much	all	the	tools	and	classes
we	need	to	do	so.

The	rest	is	just	left	to	your	imagination,	so	feel	free	to	go	the	extra	mile	and	put	all	of	this
knowledge	into	practice	by	creating	brand	new	Twitter	reader	clients,	newsfeed	widgets,	or
blog	engines,	and	assembling	all	kinds	of	components	of	your	choice.	The	possibilities	are
endless,	and	you	have	assorted	strategies	to	choose	from,	ranging	from	Promises	to
Observables.	You	can	leverage	the	incredible	functionalities	of	the	Reactive	Functional
extensions	and	the	tiny	but	powerful	Http	class.

As	we	have	already	highlighted,	the	sky	is	the	limit.	But	we	still	have	a	long	and	exciting	way
ahead.	Now	that	we	know	how	to	consume	asynchronous	data	in	our	components,	let's
discover	how	we	can	provide	a	broader	user	experience	in	our	applications	by	routing	users
into	different	components.	We	will	cover	this	in	the	next	chapter.

www.EBooksWorld.ir

Chapter	7.	Routing	in	Angular	2
In	the	previous	chapters,	we	did	a	great	job	separating	concerns	in	our	applications	and
adding	different	layers	of	abstraction	to	increase	the	maintainability	in	our	Pomodoro	app.
However,	we	have	neglected	the	visual	side	of	things	and	the	user	experience	part.

At	this	moment,	our	UI	is	bloated	with	components	and	stuff	scattered	across	a	single	screen,
and	we	need	to	provide	a	better	navigational	experience	and	a	logical	way	to	change	the
application's	state	intuitively.

This	is	the	moment	where	routing	acquires	special	relevance	and	gives	us	the	opportunity	to
build	a	navigational	narrative	for	our	applications,	allowing	us	to	split	the	different	areas	of
interest	into	different	pages	that	are	interconnected	by	a	grid	of	links	and	URLs.

However,	our	application	is	only	a	set	of	components,	so	how	do	we	deploy	a	navigation
scheme	between	them?	The	Angular	2	router	was	built	with	componentization	in	mind.	We
will	see	how	can	we	create	our	custom	links	and	make	components	react	to	them	in	the
following	pages.	In	this	chapter,	we	will:

Discover	how	to	define	routes	to	switch	components	on	and	off	and	redirect	them	to
other	routes
Trigger	routes	and	load	components	in	our	views	depending	on	the	requested	route
Pass	parameters	to	our	components	straight	from	our	routes
Look	at	the	different	component	lifecycle	hooks	based	on	the	routing	stages
Define	different	URL	representation	strategies

www.EBooksWorld.ir

Adding	support	for	the	Angular	2	router
Same	as	we	did	when	overviewing	the	Http	directives	and	providers,	all	the	types	and	tokens
required	for	implementing	routing	support	in	our	applications	come	from	its	own	specific
barrel.	This	barrel	was	already	installed	and	configured	back	in	Chapter	1,	Creating	Our	Very
First	Component	in	Angular	2,	although	we	found	two	barrels	related	to	routing	in	our
installation	and	further	configuration:	@angular/router	and	@angular/router-deprecated.
This	is	because	the	Angular	team	introduced	a	revamped	routing	mechanism	when	switching
versions	from	Beta	to	Release	Candidate.	This	new	routing	machinery,	which	aims	to	replace
the	routing	API	that	Angular	had	been	implementing	since	its	Alpha	version,	also	introduced
relevant	breaking	changes	with	its	previous	incarnation.	In	order	to	ensure	that	applications
built	on	top	of	the	previous	router	could	upgrade	to	Angular	2	Release	Candidate	seamlessly
and	prevent	major	issues,	the	Angular	team	made	available	a	snapshot	of	the	Beta	Router,
available	from	the	@angular/router-deprecated	barrel.	That	is	why	we	installed	and
configured	two	routing	packages.

Tip

At	the	time	of	closing	the	writing	of	this	book,	the	new	Angular	2	Router	is	still	in	a	very
early	stage	and	lacks	support	for	several	functionalities	that	are	commonly	used	in	our	web
applications	on	a	daily	basis.	That	is	way	this	chapter	will	focus	on	developing	applications
on	top	of	the	deprecated	router	yet	we	will	highlight	the	differences	between	its	API	and	the
newer	Angular	2	Router	whereas	possible.	All	in	all	the	differences	are	minimal	and	learning
how	to	use	the	deprecated	router	interface	will	become	priceless	for	getting	up	to	speed	with
the	new	router	once	it	becomes	final.	Please	refer	to	the	book	code	repository	to	check	the
latest	version	of	the	code.

We	also	need	to	inform	Angular	about	the	base	path	we	want	to	use,	so	it	can	properly	build
and	recognize	the	URLs	as	the	user	browses	the	website,	as	we	will	see	in	the	next	section.
Our	first	task	will	be	to	insert	a	base	href	statement	within	our	<HEAD>	element.	Append	the
following	line	of	code	at	the	end	of	your	code	statement	inside	the	<head>	tag:

index.html

<base	href="/">

The	base	tag	informs	the	browser	about	the	path	it	should	follow	while	attempting	to	load
external	resources,	such	as	media	or	CSS	files,	once	it	goes	deeper	into	the	URL	hierarchy.

Now,	we	can	start	playing	around	with	all	the	goodies	existing	in	the	router	library.	Prior	to
this,	we	would	need	to	inform	the	dependency	injector	about	how	it	can	instantiate	the	tokens
we	will	require	later	on	while	implementing	the	routing	features	in	our	components.	All	these
providers	are	accessible	from	the	ROUTER_PROVIDERS	symbol.	In	a	similar	fashion	as	we	did
with	HTTP_PROVIDERS,	we	need	to	declare	it	in	the	providers	property	of	the	top	root
component	so	that	it	is	available	for	all	its	child	components'	injectors.

www.EBooksWorld.ir

Open	your	top	component	module	and	append	the	following	import	statement	to	the	existing
block	of	imported	symbols.	Then,	add	it	to	the	providers	property	of	the	component
decorator:

app/app.component.ts

...

import	{	SHARED_PROVIDERS	}	from	'./shared/shared';

import	{	HTTP_PROVIDERS	}	from	'@angular/http';

import	{	ROUTER_PROVIDERS	}	from	'@angular/router-deprecated';

@Component({

		selector:	'pomodoro-app',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[SHARED_PROVIDERS,	HTTP_PROVIDERS,	ROUTER_PROVIDERS],

		template:	`

...

www.EBooksWorld.ir

Setting	up	the	router	service
With	the	providers	and	directives	in	place,	our	first	step	will	be	to	turn	our	main	host
component	into	a	router	component.	Basically,	any	component	can	become	a	routing
component	just	by	conforming	to	the	following	requirements:

Just	like	the	component	class	is	flagged	with	a	@Component	decorator,	we	want	to
decorate	it	with	a	@RouteConfig	decorator.
The	@RouteConfig	decorator	is	configured	with	an	array	of	RouteDefinitions,	which
are	basically	object	literals	defining	a	path	identified	with	a	name	and	pointing	to	a
component	type.
The	component	decorated	with	the	@RouteConfig	decorator	is	then	supposed	to	include	a
RouterOutlet	directive	in	its	template.	This	element	will	become	the	placeholder	where
the	components	will	be	loaded	and	rendered	upon	loading	a	route	pointing	to	each	of
them,	removing	any	previous	component	existing	there,	if	any.

In	this	sense,	it	is	right	to	say	that	the	router	watches	for	state	changes	in	the	browser	URL	and
then	searches	for	a	RouteDefinition	object	whose	path	property	matches	the	existing	URL.
Then,	it	instantiates	the	component	defined	in	such	route	definition	inside	the	placeholder
represented	by	the	router	outlet	directive,	which	is	meant	to	live	in	the	template	belonging	to
the	component	decorated	with	that	router	configuration.

Let's	see	all	this	through	a	real	example.	As	we	mentioned	while	introducing	this	chapter,	our
application	needs	a	better	navigation	architecture	in	order	to	be	more	usable	and	intuitive.
After	splitting	all	our	logic	into	different	components	in	Chapter	5,	Building	an	Application
with	Angular	2	Components,	we	will	define	different	routes	to	use	each	one,	implementing	the
following	logic:

The	user	reaches	our	app	and	checks	the	current	listing	of	the	tasks	pending	to	be	done.
The	user	can	schedule	the	tasks	to	be	done	in	order	to	get	the	required	time	estimation
for	the	next	Pomodoro	session.
If	desired,	the	user	can	jump	onto	another	page	and	see	a	create	task	form	(we	will	create
the	form,	but	will	not	implement	its	editing	features	until	the	next	chapter).
The	user	can	choose	any	task	at	any	time	and	begin	the	Pomodoro	session	required	to
accomplish	it.
The	user	can	move	back	and	forth	across	the	pages	she	or	he	has	already	visited.

www.EBooksWorld.ir

Building	a	new	component	for	demonstration	purposes
So	far,	we	have	built	two	well-differentiated	components	we	can	leverage	to	deliver	a
multipage	navigation.	But	in	order	to	provide	a	better	user	experience,	we	might	need	a	third
one.	We	will	now	introduce	the	form	component	we	will	be	elaborating	more	thoroughly	in
Chapter	8,	Forms	and	Authentication	handling	in	Angular	2,	as	a	way	to	have	more	navigation
options	in	our	example.

We	will	create	a	component	in	our	tasks	feature	folder,	anticipating	the	form	we	will	use	in
the	next	chapter	to	publish	new	tasks.	Create	the	following	files	in	the	locations	pointed	out
for	each	one:

app/tasks/task-editor.component.ts

import	{	Component	}	from	'angular2/core';

import	{	ROUTER_DIRECTIVES	}	from	'angular2/router';

@Component({

		selector:	'pomodoro-tasks-editor',

		directives:	[ROUTER_DIRECTIVES],

		templateUrl:	'app/tasks/task-editor.component.html'

})

export	default	class	TaskEditorComponent	{

		constructor()	{}

}

app/tasks/task-editor.component.html

<form	class="container">

		<h3>Task	Editor:</h3>

		<div	class="form-group">

				<input	type="text"

						class="form-control"

						placeholder="Task	name"

						required>

		</div>

		<div	class="form-group">

				<input	type="Date"

						class="form-control"

						required>

		</div>

		<div	class="form-group">

				<input	type="number"

						class="form-control"

						placeholder="Pomodoros	required"

						min="1"

						max="4"

						required>

		</div>

		<div	class="form-group">				<input	type="checkbox"	name="queued">

www.EBooksWorld.ir

				<label	for="queued">	this	task	by	default?</label>

		</div>

		<p>

				<input	type="submit"	class="btn	btn-success"	value="Save">

				Cancel

		</p>

</form>

This	is	the	most	basic	definition	of	a	component,	but	we	will	also	bring	the
ROUTER_DIRECTIVES	symbol	from	the	router	library.	This	will	provide	us	support,	as	we	will
see	later	on,	to	include	routing	directives	in	our	HTML	template.	This	will	be	used	to
introduce	links	in	our	template	to	jump	to	other	components,	as	we	will	see	shortly.	Last	but
not	least,	we	need	to	expose	this	new	component	from	our	feature	folder	facade:

app/tasks/tasks.ts

import	TasksComponent	from	'./tasks.component';

import	TaskEditorComponent	from	'./task-editor.component';

import	TaskTooltipDirective	from	'./task-tooltip.directive';

const	TASKS_DIRECTIVES:	any[]	=	[

		TasksComponent,

		TaskEditorComponent,

		TaskTooltipDirective

];

export	{

		TASKS_DIRECTIVES,

		TasksComponent,

		TaskEditorComponent,

		TaskTooltipDirective

};

www.EBooksWorld.ir

Configuring	the	RouteConfig	decorator	with	the
RouteDefinition	instances
In	order	to	achieve	these	goals,	we	need	to	start	building	our	top	router,	which	will	be	in
charge	of	kicking	off	the	routes'	scaffolding.	The	logical	path	begins	in	our	top	root
component.	Open	its	file	module	and	import	the	following	tokens,	right	next	to	the
ROUTER_PROVIDERS	symbol	we	imported	at	the	beginning	of	this	chapter.	The	code	is	as
follows:

app/app.component.ts

...

import	{	

		ROUTER_PROVIDERS,

		RouteConfig,

		ROUTER_DIRECTIVES	

}	from	'@angular/router-deprecated';

import	{	TimerComponent	}	from	'./timer/timer';

import	{	

		TasksComponent,

		TaskEditorComponent	}	from	'./tasks/tasks';

...

The	RouteConfig	represents	the	decorator	type	that	will	turn	our	component	into	a	router
component.	The	ROUTER_DIRECTIVES	symbol	wraps	the	view	directives	we	will	need	shortly
to	link	to	these	routes.	We	also	import	the	tokens	of	all	the	three	components	we	will	be
dealing	with.	As	we	will	shortly	see,	each	route	needs	to	declare	the	type	of	the	component	we
are	routing	the	browser	to.

Let's	continue	by	replacing	the	directives	in	our	AppComponent	module	by	the
ROUTE_DIRECTIVES	symbol,	since	we	will	not	need	to	declare	the	facade	tokens	of	the
components	that	lived	in	its	template	anymore.	The	router	will	handle	this	for	us:

app/app.component.ts

@Component({

		selector:	'pomodoro-app',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[SHARED_PROVIDERS,	HTTP_PROVIDERS,	ROUTER_PROVIDERS],

		template:	`

		...

})

Now,	let's	expand	the	component	class	definition	with	the	RouteConfig	decorator	by	appending
the	following	decorator	right	after	the	@Component	decorator	block	and	before	the	class
statement:

app/app.component.ts

www.EBooksWorld.ir

@RouteConfig([

		{	path:	'',

				name:	'TasksComponent',

				component:	TasksComponent	

		},

	{	

				path:	'tasks/editor',

				name:	'TaskEditorComponent',

				component:	TaskEditorComponent	

		},	{

				path:	'timer',

				name:	'TimerComponent',

				component:	TimerComponent

		}

])

export	default	class	AppComponent	{}

As	we	pointed	out	at	the	beginning	of	this	chapter,	the	RouteConfig	decorator	must	be
populated	with	an	array	of	RouteDefinition	objects,	each	one	specifying	a	path	that,	once
reached	by	the	user,	will	enable	the	component	whose	type	we	have	defined	in	the	component
property.

Tip

Note:	The	new	Router	replaced	the	@RouteConfig	decorator	by	the	@Routes	decorator.	The
name	property	is	removed	from	the	route	definitions	schema	and	route	matching	is
performed	just	by	checking	the	path	value.

In	the	previous	example,	our	host	component	will	react	to	three	different	routes	and	thus	serve
the	TasksComponent	item,	the	TimerComponent	item,	or	the	TaskEditorComponent	item
depending	on	the	route's	path.

Tip

Here	we	stumble	upon	another	common	convention	in	the	previous	version	fo	the	Angular	2
router:	naming	routes	with	the	same	name	as	the	component	they	refer	to.	As	we	will	see
shortly,	we	will	use	each	route	name	for	populating	the	links	pointing	to	each	resource,	so
naming	routes	after	the	component	they	will	activate	becomes	pretty	useful	and	intuitive	when
it	comes	to	assessing	the	target	of	each	link	found	in	the	template.	This	convention	is	no
longer	enforced	in	the	new	router,	since	only	paths	are	used	to	perform	route	matching.

There	are	two	questions	at	this	point:	where	will	these	components	be	rendered	and	how	will
we	trigger	each	route?	In	order	to	answer	these	questions,	we	need	to	look	into	the	router
directives	in	detail.

www.EBooksWorld.ir

The	router	directives	–	RouterOutlet	and	RouterLink
The	ROUTER_DIRECTIVES	symbol	gives	us	access	to	the	only	two	directives	we	will	need	in
our	applications.

First,	the	RouterOutlet	directive	is	the	placeholder	directive	where	the	different	components
whose	paths	have	been	navigated	to	by	the	user	will	be	rendered.	The	RouterLink	is	used	as	an
attribute	directive	to	help	the	HTML	controls	behave	as	anchors	or	link	buttons	leading	to	the
different	routes	by	specifying	the	unique	name	each	route	is	configured	with,	as	we	will	see
next.

In	the	previous	chapters,	we	configured	our	top	root	component	template	to	display	a	cute	nav
bar	header,	followed	by	the	custom	elements	representing	the	Pomodoro	timer	and	the	tasks
list.	Now,	we	will	strip	the	HTML	template	out	from	the	component	decorator	definition	and
save	it	into	its	own	template	file,	in	order	to	access	it	more	conveniently	when	editing	the
HTML	is	required.	Also,	we	will	refactor	it	into	a	router-friendly	component	template	with
links	pointing	to	the	different	views	or	states	our	application	can	feature,	as	follows:

app/app.component.ts

			...

			@Component({

		selector:	'pomodoro-app',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[SHARED_PROVIDERS,	HTTP_PROVIDERS,	ROUTER_PROVIDERS],

		templateUrl:	'app/app.component.html'

})

...

app/app.component.html

<nav	class="navbar	navbar-default	navbar-static-top">

		<div	class="container">

				<div	class="navbar-header">

						<strong	class="navbar-brand">My	Pomodoro	App

				</div>

				<ul	class="nav	navbar-nav	navbar-right">

						<a	[routerLink]="['TasksComponent']">Tasks

						<a	[routerLink]="['TimerComponent']">Timer

						<a	[routerLink]="['TaskEditorComponent']">

										Publish	Task

						

				

		</div>

</nav>

<router-outlet></router-outlet>

As	you	can	see	in	the	template,	the	location	where	the	components	used	to	live	has	been
replaced	by	the	<router-outlet>	directive,	and	three	new	links	compound	up	our	beautiful

www.EBooksWorld.ir

nav	bar.	Reload	the	page	and	see	how	our	tasks	list	is	rendered	on	the	screen,	and	then	click
on	the	Timer	link.	Awesome!	The	TimerComponent	item	just	loaded	on	the	screen.	Click	on	the
other	link	or	hit	back	on	your	browser	to	see	how	you	can	jump	across	the	different
components	seamlessly.

Let's	take	a	look	at	these	links	more	closely,	taking	the	link	pointing	to	the	timer	as	an
example:

<a	[routerLink]="['TimerComponent']">Timer

The	morphology	of	the	routerLink	directive	is	pretty	self-explanatory.	On	the	right-hand	side
of	the	equal	symbol,	it	expects	an	array	of	route	names	corresponding	to	the	named	route	and,
optionally,	the	subroutes	within	the	former	that	we	want	to	navigate	to.	Most	of	the	time,	we
will	just	see	one	unique	string	value.	However,	the	array	can	allocate	many	values	depending
on	whether	the	component	whose	named	path	we	are	pointing	to	hosts	its	own	router	with
named	routes	as	well.	In	this	case,	the	subroute	names	we	want	to	load	will	be	declared	next	in
the	strings	array.	This	is	why	it	is	so	convenient	and	recommended	to	name	our	routes	after
the	components	they	point	at.

Note

The	new	Release	Candidate	Router	deprecates	named	routes,	favoring	URL	paths	instead.
Therefore,	the	[routerLink]	directive	will	expect	a	full	path	as	a	value.

The	routerLink	definition	also	leaves	room	to	add	parameters	declaratively,	so	we	can
trigger	dynamic	routes	at	runtime.	We	will	tap	into	all	these	features	throughout	the	next
sections,	but	now	we	need	to	answer	one	important	question.	What	if	we	want	to	navigate	to	a
component	imperatively	without	actually	clicking	on	a	link,	but	rather	as	the	by-product	of	an
action	performed	within	the	component's	controller	class?

www.EBooksWorld.ir

Triggering	routes	imperatively
Perhaps,	you	would	like	to	jump	on	our	timer	by	selecting	the	task	we	want	to	work	on.	We
have	already	set	up	a	behavior	that	displayed	a	queued	label	whenever	each	task	was	picked
for	being	done.	We	will	leverage	the	same	behavior	to	create	a	work	on	button	that	will
redirect	the	user	to	the	timer	component.

First,	let's	inject	the	Router	type	as	a	dependency	in	our	TasksComponent	module,	so	we	can
gain	access	imperatively	to	its	methods.	Since	we	already	declared	the	ROUTER_PROVIDERS
symbol	while	bootstrapping	the	application,	Angular	2	will	take	care	of	injecting	the	router
type	if	properly	declared	in	our	component,	so	let's	do	it.	Add	the	following	import	statement
at	the	top	of	the	component,	right	after	the	existing	ones:

app/tasks/tasks.component.ts

import	{	Router	}	from	'@angular/router-deprecated';

Now,	let's	update	the	constructor	to	inject	the	router	type.	We	will	mark	the	constructor	as	a
private	form	so	that	it	becomes	privately	available	from	the	component	members:

app/tasks/tasks.component.ts

...

constructor(

		private	taskService:	TaskService,

		private	settingsService:	SettingsService,

		private	router:	Router)	{

				this.tasks	=	this.taskService.taskStore;

				this.today	=	new	Date();

				this.queueHeaderMapping	=	settingsService.pluralsMap.tasks;

				this.timerMinutes	=	settingsService.timerMinutes;

		}

...

Now,	let's	add	a	method	right	below	the	updateQueuedPomodoros()	method,	which	will	lead
the	user	imperatively	to	the	task	route	upon	executing	it:

workOn():	void	{

		this.router.navigate(['TimerComponent']);

}

How	do	we	execute	it?	Let's	introduce	a	new	button	in	our	table,	next	to	the	toggle	task	button
at	the	last	cell	on	each	row,	with	a	click	handler	pointing	to	the	preceding	method.	The	code	is
as	follows:

app/tasks/tasks.component.html

<td>

		<button	type="button"	class="btn	btn-default	btn-xs"

				[ngSwitch]="task.queued"

www.EBooksWorld.ir

				(click)="toggleTask(task)">

				<template	[ngSwitchWhen]="false">

						<i	class="glyphicon	glyphicon-plus-sign"></i>

						Add

				</template>

				<template	[ngSwitchWhen]="true">

						<i	class="glyphicon	glyphicon-minus-sign"></i>

						Remove

				</template>

				<template	ngSwitchDefault>

						<i	class="glyphicon	glyphicon-plus-sign"></i>

						Add

				</template>

		</button>

		<button	type="button"

				class="btn	btn-default	btn-xs"

				*ngIf="task.queued"

				(click)="workOn()">

				<i	class="glyphicon	glyphicon-expand"></i>	Start

		</button>

</td>

A	convenient	NgIf	directive	will	display	the	button	only	when	required.	We	have	included	an
icon	for	cosmetic	purposes,	but	feel	free	to	remove	it	or	replace	it	by	any	other	glyph	of	your
choice.

Now	reload	the	table,	set	out	any	task	to	be	done,	and	click	on	the	button	that	appears.	Voila!
You	will	be	redirected	to	the	timer	to	begin	working	on	that	task	if	desired.

Note

The	navigate()	method	of	the	new	Router	will	expect	a	string	containing	the	full	path	instead.

www.EBooksWorld.ir

CSS	hooks	for	active	routes
We	have	seen	how	to	turn	any	link	or	DOM	element	into	a	hyperlink	pointing	to	a	named
route	that	instantiates	a	component.	However,	it	would	be	great	to	provide	some	kind	of	visual
cue	about	the	active	link	at	any	given	time.	That	is	precisely	one	of	the	side	features
implemented	in	the	routerLink	directive:	whenever	the	route	defined	on	a	routerLink
directive	becomes	active	(regardless	of	whether	the	user	reached	that	route	declaratively	or
imperatively),	the	element	will	be	decorated	with	the	router-link-active	class.	We	can
therefore	introduce	specific	CSS	definitions	in	our	components'	style	sheets	to	highlight	if	a
specific	link	is	active	or	not.

We	will	see	all	this	functionality	in	action	just	by	tweaking	our	top	parent	component	a	bit.
Open	the	top	root	component	controller	class	file	and	insert	the	following	style	sheet	in	hte
component	decorator	configuration:

app/app.component.ts

@Component({

		selector:	'pomodoro-app',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[SHARED_PROVIDERS,	HTTP_PROVIDERS,	ROUTER_PROVIDERS],

		styles:	[`

						.router-link-active	{

										font-weight:	bold;

										border-bottom:	2px	#d9534f	solid;

						}

		`],

		templateUrl:	'app/app.component.html'

})

Now	reload	the	browser	and	click	on	any	link	or	navigate	to	a	task	timer	from	the	tasks	table,
keeping	an	eye	on	the	visual	state	of	the	top	nav	bar.	The	active	link	will	be	properly	enhanced
with	the	styling	we	defined.	If	you	inspect	the	code,	you	will	see	the	router-link-active	class
rendered	on	the	active	link	each	time.

www.EBooksWorld.ir

Handling	route	parameters
We	have	configured	pretty	basic	paths	in	our	routes	so	far,	but	what	if	we	want	to	build
dynamic	paths	with	support	for	parameters	or	values	created	at	runtime?	Creating	(and
navigating	to)	URLs	that	load	specific	items	from	our	data	stores	is	a	common	action	we	need
to	confront	on	a	daily	basis.	For	instance,	we	might	need	to	provide	a	master-detail	browsing
functionality,	so	each	generated	URL	living	in	the	master	page	contains	the	identifiers
required	to	load	each	item	once	the	user	reaches	the	detail	page.

We	are	basically	tackling	a	double	trouble	here:	creating	URLs	with	dynamic	parameters	at
runtime	and	parsing	the	value	of	such	parameters.	No	problem,	the	Angular	router	has	got
our	back	and	we	will	see	how	using	a	real	example.

www.EBooksWorld.ir

Passing	dynamic	parameters	in	our	routes
We	updated	the	tasks	list	to	display	a	button	leading	to	the	timer	component	page	when
clicked.	But	we	just	load	the	timer	component	with	no	context	whatsoever	of	what	task	we	are
supposed	to	work	on	once	we	get	there.	Let's	extend	the	component	to	display	the	task	we
picked	prior	to	jumping	to	this	page.

First,	let's	get	back	to	the	tasks	list	component	template	and	update	the	signature	of	the	button
that	triggers	the	navigation	to	the	timer	component	in	order	to	include	the	index	of	the	task
item	corresponding	to	that	loop	iteration:

app/tasks/tasks.component.html

...

<button	type="button"

				class="btn	btn-default	btn-xs"

				*ngIf="task.queued"

				(click)="workOn(i)">

				<i	class="glyphicon	glyphicon-expand"></i>	Start

		</button>

...

Remember	that	such	an	index	was	generated	at	every	iteration	of	the	NgFor	directive	that
rendered	the	table	rows.	Now	that	the	call	incorporates	the	index	in	its	signature,	we	just	need
to	modify	the	payload	of	the	navigate	method:

workOn(index:	number):	void	{

		this.router.navigate(['Timer',	{	id:	index	}]);

}

If	this	had	been	a	routerLink	directive,	the	parameters	would	have	been	defined	in	the	same
way:	a	hash	object	following	the	path	name	string	(or	strings,	as	we	will	see	while	tapping
into	the	child	routers)	inside	the	array.	This	is	the	way	parameters	are	added	to	the	generated
link.	However,	if	we	click	on	any	button	now,	we	will	see	that	the	dynamic	ID	values	are
appended	as	query	string	parameters.	While	this	might	suffice	in	some	scenarios,	we	are	after
a	more	elegant	workaround	for	this.	So,	let's	update	our	route	definition	to	include	the
parameter	in	the	path.	Go	back	to	our	top	root	component	and	update	the	route	inside	the
RouteConfig	decorator	as	follows:

app/app.component.ts

...

},	{

		path:	'timer/:id',

		name:	'TimerComponent',

		component:	TimerComponent

}

...

www.EBooksWorld.ir

Refresh	the	application,	schedule	the	last	task	on	the	table,	and	click	on	the	Start	button.	You
will	see	how	the	browser	loads	the	Timer	component	under	a	URL	like	/timer/3.

Each	path	can	contain	as	many	tokens	prefixed	by	a	colon	as	required.	These	tokens	will	be
translated	to	the	actual	values	when	we	act	on	a	routerLink	directive	or	execute	the	navigate
method	of	the	Router	class	by	passing	a	hash	of	the	key/value	pairs,	matching	each	token	with
its	corresponding	key.	So,	in	a	nutshell,	we	can	define	route	paths	as	follows:

{

		path:	'/products/:category/:id',

		name:	'ProductsByCategoryComponent',

		component:	ProductsByCategoryComponent	

}

Then,	we	can	execute	any	given	route	such	as	the	one	depicted	earlier	as	follows:

<a	[routerLink]="['ProductsByCategoryComponent',	{	

		category:	'toys',

		id:	452	

}]">See	Toy

The	same	applies	to	the	routes	called	imperatively:

router.navigate(['ProductsByCategoryComponent',	{

		category:	'toys',

		id:	452	

}]);

www.EBooksWorld.ir

Parsing	route	parameters	with	the	RouteParams	service
Great!	Now,	we	are	passing	the	index	of	the	task	item	we	want	to	work	on	loading	the	timer,
but	how	do	we	parse	that	parameter	from	the	URL?	The	Angular	router	provides	a	convenient
injectable	type	(already	included	in	ROUTER_PROVIDERS)	named	RouteParams	that	we	can	use
from	the	components	handled	by	the	router	to	fetch	the	parameters	defined	in	the	route
definition	path.

Open	our	timer	component	and	import	it	with	the	following	import	statement.	Also,	let's
inject	the	TaskService	provider,	so	we	can	retrieve	information	from	the	task	item	requested:

app/timer/timer-widget.component.ts

import	{	Component,	OnInit	}	from	'@angular/core';

import	{	SettingsService,	TaskService	}	from	'../shared/shared';

import	{	RouteParams	}	from	'@angular/router-deprecated';

...

We	need	to	alter	the	component's	definition	in	order	to	assign	the	TaskService	as	an	annotated
dependency	for	this	component,	so	the	injector	can	properly	perform	the	provider	lookup.

Note

The	new	Release	Candidate	router	has	deprecated	the	RouteParams	class,	favoring	the	new
RouteSegments	class,	which	exposes	more	and	more	useful	methods	and	helpers.	Please	refer
to	the	official	documentation	for	broader	insights	on	its	API.

We	will	also	leverage	this	action	to	insert	the	interpolated	title	corresponding	to	the	requested
task	in	the	component	template:

app/timer/timer-widget.component.ts

...

@Component({

		selector:	'pomodoro-timer-widget',

		template:	`

				<div	class="text-center">

						

						<h3><small>{{	taskName	}}</small></h3>

						<h1>	{{	minutes	}}:{{	seconds		|	number:	'2.0'	}}	</h1>

						<p>

								<button	(click)="togglePause()"	class="btn	btn-danger">

								{{	buttonLabelKey	|	i18nSelect:	buttonLabelsMap	}}

								</button>

						</p>

				</div>`

})

...

The	taskName	variable	is	the	placeholder	we	will	be	using	to	interpolate	the	name	of	the	task.

www.EBooksWorld.ir

With	all	this	in	place,	let's	update	our	constructor	to	bring	both	the	RouteParams	type	and	the
TaskService	classes	to	the	game	as	private	class	members	injected	from	the	constructor:

app/timer/timer-widget.component.ts

...

constructor(

		private	settingsService:	SettingsService,

		private	routeParams:	RouteParams,

		private	taskService:	TaskService)	{

				this.buttonLabelsMap	=	settingsService.labelsMap.timer;

}

...

With	these	types	now	available	in	our	class,	we	can	leverage	the	ngOnInit	hook	to	fetch	the
task	details	of	the	item	in	the	tasks	array	corresponding	to	the	index	passed	as	a	parameter.
Waiting	for	the	OnInit	stage	is	not	easy,	since	we	will	find	issues	when	trying	to	access	the
properties	contained	in	routeParams	before	that	stage:

app/timer/timer-widget.component.ts

ngOnInit():	void	{

		this.resetPomodoro();

		setInterval(()	=>	this.tick(),	1000);

		let	taskIndex	=	parseInt(this.routeParams.get('id'));

		if	(!isNaN(taskIndex))	{

				this.taskName	=	this.taskService.taskStore[taskIndex].name;

		}

}

How	do	we	fetch	the	value	from	that	id	parameter?	The	RouteParams	object	exposes	a
get(param:	string)	method	we	can	use	to	address	parameters	by	name.	In	our	example,	we
retrieved	the	value	of	the	id	parameter	by	executing	the	routeParams.get('id')	command	in
the	ngOnInit()	hook	method.	Basically,	this	is	how	we	get	parameter	values	from	our	routes.
First,	we	grab	an	instance	of	the	RouteParams	class	through	the	component	injector	and	then
we	retrieve	values	by	executing	its	getter	function,	which	will	expect	a	string	parameter	with
the	name	of	the	token	corresponding	to	the	parameter	we	need.

Note

It	is	important	to	note	that	we	are	fetching	the	data	already	persisted	in	the	taskStore	property
of	our	TaskService	provider.	Since	it	is	a	singleton,	available	throughout	the	entire
application	by	means	of	the	Angular	DI	machinery,	which	had	been	already	populated	at
TaskComponent,	all	the	information	we	require	is	already	there.	Things	would	become	trickier
if	we	load	directly	each	timer	URL.	In	those	cases,	the	information	would	have	not	been
fetched	yet,	so	we	would	have	to	subscribe	to	the	service	in	order	to	force	it	to	load	the	data
through	its	underlying	Http	client.	We	saw	this	in	Chapter	6,	Asynchronous	Data	Services	with
Angular	2;	applying	the	async	pipe	to	the	taskName	interpolation	in	the	template	would	be

www.EBooksWorld.ir

required.	For	the	sake	of	simplicity,	we	will	skip	that	refactoring	here,	but	we	encourage	you
to	tweak	the	component	to	extend	support	for	this	scenario	as	well.

www.EBooksWorld.ir

Defining	child	routers
As	our	applications	scale,	the	idea	of	bundling	all	the	route	definitions	in	a	centralized
location	(for	example,	the	root	component)	does	not	seem	like	a	good	approach.	The	more
routes	we	define	there,	the	harder	it	will	be	to	maintain	the	application,	let	alone	the	tight
coupling	we	generate	between	our	components	(that	are	meant	to	be	as	much	reusable	and
application-agnostic	as	possible)	and	the	application	itself.

This	is	why	it	is	generally	a	good	practice	to	split	and	wrap	the	route	definitions	that	apply	to
a	specific	feature	around	a	router	configuration	defined	on	a	specific	component	per	feature
level,	usually	the	root	component	that	wraps	that	feature	context.	The	Angular	team	had	this
idea	in	mind	when	the	Router	library	was	designed	and	thus	implemented	support	to	extend	a
route	with	children	routes	while	keeping	the	parent	route	fully	agnostic	of	what	routes	are
defined	above	its	layer	of	functionality.

Let's	see	all	this	through	an	actual	example.	We	updated	our	timer	recently	to	display	the	name
of	the	task	we	wanted	to	work	on	after	selecting	it	from	the	table.	However,	what	if	we	want	to
keep	providing	a	standalone	timer	not	bound	to	any	specific	task?	This	way,	we	can	leverage
the	countdown	functionality	for	any	impromptu	task	without	having	to	create	it	beforehand.

So,	we	will	want	to	give	access	to	the	timer	in	two	flavors:

timer:	This	will	load	the	timer	as	it	is	without	pointing	to	any	specific	task
timer/task/{id}:	This	will	load	the	timer	specifying	a	task	name,	where	{id}	is	the
index	of	the	task	we	want	to	load	from	the	overall	tasks	array.

We	will	begin	by	updating	the	main	root	component,	now	turned	into	a	router	component,	to
turn	the	/timer/:id	path	into	a	path	pointing	to	a	child	router	component.	Open	the
component	and	replace	the	route	definition	pointing	to	the	timer	component	using	the
following	definition:

app/app.component.ts

{	

		path:	'timer/...',

		name:	'TimerComponent',

		component:	TimerComponent	

}

That's	it.	The	ellipsis	right	next	to	the	route	path	informs	the	Angular	Router	that	it	should
expect	route	definitions	nested	within	that	component.	The	problem	here	is	that	a	component
should	not	route	to	itself,	since	it	cannot	instantiate	itself	inside	its	own	RouterOutlet
directive.	This	is	why	we	need	to	proxy	the	timer	component	with	a	router	component	for	this
example.	So,	let's	create	a	routing	component	for	our	timer	inside	its	own	folder	for
simplicity	sake.	A	routing	component	is,	by	definition,	a	component	with	no	implementation
other	that	to	serve	as	a	component	dispatcher	depending	on	routes.	Their	implementation,	if

www.EBooksWorld.ir

any,	is	generally	pretty	limited,	and	it	basically	entails	the	RouteConfig	decorator	containing
the	routes	delivered	by	that	feature	context	and	the	RouterOutlet	present	in	its	template.
Routing	components	are	indeed	a	good	way	to	decouple	routing	functionalities	from	the
specific	implementation	of	each	component	in	the	context	of	that	feature,	ensuring	full
reusability	of	its	non-routing	components	of	that	feature.

Open	the	timer	feature	folder	and	create	a	file	for	our	timer	routing	component	with	the
following	implementation:

app/timer/timer.component.ts

import	{	Component	}	from	'@angular/core';

import	{	RouteConfig,	ROUTER_DIRECTIVES	}	from	'@angular/router-deprecated';

import	TimerWidgetComponent	from	'./timer-widget.component';

@Component({

		selector:	'pomodoro-timer',

		directives:	[ROUTER_DIRECTIVES],

		template:	'<router-outlet></router-outlet>'

})

@RouteConfig([

		{	path:	'/',	name:	'GenericTimer',

				component:	TimerWidgetComponent,

				useAsDefault:	true	},	{	

				path:	'/task/:id',

				name:	'TaskTimer',

				component:	TimerWidgetComponent	

		}

])

export	default	class	TimerComponent	{}

As	we	can	see,	we	have	created	a	component	class	with	no	implementation	other	than
dispatching	routes	to	the	TimerWidgetComponent	component	itself.	The	RouteConfig	type
allows	us	to	create	a	proper	decorator	containing	route	definitions	and	ROUTER_DIRECTIVES
will	allow	us	to	bind	the	RouterOutlet	directive	in	the	component	template.

Please	pay	attention	to	the	new	useAsDefault	Boolean	property	in	the	first	route	definition.
This	informs	the	router	that	if	no	matching	paths	are	found,	the	Router	class	should	load	this
route	by	default.

Note

At	the	time	of	this	writing,	the	new	Release	Candidate	Router	still	does	not	implement	the
useAsDefault	property,	but	it	is	planned	to	be	implemented	by	its	final	version.	Please	refer	to
the	official	documentation	for	further	details.

It	is	important	to	note	that	any	component	acting	as	a	router	component	can	have	its	own
implementation	living	in	parallel	to	the	RouterOutlet	directive.	Just	like	we	did	with
AppComponent,	we	can	provide	additional	functionalities	to	our	component	other	than	the	mere
routing	features.

www.EBooksWorld.ir

All	right,	we	have	a	component	now	that	can	redirect	users	to	our	timer	component	in	two
flavors,	but	how	do	we	link	to	it?

www.EBooksWorld.ir

Linking	to	child	routes
There	is	no	difference	whatsoever	in	linking	to	a	child	router	and	linking	to	any	given	route
managed	by	a	top	router,	except	for	the	fact	that	we	will	populate	the	route	names	array	with
the	names	of	the	child	routes	we	want	to	link	as	well.	Open	the	PomodoroTaskList	component
and	refactor	the	workOn()	method	to	look	like	this:

		workOn(index:	number):	void	{

				this.router.navigate(['TimerComponent',	'TaskTimer',	{				id:	index	}]);

		}

Here,	we	are	telling	Angular	to	link	to	the	route	named	TimerComponent	(hence	the
importance	of	naming	our	routes	after	each	target	component's	name).	Since	this	is	a	parent
route	(remember	the	ellipsis)	configured	at	our	top	root	router,	we	need	to	provide	the	name
of	the	child	route	to	load	from	within	the	routes	configured	at	the	child	router	level,
TaskTimer	in	this	case.	Obviously,	we	will	compound	up	the	route	with	the	ID	information
required	for	loading	the	task	requested.	Click	on	any	task	and	see	how	the	timer	is	loaded,
displaying	the	task	name	we	wish	to	work	on.

This	implementation	approach	gives	the	component	the	chance	to	be	displayed	with	or
without	Task	ID	information.	This	way,	we	can	keep	on	browsing	to	the	timer	functionality,
either	from	the	top	nav	link	or	by	clicking	the	Start	button	at	the	tasks	table.

Just	remember	we	configured	the	main	route	definition	with	the	useAsDefault	property	set	as
true,	remember?	This	means	that	anything	pointing	to	the	timer	route	will	degrade	gracefully
to	this	last	route	definition	once	we	reach	the	child	route	domain.

www.EBooksWorld.ir

The	Router	lifecycle	hooks
Just	like	components	go	through	a	set	of	different	phases	during	their	lifetime,	a	routing
operation	goes	through	different	lifecycle	stages.	Each	one	is	accessible	from	a	different
lifecycle	hook	which,	just	like	components,	can	be	handled	by	implementing	a	specific
interface	in	the	component	subject	of	the	routing	action.	The	only	exception	for	this	is	the
earliest	hook	in	the	routing	lifecycle,	the	CanActivate	hook,	which	takes	the	shape	of	a
decorator	annotation,	since	it	is	meant	to	be	called	before	the	component	is	even	instantiated.

www.EBooksWorld.ir

The	CanActivate	hook
The	CanActivate	hook,	presented	as	a	decorator	annotating	the	component,	is	checked	by	the
Router	right	before	it	is	instantiated.	It	will	need	its	setup	to	be	configured	with	a	function	that
is	intended	to	return	a	Boolean	value	(or	a	Promise-typed	Boolean	value)	indicating	whether
the	component	should	be	finally	activated	or	not:

@CanActivate((next,	prev)	=>	boolean	|	Promise<boolean>)

The	@CanActivate	decorator	is	therefore	a	function	that	expects	another	function	as	an
argument,	expecting	the	latter	two	ComponentInstruction	objects	as	parameters	in	its
signature:	the	first	argument	represents	the	route	we	want	to	navigate	to	and	the	second
argument	represents	the	route	we	are	coming	from.	These	objects	expose	useful	properties
about	the	route	we	come	from	and	the	component	we	aim	to	instantiate:	path,	parameters,
component	type,	and	so	on.

Note

This	hook	represents	a	good	point	in	the	overall	component's	lifecycle	to	implement
behaviors	such	as	session	validation,	allowing	us	to	protect	areas	of	our	application.
Unfortunately	the	CanActivate	hook	does	not	natively	support	dependency	injection,	which
makes	harder	to	introduce	advanced	business	logic	prior	to	activate	a	route.	The	next	chapters
will	describe	workarounds	for	scenarios	such	as	user	authentication.

In	the	following	example,	we	password-protect	the	form	so	that	it	won't	be	instantiated	should
the	user	enters	the	wrong	passphrase.	First,	open	the	TaskEditorComponent	module	file	and
import	all	that	we	will	need	for	our	first	experiment,	along	with	all	the	symbols	required	for
implementing	the	interfaces	for	the	routing	lifecycle	hooks	we	will	see	throughout	this
chapter.	Then,	proceed	to	apply	the	CanActivate	decorator	to	the	component	class:

app/tasks/task-editor.component.ts

import	{	Component	}	from	'@angular/core';

import	{

		ROUTER_DIRECTIVES,

		CanActivate,

		ComponentInstruction,

		OnActivate,

		CanDeactivate,

		OnDeactivate	}	from	'@angular/router-deprecated';

@Component({

		selector:	'pomodoro-tasks-editor',

		directives:	[ROUTER_DIRECTIVES],

		templateUrl:	'app/tasks/task-editor.component.html'

})

@CanActivate((

		next:	ComponentInstruction,

		prev:	ComponentInstruction):	boolean	=>	{

www.EBooksWorld.ir

				let	passPhrase	=	prompt('Say	the	magic	words');

				return	(passPhrase	===	'open	sesame');

		}

)

export	default	class	TaskEditorComponent	{

...

As	you	can	see,	we	are	populating	the	@CanActivate	decorator	with	an	arrow	function
declaring	two	ComponentInstruction	typed	arguments	(which	are	not	actually	required	for
our	example,	although	they	have	been	included	here	for	instructional	purposes).	The	arrow
function	returns	a	Boolean	value	depending	on	whether	the	user	types	the	correct	case-
sensitive	passphrase.	We	would	advise	you	to	inspect	the	next	and	previous	parameters	in	the
console	to	get	yourself	more	acquainted	with	the	information	these	two	useful	objects
provide.

By	the	way,	did	you	notice	that	we	declared	the	ROUTER_DIRECTIVES	token	in	the	directives
property?	The	routing	directives	are	not	required	for	our	overview	of	the	different	routing
lifecycle	hooks,	but	now	we	are	tweaking	this	component	and	will	keep	updating	it	to	test
drive	the	different	lifecycle	hooks.	Let's	introduce	a	convenient	back	button,	leveraging	the
Cancel	button	already	present	in	the	component	template:

app/tasks/task-editor.component.html

<form	class="container">

...

		<p>

				<input	type="submit"	class="btn	btn-success"	value="Save">

				<a	[routerLink]="['TasksComponent']"	class="btn	btn-danger">

						Cancel

				

		</p>

</form>

www.EBooksWorld.ir

The	OnActivate	Hook
The	OnActivate	hook	allows	us	to	perform	custom	actions	once	the	route	navigation	to	the
component	has	been	successfully	accomplished.	We	can	easily	handle	it	by	implementing	a
simple	interface.	These	custom	actions	can	even	encompass	asynchronous	operations,	in
which	case,	we	just	need	to	return	a	Promise	from	the	interface	function.	If	so,	the	route	will
only	change	once	the	promised	has	been	resolved.

Let's	see	an	actual	example	where	we	will	introduce	a	new	functionality	by	changing	the	title
of	our	form	page.	To	do	so,	we	will	keep	working	on	the	TaskEditorComponent	module	to
bring	support	for	the	OnActivate	hook	interface	and	the	Title	class	whose	API	exposes	utility
methods	(https://angular.io/docs/ts/latest/api/platform/browser/Title-class.html)	to	set	or	get
the	page	title	while	executing	applications	in	web	browsers.	Let's	import	the	Title	symbol	and
declare	it	as	a	provider	in	the	component	to	make	it	available	for	the	injector	(you	can	also
inject	it	earlier	at	the	top	root	component	should	you	wish	to	interact	with	this	object	in	other
components):

app/tasks/task-editor.component.ts

import	{	Component	}	from	'@angular/core';

import	{

		ROUTER_DIRECTIVES,

		CanActivate,

		ComponentInstruction,

		OnActivate,

		CanDeactivate,

		OnDeactivate	}	from	'@angular/router-deprecated';

import	{	Title	}	from	'@angular/platform-browser';

@Component({

		selector:	'pomodoro-tasks-editor',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[Title],

		templateUrl:	'app/tasks/task-editor.component.html'

})

Now,	let's	implement	the	interface	with	its	required	routerOnActivate	method.	As	a	rule	of
thumb,	all	router	lifecycle	hooks	are	named	after	the	hook	name	prefixed	by	router	in
lowercase:

app/tasks/task-editor.component.ts

export	default	class	TaskEditorComponent	implements	OnActivate	{

		constructor(private	title:	Title)	{}

		routerOnActivate(

				next:	ComponentInstruction,

				prev:	ComponentInstruction):	void	{

						this.title.setTitle('Welcome	to	the	Task	Form!');

		}

www.EBooksWorld.ir

https://angular.io/docs/ts/latest/api/platform/browser/Title-class.html

}

Please	note	how	we	inject	the	Title	type	in	the	class	through	its	constructor	and	how	we	later
on	execute	it	when	the	router	activates	the	component	once	the	navigation	has	finished.	Save
your	changes	and	reload	the	application.	You	will	notice	how	the	browser	title	changes	once
we	successfully	access	the	component	after	passing	the	CanActivate	and	OnActivate	stages.

www.EBooksWorld.ir

The	CanDeactivate	and	OnDeactivate	hooks
Just	like	we	can	filter	if	the	component	we	are	navigating	to	can	be	activated,	we	can	apply	the
same	logic	when	the	user	is	about	to	leave	the	current	component	towards	another	one	located
elsewhere	in	our	application.	As	we	saw	in	case	of	the	CanActivate	hook,	we	must	return	a
Boolean	or	a	Promise	resolving	to	a	Boolean	in	order	to	allow	the	navigation	to	proceed	or
not.	When	the	CanDeactivate	hook	returns	or	is	resolved	to	true,	the	OnDeactivate	hook	is
executed	just	like	the	OnActivate	hook	after	the	navigation	is	accomplished.

In	the	following	example,	we	will	intercept	the	deactivation	stages	of	the	routing	lifecycle	to
first	interrogate	the	user	whether	he	wants	to	leave	the	component	page	or	not,	and	then	we
will	restore	the	page	title	if	so.	For	both	operations,	we	will	need	to	implement	the
CanDeactivate	and	OnDeactivate	interfaces	in	our	component.	The	code	is	as	follows:

export	default	class	TaskEditorComponent	implements	OnActivate,	CanDeactivate,	

OnDeactivate	{

		constructor(private	title:	Title)	{}

		routerOnActivate():	void	{

				this.title.setTitle('Welcome	to	the	Task	Form!');

		}

		routerCanDeactivate():	Promise<boolean>	|	boolean	{

				return	confirm('Are	you	sure	you	want	to	leave?');

		}

		routerOnDeactivate():	void	{

				this.title.setTitle('My	Angular	2	Pomodoro	Timer');

		}

}

Please	note	that	we	have	removed	the	(next:	ComponentInstruction,	prev:
ComponentInstruction)	arguments	from	our	hook	implementations	because	they	were	of	no
use	for	these	examples,	but	you	can	access	a	lot	of	interesting	information	through	them	in
your	own	custom	implementations.

Same	as	the	CanActivate	hook,	the	CanDeactivate	hook	must	return	a	Boolean	value	or	a
Promise	resolved	to	a	Boolean	value	in	order	to	allow	the	routing	flow	to	continue.

www.EBooksWorld.ir

The	CanReuse	and	OnReuse	hooks
Last	but	not	least,	we	can	reuse	the	same	instance	of	a	component	while	browsing	from	one
component	to	another	component	of	the	same	type.	This	way,	we	can	skip	the	process	of
destroying	and	instantiating	a	new	component,	saving	resources	on	the	go.

This	requires	us	to	ensure	that	the	information	contained	in	the	parameters	and	stuff	is
properly	handled	to	refresh	the	component	UI	or	logic	if	required	in	the	new	incarnation	of
the	same	component.

The	CanReuse	hook	is	responsible	for	all	this,	and	it	tells	the	Router	whether	the	component
should	be	freshly	instantiated	or	whether	we	should	reuse	the	component	in	the	future	calls	of
the	same	route.	The	CanReuse	interface	method	should	return	a	Boolean	value	or	a	Promise
resolving	to	a	Boolean	value	(just	like	the	CanActivate	or	CanDeactivate	hooks	do),	which
informs	the	Router	if	it	should	reuse	this	component	in	the	next	call.	If	the	CanReuse
implementation	throws	an	error	or	is	rejected	from	within	the	Promise,	the	navigation	will	be
cancelled.

On	the	other	hand,	if	the	CanReuse	interface	returns	or	resolves	to	true,	the	OnReuse	hook	will
be	executed	instead	of	the	OnActivate	hook	should	the	latter	exist	already	in	the	component.
Therefore,	use	only	one	of	these	two	whenever	you	implement	this	functionality.

Let's	see	all	these	in	an	actual	example.	When	we	schedule	a	task	in	the	task	list	table	and
proceed	to	its	timer,	we	can	jump	at	any	time	to	the	generic	timer	accessible	from	the	top	nav
bar,	thereby	loading	another	timer	that	is	not	bound	to	any	task	whatsoever.	By	doing	so,	we
are	actually	jumping	from	one	instance	of	the	TimerWidgetComponent	component	to	another
TimerWidgetComponent	component	and	the	Angular	router	will	destroy	and	instantiate	the
same	component	again.	We	can	save	the	Router	from	doing	so	by	configuring	the	component
to	be	reused.	Open	the	TimerWidgetComponent	module	and	import	the	interfaces	we	will	need
for	this,	along	with	the	symbols	we	were	importing	already	from	the	Router	library:

app/timer/timer-widget.component.ts

import	{	Component,	OnInit	}	from	'@angular/core';

import	{	SettingsService,	TaskService	}	from	'../shared/shared';

import	{	RouteParams,	CanReuse,	OnReuse	}	from	'@angular/router-deprecated';

Now,	implement	the	CanReuse	and	OnReuse	interfaces	in	the	class	by	adding	them	to	the
implements	declaration	and	then	proceed	to	attach	the	following	required	interface	methods	to
the	class	body:

routerCanReuse():	boolean	{

		return	true;

}

routerOnReuse(next:	ComponentInstruction):	void	{

		//	No	implementation	yet

www.EBooksWorld.ir

}

Now	go	to	the	tasks	table,	schedule	any	task,	and	go	to	its	timer.	Click	on	the	Timer	link	in	the
top	nav	bar.	You	will	see	how	the	URL	changes	in	the	browser	but	nothing	happens.	We	are
reusing	the	same	component	as	it	is.	While	this	saves	memory	resources,	we	need	a	fresh
timer	when	performing	this	action.	So,	let's	update	the	OnReuse	method	accordingly,	resetting
the	taskName	value	and	the	Pomodoro	itself:

routerOnReuse():	void	{

		this.taskName	=	null;

		this.isPaused	=	false;

		this.resetPomodoro();

}

Reproduce	now	the	same	navigation	journey	and	see	what	happens.	Voila!	New	behavior	but
same	old	component.

Advanced	tips	and	tricks

Although	we	have	discussed	all	that	you	need	to	start	building	complex	applications	with
routing	functionalities,	there	is	still	a	big	collection	of	advanced	techniques	you	can	use	to
take	our	application	to	the	next	level.	In	the	upcoming	sections,	we	will	highlight	just	a	few.

www.EBooksWorld.ir

Redirecting	to	other	routes
Besides	the	route	definition	types	we	have	seen	already,	there	is	another	RouteDefinition
type	named	Redirect	that	is	not	bound	to	any	named	Route	or	component,	but	will	rather
redirect	to	another	existing	Route.

So	far,	we	were	serving	the	task	list	table	from	the	root	path,	but	what	if	we	want	to	deliver
this	table	from	a	path	named	/tasks	while	ensuring	that	all	the	links	pointing	to	the	root	are
properly	handled?	Let's	create	a	redirect	route	then.	We	will	update	the	top	root	router
configuration	with	a	new	path	for	the	existing	home	path	and	a	redirect	path	to	it	from	the	new
home	URL.	The	code	is	as	follows:

app/app.component.ts

...

@RouteConfig([{	

		path:	'',	

		name:	'Home',	

		redirectTo:	['TasksComponent']

},	{	

		path:	'tasks',

		name:	'TasksComponent',

		component:	TasksComponent,

		useAsDefault:	true

},	{	

		path:	'tasks/editor',

		name:	'TaskEditorComponent',

		component:	TaskEditorComponent

},	{	

		path:	'timer/...',

		name:	'TimerComponent',

		component:	TimerComponent	

}])

export	default	class	AppComponent	{}

The	new	redirecting	route	just	needs	a	string	path	property	and	a	redirectTo	property
declaring	the	array	of	named	routes	we	want	to	redirect	all	the	requests	to.

Note

At	the	time	of	this	writing,	the	rotue	definitions	in	the	new	Router	still	do	not	implement
support	for	the	redirectTo	property.	Please	check	the	online	documentation	for	a	more	up-to-
date	status	on	the	subject.

www.EBooksWorld.ir

Tweaking	the	base	path
When	we	began	working	on	our	application	routing,	we	defined	the	base	href	of	our
application	at	index.html,	so	the	Angular	router	is	able	to	locate	any	resource	to	load	apart
from	the	components	themselves.	We	obviously	configured	the	root	/	path,	but	what	if,	for
some	reason,	we	need	to	deploy	our	application	with	another	base	URL	path	while	ensuring
the	views	are	still	able	to	locate	any	required	resource	regardless	of	the	URL	they're	being
served	under?	Or	perhaps	we	do	not	have	access	to	the	HEAD	tag	in	order	to	drop	a	<base
href="/">	tag,	because	we	are	just	building	a	redistributable	component	and	do	not	know
where	this	component	will	wind	up	later.	Whatever	the	reason	is,	we	can	easily	circumvent
this	issue	by	overriding	the	value	of	the	APP_BASE_HREF	token,	which	represents	the	base	href
to	be	used	with	our	LocationStrategy	of	choice.

Try	it	for	yourself.	Open	the	main.ts	file	where	we	bootstrap	the	application,	import	the
required	tokens,	and	override	the	value	of	the	aforementioned	base	href	application	variable
by	a	custom	value:

app/main.ts

import	'rxjs/add/operator/map';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	AppComponent	from	'./app.component';

import	{	provide	}	from	'@angular/core';

import	{	APP_BASE_HREF	}	from	'@angular/common';

bootstrap(AppComponent,	[provide(APP_BASE_HREF,	{	

		useValue:	'/my-apps/pomodoro-app'	

})]);

Reload	the	app	and	see	the	resulting	URL	in	your	browsers.

www.EBooksWorld.ir

Finetuning	our	generated	URLs	with	location	strategies
As	you	have	seen,	whenever	the	browser	navigates	to	a	path	by	command	of	a	routerLink	or
as	a	result	of	the	execution	of	the	navigate	method	of	the	Router	object,	the	URL	showing	up
in	the	browser's	location	bar	conforms	to	the	standardized	URLs	we	are	used	to	seeing,	but	it
is	in	fact	a	local	URL.	No	call	to	the	server	is	ever	made.	The	fact	that	the	URL	shows	off	a
natural	structure	is	because	of	the	pushState	method	of	the	HTML5	history	API	that	is
executed	under	the	folds	and	allows	the	navigation	to	add	and	modify	the	browser	history	in	a
transparent	fashion.

There	are	two	main	providers,	both	inherited	from	the	LocationStrategy	type,	for
representing	and	parsing	state	from	the	browser's	URL:

PathLocationStrategy:	This	is	the	strategy	used	by	default	by	the	location	service,
honoring	the	HTML5	pushState	mode,	yielding	clean	URLs	with	no	hash-banged
fragments	(example.com/foo/bar/baz).
HashLocationStrategy:	This	strategy	makes	use	of	hash	fragments	to	represent	state	in
the	browser	URL	(example.com/#foo/bar/baz).

Regardless	of	the	strategy	chosen	by	default	by	the	Location	service,	you	can	fallback	to	the
old	hashbang-based	navigation	by	picking	the	HashLocationStrategy	as	the	LocationStrategy
type	of	choice.

In	order	to	do	so,	go	to	main.ts	and	tell	the	Angular	global	injector	that,	from	now	on,	any
time	the	injector	requires	binding	the	LocationStrategy	type	for	representing	or	parsing	state
(which	internally	picks	PathLocationStrategy),	it	should	use	not	the	default	type,	but	use
HashLocationStrategy	instead.

It	just	takes	to	override	a	default	provider	injection:

app/main.ts

import	'rxjs/add/operator/map';

import	{	bootstrap	}	from	'@angular/platform-browser-dynamic';

import	AppComponent	from	'./app.component';

import	{	provide	}	from	'@angular/core';

import	{

		LocationStrategy,

		HashLocationStrategy

}	from	'@angular/common';

bootstrap(AppComponent,	[provide(LocationStrategy,	{

		useClass:	HashLocationStrategy

})]);

Save	your	changes	and	reload	the	application,	requesting	a	new	route.	You'll	see	the	resulting
URL	in	the	browser.

www.EBooksWorld.ir

Note

Please	note	that	any	location-related	token	in	the	example	is	not	imported	from
'@angular/router-deprecated'	but	from	'@angular/common'	instead.

www.EBooksWorld.ir

Loading	components	asynchronously	with	AsyncRoutes
As	you	have	seen	in	this	chapter,	each	route	definition	needs	to	be	configured	with	a
component	property	that	will	inform	the	router	about	what	to	load	into	the	router	outlet	when
the	browsers	reach	that	URL.	However,	we	might	sometimes	find	ourselves	in	a	scenario
where	this	component	needs	to	be	fetched	at	runtime	or	is	just	the	by-product	of	an
asynchronous	operation.	In	these	cases,	we	need	to	apply	a	different	strategy	to	pick	up	the
component	we	need.	Here's	where	a	new	type	of	router	definition	named	AsyncRoute	comes
to	the	rescue.	This	specific	kind	of	route	exposes	the	same	properties	of	the	already	familiar
RouteDefinition	class	we	have	been	using	along	this	chapter.	It	replaces	the	component
property	with	a	loader	property	that	will	be	linked	to	a	Promise	that	resolves	asynchronously
to	a	component	loaded	on	demand.

Let's	see	this	with	an	actual	example.	In	order	to	keep	things	simple,	we	will	not	be	importing
the	component	we	want	to	load	at	runtime,	rather	we	will	return	it	from	an	asynchronous
operation.	Open	the	top	root	component	module	and	replace	the	route	pointing	to
TimerComponent	with	this	async	route	definition:

app/app.component.ts

...

@RouteConfig([{	

				path:	'',

				name:	'Home',

				redirectTo:	['TasksComponent']	

},	{	

				path:	'tasks',

				name:	'TasksComponent',

				component:	TasksComponent,

				useAsDefault:	true

},	{	

				path:	'tasks/editor',

				name:	'TaskEditorComponent',

				component:	TaskEditorComponent

},	{	

				path:	'/timer/...',	

				name:	'TimerComponent',	

				loader:	()	=>	{

						return	new	Promise(resolve	=>	{

								setTimeout(()	=>	resolve(TimerComponent),	1000);

						});

				}	

		}	

])

export	default	class	AppComponent	{}

The	next	time	we	attempt	to	load	any	route	belonging	to	the	timer	branch	(either	the	generic
timer	accessible	from	the	nav	bar	or	any	task-specific	timer),	we	will	have	to	wait	until	the
Promise	resolves	to	the	component	we	need.	Obviously,	the	goal	of	this	example	is	not	to

www.EBooksWorld.ir

teach	how	to	make	things	load	slower,	but	to	provide	a	simple	example	of	loading	a
component	asynchronously.

www.EBooksWorld.ir

Summary
We	have	now	uncovered	the	power	of	the	Angular	router	and	we	hope	you	have	enjoyed	this
journey	into	the	intricacies	of	this	library.	One	of	the	things	that	definitely	shines	in	the
Router	module	is	the	vast	number	of	options	and	scenarios	we	can	cover	with	such	a	simple
but	powerful	implementation.

In	this	chapter,	we	discussed	how	to	install	and	provide	support	for	routing	in	our	applications
and	how	to	turn	any	given	component	into	a	routing	component	by	decorating	it	with	the
router	configuration	decorator	and	placing	a	router	outlet	in	its	template,	even	spreading
routers	downward	in	the	components	tree.	We	also	saw	how	to	define	regular	routes	and	some
other	advanced	types	such	as	redirect	or	async	routes.	The	routing	lifecycle	has	no	secrets	for
us	anymore	and	harnessing	its	power	will	open	the	door	to	deliver	advanced	functionalities	in
our	applications	with	no	effort.	The	possibilities	are	endless	and,	most	importantly,	routing
contributes	to	delivering	a	better	browsing	experience.

In	the	next	chapter,	we	will	beef	up	our	task	editing	component	to	showcase	the	mechanisms
underlying	web	forms	in	Angular	2	and	what	are	the	bests	strategies	to	grab	user's	input	with
form	controls.

www.EBooksWorld.ir

Chapter	8.	Forms	and	Authentication	Handling
in	Angular	2
In	the	previous	chapter,	we	covered	routing	and	this	led	to	security	concerns	when	it	came	to
providing	different	tiers	of	content	in	our	application.	Enabling	user	authentication	is	the	first
step	for	introducing	relevant	features	such	as	publishing	forms	in	our	application.	However,
if	we	want	to	build	these	brand	new	functionalities,	we	will	need	to	discover	how	to	set	a
foundation	first.	In	this	chapter,	we	will	see	how	to	build	forms	and	then	move	on	to	cover
how	to	leverage	those	forms	to	allow	users	to	login	and	create	new	content.

As	a	word	of	caution	about	this	chapter,	we	will	overview	different	ways	of	building	forms.
All	of	them	are	valid,	and	its	use	will	depend	on	the	goals	you're	aiming	on	every	moment	to
fulfill	each	project	requirement.

In	this	chapter,	we	will:

Learn	how	to	create	responsive	input	controls	in	our	forms	with	directives
Discuss	two-way	data	binding	support	in	Angular	2
Bind	data	models	and	interface	types	for	forms	and	input	controls
Design	control	sets	both	declaratively	and	imperatively
Dive	into	the	alternatives	for	input	validation
Build	our	own	custom	validators
Develop	our	own	login	forms
Implement	general-purpose	authorization	providers
Secure	areas	of	our	site	by	requesting	user	login	upfront

www.EBooksWorld.ir

Two-way	data	binding	in	Angular	2
We	mentioned	in	previous	chapters	that	one	of	the	main	differences	between	Angular	2	and
the	previous	incarnations	of	the	framework	is	that	it	does	not	favor	two-way	data	binding	as
the	core	pattern	of	data	management.	Well,	this	is	not	exactly	true.	While	most	of	the	data
management	processes	in	Angular	2	are	one	way	only,	form	management	provides	room	for
two-way	data	binding	by	means	of	the	NgModel	directive.

Let's	see	all	this	through	an	actual	example.	In	the	previous	chapter,	we	introduced	a	new
component	so	we	could	expand	the	range	of	components	available	in	our	app	in	order	to	have
more	options	for	navigating	the	site,	and	thus	we	could	better	test	our	router's
implementation.	This	new	component,	named	TaskEditorComponent,	had	no	implementation
yet	and	its	template	featured	this	layout:

app/tasks/task-editor.component.html

<form	class="container">

		<h3>Task	Editor:</h3>

		<div	class="form-group">

				<input	type="text"

						class="form-control"

						placeholder="Task	name"

						required>

		</div>

		<div	class="form-group">

				<input	type="Date"

						class="form-control"

						required>

		</div>

		<div	class="form-group">

				<input	type="number"

						class="form-control"

						placeholder="Pomodoros	required"

						min="1"

						max="4"

						required>

		</div>

		<div	class="form-group">

				<input	type="checkbox"	name="queued">

				<label	for="queued">	this	task	by	default?</label>

		</div>

		<p>

				<input	type="submit"	class="btn	btn-success"	value="Save">

				<a	[routerLink]="['TasksComponent']"	class="btn	btn-danger">Cancel

		</p>

</form>

www.EBooksWorld.ir

This	is	a	tiny	but	nifty	web	form	indeed.	The	component	included	support	for	some	routing
lifecycle	hooks	in	order	to	serve	as	a	proof-of-concept	for	the	different	stages	a	component
goes	through	in	its	journey	through	the	navigation	pipeline.	Apart	from	that,	the	form	had	no
life	whatsoever—it	was	just	an	unanimated	creature	in	the	middle	of	nowhere.

Note

You	will	see	several	classnames	decorating	our	forms	through	the	different	examples
included	in	this	chapter.	Unless	pointed	otherwise,	all	classnames	contained	in	this	chapter	are
borrowed	from	the	Bootstrap	style	sheet	for	styling	up	our	form,	for	example,	container,
form-group,	form-control	and	so	on.	Angular	has	no	relationship	with	these	and	they	are
indeed	not	required	when	coding	against	the	framework.

www.EBooksWorld.ir

The	NgModel	directive
Let's	infuse	some	life	into	it	then!	One	of	the	good	things	about	implementing	two-way	data
binding	support	in	our	form	elements	is	that	we	do	not	need	to	import	anything	upfront.
Angular	2	is	smart	enough	to	detect	what	it	needs	and	the	only	directive	we	will	need	is
already	supplied	out-of-the-box.	We	are	obviously	referring	to	the	NgModel	directive.
According	to	the	Angular	2	official	documentation:

"ngModel	binds	an	existing	domain	model	to	a	form	control.	For	a	two-way	binding,	use
[(ngModel)]	to	ensure	the	model	updates	in	both	directions."

In	a	nutshell,	in	the	very	moment	we	bind	an	ngModel	attribute	to	a	form	control,	the	control
will	watch	the	value	stored	at	the	component	class	property	it	is	bound	to	and	will	update
itself	as	soon	as	the	value	changes	in	the	model.	You	might	think:	this	is	already	done	by
Angular	without	any	real	fanfare.	Yes,	but	the	main	difference	here	is	that	such	surveillance	is
performed	in	both	ways.	This	means	that	the	class	model	will	update	its	state	as	soon	as	the
form	control	value	is	updated.

Enough	said!	It's	time	for	some	action.	Let's	update	our	task	editing	component	to	try	this	out.
Bring	up	the	code	of	our	task	editing	component	and,	first	of	all,	please	note	that	it	features	a
CanActivate	decorator	that	posed	a	passthrough	question	to	the	user.	Let's	remove	it,	since
we	will	encounter	more	secure	and	elegant	ways	to	provide	such	functionality	later	in	this
chapter.	Now,	let's	add	a	new	member	named	taskName,	which	will	obviously	represent	a	task
name!

app/tasks/task-editor.component.ts

export	default	class	TaskEditorComponent	implements	OnActivate,	CanDeactivate,	

OnDeactivate	{

				taskName:	string;

				constructor(private	title:	Title)	{}

				//	Rest	of	the	component	remains	unchanged

}

Open	the	associated	template	and	update	the	first	input	block	to	look	like	this.	We	will	explain
all	this	in	a	minute:

app/tasks/task-editor.component.html

<p>Your	task	name	is	{{taskName}}</p>

<div	class="form-group">

		<input	type="text"

				class="form-control"

				placeholder="Task	name"

				[(ngModel)]="taskName">

</div>

www.EBooksWorld.ir

As	you	can	see,	we	have	attached	a	[(ngModel)]	attribute	directive	into	our	input	control
pointing	to	the	string	property	we	just	created	in	the	component	class,	which	is	also	shown	on
the	screen	right	above	the	input.	Execute	the	code	and	change	the	text	field	values.	You	will	see
how	the	text	entered	is	updated	in	real-time	on	screen.

The	syntax	of	the	ngModel	gives	a	very	good	hint	to	what	is	it	all	about.	We	are	blending	in	a
single	attribute	an	event	handler	and	a	property	binding	(hence	the	combination	of	brackets
plus	braces),	so	we	can	inject	a	value	into	the	target	control	while	listening	to	changes	made
on	the	value	at	the	same	time.	In	other	words,	it	is	two-way	data	binding.

Obviously,	this	is	a	very	simplistic	example	and	we	aim	to	build	something	more	ambitious,
so	let's	leverage	this	recently	gained	experience	to	build	something	more	useful.	In	the
following	section,	we	are	going	to:

Link	the	form	to	a	newly	instantiated	task	object	acting	as	a	model
Populate	the	model	with	the	values	entered	in	the	form
Persist	the	changes	after	validating	the	data	entered
Redirect	the	user	to	the	Pomodoros	table	to	see	the	task	just	created	there

www.EBooksWorld.ir

Binding	a	type	to	a	form	with	NgModel
Remove	the	code	just	added	and	import	the	Task	interface	type	into	our	form	along	with	the
TaskService	manager,	by	appending	the	following	import	statement	to	the	top:

app/tasks/task-editor.component.ts

import	{	Component	}	from	'@angular/core';

import	{	Title	}	from	'@angular/platform-browser';

import	{

		Router,

		ROUTER_DIRECTIVES,

		ComponentInstruction,

		CanActivate,

		OnActivate,

		CanDeactivate,

		OnDeactivate	}	from	'@angular/router-deprecated';

import	{	

		Task,

		TaskService	}	from	'../shared/shared';

You	might	have	noticed	that	we	also	imported	the	Router	type	from	angular2/router.	We
will	need	it	to	redirect	the	user	back	to	the	Pomodoro	list	page	once	the	new	task	has	been
successfully	created.

Now,	we	need	to	append	a	new	Task-annotated	member	to	our	class	and	declare	TaskService
as	a	dependency	in	the	constructor,	so	we	can	persist	the	newly	created	task	later.	Remove	the
taskName	string	field	we	created	earlier	and	update	the	class	with	these	changes:

app/tasks/task-editor.component.ts

export	default	class	TaskEditorComponent	implements	OnActivate,	CanDeactivate,	

OnDeactivate	{

		task:	Task;

		constructor(

				private	title:	Title,

				private	router:	Router,

		private	taskService:	TaskService)	{

				this.task	=	<Task>{};

		}

		//	Rest	of	the	component	remains	unchanged

}

We	have	added	a	new	field	to	the	class	representing	the	Task	model	our	form	will	be	bound	to.
Since	Task	is	an	interface	type,	we	cannot	instantiate	it	by	using	the	new	keyword,	since
interfaces	have	no	constructor.	However,	we	can	take	advantage	of	generics	and	typecast	an
empty	object	to	enforce	the	Task	interface,	as	we	did	in	the	preceding	code.

On	the	other	hand,	the	types	declared	in	the	constructor	ensure	that	the	Angular	injector	will

www.EBooksWorld.ir

make	them	available	as	class	fields	for	the	rest	of	the	component	members	once	it	is
instantiated.

Ideally,	we	would	just	need	to	link	the	form	data	to	the	object	represented	by	the	task	member
of	our	component	class,	persist	it	throughout	the	application	by	using	the	methods	already
created	in	the	TaskService	class,	and	then	proceed	to	the	task	list	right	after	that.	Let's	begin
by	updating	our	HTML	template	with	the	required	ngModel	attributes,	including	a	Submit
button	and	a	submit	handler	in	the	form	wrapper	tag:

app/tasks/task-editor.component.html

<form	class="container"	(submit)="saveTask()">

		<h3>Task	Editor:</h3>

		<div	class="form-group">

				<input	type="text"	

						class="form-control"

						placeholder="Task	name"	

						[(ngModel)]="task.name">

		</div>

		<div	class="form-group">

				<input	type="date"	

						class="form-control"

						[(ngModel)]="task.deadline">

		</div>

		<div	class="form-group">

				<input	type="number"	

						class="form-control"

						placeholder="Pomodoros	required"

						min="1"

						max="4"

						[(ngModel)]="task.pomodorosRequired">

		</div>

		<div	class="form-group">

				<input	type="checkbox"	

						name="queued"

						[(ngModel)]="task.queued">

				<label	for="queued">	this	task	by	default?</label>

		</div>

		<p>

				<input	type="submit"	class="btn	btn-success"	value="Save">

				<a	[routerLink]="['TaskList']"	class="btn	btn-danger">

						Cancel

				

		</p>

</form>

There	are	two	remarkable	elements	in	this	piece	of	code:

Now	each	input	control	features	an	ngModel	directive	attribute,	mapped	to	one	of	the
properties	of	the	Task	type	represented	by	the	task	member	of	the	controller	class.

www.EBooksWorld.ir

We	have	included	a	Submit	button	in	our	form,	although	the	form	tag	does	not	feature
any	action	attribute,	so	where	are	we	submitting	our	form	to?	The	(submit)	event
listener	takes	care	of	handling	the	event	by	binding	an	event	handler	to	it.

Our	three	input	fields	now	benefit	from	two-way	data	binding	functionality,	being	each	input
control	pointing	to	a	property	exposed	by	the	model	object.	When	submitted,	the	form	will
execute	the	saveTask()	method	located	in	the	body	of	our	component.	Let's	take	a	look	into
this	method	then.	It	has	not	been	added	already	to	the	class	though	so	please	extend	our
component	with	a	method	featuring	such	a	name	and	append	it	anywhere	in	the	class	right
after	its	constructor:

app/tasks/task-editor.component.ts

saveTask()	{

		this.task.deadline	=	new	Date(this.task.deadline.toString());

		this.taskService.addTask(this.task);

		this.router.navigate(['TaskList']);

}

Note

You	have	probably	raised	an	eyebrow	after	watching	the	first	line	of	code	in	the	saveTask()
method.	Yes,	that	is	weird.	We	grab	the	value	of	the	deadline	property	just	to	convert	it	to	a
string	(it	was	a	Date	object	already)	and	then	we	turn	it	into	a	Date	object	again.	There	is	a
reason	for	this.	The	DatePipe	(like	the	one	we	use	in	the	TasksComponent	template)	will	only
take	the	Date	objects	and	these	need	to	be	properly	formatted	since	no	localization
transformation	is	provided	at	the	time	of	this	writing.	The	date	input	field	does	not	supply
such	localization	functionality	so	we	need	to	ensure	data	consistency	across	the	board	by
repurposing	the	data	format	before	saving	it.	There	are	better	workarounds	for	this	but	all	of
them	are	basically	more	verbose	and	definitely	sit	outside	the	scope	of	our	topic	here,	so	we
will	stick	to	this	quick	fix	for	the	rest	of	the	chapter.

Bypassing	the	CanDeactivate	router	hook	upon	submitting	forms

Now	our	component	has	everything	we	need	in	order	to	reflect	the	changes	made	on	our
model	by	the	form.	However,	if	we	attempt	to	fill	out	the	form	with	the	details	of	our	next	task
and	proceed	to	save	it,	we	will	be	confronted	with	that	pesky	alert	popup	we	set	up	in	the
previous	chapter	for	inviting	the	users	to	fill	out	the	form,	and	that's	what	we	just	did	now!	It's
time	for	a	last-minute	change	then.	Let's	insert	a	beacon	variable	informing	whether	the	form
has	been	updated	and	successfully	saved	or	not,	and	use	it	to	skip	the	popup	later	where
required.	The	code	is	as	follows:

app/tasks/task-editor.component.ts

export	default	class	TaskEditorComponent	implements	OnActivate,	CanDeactivate,	

OnDeactivate	{

		task:	Task;

		changesSaved:	boolean;

www.EBooksWorld.ir

		constructor(

				private	title:	Title,

				private	router:	Router,

				private	taskService:	TaskService)	{

						this.task	=	<Task>{};

		}

		saveTask()	{

				this.task.deadline	=	new	Date(this.task.deadline.toString());

				this.taskService.addTask(this.task);

				this.changesSaved	=	true;

				this.router.navigate(['TaskList']);

		}

		routerOnActivate()	{

				this.title.setTitle('Welcome	to	the	Task	Form!');

		}

		routerCanDeactivate()	{

				return	this.changesSaved	||	confirm('Are	you	sure	you	want	to	leave?');

		}

		routerOnDeactivate()	{

				this.title.setTitle('My	Angular	2	Pomodoro	Timer');

		}

}

Basically,	the	changesSaved	field	represents	a	boolean	flag	that	will	take	a	truth	value	right
after	persisting	the	Task	typed	data	through	the	TaskService	API.	This	allows	the
routerCanDeactivate()	method	to	either	return	true	as	soon	as	it	sees	whether	the	changes
have	been	saved	or	just	throw	the	confirm	popup.

So	far	so	good,	but	now	it's	time	to	get	fancy	and	beautify	our	form	logic	a	little	bit.
Validating	our	input	fields	is	definitely	a	good	starting	point	and	that	will	lead	us	to	the	next
stage	in	our	journey	through	the	exciting	world	of	Angular	2	forms.

www.EBooksWorld.ir

Tracking	control	interaction	and	validating
input
Although	we	are	already	tracking	changes	in	our	input	forms	through	the	two-way	data
binding,	we	need	a	better	way	to	watch	the	overall	state	of	our	form.	In	order	to	do	so,	we	can
take	advantage	of	the	NgForm	directive.	The	NgForm	directive	keeps	track	of	the	state	of	all
input	controls	found	within	it.	The	good	news	is	that	such	a	directive	has	been	present	in	our
example	right	from	the	beginning.	How?	Basically,	the	NgForm	directive	is	configured	in	its
selector	to	be	attached	to	any	<form>	tag	present	in	our	template,	providing	additional	features
to	our	form	as	real-time	tracking	of	the	state	of	the	input	fields	in	respect	of	validity	and	user
interaction.	In	other	words,	if	you	have	a	form	in	your	template,	you	have	a	ngForm	directive
already.

Tip

You	can	cancel	this	automatic	binding	by	appending	the	ngNoForm	attribute	to	any	<form>	tag
you	do	not	want	to	be	intervened	by	Angular.

Let's	see	all	this	through	a	simple	example.	First,	mark	all	our	fields	with	the	HTML5
required	attribute:

app/tasks/task-editor.component.html

<form	class="container"	(submit)="saveTask()">

		<h3>Task	Editor:</h3>

		<div	class="form-group">

				<input	type="text"	

						class="form-control"

						placeholder="Task	name"	

						[(ngModel)]="task.name"

						required>

		</div>

		<div	class="form-group">

				<input	type="date"	

						class="form-control"

						[(ngModel)]="task.deadline"

						required>

		</div>

		<div	class="form-group">

				<input	type="number"	

						class="form-control"

						placeholder="Pomodoros	required"

						min="1"

						max="4"

						[(ngModel)]="task.pomodorosRequired"

						required>

		</div>

www.EBooksWorld.ir

		<div	class="form-group">

				<input	type="checkbox"	

						name="queued"

						[(ngModel)]="task.queued">

				<label	for="queued">	this	task	by	default?</label>

		</div>

		<p>

				<input	type="submit"	class="btn	btn-success"	value="Save">

				<a	[routerLink]="['TaskList']"	class="btn	btn-danger">

						Cancel

				

		</p>

</form>

If	we	attempt	to	submit	the	form,	automatic	alerts	will	be	triggered	by	the	browser	applying
the	validation	policies	enforced	by	the	HTML5	form	validation	API.	But	there	is	a	lot	more
happening	under	the	hood.	If	we	inspect	the	code	of	our	form	with	the	browser's	developer
tools,	we	will	see	a	myriad	of	class	names	decorating	the	input	controls	now.	Where	did	all
these	come	from?	The	answer	is	simple!	The	NgForm	directive,	actioning	our	<form>	tag,	put
all	these	there.	Let's	inspect	the	first	input	field	through	our	browser's	dev	tools	as	an
example:

<input	type="text"

		class="form-control	ng-untouched	ng-pristine	ng-invalid"

		placeholder="Task	name"

		required="">

These	classnames	(easily	identifiable	by	the	ng-	prefix)	give	us	a	very	good	hint	to	the
different	states	any	given	input	control	can	take	when	wrapped	inside	the	NgForm	directive.
These	class	bindings	are	fully	reactive	to	state	changes	in	our	input	fields.	With	your	dev	tools
pane	open,	select	any	input	field,	update	its	value	and	then	empty	it	again	and	see	how	the
classnames	change,	assuming	any	of	the	following	states:

Untouched:	When	true,	the	control	has	not	been	interacted	with	the	user
Touched:	When	true,	the	control	has	been	interacted	with	the	user
Pristine:	The	control	and	its	underlying	model	has	not	been	changed
Dirty:	The	control	and	its	underlying	model	has	been	changed
Valid:	The	inner	model	is	valid
Invalid:	The	inner	model	is	not	valid

When	interacting	with	our	form	controls,	we	will	see	generated	classnames	matching	these
states	represented	with	the	ng-	prefix	here	and	there:	ng-untouched,	ng-pristine,	ng-
invalid,	and	so	on.

www.EBooksWorld.ir

Tracking	changes	with	local	references
Now	that	we	know	that	our	input	controls	can	react	to	user	interactions	and	model	validation,
we	can	take	a	step	further	and	render	more	information	on	screen.	For	instance,	we	can	style
our	form	in	a	reactive	fashion:

app/tasks/task-editor.component.ts

@Component({

		selector:	'pomodoro-tasks-editor',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[Title],

		templateUrl:	'app/tasks/task-editor.component.html',

		styles:	[`

				.ng-valid	{	border-color:	#3c763d;	}

				.ng-invalid	{	border-color:	#a94442;	}

				.ng-untouched	{	border-color:	#999999;	}

		`]

})

...

Our	form	will	provide	now	visual	hints	of	the	overall	state	of	each	input	through	its	visual
layout,	but	perhaps	rendering	some	messages	on	screen	will	compound	up	the	user
experience	we	want	to	deliver	in	our	app.	In	order	to	do	so,	we	need	to	go	into	each	input
control	state,	and	template	local	references	become	quite	handy	for	this.	They	will	provide	a
valuable	accessor	to	the	general	state	handler	of	our	form	which	is	our	ngForm	directive.	Let's
insert	a	state	message	in	our	form	and	turn	it	into	a	watcher	of	the	state	of	the	first	input	field,
using	ngForm	as	a	proxy:

app/tasks/task-editor.component.html

<form	class="container"	(submit)="saveTask()">

		<h3>Task	Editor:</h3>

		<div	class="form-group">

				<p	class="text-muted"	*ngIf="name.untouched">

						Start	here	by	entering	the	task	name.

				</p>

				<p	class="text-success"	*ngIf="name.valid	&&	name.touched">

						Well	done!	That's	a	good	name	for	a	task!

				</p>

				<p	class="text-danger"	*ngIf="!name.valid	&&	name.touched">

						Oops!	You	cannot	leave	the	name	blank...

				</p>

				<input	type="text"

						class="form-control"

						placeholder="Task	name"

						[(ngModel)]="task.name"

						#name="ngForm"

						required>

		</div>

...

www.EBooksWorld.ir

Let's	take	a	closer	look	at	the	preceding	code.	The	first	block	is	pretty	straightforward:	we
will	render	different	messages	(using	the	styling	provided	by	Bootstrap,	as	we	did	already
with	the	rest	of	the	form)	depending	of	the	overall	state	of	the	control.	In	order	to	refer	to	the
input	control,	we	need	to	create	a	local	template	variable	so	we	can	address	it	from	a	different
element,	and	so	we	do	by	appending	the	#name	local	template	reference	in	our	control.
Surprisingly,	it	is	populated	with	a	value	though.	Local	template	variables	in	Angular	2	can	be
populated	with	other	values,	or	pointers	to	other	objects	and	that's	exactly	what	we	are	doing
by	pointing	#name	to	the	ngForm	string.	The	NgForm	directive	exports	itself	under	the	ngForm
name,	so	if	we	refer	to	its	name	from	any	local	template	reference,	we	will	gain	access	to	its
API	and,	thus,	its	state.

Let's	wrap	up	our	journey	into	form	building	based	on	classical	two-way	data-binding.
Nevertheless,	there	is	another	powerful	way	to	build	forms	in	Angular	2	that	has	nothing	to
do	with	our	beloved	[(ngModel)]	directive,	although	it	also	provides	support	for	the	same
functionalities	and	even	extends	support	for	some	more	features,	becoming	the	preferred	way
for	building	forms	in	Angular	2.

www.EBooksWorld.ir

Controls,	ControlGroups,	and	the	FormBuilder
class
In	this	chapter,	we	have	seen	how	to	implement	two-way	data	binding	in	our	forms	to	hook	up
data	entities	with	input	fields.	While	this	approach	is	perfectly	fine,	Angular	2	provides	a
more	efficient	form	model	where	everything	flows	in	one	direction	only.	There	are	a	lot	of
upsides	for	this,	but	probably	the	most	relevant	reason	is	the	remarkable	impact	on
performance	that	traditional	two-way	data-binding	has	in	our	applications,	in	comparison	to
other	patterns	where	information	flows	in	one	direction	only.

www.EBooksWorld.ir

Introducing	Controls	and	Validators
In	a	nutshell,	we	might	summarize	Controls	in	the	following	statement:	A	Control	is	the
minimum	representation	of	an	element	being	part	of	a	form.	Think	of	a	text	input	or	a
checkbox	as	perfect	examples	of	a	control.	In	fact,	we	have	been	using	Angular	2	controls
throughout	this	chapter	every	time	we	tapped	into	any	of	the	input	fields	of	the	Pomodoro	task
creation	form.	Angular	2	creates	(by	default)	a	control	for	every	form	component	existing
within	a	NgForm	directive.	Since	the	form	element	is	attached	to	this	directive,	we	have	been
dealing	with	Control	objects	right	from	the	beginning.

Now,	what	does	it	take	to	create	a	Control	object?	It	is	pretty	simple	really.	Once	we	import
the	Control	type	from	the	angular2/common	barrel,	we	can	create	controls	in	our	classes	just
by	instantiating	them	like	this:

var	firstName	=	new	Control('',	Validators.required);

The	Control	constructor	is	pretty	simple:	the	first	parameter	is	the	default	value	our	control
will	assume	by	default	and	can	allocate	any	object	type.	It	is	usually	populated	with	an	empty
string	when	no	default	value	is	required.	The	second	parameter	expects	a	function	which	the
Control	object	will	use	to	validate	the	data	input.	We	can	create	our	own	custom	validation
function,	as	we	will	see	later	in	this	chapter,	or	we	can	take	advantage	of	any	of	the	static
functions	already	created	in	the	Validators	class,	also	available	at	the	angular2/common
barrel.	This	class	exposes	the	following	static	validator	methods:

required:	This	requires	the	control	to	have	an	actual	non-empty	value.	It	is	equivalent	to
the	HTML5	required	attribute.
minLength(minLength:	number):	The	validator	will	require	the	control	to	be	populated
with	a	value	of	a	given	minimum	length.
maxLength(maxLength:	number):	The	validator	will	require	the	control	to	be	populated
with	a	value	of	a	given	maximum	length.
pattern(pattern:	string):	The	argument	of	the	pattern	validator	expects	a	string
containing	a	regular	expression.
compose(validators:	Function[]):	This	is	not	an	actual	validator	though,	but	a	mixin	to
combine	validators	in	the	array	passed	as	a	parameter.
composeAsync():	This	is	the	same	as	compose,	but	it	will	expect	to	convert	each	function
into	a	promise	under	the	hood	and	execute	all	them	at	once,	returning	the	result	of	the
validation	check	once	all	promises	have	resolved.

Each	one	of	these	validators,	when	interrogated	by	Angular,	will	either	return	a	null	value
indicating	that	the	input	is	valid	or	an	error	map	object	with	further	details	of	the	errors
causing	the	invalidation	of	our	control.	Don't	panic!	You	will	get	the	full	picture	later	on	when
we	implement	some	of	these	validators	in	a	real	example.

www.EBooksWorld.ir

Controls	in	the	DOM	–	the	ngControl	directive
We	can	create	Controls	in	the	body	of	our	component	class	or	we	can	have	Angular	2	create
and	bind	them	directly	into	our	templates	thanks	to	the	ngControl	attribute	directive,
formalized	in	the	NgControlName	class.

Note

Do	not	confuse	the	NgControlName	class	with	the	NgControl	class,	which	is	the	base	class	that
NgControlName	actually	extends	from.

This	directive	can	only	be	used	as	a	child	of	a	NgForm	directive	(which	we	covered	already)	or
an	element	decorated	with	the	NgFormModel	attribute	directive,	which	we	will	cover	shortly.
The	official	Angular	documentation	describes	the	ngControl	using	the	following	statement:

"Creates	and	binds	a	control	with	a	specified	name	to	a	DOM	element.	This	directive	can
only	be	used	as	a	child	of	NgForm	or	NgFormModel."

According	to	this	quote,	we	will	usually	find	the	ngControl	directive	decorating	an	input
control	like	this:

<input	type="email"	ngControl="email">

From	the	moment	we	introduce	a	NgControlName	directive	as	a	named	ngControl	attribute	in
our	input	controls,	we	can	access	its	value,	check	its	validity,	and	watch	it	for	state	changes.
The	most	convenient	way	is	to	assign	a	local	template	reference	pointing	to	the	exported
NgForm	directive	and	evaluate	its	properties:

<input	type="password"	ngControl="password"	#pwd="ngForm">

<div	*ngIf="!pwd.valid">Password	is	invalid</div>

In	the	preceding	example,	which	is	meant	to	be	executed	within	the	context	of	a	form	element,
we	labeled	the	input	control	extended	already	by	the	ngControl	directive	with	a	local	template
reference	named	#pwd	pointing	to	ngForm.	Angular	detects	this	reference	and	resets	the
pointer	to	the	control	itself.	This	way,	we	can	conveniently	access	and	inspect	the	properties
of	the	Control	object	bound	to	the	ngControl	directive.	You	will	actually	see	this	pattern	quite
often	when	working	with	forms	in	Angular	2,	as	we	already	did	in	the	previous	sections.

Note

It	is	worth	noting	that	the	static	methods	of	the	Validator	class	have	a	counterpart	in	the	form
of	attribute	directives	that	are	sensitive	to	elements	decorated	with	the	ngControl	directive,	so
we	can	apply	validation	right	over	them:

<input	ngControl="taskName"	required	pattern="[a-zA-Z]*">

<input	ngControl="pomodoros"	minlength="1"	maxlength="5">

www.EBooksWorld.ir

Grouping	controls	in	the	DOM	with	NgControlGroup
Usually,	forms	include	more	than	one	input	control	and	therefore	the	data	model	they
represent	features	several	fields	or	properties.	When	defining	a	set	of	inputs,	we	can	take
advantage	of	the	NgControlGroup	directive.	This	directive	behaves	as	a	reference	wrapper	for
several	input	controls	decorated	with	the	ngControl	directive,	so	we	can	benefit	from	a	single
entry	point	to	inspect	the	values	of	each	different	input	control	contained	in	the
NgControlGroup.	The	following	example	defines	a	simple	form	comprising	two	input	fields
wrapped	within	a	NgControlGroup	whose	reference	is	passed	to	a	component	method	upon
submitting	the	form:

import	{	Component	}	from	'@angular/core';

import	{	NgControlGroup	}	from	'@angular/common';

@Component({

		selector:	'hello-form',

		template:	`

		<form	(submit)="sayHello(fullName)">

				<div	ngControlGroup="nameControlsGroup"	#fullName="ngForm">

						<div	class="form-group">

								<input	type="text"	

										placeholder="First	name"

										ngControl="firstName"	

										required>

								<input	type="text"

										placeholder="Last	name"

										ngControl="lastName"

										required>

						</div>

				</div>

				<input	type="submit"	value="Say	my	name">

		</form>

		`

})

export	default	class	SayHello	{

		sayHello(controlGroup:	NgControlGroup):	void	{

				if	(controlGroup.control)	{

						let	firstName	=	controlGroup.control.value.firstName;

						let	lastName	=	controlGroup.control.value.lastName;

						alert(`Hello	${firstName}	${lastName}!`);

				}

		}

}

We	used	local	template	references	to	introspect	the	NgControlGroup	with	itself	using	ngForm
as	a	proxy.	The	object	passed	to	the	sayHello()	method,	which	is	the	reference	to	the
NgControlGroup	itself	and	exposes	(through	the	control	property)	all	the	information
pertaining	to	the	global	state	of	the	group:	pristine,	valid,	touched,	and	so	on.	We	can	also
inspect	the	NgControl	objects	contained	by	the	control	group	by	inspecting	the	controls
property	inside	control.	The	value	property	of	control	returns	a	hash	object	representation	of
the	actual	value	of	all	the	input	fields	contained.

www.EBooksWorld.ir

In	this	example,	we	are	populating	the	NgControlGroup	with	the	nameControlsGroup	value.
This	string	will	become	the	name	of	the	control	group	in	the	context	of	the	wrapping	NgForm
directive.	If	we	slide	a	local	template	reference	into	the	<form>	element	and	inspect	its	own
controls	property,	we	will	see	an	object	containing	a	property	with	the	name	given	to	our
group	(or	groups)	pointing	to	its	respective	NgControlGroup	object.	Inspecting	the	value
property,	on	the	other	hand,	will	return	a	hash	object	with	as	many	properties	as	control
groups	found	in	the	form	containing	each	one	an	object	representation	of	the	values	of	the
input	controls	therein.

www.EBooksWorld.ir

Defining	control	groups	imperatively	with	ControlGroup
In	the	beginning	of	this	chapter,	we	saw	how	to	declare	controls	imperatively	in	our
component	controller	class.	Then,	we	jumped	straight	to	the	DOM	and	covered	how	to	create
controls	right	in	the	template	and	also	how	to	create	subsets	of	controls	grouped	by	the
NgControlGroup	directive.

Grouping	controls	is	a	common	operation	and	one	that	we	can	do	as	well	from	within	the
component	controller	class	by	instantiating	ControlGroup	objects	with	the	help	of	another
type	named	FormBuilder,	which	creates	form	objects	(in	other	words,	control	groups)	by
parsing	the	configuration	of	the	input	fields	of	our	choice.	We	will	see	an	actual	example	in	a
component	class	in	which,	after	injecting	the	FormBuilder	through	the	constructor,	we	access
its	methods	to	instantiate	a	ControlGroup	with	other	ControlGroups	and	Controls	nested:

import	{	Component	}	from	'@angular/core';

import	{	

		Control,

		ControlGroup,

		FormBuilder,

		Validators	}	from	'@angular/common';

@Component({

		selector:	'my-login',

		providers:	[FormBuilder],

		templateUrl:	'my-login.component.html'

})

export	class	LoginComponent	{

		name:	Control;

		username:	Control;

		password:	Control;

		signupForm:	ControlGroup;

		constructor(formBuilder:	FormBuilder)	{

			this.name	=	new	Control('',	Validators.required);

				this.username	=	new	Control('',	Validators.required);

				this.password	=	new	Control('',	Validators.required);

				this.signupForm	=	formBuilder.group({

						name:	this.name,

						credentials:	formBuilder.group({

								username:	this.username,

								password:	this.password

						})

				});

		}

}

In	the	preceding	example,	we	just	created	a	component	featuring	a	ControlGroup	representing
a	typical	sign-up	form,	contained	in	the	signupForm	field	of	the	LoginComponent	class.	This
field	is	populated	in	the	constructor	by	the	formBuilder.group()	method	with	a	name	control
and	a	credential	control	that	are	a	control	group	itself	(containing	two	other	controls),	with

www.EBooksWorld.ir

different	flavors	of	validation.	Each	one	of	those	controls	is	an	actual	instance	of	the	Control
class.	When	it	comes	to	instantiating	Control	objects,	we	can	benefit	from	the	control()
method	of	the	FormBuilder	class,	saving	us	from	importing	the	Control	token	into	the	class	if
we	do	not	need	it	elsewhere.	We	can	dramatically	simplify	the	implementation	of	the	previous
example	by	refactoring	it	like	this:

export	class	LoginComponent	{

		signupForm:	ControlGroup;

		constructor(formBuilder:	FormBuilder)	{

				this.signupForm	=	formBuilder.group({

						name:	this.formBuilder.control('',	Validators.required]),

						credentials:	formBuilder.group({

								username:	this.formBuilder.control('',	Validators.required),

								password:	this.formBuilder.control('',	Validators.required)

						})

				});

		}

}

We	can	even	go	a	step	further	and	take	advantage	of	the	syntax	sugar	provided	by	Angular	and
thus	instantiate	the	controls	defined	in	the	ControlGroup	through	a	more	simplistic	syntax:

export	class	LoginComponent	{

		signupForm:	ControlGroup;

		constructor(formBuilder:	FormBuilder)	{

				this.signupForm	=	formBuilder.group({

						name:	['',	Validators.required],

						credentials:	formBuilder.group({

								username:	['',	Validators.required],

								password:	['',	Validators.required]

						})

				});

		}

}

This	is	the	most	simplistic	way	of	instantiating	controls,	where	each	control	is	a	property
name	of	a	hash	object	whose	value	is	an	array	where	the	first	element	is	the	default	value	we
want	for	our	controls	followed	by	the	range	of	validators	we	want	to	apply	to	each	control.

These	three	ways	of	representing	a	group	of	controls	as	the	blueprint	for	an	imaginary	sign-
up	form	give	us	a	lot	of	flexibility	to	create	complex	forms	from	our	component	controller.
What	syntax	should	you	choose	for	your	next	project?	It	depends.	While	this	last	take	on	how
to	instantiate	ControlGroup	and	Control	objects	is	probably	the	most	popular	one	because	of
its	simplicity,	the	former	gives	us	the	opportunity	to	refer	to	the	controls	from	other	ends	of
our	controller	class,	given	the	fact	that	such	controls	are	actually	part	of	its	members	API.
Ultimately,	it	will	depend	of	where	you	want	your	controls	to	be	and	from	where	they	are
accessible.

www.EBooksWorld.ir

Connecting	the	DOM	and	the	controller	with	ngFormModel
So	we	can	create	forms	imperatively	from	within	our	component	controller.	Now	what?	We
need	to	link	all	this	logic	to	our	HTML	template	somehow	and	this	is	where	a	new	directive
comes	into	play:	the	NgFormModel	directive.	This	directive	must	be	bound	to	a	DOM	element
(usually	the	form	or	any	element	intervened	by	NgForm)	and	populated	with	the	name	of	a
ControlGroup	object	binding.	From	that	moment	onwards,	the	Control	objects	attached	to	the
ControlGroup	object	are	bonded	to	the	input	elements	flagged	with	a	ngControl	directive
matching	their	names.	The	code	is	as	follows:

<form	[ngFormModel]="signupForm"	(submit)="doSomething($event)">

		<div>

				<input	type="text"	

						placeholder="Your	name"

						ngControl="name">

		</div>

		<div	ngControlGroup="credentials">

				<input	type="text"	

						placeholder="Your	username"

						ngControl="username">

				<input	type="password"

						placeholder="Your	password"

						ngControl="password">

		</div>

		<p>

				<input	type="submit"	value="Signup">

		</p>

</form>

There	it	is:	our	beloved	signupForm	ControlGroup	is	now	linked	to	an	actual	form	whose
input	controls,	handled	by	ngControl	directives,	are	automatically	mapped	to	the
ControlGroup	controls.

Now	it	is	time	to	translate	all	this	to	our	Pomodoro	project,	so	let's	pull	up	our	sleeves	as
there's	some	work	to	do.

www.EBooksWorld.ir

A	real	example	–	our	login	component
Earlier	in	this	chapter,	we	implemented	a	basic	form	to	publish	our	own	tasks.	In	a	normal
scenario,	we	will	not	be	willing	to	leave	that	functionality	open	to	everyone,	so	we	will	want
to	protect	it	with	a	password.	Building	a	login	form	is	the	first	step	and	that	we	will	do	along
this	section	by	developing	our	next	feature:	login.

www.EBooksWorld.ir

The	login	feature	context
The	login	functionality	can	live	in	parallel	to	the	rest	of	application	functionalities	and	thus
deserves	its	own	folder	and	facade.	The	whole	implementation	will	depend	on	a	component
named	LoginComponent,	so	let's	start	by	creating	the	basic	files	we	require	inside	the	new
login	feature	folder,	located	at	the	same	level	as	shared,	tasks,	or	timer.	First,	we	will	create	a
component	with	no	implementation	and	its	associated	template,	plus	the	facade.	Do	not	worry
about	the	implementation	details	now.

The	code	is	as	follows:

app/login/login.component.ts	–	component	controller	class

import	{	Component	}	from	'@angular/core';

import	{	

		FormBuilder,

		ControlGroup,

		Validators,

		Control	}	from	'@angular/common';

import	{	Router	}	from	'@angular/router-deprecated';

@Component({

		selector:	'pomodoro-login',

		templateUrl:	'app/login/login.component.html'

})

export	default	class	LoginComponent	{

		loginForm:	ControlGroup;

		notValidCredentials:	boolean	=	false;

		constructor(

				formBuilder:	FormBuilder,

				private	router:	Router)	{}

		authenticate()	{}

}

app/login/login.component.html	–	component	template

<form	[ngFormModel]="loginForm"	

		class="container"		

		(ngSubmit)="authenticate()">

		

		<h3>This	content	is	password-protected</h3>

		<p>Please	enter	your	credentials	below</p>

		<div	class="alert	alert-danger"	*ngIf="notValidCredentials">

				Your	credentials	are	not	valid!

		</div>

		<div	class="form-group">

				<input	type="text"	

						class="form-control"

						placeholder="Your	username"

www.EBooksWorld.ir

						ngControl="username">

		</div>

		<div	class="form-group">

				<input	type="password"

						class="form-control"

						placeholder="Your	password"

						ngControl="password">

		</div>

		<p>

				<input	type="submit"

						class="btn	btn-success"

						value="Authenticate"

						[disabled]="!loginForm.valid">

		</p>

</form>

app/login/login.ts	–	feature	facade

import	LoginComponent	from	'./login.component';

export	{

		LoginComponent

};

Updating	the	router	configuration	in	our	top	root	component	will	be	a	great	help	in	testing	the
changes	we	will	conduct	over	the	next	pages.	In	order	to	do	so,	let's	edit	different	parts	of	the
top	root	component,	as	follows:

app/app.component.ts	–	import	statements	block

import	{	Component	}	from	'@angular/core';

import	{	SHARED_PROVIDERS	}	from	'./shared/shared';

import	{	HTTP_PROVIDERS	}	from	'@angular/http';

import	{	ROUTER_PROVIDERS,	RouteConfig,	ROUTER_DIRECTIVES,	Router	}	from	

'@angular/router-deprecated';

import	{	TimerComponent	}	from	'./timer/timer';

import	{	TasksComponent,	TaskEditorComponent	}	from	'./tasks/tasks';

import	{	FORM_PROVIDERS	}	from	'@angular/common';

import	{	LoginComponent	}	from	'./login/login';

...

app/app.component.ts	–	RouteConfig	params

...

@RouteConfig([

		{	path:	'',	

				name:	'Home',	

				redirectTo:	['TasksComponent']	

		},	{	

				path:	'tasks',

				name:	'TasksComponent',

				component:	TasksComponent,

				useAsDefault:	true	

www.EBooksWorld.ir

		},	{	

				path:	'tasks/editor',

				name:	'TaskEditorComponent',

				component:	TaskEditorComponent	

		},	{	

				path:	'timer/...',	

				name:	'TimerComponent',	

				component:	TimerComponent	

		},	{	

				path:	'login',	

				name:	'LoginComponent',	

				component:	LoginComponent	

		}

])

export	default	class	AppComponent	{}

www.EBooksWorld.ir

The	login	form	template
It	just	takes	a	quick	glance	at	the	form	to	understand	the	machinery	that	will	be	built	in	the
component	controller	class	to	bring	this	little	guy	to	life.	The	NgformModel	directive	is
pointing	to	a	ControlGroup	named	loginForm	that	is	yet	to	be	created.	The	ControlGroup	will
wrap	two	Control	objects	(username	and	password),	and	its	state	will	disable	the	Submit
button	located	at	the	bottom	of	the	form	when	not	valid.	The	component	will	feature	a	method
named	authenticate()	that	will	handle	the	form	submit	event.	Last	but	not	least,	we	have	this
little	chunk	of	code	right	before	our	input	controls:

<div	class="alert	alert-danger"	*ngIf="notValidCredentials">

		Your	credentials	are	not	valid!

</div>

As	you	must	have	guessed,	this	message	will	be	displayed	in	case	the	credentials	entered	are
not	correct.	We	will	perform	that	validation	in	the	implementation	of	the	authenticate()
method,	as	you	will	see	next.	There	is	a	new	directive	in	our	example:	the	ngSubmit	event
directive.	In	Angular's	own	words,	it	will	signal	when	the	user	triggers	a	form	submission.
The	use	of	this	event	directive	replaces	the	(submit)	event	binding	we've	been	using	so	far.

www.EBooksWorld.ir

The	login	component
Let's	conduct	the	implementation	of	the	login	component	class	now.	We	currently	have	the
controller	class	skeleton,	but	we	need	to	beef	up	the	constructor	and	the	authenticate()
method:

app/login/login.component.ts

...

@Component({

		selector:	'pomodoro-login',

		templateUrl:	'app/login/login.component.html'

})

export	default	class	LoginComponent	{

		loginForm:	ControlGroup;

		notValidCredentials:	boolean	=	false;

		constructor(

				formBuilder:	FormBuilder,

				private	router:	Router)	{

				this.loginForm	=	formBuilder.group({

						username:	['',	Validators.required],

						password:	['',	Validators.required]

				});

		}

		authenticate()	{

				let	credentials:	any	=	this.loginForm.value;

				this.notValidCredentials	=	!this.loginForm.valid	&&	

																																this.loginForm.dirty;

				if(credentials.username	===	'john.doe@mail.com'	&&

							credentials.password	===	'letmein')	

				{

						this.router.navigateByUrl('/');

				}	else	{

						this.notValidCredentials	=	true;

				}

		}

}

This	piece	of	code	conforms	pretty	much	to	what	we	already	saw	in	the	previous	sections.	We
have	skipped	the	import	statement	block	in	the	code	snippet	for	brevity	sake,	but	we	can
clearly	see	how	we	inject	the	Router	and	FormBuilder	typed	dependencies	into	our	class	(also
configuring	the	router	object	as	a	private	class	member)	using	the	constructor	injection
pattern	favored	by	Angular	2.	With	an	instance	of	the	FormBuilder	class	in	place,	we	can
create	the	ControlGroup	we	require,	assign	it	to	the	loginForm	member,	and	bind	it	later	on	to
the	NgFormModel	directive	decorating	the	NgForm	(this	is,	the	form	element,	remember?)
directive	awaiting	in	our	template.

Filling	out	both	input	controls	is	required	by	the	grace	of	the	Validators.required	static

www.EBooksWorld.ir

methods	found	in	the	Control	instances,	but	the	piece	of	code	that	requires	more	attention	is
probably	the	implementation	of	the	authenticate()	method.	Let's	deconstruct	it	bit	by	bit:

let	credentials:	any	=	this.loginForm.value;

this.notValidCredentials	=	!this.loginForm.valid	&&	

																												this.loginForm.dirty;

Our	authenticate()	method	first	binds	the	value	of	the	loginForm	control	group	to	the
credentials	variable.	Remember	that	loginForm.value	will	take	the	shape	of	a	hash	object	like
this:

{	username:	"",	password:	""	}

On	the	other	hand,	the	notValidCredentials	class	property	evaluates	to	a	boolean	value	as	a
result	of	the	validity	and	state	of	the	loginForm	control	group	state.	The	last	piece	of	code	is
more	straightforward	and	basically	entails	checking	if	the	credentials	are	valid	in	which	case
the	user	will	be	redirected	to	the	index	page	(feel	free	to	replace	the	destination	path	to
whatever	you	feel	is	more	appropriate)	or	the	wrong	credentials	warning	will	be	displayed	on
screen.

Note

We	are	evaluating	the	credentials	against	hardcoded	values	for	the	sake	of	simplicity	but	you
should	never,	and	we	would	like	to	remark	the	word	never	in	this	statement,	take	this	path	for
checking	login	information	and	grant	access	to	sensitive	parts	of	your	applications.	This	is
way	too	insecure	and	can	be	easily	tampered	by	malicious	hackers	with	no	effort.	We	will
elaborate	a	little	bit	on	handling	authentication	in	the	following	pages,	but	we	will	stick	to
hardcoded	credentials	to	minimize	complexity	in	our	examples.	In	a	real	scenario	you	should
always	rely	on	a	remote	secure	authentication	API	and	encrypted	tokens	to	handle	session
persistence.	These	concerns	are	more	geared	towards	backend	programming	and	are
obviously	beyond	the	scope	of	this	book.

www.EBooksWorld.ir

Applying	custom	validation	to	our	controls
We	have	seen	already	how	to	apply	validators	to	our	controls	by	adding	validator	methods
when	instantiating	them,	but	we	still	need	to	give	answer	to	two	relevant	concerns:

How	to	create	our	custom	validators?
How	to	combine	more	than	one	validator	in	a	single	Control	object?

This	section	will	cover	these	two	issues.	A	custom	validator	is	basically	a	function	that	expects
a	Control	object	in	its	signature	and	will	return	either	a	null	value	(if	the	Control	is	valid)	or
a	hash	object	comprised	by	key/value	pairs.	We	want	our	login	form	to	check	if	the	username
is	correct.	Since	the	username	is	supposed	to	be	an	actual	e-mail	address,	maybe	it	is	a	good
idea	to	check	if	the	username	input	contains	a	valid	e-mail	address	before	letting	the	user
move	on	with	submitting	the	form.

Tip

In	a	normal	scenario,	we	would	be	using	the	pattern	validator	instead,	but	the	purpose	of	this
example	is	to	showcase	the	mechanics	of	a	custom	validator.

So,	let's	move	on	and	create	an	e-mail	validation	function	and	append	it	to	the	body	of	our
LoginComponent	class.	The	code	is	as	follows:

app/login/login.component.ts

private	emailValidator(control:	Control):	

{	[key:	string]:	boolean	}	{

		if	(!/(.+)@(.+){2,}\.(.+){2,}/.test(control.value))	{

				return	{

						'emailNotValid':	true

				};

		}

		return	null;

}

The	form	of	the	returning	object	when	the	control	value	is	not	valid	is	not	simple.	That	object
will	be	appended	to	the	errors	property	of	the	control	annotated	with	a	Validator	function.
This	is	quite	convenient	since	we	can	then	provide	further	insights	into	the	source	of	error
when	evaluating	validity	on	each	input,	mostly	when	the	input	controls	feature	more	than	one
validation	adapter.

Speaking	of	the	devil,	now	we	need	to	include	two	validators	in	our	Control	so	the	username
Control	validates	its	value	against	the	required	Validator	and	our	new	custom	Validator
function.	The	Validator	has	a	static	method	that	will	do	the	trick:

this.loginForm	=	formBuilder.group({

		username:	['',	

				Validators.compose([

www.EBooksWorld.ir

						Validators.required,

						this.emailValidator

])

],

		password:	['',	Validators.required]

});

www.EBooksWorld.ir

Watching	state	changes	in	our	controls
So	far,	we	saw	how	we	can	conduct	operations	depending	on	input	changes	in	our	controls,
but	it	would	be	definitely	nice	to	take	a	more	reactive	approach	depending	on	certain	use-
cases.	The	good	news	is	that	both	the	ControlGroup	and	the	Control	types	expose	two
EventEmitter	members	each,	which	we	can	subscribe	our	own	Observers	to.	Then,	we	will
get	prompt	notifications	every	time	any	Control	or	its	wrapping	ControlGroup	object	updates
either	its	status	(pristine,	touched	and	the	like)	or	value.	We	are	talking	about	the
statusChanges	and	valueChanges	Observables,	which	are	part	of	any	Control	or
ControlGroup	object,	and	operate	exposing	the	same	interface	we	saw	when	subscribing	to
HTTP	observables	in	Chapter	6,	Asynchronous	Data	Services	with	Angular	2.

Let's	see	an	actual	example.	It	would	be	nice	to	display	a	real-time	visual	hint	as	the	user
enters	his/her	username	informing	if	the	data	entered	is	an	actual	username	or	not.	First,
update	our	component	controller	to	include	a	Boolean	field	that	will	be	used	later	on	to	toggle
on	and	off	a	visual	notification	in	our	template.	The	code	is	as	follows:

app/login/login.component.ts

export	default	class	LoginComponent	{

		loginForm:	ControlGroup;

		notValidCredentials:	boolean	=	false;

		showUsernameHint:	boolean	=	false;

		constructor(

				formBuilder:	FormBuilder,

				private	router:	Router)	{

				this.loginForm	=	formBuilder.group({

						username:	['',	Validators.compose([

								Validators.required,

								this.emailValidator])],

						password:	['',	Validators.required]

				});

				const	username	=	this.loginForm.controls['username'];

				username.valueChanges.subscribe(value	=>	{

						this.showUsernameHint	=	(username.dirty	&&		

																															value.indexOf('@')	<	0);

				});

		}

		//	Rest	of	component	class	remains	the	same						

		...

}

app/login/login.component.html

<div	class="form-group">

		<input	type="text"

				class="form-control"

				placeholder="Your	username"

www.EBooksWorld.ir

				ngControl="username">

		<p	*ngIf="showUsernameHint"class="help-block">

				That	does	not	look	like	a	proper	username

		</p>

</div>

Please	notice	how	we	are	referring	to	the	username	Control	by	traversing	the	controls
property	of	the	loginForm	object.	With	a	pointer	to	the	username	in	place,	we	can	subscribe
observers	to	any	real-time	changes	in	its	value,	and	therefore	act	accordingly.	In	this	case,	we
update	the	value	of	the	showUsernameHint	field,	if	the	value	entered	fulfils	the	minimum
requirements	of	a	username.	Whatever	value	it	takes,	a	visual	hint	will	be	displayed	or	not	on
screen.

www.EBooksWorld.ir

Mocking	a	client	authentication	service
Perhaps	the	word	mocking,	which	is	pretty	common	in	the	context	of	unit	testing,	is	a	bit
misleading	here	but	at	least	serves	as	a	heads-up	for	what	we	are	going	to	build	now.	In	the
previous	section,	we	implemented	a	pretty	simple	user	authentication	checking	but,	in	a	real
scenario,	we	usually	delegate	all	the	heavy	lifting	on	an	authentication	service	that	wraps	all
the	necessary	tools	for	handling	user	login,	logout,	and	sometimes	authentication	for
granting	access	to	protected	areas	of	our	application.

Next,	we	will	create	a	simplified	version	of	such	service	and	will	put	it	in	charge	of	handling
user	login	along	with	the	component	we	just	created	in	the	previous	section.	This	service	will
also	manage	auth	token	persistence	and	provide	methods	to	check	if	the	user	has	access
granted	to	secure	pages.

Before	jumping	into	the	code,	let's	summarize	the	minimum	requirements	this	service	must
fulfil:

We	need	its	API	to	expose	a	method	to	handle	user	login
User	logout	must	be	handled	as	well	by	a	public	method	in	this	API
A	third	method	or	property	should	inform	if	the	user	is	logged	in	or	not	so	they	can
proceed	to	secured	pages
Having	an	observable	property	informing	of	the	current	state	of	the	active	user	for
authentication	will	become	handy	to	make	the	overall	UI	more	reactive

With	these	specifications	in	mind,	let's	build	our	ideal	authentication	service.	Since	this
service	is	component-agnostic	and	will	have	an	impact	on	the	whole	application,	we	will	store
it	in	the	services	folder	of	our	shared	context,	applying	the	naming	conventions	we	already
know	and	exposing	it	through	the	shared	facade:

app/shared/services/authentication.service.ts

import	{	Injectable,	EventEmitter	}	from	'@angular/core';

@Injectable()

export	default	class	AuthenticationService	{

				constructor()	{}

				login({username,	password}):	Promise<boolean>	{}

				logout():	Promise<boolean>	{}

				static	isAuthorized():	boolean	{}

}

app/shared/shared.ts

import	Queueable	from	'./interfaces/queueable';

www.EBooksWorld.ir

import	Task	from	'./interfaces/task';

import	FormattedTimePipe	from	'./pipes/formatted-time.pipe';

import	QueuedOnlyPipe	from	'./pipes/queued-only.pipe';

import	AuthenticationService	from	'./services/authentication.service';

import	SettingsService	from	'./services/settings.service';

import	TaskService	from	'./services/task.service';

const	SHARED_PIPES:	any[]	=	[

		FormattedTimePipe,

		QueuedOnlyPipe

];

const	SHARED_PROVIDERS:	any[]	=	[

		AuthenticationService,

		SettingsService,

		TaskService

];

export	{

		Queueable,

		Task,

		FormattedTimePipe,

		QueuedOnlyPipe,

		SHARED_PIPES,

		AuthenticationService,

		SettingsService,

		TaskService,

		SHARED_PROVIDERS

};

As	you	can	see	in	the	resulting	facade,	the	new	service	will	become	part	of	the
SHARED_PROVIDERS	group	token.	Then,	it	will	be	available	for	our	application	injector,	since
this	symbol	is	being	declared	in	the	providers	array	of	our	root	component.

Back	to	the	service	class,	we	imported	the	Injectable	decorator.	As	you	know,	we	will	need	it
if	we	want	our	AuthService	class	to	be	automatically	instantiated	and	injected	as	a	singleton	in
our	components	by	Angular	(in	case	our	class	requires	its	own	dependencies	in	the	future).
We	also	import	the	EventEmitter	class,	which	we	will	cover	later	in	this	section.

In	the	body	of	the	AuthenticationService	class,	we	have	defined	an	empty	constructor	and
three	methods	with	no	implementation	(one	of	them	being	static).	While	the	names	give	a	very
good	hint	of	the	purpose	of	each	method,	perhaps	the	last	one	requires	some	more
elaboration:	The	isAuthorized()	method	will	inform	if	the	user	has	permissions	to	access
secured	pages.	The	reason	why	it	is	static	is	because	we	will	need	to	use	it	in	some	areas
where	Angular's	dependency	injection	machinery	cannot	reach	so	no	automatic	provider
injection	is	available.

Our	first	requirement	was	to	provide	a	public	method	to	handle	user	login.	Let's	go	for	it.	Get

www.EBooksWorld.ir

back	to	the	AuthenticationService	module	and	extend	the	login	method	with	the	following
implementation:

app/shared/services/authentication.service.ts

login({username,	password}):	Promise<boolean>	{

		return	new	Promise(resolve	=>	{

				let	validCredentials:	boolean	=	false;

				//	@NOTE:	In	a	real	scenario	this	check	

				//	should	be	performed	against	a	web	service:

				if	(username	===	'john.doe@mail.com'	&&	

								password	===	'letmein')	{

										validCredentials	=	true;

										window.sessionStorage.setItem('token',	'eyJhbGciOi');

				}

				resolve(validCredentials);

		});

}

As	you	can	see	from	the	comments	inline	in	the	code,	we	are	not	submitting	data	for
validation	to	a	remote	web	service	although	we	should	definitely	do.	Please	recall	the	warning
we	raised	in	previous	chapters:	you	should	never	implement	user	validation	this	way.	Having
said	that,	let's	review	this	implementation.	In	the	first	place,	there	is	something	that	draws	our
attention:	the	returning	type.	This	method	is	supposed	to	return	a	Promise	and	there	is	a	good
reason	for	that.	Usually,	you	would	also	want	to	implement	an	async	HTTP	connection	to	a
remote	service	so	you	can	send	the	user	credentials	and	wait	for	a	response.	Hence,	we	use	the
asynchronous	interface	in	the	form	of	a	returning	Promise,	which	resolves	to	a	Boolean	value
informing	if	the	credentials	provided	are	good	to	access	the	system	or	not.	On	the	other	hand,
the	method	signature	is	not	an	annotated	argument,	but	a	deconstructed	object	informing	that
this	method	will	expect	any	type	or	object	in	its	payload	containing	both	username	and
password	properties.	Last	but	not	least,	right	after	conducting	our	fake	user	validation,	we
store	a	random	token	onto	the	user's	browser	using	the	browser's	own	session	storage	layer.
This	is	a	common	way	of	handling	authentication	and	user	session	persistence	nowadays,	with
the	sole	difference	that	the	token	is	usually	sent	in	the	body	of	the	server	response	and
thereafter	is	sent	back	in	the	request	headers	on	every	information	request	made	to	the	server.

Conducting	a	server-side	implementation	is	beyond	the	scope	of	this	book,	so	we	will	not
explore	that	topic	in	greater	depth.	You	can	refer	to	the	Packt	library	for	further	reference.

Now	that	we	know	how	to	handle	user	login,	implementing	a	user	logout()	method	that
literally	reverses	what	the	previous	login()	method	did	is	pretty	easy:

app/shared/services/authentication.service.ts

logout():	Promise<boolean>	{

		return	new	Promise(resolve	=>	{

				window.sessionStorage.removeItem('token');

www.EBooksWorld.ir

			resolve(true);

		});

}

Our	third	requirement	was	to	provide	a	property	or	method	that	would	tell	us	if	the	user	is
authenticated,	so	they	can	proceed	to	secured	pages.	Keeping	in	mind	that	user	permission	is
tied	to	the	existence	or	absence	of	a	security	token	stored	in	the	browser	storage	layer,	the
method	logic	is	really	simple:

static	isAuthorized():	boolean	{

		return	!!window.sessionStorage.getItem('token');

}

We	will	discuss	this	method	and	the	rationale	behind	its	static	annotation	later	on.	Now,	let's
move	into	the	last	bit	of	our	service:	providing	an	Observable	that	allows	UI	elements	and
other	application	clients	to	subscribe	to	updates	in	the	user	status.	First,	we	will	create	a	public
EventEmitter	member,	which	we	can	use	to	send	notifications	every	time	the	user	logs	in	and
out	so	that	other	classes	and	components	can	subscribe	to	it	as	mere	observers	and	react	to
those	events.	Obviously,	the	login	and	logout	methods	will	be	updated	to	also	send	the
corresponding	notifications	to	the	observers	depending	on	the	actions	taken	and	the	user	state
at	all	times.

With	all	these	changes,	this	is	the	final	layout	of	our	injectable	authentication	service:

import	{	Injectable,	EventEmitter	}	from	'@angular/core';

@Injectable()

export	default	class	AuthenticationService	{

		userIsloggedIn:	EventEmitter<boolean>;

		constructor()	{

				this.userIsloggedIn	=	new	EventEmitter();

		}

		login({	username,	password	}):	Promise<boolean>	{

				return	new	Promise(resolve	=>	{

						let	validCredentials:	boolean	=	false;

						//	@NOTE:	In	a	normal	scenario	this	check

						//	should	be	performed	against	a	web	service:

						if	(username	===	'john.doe@mail.com'	&&

								password	===	'letmein')	{

								validCredentials	=	true;

								window.sessionStorage.setItem('token',	'eyJhbGciOi');

						}

						this.userIsloggedIn.emit(validCredentials);

						resolve(validCredentials);

				});

		}

		logout():	Promise<boolean>	{

				return	new	Promise(resolve	=>	{

www.EBooksWorld.ir

						window.sessionStorage.removeItem('token');

						this.userIsloggedIn.emit(false);

						resolve(true);

				});

		}

		static	isAuthorized():	boolean	{

				return	!!window.sessionStorage.getItem('token');

		}

}

www.EBooksWorld.ir

Exposing	our	new	service	to	other	components
With	the	authentication	service	provider	now	available	from	our	application	injector,	we	can
begin	hooking	it	up	in	other	components:	the	login	feature	is	the	most	logical	starting	point.
First,	open	the	LoginComponent	code	unit	and	import	the	new	AuthenticationService	token
so	that	we	can	properly	use	its	type	to	inject	it	into	the	component:

app/login/login.component.ts

import	{	Component	}	from	'@angular/core';

import	{	

		FormBuilder,

		ControlGroup,

		Validators,

		Control	}	from	'@angular/common';

import	{	Router	}	from	'@angular/router-deprecated';

import	{	AuthenticationService	}	from	'../shared/shared';

...

In	the	same	code	unit,	let's	now	update	the	constructor	payload	with	a	new	argument	annotated
with	the	AuthenticationService	token,	so	the	Angular	2	DI	machinery	becomes	aware	that
this	module	requires	that	type	to	be	injected:

constructor(

		formBuilder:	FormBuilder,

		private	router:	Router,

		private	authService:	AuthService)	{	

		//	Rest	of	constructor	implementation	remains	unchanged

			...

}

With	all	the	code	in	place,	now	we	can	replace	our	authenticate()	method	to	remove	the
business	logic:

authenticate()	{

		let	credentials:	any	=	this.loginForm.value;

		this.notValidCredentials	=	!this.loginForm.valid	&&	

																														this.loginForm.dirty;

		this.authenticationService.login(credentials).then(success	=>	{

				if	(success)	{

						this.router.navigateByUrl('/');

				}	else	{

						this.notValidCredentials	=	true;

				}

		});

}

www.EBooksWorld.ir

Blocking	unauthorized	access
With	all	this	in	place,	it's	time	to	actually	prevent	unlogged	users	from	accessing	protected
content.	In	our	case,	it	just	entails	protecting	the	task	editing	form	component	from
unauthorized	requests.	In	the	previous	chapter,	we	saw	how	to	allow	or	prevent	component
instantiation	by	means	of	Router	hooks.

With	that	knowledge	to	hand,	protecting	the	task	editor	component	from	undesired	visits
becomes	quite	simple.	Open	the	TaskEditorComponent	file,	import	our	new
AuthenticationService	provider,	and	check	whether	the	user	is	authorized	by	binding	the
execution	of	the	static	isAuthorized()	method	to	the	CanActivate	decorator:

app/tasks/task-editor.component.ts

...

//	Other	import	statements	remain	as	they	are	already

import	{

		Task,

		TaskService,

		AuthenticationService	}	from	'../shared/shared';

@Component({

		selector:	'pomodoro-tasks-editor',

		directives:	[ROUTER_DIRECTIVES],

		providers:	[Title],

		templateUrl:	'app/tasks/task-editor.component.html',

		styles:	[`

								.ng-valid	{	border-color:	#3c763d;	}

								.ng-invalid	{	border-color:	#a94442;	}

								.ng-untouched	{	border-color:	#999999;	}

				`]

})

@CanActivate(AuthService.isAuthorized)

export	default	class	TaskEditorComponent	implements	OnActivate,	CanDeactivate,	

OnDeactivate	{

		//	The	class	implementation	remains	the	same

		...

}

And	that's	it!	Now,	any	unlogged	user	attempting	to	access	the	protected	task	editor
component	will	get	nothing!	If	you	look	carefully	at	the	@CanActivate()	decorator,	you	will
understand	why	we	defined	the	isAuthorized()	method	of	the	AuthenticationService	as
static.	The	reason	relies	on	the	fact	that	we	can	only	inject	dependency	singletons	in	our
components	but	not	in	decorators.	While	this	is	not	exactly	true	(we	can	leverage	the
provide()	injector	to	bring	the	desired	singleton	although	the	code	required	is	nowhere	near
as	simple	or	neat),	the	truth	is	that	this	implementation	is	simple:	providing	the	same	level	of
effectiveness	in	a	neat	and	clear	fashion.

Note

www.EBooksWorld.ir

The	ideal	scenario	would	be	to	inject	both	the	AuthenticationService	and	the	Router
providers	in	the	CanActivate	implementation,	and	then	redirect	the	user	to	the	login	page
should	the	user	is	not	logged	in.

Unfortunately,	at	the	time	of	wrapping	up	the	writing	of	this	book,	there	is	still	no	formal
support	for	dependency	injection	in	the	context	of	the	CanActivate	router	hook.	However,	this
issue	is	part	of	the	features	that	will	become	part	of	Angular	2	Final.	It	is	quite	likely	that	the
@CanActivate	decorator	will	be	replaced	by	an	analogue	instance	method	of	a	parent	routing
component	once	Angular	2	becomes	final	eventually.	Please	refer	to	the	official
documentation.

www.EBooksWorld.ir

Making	the	UI	reactive	to	the	user	authentication	status
All	right,	so	unauthorized	users	cannot	access	the	task	editor	form	component.	However,
having	an	unresponsive	link	in	our	main	toolbar	is	definitely	not	good,	so	we	should	leverage
the	Observable	features	of	the	AuthenticationService	to	flip	the	UI	whenever	there	is	a
change	in	the	user	login	status.

Right	now,	the	nav	bar	features	the	Login	link	that	leads	the	user	login	form	page.	What	we
want	to	do	is	to	hide	the	Publish	Task	link	and	make	sure	we	only	display	it	when	the	user	is
logged	in,	no	matter	where	and	how	this	login	procedure	was	undertaken.	On	the	other	hand,
we	also	want	to	offer	the	end	user	a	Logout	link	when	logged	in,	so	they	can	shut	down	his
session	in	confidence.	This	logout	link	should	be	made	available	for	logged	in	users	only.
Access	to	the	protected	component	by	hardcoding	URLs	is	not	a	concern,	since	the
@CanActivate	decorator	will	do	its	job	to	keep	undesired	users	away.

Now	that	we	have	described	the	requirements,	let's	put	them	into	practice.	Open	the	top	root
component	file	and	update	its	implementation	(it	remained	empty	until	now).	We	will	need	the
AuthenticationService	and	the	Router	dependencies	to	do	so,	so	make	sure	to	import	them
at	the	top	of	the	file:

app/app.component.ts

import	{	Component	}	from	'@angular/core';

import	{	

		SHARED_PROVIDERS,

		AuthenticationService	}	from	'./shared/shared';

import	{	HTTP_PROVIDERS	}	from	'@angular/http';

import	{

		ROUTER_PROVIDERS,

		RouteConfig,

		ROUTER_DIRECTIVES,

		Router	}	from	'@angular/router-deprecated';

//	Rest	of	import	statements	remain	the	same

…

With	the	tokens	properly	declared	in	the	import	statements,	we	can	move	on	and	provide	an
implementation	for	the	AppComponent	class:

app/app.component.ts

...

export	default	class	AppComponent	{

		userIsLoggedIn:	boolean;

		constructor(

				private	authenticationService:	AuthenticationService,

				private	router:	Router)	{

				authenticationService.userIsloggedIn.subscribe(isLoggedIn	=>	{

						this.userIsLoggedIn	=	isLoggedIn;

				});

www.EBooksWorld.ir

		}

		logout($event):	void	{

				$event.preventDefault();

				this.authenticationService.logout().then(success	=>	{

						if	(success)	{

								this.router.navigateByUrl('/');

						}

				});

		}

}

We	have	declared	a	userIsLoggedIn	Boolean	field,	which	will	change	its	value	every	time	the
observable	userIsloggedIn	member	of	the	injected	AuthenticationService	type	changes	its
value.	We	also	injected	the	Router	type	and	created	a	new	component	method	named	logout()
that	will	wipe	out	the	user	session	and	redirect	the	user	to	the	root	page	upon	signing	out	from
the	application.

This	gives	us	the	chance	to	wrap	up	the	application	UI	by	updating	the	root	component
template	to	make	the	sensible	links	fully	reactive	to	these	changes:

app/app.component.html

<nav	class="navbar	navbar-default	navbar-static-top">

		<div	class="container">

				<div	class="navbar-header">

						<strong	class="navbar-brand">My	Pomodoro	App

				</div>

				<ul	class="nav	navbar-nav	navbar-right">

						<a	[routerLink]="['TasksComponent']">Tasks

						<a	[routerLink]="['TimerComponent']">Timer

						<li	*ngIf="userIsLoggedIn">

								<a	[routerLink]="['TaskEditorComponent']">Publish	Task

						

						<li	*ngIf="!userIsLoggedIn"><a	[routerLink]="

['LoginComponent']">Login

						

						<li	*ngIf="userIsLoggedIn">

								Logout

						

				

		</div>

</nav>

<router-outlet></router-outlet>

Give	it	a	try!	Reload	the	application,	check	the	links	available	at	the	nav	bar,	head	over	to	the
login	page,	proceed	to	login	with	the	credentials,	and	check	the	nav	bar	again...	Magic!

www.EBooksWorld.ir

Running	the	extra	mile	on	access	management
Apparently,	we	have	everything	that	it	takes	to	move	on	with	our	application.	However,	as	our
application	grows	and	more	areas	need	to	be	protected,	we	will	find	ourselves	facing	the
burden	of	toggling	visibility	on	more	and	more	links	and	having	to	enable	access	and
activation	of	components	one	by	one	by	implementing	the	@CanActivate	decorator	on	each.

Obviously,	this	scales	up	just	badly,	so	it	would	be	great	to	rely	on	a	one-size-fits-all	solution
instead.	Unfortunately,	at	the	time	of	writing,	the	Angular	2	framework	still	does	not	provide
a	feasible	solution	to	tackle	with	this	concern.	On	the	other	hand,	and	according	to	modern
UX,	most	of	the	time	the	expected	behavior	is	to	provide	the	user	with	as	many	browsing
alternatives	as	possible	and	redirect	the	user	to	the	login	page	only	where	required.

In	this	last	section,	we	will	introduce	a	generic	workaround	for	this,	based	on	the	following
criterion:	protecting	areas	of	content	as	a	whole	by	wrapping	them	inside	child	routes	that	will
redirect	the	user	to	the	login	page	whenever	unauthorized	access	is	detected,	where
parameters	such	as	the	location	of	the	login	path	are	fully	configurable	from	our	solution.

www.EBooksWorld.ir

Building	our	own	secure	RouterOutlet	directive
Our	workaround	is	based	on	developing	our	very	own	RouterOutlet	directive	by	extending
the	RouterOutlet	class	baked	in	Angular	2,	which	will	be	slightly	rewritten	to	override	the
base	directive's	default	behavior	when	it	comes	to	proceeding	to	activate	(or	not)	the
requested	component.	All	of	this	based	on	the	current	user	login	status.

To	do	so,	we	will	create	a	new	directive	in	our	shared	context,	which	will	be	used	across	the
application.	So	we	need	to	expose	it	in	the	shared	facade	as	well.

app/shared/directives/router-outlet.directive.ts

import	{	

		Directive,	

		ViewContainerRef,	

		DynamicComponentLoader,	

		Attribute,	

		Input	}	from	'@angular/core';

import	{	

		Router,	

		RouterOutlet,	

		ComponentInstruction	}	from	'@angular/router-deprecated';

import	{	AuthenticationService	}	from	'../shared';

@Directive({

		selector:	'pomodoro-router-outlet'

})

export	default	class	RouterOutletDirective	extends	RouterOutlet	{

		parentRouter:	Router;

		@Input()	protectedPath:	string;

		@Input()	loginUrl:	string;

		constructor(

				_viewContainerRef:	ViewContainerRef,

				_loader:	DynamicComponentLoader,

				_parentRouter:	Router,

				@Attribute('name')	nameAttr:	string)	{

				super(_viewContainerRef,	_loader,	_parentRouter,	nameAttr);

				this.parentRouter	=	_parentRouter;

		}

		activate(nextInstruction:	ComponentInstruction):	Promise<any>	{

				let	requiresAuthentication	=	

								this.protectedPath	===	nextInstruction.urlPath;

				if	(requiresAuthentication	&&	

								!AuthenticationService.isAuthorized())	{

						this.parentRouter.navigateByUrl(this.loginUrl);

				}

				return	super.activate(nextInstruction);

		}

www.EBooksWorld.ir

}

Here,	we	are	creating	a	new	directive	that	extends	from	the	RouterOutlet	directive	we	have
been	using	all	this	time	in	our	application.	This	directive	needs	to	be	made	available	for	use
from	the	other	feature	contexts	of	our	application:

app/shared/shared.ts

import	Queueable	from	'./interfaces/queueable';

import	Task	from	'./interfaces/task';

import	FormattedTimePipe	from	'./pipes/formatted-time.pipe';

import	QueuedOnlyPipe	from	'./pipes/queued-only.pipe';

import	AuthenticationService	from	'./services/authentication.service';

import	SettingsService	from	'./services/settings.service';

import	TaskService	from	'./services/task.service';

import	RouterOutletDirective	from	'./directives/router-outlet.directive';

const	SHARED_PIPES:	any[]	=	[

		FormattedTimePipe,

		QueuedOnlyPipe

];

const	SHARED_PROVIDERS:	any[]	=	[

		AuthenticationService,

		SettingsService,

		TaskService

];

const	SHARED_DIRECTIVES:	any[]	=	[

		RouterOutletDirective

];

export	{

		Queueable,

		Task,

		FormattedTimePipe,

		QueuedOnlyPipe,

		SHARED_PIPES,

		AuthenticationService,

		SettingsService,

		TaskService,

		SHARED_PROVIDERS,

		RouterOutletDirective,

		SHARED_DIRECTIVES

};

Back	to	the	directive	file,	we	can	see	it	inherits	the	same	constructor	of	the	inherited
RouterOutlet	constructor.	Thus,	we	will	import	the	same	required	tokens	so	that	we	can

www.EBooksWorld.ir

properly	declare	the	constructor	dependencies	and	call	the	superclass	constructor	with
super().	The	code	is	as	follows:

app/shared/directives/router-outlet.directive.ts

constructor(

		_elementRef:	ElementRef,

		_loader:	DynamicComponentLoader,

		_parentRouter:	Router,

		@Attribute('name')	nameAttr:	string)	{

		super(_elementRef,	_loader,	_parentRouter,	nameAttr);

		this.parentRouter	=	_parentRouter;

}

In	the	constructor	body,	we	do	not	only	inject	the	dependencies,	we	also	assign	the	Router
instance	in	a	class	member	for	future	use.	The	core	of	the	solution	relies	on	overriding	the
implementation	of	the	native	activate()	method,	where	we	basically	introduce	an
authentication	check	(that	is	why	we	also	import	the	AuthenticationService	at	the	top	of	the
script)	to	see	if	the	recently	required	component	lives	in	the	domain	of	the	protected	path.	In
that	case,	we	will	redirect	the	user	to	the	login	page	location	should	the	authentication	token	is
not	available	thanks	to	the	static	method	isAuthorized()	exposed	by	the
AuthenticationService.	In	any	event,	the	method	will	finally	return	the	result	of	the
superclass'	activate	method,	represented	by	a	Promise	object.	The	code	is	as	follows:

activate(nextInstruction:	ComponentInstruction):	Promise<any>	{

		let	requiresAuthentication	=this.protectedPath	===	nextInstruction.urlPath;

		if	(requiresAuthentication	&&

						!AuthenticationService.isAuthorized())	{

				this.parentRouter.navigateByUrl(this.loginUrl);

		}

		return	super.activate(nextInstruction);

}

Where	do	we	fetch	these	protectedPath	and	loginUrl	parameters?	As	you	saw	already	at	the
beginning	of	this	section,	we	are	exposing	two	input	parameters	on	this	directive,	which	will
make	its	instances	look	like	this:

<pomodoro-router-outlet	protectedPath="edit"	loginUrl="/login">

</pomodoro-router-outlet>

So,	open	up	the	top	router	component	file	and	replace	the	current	RouterOutlet	directive
instance	in	the	template	with	a	few	lines	of	code,	right	after	importing	the	SHARED_DIRECTIVES
symbol	in	the	directives	property	of	the	component	decorator:

app/app.component.ts

import	{	Component	}	from	'angular2/core';

import	{	

www.EBooksWorld.ir

		SHARED_PROVIDERS,

		AuthenticationService,

		SHARED_DIRECTIVES	}	from	'./shared/shared';

...

@Component({

		selector:	'pomodoro-app',

		directives:	[ROUTER_DIRECTIVES,	SHARED_DIRECTIVES],

		...

})

app/app.component.html

<nav	class="navbar	navbar-default	navbar-static-top">

		<div	class="container">

				<div	class="navbar-header">

						<strong	class="navbar-brand">My	Pomodoro	App

				</div>

				<ul	class="nav	navbar-nav	navbar-right">

						<a	[routerLink]="['TasksComponent']">Tasks

						<a	[routerLink]="['TimerComponent']">Timer

						<li	*ngIf="userIsLoggedIn">

								<a	[routerLink]="['TaskEditorComponent']">

										Publish	Task

								

						

						<li	*ngIf="!userIsLoggedIn">

								<a	[routerLink]="['LoginComponent']">Login

						

						<li	*ngIf="userIsLoggedIn">

								Logout

						

				

		</div>

</nav>

<pomodoro-router-outlet

		protectedPath="tasks/editor"

		loginUrl="login">

</pomodoro-router-outlet>

Last	but	not	least,	in	order	to	try	out	this	solution,	we	still	need	to	do	two	things:	remove	(or
comment	out)	the	@CanActivate()	decorator	in	the	task	editor	component	and	then	tweak	the
routerCanDeactivate()	router	hook	to	look	like	this:

app/tasks/task-editor.component.ts

routerCanDeactivate(

		next:	ComponentInstruction,

		prev:	ComponentInstruction)	{

		return	!AuthenticationService.isAuthorized()	||

				this.changesSaved	||

				confirm('Are	you	sure	you	want	to	leave?');

}

This	way,	we	can	smoothly	deactivate	the	component	if	the	user	is	not	logged	in.	Why	should

www.EBooksWorld.ir

we	do	this?	Basically,	this	is	the	flow	the	user	will	follow:

The	user	asks	for	a	protected	component
The	router	directive	checks	if	the	user	is	authenticated
If	logged	in	already,	the	directive	does	nothing	and	the	component	is	activated
If	not,	although	the	component	will	be	activated,	a	redirection	will	be	performed	at	the
same	time	and	the	user	will	land	safely	on	the	comfort	of	the	login	page

In	order	to	properly	try	out	this	solution,	remove	the	conditional	from	the	route	setting.	We
want	to	actually	display	the	link	but	redirect	the	user	if	not	logged	in.	The	code	is	as	follows:

app/app.component.html

...

<ul	class="nav	navbar-nav	navbar-right">

		<a	[routerLink]="['TasksComponent']">Tasks

		<a	[routerLink]="['TimerComponent']">Timer

		

				<a	[routerLink]="['TaskEditorComponent']">

						Publish	Task

				

		

		<li	*ngIf="!userIsLoggedIn">

				<a	[routerLink]="['LoginComponent']">Login

		

		<li	*ngIf="userIsLoggedIn">

				Logout

		

...

Note

There	is	an	important	caveat	in	this	solution:	the	protected	component	will	be	actually
rendered	on	screen	before	bouncing	the	user	to	the	login	page	(whenever	login	is	required).
This	is	definitely	not	good,	since	there	is	a	chance	that	the	protected	contents	will	flicker	on
screen	if	the	secure	component	instantiation	takes	longer	than	expected	or	either	the
canDeactivate()	method	poses	some	conditions	in	order	to	move	on	(hence	the	change	we
introduced.

Otherwise,	the	transition	will	be	so	fast	that	the	chances	are	that	the	end	user	will	not	even
notice	these	components	have	been	instantiated.	In	any	event,	use	this	with	care	and	watch	out
for	the	CanDeactivate	function	in	all	your	implementations.

www.EBooksWorld.ir

Summary
This	was	quite	a	long	and	dense	complicated	chapter,	without	any	doubt.	The	most	important
takeaway	from	this	chapter	was	that	there	is	not	one	but	many	alternatives	when	it	comes	to
designing	and	implementing	forms	in	Angular	2.	Some	of	them	are	more	declarative	and
some	others	are	mode	imperative.	When	should	you	use	one	or	favor	another?	As	we	said
already,	it	depends	on	where	and	how	you	want	to	access	and	tackle	the	issue	of	accessing	the
Control	and	ControlGroup	state	and	validity	properties.

User	authentication	was	also	covered	in	this	chapter	and	we	introduced	different	alternatives
for	catering	with	protected	areas	of	our	site.	Stay	tuned	and	keep	an	eye	on	the	latest
accomplishments	made	in	the	Angular	2	arena,	since	it	is	quite	likely	that	new	workarounds
for	the	most	common	use	cases	will	spring	out	down	the	track.

Now,	get	ready	to	confront	the	last	leg	of	our	journey	into	Angular	2,	where	we	will	provide
some	coverage	on	the	framework	support	for	animations	before	wrapping	up	everything	by
learning	some	unit	testing	techniques—all	in	the	last	chapter	of	the	book.

www.EBooksWorld.ir

Chapter	9.	Animating	Components	with
Angular	2
Nowadays,	animations	are	one	of	the	cornerstones	of	modern	user	experience	design.	Far
from	just	representing	a	visual	eye	candy	for	beautifying	the	UI,	they	have	become	an
important	part	of	the	visual	narrative.	Animations	pave	the	road	to	convey	messages	in	a	non-
intrusive	way,	becoming	a	cheap	but	powerful	tool	for	informing	the	user	about	the
underlying	processes	and	events	that	happen	while	we	interact	with	our	application.	The
moment	an	animation	pattern	becomes	widespread	and	the	audience	embraces	it	as	a	modern
standard,	we	gain	access	to	a	priceless	tool	for	enhancing	our	application's	user	experience.
Animations	are	language-agnostic,	are	not	necessarily	bound	to	a	single	device	or
environment	(web,	desktop	or	mobile)	and	are	pleasant	to	the	eye	of	the	beholder	when	used
wisely.	In	other	words,	animations	are	here	to	stay	and	Angular	2	has	a	strong	commitment	to
this	aspect	of	modern	visual	development.

With	all	modern	browsers	embracing	the	newer	features	of	CSS3	for	animation	handling,
Angular	2	offers	support	for	implementing	imperative	animation	scripting	through	an
incredibly	easy	but	powerful	API.	This	chapter	will	cover	several	approaches	to
implementing	animation	effects,	moving	from	leveraging	plain	vanilla	CSS	for	applying
class-based	animations,	to	implementing	script	routines	where	Angular	2	takes	full
responsibility	for	handling	DOM	transitions.

In	this	chapter	we	will:

Create	animations	with	plain	vanilla	CSS
Leverage	class-named	animation	with	the	ngClass	directive	to	better	handle	transitions
Look	at	Angular's	built-in	CSS	hooks	for	defining	styles	for	each	transition	state
Animate	components	with	the	CssAnimationBuilder	API
Design	directives	that	handle	animation
Introduce	ngAnimate	2.0

Note

As	a	word	of	caution,	bear	in	mind	that	the	current	implementation	of	animation	in	Angular	2
at	the	time	of	writing	is,	to	a	certain	extent,	temporary.	In	that	sense,	all	the	functionalities
described	in	this	chapter	could	probably	be	deprecated	in	the	long	run	as	the	Angular	2
codebase	matures.	However,	for	now,	there	is	no	reason	to	hold	ourselves	back	and	leverage
the	animation	modules	already	available	in	the	framework.	This	will	give	us	the	power	and
functionality	required	to	enhance	the	overall	user	experience	of	our	applications.

www.EBooksWorld.ir

Creating	animations	with	plain	vanilla	CSS
The	inception	of	CSS-based	animation	set	an	important	milestone	in	modern	web	design.
Before	that,	we	used	to	rely	on	JavaScript	to	accommodate	animations	in	our	web
applications	by	manipulating	DOM	elements	through	complex	and	cumbersome	scripts	based
on	intervals,	timeouts,	and	loops	of	all	sorts.	Unfortunately,	this	was	neither	maintainable	nor
scalable.

Then	modern	browsers	embraced	the	functionalities	brought	by	the	recent	CSS	transform,
transition,	keyframes,	and	animation	properties.	This	became	a	game	changer	in	the	context
of	web	interaction	design	in	recent	times.	While	support	for	these	techniques	in	browsers	such
as	Microsoft	Internet	Explorer	is	far	from	optimal,	the	rest	of	the	browsers	in	store	(including
Microsoft's	very	own	Edge)	provide	full	support	for	these	CSS	APIs.

Note

MSIE	provides	support	for	these	animation	techniques	only	as	of	Version	10.

We	assume	that	you	have	a	broad	understanding	of	how	CSS	animation	works	in	regards	of
building	keyframe-driven	or	transition-based	animations,	since	providing	coverage	to	these
techniques	is	obviously	out	of	the	scope	of	this	book.	As	a	recap,	we	can	highlight	the	fact	that
CSS-based	animation	is	usually	implemented	by	any	of	these	approaches,	or	even	a
combination	of	both:

Transition	properties,	that	will	act	as	Observers	of	either	all	or	just	a	subset	of	the	CSS
properties	applied	to	the	DOM	elements	impacted	by	the	selector.	Whenever	any	of	these
CSS	properties	is	changed,	the	DOM	element	will	not	take	the	new	value	right	away,	but
will	experience	a	steady	transition	into	its	new	state.
Named	keyframe,	animations,	where	we	define	different	steps	of	the	evolution	of	one	or
several	CSS	properties	under	a	unique	name,	which	will	populate	later	on	an	animation
property	of	a	given	selector,	being	one	able	to	set	additional	parameters	as	the	delay,
duration	of	the	animation	tweening	or	the	number	of	iterations	that	such	animation	is
meant	to	feature.

As	we	can	see	in	the	two	aforementioned	scenarios,	the	use	of	a	CSS	selector	populated	with
animation	settings	is	the	starting	point	for	all	things	related	to	animation,	and	that	is	what	we
will	do	now:	let's	build	a	fancy	pulse	animation	to	emulate	a	heartbeat-style	effect	in	the
bitmap	that	decorates	our	Pomodoro	timer.

We	will	use	a	keyframe-based	animation	this	time,	so	we	will	begin	by	building	the	actual
CSS	routine	in	a	separate	style	sheet.	The	entire	animation	is	based	on	a	simple	interpolation
where	we	take	an	object,	scale	it	up	by	10	percent	and	scale	it	back	down	again	to	its	initial
state.	This	keyframe-based	tweening	is	then	named	and	wrapped	in	a	CSS	class	named	pulse,
which	will	execute	such	animation	in	an	infinite	loop	where	each	iteration	takes	1	second	to
complete.

www.EBooksWorld.ir

All	the	CSS	rules	for	implementing	this	animation	will	live	in	an	external	style	sheet	part	of
the	timer	widget	component,	within	the	timer	feature	folder:

app/timer/timer-widget.component.css

@keyframes	pulse	{

		0%	{

				transform:	scale3d(1,	1,	1);

		}

		50%	{

				transform:	scale3d(1.1,	1.1,	1.1);

		}

		100%	{

				transform:	scale3d(1,	1,	1);

		}

}

.pulse	{

				animation:	pulse	1s	infinite;

}

As	for	this	point	on,	any	DOM	element	(in	the	TimerWidgetComponent	template)	annotated
with	this	class	name	will	visually	beat	like	a	heart.	This	visual	effect	is	actually	a	good	hint
that	the	element	is	undertaking	some	kind	of	action,	so	applying	it	to	the	main	pomodoro	icon
bitmap	in	our	pomodoro	timer	widget	when	the	countdown	is	on	will	help	convey	the	feeling
that	an	activity	is	currently	taking	place	in	a	lively	fashion.

Thankfully,	we	have	a	good	way	to	apply	such	effect	only	when	the	countdown	is	active.	We
use	the	isPaused	binding	in	the	TimerWidgetComponent	template.	Binding	its	value	to	the
NgClass	directive	in	order	to	render	the	classname	only	when	the	component	is	not	paused
will	do	the	trick,	so	just	open	the	timer	widget	code	unit	file	and	add	a	reference	to	the	style
sheet	we	just	created	and	apply	the	directive	as	described	previously:

app/timer/timer-widget.component.ts

...

@Component({

		selector:	'pomodoro-timer-widget',

		styleUrls:	['app/timer/timer-widget.component.css'],

		template:	`

				<div	class="text-center">

						<img	src="/app/shared/assets/img/pomodoro.png"

								[ngClass]="{	pulse:	!isPaused	}">

						<h3><small>{{	taskName	}}</small></h3>

						<h1>	{{	minutes	}}:{{	seconds		|	number:	'2.0'	}}	</h1>

						<p>

								<button	(click)="togglePause()"	class="btn	btn-danger">

								{{	buttonLabelKey	|	i18nSelect:	buttonLabelsMap	}}

								</button>

						</p>

www.EBooksWorld.ir

				</div>`

})

...

And	that's	it!	Run	our	pomodoro	app	and	click	on	the	Timer	link	at	the	top	to	reach	the	timer
component	page	and	check	the	visual	effect	live	after	starting	the	countdown.	Stop	it	and
resume	it	again	to	see	the	effect	applied	only	when	the	countdown	is	active.

www.EBooksWorld.ir

Handling	animation	with	CSS	class	hooks
As	we	have	just	seen	in	the	previous	section,	applying	visual	effects	based	on	CSS	classes	is	a
breeze	thanks	mostly	to	the	flexibility	we	have	for	adding	custom	class	names	in	Angular	2.

On	top	of	that,	Angular	provides	support	for	animation	class	hooks,	a	functionality	that	was
already	available	in	Angular	1.x,	under	a	different	incarnation	though.	Basically,	the
mechanics	is	as	follows:	DOM	elements	managed	by	template-driven	directives	(NgSwitch,
NgFor,	or	NgIf)	can	be	decorated	with	the	ng-animate	classname.	From	that	very	moment,
such	elements	will	feature	additional	class	names	depending	on	the	stage	of	the	animations
applied	to	that	DOM	element	in	the	context	of	the	wrapping	component	lifecycle.

This	last	statement	might	sound	a	bit	odd	and	daunting,	so	let's	see	all	this	in	action	through	an
actual	example.	Open	our	TasksComponent	template	and	update	the	row	tag	of	the	tasks	list	by
adding	a	class	named	ng-animate	to	the	markup.	Then,	do	the	same	with	the	queued	label
displayed	when	the	task	model	is	lined	up	in	our	tasks	queue.	The	code	is	as	follows:

app/tasks/tasks.component.html

<tr	*ngFor="let	task	of	tasks;	let	i	=	index"	class="ng-animate">

		<th	scope="row">{{i}}

				

						Queued

				

		</th>

		<!--	the	rest	of	the	template	remains	untouched	-->

</tr>

Save	everything	and	then	run	again	the	application	while	inspecting	the	code	in	the	browser
dev	tools.	Well,	apparently	nothing	happens.	But	we	are	talking	about	animations	here,	and	as
a	matter	of	fact	the	underlying	process	is	expecting	exactly	that,	so	let's	decorate	the	ng-
animate	class	with	some	animation-related	styling	defined	in	the	component's	associated	style
sheet:

app/tasks/tasks.component.css

h3,	p	{

		text-align:	center;

}

.table	{

		margin:	auto;

		max-width:	860px;

}

.ng-animate	{

		transition:	all	0.3s	ease-in;

}

The	CSS	rule	defined	previously	will	force	any	styling	change	applied	to	the	DOM	element	to

www.EBooksWorld.ir

take	place	in	10	seconds	following	an	ease-in	algorithm	curve	when	applied.	Run	the	code
again	and	inspect	the	code:	apparently	we're	now	into	something:	all	elements	flagged	with	the
ng-animate	class	now	feature	some	classes	that	temporarily	decorate	the	element.	These
classes	are	ng-enter	and	ng-enter-active,	where	the	first	one	is	enabled	by	default	when
rendering	the	element	and	the	latter	applied	straight	away.	After	10	seconds,	which	is	the
scope	of	the	transition	we	defined	in	the	CSS	rule,	both	class	names	will	disappear,	leaving	the
ng-animate	class	as	the	only	track	of	its	now	extinct	existence.

Basically,	we	have	the	same	behavior	we	implemented	by	hand	in	the	previous	section,	with
the	sole	exception	that	the	class	name's	binding	is	operated	this	time	by	Angular	2	itself.	With
all	this	in	mind,	let's	repurpose	the	style	sheet	a	little	bit	to	leverage	the	brief	existence	of
these	classnames	in	our	DOM	and	the	transition	property	to	make	a	nice	fade-in	effect	occur
upon	loading.	Replace	the	10	seconds	transition	period	by	a	shorter	0.3	second	value	(300
milliseconds)	and	let's	define	opacity	values	for	the	initial	ng-enter	class	name	and	the	final
ng-enter-active	class	names.	The	code	is	as	follows:

app/tasks/tasks.component.css

...

.ng-animate	{

		transition:	all	0.3s	ease-in;

}

.ng-enter	{

		opacity:	0;

}

.ng-enter-active	{

		opacity:	1;

}

Save	and	rerun	the	code	examples.	Now,	you	will	see	how	the	task	list	smoothly	fades	in	on
screen.	The	same	applies	to	the	blue	label	informing	if	any	given	task	has	been	queued	up	or
not.

Class	hooks	available

The	class	names	we	have	just	seen	are	known	in	Angular-land	as	class	hooks,	which
resonates	from	the	directive	or	routing	lifecycle	events	we	already	covered,	and	each	one	of
them	will	only	exist	while	the	animation	takes	place.	We	have	four	class	hooks:

ng-enter:	This	will	be	applied	by	Angular's	DOM	renderer	to	any	element	flagged	with
the	ng-animate	class	name	upon	being	attached	to	the	view.	It	usually	wraps	the	styling
we	require	our	component	to	feature	by	default.
ng-enter-active:	This	classname	is	temporarily	attached	to	the	element	on	runtime	right
before	starting	the	CSS	animation	and	is	removed	automatically,	along	with	the	ng-enter
class	name,	when	the	animation	is	completed.	It	usually	defines	the	styling	we	strive	our
component	to	assume	by	the	end	of	the	animation	which	was	previously	reset	by	ng-
enter.
ng-leave:	Think	of	this	class	hook	as	the	counterpart	of	ng-enter,	but	it	takes	place

www.EBooksWorld.ir

when	the	element	is	about	to	be	detached	from	the	view.
ng-leave-active:	This	is	same	as	ng-enter-active,	but	it	takes	place	when	the	element
is	about	to	be	detached	from	the	view.	The	classname	is	applied	to	the	element	and	will	be
removed,	along	with	ng-leave,	once	the	transition	is	completed	and	before	the	element	is
removed	from	the	DOM.

Tip

Do	not	ever	forget	that	this	technique	is	only	available	for	DOM	elements	that	are
handled	by	the	DomRenderer	type,	which	is	a	low-level	class	in	charge	of	creating,
updating,	or	removing	nodes	and	views	among	other	tasks.	In	our	case,	elements
decorated	with	the	NgIf,	NgFor,	or	NgSwitch	directives	are	the	only	feasible	candidates
for	it.

www.EBooksWorld.ir

Animating	components	with	the
AnimationBuilder
If	you	ever	decide	to	investigate	how	the	CSS	class	hooks	triggered	by	the	ng-animate	class
binding	work	under	the	hood,	you	will	be	positively	surprised	by	the	fact	that	all	the	heavy
lifting	is	carried	out	by	an	instance	of	the	CssAnimationBuilder	class	instantiated	through	the
AnimationBuilder	API.

The	AnimationBuilder	class	(which	is	an	injectable	type	and	therefore	subject	to	be	imported
through	the	constructor	of	our	components)	is	a	factory	type	whose	API	provides	access	to
instantiate	more	specialized	animation	builders	such	as	the	CssAnimationBuilder	class.	This
type	has	a	very	broad	and	powerful	API	whose	methods	allow	us	to	add	or	remove	CSS	class
names	in	order	to	trigger	transitions	or	animations,	or	even	configure	by	hand	animation
parameters	such	as	styles,	duration,	or	delay	on	our	DOM	elements	of	choice.	In	this	sense,
we	can	define	general	purpose	animation	handlers	and	then	use	them	as	animation	adapters
for	any	DOM	element.	In	that	sense,	animation	handlers	created	by	the	CssAnimationBuilder
are	agnostic	of	the	DOM	elements.	Therefore,	a	single	animation	adapter	can	be	applied	to
one	or	many	HTML	elements.

So,	in	order	to	create	our	own	animations	programmatically	using	only	JavaScript,	we	just
need	an	instance	of	the	AnimationBuilder	type,	which	we	will	use	to	instantiate	a
CssAnimationBuilder	for	creating	a	specific	(HTML	node-agnostic)	animated	transition.	Last
but	not	least,	an	accessor	type	to	the	DOM	elements	we	want	to	animate.	Sounds	daunting?	A
quick	and	easy	example	will	clarify	all	this.

A	good	way	to	put	all	these	to	the	test	is	to	introduce	a	new	visual	effect	on	our	Pomodoro
timer:	a	rendering	animation	effect	when	the	component	is	loaded,	so	every	time	we	activate
the	PomodoroTimer	route,	the	component	gets	loaded	gracefully	by	fading	in	on	screen.

Let's	begin	by	importing	new	tokens	in	the	block	of	import	statements	of
TimerWidgetComponent.	We	will	need	to	fetch	ElementRef	from	angular/core,	since	it	will
give	us	access	to	the	DOM	element	we	want	to	animate.	Then	we	will	have	to	bring	the
AnimationBuilder	symbol,	which	will	be	used	to	instantiate	a	CssAnimationBuilder	object.
The	latter	is	also	imported	so	we	can	properly	annotate	our	class	members.	The	code	is	as
follows:

app/timer/timer-widget.component.ts

import	{	Component,	OnInit,	ElementRef	}	from	'@angular/core';

import	{	RouteParams,	CanReuse,	OnReuse	}	from	'@angular/router-deprecated';

import	{	SettingsService,	TaskService	}	from	'../shared/shared';

import	{	AnimationBuilder	}	from	'@angular/platform-

browser/src/animate/animation_builder';

import	{	CssAnimationBuilder	}	from	'@angular/platform-

browser/src/animate/css_animation_builder';

www.EBooksWorld.ir

...

Note

Please	note	the	source	locations	for	AnimationBuilder	and	CssAnimationBuilder.	At	the	time
of	writing,	the	@angular/animate	barrel	has	not	been	registered	in	any	specific	bundle	within
the	Angular	2	framework,	so	we	need	to	use	the	full	path	for	importing	each	symbol.	This
may	change	in	the	future	so	please	refer	to	the	official	Angular	2	documentation	in	case	you
get	a	404	error	when	importing	the	types.

With	all	these	tools	in	place,	we	can	begin	setting	up	the	foundation	for	our	animation.	First
let's	create	a	new	member	in	our	component	controller	class	under	the	name	of
fadeInAnimationBuilder.	This	new	class	property	will	represent	the	CssAnimationBuilder
instance	object	that	will	define	the	animated	transition	we	are	about	to	build	now.	First,	let's
inject	the	dependencies	we	need	through	the	class	constructor,	properly	prefixed	with	access
modifiers	so	they	become	class	members	instantly.	The	code	is	as	follows:

app/timer/timer-widget.component.ts

...

export	default	class	TimerWidgetComponent	implements	OnInit,	CanReuse,	OnReuse	{

		minutes:	number;

		seconds:	number;

		isPaused:	boolean;

		buttonLabelKey:	string;

		buttonLabelsMap:	any;

		taskName:	string;

		fadeInAnimationBuilder:	CssAnimationBuilder;

		constructor(

				private	settingsService:	SettingsService,

				private	routeParams:	RouteParams,

				private	taskService:	TaskService,

				private	animationBuilder:	AnimationBuilder,

				private	elementRef:	ElementRef)	{

						this.buttonLabelsMap	=	settingsService.labelsMap.timer;

						this.fadeInAnimationBuilder	=	animationBuilder.css();

						this.fadeInAnimationBuilder.setDuration(1000)

								.setDelay(300)

								.setFromStyles({	opacity:	0	})

								.setToStyles({	opacity:	1	});

		}

		//	Rest	of	the	class	remains	the	same

}

The	AnimationBuilder.css()	method	is	used	in	the	constructor	implementation	to	instantiate
a	CssAnimationBuilder	object,	and	it	is	directly	assigned	to	the	fadeInAnimationBuilder
member.	Once	assigned,	we	can	use	the	CssAnimationBuilder	API	to	define	an	animation	that
will	kick	off	after	300	milliseconds,	after	which	will	endure	along	1000	milliseconds	(that	is,
a	second)	a	style	transition	on	any	given	DOM	element	from	full	transparency	to	solid	color

www.EBooksWorld.ir

state.	It	is	worth	remarking	that	the	CssAnimationBuilder	features	a	chainable	API,	so	we	can
conveniently	chain	settings	one	after	another.

But	as	we	pointed	out	in	the	beginning	of	this	section,	this	animation	handler	is	completely
agnostic	of	the	elements	it	can	be	applied	on.	Let's	see	how	we	can	make	all	this	transition
happen	on	an	actual	DOM	element.	To	do	so,	we	can	trigger	the	animation	using	the	start()
method	exposed	by	the	CssAnimationBuilder.	This	method	expects	an	HTML	element	in	its
signature,	on	which	the	configured	animations	will	be	applied.	Go	to	the	ngOnInit()	hook
and	add	the	following	block	of	code	at	the	end:

app/timer/timer-widget.component.ts

...

ngOnInit():	void	{

		this.resetPomodoro();

		setInterval(()	=>	this.tick(),	1000);

		let	taskIndex	=	parseInt(this.routeParams.get('id'));

		if	(!isNaN(taskIndex))	{

				this.taskName	=	this.taskService.taskStore[taskIndex].name;

		}

		this.fadeInAnimationBuilder.start(

				this.elementRef.nativeElement.firstElementChild);

}

...

As	we	mentioned,	the	start()	method	will	expect	an	HTML	element	on	which	to	apply	the
animation	setup	and	that	we	do	by	feeding	the	function	with	the	first	child	node	of	the
nativeElement	property	of	the	elementRef	class	member.	The	ElementRef	type	we	imported
in	the	constructor	gives	us	a	reference	pointer	to	the	component	directive	itself	(this	is	the
PomodoroTimer	component)	in	the	context	of	the	parent	view	or	template	it	currently	exists.	Its
nativeElement	property	gives	us	access	to	the	underlying	native	element	of	the	component,
which	is	usually	the	template	HTML	nodes	tree.	From	that	point	onward,	we	just	need	to	fetch
its	firstElementChild	property	value,	which	will	point	to	the	root	node	of	the	component
template,	and	apply	the	animation	tweening	on	it.	It	is	important	to	remark	that	the	component
will	not	react	to	any	animation	applied	directly	to	it.	Therefore,	we	need	to	traverse	the
nativeElement	property	after	the	actual	DOM	element	we	want	to	animate.	We	can	introduce
other	DOM	selectors	here,	leveraging	the	web	element	API	methods	such	as
document.getElementById()	or	document.querySelector(),	but	this	is	discouraged	since	it
creates	a	tight	coupling	between	the	controller	and	the	rendering	layers	and	can	compromise
future	maintainability	of	our	components.

Now,	save	all	your	work	and	re-run	the	Pomodoro	application,	accessing	the	Pomodoro
timer.	Voila!	Our	beloved	timer	now	gracefully	shows	up	on	screen	with	a	smooth	transition.

www.EBooksWorld.ir

The	CssAnimationBuilder	API
We	have	just	seen	how	we	can	create	agnostic	animation	handlers	with	the
CssAnimationBuilder,	and	to	do	so	we	have	leveraged	some	powerful	methods	of	its	API
(such	as	setDelay,	setDuration,	setFromStyles,	or	setToStyles).	This	is	just	a	subset	of	all
methods	available	in	its	API,	which	encompass	some	more	methods	that	are	really	useful	for
building	complex	animations.	These	methods,	including	the	signatures,	are	as	follows:

setDelay(delay:	number):	As	we	saw	in	our	example,	this	sets	the	animation	delay	and
overrides	any	other	animation	delay	previously	defined	through	CSS.
setDuration(duration:	number):	This	sets	the	animation	duration	and,	similar	to
setDelay(),	overrides	any	animation	duration	previously	defined	through	CSS.
setFromStyles(from:	{[key:	string]:	any}):	As	we	saw	in	our	example,	it	sets	the
initial	styles	for	the	animation,	in	the	form	of	a	hash	object	of	key/value	pairs.	Be	careful
when	styling	CSS	properties	named	with	camel	case.	All	CSS	property	names	must	be
converted	to	camel	case.	In	that	sense,	properties	such	as	margin-top	or	background-
color	would	turn	into	marginTop	or	backgroundColor.
setToStyles(to:	{[key:	string]:	any}):	This	sets	the	destination	styles	for	the
animation.
setStyles(from:	{[key:	string]:	any},	to:	{[key:	string]:	any}):	This	is
syntactic	sugar	to	directly	access	the	functionality	provided	by	setFromStyles	and
setToStyles	in	a	single	method,	which	obviously	sets	styles	for	both	the	initial	state	and
the	destination	state.
addClass(className:	string):	This	adds	a	class	that	will	remain	on	the	element	after
the	animation	has	finished.	This	method	is	especially	useful	for	overriding	CSS
properties	on	DOM	elements	already	managed	by	CSS	transitions.
removeClass(className:	string):	As	the	counterpart	of	the	previous	method,	this
removes	a	class	from	the	element.
addAnimationClass(className:	string):	This	adds	a	temporary	class	that	will	be
removed	at	the	end	of	the	animation.	Angular	2	leverages	this	method	under	the	covers
for	handling	the	CSS	hooks	triggered	by	the	ng-animate	class	binding	we	overviewed	at
the	beginning	of	this	chapter.
start(element:	HTMLElement):	This	starts	the	animation	on	the	HTML	element	defined
in	the	payload	when	executing	the	method	and	returns	an	Animation	object.	This
Animation	object	exposes	very	useful	methods	we	can	leverage	to	implement	additional
functionalities	as	callbacks	to	be	executed	when	the	animation	is	complete,	among	other
functionalities.

All	these	chainable	methods	allow	us	to	build	really	complex	animation	handlers	and	reuse
them	throughout	our	applications	with	no	effort.

www.EBooksWorld.ir

Tracking	animation	state	with	the	Animation	class
Our	applications'	interactivity	does	not	end	in	the	moment	an	animation	completes	its
interpolation.	In	fact,	this	can	become	the	starting	point	of	many	other	animations	or
interactive	events	occurring	in	our	user	interface.	For	that	reason,	it	is	important	for	our
applications	to	be	able	to	detect	when	an	animation	completes	its	interpolation.

Fortunately,	we	have	the	Animation	class	for	this,	and	the	CssAnimationBuilder.start()
method	precisely	returns	an	instance	of	this	type,	as	we	can	see	in	the	following	example:

app/timer/timer-widget.component.ts

...

ngOnInit():	void	{

		this.resetPomodoro();

		setInterval(()	=>	this.tick(),	1000);

		let	taskIndex	=	parseInt(this.routeParams.get('id'));

		if	(!isNaN(taskIndex))	{

				this.taskName	=	this.taskService.taskStore[taskIndex].name;

		}

		const	animation	=	this.fadeInAnimationBuilder.start(

				this.elementRef.nativeElement.firstElementChild);

		animation.onComplete(()	=>	console.log('Animation	completed!'));

}

The	Animation	class	exposes	in	its	API	the	onComplete	event	handler,	which	is	fired	as	soon	as
the	animation	triggered	by	the	CssAnimationBuilder.start()	method	finishes.	So,	we	can
leverage	it	to	trigger	any	other	action	in	our	app,	such	as	logging	operations	(as	depicted	in
the	preceding	example)	or	further	animations.

Regarding	the	Animation	class,	it	is	in	fact	the	one	that	carries	out	all	the	hard	work	of
managing	the	transition.	In	that	sense,	the	CssAnimationBuilder	is	just	a	facade	providing	a
friendly	interface	for	setting	up	the	animation	flow.	When	it	comes	then	to	performing	further
operations	once	the	animation	is	ongoing	or	has	just	finished,	the	Animation	class	is	our	only
resource.

All	in	all,	we	will	rarely	interact	with	the	Animation	class	beyond	using	its	callback	functions
or	leveraging	its	built-in	methods	to	handle	CSS	classes	or	swapping	styles	when	the
animation	is	over.	On	the	other	hand,	it	is	not	an	Injectable	class	so	we	cannot	instantiate	it
using	Angular's	dependency	injection	system.	For	these	reasons,	we	will	not	cover	its	API	in
detail	here.

www.EBooksWorld.ir

Developing	custom	animation	directives
We	have	said	several	times	that	one	of	the	advantages	of	the	CssAnimationBuilder	API	is	its
reusability.	Putting	together	any	given	animation	setup	and	applying	it	on	not	one	but	many
HTML	elements	later	on	becomes	a	breeze.	However,	directives	are	the	perfect	solution	when
it	comes	to	managing	reusability	in	the	Angular	arena.	So	why	not	get	the	best	of	both
worlds?	As	we	will	see	in	the	next	example,	wrapping	animation	within	directives	becomes
the	go-to	solution	for	many	case	scenarios.

Our	last	animation	example	in	this	chapter	will	introduce	a	brand	new	custom	directive	into
our	application.	The	Highlight	directive	leverages	the	CssAnimationBuilder	API	to	change
the	background	color	of	any	given	DOM	element	on	the	fly,	resetting	the	background	color	to
its	original	state	at	the	end	of	the	animation.	This	kind	of	flashing	effect	has	become	quite
widespread	in	modern	web	design	for	making	the	user	aware	that	something	has	just
happened	on	some	part	of	the	UI.

Let's	start	by	creating	the	directive	controller	class	file	inside	the	directives	subfolder	of	our
shared	features	folder,	and	populate	it	with	the	following	script.	Please	note	how	we	keep
applying	the	file	naming	conventions	we	embrace	and	how	our	directive	will	be	mapped	to	a
CSS	class	selector	this	time:

app/shared/directives/highlight.directive.ts

import	{	Directive,	ElementRef,	OnInit	}	from	'@angular/core';

import	{	AnimationBuilder	}	from	'@angular/platform-

browser/src/animate/animation_builder';

import	{	CssAnimationBuilder	}	from	'@angular/platform-

browser/src/animate/css_animation_builder';

@Directive({

		selector:	'.pomodoro-highlight',

		providers:	[AnimationBuilder]

})

export	default	class	HighlightDirective	{

		cssAnimationBuilder:	CssAnimationBuilder;

		constructor(

				private	animationBuilder:	AnimationBuilder,

				private	elementRef:	ElementRef)	{

				this.cssAnimationBuilder	=	animationBuilder.css()

						.setDuration(300)

						.setToStyles({	backgroundColor:	'#fff5a0'	});

		}

		ngOnInit()	{

				let	animation	=	this.cssAnimationBuilder.start(

						this.elementRef.nativeElement

);

www.EBooksWorld.ir

				animation.onComplete(()	=>	{

						animation.applyStyles({	backgroundColor:	'inherit'	});

				});

		}

}

The	code	is	pretty	simple	in	its	implementation.	We	basically	build	a	directive	mapped	to	a
CSS	class	selector	whose	constructor	instantiates	a	CSS	animation	consisting	of	a
background-color	interpolation	to	a	certain	tone	of	yellow	(defined	by	the	#fff5a0	hex	value)
along	300	milliseconds.	This	is	our	desired	flashy	effect.	The	ngOnInit	hook	method,	which
is	executed	in	the	very	moment	that	the	component	affected	by	this	directive	is	rendered	in	the
view,	fires	the	animation	and	resets	the	background	color	of	the	affected	DOM	element	back
to	its	original	value.	As	we	can	see,	we	are	taking	advantage	of	the	applyStyles()	method	of
the	Animation	class.	This	method,	along	with	other	methods	exposed	in	its	API	such	as
addClasses()	or	removeClasses()	(both	expecting	an	string	array	with	the	class	names	to	add
or	remove,	respectively),	allows	us	to	interact	with	the	CSS	bindings	of	the	animated	DOM
element.

Before	moving	on,	we	need	to	ensure	this	new	directive	is	available	for	the	rest	of	features
coexisting	in	our	application,	so	we	need	to	expose	this	new	directive	from	the	shared	facade
module	as	well.	The	code	is	as	follows:

app/shared/shared.ts

import	Queueable	from	'./interfaces/queueable';

import	Task	from	'./interfaces/task';

import	FormattedTimePipe	from	'./pipes/formatted-time.pipe';

import	QueuedOnlyPipe	from	'./pipes/queued-only.pipe';

import	AuthenticationService	from	'./services/authentication.service';

import	SettingsService	from	'./services/settings.service';

import	TaskService	from	'./services/task.service';

import	RouterOutletDirective	from	'./directives/router-outlet.directive';

import	HighlightDirective	from	'./directives/highlight.directive';

const	SHARED_PIPES:	any[]	=	[

		FormattedTimePipe,

		QueuedOnlyPipe

];

const	SHARED_PROVIDERS:	any[]	=	[

		AuthenticationService,

		SettingsService,

		TaskService

];

const	SHARED_DIRECTIVES:	any[]	=	[

		RouterOutletDirective,

		HighlightDirective

];

www.EBooksWorld.ir

export	{

		Queueable,

		Task,

		FormattedTimePipe,

		QueuedOnlyPipe,

		SHARED_PIPES,

		AuthenticationService,

		SettingsService,

		TaskService,

		SHARED_PROVIDERS,

		RouterOutletDirective,

		HighlightDirective,

		SHARED_DIRECTIVES

};

As	you	can	see	in	the	new	refactored	facade,	the	Highlight	directive	is	part	of	the
SHARED_DIRECTIVES	symbol.	Therefore,	it	is	available	for	use	on	any	component	already
declaring	that	token	in	its	directives	property,	such	as	TasksComponent,	whose	template	we	are
about	to	tweak	now.

Open	the	component's	template	and	decorate	the	ngFor	element	with	an	additional	class,	as
follows:

app/tasks/tasks.component.html

<tr	*ngFor="let	task	of	tasks;	let	i	=	index"

		class="ng-animate	highlight">

Reload	the	application	and	rejoice	by	watching	how	our	task	list	flashes	upon	loading	on
screen,	just	to	return	back	to	its	normal	state.	Remember	that	we	can	apply	the	same	behavior
to	any	other	piece	of	DOM	in	our	application	just	by	importing	the	directive	and	binding	the
class	name	in	the	DOM	element	of	our	choice.	However,	you	are	probably	wondering	why	we
built	all	this	boilerplate	for	delivering	just	a	flashy	effect.	Wouldn't	it	be	easier	to	wrap
everything	around	a	CSS	class	perhaps?	Well,	that	is	correct...	unless	you	want	to	interact	with
the	animation,	and	that	is	what	we	are	going	to	do	next.

www.EBooksWorld.ir

Interacting	with	our	directive	from	the	template
In	fairness,	having	a	directive	triggering	an	animation	like	this	makes	no	sense,	but	it	would
be	great	if	we	could	interact	with	the	animation.	Moreover,	if	we	could	actually	interact	right
from	the	template.	To	do	so,	we	can	assign	an	exportable	token	name	to	our	directive	so	we
can	refer	to	it	from	the	same	element	intervened	by	the	directive.	Do	you	remember	how	we
used	to	refer	to	the	ngForm	directive	when	handling	forms?	Here,	we	take	advantage	of	the
same	technique,	as	we	will	see	later.	First,	proceed	to	update	the	Highlight	directive	by
adding	a	new	property	to	the	directive	setup	named	exportAs,	with	the	value	highlight.	The
value	defined	there	will	become	the	name	we	should	refer	to	when	trying	to	access	the
directive	API	from	within	outside.	How	shall	we	do	this?	A	little	bit	of	patience,	first	let's	ditch
the	ngOnInit	method	by	changing	its	name	to	colorize,	thereby	removing	the	type	from	the
first	line	of	imports	and	the	interface	implementation	from	the	class.	The	code	is	as	follows:

app/shared/directives/highlight.directive.ts

import	{	Directive,	ElementRef	}	from	'@angular/core';

import	{	AnimationBuilder	}	from	'@angular/platform-

browser/src/animate/animation_builder';

import	{	CssAnimationBuilder	}	from	'@angular/platform-

browser/src/animate/css_animation_builder';

@Directive({

		selector:	'.pomodoro-highlight',

		providers:	[AnimationBuilder],

		exportAs:	'pomodoroHighlight'

})

export	default	class	HighlightDirective	{

		cssAnimationBuilder:	CssAnimationBuilder;

		constructor(

				private	animationBuilder:	AnimationBuilder,

				private	elementRef:	ElementRef)	{

				this.cssAnimationBuilder	=	animationBuilder.css()

						.setDuration(300)

						.setToStyles({	backgroundColor:	'#fff5a0'	});

		}

		colorize()	{

				let	animation	=	this.cssAnimationBuilder.start(

						this.elementRef.nativeElement

);

				animation.onComplete(()	=>	{

						animation.applyStyles({	backgroundColor:	'inherit'	});

				});

		}

}

Rerun	the	example.	Now	the	table	does	not	flash	upon	loading,	which	is	fine.	With	all	this	in

www.EBooksWorld.ir

place,	it's	time	to	update	our	template.	First,	we	will	add	a	local	reference	named	row	(or
whatever	name	you	fancy)	in	the	same	HTML	node	impacted	by	the	directive,	pointing	to
highlight	which	is,	as	we	now	know,	the	public	name	of	our	directive.	Same	as	we	used	to	do
when	referencing	the	state	and	validity	of	our	forms	with	ngForm,	now	we	can	access	the
directive	public	API,	which	exposes	the	colorize()	method	we	just	created	out	of	the	former
ngOnInit	interface	method.	We	can	safely	execute	that	method	now	just	by	pointing	to	the
local	template	reference,	like	this:

app/tasks/tasks.component.html

<tr	*ngFor="let	task	of	tasks;	let	i	=	index"

				class="ng-animate	pomodoro-highlight"

				#row="pomodoroHighlight"

				(click)="row.colorize()">

Reload	the	application	and	click	on	any	task,	queuing	it	up	and	off.	Its	row	will	flash
momentarily.

Tip

In	the	implementation	of	the	Highlight	directive,	we	hardcoded	the	CSS	value	in	body	of	the
directive.	In	order	to	make	this	directive	more	sustainable	and	scalable,	we	should	prevent	this
approach	in	larger	applications.	As	a	personal	exercise,	we	would	suggest	you	to	refactor	the
directive	to	use	an	attribute	selector,	such	as	[pomodoroHighlight],	whose	value	is	parsed	by
a	class	member	annotated	with	the	@Input	decorator,	so	you	can	configure	custom	flashing
colors	when	binding	the	directive	in	your	component	templates.

www.EBooksWorld.ir

Looking	into	the	future	with	ngAnimate	2.0
Most	of	the	procedures	we	have	seen	along	this	chapter	inherit	the	animation	logic	already
present	in	Angular	1.x,	which	was	based	on	attaching	CSS	classes	and	relying	on	keyframe
animations	previously	created	in	our	style	sheets.	Unfortunately,	this	approach	falls	short
when	it	comes	to	performance	optimization,	implementing	concurrent	animations	or
performing	advanced	interactions,	like	the	ones	proposed	in	Material	Design,	just	to	name	a
few	shortcomings.

This	is	why	the	Angular	team	is	now	working	on	a	new	set	of	modules	that	will	add	an
unparalleled	layer	of	performance	and	abstraction	through	the	use	of	a	domain	specific
language	(DSL)	with	full	programmatic	API.	This	project	will	take	form	in	what	is	known	as
ngAnimate	2.0,	and	it	will	be	released	at	some	point	later	in	2016.	The	approach	proposes	a
programmatic	system	that	returns	to	JavaScript,	tapping	into	CSS	and	allowing	for
programmatic	control	all	around.

In	a	nutshell,	some	of	the	great	improvements	that	ngAnimate	2.0	will	feature	are	as	follows:

Use	an	animation	factory	to	create	animations	through	a	programmatic	API	with	support
for	concurrent	and	sequential	animations
Staggering	animations	handled	100	percent	through	JavaScript,	bringing	the	same	logic
of	CSS	Keyframes	animation	to	JavaScript,	compounded	by	universal	sequencing	and
animation	chaining
Performance	tuning	with	dramatically	fewer	reflows
Multi	DOM-level	animations	and	a	sound	control	over	CSS
Better	event	integration	and	full	control	over	the	animation	flow,	with	the	ability	to	fast-
forward	or	reverse	an	animation	interpolation	programmatically
Solid	support	for	Material	Design	and	improved	handling	of	user	interaction	events,
mouse	clicks,	and	so	on
Adaptive	styling
Full	testability	and	support	for	animation	asserts	in	our	test	specs

These	and	many	more	features	will	become	available	as	soon	as	ngAnimate	2.0	is	released.	At
the	time	of	writing,	the	API	is	not	public	yet	as	ngAnimate	2.0	is	a	proof	of	concept,	so
providing	a	deeper	coverage	of	its	mechanism	is	out	of	the	scope	of	this	book.	However,	keep
an	eye	on	future	announcements,	since	ngAnimate	2.0	will	become	an	important	milestone	in
the	way	animations	are	handled	in	JavaScript.

www.EBooksWorld.ir

Summary
In	this	chapter,	we	discussed	some	of	the	different	techniques	currently	available	for	handling
animations	in	Angular	2.	First,	we	looked	at	the	basic	classname-based	animation	with	CSS3
transitions	with	the	help	of	the	Angular	built-in	directives.	Then,	we	saw	how	Angular
provides	class-based	animation	helpers	out	of	the	box,	so	we	can	easily	implement	our	own
transitions	by	following	some	basic	conventions	in	our	style	sheets.	Then,	we	discussed
programmatically-managed	animation	development	with	the	amazing	animation	builders
currently	existing	in	Angular	2,	with	some	examples	of	how	to	take	advantage	of	the
Animation	class	callbacks	to	trigger	actions	along	the	animation	lifecycle.

The	last	leg	of	this	chapter	was	devoted	to	getting	some	insights	about	ngAnimate	2.0,	which
is	set	out	to	take	over	the	previous	techniques	in	the	near	future.

Our	next	and	final	chapter	in	the	book	will	sum	up	all	we	have	learned	so	far	by	introducing
one	of	the	most	relevant	requirements	in	modern	web	application	development:	unit	testing.
Angular	2	embraces	common	industry	standards	and	libraries,	while	introducing	some
particular	tools	to	turn	unit	testing	into	an	enjoyable	task.

www.EBooksWorld.ir

Chapter	10.	Unit	testing	in	Angular	2
The	hard	work	of	the	previous	chapters	has	materialized	into	a	working	application	we	can	be
proud	of.	But	how	can	we	ensure	a	painless	maintainability	in	the	future?	A	comprehensive
automated	testing	layer	will	become	our	lifeline	once	our	application	begins	to	scale	up	and
we	have	to	mitigate	the	impact	of	bugs	caused	by	new	functionalities	colliding	with	the
already	existing	ones.

Testing	(and	more	specifically	unit	testing)	is	meant	to	be	carried	out	by	the	developer	as	the
project	is	being	developed.	However,	we	will	cover	all	the	intricacies	of	testing	Angular	2
modules	in	brief	in	this	chapter,	now	that	the	project	is	in	a	mature	stage.

In	this	chapter,	you	will	see	how	to	implement	testing	tools	to	perform	proper	unit	testing	of
your	application	classes	and	components.

In	this	chapter	we	will:

Look	at	the	importance	of	testing	and,	more	specifically,	unit	testing
Review	the	different	parts	of	a	JavaScript	unit	test
Discover	Jasmine,	our	testing	framework	of	choice
Learn	how	to	set	up	a	unit	testing	environment	with	Jasmine	and	SystemJS
Build	a	test	spec	testing	a	pipe
Design	unit	tests	for	components,	with	or	without	dependencies
Put	our	routes	to	the	test
Implement	tests	for	services,	mocking	dependencies,	and	stubs
Intercept	XHR	requests	and	provide	mocked	responses	for	refined	control
Discover	how	to	test	directives	as	components	with	no	view
Introduce	other	concepts	and	tools	such	as	Karma,	code	coverage	tools,	or	E2E	testing

www.EBooksWorld.ir

Why	do	we	need	tests?
What	is	a	unit	test?	If	you're	familiar	already	with	unit	testing	and	test-driven	development,
you	can	safely	skip	to	the	next	section.	If	not,	let's	say	that	unit	tests	are	part	of	an	engineering
philosophy	that	takes	a	stand	for	efficient	and	agile	development	processes	by	adding	an
additional	layer	of	automated	testing	on	the	code	before	it	is	developed.	This	is	the	core
concept	is	that	each	piece	of	code	is	delivered	with	its	own	test,	and	both	pieces	of	code	are
built	by	the	developer	who	is	working	on	that	code.	First	we	design	the	test	against	the	module
we	want	to	deliver,	checking	the	accuracy	of	its	output	and	behavior.	Since	the	module	is	still
not	implemented,	the	test	will	fail.	Hence,	our	job	is	to	build	the	module	in	such	a	way	that	it
passes	its	own	test.

Unit	testing	is	quite	controversial.	While	there	is	a	common	agreement	about	how	beneficial
test-driven	development	for	ensuring	code	quality	and	maintenance	upon	time	is,	not
everybody	undertakes	unit	testing	in	their	daily	practice.	Why	is	that?	Well,	building	tests
while	we	develop	our	code	can	feel	like	a	burden	sometimes,	particularly	when	the	test	winds
up	being	bigger	in	size	than	the	piece	of	functionality	it	aims	to	test.

However,	the	arguments	favoring	testing	outnumber	the	arguments	against	it:

Building	tests	contributes	to	better	code	design.	Our	code	must	conform	to	the	test
requirements	and	not	the	other	way	around.	In	that	sense,	if	we	try	to	test	an	existing
piece	of	code	and	we	find	ourselves	blocked	at	some	point,	chances	are	that	the	piece	of
code	we	aim	to	test	is	not	well	designed	and	shows	off	a	convoluted	interface	that
requires	some	rethinking.	On	the	other	hand,	building	testable	modules	can	help	to	early
detect	side	effects	on	other	modules.
Refactoring	tested	code	is	the	lifeline	against	introducing	bugs	in	later	stages.	Any
development	is	meant	to	evolve	with	time,	and	on	every	refactor	the	risk	of	introducing	a
bug	that	will	only	pop	up	in	another	part	of	our	application	is	high.	Unit	tests	are	a	good
way	to	ensure	that	we	catch	bugs	in	an	early	stage,	either	when	introducing	new	features
or	when	updating	existing	ones.
Building	tests	is	a	good	way	to	document	our	code	APIs	and	functionalities.	And	this
becomes	a	priceless	resource	when	someone	not	acquainted	with	the	codebase	takes	over
the	development	endeavor.

These	are	only	a	few	arguments,	but	you	can	find	countless	resources	on	the	web	about	the
benefits	of	testing	your	code.	If	you	do	not	feel	convinced	yet,	give	it	a	try.	Otherwise,	let's
continue	with	our	journey	and	see	the	overall	form	of	a	test.

www.EBooksWorld.ir

Parts	of	a	unit	test	in	Angular	2
There	are	many	different	ways	to	test	a	piece	of	code,	but	we	will	focus	on	how	Angular	2
aims	to	test	modules.	The	first	thing	we	need	is	a	test	framework,	providing	utility	functions
for	building	test	suites	containing	one	or	several	test	specs	each.

describe('The	submit	component',	()	=>	{	//	Test	suite

		it('should	be	rendered	disabled	by	default',	()	=>	{	//	Test	spec

				//	...	Test	spec	implementation	goes	here

		});

		

});

Each	test	spec	checks	out	a	specific	functionality	of	the	feature	described	in	the	suite
description	argument,	and	declares	one	or	several	expectations	in	its	body.	Each	expectation
takes	a	value,	which	we	call	the	expected	value,	and	is	compared	against	an	actual	value	by
means	of	a	matcher	function,	which	checks	whether	expected	and	actual	values	match
accordingly.	This	is	what	we	call	an	assertion,	and	the	test	framework	will	pass	or	fail	the
spec	depending	on	the	result	of	such	assertion.	The	code	is	as	follows:

describe('The	submit	component',	()	=>	{	//	Test	suite

		it('should	be	rendered	disabled	by	default',	()	=>	{	//	Test	spec

				

				//	Test	assertion	based	on	an	instance	of	the	submit	component

				expect(submitComponent.disabled).toBe(true);	

		});

		

});

In	the	previous	example,	submitComponentInstance.disabled	will	return	the	actual	value	that
is	supposed	to	match	the	expected	value	declared	in	the	toBe()	matcher	function.

www.EBooksWorld.ir

Dependency	injection	in	unit	tests
It	is	quite	common	to	perform	several	operations	before	executing	each	spec:	instantiating	the
component	or	service	class	we	want	to	test,	fetching	a	dependency,	declaring	a	mock
argument,	and	so	on.	The	most	common	operation	when	testing	Angular	2	modules	is	to
override	the	default	providers	of	the	injector	with	the	beforeEachProviders()	function.	This
function	must	be	executed	before	executing	anything	else	and	takes	this	shape:

describe('The	submit	component',	()	=>	{

		beforeEachProviders(()	=>	[

				TestComponentBuilder,

				MyCustomService,

				provide(Router,	{	useClass:	RootRouter	})

]);

		it('should	be	rendered	disabled	by	default',	()	=>	{	

				expect(submitComponent.disabled).toBe(true);	

		});

		

});

In	this	example	and	prior	to	executing	any	spec,	we	are	setting	up	a	list	of	DI	providers	we
need	our	test	injector	to	be	aware	of.	As	we	can	see,	we	can	just	declare	class	tokens	or	even
override	dependencies	by	binding	a	token	to	a	class,	value,	or	factory	function	of	our	choice
with	the	provide()	function.	In	fact,	replacing	module	dependencies	by	mock	types	with	fake
data	or	functionality	is	indeed	a	quite	common	practice	when	testing.

We're	still	not	done	in	regards	of	DI:	what	about	instantiating	the	objects	we	require	for
testing	or	resetting	the	fixture	information	we	need	for	each	test?	The	beforeEach()	function
is	the	natural	place	for	fetching	the	dependencies	previously	declared	in
beforeEachProviders(),	instantiating	the	classes	we	need	to	test,	or	performing	any
operation	required	for	preparing	the	objects	or	data	fixtures	our	test	specs	need.	It	must	be
executed	after	the	beforeEachProviders()	and	before	the	test	specs.	In	order	to	do	so,	it
leverages	the	inject()	function.

In	the	following	piece	of	code,	we	strip	down	up	a	bit	the	example	provided	and	introduce	all
the	necessary	steps.	Please	pay	attention	to	the	inline	code	comments,	since	they	describe	the
intent	of	each	block	of	code:

describe('The	submit	component',	()	=>	{

		//	We	declare	the	dependencies	we	need	the	provider	to	manage

		beforeEachProviders(()	=>	[

				TestComponentBuilder

]);

		//	A	variable	will	allocate	the	test	component	builder

		let	testComponentBuilder:	TestComponentBuilder;

www.EBooksWorld.ir

		//	Before	each	spec	we	fetch	an	instance	of	

		//	TestComponentBuilder	right	from	the	injector

		beforeEach(inject([TestComponentBuilder],

																				(tcb:	TestComponentBuilder)	=>	{

						testComponentBuilder	=	tcb;

				})

);

		//	The	done	function	argument	configures	our	spec	as	asynchronous

		it('should	be	rendered	disabled	by	default',	done	=>	{

				

				//	The	test	component	builder	asynchronously	resolves	to	a	

				//	fixture	object	wrapping	an	actual	instance	of	SubmitComponent

				testComponentBuilder

						.createAsync(SubmitComponent)

						.then(testComponent	=>	{

								//	We	fetch	the	component	instance	

								//	out	from	the	fixture	wrapper

								const	submitComponent	=	testComponent.componentInstance;

								//	We	evaluate	the	assertion	with	a	given	matcher	function

								expect(submitComponent.disabled).toBe(true);

								//	finally,	the	done()	function	resolves	

								//the	asynchronous	spec	

								done();

						});

		});

});

Do	not	worry	about	the	TestComponentBuilder,	we	will	cover	it	shortly.	Pay	special	attention
to	the	way	we	get	an	instance	of	the	TestComponentBuilder	type	by	passing	the	class	token	to
the	inject()	function,	which	will	return	in	its	callback	argument	the	desired	instance	that	we
will	bind	to	a	variable	in	the	outer	scope	for	later	use	in	our	specs.	A	more	expressive	way	to
fetch	object	instances	through	the	injector	would	be	to	fetch	an	actual	Injector	object	instance
and	then	leverage	its	get()	helper	method:

let	myCustomService;	//	A	custom	service	of	ours	

beforeEach(inject([Injector],	(injector:	Injector)	=>	{

				myCustomService	=	injector.get(MyCustomService);

		})

);

Ultimately,	choose	the	syntax	you	find	more	convenient.	The	rest	of	the	example	basically
entails	the	common	operations	required	when	testing	components:	creating	a	testing
component	fixture,	fetching	an	actual	component	instance	from	the	fixture	wrapper,
conducting	assertions	on	the	component	instance,	and	finally	resolving	the	asynchronous	spec
with	the	done()	command.	We	will	see	all	these	in	detail	once	we	overview	component	testing
later	on	in	this	chapter.

There	are	more	elements	in	a	unit	test	(mocks,	spies,	and	so	on),	but	we	will	see	the	most

www.EBooksWorld.ir

common	suspects	along	the	following	pages.

There	are	two	important	questions:	how	do	all	these	tests	are	executed	and	where	do	we	check
the	pass/fail	results?	For	the	first	question,	let's	just	say	we	will	need	a	testing	framework	for
JavaScript,	and	at	the	time	of	this	writing,	Jasmine	(http://jasmine.github.io)	seems	to	be	the
preferred	testing	framework	in	the	Angular	team.	Regarding	the	second	question,	we	will
need	a	spec	runner,	and	Jasmine	precisely	provides	an	HTML-based	runner	out-of-the-box,	so
let's	see	how	we	can	configure	Jasmine	to	do	this.

www.EBooksWorld.ir

http://jasmine.github.io

Setting	up	our	test	environment
Our	first	step	will	be	to	download	and	integrate	Jasmine	in	our	project.	To	do	so,	go	to	the
console	in	our	project	and	execute	the	following	npm	command	that	will	install	the	jasmine-
core	package	(including	the	exact	versions	of	the	dependencies	required	rather	than	using
npm's	default	semver	range	operator,	hence	the	--save-exact	flag)	required	for	our	tests:

$	npm	install	jasmine-core	--save-dev	--save-exact

With	the	package	installed,	we	need	to	ensure	that	our	project	contains	the	proper	typings	for
the	Jasmine	global	objects	and	function	matchers,	so	the	compiler	can	recognize	the	types	and
thus	build	our	tests:

$	typings	install	jasmine	--save	--ambient

With	all	the	libraries	in	place,	let's	see	how	we	will	put	together	a	spec	runner	to	process	our
tests	and	output	results.

www.EBooksWorld.ir

Implementing	our	test	runner
We	are	going	to	run	our	tests	in	a	browser,	and	in	order	to	do	so	we	will	need	to	set	some
base	testing	providers	that	are	specific	to	the	browser	platform.	Create	a	folder	named	test	at
the	root	of	our	project	and	save	the	following	file	there:

test/setup.ts

import	{	resetBaseTestProviders,	setBaseTestProviders	}	from	

'@angular/core/testing';

import	{	BROWSER_APP_DYNAMIC_PROVIDERS	}	from	"@angular/platform-browser-

dynamic";

import	{

		TEST_BROWSER_STATIC_PLATFORM_PROVIDERS,

		ADDITIONAL_TEST_BROWSER_PROVIDERS

}	from	'@angular/platform-browser/testing';

resetBaseTestProviders();

setBaseTestProviders(

		TEST_BROWSER_STATIC_PLATFORM_PROVIDERS,

		[

				BROWSER_APP_DYNAMIC_PROVIDERS,

				ADDITIONAL_TEST_BROWSER_PROVIDERS

]

);

We	will	import	this	file	into	our	testing	implementation	shortly	and	there	is	no	need	to	cover
it	in	detail	at	this	point.	Let's	just	say	these	providers	contain	DOM	adapters	required	to
perform	certain	operations	in	Shadow	DOM	implementations.

Before	moving	on,	it	is	important	to	highlight	one	of	the	conventions	used	in	this	book	for
Angular	2	unit	tests:	file	naming	and	spec	location.	There	is	a	general	agreement	on	saving
our	test	spec	files	in	the	same	location	where	the	tested	module	lives.	In	order	to	make	things
even	clearer,	we	will	name	the	spec	files	after	the	name	of	the	code	unit	they	test,	and	will
append	the	.spec	suffix	to	the	filename.	This	way,	it	becomes	easier	to	locate	the	tests
corresponding	to	each	module,	check	what	is	tested	and	what	modules	lack	a	test,	and	get
better	acquainted	with	the	code	base.	Keep	in	mind	that	a	good	test	becomes	a	valuable	piece
of	documentation	by	itself.

Let's	see	this	naming	convention	in	action	by	creating	a	temporary	test	spec	at	the	root	of	your
project,	so	we	can	check	whether	our	runner	is	working	fine:

test.spec.ts

describe('Our	test	runner',	()	=>	{

		it('is	alive!',	()	=>	{

				expect(true).toBe(true);

		});

});

www.EBooksWorld.ir

Let's	create	our	spec	runner	file	now	at	the	root	of	our	project.	The	spec	runner	is	pretty
similar	to	the	main	HTML	page	in	regards	to	the	script	resources	required	but	also	adds	on
top	of	that	all	the	required	include	scripts	from	Jasmine	and	the	testing	bundle	from	Angular
2.	The	following	implementation	also	declares	an	array	with	string	pointers	to	the	locations
of	the	browser	testing	setup	file	and	the	proof	of	concept	test	we	just	built,	besides	featuring	a
variable	storing	the	path	to	the	compiled	TypeScript	files:

spec-runner.html

<!DOCTYPE	html>

<html>

		<head>

				<meta	http-equiv="content-type"	

						content="text/html;charset=utf-8">

				<title>Pomodoro	App	Unit	Tests</title>

				<link	rel="stylesheet"	

						href="node_modules/jasmine-core/lib/jasmine-core/jasmine.css">

				<script	src="node_modules/jasmine-core/lib/jasmine-core/jasmine.js"></script>

				<script	src="node_modules/jasmine-core/lib/jasmine-core/jasmine-html.js">

</script>

				<script	src="node_modules/jasmine-core/lib/jasmine-core/boot.js">

				</script>

				<script	src="node_modules/es6-shim/es6-shim.min.js"></script>

				<script	src="node_modules/zone.js/dist/zone.js"></script>

				<script	src="node_modules/reflect-metadata/Reflect.js"></script>

				<script	src="node_modules/systemjs/dist/system.js"></script>

				<script	src="node_modules/rxjs/bundles/Rx.js"></script>

				<script	src="systemjs.config.js"></script>

		</head>

		<body>

				<script>

						//	Your	typescript	compiler	'outDir'	parameter	value

						var	outDir	=	'built';

						//	Enlist	your	specs	in	the	following	spec	collection	array,

						//	next	to	the	setup	import	file,	all	with	no	file	extension

						var	specCollection	=	[

								'test/setup',

								'test.spec'	//	The	test	spec	we	just	built

];

						//	We	load	all	specs	asynchronously	from	the	built	folder

						//	and	evaluate	their	output	at	once

						Promise.all(specCollection.map(specPath	=>	{

								return	System.import(`${outDir}/${specPath}`);

						}))

						.then(window.onload)

						.catch(console.error.bind(console));

				</script>

		</body>

www.EBooksWorld.ir

</html>

Check	the	import	scripts	and	focus	on	the	last	block	of	code.	As	we	said,	we	define	the	path	to
the	compiled	files	(according	to	our	tsconfig.json	setup)	and	an	array	of	string	paths	to	the
main	browser	testing	setup	and	our	specs,	which	is	only	one	at	this	moment.	The
System.config	implementation	is	pretty	straightforward	and	reminds	of	the	one	we	already
have	for	launching	our	project	at	index.html.	Our	last	block	is	a	bit	more	complex	and
requires	some	more	attention.	Basically,	we	create	an	array	of	System.import	commands	by
mapping	the	setup	and	spec	paths	array	into	another	array	that	combines	those	paths	with	the
outDir	folder	location.	Each	System.import()	execution	returns	a	promise,	so	the	resulting
array	can	be	executed	altogether	through	a	Promise.all()	command,	triggering	a	window
onload	even	upon	resolving.	It	is	precisely	this	event	that	Jasmine	is	waiting	for	to	render	the
pass/fail	report.

Time	to	see	all	this	in	action!	Save	the	changes,	run	the	compiler	to	have	transpiled	versions
of	the	the	test	setup	file	and	our	just	created	spec,	and	then	run	the	local	web	server	by
browsing	to	the	spec-runner	file	URL	in	the	browser	location	bar.	You	should	see	a	web
report	like	this:

www.EBooksWorld.ir

Setting	up	NPM	commands
Testing	our	modules	is	an	iterative	process,	so	we	can	ease	things	a	bit	in	order	to	make	the
whole	flow	smoother.	To	do	so,	we	can	set	up	some	wrapping	commands	around	the	common
tasks	of	erasing	the	contents	of	the	build	folder,	recompiling	the	project	and	triggering	a	web
server	pointing	to	our	test	runner.	As	a	matter	of	fact,	the	package.json	file	can	allocate	a
test	command,	which	will	also	trigger	pretest	and	posttest	scripts	when	executed.	With	this
knowledge	in	hand,	let's	update	the	scripts	block	in	our	package.json	file	to	include
commands	that	perform	all	the	aforementioned	operations:

package.json

...

"scripts":	{

		"postinstall":	"npm	run	typings	install",

		"tsc":	"tsc",

		"tsc:w":	"tsc	-w",

		"lite":	"lite-server",

		"prestart":	"tsc",

		"start":	"concurrently	\"npm	run	tsc:w\"	\"npm	run	lite\"	",

		"typings":	"typings",

		"pretest":	"rm	-rf	./built	&&	npm	run	tsc",

		"test":	"npm	run	lite	--open=/spec-runner.html"

},

...

Whenever	you	want	to	run	the	whole	batch	of	tests	on	our	application,	just	go	to	the	console
and	run	npm	test	at	the	project	location	prompt.	Remember	that	the	compiler	is	not	executed
in	watch	mode,	so	during	your	development	sessions	it	is	safe	to	run	npm	start	instead	and
load	the	spec	runner	in	a	separate	browser	window	to	check	the	evolution	of	our	tests,	if
required.

We're	done	with	our	setup!	In	the	following	pages,	we	will	go	through	different	examples	of
tests	structures	for	components,	directives,	pipes,	services	and	routes,	taking	some	modules
of	the	pomodoro	app	project	as	an	example.	There	is	no	one-size-fits-all	pattern	when	unit
testing	Angular	2	modules,	but	different	approaches	depending	on	the	subject	of	test.	All	in
all,	we	will	go	finding	recurring	patterns	in	our	tests	and	the	rest	of	the	implementation	will
explain	by	itself,	so	we	will	not	get	into	much	detail	describing	what	the	code	does	in	each
example.	Ultimately,	that	is	what	TDD	is	all	about:	explaining	how	code	works	by	putting	it	to
the	test.

www.EBooksWorld.ir

Angular	2	custom	matcher	functions
What	kind	of	checks	can	we	perform	with	matcher	functions	in	Angular	2?	Well,	the	answer
is:	quite	a	lot.	Besides	the	most	common	matchers	such	as	to	toBe()	or	toEqual(),	we	can	use
any	built-in	Jasmine	matcher.	Please	refer	to	the	Jasmine	official	site	for	a	complete	rundown
on	the	matchers	available.	On	top	of	that,	Angular	2	implements	a	set	of	custom	matchers	to
perform	common	operations	when	testing	Angular	2	specific	modules:

toBePromise():	This	expects	the	value	to	be	a	Promise
toBeAnInstanceOf(expected:	any):	This	expects	the	actual	value	to	be	an	instance	of	a
class	defined	in	the	expected	argument
toHaveText(expected:	any):	This	expects	the	element	to	have	exactly	the	text	defined	in
the	expected	argument
toHaveCssClass(expected:	any):	This	expects	the	element	to	have	the	CSS	class	defined
in	the	expected	argument
toHaveCssStyle(expected:	any):	This	expects	the	element	to	be	styled	with	the	given
CSS	styles	defined	in	the	payload
toImplement(expected:	any):	This	expects	a	class	to	implement	the	interface	of	the
given	class
toContainError(expected:	any):	This	expects	an	exception	to	contain	an	expected	error
text
toThrowErrorWith(expectedMessage:	any):	This	expects	a	function	to	throw	an	error
with	the	given	error	text	when	executed
toMatchPattern(expectedMessage:	any):	This	expects	a	string	to	match	the	given
regular	expression

All	the	preceding	matcher	functions	resolve	to	a	Boolean	value.	Sometimes,	we	will	want	to
evaluate	in	our	assertion	the	opposite	of	the	comparison	actually	implemented	in	the	matcher
function.	For	those	cases	we	just	need	to	prepend	a	.not	modifier	before	the	matcher:

expect(true).not.toBe(false);

www.EBooksWorld.ir

Testing	pipes
A	pipe	is	basically	a	class	that	implements	the	PipeTransform	interface,	hence	exposing	a
transform()	method	that	is	usually	synchronous.	In	that	sense,	pipes	are	the	perfect	candidates
for	taking	our	first	steps	in	the	world	of	unit	testing	Angular	2	modules.	We	will	begin	then	by
testing	FormattedTimePipe,	creating	as	we	mentioned	a	test	spec	right	next	to	its	code	unit	file.
The	code	is	as	follows:

app/shared/pipes/formatted-time.pipe.spec.ts

import	FormattedTimePipe	from	'./formatted-time.pipe';

import	{

		describe,

		expect,

		it,

		beforeEach}	from	'@angular/core/testing';

describe('shared:FormattedTimePipe',	()	=>	{

		let	formattedTimePipe:	FormattedTimePipe;

		beforeEach(()	=>	formattedTimePipe	=	new	FormattedTimePipe());

		//	Specs	with	assertions

		it('should	expose	a	transform()	method',	()	=>	{

				expect(typeof	formattedTimePipe.transform).toEqual('function');

		});

		it('should	transform	50	into	"0h:50m"',	()	=>	{

				expect(formattedTimePipe.transform(50)).toEqual('0h:50m');

		});

		it('should	transform	75	into	"1h:15m"',	()	=>	{

				expect(formattedTimePipe.transform(75)).toEqual('1h:15m');

		});

		it('should	transform	100	into	"1h:40m"',	()	=>	{

				expect(formattedTimePipe.transform(100)).toEqual('1h:40m');

		});

});

We	import	the	pipe	token	in	order	to	instantiate	it	and	bind	it	to	a	variable	before	running	each
test,	which	will	grab	this	variable	and	introspect	its	type	or	will	pass	different	values	to	its
transform	method	to	check	whether	we	obtain	the	expected	value	or	not.

What	about	the	testing	cycle	we	mentioned	earlier?	In	a	normal	scenario,	we	would	add	our
test	first,	leveraging	the	test	itself	to	design	our	pipe	interface.	Our	test	would	fail	at	first	and
then	we	would	develop	its	implementation.	When	defining	our	assertions,	we	should	run	the
extra	mile	and	define	assertions	where	our	pipe	has	to	confront	wrong	inputs	or	unexpected
scenarios.	As	our	code	evolves	and	is	refactored,	our	tests	will	have	to	be	refactored	and

www.EBooksWorld.ir

simplified	as	well.

Note

It	is	worth	remarking	that	we	are	importing	the	Jasmine	global	functions	from	the	Angular	2
testing	bundle,	and	not	from	Jasmine	itself.	This	is	because	Angular	2	overrides	Jasmine's
built-in	functions,	although	the	functionality	and	interface	remains	the	same.

Save	the	file	and	declare	it	in	our	specCollection	array	at	our	spec	runner	(you	can	safely
remove	the	reference	to	the	test	spec	since	we	will	no	longer	use	it):

spec-runner.html

...

var	specCollection	=	[

		'test/setup',

		'app/shared/pipes/formatted-time.pipe.spec'

];

...

In	the	next	sections,	we	will	see	how	to	create	different	tests.

Note

Every	time	we	create	a	new	test	spec,	you	will	have	to	append	its	path	(without	the	file
extension)	to	the	specCollection	array	variable	at	spec-runner.html.	Do	not	forget	this,
since	we	will	not	make	explicit	reference	to	this	requirement	from	now	on.	Failing	to	include
the	reference	will	turn	into	non-execution	of	the	test.	Therefore,	the	spec	will	not	show	up	in
the	spec	runner	report.

www.EBooksWorld.ir

Testing	components
Testing	pipes	is	pretty	straightforward	but	testing	components	can	become	a	more	daunting
experience	when	approached	for	the	first	time.	There	are	too	many	questions:	how	can	we	test
a	component	that	needs	to	be	bootstrapped	somewhere?	Good	news	is	that	Angular	2,	and
more	specifically	its	testing	bundle,	contains	a	class	named	TestComponentBuilder	that	can	be
used	to	instantiate	fully	functional	components	of	any	given	type,	wrapped	by	a	fixture	object
that	gives	us	access	to	the	component	instance	object	or	its	compiled	HTML	view.	In
summary,	any	instance	of	the	TestComponentBuilder	exposes	the	following	properties	and
methods:

debugElement:	This	is	the	DebugElement	associated	with	the	root	element	of	this
component.
ComponentInstance:	This	returns	the	instance	object	of	the	root	component	class,	with
full	access	to	all	its	properties	and	methods.
NativeElement:	This	returns	the	native	element	at	the	root	of	the	component.
DetectChanges():	This	triggers	a	change	detection	cycle	for	the	component.	We	want	to
run	this	method	in	order	to	check	that	the	changes	occurred	on	the	component	state
should	we	update	any	of	its	properties	or	execute	its	methods.
destroy():	This	triggers	component	destruction.

With	all	these	points	in	mind,	let's	create	our	first	component	test.	TaskIconsComponent	is	a
perfect	candidate	to	start	with:

app/tasks/task-icons.component.spec.ts

import	TaskIconsComponent	from	'./task-icons.component';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders	}	from	'@angular/core/testing';

import	{	TestComponentBuilder	}	from	'@angular/compiler/testing';

describe('tasks:TaskIconsComponent',	()	=>	{

		let	testComponentBuilder:	TestComponentBuilder;

		//	First	we	setup	the	injector	with	providers	for	our	component

		//	and	for	a	fixture	component	builder

		beforeEachProviders(()	=>	[TestComponentBuilder]);

		//	We	reinstantiate	the	fixture	component	builder	

		//	before	each	test

		beforeEach(

				inject([TestComponentBuilder],

				(_testComponentBuilder:	TestComponentBuilder)	=>	{

						testComponentBuilder	=	_testComponentBuilder;

				}

www.EBooksWorld.ir

));

		//	Specs	with	assertions

		it('renders	1	image	for	each	pomodoro	session	required',	done	=>	{

				//	We	create	a	test	component	fixture	on	runtime	

				//	out	from	the	TaskIconsComponent	symbol

				testComponentBuilder

				.createAsync(TaskIconsComponent)

				.then(componentFixture	=>	{

						//	We	fetch	instances	of	the	component	and	the	rendered	DOM

						let	taskIconsComponent	=	componentFixture.componentInstance;

						let	nativeElement	=	componentFixture.nativeElement;

						//	We	set	a	test	value	to	the	@Input	property	

						//	and	trigger	change	detection

						taskIconsComponent.task	=	{	pomodorosRequired:	3	};

						componentFixture.detectChanges();

						//	these	assertions	evaluate	the	component's	surface	DOM

						expect(nativeElement.querySelectorAll('img').length).toBe(3);

						//	We	finally	destroy	the	component	fixture	and	

						//	resolve	the	async	test

						componentFixture.destroy();

						done();

				})

				.catch(e	=>	done.fail(e));

		});

});

Take	a	minute	to	look	at	the	import	statement	block	at	the	top	of	the	file.	Besides	the	basic
testing	functions,	we	are	importing	the	symbols	pertaining	to	the	DI-related	functions	of	the
testing	bundle,	apart	from	the	setup	methods	beforeEach	and	beforeEachProviders.	First,	we
will	execute	beforeEachProviders,	passing	as	an	argument	a	lambda	function	returning	the
array	of	providers	we	will	need.	Then,	the	beforeEach	function	uses	the	injector	to	fetch	an
object	instance	of	type	TestComponentBuilder,	which	we	previously	declared	as	a	provider,
and	binds	it	to	the	testComponentBuilder	variable.	Inside	the	test	spec,	we	use	object	variable
to	execute	the	asynchronous	promisified	createAsync()	method,	which	will	return	a	fixture
around	our	component	of	choice	(defined	as	an	argument).	As	we	saw	already	at	the
beginning	of	this	section,	we	can	inspect	the	fixture	to	grab	an	actual	instance	of
TaskIconsComponent	and	its	underlying	native	element.

Then,	we	begin	interacting	with	the	component	by	configuring	its	properties.	Every	time	we
update	any	input	property	or	execute	a	method	that	might	change	the	component	state,	we	need
to	execute	the	fixture's	detectChanges()	method	to	trigger	change	detection	and	hence	reflect
that	state	change	in	the	nativeElement.	This	allows	us	to	test	assertions	using	a	matcher
function	to	compare	the	amount	of	DOM	nodes	generated	against	the	expected	amount	of
nodes	configured	in	the	matcher.	Finally,	we	destroy	the	component	and	resolve	the

www.EBooksWorld.ir

asynchronous	function	spec	we're	in.

Usually,	a	test	has	more	than	one	spec,	one	per	each	functionality	described,	for	instance.
Thus,	let's	add	another	it	statement	right	after	the	one	we	already	have	inside	the	describe()
suite:

app/tasks/task-icons.component.spec.ts	(continued)

...

it('should	render	each	image	with	the	proper	width',	done	=>	{

		testComponentBuilder.createAsync(TaskIconsComponent)

		.then(componentFixture	=>	{

				let	taskIconsComponent	=	componentFixture.componentInstance;

				let	nativeElement	=	componentFixture.nativeElement;

				let	actualWidth;

				taskIconsComponent.task	=	{	pomodorosRequired:	2	};

				taskIconsComponent.size	=	60;

				componentFixture.detectChanges();

				actualWidth	=	nativeElement

						.querySelector('img')

						.getAttribute('width');

				expect(actualWidth).toBe('60');

				done();

		})

		.catch(e	=>	done.fail(e));

});

...

We	can	add	as	many	specs	as	we	feel	necessary	to	provide	a	broad	coverage	of	all	scenarios.

Tip

Debugging	our	own	tests

As	we	create	more	and	more	specs,	chances	are	we	will	introduce	some	bugs	in	our	own	test
implementations,	turning	this	into	a	general	failure	in	our	test	report.	Tracking	down	these
issues	can	be	a	bit	tricky,	so	the	best	way	to	address	this	scenario	is	by	isolating	test	suites	or
specs	execution	or,	all	the	way	around,	disabling	the	execution	of	broken	tests	temporarily.	To
do	so,	we	can	use	variations	of	the	describe()	and	it()	functions,	by	prepending	a	letter	to
the	function	name,	as	follows:

fdescribe():	This	instructs	the	test	runner	to	only	run	the	test	cases	in	this	group.	It	can
be	used	as	ddescribe()	as	well.
fit():	The	test	runner	will	only	execute	this	test,	disregarding	all	the	others.	It	can	be
used	as	iit()	as	well.
xdescribe():	This	instructs	the	runner	to	exclude	this	test	suite	from	execution.
xit():	This	instructs	the	runner	to	exclude	this	test	spec	from	execution.

www.EBooksWorld.ir

Testing	components	with	dependencies
In	the	previous	section,	we	undertook	our	very	first	unit	test,	taking	a	simple	component	with
no	dependencies	as	an	example.	However,	components	and	other	Angular	2	modules	usually
have	dependencies	injected.	The	unit	test	needs	to	reflect	this	circumstance.	Let's	look	at
TimerWidgetComponent	as	an	example.	This	tiny	component	requires	all	these	dependencies
injected	through	its	constructor:

app/timer/timer-widget.component.ts

...

constructor(

				private	settingsService:	SettingsService,

				private	routeParams:	RouteParams,

				private	taskService:	TaskService,

				private	animationBuilder:	AnimationBuilder,

				private	elementRef:	ElementRef)	{	...

Thus,	in	order	to	instantiate	the	component	within	the	fixture	returned	by	the
TestComponentBuilder	factory,	we	need	to	declare	the	providers	for	these	dependencies	at	the
test	injector	and	have	them	injected	somehow.	On	top	of	that,	the	component	had	some
important	nuances	in	its	execution:	it	is	sensitive	to	URL	params	and	one	of	its	dependencies
(TaskService)	performs	underlying	XHR	operations	by	means	of	the	Http	module.	It	needs	to
be	intercepted	and	properly	mocked.

This	might	sound	quite	daunting,	but	the	truth	is	that	you	already	know	all	the	code
procedures	required	to	put	together	this	test.	Let's	see	it	with	inline	comments	in	the	code:

app/timer/timer-widget.component.test.ts

import	TimerWidgetComponent	from	'./timer-widget.component';

import	{	provide	}	from	'@angular/core';

import	{	RouteParams	}	from	'@angular/router-deprecated';

import	{	SettingsService,	TaskService	}	from	'../shared/shared';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders,

		setBaseTestProviders	}	from	'@angular/core/testing';

import	{	TestComponentBuilder	}	from	'@angular/compiler/testing';

import	{	Http,	BaseRequestOptions	}		from	'@angular/http';

import	{	MockBackend	}	from	'@angular/http/testing';

import	'rxjs/add/operator/map';

describe('timer:TimerWidgetComponent',	()	=>	{

		let	testComponentBuilder:	TestComponentBuilder;

		let	componentFixture:	any;

www.EBooksWorld.ir

		//	First	we	setup	the	injector	with	providers	for	our	component

		//	dependencies	and	for	a	fixture	component	builder

		//	Note:	Animation	providers	are	not	necessary

		beforeEachProviders(()	=>	[

				TestComponentBuilder,

				SettingsService,

				TaskService,

				//	RouteParams	is	instantiated	with	custom	values	upon	injecting

				provide(RouteParams,	{useValue:	new	RouteParams({id:	null})}),

				

				//	We	replace	the	Http	provider	injected	later	in	TaskService

				MockBackend,

				BaseRequestOptions,

				provide(Http,	{	useFactory:	

						(backend:MockBackend,	options:BaseRequestOptions)	=>	{

								return	new	Http(backend,	options);

						},

						deps:	[MockBackend,	BaseRequestOptions]

				}),

				TimerWidgetComponent

]);

		//	We	reinstantiate	the	fixture	component	builder	before	each	test

		beforeEach(inject([TestComponentBuilder],	

				(_testComponentBuilder:	TestComponentBuilder)	=>	{

						testComponentBuilder	=	_testComponentBuilder;

				}

));

});

You	have	probably	noticed	there	is	not	a	single	test	assertion	in	the	suite.	We	will	get	there	in	a
minute,	but	now	let's	overview	each	piece	of	code	in	the	script.	The	test	suite	implementation
contains	everything	you	already	know	about	injecting	providers	in	tests.	First	we	use
beforeEachProviders()	to	declare	all	the	providers	we	need	the	injector	to	be	aware	of.	As
you	will	remember,	the	TimerWidgetComponent	had	a	dependency	on	RouteParams,	which
allowed	us	to	fetch	the	value	of	the	id	query	string	parameter,	if	any.	Obviously,	we	not	only
need	to	inject	that	provider,	but	our	injector	ought	to	return	an	instance	of	it	with	the
parameter	properly	populated	for	our	testing	purposes:

provide(RouteParams,	{useValue:	new	RouteParams({id:	null})}),

A	bit	more	attention	is	required	to	understand	how	we	accomplish	the	HTTP	requests
performed	by	TaskService.	The	default	constructor	of	the	Http	module	requires	a	backend
connection	object	implementing	the	ConnectionBackend	interface.	For	our	test,	we	need	to
provide	the	injector	with	a	working	version	of	Http	and	thus	we	leverage	MockBackend,	which
implements	the	interface	required.	Later	in	this	chapter,	we	will	see	how	we	can	leverage	this
class	to	intercept	XHR	requests	and	return	canned	responses	for	our	tests.

BaseRequestOptions,

provide(Http,	{	useFactory:	

		(backend:MockBackend,	options:BaseRequestOptions)	=>	{

				return	new	Http(backend,	options);

www.EBooksWorld.ir

		},

		deps:	[MockBackend,	BaseRequestOptions]

}),

With	all	the	providers	properly	available	from	the	injector,	we	can	leverage	it	to	instantiate	a
new	TestComponentBuilder	factory	object	before	executing	any	test.

beforeEach(inject([TestComponentBuilder],	

		(_testComponentBuilder:	TestComponentBuilder)	=>	{

				testComponentBuilder	=	_testComponentBuilder;

		}

));

With	all	the	testing	scaffolded	and	ready,	let's	introduce	our	first	test	spec.	Append	the
following	piece	of	code	right	after	the	beforeEach(...)	block	within	the	body	of	the
describe(...)	suite:

it('should	initialise	with	the	pomodoro	counter	at	24:59',	done	=>	{

		//	We	create	a	test	component	fixture	on

		//	runtime	out	from	the	component	symbol

		testComponentBuilder

		.createAsync(TimerWidgetComponent)

		.then(componentFixture	=>	{

				//	We	fetch	instances	of	the	component	and	the	rendered	DOM

				let	timerWidgetComponent	=	componentFixture.componentInstance;

				let	nativeElement	=	componentFixture.nativeElement;

				//	We	execute	the	OnInit	hook	and	trigger	change	detection

				timerWidgetComponent.ngOnInit();

				componentFixture.detectChanges();

				//	These	assertions	evaluate	the	component	properties

				expect(timerWidgetComponent.isPaused).toBeTruthy();

				expect(timerWidgetComponent.minutes).toEqual(24);

				expect(timerWidgetComponent.seconds).toEqual(59);

				componentFixture.destroy();

				done();	//	Resolve	async	text

		})

				.catch(e	=>	done.fail(e));

});

As	you	can	see,	our	newly	created	spec	executes	seamlessly	by	instantiating	a	component
fixture	wrapping	the	component	instance	and	native	element	we	require.	We	execute	the
component's	ngOnInit()	hook	method	to	force	its	initialization	as	if	had	been	rendered	on	a
view.	Then,	we	trigger	the	fixture's	detectChanges()	method	that	will	trigger	a	change
detection	cycle	on	our	component	instance,	applying	any	state	change	as	a	result	of	the
operations	taken	place	within	ngOnInit().

The	following	spec,	which	you	can	append	to	the	describe()	body	right	after	the	previous
test	spec,	reinforces	these	concepts:

www.EBooksWorld.ir

it('should	initialise	displaying	the	default	labels',	done	=>	{

		testComponentBuilder

		.createAsync(TimerWidgetComponent)

		.then(componentFixture	=>	{

				componentFixture.componentInstance.ngOnInit();

				componentFixture.detectChanges();

				expect(componentFixture.componentInstance.buttonLabelKey)

						.toEqual('start');

				expect(componentFixture.nativeElement

						.querySelector('button')

						.innerHTML.trim())

						.toEqual('Start	Timer');

				componentFixture.destroy();

				done();

		})

		.catch(e	=>	done.fail(e));

});

www.EBooksWorld.ir

Overriding	component	dependencies	for	refined	testing
In	the	previous	examples,	we	saw	how	we	could	declare	and	inject	the	providers	that	our
subjects	of	testing	required.	We	also	saw	how	we	could	leverage	the	provide()	function	to
pass	the	injector	an	instance	of	any	given	provider	already	populated	with	the	values	we
require.	In	that	sense,	provide()	is	not	just	used	to	replace	dependency	types	upon	injecting
providers,	but	to	customize	the	way	we	want	a	particular	provider	of	that	specific	type	to	be
injected.

However,	can	we	override	providers	at	a	test	spec	level?	The	answer	is	yes,	and	it	is	quite
useful	when	it	comes	to	mock	dependency	values	for	certain	tests.	In	our	next	test	spec,	we
will	continue	testing	the	timer	widget	component.	However,	we	will	override	the	TaskService
provider	this	time,	replacing	it	by	an	object	literal	with	mock	data.	We	will	also	override	the
default	RouteParams	injection	with	another	instance	object	of	RouteParams,	featuring	an	actual
value	for	the	id	parameter.

Add	this	test	spec	right	after	the	previous	two	specs	within	the	body	of	the	describe(...)
function:

it('should	initialise	displaying	a	specific	task',	done	=>	{

		//	We	mock	the	TaskService	provider	with	some	fake	data

		let	mockTaskService	=	{

				taskStore:	[{

								name:	'Task	A'

						},	{

								name:	'Task	B'

						},	{

								name:	'Task	C'

						}

]

		};

		testComponentBuilder

		.overrideProviders(TimerWidgetComponent,	[

				provide(RouteParams,	{	useValue:	new	RouteParams({	id:	'1'	})	}),

				provide(TaskService,	{	useValue:	mockTaskService	})

])

		.createAsync(TimerWidgetComponent)

		.then(componentFixture	=>	{

				componentFixture.componentInstance.ngOnInit();

				componentFixture.detectChanges();

				expect(componentFixture.componentInstance.taskName)

						.toEqual('Task	B');

				expect(componentFixture.nativeElement.querySelector('small'))

						.toHaveText('Task	B');

				componentFixture.destroy();

				done();

		})

www.EBooksWorld.ir

		.catch(e	=>	done.fail(e));

});

The	code	is	pretty	self-explanatory,	but	let's	take	some	minutes	to	analyze	this	block:

testComponentBuilder.overrideProviders(TimerWidgetComponent,	[

		provide(RouteParams,	{	useValue:	new	RouteParams({	id:	'1'	})	}),

		provide(TaskService,	{	useValue:	mockTaskService	})

])

Basically,	we	leverage	the	overrideProviders()	method	of	the	TestComponentBuilder
factory,	which	will	expect	in	its	first	argument	the	type	of	the	component	whose	providers	we
want	to	override	and	an	array	of	providers	as	a	second	argument.	We	can	insert	in	such	an
array	any	kind	of	type	override	or	replacement	by	means	of	the	provide()	function.

In	order	to	get	the	overrideProviders()	to	work,	it	parses	the	current	providers	property	of
the	component	decorator	whose	providers	we	want	to	override.	If	the	component	does	not
feature	the	property	in	its	decorator	(mostly	because	all	its	dependencies	are	inherited	from
the	root	injector),	Angular	will	throw	an	exception.	So,	for	our	example,	please	include	an
empty	providers	property	in	the	TimerWidgetComponent	decorator	configuration:

app/timer/timer-widget.component.ts

@Component({

		selector:	'pomodoro-timer-widget',

		styleUrls:	['app/timer/timer-widget.component.css'],

		providers:	[],

		template:	`	…	`

})	

This	issue	might	be	addressed	by	the	Angular	2	team	in	the	future,	but	in	the	meantime	we
need	to	proceed	this	way.

Tip

Need	to	override	a	test	component's	directives	or	template?

You	can	override	other	elements	of	the	test	component	instance	with	the	methods
overrideTemplate(),	overrideView()	(which	gives	you	access	to	override	the	literal
defining	things	such	as	styles),	or	overrideDirectives().	Their	signature	follows	pretty
much	the	same	convention,	where	we	define	first	the	component	type	and	then,	as	a	second
argument,	the	replacement	we	need	for	the	component	original	value.

Please	refer	to	the	official	API	documentation	for	further	details	if	required.

www.EBooksWorld.ir

Testing	routes
Just	like	components,	routes	play	an	important	role	in	the	way	our	applications	deliver	an
efficient	user	experience.	As	such,	testing	routes	becomes	paramount	to	ensure	a	flawless
performance.	Trying	to	declare	the	Router	token	as	a	provider	would	turn	into	an	exception,
so	we	basically	need	to	somehow	inform	our	test	injector	about	what	should	it	use	as	root
router	and	root	component,	bringing	in	all	the	dependencies	required	by	these	two	types,
aside	from	mocking	the	Location	service	with	a	more	specialized	service	which	is	the
SpyLocation	service.	The	following	example	clarifies	all	this	(disregard	the	LoginComponent
import	for	now,	as	we	will	use	it	in	the	next	section):

app/app.component.spec.ts

import	AppComponent	from	'./app.component';

import	{	LoginComponent	}	from	'./login/login';

import	{	provide	}	from	'@angular/core';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders	}	from	'@angular/core/testing';

import	{

		Router,

		RouteRegistry,

		ROUTER_PRIMARY_COMPONENT	}	from	'@angular/router-deprecated';

import	{	Location	}	from	'@angular/common';

import	{	SpyLocation	}	from	'@angular/common/testing';

import	{	RootRouter	}	from	'@angular/router-deprecated';

describe('AppComponent',	()	=>	{

		let	location:	Location,	router:	Router;

		//	We	override	the	Router	and	Location	providers	and	its	own

		//	dependencies	in	order	to	instantiate	a	fixture	router	to	

		//	trigger	routing	actions	and	a	location	spy	

		beforeEachProviders(()	=>	[

				RouteRegistry,

				provide(Location,	{	useClass:	SpyLocation	}),

				provide(Router,	{	useClass:	RootRouter	}),

				provide(ROUTER_PRIMARY_COMPONENT,	{	useValue:	AppComponent	})

]);

		//	We	instantiate	Router	and	Location	objects	before	each	test

		beforeEach(inject([Router,	Location],	(_router,	_location)	=>	{

				router	=	_router;

				location	=	_location;

		}));

		//	Specs	with	assertions

		it('can	navigate	to	the	main	tasks	component',	done	=>	{

www.EBooksWorld.ir

				//	We	navigate	to	a	component	and	check	the	resulting	

				//	state	in	the	URL

				router.navigate(['TasksComponent'])

						.then(()	=>	{

								expect(location.path()).toBe('/tasks');

								done();

						})

						.catch(e	=>	done.fail(e));

		});

});

www.EBooksWorld.ir

Testing	routes	by	URL
In	our	previous	example,	we	tested	how	we	could	navigate	to	a	named	route	and	check	if	the
router	resulting	URL	matched	the	expected	state.	But	sometimes	we	want	to	check	whether	we
have	actually	loaded	the	component	we	aimed	to	reach.	The	following	example	takes	the
opposite	approach:	we	navigate	to	a	URL	and	check	the	resulting	component	type.	Do	you
remember	we	imported	the	LoginComponent	token	previously?	Now,	we'll	put	it	to	good	use	in
our	next	test	assertion.

Please	append	the	following	spec	to	app/app.component.spec.ts:

...

it('should	be	able	to	navigate	to	the	login	component',	done	=>	{

		//	We	navigate	to	an	URL	and	check	the	resulting	state	in	the	URL

		router.navigateByUrl('/login').then(()	=>	{

				expect(router.currentInstruction.component.componentType)

						.toBe(LoginComponent);

				done();

		}).catch(e	=>	done.fail(e));

});

www.EBooksWorld.ir

Testing	redirections
What	if	we	want	to	check	whether	a	redirection	actually	works?	No	worries,	we	just	need	to
navigate	by	URL	to	the	path	triggering	the	redirection	and	then	check	either	the	type	of	the
router	current	instruction	or	the	resulting	location	path.

Please	append	the	following	spec	to	app/app.component.spec.ts:

it('should	redirect	"/"	requests	to	the	tasks	component',	done	=>	{

		//	We	navigate	to	an	URL	and	check	the	resulting	state	in	the	URL

		router.navigateByUrl('/').then(()	=>	{

				expect(location.path()).toBe('/tasks');

				done();

		}).catch(e	=>	done.fail(e));

});

www.EBooksWorld.ir

Testing	services
Services	are	also	a	subject	of	testing	in	our	applications.	One	of	the	traits	that	make	services
so	unique	in	the	Angular-land	is	that	they	do	not	necessarily	need	to	rely	on	Angular	2	itself.
Unless	a	service	needs	to	take	advantage	of	Angular	2's	DI	machinery	to	leverage	other
Angular	modules	such	as	HTTP,	it	will	be	pretty	much	a	regular,	framework-agnostic
JavaScript	class.

This	makes	testing	services	with	no	dependencies	a	breeze,	where,	just	like	we	did	when
testing	pipes,	we	need	to	instantiate	the	class	on	every	test	spec	and	test	its	properties	and	the
functionality	of	its	methods.

Let's	see	all	this	through	an	actual	example,	where	we	will	test	the	simplest	service	we	have	on
store:

app/shared/services/settings.service.spec.ts

import	SettingsService	from	'./settings.service';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders	}	from	'@angular/core/testing';

describe('shared:SettingsService',	()	=>	{

		let	settingsService:	SettingsService;

		beforeEach(()	=>	{

				settingsService	=	new	SettingsService();

		});

		it('should	provide	the	duration	for	each	pomodoro',	()	=>	{

				expect(settingsService.timerMinutes).toBeDefined();

				expect(settingsService.timerMinutes).toBeGreaterThan(0);

				expect(settingsService.timerMinutes).not.toBeNaN();

		});

		it('should	provide	plural	mappings	for	tasks',	()	=>	{

				const	tasksPluralMappings	=	settingsService.pluralsMap['tasks'];

				const	actualProperties	=	Object.keys(tasksPluralMappings).sort()

				const	expectedProperties	=	['=0',	'=1',	'other'].sort();

				expect(tasksPluralMappings).toBeDefined();

				expect(actualProperties).toEqual(expectedProperties);

		});

});

Here,	we	are	testing	whether	there	is	an	actual	numeric	value	configured	in	the	timerMinutes
property	and	whether	the	tasksPluralMappings	contains	all	the	mappings	we	expect	it	to

www.EBooksWorld.ir

have.	We	could	(and	definitely	should)	conduct	more	tests,	but	for	the	time	being	it	is	fine	to
leave	the	test	like	this	and	then	focus	on	an	important	detail.	If	we	had	wanted	to	leverage	the
Angular	2	testing	machinery	for	this	test,	we	could	have	instantiated	the	SettingService
object	like	this:

beforeEachProviders(()	=>	[SettingsService]);

beforeEach(inject([SettingsService],	

		(_settingsService:	SettingsService)	=>	{

				settingsService	=	_settingsService;

		}

));

This	syntax	will	remind	you	of	what	you	saw	in	the	previous	sections.	Ultimately,	take	the
approach	that	suits	your	coding	style.	Obviously,	the	latter	will	require	less	refactoring	as	our
service	class	evolves	and	begins	to	demand	injected	dependencies,	in	which	case	making	use
of	the	beforeEachProviders()	function	will	become	paramount.

www.EBooksWorld.ir

Testing	asynchronous	services
The	previous	example	showcased	how	we	can	test	the	most	basic	bare-bones	service	we	can
come	up	with,	but	in	reality	two	of	the	most	common	traits	of	custom	services	are	that	they
usually	rely	on	other	dependencies	to	provide	their	functionality.	In	addition,	these
functionalities	are	most	of	the	time	based	on	asynchronous	methods	that	connect	to	third	party
services.	Regardless	of	the	interface	exposed	by	these	asynchronous	members	(callbacks,
emitted	events,	promises,	or	observables),	testing	services	like	these	is	not	hard	at	all,	as	we
can	see	in	the	following	example	where	we	test	the	different	API	endpoints	of
AuthenticationService.	The	code	is	as	follows:

app/shared/services/authentication.service.spec.ts

import	AuthenticationService	from	'./authentication.service';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders	}	from	'@angular/core/testing';

describe('shared:AuthenticationService',	()	=>	{

		let	authenticationService:	AuthenticationService;

		beforeEachProviders(()	=>	[

				AuthenticationService

]);

		beforeEach(inject(

				[AuthenticationService],	(_authenticationService)	=>	{

						authenticationService	=	_authenticationService;

				}

));

		it('should	reject	invalid	credentials',	done	=>	{

				authenticationService.login({

						username:	'foo',

						password:	'bar'})

						.then(success	=>	{

								expect(success).toBeFalsy();

								done();

						});

		});

		describe('emits	an	event	upon	user	auth	status	changes',	()	=>	{

				it('that	should	be	truthy	for	successful	logins',	done	=>	{

								authenticationService

								.userIsloggedIn

								.subscribe((authStatus:	boolean)	=>	{

										expect(authStatus).toBeTruthy();

										done();

www.EBooksWorld.ir

								});

								authenticationService.login({

										username:	'john.doe@mail.com',

										password:	'letmein'

								});

				});

				it('that	should	be	falsy	for	failed	logins',	done	=>	{

								authenticationService

								.userIsloggedIn

								.subscribe((authStatus:	boolean)	=>	{

										expect(authStatus).toBeFalsy();

										done();

								});

								authenticationService.login({	

										username:	'foo',

										password:	'bar'

								});

				});

		});

});

The	test	must	seem	lengthy,	but	it	is	actually	quite	simple,	since	we	are	just	putting	into
practice	all	that	we	know	by	now	about	unit	testing.	The	only	part	worth	remarking	is	how	we
wrap	the	expectation	assertion	in	the	subscribe()	method	of	the	userIsLoggedIn	event
emitter	member,	so	the	assertion	will	only	be	evaluated	once	an	event	is	emitted	and	shines
through	the	subscription	function.	The	code	is	as	follows:

authenticationService

		.userIsloggedIn

		.subscribe((authStatus:	boolean)	=>	{

				expect(authStatus).toBeTruthy();

				done();

		});

We	then	conduct	an	authentication	request	in	the	following	block,	so	the	subscribe()	function
emits	the	expected	event:

authenticationService.login({

		username:	'john.doe@mail.com',

		password:	'letmein'

});

Last	but	not	least,	please	notice	how	we	have	nested	a	describe()	suite	within	another
describe()	suite.	This	is	quite	common	whenever	it	makes	sense	to	group	test	specs	by	area
of	functionality,	easing	the	task	of	disabling	tests	if	required.

www.EBooksWorld.ir

Mocking	Http	responses	with	MockBackend
The	previous	example	is	a	bit	contrived	since	our	AuthenticationService	module	was	in	fact
a	mock	by	itself,	with	no	real	implementation	whatsoever.	In	a	real	scenario,	the
AuthenticationService	should	implement	an	asynchronous	method	sending	a	POST	request
to	an	authentication	service.	Let's	update	our	current	service	implementation	to	include	this
feature	under	a	different	method	name,	so	it	does	not	collide	with	the	current	login()
implementation	and	its	tests.	The	code	is	as	follows:

app/shared/services/authentication.service.ts

...

httpLogin(credentials):	Promise<boolean>	{

		return	new	Promise(resolve	=>	{

				const	url	=	'/api/authentication';	//	Or	your	own	API	Auth	url

				const	body	=	JSON.stringify(credentials);

				const	headers	=	new	Headers({'Content-Type':'application/json'});

				const	options	=	new	RequestOptions({	headers:	headers	});

				this.http.post(url,	body,	options)

						.map(response	=>	response.json())

						.subscribe(authResponse	=>	{

										let	validCredentials:	boolean	=	false;

										if(authResponse	&&	authResponse.token)	{

												validCredentials	=	true;

												window.sessionStorage.setItem(

														'token',

														authResponse.token

);

										}

										this.userIsloggedIn.emit(validCredentials);

										resolve(validCredentials);

								},

								error	=>	console.log(error)

);

		});

}

...

In	our	new	implementation	of	AuthenticationService,	a	new	asynchronous	method	named
httpLogin()	performs	an	actual	HTTP	POST	request	to	an	auth	service	of	our	choice	and
submits	the	credentials	in	JSON	format,	resolving	a	promise	with	a	Boolean	value	after
persisting	the	token	in	the	local	session	storage.

Tip

For	the	sake	of	reusability,	the	method	should	just	resolve	to	the	HTTP	response	once	fetched
and	it	will	be	up	to	the	method's	clients	to	decide	how	to	persist	the	information	contained	in

www.EBooksWorld.ir

the	response	and	what	to	do	next.	For	the	sake	of	brevity,	let's	leave	our	method	like	this.

With	our	new	shiny	asynchronous	method,	there	are	some	new	challenges:

First,	we	need	to	declare	the	dependencies	required	for	allowing	HTTP	connections
Second,	our	new	method	performs	an	actual	HTTP	request	to	a	remote	service	which	is
out	of	the	scope	of	our	testing	capabilities,	so	we	need	to	be	able	to	intercept	such	request
and	return	a	customized	mocked	response	to	fulfil	our	tests

Regarding	the	former,	we	already	saw	in	previous	sections	how	to	declare	providers	and
instantiate	an	Http	dependency	through	the	injector	using	MockBackend	in	the	dependency
constructor.

However,	it	is	time	to	harness	all	the	functionality	that	MockBackend	can	provide	for
intercepting	HTTP	connections	and	mock	responses	of	our	own.	Let's	get	back	to
authentication.service.spec.ts	and	replace	the	current	implementation	of
beforeEachProviders()	and	beforeEach()	after	importing	some	more	tokens	you're	already
familiar	with:

app/shared/services/authentication.service.spec.ts	(updated)

import	AuthenticationService	from	'./authentication.service';

import	{	provide	}	from	'@angular/core';

import	{

		describe,

		expect,

		it,

		inject,

		beforeEach,

		beforeEachProviders	}	from	'@angular/core/testing';

import	{	

		Http,

		BaseRequestOptions,

		Response,

		ResponseOptions	}		from	'@angular/http';

import	{	MockBackend,	MockConnection	}	from	'@angular/http/testing';

import	'rxjs/add/operator/map';

describe('shared:AuthenticationService',	()	=>	{

		let	authenticationService:	AuthenticationService;

		let	mockBackend:	MockBackend;

		beforeEachProviders(()	=>	[

				MockBackend,

				BaseRequestOptions,

				provide(Http,	{

						useFactory:	(

								backend:	MockBackend,

								options:	BaseRequestOptions

)	=>	{

								return	new	Http(backend,	options);

						},

www.EBooksWorld.ir

						deps:	[MockBackend,	BaseRequestOptions]

				}),

				AuthenticationService

]);

		beforeEach(inject(

				[MockBackend,	AuthenticationService],	

				(_mockBackend,	_authenticationService)	=>	{

						authenticationService	=	_authenticationService;

						mockBackend	=	_mockBackend;

				}

));

		it('can	fetch	a	valid	token	when	querying	the	Auth	API',	done	=>	{

				const	mockedResponse	=	new	ResponseOptions({	

						body:	'{"token":	"eyJhbGciOi"}'

				});

				mockBackend.connections.subscribe(

						(connection:	MockConnection)	=>	{

								if(connection.request.url	===	'/api/authentication')	{

										connection.mockRespond(new	Response(mockedResponse));

								}

						}

);

				authenticationService.httpLogin({	

						username:	'foo',

						password:	'bar'

				}).then(success	=>	{

								expect(success).toBeTruthy();

								done();

						},

						error	=>	done.fail(error)

);

		});

		//	Rest	of	test	specs	remain	the	same	below

		//	...

First,	we	import	everything	that	is	required	to	interact	with	HTTP-based	services.	The
beforeEachProviders()	and	the	beforeEach()	implementations	have	no	difference	with	what
we	already	saw	when	overviewing	timer-widget.component.test.ts.	Perhaps	the	only
nuance	worth	remarking	is	the	fact	that	we	bind	a	new	instance	of	MockBackend	to	the
mockBackend	variable	on	every	test	execution.	It	is	required	because	we	will	be	using	it	in	the
newly	introduced	test	spec.	Let's	review	it	in	more	detail.	First,	we	define	a	mocked	response
with	some	fake	data.	We	will	be	using	this	mock	response	later	on	when	performing	actual
HTTP	requests:

const	mockedResponse	=	new	ResponseOptions({	

		body:	'{"token":	"eyJhbGciOi"}'

});

The	MockBackend	objects	expose	a	connections	property	of	type	EventEmitter,	which	emits	a

www.EBooksWorld.ir

MockConnection	event	object	every	time	it	detects	an	attempt	to	perform	a	XHR	connection
through	Http	(which,	as	we	know	now,	is	using	mockBackend	to	perform	backend
connections).	This	MockConnection	object	contains	relevant	information	about	the	request
attempt	that	we	can	use	to	refine	our	test	and	return	a	specific	response	tailored	to	the
necessities	of	our	testing	scenario.	To	do	so,	we	will	use	the	mockRespond()	of	the	connection
object	itself.	The	code	is	as	follows:

mockBackend.connections.subscribe(

		(connection:	MockConnection)	=>	{

				if(connection.request.url	===	'/api/authentication')	{

						connection.mockRespond(new	Response(mockedResponse));

				}

		}

);

With	all	these	elements	in	place,	performing	an	actual	request	with	our	service	methods	and
evaluating	the	responses	becomes	an	easy	task:

authenticationService.httpLogin({	

		username:	'foo',

		password:	'bar'

}).then(success	=>	{

		expect(success).toBeTruthy();

		done();

},

		error	=>	done.fail(error)

);

www.EBooksWorld.ir

Testing	directives
The	last	leg	of	our	journey	into	the	world	of	unit	testing	Angular	2	elements	will	cover
directives.	Directives	will	be	usually	quite	straightforward	in	their	overall	shape,	being	pretty
much	components	with	no	view	attached.	The	fact	that	directives	usually	work	with
components	gives	us	a	very	good	idea	of	how	to	proceed	when	testing	them.

We	could	create	a	stub	component	for	the	purpose	of	the	test	and	then	bind	the	directive	on	it,
either	directly	upon	defining	it	or	by	leveraging	the	overrideDirectives()	of	the
TestComponentBuilder	instance	object	we	will	compose	for	the	test.	In	that	sense,	the
component,	as	the	host	element	for	the	directive,	will	proxy	our	test	operations,	so	we	will	not
delve	deeper	into	this	approach	after	reviewing	component	testing	in	the	previous	sections.

Another	approach	is	to	leverage	the	host	bindings	and	listeners	our	directive	takes	action	on,
and	test	the	bound	methods	to	these	decorators	to	see	if	they	provide	the	functionality
required.	Let's	look	at	an	actual	example	of	this	approach	by	testing	the
TaskTooltipDirective	module:

app/tasks/task-tooltip.directive.spec.ts

import	{	Task	}	from	'../shared/shared';

import	TaskTooltipDirective	from	'./task-tooltip.directive';

import	{

		describe,

		expect,

		it,

		beforeEach	}	from	'@angular/core/testing';

		describe('shared:TaskTooltipDirective',	()	=>	{

				let	taskTooltipDirective:	TaskTooltipDirective;

				beforeEach(()	=>	{

						taskTooltipDirective	=	new	TaskTooltipDirective();

				});

				it('should	update	a	given	tooltip	upon	mouseover',	done	=>	{

						let	mockTooltip	=	{	innerText:	''	};

						taskTooltipDirective.task	=	<Task>{	name:	'Foo'	};

						taskTooltipDirective.taskTooltip	=	mockTooltip;

						taskTooltipDirective.onMouseOver();

						expect(mockTooltip.innerText).toBe('Foo');

						done();

				});

				it('should	restore	a	given	tooltip	upon	mouseout',	done	=>	{

						let	mockTooltip	=	{	innerText:	'Foo'	};

						taskTooltipDirective.task	=	<Task>{	name:	'Bar'	};

						taskTooltipDirective.taskTooltip	=	mockTooltip;

www.EBooksWorld.ir

						taskTooltipDirective.onMouseOver();

						expect(mockTooltip.innerText).toBe('Bar');

						taskTooltipDirective.onMouseOut();

						expect(mockTooltip.innerText).toBe('Foo');

						done();

				});

		});

Here,	we	instantiate	the	directive	object	directly,	since	it	has	no	dependencies	that	require	us	to
use	the	injector	instead.	Since	all	the	operations	performed	by	this	directive	are	governed	by
the	class	methods	decorated	with	@HostListener()	decorators,	we	just	need	to	feed	the
directive	class	input	members	with	mock	data	and	see	if	we	obtain	the	desired	behavior.

www.EBooksWorld.ir

The	road	ahead
This	last	test	example	wraps	up	our	journey	into	unit	testing	with	Angular	2,	but	keep	in	mind
that	we	have	barely	scratched	the	surface.	Testing	web	applications	in	general	and	Angular	2
applications	in	particular	poses	a	myriad	of	scenarios	that	need	a	specific	approach	most	of
the	times.	Remember	that	if	a	specific	test	requires	a	cumbersome	and	convoluted	solution,	we
are	probably	facing	a	good	case	for	a	module	redesign	instead.

Where	should	we	go	from	here?	There	are	several	paths	to	compound	our	knowledge	of	web
application	testing	in	Angular	2	and	become	great	testing	ninjas.

www.EBooksWorld.ir

Using	Jasmine	in	combination	with	Karma
So	far,	we	have	used	the	Jasmine	HTML	spec	runner	to	execute	our	tests	and	get	a	results
report.	While	this	is	perfectly	fine	for	smaller	projects,	the	HTML	spec	runner	might	not	be
the	best	solution	for	bigger	projects,	especially	if	we	want	our	tests	to	be	re-executed
automatically	when	code	changes	or	we	need	to	hook	up	our	tests	layer	with	a	continuous
integration	server.

At	this	point	you	will	want	to	use	a	more	powerful	and	faster	spec	runner	without
compromising	your	project.	For	that	reason,	your	best	bet	might	be	picking	up	Karma	as	a
spec	runner.	Used	by	the	Angular	team	itself,	it	plays	well	with	Jasmine	and	other	testing
frameworks	such	as	Mocha	or	QUnit.	It	also	features	a	simple	but	powerful	configuration
setup	with	support	for	automatic	spec	scanning,	file	watching,	multiple	report	outputs,	and
advanced	extensibility	with	plugins.

For	those	in	need	to	hook	up	their	application	with	continuous	integration	servers,	Karma
also	provides	adapters	for	Jenkins,	Travis,	or	Semaphore.

You	can	find	further	information	at	https://karma-runner.github.io.

www.EBooksWorld.ir

https://karma-runner.github.io

Introducing	code	coverage	reports	in	your	test	stack
How	can	we	know	how	far	do	our	tests	go	on	testing	the	application?	Are	we	sure	we	are	not
leaving	any	piece	of	code	untested	and	if	so,	is	it	relevant?	How	can	we	detect	the	pieces	of
code	that	fall	outside	the	scope	of	our	current	tests	so	we	can	better	assess	if	they	are	worth
testing	or	not?

These	concerns	can	be	easily	addressed	by	introducing	code	coverage	reporting	in	our
application	tests	stack.	A	code	coverage	tool	aims	to	track	down	the	scope	of	our	unit	testing
layer	and	produce	an	educated	report	informing	of	the	overall	reach	of	your	test	specs	and
what	pieces	of	code	still	remain	uncovered.

There	are	several	tools	for	implementing	code	coverage	analysis	in	our	applications,	Blanket
(http://blanketjs.org),	and	Istanbul	(https://gotwarlost.github.io/istanbul)	the	most	popular	ones
at	this	time.	In	both	cases,	the	installation	process	is	pretty	quick	and	easy.

www.EBooksWorld.ir

http://blanketjs.org
https://gotwarlost.github.io/istanbul

Implementing	E2E	tests
In	this	chapter,	we	saw	how	we	could	test	certain	parts	of	the	UI	by	evaluating	the	state	of	the
DOM.	This	gives	us	a	good	idea	of	how	things	would	look	like	from	the	end	user's	point	of
view,	but	ultimately	this	is	just	an	uneducated	guess.

End-to-end	(E2E)	testing	is	a	methodology	for	testing	web	applications	using	an	automated
agent	that	will	programmatically	follow	the	end	user's	flow	from	start	to	finish.	Contrary	to
what	unit	testing	poses,	the	nuances	of	the	code	implementation	are	not	relevant	here,	since
E2E	testing	entails	testing	our	application	from	start	to	finish	from	the	user's	endpoint	.	This
approach	allows	us	to	test	the	application	in	an	integrated	way.	While	unit	testing	focuses	on
the	reliability	of	each	particular	piece	of	the	puzzle,	E2E	testing	does	assess	the	integrity	of
the	puzzle	as	a	whole,	finding	integration	issues	between	components	that	are	frequently
overlooked	by	unit	tests.

The	Angular	team	built	for	the	previous	incarnation	of	the	Angular	framework	a	powerful
tool	named	Protractor	(https://docs.angularjs.org/guide/e2e-testing),	which	is	defined	as
follows:

"..an	end	to	end	test	runner	which	simulates	user	interactions	that	will	help	you	verify	the
health	of	your	Angular	application."

The	tests	syntax	will	become	pretty	familiar	since	it	also	uses	Jasmine	for	putting	together	test
specs.	Unfortunately,	E2E	sits	outside	the	scope	of	this	book,	but	there	are	several	resources
you	can	rely	on	to	expand	your	knowledge	on	the	subject.	In	that	sense,	we	recommend	the
book	Angular	2	Test-driven	development,	Packt	Publishing,	which	provides	broad	insights	on
the	use	of	Protractor	to	create	E2E	test	suites	for	our	Angular	2	applications.

www.EBooksWorld.ir

https://docs.angularjs.org/guide/e2e-testing

Summary
We	are	at	the	end	of	our	journey,	and	it's	been	a	long	but	exciting	one	without	any	shade	of
doubt.	In	this	chapter,	you	saw	the	importance	of	introducing	unit	testing	in	our	Angular	2
applications,	the	basic	shape	of	a	unit	test,	and	the	process	of	setting	up	Jasmine	for	our	tests.
You	also	saw	how	to	code	powerful	tests	for	our	components,	directives,	pipes,	routes,	and
services.	We	also	discussed	new	challenges	in	your	path	for	mastering	Angular	2.	It	is	fair	to
say	that	there	is	still	a	long	road	ahead,	and	it	is	definitely	an	exiting	one.

The	end	of	this	chapter	is	also	the	end	of	this	book,	but	the	experience	continues	beyond	its
boundaries.	Angular	2	is	still	a	pretty	young	framework	and	as	such	all	the	great	things	that	it
will	bring	to	the	community	are	yet	to	be	created.	Hopefully,	you	will	be	one	of	those
creators.	If	so,	please	let	the	author	know.

Thanks	for	taking	the	time	for	reading	this	book.

www.EBooksWorld.ir

Index
A

Angular	2
defining	/	A	fresh	start,	Hello,	Angular	2!
URL	/	Setting	up	our	workspace
TypeScript	classes	/	TypeScript	classes
metadata	decorators,	defining	/	Introducing	metadata	decorators
TypeScript,	compiling	into	browser-friendly	JavaScript	/	Compiling	TypeScript
into	browser-friendly	JavaScript
HTML	container	/	The	HTML	container
examples	/	Serving	the	examples	of	this	book
template,	editing	/	Putting	everything	together
directives	/	Directives	in	Angular	2
dependency	injection,	defining	/	How	dependency	injection	works	in	Angular	2
dependencies,	injecting	across	component	tree	/	Injecting	dependencies	across	the
component	tree
providers,	overriding	in	injectors	hierarchy	/	Overriding	providers	in	the	injector
hierarchy
injector	support,	extending	to	custom	entities	/	Extending	injector	support	to	custom
entities
applications,	initializing	with	bootstrap()	/	Initializing	applications	with	bootstrap()
references	/	Introducing	the	Pomodoro	App	directory	structure
matcher	functions,	defining	/	Angular	2	custom	matcher	functions

Angular	2	cheat	sheet
URL	/	Some	extra	syntactic	sugar	when	binding	expressions

Angular	2	components
defining	/	Diving	deeper	into	Angular	2	components
productivity,	improving	/	Improving	productivity
component	methods	/	Component	methods	and	data	updates
data	updates	/	Component	methods	and	data	updates
interactivity,	adding	/	Adding	interactivity	to	the	component
data	output,	improving	in	view	/	Improving	the	data	output	in	the	view	and	polishing
the	UI

Angular	2	router	bundle
implementing	/	Adding	support	for	the	Angular	2	router

AnimationBuilder
components,	animating	with	/	Animating	components	with	the	AnimationBuilder
CssAnimationBuilder	API	/	The	CssAnimationBuilder	API
animation	state,	tracking	with	Animation	class	/	Tracking	animation	state	with	the
Animation	class

animations
creating,	with	plain	vanilla	CSS	/	Creating	animations	with	plain	vanilla	CSS

www.EBooksWorld.ir

handling,	with	CSS	class	hooks	/	Handling	animation	with	CSS	class	hooks
application

bootstrapping	/	Bootstrapping	the	application
application,	Angular	2

refactoring	/	Refactoring	our	application	the	Angular	2	way
applications,	with	bootstrap()

defining	/	Initializing	applications	with	bootstrap()
switching,	between	development	and	production	modes	/	Switching	between
development	and	production	modes
Angular	2	built-in	change	detection	profiler,	enabling	/	Enabling	Angular	2's	built-
in	change	detection	profiler

applications,	with	modules
organizing	/	Organizing	our	applications	with	modules
internal	modules	/	Internal	modules
external	modules	/	External	modules

Array
about	/	Array

asynchronous	information
handling,	strategies	used	/	Strategies	for	handling	asynchronous	information

Async	pipe	/	The	async	pipe
AtScript

about	/	Decorators	in	TypeScript

www.EBooksWorld.ir

B
Blanket

URL	/	Introducing	code	coverage	reports	in	your	test	stack
Bootstrap	/	Installing	dependencies
bootstrap	method

actions,	defining	/	Putting	everything	together

www.EBooksWorld.ir

C
CanDeactivate	router	hook

bypassing,	upon	form	submission	/	Bypassing	the	CanDeactivate	router	hook	upon
submitting	forms

child	routers
defining	/	Defining	child	routers
linking,	to	child	routes	/	Linking	to	child	routes

class	anatomy
defining	/	Anatomy	of	a	class	–	constructors,	properties,	methods,	getters,	and
setters

class	decorator	function	signature
extending	/	Extending	the	class	decorator	function	signature

class	decorators
about	/	Class	decorators

classes
about	/	Classes,	interfaces,	and	class	inheritance

class	hooks
about	/	Class	hooks	available
defining	/	Class	hooks	available

class	inheritance
about	/	Classes,	interfaces,	and	class	inheritance
classes,	extending	with	/	Extending	classes	with	class	inheritance

class	statement
elements	/	Anatomy	of	a	class	–	constructors,	properties,	methods,	getters,	and
setters

client	authentication	service
mocking	/	Mocking	a	client	authentication	service
exposing,	to	other	components	/	Exposing	our	new	service	to	other	components
unauthorised	access,	blocking	/	Blocking	unauthorized	access
user	authentication	status,	reflecting	on	UI	/	Making	the	UI	reactive	to	the	user
authentication	status

code	coverage	reports
defining,	in	test	stack	/	Introducing	code	coverage	reports	in	your	test	stack

components
creating	/	Creating	our	components
timer	context	/	The	timer	context
tasks	context	/	The	tasks	context
top	root	component,	defining	/	Defining	the	top	root	component
testing	/	Testing	components
properties	and	methods	/	Testing	components
testing,	with	dependencies	/	Testing	components	with	dependencies
component	dependencies,	overriding	for	refined	testing	/	Overriding	component
dependencies	for	refined	testing

www.EBooksWorld.ir

component	tree
defining	/	Introducing	the	component	tree

ControlGroups
about	/	Controls,	ControlGroups,	and	the	FormBuilder	class
control	groups,	defining	with	/	Defining	control	groups	imperatively	with
ControlGroup

control	interaction
tracking	/	Tracking	control	interaction	and	validating	input
changes,	tracking	with	local	references	/	Tracking	changes	with	local	references

Controls
about	/	Controls,	ControlGroups,	and	the	FormBuilder	class,	Introducing	Controls
and	Validators
creating,	in	DOM	with	ngControl	directive	/	Controls	in	the	DOM	–	the	ngControl
directive
grouping,	in	DOM	with	NgControlGroup	directive	/	Grouping	controls	in	the	DOM
with	NgControlGroup
DOM	and	controller,	connecting	with	ngFormModel	/	Connecting	the	DOM	and	the
controller	with	ngFormModel

CSS	class	hooks
animation,	handling	with	/	Handling	animation	with	CSS	class	hooks

CSS	specificity
URL	/	Managing	view	encapsulation

CSS	styling
encapsulating	/	Encapsulating	CSS	styling
styles	property	/	The	styles	property
styleUrls	property	/	The	styleUrls	property
inline	style	sheets	/	Inline	style	sheets
view	encapsulation,	managing	/	Managing	view	encapsulation

currency	pipe	/	The	currency	pipe
custom	animation	directives

developing	/	Developing	custom	animation	directives
interacting,	from	template	/	Interacting	with	our	directive	from	the	template

custom	directives
building	/	Building	our	own	custom	directives
anatomy	/	Anatomy	of	a	custom	directive
task	tooltip	custom	directive,	building	/	Building	a	task	tooltip	custom	directive
naming	conventions	/	A	word	about	naming	conventions	for	custom	directives	and
pipes

custom	elements
naming	/	Component	methods	and	data	updates

custom	events
used,	for	communicating	between	components	/	Communicating	between
components	through	custom	events

custom	pipes

www.EBooksWorld.ir

building	/	Building	our	own	custom	pipes
anatomy	/	Anatomy	of	a	custom	pipe
format	time	output,	improving	/	A	custom	pipe	to	better	format	time	output
data,	filtering	/	Filtering	out	data	with	custom	filters

custom	values
setting	up	/	Setting	up	custom	values	declaratively

www.EBooksWorld.ir

D
date	pipe	/	The	date	pipe
decorators,	TypeScript

class	decorators	/	Class	decorators
property	decorators	/	Property	decorators
method	decorators	/	Method	decorators
parameter	decorators	/	Parameter	decorators

dependencies
about	/	How	dependency	injection	works	in	Angular	2

dependency	injection
restricting	/	Restricting	dependency	injection	down	the	component	tree

directives
about	/	Directives	in	Angular	2
core	directives	/	Core	directives
NgIf	/	NgIf
NgFor	/	NgFor
NgStyle	/	NgStyle
NgClass	/	NgClass
NgSwitch	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
NgSwitchWhen	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
NgSwitchDefault	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
testing	/	Testing	directives

documentation,	Angular
URL	/	The	Response	object

domain	specific	language	(DSL)
about	/	Looking	into	the	future	with	ngAnimate	2.0

www.EBooksWorld.ir

E
E2E	tests

implementing	/	Implementing	E2E	tests
about	/	Implementing	E2E	tests

ECMAScript	6	(ES6	or	ES2015)
about	/	Understanding	the	case	for	TypeScript

Enum
about	/	Enum

execution	flow
about	/	Functions,	lambdas,	and	execution	flow

www.EBooksWorld.ir

F
facade	module

creating	/	Creating	a	facade	module	including	a	custom	providers	barrel
form

type,	binding	with	NgModel	directive	/	Binding	a	type	to	a	form	with	NgModel
FormBuilder	class

about	/	Controls,	ControlGroups,	and	the	FormBuilder	class
function	parameters,	TypeScript

optional	parameters	/	Optional	parameters
default	parameters	/	Default	parameters
rest	parameters	/	Rest	parameters
function	signature,	overloading	/	Overloading	the	function	signature

functions
about	/	Functions,	lambdas,	and	execution	flow
types,	annotating	/	Annotating	types	in	our	functions

www.EBooksWorld.ir

G
Generics

references	/	Method	decorators
Gulp

URL	/	Leveraging	Gulp	with	other	IDEs

www.EBooksWorld.ir

H
Headers	class

URL	/	The	Response	object
HTML	container

task	list	table	building,	Angular	directives	used	/	Building	our	task	list	table	with
Angular	directives

Http	API
defining	/	Introducing	the	HTTP	API
Request	class,	using	/	When	to	use	the	Request	and	RequestOptionsArgs	classes
RequestOptionsArgs	class,	using	/	When	to	use	the	Request	and
RequestOptionsArgs	classes
Response	object	/	The	Response	object
errors,	handling	when	performing	Http	requests	/	Handling	errors	when	performing
Http	requests
Http	class,	injecting	/	Injecting	the	Http	class	and	the	HTTP_PROVIDERS	modules
symbol
HTTP_PROVIDERS	module	symbol	/	Injecting	the	Http	class	and	the
HTTP_PROVIDERS	modules	symbol

www.EBooksWorld.ir

I
I18n	pipes	/	The	i18n	pipes
I18nPlural	pipe	/	The	i18nPlural	pipe
I18nSelect	pipe	/	The	i18nSelect	pipe
IDE

enhancing	/	Enhancing	our	IDE
Sublime	Text	3	/	Sublime	Text	3
Atom	/	Atom
Visual	Studio	Code	/	Visual	Studio	Code
WebStorm	/	WebStorm
Gulp,	leveraging	with	other	IDEs	/	Leveraging	Gulp	with	other	IDEs

injection
about	/	How	dependency	injection	works	in	Angular	2

input
validating	/	Tracking	control	interaction	and	validating	input

interfaces
about	/	Classes,	interfaces,	and	class	inheritance

Istambul
URL	/	Introducing	code	coverage	reports	in	your	test	stack

www.EBooksWorld.ir

J
Jasmine

URL	/	Dependency	injection	in	unit	tests
using,	with	Karma	/	Using	Jasmine	in	combination	with	Karma

John	Papa
URL	/	Introducing	the	Pomodoro	App	directory	structure

JSBIN
URL	/	Observables	in	a	nutshell

Json	pipe	/	The	JSON	pipe

www.EBooksWorld.ir

K
Karma

URL	/	Using	Jasmine	in	combination	with	Karma

www.EBooksWorld.ir

L
lambdas

about	/	Functions,	lambdas,	and	execution	flow
local	references

used,	for	tracking	control	changes	/	Tracking	changes	with	local	references
login	component

building	/	A	real	example	–	our	login	component
login	feature	context	/	The	login	feature	context
login	form	template	/	The	login	form	template
implementation	/	The	login	component
custom	validation,	applying	to	controls	/	Applying	custom	validation	to	our
controls
state	changes,	monitoring	in	controls	/	Watching	state	changes	in	our	controls
access	management,	handling	/	Running	the	extra	mile	on	access	management
custom	secure	RouterOutlet	directive,	building	/	Building	our	own	secure
RouterOutlet	directive

lowercase	pipe	/	The	uppercase/lowercase	pipe

www.EBooksWorld.ir

N
named	keyframe

about	/	Creating	animations	with	plain	vanilla	CSS
ngAnimate	2.0

defining	/	Looking	into	the	future	with	ngAnimate	2.0
about	/	Looking	into	the	future	with	ngAnimate	2.0

NgClass	directive	/	NgClass
ngControl	directive

Controls,	creating	in	DOM	/	Controls	in	the	DOM	–	the	ngControl	directive
NgControlGroup	directive

Controls,	grouping	in	DOM	/	Grouping	controls	in	the	DOM	with	NgControlGroup
NgFor	directive	/	NgFor
NgIf	directive	/	NgIf
NgModel	directive

about	/	The	NgModel	directive
type,	binding	to	form	/	Binding	a	type	to	a	form	with	NgModel
CanDeactivate	router	hook,	bypassing	upon	form	submission	/	Bypassing	the
CanDeactivate	router	hook	upon	submitting	forms

NgStyle	directive	/	NgStyle
NgSwitchDefault	directive

about	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
NgSwitch	directive

about	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
NgSwitchWhen	directive

about	/	NgSwitch,	NgSwitchWhen,	and	NgSwitchDefault
Node.js

URL	/	Setting	up	our	workspace
NPM	module	official	repository

references	/	Serving	the	examples	of	this	book
number	pipe	/	The	number	pipe

www.EBooksWorld.ir

O
Observable	data

serving,	through	HTTP	/	A	real	case	study	–	serving	Observable	data	through	HTTP
tasks,	adding	to	tasks	service	/	Adding	tasks	to	our	tasks	service

observables
in	nutshell	/	Observables	in	a	nutshell

www.EBooksWorld.ir

P
percent	pipe	/	The	percent	pipe
pipes

template	bindings,	manipulating	with	/	Manipulating	template	bindings	with	Pipes
Uppercase/lowercase	pipe	/	The	uppercase/lowercase	pipe
about	/	The	number,	percent,	and	currency	pipes
number	pipe	/	The	number	pipe
percent	pipe	/	The	percent	pipe
currency	pipe	/	The	currency	pipe
slice	pipe	/	The	slice	pipe
date	pipe	/	The	date	pipe
Json	pipe	/	The	JSON	pipe
replace	pipe	/	The	replace	pipe
I18n	pipes	/	The	i18n	pipes
I18nPlural	pipe	/	The	i18nPlural	pipe
I18nSelect	pipe	/	The	i18nSelect	pipe
Async	pipe	/	The	async	pipe
naming	conventions	/	A	word	about	naming	conventions	for	custom	directives	and
pipes
testing	/	Testing	pipes

playground	page
URL	/	Anatomy	of	a	class	–	constructors,	properties,	methods,	getters,	and	setters

Pomodoro	App	directory	structure
defining	/	Introducing	the	Pomodoro	App	directory	structure

Pomodoro	task	list
HTML	container,	setting	/	Setting	up	our	main	HTML	container

Pomodoro	task	list
about	/	Putting	it	all	together	in	the	Pomodoro	task	list
tasks,	toggling	/	Toggling	tasks	in	our	task	list
state	changes	in	templates,	displaying	/	Displaying	state	changes	in	our	templates
child	components,	embedding	/	Embedding	child	components

Pomodoro	technique
URL	/	Improving	productivity

Protractor
URL	/	Implementing	E2E	tests

providers	lookup
restricting	/	Restricting	provider	lookup

www.EBooksWorld.ir

R
Reactive	functional	programming

in	Angular	2	/	Reactive	functional	programming	in	Angular	2
RxJS	library	/	The	RxJS	library

replace	pipe	/	The	replace	pipe
route	parameters

handling	/	Handling	route	parameters
dynamic	parameters,	passing	/	Passing	dynamic	parameters	in	our	routes
parsing,	with	RouteParams	service	/	Parsing	route	parameters	with	the	RouteParams
service

Router	lifecycle	hooks
about	/	The	Router	lifecycle	hooks
CanActivate	hook	/	The	CanActivate	hook
OnActivate	hook	/	The	OnActivate	Hook
CanDeactivate	hook	/	The	CanDeactivate	and	OnDeactivate	hooks
OnDeactivate	hook	/	The	CanDeactivate	and	OnDeactivate	hooks
CanReuse	hook	/	The	CanReuse	and	OnReuse	hooks
OnReuse	hook	/	The	CanReuse	and	OnReuse	hooks
tips	and	tricks	/	Advanced	tips	and	tricks
redirecting,	to	other	routes	/	Redirecting	to	other	routes
base	path,	tweaking	/	Tweaking	the	base	path
generated	URLs,	finetuning	with	location	strategies	/	Finetuning	our	generated
URLs	with	location	strategies
components,	loading	asynchronously	with	AsyncRoutes	/	Loading	components
asynchronously	with	AsyncRoutes

router	service
new	component,	building	for	demonstration	/	Building	a	new	component	for
demonstration	purposes
RouteConfig	decorator,	configuring	with	RouteDefinition	instances	/	Configuring
the	RouteConfig	decorator	with	the	RouteDefinition	instances
router	directives,	defining	/	The	router	directives	–	RouterOutlet	and	RouterLink
routes,	triggering	/	Triggering	routes	imperatively
CSS	hooks,	for	active	routes	/	CSS	hooks	for	active	routes

routes
testing	/	Testing	routes
testing,	by	URL	/	Testing	routes	by	URL
redirections,	testing	/	Testing	redirections

RxJS	library
about	/	The	RxJS	library

www.EBooksWorld.ir

S
scalable	applications

conventions,	defining	/	Common	conventions	for	scalable	applications
file	and	module	naming	conventions	/	File	and	module	naming	conventions
seamless	scalability,	ensuring	with	facades	or	barrels	/	Ensuring	seamless
scalability	with	facades	or	barrels

services
testing	/	Testing	services
asynchronous	services,	testing	/	Testing	asynchronous	services
Http	responses,	mocking	with	MockBackend	/	Mocking	Http	responses	with
MockBackend

shared	context
defining	/	The	shared	context
services	/	Services	in	the	shared	context
application	settings,	configuring	from	central	service	/	Configuring	application
settings	from	a	central	service

single	responsibility	principle
about	/	Refactoring	our	application	the	Angular	2	way

slice	pipe	/	The	slice	pipe
static	validator	methods

about	/	Introducing	Controls	and	Validators
required	/	Introducing	Controls	and	Validators
minLength(minLength-	number)	/	Introducing	Controls	and	Validators
maxLength(maxLength-	number)	/	Introducing	Controls	and	Validators
pattern(pattern-	string)	/	Introducing	Controls	and	Validators
compose(validators-	Function[])	/	Introducing	Controls	and	Validators
composeAsync()	/	Introducing	Controls	and	Validators

strategies
used,	for	handling	asynchronous	information	/	Strategies	for	handling
asynchronous	information

string	type
about	/	String
variables,	declaring	/	Declaring	our	variables	the	ECMAScript	6	way

www.EBooksWorld.ir

T
template

configuring,	from	component	class	/	Configuring	our	template	from	our
component	class
internal	template	/	Internal	and	external	templates
external	template	/	Internal	and	external	templates

template	bindings
manipulating,	with	pipes	/	Manipulating	template	bindings	with	Pipes

template	syntax
about	/	A	better	template	syntax
data	bindings,	with	input	properties	/	Data	bindings	with	input	properties
expressions,	binding	/	Some	extra	syntactic	sugar	when	binding	expressions
event	binding,	with	output	properties	/	Event	binding	with	output	properties
input	and	output	properties	/	Input	and	output	properties	in	action
data,	emitting	through	custom	events	/	Emitting	data	through	custom	events
local	references,	in	templates	/	Local	references	in	templates
alternative	syntax,	for	input	and	output	properties	/	Alternative	syntax	for	input	and
output	properties

test	environment
setting	up	/	Setting	up	our	test	environment
test	runner,	implementing	/	Implementing	our	test	runner
NPM	commands,	setting	up	/	Setting	up	NPM	commands

tests
debugging	/	Testing	components

Title	class
URL	/	The	OnActivate	Hook

transition	properties
about	/	Creating	animations	with	plain	vanilla	CSS

two-way	data	binding
about	/	Two-way	data	binding	in	Angular	2
NgModel	directive	/	The	NgModel	directive

TypeScript
using,	over	other	syntaxes	/	Why	TypeScript	over	other	syntaxes?
about	/	Why	TypeScript	over	other	syntaxes?
case,	defining	for	/	Understanding	the	case	for	TypeScript
benefits	/	The	benefits	of	TypeScript
types	/	Types	in	TypeScript
string	/	String
number	/	Number
boolean	/	Boolean
dynamic	typing,	with	any	type	/	Dynamic	typing	with	the	any	type
void	/	Void
type	inference	/	Type	inference

www.EBooksWorld.ir

function	parameters	/	Function	parameters	in	TypeScript
scope	handling,	with	lambdas	/	Better	function	syntax	and	scope	handling	with
lambdas
interfaces	/	Interfaces	in	TypeScript
decorators	/	Decorators	in	TypeScript
references	/	Decorators	in	TypeScript
defining	/	The	road	ahead

TypeScript	compiler	wiki
URL	/	Installing	TypeScript

TypeScript	official	site
URL	/	The	TypeScript	official	site

TypeScript	plugin
URL	/	Sublime	Text	3

TypeScript	resources
defining	/	Introducing	TypeScript	resources	in	the	wild
TypeScript	official	site	/	The	TypeScript	official	site
TypeScript	Wiki	/	The	TypeScript	Wiki

TypeScript	Wiki
URL	/	The	TypeScript	Wiki

www.EBooksWorld.ir

U
unit	test

about	/	Why	do	we	need	tests?
defining,	in	Angular	2	/	Parts	of	a	unit	test	in	Angular	2
dependency	injection,	defining	/	Dependency	injection	in	unit	tests

uppercase	pipe	/	The	uppercase/lowercase	pipe

www.EBooksWorld.ir

V
Validators	class

about	/	Introducing	Controls	and	Validators
ViewEncapsulation	enum

values	/	Managing	view	encapsulation

www.EBooksWorld.ir

W
Web	components

defining	/	Web	components
templates	/	Web	components
Custom	Elements	/	Web	components
Shadow	DOM	/	Web	components
HTML	Imports	/	Web	components

WebPack
reference	/	Installing	dependencies

workspace
setting	/	Setting	up	our	workspace
dependencies,	installing	/	Installing	dependencies
TypeScript,	installing	/	Installing	TypeScript
properties	/	Installing	TypeScript
TypeScript	typings,	installing	/	Installing	TypeScript	typings

www.EBooksWorld.ir

	Learning Angular 2
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Creating Our Very First Component in Angular 2
	A fresh start
	Web components
	Why TypeScript over other syntaxes?
	Setting up our workspace
	Installing dependencies
	Installing TypeScript
	Installing TypeScript typings
	Hello, Angular 2!
	TypeScript classes
	Introducing metadata decorators
	Compiling TypeScript into browser-friendly JavaScript
	The HTML container
	Serving the examples of this book
	Putting everything together
	Enhancing our IDE
	Sublime Text 3
	Atom
	Visual Studio Code
	WebStorm
	Leveraging Gulp with other IDEs
	Diving deeper into Angular 2 components
	Improving productivity
	Component methods and data updates
	Adding interactivity to the component
	Improving the data output in the view and polishing the UI
	Summary
	2. Introducing TypeScript
	Understanding the case for TypeScript
	The benefits of TypeScript
	Introducing TypeScript resources in the wild
	The TypeScript official site
	The TypeScript Wiki
	Types in TypeScript
	String
	Declaring our variables the ECMAScript 6 way
	Number
	Boolean
	Array
	Dynamic typing with the any type
	Enum
	Void
	Type inference
	Functions, lambdas, and execution flow
	Annotating types in our functions
	Function parameters in TypeScript
	Optional parameters
	Default parameters
	Rest parameters
	Overloading the function signature
	Better function syntax and scope handling with lambdas
	Classes, interfaces, and class inheritance
	Anatomy of a class – constructors, properties, methods, getters, and setters
	Interfaces in TypeScript
	Extending classes with class inheritance
	Decorators in TypeScript
	Class decorators
	Extending the class decorator function signature
	Property decorators
	Method decorators
	Parameter decorators
	Organizing our applications with modules
	Internal modules
	External modules
	The road ahead
	Summary
	3. Implementing Properties and Events in Our Components
	A better template syntax
	Data bindings with input properties
	Some extra syntactic sugar when binding expressions
	Event binding with output properties
	Input and output properties in action
	Setting up custom values declaratively
	Communicating between components through custom events
	Emitting data through custom events
	Local references in templates
	Alternative syntax for input and output properties
	Configuring our template from our component class
	Internal and external templates
	Encapsulating CSS styling
	The styles property
	The styleUrls property
	Inline style sheets
	Managing view encapsulation
	Summary
	4. Enhancing Our Components with Pipes and Directives
	Directives in Angular 2
	Core directives
	NgIf
	NgFor
	NgStyle
	NgClass
	NgSwitch, NgSwitchWhen, and NgSwitchDefault
	Manipulating template bindings with Pipes
	The uppercase/lowercase pipe
	The number, percent, and currency pipes
	The number pipe
	The percent pipe
	The currency pipe
	The slice pipe
	The date pipe
	The JSON pipe
	The replace pipe
	The i18n pipes
	The i18nPlural pipe
	The i18nSelect pipe
	The async pipe
	Putting it all together in the Pomodoro task list
	Setting up our main HTML container
	Building our task list table with Angular directives
	Toggling tasks in our task list
	Displaying state changes in our templates
	Embedding child components
	Building our own custom pipes
	Anatomy of a custom pipe
	A custom pipe to better format time output
	Filtering out data with custom filters
	Building our own custom directives
	Anatomy of a custom directive
	Building a task tooltip custom directive
	A word about naming conventions for custom directives and pipes
	Summary
	5. Building an Application with Angular 2 Components
	Introducing the component tree
	Common conventions for scalable applications
	File and module naming conventions
	Ensuring seamless scalability with facades or barrels
	How dependency injection works in Angular 2
	Injecting dependencies across the component tree
	Restricting dependency injection down the component tree
	Restricting provider lookup
	Overriding providers in the injector hierarchy
	Extending injector support to custom entities
	Initializing applications with bootstrap()
	Switching between development and production modes
	Enabling Angular 2's built-in change detection profiler
	Introducing the Pomodoro App directory structure
	Refactoring our application the Angular 2 way
	The shared context
	Services in the shared context
	Configuring application settings from a central service
	Creating a facade module including a custom providers barrel
	Creating our components
	The timer context
	The tasks context
	Defining the top root component
	Bootstrapping the application
	Summary
	6. Asynchronous Data Services with Angular 2
	Strategies for handling asynchronous information
	Observables in a nutshell
	Reactive functional programming in Angular 2
	The RxJS library
	Introducing the HTTP API
	When to use the Request and RequestOptionsArgs classes
	The Response object
	Handling errors when performing Http requests
	Injecting the Http class and the HTTP_PROVIDERS modules symbol
	A real case study – serving Observable data through HTTP
	Adding tasks to our tasks service
	Summary
	7. Routing in Angular 2
	Adding support for the Angular 2 router
	Setting up the router service
	Building a new component for demonstration purposes
	Configuring the RouteConfig decorator with the RouteDefinition instances
	The router directives – RouterOutlet and RouterLink
	Triggering routes imperatively
	CSS hooks for active routes
	Handling route parameters
	Passing dynamic parameters in our routes
	Parsing route parameters with the RouteParams service
	Defining child routers
	Linking to child routes
	The Router lifecycle hooks
	The CanActivate hook
	The OnActivate Hook
	The CanDeactivate and OnDeactivate hooks
	The CanReuse and OnReuse hooks
	Advanced tips and tricks
	Redirecting to other routes
	Tweaking the base path
	Finetuning our generated URLs with location strategies
	Loading components asynchronously with AsyncRoutes
	Summary
	8. Forms and Authentication Handling in Angular 2
	Two-way data binding in Angular 2
	The NgModel directive
	Binding a type to a form with NgModel
	Bypassing the CanDeactivate router hook upon submitting forms
	Tracking control interaction and validating input
	Tracking changes with local references
	Controls, ControlGroups, and the FormBuilder class
	Introducing Controls and Validators
	Controls in the DOM – the ngControl directive
	Grouping controls in the DOM with NgControlGroup
	Defining control groups imperatively with ControlGroup
	Connecting the DOM and the controller with ngFormModel
	A real example – our login component
	The login feature context
	The login form template
	The login component
	Applying custom validation to our controls
	Watching state changes in our controls
	Mocking a client authentication service
	Exposing our new service to other components
	Blocking unauthorized access
	Making the UI reactive to the user authentication status
	Running the extra mile on access management
	Building our own secure RouterOutlet directive
	Summary
	9. Animating Components with Angular 2
	Creating animations with plain vanilla CSS
	Handling animation with CSS class hooks
	Class hooks available
	Animating components with the AnimationBuilder
	The CssAnimationBuilder API
	Tracking animation state with the Animation class
	Developing custom animation directives
	Interacting with our directive from the template
	Looking into the future with ngAnimate 2.0
	Summary
	10. Unit testing in Angular 2
	Why do we need tests?
	Parts of a unit test in Angular 2
	Dependency injection in unit tests
	Setting up our test environment
	Implementing our test runner
	Setting up NPM commands
	Angular 2 custom matcher functions
	Testing pipes
	Testing components
	Testing components with dependencies
	Overriding component dependencies for refined testing
	Testing routes
	Testing routes by URL
	Testing redirections
	Testing services
	Testing asynchronous services
	Mocking Http responses with MockBackend
	Testing directives
	The road ahead
	Using Jasmine in combination with Karma
	Introducing code coverage reports in your test stack
	Implementing E2E tests
	Summary
	Index

